1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/optcom.h> 73 #include <inet/kstatcom.h> 74 75 #include <netinet/igmp_var.h> 76 #include <netinet/ip6.h> 77 #include <netinet/icmp6.h> 78 #include <netinet/sctp.h> 79 80 #include <inet/ip.h> 81 #include <inet/ip_impl.h> 82 #include <inet/ip6.h> 83 #include <inet/ip6_asp.h> 84 #include <inet/tcp.h> 85 #include <inet/tcp_impl.h> 86 #include <inet/ip_multi.h> 87 #include <inet/ip_if.h> 88 #include <inet/ip_ire.h> 89 #include <inet/ip_ftable.h> 90 #include <inet/ip_rts.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/ipsec_info.h> 99 #include <inet/sadb.h> 100 #include <inet/ipsec_impl.h> 101 #include <sys/iphada.h> 102 #include <inet/tun.h> 103 #include <inet/ipdrop.h> 104 #include <inet/ip_netinfo.h> 105 106 #include <sys/ethernet.h> 107 #include <net/if_types.h> 108 #include <sys/cpuvar.h> 109 110 #include <ipp/ipp.h> 111 #include <ipp/ipp_impl.h> 112 #include <ipp/ipgpc/ipgpc.h> 113 114 #include <sys/multidata.h> 115 #include <sys/pattr.h> 116 117 #include <inet/ipclassifier.h> 118 #include <inet/sctp_ip.h> 119 #include <inet/sctp/sctp_impl.h> 120 #include <inet/udp_impl.h> 121 #include <inet/rawip_impl.h> 122 #include <inet/rts_impl.h> 123 #include <sys/sunddi.h> 124 125 #include <sys/tsol/label.h> 126 #include <sys/tsol/tnet.h> 127 128 #include <rpc/pmap_prot.h> 129 130 /* 131 * Values for squeue switch: 132 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 133 * IP_SQUEUE_ENTER: squeue_enter 134 * IP_SQUEUE_FILL: squeue_fill 135 */ 136 int ip_squeue_enter = 2; /* Setable in /etc/system */ 137 138 squeue_func_t ip_input_proc; 139 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 140 141 /* 142 * Setable in /etc/system 143 */ 144 int ip_poll_normal_ms = 100; 145 int ip_poll_normal_ticks = 0; 146 int ip_modclose_ackwait_ms = 3000; 147 148 /* 149 * It would be nice to have these present only in DEBUG systems, but the 150 * current design of the global symbol checking logic requires them to be 151 * unconditionally present. 152 */ 153 uint_t ip_thread_data; /* TSD key for debug support */ 154 krwlock_t ip_thread_rwlock; 155 list_t ip_thread_list; 156 157 /* 158 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 159 */ 160 161 struct listptr_s { 162 mblk_t *lp_head; /* pointer to the head of the list */ 163 mblk_t *lp_tail; /* pointer to the tail of the list */ 164 }; 165 166 typedef struct listptr_s listptr_t; 167 168 /* 169 * This is used by ip_snmp_get_mib2_ip_route_media and 170 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 171 */ 172 typedef struct iproutedata_s { 173 uint_t ird_idx; 174 listptr_t ird_route; /* ipRouteEntryTable */ 175 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 176 listptr_t ird_attrs; /* ipRouteAttributeTable */ 177 } iproutedata_t; 178 179 /* 180 * Cluster specific hooks. These should be NULL when booted as a non-cluster 181 */ 182 183 /* 184 * Hook functions to enable cluster networking 185 * On non-clustered systems these vectors must always be NULL. 186 * 187 * Hook function to Check ip specified ip address is a shared ip address 188 * in the cluster 189 * 190 */ 191 int (*cl_inet_isclusterwide)(uint8_t protocol, 192 sa_family_t addr_family, uint8_t *laddrp) = NULL; 193 194 /* 195 * Hook function to generate cluster wide ip fragment identifier 196 */ 197 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 198 uint8_t *laddrp, uint8_t *faddrp) = NULL; 199 200 /* 201 * Synchronization notes: 202 * 203 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 204 * MT level protection given by STREAMS. IP uses a combination of its own 205 * internal serialization mechanism and standard Solaris locking techniques. 206 * The internal serialization is per phyint (no IPMP) or per IPMP group. 207 * This is used to serialize plumbing operations, IPMP operations, certain 208 * multicast operations, most set ioctls, igmp/mld timers etc. 209 * 210 * Plumbing is a long sequence of operations involving message 211 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 212 * involved in plumbing operations. A natural model is to serialize these 213 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 214 * parallel without any interference. But various set ioctls on hme0 are best 215 * serialized. However if the system uses IPMP, the operations are easier if 216 * they are serialized on a per IPMP group basis since IPMP operations 217 * happen across ill's of a group. Thus the lowest common denominator is to 218 * serialize most set ioctls, multicast join/leave operations, IPMP operations 219 * igmp/mld timer operations, and processing of DLPI control messages received 220 * from drivers on a per IPMP group basis. If the system does not employ 221 * IPMP the serialization is on a per phyint basis. This serialization is 222 * provided by the ipsq_t and primitives operating on this. Details can 223 * be found in ip_if.c above the core primitives operating on ipsq_t. 224 * 225 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 226 * Simiarly lookup of an ire by a thread also returns a refheld ire. 227 * In addition ipif's and ill's referenced by the ire are also indirectly 228 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 229 * the ipif's address or netmask change as long as an ipif is refheld 230 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 231 * address of an ipif has to go through the ipsq_t. This ensures that only 232 * 1 such exclusive operation proceeds at any time on the ipif. It then 233 * deletes all ires associated with this ipif, and waits for all refcnts 234 * associated with this ipif to come down to zero. The address is changed 235 * only after the ipif has been quiesced. Then the ipif is brought up again. 236 * More details are described above the comment in ip_sioctl_flags. 237 * 238 * Packet processing is based mostly on IREs and are fully multi-threaded 239 * using standard Solaris MT techniques. 240 * 241 * There are explicit locks in IP to handle: 242 * - The ip_g_head list maintained by mi_open_link() and friends. 243 * 244 * - The reassembly data structures (one lock per hash bucket) 245 * 246 * - conn_lock is meant to protect conn_t fields. The fields actually 247 * protected by conn_lock are documented in the conn_t definition. 248 * 249 * - ire_lock to protect some of the fields of the ire, IRE tables 250 * (one lock per hash bucket). Refer to ip_ire.c for details. 251 * 252 * - ndp_g_lock and nce_lock for protecting NCEs. 253 * 254 * - ill_lock protects fields of the ill and ipif. Details in ip.h 255 * 256 * - ill_g_lock: This is a global reader/writer lock. Protects the following 257 * * The AVL tree based global multi list of all ills. 258 * * The linked list of all ipifs of an ill 259 * * The <ill-ipsq> mapping 260 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 261 * * The illgroup list threaded by ill_group_next. 262 * * <ill-phyint> association 263 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 264 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 265 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 266 * will all have to hold the ill_g_lock as writer for the actual duration 267 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 268 * may be found in the IPMP section. 269 * 270 * - ill_lock: This is a per ill mutex. 271 * It protects some members of the ill and is documented below. 272 * It also protects the <ill-ipsq> mapping 273 * It also protects the illgroup list threaded by ill_group_next. 274 * It also protects the <ill-phyint> assoc. 275 * It also protects the list of ipifs hanging off the ill. 276 * 277 * - ipsq_lock: This is a per ipsq_t mutex lock. 278 * This protects all the other members of the ipsq struct except 279 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 280 * 281 * - illgrp_lock: This is a per ill_group mutex lock. 282 * The only thing it protects is the illgrp_ill_schednext member of ill_group 283 * which dictates which is the next ill in an ill_group that is to be chosen 284 * for sending outgoing packets, through creation of an IRE_CACHE that 285 * references this ill. 286 * 287 * - phyint_lock: This is a per phyint mutex lock. Protects just the 288 * phyint_flags 289 * 290 * - ip_g_nd_lock: This is a global reader/writer lock. 291 * Any call to nd_load to load a new parameter to the ND table must hold the 292 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 293 * as reader. 294 * 295 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 296 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 297 * uniqueness check also done atomically. 298 * 299 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 300 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 301 * as a writer when adding or deleting elements from these lists, and 302 * as a reader when walking these lists to send a SADB update to the 303 * IPsec capable ills. 304 * 305 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 306 * group list linked by ill_usesrc_grp_next. It also protects the 307 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 308 * group is being added or deleted. This lock is taken as a reader when 309 * walking the list/group(eg: to get the number of members in a usesrc group). 310 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 311 * field is changing state i.e from NULL to non-NULL or vice-versa. For 312 * example, it is not necessary to take this lock in the initial portion 313 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 314 * ip_sioctl_flags since the these operations are executed exclusively and 315 * that ensures that the "usesrc group state" cannot change. The "usesrc 316 * group state" change can happen only in the latter part of 317 * ip_sioctl_slifusesrc and in ill_delete. 318 * 319 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 320 * 321 * To change the <ill-phyint> association, the ill_g_lock must be held 322 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 323 * must be held. 324 * 325 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 326 * and the ill_lock of the ill in question must be held. 327 * 328 * To change the <ill-illgroup> association the ill_g_lock must be held as 329 * writer and the ill_lock of the ill in question must be held. 330 * 331 * To add or delete an ipif from the list of ipifs hanging off the ill, 332 * ill_g_lock (writer) and ill_lock must be held and the thread must be 333 * a writer on the associated ipsq,. 334 * 335 * To add or delete an ill to the system, the ill_g_lock must be held as 336 * writer and the thread must be a writer on the associated ipsq. 337 * 338 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 339 * must be a writer on the associated ipsq. 340 * 341 * Lock hierarchy 342 * 343 * Some lock hierarchy scenarios are listed below. 344 * 345 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 346 * ill_g_lock -> illgrp_lock -> ill_lock 347 * ill_g_lock -> ill_lock(s) -> phyint_lock 348 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 349 * ill_g_lock -> ip_addr_avail_lock 350 * conn_lock -> irb_lock -> ill_lock -> ire_lock 351 * ill_g_lock -> ip_g_nd_lock 352 * 353 * When more than 1 ill lock is needed to be held, all ill lock addresses 354 * are sorted on address and locked starting from highest addressed lock 355 * downward. 356 * 357 * IPsec scenarios 358 * 359 * ipsa_lock -> ill_g_lock -> ill_lock 360 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 361 * ipsec_capab_ills_lock -> ipsa_lock 362 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 363 * 364 * Trusted Solaris scenarios 365 * 366 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 367 * igsa_lock -> gcdb_lock 368 * gcgrp_rwlock -> ire_lock 369 * gcgrp_rwlock -> gcdb_lock 370 * 371 * 372 * Routing/forwarding table locking notes: 373 * 374 * Lock acquisition order: Radix tree lock, irb_lock. 375 * Requirements: 376 * i. Walker must not hold any locks during the walker callback. 377 * ii Walker must not see a truncated tree during the walk because of any node 378 * deletion. 379 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 380 * in many places in the code to walk the irb list. Thus even if all the 381 * ires in a bucket have been deleted, we still can't free the radix node 382 * until the ires have actually been inactive'd (freed). 383 * 384 * Tree traversal - Need to hold the global tree lock in read mode. 385 * Before dropping the global tree lock, need to either increment the ire_refcnt 386 * to ensure that the radix node can't be deleted. 387 * 388 * Tree add - Need to hold the global tree lock in write mode to add a 389 * radix node. To prevent the node from being deleted, increment the 390 * irb_refcnt, after the node is added to the tree. The ire itself is 391 * added later while holding the irb_lock, but not the tree lock. 392 * 393 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 394 * All associated ires must be inactive (i.e. freed), and irb_refcnt 395 * must be zero. 396 * 397 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 398 * global tree lock (read mode) for traversal. 399 * 400 * IPsec notes : 401 * 402 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 403 * in front of the actual packet. For outbound datagrams, the M_CTL 404 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 405 * information used by the IPsec code for applying the right level of 406 * protection. The information initialized by IP in the ipsec_out_t 407 * is determined by the per-socket policy or global policy in the system. 408 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 409 * ipsec_info.h) which starts out with nothing in it. It gets filled 410 * with the right information if it goes through the AH/ESP code, which 411 * happens if the incoming packet is secure. The information initialized 412 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 413 * the policy requirements needed by per-socket policy or global policy 414 * is met or not. 415 * 416 * If there is both per-socket policy (set using setsockopt) and there 417 * is also global policy match for the 5 tuples of the socket, 418 * ipsec_override_policy() makes the decision of which one to use. 419 * 420 * For fully connected sockets i.e dst, src [addr, port] is known, 421 * conn_policy_cached is set indicating that policy has been cached. 422 * conn_in_enforce_policy may or may not be set depending on whether 423 * there is a global policy match or per-socket policy match. 424 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 425 * Once the right policy is set on the conn_t, policy cannot change for 426 * this socket. This makes life simpler for TCP (UDP ?) where 427 * re-transmissions go out with the same policy. For symmetry, policy 428 * is cached for fully connected UDP sockets also. Thus if policy is cached, 429 * it also implies that policy is latched i.e policy cannot change 430 * on these sockets. As we have the right policy on the conn, we don't 431 * have to lookup global policy for every outbound and inbound datagram 432 * and thus serving as an optimization. Note that a global policy change 433 * does not affect fully connected sockets if they have policy. If fully 434 * connected sockets did not have any policy associated with it, global 435 * policy change may affect them. 436 * 437 * IP Flow control notes: 438 * 439 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 440 * cannot be sent down to the driver by IP, because of a canput failure, IP 441 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 442 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 443 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 444 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 445 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 446 * the queued messages, and removes the conn from the drain list, if all 447 * messages were drained. It also qenables the next conn in the drain list to 448 * continue the drain process. 449 * 450 * In reality the drain list is not a single list, but a configurable number 451 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 452 * list. If the ip_wsrv of the next qenabled conn does not run, because the 453 * stream closes, ip_close takes responsibility to qenable the next conn in 454 * the drain list. The directly called ip_wput path always does a putq, if 455 * it cannot putnext. Thus synchronization problems are handled between 456 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 457 * functions that manipulate this drain list. Furthermore conn_drain_insert 458 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 459 * running on a queue at any time. conn_drain_tail can be simultaneously called 460 * from both ip_wsrv and ip_close. 461 * 462 * IPQOS notes: 463 * 464 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 465 * and IPQoS modules. IPPF includes hooks in IP at different control points 466 * (callout positions) which direct packets to IPQoS modules for policy 467 * processing. Policies, if present, are global. 468 * 469 * The callout positions are located in the following paths: 470 * o local_in (packets destined for this host) 471 * o local_out (packets orginating from this host ) 472 * o fwd_in (packets forwarded by this m/c - inbound) 473 * o fwd_out (packets forwarded by this m/c - outbound) 474 * Hooks at these callout points can be enabled/disabled using the ndd variable 475 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 476 * By default all the callout positions are enabled. 477 * 478 * Outbound (local_out) 479 * Hooks are placed in ip_wput_ire and ipsec_out_process. 480 * 481 * Inbound (local_in) 482 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 483 * TCP and UDP fanout routines. 484 * 485 * Forwarding (in and out) 486 * Hooks are placed in ip_rput_forward. 487 * 488 * IP Policy Framework processing (IPPF processing) 489 * Policy processing for a packet is initiated by ip_process, which ascertains 490 * that the classifier (ipgpc) is loaded and configured, failing which the 491 * packet resumes normal processing in IP. If the clasifier is present, the 492 * packet is acted upon by one or more IPQoS modules (action instances), per 493 * filters configured in ipgpc and resumes normal IP processing thereafter. 494 * An action instance can drop a packet in course of its processing. 495 * 496 * A boolean variable, ip_policy, is used in all the fanout routines that can 497 * invoke ip_process for a packet. This variable indicates if the packet should 498 * to be sent for policy processing. The variable is set to B_TRUE by default, 499 * i.e. when the routines are invoked in the normal ip procesing path for a 500 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 501 * ip_policy is set to B_FALSE for all the routines called in these two 502 * functions because, in the former case, we don't process loopback traffic 503 * currently while in the latter, the packets have already been processed in 504 * icmp_inbound. 505 * 506 * Zones notes: 507 * 508 * The partitioning rules for networking are as follows: 509 * 1) Packets coming from a zone must have a source address belonging to that 510 * zone. 511 * 2) Packets coming from a zone can only be sent on a physical interface on 512 * which the zone has an IP address. 513 * 3) Between two zones on the same machine, packet delivery is only allowed if 514 * there's a matching route for the destination and zone in the forwarding 515 * table. 516 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 517 * different zones can bind to the same port with the wildcard address 518 * (INADDR_ANY). 519 * 520 * The granularity of interface partitioning is at the logical interface level. 521 * Therefore, every zone has its own IP addresses, and incoming packets can be 522 * attributed to a zone unambiguously. A logical interface is placed into a zone 523 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 524 * structure. Rule (1) is implemented by modifying the source address selection 525 * algorithm so that the list of eligible addresses is filtered based on the 526 * sending process zone. 527 * 528 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 529 * across all zones, depending on their type. Here is the break-up: 530 * 531 * IRE type Shared/exclusive 532 * -------- ---------------- 533 * IRE_BROADCAST Exclusive 534 * IRE_DEFAULT (default routes) Shared (*) 535 * IRE_LOCAL Exclusive (x) 536 * IRE_LOOPBACK Exclusive 537 * IRE_PREFIX (net routes) Shared (*) 538 * IRE_CACHE Exclusive 539 * IRE_IF_NORESOLVER (interface routes) Exclusive 540 * IRE_IF_RESOLVER (interface routes) Exclusive 541 * IRE_HOST (host routes) Shared (*) 542 * 543 * (*) A zone can only use a default or off-subnet route if the gateway is 544 * directly reachable from the zone, that is, if the gateway's address matches 545 * one of the zone's logical interfaces. 546 * 547 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 548 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 549 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 550 * address of the zone itself (the destination). Since IRE_LOCAL is used 551 * for communication between zones, ip_wput_ire has special logic to set 552 * the right source address when sending using an IRE_LOCAL. 553 * 554 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 555 * ire_cache_lookup restricts loopback using an IRE_LOCAL 556 * between zone to the case when L2 would have conceptually looped the packet 557 * back, i.e. the loopback which is required since neither Ethernet drivers 558 * nor Ethernet hardware loops them back. This is the case when the normal 559 * routes (ignoring IREs with different zoneids) would send out the packet on 560 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 561 * associated. 562 * 563 * Multiple zones can share a common broadcast address; typically all zones 564 * share the 255.255.255.255 address. Incoming as well as locally originated 565 * broadcast packets must be dispatched to all the zones on the broadcast 566 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 567 * since some zones may not be on the 10.16.72/24 network. To handle this, each 568 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 569 * sent to every zone that has an IRE_BROADCAST entry for the destination 570 * address on the input ill, see conn_wantpacket(). 571 * 572 * Applications in different zones can join the same multicast group address. 573 * For IPv4, group memberships are per-logical interface, so they're already 574 * inherently part of a zone. For IPv6, group memberships are per-physical 575 * interface, so we distinguish IPv6 group memberships based on group address, 576 * interface and zoneid. In both cases, received multicast packets are sent to 577 * every zone for which a group membership entry exists. On IPv6 we need to 578 * check that the target zone still has an address on the receiving physical 579 * interface; it could have been removed since the application issued the 580 * IPV6_JOIN_GROUP. 581 */ 582 583 /* 584 * Squeue Fanout flags: 585 * 0: No fanout. 586 * 1: Fanout across all squeues 587 */ 588 boolean_t ip_squeue_fanout = 0; 589 590 /* 591 * Maximum dups allowed per packet. 592 */ 593 uint_t ip_max_frag_dups = 10; 594 595 #define IS_SIMPLE_IPH(ipha) \ 596 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 597 598 /* RFC1122 Conformance */ 599 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 600 601 #define ILL_MAX_NAMELEN LIFNAMSIZ 602 603 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 604 605 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 606 cred_t *credp, boolean_t isv6); 607 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 608 609 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 610 ip_stack_t *); 611 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 612 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 613 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 614 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 615 mblk_t *, int, ip_stack_t *); 616 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 617 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 618 ill_t *, zoneid_t); 619 static void icmp_options_update(ipha_t *); 620 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 621 ip_stack_t *); 622 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 623 zoneid_t zoneid, ip_stack_t *); 624 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 625 static void icmp_redirect(ill_t *, mblk_t *); 626 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 627 ip_stack_t *); 628 629 static void ip_arp_news(queue_t *, mblk_t *); 630 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 631 ip_stack_t *); 632 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 633 char *ip_dot_addr(ipaddr_t, char *); 634 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 635 int ip_close(queue_t *, int); 636 static char *ip_dot_saddr(uchar_t *, char *); 637 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 638 boolean_t, boolean_t, ill_t *, zoneid_t); 639 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 640 boolean_t, boolean_t, zoneid_t); 641 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 642 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 643 static void ip_lrput(queue_t *, mblk_t *); 644 ipaddr_t ip_net_mask(ipaddr_t); 645 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 646 ip_stack_t *); 647 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 648 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 649 char *ip_nv_lookup(nv_t *, int); 650 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 651 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 652 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 653 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 654 ipndp_t *, size_t); 655 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 656 void ip_rput(queue_t *, mblk_t *); 657 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 658 void *dummy_arg); 659 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 660 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 661 ip_stack_t *); 662 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 663 ire_t *, ip_stack_t *); 664 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 665 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 666 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 667 ip_stack_t *); 668 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 669 uint16_t *); 670 int ip_snmp_get(queue_t *, mblk_t *, int); 671 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 672 mib2_ipIfStatsEntry_t *, ip_stack_t *); 673 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 674 ip_stack_t *); 675 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 676 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 677 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 678 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 679 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 680 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 681 ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 683 ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 685 ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 701 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 702 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 703 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 704 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 705 static boolean_t ip_source_route_included(ipha_t *); 706 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 707 708 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 709 zoneid_t, ip_stack_t *); 710 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 711 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 712 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 713 zoneid_t, ip_stack_t *); 714 715 static void conn_drain_init(ip_stack_t *); 716 static void conn_drain_fini(ip_stack_t *); 717 static void conn_drain_tail(conn_t *connp, boolean_t closing); 718 719 static void conn_walk_drain(ip_stack_t *); 720 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 721 zoneid_t); 722 723 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 724 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 725 static void ip_stack_fini(netstackid_t stackid, void *arg); 726 727 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 728 zoneid_t); 729 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 730 void *dummy_arg); 731 732 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 733 734 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 735 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 736 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 737 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 738 739 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 740 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 741 caddr_t, cred_t *); 742 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 743 caddr_t cp, cred_t *cr); 744 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 745 cred_t *); 746 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 747 caddr_t cp, cred_t *cr); 748 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 749 cred_t *); 750 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 751 cred_t *); 752 static squeue_func_t ip_squeue_switch(int); 753 754 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 755 static void ip_kstat_fini(netstackid_t, kstat_t *); 756 static int ip_kstat_update(kstat_t *kp, int rw); 757 static void *icmp_kstat_init(netstackid_t); 758 static void icmp_kstat_fini(netstackid_t, kstat_t *); 759 static int icmp_kstat_update(kstat_t *kp, int rw); 760 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 761 static void ip_kstat2_fini(netstackid_t, kstat_t *); 762 763 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 764 765 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 766 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 767 768 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 769 ipha_t *, ill_t *, boolean_t); 770 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 771 772 /* How long, in seconds, we allow frags to hang around. */ 773 #define IP_FRAG_TIMEOUT 60 774 775 /* 776 * Threshold which determines whether MDT should be used when 777 * generating IP fragments; payload size must be greater than 778 * this threshold for MDT to take place. 779 */ 780 #define IP_WPUT_FRAG_MDT_MIN 32768 781 782 /* Setable in /etc/system only */ 783 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 784 785 static long ip_rput_pullups; 786 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 787 788 vmem_t *ip_minor_arena; 789 790 int ip_debug; 791 792 #ifdef DEBUG 793 uint32_t ipsechw_debug = 0; 794 #endif 795 796 /* 797 * Multirouting/CGTP stuff 798 */ 799 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 800 801 /* 802 * XXX following really should only be in a header. Would need more 803 * header and .c clean up first. 804 */ 805 extern optdb_obj_t ip_opt_obj; 806 807 ulong_t ip_squeue_enter_unbound = 0; 808 809 /* 810 * Named Dispatch Parameter Table. 811 * All of these are alterable, within the min/max values given, at run time. 812 */ 813 static ipparam_t lcl_param_arr[] = { 814 /* min max value name */ 815 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 816 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 817 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 818 { 0, 1, 0, "ip_respond_to_timestamp"}, 819 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 820 { 0, 1, 1, "ip_send_redirects"}, 821 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 822 { 0, 10, 0, "ip_mrtdebug"}, 823 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 824 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 825 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 826 { 1, 255, 255, "ip_def_ttl" }, 827 { 0, 1, 0, "ip_forward_src_routed"}, 828 { 0, 256, 32, "ip_wroff_extra" }, 829 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 830 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 831 { 0, 1, 1, "ip_path_mtu_discovery" }, 832 { 0, 240, 30, "ip_ignore_delete_time" }, 833 { 0, 1, 0, "ip_ignore_redirect" }, 834 { 0, 1, 1, "ip_output_queue" }, 835 { 1, 254, 1, "ip_broadcast_ttl" }, 836 { 0, 99999, 100, "ip_icmp_err_interval" }, 837 { 1, 99999, 10, "ip_icmp_err_burst" }, 838 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 839 { 0, 1, 0, "ip_strict_dst_multihoming" }, 840 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 841 { 0, 1, 0, "ipsec_override_persocket_policy" }, 842 { 0, 1, 1, "icmp_accept_clear_messages" }, 843 { 0, 1, 1, "igmp_accept_clear_messages" }, 844 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 845 "ip_ndp_delay_first_probe_time"}, 846 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 847 "ip_ndp_max_unicast_solicit"}, 848 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 849 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 850 { 0, 1, 0, "ip6_forward_src_routed"}, 851 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 852 { 0, 1, 1, "ip6_send_redirects"}, 853 { 0, 1, 0, "ip6_ignore_redirect" }, 854 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 855 856 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 857 858 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 859 860 { 0, 1, 1, "pim_accept_clear_messages" }, 861 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 862 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 863 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 864 { 0, 15, 0, "ip_policy_mask" }, 865 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 866 { 0, 255, 1, "ip_multirt_ttl" }, 867 { 0, 1, 1, "ip_multidata_outbound" }, 868 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 869 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 870 { 0, 1000, 1, "ip_max_temp_defend" }, 871 { 0, 1000, 3, "ip_max_defend" }, 872 { 0, 999999, 30, "ip_defend_interval" }, 873 { 0, 3600000, 300000, "ip_dup_recovery" }, 874 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 875 { 0, 1, 1, "ip_lso_outbound" }, 876 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 877 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 878 #ifdef DEBUG 879 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 880 #else 881 { 0, 0, 0, "" }, 882 #endif 883 }; 884 885 /* 886 * Extended NDP table 887 * The addresses for the first two are filled in to be ips_ip_g_forward 888 * and ips_ipv6_forward at init time. 889 */ 890 static ipndp_t lcl_ndp_arr[] = { 891 /* getf setf data name */ 892 #define IPNDP_IP_FORWARDING_OFFSET 0 893 { ip_param_generic_get, ip_forward_set, NULL, 894 "ip_forwarding" }, 895 #define IPNDP_IP6_FORWARDING_OFFSET 1 896 { ip_param_generic_get, ip_forward_set, NULL, 897 "ip6_forwarding" }, 898 { ip_ill_report, NULL, NULL, 899 "ip_ill_status" }, 900 { ip_ipif_report, NULL, NULL, 901 "ip_ipif_status" }, 902 { ip_ire_report, NULL, NULL, 903 "ipv4_ire_status" }, 904 { ip_ire_report_v6, NULL, NULL, 905 "ipv6_ire_status" }, 906 { ip_conn_report, NULL, NULL, 907 "ip_conn_status" }, 908 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 909 "ip_rput_pullups" }, 910 { ndp_report, NULL, NULL, 911 "ip_ndp_cache_report" }, 912 { ip_srcid_report, NULL, NULL, 913 "ip_srcid_status" }, 914 { ip_param_generic_get, ip_squeue_profile_set, 915 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 916 { ip_param_generic_get, ip_squeue_bind_set, 917 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 918 { ip_param_generic_get, ip_input_proc_set, 919 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 920 { ip_param_generic_get, ip_int_set, 921 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 922 #define IPNDP_CGTP_FILTER_OFFSET 14 923 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 924 "ip_cgtp_filter" }, 925 { ip_param_generic_get, ip_int_set, 926 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 927 #define IPNDP_IPMP_HOOK_OFFSET 16 928 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 929 "ipmp_hook_emulation" }, 930 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 931 "ip_debug" }, 932 }; 933 934 /* 935 * Table of IP ioctls encoding the various properties of the ioctl and 936 * indexed based on the last byte of the ioctl command. Occasionally there 937 * is a clash, and there is more than 1 ioctl with the same last byte. 938 * In such a case 1 ioctl is encoded in the ndx table and the remaining 939 * ioctls are encoded in the misc table. An entry in the ndx table is 940 * retrieved by indexing on the last byte of the ioctl command and comparing 941 * the ioctl command with the value in the ndx table. In the event of a 942 * mismatch the misc table is then searched sequentially for the desired 943 * ioctl command. 944 * 945 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 946 */ 947 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 948 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 949 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 950 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 951 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 952 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 953 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 954 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 955 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 956 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 957 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 958 959 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 960 MISC_CMD, ip_siocaddrt, NULL }, 961 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 962 MISC_CMD, ip_siocdelrt, NULL }, 963 964 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 965 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 966 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 967 IF_CMD, ip_sioctl_get_addr, NULL }, 968 969 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 970 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 971 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 972 IPI_GET_CMD | IPI_REPL, 973 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 974 975 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 976 IPI_PRIV | IPI_WR | IPI_REPL, 977 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 978 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 979 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 980 IF_CMD, ip_sioctl_get_flags, NULL }, 981 982 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 983 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 984 985 /* copyin size cannot be coded for SIOCGIFCONF */ 986 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 987 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 988 989 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 990 IF_CMD, ip_sioctl_mtu, NULL }, 991 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 992 IF_CMD, ip_sioctl_get_mtu, NULL }, 993 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 994 IPI_GET_CMD | IPI_REPL, 995 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 996 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 997 IF_CMD, ip_sioctl_brdaddr, NULL }, 998 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 999 IPI_GET_CMD | IPI_REPL, 1000 IF_CMD, ip_sioctl_get_netmask, NULL }, 1001 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1002 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1003 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1004 IPI_GET_CMD | IPI_REPL, 1005 IF_CMD, ip_sioctl_get_metric, NULL }, 1006 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1007 IF_CMD, ip_sioctl_metric, NULL }, 1008 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1009 1010 /* See 166-168 below for extended SIOC*XARP ioctls */ 1011 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1012 ARP_CMD, ip_sioctl_arp, NULL }, 1013 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1014 ARP_CMD, ip_sioctl_arp, NULL }, 1015 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1016 ARP_CMD, ip_sioctl_arp, NULL }, 1017 1018 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1019 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1020 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 1040 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1041 MISC_CMD, if_unitsel, if_unitsel_restart }, 1042 1043 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1061 1062 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1063 IPI_PRIV | IPI_WR | IPI_MODOK, 1064 IF_CMD, ip_sioctl_sifname, NULL }, 1065 1066 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 1080 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1081 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1082 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1083 IF_CMD, ip_sioctl_get_muxid, NULL }, 1084 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1085 IPI_PRIV | IPI_WR | IPI_REPL, 1086 IF_CMD, ip_sioctl_muxid, NULL }, 1087 1088 /* Both if and lif variants share same func */ 1089 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1090 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1091 /* Both if and lif variants share same func */ 1092 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1093 IPI_PRIV | IPI_WR | IPI_REPL, 1094 IF_CMD, ip_sioctl_slifindex, NULL }, 1095 1096 /* copyin size cannot be coded for SIOCGIFCONF */ 1097 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1098 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1099 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 1117 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1118 IPI_PRIV | IPI_WR | IPI_REPL, 1119 LIF_CMD, ip_sioctl_removeif, 1120 ip_sioctl_removeif_restart }, 1121 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1122 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1123 LIF_CMD, ip_sioctl_addif, NULL }, 1124 #define SIOCLIFADDR_NDX 112 1125 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1126 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1127 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1128 IPI_GET_CMD | IPI_REPL, 1129 LIF_CMD, ip_sioctl_get_addr, NULL }, 1130 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1131 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1132 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1133 IPI_GET_CMD | IPI_REPL, 1134 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1135 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1136 IPI_PRIV | IPI_WR | IPI_REPL, 1137 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1138 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1139 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1140 LIF_CMD, ip_sioctl_get_flags, NULL }, 1141 1142 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 1145 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1146 ip_sioctl_get_lifconf, NULL }, 1147 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1148 LIF_CMD, ip_sioctl_mtu, NULL }, 1149 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1150 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1151 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1152 IPI_GET_CMD | IPI_REPL, 1153 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1154 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1155 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1156 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1157 IPI_GET_CMD | IPI_REPL, 1158 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1159 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1160 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1161 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1162 IPI_GET_CMD | IPI_REPL, 1163 LIF_CMD, ip_sioctl_get_metric, NULL }, 1164 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1165 LIF_CMD, ip_sioctl_metric, NULL }, 1166 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1167 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1168 LIF_CMD, ip_sioctl_slifname, 1169 ip_sioctl_slifname_restart }, 1170 1171 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1172 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1173 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1174 IPI_GET_CMD | IPI_REPL, 1175 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1176 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1177 IPI_PRIV | IPI_WR | IPI_REPL, 1178 LIF_CMD, ip_sioctl_muxid, NULL }, 1179 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1180 IPI_GET_CMD | IPI_REPL, 1181 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1182 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1183 IPI_PRIV | IPI_WR | IPI_REPL, 1184 LIF_CMD, ip_sioctl_slifindex, 0 }, 1185 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1186 LIF_CMD, ip_sioctl_token, NULL }, 1187 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1188 IPI_GET_CMD | IPI_REPL, 1189 LIF_CMD, ip_sioctl_get_token, NULL }, 1190 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1191 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1192 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1193 IPI_GET_CMD | IPI_REPL, 1194 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1195 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1196 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1197 1198 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1199 IPI_GET_CMD | IPI_REPL, 1200 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1201 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1202 LIF_CMD, ip_siocdelndp_v6, NULL }, 1203 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1204 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1205 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1206 LIF_CMD, ip_siocsetndp_v6, NULL }, 1207 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1208 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1209 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1210 MISC_CMD, ip_sioctl_tonlink, NULL }, 1211 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1212 MISC_CMD, ip_sioctl_tmysite, NULL }, 1213 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1214 TUN_CMD, ip_sioctl_tunparam, NULL }, 1215 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1216 IPI_PRIV | IPI_WR, 1217 TUN_CMD, ip_sioctl_tunparam, NULL }, 1218 1219 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1220 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1221 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1222 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1223 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1224 1225 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1226 IPI_PRIV | IPI_WR | IPI_REPL, 1227 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1228 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1229 IPI_PRIV | IPI_WR | IPI_REPL, 1230 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1231 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1232 IPI_PRIV | IPI_WR, 1233 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1234 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1235 IPI_GET_CMD | IPI_REPL, 1236 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1237 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1238 IPI_GET_CMD | IPI_REPL, 1239 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1240 1241 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1242 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1243 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1244 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1245 1246 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1247 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1248 1249 /* These are handled in ip_sioctl_copyin_setup itself */ 1250 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1251 MISC_CMD, NULL, NULL }, 1252 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1253 MISC_CMD, NULL, NULL }, 1254 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1255 1256 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1257 ip_sioctl_get_lifconf, NULL }, 1258 1259 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1260 XARP_CMD, ip_sioctl_arp, NULL }, 1261 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1262 XARP_CMD, ip_sioctl_arp, NULL }, 1263 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1264 XARP_CMD, ip_sioctl_arp, NULL }, 1265 1266 /* SIOCPOPSOCKFS is not handled by IP */ 1267 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1268 1269 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1270 IPI_GET_CMD | IPI_REPL, 1271 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1272 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1273 IPI_PRIV | IPI_WR | IPI_REPL, 1274 LIF_CMD, ip_sioctl_slifzone, 1275 ip_sioctl_slifzone_restart }, 1276 /* 172-174 are SCTP ioctls and not handled by IP */ 1277 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1278 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1279 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1280 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1281 IPI_GET_CMD, LIF_CMD, 1282 ip_sioctl_get_lifusesrc, 0 }, 1283 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1284 IPI_PRIV | IPI_WR, 1285 LIF_CMD, ip_sioctl_slifusesrc, 1286 NULL }, 1287 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1288 ip_sioctl_get_lifsrcof, NULL }, 1289 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1290 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1291 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1292 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1293 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1294 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1295 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1296 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1297 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1298 ip_sioctl_set_ipmpfailback, NULL }, 1299 /* SIOCSENABLESDP is handled by SDP */ 1300 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1301 }; 1302 1303 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1304 1305 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1306 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1307 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1308 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1309 TUN_CMD, ip_sioctl_tunparam, NULL }, 1310 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1311 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1312 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1313 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1314 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1315 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1316 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1317 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1318 MISC_CMD, mrt_ioctl}, 1319 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1320 MISC_CMD, mrt_ioctl}, 1321 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1322 MISC_CMD, mrt_ioctl} 1323 }; 1324 1325 int ip_misc_ioctl_count = 1326 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1327 1328 int conn_drain_nthreads; /* Number of drainers reqd. */ 1329 /* Settable in /etc/system */ 1330 /* Defined in ip_ire.c */ 1331 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1332 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1333 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1334 1335 static nv_t ire_nv_arr[] = { 1336 { IRE_BROADCAST, "BROADCAST" }, 1337 { IRE_LOCAL, "LOCAL" }, 1338 { IRE_LOOPBACK, "LOOPBACK" }, 1339 { IRE_CACHE, "CACHE" }, 1340 { IRE_DEFAULT, "DEFAULT" }, 1341 { IRE_PREFIX, "PREFIX" }, 1342 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1343 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1344 { IRE_HOST, "HOST" }, 1345 { 0 } 1346 }; 1347 1348 nv_t *ire_nv_tbl = ire_nv_arr; 1349 1350 /* Defined in ip_netinfo.c */ 1351 extern ddi_taskq_t *eventq_queue_nic; 1352 1353 /* Simple ICMP IP Header Template */ 1354 static ipha_t icmp_ipha = { 1355 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1356 }; 1357 1358 struct module_info ip_mod_info = { 1359 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1360 }; 1361 1362 /* 1363 * Duplicate static symbols within a module confuses mdb; so we avoid the 1364 * problem by making the symbols here distinct from those in udp.c. 1365 */ 1366 1367 /* 1368 * Entry points for IP as a device and as a module. 1369 * FIXME: down the road we might want a separate module and driver qinit. 1370 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1371 */ 1372 static struct qinit iprinitv4 = { 1373 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1374 &ip_mod_info 1375 }; 1376 1377 struct qinit iprinitv6 = { 1378 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1379 &ip_mod_info 1380 }; 1381 1382 static struct qinit ipwinitv4 = { 1383 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1384 &ip_mod_info 1385 }; 1386 1387 struct qinit ipwinitv6 = { 1388 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1389 &ip_mod_info 1390 }; 1391 1392 static struct qinit iplrinit = { 1393 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1394 &ip_mod_info 1395 }; 1396 1397 static struct qinit iplwinit = { 1398 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1399 &ip_mod_info 1400 }; 1401 1402 /* For AF_INET aka /dev/ip */ 1403 struct streamtab ipinfov4 = { 1404 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1405 }; 1406 1407 /* For AF_INET6 aka /dev/ip6 */ 1408 struct streamtab ipinfov6 = { 1409 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1410 }; 1411 1412 #ifdef DEBUG 1413 static boolean_t skip_sctp_cksum = B_FALSE; 1414 #endif 1415 1416 /* 1417 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1418 * ip_rput_v6(), ip_output(), etc. If the message 1419 * block already has a M_CTL at the front of it, then simply set the zoneid 1420 * appropriately. 1421 */ 1422 mblk_t * 1423 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1424 { 1425 mblk_t *first_mp; 1426 ipsec_out_t *io; 1427 1428 ASSERT(zoneid != ALL_ZONES); 1429 if (mp->b_datap->db_type == M_CTL) { 1430 io = (ipsec_out_t *)mp->b_rptr; 1431 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1432 io->ipsec_out_zoneid = zoneid; 1433 return (mp); 1434 } 1435 1436 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1437 if (first_mp == NULL) 1438 return (NULL); 1439 io = (ipsec_out_t *)first_mp->b_rptr; 1440 /* This is not a secure packet */ 1441 io->ipsec_out_secure = B_FALSE; 1442 io->ipsec_out_zoneid = zoneid; 1443 first_mp->b_cont = mp; 1444 return (first_mp); 1445 } 1446 1447 /* 1448 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1449 */ 1450 mblk_t * 1451 ip_copymsg(mblk_t *mp) 1452 { 1453 mblk_t *nmp; 1454 ipsec_info_t *in; 1455 1456 if (mp->b_datap->db_type != M_CTL) 1457 return (copymsg(mp)); 1458 1459 in = (ipsec_info_t *)mp->b_rptr; 1460 1461 /* 1462 * Note that M_CTL is also used for delivering ICMP error messages 1463 * upstream to transport layers. 1464 */ 1465 if (in->ipsec_info_type != IPSEC_OUT && 1466 in->ipsec_info_type != IPSEC_IN) 1467 return (copymsg(mp)); 1468 1469 nmp = copymsg(mp->b_cont); 1470 1471 if (in->ipsec_info_type == IPSEC_OUT) { 1472 return (ipsec_out_tag(mp, nmp, 1473 ((ipsec_out_t *)in)->ipsec_out_ns)); 1474 } else { 1475 return (ipsec_in_tag(mp, nmp, 1476 ((ipsec_in_t *)in)->ipsec_in_ns)); 1477 } 1478 } 1479 1480 /* Generate an ICMP fragmentation needed message. */ 1481 static void 1482 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1483 ip_stack_t *ipst) 1484 { 1485 icmph_t icmph; 1486 mblk_t *first_mp; 1487 boolean_t mctl_present; 1488 1489 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1490 1491 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1492 if (mctl_present) 1493 freeb(first_mp); 1494 return; 1495 } 1496 1497 bzero(&icmph, sizeof (icmph_t)); 1498 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1499 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1500 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1501 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1502 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1503 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1504 ipst); 1505 } 1506 1507 /* 1508 * icmp_inbound deals with ICMP messages in the following ways. 1509 * 1510 * 1) It needs to send a reply back and possibly delivering it 1511 * to the "interested" upper clients. 1512 * 2) It needs to send it to the upper clients only. 1513 * 3) It needs to change some values in IP only. 1514 * 4) It needs to change some values in IP and upper layers e.g TCP. 1515 * 1516 * We need to accomodate icmp messages coming in clear until we get 1517 * everything secure from the wire. If icmp_accept_clear_messages 1518 * is zero we check with the global policy and act accordingly. If 1519 * it is non-zero, we accept the message without any checks. But 1520 * *this does not mean* that this will be delivered to the upper 1521 * clients. By accepting we might send replies back, change our MTU 1522 * value etc. but delivery to the ULP/clients depends on their policy 1523 * dispositions. 1524 * 1525 * We handle the above 4 cases in the context of IPsec in the 1526 * following way : 1527 * 1528 * 1) Send the reply back in the same way as the request came in. 1529 * If it came in encrypted, it goes out encrypted. If it came in 1530 * clear, it goes out in clear. Thus, this will prevent chosen 1531 * plain text attack. 1532 * 2) The client may or may not expect things to come in secure. 1533 * If it comes in secure, the policy constraints are checked 1534 * before delivering it to the upper layers. If it comes in 1535 * clear, ipsec_inbound_accept_clear will decide whether to 1536 * accept this in clear or not. In both the cases, if the returned 1537 * message (IP header + 8 bytes) that caused the icmp message has 1538 * AH/ESP headers, it is sent up to AH/ESP for validation before 1539 * sending up. If there are only 8 bytes of returned message, then 1540 * upper client will not be notified. 1541 * 3) Check with global policy to see whether it matches the constaints. 1542 * But this will be done only if icmp_accept_messages_in_clear is 1543 * zero. 1544 * 4) If we need to change both in IP and ULP, then the decision taken 1545 * while affecting the values in IP and while delivering up to TCP 1546 * should be the same. 1547 * 1548 * There are two cases. 1549 * 1550 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1551 * failed), we will not deliver it to the ULP, even though they 1552 * are *willing* to accept in *clear*. This is fine as our global 1553 * disposition to icmp messages asks us reject the datagram. 1554 * 1555 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1556 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1557 * to deliver it to ULP (policy failed), it can lead to 1558 * consistency problems. The cases known at this time are 1559 * ICMP_DESTINATION_UNREACHABLE messages with following code 1560 * values : 1561 * 1562 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1563 * and Upper layer rejects. Then the communication will 1564 * come to a stop. This is solved by making similar decisions 1565 * at both levels. Currently, when we are unable to deliver 1566 * to the Upper Layer (due to policy failures) while IP has 1567 * adjusted ire_max_frag, the next outbound datagram would 1568 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1569 * will be with the right level of protection. Thus the right 1570 * value will be communicated even if we are not able to 1571 * communicate when we get from the wire initially. But this 1572 * assumes there would be at least one outbound datagram after 1573 * IP has adjusted its ire_max_frag value. To make things 1574 * simpler, we accept in clear after the validation of 1575 * AH/ESP headers. 1576 * 1577 * - Other ICMP ERRORS : We may not be able to deliver it to the 1578 * upper layer depending on the level of protection the upper 1579 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1580 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1581 * should be accepted in clear when the Upper layer expects secure. 1582 * Thus the communication may get aborted by some bad ICMP 1583 * packets. 1584 * 1585 * IPQoS Notes: 1586 * The only instance when a packet is sent for processing is when there 1587 * isn't an ICMP client and if we are interested in it. 1588 * If there is a client, IPPF processing will take place in the 1589 * ip_fanout_proto routine. 1590 * 1591 * Zones notes: 1592 * The packet is only processed in the context of the specified zone: typically 1593 * only this zone will reply to an echo request, and only interested clients in 1594 * this zone will receive a copy of the packet. This means that the caller must 1595 * call icmp_inbound() for each relevant zone. 1596 */ 1597 static void 1598 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1599 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1600 ill_t *recv_ill, zoneid_t zoneid) 1601 { 1602 icmph_t *icmph; 1603 ipha_t *ipha; 1604 int iph_hdr_length; 1605 int hdr_length; 1606 boolean_t interested; 1607 uint32_t ts; 1608 uchar_t *wptr; 1609 ipif_t *ipif; 1610 mblk_t *first_mp; 1611 ipsec_in_t *ii; 1612 ire_t *src_ire; 1613 boolean_t onlink; 1614 timestruc_t now; 1615 uint32_t ill_index; 1616 ip_stack_t *ipst; 1617 1618 ASSERT(ill != NULL); 1619 ipst = ill->ill_ipst; 1620 1621 first_mp = mp; 1622 if (mctl_present) { 1623 mp = first_mp->b_cont; 1624 ASSERT(mp != NULL); 1625 } 1626 1627 ipha = (ipha_t *)mp->b_rptr; 1628 if (ipst->ips_icmp_accept_clear_messages == 0) { 1629 first_mp = ipsec_check_global_policy(first_mp, NULL, 1630 ipha, NULL, mctl_present, ipst->ips_netstack); 1631 if (first_mp == NULL) 1632 return; 1633 } 1634 1635 /* 1636 * On a labeled system, we have to check whether the zone itself is 1637 * permitted to receive raw traffic. 1638 */ 1639 if (is_system_labeled()) { 1640 if (zoneid == ALL_ZONES) 1641 zoneid = tsol_packet_to_zoneid(mp); 1642 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1643 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1644 zoneid)); 1645 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1646 freemsg(first_mp); 1647 return; 1648 } 1649 } 1650 1651 /* 1652 * We have accepted the ICMP message. It means that we will 1653 * respond to the packet if needed. It may not be delivered 1654 * to the upper client depending on the policy constraints 1655 * and the disposition in ipsec_inbound_accept_clear. 1656 */ 1657 1658 ASSERT(ill != NULL); 1659 1660 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1661 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1662 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1663 /* Last chance to get real. */ 1664 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1665 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1666 freemsg(first_mp); 1667 return; 1668 } 1669 /* Refresh iph following the pullup. */ 1670 ipha = (ipha_t *)mp->b_rptr; 1671 } 1672 /* ICMP header checksum, including checksum field, should be zero. */ 1673 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1674 IP_CSUM(mp, iph_hdr_length, 0)) { 1675 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1676 freemsg(first_mp); 1677 return; 1678 } 1679 /* The IP header will always be a multiple of four bytes */ 1680 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1681 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1682 icmph->icmph_code)); 1683 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1684 /* We will set "interested" to "true" if we want a copy */ 1685 interested = B_FALSE; 1686 switch (icmph->icmph_type) { 1687 case ICMP_ECHO_REPLY: 1688 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1689 break; 1690 case ICMP_DEST_UNREACHABLE: 1691 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1692 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1693 interested = B_TRUE; /* Pass up to transport */ 1694 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1695 break; 1696 case ICMP_SOURCE_QUENCH: 1697 interested = B_TRUE; /* Pass up to transport */ 1698 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1699 break; 1700 case ICMP_REDIRECT: 1701 if (!ipst->ips_ip_ignore_redirect) 1702 interested = B_TRUE; 1703 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1704 break; 1705 case ICMP_ECHO_REQUEST: 1706 /* 1707 * Whether to respond to echo requests that come in as IP 1708 * broadcasts or as IP multicast is subject to debate 1709 * (what isn't?). We aim to please, you pick it. 1710 * Default is do it. 1711 */ 1712 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1713 /* unicast: always respond */ 1714 interested = B_TRUE; 1715 } else if (CLASSD(ipha->ipha_dst)) { 1716 /* multicast: respond based on tunable */ 1717 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1718 } else if (broadcast) { 1719 /* broadcast: respond based on tunable */ 1720 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1721 } 1722 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1723 break; 1724 case ICMP_ROUTER_ADVERTISEMENT: 1725 case ICMP_ROUTER_SOLICITATION: 1726 break; 1727 case ICMP_TIME_EXCEEDED: 1728 interested = B_TRUE; /* Pass up to transport */ 1729 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1730 break; 1731 case ICMP_PARAM_PROBLEM: 1732 interested = B_TRUE; /* Pass up to transport */ 1733 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1734 break; 1735 case ICMP_TIME_STAMP_REQUEST: 1736 /* Response to Time Stamp Requests is local policy. */ 1737 if (ipst->ips_ip_g_resp_to_timestamp && 1738 /* So is whether to respond if it was an IP broadcast. */ 1739 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1740 int tstamp_len = 3 * sizeof (uint32_t); 1741 1742 if (wptr + tstamp_len > mp->b_wptr) { 1743 if (!pullupmsg(mp, wptr + tstamp_len - 1744 mp->b_rptr)) { 1745 BUMP_MIB(ill->ill_ip_mib, 1746 ipIfStatsInDiscards); 1747 freemsg(first_mp); 1748 return; 1749 } 1750 /* Refresh ipha following the pullup. */ 1751 ipha = (ipha_t *)mp->b_rptr; 1752 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1753 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1754 } 1755 interested = B_TRUE; 1756 } 1757 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1758 break; 1759 case ICMP_TIME_STAMP_REPLY: 1760 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1761 break; 1762 case ICMP_INFO_REQUEST: 1763 /* Per RFC 1122 3.2.2.7, ignore this. */ 1764 case ICMP_INFO_REPLY: 1765 break; 1766 case ICMP_ADDRESS_MASK_REQUEST: 1767 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1768 !broadcast) && 1769 /* TODO m_pullup of complete header? */ 1770 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1771 interested = B_TRUE; 1772 } 1773 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1774 break; 1775 case ICMP_ADDRESS_MASK_REPLY: 1776 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1777 break; 1778 default: 1779 interested = B_TRUE; /* Pass up to transport */ 1780 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1781 break; 1782 } 1783 /* See if there is an ICMP client. */ 1784 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1785 /* If there is an ICMP client and we want one too, copy it. */ 1786 mblk_t *first_mp1; 1787 1788 if (!interested) { 1789 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1790 ip_policy, recv_ill, zoneid); 1791 return; 1792 } 1793 first_mp1 = ip_copymsg(first_mp); 1794 if (first_mp1 != NULL) { 1795 ip_fanout_proto(q, first_mp1, ill, ipha, 1796 0, mctl_present, ip_policy, recv_ill, zoneid); 1797 } 1798 } else if (!interested) { 1799 freemsg(first_mp); 1800 return; 1801 } else { 1802 /* 1803 * Initiate policy processing for this packet if ip_policy 1804 * is true. 1805 */ 1806 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1807 ill_index = ill->ill_phyint->phyint_ifindex; 1808 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1809 if (mp == NULL) { 1810 if (mctl_present) { 1811 freeb(first_mp); 1812 } 1813 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1814 return; 1815 } 1816 } 1817 } 1818 /* We want to do something with it. */ 1819 /* Check db_ref to make sure we can modify the packet. */ 1820 if (mp->b_datap->db_ref > 1) { 1821 mblk_t *first_mp1; 1822 1823 first_mp1 = ip_copymsg(first_mp); 1824 freemsg(first_mp); 1825 if (!first_mp1) { 1826 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1827 return; 1828 } 1829 first_mp = first_mp1; 1830 if (mctl_present) { 1831 mp = first_mp->b_cont; 1832 ASSERT(mp != NULL); 1833 } else { 1834 mp = first_mp; 1835 } 1836 ipha = (ipha_t *)mp->b_rptr; 1837 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1838 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1839 } 1840 switch (icmph->icmph_type) { 1841 case ICMP_ADDRESS_MASK_REQUEST: 1842 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1843 if (ipif == NULL) { 1844 freemsg(first_mp); 1845 return; 1846 } 1847 /* 1848 * outging interface must be IPv4 1849 */ 1850 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1851 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1852 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1853 ipif_refrele(ipif); 1854 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1855 break; 1856 case ICMP_ECHO_REQUEST: 1857 icmph->icmph_type = ICMP_ECHO_REPLY; 1858 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1859 break; 1860 case ICMP_TIME_STAMP_REQUEST: { 1861 uint32_t *tsp; 1862 1863 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1864 tsp = (uint32_t *)wptr; 1865 tsp++; /* Skip past 'originate time' */ 1866 /* Compute # of milliseconds since midnight */ 1867 gethrestime(&now); 1868 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1869 now.tv_nsec / (NANOSEC / MILLISEC); 1870 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1871 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1872 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1873 break; 1874 } 1875 default: 1876 ipha = (ipha_t *)&icmph[1]; 1877 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1878 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1879 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1880 freemsg(first_mp); 1881 return; 1882 } 1883 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1884 ipha = (ipha_t *)&icmph[1]; 1885 } 1886 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1887 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1888 freemsg(first_mp); 1889 return; 1890 } 1891 hdr_length = IPH_HDR_LENGTH(ipha); 1892 if (hdr_length < sizeof (ipha_t)) { 1893 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1894 freemsg(first_mp); 1895 return; 1896 } 1897 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1898 if (!pullupmsg(mp, 1899 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1900 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1901 freemsg(first_mp); 1902 return; 1903 } 1904 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1905 ipha = (ipha_t *)&icmph[1]; 1906 } 1907 switch (icmph->icmph_type) { 1908 case ICMP_REDIRECT: 1909 /* 1910 * As there is no upper client to deliver, we don't 1911 * need the first_mp any more. 1912 */ 1913 if (mctl_present) { 1914 freeb(first_mp); 1915 } 1916 icmp_redirect(ill, mp); 1917 return; 1918 case ICMP_DEST_UNREACHABLE: 1919 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1920 if (!icmp_inbound_too_big(icmph, ipha, ill, 1921 zoneid, mp, iph_hdr_length, ipst)) { 1922 freemsg(first_mp); 1923 return; 1924 } 1925 /* 1926 * icmp_inbound_too_big() may alter mp. 1927 * Resynch ipha and icmph accordingly. 1928 */ 1929 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1930 ipha = (ipha_t *)&icmph[1]; 1931 } 1932 /* FALLTHRU */ 1933 default : 1934 /* 1935 * IPQoS notes: Since we have already done IPQoS 1936 * processing we don't want to do it again in 1937 * the fanout routines called by 1938 * icmp_inbound_error_fanout, hence the last 1939 * argument, ip_policy, is B_FALSE. 1940 */ 1941 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1942 ipha, iph_hdr_length, hdr_length, mctl_present, 1943 B_FALSE, recv_ill, zoneid); 1944 } 1945 return; 1946 } 1947 /* Send out an ICMP packet */ 1948 icmph->icmph_checksum = 0; 1949 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1950 if (broadcast || CLASSD(ipha->ipha_dst)) { 1951 ipif_t *ipif_chosen; 1952 /* 1953 * Make it look like it was directed to us, so we don't look 1954 * like a fool with a broadcast or multicast source address. 1955 */ 1956 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1957 /* 1958 * Make sure that we haven't grabbed an interface that's DOWN. 1959 */ 1960 if (ipif != NULL) { 1961 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1962 ipha->ipha_src, zoneid); 1963 if (ipif_chosen != NULL) { 1964 ipif_refrele(ipif); 1965 ipif = ipif_chosen; 1966 } 1967 } 1968 if (ipif == NULL) { 1969 ip0dbg(("icmp_inbound: " 1970 "No source for broadcast/multicast:\n" 1971 "\tsrc 0x%x dst 0x%x ill %p " 1972 "ipif_lcl_addr 0x%x\n", 1973 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1974 (void *)ill, 1975 ill->ill_ipif->ipif_lcl_addr)); 1976 freemsg(first_mp); 1977 return; 1978 } 1979 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1980 ipha->ipha_dst = ipif->ipif_src_addr; 1981 ipif_refrele(ipif); 1982 } 1983 /* Reset time to live. */ 1984 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1985 { 1986 /* Swap source and destination addresses */ 1987 ipaddr_t tmp; 1988 1989 tmp = ipha->ipha_src; 1990 ipha->ipha_src = ipha->ipha_dst; 1991 ipha->ipha_dst = tmp; 1992 } 1993 ipha->ipha_ident = 0; 1994 if (!IS_SIMPLE_IPH(ipha)) 1995 icmp_options_update(ipha); 1996 1997 /* 1998 * ICMP echo replies should go out on the same interface 1999 * the request came on as probes used by in.mpathd for detecting 2000 * NIC failures are ECHO packets. We turn-off load spreading 2001 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2002 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2003 * function. This is in turn handled by ip_wput and ip_newroute 2004 * to make sure that the packet goes out on the interface it came 2005 * in on. If we don't turnoff load spreading, the packets might get 2006 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2007 * to go out and in.mpathd would wrongly detect a failure or 2008 * mis-detect a NIC failure for link failure. As load spreading 2009 * can happen only if ill_group is not NULL, we do only for 2010 * that case and this does not affect the normal case. 2011 * 2012 * We turn off load spreading only on echo packets that came from 2013 * on-link hosts. If the interface route has been deleted, this will 2014 * not be enforced as we can't do much. For off-link hosts, as the 2015 * default routes in IPv4 does not typically have an ire_ipif 2016 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2017 * Moreover, expecting a default route through this interface may 2018 * not be correct. We use ipha_dst because of the swap above. 2019 */ 2020 onlink = B_FALSE; 2021 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2022 /* 2023 * First, we need to make sure that it is not one of our 2024 * local addresses. If we set onlink when it is one of 2025 * our local addresses, we will end up creating IRE_CACHES 2026 * for one of our local addresses. Then, we will never 2027 * accept packets for them afterwards. 2028 */ 2029 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2030 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2031 if (src_ire == NULL) { 2032 ipif = ipif_get_next_ipif(NULL, ill); 2033 if (ipif == NULL) { 2034 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2035 freemsg(mp); 2036 return; 2037 } 2038 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2039 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2040 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2041 ipif_refrele(ipif); 2042 if (src_ire != NULL) { 2043 onlink = B_TRUE; 2044 ire_refrele(src_ire); 2045 } 2046 } else { 2047 ire_refrele(src_ire); 2048 } 2049 } 2050 if (!mctl_present) { 2051 /* 2052 * This packet should go out the same way as it 2053 * came in i.e in clear. To make sure that global 2054 * policy will not be applied to this in ip_wput_ire, 2055 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2056 */ 2057 ASSERT(first_mp == mp); 2058 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2059 if (first_mp == NULL) { 2060 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2061 freemsg(mp); 2062 return; 2063 } 2064 ii = (ipsec_in_t *)first_mp->b_rptr; 2065 2066 /* This is not a secure packet */ 2067 ii->ipsec_in_secure = B_FALSE; 2068 if (onlink) { 2069 ii->ipsec_in_attach_if = B_TRUE; 2070 ii->ipsec_in_ill_index = 2071 ill->ill_phyint->phyint_ifindex; 2072 ii->ipsec_in_rill_index = 2073 recv_ill->ill_phyint->phyint_ifindex; 2074 } 2075 first_mp->b_cont = mp; 2076 } else if (onlink) { 2077 ii = (ipsec_in_t *)first_mp->b_rptr; 2078 ii->ipsec_in_attach_if = B_TRUE; 2079 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2080 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2081 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2082 } else { 2083 ii = (ipsec_in_t *)first_mp->b_rptr; 2084 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2085 } 2086 ii->ipsec_in_zoneid = zoneid; 2087 ASSERT(zoneid != ALL_ZONES); 2088 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2089 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2090 return; 2091 } 2092 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2093 put(WR(q), first_mp); 2094 } 2095 2096 static ipaddr_t 2097 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2098 { 2099 conn_t *connp; 2100 connf_t *connfp; 2101 ipaddr_t nexthop_addr = INADDR_ANY; 2102 int hdr_length = IPH_HDR_LENGTH(ipha); 2103 uint16_t *up; 2104 uint32_t ports; 2105 ip_stack_t *ipst = ill->ill_ipst; 2106 2107 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2108 switch (ipha->ipha_protocol) { 2109 case IPPROTO_TCP: 2110 { 2111 tcph_t *tcph; 2112 2113 /* do a reverse lookup */ 2114 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2115 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2116 TCPS_LISTEN, ipst); 2117 break; 2118 } 2119 case IPPROTO_UDP: 2120 { 2121 uint32_t dstport, srcport; 2122 2123 ((uint16_t *)&ports)[0] = up[1]; 2124 ((uint16_t *)&ports)[1] = up[0]; 2125 2126 /* Extract ports in net byte order */ 2127 dstport = htons(ntohl(ports) & 0xFFFF); 2128 srcport = htons(ntohl(ports) >> 16); 2129 2130 connfp = &ipst->ips_ipcl_udp_fanout[ 2131 IPCL_UDP_HASH(dstport, ipst)]; 2132 mutex_enter(&connfp->connf_lock); 2133 connp = connfp->connf_head; 2134 2135 /* do a reverse lookup */ 2136 while ((connp != NULL) && 2137 (!IPCL_UDP_MATCH(connp, dstport, 2138 ipha->ipha_src, srcport, ipha->ipha_dst) || 2139 !IPCL_ZONE_MATCH(connp, zoneid))) { 2140 connp = connp->conn_next; 2141 } 2142 if (connp != NULL) 2143 CONN_INC_REF(connp); 2144 mutex_exit(&connfp->connf_lock); 2145 break; 2146 } 2147 case IPPROTO_SCTP: 2148 { 2149 in6_addr_t map_src, map_dst; 2150 2151 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2152 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2153 ((uint16_t *)&ports)[0] = up[1]; 2154 ((uint16_t *)&ports)[1] = up[0]; 2155 2156 connp = sctp_find_conn(&map_src, &map_dst, ports, 2157 zoneid, ipst->ips_netstack->netstack_sctp); 2158 if (connp == NULL) { 2159 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2160 zoneid, ports, ipha, ipst); 2161 } else { 2162 CONN_INC_REF(connp); 2163 SCTP_REFRELE(CONN2SCTP(connp)); 2164 } 2165 break; 2166 } 2167 default: 2168 { 2169 ipha_t ripha; 2170 2171 ripha.ipha_src = ipha->ipha_dst; 2172 ripha.ipha_dst = ipha->ipha_src; 2173 ripha.ipha_protocol = ipha->ipha_protocol; 2174 2175 connfp = &ipst->ips_ipcl_proto_fanout[ 2176 ipha->ipha_protocol]; 2177 mutex_enter(&connfp->connf_lock); 2178 connp = connfp->connf_head; 2179 for (connp = connfp->connf_head; connp != NULL; 2180 connp = connp->conn_next) { 2181 if (IPCL_PROTO_MATCH(connp, 2182 ipha->ipha_protocol, &ripha, ill, 2183 0, zoneid)) { 2184 CONN_INC_REF(connp); 2185 break; 2186 } 2187 } 2188 mutex_exit(&connfp->connf_lock); 2189 } 2190 } 2191 if (connp != NULL) { 2192 if (connp->conn_nexthop_set) 2193 nexthop_addr = connp->conn_nexthop_v4; 2194 CONN_DEC_REF(connp); 2195 } 2196 return (nexthop_addr); 2197 } 2198 2199 /* Table from RFC 1191 */ 2200 static int icmp_frag_size_table[] = 2201 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2202 2203 /* 2204 * Process received ICMP Packet too big. 2205 * After updating any IRE it does the fanout to any matching transport streams. 2206 * Assumes the message has been pulled up till the IP header that caused 2207 * the error. 2208 * 2209 * Returns B_FALSE on failure and B_TRUE on success. 2210 */ 2211 static boolean_t 2212 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2213 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2214 ip_stack_t *ipst) 2215 { 2216 ire_t *ire, *first_ire; 2217 int mtu; 2218 int hdr_length; 2219 ipaddr_t nexthop_addr; 2220 2221 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2222 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2223 ASSERT(ill != NULL); 2224 2225 hdr_length = IPH_HDR_LENGTH(ipha); 2226 2227 /* Drop if the original packet contained a source route */ 2228 if (ip_source_route_included(ipha)) { 2229 return (B_FALSE); 2230 } 2231 /* 2232 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2233 * header. 2234 */ 2235 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2236 mp->b_wptr) { 2237 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2238 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2239 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2240 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2241 return (B_FALSE); 2242 } 2243 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2244 ipha = (ipha_t *)&icmph[1]; 2245 } 2246 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2247 if (nexthop_addr != INADDR_ANY) { 2248 /* nexthop set */ 2249 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2250 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2251 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2252 } else { 2253 /* nexthop not set */ 2254 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2255 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2256 } 2257 2258 if (!first_ire) { 2259 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2260 ntohl(ipha->ipha_dst))); 2261 return (B_FALSE); 2262 } 2263 /* Check for MTU discovery advice as described in RFC 1191 */ 2264 mtu = ntohs(icmph->icmph_du_mtu); 2265 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2266 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2267 ire = ire->ire_next) { 2268 /* 2269 * Look for the connection to which this ICMP message is 2270 * directed. If it has the IP_NEXTHOP option set, then the 2271 * search is limited to IREs with the MATCH_IRE_PRIVATE 2272 * option. Else the search is limited to regular IREs. 2273 */ 2274 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2275 (nexthop_addr != ire->ire_gateway_addr)) || 2276 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2277 (nexthop_addr != INADDR_ANY))) 2278 continue; 2279 2280 mutex_enter(&ire->ire_lock); 2281 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2282 /* Reduce the IRE max frag value as advised. */ 2283 ip1dbg(("Received mtu from router: %d (was %d)\n", 2284 mtu, ire->ire_max_frag)); 2285 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2286 } else { 2287 uint32_t length; 2288 int i; 2289 2290 /* 2291 * Use the table from RFC 1191 to figure out 2292 * the next "plateau" based on the length in 2293 * the original IP packet. 2294 */ 2295 length = ntohs(ipha->ipha_length); 2296 if (ire->ire_max_frag <= length && 2297 ire->ire_max_frag >= length - hdr_length) { 2298 /* 2299 * Handle broken BSD 4.2 systems that 2300 * return the wrong iph_length in ICMP 2301 * errors. 2302 */ 2303 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2304 length, ire->ire_max_frag)); 2305 length -= hdr_length; 2306 } 2307 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2308 if (length > icmp_frag_size_table[i]) 2309 break; 2310 } 2311 if (i == A_CNT(icmp_frag_size_table)) { 2312 /* Smaller than 68! */ 2313 ip1dbg(("Too big for packet size %d\n", 2314 length)); 2315 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2316 ire->ire_frag_flag = 0; 2317 } else { 2318 mtu = icmp_frag_size_table[i]; 2319 ip1dbg(("Calculated mtu %d, packet size %d, " 2320 "before %d", mtu, length, 2321 ire->ire_max_frag)); 2322 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2323 ip1dbg((", after %d\n", ire->ire_max_frag)); 2324 } 2325 /* Record the new max frag size for the ULP. */ 2326 icmph->icmph_du_zero = 0; 2327 icmph->icmph_du_mtu = 2328 htons((uint16_t)ire->ire_max_frag); 2329 } 2330 mutex_exit(&ire->ire_lock); 2331 } 2332 rw_exit(&first_ire->ire_bucket->irb_lock); 2333 ire_refrele(first_ire); 2334 return (B_TRUE); 2335 } 2336 2337 /* 2338 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2339 * calls this function. 2340 */ 2341 static mblk_t * 2342 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2343 { 2344 ipha_t *ipha; 2345 icmph_t *icmph; 2346 ipha_t *in_ipha; 2347 int length; 2348 2349 ASSERT(mp->b_datap->db_type == M_DATA); 2350 2351 /* 2352 * For Self-encapsulated packets, we added an extra IP header 2353 * without the options. Inner IP header is the one from which 2354 * the outer IP header was formed. Thus, we need to remove the 2355 * outer IP header. To do this, we pullup the whole message 2356 * and overlay whatever follows the outer IP header over the 2357 * outer IP header. 2358 */ 2359 2360 if (!pullupmsg(mp, -1)) 2361 return (NULL); 2362 2363 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2364 ipha = (ipha_t *)&icmph[1]; 2365 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2366 2367 /* 2368 * The length that we want to overlay is following the inner 2369 * IP header. Subtracting the IP header + icmp header + outer 2370 * IP header's length should give us the length that we want to 2371 * overlay. 2372 */ 2373 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2374 hdr_length; 2375 /* 2376 * Overlay whatever follows the inner header over the 2377 * outer header. 2378 */ 2379 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2380 2381 /* Set the wptr to account for the outer header */ 2382 mp->b_wptr -= hdr_length; 2383 return (mp); 2384 } 2385 2386 /* 2387 * Try to pass the ICMP message upstream in case the ULP cares. 2388 * 2389 * If the packet that caused the ICMP error is secure, we send 2390 * it to AH/ESP to make sure that the attached packet has a 2391 * valid association. ipha in the code below points to the 2392 * IP header of the packet that caused the error. 2393 * 2394 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2395 * in the context of IPsec. Normally we tell the upper layer 2396 * whenever we send the ire (including ip_bind), the IPsec header 2397 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2398 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2399 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2400 * same thing. As TCP has the IPsec options size that needs to be 2401 * adjusted, we just pass the MTU unchanged. 2402 * 2403 * IFN could have been generated locally or by some router. 2404 * 2405 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2406 * This happens because IP adjusted its value of MTU on an 2407 * earlier IFN message and could not tell the upper layer, 2408 * the new adjusted value of MTU e.g. Packet was encrypted 2409 * or there was not enough information to fanout to upper 2410 * layers. Thus on the next outbound datagram, ip_wput_ire 2411 * generates the IFN, where IPsec processing has *not* been 2412 * done. 2413 * 2414 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2415 * could have generated this. This happens because ire_max_frag 2416 * value in IP was set to a new value, while the IPsec processing 2417 * was being done and after we made the fragmentation check in 2418 * ip_wput_ire. Thus on return from IPsec processing, 2419 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2420 * and generates the IFN. As IPsec processing is over, we fanout 2421 * to AH/ESP to remove the header. 2422 * 2423 * In both these cases, ipsec_in_loopback will be set indicating 2424 * that IFN was generated locally. 2425 * 2426 * ROUTER : IFN could be secure or non-secure. 2427 * 2428 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2429 * packet in error has AH/ESP headers to validate the AH/ESP 2430 * headers. AH/ESP will verify whether there is a valid SA or 2431 * not and send it back. We will fanout again if we have more 2432 * data in the packet. 2433 * 2434 * If the packet in error does not have AH/ESP, we handle it 2435 * like any other case. 2436 * 2437 * * NON_SECURE : If the packet in error has AH/ESP headers, 2438 * we attach a dummy ipsec_in and send it up to AH/ESP 2439 * for validation. AH/ESP will verify whether there is a 2440 * valid SA or not and send it back. We will fanout again if 2441 * we have more data in the packet. 2442 * 2443 * If the packet in error does not have AH/ESP, we handle it 2444 * like any other case. 2445 */ 2446 static void 2447 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2448 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2449 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2450 zoneid_t zoneid) 2451 { 2452 uint16_t *up; /* Pointer to ports in ULP header */ 2453 uint32_t ports; /* reversed ports for fanout */ 2454 ipha_t ripha; /* With reversed addresses */ 2455 mblk_t *first_mp; 2456 ipsec_in_t *ii; 2457 tcph_t *tcph; 2458 conn_t *connp; 2459 ip_stack_t *ipst; 2460 2461 ASSERT(ill != NULL); 2462 2463 ASSERT(recv_ill != NULL); 2464 ipst = recv_ill->ill_ipst; 2465 2466 first_mp = mp; 2467 if (mctl_present) { 2468 mp = first_mp->b_cont; 2469 ASSERT(mp != NULL); 2470 2471 ii = (ipsec_in_t *)first_mp->b_rptr; 2472 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2473 } else { 2474 ii = NULL; 2475 } 2476 2477 switch (ipha->ipha_protocol) { 2478 case IPPROTO_UDP: 2479 /* 2480 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2481 * transport header. 2482 */ 2483 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2484 mp->b_wptr) { 2485 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2486 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2487 goto discard_pkt; 2488 } 2489 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2490 ipha = (ipha_t *)&icmph[1]; 2491 } 2492 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2493 2494 /* 2495 * Attempt to find a client stream based on port. 2496 * Note that we do a reverse lookup since the header is 2497 * in the form we sent it out. 2498 * The ripha header is only used for the IP_UDP_MATCH and we 2499 * only set the src and dst addresses and protocol. 2500 */ 2501 ripha.ipha_src = ipha->ipha_dst; 2502 ripha.ipha_dst = ipha->ipha_src; 2503 ripha.ipha_protocol = ipha->ipha_protocol; 2504 ((uint16_t *)&ports)[0] = up[1]; 2505 ((uint16_t *)&ports)[1] = up[0]; 2506 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2507 ntohl(ipha->ipha_src), ntohs(up[0]), 2508 ntohl(ipha->ipha_dst), ntohs(up[1]), 2509 icmph->icmph_type, icmph->icmph_code)); 2510 2511 /* Have to change db_type after any pullupmsg */ 2512 DB_TYPE(mp) = M_CTL; 2513 2514 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2515 mctl_present, ip_policy, recv_ill, zoneid); 2516 return; 2517 2518 case IPPROTO_TCP: 2519 /* 2520 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2521 * transport header. 2522 */ 2523 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2524 mp->b_wptr) { 2525 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2526 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2527 goto discard_pkt; 2528 } 2529 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2530 ipha = (ipha_t *)&icmph[1]; 2531 } 2532 /* 2533 * Find a TCP client stream for this packet. 2534 * Note that we do a reverse lookup since the header is 2535 * in the form we sent it out. 2536 */ 2537 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2538 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2539 ipst); 2540 if (connp == NULL) 2541 goto discard_pkt; 2542 2543 /* Have to change db_type after any pullupmsg */ 2544 DB_TYPE(mp) = M_CTL; 2545 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2546 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2547 return; 2548 2549 case IPPROTO_SCTP: 2550 /* 2551 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2552 * transport header. 2553 */ 2554 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2555 mp->b_wptr) { 2556 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2557 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2558 goto discard_pkt; 2559 } 2560 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2561 ipha = (ipha_t *)&icmph[1]; 2562 } 2563 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2564 /* 2565 * Find a SCTP client stream for this packet. 2566 * Note that we do a reverse lookup since the header is 2567 * in the form we sent it out. 2568 * The ripha header is only used for the matching and we 2569 * only set the src and dst addresses, protocol, and version. 2570 */ 2571 ripha.ipha_src = ipha->ipha_dst; 2572 ripha.ipha_dst = ipha->ipha_src; 2573 ripha.ipha_protocol = ipha->ipha_protocol; 2574 ripha.ipha_version_and_hdr_length = 2575 ipha->ipha_version_and_hdr_length; 2576 ((uint16_t *)&ports)[0] = up[1]; 2577 ((uint16_t *)&ports)[1] = up[0]; 2578 2579 /* Have to change db_type after any pullupmsg */ 2580 DB_TYPE(mp) = M_CTL; 2581 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2582 mctl_present, ip_policy, zoneid); 2583 return; 2584 2585 case IPPROTO_ESP: 2586 case IPPROTO_AH: { 2587 int ipsec_rc; 2588 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2589 2590 /* 2591 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2592 * We will re-use the IPSEC_IN if it is already present as 2593 * AH/ESP will not affect any fields in the IPSEC_IN for 2594 * ICMP errors. If there is no IPSEC_IN, allocate a new 2595 * one and attach it in the front. 2596 */ 2597 if (ii != NULL) { 2598 /* 2599 * ip_fanout_proto_again converts the ICMP errors 2600 * that come back from AH/ESP to M_DATA so that 2601 * if it is non-AH/ESP and we do a pullupmsg in 2602 * this function, it would work. Convert it back 2603 * to M_CTL before we send up as this is a ICMP 2604 * error. This could have been generated locally or 2605 * by some router. Validate the inner IPsec 2606 * headers. 2607 * 2608 * NOTE : ill_index is used by ip_fanout_proto_again 2609 * to locate the ill. 2610 */ 2611 ASSERT(ill != NULL); 2612 ii->ipsec_in_ill_index = 2613 ill->ill_phyint->phyint_ifindex; 2614 ii->ipsec_in_rill_index = 2615 recv_ill->ill_phyint->phyint_ifindex; 2616 DB_TYPE(first_mp->b_cont) = M_CTL; 2617 } else { 2618 /* 2619 * IPSEC_IN is not present. We attach a ipsec_in 2620 * message and send up to IPsec for validating 2621 * and removing the IPsec headers. Clear 2622 * ipsec_in_secure so that when we return 2623 * from IPsec, we don't mistakenly think that this 2624 * is a secure packet came from the network. 2625 * 2626 * NOTE : ill_index is used by ip_fanout_proto_again 2627 * to locate the ill. 2628 */ 2629 ASSERT(first_mp == mp); 2630 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2631 if (first_mp == NULL) { 2632 freemsg(mp); 2633 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2634 return; 2635 } 2636 ii = (ipsec_in_t *)first_mp->b_rptr; 2637 2638 /* This is not a secure packet */ 2639 ii->ipsec_in_secure = B_FALSE; 2640 first_mp->b_cont = mp; 2641 DB_TYPE(mp) = M_CTL; 2642 ASSERT(ill != NULL); 2643 ii->ipsec_in_ill_index = 2644 ill->ill_phyint->phyint_ifindex; 2645 ii->ipsec_in_rill_index = 2646 recv_ill->ill_phyint->phyint_ifindex; 2647 } 2648 ip2dbg(("icmp_inbound_error: ipsec\n")); 2649 2650 if (!ipsec_loaded(ipss)) { 2651 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2652 return; 2653 } 2654 2655 if (ipha->ipha_protocol == IPPROTO_ESP) 2656 ipsec_rc = ipsecesp_icmp_error(first_mp); 2657 else 2658 ipsec_rc = ipsecah_icmp_error(first_mp); 2659 if (ipsec_rc == IPSEC_STATUS_FAILED) 2660 return; 2661 2662 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2663 return; 2664 } 2665 default: 2666 /* 2667 * The ripha header is only used for the lookup and we 2668 * only set the src and dst addresses and protocol. 2669 */ 2670 ripha.ipha_src = ipha->ipha_dst; 2671 ripha.ipha_dst = ipha->ipha_src; 2672 ripha.ipha_protocol = ipha->ipha_protocol; 2673 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2674 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2675 ntohl(ipha->ipha_dst), 2676 icmph->icmph_type, icmph->icmph_code)); 2677 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2678 ipha_t *in_ipha; 2679 2680 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2681 mp->b_wptr) { 2682 if (!pullupmsg(mp, (uchar_t *)ipha + 2683 hdr_length + sizeof (ipha_t) - 2684 mp->b_rptr)) { 2685 goto discard_pkt; 2686 } 2687 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2688 ipha = (ipha_t *)&icmph[1]; 2689 } 2690 /* 2691 * Caller has verified that length has to be 2692 * at least the size of IP header. 2693 */ 2694 ASSERT(hdr_length >= sizeof (ipha_t)); 2695 /* 2696 * Check the sanity of the inner IP header like 2697 * we did for the outer header. 2698 */ 2699 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2700 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2701 goto discard_pkt; 2702 } 2703 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2704 goto discard_pkt; 2705 } 2706 /* Check for Self-encapsulated tunnels */ 2707 if (in_ipha->ipha_src == ipha->ipha_src && 2708 in_ipha->ipha_dst == ipha->ipha_dst) { 2709 2710 mp = icmp_inbound_self_encap_error(mp, 2711 iph_hdr_length, hdr_length); 2712 if (mp == NULL) 2713 goto discard_pkt; 2714 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2715 ipha = (ipha_t *)&icmph[1]; 2716 hdr_length = IPH_HDR_LENGTH(ipha); 2717 /* 2718 * The packet in error is self-encapsualted. 2719 * And we are finding it further encapsulated 2720 * which we could not have possibly generated. 2721 */ 2722 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2723 goto discard_pkt; 2724 } 2725 icmp_inbound_error_fanout(q, ill, first_mp, 2726 icmph, ipha, iph_hdr_length, hdr_length, 2727 mctl_present, ip_policy, recv_ill, zoneid); 2728 return; 2729 } 2730 } 2731 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2732 ipha->ipha_protocol == IPPROTO_IPV6) && 2733 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2734 ii != NULL && 2735 ii->ipsec_in_loopback && 2736 ii->ipsec_in_secure) { 2737 /* 2738 * For IP tunnels that get a looped-back 2739 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2740 * reported new MTU to take into account the IPsec 2741 * headers protecting this configured tunnel. 2742 * 2743 * This allows the tunnel module (tun.c) to blindly 2744 * accept the MTU reported in an ICMP "too big" 2745 * message. 2746 * 2747 * Non-looped back ICMP messages will just be 2748 * handled by the security protocols (if needed), 2749 * and the first subsequent packet will hit this 2750 * path. 2751 */ 2752 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2753 ipsec_in_extra_length(first_mp)); 2754 } 2755 /* Have to change db_type after any pullupmsg */ 2756 DB_TYPE(mp) = M_CTL; 2757 2758 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2759 ip_policy, recv_ill, zoneid); 2760 return; 2761 } 2762 /* NOTREACHED */ 2763 discard_pkt: 2764 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2765 drop_pkt:; 2766 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2767 freemsg(first_mp); 2768 } 2769 2770 /* 2771 * Common IP options parser. 2772 * 2773 * Setup routine: fill in *optp with options-parsing state, then 2774 * tail-call ipoptp_next to return the first option. 2775 */ 2776 uint8_t 2777 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2778 { 2779 uint32_t totallen; /* total length of all options */ 2780 2781 totallen = ipha->ipha_version_and_hdr_length - 2782 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2783 totallen <<= 2; 2784 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2785 optp->ipoptp_end = optp->ipoptp_next + totallen; 2786 optp->ipoptp_flags = 0; 2787 return (ipoptp_next(optp)); 2788 } 2789 2790 /* 2791 * Common IP options parser: extract next option. 2792 */ 2793 uint8_t 2794 ipoptp_next(ipoptp_t *optp) 2795 { 2796 uint8_t *end = optp->ipoptp_end; 2797 uint8_t *cur = optp->ipoptp_next; 2798 uint8_t opt, len, pointer; 2799 2800 /* 2801 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2802 * has been corrupted. 2803 */ 2804 ASSERT(cur <= end); 2805 2806 if (cur == end) 2807 return (IPOPT_EOL); 2808 2809 opt = cur[IPOPT_OPTVAL]; 2810 2811 /* 2812 * Skip any NOP options. 2813 */ 2814 while (opt == IPOPT_NOP) { 2815 cur++; 2816 if (cur == end) 2817 return (IPOPT_EOL); 2818 opt = cur[IPOPT_OPTVAL]; 2819 } 2820 2821 if (opt == IPOPT_EOL) 2822 return (IPOPT_EOL); 2823 2824 /* 2825 * Option requiring a length. 2826 */ 2827 if ((cur + 1) >= end) { 2828 optp->ipoptp_flags |= IPOPTP_ERROR; 2829 return (IPOPT_EOL); 2830 } 2831 len = cur[IPOPT_OLEN]; 2832 if (len < 2) { 2833 optp->ipoptp_flags |= IPOPTP_ERROR; 2834 return (IPOPT_EOL); 2835 } 2836 optp->ipoptp_cur = cur; 2837 optp->ipoptp_len = len; 2838 optp->ipoptp_next = cur + len; 2839 if (cur + len > end) { 2840 optp->ipoptp_flags |= IPOPTP_ERROR; 2841 return (IPOPT_EOL); 2842 } 2843 2844 /* 2845 * For the options which require a pointer field, make sure 2846 * its there, and make sure it points to either something 2847 * inside this option, or the end of the option. 2848 */ 2849 switch (opt) { 2850 case IPOPT_RR: 2851 case IPOPT_TS: 2852 case IPOPT_LSRR: 2853 case IPOPT_SSRR: 2854 if (len <= IPOPT_OFFSET) { 2855 optp->ipoptp_flags |= IPOPTP_ERROR; 2856 return (opt); 2857 } 2858 pointer = cur[IPOPT_OFFSET]; 2859 if (pointer - 1 > len) { 2860 optp->ipoptp_flags |= IPOPTP_ERROR; 2861 return (opt); 2862 } 2863 break; 2864 } 2865 2866 /* 2867 * Sanity check the pointer field based on the type of the 2868 * option. 2869 */ 2870 switch (opt) { 2871 case IPOPT_RR: 2872 case IPOPT_SSRR: 2873 case IPOPT_LSRR: 2874 if (pointer < IPOPT_MINOFF_SR) 2875 optp->ipoptp_flags |= IPOPTP_ERROR; 2876 break; 2877 case IPOPT_TS: 2878 if (pointer < IPOPT_MINOFF_IT) 2879 optp->ipoptp_flags |= IPOPTP_ERROR; 2880 /* 2881 * Note that the Internet Timestamp option also 2882 * contains two four bit fields (the Overflow field, 2883 * and the Flag field), which follow the pointer 2884 * field. We don't need to check that these fields 2885 * fall within the length of the option because this 2886 * was implicitely done above. We've checked that the 2887 * pointer value is at least IPOPT_MINOFF_IT, and that 2888 * it falls within the option. Since IPOPT_MINOFF_IT > 2889 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2890 */ 2891 ASSERT(len > IPOPT_POS_OV_FLG); 2892 break; 2893 } 2894 2895 return (opt); 2896 } 2897 2898 /* 2899 * Use the outgoing IP header to create an IP_OPTIONS option the way 2900 * it was passed down from the application. 2901 */ 2902 int 2903 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2904 { 2905 ipoptp_t opts; 2906 const uchar_t *opt; 2907 uint8_t optval; 2908 uint8_t optlen; 2909 uint32_t len = 0; 2910 uchar_t *buf1 = buf; 2911 2912 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2913 len += IP_ADDR_LEN; 2914 bzero(buf1, IP_ADDR_LEN); 2915 2916 /* 2917 * OK to cast away const here, as we don't store through the returned 2918 * opts.ipoptp_cur pointer. 2919 */ 2920 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2921 optval != IPOPT_EOL; 2922 optval = ipoptp_next(&opts)) { 2923 int off; 2924 2925 opt = opts.ipoptp_cur; 2926 optlen = opts.ipoptp_len; 2927 switch (optval) { 2928 case IPOPT_SSRR: 2929 case IPOPT_LSRR: 2930 2931 /* 2932 * Insert ipha_dst as the first entry in the source 2933 * route and move down the entries on step. 2934 * The last entry gets placed at buf1. 2935 */ 2936 buf[IPOPT_OPTVAL] = optval; 2937 buf[IPOPT_OLEN] = optlen; 2938 buf[IPOPT_OFFSET] = optlen; 2939 2940 off = optlen - IP_ADDR_LEN; 2941 if (off < 0) { 2942 /* No entries in source route */ 2943 break; 2944 } 2945 /* Last entry in source route */ 2946 bcopy(opt + off, buf1, IP_ADDR_LEN); 2947 off -= IP_ADDR_LEN; 2948 2949 while (off > 0) { 2950 bcopy(opt + off, 2951 buf + off + IP_ADDR_LEN, 2952 IP_ADDR_LEN); 2953 off -= IP_ADDR_LEN; 2954 } 2955 /* ipha_dst into first slot */ 2956 bcopy(&ipha->ipha_dst, 2957 buf + off + IP_ADDR_LEN, 2958 IP_ADDR_LEN); 2959 buf += optlen; 2960 len += optlen; 2961 break; 2962 2963 case IPOPT_COMSEC: 2964 case IPOPT_SECURITY: 2965 /* if passing up a label is not ok, then remove */ 2966 if (is_system_labeled()) 2967 break; 2968 /* FALLTHROUGH */ 2969 default: 2970 bcopy(opt, buf, optlen); 2971 buf += optlen; 2972 len += optlen; 2973 break; 2974 } 2975 } 2976 done: 2977 /* Pad the resulting options */ 2978 while (len & 0x3) { 2979 *buf++ = IPOPT_EOL; 2980 len++; 2981 } 2982 return (len); 2983 } 2984 2985 /* 2986 * Update any record route or timestamp options to include this host. 2987 * Reverse any source route option. 2988 * This routine assumes that the options are well formed i.e. that they 2989 * have already been checked. 2990 */ 2991 static void 2992 icmp_options_update(ipha_t *ipha) 2993 { 2994 ipoptp_t opts; 2995 uchar_t *opt; 2996 uint8_t optval; 2997 ipaddr_t src; /* Our local address */ 2998 ipaddr_t dst; 2999 3000 ip2dbg(("icmp_options_update\n")); 3001 src = ipha->ipha_src; 3002 dst = ipha->ipha_dst; 3003 3004 for (optval = ipoptp_first(&opts, ipha); 3005 optval != IPOPT_EOL; 3006 optval = ipoptp_next(&opts)) { 3007 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3008 opt = opts.ipoptp_cur; 3009 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3010 optval, opts.ipoptp_len)); 3011 switch (optval) { 3012 int off1, off2; 3013 case IPOPT_SSRR: 3014 case IPOPT_LSRR: 3015 /* 3016 * Reverse the source route. The first entry 3017 * should be the next to last one in the current 3018 * source route (the last entry is our address). 3019 * The last entry should be the final destination. 3020 */ 3021 off1 = IPOPT_MINOFF_SR - 1; 3022 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3023 if (off2 < 0) { 3024 /* No entries in source route */ 3025 ip1dbg(( 3026 "icmp_options_update: bad src route\n")); 3027 break; 3028 } 3029 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3030 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3031 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3032 off2 -= IP_ADDR_LEN; 3033 3034 while (off1 < off2) { 3035 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3036 bcopy((char *)opt + off2, (char *)opt + off1, 3037 IP_ADDR_LEN); 3038 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3039 off1 += IP_ADDR_LEN; 3040 off2 -= IP_ADDR_LEN; 3041 } 3042 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3043 break; 3044 } 3045 } 3046 } 3047 3048 /* 3049 * Process received ICMP Redirect messages. 3050 */ 3051 static void 3052 icmp_redirect(ill_t *ill, mblk_t *mp) 3053 { 3054 ipha_t *ipha; 3055 int iph_hdr_length; 3056 icmph_t *icmph; 3057 ipha_t *ipha_err; 3058 ire_t *ire; 3059 ire_t *prev_ire; 3060 ire_t *save_ire; 3061 ipaddr_t src, dst, gateway; 3062 iulp_t ulp_info = { 0 }; 3063 int error; 3064 ip_stack_t *ipst; 3065 3066 ASSERT(ill != NULL); 3067 ipst = ill->ill_ipst; 3068 3069 ipha = (ipha_t *)mp->b_rptr; 3070 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3071 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3072 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3073 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3074 freemsg(mp); 3075 return; 3076 } 3077 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3078 ipha_err = (ipha_t *)&icmph[1]; 3079 src = ipha->ipha_src; 3080 dst = ipha_err->ipha_dst; 3081 gateway = icmph->icmph_rd_gateway; 3082 /* Make sure the new gateway is reachable somehow. */ 3083 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3084 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3085 /* 3086 * Make sure we had a route for the dest in question and that 3087 * that route was pointing to the old gateway (the source of the 3088 * redirect packet.) 3089 */ 3090 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3091 NULL, MATCH_IRE_GW, ipst); 3092 /* 3093 * Check that 3094 * the redirect was not from ourselves 3095 * the new gateway and the old gateway are directly reachable 3096 */ 3097 if (!prev_ire || 3098 !ire || 3099 ire->ire_type == IRE_LOCAL) { 3100 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3101 freemsg(mp); 3102 if (ire != NULL) 3103 ire_refrele(ire); 3104 if (prev_ire != NULL) 3105 ire_refrele(prev_ire); 3106 return; 3107 } 3108 3109 /* 3110 * Should we use the old ULP info to create the new gateway? From 3111 * a user's perspective, we should inherit the info so that it 3112 * is a "smooth" transition. If we do not do that, then new 3113 * connections going thru the new gateway will have no route metrics, 3114 * which is counter-intuitive to user. From a network point of 3115 * view, this may or may not make sense even though the new gateway 3116 * is still directly connected to us so the route metrics should not 3117 * change much. 3118 * 3119 * But if the old ire_uinfo is not initialized, we do another 3120 * recursive lookup on the dest using the new gateway. There may 3121 * be a route to that. If so, use it to initialize the redirect 3122 * route. 3123 */ 3124 if (prev_ire->ire_uinfo.iulp_set) { 3125 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3126 } else { 3127 ire_t *tmp_ire; 3128 ire_t *sire; 3129 3130 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3131 ALL_ZONES, 0, NULL, 3132 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3133 ipst); 3134 if (sire != NULL) { 3135 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3136 /* 3137 * If sire != NULL, ire_ftable_lookup() should not 3138 * return a NULL value. 3139 */ 3140 ASSERT(tmp_ire != NULL); 3141 ire_refrele(tmp_ire); 3142 ire_refrele(sire); 3143 } else if (tmp_ire != NULL) { 3144 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3145 sizeof (iulp_t)); 3146 ire_refrele(tmp_ire); 3147 } 3148 } 3149 if (prev_ire->ire_type == IRE_CACHE) 3150 ire_delete(prev_ire); 3151 ire_refrele(prev_ire); 3152 /* 3153 * TODO: more precise handling for cases 0, 2, 3, the latter two 3154 * require TOS routing 3155 */ 3156 switch (icmph->icmph_code) { 3157 case 0: 3158 case 1: 3159 /* TODO: TOS specificity for cases 2 and 3 */ 3160 case 2: 3161 case 3: 3162 break; 3163 default: 3164 freemsg(mp); 3165 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3166 ire_refrele(ire); 3167 return; 3168 } 3169 /* 3170 * Create a Route Association. This will allow us to remember that 3171 * someone we believe told us to use the particular gateway. 3172 */ 3173 save_ire = ire; 3174 ire = ire_create( 3175 (uchar_t *)&dst, /* dest addr */ 3176 (uchar_t *)&ip_g_all_ones, /* mask */ 3177 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3178 (uchar_t *)&gateway, /* gateway addr */ 3179 &save_ire->ire_max_frag, /* max frag */ 3180 NULL, /* no src nce */ 3181 NULL, /* no rfq */ 3182 NULL, /* no stq */ 3183 IRE_HOST, 3184 NULL, /* ipif */ 3185 0, /* cmask */ 3186 0, /* phandle */ 3187 0, /* ihandle */ 3188 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3189 &ulp_info, 3190 NULL, /* tsol_gc_t */ 3191 NULL, /* gcgrp */ 3192 ipst); 3193 3194 if (ire == NULL) { 3195 freemsg(mp); 3196 ire_refrele(save_ire); 3197 return; 3198 } 3199 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3200 ire_refrele(save_ire); 3201 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3202 3203 if (error == 0) { 3204 ire_refrele(ire); /* Held in ire_add_v4 */ 3205 /* tell routing sockets that we received a redirect */ 3206 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3207 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3208 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3209 } 3210 3211 /* 3212 * Delete any existing IRE_HOST type redirect ires for this destination. 3213 * This together with the added IRE has the effect of 3214 * modifying an existing redirect. 3215 */ 3216 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3217 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3218 if (prev_ire != NULL) { 3219 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3220 ire_delete(prev_ire); 3221 ire_refrele(prev_ire); 3222 } 3223 3224 freemsg(mp); 3225 } 3226 3227 /* 3228 * Generate an ICMP parameter problem message. 3229 */ 3230 static void 3231 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3232 ip_stack_t *ipst) 3233 { 3234 icmph_t icmph; 3235 boolean_t mctl_present; 3236 mblk_t *first_mp; 3237 3238 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3239 3240 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3241 if (mctl_present) 3242 freeb(first_mp); 3243 return; 3244 } 3245 3246 bzero(&icmph, sizeof (icmph_t)); 3247 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3248 icmph.icmph_pp_ptr = ptr; 3249 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3250 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3251 ipst); 3252 } 3253 3254 /* 3255 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3256 * the ICMP header pointed to by "stuff". (May be called as writer.) 3257 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3258 * an icmp error packet can be sent. 3259 * Assigns an appropriate source address to the packet. If ipha_dst is 3260 * one of our addresses use it for source. Otherwise pick a source based 3261 * on a route lookup back to ipha_src. 3262 * Note that ipha_src must be set here since the 3263 * packet is likely to arrive on an ill queue in ip_wput() which will 3264 * not set a source address. 3265 */ 3266 static void 3267 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3268 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3269 { 3270 ipaddr_t dst; 3271 icmph_t *icmph; 3272 ipha_t *ipha; 3273 uint_t len_needed; 3274 size_t msg_len; 3275 mblk_t *mp1; 3276 ipaddr_t src; 3277 ire_t *ire; 3278 mblk_t *ipsec_mp; 3279 ipsec_out_t *io = NULL; 3280 3281 if (mctl_present) { 3282 /* 3283 * If it is : 3284 * 3285 * 1) a IPSEC_OUT, then this is caused by outbound 3286 * datagram originating on this host. IPsec processing 3287 * may or may not have been done. Refer to comments above 3288 * icmp_inbound_error_fanout for details. 3289 * 3290 * 2) a IPSEC_IN if we are generating a icmp_message 3291 * for an incoming datagram destined for us i.e called 3292 * from ip_fanout_send_icmp. 3293 */ 3294 ipsec_info_t *in; 3295 ipsec_mp = mp; 3296 mp = ipsec_mp->b_cont; 3297 3298 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3299 ipha = (ipha_t *)mp->b_rptr; 3300 3301 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3302 in->ipsec_info_type == IPSEC_IN); 3303 3304 if (in->ipsec_info_type == IPSEC_IN) { 3305 /* 3306 * Convert the IPSEC_IN to IPSEC_OUT. 3307 */ 3308 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3309 BUMP_MIB(&ipst->ips_ip_mib, 3310 ipIfStatsOutDiscards); 3311 return; 3312 } 3313 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3314 } else { 3315 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3316 io = (ipsec_out_t *)in; 3317 /* 3318 * Clear out ipsec_out_proc_begin, so we do a fresh 3319 * ire lookup. 3320 */ 3321 io->ipsec_out_proc_begin = B_FALSE; 3322 } 3323 ASSERT(zoneid == io->ipsec_out_zoneid); 3324 ASSERT(zoneid != ALL_ZONES); 3325 } else { 3326 /* 3327 * This is in clear. The icmp message we are building 3328 * here should go out in clear. 3329 * 3330 * Pardon the convolution of it all, but it's easier to 3331 * allocate a "use cleartext" IPSEC_IN message and convert 3332 * it than it is to allocate a new one. 3333 */ 3334 ipsec_in_t *ii; 3335 ASSERT(DB_TYPE(mp) == M_DATA); 3336 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3337 if (ipsec_mp == NULL) { 3338 freemsg(mp); 3339 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3340 return; 3341 } 3342 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3343 3344 /* This is not a secure packet */ 3345 ii->ipsec_in_secure = B_FALSE; 3346 /* 3347 * For trusted extensions using a shared IP address we can 3348 * send using any zoneid. 3349 */ 3350 if (zoneid == ALL_ZONES) 3351 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3352 else 3353 ii->ipsec_in_zoneid = zoneid; 3354 ipsec_mp->b_cont = mp; 3355 ipha = (ipha_t *)mp->b_rptr; 3356 /* 3357 * Convert the IPSEC_IN to IPSEC_OUT. 3358 */ 3359 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3360 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3361 return; 3362 } 3363 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3364 } 3365 3366 /* Remember our eventual destination */ 3367 dst = ipha->ipha_src; 3368 3369 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3370 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3371 if (ire != NULL && 3372 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3373 src = ipha->ipha_dst; 3374 } else { 3375 if (ire != NULL) 3376 ire_refrele(ire); 3377 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3378 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3379 ipst); 3380 if (ire == NULL) { 3381 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3382 freemsg(ipsec_mp); 3383 return; 3384 } 3385 src = ire->ire_src_addr; 3386 } 3387 3388 if (ire != NULL) 3389 ire_refrele(ire); 3390 3391 /* 3392 * Check if we can send back more then 8 bytes in addition to 3393 * the IP header. We try to send 64 bytes of data and the internal 3394 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3395 */ 3396 len_needed = IPH_HDR_LENGTH(ipha); 3397 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3398 ipha->ipha_protocol == IPPROTO_IPV6) { 3399 3400 if (!pullupmsg(mp, -1)) { 3401 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3402 freemsg(ipsec_mp); 3403 return; 3404 } 3405 ipha = (ipha_t *)mp->b_rptr; 3406 3407 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3408 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3409 len_needed)); 3410 } else { 3411 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3412 3413 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3414 len_needed += ip_hdr_length_v6(mp, ip6h); 3415 } 3416 } 3417 len_needed += ipst->ips_ip_icmp_return; 3418 msg_len = msgdsize(mp); 3419 if (msg_len > len_needed) { 3420 (void) adjmsg(mp, len_needed - msg_len); 3421 msg_len = len_needed; 3422 } 3423 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3424 if (mp1 == NULL) { 3425 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3426 freemsg(ipsec_mp); 3427 return; 3428 } 3429 mp1->b_cont = mp; 3430 mp = mp1; 3431 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3432 ipsec_mp->b_rptr == (uint8_t *)io && 3433 io->ipsec_out_type == IPSEC_OUT); 3434 ipsec_mp->b_cont = mp; 3435 3436 /* 3437 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3438 * node generates be accepted in peace by all on-host destinations. 3439 * If we do NOT assume that all on-host destinations trust 3440 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3441 * (Look for ipsec_out_icmp_loopback). 3442 */ 3443 io->ipsec_out_icmp_loopback = B_TRUE; 3444 3445 ipha = (ipha_t *)mp->b_rptr; 3446 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3447 *ipha = icmp_ipha; 3448 ipha->ipha_src = src; 3449 ipha->ipha_dst = dst; 3450 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3451 msg_len += sizeof (icmp_ipha) + len; 3452 if (msg_len > IP_MAXPACKET) { 3453 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3454 msg_len = IP_MAXPACKET; 3455 } 3456 ipha->ipha_length = htons((uint16_t)msg_len); 3457 icmph = (icmph_t *)&ipha[1]; 3458 bcopy(stuff, icmph, len); 3459 icmph->icmph_checksum = 0; 3460 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3461 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3462 put(q, ipsec_mp); 3463 } 3464 3465 /* 3466 * Determine if an ICMP error packet can be sent given the rate limit. 3467 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3468 * in milliseconds) and a burst size. Burst size number of packets can 3469 * be sent arbitrarely closely spaced. 3470 * The state is tracked using two variables to implement an approximate 3471 * token bucket filter: 3472 * icmp_pkt_err_last - lbolt value when the last burst started 3473 * icmp_pkt_err_sent - number of packets sent in current burst 3474 */ 3475 boolean_t 3476 icmp_err_rate_limit(ip_stack_t *ipst) 3477 { 3478 clock_t now = TICK_TO_MSEC(lbolt); 3479 uint_t refilled; /* Number of packets refilled in tbf since last */ 3480 /* Guard against changes by loading into local variable */ 3481 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3482 3483 if (err_interval == 0) 3484 return (B_FALSE); 3485 3486 if (ipst->ips_icmp_pkt_err_last > now) { 3487 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3488 ipst->ips_icmp_pkt_err_last = 0; 3489 ipst->ips_icmp_pkt_err_sent = 0; 3490 } 3491 /* 3492 * If we are in a burst update the token bucket filter. 3493 * Update the "last" time to be close to "now" but make sure 3494 * we don't loose precision. 3495 */ 3496 if (ipst->ips_icmp_pkt_err_sent != 0) { 3497 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3498 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3499 ipst->ips_icmp_pkt_err_sent = 0; 3500 } else { 3501 ipst->ips_icmp_pkt_err_sent -= refilled; 3502 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3503 } 3504 } 3505 if (ipst->ips_icmp_pkt_err_sent == 0) { 3506 /* Start of new burst */ 3507 ipst->ips_icmp_pkt_err_last = now; 3508 } 3509 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3510 ipst->ips_icmp_pkt_err_sent++; 3511 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3512 ipst->ips_icmp_pkt_err_sent)); 3513 return (B_FALSE); 3514 } 3515 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3516 return (B_TRUE); 3517 } 3518 3519 /* 3520 * Check if it is ok to send an IPv4 ICMP error packet in 3521 * response to the IPv4 packet in mp. 3522 * Free the message and return null if no 3523 * ICMP error packet should be sent. 3524 */ 3525 static mblk_t * 3526 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3527 { 3528 icmph_t *icmph; 3529 ipha_t *ipha; 3530 uint_t len_needed; 3531 ire_t *src_ire; 3532 ire_t *dst_ire; 3533 3534 if (!mp) 3535 return (NULL); 3536 ipha = (ipha_t *)mp->b_rptr; 3537 if (ip_csum_hdr(ipha)) { 3538 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3539 freemsg(mp); 3540 return (NULL); 3541 } 3542 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3543 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3544 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3545 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3546 if (src_ire != NULL || dst_ire != NULL || 3547 CLASSD(ipha->ipha_dst) || 3548 CLASSD(ipha->ipha_src) || 3549 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3550 /* Note: only errors to the fragment with offset 0 */ 3551 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3552 freemsg(mp); 3553 if (src_ire != NULL) 3554 ire_refrele(src_ire); 3555 if (dst_ire != NULL) 3556 ire_refrele(dst_ire); 3557 return (NULL); 3558 } 3559 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3560 /* 3561 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3562 * errors in response to any ICMP errors. 3563 */ 3564 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3565 if (mp->b_wptr - mp->b_rptr < len_needed) { 3566 if (!pullupmsg(mp, len_needed)) { 3567 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3568 freemsg(mp); 3569 return (NULL); 3570 } 3571 ipha = (ipha_t *)mp->b_rptr; 3572 } 3573 icmph = (icmph_t *) 3574 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3575 switch (icmph->icmph_type) { 3576 case ICMP_DEST_UNREACHABLE: 3577 case ICMP_SOURCE_QUENCH: 3578 case ICMP_TIME_EXCEEDED: 3579 case ICMP_PARAM_PROBLEM: 3580 case ICMP_REDIRECT: 3581 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3582 freemsg(mp); 3583 return (NULL); 3584 default: 3585 break; 3586 } 3587 } 3588 /* 3589 * If this is a labeled system, then check to see if we're allowed to 3590 * send a response to this particular sender. If not, then just drop. 3591 */ 3592 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3593 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3594 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3595 freemsg(mp); 3596 return (NULL); 3597 } 3598 if (icmp_err_rate_limit(ipst)) { 3599 /* 3600 * Only send ICMP error packets every so often. 3601 * This should be done on a per port/source basis, 3602 * but for now this will suffice. 3603 */ 3604 freemsg(mp); 3605 return (NULL); 3606 } 3607 return (mp); 3608 } 3609 3610 /* 3611 * Generate an ICMP redirect message. 3612 */ 3613 static void 3614 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3615 { 3616 icmph_t icmph; 3617 3618 /* 3619 * We are called from ip_rput where we could 3620 * not have attached an IPSEC_IN. 3621 */ 3622 ASSERT(mp->b_datap->db_type == M_DATA); 3623 3624 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3625 return; 3626 } 3627 3628 bzero(&icmph, sizeof (icmph_t)); 3629 icmph.icmph_type = ICMP_REDIRECT; 3630 icmph.icmph_code = 1; 3631 icmph.icmph_rd_gateway = gateway; 3632 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3633 /* Redirects sent by router, and router is global zone */ 3634 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3635 } 3636 3637 /* 3638 * Generate an ICMP time exceeded message. 3639 */ 3640 void 3641 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3642 ip_stack_t *ipst) 3643 { 3644 icmph_t icmph; 3645 boolean_t mctl_present; 3646 mblk_t *first_mp; 3647 3648 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3649 3650 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3651 if (mctl_present) 3652 freeb(first_mp); 3653 return; 3654 } 3655 3656 bzero(&icmph, sizeof (icmph_t)); 3657 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3658 icmph.icmph_code = code; 3659 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3660 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3661 ipst); 3662 } 3663 3664 /* 3665 * Generate an ICMP unreachable message. 3666 */ 3667 void 3668 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3669 ip_stack_t *ipst) 3670 { 3671 icmph_t icmph; 3672 mblk_t *first_mp; 3673 boolean_t mctl_present; 3674 3675 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3676 3677 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3678 if (mctl_present) 3679 freeb(first_mp); 3680 return; 3681 } 3682 3683 bzero(&icmph, sizeof (icmph_t)); 3684 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3685 icmph.icmph_code = code; 3686 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3687 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3688 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3689 zoneid, ipst); 3690 } 3691 3692 /* 3693 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3694 * duplicate. As long as someone else holds the address, the interface will 3695 * stay down. When that conflict goes away, the interface is brought back up. 3696 * This is done so that accidental shutdowns of addresses aren't made 3697 * permanent. Your server will recover from a failure. 3698 * 3699 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3700 * user space process (dhcpagent). 3701 * 3702 * Recovery completes if ARP reports that the address is now ours (via 3703 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3704 * 3705 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3706 */ 3707 static void 3708 ipif_dup_recovery(void *arg) 3709 { 3710 ipif_t *ipif = arg; 3711 ill_t *ill = ipif->ipif_ill; 3712 mblk_t *arp_add_mp; 3713 mblk_t *arp_del_mp; 3714 area_t *area; 3715 ip_stack_t *ipst = ill->ill_ipst; 3716 3717 ipif->ipif_recovery_id = 0; 3718 3719 /* 3720 * No lock needed for moving or condemned check, as this is just an 3721 * optimization. 3722 */ 3723 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3724 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3725 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3726 /* No reason to try to bring this address back. */ 3727 return; 3728 } 3729 3730 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3731 goto alloc_fail; 3732 3733 if (ipif->ipif_arp_del_mp == NULL) { 3734 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3735 goto alloc_fail; 3736 ipif->ipif_arp_del_mp = arp_del_mp; 3737 } 3738 3739 /* Setting the 'unverified' flag restarts DAD */ 3740 area = (area_t *)arp_add_mp->b_rptr; 3741 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3742 ACE_F_UNVERIFIED; 3743 putnext(ill->ill_rq, arp_add_mp); 3744 return; 3745 3746 alloc_fail: 3747 /* 3748 * On allocation failure, just restart the timer. Note that the ipif 3749 * is down here, so no other thread could be trying to start a recovery 3750 * timer. The ill_lock protects the condemned flag and the recovery 3751 * timer ID. 3752 */ 3753 freemsg(arp_add_mp); 3754 mutex_enter(&ill->ill_lock); 3755 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3756 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3757 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3758 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3759 } 3760 mutex_exit(&ill->ill_lock); 3761 } 3762 3763 /* 3764 * This is for exclusive changes due to ARP. Either tear down an interface due 3765 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3766 */ 3767 /* ARGSUSED */ 3768 static void 3769 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3770 { 3771 ill_t *ill = rq->q_ptr; 3772 arh_t *arh; 3773 ipaddr_t src; 3774 ipif_t *ipif; 3775 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3776 char hbuf[MAC_STR_LEN]; 3777 char sbuf[INET_ADDRSTRLEN]; 3778 const char *failtype; 3779 boolean_t bring_up; 3780 ip_stack_t *ipst = ill->ill_ipst; 3781 3782 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3783 case AR_CN_READY: 3784 failtype = NULL; 3785 bring_up = B_TRUE; 3786 break; 3787 case AR_CN_FAILED: 3788 failtype = "in use"; 3789 bring_up = B_FALSE; 3790 break; 3791 default: 3792 failtype = "claimed"; 3793 bring_up = B_FALSE; 3794 break; 3795 } 3796 3797 arh = (arh_t *)mp->b_cont->b_rptr; 3798 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3799 3800 /* Handle failures due to probes */ 3801 if (src == 0) { 3802 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3803 IP_ADDR_LEN); 3804 } 3805 3806 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3807 sizeof (hbuf)); 3808 (void) ip_dot_addr(src, sbuf); 3809 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3810 3811 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3812 ipif->ipif_lcl_addr != src) { 3813 continue; 3814 } 3815 3816 /* 3817 * If we failed on a recovery probe, then restart the timer to 3818 * try again later. 3819 */ 3820 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3821 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3822 ill->ill_net_type == IRE_IF_RESOLVER && 3823 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3824 ipst->ips_ip_dup_recovery > 0 && 3825 ipif->ipif_recovery_id == 0) { 3826 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3827 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3828 continue; 3829 } 3830 3831 /* 3832 * If what we're trying to do has already been done, then do 3833 * nothing. 3834 */ 3835 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3836 continue; 3837 3838 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3839 3840 if (failtype == NULL) { 3841 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3842 ibuf); 3843 } else { 3844 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3845 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3846 } 3847 3848 if (bring_up) { 3849 ASSERT(ill->ill_dl_up); 3850 /* 3851 * Free up the ARP delete message so we can allocate 3852 * a fresh one through the normal path. 3853 */ 3854 freemsg(ipif->ipif_arp_del_mp); 3855 ipif->ipif_arp_del_mp = NULL; 3856 if (ipif_resolver_up(ipif, Res_act_initial) != 3857 EINPROGRESS) { 3858 ipif->ipif_addr_ready = 1; 3859 (void) ipif_up_done(ipif); 3860 } 3861 continue; 3862 } 3863 3864 mutex_enter(&ill->ill_lock); 3865 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3866 ipif->ipif_flags |= IPIF_DUPLICATE; 3867 ill->ill_ipif_dup_count++; 3868 mutex_exit(&ill->ill_lock); 3869 /* 3870 * Already exclusive on the ill; no need to handle deferred 3871 * processing here. 3872 */ 3873 (void) ipif_down(ipif, NULL, NULL); 3874 ipif_down_tail(ipif); 3875 mutex_enter(&ill->ill_lock); 3876 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3877 ill->ill_net_type == IRE_IF_RESOLVER && 3878 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3879 ipst->ips_ip_dup_recovery > 0) { 3880 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3881 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3882 } 3883 mutex_exit(&ill->ill_lock); 3884 } 3885 freemsg(mp); 3886 } 3887 3888 /* ARGSUSED */ 3889 static void 3890 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3891 { 3892 ill_t *ill = rq->q_ptr; 3893 arh_t *arh; 3894 ipaddr_t src; 3895 ipif_t *ipif; 3896 3897 arh = (arh_t *)mp->b_cont->b_rptr; 3898 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3899 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3900 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3901 (void) ipif_resolver_up(ipif, Res_act_defend); 3902 } 3903 freemsg(mp); 3904 } 3905 3906 /* 3907 * News from ARP. ARP sends notification of interesting events down 3908 * to its clients using M_CTL messages with the interesting ARP packet 3909 * attached via b_cont. 3910 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3911 * queue as opposed to ARP sending the message to all the clients, i.e. all 3912 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3913 * table if a cache IRE is found to delete all the entries for the address in 3914 * the packet. 3915 */ 3916 static void 3917 ip_arp_news(queue_t *q, mblk_t *mp) 3918 { 3919 arcn_t *arcn; 3920 arh_t *arh; 3921 ire_t *ire = NULL; 3922 char hbuf[MAC_STR_LEN]; 3923 char sbuf[INET_ADDRSTRLEN]; 3924 ipaddr_t src; 3925 in6_addr_t v6src; 3926 boolean_t isv6 = B_FALSE; 3927 ipif_t *ipif; 3928 ill_t *ill; 3929 ip_stack_t *ipst; 3930 3931 if (CONN_Q(q)) { 3932 conn_t *connp = Q_TO_CONN(q); 3933 3934 ipst = connp->conn_netstack->netstack_ip; 3935 } else { 3936 ill_t *ill = (ill_t *)q->q_ptr; 3937 3938 ipst = ill->ill_ipst; 3939 } 3940 3941 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3942 if (q->q_next) { 3943 putnext(q, mp); 3944 } else 3945 freemsg(mp); 3946 return; 3947 } 3948 arh = (arh_t *)mp->b_cont->b_rptr; 3949 /* Is it one we are interested in? */ 3950 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3951 isv6 = B_TRUE; 3952 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3953 IPV6_ADDR_LEN); 3954 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3955 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3956 IP_ADDR_LEN); 3957 } else { 3958 freemsg(mp); 3959 return; 3960 } 3961 3962 ill = q->q_ptr; 3963 3964 arcn = (arcn_t *)mp->b_rptr; 3965 switch (arcn->arcn_code) { 3966 case AR_CN_BOGON: 3967 /* 3968 * Someone is sending ARP packets with a source protocol 3969 * address that we have published and for which we believe our 3970 * entry is authoritative and (when ill_arp_extend is set) 3971 * verified to be unique on the network. 3972 * 3973 * The ARP module internally handles the cases where the sender 3974 * is just probing (for DAD) and where the hardware address of 3975 * a non-authoritative entry has changed. Thus, these are the 3976 * real conflicts, and we have to do resolution. 3977 * 3978 * We back away quickly from the address if it's from DHCP or 3979 * otherwise temporary and hasn't been used recently (or at 3980 * all). We'd like to include "deprecated" addresses here as 3981 * well (as there's no real reason to defend something we're 3982 * discarding), but IPMP "reuses" this flag to mean something 3983 * other than the standard meaning. 3984 * 3985 * If the ARP module above is not extended (meaning that it 3986 * doesn't know how to defend the address), then we just log 3987 * the problem as we always did and continue on. It's not 3988 * right, but there's little else we can do, and those old ATM 3989 * users are going away anyway. 3990 */ 3991 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3992 hbuf, sizeof (hbuf)); 3993 (void) ip_dot_addr(src, sbuf); 3994 if (isv6) { 3995 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3996 ipst); 3997 } else { 3998 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3999 } 4000 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4001 uint32_t now; 4002 uint32_t maxage; 4003 clock_t lused; 4004 uint_t maxdefense; 4005 uint_t defs; 4006 4007 /* 4008 * First, figure out if this address hasn't been used 4009 * in a while. If it hasn't, then it's a better 4010 * candidate for abandoning. 4011 */ 4012 ipif = ire->ire_ipif; 4013 ASSERT(ipif != NULL); 4014 now = gethrestime_sec(); 4015 maxage = now - ire->ire_create_time; 4016 if (maxage > ipst->ips_ip_max_temp_idle) 4017 maxage = ipst->ips_ip_max_temp_idle; 4018 lused = drv_hztousec(ddi_get_lbolt() - 4019 ire->ire_last_used_time) / MICROSEC + 1; 4020 if (lused >= maxage && (ipif->ipif_flags & 4021 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4022 maxdefense = ipst->ips_ip_max_temp_defend; 4023 else 4024 maxdefense = ipst->ips_ip_max_defend; 4025 4026 /* 4027 * Now figure out how many times we've defended 4028 * ourselves. Ignore defenses that happened long in 4029 * the past. 4030 */ 4031 mutex_enter(&ire->ire_lock); 4032 if ((defs = ire->ire_defense_count) > 0 && 4033 now - ire->ire_defense_time > 4034 ipst->ips_ip_defend_interval) { 4035 ire->ire_defense_count = defs = 0; 4036 } 4037 ire->ire_defense_count++; 4038 ire->ire_defense_time = now; 4039 mutex_exit(&ire->ire_lock); 4040 ill_refhold(ill); 4041 ire_refrele(ire); 4042 4043 /* 4044 * If we've defended ourselves too many times already, 4045 * then give up and tear down the interface(s) using 4046 * this address. Otherwise, defend by sending out a 4047 * gratuitous ARP. 4048 */ 4049 if (defs >= maxdefense && ill->ill_arp_extend) { 4050 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4051 B_FALSE); 4052 } else { 4053 cmn_err(CE_WARN, 4054 "node %s is using our IP address %s on %s", 4055 hbuf, sbuf, ill->ill_name); 4056 /* 4057 * If this is an old (ATM) ARP module, then 4058 * don't try to defend the address. Remain 4059 * compatible with the old behavior. Defend 4060 * only with new ARP. 4061 */ 4062 if (ill->ill_arp_extend) { 4063 qwriter_ip(ill, q, mp, ip_arp_defend, 4064 NEW_OP, B_FALSE); 4065 } else { 4066 ill_refrele(ill); 4067 } 4068 } 4069 return; 4070 } 4071 cmn_err(CE_WARN, 4072 "proxy ARP problem? Node '%s' is using %s on %s", 4073 hbuf, sbuf, ill->ill_name); 4074 if (ire != NULL) 4075 ire_refrele(ire); 4076 break; 4077 case AR_CN_ANNOUNCE: 4078 if (isv6) { 4079 /* 4080 * For XRESOLV interfaces. 4081 * Delete the IRE cache entry and NCE for this 4082 * v6 address 4083 */ 4084 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4085 /* 4086 * If v6src is a non-zero, it's a router address 4087 * as below. Do the same sort of thing to clean 4088 * out off-net IRE_CACHE entries that go through 4089 * the router. 4090 */ 4091 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4092 ire_walk_v6(ire_delete_cache_gw_v6, 4093 (char *)&v6src, ALL_ZONES, ipst); 4094 } 4095 } else { 4096 nce_hw_map_t hwm; 4097 4098 /* 4099 * ARP gives us a copy of any packet where it thinks 4100 * the address has changed, so that we can update our 4101 * caches. We're responsible for caching known answers 4102 * in the current design. We check whether the 4103 * hardware address really has changed in all of our 4104 * entries that have cached this mapping, and if so, we 4105 * blow them away. This way we will immediately pick 4106 * up the rare case of a host changing hardware 4107 * address. 4108 */ 4109 if (src == 0) 4110 break; 4111 hwm.hwm_addr = src; 4112 hwm.hwm_hwlen = arh->arh_hlen; 4113 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4114 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4115 ndp_walk_common(ipst->ips_ndp4, NULL, 4116 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4117 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4118 } 4119 break; 4120 case AR_CN_READY: 4121 /* No external v6 resolver has a contract to use this */ 4122 if (isv6) 4123 break; 4124 /* If the link is down, we'll retry this later */ 4125 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4126 break; 4127 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4128 NULL, NULL, ipst); 4129 if (ipif != NULL) { 4130 /* 4131 * If this is a duplicate recovery, then we now need to 4132 * go exclusive to bring this thing back up. 4133 */ 4134 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4135 IPIF_DUPLICATE) { 4136 ipif_refrele(ipif); 4137 ill_refhold(ill); 4138 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4139 B_FALSE); 4140 return; 4141 } 4142 /* 4143 * If this is the first notice that this address is 4144 * ready, then let the user know now. 4145 */ 4146 if ((ipif->ipif_flags & IPIF_UP) && 4147 !ipif->ipif_addr_ready) { 4148 ipif_mask_reply(ipif); 4149 ip_rts_ifmsg(ipif); 4150 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4151 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4152 } 4153 ipif->ipif_addr_ready = 1; 4154 ipif_refrele(ipif); 4155 } 4156 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4157 if (ire != NULL) { 4158 ire->ire_defense_count = 0; 4159 ire_refrele(ire); 4160 } 4161 break; 4162 case AR_CN_FAILED: 4163 /* No external v6 resolver has a contract to use this */ 4164 if (isv6) 4165 break; 4166 ill_refhold(ill); 4167 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4168 return; 4169 } 4170 freemsg(mp); 4171 } 4172 4173 /* 4174 * Create a mblk suitable for carrying the interface index and/or source link 4175 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4176 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4177 * application. 4178 */ 4179 mblk_t * 4180 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4181 ip_stack_t *ipst) 4182 { 4183 mblk_t *mp; 4184 ip_pktinfo_t *pinfo; 4185 ipha_t *ipha; 4186 struct ether_header *pether; 4187 4188 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4189 if (mp == NULL) { 4190 ip1dbg(("ip_add_info: allocation failure.\n")); 4191 return (data_mp); 4192 } 4193 4194 ipha = (ipha_t *)data_mp->b_rptr; 4195 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4196 bzero(pinfo, sizeof (ip_pktinfo_t)); 4197 pinfo->ip_pkt_flags = (uchar_t)flags; 4198 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4199 4200 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4201 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4202 if (flags & IPF_RECVADDR) { 4203 ipif_t *ipif; 4204 ire_t *ire; 4205 4206 /* 4207 * Only valid for V4 4208 */ 4209 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4210 (IPV4_VERSION << 4)); 4211 4212 ipif = ipif_get_next_ipif(NULL, ill); 4213 if (ipif != NULL) { 4214 /* 4215 * Since a decision has already been made to deliver the 4216 * packet, there is no need to test for SECATTR and 4217 * ZONEONLY. 4218 * When a multicast packet is transmitted 4219 * a cache entry is created for the multicast address. 4220 * When delivering a copy of the packet or when new 4221 * packets are received we do not want to match on the 4222 * cached entry so explicitly match on 4223 * IRE_LOCAL and IRE_LOOPBACK 4224 */ 4225 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4226 IRE_LOCAL | IRE_LOOPBACK, 4227 ipif, zoneid, NULL, 4228 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4229 if (ire == NULL) { 4230 /* 4231 * packet must have come on a different 4232 * interface. 4233 * Since a decision has already been made to 4234 * deliver the packet, there is no need to test 4235 * for SECATTR and ZONEONLY. 4236 * Only match on local and broadcast ire's. 4237 * See detailed comment above. 4238 */ 4239 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4240 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4241 NULL, MATCH_IRE_TYPE, ipst); 4242 } 4243 4244 if (ire == NULL) { 4245 /* 4246 * This is either a multicast packet or 4247 * the address has been removed since 4248 * the packet was received. 4249 * Return INADDR_ANY so that normal source 4250 * selection occurs for the response. 4251 */ 4252 4253 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4254 } else { 4255 pinfo->ip_pkt_match_addr.s_addr = 4256 ire->ire_src_addr; 4257 ire_refrele(ire); 4258 } 4259 ipif_refrele(ipif); 4260 } else { 4261 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4262 } 4263 } 4264 4265 pether = (struct ether_header *)((char *)ipha 4266 - sizeof (struct ether_header)); 4267 /* 4268 * Make sure the interface is an ethernet type, since this option 4269 * is currently supported only on this type of interface. Also make 4270 * sure we are pointing correctly above db_base. 4271 */ 4272 4273 if ((flags & IPF_RECVSLLA) && 4274 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4275 (ill->ill_type == IFT_ETHER) && 4276 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4277 4278 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4279 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4280 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4281 } else { 4282 /* 4283 * Clear the bit. Indicate to upper layer that IP is not 4284 * sending this ancillary info. 4285 */ 4286 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4287 } 4288 4289 mp->b_datap->db_type = M_CTL; 4290 mp->b_wptr += sizeof (ip_pktinfo_t); 4291 mp->b_cont = data_mp; 4292 4293 return (mp); 4294 } 4295 4296 /* 4297 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4298 * part of the bind request. 4299 */ 4300 4301 boolean_t 4302 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4303 { 4304 ipsec_in_t *ii; 4305 4306 ASSERT(policy_mp != NULL); 4307 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4308 4309 ii = (ipsec_in_t *)policy_mp->b_rptr; 4310 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4311 4312 connp->conn_policy = ii->ipsec_in_policy; 4313 ii->ipsec_in_policy = NULL; 4314 4315 if (ii->ipsec_in_action != NULL) { 4316 if (connp->conn_latch == NULL) { 4317 connp->conn_latch = iplatch_create(); 4318 if (connp->conn_latch == NULL) 4319 return (B_FALSE); 4320 } 4321 ipsec_latch_inbound(connp->conn_latch, ii); 4322 } 4323 return (B_TRUE); 4324 } 4325 4326 /* 4327 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4328 * and to arrange for power-fanout assist. The ULP is identified by 4329 * adding a single byte at the end of the original bind message. 4330 * A ULP other than UDP or TCP that wishes to be recognized passes 4331 * down a bind with a zero length address. 4332 * 4333 * The binding works as follows: 4334 * - A zero byte address means just bind to the protocol. 4335 * - A four byte address is treated as a request to validate 4336 * that the address is a valid local address, appropriate for 4337 * an application to bind to. This does not affect any fanout 4338 * information in IP. 4339 * - A sizeof sin_t byte address is used to bind to only the local address 4340 * and port. 4341 * - A sizeof ipa_conn_t byte address contains complete fanout information 4342 * consisting of local and remote addresses and ports. In 4343 * this case, the addresses are both validated as appropriate 4344 * for this operation, and, if so, the information is retained 4345 * for use in the inbound fanout. 4346 * 4347 * The ULP (except in the zero-length bind) can append an 4348 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4349 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4350 * a copy of the source or destination IRE (source for local bind; 4351 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4352 * policy information contained should be copied on to the conn. 4353 * 4354 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4355 */ 4356 mblk_t * 4357 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4358 { 4359 ssize_t len; 4360 struct T_bind_req *tbr; 4361 sin_t *sin; 4362 ipa_conn_t *ac; 4363 uchar_t *ucp; 4364 mblk_t *mp1; 4365 boolean_t ire_requested; 4366 boolean_t ipsec_policy_set = B_FALSE; 4367 int error = 0; 4368 int protocol; 4369 ipa_conn_x_t *acx; 4370 4371 ASSERT(!connp->conn_af_isv6); 4372 connp->conn_pkt_isv6 = B_FALSE; 4373 4374 len = MBLKL(mp); 4375 if (len < (sizeof (*tbr) + 1)) { 4376 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4377 "ip_bind: bogus msg, len %ld", len); 4378 /* XXX: Need to return something better */ 4379 goto bad_addr; 4380 } 4381 /* Back up and extract the protocol identifier. */ 4382 mp->b_wptr--; 4383 protocol = *mp->b_wptr & 0xFF; 4384 tbr = (struct T_bind_req *)mp->b_rptr; 4385 /* Reset the message type in preparation for shipping it back. */ 4386 DB_TYPE(mp) = M_PCPROTO; 4387 4388 connp->conn_ulp = (uint8_t)protocol; 4389 4390 /* 4391 * Check for a zero length address. This is from a protocol that 4392 * wants to register to receive all packets of its type. 4393 */ 4394 if (tbr->ADDR_length == 0) { 4395 /* 4396 * These protocols are now intercepted in ip_bind_v6(). 4397 * Reject protocol-level binds here for now. 4398 * 4399 * For SCTP raw socket, ICMP sends down a bind with sin_t 4400 * so that the protocol type cannot be SCTP. 4401 */ 4402 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4403 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4404 goto bad_addr; 4405 } 4406 4407 /* 4408 * 4409 * The udp module never sends down a zero-length address, 4410 * and allowing this on a labeled system will break MLP 4411 * functionality. 4412 */ 4413 if (is_system_labeled() && protocol == IPPROTO_UDP) 4414 goto bad_addr; 4415 4416 if (connp->conn_mac_exempt) 4417 goto bad_addr; 4418 4419 /* No hash here really. The table is big enough. */ 4420 connp->conn_srcv6 = ipv6_all_zeros; 4421 4422 ipcl_proto_insert(connp, protocol); 4423 4424 tbr->PRIM_type = T_BIND_ACK; 4425 return (mp); 4426 } 4427 4428 /* Extract the address pointer from the message. */ 4429 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4430 tbr->ADDR_length); 4431 if (ucp == NULL) { 4432 ip1dbg(("ip_bind: no address\n")); 4433 goto bad_addr; 4434 } 4435 if (!OK_32PTR(ucp)) { 4436 ip1dbg(("ip_bind: unaligned address\n")); 4437 goto bad_addr; 4438 } 4439 /* 4440 * Check for trailing mps. 4441 */ 4442 4443 mp1 = mp->b_cont; 4444 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4445 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4446 4447 switch (tbr->ADDR_length) { 4448 default: 4449 ip1dbg(("ip_bind: bad address length %d\n", 4450 (int)tbr->ADDR_length)); 4451 goto bad_addr; 4452 4453 case IP_ADDR_LEN: 4454 /* Verification of local address only */ 4455 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4456 ire_requested, ipsec_policy_set, B_FALSE); 4457 break; 4458 4459 case sizeof (sin_t): 4460 sin = (sin_t *)ucp; 4461 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4462 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4463 break; 4464 4465 case sizeof (ipa_conn_t): 4466 ac = (ipa_conn_t *)ucp; 4467 /* For raw socket, the local port is not set. */ 4468 if (ac->ac_lport == 0) 4469 ac->ac_lport = connp->conn_lport; 4470 /* Always verify destination reachability. */ 4471 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4472 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4473 ipsec_policy_set, B_TRUE, B_TRUE); 4474 break; 4475 4476 case sizeof (ipa_conn_x_t): 4477 acx = (ipa_conn_x_t *)ucp; 4478 /* 4479 * Whether or not to verify destination reachability depends 4480 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4481 */ 4482 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4483 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4484 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4485 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4486 break; 4487 } 4488 if (error == EINPROGRESS) 4489 return (NULL); 4490 else if (error != 0) 4491 goto bad_addr; 4492 /* 4493 * Pass the IPsec headers size in ire_ipsec_overhead. 4494 * We can't do this in ip_bind_insert_ire because the policy 4495 * may not have been inherited at that point in time and hence 4496 * conn_out_enforce_policy may not be set. 4497 */ 4498 mp1 = mp->b_cont; 4499 if (ire_requested && connp->conn_out_enforce_policy && 4500 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4501 ire_t *ire = (ire_t *)mp1->b_rptr; 4502 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4503 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4504 } 4505 4506 /* Send it home. */ 4507 mp->b_datap->db_type = M_PCPROTO; 4508 tbr->PRIM_type = T_BIND_ACK; 4509 return (mp); 4510 4511 bad_addr: 4512 /* 4513 * If error = -1 then we generate a TBADADDR - otherwise error is 4514 * a unix errno. 4515 */ 4516 if (error > 0) 4517 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4518 else 4519 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4520 return (mp); 4521 } 4522 4523 /* 4524 * Here address is verified to be a valid local address. 4525 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4526 * address is also considered a valid local address. 4527 * In the case of a broadcast/multicast address, however, the 4528 * upper protocol is expected to reset the src address 4529 * to 0 if it sees a IRE_BROADCAST type returned so that 4530 * no packets are emitted with broadcast/multicast address as 4531 * source address (that violates hosts requirements RFC1122) 4532 * The addresses valid for bind are: 4533 * (1) - INADDR_ANY (0) 4534 * (2) - IP address of an UP interface 4535 * (3) - IP address of a DOWN interface 4536 * (4) - valid local IP broadcast addresses. In this case 4537 * the conn will only receive packets destined to 4538 * the specified broadcast address. 4539 * (5) - a multicast address. In this case 4540 * the conn will only receive packets destined to 4541 * the specified multicast address. Note: the 4542 * application still has to issue an 4543 * IP_ADD_MEMBERSHIP socket option. 4544 * 4545 * On error, return -1 for TBADADDR otherwise pass the 4546 * errno with TSYSERR reply. 4547 * 4548 * In all the above cases, the bound address must be valid in the current zone. 4549 * When the address is loopback, multicast or broadcast, there might be many 4550 * matching IREs so bind has to look up based on the zone. 4551 * 4552 * Note: lport is in network byte order. 4553 */ 4554 int 4555 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4556 boolean_t ire_requested, boolean_t ipsec_policy_set, 4557 boolean_t fanout_insert) 4558 { 4559 int error = 0; 4560 ire_t *src_ire; 4561 mblk_t *policy_mp; 4562 ipif_t *ipif; 4563 zoneid_t zoneid; 4564 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4565 4566 if (ipsec_policy_set) { 4567 policy_mp = mp->b_cont; 4568 } 4569 4570 /* 4571 * If it was previously connected, conn_fully_bound would have 4572 * been set. 4573 */ 4574 connp->conn_fully_bound = B_FALSE; 4575 4576 src_ire = NULL; 4577 ipif = NULL; 4578 4579 zoneid = IPCL_ZONEID(connp); 4580 4581 if (src_addr) { 4582 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4583 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4584 /* 4585 * If an address other than 0.0.0.0 is requested, 4586 * we verify that it is a valid address for bind 4587 * Note: Following code is in if-else-if form for 4588 * readability compared to a condition check. 4589 */ 4590 /* LINTED - statement has no consequent */ 4591 if (IRE_IS_LOCAL(src_ire)) { 4592 /* 4593 * (2) Bind to address of local UP interface 4594 */ 4595 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4596 /* 4597 * (4) Bind to broadcast address 4598 * Note: permitted only from transports that 4599 * request IRE 4600 */ 4601 if (!ire_requested) 4602 error = EADDRNOTAVAIL; 4603 } else { 4604 /* 4605 * (3) Bind to address of local DOWN interface 4606 * (ipif_lookup_addr() looks up all interfaces 4607 * but we do not get here for UP interfaces 4608 * - case (2) above) 4609 * We put the protocol byte back into the mblk 4610 * since we may come back via ip_wput_nondata() 4611 * later with this mblk if ipif_lookup_addr chooses 4612 * to defer processing. 4613 */ 4614 *mp->b_wptr++ = (char)connp->conn_ulp; 4615 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4616 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4617 &error, ipst)) != NULL) { 4618 ipif_refrele(ipif); 4619 } else if (error == EINPROGRESS) { 4620 if (src_ire != NULL) 4621 ire_refrele(src_ire); 4622 return (EINPROGRESS); 4623 } else if (CLASSD(src_addr)) { 4624 error = 0; 4625 if (src_ire != NULL) 4626 ire_refrele(src_ire); 4627 /* 4628 * (5) bind to multicast address. 4629 * Fake out the IRE returned to upper 4630 * layer to be a broadcast IRE. 4631 */ 4632 src_ire = ire_ctable_lookup( 4633 INADDR_BROADCAST, INADDR_ANY, 4634 IRE_BROADCAST, NULL, zoneid, NULL, 4635 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4636 ipst); 4637 if (src_ire == NULL || !ire_requested) 4638 error = EADDRNOTAVAIL; 4639 } else { 4640 /* 4641 * Not a valid address for bind 4642 */ 4643 error = EADDRNOTAVAIL; 4644 } 4645 /* 4646 * Just to keep it consistent with the processing in 4647 * ip_bind_v4() 4648 */ 4649 mp->b_wptr--; 4650 } 4651 if (error) { 4652 /* Red Alert! Attempting to be a bogon! */ 4653 ip1dbg(("ip_bind: bad src address 0x%x\n", 4654 ntohl(src_addr))); 4655 goto bad_addr; 4656 } 4657 } 4658 4659 /* 4660 * Allow setting new policies. For example, disconnects come 4661 * down as ipa_t bind. As we would have set conn_policy_cached 4662 * to B_TRUE before, we should set it to B_FALSE, so that policy 4663 * can change after the disconnect. 4664 */ 4665 connp->conn_policy_cached = B_FALSE; 4666 4667 /* 4668 * If not fanout_insert this was just an address verification 4669 */ 4670 if (fanout_insert) { 4671 /* 4672 * The addresses have been verified. Time to insert in 4673 * the correct fanout list. 4674 */ 4675 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4676 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4677 connp->conn_lport = lport; 4678 connp->conn_fport = 0; 4679 /* 4680 * Do we need to add a check to reject Multicast packets 4681 */ 4682 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4683 } 4684 4685 if (error == 0) { 4686 if (ire_requested) { 4687 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4688 error = -1; 4689 /* Falls through to bad_addr */ 4690 } 4691 } else if (ipsec_policy_set) { 4692 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4693 error = -1; 4694 /* Falls through to bad_addr */ 4695 } 4696 } 4697 } 4698 bad_addr: 4699 if (error != 0) { 4700 if (connp->conn_anon_port) { 4701 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4702 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4703 B_FALSE); 4704 } 4705 connp->conn_mlp_type = mlptSingle; 4706 } 4707 if (src_ire != NULL) 4708 IRE_REFRELE(src_ire); 4709 if (ipsec_policy_set) { 4710 ASSERT(policy_mp == mp->b_cont); 4711 ASSERT(policy_mp != NULL); 4712 freeb(policy_mp); 4713 /* 4714 * As of now assume that nothing else accompanies 4715 * IPSEC_POLICY_SET. 4716 */ 4717 mp->b_cont = NULL; 4718 } 4719 return (error); 4720 } 4721 4722 /* 4723 * Verify that both the source and destination addresses 4724 * are valid. If verify_dst is false, then the destination address may be 4725 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4726 * destination reachability, while tunnels do not. 4727 * Note that we allow connect to broadcast and multicast 4728 * addresses when ire_requested is set. Thus the ULP 4729 * has to check for IRE_BROADCAST and multicast. 4730 * 4731 * Returns zero if ok. 4732 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4733 * (for use with TSYSERR reply). 4734 * 4735 * Note: lport and fport are in network byte order. 4736 */ 4737 int 4738 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4739 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4740 boolean_t ire_requested, boolean_t ipsec_policy_set, 4741 boolean_t fanout_insert, boolean_t verify_dst) 4742 { 4743 ire_t *src_ire; 4744 ire_t *dst_ire; 4745 int error = 0; 4746 int protocol; 4747 mblk_t *policy_mp; 4748 ire_t *sire = NULL; 4749 ire_t *md_dst_ire = NULL; 4750 ire_t *lso_dst_ire = NULL; 4751 ill_t *ill = NULL; 4752 zoneid_t zoneid; 4753 ipaddr_t src_addr = *src_addrp; 4754 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4755 4756 src_ire = dst_ire = NULL; 4757 protocol = *mp->b_wptr & 0xFF; 4758 4759 /* 4760 * If we never got a disconnect before, clear it now. 4761 */ 4762 connp->conn_fully_bound = B_FALSE; 4763 4764 if (ipsec_policy_set) { 4765 policy_mp = mp->b_cont; 4766 } 4767 4768 zoneid = IPCL_ZONEID(connp); 4769 4770 if (CLASSD(dst_addr)) { 4771 /* Pick up an IRE_BROADCAST */ 4772 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4773 NULL, zoneid, MBLK_GETLABEL(mp), 4774 (MATCH_IRE_RECURSIVE | 4775 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4776 MATCH_IRE_SECATTR), ipst); 4777 } else { 4778 /* 4779 * If conn_dontroute is set or if conn_nexthop_set is set, 4780 * and onlink ipif is not found set ENETUNREACH error. 4781 */ 4782 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4783 ipif_t *ipif; 4784 4785 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4786 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4787 if (ipif == NULL) { 4788 error = ENETUNREACH; 4789 goto bad_addr; 4790 } 4791 ipif_refrele(ipif); 4792 } 4793 4794 if (connp->conn_nexthop_set) { 4795 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4796 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4797 MATCH_IRE_SECATTR, ipst); 4798 } else { 4799 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4800 &sire, zoneid, MBLK_GETLABEL(mp), 4801 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4802 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4803 MATCH_IRE_SECATTR), ipst); 4804 } 4805 } 4806 /* 4807 * dst_ire can't be a broadcast when not ire_requested. 4808 * We also prevent ire's with src address INADDR_ANY to 4809 * be used, which are created temporarily for 4810 * sending out packets from endpoints that have 4811 * conn_unspec_src set. If verify_dst is true, the destination must be 4812 * reachable. If verify_dst is false, the destination needn't be 4813 * reachable. 4814 * 4815 * If we match on a reject or black hole, then we've got a 4816 * local failure. May as well fail out the connect() attempt, 4817 * since it's never going to succeed. 4818 */ 4819 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4820 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4821 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4822 /* 4823 * If we're verifying destination reachability, we always want 4824 * to complain here. 4825 * 4826 * If we're not verifying destination reachability but the 4827 * destination has a route, we still want to fail on the 4828 * temporary address and broadcast address tests. 4829 */ 4830 if (verify_dst || (dst_ire != NULL)) { 4831 if (ip_debug > 2) { 4832 pr_addr_dbg("ip_bind_connected: bad connected " 4833 "dst %s\n", AF_INET, &dst_addr); 4834 } 4835 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4836 error = ENETUNREACH; 4837 else 4838 error = EHOSTUNREACH; 4839 goto bad_addr; 4840 } 4841 } 4842 4843 /* 4844 * We now know that routing will allow us to reach the destination. 4845 * Check whether Trusted Solaris policy allows communication with this 4846 * host, and pretend that the destination is unreachable if not. 4847 * 4848 * This is never a problem for TCP, since that transport is known to 4849 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4850 * handling. If the remote is unreachable, it will be detected at that 4851 * point, so there's no reason to check it here. 4852 * 4853 * Note that for sendto (and other datagram-oriented friends), this 4854 * check is done as part of the data path label computation instead. 4855 * The check here is just to make non-TCP connect() report the right 4856 * error. 4857 */ 4858 if (dst_ire != NULL && is_system_labeled() && 4859 !IPCL_IS_TCP(connp) && 4860 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4861 connp->conn_mac_exempt, ipst) != 0) { 4862 error = EHOSTUNREACH; 4863 if (ip_debug > 2) { 4864 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4865 AF_INET, &dst_addr); 4866 } 4867 goto bad_addr; 4868 } 4869 4870 /* 4871 * If the app does a connect(), it means that it will most likely 4872 * send more than 1 packet to the destination. It makes sense 4873 * to clear the temporary flag. 4874 */ 4875 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4876 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4877 irb_t *irb = dst_ire->ire_bucket; 4878 4879 rw_enter(&irb->irb_lock, RW_WRITER); 4880 /* 4881 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4882 * the lock to guarantee irb_tmp_ire_cnt. 4883 */ 4884 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4885 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4886 irb->irb_tmp_ire_cnt--; 4887 } 4888 rw_exit(&irb->irb_lock); 4889 } 4890 4891 /* 4892 * See if we should notify ULP about LSO/MDT; we do this whether or not 4893 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4894 * eligibility tests for passive connects are handled separately 4895 * through tcp_adapt_ire(). We do this before the source address 4896 * selection, because dst_ire may change after a call to 4897 * ipif_select_source(). This is a best-effort check, as the 4898 * packet for this connection may not actually go through 4899 * dst_ire->ire_stq, and the exact IRE can only be known after 4900 * calling ip_newroute(). This is why we further check on the 4901 * IRE during LSO/Multidata packet transmission in 4902 * tcp_lsosend()/tcp_multisend(). 4903 */ 4904 if (!ipsec_policy_set && dst_ire != NULL && 4905 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4906 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4907 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4908 lso_dst_ire = dst_ire; 4909 IRE_REFHOLD(lso_dst_ire); 4910 } else if (ipst->ips_ip_multidata_outbound && 4911 ILL_MDT_CAPABLE(ill)) { 4912 md_dst_ire = dst_ire; 4913 IRE_REFHOLD(md_dst_ire); 4914 } 4915 } 4916 4917 if (dst_ire != NULL && 4918 dst_ire->ire_type == IRE_LOCAL && 4919 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4920 /* 4921 * If the IRE belongs to a different zone, look for a matching 4922 * route in the forwarding table and use the source address from 4923 * that route. 4924 */ 4925 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4926 zoneid, 0, NULL, 4927 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4928 MATCH_IRE_RJ_BHOLE, ipst); 4929 if (src_ire == NULL) { 4930 error = EHOSTUNREACH; 4931 goto bad_addr; 4932 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4933 if (!(src_ire->ire_type & IRE_HOST)) 4934 error = ENETUNREACH; 4935 else 4936 error = EHOSTUNREACH; 4937 goto bad_addr; 4938 } 4939 if (src_addr == INADDR_ANY) 4940 src_addr = src_ire->ire_src_addr; 4941 ire_refrele(src_ire); 4942 src_ire = NULL; 4943 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4944 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4945 src_addr = sire->ire_src_addr; 4946 ire_refrele(dst_ire); 4947 dst_ire = sire; 4948 sire = NULL; 4949 } else { 4950 /* 4951 * Pick a source address so that a proper inbound 4952 * load spreading would happen. 4953 */ 4954 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4955 ipif_t *src_ipif = NULL; 4956 ire_t *ipif_ire; 4957 4958 /* 4959 * Supply a local source address such that inbound 4960 * load spreading happens. 4961 * 4962 * Determine the best source address on this ill for 4963 * the destination. 4964 * 4965 * 1) For broadcast, we should return a broadcast ire 4966 * found above so that upper layers know that the 4967 * destination address is a broadcast address. 4968 * 4969 * 2) If this is part of a group, select a better 4970 * source address so that better inbound load 4971 * balancing happens. Do the same if the ipif 4972 * is DEPRECATED. 4973 * 4974 * 3) If the outgoing interface is part of a usesrc 4975 * group, then try selecting a source address from 4976 * the usesrc ILL. 4977 */ 4978 if ((dst_ire->ire_zoneid != zoneid && 4979 dst_ire->ire_zoneid != ALL_ZONES) || 4980 (!(dst_ire->ire_type & IRE_BROADCAST) && 4981 ((dst_ill->ill_group != NULL) || 4982 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4983 (dst_ill->ill_usesrc_ifindex != 0)))) { 4984 /* 4985 * If the destination is reachable via a 4986 * given gateway, the selected source address 4987 * should be in the same subnet as the gateway. 4988 * Otherwise, the destination is not reachable. 4989 * 4990 * If there are no interfaces on the same subnet 4991 * as the destination, ipif_select_source gives 4992 * first non-deprecated interface which might be 4993 * on a different subnet than the gateway. 4994 * This is not desirable. Hence pass the dst_ire 4995 * source address to ipif_select_source. 4996 * It is sure that the destination is reachable 4997 * with the dst_ire source address subnet. 4998 * So passing dst_ire source address to 4999 * ipif_select_source will make sure that the 5000 * selected source will be on the same subnet 5001 * as dst_ire source address. 5002 */ 5003 ipaddr_t saddr = 5004 dst_ire->ire_ipif->ipif_src_addr; 5005 src_ipif = ipif_select_source(dst_ill, 5006 saddr, zoneid); 5007 if (src_ipif != NULL) { 5008 if (IS_VNI(src_ipif->ipif_ill)) { 5009 /* 5010 * For VNI there is no 5011 * interface route 5012 */ 5013 src_addr = 5014 src_ipif->ipif_src_addr; 5015 } else { 5016 ipif_ire = 5017 ipif_to_ire(src_ipif); 5018 if (ipif_ire != NULL) { 5019 IRE_REFRELE(dst_ire); 5020 dst_ire = ipif_ire; 5021 } 5022 src_addr = 5023 dst_ire->ire_src_addr; 5024 } 5025 ipif_refrele(src_ipif); 5026 } else { 5027 src_addr = dst_ire->ire_src_addr; 5028 } 5029 } else { 5030 src_addr = dst_ire->ire_src_addr; 5031 } 5032 } 5033 } 5034 5035 /* 5036 * We do ire_route_lookup() here (and not 5037 * interface lookup as we assert that 5038 * src_addr should only come from an 5039 * UP interface for hard binding. 5040 */ 5041 ASSERT(src_ire == NULL); 5042 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5043 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5044 /* src_ire must be a local|loopback */ 5045 if (!IRE_IS_LOCAL(src_ire)) { 5046 if (ip_debug > 2) { 5047 pr_addr_dbg("ip_bind_connected: bad connected " 5048 "src %s\n", AF_INET, &src_addr); 5049 } 5050 error = EADDRNOTAVAIL; 5051 goto bad_addr; 5052 } 5053 5054 /* 5055 * If the source address is a loopback address, the 5056 * destination had best be local or multicast. 5057 * The transports that can't handle multicast will reject 5058 * those addresses. 5059 */ 5060 if (src_ire->ire_type == IRE_LOOPBACK && 5061 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5062 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5063 error = -1; 5064 goto bad_addr; 5065 } 5066 5067 /* 5068 * Allow setting new policies. For example, disconnects come 5069 * down as ipa_t bind. As we would have set conn_policy_cached 5070 * to B_TRUE before, we should set it to B_FALSE, so that policy 5071 * can change after the disconnect. 5072 */ 5073 connp->conn_policy_cached = B_FALSE; 5074 5075 /* 5076 * Set the conn addresses/ports immediately, so the IPsec policy calls 5077 * can handle their passed-in conn's. 5078 */ 5079 5080 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5081 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5082 connp->conn_lport = lport; 5083 connp->conn_fport = fport; 5084 *src_addrp = src_addr; 5085 5086 ASSERT(!(ipsec_policy_set && ire_requested)); 5087 if (ire_requested) { 5088 iulp_t *ulp_info = NULL; 5089 5090 /* 5091 * Note that sire will not be NULL if this is an off-link 5092 * connection and there is not cache for that dest yet. 5093 * 5094 * XXX Because of an existing bug, if there are multiple 5095 * default routes, the IRE returned now may not be the actual 5096 * default route used (default routes are chosen in a 5097 * round robin fashion). So if the metrics for different 5098 * default routes are different, we may return the wrong 5099 * metrics. This will not be a problem if the existing 5100 * bug is fixed. 5101 */ 5102 if (sire != NULL) { 5103 ulp_info = &(sire->ire_uinfo); 5104 } 5105 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5106 error = -1; 5107 goto bad_addr; 5108 } 5109 } else if (ipsec_policy_set) { 5110 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5111 error = -1; 5112 goto bad_addr; 5113 } 5114 } 5115 5116 /* 5117 * Cache IPsec policy in this conn. If we have per-socket policy, 5118 * we'll cache that. If we don't, we'll inherit global policy. 5119 * 5120 * We can't insert until the conn reflects the policy. Note that 5121 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5122 * connections where we don't have a policy. This is to prevent 5123 * global policy lookups in the inbound path. 5124 * 5125 * If we insert before we set conn_policy_cached, 5126 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5127 * because global policy cound be non-empty. We normally call 5128 * ipsec_check_policy() for conn_policy_cached connections only if 5129 * ipc_in_enforce_policy is set. But in this case, 5130 * conn_policy_cached can get set anytime since we made the 5131 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5132 * called, which will make the above assumption false. Thus, we 5133 * need to insert after we set conn_policy_cached. 5134 */ 5135 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5136 goto bad_addr; 5137 5138 if (fanout_insert) { 5139 /* 5140 * The addresses have been verified. Time to insert in 5141 * the correct fanout list. 5142 */ 5143 error = ipcl_conn_insert(connp, protocol, src_addr, 5144 dst_addr, connp->conn_ports); 5145 } 5146 5147 if (error == 0) { 5148 connp->conn_fully_bound = B_TRUE; 5149 /* 5150 * Our initial checks for LSO/MDT have passed; the IRE is not 5151 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5152 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5153 * ip_xxinfo_return(), which performs further checks 5154 * against them and upon success, returns the LSO/MDT info 5155 * mblk which we will attach to the bind acknowledgment. 5156 */ 5157 if (lso_dst_ire != NULL) { 5158 mblk_t *lsoinfo_mp; 5159 5160 ASSERT(ill->ill_lso_capab != NULL); 5161 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5162 ill->ill_name, ill->ill_lso_capab)) != NULL) 5163 linkb(mp, lsoinfo_mp); 5164 } else if (md_dst_ire != NULL) { 5165 mblk_t *mdinfo_mp; 5166 5167 ASSERT(ill->ill_mdt_capab != NULL); 5168 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5169 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5170 linkb(mp, mdinfo_mp); 5171 } 5172 } 5173 bad_addr: 5174 if (ipsec_policy_set) { 5175 ASSERT(policy_mp == mp->b_cont); 5176 ASSERT(policy_mp != NULL); 5177 freeb(policy_mp); 5178 /* 5179 * As of now assume that nothing else accompanies 5180 * IPSEC_POLICY_SET. 5181 */ 5182 mp->b_cont = NULL; 5183 } 5184 if (src_ire != NULL) 5185 IRE_REFRELE(src_ire); 5186 if (dst_ire != NULL) 5187 IRE_REFRELE(dst_ire); 5188 if (sire != NULL) 5189 IRE_REFRELE(sire); 5190 if (md_dst_ire != NULL) 5191 IRE_REFRELE(md_dst_ire); 5192 if (lso_dst_ire != NULL) 5193 IRE_REFRELE(lso_dst_ire); 5194 return (error); 5195 } 5196 5197 /* 5198 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5199 * Prefers dst_ire over src_ire. 5200 */ 5201 static boolean_t 5202 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5203 { 5204 mblk_t *mp1; 5205 ire_t *ret_ire = NULL; 5206 5207 mp1 = mp->b_cont; 5208 ASSERT(mp1 != NULL); 5209 5210 if (ire != NULL) { 5211 /* 5212 * mp1 initialized above to IRE_DB_REQ_TYPE 5213 * appended mblk. Its <upper protocol>'s 5214 * job to make sure there is room. 5215 */ 5216 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5217 return (0); 5218 5219 mp1->b_datap->db_type = IRE_DB_TYPE; 5220 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5221 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5222 ret_ire = (ire_t *)mp1->b_rptr; 5223 /* 5224 * Pass the latest setting of the ip_path_mtu_discovery and 5225 * copy the ulp info if any. 5226 */ 5227 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5228 IPH_DF : 0; 5229 if (ulp_info != NULL) { 5230 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5231 sizeof (iulp_t)); 5232 } 5233 ret_ire->ire_mp = mp1; 5234 } else { 5235 /* 5236 * No IRE was found. Remove IRE mblk. 5237 */ 5238 mp->b_cont = mp1->b_cont; 5239 freeb(mp1); 5240 } 5241 5242 return (1); 5243 } 5244 5245 /* 5246 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5247 * the final piece where we don't. Return a pointer to the first mblk in the 5248 * result, and update the pointer to the next mblk to chew on. If anything 5249 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5250 * NULL pointer. 5251 */ 5252 mblk_t * 5253 ip_carve_mp(mblk_t **mpp, ssize_t len) 5254 { 5255 mblk_t *mp0; 5256 mblk_t *mp1; 5257 mblk_t *mp2; 5258 5259 if (!len || !mpp || !(mp0 = *mpp)) 5260 return (NULL); 5261 /* If we aren't going to consume the first mblk, we need a dup. */ 5262 if (mp0->b_wptr - mp0->b_rptr > len) { 5263 mp1 = dupb(mp0); 5264 if (mp1) { 5265 /* Partition the data between the two mblks. */ 5266 mp1->b_wptr = mp1->b_rptr + len; 5267 mp0->b_rptr = mp1->b_wptr; 5268 /* 5269 * after adjustments if mblk not consumed is now 5270 * unaligned, try to align it. If this fails free 5271 * all messages and let upper layer recover. 5272 */ 5273 if (!OK_32PTR(mp0->b_rptr)) { 5274 if (!pullupmsg(mp0, -1)) { 5275 freemsg(mp0); 5276 freemsg(mp1); 5277 *mpp = NULL; 5278 return (NULL); 5279 } 5280 } 5281 } 5282 return (mp1); 5283 } 5284 /* Eat through as many mblks as we need to get len bytes. */ 5285 len -= mp0->b_wptr - mp0->b_rptr; 5286 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5287 if (mp2->b_wptr - mp2->b_rptr > len) { 5288 /* 5289 * We won't consume the entire last mblk. Like 5290 * above, dup and partition it. 5291 */ 5292 mp1->b_cont = dupb(mp2); 5293 mp1 = mp1->b_cont; 5294 if (!mp1) { 5295 /* 5296 * Trouble. Rather than go to a lot of 5297 * trouble to clean up, we free the messages. 5298 * This won't be any worse than losing it on 5299 * the wire. 5300 */ 5301 freemsg(mp0); 5302 freemsg(mp2); 5303 *mpp = NULL; 5304 return (NULL); 5305 } 5306 mp1->b_wptr = mp1->b_rptr + len; 5307 mp2->b_rptr = mp1->b_wptr; 5308 /* 5309 * after adjustments if mblk not consumed is now 5310 * unaligned, try to align it. If this fails free 5311 * all messages and let upper layer recover. 5312 */ 5313 if (!OK_32PTR(mp2->b_rptr)) { 5314 if (!pullupmsg(mp2, -1)) { 5315 freemsg(mp0); 5316 freemsg(mp2); 5317 *mpp = NULL; 5318 return (NULL); 5319 } 5320 } 5321 *mpp = mp2; 5322 return (mp0); 5323 } 5324 /* Decrement len by the amount we just got. */ 5325 len -= mp2->b_wptr - mp2->b_rptr; 5326 } 5327 /* 5328 * len should be reduced to zero now. If not our caller has 5329 * screwed up. 5330 */ 5331 if (len) { 5332 /* Shouldn't happen! */ 5333 freemsg(mp0); 5334 *mpp = NULL; 5335 return (NULL); 5336 } 5337 /* 5338 * We consumed up to exactly the end of an mblk. Detach the part 5339 * we are returning from the rest of the chain. 5340 */ 5341 mp1->b_cont = NULL; 5342 *mpp = mp2; 5343 return (mp0); 5344 } 5345 5346 /* The ill stream is being unplumbed. Called from ip_close */ 5347 int 5348 ip_modclose(ill_t *ill) 5349 { 5350 boolean_t success; 5351 ipsq_t *ipsq; 5352 ipif_t *ipif; 5353 queue_t *q = ill->ill_rq; 5354 ip_stack_t *ipst = ill->ill_ipst; 5355 clock_t timeout; 5356 5357 /* 5358 * Wait for the ACKs of all deferred control messages to be processed. 5359 * In particular, we wait for a potential capability reset initiated 5360 * in ip_sioctl_plink() to complete before proceeding. 5361 * 5362 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5363 * in case the driver never replies. 5364 */ 5365 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5366 mutex_enter(&ill->ill_lock); 5367 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5368 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5369 /* Timeout */ 5370 break; 5371 } 5372 } 5373 mutex_exit(&ill->ill_lock); 5374 5375 /* 5376 * Forcibly enter the ipsq after some delay. This is to take 5377 * care of the case when some ioctl does not complete because 5378 * we sent a control message to the driver and it did not 5379 * send us a reply. We want to be able to at least unplumb 5380 * and replumb rather than force the user to reboot the system. 5381 */ 5382 success = ipsq_enter(ill, B_FALSE); 5383 5384 /* 5385 * Open/close/push/pop is guaranteed to be single threaded 5386 * per stream by STREAMS. FS guarantees that all references 5387 * from top are gone before close is called. So there can't 5388 * be another close thread that has set CONDEMNED on this ill. 5389 * and cause ipsq_enter to return failure. 5390 */ 5391 ASSERT(success); 5392 ipsq = ill->ill_phyint->phyint_ipsq; 5393 5394 /* 5395 * Mark it condemned. No new reference will be made to this ill. 5396 * Lookup functions will return an error. Threads that try to 5397 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5398 * that the refcnt will drop down to zero. 5399 */ 5400 mutex_enter(&ill->ill_lock); 5401 ill->ill_state_flags |= ILL_CONDEMNED; 5402 for (ipif = ill->ill_ipif; ipif != NULL; 5403 ipif = ipif->ipif_next) { 5404 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5405 } 5406 /* 5407 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5408 * returns error if ILL_CONDEMNED is set 5409 */ 5410 cv_broadcast(&ill->ill_cv); 5411 mutex_exit(&ill->ill_lock); 5412 5413 /* 5414 * Send all the deferred DLPI messages downstream which came in 5415 * during the small window right before ipsq_enter(). We do this 5416 * without waiting for the ACKs because all the ACKs for M_PROTO 5417 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5418 */ 5419 ill_dlpi_send_deferred(ill); 5420 5421 /* 5422 * Shut down fragmentation reassembly. 5423 * ill_frag_timer won't start a timer again. 5424 * Now cancel any existing timer 5425 */ 5426 (void) untimeout(ill->ill_frag_timer_id); 5427 (void) ill_frag_timeout(ill, 0); 5428 5429 /* 5430 * If MOVE was in progress, clear the 5431 * move_in_progress fields also. 5432 */ 5433 if (ill->ill_move_in_progress) { 5434 ILL_CLEAR_MOVE(ill); 5435 } 5436 5437 /* 5438 * Call ill_delete to bring down the ipifs, ilms and ill on 5439 * this ill. Then wait for the refcnts to drop to zero. 5440 * ill_is_quiescent checks whether the ill is really quiescent. 5441 * Then make sure that threads that are waiting to enter the 5442 * ipsq have seen the error returned by ipsq_enter and have 5443 * gone away. Then we call ill_delete_tail which does the 5444 * DL_UNBIND_REQ with the driver and then qprocsoff. 5445 */ 5446 ill_delete(ill); 5447 mutex_enter(&ill->ill_lock); 5448 while (!ill_is_quiescent(ill)) 5449 cv_wait(&ill->ill_cv, &ill->ill_lock); 5450 while (ill->ill_waiters) 5451 cv_wait(&ill->ill_cv, &ill->ill_lock); 5452 5453 mutex_exit(&ill->ill_lock); 5454 5455 /* 5456 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5457 * it held until the end of the function since the cleanup 5458 * below needs to be able to use the ip_stack_t. 5459 */ 5460 netstack_hold(ipst->ips_netstack); 5461 5462 /* qprocsoff is called in ill_delete_tail */ 5463 ill_delete_tail(ill); 5464 ASSERT(ill->ill_ipst == NULL); 5465 5466 /* 5467 * Walk through all upper (conn) streams and qenable 5468 * those that have queued data. 5469 * close synchronization needs this to 5470 * be done to ensure that all upper layers blocked 5471 * due to flow control to the closing device 5472 * get unblocked. 5473 */ 5474 ip1dbg(("ip_wsrv: walking\n")); 5475 conn_walk_drain(ipst); 5476 5477 mutex_enter(&ipst->ips_ip_mi_lock); 5478 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5479 mutex_exit(&ipst->ips_ip_mi_lock); 5480 5481 /* 5482 * credp could be null if the open didn't succeed and ip_modopen 5483 * itself calls ip_close. 5484 */ 5485 if (ill->ill_credp != NULL) 5486 crfree(ill->ill_credp); 5487 5488 mutex_enter(&ill->ill_lock); 5489 ill_nic_info_dispatch(ill); 5490 mutex_exit(&ill->ill_lock); 5491 5492 /* 5493 * Now we are done with the module close pieces that 5494 * need the netstack_t. 5495 */ 5496 netstack_rele(ipst->ips_netstack); 5497 5498 mi_close_free((IDP)ill); 5499 q->q_ptr = WR(q)->q_ptr = NULL; 5500 5501 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5502 5503 return (0); 5504 } 5505 5506 /* 5507 * This is called as part of close() for IP, UDP, ICMP, and RTS 5508 * in order to quiesce the conn. 5509 */ 5510 void 5511 ip_quiesce_conn(conn_t *connp) 5512 { 5513 boolean_t drain_cleanup_reqd = B_FALSE; 5514 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5515 boolean_t ilg_cleanup_reqd = B_FALSE; 5516 ip_stack_t *ipst; 5517 5518 ASSERT(!IPCL_IS_TCP(connp)); 5519 ipst = connp->conn_netstack->netstack_ip; 5520 5521 /* 5522 * Mark the conn as closing, and this conn must not be 5523 * inserted in future into any list. Eg. conn_drain_insert(), 5524 * won't insert this conn into the conn_drain_list. 5525 * Similarly ill_pending_mp_add() will not add any mp to 5526 * the pending mp list, after this conn has started closing. 5527 * 5528 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5529 * cannot get set henceforth. 5530 */ 5531 mutex_enter(&connp->conn_lock); 5532 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5533 connp->conn_state_flags |= CONN_CLOSING; 5534 if (connp->conn_idl != NULL) 5535 drain_cleanup_reqd = B_TRUE; 5536 if (connp->conn_oper_pending_ill != NULL) 5537 conn_ioctl_cleanup_reqd = B_TRUE; 5538 if (connp->conn_dhcpinit_ill != NULL) { 5539 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5540 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5541 connp->conn_dhcpinit_ill = NULL; 5542 } 5543 if (connp->conn_ilg_inuse != 0) 5544 ilg_cleanup_reqd = B_TRUE; 5545 mutex_exit(&connp->conn_lock); 5546 5547 if (conn_ioctl_cleanup_reqd) 5548 conn_ioctl_cleanup(connp); 5549 5550 if (is_system_labeled() && connp->conn_anon_port) { 5551 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5552 connp->conn_mlp_type, connp->conn_ulp, 5553 ntohs(connp->conn_lport), B_FALSE); 5554 connp->conn_anon_port = 0; 5555 } 5556 connp->conn_mlp_type = mlptSingle; 5557 5558 /* 5559 * Remove this conn from any fanout list it is on. 5560 * and then wait for any threads currently operating 5561 * on this endpoint to finish 5562 */ 5563 ipcl_hash_remove(connp); 5564 5565 /* 5566 * Remove this conn from the drain list, and do 5567 * any other cleanup that may be required. 5568 * (Only non-tcp streams may have a non-null conn_idl. 5569 * TCP streams are never flow controlled, and 5570 * conn_idl will be null) 5571 */ 5572 if (drain_cleanup_reqd) 5573 conn_drain_tail(connp, B_TRUE); 5574 5575 if (connp == ipst->ips_ip_g_mrouter) 5576 (void) ip_mrouter_done(NULL, ipst); 5577 5578 if (ilg_cleanup_reqd) 5579 ilg_delete_all(connp); 5580 5581 conn_delete_ire(connp, NULL); 5582 5583 /* 5584 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5585 * callers from write side can't be there now because close 5586 * is in progress. The only other caller is ipcl_walk 5587 * which checks for the condemned flag. 5588 */ 5589 mutex_enter(&connp->conn_lock); 5590 connp->conn_state_flags |= CONN_CONDEMNED; 5591 while (connp->conn_ref != 1) 5592 cv_wait(&connp->conn_cv, &connp->conn_lock); 5593 connp->conn_state_flags |= CONN_QUIESCED; 5594 mutex_exit(&connp->conn_lock); 5595 } 5596 5597 /* ARGSUSED */ 5598 int 5599 ip_close(queue_t *q, int flags) 5600 { 5601 conn_t *connp; 5602 5603 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5604 5605 /* 5606 * Call the appropriate delete routine depending on whether this is 5607 * a module or device. 5608 */ 5609 if (WR(q)->q_next != NULL) { 5610 /* This is a module close */ 5611 return (ip_modclose((ill_t *)q->q_ptr)); 5612 } 5613 5614 connp = q->q_ptr; 5615 ip_quiesce_conn(connp); 5616 5617 qprocsoff(q); 5618 5619 /* 5620 * Now we are truly single threaded on this stream, and can 5621 * delete the things hanging off the connp, and finally the connp. 5622 * We removed this connp from the fanout list, it cannot be 5623 * accessed thru the fanouts, and we already waited for the 5624 * conn_ref to drop to 0. We are already in close, so 5625 * there cannot be any other thread from the top. qprocsoff 5626 * has completed, and service has completed or won't run in 5627 * future. 5628 */ 5629 ASSERT(connp->conn_ref == 1); 5630 5631 inet_minor_free(ip_minor_arena, connp->conn_dev); 5632 5633 connp->conn_ref--; 5634 ipcl_conn_destroy(connp); 5635 5636 q->q_ptr = WR(q)->q_ptr = NULL; 5637 return (0); 5638 } 5639 5640 /* 5641 * Wapper around putnext() so that ip_rts_request can merely use 5642 * conn_recv. 5643 */ 5644 /*ARGSUSED2*/ 5645 static void 5646 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5647 { 5648 conn_t *connp = (conn_t *)arg1; 5649 5650 putnext(connp->conn_rq, mp); 5651 } 5652 5653 /* Return the IP checksum for the IP header at "iph". */ 5654 uint16_t 5655 ip_csum_hdr(ipha_t *ipha) 5656 { 5657 uint16_t *uph; 5658 uint32_t sum; 5659 int opt_len; 5660 5661 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5662 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5663 uph = (uint16_t *)ipha; 5664 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5665 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5666 if (opt_len > 0) { 5667 do { 5668 sum += uph[10]; 5669 sum += uph[11]; 5670 uph += 2; 5671 } while (--opt_len); 5672 } 5673 sum = (sum & 0xFFFF) + (sum >> 16); 5674 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5675 if (sum == 0xffff) 5676 sum = 0; 5677 return ((uint16_t)sum); 5678 } 5679 5680 /* 5681 * Called when the module is about to be unloaded 5682 */ 5683 void 5684 ip_ddi_destroy(void) 5685 { 5686 tnet_fini(); 5687 5688 icmp_ddi_destroy(); 5689 rts_ddi_destroy(); 5690 udp_ddi_destroy(); 5691 sctp_ddi_g_destroy(); 5692 tcp_ddi_g_destroy(); 5693 ipsec_policy_g_destroy(); 5694 ipcl_g_destroy(); 5695 ip_net_g_destroy(); 5696 ip_ire_g_fini(); 5697 inet_minor_destroy(ip_minor_arena); 5698 5699 #ifdef DEBUG 5700 list_destroy(&ip_thread_list); 5701 rw_destroy(&ip_thread_rwlock); 5702 tsd_destroy(&ip_thread_data); 5703 #endif 5704 5705 netstack_unregister(NS_IP); 5706 } 5707 5708 /* 5709 * First step in cleanup. 5710 */ 5711 /* ARGSUSED */ 5712 static void 5713 ip_stack_shutdown(netstackid_t stackid, void *arg) 5714 { 5715 ip_stack_t *ipst = (ip_stack_t *)arg; 5716 5717 #ifdef NS_DEBUG 5718 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5719 #endif 5720 5721 /* Get rid of loopback interfaces and their IREs */ 5722 ip_loopback_cleanup(ipst); 5723 } 5724 5725 /* 5726 * Free the IP stack instance. 5727 */ 5728 static void 5729 ip_stack_fini(netstackid_t stackid, void *arg) 5730 { 5731 ip_stack_t *ipst = (ip_stack_t *)arg; 5732 int ret; 5733 5734 #ifdef NS_DEBUG 5735 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5736 #endif 5737 ipv4_hook_destroy(ipst); 5738 ipv6_hook_destroy(ipst); 5739 ip_net_destroy(ipst); 5740 5741 rw_destroy(&ipst->ips_srcid_lock); 5742 5743 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5744 ipst->ips_ip_mibkp = NULL; 5745 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5746 ipst->ips_icmp_mibkp = NULL; 5747 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5748 ipst->ips_ip_kstat = NULL; 5749 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5750 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5751 ipst->ips_ip6_kstat = NULL; 5752 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5753 5754 nd_free(&ipst->ips_ip_g_nd); 5755 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5756 ipst->ips_param_arr = NULL; 5757 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5758 ipst->ips_ndp_arr = NULL; 5759 5760 ip_mrouter_stack_destroy(ipst); 5761 5762 mutex_destroy(&ipst->ips_ip_mi_lock); 5763 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5764 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5765 rw_destroy(&ipst->ips_ip_g_nd_lock); 5766 5767 ret = untimeout(ipst->ips_igmp_timeout_id); 5768 if (ret == -1) { 5769 ASSERT(ipst->ips_igmp_timeout_id == 0); 5770 } else { 5771 ASSERT(ipst->ips_igmp_timeout_id != 0); 5772 ipst->ips_igmp_timeout_id = 0; 5773 } 5774 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5775 if (ret == -1) { 5776 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5777 } else { 5778 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5779 ipst->ips_igmp_slowtimeout_id = 0; 5780 } 5781 ret = untimeout(ipst->ips_mld_timeout_id); 5782 if (ret == -1) { 5783 ASSERT(ipst->ips_mld_timeout_id == 0); 5784 } else { 5785 ASSERT(ipst->ips_mld_timeout_id != 0); 5786 ipst->ips_mld_timeout_id = 0; 5787 } 5788 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5789 if (ret == -1) { 5790 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5791 } else { 5792 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5793 ipst->ips_mld_slowtimeout_id = 0; 5794 } 5795 ret = untimeout(ipst->ips_ip_ire_expire_id); 5796 if (ret == -1) { 5797 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5798 } else { 5799 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5800 ipst->ips_ip_ire_expire_id = 0; 5801 } 5802 5803 mutex_destroy(&ipst->ips_igmp_timer_lock); 5804 mutex_destroy(&ipst->ips_mld_timer_lock); 5805 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5806 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5807 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5808 rw_destroy(&ipst->ips_ill_g_lock); 5809 5810 ip_ire_fini(ipst); 5811 ip6_asp_free(ipst); 5812 conn_drain_fini(ipst); 5813 ipcl_destroy(ipst); 5814 5815 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5816 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5817 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5818 ipst->ips_ndp4 = NULL; 5819 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5820 ipst->ips_ndp6 = NULL; 5821 5822 if (ipst->ips_loopback_ksp != NULL) { 5823 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5824 ipst->ips_loopback_ksp = NULL; 5825 } 5826 5827 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5828 ipst->ips_phyint_g_list = NULL; 5829 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5830 ipst->ips_ill_g_heads = NULL; 5831 5832 kmem_free(ipst, sizeof (*ipst)); 5833 } 5834 5835 /* 5836 * This function is called from the TSD destructor, and is used to debug 5837 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5838 * details. 5839 */ 5840 static void 5841 ip_thread_exit(void *phash) 5842 { 5843 th_hash_t *thh = phash; 5844 5845 rw_enter(&ip_thread_rwlock, RW_WRITER); 5846 list_remove(&ip_thread_list, thh); 5847 rw_exit(&ip_thread_rwlock); 5848 mod_hash_destroy_hash(thh->thh_hash); 5849 kmem_free(thh, sizeof (*thh)); 5850 } 5851 5852 /* 5853 * Called when the IP kernel module is loaded into the kernel 5854 */ 5855 void 5856 ip_ddi_init(void) 5857 { 5858 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5859 5860 /* 5861 * For IP and TCP the minor numbers should start from 2 since we have 4 5862 * initial devices: ip, ip6, tcp, tcp6. 5863 */ 5864 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5865 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5866 cmn_err(CE_PANIC, 5867 "ip_ddi_init: ip_minor_arena creation failed\n"); 5868 } 5869 5870 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5871 5872 ipcl_g_init(); 5873 ip_ire_g_init(); 5874 ip_net_g_init(); 5875 5876 #ifdef DEBUG 5877 tsd_create(&ip_thread_data, ip_thread_exit); 5878 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5879 list_create(&ip_thread_list, sizeof (th_hash_t), 5880 offsetof(th_hash_t, thh_link)); 5881 #endif 5882 5883 /* 5884 * We want to be informed each time a stack is created or 5885 * destroyed in the kernel, so we can maintain the 5886 * set of udp_stack_t's. 5887 */ 5888 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5889 ip_stack_fini); 5890 5891 ipsec_policy_g_init(); 5892 tcp_ddi_g_init(); 5893 sctp_ddi_g_init(); 5894 5895 tnet_init(); 5896 5897 udp_ddi_init(); 5898 rts_ddi_init(); 5899 icmp_ddi_init(); 5900 } 5901 5902 /* 5903 * Initialize the IP stack instance. 5904 */ 5905 static void * 5906 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5907 { 5908 ip_stack_t *ipst; 5909 ipparam_t *pa; 5910 ipndp_t *na; 5911 5912 #ifdef NS_DEBUG 5913 printf("ip_stack_init(stack %d)\n", stackid); 5914 #endif 5915 5916 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5917 ipst->ips_netstack = ns; 5918 5919 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5920 KM_SLEEP); 5921 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5922 KM_SLEEP); 5923 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5924 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5925 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5926 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5927 5928 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5929 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5930 ipst->ips_igmp_deferred_next = INFINITY; 5931 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5932 ipst->ips_mld_deferred_next = INFINITY; 5933 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5934 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5935 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5936 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5937 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5938 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5939 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5940 5941 ipcl_init(ipst); 5942 ip_ire_init(ipst); 5943 ip6_asp_init(ipst); 5944 ipif_init(ipst); 5945 conn_drain_init(ipst); 5946 ip_mrouter_stack_init(ipst); 5947 5948 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5949 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5950 5951 ipst->ips_ip_multirt_log_interval = 1000; 5952 5953 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5954 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5955 ipst->ips_ill_index = 1; 5956 5957 ipst->ips_saved_ip_g_forward = -1; 5958 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 5959 5960 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 5961 ipst->ips_param_arr = pa; 5962 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 5963 5964 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 5965 ipst->ips_ndp_arr = na; 5966 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5967 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 5968 (caddr_t)&ipst->ips_ip_g_forward; 5969 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 5970 (caddr_t)&ipst->ips_ipv6_forward; 5971 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 5972 "ip_cgtp_filter") == 0); 5973 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 5974 (caddr_t)&ipst->ips_ip_cgtp_filter; 5975 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 5976 "ipmp_hook_emulation") == 0); 5977 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 5978 (caddr_t)&ipst->ips_ipmp_hook_emulation; 5979 5980 (void) ip_param_register(&ipst->ips_ip_g_nd, 5981 ipst->ips_param_arr, A_CNT(lcl_param_arr), 5982 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 5983 5984 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 5985 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 5986 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 5987 ipst->ips_ip6_kstat = 5988 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 5989 5990 ipst->ips_ipmp_enable_failback = B_TRUE; 5991 5992 ipst->ips_ip_src_id = 1; 5993 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 5994 5995 ip_net_init(ipst, ns); 5996 ipv4_hook_init(ipst); 5997 ipv6_hook_init(ipst); 5998 5999 return (ipst); 6000 } 6001 6002 /* 6003 * Allocate and initialize a DLPI template of the specified length. (May be 6004 * called as writer.) 6005 */ 6006 mblk_t * 6007 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6008 { 6009 mblk_t *mp; 6010 6011 mp = allocb(len, BPRI_MED); 6012 if (!mp) 6013 return (NULL); 6014 6015 /* 6016 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6017 * of which we don't seem to use) are sent with M_PCPROTO, and 6018 * that other DLPI are M_PROTO. 6019 */ 6020 if (prim == DL_INFO_REQ) { 6021 mp->b_datap->db_type = M_PCPROTO; 6022 } else { 6023 mp->b_datap->db_type = M_PROTO; 6024 } 6025 6026 mp->b_wptr = mp->b_rptr + len; 6027 bzero(mp->b_rptr, len); 6028 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6029 return (mp); 6030 } 6031 6032 const char * 6033 dlpi_prim_str(int prim) 6034 { 6035 switch (prim) { 6036 case DL_INFO_REQ: return ("DL_INFO_REQ"); 6037 case DL_INFO_ACK: return ("DL_INFO_ACK"); 6038 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 6039 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 6040 case DL_BIND_REQ: return ("DL_BIND_REQ"); 6041 case DL_BIND_ACK: return ("DL_BIND_ACK"); 6042 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 6043 case DL_OK_ACK: return ("DL_OK_ACK"); 6044 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 6045 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 6046 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 6047 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 6048 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 6049 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 6050 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 6051 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 6052 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 6053 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 6054 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 6055 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 6056 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 6057 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 6058 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 6059 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 6060 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 6061 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 6062 default: return ("<unknown primitive>"); 6063 } 6064 } 6065 6066 const char * 6067 dlpi_err_str(int err) 6068 { 6069 switch (err) { 6070 case DL_ACCESS: return ("DL_ACCESS"); 6071 case DL_BADADDR: return ("DL_BADADDR"); 6072 case DL_BADCORR: return ("DL_BADCORR"); 6073 case DL_BADDATA: return ("DL_BADDATA"); 6074 case DL_BADPPA: return ("DL_BADPPA"); 6075 case DL_BADPRIM: return ("DL_BADPRIM"); 6076 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 6077 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 6078 case DL_BADSAP: return ("DL_BADSAP"); 6079 case DL_BADTOKEN: return ("DL_BADTOKEN"); 6080 case DL_BOUND: return ("DL_BOUND"); 6081 case DL_INITFAILED: return ("DL_INITFAILED"); 6082 case DL_NOADDR: return ("DL_NOADDR"); 6083 case DL_NOTINIT: return ("DL_NOTINIT"); 6084 case DL_OUTSTATE: return ("DL_OUTSTATE"); 6085 case DL_SYSERR: return ("DL_SYSERR"); 6086 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 6087 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 6088 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 6089 case DL_TOOMANY: return ("DL_TOOMANY"); 6090 case DL_NOTENAB: return ("DL_NOTENAB"); 6091 case DL_BUSY: return ("DL_BUSY"); 6092 case DL_NOAUTO: return ("DL_NOAUTO"); 6093 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 6094 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 6095 case DL_XIDAUTO: return ("DL_XIDAUTO"); 6096 case DL_TESTAUTO: return ("DL_TESTAUTO"); 6097 case DL_PENDING: return ("DL_PENDING"); 6098 default: return ("<unknown error>"); 6099 } 6100 } 6101 6102 /* 6103 * Debug formatting routine. Returns a character string representation of the 6104 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6105 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6106 * 6107 * Once the ndd table-printing interfaces are removed, this can be changed to 6108 * standard dotted-decimal form. 6109 */ 6110 char * 6111 ip_dot_addr(ipaddr_t addr, char *buf) 6112 { 6113 uint8_t *ap = (uint8_t *)&addr; 6114 6115 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6116 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6117 return (buf); 6118 } 6119 6120 /* 6121 * Write the given MAC address as a printable string in the usual colon- 6122 * separated format. 6123 */ 6124 const char * 6125 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6126 { 6127 char *bp; 6128 6129 if (alen == 0 || buflen < 4) 6130 return ("?"); 6131 bp = buf; 6132 for (;;) { 6133 /* 6134 * If there are more MAC address bytes available, but we won't 6135 * have any room to print them, then add "..." to the string 6136 * instead. See below for the 'magic number' explanation. 6137 */ 6138 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6139 (void) strcpy(bp, "..."); 6140 break; 6141 } 6142 (void) sprintf(bp, "%02x", *addr++); 6143 bp += 2; 6144 if (--alen == 0) 6145 break; 6146 *bp++ = ':'; 6147 buflen -= 3; 6148 /* 6149 * At this point, based on the first 'if' statement above, 6150 * either alen == 1 and buflen >= 3, or alen > 1 and 6151 * buflen >= 4. The first case leaves room for the final "xx" 6152 * number and trailing NUL byte. The second leaves room for at 6153 * least "...". Thus the apparently 'magic' numbers chosen for 6154 * that statement. 6155 */ 6156 } 6157 return (buf); 6158 } 6159 6160 /* 6161 * Send an ICMP error after patching up the packet appropriately. Returns 6162 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6163 */ 6164 static boolean_t 6165 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6166 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6167 zoneid_t zoneid, ip_stack_t *ipst) 6168 { 6169 ipha_t *ipha; 6170 mblk_t *first_mp; 6171 boolean_t secure; 6172 unsigned char db_type; 6173 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6174 6175 first_mp = mp; 6176 if (mctl_present) { 6177 mp = mp->b_cont; 6178 secure = ipsec_in_is_secure(first_mp); 6179 ASSERT(mp != NULL); 6180 } else { 6181 /* 6182 * If this is an ICMP error being reported - which goes 6183 * up as M_CTLs, we need to convert them to M_DATA till 6184 * we finish checking with global policy because 6185 * ipsec_check_global_policy() assumes M_DATA as clear 6186 * and M_CTL as secure. 6187 */ 6188 db_type = DB_TYPE(mp); 6189 DB_TYPE(mp) = M_DATA; 6190 secure = B_FALSE; 6191 } 6192 /* 6193 * We are generating an icmp error for some inbound packet. 6194 * Called from all ip_fanout_(udp, tcp, proto) functions. 6195 * Before we generate an error, check with global policy 6196 * to see whether this is allowed to enter the system. As 6197 * there is no "conn", we are checking with global policy. 6198 */ 6199 ipha = (ipha_t *)mp->b_rptr; 6200 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6201 first_mp = ipsec_check_global_policy(first_mp, NULL, 6202 ipha, NULL, mctl_present, ipst->ips_netstack); 6203 if (first_mp == NULL) 6204 return (B_FALSE); 6205 } 6206 6207 if (!mctl_present) 6208 DB_TYPE(mp) = db_type; 6209 6210 if (flags & IP_FF_SEND_ICMP) { 6211 if (flags & IP_FF_HDR_COMPLETE) { 6212 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6213 freemsg(first_mp); 6214 return (B_TRUE); 6215 } 6216 } 6217 if (flags & IP_FF_CKSUM) { 6218 /* 6219 * Have to correct checksum since 6220 * the packet might have been 6221 * fragmented and the reassembly code in ip_rput 6222 * does not restore the IP checksum. 6223 */ 6224 ipha->ipha_hdr_checksum = 0; 6225 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6226 } 6227 switch (icmp_type) { 6228 case ICMP_DEST_UNREACHABLE: 6229 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6230 ipst); 6231 break; 6232 default: 6233 freemsg(first_mp); 6234 break; 6235 } 6236 } else { 6237 freemsg(first_mp); 6238 return (B_FALSE); 6239 } 6240 6241 return (B_TRUE); 6242 } 6243 6244 /* 6245 * Used to send an ICMP error message when a packet is received for 6246 * a protocol that is not supported. The mblk passed as argument 6247 * is consumed by this function. 6248 */ 6249 void 6250 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6251 ip_stack_t *ipst) 6252 { 6253 mblk_t *mp; 6254 ipha_t *ipha; 6255 ill_t *ill; 6256 ipsec_in_t *ii; 6257 6258 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6259 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6260 6261 mp = ipsec_mp->b_cont; 6262 ipsec_mp->b_cont = NULL; 6263 ipha = (ipha_t *)mp->b_rptr; 6264 /* Get ill from index in ipsec_in_t. */ 6265 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6266 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6267 ipst); 6268 if (ill != NULL) { 6269 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6270 if (ip_fanout_send_icmp(q, mp, flags, 6271 ICMP_DEST_UNREACHABLE, 6272 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6273 BUMP_MIB(ill->ill_ip_mib, 6274 ipIfStatsInUnknownProtos); 6275 } 6276 } else { 6277 if (ip_fanout_send_icmp_v6(q, mp, flags, 6278 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6279 0, B_FALSE, zoneid, ipst)) { 6280 BUMP_MIB(ill->ill_ip_mib, 6281 ipIfStatsInUnknownProtos); 6282 } 6283 } 6284 ill_refrele(ill); 6285 } else { /* re-link for the freemsg() below. */ 6286 ipsec_mp->b_cont = mp; 6287 } 6288 6289 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6290 freemsg(ipsec_mp); 6291 } 6292 6293 /* 6294 * See if the inbound datagram has had IPsec processing applied to it. 6295 */ 6296 boolean_t 6297 ipsec_in_is_secure(mblk_t *ipsec_mp) 6298 { 6299 ipsec_in_t *ii; 6300 6301 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6302 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6303 6304 if (ii->ipsec_in_loopback) { 6305 return (ii->ipsec_in_secure); 6306 } else { 6307 return (ii->ipsec_in_ah_sa != NULL || 6308 ii->ipsec_in_esp_sa != NULL || 6309 ii->ipsec_in_decaps); 6310 } 6311 } 6312 6313 /* 6314 * Handle protocols with which IP is less intimate. There 6315 * can be more than one stream bound to a particular 6316 * protocol. When this is the case, normally each one gets a copy 6317 * of any incoming packets. 6318 * 6319 * IPsec NOTE : 6320 * 6321 * Don't allow a secure packet going up a non-secure connection. 6322 * We don't allow this because 6323 * 6324 * 1) Reply might go out in clear which will be dropped at 6325 * the sending side. 6326 * 2) If the reply goes out in clear it will give the 6327 * adversary enough information for getting the key in 6328 * most of the cases. 6329 * 6330 * Moreover getting a secure packet when we expect clear 6331 * implies that SA's were added without checking for 6332 * policy on both ends. This should not happen once ISAKMP 6333 * is used to negotiate SAs as SAs will be added only after 6334 * verifying the policy. 6335 * 6336 * NOTE : If the packet was tunneled and not multicast we only send 6337 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6338 * back to delivering packets to AF_INET6 raw sockets. 6339 * 6340 * IPQoS Notes: 6341 * Once we have determined the client, invoke IPPF processing. 6342 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6343 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6344 * ip_policy will be false. 6345 * 6346 * Zones notes: 6347 * Currently only applications in the global zone can create raw sockets for 6348 * protocols other than ICMP. So unlike the broadcast / multicast case of 6349 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6350 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6351 */ 6352 static void 6353 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6354 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6355 zoneid_t zoneid) 6356 { 6357 queue_t *rq; 6358 mblk_t *mp1, *first_mp1; 6359 uint_t protocol = ipha->ipha_protocol; 6360 ipaddr_t dst; 6361 boolean_t one_only; 6362 mblk_t *first_mp = mp; 6363 boolean_t secure; 6364 uint32_t ill_index; 6365 conn_t *connp, *first_connp, *next_connp; 6366 connf_t *connfp; 6367 boolean_t shared_addr; 6368 mib2_ipIfStatsEntry_t *mibptr; 6369 ip_stack_t *ipst = recv_ill->ill_ipst; 6370 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6371 6372 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6373 if (mctl_present) { 6374 mp = first_mp->b_cont; 6375 secure = ipsec_in_is_secure(first_mp); 6376 ASSERT(mp != NULL); 6377 } else { 6378 secure = B_FALSE; 6379 } 6380 dst = ipha->ipha_dst; 6381 /* 6382 * If the packet was tunneled and not multicast we only send to it 6383 * the first match. 6384 */ 6385 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6386 !CLASSD(dst)); 6387 6388 shared_addr = (zoneid == ALL_ZONES); 6389 if (shared_addr) { 6390 /* 6391 * We don't allow multilevel ports for raw IP, so no need to 6392 * check for that here. 6393 */ 6394 zoneid = tsol_packet_to_zoneid(mp); 6395 } 6396 6397 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6398 mutex_enter(&connfp->connf_lock); 6399 connp = connfp->connf_head; 6400 for (connp = connfp->connf_head; connp != NULL; 6401 connp = connp->conn_next) { 6402 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6403 zoneid) && 6404 (!is_system_labeled() || 6405 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6406 connp))) { 6407 break; 6408 } 6409 } 6410 6411 if (connp == NULL || connp->conn_upq == NULL) { 6412 /* 6413 * No one bound to these addresses. Is 6414 * there a client that wants all 6415 * unclaimed datagrams? 6416 */ 6417 mutex_exit(&connfp->connf_lock); 6418 /* 6419 * Check for IPPROTO_ENCAP... 6420 */ 6421 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6422 /* 6423 * If an IPsec mblk is here on a multicast 6424 * tunnel (using ip_mroute stuff), check policy here, 6425 * THEN ship off to ip_mroute_decap(). 6426 * 6427 * BTW, If I match a configured IP-in-IP 6428 * tunnel, this path will not be reached, and 6429 * ip_mroute_decap will never be called. 6430 */ 6431 first_mp = ipsec_check_global_policy(first_mp, connp, 6432 ipha, NULL, mctl_present, ipst->ips_netstack); 6433 if (first_mp != NULL) { 6434 if (mctl_present) 6435 freeb(first_mp); 6436 ip_mroute_decap(q, mp, ill); 6437 } /* Else we already freed everything! */ 6438 } else { 6439 /* 6440 * Otherwise send an ICMP protocol unreachable. 6441 */ 6442 if (ip_fanout_send_icmp(q, first_mp, flags, 6443 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6444 mctl_present, zoneid, ipst)) { 6445 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6446 } 6447 } 6448 return; 6449 } 6450 CONN_INC_REF(connp); 6451 first_connp = connp; 6452 6453 /* 6454 * Only send message to one tunnel driver by immediately 6455 * terminating the loop. 6456 */ 6457 connp = one_only ? NULL : connp->conn_next; 6458 6459 for (;;) { 6460 while (connp != NULL) { 6461 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6462 flags, zoneid) && 6463 (!is_system_labeled() || 6464 tsol_receive_local(mp, &dst, IPV4_VERSION, 6465 shared_addr, connp))) 6466 break; 6467 connp = connp->conn_next; 6468 } 6469 6470 /* 6471 * Copy the packet. 6472 */ 6473 if (connp == NULL || connp->conn_upq == NULL || 6474 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6475 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6476 /* 6477 * No more interested clients or memory 6478 * allocation failed 6479 */ 6480 connp = first_connp; 6481 break; 6482 } 6483 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6484 CONN_INC_REF(connp); 6485 mutex_exit(&connfp->connf_lock); 6486 rq = connp->conn_rq; 6487 if (!canputnext(rq)) { 6488 if (flags & IP_FF_RAWIP) { 6489 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6490 } else { 6491 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6492 } 6493 6494 freemsg(first_mp1); 6495 } else { 6496 /* 6497 * Don't enforce here if we're an actual tunnel - 6498 * let "tun" do it instead. 6499 */ 6500 if (!IPCL_IS_IPTUN(connp) && 6501 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6502 secure)) { 6503 first_mp1 = ipsec_check_inbound_policy 6504 (first_mp1, connp, ipha, NULL, 6505 mctl_present); 6506 } 6507 if (first_mp1 != NULL) { 6508 int in_flags = 0; 6509 /* 6510 * ip_fanout_proto also gets called from 6511 * icmp_inbound_error_fanout, in which case 6512 * the msg type is M_CTL. Don't add info 6513 * in this case for the time being. In future 6514 * when there is a need for knowing the 6515 * inbound iface index for ICMP error msgs, 6516 * then this can be changed. 6517 */ 6518 if (connp->conn_recvif) 6519 in_flags = IPF_RECVIF; 6520 /* 6521 * The ULP may support IP_RECVPKTINFO for both 6522 * IP v4 and v6 so pass the appropriate argument 6523 * based on conn IP version. 6524 */ 6525 if (connp->conn_ip_recvpktinfo) { 6526 if (connp->conn_af_isv6) { 6527 /* 6528 * V6 only needs index 6529 */ 6530 in_flags |= IPF_RECVIF; 6531 } else { 6532 /* 6533 * V4 needs index + 6534 * matching address. 6535 */ 6536 in_flags |= IPF_RECVADDR; 6537 } 6538 } 6539 if ((in_flags != 0) && 6540 (mp->b_datap->db_type != M_CTL)) { 6541 /* 6542 * the actual data will be 6543 * contained in b_cont upon 6544 * successful return of the 6545 * following call else 6546 * original mblk is returned 6547 */ 6548 ASSERT(recv_ill != NULL); 6549 mp1 = ip_add_info(mp1, recv_ill, 6550 in_flags, IPCL_ZONEID(connp), ipst); 6551 } 6552 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6553 if (mctl_present) 6554 freeb(first_mp1); 6555 (connp->conn_recv)(connp, mp1, NULL); 6556 } 6557 } 6558 mutex_enter(&connfp->connf_lock); 6559 /* Follow the next pointer before releasing the conn. */ 6560 next_connp = connp->conn_next; 6561 CONN_DEC_REF(connp); 6562 connp = next_connp; 6563 } 6564 6565 /* Last one. Send it upstream. */ 6566 mutex_exit(&connfp->connf_lock); 6567 6568 /* 6569 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6570 * will be set to false. 6571 */ 6572 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6573 ill_index = ill->ill_phyint->phyint_ifindex; 6574 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6575 if (mp == NULL) { 6576 CONN_DEC_REF(connp); 6577 if (mctl_present) { 6578 freeb(first_mp); 6579 } 6580 return; 6581 } 6582 } 6583 6584 rq = connp->conn_rq; 6585 if (!canputnext(rq)) { 6586 if (flags & IP_FF_RAWIP) { 6587 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6588 } else { 6589 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6590 } 6591 6592 freemsg(first_mp); 6593 } else { 6594 if (IPCL_IS_IPTUN(connp)) { 6595 /* 6596 * Tunneled packet. We enforce policy in the tunnel 6597 * module itself. 6598 * 6599 * Send the WHOLE packet up (incl. IPSEC_IN) without 6600 * a policy check. 6601 * FIXME to use conn_recv for tun later. 6602 */ 6603 putnext(rq, first_mp); 6604 CONN_DEC_REF(connp); 6605 return; 6606 } 6607 6608 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6609 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6610 ipha, NULL, mctl_present); 6611 } 6612 6613 if (first_mp != NULL) { 6614 int in_flags = 0; 6615 6616 /* 6617 * ip_fanout_proto also gets called 6618 * from icmp_inbound_error_fanout, in 6619 * which case the msg type is M_CTL. 6620 * Don't add info in this case for time 6621 * being. In future when there is a 6622 * need for knowing the inbound iface 6623 * index for ICMP error msgs, then this 6624 * can be changed 6625 */ 6626 if (connp->conn_recvif) 6627 in_flags = IPF_RECVIF; 6628 if (connp->conn_ip_recvpktinfo) { 6629 if (connp->conn_af_isv6) { 6630 /* 6631 * V6 only needs index 6632 */ 6633 in_flags |= IPF_RECVIF; 6634 } else { 6635 /* 6636 * V4 needs index + 6637 * matching address. 6638 */ 6639 in_flags |= IPF_RECVADDR; 6640 } 6641 } 6642 if ((in_flags != 0) && 6643 (mp->b_datap->db_type != M_CTL)) { 6644 6645 /* 6646 * the actual data will be contained in 6647 * b_cont upon successful return 6648 * of the following call else original 6649 * mblk is returned 6650 */ 6651 ASSERT(recv_ill != NULL); 6652 mp = ip_add_info(mp, recv_ill, 6653 in_flags, IPCL_ZONEID(connp), ipst); 6654 } 6655 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6656 (connp->conn_recv)(connp, mp, NULL); 6657 if (mctl_present) 6658 freeb(first_mp); 6659 } 6660 } 6661 CONN_DEC_REF(connp); 6662 } 6663 6664 /* 6665 * Fanout for TCP packets 6666 * The caller puts <fport, lport> in the ports parameter. 6667 * 6668 * IPQoS Notes 6669 * Before sending it to the client, invoke IPPF processing. 6670 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6671 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6672 * ip_policy is false. 6673 */ 6674 static void 6675 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6676 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6677 { 6678 mblk_t *first_mp; 6679 boolean_t secure; 6680 uint32_t ill_index; 6681 int ip_hdr_len; 6682 tcph_t *tcph; 6683 boolean_t syn_present = B_FALSE; 6684 conn_t *connp; 6685 ip_stack_t *ipst = recv_ill->ill_ipst; 6686 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6687 6688 ASSERT(recv_ill != NULL); 6689 6690 first_mp = mp; 6691 if (mctl_present) { 6692 ASSERT(first_mp->b_datap->db_type == M_CTL); 6693 mp = first_mp->b_cont; 6694 secure = ipsec_in_is_secure(first_mp); 6695 ASSERT(mp != NULL); 6696 } else { 6697 secure = B_FALSE; 6698 } 6699 6700 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6701 6702 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6703 zoneid, ipst)) == NULL) { 6704 /* 6705 * No connected connection or listener. Send a 6706 * TH_RST via tcp_xmit_listeners_reset. 6707 */ 6708 6709 /* Initiate IPPf processing, if needed. */ 6710 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6711 uint32_t ill_index; 6712 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6713 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6714 if (first_mp == NULL) 6715 return; 6716 } 6717 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6718 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6719 zoneid)); 6720 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6721 ipst->ips_netstack->netstack_tcp, NULL); 6722 return; 6723 } 6724 6725 /* 6726 * Allocate the SYN for the TCP connection here itself 6727 */ 6728 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6729 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6730 if (IPCL_IS_TCP(connp)) { 6731 squeue_t *sqp; 6732 6733 /* 6734 * For fused tcp loopback, assign the eager's 6735 * squeue to be that of the active connect's. 6736 * Note that we don't check for IP_FF_LOOPBACK 6737 * here since this routine gets called only 6738 * for loopback (unlike the IPv6 counterpart). 6739 */ 6740 ASSERT(Q_TO_CONN(q) != NULL); 6741 if (do_tcp_fusion && 6742 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6743 !secure && 6744 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6745 IPCL_IS_TCP(Q_TO_CONN(q))) { 6746 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6747 sqp = Q_TO_CONN(q)->conn_sqp; 6748 } else { 6749 sqp = IP_SQUEUE_GET(lbolt); 6750 } 6751 6752 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6753 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6754 syn_present = B_TRUE; 6755 } 6756 } 6757 6758 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6759 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6760 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6761 if ((flags & TH_RST) || (flags & TH_URG)) { 6762 CONN_DEC_REF(connp); 6763 freemsg(first_mp); 6764 return; 6765 } 6766 if (flags & TH_ACK) { 6767 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6768 ipst->ips_netstack->netstack_tcp, connp); 6769 CONN_DEC_REF(connp); 6770 return; 6771 } 6772 6773 CONN_DEC_REF(connp); 6774 freemsg(first_mp); 6775 return; 6776 } 6777 6778 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6779 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6780 NULL, mctl_present); 6781 if (first_mp == NULL) { 6782 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6783 CONN_DEC_REF(connp); 6784 return; 6785 } 6786 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6787 ASSERT(syn_present); 6788 if (mctl_present) { 6789 ASSERT(first_mp != mp); 6790 first_mp->b_datap->db_struioflag |= 6791 STRUIO_POLICY; 6792 } else { 6793 ASSERT(first_mp == mp); 6794 mp->b_datap->db_struioflag &= 6795 ~STRUIO_EAGER; 6796 mp->b_datap->db_struioflag |= 6797 STRUIO_POLICY; 6798 } 6799 } else { 6800 /* 6801 * Discard first_mp early since we're dealing with a 6802 * fully-connected conn_t and tcp doesn't do policy in 6803 * this case. 6804 */ 6805 if (mctl_present) { 6806 freeb(first_mp); 6807 mctl_present = B_FALSE; 6808 } 6809 first_mp = mp; 6810 } 6811 } 6812 6813 /* 6814 * Initiate policy processing here if needed. If we get here from 6815 * icmp_inbound_error_fanout, ip_policy is false. 6816 */ 6817 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6818 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6819 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6820 if (mp == NULL) { 6821 CONN_DEC_REF(connp); 6822 if (mctl_present) 6823 freeb(first_mp); 6824 return; 6825 } else if (mctl_present) { 6826 ASSERT(first_mp != mp); 6827 first_mp->b_cont = mp; 6828 } else { 6829 first_mp = mp; 6830 } 6831 } 6832 6833 6834 6835 /* Handle socket options. */ 6836 if (!syn_present && 6837 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6838 /* Add header */ 6839 ASSERT(recv_ill != NULL); 6840 /* 6841 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6842 * IPF_RECVIF. 6843 */ 6844 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6845 ipst); 6846 if (mp == NULL) { 6847 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6848 CONN_DEC_REF(connp); 6849 if (mctl_present) 6850 freeb(first_mp); 6851 return; 6852 } else if (mctl_present) { 6853 /* 6854 * ip_add_info might return a new mp. 6855 */ 6856 ASSERT(first_mp != mp); 6857 first_mp->b_cont = mp; 6858 } else { 6859 first_mp = mp; 6860 } 6861 } 6862 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6863 if (IPCL_IS_TCP(connp)) { 6864 /* do not drain, certain use cases can blow the stack */ 6865 squeue_enter_nodrain(connp->conn_sqp, first_mp, 6866 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6867 } else { 6868 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6869 (connp->conn_recv)(connp, first_mp, NULL); 6870 CONN_DEC_REF(connp); 6871 } 6872 } 6873 6874 /* 6875 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6876 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6877 * is not consumed. 6878 * 6879 * One of four things can happen, all of which affect the passed-in mblk: 6880 * 6881 * 1.) ICMP messages that go through here just get returned TRUE. 6882 * 6883 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6884 * 6885 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6886 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6887 * 6888 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6889 */ 6890 static boolean_t 6891 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6892 ipsec_stack_t *ipss) 6893 { 6894 int shift, plen, iph_len; 6895 ipha_t *ipha; 6896 udpha_t *udpha; 6897 uint32_t *spi; 6898 uint8_t *orptr; 6899 boolean_t udp_pkt, free_ire; 6900 6901 if (DB_TYPE(mp) == M_CTL) { 6902 /* 6903 * ICMP message with UDP inside. Don't bother stripping, just 6904 * send it up. 6905 * 6906 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6907 * to ignore errors set by ICMP anyway ('cause they might be 6908 * forged), but that's the app's decision, not ours. 6909 */ 6910 6911 /* Bunch of reality checks for DEBUG kernels... */ 6912 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6913 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6914 6915 return (B_TRUE); 6916 } 6917 6918 ipha = (ipha_t *)mp->b_rptr; 6919 iph_len = IPH_HDR_LENGTH(ipha); 6920 plen = ntohs(ipha->ipha_length); 6921 6922 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6923 /* 6924 * Most likely a keepalive for the benefit of an intervening 6925 * NAT. These aren't for us, per se, so drop it. 6926 * 6927 * RFC 3947/8 doesn't say for sure what to do for 2-3 6928 * byte packets (keepalives are 1-byte), but we'll drop them 6929 * also. 6930 */ 6931 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6932 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6933 return (B_FALSE); 6934 } 6935 6936 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6937 /* might as well pull it all up - it might be ESP. */ 6938 if (!pullupmsg(mp, -1)) { 6939 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6940 DROPPER(ipss, ipds_esp_nomem), 6941 &ipss->ipsec_dropper); 6942 return (B_FALSE); 6943 } 6944 6945 ipha = (ipha_t *)mp->b_rptr; 6946 } 6947 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6948 if (*spi == 0) { 6949 /* UDP packet - remove 0-spi. */ 6950 shift = sizeof (uint32_t); 6951 } else { 6952 /* ESP-in-UDP packet - reduce to ESP. */ 6953 ipha->ipha_protocol = IPPROTO_ESP; 6954 shift = sizeof (udpha_t); 6955 } 6956 6957 /* Fix IP header */ 6958 ipha->ipha_length = htons(plen - shift); 6959 ipha->ipha_hdr_checksum = 0; 6960 6961 orptr = mp->b_rptr; 6962 mp->b_rptr += shift; 6963 6964 if (*spi == 0) { 6965 ASSERT((uint8_t *)ipha == orptr); 6966 udpha = (udpha_t *)(orptr + iph_len); 6967 udpha->uha_length = htons(plen - shift - iph_len); 6968 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 6969 udp_pkt = B_TRUE; 6970 } else { 6971 udp_pkt = B_FALSE; 6972 } 6973 ovbcopy(orptr, orptr + shift, iph_len); 6974 if (!udp_pkt) /* Punt up for ESP processing. */ { 6975 ipha = (ipha_t *)(orptr + shift); 6976 6977 free_ire = (ire == NULL); 6978 if (free_ire) { 6979 /* Re-acquire ire. */ 6980 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 6981 ipss->ipsec_netstack->netstack_ip); 6982 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 6983 if (ire != NULL) 6984 ire_refrele(ire); 6985 /* 6986 * Do a regular freemsg(), as this is an IP 6987 * error (no local route) not an IPsec one. 6988 */ 6989 freemsg(mp); 6990 } 6991 } 6992 6993 ip_proto_input(q, mp, ipha, ire, recv_ill, B_TRUE); 6994 if (free_ire) 6995 ire_refrele(ire); 6996 } 6997 6998 return (udp_pkt); 6999 } 7000 7001 /* 7002 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 7003 * We are responsible for disposing of mp, such as by freemsg() or putnext() 7004 * Caller is responsible for dropping references to the conn, and freeing 7005 * first_mp. 7006 * 7007 * IPQoS Notes 7008 * Before sending it to the client, invoke IPPF processing. Policy processing 7009 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 7010 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 7011 * ip_wput_local, ip_policy is false. 7012 */ 7013 static void 7014 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 7015 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 7016 boolean_t ip_policy) 7017 { 7018 boolean_t mctl_present = (first_mp != NULL); 7019 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 7020 uint32_t ill_index; 7021 ip_stack_t *ipst = recv_ill->ill_ipst; 7022 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 7023 7024 ASSERT(ill != NULL); 7025 7026 if (mctl_present) 7027 first_mp->b_cont = mp; 7028 else 7029 first_mp = mp; 7030 7031 if (CONN_UDP_FLOWCTLD(connp)) { 7032 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7033 freemsg(first_mp); 7034 return; 7035 } 7036 7037 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7038 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7039 NULL, mctl_present); 7040 if (first_mp == NULL) { 7041 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7042 return; /* Freed by ipsec_check_inbound_policy(). */ 7043 } 7044 } 7045 if (mctl_present) 7046 freeb(first_mp); 7047 7048 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7049 if (connp->conn_udp->udp_nat_t_endpoint) { 7050 if (mctl_present) { 7051 /* mctl_present *shouldn't* happen. */ 7052 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7053 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7054 &ipss->ipsec_dropper); 7055 return; 7056 } 7057 7058 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7059 return; 7060 } 7061 7062 /* Handle options. */ 7063 if (connp->conn_recvif) 7064 in_flags = IPF_RECVIF; 7065 /* 7066 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7067 * passed to ip_add_info is based on IP version of connp. 7068 */ 7069 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7070 if (connp->conn_af_isv6) { 7071 /* 7072 * V6 only needs index 7073 */ 7074 in_flags |= IPF_RECVIF; 7075 } else { 7076 /* 7077 * V4 needs index + matching address. 7078 */ 7079 in_flags |= IPF_RECVADDR; 7080 } 7081 } 7082 7083 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7084 in_flags |= IPF_RECVSLLA; 7085 7086 /* 7087 * Initiate IPPF processing here, if needed. Note first_mp won't be 7088 * freed if the packet is dropped. The caller will do so. 7089 */ 7090 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7091 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7092 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7093 if (mp == NULL) { 7094 return; 7095 } 7096 } 7097 if ((in_flags != 0) && 7098 (mp->b_datap->db_type != M_CTL)) { 7099 /* 7100 * The actual data will be contained in b_cont 7101 * upon successful return of the following call 7102 * else original mblk is returned 7103 */ 7104 ASSERT(recv_ill != NULL); 7105 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7106 ipst); 7107 } 7108 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7109 /* Send it upstream */ 7110 (connp->conn_recv)(connp, mp, NULL); 7111 } 7112 7113 /* 7114 * Fanout for UDP packets. 7115 * The caller puts <fport, lport> in the ports parameter. 7116 * 7117 * If SO_REUSEADDR is set all multicast and broadcast packets 7118 * will be delivered to all streams bound to the same port. 7119 * 7120 * Zones notes: 7121 * Multicast and broadcast packets will be distributed to streams in all zones. 7122 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7123 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7124 * packets. To maintain this behavior with multiple zones, the conns are grouped 7125 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7126 * each zone. If unset, all the following conns in the same zone are skipped. 7127 */ 7128 static void 7129 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7130 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7131 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7132 { 7133 uint32_t dstport, srcport; 7134 ipaddr_t dst; 7135 mblk_t *first_mp; 7136 boolean_t secure; 7137 in6_addr_t v6src; 7138 conn_t *connp; 7139 connf_t *connfp; 7140 conn_t *first_connp; 7141 conn_t *next_connp; 7142 mblk_t *mp1, *first_mp1; 7143 ipaddr_t src; 7144 zoneid_t last_zoneid; 7145 boolean_t reuseaddr; 7146 boolean_t shared_addr; 7147 ip_stack_t *ipst; 7148 7149 ASSERT(recv_ill != NULL); 7150 ipst = recv_ill->ill_ipst; 7151 7152 first_mp = mp; 7153 if (mctl_present) { 7154 mp = first_mp->b_cont; 7155 first_mp->b_cont = NULL; 7156 secure = ipsec_in_is_secure(first_mp); 7157 ASSERT(mp != NULL); 7158 } else { 7159 first_mp = NULL; 7160 secure = B_FALSE; 7161 } 7162 7163 /* Extract ports in net byte order */ 7164 dstport = htons(ntohl(ports) & 0xFFFF); 7165 srcport = htons(ntohl(ports) >> 16); 7166 dst = ipha->ipha_dst; 7167 src = ipha->ipha_src; 7168 7169 shared_addr = (zoneid == ALL_ZONES); 7170 if (shared_addr) { 7171 /* 7172 * No need to handle exclusive-stack zones since ALL_ZONES 7173 * only applies to the shared stack. 7174 */ 7175 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7176 if (zoneid == ALL_ZONES) 7177 zoneid = tsol_packet_to_zoneid(mp); 7178 } 7179 7180 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7181 mutex_enter(&connfp->connf_lock); 7182 connp = connfp->connf_head; 7183 if (!broadcast && !CLASSD(dst)) { 7184 /* 7185 * Not broadcast or multicast. Send to the one (first) 7186 * client we find. No need to check conn_wantpacket() 7187 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7188 * IPv4 unicast packets. 7189 */ 7190 while ((connp != NULL) && 7191 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7192 !IPCL_ZONE_MATCH(connp, zoneid))) { 7193 connp = connp->conn_next; 7194 } 7195 7196 if (connp == NULL || connp->conn_upq == NULL) 7197 goto notfound; 7198 7199 if (is_system_labeled() && 7200 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7201 connp)) 7202 goto notfound; 7203 7204 CONN_INC_REF(connp); 7205 mutex_exit(&connfp->connf_lock); 7206 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7207 flags, recv_ill, ip_policy); 7208 IP_STAT(ipst, ip_udp_fannorm); 7209 CONN_DEC_REF(connp); 7210 return; 7211 } 7212 7213 /* 7214 * Broadcast and multicast case 7215 * 7216 * Need to check conn_wantpacket(). 7217 * If SO_REUSEADDR has been set on the first we send the 7218 * packet to all clients that have joined the group and 7219 * match the port. 7220 */ 7221 7222 while (connp != NULL) { 7223 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7224 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7225 (!is_system_labeled() || 7226 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7227 connp))) 7228 break; 7229 connp = connp->conn_next; 7230 } 7231 7232 if (connp == NULL || connp->conn_upq == NULL) 7233 goto notfound; 7234 7235 first_connp = connp; 7236 /* 7237 * When SO_REUSEADDR is not set, send the packet only to the first 7238 * matching connection in its zone by keeping track of the zoneid. 7239 */ 7240 reuseaddr = first_connp->conn_reuseaddr; 7241 last_zoneid = first_connp->conn_zoneid; 7242 7243 CONN_INC_REF(connp); 7244 connp = connp->conn_next; 7245 for (;;) { 7246 while (connp != NULL) { 7247 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7248 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7249 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7250 (!is_system_labeled() || 7251 tsol_receive_local(mp, &dst, IPV4_VERSION, 7252 shared_addr, connp))) 7253 break; 7254 connp = connp->conn_next; 7255 } 7256 /* 7257 * Just copy the data part alone. The mctl part is 7258 * needed just for verifying policy and it is never 7259 * sent up. 7260 */ 7261 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7262 ((mp1 = copymsg(mp)) == NULL))) { 7263 /* 7264 * No more interested clients or memory 7265 * allocation failed 7266 */ 7267 connp = first_connp; 7268 break; 7269 } 7270 if (connp->conn_zoneid != last_zoneid) { 7271 /* 7272 * Update the zoneid so that the packet isn't sent to 7273 * any more conns in the same zone unless SO_REUSEADDR 7274 * is set. 7275 */ 7276 reuseaddr = connp->conn_reuseaddr; 7277 last_zoneid = connp->conn_zoneid; 7278 } 7279 if (first_mp != NULL) { 7280 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7281 ipsec_info_type == IPSEC_IN); 7282 first_mp1 = ipsec_in_tag(first_mp, NULL, 7283 ipst->ips_netstack); 7284 if (first_mp1 == NULL) { 7285 freemsg(mp1); 7286 connp = first_connp; 7287 break; 7288 } 7289 } else { 7290 first_mp1 = NULL; 7291 } 7292 CONN_INC_REF(connp); 7293 mutex_exit(&connfp->connf_lock); 7294 /* 7295 * IPQoS notes: We don't send the packet for policy 7296 * processing here, will do it for the last one (below). 7297 * i.e. we do it per-packet now, but if we do policy 7298 * processing per-conn, then we would need to do it 7299 * here too. 7300 */ 7301 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7302 ipha, flags, recv_ill, B_FALSE); 7303 mutex_enter(&connfp->connf_lock); 7304 /* Follow the next pointer before releasing the conn. */ 7305 next_connp = connp->conn_next; 7306 IP_STAT(ipst, ip_udp_fanmb); 7307 CONN_DEC_REF(connp); 7308 connp = next_connp; 7309 } 7310 7311 /* Last one. Send it upstream. */ 7312 mutex_exit(&connfp->connf_lock); 7313 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7314 recv_ill, ip_policy); 7315 IP_STAT(ipst, ip_udp_fanmb); 7316 CONN_DEC_REF(connp); 7317 return; 7318 7319 notfound: 7320 7321 mutex_exit(&connfp->connf_lock); 7322 IP_STAT(ipst, ip_udp_fanothers); 7323 /* 7324 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7325 * have already been matched above, since they live in the IPv4 7326 * fanout tables. This implies we only need to 7327 * check for IPv6 in6addr_any endpoints here. 7328 * Thus we compare using ipv6_all_zeros instead of the destination 7329 * address, except for the multicast group membership lookup which 7330 * uses the IPv4 destination. 7331 */ 7332 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7333 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7334 mutex_enter(&connfp->connf_lock); 7335 connp = connfp->connf_head; 7336 if (!broadcast && !CLASSD(dst)) { 7337 while (connp != NULL) { 7338 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7339 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7340 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7341 !connp->conn_ipv6_v6only) 7342 break; 7343 connp = connp->conn_next; 7344 } 7345 7346 if (connp != NULL && is_system_labeled() && 7347 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7348 connp)) 7349 connp = NULL; 7350 7351 if (connp == NULL || connp->conn_upq == NULL) { 7352 /* 7353 * No one bound to this port. Is 7354 * there a client that wants all 7355 * unclaimed datagrams? 7356 */ 7357 mutex_exit(&connfp->connf_lock); 7358 7359 if (mctl_present) 7360 first_mp->b_cont = mp; 7361 else 7362 first_mp = mp; 7363 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7364 connf_head != NULL) { 7365 ip_fanout_proto(q, first_mp, ill, ipha, 7366 flags | IP_FF_RAWIP, mctl_present, 7367 ip_policy, recv_ill, zoneid); 7368 } else { 7369 if (ip_fanout_send_icmp(q, first_mp, flags, 7370 ICMP_DEST_UNREACHABLE, 7371 ICMP_PORT_UNREACHABLE, 7372 mctl_present, zoneid, ipst)) { 7373 BUMP_MIB(ill->ill_ip_mib, 7374 udpIfStatsNoPorts); 7375 } 7376 } 7377 return; 7378 } 7379 7380 CONN_INC_REF(connp); 7381 mutex_exit(&connfp->connf_lock); 7382 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7383 flags, recv_ill, ip_policy); 7384 CONN_DEC_REF(connp); 7385 return; 7386 } 7387 /* 7388 * IPv4 multicast packet being delivered to an AF_INET6 7389 * in6addr_any endpoint. 7390 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7391 * and not conn_wantpacket_v6() since any multicast membership is 7392 * for an IPv4-mapped multicast address. 7393 * The packet is sent to all clients in all zones that have joined the 7394 * group and match the port. 7395 */ 7396 while (connp != NULL) { 7397 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7398 srcport, v6src) && 7399 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7400 (!is_system_labeled() || 7401 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7402 connp))) 7403 break; 7404 connp = connp->conn_next; 7405 } 7406 7407 if (connp == NULL || connp->conn_upq == NULL) { 7408 /* 7409 * No one bound to this port. Is 7410 * there a client that wants all 7411 * unclaimed datagrams? 7412 */ 7413 mutex_exit(&connfp->connf_lock); 7414 7415 if (mctl_present) 7416 first_mp->b_cont = mp; 7417 else 7418 first_mp = mp; 7419 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7420 NULL) { 7421 ip_fanout_proto(q, first_mp, ill, ipha, 7422 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7423 recv_ill, zoneid); 7424 } else { 7425 /* 7426 * We used to attempt to send an icmp error here, but 7427 * since this is known to be a multicast packet 7428 * and we don't send icmp errors in response to 7429 * multicast, just drop the packet and give up sooner. 7430 */ 7431 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7432 freemsg(first_mp); 7433 } 7434 return; 7435 } 7436 7437 first_connp = connp; 7438 7439 CONN_INC_REF(connp); 7440 connp = connp->conn_next; 7441 for (;;) { 7442 while (connp != NULL) { 7443 if (IPCL_UDP_MATCH_V6(connp, dstport, 7444 ipv6_all_zeros, srcport, v6src) && 7445 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7446 (!is_system_labeled() || 7447 tsol_receive_local(mp, &dst, IPV4_VERSION, 7448 shared_addr, connp))) 7449 break; 7450 connp = connp->conn_next; 7451 } 7452 /* 7453 * Just copy the data part alone. The mctl part is 7454 * needed just for verifying policy and it is never 7455 * sent up. 7456 */ 7457 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7458 ((mp1 = copymsg(mp)) == NULL))) { 7459 /* 7460 * No more intested clients or memory 7461 * allocation failed 7462 */ 7463 connp = first_connp; 7464 break; 7465 } 7466 if (first_mp != NULL) { 7467 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7468 ipsec_info_type == IPSEC_IN); 7469 first_mp1 = ipsec_in_tag(first_mp, NULL, 7470 ipst->ips_netstack); 7471 if (first_mp1 == NULL) { 7472 freemsg(mp1); 7473 connp = first_connp; 7474 break; 7475 } 7476 } else { 7477 first_mp1 = NULL; 7478 } 7479 CONN_INC_REF(connp); 7480 mutex_exit(&connfp->connf_lock); 7481 /* 7482 * IPQoS notes: We don't send the packet for policy 7483 * processing here, will do it for the last one (below). 7484 * i.e. we do it per-packet now, but if we do policy 7485 * processing per-conn, then we would need to do it 7486 * here too. 7487 */ 7488 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7489 ipha, flags, recv_ill, B_FALSE); 7490 mutex_enter(&connfp->connf_lock); 7491 /* Follow the next pointer before releasing the conn. */ 7492 next_connp = connp->conn_next; 7493 CONN_DEC_REF(connp); 7494 connp = next_connp; 7495 } 7496 7497 /* Last one. Send it upstream. */ 7498 mutex_exit(&connfp->connf_lock); 7499 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7500 recv_ill, ip_policy); 7501 CONN_DEC_REF(connp); 7502 } 7503 7504 /* 7505 * Complete the ip_wput header so that it 7506 * is possible to generate ICMP 7507 * errors. 7508 */ 7509 int 7510 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7511 { 7512 ire_t *ire; 7513 7514 if (ipha->ipha_src == INADDR_ANY) { 7515 ire = ire_lookup_local(zoneid, ipst); 7516 if (ire == NULL) { 7517 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7518 return (1); 7519 } 7520 ipha->ipha_src = ire->ire_addr; 7521 ire_refrele(ire); 7522 } 7523 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7524 ipha->ipha_hdr_checksum = 0; 7525 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7526 return (0); 7527 } 7528 7529 /* 7530 * Nobody should be sending 7531 * packets up this stream 7532 */ 7533 static void 7534 ip_lrput(queue_t *q, mblk_t *mp) 7535 { 7536 mblk_t *mp1; 7537 7538 switch (mp->b_datap->db_type) { 7539 case M_FLUSH: 7540 /* Turn around */ 7541 if (*mp->b_rptr & FLUSHW) { 7542 *mp->b_rptr &= ~FLUSHR; 7543 qreply(q, mp); 7544 return; 7545 } 7546 break; 7547 } 7548 /* Could receive messages that passed through ar_rput */ 7549 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7550 mp1->b_prev = mp1->b_next = NULL; 7551 freemsg(mp); 7552 } 7553 7554 /* Nobody should be sending packets down this stream */ 7555 /* ARGSUSED */ 7556 void 7557 ip_lwput(queue_t *q, mblk_t *mp) 7558 { 7559 freemsg(mp); 7560 } 7561 7562 /* 7563 * Move the first hop in any source route to ipha_dst and remove that part of 7564 * the source route. Called by other protocols. Errors in option formatting 7565 * are ignored - will be handled by ip_wput_options Return the final 7566 * destination (either ipha_dst or the last entry in a source route.) 7567 */ 7568 ipaddr_t 7569 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7570 { 7571 ipoptp_t opts; 7572 uchar_t *opt; 7573 uint8_t optval; 7574 uint8_t optlen; 7575 ipaddr_t dst; 7576 int i; 7577 ire_t *ire; 7578 ip_stack_t *ipst = ns->netstack_ip; 7579 7580 ip2dbg(("ip_massage_options\n")); 7581 dst = ipha->ipha_dst; 7582 for (optval = ipoptp_first(&opts, ipha); 7583 optval != IPOPT_EOL; 7584 optval = ipoptp_next(&opts)) { 7585 opt = opts.ipoptp_cur; 7586 switch (optval) { 7587 uint8_t off; 7588 case IPOPT_SSRR: 7589 case IPOPT_LSRR: 7590 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7591 ip1dbg(("ip_massage_options: bad src route\n")); 7592 break; 7593 } 7594 optlen = opts.ipoptp_len; 7595 off = opt[IPOPT_OFFSET]; 7596 off--; 7597 redo_srr: 7598 if (optlen < IP_ADDR_LEN || 7599 off > optlen - IP_ADDR_LEN) { 7600 /* End of source route */ 7601 ip1dbg(("ip_massage_options: end of SR\n")); 7602 break; 7603 } 7604 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7605 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7606 ntohl(dst))); 7607 /* 7608 * Check if our address is present more than 7609 * once as consecutive hops in source route. 7610 * XXX verify per-interface ip_forwarding 7611 * for source route? 7612 */ 7613 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7614 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7615 if (ire != NULL) { 7616 ire_refrele(ire); 7617 off += IP_ADDR_LEN; 7618 goto redo_srr; 7619 } 7620 if (dst == htonl(INADDR_LOOPBACK)) { 7621 ip1dbg(("ip_massage_options: loopback addr in " 7622 "source route!\n")); 7623 break; 7624 } 7625 /* 7626 * Update ipha_dst to be the first hop and remove the 7627 * first hop from the source route (by overwriting 7628 * part of the option with NOP options). 7629 */ 7630 ipha->ipha_dst = dst; 7631 /* Put the last entry in dst */ 7632 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7633 3; 7634 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7635 7636 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7637 ntohl(dst))); 7638 /* Move down and overwrite */ 7639 opt[IP_ADDR_LEN] = opt[0]; 7640 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7641 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7642 for (i = 0; i < IP_ADDR_LEN; i++) 7643 opt[i] = IPOPT_NOP; 7644 break; 7645 } 7646 } 7647 return (dst); 7648 } 7649 7650 /* 7651 * Return the network mask 7652 * associated with the specified address. 7653 */ 7654 ipaddr_t 7655 ip_net_mask(ipaddr_t addr) 7656 { 7657 uchar_t *up = (uchar_t *)&addr; 7658 ipaddr_t mask = 0; 7659 uchar_t *maskp = (uchar_t *)&mask; 7660 7661 #if defined(__i386) || defined(__amd64) 7662 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7663 #endif 7664 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7665 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7666 #endif 7667 if (CLASSD(addr)) { 7668 maskp[0] = 0xF0; 7669 return (mask); 7670 } 7671 7672 /* We assume Class E default netmask to be 32 */ 7673 if (CLASSE(addr)) 7674 return (0xffffffffU); 7675 7676 if (addr == 0) 7677 return (0); 7678 maskp[0] = 0xFF; 7679 if ((up[0] & 0x80) == 0) 7680 return (mask); 7681 7682 maskp[1] = 0xFF; 7683 if ((up[0] & 0xC0) == 0x80) 7684 return (mask); 7685 7686 maskp[2] = 0xFF; 7687 if ((up[0] & 0xE0) == 0xC0) 7688 return (mask); 7689 7690 /* Otherwise return no mask */ 7691 return ((ipaddr_t)0); 7692 } 7693 7694 /* 7695 * Select an ill for the packet by considering load spreading across 7696 * a different ill in the group if dst_ill is part of some group. 7697 */ 7698 ill_t * 7699 ip_newroute_get_dst_ill(ill_t *dst_ill) 7700 { 7701 ill_t *ill; 7702 7703 /* 7704 * We schedule irrespective of whether the source address is 7705 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7706 */ 7707 ill = illgrp_scheduler(dst_ill); 7708 if (ill == NULL) 7709 return (NULL); 7710 7711 /* 7712 * For groups with names ip_sioctl_groupname ensures that all 7713 * ills are of same type. For groups without names, ifgrp_insert 7714 * ensures this. 7715 */ 7716 ASSERT(dst_ill->ill_type == ill->ill_type); 7717 7718 return (ill); 7719 } 7720 7721 /* 7722 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7723 */ 7724 ill_t * 7725 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7726 ip_stack_t *ipst) 7727 { 7728 ill_t *ret_ill; 7729 7730 ASSERT(ifindex != 0); 7731 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7732 ipst); 7733 if (ret_ill == NULL || 7734 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7735 if (isv6) { 7736 if (ill != NULL) { 7737 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7738 } else { 7739 BUMP_MIB(&ipst->ips_ip6_mib, 7740 ipIfStatsOutDiscards); 7741 } 7742 ip1dbg(("ip_grab_attach_ill (IPv6): " 7743 "bad ifindex %d.\n", ifindex)); 7744 } else { 7745 if (ill != NULL) { 7746 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7747 } else { 7748 BUMP_MIB(&ipst->ips_ip_mib, 7749 ipIfStatsOutDiscards); 7750 } 7751 ip1dbg(("ip_grab_attach_ill (IPv4): " 7752 "bad ifindex %d.\n", ifindex)); 7753 } 7754 if (ret_ill != NULL) 7755 ill_refrele(ret_ill); 7756 freemsg(first_mp); 7757 return (NULL); 7758 } 7759 7760 return (ret_ill); 7761 } 7762 7763 /* 7764 * IPv4 - 7765 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7766 * out a packet to a destination address for which we do not have specific 7767 * (or sufficient) routing information. 7768 * 7769 * NOTE : These are the scopes of some of the variables that point at IRE, 7770 * which needs to be followed while making any future modifications 7771 * to avoid memory leaks. 7772 * 7773 * - ire and sire are the entries looked up initially by 7774 * ire_ftable_lookup. 7775 * - ipif_ire is used to hold the interface ire associated with 7776 * the new cache ire. But it's scope is limited, so we always REFRELE 7777 * it before branching out to error paths. 7778 * - save_ire is initialized before ire_create, so that ire returned 7779 * by ire_create will not over-write the ire. We REFRELE save_ire 7780 * before breaking out of the switch. 7781 * 7782 * Thus on failures, we have to REFRELE only ire and sire, if they 7783 * are not NULL. 7784 */ 7785 void 7786 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7787 zoneid_t zoneid, ip_stack_t *ipst) 7788 { 7789 areq_t *areq; 7790 ipaddr_t gw = 0; 7791 ire_t *ire = NULL; 7792 mblk_t *res_mp; 7793 ipaddr_t *addrp; 7794 ipaddr_t nexthop_addr; 7795 ipif_t *src_ipif = NULL; 7796 ill_t *dst_ill = NULL; 7797 ipha_t *ipha; 7798 ire_t *sire = NULL; 7799 mblk_t *first_mp; 7800 ire_t *save_ire; 7801 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7802 ushort_t ire_marks = 0; 7803 boolean_t mctl_present; 7804 ipsec_out_t *io; 7805 mblk_t *saved_mp; 7806 ire_t *first_sire = NULL; 7807 mblk_t *copy_mp = NULL; 7808 mblk_t *xmit_mp = NULL; 7809 ipaddr_t save_dst; 7810 uint32_t multirt_flags = 7811 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7812 boolean_t multirt_is_resolvable; 7813 boolean_t multirt_resolve_next; 7814 boolean_t unspec_src; 7815 boolean_t do_attach_ill = B_FALSE; 7816 boolean_t ip_nexthop = B_FALSE; 7817 tsol_ire_gw_secattr_t *attrp = NULL; 7818 tsol_gcgrp_t *gcgrp = NULL; 7819 tsol_gcgrp_addr_t ga; 7820 7821 if (ip_debug > 2) { 7822 /* ip1dbg */ 7823 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7824 } 7825 7826 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7827 if (mctl_present) { 7828 io = (ipsec_out_t *)first_mp->b_rptr; 7829 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7830 ASSERT(zoneid == io->ipsec_out_zoneid); 7831 ASSERT(zoneid != ALL_ZONES); 7832 } 7833 7834 ipha = (ipha_t *)mp->b_rptr; 7835 7836 /* All multicast lookups come through ip_newroute_ipif() */ 7837 if (CLASSD(dst)) { 7838 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7839 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7840 freemsg(first_mp); 7841 return; 7842 } 7843 7844 if (mctl_present && io->ipsec_out_attach_if) { 7845 /* ip_grab_attach_ill returns a held ill */ 7846 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7847 io->ipsec_out_ill_index, B_FALSE, ipst); 7848 7849 /* Failure case frees things for us. */ 7850 if (attach_ill == NULL) 7851 return; 7852 7853 /* 7854 * Check if we need an ire that will not be 7855 * looked up by anybody else i.e. HIDDEN. 7856 */ 7857 if (ill_is_probeonly(attach_ill)) 7858 ire_marks = IRE_MARK_HIDDEN; 7859 } 7860 if (mctl_present && io->ipsec_out_ip_nexthop) { 7861 ip_nexthop = B_TRUE; 7862 nexthop_addr = io->ipsec_out_nexthop_addr; 7863 } 7864 /* 7865 * If this IRE is created for forwarding or it is not for 7866 * traffic for congestion controlled protocols, mark it as temporary. 7867 */ 7868 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7869 ire_marks |= IRE_MARK_TEMPORARY; 7870 7871 /* 7872 * Get what we can from ire_ftable_lookup which will follow an IRE 7873 * chain until it gets the most specific information available. 7874 * For example, we know that there is no IRE_CACHE for this dest, 7875 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7876 * ire_ftable_lookup will look up the gateway, etc. 7877 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7878 * to the destination, of equal netmask length in the forward table, 7879 * will be recursively explored. If no information is available 7880 * for the final gateway of that route, we force the returned ire 7881 * to be equal to sire using MATCH_IRE_PARENT. 7882 * At least, in this case we have a starting point (in the buckets) 7883 * to look for other routes to the destination in the forward table. 7884 * This is actually used only for multirouting, where a list 7885 * of routes has to be processed in sequence. 7886 * 7887 * In the process of coming up with the most specific information, 7888 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7889 * for the gateway (i.e., one for which the ire_nce->nce_state is 7890 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7891 * Two caveats when handling incomplete ire's in ip_newroute: 7892 * - we should be careful when accessing its ire_nce (specifically 7893 * the nce_res_mp) ast it might change underneath our feet, and, 7894 * - not all legacy code path callers are prepared to handle 7895 * incomplete ire's, so we should not create/add incomplete 7896 * ire_cache entries here. (See discussion about temporary solution 7897 * further below). 7898 * 7899 * In order to minimize packet dropping, and to preserve existing 7900 * behavior, we treat this case as if there were no IRE_CACHE for the 7901 * gateway, and instead use the IF_RESOLVER ire to send out 7902 * another request to ARP (this is achieved by passing the 7903 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7904 * arp response comes back in ip_wput_nondata, we will create 7905 * a per-dst ire_cache that has an ND_COMPLETE ire. 7906 * 7907 * Note that this is a temporary solution; the correct solution is 7908 * to create an incomplete per-dst ire_cache entry, and send the 7909 * packet out when the gw's nce is resolved. In order to achieve this, 7910 * all packet processing must have been completed prior to calling 7911 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7912 * to be modified to accomodate this solution. 7913 */ 7914 if (ip_nexthop) { 7915 /* 7916 * The first time we come here, we look for an IRE_INTERFACE 7917 * entry for the specified nexthop, set the dst to be the 7918 * nexthop address and create an IRE_CACHE entry for the 7919 * nexthop. The next time around, we are able to find an 7920 * IRE_CACHE entry for the nexthop, set the gateway to be the 7921 * nexthop address and create an IRE_CACHE entry for the 7922 * destination address via the specified nexthop. 7923 */ 7924 ire = ire_cache_lookup(nexthop_addr, zoneid, 7925 MBLK_GETLABEL(mp), ipst); 7926 if (ire != NULL) { 7927 gw = nexthop_addr; 7928 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7929 } else { 7930 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7931 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7932 MBLK_GETLABEL(mp), 7933 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7934 ipst); 7935 if (ire != NULL) { 7936 dst = nexthop_addr; 7937 } 7938 } 7939 } else if (attach_ill == NULL) { 7940 ire = ire_ftable_lookup(dst, 0, 0, 0, 7941 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7942 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7943 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7944 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7945 ipst); 7946 } else { 7947 /* 7948 * attach_ill is set only for communicating with 7949 * on-link hosts. So, don't look for DEFAULT. 7950 */ 7951 ipif_t *attach_ipif; 7952 7953 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7954 if (attach_ipif == NULL) { 7955 ill_refrele(attach_ill); 7956 goto icmp_err_ret; 7957 } 7958 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7959 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7960 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7961 MATCH_IRE_SECATTR, ipst); 7962 ipif_refrele(attach_ipif); 7963 } 7964 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7965 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7966 7967 /* 7968 * This loop is run only once in most cases. 7969 * We loop to resolve further routes only when the destination 7970 * can be reached through multiple RTF_MULTIRT-flagged ires. 7971 */ 7972 do { 7973 /* Clear the previous iteration's values */ 7974 if (src_ipif != NULL) { 7975 ipif_refrele(src_ipif); 7976 src_ipif = NULL; 7977 } 7978 if (dst_ill != NULL) { 7979 ill_refrele(dst_ill); 7980 dst_ill = NULL; 7981 } 7982 7983 multirt_resolve_next = B_FALSE; 7984 /* 7985 * We check if packets have to be multirouted. 7986 * In this case, given the current <ire, sire> couple, 7987 * we look for the next suitable <ire, sire>. 7988 * This check is done in ire_multirt_lookup(), 7989 * which applies various criteria to find the next route 7990 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7991 * unchanged if it detects it has not been tried yet. 7992 */ 7993 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7994 ip3dbg(("ip_newroute: starting next_resolution " 7995 "with first_mp %p, tag %d\n", 7996 (void *)first_mp, 7997 MULTIRT_DEBUG_TAGGED(first_mp))); 7998 7999 ASSERT(sire != NULL); 8000 multirt_is_resolvable = 8001 ire_multirt_lookup(&ire, &sire, multirt_flags, 8002 MBLK_GETLABEL(mp), ipst); 8003 8004 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8005 "ire %p, sire %p\n", 8006 multirt_is_resolvable, 8007 (void *)ire, (void *)sire)); 8008 8009 if (!multirt_is_resolvable) { 8010 /* 8011 * No more multirt route to resolve; give up 8012 * (all routes resolved or no more 8013 * resolvable routes). 8014 */ 8015 if (ire != NULL) { 8016 ire_refrele(ire); 8017 ire = NULL; 8018 } 8019 } else { 8020 ASSERT(sire != NULL); 8021 ASSERT(ire != NULL); 8022 /* 8023 * We simply use first_sire as a flag that 8024 * indicates if a resolvable multirt route 8025 * has already been found. 8026 * If it is not the case, we may have to send 8027 * an ICMP error to report that the 8028 * destination is unreachable. 8029 * We do not IRE_REFHOLD first_sire. 8030 */ 8031 if (first_sire == NULL) { 8032 first_sire = sire; 8033 } 8034 } 8035 } 8036 if (ire == NULL) { 8037 if (ip_debug > 3) { 8038 /* ip2dbg */ 8039 pr_addr_dbg("ip_newroute: " 8040 "can't resolve %s\n", AF_INET, &dst); 8041 } 8042 ip3dbg(("ip_newroute: " 8043 "ire %p, sire %p, first_sire %p\n", 8044 (void *)ire, (void *)sire, (void *)first_sire)); 8045 8046 if (sire != NULL) { 8047 ire_refrele(sire); 8048 sire = NULL; 8049 } 8050 8051 if (first_sire != NULL) { 8052 /* 8053 * At least one multirt route has been found 8054 * in the same call to ip_newroute(); 8055 * there is no need to report an ICMP error. 8056 * first_sire was not IRE_REFHOLDed. 8057 */ 8058 MULTIRT_DEBUG_UNTAG(first_mp); 8059 freemsg(first_mp); 8060 return; 8061 } 8062 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8063 RTA_DST, ipst); 8064 if (attach_ill != NULL) 8065 ill_refrele(attach_ill); 8066 goto icmp_err_ret; 8067 } 8068 8069 /* 8070 * Verify that the returned IRE does not have either 8071 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8072 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8073 */ 8074 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8075 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8076 if (attach_ill != NULL) 8077 ill_refrele(attach_ill); 8078 goto icmp_err_ret; 8079 } 8080 /* 8081 * Increment the ire_ob_pkt_count field for ire if it is an 8082 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8083 * increment the same for the parent IRE, sire, if it is some 8084 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8085 */ 8086 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8087 UPDATE_OB_PKT_COUNT(ire); 8088 ire->ire_last_used_time = lbolt; 8089 } 8090 8091 if (sire != NULL) { 8092 gw = sire->ire_gateway_addr; 8093 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8094 IRE_INTERFACE)) == 0); 8095 UPDATE_OB_PKT_COUNT(sire); 8096 sire->ire_last_used_time = lbolt; 8097 } 8098 /* 8099 * We have a route to reach the destination. 8100 * 8101 * 1) If the interface is part of ill group, try to get a new 8102 * ill taking load spreading into account. 8103 * 8104 * 2) After selecting the ill, get a source address that 8105 * might create good inbound load spreading. 8106 * ipif_select_source does this for us. 8107 * 8108 * If the application specified the ill (ifindex), we still 8109 * load spread. Only if the packets needs to go out 8110 * specifically on a given ill e.g. binding to 8111 * IPIF_NOFAILOVER address, then we don't try to use a 8112 * different ill for load spreading. 8113 */ 8114 if (attach_ill == NULL) { 8115 /* 8116 * Don't perform outbound load spreading in the 8117 * case of an RTF_MULTIRT route, as we actually 8118 * typically want to replicate outgoing packets 8119 * through particular interfaces. 8120 */ 8121 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8122 dst_ill = ire->ire_ipif->ipif_ill; 8123 /* for uniformity */ 8124 ill_refhold(dst_ill); 8125 } else { 8126 /* 8127 * If we are here trying to create an IRE_CACHE 8128 * for an offlink destination and have the 8129 * IRE_CACHE for the next hop and the latter is 8130 * using virtual IP source address selection i.e 8131 * it's ire->ire_ipif is pointing to a virtual 8132 * network interface (vni) then 8133 * ip_newroute_get_dst_ll() will return the vni 8134 * interface as the dst_ill. Since the vni is 8135 * virtual i.e not associated with any physical 8136 * interface, it cannot be the dst_ill, hence 8137 * in such a case call ip_newroute_get_dst_ll() 8138 * with the stq_ill instead of the ire_ipif ILL. 8139 * The function returns a refheld ill. 8140 */ 8141 if ((ire->ire_type == IRE_CACHE) && 8142 IS_VNI(ire->ire_ipif->ipif_ill)) 8143 dst_ill = ip_newroute_get_dst_ill( 8144 ire->ire_stq->q_ptr); 8145 else 8146 dst_ill = ip_newroute_get_dst_ill( 8147 ire->ire_ipif->ipif_ill); 8148 } 8149 if (dst_ill == NULL) { 8150 if (ip_debug > 2) { 8151 pr_addr_dbg("ip_newroute: " 8152 "no dst ill for dst" 8153 " %s\n", AF_INET, &dst); 8154 } 8155 goto icmp_err_ret; 8156 } 8157 } else { 8158 dst_ill = ire->ire_ipif->ipif_ill; 8159 /* for uniformity */ 8160 ill_refhold(dst_ill); 8161 /* 8162 * We should have found a route matching ill as we 8163 * called ire_ftable_lookup with MATCH_IRE_ILL. 8164 * Rather than asserting, when there is a mismatch, 8165 * we just drop the packet. 8166 */ 8167 if (dst_ill != attach_ill) { 8168 ip0dbg(("ip_newroute: Packet dropped as " 8169 "IPIF_NOFAILOVER ill is %s, " 8170 "ire->ire_ipif->ipif_ill is %s\n", 8171 attach_ill->ill_name, 8172 dst_ill->ill_name)); 8173 ill_refrele(attach_ill); 8174 goto icmp_err_ret; 8175 } 8176 } 8177 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8178 if (attach_ill != NULL) { 8179 ill_refrele(attach_ill); 8180 attach_ill = NULL; 8181 do_attach_ill = B_TRUE; 8182 } 8183 ASSERT(dst_ill != NULL); 8184 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8185 8186 /* 8187 * Pick the best source address from dst_ill. 8188 * 8189 * 1) If it is part of a multipathing group, we would 8190 * like to spread the inbound packets across different 8191 * interfaces. ipif_select_source picks a random source 8192 * across the different ills in the group. 8193 * 8194 * 2) If it is not part of a multipathing group, we try 8195 * to pick the source address from the destination 8196 * route. Clustering assumes that when we have multiple 8197 * prefixes hosted on an interface, the prefix of the 8198 * source address matches the prefix of the destination 8199 * route. We do this only if the address is not 8200 * DEPRECATED. 8201 * 8202 * 3) If the conn is in a different zone than the ire, we 8203 * need to pick a source address from the right zone. 8204 * 8205 * NOTE : If we hit case (1) above, the prefix of the source 8206 * address picked may not match the prefix of the 8207 * destination routes prefix as ipif_select_source 8208 * does not look at "dst" while picking a source 8209 * address. 8210 * If we want the same behavior as (2), we will need 8211 * to change the behavior of ipif_select_source. 8212 */ 8213 ASSERT(src_ipif == NULL); 8214 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8215 /* 8216 * The RTF_SETSRC flag is set in the parent ire (sire). 8217 * Check that the ipif matching the requested source 8218 * address still exists. 8219 */ 8220 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8221 zoneid, NULL, NULL, NULL, NULL, ipst); 8222 } 8223 8224 unspec_src = (connp != NULL && connp->conn_unspec_src); 8225 8226 if (src_ipif == NULL && 8227 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8228 ire_marks |= IRE_MARK_USESRC_CHECK; 8229 if ((dst_ill->ill_group != NULL) || 8230 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8231 (connp != NULL && ire->ire_zoneid != zoneid && 8232 ire->ire_zoneid != ALL_ZONES) || 8233 (dst_ill->ill_usesrc_ifindex != 0)) { 8234 /* 8235 * If the destination is reachable via a 8236 * given gateway, the selected source address 8237 * should be in the same subnet as the gateway. 8238 * Otherwise, the destination is not reachable. 8239 * 8240 * If there are no interfaces on the same subnet 8241 * as the destination, ipif_select_source gives 8242 * first non-deprecated interface which might be 8243 * on a different subnet than the gateway. 8244 * This is not desirable. Hence pass the dst_ire 8245 * source address to ipif_select_source. 8246 * It is sure that the destination is reachable 8247 * with the dst_ire source address subnet. 8248 * So passing dst_ire source address to 8249 * ipif_select_source will make sure that the 8250 * selected source will be on the same subnet 8251 * as dst_ire source address. 8252 */ 8253 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8254 src_ipif = ipif_select_source(dst_ill, saddr, 8255 zoneid); 8256 if (src_ipif == NULL) { 8257 if (ip_debug > 2) { 8258 pr_addr_dbg("ip_newroute: " 8259 "no src for dst %s ", 8260 AF_INET, &dst); 8261 printf("through interface %s\n", 8262 dst_ill->ill_name); 8263 } 8264 goto icmp_err_ret; 8265 } 8266 } else { 8267 src_ipif = ire->ire_ipif; 8268 ASSERT(src_ipif != NULL); 8269 /* hold src_ipif for uniformity */ 8270 ipif_refhold(src_ipif); 8271 } 8272 } 8273 8274 /* 8275 * Assign a source address while we have the conn. 8276 * We can't have ip_wput_ire pick a source address when the 8277 * packet returns from arp since we need to look at 8278 * conn_unspec_src and conn_zoneid, and we lose the conn when 8279 * going through arp. 8280 * 8281 * NOTE : ip_newroute_v6 does not have this piece of code as 8282 * it uses ip6i to store this information. 8283 */ 8284 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8285 ipha->ipha_src = src_ipif->ipif_src_addr; 8286 8287 if (ip_debug > 3) { 8288 /* ip2dbg */ 8289 pr_addr_dbg("ip_newroute: first hop %s\n", 8290 AF_INET, &gw); 8291 } 8292 ip2dbg(("\tire type %s (%d)\n", 8293 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8294 8295 /* 8296 * The TTL of multirouted packets is bounded by the 8297 * ip_multirt_ttl ndd variable. 8298 */ 8299 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8300 /* Force TTL of multirouted packets */ 8301 if ((ipst->ips_ip_multirt_ttl > 0) && 8302 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8303 ip2dbg(("ip_newroute: forcing multirt TTL " 8304 "to %d (was %d), dst 0x%08x\n", 8305 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8306 ntohl(sire->ire_addr))); 8307 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8308 } 8309 } 8310 /* 8311 * At this point in ip_newroute(), ire is either the 8312 * IRE_CACHE of the next-hop gateway for an off-subnet 8313 * destination or an IRE_INTERFACE type that should be used 8314 * to resolve an on-subnet destination or an on-subnet 8315 * next-hop gateway. 8316 * 8317 * In the IRE_CACHE case, we have the following : 8318 * 8319 * 1) src_ipif - used for getting a source address. 8320 * 8321 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8322 * means packets using this IRE_CACHE will go out on 8323 * dst_ill. 8324 * 8325 * 3) The IRE sire will point to the prefix that is the 8326 * longest matching route for the destination. These 8327 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8328 * 8329 * The newly created IRE_CACHE entry for the off-subnet 8330 * destination is tied to both the prefix route and the 8331 * interface route used to resolve the next-hop gateway 8332 * via the ire_phandle and ire_ihandle fields, 8333 * respectively. 8334 * 8335 * In the IRE_INTERFACE case, we have the following : 8336 * 8337 * 1) src_ipif - used for getting a source address. 8338 * 8339 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8340 * means packets using the IRE_CACHE that we will build 8341 * here will go out on dst_ill. 8342 * 8343 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8344 * to be created will only be tied to the IRE_INTERFACE 8345 * that was derived from the ire_ihandle field. 8346 * 8347 * If sire is non-NULL, it means the destination is 8348 * off-link and we will first create the IRE_CACHE for the 8349 * gateway. Next time through ip_newroute, we will create 8350 * the IRE_CACHE for the final destination as described 8351 * above. 8352 * 8353 * In both cases, after the current resolution has been 8354 * completed (or possibly initialised, in the IRE_INTERFACE 8355 * case), the loop may be re-entered to attempt the resolution 8356 * of another RTF_MULTIRT route. 8357 * 8358 * When an IRE_CACHE entry for the off-subnet destination is 8359 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8360 * for further processing in emission loops. 8361 */ 8362 save_ire = ire; 8363 switch (ire->ire_type) { 8364 case IRE_CACHE: { 8365 ire_t *ipif_ire; 8366 8367 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8368 if (gw == 0) 8369 gw = ire->ire_gateway_addr; 8370 /* 8371 * We need 3 ire's to create a new cache ire for an 8372 * off-link destination from the cache ire of the 8373 * gateway. 8374 * 8375 * 1. The prefix ire 'sire' (Note that this does 8376 * not apply to the conn_nexthop_set case) 8377 * 2. The cache ire of the gateway 'ire' 8378 * 3. The interface ire 'ipif_ire' 8379 * 8380 * We have (1) and (2). We lookup (3) below. 8381 * 8382 * If there is no interface route to the gateway, 8383 * it is a race condition, where we found the cache 8384 * but the interface route has been deleted. 8385 */ 8386 if (ip_nexthop) { 8387 ipif_ire = ire_ihandle_lookup_onlink(ire); 8388 } else { 8389 ipif_ire = 8390 ire_ihandle_lookup_offlink(ire, sire); 8391 } 8392 if (ipif_ire == NULL) { 8393 ip1dbg(("ip_newroute: " 8394 "ire_ihandle_lookup_offlink failed\n")); 8395 goto icmp_err_ret; 8396 } 8397 8398 /* 8399 * Check cached gateway IRE for any security 8400 * attributes; if found, associate the gateway 8401 * credentials group to the destination IRE. 8402 */ 8403 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8404 mutex_enter(&attrp->igsa_lock); 8405 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8406 GCGRP_REFHOLD(gcgrp); 8407 mutex_exit(&attrp->igsa_lock); 8408 } 8409 8410 /* 8411 * XXX For the source of the resolver mp, 8412 * we are using the same DL_UNITDATA_REQ 8413 * (from save_ire->ire_nce->nce_res_mp) 8414 * though the save_ire is not pointing at the same ill. 8415 * This is incorrect. We need to send it up to the 8416 * resolver to get the right res_mp. For ethernets 8417 * this may be okay (ill_type == DL_ETHER). 8418 */ 8419 8420 ire = ire_create( 8421 (uchar_t *)&dst, /* dest address */ 8422 (uchar_t *)&ip_g_all_ones, /* mask */ 8423 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8424 (uchar_t *)&gw, /* gateway address */ 8425 &save_ire->ire_max_frag, 8426 save_ire->ire_nce, /* src nce */ 8427 dst_ill->ill_rq, /* recv-from queue */ 8428 dst_ill->ill_wq, /* send-to queue */ 8429 IRE_CACHE, /* IRE type */ 8430 src_ipif, 8431 (sire != NULL) ? 8432 sire->ire_mask : 0, /* Parent mask */ 8433 (sire != NULL) ? 8434 sire->ire_phandle : 0, /* Parent handle */ 8435 ipif_ire->ire_ihandle, /* Interface handle */ 8436 (sire != NULL) ? (sire->ire_flags & 8437 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8438 (sire != NULL) ? 8439 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8440 NULL, 8441 gcgrp, 8442 ipst); 8443 8444 if (ire == NULL) { 8445 if (gcgrp != NULL) { 8446 GCGRP_REFRELE(gcgrp); 8447 gcgrp = NULL; 8448 } 8449 ire_refrele(ipif_ire); 8450 ire_refrele(save_ire); 8451 break; 8452 } 8453 8454 /* reference now held by IRE */ 8455 gcgrp = NULL; 8456 8457 ire->ire_marks |= ire_marks; 8458 8459 /* 8460 * Prevent sire and ipif_ire from getting deleted. 8461 * The newly created ire is tied to both of them via 8462 * the phandle and ihandle respectively. 8463 */ 8464 if (sire != NULL) { 8465 IRB_REFHOLD(sire->ire_bucket); 8466 /* Has it been removed already ? */ 8467 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8468 IRB_REFRELE(sire->ire_bucket); 8469 ire_refrele(ipif_ire); 8470 ire_refrele(save_ire); 8471 break; 8472 } 8473 } 8474 8475 IRB_REFHOLD(ipif_ire->ire_bucket); 8476 /* Has it been removed already ? */ 8477 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8478 IRB_REFRELE(ipif_ire->ire_bucket); 8479 if (sire != NULL) 8480 IRB_REFRELE(sire->ire_bucket); 8481 ire_refrele(ipif_ire); 8482 ire_refrele(save_ire); 8483 break; 8484 } 8485 8486 xmit_mp = first_mp; 8487 /* 8488 * In the case of multirouting, a copy 8489 * of the packet is done before its sending. 8490 * The copy is used to attempt another 8491 * route resolution, in a next loop. 8492 */ 8493 if (ire->ire_flags & RTF_MULTIRT) { 8494 copy_mp = copymsg(first_mp); 8495 if (copy_mp != NULL) { 8496 xmit_mp = copy_mp; 8497 MULTIRT_DEBUG_TAG(first_mp); 8498 } 8499 } 8500 ire_add_then_send(q, ire, xmit_mp); 8501 ire_refrele(save_ire); 8502 8503 /* Assert that sire is not deleted yet. */ 8504 if (sire != NULL) { 8505 ASSERT(sire->ire_ptpn != NULL); 8506 IRB_REFRELE(sire->ire_bucket); 8507 } 8508 8509 /* Assert that ipif_ire is not deleted yet. */ 8510 ASSERT(ipif_ire->ire_ptpn != NULL); 8511 IRB_REFRELE(ipif_ire->ire_bucket); 8512 ire_refrele(ipif_ire); 8513 8514 /* 8515 * If copy_mp is not NULL, multirouting was 8516 * requested. We loop to initiate a next 8517 * route resolution attempt, starting from sire. 8518 */ 8519 if (copy_mp != NULL) { 8520 /* 8521 * Search for the next unresolved 8522 * multirt route. 8523 */ 8524 copy_mp = NULL; 8525 ipif_ire = NULL; 8526 ire = NULL; 8527 multirt_resolve_next = B_TRUE; 8528 continue; 8529 } 8530 if (sire != NULL) 8531 ire_refrele(sire); 8532 ipif_refrele(src_ipif); 8533 ill_refrele(dst_ill); 8534 return; 8535 } 8536 case IRE_IF_NORESOLVER: { 8537 8538 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8539 dst_ill->ill_resolver_mp == NULL) { 8540 ip1dbg(("ip_newroute: dst_ill %p " 8541 "for IRE_IF_NORESOLVER ire %p has " 8542 "no ill_resolver_mp\n", 8543 (void *)dst_ill, (void *)ire)); 8544 break; 8545 } 8546 8547 /* 8548 * TSol note: We are creating the ire cache for the 8549 * destination 'dst'. If 'dst' is offlink, going 8550 * through the first hop 'gw', the security attributes 8551 * of 'dst' must be set to point to the gateway 8552 * credentials of gateway 'gw'. If 'dst' is onlink, it 8553 * is possible that 'dst' is a potential gateway that is 8554 * referenced by some route that has some security 8555 * attributes. Thus in the former case, we need to do a 8556 * gcgrp_lookup of 'gw' while in the latter case we 8557 * need to do gcgrp_lookup of 'dst' itself. 8558 */ 8559 ga.ga_af = AF_INET; 8560 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8561 &ga.ga_addr); 8562 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8563 8564 ire = ire_create( 8565 (uchar_t *)&dst, /* dest address */ 8566 (uchar_t *)&ip_g_all_ones, /* mask */ 8567 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8568 (uchar_t *)&gw, /* gateway address */ 8569 &save_ire->ire_max_frag, 8570 NULL, /* no src nce */ 8571 dst_ill->ill_rq, /* recv-from queue */ 8572 dst_ill->ill_wq, /* send-to queue */ 8573 IRE_CACHE, 8574 src_ipif, 8575 save_ire->ire_mask, /* Parent mask */ 8576 (sire != NULL) ? /* Parent handle */ 8577 sire->ire_phandle : 0, 8578 save_ire->ire_ihandle, /* Interface handle */ 8579 (sire != NULL) ? sire->ire_flags & 8580 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8581 &(save_ire->ire_uinfo), 8582 NULL, 8583 gcgrp, 8584 ipst); 8585 8586 if (ire == NULL) { 8587 if (gcgrp != NULL) { 8588 GCGRP_REFRELE(gcgrp); 8589 gcgrp = NULL; 8590 } 8591 ire_refrele(save_ire); 8592 break; 8593 } 8594 8595 /* reference now held by IRE */ 8596 gcgrp = NULL; 8597 8598 ire->ire_marks |= ire_marks; 8599 8600 /* Prevent save_ire from getting deleted */ 8601 IRB_REFHOLD(save_ire->ire_bucket); 8602 /* Has it been removed already ? */ 8603 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8604 IRB_REFRELE(save_ire->ire_bucket); 8605 ire_refrele(save_ire); 8606 break; 8607 } 8608 8609 /* 8610 * In the case of multirouting, a copy 8611 * of the packet is made before it is sent. 8612 * The copy is used in the next 8613 * loop to attempt another resolution. 8614 */ 8615 xmit_mp = first_mp; 8616 if ((sire != NULL) && 8617 (sire->ire_flags & RTF_MULTIRT)) { 8618 copy_mp = copymsg(first_mp); 8619 if (copy_mp != NULL) { 8620 xmit_mp = copy_mp; 8621 MULTIRT_DEBUG_TAG(first_mp); 8622 } 8623 } 8624 ire_add_then_send(q, ire, xmit_mp); 8625 8626 /* Assert that it is not deleted yet. */ 8627 ASSERT(save_ire->ire_ptpn != NULL); 8628 IRB_REFRELE(save_ire->ire_bucket); 8629 ire_refrele(save_ire); 8630 8631 if (copy_mp != NULL) { 8632 /* 8633 * If we found a (no)resolver, we ignore any 8634 * trailing top priority IRE_CACHE in further 8635 * loops. This ensures that we do not omit any 8636 * (no)resolver. 8637 * This IRE_CACHE, if any, will be processed 8638 * by another thread entering ip_newroute(). 8639 * IRE_CACHE entries, if any, will be processed 8640 * by another thread entering ip_newroute(), 8641 * (upon resolver response, for instance). 8642 * This aims to force parallel multirt 8643 * resolutions as soon as a packet must be sent. 8644 * In the best case, after the tx of only one 8645 * packet, all reachable routes are resolved. 8646 * Otherwise, the resolution of all RTF_MULTIRT 8647 * routes would require several emissions. 8648 */ 8649 multirt_flags &= ~MULTIRT_CACHEGW; 8650 8651 /* 8652 * Search for the next unresolved multirt 8653 * route. 8654 */ 8655 copy_mp = NULL; 8656 save_ire = NULL; 8657 ire = NULL; 8658 multirt_resolve_next = B_TRUE; 8659 continue; 8660 } 8661 8662 /* 8663 * Don't need sire anymore 8664 */ 8665 if (sire != NULL) 8666 ire_refrele(sire); 8667 8668 ipif_refrele(src_ipif); 8669 ill_refrele(dst_ill); 8670 return; 8671 } 8672 case IRE_IF_RESOLVER: 8673 /* 8674 * We can't build an IRE_CACHE yet, but at least we 8675 * found a resolver that can help. 8676 */ 8677 res_mp = dst_ill->ill_resolver_mp; 8678 if (!OK_RESOLVER_MP(res_mp)) 8679 break; 8680 8681 /* 8682 * To be at this point in the code with a non-zero gw 8683 * means that dst is reachable through a gateway that 8684 * we have never resolved. By changing dst to the gw 8685 * addr we resolve the gateway first. 8686 * When ire_add_then_send() tries to put the IP dg 8687 * to dst, it will reenter ip_newroute() at which 8688 * time we will find the IRE_CACHE for the gw and 8689 * create another IRE_CACHE in case IRE_CACHE above. 8690 */ 8691 if (gw != INADDR_ANY) { 8692 /* 8693 * The source ipif that was determined above was 8694 * relative to the destination address, not the 8695 * gateway's. If src_ipif was not taken out of 8696 * the IRE_IF_RESOLVER entry, we'll need to call 8697 * ipif_select_source() again. 8698 */ 8699 if (src_ipif != ire->ire_ipif) { 8700 ipif_refrele(src_ipif); 8701 src_ipif = ipif_select_source(dst_ill, 8702 gw, zoneid); 8703 if (src_ipif == NULL) { 8704 if (ip_debug > 2) { 8705 pr_addr_dbg( 8706 "ip_newroute: no " 8707 "src for gw %s ", 8708 AF_INET, &gw); 8709 printf("through " 8710 "interface %s\n", 8711 dst_ill->ill_name); 8712 } 8713 goto icmp_err_ret; 8714 } 8715 } 8716 save_dst = dst; 8717 dst = gw; 8718 gw = INADDR_ANY; 8719 } 8720 8721 /* 8722 * We obtain a partial IRE_CACHE which we will pass 8723 * along with the resolver query. When the response 8724 * comes back it will be there ready for us to add. 8725 * The ire_max_frag is atomically set under the 8726 * irebucket lock in ire_add_v[46]. 8727 */ 8728 8729 ire = ire_create_mp( 8730 (uchar_t *)&dst, /* dest address */ 8731 (uchar_t *)&ip_g_all_ones, /* mask */ 8732 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8733 (uchar_t *)&gw, /* gateway address */ 8734 NULL, /* ire_max_frag */ 8735 NULL, /* no src nce */ 8736 dst_ill->ill_rq, /* recv-from queue */ 8737 dst_ill->ill_wq, /* send-to queue */ 8738 IRE_CACHE, 8739 src_ipif, /* Interface ipif */ 8740 save_ire->ire_mask, /* Parent mask */ 8741 0, 8742 save_ire->ire_ihandle, /* Interface handle */ 8743 0, /* flags if any */ 8744 &(save_ire->ire_uinfo), 8745 NULL, 8746 NULL, 8747 ipst); 8748 8749 if (ire == NULL) { 8750 ire_refrele(save_ire); 8751 break; 8752 } 8753 8754 if ((sire != NULL) && 8755 (sire->ire_flags & RTF_MULTIRT)) { 8756 copy_mp = copymsg(first_mp); 8757 if (copy_mp != NULL) 8758 MULTIRT_DEBUG_TAG(copy_mp); 8759 } 8760 8761 ire->ire_marks |= ire_marks; 8762 8763 /* 8764 * Construct message chain for the resolver 8765 * of the form: 8766 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8767 * Packet could contain a IPSEC_OUT mp. 8768 * 8769 * NOTE : ire will be added later when the response 8770 * comes back from ARP. If the response does not 8771 * come back, ARP frees the packet. For this reason, 8772 * we can't REFHOLD the bucket of save_ire to prevent 8773 * deletions. We may not be able to REFRELE the bucket 8774 * if the response never comes back. Thus, before 8775 * adding the ire, ire_add_v4 will make sure that the 8776 * interface route does not get deleted. This is the 8777 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8778 * where we can always prevent deletions because of 8779 * the synchronous nature of adding IRES i.e 8780 * ire_add_then_send is called after creating the IRE. 8781 */ 8782 ASSERT(ire->ire_mp != NULL); 8783 ire->ire_mp->b_cont = first_mp; 8784 /* Have saved_mp handy, for cleanup if canput fails */ 8785 saved_mp = mp; 8786 mp = copyb(res_mp); 8787 if (mp == NULL) { 8788 /* Prepare for cleanup */ 8789 mp = saved_mp; /* pkt */ 8790 ire_delete(ire); /* ire_mp */ 8791 ire = NULL; 8792 ire_refrele(save_ire); 8793 if (copy_mp != NULL) { 8794 MULTIRT_DEBUG_UNTAG(copy_mp); 8795 freemsg(copy_mp); 8796 copy_mp = NULL; 8797 } 8798 break; 8799 } 8800 linkb(mp, ire->ire_mp); 8801 8802 /* 8803 * Fill in the source and dest addrs for the resolver. 8804 * NOTE: this depends on memory layouts imposed by 8805 * ill_init(). 8806 */ 8807 areq = (areq_t *)mp->b_rptr; 8808 addrp = (ipaddr_t *)((char *)areq + 8809 areq->areq_sender_addr_offset); 8810 if (do_attach_ill) { 8811 /* 8812 * This is bind to no failover case. 8813 * arp packet also must go out on attach_ill. 8814 */ 8815 ASSERT(ipha->ipha_src != NULL); 8816 *addrp = ipha->ipha_src; 8817 } else { 8818 *addrp = save_ire->ire_src_addr; 8819 } 8820 8821 ire_refrele(save_ire); 8822 addrp = (ipaddr_t *)((char *)areq + 8823 areq->areq_target_addr_offset); 8824 *addrp = dst; 8825 /* Up to the resolver. */ 8826 if (canputnext(dst_ill->ill_rq) && 8827 !(dst_ill->ill_arp_closing)) { 8828 putnext(dst_ill->ill_rq, mp); 8829 ire = NULL; 8830 if (copy_mp != NULL) { 8831 /* 8832 * If we found a resolver, we ignore 8833 * any trailing top priority IRE_CACHE 8834 * in the further loops. This ensures 8835 * that we do not omit any resolver. 8836 * IRE_CACHE entries, if any, will be 8837 * processed next time we enter 8838 * ip_newroute(). 8839 */ 8840 multirt_flags &= ~MULTIRT_CACHEGW; 8841 /* 8842 * Search for the next unresolved 8843 * multirt route. 8844 */ 8845 first_mp = copy_mp; 8846 copy_mp = NULL; 8847 /* Prepare the next resolution loop. */ 8848 mp = first_mp; 8849 EXTRACT_PKT_MP(mp, first_mp, 8850 mctl_present); 8851 if (mctl_present) 8852 io = (ipsec_out_t *) 8853 first_mp->b_rptr; 8854 ipha = (ipha_t *)mp->b_rptr; 8855 8856 ASSERT(sire != NULL); 8857 8858 dst = save_dst; 8859 multirt_resolve_next = B_TRUE; 8860 continue; 8861 } 8862 8863 if (sire != NULL) 8864 ire_refrele(sire); 8865 8866 /* 8867 * The response will come back in ip_wput 8868 * with db_type IRE_DB_TYPE. 8869 */ 8870 ipif_refrele(src_ipif); 8871 ill_refrele(dst_ill); 8872 return; 8873 } else { 8874 /* Prepare for cleanup */ 8875 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8876 mp); 8877 mp->b_cont = NULL; 8878 freeb(mp); /* areq */ 8879 /* 8880 * this is an ire that is not added to the 8881 * cache. ire_freemblk will handle the release 8882 * of any resources associated with the ire. 8883 */ 8884 ire_delete(ire); /* ire_mp */ 8885 mp = saved_mp; /* pkt */ 8886 ire = NULL; 8887 if (copy_mp != NULL) { 8888 MULTIRT_DEBUG_UNTAG(copy_mp); 8889 freemsg(copy_mp); 8890 copy_mp = NULL; 8891 } 8892 break; 8893 } 8894 default: 8895 break; 8896 } 8897 } while (multirt_resolve_next); 8898 8899 ip1dbg(("ip_newroute: dropped\n")); 8900 /* Did this packet originate externally? */ 8901 if (mp->b_prev) { 8902 mp->b_next = NULL; 8903 mp->b_prev = NULL; 8904 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8905 } else { 8906 if (dst_ill != NULL) { 8907 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8908 } else { 8909 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8910 } 8911 } 8912 ASSERT(copy_mp == NULL); 8913 MULTIRT_DEBUG_UNTAG(first_mp); 8914 freemsg(first_mp); 8915 if (ire != NULL) 8916 ire_refrele(ire); 8917 if (sire != NULL) 8918 ire_refrele(sire); 8919 if (src_ipif != NULL) 8920 ipif_refrele(src_ipif); 8921 if (dst_ill != NULL) 8922 ill_refrele(dst_ill); 8923 return; 8924 8925 icmp_err_ret: 8926 ip1dbg(("ip_newroute: no route\n")); 8927 if (src_ipif != NULL) 8928 ipif_refrele(src_ipif); 8929 if (dst_ill != NULL) 8930 ill_refrele(dst_ill); 8931 if (sire != NULL) 8932 ire_refrele(sire); 8933 /* Did this packet originate externally? */ 8934 if (mp->b_prev) { 8935 mp->b_next = NULL; 8936 mp->b_prev = NULL; 8937 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8938 q = WR(q); 8939 } else { 8940 /* 8941 * There is no outgoing ill, so just increment the 8942 * system MIB. 8943 */ 8944 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8945 /* 8946 * Since ip_wput() isn't close to finished, we fill 8947 * in enough of the header for credible error reporting. 8948 */ 8949 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8950 /* Failed */ 8951 MULTIRT_DEBUG_UNTAG(first_mp); 8952 freemsg(first_mp); 8953 if (ire != NULL) 8954 ire_refrele(ire); 8955 return; 8956 } 8957 } 8958 8959 /* 8960 * At this point we will have ire only if RTF_BLACKHOLE 8961 * or RTF_REJECT flags are set on the IRE. It will not 8962 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8963 */ 8964 if (ire != NULL) { 8965 if (ire->ire_flags & RTF_BLACKHOLE) { 8966 ire_refrele(ire); 8967 MULTIRT_DEBUG_UNTAG(first_mp); 8968 freemsg(first_mp); 8969 return; 8970 } 8971 ire_refrele(ire); 8972 } 8973 if (ip_source_routed(ipha, ipst)) { 8974 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8975 zoneid, ipst); 8976 return; 8977 } 8978 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8979 } 8980 8981 ip_opt_info_t zero_info; 8982 8983 /* 8984 * IPv4 - 8985 * ip_newroute_ipif is called by ip_wput_multicast and 8986 * ip_rput_forward_multicast whenever we need to send 8987 * out a packet to a destination address for which we do not have specific 8988 * routing information. It is used when the packet will be sent out 8989 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8990 * socket option is set or icmp error message wants to go out on a particular 8991 * interface for a unicast packet. 8992 * 8993 * In most cases, the destination address is resolved thanks to the ipif 8994 * intrinsic resolver. However, there are some cases where the call to 8995 * ip_newroute_ipif must take into account the potential presence of 8996 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8997 * that uses the interface. This is specified through flags, 8998 * which can be a combination of: 8999 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 9000 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9001 * and flags. Additionally, the packet source address has to be set to 9002 * the specified address. The caller is thus expected to set this flag 9003 * if the packet has no specific source address yet. 9004 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9005 * flag, the resulting ire will inherit the flag. All unresolved routes 9006 * to the destination must be explored in the same call to 9007 * ip_newroute_ipif(). 9008 */ 9009 static void 9010 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9011 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9012 { 9013 areq_t *areq; 9014 ire_t *ire = NULL; 9015 mblk_t *res_mp; 9016 ipaddr_t *addrp; 9017 mblk_t *first_mp; 9018 ire_t *save_ire = NULL; 9019 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 9020 ipif_t *src_ipif = NULL; 9021 ushort_t ire_marks = 0; 9022 ill_t *dst_ill = NULL; 9023 boolean_t mctl_present; 9024 ipsec_out_t *io; 9025 ipha_t *ipha; 9026 int ihandle = 0; 9027 mblk_t *saved_mp; 9028 ire_t *fire = NULL; 9029 mblk_t *copy_mp = NULL; 9030 boolean_t multirt_resolve_next; 9031 boolean_t unspec_src; 9032 ipaddr_t ipha_dst; 9033 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9034 9035 /* 9036 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9037 * here for uniformity 9038 */ 9039 ipif_refhold(ipif); 9040 9041 /* 9042 * This loop is run only once in most cases. 9043 * We loop to resolve further routes only when the destination 9044 * can be reached through multiple RTF_MULTIRT-flagged ires. 9045 */ 9046 do { 9047 if (dst_ill != NULL) { 9048 ill_refrele(dst_ill); 9049 dst_ill = NULL; 9050 } 9051 if (src_ipif != NULL) { 9052 ipif_refrele(src_ipif); 9053 src_ipif = NULL; 9054 } 9055 multirt_resolve_next = B_FALSE; 9056 9057 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9058 ipif->ipif_ill->ill_name)); 9059 9060 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9061 if (mctl_present) 9062 io = (ipsec_out_t *)first_mp->b_rptr; 9063 9064 ipha = (ipha_t *)mp->b_rptr; 9065 9066 /* 9067 * Save the packet destination address, we may need it after 9068 * the packet has been consumed. 9069 */ 9070 ipha_dst = ipha->ipha_dst; 9071 9072 /* 9073 * If the interface is a pt-pt interface we look for an 9074 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9075 * local_address and the pt-pt destination address. Otherwise 9076 * we just match the local address. 9077 * NOTE: dst could be different than ipha->ipha_dst in case 9078 * of sending igmp multicast packets over a point-to-point 9079 * connection. 9080 * Thus we must be careful enough to check ipha_dst to be a 9081 * multicast address, otherwise it will take xmit_if path for 9082 * multicast packets resulting into kernel stack overflow by 9083 * repeated calls to ip_newroute_ipif from ire_send(). 9084 */ 9085 if (CLASSD(ipha_dst) && 9086 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9087 goto err_ret; 9088 } 9089 9090 /* 9091 * We check if an IRE_OFFSUBNET for the addr that goes through 9092 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9093 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9094 * propagate its flags to the new ire. 9095 */ 9096 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9097 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9098 ip2dbg(("ip_newroute_ipif: " 9099 "ipif_lookup_multi_ire(" 9100 "ipif %p, dst %08x) = fire %p\n", 9101 (void *)ipif, ntohl(dst), (void *)fire)); 9102 } 9103 9104 if (mctl_present && io->ipsec_out_attach_if) { 9105 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9106 io->ipsec_out_ill_index, B_FALSE, ipst); 9107 9108 /* Failure case frees things for us. */ 9109 if (attach_ill == NULL) { 9110 ipif_refrele(ipif); 9111 if (fire != NULL) 9112 ire_refrele(fire); 9113 return; 9114 } 9115 9116 /* 9117 * Check if we need an ire that will not be 9118 * looked up by anybody else i.e. HIDDEN. 9119 */ 9120 if (ill_is_probeonly(attach_ill)) { 9121 ire_marks = IRE_MARK_HIDDEN; 9122 } 9123 /* 9124 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9125 * case. 9126 */ 9127 dst_ill = ipif->ipif_ill; 9128 /* attach_ill has been refheld by ip_grab_attach_ill */ 9129 ASSERT(dst_ill == attach_ill); 9130 } else { 9131 /* 9132 * If the interface belongs to an interface group, 9133 * make sure the next possible interface in the group 9134 * is used. This encourages load spreading among 9135 * peers in an interface group. 9136 * Note: load spreading is disabled for RTF_MULTIRT 9137 * routes. 9138 */ 9139 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9140 (fire->ire_flags & RTF_MULTIRT)) { 9141 /* 9142 * Don't perform outbound load spreading 9143 * in the case of an RTF_MULTIRT issued route, 9144 * we actually typically want to replicate 9145 * outgoing packets through particular 9146 * interfaces. 9147 */ 9148 dst_ill = ipif->ipif_ill; 9149 ill_refhold(dst_ill); 9150 } else { 9151 dst_ill = ip_newroute_get_dst_ill( 9152 ipif->ipif_ill); 9153 } 9154 if (dst_ill == NULL) { 9155 if (ip_debug > 2) { 9156 pr_addr_dbg("ip_newroute_ipif: " 9157 "no dst ill for dst %s\n", 9158 AF_INET, &dst); 9159 } 9160 goto err_ret; 9161 } 9162 } 9163 9164 /* 9165 * Pick a source address preferring non-deprecated ones. 9166 * Unlike ip_newroute, we don't do any source address 9167 * selection here since for multicast it really does not help 9168 * in inbound load spreading as in the unicast case. 9169 */ 9170 if ((flags & RTF_SETSRC) && (fire != NULL) && 9171 (fire->ire_flags & RTF_SETSRC)) { 9172 /* 9173 * As requested by flags, an IRE_OFFSUBNET was looked up 9174 * on that interface. This ire has RTF_SETSRC flag, so 9175 * the source address of the packet must be changed. 9176 * Check that the ipif matching the requested source 9177 * address still exists. 9178 */ 9179 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9180 zoneid, NULL, NULL, NULL, NULL, ipst); 9181 } 9182 9183 unspec_src = (connp != NULL && connp->conn_unspec_src); 9184 9185 if (((!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9186 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9187 (connp != NULL && ipif->ipif_zoneid != zoneid && 9188 ipif->ipif_zoneid != ALL_ZONES)) && 9189 (src_ipif == NULL) && 9190 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9191 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9192 if (src_ipif == NULL) { 9193 if (ip_debug > 2) { 9194 /* ip1dbg */ 9195 pr_addr_dbg("ip_newroute_ipif: " 9196 "no src for dst %s", 9197 AF_INET, &dst); 9198 } 9199 ip1dbg((" through interface %s\n", 9200 dst_ill->ill_name)); 9201 goto err_ret; 9202 } 9203 ipif_refrele(ipif); 9204 ipif = src_ipif; 9205 ipif_refhold(ipif); 9206 } 9207 if (src_ipif == NULL) { 9208 src_ipif = ipif; 9209 ipif_refhold(src_ipif); 9210 } 9211 9212 /* 9213 * Assign a source address while we have the conn. 9214 * We can't have ip_wput_ire pick a source address when the 9215 * packet returns from arp since conn_unspec_src might be set 9216 * and we lose the conn when going through arp. 9217 */ 9218 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9219 ipha->ipha_src = src_ipif->ipif_src_addr; 9220 9221 /* 9222 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9223 * that the outgoing interface does not have an interface ire. 9224 */ 9225 if (CLASSD(ipha_dst) && (connp == NULL || 9226 connp->conn_outgoing_ill == NULL) && 9227 infop->ip_opt_ill_index == 0) { 9228 /* ipif_to_ire returns an held ire */ 9229 ire = ipif_to_ire(ipif); 9230 if (ire == NULL) 9231 goto err_ret; 9232 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9233 goto err_ret; 9234 /* 9235 * ihandle is needed when the ire is added to 9236 * cache table. 9237 */ 9238 save_ire = ire; 9239 ihandle = save_ire->ire_ihandle; 9240 9241 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9242 "flags %04x\n", 9243 (void *)ire, (void *)ipif, flags)); 9244 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9245 (fire->ire_flags & RTF_MULTIRT)) { 9246 /* 9247 * As requested by flags, an IRE_OFFSUBNET was 9248 * looked up on that interface. This ire has 9249 * RTF_MULTIRT flag, so the resolution loop will 9250 * be re-entered to resolve additional routes on 9251 * other interfaces. For that purpose, a copy of 9252 * the packet is performed at this point. 9253 */ 9254 fire->ire_last_used_time = lbolt; 9255 copy_mp = copymsg(first_mp); 9256 if (copy_mp) { 9257 MULTIRT_DEBUG_TAG(copy_mp); 9258 } 9259 } 9260 if ((flags & RTF_SETSRC) && (fire != NULL) && 9261 (fire->ire_flags & RTF_SETSRC)) { 9262 /* 9263 * As requested by flags, an IRE_OFFSUBET was 9264 * looked up on that interface. This ire has 9265 * RTF_SETSRC flag, so the source address of the 9266 * packet must be changed. 9267 */ 9268 ipha->ipha_src = fire->ire_src_addr; 9269 } 9270 } else { 9271 ASSERT((connp == NULL) || 9272 (connp->conn_outgoing_ill != NULL) || 9273 (connp->conn_dontroute) || 9274 infop->ip_opt_ill_index != 0); 9275 /* 9276 * The only ways we can come here are: 9277 * 1) IP_BOUND_IF socket option is set 9278 * 2) SO_DONTROUTE socket option is set 9279 * 3) IP_PKTINFO option is passed in as ancillary data. 9280 * In all cases, the new ire will not be added 9281 * into cache table. 9282 */ 9283 ire_marks |= IRE_MARK_NOADD; 9284 } 9285 9286 switch (ipif->ipif_net_type) { 9287 case IRE_IF_NORESOLVER: { 9288 /* We have what we need to build an IRE_CACHE. */ 9289 9290 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9291 (dst_ill->ill_resolver_mp == NULL)) { 9292 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9293 "for IRE_IF_NORESOLVER ire %p has " 9294 "no ill_resolver_mp\n", 9295 (void *)dst_ill, (void *)ire)); 9296 break; 9297 } 9298 9299 /* 9300 * The new ire inherits the IRE_OFFSUBNET flags 9301 * and source address, if this was requested. 9302 */ 9303 ire = ire_create( 9304 (uchar_t *)&dst, /* dest address */ 9305 (uchar_t *)&ip_g_all_ones, /* mask */ 9306 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9307 NULL, /* gateway address */ 9308 &ipif->ipif_mtu, 9309 NULL, /* no src nce */ 9310 dst_ill->ill_rq, /* recv-from queue */ 9311 dst_ill->ill_wq, /* send-to queue */ 9312 IRE_CACHE, 9313 src_ipif, 9314 (save_ire != NULL ? save_ire->ire_mask : 0), 9315 (fire != NULL) ? /* Parent handle */ 9316 fire->ire_phandle : 0, 9317 ihandle, /* Interface handle */ 9318 (fire != NULL) ? 9319 (fire->ire_flags & 9320 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9321 (save_ire == NULL ? &ire_uinfo_null : 9322 &save_ire->ire_uinfo), 9323 NULL, 9324 NULL, 9325 ipst); 9326 9327 if (ire == NULL) { 9328 if (save_ire != NULL) 9329 ire_refrele(save_ire); 9330 break; 9331 } 9332 9333 ire->ire_marks |= ire_marks; 9334 9335 /* 9336 * If IRE_MARK_NOADD is set then we need to convert 9337 * the max_fragp to a useable value now. This is 9338 * normally done in ire_add_v[46]. We also need to 9339 * associate the ire with an nce (normally would be 9340 * done in ip_wput_nondata()). 9341 * 9342 * Note that IRE_MARK_NOADD packets created here 9343 * do not have a non-null ire_mp pointer. The null 9344 * value of ire_bucket indicates that they were 9345 * never added. 9346 */ 9347 if (ire->ire_marks & IRE_MARK_NOADD) { 9348 uint_t max_frag; 9349 9350 max_frag = *ire->ire_max_fragp; 9351 ire->ire_max_fragp = NULL; 9352 ire->ire_max_frag = max_frag; 9353 9354 if ((ire->ire_nce = ndp_lookup_v4( 9355 ire_to_ill(ire), 9356 (ire->ire_gateway_addr != INADDR_ANY ? 9357 &ire->ire_gateway_addr : &ire->ire_addr), 9358 B_FALSE)) == NULL) { 9359 if (save_ire != NULL) 9360 ire_refrele(save_ire); 9361 break; 9362 } 9363 ASSERT(ire->ire_nce->nce_state == 9364 ND_REACHABLE); 9365 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9366 } 9367 9368 /* Prevent save_ire from getting deleted */ 9369 if (save_ire != NULL) { 9370 IRB_REFHOLD(save_ire->ire_bucket); 9371 /* Has it been removed already ? */ 9372 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9373 IRB_REFRELE(save_ire->ire_bucket); 9374 ire_refrele(save_ire); 9375 break; 9376 } 9377 } 9378 9379 ire_add_then_send(q, ire, first_mp); 9380 9381 /* Assert that save_ire is not deleted yet. */ 9382 if (save_ire != NULL) { 9383 ASSERT(save_ire->ire_ptpn != NULL); 9384 IRB_REFRELE(save_ire->ire_bucket); 9385 ire_refrele(save_ire); 9386 save_ire = NULL; 9387 } 9388 if (fire != NULL) { 9389 ire_refrele(fire); 9390 fire = NULL; 9391 } 9392 9393 /* 9394 * the resolution loop is re-entered if this 9395 * was requested through flags and if we 9396 * actually are in a multirouting case. 9397 */ 9398 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9399 boolean_t need_resolve = 9400 ire_multirt_need_resolve(ipha_dst, 9401 MBLK_GETLABEL(copy_mp), ipst); 9402 if (!need_resolve) { 9403 MULTIRT_DEBUG_UNTAG(copy_mp); 9404 freemsg(copy_mp); 9405 copy_mp = NULL; 9406 } else { 9407 /* 9408 * ipif_lookup_group() calls 9409 * ire_lookup_multi() that uses 9410 * ire_ftable_lookup() to find 9411 * an IRE_INTERFACE for the group. 9412 * In the multirt case, 9413 * ire_lookup_multi() then invokes 9414 * ire_multirt_lookup() to find 9415 * the next resolvable ire. 9416 * As a result, we obtain an new 9417 * interface, derived from the 9418 * next ire. 9419 */ 9420 ipif_refrele(ipif); 9421 ipif = ipif_lookup_group(ipha_dst, 9422 zoneid, ipst); 9423 ip2dbg(("ip_newroute_ipif: " 9424 "multirt dst %08x, ipif %p\n", 9425 htonl(dst), (void *)ipif)); 9426 if (ipif != NULL) { 9427 mp = copy_mp; 9428 copy_mp = NULL; 9429 multirt_resolve_next = B_TRUE; 9430 continue; 9431 } else { 9432 freemsg(copy_mp); 9433 } 9434 } 9435 } 9436 if (ipif != NULL) 9437 ipif_refrele(ipif); 9438 ill_refrele(dst_ill); 9439 ipif_refrele(src_ipif); 9440 return; 9441 } 9442 case IRE_IF_RESOLVER: 9443 /* 9444 * We can't build an IRE_CACHE yet, but at least 9445 * we found a resolver that can help. 9446 */ 9447 res_mp = dst_ill->ill_resolver_mp; 9448 if (!OK_RESOLVER_MP(res_mp)) 9449 break; 9450 9451 /* 9452 * We obtain a partial IRE_CACHE which we will pass 9453 * along with the resolver query. When the response 9454 * comes back it will be there ready for us to add. 9455 * The new ire inherits the IRE_OFFSUBNET flags 9456 * and source address, if this was requested. 9457 * The ire_max_frag is atomically set under the 9458 * irebucket lock in ire_add_v[46]. Only in the 9459 * case of IRE_MARK_NOADD, we set it here itself. 9460 */ 9461 ire = ire_create_mp( 9462 (uchar_t *)&dst, /* dest address */ 9463 (uchar_t *)&ip_g_all_ones, /* mask */ 9464 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9465 NULL, /* gateway address */ 9466 (ire_marks & IRE_MARK_NOADD) ? 9467 ipif->ipif_mtu : 0, /* max_frag */ 9468 NULL, /* no src nce */ 9469 dst_ill->ill_rq, /* recv-from queue */ 9470 dst_ill->ill_wq, /* send-to queue */ 9471 IRE_CACHE, 9472 src_ipif, 9473 (save_ire != NULL ? save_ire->ire_mask : 0), 9474 (fire != NULL) ? /* Parent handle */ 9475 fire->ire_phandle : 0, 9476 ihandle, /* Interface handle */ 9477 (fire != NULL) ? /* flags if any */ 9478 (fire->ire_flags & 9479 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9480 (save_ire == NULL ? &ire_uinfo_null : 9481 &save_ire->ire_uinfo), 9482 NULL, 9483 NULL, 9484 ipst); 9485 9486 if (save_ire != NULL) { 9487 ire_refrele(save_ire); 9488 save_ire = NULL; 9489 } 9490 if (ire == NULL) 9491 break; 9492 9493 ire->ire_marks |= ire_marks; 9494 /* 9495 * Construct message chain for the resolver of the 9496 * form: 9497 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9498 * 9499 * NOTE : ire will be added later when the response 9500 * comes back from ARP. If the response does not 9501 * come back, ARP frees the packet. For this reason, 9502 * we can't REFHOLD the bucket of save_ire to prevent 9503 * deletions. We may not be able to REFRELE the 9504 * bucket if the response never comes back. 9505 * Thus, before adding the ire, ire_add_v4 will make 9506 * sure that the interface route does not get deleted. 9507 * This is the only case unlike ip_newroute_v6, 9508 * ip_newroute_ipif_v6 where we can always prevent 9509 * deletions because ire_add_then_send is called after 9510 * creating the IRE. 9511 * If IRE_MARK_NOADD is set, then ire_add_then_send 9512 * does not add this IRE into the IRE CACHE. 9513 */ 9514 ASSERT(ire->ire_mp != NULL); 9515 ire->ire_mp->b_cont = first_mp; 9516 /* Have saved_mp handy, for cleanup if canput fails */ 9517 saved_mp = mp; 9518 mp = copyb(res_mp); 9519 if (mp == NULL) { 9520 /* Prepare for cleanup */ 9521 mp = saved_mp; /* pkt */ 9522 ire_delete(ire); /* ire_mp */ 9523 ire = NULL; 9524 if (copy_mp != NULL) { 9525 MULTIRT_DEBUG_UNTAG(copy_mp); 9526 freemsg(copy_mp); 9527 copy_mp = NULL; 9528 } 9529 break; 9530 } 9531 linkb(mp, ire->ire_mp); 9532 9533 /* 9534 * Fill in the source and dest addrs for the resolver. 9535 * NOTE: this depends on memory layouts imposed by 9536 * ill_init(). 9537 */ 9538 areq = (areq_t *)mp->b_rptr; 9539 addrp = (ipaddr_t *)((char *)areq + 9540 areq->areq_sender_addr_offset); 9541 *addrp = ire->ire_src_addr; 9542 addrp = (ipaddr_t *)((char *)areq + 9543 areq->areq_target_addr_offset); 9544 *addrp = dst; 9545 /* Up to the resolver. */ 9546 if (canputnext(dst_ill->ill_rq) && 9547 !(dst_ill->ill_arp_closing)) { 9548 putnext(dst_ill->ill_rq, mp); 9549 /* 9550 * The response will come back in ip_wput 9551 * with db_type IRE_DB_TYPE. 9552 */ 9553 } else { 9554 mp->b_cont = NULL; 9555 freeb(mp); /* areq */ 9556 ire_delete(ire); /* ire_mp */ 9557 saved_mp->b_next = NULL; 9558 saved_mp->b_prev = NULL; 9559 freemsg(first_mp); /* pkt */ 9560 ip2dbg(("ip_newroute_ipif: dropped\n")); 9561 } 9562 9563 if (fire != NULL) { 9564 ire_refrele(fire); 9565 fire = NULL; 9566 } 9567 9568 9569 /* 9570 * The resolution loop is re-entered if this was 9571 * requested through flags and we actually are 9572 * in a multirouting case. 9573 */ 9574 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9575 boolean_t need_resolve = 9576 ire_multirt_need_resolve(ipha_dst, 9577 MBLK_GETLABEL(copy_mp), ipst); 9578 if (!need_resolve) { 9579 MULTIRT_DEBUG_UNTAG(copy_mp); 9580 freemsg(copy_mp); 9581 copy_mp = NULL; 9582 } else { 9583 /* 9584 * ipif_lookup_group() calls 9585 * ire_lookup_multi() that uses 9586 * ire_ftable_lookup() to find 9587 * an IRE_INTERFACE for the group. 9588 * In the multirt case, 9589 * ire_lookup_multi() then invokes 9590 * ire_multirt_lookup() to find 9591 * the next resolvable ire. 9592 * As a result, we obtain an new 9593 * interface, derived from the 9594 * next ire. 9595 */ 9596 ipif_refrele(ipif); 9597 ipif = ipif_lookup_group(ipha_dst, 9598 zoneid, ipst); 9599 if (ipif != NULL) { 9600 mp = copy_mp; 9601 copy_mp = NULL; 9602 multirt_resolve_next = B_TRUE; 9603 continue; 9604 } else { 9605 freemsg(copy_mp); 9606 } 9607 } 9608 } 9609 if (ipif != NULL) 9610 ipif_refrele(ipif); 9611 ill_refrele(dst_ill); 9612 ipif_refrele(src_ipif); 9613 return; 9614 default: 9615 break; 9616 } 9617 } while (multirt_resolve_next); 9618 9619 err_ret: 9620 ip2dbg(("ip_newroute_ipif: dropped\n")); 9621 if (fire != NULL) 9622 ire_refrele(fire); 9623 ipif_refrele(ipif); 9624 /* Did this packet originate externally? */ 9625 if (dst_ill != NULL) 9626 ill_refrele(dst_ill); 9627 if (src_ipif != NULL) 9628 ipif_refrele(src_ipif); 9629 if (mp->b_prev || mp->b_next) { 9630 mp->b_next = NULL; 9631 mp->b_prev = NULL; 9632 } else { 9633 /* 9634 * Since ip_wput() isn't close to finished, we fill 9635 * in enough of the header for credible error reporting. 9636 */ 9637 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9638 /* Failed */ 9639 freemsg(first_mp); 9640 if (ire != NULL) 9641 ire_refrele(ire); 9642 return; 9643 } 9644 } 9645 /* 9646 * At this point we will have ire only if RTF_BLACKHOLE 9647 * or RTF_REJECT flags are set on the IRE. It will not 9648 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9649 */ 9650 if (ire != NULL) { 9651 if (ire->ire_flags & RTF_BLACKHOLE) { 9652 ire_refrele(ire); 9653 freemsg(first_mp); 9654 return; 9655 } 9656 ire_refrele(ire); 9657 } 9658 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9659 } 9660 9661 /* Name/Value Table Lookup Routine */ 9662 char * 9663 ip_nv_lookup(nv_t *nv, int value) 9664 { 9665 if (!nv) 9666 return (NULL); 9667 for (; nv->nv_name; nv++) { 9668 if (nv->nv_value == value) 9669 return (nv->nv_name); 9670 } 9671 return ("unknown"); 9672 } 9673 9674 /* 9675 * This is a module open, i.e. this is a control stream for access 9676 * to a DLPI device. We allocate an ill_t as the instance data in 9677 * this case. 9678 */ 9679 int 9680 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9681 { 9682 ill_t *ill; 9683 int err; 9684 zoneid_t zoneid; 9685 netstack_t *ns; 9686 ip_stack_t *ipst; 9687 9688 /* 9689 * Prevent unprivileged processes from pushing IP so that 9690 * they can't send raw IP. 9691 */ 9692 if (secpolicy_net_rawaccess(credp) != 0) 9693 return (EPERM); 9694 9695 ns = netstack_find_by_cred(credp); 9696 ASSERT(ns != NULL); 9697 ipst = ns->netstack_ip; 9698 ASSERT(ipst != NULL); 9699 9700 /* 9701 * For exclusive stacks we set the zoneid to zero 9702 * to make IP operate as if in the global zone. 9703 */ 9704 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9705 zoneid = GLOBAL_ZONEID; 9706 else 9707 zoneid = crgetzoneid(credp); 9708 9709 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9710 q->q_ptr = WR(q)->q_ptr = ill; 9711 ill->ill_ipst = ipst; 9712 ill->ill_zoneid = zoneid; 9713 9714 /* 9715 * ill_init initializes the ill fields and then sends down 9716 * down a DL_INFO_REQ after calling qprocson. 9717 */ 9718 err = ill_init(q, ill); 9719 if (err != 0) { 9720 mi_free(ill); 9721 netstack_rele(ipst->ips_netstack); 9722 q->q_ptr = NULL; 9723 WR(q)->q_ptr = NULL; 9724 return (err); 9725 } 9726 9727 /* ill_init initializes the ipsq marking this thread as writer */ 9728 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9729 /* Wait for the DL_INFO_ACK */ 9730 mutex_enter(&ill->ill_lock); 9731 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9732 /* 9733 * Return value of 0 indicates a pending signal. 9734 */ 9735 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9736 if (err == 0) { 9737 mutex_exit(&ill->ill_lock); 9738 (void) ip_close(q, 0); 9739 return (EINTR); 9740 } 9741 } 9742 mutex_exit(&ill->ill_lock); 9743 9744 /* 9745 * ip_rput_other could have set an error in ill_error on 9746 * receipt of M_ERROR. 9747 */ 9748 9749 err = ill->ill_error; 9750 if (err != 0) { 9751 (void) ip_close(q, 0); 9752 return (err); 9753 } 9754 9755 ill->ill_credp = credp; 9756 crhold(credp); 9757 9758 mutex_enter(&ipst->ips_ip_mi_lock); 9759 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9760 credp); 9761 mutex_exit(&ipst->ips_ip_mi_lock); 9762 if (err) { 9763 (void) ip_close(q, 0); 9764 return (err); 9765 } 9766 return (0); 9767 } 9768 9769 /* For /dev/ip aka AF_INET open */ 9770 int 9771 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9772 { 9773 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9774 } 9775 9776 /* For /dev/ip6 aka AF_INET6 open */ 9777 int 9778 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9779 { 9780 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9781 } 9782 9783 /* IP open routine. */ 9784 int 9785 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9786 boolean_t isv6) 9787 { 9788 conn_t *connp; 9789 major_t maj; 9790 zoneid_t zoneid; 9791 netstack_t *ns; 9792 ip_stack_t *ipst; 9793 9794 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9795 9796 /* Allow reopen. */ 9797 if (q->q_ptr != NULL) 9798 return (0); 9799 9800 if (sflag & MODOPEN) { 9801 /* This is a module open */ 9802 return (ip_modopen(q, devp, flag, sflag, credp)); 9803 } 9804 9805 ns = netstack_find_by_cred(credp); 9806 ASSERT(ns != NULL); 9807 ipst = ns->netstack_ip; 9808 ASSERT(ipst != NULL); 9809 9810 /* 9811 * For exclusive stacks we set the zoneid to zero 9812 * to make IP operate as if in the global zone. 9813 */ 9814 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9815 zoneid = GLOBAL_ZONEID; 9816 else 9817 zoneid = crgetzoneid(credp); 9818 9819 /* 9820 * We are opening as a device. This is an IP client stream, and we 9821 * allocate an conn_t as the instance data. 9822 */ 9823 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9824 9825 /* 9826 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9827 * done by netstack_find_by_cred() 9828 */ 9829 netstack_rele(ipst->ips_netstack); 9830 9831 connp->conn_zoneid = zoneid; 9832 9833 connp->conn_upq = q; 9834 q->q_ptr = WR(q)->q_ptr = connp; 9835 9836 if (flag & SO_SOCKSTR) 9837 connp->conn_flags |= IPCL_SOCKET; 9838 9839 /* Minor tells us which /dev entry was opened */ 9840 if (isv6) { 9841 connp->conn_flags |= IPCL_ISV6; 9842 connp->conn_af_isv6 = B_TRUE; 9843 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9844 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9845 } else { 9846 connp->conn_af_isv6 = B_FALSE; 9847 connp->conn_pkt_isv6 = B_FALSE; 9848 } 9849 9850 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9851 /* CONN_DEC_REF takes care of netstack_rele() */ 9852 q->q_ptr = WR(q)->q_ptr = NULL; 9853 CONN_DEC_REF(connp); 9854 return (EBUSY); 9855 } 9856 9857 maj = getemajor(*devp); 9858 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9859 9860 /* 9861 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9862 */ 9863 connp->conn_cred = credp; 9864 9865 /* 9866 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9867 */ 9868 connp->conn_recv = ip_conn_input; 9869 9870 crhold(connp->conn_cred); 9871 9872 /* 9873 * If the caller has the process-wide flag set, then default to MAC 9874 * exempt mode. This allows read-down to unlabeled hosts. 9875 */ 9876 if (getpflags(NET_MAC_AWARE, credp) != 0) 9877 connp->conn_mac_exempt = B_TRUE; 9878 9879 connp->conn_rq = q; 9880 connp->conn_wq = WR(q); 9881 9882 /* Non-zero default values */ 9883 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9884 9885 /* 9886 * Make the conn globally visible to walkers 9887 */ 9888 ASSERT(connp->conn_ref == 1); 9889 mutex_enter(&connp->conn_lock); 9890 connp->conn_state_flags &= ~CONN_INCIPIENT; 9891 mutex_exit(&connp->conn_lock); 9892 9893 qprocson(q); 9894 9895 return (0); 9896 } 9897 9898 /* 9899 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9900 * Note that there is no race since either ip_output function works - it 9901 * is just an optimization to enter the best ip_output routine directly. 9902 */ 9903 void 9904 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9905 ip_stack_t *ipst) 9906 { 9907 if (isv6) { 9908 if (bump_mib) { 9909 BUMP_MIB(&ipst->ips_ip6_mib, 9910 ipIfStatsOutSwitchIPVersion); 9911 } 9912 connp->conn_send = ip_output_v6; 9913 connp->conn_pkt_isv6 = B_TRUE; 9914 } else { 9915 if (bump_mib) { 9916 BUMP_MIB(&ipst->ips_ip_mib, 9917 ipIfStatsOutSwitchIPVersion); 9918 } 9919 connp->conn_send = ip_output; 9920 connp->conn_pkt_isv6 = B_FALSE; 9921 } 9922 9923 } 9924 9925 /* 9926 * See if IPsec needs loading because of the options in mp. 9927 */ 9928 static boolean_t 9929 ipsec_opt_present(mblk_t *mp) 9930 { 9931 uint8_t *optcp, *next_optcp, *opt_endcp; 9932 struct opthdr *opt; 9933 struct T_opthdr *topt; 9934 int opthdr_len; 9935 t_uscalar_t optname, optlevel; 9936 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9937 ipsec_req_t *ipsr; 9938 9939 /* 9940 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9941 * return TRUE. 9942 */ 9943 9944 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9945 opt_endcp = optcp + tor->OPT_length; 9946 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9947 opthdr_len = sizeof (struct T_opthdr); 9948 } else { /* O_OPTMGMT_REQ */ 9949 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9950 opthdr_len = sizeof (struct opthdr); 9951 } 9952 for (; optcp < opt_endcp; optcp = next_optcp) { 9953 if (optcp + opthdr_len > opt_endcp) 9954 return (B_FALSE); /* Not enough option header. */ 9955 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9956 topt = (struct T_opthdr *)optcp; 9957 optlevel = topt->level; 9958 optname = topt->name; 9959 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9960 } else { 9961 opt = (struct opthdr *)optcp; 9962 optlevel = opt->level; 9963 optname = opt->name; 9964 next_optcp = optcp + opthdr_len + 9965 _TPI_ALIGN_OPT(opt->len); 9966 } 9967 if ((next_optcp < optcp) || /* wraparound pointer space */ 9968 ((next_optcp >= opt_endcp) && /* last option bad len */ 9969 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9970 return (B_FALSE); /* bad option buffer */ 9971 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9972 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9973 /* 9974 * Check to see if it's an all-bypass or all-zeroes 9975 * IPsec request. Don't bother loading IPsec if 9976 * the socket doesn't want to use it. (A good example 9977 * is a bypass request.) 9978 * 9979 * Basically, if any of the non-NEVER bits are set, 9980 * load IPsec. 9981 */ 9982 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9983 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9984 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9985 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9986 != 0) 9987 return (B_TRUE); 9988 } 9989 } 9990 return (B_FALSE); 9991 } 9992 9993 /* 9994 * If conn is is waiting for ipsec to finish loading, kick it. 9995 */ 9996 /* ARGSUSED */ 9997 static void 9998 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9999 { 10000 t_scalar_t optreq_prim; 10001 mblk_t *mp; 10002 cred_t *cr; 10003 int err = 0; 10004 10005 /* 10006 * This function is called, after ipsec loading is complete. 10007 * Since IP checks exclusively and atomically (i.e it prevents 10008 * ipsec load from completing until ip_optcom_req completes) 10009 * whether ipsec load is complete, there cannot be a race with IP 10010 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10011 */ 10012 mutex_enter(&connp->conn_lock); 10013 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10014 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10015 mp = connp->conn_ipsec_opt_mp; 10016 connp->conn_ipsec_opt_mp = NULL; 10017 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10018 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10019 mutex_exit(&connp->conn_lock); 10020 10021 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10022 10023 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10024 if (optreq_prim == T_OPTMGMT_REQ) { 10025 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10026 &ip_opt_obj, B_FALSE); 10027 } else { 10028 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10029 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10030 &ip_opt_obj, B_FALSE); 10031 } 10032 if (err != EINPROGRESS) 10033 CONN_OPER_PENDING_DONE(connp); 10034 return; 10035 } 10036 mutex_exit(&connp->conn_lock); 10037 } 10038 10039 /* 10040 * Called from the ipsec_loader thread, outside any perimeter, to tell 10041 * ip qenable any of the queues waiting for the ipsec loader to 10042 * complete. 10043 */ 10044 void 10045 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10046 { 10047 netstack_t *ns = ipss->ipsec_netstack; 10048 10049 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10050 } 10051 10052 /* 10053 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10054 * determines the grp on which it has to become exclusive, queues the mp 10055 * and sq draining restarts the optmgmt 10056 */ 10057 static boolean_t 10058 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10059 { 10060 conn_t *connp = Q_TO_CONN(q); 10061 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10062 10063 /* 10064 * Take IPsec requests and treat them special. 10065 */ 10066 if (ipsec_opt_present(mp)) { 10067 /* First check if IPsec is loaded. */ 10068 mutex_enter(&ipss->ipsec_loader_lock); 10069 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10070 mutex_exit(&ipss->ipsec_loader_lock); 10071 return (B_FALSE); 10072 } 10073 mutex_enter(&connp->conn_lock); 10074 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10075 10076 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10077 connp->conn_ipsec_opt_mp = mp; 10078 mutex_exit(&connp->conn_lock); 10079 mutex_exit(&ipss->ipsec_loader_lock); 10080 10081 ipsec_loader_loadnow(ipss); 10082 return (B_TRUE); 10083 } 10084 return (B_FALSE); 10085 } 10086 10087 /* 10088 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10089 * all of them are copied to the conn_t. If the req is "zero", the policy is 10090 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10091 * fields. 10092 * We keep only the latest setting of the policy and thus policy setting 10093 * is not incremental/cumulative. 10094 * 10095 * Requests to set policies with multiple alternative actions will 10096 * go through a different API. 10097 */ 10098 int 10099 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10100 { 10101 uint_t ah_req = 0; 10102 uint_t esp_req = 0; 10103 uint_t se_req = 0; 10104 ipsec_selkey_t sel; 10105 ipsec_act_t *actp = NULL; 10106 uint_t nact; 10107 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10108 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10109 ipsec_policy_root_t *pr; 10110 ipsec_policy_head_t *ph; 10111 int fam; 10112 boolean_t is_pol_reset; 10113 int error = 0; 10114 netstack_t *ns = connp->conn_netstack; 10115 ip_stack_t *ipst = ns->netstack_ip; 10116 ipsec_stack_t *ipss = ns->netstack_ipsec; 10117 10118 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10119 10120 /* 10121 * The IP_SEC_OPT option does not allow variable length parameters, 10122 * hence a request cannot be NULL. 10123 */ 10124 if (req == NULL) 10125 return (EINVAL); 10126 10127 ah_req = req->ipsr_ah_req; 10128 esp_req = req->ipsr_esp_req; 10129 se_req = req->ipsr_self_encap_req; 10130 10131 /* 10132 * Are we dealing with a request to reset the policy (i.e. 10133 * zero requests). 10134 */ 10135 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10136 (esp_req & REQ_MASK) == 0 && 10137 (se_req & REQ_MASK) == 0); 10138 10139 if (!is_pol_reset) { 10140 /* 10141 * If we couldn't load IPsec, fail with "protocol 10142 * not supported". 10143 * IPsec may not have been loaded for a request with zero 10144 * policies, so we don't fail in this case. 10145 */ 10146 mutex_enter(&ipss->ipsec_loader_lock); 10147 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10148 mutex_exit(&ipss->ipsec_loader_lock); 10149 return (EPROTONOSUPPORT); 10150 } 10151 mutex_exit(&ipss->ipsec_loader_lock); 10152 10153 /* 10154 * Test for valid requests. Invalid algorithms 10155 * need to be tested by IPsec code because new 10156 * algorithms can be added dynamically. 10157 */ 10158 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10159 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10160 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10161 return (EINVAL); 10162 } 10163 10164 /* 10165 * Only privileged users can issue these 10166 * requests. 10167 */ 10168 if (((ah_req & IPSEC_PREF_NEVER) || 10169 (esp_req & IPSEC_PREF_NEVER) || 10170 (se_req & IPSEC_PREF_NEVER)) && 10171 secpolicy_ip_config(cr, B_FALSE) != 0) { 10172 return (EPERM); 10173 } 10174 10175 /* 10176 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10177 * are mutually exclusive. 10178 */ 10179 if (((ah_req & REQ_MASK) == REQ_MASK) || 10180 ((esp_req & REQ_MASK) == REQ_MASK) || 10181 ((se_req & REQ_MASK) == REQ_MASK)) { 10182 /* Both of them are set */ 10183 return (EINVAL); 10184 } 10185 } 10186 10187 mutex_enter(&connp->conn_lock); 10188 10189 /* 10190 * If we have already cached policies in ip_bind_connected*(), don't 10191 * let them change now. We cache policies for connections 10192 * whose src,dst [addr, port] is known. 10193 */ 10194 if (connp->conn_policy_cached) { 10195 mutex_exit(&connp->conn_lock); 10196 return (EINVAL); 10197 } 10198 10199 /* 10200 * We have a zero policies, reset the connection policy if already 10201 * set. This will cause the connection to inherit the 10202 * global policy, if any. 10203 */ 10204 if (is_pol_reset) { 10205 if (connp->conn_policy != NULL) { 10206 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10207 connp->conn_policy = NULL; 10208 } 10209 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10210 connp->conn_in_enforce_policy = B_FALSE; 10211 connp->conn_out_enforce_policy = B_FALSE; 10212 mutex_exit(&connp->conn_lock); 10213 return (0); 10214 } 10215 10216 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10217 ipst->ips_netstack); 10218 if (ph == NULL) 10219 goto enomem; 10220 10221 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10222 if (actp == NULL) 10223 goto enomem; 10224 10225 /* 10226 * Always allocate IPv4 policy entries, since they can also 10227 * apply to ipv6 sockets being used in ipv4-compat mode. 10228 */ 10229 bzero(&sel, sizeof (sel)); 10230 sel.ipsl_valid = IPSL_IPV4; 10231 10232 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10233 ipst->ips_netstack); 10234 if (pin4 == NULL) 10235 goto enomem; 10236 10237 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10238 ipst->ips_netstack); 10239 if (pout4 == NULL) 10240 goto enomem; 10241 10242 if (connp->conn_af_isv6) { 10243 /* 10244 * We're looking at a v6 socket, also allocate the 10245 * v6-specific entries... 10246 */ 10247 sel.ipsl_valid = IPSL_IPV6; 10248 pin6 = ipsec_policy_create(&sel, actp, nact, 10249 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10250 if (pin6 == NULL) 10251 goto enomem; 10252 10253 pout6 = ipsec_policy_create(&sel, actp, nact, 10254 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10255 if (pout6 == NULL) 10256 goto enomem; 10257 10258 /* 10259 * .. and file them away in the right place. 10260 */ 10261 fam = IPSEC_AF_V6; 10262 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10263 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10264 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10265 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10266 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10267 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10268 } 10269 10270 ipsec_actvec_free(actp, nact); 10271 10272 /* 10273 * File the v4 policies. 10274 */ 10275 fam = IPSEC_AF_V4; 10276 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10277 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10278 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10279 10280 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10281 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10282 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10283 10284 /* 10285 * If the requests need security, set enforce_policy. 10286 * If the requests are IPSEC_PREF_NEVER, one should 10287 * still set conn_out_enforce_policy so that an ipsec_out 10288 * gets attached in ip_wput. This is needed so that 10289 * for connections that we don't cache policy in ip_bind, 10290 * if global policy matches in ip_wput_attach_policy, we 10291 * don't wrongly inherit global policy. Similarly, we need 10292 * to set conn_in_enforce_policy also so that we don't verify 10293 * policy wrongly. 10294 */ 10295 if ((ah_req & REQ_MASK) != 0 || 10296 (esp_req & REQ_MASK) != 0 || 10297 (se_req & REQ_MASK) != 0) { 10298 connp->conn_in_enforce_policy = B_TRUE; 10299 connp->conn_out_enforce_policy = B_TRUE; 10300 connp->conn_flags |= IPCL_CHECK_POLICY; 10301 } 10302 10303 mutex_exit(&connp->conn_lock); 10304 return (error); 10305 #undef REQ_MASK 10306 10307 /* 10308 * Common memory-allocation-failure exit path. 10309 */ 10310 enomem: 10311 mutex_exit(&connp->conn_lock); 10312 if (actp != NULL) 10313 ipsec_actvec_free(actp, nact); 10314 if (pin4 != NULL) 10315 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10316 if (pout4 != NULL) 10317 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10318 if (pin6 != NULL) 10319 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10320 if (pout6 != NULL) 10321 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10322 return (ENOMEM); 10323 } 10324 10325 /* 10326 * Only for options that pass in an IP addr. Currently only V4 options 10327 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10328 * So this function assumes level is IPPROTO_IP 10329 */ 10330 int 10331 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10332 mblk_t *first_mp) 10333 { 10334 ipif_t *ipif = NULL; 10335 int error; 10336 ill_t *ill; 10337 int zoneid; 10338 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10339 10340 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10341 10342 if (addr != INADDR_ANY || checkonly) { 10343 ASSERT(connp != NULL); 10344 zoneid = IPCL_ZONEID(connp); 10345 if (option == IP_NEXTHOP) { 10346 ipif = ipif_lookup_onlink_addr(addr, 10347 connp->conn_zoneid, ipst); 10348 } else { 10349 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10350 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10351 &error, ipst); 10352 } 10353 if (ipif == NULL) { 10354 if (error == EINPROGRESS) 10355 return (error); 10356 else if ((option == IP_MULTICAST_IF) || 10357 (option == IP_NEXTHOP)) 10358 return (EHOSTUNREACH); 10359 else 10360 return (EINVAL); 10361 } else if (checkonly) { 10362 if (option == IP_MULTICAST_IF) { 10363 ill = ipif->ipif_ill; 10364 /* not supported by the virtual network iface */ 10365 if (IS_VNI(ill)) { 10366 ipif_refrele(ipif); 10367 return (EINVAL); 10368 } 10369 } 10370 ipif_refrele(ipif); 10371 return (0); 10372 } 10373 ill = ipif->ipif_ill; 10374 mutex_enter(&connp->conn_lock); 10375 mutex_enter(&ill->ill_lock); 10376 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10377 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10378 mutex_exit(&ill->ill_lock); 10379 mutex_exit(&connp->conn_lock); 10380 ipif_refrele(ipif); 10381 return (option == IP_MULTICAST_IF ? 10382 EHOSTUNREACH : EINVAL); 10383 } 10384 } else { 10385 mutex_enter(&connp->conn_lock); 10386 } 10387 10388 /* None of the options below are supported on the VNI */ 10389 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10390 mutex_exit(&ill->ill_lock); 10391 mutex_exit(&connp->conn_lock); 10392 ipif_refrele(ipif); 10393 return (EINVAL); 10394 } 10395 10396 switch (option) { 10397 case IP_DONTFAILOVER_IF: 10398 /* 10399 * This option is used by in.mpathd to ensure 10400 * that IPMP probe packets only go out on the 10401 * test interfaces. in.mpathd sets this option 10402 * on the non-failover interfaces. 10403 * For backward compatibility, this option 10404 * implicitly sets IP_MULTICAST_IF, as used 10405 * be done in bind(), so that ip_wput gets 10406 * this ipif to send mcast packets. 10407 */ 10408 if (ipif != NULL) { 10409 ASSERT(addr != INADDR_ANY); 10410 connp->conn_nofailover_ill = ipif->ipif_ill; 10411 connp->conn_multicast_ipif = ipif; 10412 } else { 10413 ASSERT(addr == INADDR_ANY); 10414 connp->conn_nofailover_ill = NULL; 10415 connp->conn_multicast_ipif = NULL; 10416 } 10417 break; 10418 10419 case IP_MULTICAST_IF: 10420 connp->conn_multicast_ipif = ipif; 10421 break; 10422 case IP_NEXTHOP: 10423 connp->conn_nexthop_v4 = addr; 10424 connp->conn_nexthop_set = B_TRUE; 10425 break; 10426 } 10427 10428 if (ipif != NULL) { 10429 mutex_exit(&ill->ill_lock); 10430 mutex_exit(&connp->conn_lock); 10431 ipif_refrele(ipif); 10432 return (0); 10433 } 10434 mutex_exit(&connp->conn_lock); 10435 /* We succeded in cleared the option */ 10436 return (0); 10437 } 10438 10439 /* 10440 * For options that pass in an ifindex specifying the ill. V6 options always 10441 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10442 */ 10443 int 10444 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10445 int level, int option, mblk_t *first_mp) 10446 { 10447 ill_t *ill = NULL; 10448 int error = 0; 10449 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10450 10451 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10452 if (ifindex != 0) { 10453 ASSERT(connp != NULL); 10454 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10455 first_mp, ip_restart_optmgmt, &error, ipst); 10456 if (ill != NULL) { 10457 if (checkonly) { 10458 /* not supported by the virtual network iface */ 10459 if (IS_VNI(ill)) { 10460 ill_refrele(ill); 10461 return (EINVAL); 10462 } 10463 ill_refrele(ill); 10464 return (0); 10465 } 10466 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10467 0, NULL)) { 10468 ill_refrele(ill); 10469 ill = NULL; 10470 mutex_enter(&connp->conn_lock); 10471 goto setit; 10472 } 10473 mutex_enter(&connp->conn_lock); 10474 mutex_enter(&ill->ill_lock); 10475 if (ill->ill_state_flags & ILL_CONDEMNED) { 10476 mutex_exit(&ill->ill_lock); 10477 mutex_exit(&connp->conn_lock); 10478 ill_refrele(ill); 10479 ill = NULL; 10480 mutex_enter(&connp->conn_lock); 10481 } 10482 goto setit; 10483 } else if (error == EINPROGRESS) { 10484 return (error); 10485 } else { 10486 error = 0; 10487 } 10488 } 10489 mutex_enter(&connp->conn_lock); 10490 setit: 10491 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10492 10493 /* 10494 * The options below assume that the ILL (if any) transmits and/or 10495 * receives traffic. Neither of which is true for the virtual network 10496 * interface, so fail setting these on a VNI. 10497 */ 10498 if (IS_VNI(ill)) { 10499 ASSERT(ill != NULL); 10500 mutex_exit(&ill->ill_lock); 10501 mutex_exit(&connp->conn_lock); 10502 ill_refrele(ill); 10503 return (EINVAL); 10504 } 10505 10506 if (level == IPPROTO_IP) { 10507 switch (option) { 10508 case IP_BOUND_IF: 10509 connp->conn_incoming_ill = ill; 10510 connp->conn_outgoing_ill = ill; 10511 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10512 0 : ifindex; 10513 break; 10514 10515 case IP_MULTICAST_IF: 10516 /* 10517 * This option is an internal special. The socket 10518 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10519 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10520 * specifies an ifindex and we try first on V6 ill's. 10521 * If we don't find one, we they try using on v4 ill's 10522 * intenally and we come here. 10523 */ 10524 if (!checkonly && ill != NULL) { 10525 ipif_t *ipif; 10526 ipif = ill->ill_ipif; 10527 10528 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10529 mutex_exit(&ill->ill_lock); 10530 mutex_exit(&connp->conn_lock); 10531 ill_refrele(ill); 10532 ill = NULL; 10533 mutex_enter(&connp->conn_lock); 10534 } else { 10535 connp->conn_multicast_ipif = ipif; 10536 } 10537 } 10538 break; 10539 10540 case IP_DHCPINIT_IF: 10541 if (connp->conn_dhcpinit_ill != NULL) { 10542 /* 10543 * We've locked the conn so conn_cleanup_ill() 10544 * cannot clear conn_dhcpinit_ill -- so it's 10545 * safe to access the ill. 10546 */ 10547 ill_t *oill = connp->conn_dhcpinit_ill; 10548 10549 ASSERT(oill->ill_dhcpinit != 0); 10550 atomic_dec_32(&oill->ill_dhcpinit); 10551 connp->conn_dhcpinit_ill = NULL; 10552 } 10553 10554 if (ill != NULL) { 10555 connp->conn_dhcpinit_ill = ill; 10556 atomic_inc_32(&ill->ill_dhcpinit); 10557 } 10558 break; 10559 } 10560 } else { 10561 switch (option) { 10562 case IPV6_BOUND_IF: 10563 connp->conn_incoming_ill = ill; 10564 connp->conn_outgoing_ill = ill; 10565 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10566 0 : ifindex; 10567 break; 10568 10569 case IPV6_BOUND_PIF: 10570 /* 10571 * Limit all transmit to this ill. 10572 * Unlike IPV6_BOUND_IF, using this option 10573 * prevents load spreading and failover from 10574 * happening when the interface is part of the 10575 * group. That's why we don't need to remember 10576 * the ifindex in orig_bound_ifindex as in 10577 * IPV6_BOUND_IF. 10578 */ 10579 connp->conn_outgoing_pill = ill; 10580 break; 10581 10582 case IPV6_DONTFAILOVER_IF: 10583 /* 10584 * This option is used by in.mpathd to ensure 10585 * that IPMP probe packets only go out on the 10586 * test interfaces. in.mpathd sets this option 10587 * on the non-failover interfaces. 10588 */ 10589 connp->conn_nofailover_ill = ill; 10590 /* 10591 * For backward compatibility, this option 10592 * implicitly sets ip_multicast_ill as used in 10593 * IPV6_MULTICAST_IF so that ip_wput gets 10594 * this ill to send mcast packets. 10595 */ 10596 connp->conn_multicast_ill = ill; 10597 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10598 0 : ifindex; 10599 break; 10600 10601 case IPV6_MULTICAST_IF: 10602 /* 10603 * Set conn_multicast_ill to be the IPv6 ill. 10604 * Set conn_multicast_ipif to be an IPv4 ipif 10605 * for ifindex to make IPv4 mapped addresses 10606 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10607 * Even if no IPv6 ill exists for the ifindex 10608 * we need to check for an IPv4 ifindex in order 10609 * for this to work with mapped addresses. In that 10610 * case only set conn_multicast_ipif. 10611 */ 10612 if (!checkonly) { 10613 if (ifindex == 0) { 10614 connp->conn_multicast_ill = NULL; 10615 connp->conn_orig_multicast_ifindex = 0; 10616 connp->conn_multicast_ipif = NULL; 10617 } else if (ill != NULL) { 10618 connp->conn_multicast_ill = ill; 10619 connp->conn_orig_multicast_ifindex = 10620 ifindex; 10621 } 10622 } 10623 break; 10624 } 10625 } 10626 10627 if (ill != NULL) { 10628 mutex_exit(&ill->ill_lock); 10629 mutex_exit(&connp->conn_lock); 10630 ill_refrele(ill); 10631 return (0); 10632 } 10633 mutex_exit(&connp->conn_lock); 10634 /* 10635 * We succeeded in clearing the option (ifindex == 0) or failed to 10636 * locate the ill and could not set the option (ifindex != 0) 10637 */ 10638 return (ifindex == 0 ? 0 : EINVAL); 10639 } 10640 10641 /* This routine sets socket options. */ 10642 /* ARGSUSED */ 10643 int 10644 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10645 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10646 void *dummy, cred_t *cr, mblk_t *first_mp) 10647 { 10648 int *i1 = (int *)invalp; 10649 conn_t *connp = Q_TO_CONN(q); 10650 int error = 0; 10651 boolean_t checkonly; 10652 ire_t *ire; 10653 boolean_t found; 10654 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10655 10656 switch (optset_context) { 10657 10658 case SETFN_OPTCOM_CHECKONLY: 10659 checkonly = B_TRUE; 10660 /* 10661 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10662 * inlen != 0 implies value supplied and 10663 * we have to "pretend" to set it. 10664 * inlen == 0 implies that there is no 10665 * value part in T_CHECK request and just validation 10666 * done elsewhere should be enough, we just return here. 10667 */ 10668 if (inlen == 0) { 10669 *outlenp = 0; 10670 return (0); 10671 } 10672 break; 10673 case SETFN_OPTCOM_NEGOTIATE: 10674 case SETFN_UD_NEGOTIATE: 10675 case SETFN_CONN_NEGOTIATE: 10676 checkonly = B_FALSE; 10677 break; 10678 default: 10679 /* 10680 * We should never get here 10681 */ 10682 *outlenp = 0; 10683 return (EINVAL); 10684 } 10685 10686 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10687 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10688 10689 /* 10690 * For fixed length options, no sanity check 10691 * of passed in length is done. It is assumed *_optcom_req() 10692 * routines do the right thing. 10693 */ 10694 10695 switch (level) { 10696 case SOL_SOCKET: 10697 /* 10698 * conn_lock protects the bitfields, and is used to 10699 * set the fields atomically. 10700 */ 10701 switch (name) { 10702 case SO_BROADCAST: 10703 if (!checkonly) { 10704 /* TODO: use value someplace? */ 10705 mutex_enter(&connp->conn_lock); 10706 connp->conn_broadcast = *i1 ? 1 : 0; 10707 mutex_exit(&connp->conn_lock); 10708 } 10709 break; /* goto sizeof (int) option return */ 10710 case SO_USELOOPBACK: 10711 if (!checkonly) { 10712 /* TODO: use value someplace? */ 10713 mutex_enter(&connp->conn_lock); 10714 connp->conn_loopback = *i1 ? 1 : 0; 10715 mutex_exit(&connp->conn_lock); 10716 } 10717 break; /* goto sizeof (int) option return */ 10718 case SO_DONTROUTE: 10719 if (!checkonly) { 10720 mutex_enter(&connp->conn_lock); 10721 connp->conn_dontroute = *i1 ? 1 : 0; 10722 mutex_exit(&connp->conn_lock); 10723 } 10724 break; /* goto sizeof (int) option return */ 10725 case SO_REUSEADDR: 10726 if (!checkonly) { 10727 mutex_enter(&connp->conn_lock); 10728 connp->conn_reuseaddr = *i1 ? 1 : 0; 10729 mutex_exit(&connp->conn_lock); 10730 } 10731 break; /* goto sizeof (int) option return */ 10732 case SO_PROTOTYPE: 10733 if (!checkonly) { 10734 mutex_enter(&connp->conn_lock); 10735 connp->conn_proto = *i1; 10736 mutex_exit(&connp->conn_lock); 10737 } 10738 break; /* goto sizeof (int) option return */ 10739 case SO_ALLZONES: 10740 if (!checkonly) { 10741 mutex_enter(&connp->conn_lock); 10742 if (IPCL_IS_BOUND(connp)) { 10743 mutex_exit(&connp->conn_lock); 10744 return (EINVAL); 10745 } 10746 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10747 mutex_exit(&connp->conn_lock); 10748 } 10749 break; /* goto sizeof (int) option return */ 10750 case SO_ANON_MLP: 10751 if (!checkonly) { 10752 mutex_enter(&connp->conn_lock); 10753 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10754 mutex_exit(&connp->conn_lock); 10755 } 10756 break; /* goto sizeof (int) option return */ 10757 case SO_MAC_EXEMPT: 10758 if (secpolicy_net_mac_aware(cr) != 0 || 10759 IPCL_IS_BOUND(connp)) 10760 return (EACCES); 10761 if (!checkonly) { 10762 mutex_enter(&connp->conn_lock); 10763 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10764 mutex_exit(&connp->conn_lock); 10765 } 10766 break; /* goto sizeof (int) option return */ 10767 default: 10768 /* 10769 * "soft" error (negative) 10770 * option not handled at this level 10771 * Note: Do not modify *outlenp 10772 */ 10773 return (-EINVAL); 10774 } 10775 break; 10776 case IPPROTO_IP: 10777 switch (name) { 10778 case IP_NEXTHOP: 10779 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10780 return (EPERM); 10781 /* FALLTHRU */ 10782 case IP_MULTICAST_IF: 10783 case IP_DONTFAILOVER_IF: { 10784 ipaddr_t addr = *i1; 10785 10786 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10787 first_mp); 10788 if (error != 0) 10789 return (error); 10790 break; /* goto sizeof (int) option return */ 10791 } 10792 10793 case IP_MULTICAST_TTL: 10794 /* Recorded in transport above IP */ 10795 *outvalp = *invalp; 10796 *outlenp = sizeof (uchar_t); 10797 return (0); 10798 case IP_MULTICAST_LOOP: 10799 if (!checkonly) { 10800 mutex_enter(&connp->conn_lock); 10801 connp->conn_multicast_loop = *invalp ? 1 : 0; 10802 mutex_exit(&connp->conn_lock); 10803 } 10804 *outvalp = *invalp; 10805 *outlenp = sizeof (uchar_t); 10806 return (0); 10807 case IP_ADD_MEMBERSHIP: 10808 case MCAST_JOIN_GROUP: 10809 case IP_DROP_MEMBERSHIP: 10810 case MCAST_LEAVE_GROUP: { 10811 struct ip_mreq *mreqp; 10812 struct group_req *greqp; 10813 ire_t *ire; 10814 boolean_t done = B_FALSE; 10815 ipaddr_t group, ifaddr; 10816 struct sockaddr_in *sin; 10817 uint32_t *ifindexp; 10818 boolean_t mcast_opt = B_TRUE; 10819 mcast_record_t fmode; 10820 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10821 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10822 10823 switch (name) { 10824 case IP_ADD_MEMBERSHIP: 10825 mcast_opt = B_FALSE; 10826 /* FALLTHRU */ 10827 case MCAST_JOIN_GROUP: 10828 fmode = MODE_IS_EXCLUDE; 10829 optfn = ip_opt_add_group; 10830 break; 10831 10832 case IP_DROP_MEMBERSHIP: 10833 mcast_opt = B_FALSE; 10834 /* FALLTHRU */ 10835 case MCAST_LEAVE_GROUP: 10836 fmode = MODE_IS_INCLUDE; 10837 optfn = ip_opt_delete_group; 10838 break; 10839 } 10840 10841 if (mcast_opt) { 10842 greqp = (struct group_req *)i1; 10843 sin = (struct sockaddr_in *)&greqp->gr_group; 10844 if (sin->sin_family != AF_INET) { 10845 *outlenp = 0; 10846 return (ENOPROTOOPT); 10847 } 10848 group = (ipaddr_t)sin->sin_addr.s_addr; 10849 ifaddr = INADDR_ANY; 10850 ifindexp = &greqp->gr_interface; 10851 } else { 10852 mreqp = (struct ip_mreq *)i1; 10853 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10854 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10855 ifindexp = NULL; 10856 } 10857 10858 /* 10859 * In the multirouting case, we need to replicate 10860 * the request on all interfaces that will take part 10861 * in replication. We do so because multirouting is 10862 * reflective, thus we will probably receive multi- 10863 * casts on those interfaces. 10864 * The ip_multirt_apply_membership() succeeds if the 10865 * operation succeeds on at least one interface. 10866 */ 10867 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10868 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10869 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10870 if (ire != NULL) { 10871 if (ire->ire_flags & RTF_MULTIRT) { 10872 error = ip_multirt_apply_membership( 10873 optfn, ire, connp, checkonly, group, 10874 fmode, INADDR_ANY, first_mp); 10875 done = B_TRUE; 10876 } 10877 ire_refrele(ire); 10878 } 10879 if (!done) { 10880 error = optfn(connp, checkonly, group, ifaddr, 10881 ifindexp, fmode, INADDR_ANY, first_mp); 10882 } 10883 if (error) { 10884 /* 10885 * EINPROGRESS is a soft error, needs retry 10886 * so don't make *outlenp zero. 10887 */ 10888 if (error != EINPROGRESS) 10889 *outlenp = 0; 10890 return (error); 10891 } 10892 /* OK return - copy input buffer into output buffer */ 10893 if (invalp != outvalp) { 10894 /* don't trust bcopy for identical src/dst */ 10895 bcopy(invalp, outvalp, inlen); 10896 } 10897 *outlenp = inlen; 10898 return (0); 10899 } 10900 case IP_BLOCK_SOURCE: 10901 case IP_UNBLOCK_SOURCE: 10902 case IP_ADD_SOURCE_MEMBERSHIP: 10903 case IP_DROP_SOURCE_MEMBERSHIP: 10904 case MCAST_BLOCK_SOURCE: 10905 case MCAST_UNBLOCK_SOURCE: 10906 case MCAST_JOIN_SOURCE_GROUP: 10907 case MCAST_LEAVE_SOURCE_GROUP: { 10908 struct ip_mreq_source *imreqp; 10909 struct group_source_req *gsreqp; 10910 in_addr_t grp, src, ifaddr = INADDR_ANY; 10911 uint32_t ifindex = 0; 10912 mcast_record_t fmode; 10913 struct sockaddr_in *sin; 10914 ire_t *ire; 10915 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10916 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10917 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10918 10919 switch (name) { 10920 case IP_BLOCK_SOURCE: 10921 mcast_opt = B_FALSE; 10922 /* FALLTHRU */ 10923 case MCAST_BLOCK_SOURCE: 10924 fmode = MODE_IS_EXCLUDE; 10925 optfn = ip_opt_add_group; 10926 break; 10927 10928 case IP_UNBLOCK_SOURCE: 10929 mcast_opt = B_FALSE; 10930 /* FALLTHRU */ 10931 case MCAST_UNBLOCK_SOURCE: 10932 fmode = MODE_IS_EXCLUDE; 10933 optfn = ip_opt_delete_group; 10934 break; 10935 10936 case IP_ADD_SOURCE_MEMBERSHIP: 10937 mcast_opt = B_FALSE; 10938 /* FALLTHRU */ 10939 case MCAST_JOIN_SOURCE_GROUP: 10940 fmode = MODE_IS_INCLUDE; 10941 optfn = ip_opt_add_group; 10942 break; 10943 10944 case IP_DROP_SOURCE_MEMBERSHIP: 10945 mcast_opt = B_FALSE; 10946 /* FALLTHRU */ 10947 case MCAST_LEAVE_SOURCE_GROUP: 10948 fmode = MODE_IS_INCLUDE; 10949 optfn = ip_opt_delete_group; 10950 break; 10951 } 10952 10953 if (mcast_opt) { 10954 gsreqp = (struct group_source_req *)i1; 10955 if (gsreqp->gsr_group.ss_family != AF_INET) { 10956 *outlenp = 0; 10957 return (ENOPROTOOPT); 10958 } 10959 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10960 grp = (ipaddr_t)sin->sin_addr.s_addr; 10961 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10962 src = (ipaddr_t)sin->sin_addr.s_addr; 10963 ifindex = gsreqp->gsr_interface; 10964 } else { 10965 imreqp = (struct ip_mreq_source *)i1; 10966 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10967 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10968 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10969 } 10970 10971 /* 10972 * In the multirouting case, we need to replicate 10973 * the request as noted in the mcast cases above. 10974 */ 10975 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10976 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10977 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10978 if (ire != NULL) { 10979 if (ire->ire_flags & RTF_MULTIRT) { 10980 error = ip_multirt_apply_membership( 10981 optfn, ire, connp, checkonly, grp, 10982 fmode, src, first_mp); 10983 done = B_TRUE; 10984 } 10985 ire_refrele(ire); 10986 } 10987 if (!done) { 10988 error = optfn(connp, checkonly, grp, ifaddr, 10989 &ifindex, fmode, src, first_mp); 10990 } 10991 if (error != 0) { 10992 /* 10993 * EINPROGRESS is a soft error, needs retry 10994 * so don't make *outlenp zero. 10995 */ 10996 if (error != EINPROGRESS) 10997 *outlenp = 0; 10998 return (error); 10999 } 11000 /* OK return - copy input buffer into output buffer */ 11001 if (invalp != outvalp) { 11002 bcopy(invalp, outvalp, inlen); 11003 } 11004 *outlenp = inlen; 11005 return (0); 11006 } 11007 case IP_SEC_OPT: 11008 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11009 if (error != 0) { 11010 *outlenp = 0; 11011 return (error); 11012 } 11013 break; 11014 case IP_HDRINCL: 11015 case IP_OPTIONS: 11016 case T_IP_OPTIONS: 11017 case IP_TOS: 11018 case T_IP_TOS: 11019 case IP_TTL: 11020 case IP_RECVDSTADDR: 11021 case IP_RECVOPTS: 11022 /* OK return - copy input buffer into output buffer */ 11023 if (invalp != outvalp) { 11024 /* don't trust bcopy for identical src/dst */ 11025 bcopy(invalp, outvalp, inlen); 11026 } 11027 *outlenp = inlen; 11028 return (0); 11029 case IP_RECVIF: 11030 /* Retrieve the inbound interface index */ 11031 if (!checkonly) { 11032 mutex_enter(&connp->conn_lock); 11033 connp->conn_recvif = *i1 ? 1 : 0; 11034 mutex_exit(&connp->conn_lock); 11035 } 11036 break; /* goto sizeof (int) option return */ 11037 case IP_RECVPKTINFO: 11038 if (!checkonly) { 11039 mutex_enter(&connp->conn_lock); 11040 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11041 mutex_exit(&connp->conn_lock); 11042 } 11043 break; /* goto sizeof (int) option return */ 11044 case IP_RECVSLLA: 11045 /* Retrieve the source link layer address */ 11046 if (!checkonly) { 11047 mutex_enter(&connp->conn_lock); 11048 connp->conn_recvslla = *i1 ? 1 : 0; 11049 mutex_exit(&connp->conn_lock); 11050 } 11051 break; /* goto sizeof (int) option return */ 11052 case MRT_INIT: 11053 case MRT_DONE: 11054 case MRT_ADD_VIF: 11055 case MRT_DEL_VIF: 11056 case MRT_ADD_MFC: 11057 case MRT_DEL_MFC: 11058 case MRT_ASSERT: 11059 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11060 *outlenp = 0; 11061 return (error); 11062 } 11063 error = ip_mrouter_set((int)name, q, checkonly, 11064 (uchar_t *)invalp, inlen, first_mp); 11065 if (error) { 11066 *outlenp = 0; 11067 return (error); 11068 } 11069 /* OK return - copy input buffer into output buffer */ 11070 if (invalp != outvalp) { 11071 /* don't trust bcopy for identical src/dst */ 11072 bcopy(invalp, outvalp, inlen); 11073 } 11074 *outlenp = inlen; 11075 return (0); 11076 case IP_BOUND_IF: 11077 case IP_DHCPINIT_IF: 11078 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11079 level, name, first_mp); 11080 if (error != 0) 11081 return (error); 11082 break; /* goto sizeof (int) option return */ 11083 11084 case IP_UNSPEC_SRC: 11085 /* Allow sending with a zero source address */ 11086 if (!checkonly) { 11087 mutex_enter(&connp->conn_lock); 11088 connp->conn_unspec_src = *i1 ? 1 : 0; 11089 mutex_exit(&connp->conn_lock); 11090 } 11091 break; /* goto sizeof (int) option return */ 11092 default: 11093 /* 11094 * "soft" error (negative) 11095 * option not handled at this level 11096 * Note: Do not modify *outlenp 11097 */ 11098 return (-EINVAL); 11099 } 11100 break; 11101 case IPPROTO_IPV6: 11102 switch (name) { 11103 case IPV6_BOUND_IF: 11104 case IPV6_BOUND_PIF: 11105 case IPV6_DONTFAILOVER_IF: 11106 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11107 level, name, first_mp); 11108 if (error != 0) 11109 return (error); 11110 break; /* goto sizeof (int) option return */ 11111 11112 case IPV6_MULTICAST_IF: 11113 /* 11114 * The only possible errors are EINPROGRESS and 11115 * EINVAL. EINPROGRESS will be restarted and is not 11116 * a hard error. We call this option on both V4 and V6 11117 * If both return EINVAL, then this call returns 11118 * EINVAL. If at least one of them succeeds we 11119 * return success. 11120 */ 11121 found = B_FALSE; 11122 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11123 level, name, first_mp); 11124 if (error == EINPROGRESS) 11125 return (error); 11126 if (error == 0) 11127 found = B_TRUE; 11128 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11129 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11130 if (error == 0) 11131 found = B_TRUE; 11132 if (!found) 11133 return (error); 11134 break; /* goto sizeof (int) option return */ 11135 11136 case IPV6_MULTICAST_HOPS: 11137 /* Recorded in transport above IP */ 11138 break; /* goto sizeof (int) option return */ 11139 case IPV6_MULTICAST_LOOP: 11140 if (!checkonly) { 11141 mutex_enter(&connp->conn_lock); 11142 connp->conn_multicast_loop = *i1; 11143 mutex_exit(&connp->conn_lock); 11144 } 11145 break; /* goto sizeof (int) option return */ 11146 case IPV6_JOIN_GROUP: 11147 case MCAST_JOIN_GROUP: 11148 case IPV6_LEAVE_GROUP: 11149 case MCAST_LEAVE_GROUP: { 11150 struct ipv6_mreq *ip_mreqp; 11151 struct group_req *greqp; 11152 ire_t *ire; 11153 boolean_t done = B_FALSE; 11154 in6_addr_t groupv6; 11155 uint32_t ifindex; 11156 boolean_t mcast_opt = B_TRUE; 11157 mcast_record_t fmode; 11158 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11159 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11160 11161 switch (name) { 11162 case IPV6_JOIN_GROUP: 11163 mcast_opt = B_FALSE; 11164 /* FALLTHRU */ 11165 case MCAST_JOIN_GROUP: 11166 fmode = MODE_IS_EXCLUDE; 11167 optfn = ip_opt_add_group_v6; 11168 break; 11169 11170 case IPV6_LEAVE_GROUP: 11171 mcast_opt = B_FALSE; 11172 /* FALLTHRU */ 11173 case MCAST_LEAVE_GROUP: 11174 fmode = MODE_IS_INCLUDE; 11175 optfn = ip_opt_delete_group_v6; 11176 break; 11177 } 11178 11179 if (mcast_opt) { 11180 struct sockaddr_in *sin; 11181 struct sockaddr_in6 *sin6; 11182 greqp = (struct group_req *)i1; 11183 if (greqp->gr_group.ss_family == AF_INET) { 11184 sin = (struct sockaddr_in *) 11185 &(greqp->gr_group); 11186 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11187 &groupv6); 11188 } else { 11189 sin6 = (struct sockaddr_in6 *) 11190 &(greqp->gr_group); 11191 groupv6 = sin6->sin6_addr; 11192 } 11193 ifindex = greqp->gr_interface; 11194 } else { 11195 ip_mreqp = (struct ipv6_mreq *)i1; 11196 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11197 ifindex = ip_mreqp->ipv6mr_interface; 11198 } 11199 /* 11200 * In the multirouting case, we need to replicate 11201 * the request on all interfaces that will take part 11202 * in replication. We do so because multirouting is 11203 * reflective, thus we will probably receive multi- 11204 * casts on those interfaces. 11205 * The ip_multirt_apply_membership_v6() succeeds if 11206 * the operation succeeds on at least one interface. 11207 */ 11208 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11209 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11210 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11211 if (ire != NULL) { 11212 if (ire->ire_flags & RTF_MULTIRT) { 11213 error = ip_multirt_apply_membership_v6( 11214 optfn, ire, connp, checkonly, 11215 &groupv6, fmode, &ipv6_all_zeros, 11216 first_mp); 11217 done = B_TRUE; 11218 } 11219 ire_refrele(ire); 11220 } 11221 if (!done) { 11222 error = optfn(connp, checkonly, &groupv6, 11223 ifindex, fmode, &ipv6_all_zeros, first_mp); 11224 } 11225 if (error) { 11226 /* 11227 * EINPROGRESS is a soft error, needs retry 11228 * so don't make *outlenp zero. 11229 */ 11230 if (error != EINPROGRESS) 11231 *outlenp = 0; 11232 return (error); 11233 } 11234 /* OK return - copy input buffer into output buffer */ 11235 if (invalp != outvalp) { 11236 /* don't trust bcopy for identical src/dst */ 11237 bcopy(invalp, outvalp, inlen); 11238 } 11239 *outlenp = inlen; 11240 return (0); 11241 } 11242 case MCAST_BLOCK_SOURCE: 11243 case MCAST_UNBLOCK_SOURCE: 11244 case MCAST_JOIN_SOURCE_GROUP: 11245 case MCAST_LEAVE_SOURCE_GROUP: { 11246 struct group_source_req *gsreqp; 11247 in6_addr_t v6grp, v6src; 11248 uint32_t ifindex; 11249 mcast_record_t fmode; 11250 ire_t *ire; 11251 boolean_t done = B_FALSE; 11252 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11253 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11254 11255 switch (name) { 11256 case MCAST_BLOCK_SOURCE: 11257 fmode = MODE_IS_EXCLUDE; 11258 optfn = ip_opt_add_group_v6; 11259 break; 11260 case MCAST_UNBLOCK_SOURCE: 11261 fmode = MODE_IS_EXCLUDE; 11262 optfn = ip_opt_delete_group_v6; 11263 break; 11264 case MCAST_JOIN_SOURCE_GROUP: 11265 fmode = MODE_IS_INCLUDE; 11266 optfn = ip_opt_add_group_v6; 11267 break; 11268 case MCAST_LEAVE_SOURCE_GROUP: 11269 fmode = MODE_IS_INCLUDE; 11270 optfn = ip_opt_delete_group_v6; 11271 break; 11272 } 11273 11274 gsreqp = (struct group_source_req *)i1; 11275 ifindex = gsreqp->gsr_interface; 11276 if (gsreqp->gsr_group.ss_family == AF_INET) { 11277 struct sockaddr_in *s; 11278 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11279 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11280 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11281 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11282 } else { 11283 struct sockaddr_in6 *s6; 11284 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11285 v6grp = s6->sin6_addr; 11286 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11287 v6src = s6->sin6_addr; 11288 } 11289 11290 /* 11291 * In the multirouting case, we need to replicate 11292 * the request as noted in the mcast cases above. 11293 */ 11294 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11295 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11296 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11297 if (ire != NULL) { 11298 if (ire->ire_flags & RTF_MULTIRT) { 11299 error = ip_multirt_apply_membership_v6( 11300 optfn, ire, connp, checkonly, 11301 &v6grp, fmode, &v6src, first_mp); 11302 done = B_TRUE; 11303 } 11304 ire_refrele(ire); 11305 } 11306 if (!done) { 11307 error = optfn(connp, checkonly, &v6grp, 11308 ifindex, fmode, &v6src, first_mp); 11309 } 11310 if (error != 0) { 11311 /* 11312 * EINPROGRESS is a soft error, needs retry 11313 * so don't make *outlenp zero. 11314 */ 11315 if (error != EINPROGRESS) 11316 *outlenp = 0; 11317 return (error); 11318 } 11319 /* OK return - copy input buffer into output buffer */ 11320 if (invalp != outvalp) { 11321 bcopy(invalp, outvalp, inlen); 11322 } 11323 *outlenp = inlen; 11324 return (0); 11325 } 11326 case IPV6_UNICAST_HOPS: 11327 /* Recorded in transport above IP */ 11328 break; /* goto sizeof (int) option return */ 11329 case IPV6_UNSPEC_SRC: 11330 /* Allow sending with a zero source address */ 11331 if (!checkonly) { 11332 mutex_enter(&connp->conn_lock); 11333 connp->conn_unspec_src = *i1 ? 1 : 0; 11334 mutex_exit(&connp->conn_lock); 11335 } 11336 break; /* goto sizeof (int) option return */ 11337 case IPV6_RECVPKTINFO: 11338 if (!checkonly) { 11339 mutex_enter(&connp->conn_lock); 11340 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11341 mutex_exit(&connp->conn_lock); 11342 } 11343 break; /* goto sizeof (int) option return */ 11344 case IPV6_RECVTCLASS: 11345 if (!checkonly) { 11346 if (*i1 < 0 || *i1 > 1) { 11347 return (EINVAL); 11348 } 11349 mutex_enter(&connp->conn_lock); 11350 connp->conn_ipv6_recvtclass = *i1; 11351 mutex_exit(&connp->conn_lock); 11352 } 11353 break; 11354 case IPV6_RECVPATHMTU: 11355 if (!checkonly) { 11356 if (*i1 < 0 || *i1 > 1) { 11357 return (EINVAL); 11358 } 11359 mutex_enter(&connp->conn_lock); 11360 connp->conn_ipv6_recvpathmtu = *i1; 11361 mutex_exit(&connp->conn_lock); 11362 } 11363 break; 11364 case IPV6_RECVHOPLIMIT: 11365 if (!checkonly) { 11366 mutex_enter(&connp->conn_lock); 11367 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11368 mutex_exit(&connp->conn_lock); 11369 } 11370 break; /* goto sizeof (int) option return */ 11371 case IPV6_RECVHOPOPTS: 11372 if (!checkonly) { 11373 mutex_enter(&connp->conn_lock); 11374 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11375 mutex_exit(&connp->conn_lock); 11376 } 11377 break; /* goto sizeof (int) option return */ 11378 case IPV6_RECVDSTOPTS: 11379 if (!checkonly) { 11380 mutex_enter(&connp->conn_lock); 11381 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11382 mutex_exit(&connp->conn_lock); 11383 } 11384 break; /* goto sizeof (int) option return */ 11385 case IPV6_RECVRTHDR: 11386 if (!checkonly) { 11387 mutex_enter(&connp->conn_lock); 11388 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11389 mutex_exit(&connp->conn_lock); 11390 } 11391 break; /* goto sizeof (int) option return */ 11392 case IPV6_RECVRTHDRDSTOPTS: 11393 if (!checkonly) { 11394 mutex_enter(&connp->conn_lock); 11395 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11396 mutex_exit(&connp->conn_lock); 11397 } 11398 break; /* goto sizeof (int) option return */ 11399 case IPV6_PKTINFO: 11400 if (inlen == 0) 11401 return (-EINVAL); /* clearing option */ 11402 error = ip6_set_pktinfo(cr, connp, 11403 (struct in6_pktinfo *)invalp, first_mp); 11404 if (error != 0) 11405 *outlenp = 0; 11406 else 11407 *outlenp = inlen; 11408 return (error); 11409 case IPV6_NEXTHOP: { 11410 struct sockaddr_in6 *sin6; 11411 11412 /* Verify that the nexthop is reachable */ 11413 if (inlen == 0) 11414 return (-EINVAL); /* clearing option */ 11415 11416 sin6 = (struct sockaddr_in6 *)invalp; 11417 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11418 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11419 NULL, MATCH_IRE_DEFAULT, ipst); 11420 11421 if (ire == NULL) { 11422 *outlenp = 0; 11423 return (EHOSTUNREACH); 11424 } 11425 ire_refrele(ire); 11426 return (-EINVAL); 11427 } 11428 case IPV6_SEC_OPT: 11429 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11430 if (error != 0) { 11431 *outlenp = 0; 11432 return (error); 11433 } 11434 break; 11435 case IPV6_SRC_PREFERENCES: { 11436 /* 11437 * This is implemented strictly in the ip module 11438 * (here and in tcp_opt_*() to accomodate tcp 11439 * sockets). Modules above ip pass this option 11440 * down here since ip is the only one that needs to 11441 * be aware of source address preferences. 11442 * 11443 * This socket option only affects connected 11444 * sockets that haven't already bound to a specific 11445 * IPv6 address. In other words, sockets that 11446 * don't call bind() with an address other than the 11447 * unspecified address and that call connect(). 11448 * ip_bind_connected_v6() passes these preferences 11449 * to the ipif_select_source_v6() function. 11450 */ 11451 if (inlen != sizeof (uint32_t)) 11452 return (EINVAL); 11453 error = ip6_set_src_preferences(connp, 11454 *(uint32_t *)invalp); 11455 if (error != 0) { 11456 *outlenp = 0; 11457 return (error); 11458 } else { 11459 *outlenp = sizeof (uint32_t); 11460 } 11461 break; 11462 } 11463 case IPV6_V6ONLY: 11464 if (*i1 < 0 || *i1 > 1) { 11465 return (EINVAL); 11466 } 11467 mutex_enter(&connp->conn_lock); 11468 connp->conn_ipv6_v6only = *i1; 11469 mutex_exit(&connp->conn_lock); 11470 break; 11471 default: 11472 return (-EINVAL); 11473 } 11474 break; 11475 default: 11476 /* 11477 * "soft" error (negative) 11478 * option not handled at this level 11479 * Note: Do not modify *outlenp 11480 */ 11481 return (-EINVAL); 11482 } 11483 /* 11484 * Common case of return from an option that is sizeof (int) 11485 */ 11486 *(int *)outvalp = *i1; 11487 *outlenp = sizeof (int); 11488 return (0); 11489 } 11490 11491 /* 11492 * This routine gets default values of certain options whose default 11493 * values are maintained by protocol specific code 11494 */ 11495 /* ARGSUSED */ 11496 int 11497 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11498 { 11499 int *i1 = (int *)ptr; 11500 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11501 11502 switch (level) { 11503 case IPPROTO_IP: 11504 switch (name) { 11505 case IP_MULTICAST_TTL: 11506 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11507 return (sizeof (uchar_t)); 11508 case IP_MULTICAST_LOOP: 11509 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11510 return (sizeof (uchar_t)); 11511 default: 11512 return (-1); 11513 } 11514 case IPPROTO_IPV6: 11515 switch (name) { 11516 case IPV6_UNICAST_HOPS: 11517 *i1 = ipst->ips_ipv6_def_hops; 11518 return (sizeof (int)); 11519 case IPV6_MULTICAST_HOPS: 11520 *i1 = IP_DEFAULT_MULTICAST_TTL; 11521 return (sizeof (int)); 11522 case IPV6_MULTICAST_LOOP: 11523 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11524 return (sizeof (int)); 11525 case IPV6_V6ONLY: 11526 *i1 = 1; 11527 return (sizeof (int)); 11528 default: 11529 return (-1); 11530 } 11531 default: 11532 return (-1); 11533 } 11534 /* NOTREACHED */ 11535 } 11536 11537 /* 11538 * Given a destination address and a pointer to where to put the information 11539 * this routine fills in the mtuinfo. 11540 */ 11541 int 11542 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11543 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11544 { 11545 ire_t *ire; 11546 ip_stack_t *ipst = ns->netstack_ip; 11547 11548 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11549 return (-1); 11550 11551 bzero(mtuinfo, sizeof (*mtuinfo)); 11552 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11553 mtuinfo->ip6m_addr.sin6_port = port; 11554 mtuinfo->ip6m_addr.sin6_addr = *in6; 11555 11556 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11557 if (ire != NULL) { 11558 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11559 ire_refrele(ire); 11560 } else { 11561 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11562 } 11563 return (sizeof (struct ip6_mtuinfo)); 11564 } 11565 11566 /* 11567 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11568 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11569 * isn't. This doesn't matter as the error checking is done properly for the 11570 * other MRT options coming in through ip_opt_set. 11571 */ 11572 int 11573 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11574 { 11575 conn_t *connp = Q_TO_CONN(q); 11576 ipsec_req_t *req = (ipsec_req_t *)ptr; 11577 11578 switch (level) { 11579 case IPPROTO_IP: 11580 switch (name) { 11581 case MRT_VERSION: 11582 case MRT_ASSERT: 11583 (void) ip_mrouter_get(name, q, ptr); 11584 return (sizeof (int)); 11585 case IP_SEC_OPT: 11586 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11587 case IP_NEXTHOP: 11588 if (connp->conn_nexthop_set) { 11589 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11590 return (sizeof (ipaddr_t)); 11591 } else 11592 return (0); 11593 case IP_RECVPKTINFO: 11594 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11595 return (sizeof (int)); 11596 default: 11597 break; 11598 } 11599 break; 11600 case IPPROTO_IPV6: 11601 switch (name) { 11602 case IPV6_SEC_OPT: 11603 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11604 case IPV6_SRC_PREFERENCES: { 11605 return (ip6_get_src_preferences(connp, 11606 (uint32_t *)ptr)); 11607 } 11608 case IPV6_V6ONLY: 11609 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11610 return (sizeof (int)); 11611 case IPV6_PATHMTU: 11612 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11613 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11614 default: 11615 break; 11616 } 11617 break; 11618 default: 11619 break; 11620 } 11621 return (-1); 11622 } 11623 11624 /* Named Dispatch routine to get a current value out of our parameter table. */ 11625 /* ARGSUSED */ 11626 static int 11627 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11628 { 11629 ipparam_t *ippa = (ipparam_t *)cp; 11630 11631 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11632 return (0); 11633 } 11634 11635 /* ARGSUSED */ 11636 static int 11637 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11638 { 11639 11640 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11641 return (0); 11642 } 11643 11644 /* 11645 * Set ip{,6}_forwarding values. This means walking through all of the 11646 * ill's and toggling their forwarding values. 11647 */ 11648 /* ARGSUSED */ 11649 static int 11650 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11651 { 11652 long new_value; 11653 int *forwarding_value = (int *)cp; 11654 ill_t *ill; 11655 boolean_t isv6; 11656 ill_walk_context_t ctx; 11657 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11658 11659 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11660 11661 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11662 new_value < 0 || new_value > 1) { 11663 return (EINVAL); 11664 } 11665 11666 *forwarding_value = new_value; 11667 11668 /* 11669 * Regardless of the current value of ip_forwarding, set all per-ill 11670 * values of ip_forwarding to the value being set. 11671 * 11672 * Bring all the ill's up to date with the new global value. 11673 */ 11674 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11675 11676 if (isv6) 11677 ill = ILL_START_WALK_V6(&ctx, ipst); 11678 else 11679 ill = ILL_START_WALK_V4(&ctx, ipst); 11680 11681 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11682 (void) ill_forward_set(ill, new_value != 0); 11683 11684 rw_exit(&ipst->ips_ill_g_lock); 11685 return (0); 11686 } 11687 11688 /* 11689 * Walk through the param array specified registering each element with the 11690 * Named Dispatch handler. This is called only during init. So it is ok 11691 * not to acquire any locks 11692 */ 11693 static boolean_t 11694 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11695 ipndp_t *ipnd, size_t ipnd_cnt) 11696 { 11697 for (; ippa_cnt-- > 0; ippa++) { 11698 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11699 if (!nd_load(ndp, ippa->ip_param_name, 11700 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11701 nd_free(ndp); 11702 return (B_FALSE); 11703 } 11704 } 11705 } 11706 11707 for (; ipnd_cnt-- > 0; ipnd++) { 11708 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11709 if (!nd_load(ndp, ipnd->ip_ndp_name, 11710 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11711 ipnd->ip_ndp_data)) { 11712 nd_free(ndp); 11713 return (B_FALSE); 11714 } 11715 } 11716 } 11717 11718 return (B_TRUE); 11719 } 11720 11721 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11722 /* ARGSUSED */ 11723 static int 11724 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11725 { 11726 long new_value; 11727 ipparam_t *ippa = (ipparam_t *)cp; 11728 11729 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11730 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11731 return (EINVAL); 11732 } 11733 ippa->ip_param_value = new_value; 11734 return (0); 11735 } 11736 11737 /* 11738 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11739 * When an ipf is passed here for the first time, if 11740 * we already have in-order fragments on the queue, we convert from the fast- 11741 * path reassembly scheme to the hard-case scheme. From then on, additional 11742 * fragments are reassembled here. We keep track of the start and end offsets 11743 * of each piece, and the number of holes in the chain. When the hole count 11744 * goes to zero, we are done! 11745 * 11746 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11747 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11748 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11749 * after the call to ip_reassemble(). 11750 */ 11751 int 11752 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11753 size_t msg_len) 11754 { 11755 uint_t end; 11756 mblk_t *next_mp; 11757 mblk_t *mp1; 11758 uint_t offset; 11759 boolean_t incr_dups = B_TRUE; 11760 boolean_t offset_zero_seen = B_FALSE; 11761 boolean_t pkt_boundary_checked = B_FALSE; 11762 11763 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11764 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11765 11766 /* Add in byte count */ 11767 ipf->ipf_count += msg_len; 11768 if (ipf->ipf_end) { 11769 /* 11770 * We were part way through in-order reassembly, but now there 11771 * is a hole. We walk through messages already queued, and 11772 * mark them for hard case reassembly. We know that up till 11773 * now they were in order starting from offset zero. 11774 */ 11775 offset = 0; 11776 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11777 IP_REASS_SET_START(mp1, offset); 11778 if (offset == 0) { 11779 ASSERT(ipf->ipf_nf_hdr_len != 0); 11780 offset = -ipf->ipf_nf_hdr_len; 11781 } 11782 offset += mp1->b_wptr - mp1->b_rptr; 11783 IP_REASS_SET_END(mp1, offset); 11784 } 11785 /* One hole at the end. */ 11786 ipf->ipf_hole_cnt = 1; 11787 /* Brand it as a hard case, forever. */ 11788 ipf->ipf_end = 0; 11789 } 11790 /* Walk through all the new pieces. */ 11791 do { 11792 end = start + (mp->b_wptr - mp->b_rptr); 11793 /* 11794 * If start is 0, decrease 'end' only for the first mblk of 11795 * the fragment. Otherwise 'end' can get wrong value in the 11796 * second pass of the loop if first mblk is exactly the 11797 * size of ipf_nf_hdr_len. 11798 */ 11799 if (start == 0 && !offset_zero_seen) { 11800 /* First segment */ 11801 ASSERT(ipf->ipf_nf_hdr_len != 0); 11802 end -= ipf->ipf_nf_hdr_len; 11803 offset_zero_seen = B_TRUE; 11804 } 11805 next_mp = mp->b_cont; 11806 /* 11807 * We are checking to see if there is any interesing data 11808 * to process. If there isn't and the mblk isn't the 11809 * one which carries the unfragmentable header then we 11810 * drop it. It's possible to have just the unfragmentable 11811 * header come through without any data. That needs to be 11812 * saved. 11813 * 11814 * If the assert at the top of this function holds then the 11815 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11816 * is infrequently traveled enough that the test is left in 11817 * to protect against future code changes which break that 11818 * invariant. 11819 */ 11820 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11821 /* Empty. Blast it. */ 11822 IP_REASS_SET_START(mp, 0); 11823 IP_REASS_SET_END(mp, 0); 11824 /* 11825 * If the ipf points to the mblk we are about to free, 11826 * update ipf to point to the next mblk (or NULL 11827 * if none). 11828 */ 11829 if (ipf->ipf_mp->b_cont == mp) 11830 ipf->ipf_mp->b_cont = next_mp; 11831 freeb(mp); 11832 continue; 11833 } 11834 mp->b_cont = NULL; 11835 IP_REASS_SET_START(mp, start); 11836 IP_REASS_SET_END(mp, end); 11837 if (!ipf->ipf_tail_mp) { 11838 ipf->ipf_tail_mp = mp; 11839 ipf->ipf_mp->b_cont = mp; 11840 if (start == 0 || !more) { 11841 ipf->ipf_hole_cnt = 1; 11842 /* 11843 * if the first fragment comes in more than one 11844 * mblk, this loop will be executed for each 11845 * mblk. Need to adjust hole count so exiting 11846 * this routine will leave hole count at 1. 11847 */ 11848 if (next_mp) 11849 ipf->ipf_hole_cnt++; 11850 } else 11851 ipf->ipf_hole_cnt = 2; 11852 continue; 11853 } else if (ipf->ipf_last_frag_seen && !more && 11854 !pkt_boundary_checked) { 11855 /* 11856 * We check datagram boundary only if this fragment 11857 * claims to be the last fragment and we have seen a 11858 * last fragment in the past too. We do this only 11859 * once for a given fragment. 11860 * 11861 * start cannot be 0 here as fragments with start=0 11862 * and MF=0 gets handled as a complete packet. These 11863 * fragments should not reach here. 11864 */ 11865 11866 if (start + msgdsize(mp) != 11867 IP_REASS_END(ipf->ipf_tail_mp)) { 11868 /* 11869 * We have two fragments both of which claim 11870 * to be the last fragment but gives conflicting 11871 * information about the whole datagram size. 11872 * Something fishy is going on. Drop the 11873 * fragment and free up the reassembly list. 11874 */ 11875 return (IP_REASS_FAILED); 11876 } 11877 11878 /* 11879 * We shouldn't come to this code block again for this 11880 * particular fragment. 11881 */ 11882 pkt_boundary_checked = B_TRUE; 11883 } 11884 11885 /* New stuff at or beyond tail? */ 11886 offset = IP_REASS_END(ipf->ipf_tail_mp); 11887 if (start >= offset) { 11888 if (ipf->ipf_last_frag_seen) { 11889 /* current fragment is beyond last fragment */ 11890 return (IP_REASS_FAILED); 11891 } 11892 /* Link it on end. */ 11893 ipf->ipf_tail_mp->b_cont = mp; 11894 ipf->ipf_tail_mp = mp; 11895 if (more) { 11896 if (start != offset) 11897 ipf->ipf_hole_cnt++; 11898 } else if (start == offset && next_mp == NULL) 11899 ipf->ipf_hole_cnt--; 11900 continue; 11901 } 11902 mp1 = ipf->ipf_mp->b_cont; 11903 offset = IP_REASS_START(mp1); 11904 /* New stuff at the front? */ 11905 if (start < offset) { 11906 if (start == 0) { 11907 if (end >= offset) { 11908 /* Nailed the hole at the begining. */ 11909 ipf->ipf_hole_cnt--; 11910 } 11911 } else if (end < offset) { 11912 /* 11913 * A hole, stuff, and a hole where there used 11914 * to be just a hole. 11915 */ 11916 ipf->ipf_hole_cnt++; 11917 } 11918 mp->b_cont = mp1; 11919 /* Check for overlap. */ 11920 while (end > offset) { 11921 if (end < IP_REASS_END(mp1)) { 11922 mp->b_wptr -= end - offset; 11923 IP_REASS_SET_END(mp, offset); 11924 BUMP_MIB(ill->ill_ip_mib, 11925 ipIfStatsReasmPartDups); 11926 break; 11927 } 11928 /* Did we cover another hole? */ 11929 if ((mp1->b_cont && 11930 IP_REASS_END(mp1) != 11931 IP_REASS_START(mp1->b_cont) && 11932 end >= IP_REASS_START(mp1->b_cont)) || 11933 (!ipf->ipf_last_frag_seen && !more)) { 11934 ipf->ipf_hole_cnt--; 11935 } 11936 /* Clip out mp1. */ 11937 if ((mp->b_cont = mp1->b_cont) == NULL) { 11938 /* 11939 * After clipping out mp1, this guy 11940 * is now hanging off the end. 11941 */ 11942 ipf->ipf_tail_mp = mp; 11943 } 11944 IP_REASS_SET_START(mp1, 0); 11945 IP_REASS_SET_END(mp1, 0); 11946 /* Subtract byte count */ 11947 ipf->ipf_count -= mp1->b_datap->db_lim - 11948 mp1->b_datap->db_base; 11949 freeb(mp1); 11950 BUMP_MIB(ill->ill_ip_mib, 11951 ipIfStatsReasmPartDups); 11952 mp1 = mp->b_cont; 11953 if (!mp1) 11954 break; 11955 offset = IP_REASS_START(mp1); 11956 } 11957 ipf->ipf_mp->b_cont = mp; 11958 continue; 11959 } 11960 /* 11961 * The new piece starts somewhere between the start of the head 11962 * and before the end of the tail. 11963 */ 11964 for (; mp1; mp1 = mp1->b_cont) { 11965 offset = IP_REASS_END(mp1); 11966 if (start < offset) { 11967 if (end <= offset) { 11968 /* Nothing new. */ 11969 IP_REASS_SET_START(mp, 0); 11970 IP_REASS_SET_END(mp, 0); 11971 /* Subtract byte count */ 11972 ipf->ipf_count -= mp->b_datap->db_lim - 11973 mp->b_datap->db_base; 11974 if (incr_dups) { 11975 ipf->ipf_num_dups++; 11976 incr_dups = B_FALSE; 11977 } 11978 freeb(mp); 11979 BUMP_MIB(ill->ill_ip_mib, 11980 ipIfStatsReasmDuplicates); 11981 break; 11982 } 11983 /* 11984 * Trim redundant stuff off beginning of new 11985 * piece. 11986 */ 11987 IP_REASS_SET_START(mp, offset); 11988 mp->b_rptr += offset - start; 11989 BUMP_MIB(ill->ill_ip_mib, 11990 ipIfStatsReasmPartDups); 11991 start = offset; 11992 if (!mp1->b_cont) { 11993 /* 11994 * After trimming, this guy is now 11995 * hanging off the end. 11996 */ 11997 mp1->b_cont = mp; 11998 ipf->ipf_tail_mp = mp; 11999 if (!more) { 12000 ipf->ipf_hole_cnt--; 12001 } 12002 break; 12003 } 12004 } 12005 if (start >= IP_REASS_START(mp1->b_cont)) 12006 continue; 12007 /* Fill a hole */ 12008 if (start > offset) 12009 ipf->ipf_hole_cnt++; 12010 mp->b_cont = mp1->b_cont; 12011 mp1->b_cont = mp; 12012 mp1 = mp->b_cont; 12013 offset = IP_REASS_START(mp1); 12014 if (end >= offset) { 12015 ipf->ipf_hole_cnt--; 12016 /* Check for overlap. */ 12017 while (end > offset) { 12018 if (end < IP_REASS_END(mp1)) { 12019 mp->b_wptr -= end - offset; 12020 IP_REASS_SET_END(mp, offset); 12021 /* 12022 * TODO we might bump 12023 * this up twice if there is 12024 * overlap at both ends. 12025 */ 12026 BUMP_MIB(ill->ill_ip_mib, 12027 ipIfStatsReasmPartDups); 12028 break; 12029 } 12030 /* Did we cover another hole? */ 12031 if ((mp1->b_cont && 12032 IP_REASS_END(mp1) 12033 != IP_REASS_START(mp1->b_cont) && 12034 end >= 12035 IP_REASS_START(mp1->b_cont)) || 12036 (!ipf->ipf_last_frag_seen && 12037 !more)) { 12038 ipf->ipf_hole_cnt--; 12039 } 12040 /* Clip out mp1. */ 12041 if ((mp->b_cont = mp1->b_cont) == 12042 NULL) { 12043 /* 12044 * After clipping out mp1, 12045 * this guy is now hanging 12046 * off the end. 12047 */ 12048 ipf->ipf_tail_mp = mp; 12049 } 12050 IP_REASS_SET_START(mp1, 0); 12051 IP_REASS_SET_END(mp1, 0); 12052 /* Subtract byte count */ 12053 ipf->ipf_count -= 12054 mp1->b_datap->db_lim - 12055 mp1->b_datap->db_base; 12056 freeb(mp1); 12057 BUMP_MIB(ill->ill_ip_mib, 12058 ipIfStatsReasmPartDups); 12059 mp1 = mp->b_cont; 12060 if (!mp1) 12061 break; 12062 offset = IP_REASS_START(mp1); 12063 } 12064 } 12065 break; 12066 } 12067 } while (start = end, mp = next_mp); 12068 12069 /* Fragment just processed could be the last one. Remember this fact */ 12070 if (!more) 12071 ipf->ipf_last_frag_seen = B_TRUE; 12072 12073 /* Still got holes? */ 12074 if (ipf->ipf_hole_cnt) 12075 return (IP_REASS_PARTIAL); 12076 /* Clean up overloaded fields to avoid upstream disasters. */ 12077 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12078 IP_REASS_SET_START(mp1, 0); 12079 IP_REASS_SET_END(mp1, 0); 12080 } 12081 return (IP_REASS_COMPLETE); 12082 } 12083 12084 /* 12085 * ipsec processing for the fast path, used for input UDP Packets 12086 * Returns true if ready for passup to UDP. 12087 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12088 * was an ESP-in-UDP packet, etc.). 12089 */ 12090 static boolean_t 12091 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12092 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12093 { 12094 uint32_t ill_index; 12095 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12096 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12097 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12098 udp_t *udp = connp->conn_udp; 12099 12100 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12101 /* The ill_index of the incoming ILL */ 12102 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12103 12104 /* pass packet up to the transport */ 12105 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12106 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12107 NULL, mctl_present); 12108 if (*first_mpp == NULL) { 12109 return (B_FALSE); 12110 } 12111 } 12112 12113 /* Initiate IPPF processing for fastpath UDP */ 12114 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12115 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12116 if (*mpp == NULL) { 12117 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12118 "deferred/dropped during IPPF processing\n")); 12119 return (B_FALSE); 12120 } 12121 } 12122 /* 12123 * Remove 0-spi if it's 0, or move everything behind 12124 * the UDP header over it and forward to ESP via 12125 * ip_proto_input(). 12126 */ 12127 if (udp->udp_nat_t_endpoint) { 12128 if (mctl_present) { 12129 /* mctl_present *shouldn't* happen. */ 12130 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12131 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12132 &ipss->ipsec_dropper); 12133 *first_mpp = NULL; 12134 return (B_FALSE); 12135 } 12136 12137 /* "ill" is "recv_ill" in actuality. */ 12138 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12139 return (B_FALSE); 12140 12141 /* Else continue like a normal UDP packet. */ 12142 } 12143 12144 /* 12145 * We make the checks as below since we are in the fast path 12146 * and want to minimize the number of checks if the IP_RECVIF and/or 12147 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12148 */ 12149 if (connp->conn_recvif || connp->conn_recvslla || 12150 connp->conn_ip_recvpktinfo) { 12151 if (connp->conn_recvif) { 12152 in_flags = IPF_RECVIF; 12153 } 12154 /* 12155 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12156 * so the flag passed to ip_add_info is based on IP version 12157 * of connp. 12158 */ 12159 if (connp->conn_ip_recvpktinfo) { 12160 if (connp->conn_af_isv6) { 12161 /* 12162 * V6 only needs index 12163 */ 12164 in_flags |= IPF_RECVIF; 12165 } else { 12166 /* 12167 * V4 needs index + matching address. 12168 */ 12169 in_flags |= IPF_RECVADDR; 12170 } 12171 } 12172 if (connp->conn_recvslla) { 12173 in_flags |= IPF_RECVSLLA; 12174 } 12175 /* 12176 * since in_flags are being set ill will be 12177 * referenced in ip_add_info, so it better not 12178 * be NULL. 12179 */ 12180 /* 12181 * the actual data will be contained in b_cont 12182 * upon successful return of the following call. 12183 * If the call fails then the original mblk is 12184 * returned. 12185 */ 12186 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12187 ipst); 12188 } 12189 12190 return (B_TRUE); 12191 } 12192 12193 /* 12194 * Fragmentation reassembly. Each ILL has a hash table for 12195 * queuing packets undergoing reassembly for all IPIFs 12196 * associated with the ILL. The hash is based on the packet 12197 * IP ident field. The ILL frag hash table was allocated 12198 * as a timer block at the time the ILL was created. Whenever 12199 * there is anything on the reassembly queue, the timer will 12200 * be running. Returns B_TRUE if successful else B_FALSE; 12201 * frees mp on failure. 12202 */ 12203 static boolean_t 12204 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12205 uint32_t *cksum_val, uint16_t *cksum_flags) 12206 { 12207 uint32_t frag_offset_flags; 12208 ill_t *ill = (ill_t *)q->q_ptr; 12209 mblk_t *mp = *mpp; 12210 mblk_t *t_mp; 12211 ipaddr_t dst; 12212 uint8_t proto = ipha->ipha_protocol; 12213 uint32_t sum_val; 12214 uint16_t sum_flags; 12215 ipf_t *ipf; 12216 ipf_t **ipfp; 12217 ipfb_t *ipfb; 12218 uint16_t ident; 12219 uint32_t offset; 12220 ipaddr_t src; 12221 uint_t hdr_length; 12222 uint32_t end; 12223 mblk_t *mp1; 12224 mblk_t *tail_mp; 12225 size_t count; 12226 size_t msg_len; 12227 uint8_t ecn_info = 0; 12228 uint32_t packet_size; 12229 boolean_t pruned = B_FALSE; 12230 ip_stack_t *ipst = ill->ill_ipst; 12231 12232 if (cksum_val != NULL) 12233 *cksum_val = 0; 12234 if (cksum_flags != NULL) 12235 *cksum_flags = 0; 12236 12237 /* 12238 * Drop the fragmented as early as possible, if 12239 * we don't have resource(s) to re-assemble. 12240 */ 12241 if (ipst->ips_ip_reass_queue_bytes == 0) { 12242 freemsg(mp); 12243 return (B_FALSE); 12244 } 12245 12246 /* Check for fragmentation offset; return if there's none */ 12247 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12248 (IPH_MF | IPH_OFFSET)) == 0) 12249 return (B_TRUE); 12250 12251 /* 12252 * We utilize hardware computed checksum info only for UDP since 12253 * IP fragmentation is a normal occurence for the protocol. In 12254 * addition, checksum offload support for IP fragments carrying 12255 * UDP payload is commonly implemented across network adapters. 12256 */ 12257 ASSERT(ill != NULL); 12258 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12259 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12260 mblk_t *mp1 = mp->b_cont; 12261 int32_t len; 12262 12263 /* Record checksum information from the packet */ 12264 sum_val = (uint32_t)DB_CKSUM16(mp); 12265 sum_flags = DB_CKSUMFLAGS(mp); 12266 12267 /* IP payload offset from beginning of mblk */ 12268 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12269 12270 if ((sum_flags & HCK_PARTIALCKSUM) && 12271 (mp1 == NULL || mp1->b_cont == NULL) && 12272 offset >= DB_CKSUMSTART(mp) && 12273 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12274 uint32_t adj; 12275 /* 12276 * Partial checksum has been calculated by hardware 12277 * and attached to the packet; in addition, any 12278 * prepended extraneous data is even byte aligned. 12279 * If any such data exists, we adjust the checksum; 12280 * this would also handle any postpended data. 12281 */ 12282 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12283 mp, mp1, len, adj); 12284 12285 /* One's complement subtract extraneous checksum */ 12286 if (adj >= sum_val) 12287 sum_val = ~(adj - sum_val) & 0xFFFF; 12288 else 12289 sum_val -= adj; 12290 } 12291 } else { 12292 sum_val = 0; 12293 sum_flags = 0; 12294 } 12295 12296 /* Clear hardware checksumming flag */ 12297 DB_CKSUMFLAGS(mp) = 0; 12298 12299 ident = ipha->ipha_ident; 12300 offset = (frag_offset_flags << 3) & 0xFFFF; 12301 src = ipha->ipha_src; 12302 dst = ipha->ipha_dst; 12303 hdr_length = IPH_HDR_LENGTH(ipha); 12304 end = ntohs(ipha->ipha_length) - hdr_length; 12305 12306 /* If end == 0 then we have a packet with no data, so just free it */ 12307 if (end == 0) { 12308 freemsg(mp); 12309 return (B_FALSE); 12310 } 12311 12312 /* Record the ECN field info. */ 12313 ecn_info = (ipha->ipha_type_of_service & 0x3); 12314 if (offset != 0) { 12315 /* 12316 * If this isn't the first piece, strip the header, and 12317 * add the offset to the end value. 12318 */ 12319 mp->b_rptr += hdr_length; 12320 end += offset; 12321 } 12322 12323 msg_len = MBLKSIZE(mp); 12324 tail_mp = mp; 12325 while (tail_mp->b_cont != NULL) { 12326 tail_mp = tail_mp->b_cont; 12327 msg_len += MBLKSIZE(tail_mp); 12328 } 12329 12330 /* If the reassembly list for this ILL will get too big, prune it */ 12331 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12332 ipst->ips_ip_reass_queue_bytes) { 12333 ill_frag_prune(ill, 12334 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12335 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12336 pruned = B_TRUE; 12337 } 12338 12339 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12340 mutex_enter(&ipfb->ipfb_lock); 12341 12342 ipfp = &ipfb->ipfb_ipf; 12343 /* Try to find an existing fragment queue for this packet. */ 12344 for (;;) { 12345 ipf = ipfp[0]; 12346 if (ipf != NULL) { 12347 /* 12348 * It has to match on ident and src/dst address. 12349 */ 12350 if (ipf->ipf_ident == ident && 12351 ipf->ipf_src == src && 12352 ipf->ipf_dst == dst && 12353 ipf->ipf_protocol == proto) { 12354 /* 12355 * If we have received too many 12356 * duplicate fragments for this packet 12357 * free it. 12358 */ 12359 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12360 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12361 freemsg(mp); 12362 mutex_exit(&ipfb->ipfb_lock); 12363 return (B_FALSE); 12364 } 12365 /* Found it. */ 12366 break; 12367 } 12368 ipfp = &ipf->ipf_hash_next; 12369 continue; 12370 } 12371 12372 /* 12373 * If we pruned the list, do we want to store this new 12374 * fragment?. We apply an optimization here based on the 12375 * fact that most fragments will be received in order. 12376 * So if the offset of this incoming fragment is zero, 12377 * it is the first fragment of a new packet. We will 12378 * keep it. Otherwise drop the fragment, as we have 12379 * probably pruned the packet already (since the 12380 * packet cannot be found). 12381 */ 12382 if (pruned && offset != 0) { 12383 mutex_exit(&ipfb->ipfb_lock); 12384 freemsg(mp); 12385 return (B_FALSE); 12386 } 12387 12388 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12389 /* 12390 * Too many fragmented packets in this hash 12391 * bucket. Free the oldest. 12392 */ 12393 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12394 } 12395 12396 /* New guy. Allocate a frag message. */ 12397 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12398 if (mp1 == NULL) { 12399 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12400 freemsg(mp); 12401 reass_done: 12402 mutex_exit(&ipfb->ipfb_lock); 12403 return (B_FALSE); 12404 } 12405 12406 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12407 mp1->b_cont = mp; 12408 12409 /* Initialize the fragment header. */ 12410 ipf = (ipf_t *)mp1->b_rptr; 12411 ipf->ipf_mp = mp1; 12412 ipf->ipf_ptphn = ipfp; 12413 ipfp[0] = ipf; 12414 ipf->ipf_hash_next = NULL; 12415 ipf->ipf_ident = ident; 12416 ipf->ipf_protocol = proto; 12417 ipf->ipf_src = src; 12418 ipf->ipf_dst = dst; 12419 ipf->ipf_nf_hdr_len = 0; 12420 /* Record reassembly start time. */ 12421 ipf->ipf_timestamp = gethrestime_sec(); 12422 /* Record ipf generation and account for frag header */ 12423 ipf->ipf_gen = ill->ill_ipf_gen++; 12424 ipf->ipf_count = MBLKSIZE(mp1); 12425 ipf->ipf_last_frag_seen = B_FALSE; 12426 ipf->ipf_ecn = ecn_info; 12427 ipf->ipf_num_dups = 0; 12428 ipfb->ipfb_frag_pkts++; 12429 ipf->ipf_checksum = 0; 12430 ipf->ipf_checksum_flags = 0; 12431 12432 /* Store checksum value in fragment header */ 12433 if (sum_flags != 0) { 12434 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12435 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12436 ipf->ipf_checksum = sum_val; 12437 ipf->ipf_checksum_flags = sum_flags; 12438 } 12439 12440 /* 12441 * We handle reassembly two ways. In the easy case, 12442 * where all the fragments show up in order, we do 12443 * minimal bookkeeping, and just clip new pieces on 12444 * the end. If we ever see a hole, then we go off 12445 * to ip_reassemble which has to mark the pieces and 12446 * keep track of the number of holes, etc. Obviously, 12447 * the point of having both mechanisms is so we can 12448 * handle the easy case as efficiently as possible. 12449 */ 12450 if (offset == 0) { 12451 /* Easy case, in-order reassembly so far. */ 12452 ipf->ipf_count += msg_len; 12453 ipf->ipf_tail_mp = tail_mp; 12454 /* 12455 * Keep track of next expected offset in 12456 * ipf_end. 12457 */ 12458 ipf->ipf_end = end; 12459 ipf->ipf_nf_hdr_len = hdr_length; 12460 } else { 12461 /* Hard case, hole at the beginning. */ 12462 ipf->ipf_tail_mp = NULL; 12463 /* 12464 * ipf_end == 0 means that we have given up 12465 * on easy reassembly. 12466 */ 12467 ipf->ipf_end = 0; 12468 12469 /* Forget checksum offload from now on */ 12470 ipf->ipf_checksum_flags = 0; 12471 12472 /* 12473 * ipf_hole_cnt is set by ip_reassemble. 12474 * ipf_count is updated by ip_reassemble. 12475 * No need to check for return value here 12476 * as we don't expect reassembly to complete 12477 * or fail for the first fragment itself. 12478 */ 12479 (void) ip_reassemble(mp, ipf, 12480 (frag_offset_flags & IPH_OFFSET) << 3, 12481 (frag_offset_flags & IPH_MF), ill, msg_len); 12482 } 12483 /* Update per ipfb and ill byte counts */ 12484 ipfb->ipfb_count += ipf->ipf_count; 12485 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12486 ill->ill_frag_count += ipf->ipf_count; 12487 /* If the frag timer wasn't already going, start it. */ 12488 mutex_enter(&ill->ill_lock); 12489 ill_frag_timer_start(ill); 12490 mutex_exit(&ill->ill_lock); 12491 goto reass_done; 12492 } 12493 12494 /* 12495 * If the packet's flag has changed (it could be coming up 12496 * from an interface different than the previous, therefore 12497 * possibly different checksum capability), then forget about 12498 * any stored checksum states. Otherwise add the value to 12499 * the existing one stored in the fragment header. 12500 */ 12501 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12502 sum_val += ipf->ipf_checksum; 12503 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12504 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12505 ipf->ipf_checksum = sum_val; 12506 } else if (ipf->ipf_checksum_flags != 0) { 12507 /* Forget checksum offload from now on */ 12508 ipf->ipf_checksum_flags = 0; 12509 } 12510 12511 /* 12512 * We have a new piece of a datagram which is already being 12513 * reassembled. Update the ECN info if all IP fragments 12514 * are ECN capable. If there is one which is not, clear 12515 * all the info. If there is at least one which has CE 12516 * code point, IP needs to report that up to transport. 12517 */ 12518 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12519 if (ecn_info == IPH_ECN_CE) 12520 ipf->ipf_ecn = IPH_ECN_CE; 12521 } else { 12522 ipf->ipf_ecn = IPH_ECN_NECT; 12523 } 12524 if (offset && ipf->ipf_end == offset) { 12525 /* The new fragment fits at the end */ 12526 ipf->ipf_tail_mp->b_cont = mp; 12527 /* Update the byte count */ 12528 ipf->ipf_count += msg_len; 12529 /* Update per ipfb and ill byte counts */ 12530 ipfb->ipfb_count += msg_len; 12531 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12532 ill->ill_frag_count += msg_len; 12533 if (frag_offset_flags & IPH_MF) { 12534 /* More to come. */ 12535 ipf->ipf_end = end; 12536 ipf->ipf_tail_mp = tail_mp; 12537 goto reass_done; 12538 } 12539 } else { 12540 /* Go do the hard cases. */ 12541 int ret; 12542 12543 if (offset == 0) 12544 ipf->ipf_nf_hdr_len = hdr_length; 12545 12546 /* Save current byte count */ 12547 count = ipf->ipf_count; 12548 ret = ip_reassemble(mp, ipf, 12549 (frag_offset_flags & IPH_OFFSET) << 3, 12550 (frag_offset_flags & IPH_MF), ill, msg_len); 12551 /* Count of bytes added and subtracted (freeb()ed) */ 12552 count = ipf->ipf_count - count; 12553 if (count) { 12554 /* Update per ipfb and ill byte counts */ 12555 ipfb->ipfb_count += count; 12556 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12557 ill->ill_frag_count += count; 12558 } 12559 if (ret == IP_REASS_PARTIAL) { 12560 goto reass_done; 12561 } else if (ret == IP_REASS_FAILED) { 12562 /* Reassembly failed. Free up all resources */ 12563 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12564 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12565 IP_REASS_SET_START(t_mp, 0); 12566 IP_REASS_SET_END(t_mp, 0); 12567 } 12568 freemsg(mp); 12569 goto reass_done; 12570 } 12571 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12572 } 12573 /* 12574 * We have completed reassembly. Unhook the frag header from 12575 * the reassembly list. 12576 * 12577 * Before we free the frag header, record the ECN info 12578 * to report back to the transport. 12579 */ 12580 ecn_info = ipf->ipf_ecn; 12581 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12582 ipfp = ipf->ipf_ptphn; 12583 12584 /* We need to supply these to caller */ 12585 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12586 sum_val = ipf->ipf_checksum; 12587 else 12588 sum_val = 0; 12589 12590 mp1 = ipf->ipf_mp; 12591 count = ipf->ipf_count; 12592 ipf = ipf->ipf_hash_next; 12593 if (ipf != NULL) 12594 ipf->ipf_ptphn = ipfp; 12595 ipfp[0] = ipf; 12596 ill->ill_frag_count -= count; 12597 ASSERT(ipfb->ipfb_count >= count); 12598 ipfb->ipfb_count -= count; 12599 ipfb->ipfb_frag_pkts--; 12600 mutex_exit(&ipfb->ipfb_lock); 12601 /* Ditch the frag header. */ 12602 mp = mp1->b_cont; 12603 12604 freeb(mp1); 12605 12606 /* Restore original IP length in header. */ 12607 packet_size = (uint32_t)msgdsize(mp); 12608 if (packet_size > IP_MAXPACKET) { 12609 freemsg(mp); 12610 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12611 return (B_FALSE); 12612 } 12613 12614 if (DB_REF(mp) > 1) { 12615 mblk_t *mp2 = copymsg(mp); 12616 12617 freemsg(mp); 12618 if (mp2 == NULL) { 12619 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12620 return (B_FALSE); 12621 } 12622 mp = mp2; 12623 } 12624 ipha = (ipha_t *)mp->b_rptr; 12625 12626 ipha->ipha_length = htons((uint16_t)packet_size); 12627 /* We're now complete, zip the frag state */ 12628 ipha->ipha_fragment_offset_and_flags = 0; 12629 /* Record the ECN info. */ 12630 ipha->ipha_type_of_service &= 0xFC; 12631 ipha->ipha_type_of_service |= ecn_info; 12632 *mpp = mp; 12633 12634 /* Reassembly is successful; return checksum information if needed */ 12635 if (cksum_val != NULL) 12636 *cksum_val = sum_val; 12637 if (cksum_flags != NULL) 12638 *cksum_flags = sum_flags; 12639 12640 return (B_TRUE); 12641 } 12642 12643 /* 12644 * Perform ip header check sum update local options. 12645 * return B_TRUE if all is well, else return B_FALSE and release 12646 * the mp. caller is responsible for decrementing ire ref cnt. 12647 */ 12648 static boolean_t 12649 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12650 ip_stack_t *ipst) 12651 { 12652 mblk_t *first_mp; 12653 boolean_t mctl_present; 12654 uint16_t sum; 12655 12656 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12657 /* 12658 * Don't do the checksum if it has gone through AH/ESP 12659 * processing. 12660 */ 12661 if (!mctl_present) { 12662 sum = ip_csum_hdr(ipha); 12663 if (sum != 0) { 12664 if (ill != NULL) { 12665 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12666 } else { 12667 BUMP_MIB(&ipst->ips_ip_mib, 12668 ipIfStatsInCksumErrs); 12669 } 12670 freemsg(first_mp); 12671 return (B_FALSE); 12672 } 12673 } 12674 12675 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12676 if (mctl_present) 12677 freeb(first_mp); 12678 return (B_FALSE); 12679 } 12680 12681 return (B_TRUE); 12682 } 12683 12684 /* 12685 * All udp packet are delivered to the local host via this routine. 12686 */ 12687 void 12688 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12689 ill_t *recv_ill) 12690 { 12691 uint32_t sum; 12692 uint32_t u1; 12693 boolean_t mctl_present; 12694 conn_t *connp; 12695 mblk_t *first_mp; 12696 uint16_t *up; 12697 ill_t *ill = (ill_t *)q->q_ptr; 12698 uint16_t reass_hck_flags = 0; 12699 ip_stack_t *ipst; 12700 12701 ASSERT(recv_ill != NULL); 12702 ipst = recv_ill->ill_ipst; 12703 12704 #define rptr ((uchar_t *)ipha) 12705 12706 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12707 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12708 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12709 ASSERT(ill != NULL); 12710 12711 /* 12712 * FAST PATH for udp packets 12713 */ 12714 12715 /* u1 is # words of IP options */ 12716 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12717 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12718 12719 /* IP options present */ 12720 if (u1 != 0) 12721 goto ipoptions; 12722 12723 /* Check the IP header checksum. */ 12724 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12725 /* Clear the IP header h/w cksum flag */ 12726 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12727 } else if (!mctl_present) { 12728 /* 12729 * Don't verify header checksum if this packet is coming 12730 * back from AH/ESP as we already did it. 12731 */ 12732 #define uph ((uint16_t *)ipha) 12733 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12734 uph[6] + uph[7] + uph[8] + uph[9]; 12735 #undef uph 12736 /* finish doing IP checksum */ 12737 sum = (sum & 0xFFFF) + (sum >> 16); 12738 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12739 if (sum != 0 && sum != 0xFFFF) { 12740 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12741 freemsg(first_mp); 12742 return; 12743 } 12744 } 12745 12746 /* 12747 * Count for SNMP of inbound packets for ire. 12748 * if mctl is present this might be a secure packet and 12749 * has already been counted for in ip_proto_input(). 12750 */ 12751 if (!mctl_present) { 12752 UPDATE_IB_PKT_COUNT(ire); 12753 ire->ire_last_used_time = lbolt; 12754 } 12755 12756 /* packet part of fragmented IP packet? */ 12757 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12758 if (u1 & (IPH_MF | IPH_OFFSET)) { 12759 goto fragmented; 12760 } 12761 12762 /* u1 = IP header length (20 bytes) */ 12763 u1 = IP_SIMPLE_HDR_LENGTH; 12764 12765 /* packet does not contain complete IP & UDP headers */ 12766 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12767 goto udppullup; 12768 12769 /* up points to UDP header */ 12770 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12771 #define iphs ((uint16_t *)ipha) 12772 12773 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12774 if (up[3] != 0) { 12775 mblk_t *mp1 = mp->b_cont; 12776 boolean_t cksum_err; 12777 uint16_t hck_flags = 0; 12778 12779 /* Pseudo-header checksum */ 12780 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12781 iphs[9] + up[2]; 12782 12783 /* 12784 * Revert to software checksum calculation if the interface 12785 * isn't capable of checksum offload or if IPsec is present. 12786 */ 12787 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12788 hck_flags = DB_CKSUMFLAGS(mp); 12789 12790 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12791 IP_STAT(ipst, ip_in_sw_cksum); 12792 12793 IP_CKSUM_RECV(hck_flags, u1, 12794 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12795 (int32_t)((uchar_t *)up - rptr), 12796 mp, mp1, cksum_err); 12797 12798 if (cksum_err) { 12799 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12800 if (hck_flags & HCK_FULLCKSUM) 12801 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12802 else if (hck_flags & HCK_PARTIALCKSUM) 12803 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12804 else 12805 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12806 12807 freemsg(first_mp); 12808 return; 12809 } 12810 } 12811 12812 /* Non-fragmented broadcast or multicast packet? */ 12813 if (ire->ire_type == IRE_BROADCAST) 12814 goto udpslowpath; 12815 12816 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12817 ire->ire_zoneid, ipst)) != NULL) { 12818 ASSERT(connp->conn_upq != NULL); 12819 IP_STAT(ipst, ip_udp_fast_path); 12820 12821 if (CONN_UDP_FLOWCTLD(connp)) { 12822 freemsg(mp); 12823 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12824 } else { 12825 if (!mctl_present) { 12826 BUMP_MIB(ill->ill_ip_mib, 12827 ipIfStatsHCInDelivers); 12828 } 12829 /* 12830 * mp and first_mp can change. 12831 */ 12832 if (ip_udp_check(q, connp, recv_ill, 12833 ipha, &mp, &first_mp, mctl_present, ire)) { 12834 /* Send it upstream */ 12835 (connp->conn_recv)(connp, mp, NULL); 12836 } 12837 } 12838 /* 12839 * freeb() cannot deal with null mblk being passed 12840 * in and first_mp can be set to null in the call 12841 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12842 */ 12843 if (mctl_present && first_mp != NULL) { 12844 freeb(first_mp); 12845 } 12846 CONN_DEC_REF(connp); 12847 return; 12848 } 12849 12850 /* 12851 * if we got here we know the packet is not fragmented and 12852 * has no options. The classifier could not find a conn_t and 12853 * most likely its an icmp packet so send it through slow path. 12854 */ 12855 12856 goto udpslowpath; 12857 12858 ipoptions: 12859 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12860 goto slow_done; 12861 } 12862 12863 UPDATE_IB_PKT_COUNT(ire); 12864 ire->ire_last_used_time = lbolt; 12865 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12866 if (u1 & (IPH_MF | IPH_OFFSET)) { 12867 fragmented: 12868 /* 12869 * "sum" and "reass_hck_flags" are non-zero if the 12870 * reassembled packet has a valid hardware computed 12871 * checksum information associated with it. 12872 */ 12873 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12874 goto slow_done; 12875 /* 12876 * Make sure that first_mp points back to mp as 12877 * the mp we came in with could have changed in 12878 * ip_rput_fragment(). 12879 */ 12880 ASSERT(!mctl_present); 12881 ipha = (ipha_t *)mp->b_rptr; 12882 first_mp = mp; 12883 } 12884 12885 /* Now we have a complete datagram, destined for this machine. */ 12886 u1 = IPH_HDR_LENGTH(ipha); 12887 /* Pull up the UDP header, if necessary. */ 12888 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12889 udppullup: 12890 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12891 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12892 freemsg(first_mp); 12893 goto slow_done; 12894 } 12895 ipha = (ipha_t *)mp->b_rptr; 12896 } 12897 12898 /* 12899 * Validate the checksum for the reassembled packet; for the 12900 * pullup case we calculate the payload checksum in software. 12901 */ 12902 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12903 if (up[3] != 0) { 12904 boolean_t cksum_err; 12905 12906 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12907 IP_STAT(ipst, ip_in_sw_cksum); 12908 12909 IP_CKSUM_RECV_REASS(reass_hck_flags, 12910 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12911 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12912 iphs[9] + up[2], sum, cksum_err); 12913 12914 if (cksum_err) { 12915 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12916 12917 if (reass_hck_flags & HCK_FULLCKSUM) 12918 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12919 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12920 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12921 else 12922 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12923 12924 freemsg(first_mp); 12925 goto slow_done; 12926 } 12927 } 12928 udpslowpath: 12929 12930 /* Clear hardware checksum flag to be safe */ 12931 DB_CKSUMFLAGS(mp) = 0; 12932 12933 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12934 (ire->ire_type == IRE_BROADCAST), 12935 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12936 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12937 12938 slow_done: 12939 IP_STAT(ipst, ip_udp_slow_path); 12940 return; 12941 12942 #undef iphs 12943 #undef rptr 12944 } 12945 12946 /* ARGSUSED */ 12947 static mblk_t * 12948 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12949 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12950 ill_rx_ring_t *ill_ring) 12951 { 12952 conn_t *connp; 12953 uint32_t sum; 12954 uint32_t u1; 12955 uint16_t *up; 12956 int offset; 12957 ssize_t len; 12958 mblk_t *mp1; 12959 boolean_t syn_present = B_FALSE; 12960 tcph_t *tcph; 12961 uint_t ip_hdr_len; 12962 ill_t *ill = (ill_t *)q->q_ptr; 12963 zoneid_t zoneid = ire->ire_zoneid; 12964 boolean_t cksum_err; 12965 uint16_t hck_flags = 0; 12966 ip_stack_t *ipst = recv_ill->ill_ipst; 12967 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12968 12969 #define rptr ((uchar_t *)ipha) 12970 12971 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12972 ASSERT(ill != NULL); 12973 12974 /* 12975 * FAST PATH for tcp packets 12976 */ 12977 12978 /* u1 is # words of IP options */ 12979 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12980 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12981 12982 /* IP options present */ 12983 if (u1) { 12984 goto ipoptions; 12985 } else if (!mctl_present) { 12986 /* Check the IP header checksum. */ 12987 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12988 /* Clear the IP header h/w cksum flag */ 12989 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12990 } else if (!mctl_present) { 12991 /* 12992 * Don't verify header checksum if this packet 12993 * is coming back from AH/ESP as we already did it. 12994 */ 12995 #define uph ((uint16_t *)ipha) 12996 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12997 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12998 #undef uph 12999 /* finish doing IP checksum */ 13000 sum = (sum & 0xFFFF) + (sum >> 16); 13001 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13002 if (sum != 0 && sum != 0xFFFF) { 13003 BUMP_MIB(ill->ill_ip_mib, 13004 ipIfStatsInCksumErrs); 13005 goto error; 13006 } 13007 } 13008 } 13009 13010 if (!mctl_present) { 13011 UPDATE_IB_PKT_COUNT(ire); 13012 ire->ire_last_used_time = lbolt; 13013 } 13014 13015 /* packet part of fragmented IP packet? */ 13016 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13017 if (u1 & (IPH_MF | IPH_OFFSET)) { 13018 goto fragmented; 13019 } 13020 13021 /* u1 = IP header length (20 bytes) */ 13022 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13023 13024 /* does packet contain IP+TCP headers? */ 13025 len = mp->b_wptr - rptr; 13026 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13027 IP_STAT(ipst, ip_tcppullup); 13028 goto tcppullup; 13029 } 13030 13031 /* TCP options present? */ 13032 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13033 13034 /* 13035 * If options need to be pulled up, then goto tcpoptions. 13036 * otherwise we are still in the fast path 13037 */ 13038 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13039 IP_STAT(ipst, ip_tcpoptions); 13040 goto tcpoptions; 13041 } 13042 13043 /* multiple mblks of tcp data? */ 13044 if ((mp1 = mp->b_cont) != NULL) { 13045 /* more then two? */ 13046 if (mp1->b_cont != NULL) { 13047 IP_STAT(ipst, ip_multipkttcp); 13048 goto multipkttcp; 13049 } 13050 len += mp1->b_wptr - mp1->b_rptr; 13051 } 13052 13053 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13054 13055 /* part of pseudo checksum */ 13056 13057 /* TCP datagram length */ 13058 u1 = len - IP_SIMPLE_HDR_LENGTH; 13059 13060 #define iphs ((uint16_t *)ipha) 13061 13062 #ifdef _BIG_ENDIAN 13063 u1 += IPPROTO_TCP; 13064 #else 13065 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13066 #endif 13067 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13068 13069 /* 13070 * Revert to software checksum calculation if the interface 13071 * isn't capable of checksum offload or if IPsec is present. 13072 */ 13073 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13074 hck_flags = DB_CKSUMFLAGS(mp); 13075 13076 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13077 IP_STAT(ipst, ip_in_sw_cksum); 13078 13079 IP_CKSUM_RECV(hck_flags, u1, 13080 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13081 (int32_t)((uchar_t *)up - rptr), 13082 mp, mp1, cksum_err); 13083 13084 if (cksum_err) { 13085 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13086 13087 if (hck_flags & HCK_FULLCKSUM) 13088 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13089 else if (hck_flags & HCK_PARTIALCKSUM) 13090 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13091 else 13092 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13093 13094 goto error; 13095 } 13096 13097 try_again: 13098 13099 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13100 zoneid, ipst)) == NULL) { 13101 /* Send the TH_RST */ 13102 goto no_conn; 13103 } 13104 13105 /* 13106 * TCP FAST PATH for AF_INET socket. 13107 * 13108 * TCP fast path to avoid extra work. An AF_INET socket type 13109 * does not have facility to receive extra information via 13110 * ip_process or ip_add_info. Also, when the connection was 13111 * established, we made a check if this connection is impacted 13112 * by any global IPsec policy or per connection policy (a 13113 * policy that comes in effect later will not apply to this 13114 * connection). Since all this can be determined at the 13115 * connection establishment time, a quick check of flags 13116 * can avoid extra work. 13117 */ 13118 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13119 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13120 ASSERT(first_mp == mp); 13121 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13122 SET_SQUEUE(mp, tcp_rput_data, connp); 13123 return (mp); 13124 } 13125 13126 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13127 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13128 if (IPCL_IS_TCP(connp)) { 13129 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13130 DB_CKSUMSTART(mp) = 13131 (intptr_t)ip_squeue_get(ill_ring); 13132 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13133 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13134 BUMP_MIB(ill->ill_ip_mib, 13135 ipIfStatsHCInDelivers); 13136 SET_SQUEUE(mp, connp->conn_recv, connp); 13137 return (mp); 13138 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13139 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13140 BUMP_MIB(ill->ill_ip_mib, 13141 ipIfStatsHCInDelivers); 13142 ip_squeue_enter_unbound++; 13143 SET_SQUEUE(mp, tcp_conn_request_unbound, 13144 connp); 13145 return (mp); 13146 } 13147 syn_present = B_TRUE; 13148 } 13149 13150 } 13151 13152 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13153 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13154 13155 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13156 /* No need to send this packet to TCP */ 13157 if ((flags & TH_RST) || (flags & TH_URG)) { 13158 CONN_DEC_REF(connp); 13159 freemsg(first_mp); 13160 return (NULL); 13161 } 13162 if (flags & TH_ACK) { 13163 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13164 ipst->ips_netstack->netstack_tcp, connp); 13165 CONN_DEC_REF(connp); 13166 return (NULL); 13167 } 13168 13169 CONN_DEC_REF(connp); 13170 freemsg(first_mp); 13171 return (NULL); 13172 } 13173 13174 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13175 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13176 ipha, NULL, mctl_present); 13177 if (first_mp == NULL) { 13178 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13179 CONN_DEC_REF(connp); 13180 return (NULL); 13181 } 13182 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13183 ASSERT(syn_present); 13184 if (mctl_present) { 13185 ASSERT(first_mp != mp); 13186 first_mp->b_datap->db_struioflag |= 13187 STRUIO_POLICY; 13188 } else { 13189 ASSERT(first_mp == mp); 13190 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13191 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13192 } 13193 } else { 13194 /* 13195 * Discard first_mp early since we're dealing with a 13196 * fully-connected conn_t and tcp doesn't do policy in 13197 * this case. 13198 */ 13199 if (mctl_present) { 13200 freeb(first_mp); 13201 mctl_present = B_FALSE; 13202 } 13203 first_mp = mp; 13204 } 13205 } 13206 13207 /* Initiate IPPF processing for fastpath */ 13208 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13209 uint32_t ill_index; 13210 13211 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13212 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13213 if (mp == NULL) { 13214 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13215 "deferred/dropped during IPPF processing\n")); 13216 CONN_DEC_REF(connp); 13217 if (mctl_present) 13218 freeb(first_mp); 13219 return (NULL); 13220 } else if (mctl_present) { 13221 /* 13222 * ip_process might return a new mp. 13223 */ 13224 ASSERT(first_mp != mp); 13225 first_mp->b_cont = mp; 13226 } else { 13227 first_mp = mp; 13228 } 13229 13230 } 13231 13232 if (!syn_present && connp->conn_ip_recvpktinfo) { 13233 /* 13234 * TCP does not support IP_RECVPKTINFO for v4 so lets 13235 * make sure IPF_RECVIF is passed to ip_add_info. 13236 */ 13237 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13238 IPCL_ZONEID(connp), ipst); 13239 if (mp == NULL) { 13240 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13241 CONN_DEC_REF(connp); 13242 if (mctl_present) 13243 freeb(first_mp); 13244 return (NULL); 13245 } else if (mctl_present) { 13246 /* 13247 * ip_add_info might return a new mp. 13248 */ 13249 ASSERT(first_mp != mp); 13250 first_mp->b_cont = mp; 13251 } else { 13252 first_mp = mp; 13253 } 13254 } 13255 13256 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13257 if (IPCL_IS_TCP(connp)) { 13258 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13259 return (first_mp); 13260 } else { 13261 /* SOCK_RAW, IPPROTO_TCP case */ 13262 (connp->conn_recv)(connp, first_mp, NULL); 13263 CONN_DEC_REF(connp); 13264 return (NULL); 13265 } 13266 13267 no_conn: 13268 /* Initiate IPPf processing, if needed. */ 13269 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13270 uint32_t ill_index; 13271 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13272 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13273 if (first_mp == NULL) { 13274 return (NULL); 13275 } 13276 } 13277 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13278 13279 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13280 ipst->ips_netstack->netstack_tcp, NULL); 13281 return (NULL); 13282 ipoptions: 13283 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13284 goto slow_done; 13285 } 13286 13287 UPDATE_IB_PKT_COUNT(ire); 13288 ire->ire_last_used_time = lbolt; 13289 13290 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13291 if (u1 & (IPH_MF | IPH_OFFSET)) { 13292 fragmented: 13293 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13294 if (mctl_present) 13295 freeb(first_mp); 13296 goto slow_done; 13297 } 13298 /* 13299 * Make sure that first_mp points back to mp as 13300 * the mp we came in with could have changed in 13301 * ip_rput_fragment(). 13302 */ 13303 ASSERT(!mctl_present); 13304 ipha = (ipha_t *)mp->b_rptr; 13305 first_mp = mp; 13306 } 13307 13308 /* Now we have a complete datagram, destined for this machine. */ 13309 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13310 13311 len = mp->b_wptr - mp->b_rptr; 13312 /* Pull up a minimal TCP header, if necessary. */ 13313 if (len < (u1 + 20)) { 13314 tcppullup: 13315 if (!pullupmsg(mp, u1 + 20)) { 13316 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13317 goto error; 13318 } 13319 ipha = (ipha_t *)mp->b_rptr; 13320 len = mp->b_wptr - mp->b_rptr; 13321 } 13322 13323 /* 13324 * Extract the offset field from the TCP header. As usual, we 13325 * try to help the compiler more than the reader. 13326 */ 13327 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13328 if (offset != 5) { 13329 tcpoptions: 13330 if (offset < 5) { 13331 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13332 goto error; 13333 } 13334 /* 13335 * There must be TCP options. 13336 * Make sure we can grab them. 13337 */ 13338 offset <<= 2; 13339 offset += u1; 13340 if (len < offset) { 13341 if (!pullupmsg(mp, offset)) { 13342 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13343 goto error; 13344 } 13345 ipha = (ipha_t *)mp->b_rptr; 13346 len = mp->b_wptr - rptr; 13347 } 13348 } 13349 13350 /* Get the total packet length in len, including headers. */ 13351 if (mp->b_cont) { 13352 multipkttcp: 13353 len = msgdsize(mp); 13354 } 13355 13356 /* 13357 * Check the TCP checksum by pulling together the pseudo- 13358 * header checksum, and passing it to ip_csum to be added in 13359 * with the TCP datagram. 13360 * 13361 * Since we are not using the hwcksum if available we must 13362 * clear the flag. We may come here via tcppullup or tcpoptions. 13363 * If either of these fails along the way the mblk is freed. 13364 * If this logic ever changes and mblk is reused to say send 13365 * ICMP's back, then this flag may need to be cleared in 13366 * other places as well. 13367 */ 13368 DB_CKSUMFLAGS(mp) = 0; 13369 13370 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13371 13372 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13373 #ifdef _BIG_ENDIAN 13374 u1 += IPPROTO_TCP; 13375 #else 13376 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13377 #endif 13378 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13379 /* 13380 * Not M_DATA mblk or its a dup, so do the checksum now. 13381 */ 13382 IP_STAT(ipst, ip_in_sw_cksum); 13383 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13384 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13385 goto error; 13386 } 13387 13388 IP_STAT(ipst, ip_tcp_slow_path); 13389 goto try_again; 13390 #undef iphs 13391 #undef rptr 13392 13393 error: 13394 freemsg(first_mp); 13395 slow_done: 13396 return (NULL); 13397 } 13398 13399 /* ARGSUSED */ 13400 static void 13401 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13402 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13403 { 13404 conn_t *connp; 13405 uint32_t sum; 13406 uint32_t u1; 13407 ssize_t len; 13408 sctp_hdr_t *sctph; 13409 zoneid_t zoneid = ire->ire_zoneid; 13410 uint32_t pktsum; 13411 uint32_t calcsum; 13412 uint32_t ports; 13413 in6_addr_t map_src, map_dst; 13414 ill_t *ill = (ill_t *)q->q_ptr; 13415 ip_stack_t *ipst; 13416 sctp_stack_t *sctps; 13417 boolean_t sctp_csum_err = B_FALSE; 13418 13419 ASSERT(recv_ill != NULL); 13420 ipst = recv_ill->ill_ipst; 13421 sctps = ipst->ips_netstack->netstack_sctp; 13422 13423 #define rptr ((uchar_t *)ipha) 13424 13425 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13426 ASSERT(ill != NULL); 13427 13428 /* u1 is # words of IP options */ 13429 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13430 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13431 13432 /* IP options present */ 13433 if (u1 > 0) { 13434 goto ipoptions; 13435 } else { 13436 /* Check the IP header checksum. */ 13437 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill) && 13438 !mctl_present) { 13439 #define uph ((uint16_t *)ipha) 13440 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13441 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13442 #undef uph 13443 /* finish doing IP checksum */ 13444 sum = (sum & 0xFFFF) + (sum >> 16); 13445 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13446 /* 13447 * Don't verify header checksum if this packet 13448 * is coming back from AH/ESP as we already did it. 13449 */ 13450 if (sum != 0 && sum != 0xFFFF) { 13451 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13452 goto error; 13453 } 13454 } 13455 /* 13456 * Since there is no SCTP h/w cksum support yet, just 13457 * clear the flag. 13458 */ 13459 DB_CKSUMFLAGS(mp) = 0; 13460 } 13461 13462 /* 13463 * Don't verify header checksum if this packet is coming 13464 * back from AH/ESP as we already did it. 13465 */ 13466 if (!mctl_present) { 13467 UPDATE_IB_PKT_COUNT(ire); 13468 ire->ire_last_used_time = lbolt; 13469 } 13470 13471 /* packet part of fragmented IP packet? */ 13472 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13473 if (u1 & (IPH_MF | IPH_OFFSET)) 13474 goto fragmented; 13475 13476 /* u1 = IP header length (20 bytes) */ 13477 u1 = IP_SIMPLE_HDR_LENGTH; 13478 13479 find_sctp_client: 13480 /* Pullup if we don't have the sctp common header. */ 13481 len = MBLKL(mp); 13482 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13483 if (mp->b_cont == NULL || 13484 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13485 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13486 goto error; 13487 } 13488 ipha = (ipha_t *)mp->b_rptr; 13489 len = MBLKL(mp); 13490 } 13491 13492 sctph = (sctp_hdr_t *)(rptr + u1); 13493 #ifdef DEBUG 13494 if (!skip_sctp_cksum) { 13495 #endif 13496 pktsum = sctph->sh_chksum; 13497 sctph->sh_chksum = 0; 13498 calcsum = sctp_cksum(mp, u1); 13499 sctph->sh_chksum = pktsum; 13500 if (calcsum != pktsum) 13501 sctp_csum_err = B_TRUE; 13502 #ifdef DEBUG /* skip_sctp_cksum */ 13503 } 13504 #endif 13505 /* get the ports */ 13506 ports = *(uint32_t *)&sctph->sh_sport; 13507 13508 IRE_REFRELE(ire); 13509 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13510 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13511 if (sctp_csum_err) { 13512 /* 13513 * No potential sctp checksum errors go to the Sun 13514 * sctp stack however they might be Adler-32 summed 13515 * packets a userland stack bound to a raw IP socket 13516 * could reasonably use. Note though that Adler-32 is 13517 * a long deprecated algorithm and customer sctp 13518 * networks should eventually migrate to CRC-32 at 13519 * which time this facility should be removed. 13520 */ 13521 flags |= IP_FF_SCTP_CSUM_ERR; 13522 goto no_conn; 13523 } 13524 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13525 sctps)) == NULL) { 13526 /* Check for raw socket or OOTB handling */ 13527 goto no_conn; 13528 } 13529 13530 /* Found a client; up it goes */ 13531 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13532 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13533 return; 13534 13535 no_conn: 13536 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13537 ports, mctl_present, flags, B_TRUE, zoneid); 13538 return; 13539 13540 ipoptions: 13541 DB_CKSUMFLAGS(mp) = 0; 13542 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13543 goto slow_done; 13544 13545 UPDATE_IB_PKT_COUNT(ire); 13546 ire->ire_last_used_time = lbolt; 13547 13548 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13549 if (u1 & (IPH_MF | IPH_OFFSET)) { 13550 fragmented: 13551 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13552 goto slow_done; 13553 /* 13554 * Make sure that first_mp points back to mp as 13555 * the mp we came in with could have changed in 13556 * ip_rput_fragment(). 13557 */ 13558 ASSERT(!mctl_present); 13559 ipha = (ipha_t *)mp->b_rptr; 13560 first_mp = mp; 13561 } 13562 13563 /* Now we have a complete datagram, destined for this machine. */ 13564 u1 = IPH_HDR_LENGTH(ipha); 13565 goto find_sctp_client; 13566 #undef iphs 13567 #undef rptr 13568 13569 error: 13570 freemsg(first_mp); 13571 slow_done: 13572 IRE_REFRELE(ire); 13573 } 13574 13575 #define VER_BITS 0xF0 13576 #define VERSION_6 0x60 13577 13578 static boolean_t 13579 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13580 ipaddr_t *dstp, ip_stack_t *ipst) 13581 { 13582 uint_t opt_len; 13583 ipha_t *ipha; 13584 ssize_t len; 13585 uint_t pkt_len; 13586 13587 ASSERT(ill != NULL); 13588 IP_STAT(ipst, ip_ipoptions); 13589 ipha = *iphapp; 13590 13591 #define rptr ((uchar_t *)ipha) 13592 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13593 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13594 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13595 freemsg(mp); 13596 return (B_FALSE); 13597 } 13598 13599 /* multiple mblk or too short */ 13600 pkt_len = ntohs(ipha->ipha_length); 13601 13602 /* Get the number of words of IP options in the IP header. */ 13603 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13604 if (opt_len) { 13605 /* IP Options present! Validate and process. */ 13606 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13607 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13608 goto done; 13609 } 13610 /* 13611 * Recompute complete header length and make sure we 13612 * have access to all of it. 13613 */ 13614 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13615 if (len > (mp->b_wptr - rptr)) { 13616 if (len > pkt_len) { 13617 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13618 goto done; 13619 } 13620 if (!pullupmsg(mp, len)) { 13621 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13622 goto done; 13623 } 13624 ipha = (ipha_t *)mp->b_rptr; 13625 } 13626 /* 13627 * Go off to ip_rput_options which returns the next hop 13628 * destination address, which may have been affected 13629 * by source routing. 13630 */ 13631 IP_STAT(ipst, ip_opt); 13632 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13633 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13634 return (B_FALSE); 13635 } 13636 } 13637 *iphapp = ipha; 13638 return (B_TRUE); 13639 done: 13640 /* clear b_prev - used by ip_mroute_decap */ 13641 mp->b_prev = NULL; 13642 freemsg(mp); 13643 return (B_FALSE); 13644 #undef rptr 13645 } 13646 13647 /* 13648 * Deal with the fact that there is no ire for the destination. 13649 */ 13650 static ire_t * 13651 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13652 { 13653 ipha_t *ipha; 13654 ill_t *ill; 13655 ire_t *ire; 13656 boolean_t check_multirt = B_FALSE; 13657 ip_stack_t *ipst; 13658 13659 ipha = (ipha_t *)mp->b_rptr; 13660 ill = (ill_t *)q->q_ptr; 13661 13662 ASSERT(ill != NULL); 13663 ipst = ill->ill_ipst; 13664 13665 /* 13666 * No IRE for this destination, so it can't be for us. 13667 * Unless we are forwarding, drop the packet. 13668 * We have to let source routed packets through 13669 * since we don't yet know if they are 'ping -l' 13670 * packets i.e. if they will go out over the 13671 * same interface as they came in on. 13672 */ 13673 if (ll_multicast) { 13674 freemsg(mp); 13675 return (NULL); 13676 } 13677 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13678 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13679 freemsg(mp); 13680 return (NULL); 13681 } 13682 13683 /* 13684 * Mark this packet as having originated externally. 13685 * 13686 * For non-forwarding code path, ire_send later double 13687 * checks this interface to see if it is still exists 13688 * post-ARP resolution. 13689 * 13690 * Also, IPQOS uses this to differentiate between 13691 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13692 * QOS packet processing in ip_wput_attach_llhdr(). 13693 * The QoS module can mark the b_band for a fastpath message 13694 * or the dl_priority field in a unitdata_req header for 13695 * CoS marking. This info can only be found in 13696 * ip_wput_attach_llhdr(). 13697 */ 13698 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13699 /* 13700 * Clear the indication that this may have a hardware checksum 13701 * as we are not using it 13702 */ 13703 DB_CKSUMFLAGS(mp) = 0; 13704 13705 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13706 MBLK_GETLABEL(mp), ipst); 13707 13708 if (ire == NULL && check_multirt) { 13709 /* Let ip_newroute handle CGTP */ 13710 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13711 return (NULL); 13712 } 13713 13714 if (ire != NULL) 13715 return (ire); 13716 13717 mp->b_prev = mp->b_next = 0; 13718 /* send icmp unreachable */ 13719 q = WR(q); 13720 /* Sent by forwarding path, and router is global zone */ 13721 if (ip_source_routed(ipha, ipst)) { 13722 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13723 GLOBAL_ZONEID, ipst); 13724 } else { 13725 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13726 ipst); 13727 } 13728 13729 return (NULL); 13730 13731 } 13732 13733 /* 13734 * check ip header length and align it. 13735 */ 13736 static boolean_t 13737 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13738 { 13739 ssize_t len; 13740 ill_t *ill; 13741 ipha_t *ipha; 13742 13743 len = MBLKL(mp); 13744 13745 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13746 ill = (ill_t *)q->q_ptr; 13747 13748 if (!OK_32PTR(mp->b_rptr)) 13749 IP_STAT(ipst, ip_notaligned1); 13750 else 13751 IP_STAT(ipst, ip_notaligned2); 13752 /* Guard against bogus device drivers */ 13753 if (len < 0) { 13754 /* clear b_prev - used by ip_mroute_decap */ 13755 mp->b_prev = NULL; 13756 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13757 freemsg(mp); 13758 return (B_FALSE); 13759 } 13760 13761 if (ip_rput_pullups++ == 0) { 13762 ipha = (ipha_t *)mp->b_rptr; 13763 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13764 "ip_check_and_align_header: %s forced us to " 13765 " pullup pkt, hdr len %ld, hdr addr %p", 13766 ill->ill_name, len, ipha); 13767 } 13768 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13769 /* clear b_prev - used by ip_mroute_decap */ 13770 mp->b_prev = NULL; 13771 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13772 freemsg(mp); 13773 return (B_FALSE); 13774 } 13775 } 13776 return (B_TRUE); 13777 } 13778 13779 ire_t * 13780 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13781 { 13782 ire_t *new_ire; 13783 ill_t *ire_ill; 13784 uint_t ifindex; 13785 ip_stack_t *ipst = ill->ill_ipst; 13786 boolean_t strict_check = B_FALSE; 13787 13788 /* 13789 * This packet came in on an interface other than the one associated 13790 * with the first ire we found for the destination address. We do 13791 * another ire lookup here, using the ingress ill, to see if the 13792 * interface is in an interface group. 13793 * As long as the ills belong to the same group, we don't consider 13794 * them to be arriving on the wrong interface. Thus, if the switch 13795 * is doing inbound load spreading, we won't drop packets when the 13796 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13797 * for 'usesrc groups' where the destination address may belong to 13798 * another interface to allow multipathing to happen. 13799 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13800 * where the local address may not be unique. In this case we were 13801 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13802 * actually returned. The new lookup, which is more specific, should 13803 * only find the IRE_LOCAL associated with the ingress ill if one 13804 * exists. 13805 */ 13806 13807 if (ire->ire_ipversion == IPV4_VERSION) { 13808 if (ipst->ips_ip_strict_dst_multihoming) 13809 strict_check = B_TRUE; 13810 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13811 ill->ill_ipif, ALL_ZONES, NULL, 13812 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13813 } else { 13814 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13815 if (ipst->ips_ipv6_strict_dst_multihoming) 13816 strict_check = B_TRUE; 13817 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13818 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13819 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13820 } 13821 /* 13822 * If the same ire that was returned in ip_input() is found then this 13823 * is an indication that interface groups are in use. The packet 13824 * arrived on a different ill in the group than the one associated with 13825 * the destination address. If a different ire was found then the same 13826 * IP address must be hosted on multiple ills. This is possible with 13827 * unnumbered point2point interfaces. We switch to use this new ire in 13828 * order to have accurate interface statistics. 13829 */ 13830 if (new_ire != NULL) { 13831 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13832 ire_refrele(ire); 13833 ire = new_ire; 13834 } else { 13835 ire_refrele(new_ire); 13836 } 13837 return (ire); 13838 } else if ((ire->ire_rfq == NULL) && 13839 (ire->ire_ipversion == IPV4_VERSION)) { 13840 /* 13841 * The best match could have been the original ire which 13842 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13843 * the strict multihoming checks are irrelevant as we consider 13844 * local addresses hosted on lo0 to be interface agnostic. We 13845 * only expect a null ire_rfq on IREs which are associated with 13846 * lo0 hence we can return now. 13847 */ 13848 return (ire); 13849 } 13850 13851 /* 13852 * Chase pointers once and store locally. 13853 */ 13854 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13855 (ill_t *)(ire->ire_rfq->q_ptr); 13856 ifindex = ill->ill_usesrc_ifindex; 13857 13858 /* 13859 * Check if it's a legal address on the 'usesrc' interface. 13860 */ 13861 if ((ifindex != 0) && (ire_ill != NULL) && 13862 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13863 return (ire); 13864 } 13865 13866 /* 13867 * If the ip*_strict_dst_multihoming switch is on then we can 13868 * only accept this packet if the interface is marked as routing. 13869 */ 13870 if (!(strict_check)) 13871 return (ire); 13872 13873 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13874 ILLF_ROUTER) != 0) { 13875 return (ire); 13876 } 13877 13878 ire_refrele(ire); 13879 return (NULL); 13880 } 13881 13882 ire_t * 13883 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13884 { 13885 ipha_t *ipha; 13886 ire_t *src_ire; 13887 ill_t *stq_ill; 13888 uint_t hlen; 13889 uint_t pkt_len; 13890 uint32_t sum; 13891 queue_t *dev_q; 13892 ip_stack_t *ipst = ill->ill_ipst; 13893 mblk_t *fpmp; 13894 13895 ipha = (ipha_t *)mp->b_rptr; 13896 13897 /* 13898 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13899 * The loopback address check for both src and dst has already 13900 * been checked in ip_input 13901 */ 13902 13903 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13904 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13905 goto drop; 13906 } 13907 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13908 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13909 13910 if (src_ire != NULL) { 13911 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13912 ire_refrele(src_ire); 13913 goto drop; 13914 } 13915 13916 13917 /* No ire cache of nexthop. So first create one */ 13918 if (ire == NULL) { 13919 boolean_t check_multirt; 13920 13921 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL, ipst); 13922 /* 13923 * We only come to ip_fast_forward if ip_cgtp_filter is 13924 * is not set. So upon return from ire_forward 13925 * check_multirt should remain as false. 13926 */ 13927 if (ire == NULL) { 13928 /* An attempt was made to forward the packet */ 13929 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13930 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13931 mp->b_prev = mp->b_next = 0; 13932 /* send icmp unreachable */ 13933 /* Sent by forwarding path, and router is global zone */ 13934 if (ip_source_routed(ipha, ipst)) { 13935 icmp_unreachable(ill->ill_wq, mp, 13936 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, 13937 ipst); 13938 } else { 13939 icmp_unreachable(ill->ill_wq, mp, 13940 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13941 ipst); 13942 } 13943 return (ire); 13944 } 13945 } 13946 13947 /* 13948 * Forwarding fastpath exception case: 13949 * If either of the follwoing case is true, we take 13950 * the slowpath 13951 * o forwarding is not enabled 13952 * o incoming and outgoing interface are the same, or the same 13953 * IPMP group 13954 * o corresponding ire is in incomplete state 13955 * o packet needs fragmentation 13956 * o ARP cache is not resolved 13957 * 13958 * The codeflow from here on is thus: 13959 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13960 */ 13961 pkt_len = ntohs(ipha->ipha_length); 13962 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13963 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13964 !(ill->ill_flags & ILLF_ROUTER) || 13965 (ill == stq_ill) || 13966 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 13967 (ire->ire_nce == NULL) || 13968 (pkt_len > ire->ire_max_frag) || 13969 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 13970 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 13971 ipha->ipha_ttl <= 1) { 13972 ip_rput_process_forward(ill->ill_rq, mp, ire, 13973 ipha, ill, B_FALSE); 13974 return (ire); 13975 } 13976 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13977 13978 DTRACE_PROBE4(ip4__forwarding__start, 13979 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13980 13981 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13982 ipst->ips_ipv4firewall_forwarding, 13983 ill, stq_ill, ipha, mp, mp, ipst); 13984 13985 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13986 13987 if (mp == NULL) 13988 goto drop; 13989 13990 mp->b_datap->db_struioun.cksum.flags = 0; 13991 /* Adjust the checksum to reflect the ttl decrement. */ 13992 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13993 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13994 ipha->ipha_ttl--; 13995 13996 /* 13997 * Write the link layer header. We can do this safely here, 13998 * because we have already tested to make sure that the IP 13999 * policy is not set, and that we have a fast path destination 14000 * header. 14001 */ 14002 mp->b_rptr -= hlen; 14003 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 14004 14005 UPDATE_IB_PKT_COUNT(ire); 14006 ire->ire_last_used_time = lbolt; 14007 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 14008 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14009 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 14010 14011 dev_q = ire->ire_stq->q_next; 14012 if ((dev_q->q_next != NULL || dev_q->q_first != NULL) && 14013 !canputnext(ire->ire_stq)) { 14014 goto indiscard; 14015 } 14016 if (ILL_DLS_CAPABLE(stq_ill)) { 14017 /* 14018 * Send the packet directly to DLD, where it 14019 * may be queued depending on the availability 14020 * of transmit resources at the media layer. 14021 */ 14022 IP_DLS_ILL_TX(stq_ill, ipha, mp, ipst); 14023 } else { 14024 DTRACE_PROBE4(ip4__physical__out__start, 14025 ill_t *, NULL, ill_t *, stq_ill, 14026 ipha_t *, ipha, mblk_t *, mp); 14027 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14028 ipst->ips_ipv4firewall_physical_out, 14029 NULL, stq_ill, ipha, mp, mp, ipst); 14030 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 14031 if (mp == NULL) 14032 goto drop; 14033 putnext(ire->ire_stq, mp); 14034 } 14035 return (ire); 14036 14037 indiscard: 14038 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14039 drop: 14040 if (mp != NULL) 14041 freemsg(mp); 14042 return (ire); 14043 14044 } 14045 14046 /* 14047 * This function is called in the forwarding slowpath, when 14048 * either the ire lacks the link-layer address, or the packet needs 14049 * further processing(eg. fragmentation), before transmission. 14050 */ 14051 14052 static void 14053 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14054 ill_t *ill, boolean_t ll_multicast) 14055 { 14056 ill_group_t *ill_group; 14057 ill_group_t *ire_group; 14058 queue_t *dev_q; 14059 ire_t *src_ire; 14060 ip_stack_t *ipst = ill->ill_ipst; 14061 14062 ASSERT(ire->ire_stq != NULL); 14063 14064 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14065 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14066 14067 if (ll_multicast != 0) { 14068 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14069 goto drop_pkt; 14070 } 14071 14072 /* 14073 * check if ipha_src is a broadcast address. Note that this 14074 * check is redundant when we get here from ip_fast_forward() 14075 * which has already done this check. However, since we can 14076 * also get here from ip_rput_process_broadcast() or, for 14077 * for the slow path through ip_fast_forward(), we perform 14078 * the check again for code-reusability 14079 */ 14080 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14081 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14082 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14083 if (src_ire != NULL) 14084 ire_refrele(src_ire); 14085 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14086 ip2dbg(("ip_rput_process_forward: Received packet with" 14087 " bad src/dst address on %s\n", ill->ill_name)); 14088 goto drop_pkt; 14089 } 14090 14091 ill_group = ill->ill_group; 14092 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14093 /* 14094 * Check if we want to forward this one at this time. 14095 * We allow source routed packets on a host provided that 14096 * they go out the same interface or same interface group 14097 * as they came in on. 14098 * 14099 * XXX To be quicker, we may wish to not chase pointers to 14100 * get the ILLF_ROUTER flag and instead store the 14101 * forwarding policy in the ire. An unfortunate 14102 * side-effect of that would be requiring an ire flush 14103 * whenever the ILLF_ROUTER flag changes. 14104 */ 14105 if (((ill->ill_flags & 14106 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14107 ILLF_ROUTER) == 0) && 14108 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14109 (ill_group != NULL && ill_group == ire_group)))) { 14110 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14111 if (ip_source_routed(ipha, ipst)) { 14112 q = WR(q); 14113 /* 14114 * Clear the indication that this may have 14115 * hardware checksum as we are not using it. 14116 */ 14117 DB_CKSUMFLAGS(mp) = 0; 14118 /* Sent by forwarding path, and router is global zone */ 14119 icmp_unreachable(q, mp, 14120 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14121 return; 14122 } 14123 goto drop_pkt; 14124 } 14125 14126 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14127 14128 /* Packet is being forwarded. Turning off hwcksum flag. */ 14129 DB_CKSUMFLAGS(mp) = 0; 14130 if (ipst->ips_ip_g_send_redirects) { 14131 /* 14132 * Check whether the incoming interface and outgoing 14133 * interface is part of the same group. If so, 14134 * send redirects. 14135 * 14136 * Check the source address to see if it originated 14137 * on the same logical subnet it is going back out on. 14138 * If so, we should be able to send it a redirect. 14139 * Avoid sending a redirect if the destination 14140 * is directly connected (i.e., ipha_dst is the same 14141 * as ire_gateway_addr or the ire_addr of the 14142 * nexthop IRE_CACHE ), or if the packet was source 14143 * routed out this interface. 14144 */ 14145 ipaddr_t src, nhop; 14146 mblk_t *mp1; 14147 ire_t *nhop_ire = NULL; 14148 14149 /* 14150 * Check whether ire_rfq and q are from the same ill 14151 * or if they are not same, they at least belong 14152 * to the same group. If so, send redirects. 14153 */ 14154 if ((ire->ire_rfq == q || 14155 (ill_group != NULL && ill_group == ire_group)) && 14156 !ip_source_routed(ipha, ipst)) { 14157 14158 nhop = (ire->ire_gateway_addr != 0 ? 14159 ire->ire_gateway_addr : ire->ire_addr); 14160 14161 if (ipha->ipha_dst == nhop) { 14162 /* 14163 * We avoid sending a redirect if the 14164 * destination is directly connected 14165 * because it is possible that multiple 14166 * IP subnets may have been configured on 14167 * the link, and the source may not 14168 * be on the same subnet as ip destination, 14169 * even though they are on the same 14170 * physical link. 14171 */ 14172 goto sendit; 14173 } 14174 14175 src = ipha->ipha_src; 14176 14177 /* 14178 * We look up the interface ire for the nexthop, 14179 * to see if ipha_src is in the same subnet 14180 * as the nexthop. 14181 * 14182 * Note that, if, in the future, IRE_CACHE entries 14183 * are obsoleted, this lookup will not be needed, 14184 * as the ire passed to this function will be the 14185 * same as the nhop_ire computed below. 14186 */ 14187 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14188 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14189 0, NULL, MATCH_IRE_TYPE, ipst); 14190 14191 if (nhop_ire != NULL) { 14192 if ((src & nhop_ire->ire_mask) == 14193 (nhop & nhop_ire->ire_mask)) { 14194 /* 14195 * The source is directly connected. 14196 * Just copy the ip header (which is 14197 * in the first mblk) 14198 */ 14199 mp1 = copyb(mp); 14200 if (mp1 != NULL) { 14201 icmp_send_redirect(WR(q), mp1, 14202 nhop, ipst); 14203 } 14204 } 14205 ire_refrele(nhop_ire); 14206 } 14207 } 14208 } 14209 sendit: 14210 dev_q = ire->ire_stq->q_next; 14211 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14212 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14213 freemsg(mp); 14214 return; 14215 } 14216 14217 ip_rput_forward(ire, ipha, mp, ill); 14218 return; 14219 14220 drop_pkt: 14221 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14222 freemsg(mp); 14223 } 14224 14225 ire_t * 14226 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14227 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14228 { 14229 queue_t *q; 14230 uint16_t hcksumflags; 14231 ip_stack_t *ipst = ill->ill_ipst; 14232 14233 q = *qp; 14234 14235 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14236 14237 /* 14238 * Clear the indication that this may have hardware 14239 * checksum as we are not using it for forwarding. 14240 */ 14241 hcksumflags = DB_CKSUMFLAGS(mp); 14242 DB_CKSUMFLAGS(mp) = 0; 14243 14244 /* 14245 * Directed broadcast forwarding: if the packet came in over a 14246 * different interface then it is routed out over we can forward it. 14247 */ 14248 if (ipha->ipha_protocol == IPPROTO_TCP) { 14249 ire_refrele(ire); 14250 freemsg(mp); 14251 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14252 return (NULL); 14253 } 14254 /* 14255 * For multicast we have set dst to be INADDR_BROADCAST 14256 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14257 * only for broadcast packets. 14258 */ 14259 if (!CLASSD(ipha->ipha_dst)) { 14260 ire_t *new_ire; 14261 ipif_t *ipif; 14262 /* 14263 * For ill groups, as the switch duplicates broadcasts 14264 * across all the ports, we need to filter out and 14265 * send up only one copy. There is one copy for every 14266 * broadcast address on each ill. Thus, we look for a 14267 * specific IRE on this ill and look at IRE_MARK_NORECV 14268 * later to see whether this ill is eligible to receive 14269 * them or not. ill_nominate_bcast_rcv() nominates only 14270 * one set of IREs for receiving. 14271 */ 14272 14273 ipif = ipif_get_next_ipif(NULL, ill); 14274 if (ipif == NULL) { 14275 ire_refrele(ire); 14276 freemsg(mp); 14277 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14278 return (NULL); 14279 } 14280 new_ire = ire_ctable_lookup(dst, 0, 0, 14281 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14282 ipif_refrele(ipif); 14283 14284 if (new_ire != NULL) { 14285 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14286 ire_refrele(ire); 14287 ire_refrele(new_ire); 14288 freemsg(mp); 14289 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14290 return (NULL); 14291 } 14292 /* 14293 * In the special case of multirouted broadcast 14294 * packets, we unconditionally need to "gateway" 14295 * them to the appropriate interface here. 14296 * In the normal case, this cannot happen, because 14297 * there is no broadcast IRE tagged with the 14298 * RTF_MULTIRT flag. 14299 */ 14300 if (new_ire->ire_flags & RTF_MULTIRT) { 14301 ire_refrele(new_ire); 14302 if (ire->ire_rfq != NULL) { 14303 q = ire->ire_rfq; 14304 *qp = q; 14305 } 14306 } else { 14307 ire_refrele(ire); 14308 ire = new_ire; 14309 } 14310 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14311 if (!ipst->ips_ip_g_forward_directed_bcast) { 14312 /* 14313 * Free the message if 14314 * ip_g_forward_directed_bcast is turned 14315 * off for non-local broadcast. 14316 */ 14317 ire_refrele(ire); 14318 freemsg(mp); 14319 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14320 return (NULL); 14321 } 14322 } else { 14323 /* 14324 * This CGTP packet successfully passed the 14325 * CGTP filter, but the related CGTP 14326 * broadcast IRE has not been found, 14327 * meaning that the redundant ipif is 14328 * probably down. However, if we discarded 14329 * this packet, its duplicate would be 14330 * filtered out by the CGTP filter so none 14331 * of them would get through. So we keep 14332 * going with this one. 14333 */ 14334 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14335 if (ire->ire_rfq != NULL) { 14336 q = ire->ire_rfq; 14337 *qp = q; 14338 } 14339 } 14340 } 14341 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14342 /* 14343 * Verify that there are not more then one 14344 * IRE_BROADCAST with this broadcast address which 14345 * has ire_stq set. 14346 * TODO: simplify, loop over all IRE's 14347 */ 14348 ire_t *ire1; 14349 int num_stq = 0; 14350 mblk_t *mp1; 14351 14352 /* Find the first one with ire_stq set */ 14353 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14354 for (ire1 = ire; ire1 && 14355 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14356 ire1 = ire1->ire_next) 14357 ; 14358 if (ire1) { 14359 ire_refrele(ire); 14360 ire = ire1; 14361 IRE_REFHOLD(ire); 14362 } 14363 14364 /* Check if there are additional ones with stq set */ 14365 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14366 if (ire->ire_addr != ire1->ire_addr) 14367 break; 14368 if (ire1->ire_stq) { 14369 num_stq++; 14370 break; 14371 } 14372 } 14373 rw_exit(&ire->ire_bucket->irb_lock); 14374 if (num_stq == 1 && ire->ire_stq != NULL) { 14375 ip1dbg(("ip_rput_process_broadcast: directed " 14376 "broadcast to 0x%x\n", 14377 ntohl(ire->ire_addr))); 14378 mp1 = copymsg(mp); 14379 if (mp1) { 14380 switch (ipha->ipha_protocol) { 14381 case IPPROTO_UDP: 14382 ip_udp_input(q, mp1, ipha, ire, ill); 14383 break; 14384 default: 14385 ip_proto_input(q, mp1, ipha, ire, ill, 14386 B_FALSE); 14387 break; 14388 } 14389 } 14390 /* 14391 * Adjust ttl to 2 (1+1 - the forward engine 14392 * will decrement it by one. 14393 */ 14394 if (ip_csum_hdr(ipha)) { 14395 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14396 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14397 freemsg(mp); 14398 ire_refrele(ire); 14399 return (NULL); 14400 } 14401 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14402 ipha->ipha_hdr_checksum = 0; 14403 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14404 ip_rput_process_forward(q, mp, ire, ipha, 14405 ill, ll_multicast); 14406 ire_refrele(ire); 14407 return (NULL); 14408 } 14409 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14410 ntohl(ire->ire_addr))); 14411 } 14412 14413 14414 /* Restore any hardware checksum flags */ 14415 DB_CKSUMFLAGS(mp) = hcksumflags; 14416 return (ire); 14417 } 14418 14419 /* ARGSUSED */ 14420 static boolean_t 14421 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14422 int *ll_multicast, ipaddr_t *dstp) 14423 { 14424 ip_stack_t *ipst = ill->ill_ipst; 14425 14426 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14427 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14428 ntohs(ipha->ipha_length)); 14429 14430 /* 14431 * Forward packets only if we have joined the allmulti 14432 * group on this interface. 14433 */ 14434 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14435 int retval; 14436 14437 /* 14438 * Clear the indication that this may have hardware 14439 * checksum as we are not using it. 14440 */ 14441 DB_CKSUMFLAGS(mp) = 0; 14442 retval = ip_mforward(ill, ipha, mp); 14443 /* ip_mforward updates mib variables if needed */ 14444 /* clear b_prev - used by ip_mroute_decap */ 14445 mp->b_prev = NULL; 14446 14447 switch (retval) { 14448 case 0: 14449 /* 14450 * pkt is okay and arrived on phyint. 14451 * 14452 * If we are running as a multicast router 14453 * we need to see all IGMP and/or PIM packets. 14454 */ 14455 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14456 (ipha->ipha_protocol == IPPROTO_PIM)) { 14457 goto done; 14458 } 14459 break; 14460 case -1: 14461 /* pkt is mal-formed, toss it */ 14462 goto drop_pkt; 14463 case 1: 14464 /* pkt is okay and arrived on a tunnel */ 14465 /* 14466 * If we are running a multicast router 14467 * we need to see all igmp packets. 14468 */ 14469 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14470 *dstp = INADDR_BROADCAST; 14471 *ll_multicast = 1; 14472 return (B_FALSE); 14473 } 14474 14475 goto drop_pkt; 14476 } 14477 } 14478 14479 ILM_WALKER_HOLD(ill); 14480 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14481 /* 14482 * This might just be caused by the fact that 14483 * multiple IP Multicast addresses map to the same 14484 * link layer multicast - no need to increment counter! 14485 */ 14486 ILM_WALKER_RELE(ill); 14487 freemsg(mp); 14488 return (B_TRUE); 14489 } 14490 ILM_WALKER_RELE(ill); 14491 done: 14492 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14493 /* 14494 * This assumes the we deliver to all streams for multicast 14495 * and broadcast packets. 14496 */ 14497 *dstp = INADDR_BROADCAST; 14498 *ll_multicast = 1; 14499 return (B_FALSE); 14500 drop_pkt: 14501 ip2dbg(("ip_rput: drop pkt\n")); 14502 freemsg(mp); 14503 return (B_TRUE); 14504 } 14505 14506 static boolean_t 14507 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14508 int *ll_multicast, mblk_t **mpp) 14509 { 14510 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14511 boolean_t must_copy = B_FALSE; 14512 struct iocblk *iocp; 14513 ipha_t *ipha; 14514 ip_stack_t *ipst = ill->ill_ipst; 14515 14516 #define rptr ((uchar_t *)ipha) 14517 14518 first_mp = *first_mpp; 14519 mp = *mpp; 14520 14521 ASSERT(first_mp == mp); 14522 14523 /* 14524 * if db_ref > 1 then copymsg and free original. Packet may be 14525 * changed and do not want other entity who has a reference to this 14526 * message to trip over the changes. This is a blind change because 14527 * trying to catch all places that might change packet is too 14528 * difficult (since it may be a module above this one) 14529 * 14530 * This corresponds to the non-fast path case. We walk down the full 14531 * chain in this case, and check the db_ref count of all the dblks, 14532 * and do a copymsg if required. It is possible that the db_ref counts 14533 * of the data blocks in the mblk chain can be different. 14534 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14535 * count of 1, followed by a M_DATA block with a ref count of 2, if 14536 * 'snoop' is running. 14537 */ 14538 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14539 if (mp1->b_datap->db_ref > 1) { 14540 must_copy = B_TRUE; 14541 break; 14542 } 14543 } 14544 14545 if (must_copy) { 14546 mp1 = copymsg(mp); 14547 if (mp1 == NULL) { 14548 for (mp1 = mp; mp1 != NULL; 14549 mp1 = mp1->b_cont) { 14550 mp1->b_next = NULL; 14551 mp1->b_prev = NULL; 14552 } 14553 freemsg(mp); 14554 if (ill != NULL) { 14555 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14556 } else { 14557 BUMP_MIB(&ipst->ips_ip_mib, 14558 ipIfStatsInDiscards); 14559 } 14560 return (B_TRUE); 14561 } 14562 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14563 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14564 /* Copy b_prev - used by ip_mroute_decap */ 14565 to_mp->b_prev = from_mp->b_prev; 14566 from_mp->b_prev = NULL; 14567 } 14568 *first_mpp = first_mp = mp1; 14569 freemsg(mp); 14570 mp = mp1; 14571 *mpp = mp1; 14572 } 14573 14574 ipha = (ipha_t *)mp->b_rptr; 14575 14576 /* 14577 * previous code has a case for M_DATA. 14578 * We want to check how that happens. 14579 */ 14580 ASSERT(first_mp->b_datap->db_type != M_DATA); 14581 switch (first_mp->b_datap->db_type) { 14582 case M_PROTO: 14583 case M_PCPROTO: 14584 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14585 DL_UNITDATA_IND) { 14586 /* Go handle anything other than data elsewhere. */ 14587 ip_rput_dlpi(q, mp); 14588 return (B_TRUE); 14589 } 14590 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14591 /* Ditch the DLPI header. */ 14592 mp1 = mp->b_cont; 14593 ASSERT(first_mp == mp); 14594 *first_mpp = mp1; 14595 freeb(mp); 14596 *mpp = mp1; 14597 return (B_FALSE); 14598 case M_IOCACK: 14599 ip1dbg(("got iocack ")); 14600 iocp = (struct iocblk *)mp->b_rptr; 14601 switch (iocp->ioc_cmd) { 14602 case DL_IOC_HDR_INFO: 14603 ill = (ill_t *)q->q_ptr; 14604 ill_fastpath_ack(ill, mp); 14605 return (B_TRUE); 14606 case SIOCSTUNPARAM: 14607 case OSIOCSTUNPARAM: 14608 /* Go through qwriter_ip */ 14609 break; 14610 case SIOCGTUNPARAM: 14611 case OSIOCGTUNPARAM: 14612 ip_rput_other(NULL, q, mp, NULL); 14613 return (B_TRUE); 14614 default: 14615 putnext(q, mp); 14616 return (B_TRUE); 14617 } 14618 /* FALLTHRU */ 14619 case M_ERROR: 14620 case M_HANGUP: 14621 /* 14622 * Since this is on the ill stream we unconditionally 14623 * bump up the refcount 14624 */ 14625 ill_refhold(ill); 14626 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14627 return (B_TRUE); 14628 case M_CTL: 14629 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14630 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14631 IPHADA_M_CTL)) { 14632 /* 14633 * It's an IPsec accelerated packet. 14634 * Make sure that the ill from which we received the 14635 * packet has enabled IPsec hardware acceleration. 14636 */ 14637 if (!(ill->ill_capabilities & 14638 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14639 /* IPsec kstats: bean counter */ 14640 freemsg(mp); 14641 return (B_TRUE); 14642 } 14643 14644 /* 14645 * Make mp point to the mblk following the M_CTL, 14646 * then process according to type of mp. 14647 * After this processing, first_mp will point to 14648 * the data-attributes and mp to the pkt following 14649 * the M_CTL. 14650 */ 14651 mp = first_mp->b_cont; 14652 if (mp == NULL) { 14653 freemsg(first_mp); 14654 return (B_TRUE); 14655 } 14656 /* 14657 * A Hardware Accelerated packet can only be M_DATA 14658 * ESP or AH packet. 14659 */ 14660 if (mp->b_datap->db_type != M_DATA) { 14661 /* non-M_DATA IPsec accelerated packet */ 14662 IPSECHW_DEBUG(IPSECHW_PKT, 14663 ("non-M_DATA IPsec accelerated pkt\n")); 14664 freemsg(first_mp); 14665 return (B_TRUE); 14666 } 14667 ipha = (ipha_t *)mp->b_rptr; 14668 if (ipha->ipha_protocol != IPPROTO_AH && 14669 ipha->ipha_protocol != IPPROTO_ESP) { 14670 IPSECHW_DEBUG(IPSECHW_PKT, 14671 ("non-M_DATA IPsec accelerated pkt\n")); 14672 freemsg(first_mp); 14673 return (B_TRUE); 14674 } 14675 *mpp = mp; 14676 return (B_FALSE); 14677 } 14678 putnext(q, mp); 14679 return (B_TRUE); 14680 case M_IOCNAK: 14681 ip1dbg(("got iocnak ")); 14682 iocp = (struct iocblk *)mp->b_rptr; 14683 switch (iocp->ioc_cmd) { 14684 case SIOCSTUNPARAM: 14685 case OSIOCSTUNPARAM: 14686 /* 14687 * Since this is on the ill stream we unconditionally 14688 * bump up the refcount 14689 */ 14690 ill_refhold(ill); 14691 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14692 return (B_TRUE); 14693 case DL_IOC_HDR_INFO: 14694 case SIOCGTUNPARAM: 14695 case OSIOCGTUNPARAM: 14696 ip_rput_other(NULL, q, mp, NULL); 14697 return (B_TRUE); 14698 default: 14699 break; 14700 } 14701 /* FALLTHRU */ 14702 default: 14703 putnext(q, mp); 14704 return (B_TRUE); 14705 } 14706 } 14707 14708 /* Read side put procedure. Packets coming from the wire arrive here. */ 14709 void 14710 ip_rput(queue_t *q, mblk_t *mp) 14711 { 14712 ill_t *ill; 14713 union DL_primitives *dl; 14714 14715 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14716 14717 ill = (ill_t *)q->q_ptr; 14718 14719 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14720 /* 14721 * If things are opening or closing, only accept high-priority 14722 * DLPI messages. (On open ill->ill_ipif has not yet been 14723 * created; on close, things hanging off the ill may have been 14724 * freed already.) 14725 */ 14726 dl = (union DL_primitives *)mp->b_rptr; 14727 if (DB_TYPE(mp) != M_PCPROTO || 14728 dl->dl_primitive == DL_UNITDATA_IND) { 14729 /* 14730 * SIOC[GS]TUNPARAM ioctls can come here. 14731 */ 14732 inet_freemsg(mp); 14733 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14734 "ip_rput_end: q %p (%S)", q, "uninit"); 14735 return; 14736 } 14737 } 14738 14739 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14740 "ip_rput_end: q %p (%S)", q, "end"); 14741 14742 ip_input(ill, NULL, mp, NULL); 14743 } 14744 14745 static mblk_t * 14746 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14747 { 14748 mblk_t *mp1; 14749 boolean_t adjusted = B_FALSE; 14750 ip_stack_t *ipst = ill->ill_ipst; 14751 14752 IP_STAT(ipst, ip_db_ref); 14753 /* 14754 * The IP_RECVSLLA option depends on having the 14755 * link layer header. First check that: 14756 * a> the underlying device is of type ether, 14757 * since this option is currently supported only 14758 * over ethernet. 14759 * b> there is enough room to copy over the link 14760 * layer header. 14761 * 14762 * Once the checks are done, adjust rptr so that 14763 * the link layer header will be copied via 14764 * copymsg. Note that, IFT_ETHER may be returned 14765 * by some non-ethernet drivers but in this case 14766 * the second check will fail. 14767 */ 14768 if (ill->ill_type == IFT_ETHER && 14769 (mp->b_rptr - mp->b_datap->db_base) >= 14770 sizeof (struct ether_header)) { 14771 mp->b_rptr -= sizeof (struct ether_header); 14772 adjusted = B_TRUE; 14773 } 14774 mp1 = copymsg(mp); 14775 14776 if (mp1 == NULL) { 14777 mp->b_next = NULL; 14778 /* clear b_prev - used by ip_mroute_decap */ 14779 mp->b_prev = NULL; 14780 freemsg(mp); 14781 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14782 return (NULL); 14783 } 14784 14785 if (adjusted) { 14786 /* 14787 * Copy is done. Restore the pointer in 14788 * the _new_ mblk 14789 */ 14790 mp1->b_rptr += sizeof (struct ether_header); 14791 } 14792 14793 /* Copy b_prev - used by ip_mroute_decap */ 14794 mp1->b_prev = mp->b_prev; 14795 mp->b_prev = NULL; 14796 14797 /* preserve the hardware checksum flags and data, if present */ 14798 if (DB_CKSUMFLAGS(mp) != 0) { 14799 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14800 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14801 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14802 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14803 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14804 } 14805 14806 freemsg(mp); 14807 return (mp1); 14808 } 14809 14810 /* 14811 * Direct read side procedure capable of dealing with chains. GLDv3 based 14812 * drivers call this function directly with mblk chains while STREAMS 14813 * read side procedure ip_rput() calls this for single packet with ip_ring 14814 * set to NULL to process one packet at a time. 14815 * 14816 * The ill will always be valid if this function is called directly from 14817 * the driver. 14818 * 14819 * If ip_input() is called from GLDv3: 14820 * 14821 * - This must be a non-VLAN IP stream. 14822 * - 'mp' is either an untagged or a special priority-tagged packet. 14823 * - Any VLAN tag that was in the MAC header has been stripped. 14824 * 14825 * If the IP header in packet is not 32-bit aligned, every message in the 14826 * chain will be aligned before further operations. This is required on SPARC 14827 * platform. 14828 */ 14829 /* ARGSUSED */ 14830 void 14831 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14832 struct mac_header_info_s *mhip) 14833 { 14834 ipaddr_t dst = NULL; 14835 ipaddr_t prev_dst; 14836 ire_t *ire = NULL; 14837 ipha_t *ipha; 14838 uint_t pkt_len; 14839 ssize_t len; 14840 uint_t opt_len; 14841 int ll_multicast; 14842 int cgtp_flt_pkt; 14843 queue_t *q = ill->ill_rq; 14844 squeue_t *curr_sqp = NULL; 14845 mblk_t *head = NULL; 14846 mblk_t *tail = NULL; 14847 mblk_t *first_mp; 14848 mblk_t *mp; 14849 mblk_t *dmp; 14850 int cnt = 0; 14851 ip_stack_t *ipst = ill->ill_ipst; 14852 14853 ASSERT(mp_chain != NULL); 14854 ASSERT(ill != NULL); 14855 14856 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14857 14858 #define rptr ((uchar_t *)ipha) 14859 14860 while (mp_chain != NULL) { 14861 first_mp = mp = mp_chain; 14862 mp_chain = mp_chain->b_next; 14863 mp->b_next = NULL; 14864 ll_multicast = 0; 14865 14866 /* 14867 * We do ire caching from one iteration to 14868 * another. In the event the packet chain contains 14869 * all packets from the same dst, this caching saves 14870 * an ire_cache_lookup for each of the succeeding 14871 * packets in a packet chain. 14872 */ 14873 prev_dst = dst; 14874 14875 /* 14876 * if db_ref > 1 then copymsg and free original. Packet 14877 * may be changed and we do not want the other entity 14878 * who has a reference to this message to trip over the 14879 * changes. This is a blind change because trying to 14880 * catch all places that might change the packet is too 14881 * difficult. 14882 * 14883 * This corresponds to the fast path case, where we have 14884 * a chain of M_DATA mblks. We check the db_ref count 14885 * of only the 1st data block in the mblk chain. There 14886 * doesn't seem to be a reason why a device driver would 14887 * send up data with varying db_ref counts in the mblk 14888 * chain. In any case the Fast path is a private 14889 * interface, and our drivers don't do such a thing. 14890 * Given the above assumption, there is no need to walk 14891 * down the entire mblk chain (which could have a 14892 * potential performance problem) 14893 */ 14894 14895 if (DB_REF(mp) > 1) { 14896 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14897 continue; 14898 } 14899 14900 /* 14901 * Check and align the IP header. 14902 */ 14903 first_mp = mp; 14904 if (DB_TYPE(mp) == M_DATA) { 14905 dmp = mp; 14906 } else if (DB_TYPE(mp) == M_PROTO && 14907 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14908 dmp = mp->b_cont; 14909 } else { 14910 dmp = NULL; 14911 } 14912 if (dmp != NULL) { 14913 /* 14914 * IP header ptr not aligned? 14915 * OR IP header not complete in first mblk 14916 */ 14917 if (!OK_32PTR(dmp->b_rptr) || 14918 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14919 if (!ip_check_and_align_header(q, dmp, ipst)) 14920 continue; 14921 } 14922 } 14923 14924 /* 14925 * ip_input fast path 14926 */ 14927 14928 /* mblk type is not M_DATA */ 14929 if (DB_TYPE(mp) != M_DATA) { 14930 if (ip_rput_process_notdata(q, &first_mp, ill, 14931 &ll_multicast, &mp)) 14932 continue; 14933 14934 /* 14935 * The only way we can get here is if we had a 14936 * packet that was either a DL_UNITDATA_IND or 14937 * an M_CTL for an IPsec accelerated packet. 14938 * 14939 * In either case, the first_mp will point to 14940 * the leading M_PROTO or M_CTL. 14941 */ 14942 ASSERT(first_mp != NULL); 14943 } 14944 14945 /* Make sure its an M_DATA and that its aligned */ 14946 ASSERT(DB_TYPE(mp) == M_DATA); 14947 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 14948 14949 ipha = (ipha_t *)mp->b_rptr; 14950 len = mp->b_wptr - rptr; 14951 pkt_len = ntohs(ipha->ipha_length); 14952 14953 /* 14954 * We must count all incoming packets, even if they end 14955 * up being dropped later on. 14956 */ 14957 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 14958 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 14959 14960 /* multiple mblk or too short */ 14961 len -= pkt_len; 14962 if (len != 0) { 14963 /* 14964 * Make sure we have data length consistent 14965 * with the IP header. 14966 */ 14967 if (mp->b_cont == NULL) { 14968 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14969 BUMP_MIB(ill->ill_ip_mib, 14970 ipIfStatsInHdrErrors); 14971 ip2dbg(("ip_input: drop pkt\n")); 14972 freemsg(mp); 14973 continue; 14974 } 14975 mp->b_wptr = rptr + pkt_len; 14976 } else if ((len += msgdsize(mp->b_cont)) != 0) { 14977 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14978 BUMP_MIB(ill->ill_ip_mib, 14979 ipIfStatsInHdrErrors); 14980 ip2dbg(("ip_input: drop pkt\n")); 14981 freemsg(mp); 14982 continue; 14983 } 14984 (void) adjmsg(mp, -len); 14985 IP_STAT(ipst, ip_multimblk3); 14986 } 14987 } 14988 14989 /* Obtain the dst of the current packet */ 14990 dst = ipha->ipha_dst; 14991 14992 /* 14993 * The following test for loopback is faster than 14994 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 14995 * operations. 14996 * Note that these addresses are always in network byte order 14997 */ 14998 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 14999 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15000 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15001 freemsg(mp); 15002 continue; 15003 } 15004 15005 /* 15006 * The event for packets being received from a 'physical' 15007 * interface is placed after validation of the source and/or 15008 * destination address as being local so that packets can be 15009 * redirected to loopback addresses using ipnat. 15010 */ 15011 DTRACE_PROBE4(ip4__physical__in__start, 15012 ill_t *, ill, ill_t *, NULL, 15013 ipha_t *, ipha, mblk_t *, first_mp); 15014 15015 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15016 ipst->ips_ipv4firewall_physical_in, 15017 ill, NULL, ipha, first_mp, mp, ipst); 15018 15019 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15020 15021 if (first_mp == NULL) { 15022 continue; 15023 } 15024 dst = ipha->ipha_dst; 15025 15026 /* 15027 * Attach any necessary label information to 15028 * this packet 15029 */ 15030 if (is_system_labeled() && 15031 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15032 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15033 freemsg(mp); 15034 continue; 15035 } 15036 15037 /* 15038 * Reuse the cached ire only if the ipha_dst of the previous 15039 * packet is the same as the current packet AND it is not 15040 * INADDR_ANY. 15041 */ 15042 if (!(dst == prev_dst && dst != INADDR_ANY) && 15043 (ire != NULL)) { 15044 ire_refrele(ire); 15045 ire = NULL; 15046 } 15047 opt_len = ipha->ipha_version_and_hdr_length - 15048 IP_SIMPLE_HDR_VERSION; 15049 15050 /* 15051 * Check to see if we can take the fastpath. 15052 * That is possible if the following conditions are met 15053 * o Tsol disabled 15054 * o CGTP disabled 15055 * o ipp_action_count is 0 15056 * o no options in the packet 15057 * o not a RSVP packet 15058 * o not a multicast packet 15059 * o ill not in IP_DHCPINIT_IF mode 15060 */ 15061 if (!is_system_labeled() && 15062 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15063 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15064 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15065 if (ire == NULL) 15066 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15067 ipst); 15068 15069 /* incoming packet is for forwarding */ 15070 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15071 ire = ip_fast_forward(ire, dst, ill, mp); 15072 continue; 15073 } 15074 /* incoming packet is for local consumption */ 15075 if (ire->ire_type & IRE_LOCAL) 15076 goto local; 15077 } 15078 15079 /* 15080 * Disable ire caching for anything more complex 15081 * than the simple fast path case we checked for above. 15082 */ 15083 if (ire != NULL) { 15084 ire_refrele(ire); 15085 ire = NULL; 15086 } 15087 15088 /* 15089 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15090 * server to unicast DHCP packets to a DHCP client using the 15091 * IP address it is offering to the client. This can be 15092 * disabled through the "broadcast bit", but not all DHCP 15093 * servers honor that bit. Therefore, to interoperate with as 15094 * many DHCP servers as possible, the DHCP client allows the 15095 * server to unicast, but we treat those packets as broadcast 15096 * here. Note that we don't rewrite the packet itself since 15097 * (a) that would mess up the checksums and (b) the DHCP 15098 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15099 * hand it the packet regardless. 15100 */ 15101 if (ill->ill_dhcpinit != 0 && 15102 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15103 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15104 udpha_t *udpha; 15105 15106 /* 15107 * Reload ipha since pullupmsg() can change b_rptr. 15108 */ 15109 ipha = (ipha_t *)mp->b_rptr; 15110 udpha = (udpha_t *)&ipha[1]; 15111 15112 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15113 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15114 mblk_t *, mp); 15115 dst = INADDR_BROADCAST; 15116 } 15117 } 15118 15119 /* Full-blown slow path */ 15120 if (opt_len != 0) { 15121 if (len != 0) 15122 IP_STAT(ipst, ip_multimblk4); 15123 else 15124 IP_STAT(ipst, ip_ipoptions); 15125 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15126 &dst, ipst)) 15127 continue; 15128 } 15129 15130 /* 15131 * Invoke the CGTP (multirouting) filtering module to process 15132 * the incoming packet. Packets identified as duplicates 15133 * must be discarded. Filtering is active only if the 15134 * the ip_cgtp_filter ndd variable is non-zero. 15135 */ 15136 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15137 if (ipst->ips_ip_cgtp_filter && 15138 ipst->ips_ip_cgtp_filter_ops != NULL) { 15139 netstackid_t stackid; 15140 15141 stackid = ipst->ips_netstack->netstack_stackid; 15142 cgtp_flt_pkt = 15143 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15144 ill->ill_phyint->phyint_ifindex, mp); 15145 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15146 freemsg(first_mp); 15147 continue; 15148 } 15149 } 15150 15151 /* 15152 * If rsvpd is running, let RSVP daemon handle its processing 15153 * and forwarding of RSVP multicast/unicast packets. 15154 * If rsvpd is not running but mrouted is running, RSVP 15155 * multicast packets are forwarded as multicast traffic 15156 * and RSVP unicast packets are forwarded by unicast router. 15157 * If neither rsvpd nor mrouted is running, RSVP multicast 15158 * packets are not forwarded, but the unicast packets are 15159 * forwarded like unicast traffic. 15160 */ 15161 if (ipha->ipha_protocol == IPPROTO_RSVP && 15162 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15163 NULL) { 15164 /* RSVP packet and rsvpd running. Treat as ours */ 15165 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15166 /* 15167 * This assumes that we deliver to all streams for 15168 * multicast and broadcast packets. 15169 * We have to force ll_multicast to 1 to handle the 15170 * M_DATA messages passed in from ip_mroute_decap. 15171 */ 15172 dst = INADDR_BROADCAST; 15173 ll_multicast = 1; 15174 } else if (CLASSD(dst)) { 15175 /* packet is multicast */ 15176 mp->b_next = NULL; 15177 if (ip_rput_process_multicast(q, mp, ill, ipha, 15178 &ll_multicast, &dst)) 15179 continue; 15180 } 15181 15182 if (ire == NULL) { 15183 ire = ire_cache_lookup(dst, ALL_ZONES, 15184 MBLK_GETLABEL(mp), ipst); 15185 } 15186 15187 if (ire == NULL) { 15188 /* 15189 * No IRE for this destination, so it can't be for us. 15190 * Unless we are forwarding, drop the packet. 15191 * We have to let source routed packets through 15192 * since we don't yet know if they are 'ping -l' 15193 * packets i.e. if they will go out over the 15194 * same interface as they came in on. 15195 */ 15196 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15197 if (ire == NULL) 15198 continue; 15199 } 15200 15201 /* 15202 * Broadcast IRE may indicate either broadcast or 15203 * multicast packet 15204 */ 15205 if (ire->ire_type == IRE_BROADCAST) { 15206 /* 15207 * Skip broadcast checks if packet is UDP multicast; 15208 * we'd rather not enter ip_rput_process_broadcast() 15209 * unless the packet is broadcast for real, since 15210 * that routine is a no-op for multicast. 15211 */ 15212 if (ipha->ipha_protocol != IPPROTO_UDP || 15213 !CLASSD(ipha->ipha_dst)) { 15214 ire = ip_rput_process_broadcast(&q, mp, 15215 ire, ipha, ill, dst, cgtp_flt_pkt, 15216 ll_multicast); 15217 if (ire == NULL) 15218 continue; 15219 } 15220 } else if (ire->ire_stq != NULL) { 15221 /* fowarding? */ 15222 ip_rput_process_forward(q, mp, ire, ipha, ill, 15223 ll_multicast); 15224 /* ip_rput_process_forward consumed the packet */ 15225 continue; 15226 } 15227 15228 local: 15229 /* 15230 * If the queue in the ire is different to the ingress queue 15231 * then we need to check to see if we can accept the packet. 15232 * Note that for multicast packets and broadcast packets sent 15233 * to a broadcast address which is shared between multiple 15234 * interfaces we should not do this since we just got a random 15235 * broadcast ire. 15236 */ 15237 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15238 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15239 ill)) == NULL) { 15240 /* Drop packet */ 15241 BUMP_MIB(ill->ill_ip_mib, 15242 ipIfStatsForwProhibits); 15243 freemsg(mp); 15244 continue; 15245 } 15246 if (ire->ire_rfq != NULL) 15247 q = ire->ire_rfq; 15248 } 15249 15250 switch (ipha->ipha_protocol) { 15251 case IPPROTO_TCP: 15252 ASSERT(first_mp == mp); 15253 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15254 mp, 0, q, ip_ring)) != NULL) { 15255 if (curr_sqp == NULL) { 15256 curr_sqp = GET_SQUEUE(mp); 15257 ASSERT(cnt == 0); 15258 cnt++; 15259 head = tail = mp; 15260 } else if (curr_sqp == GET_SQUEUE(mp)) { 15261 ASSERT(tail != NULL); 15262 cnt++; 15263 tail->b_next = mp; 15264 tail = mp; 15265 } else { 15266 /* 15267 * A different squeue. Send the 15268 * chain for the previous squeue on 15269 * its way. This shouldn't happen 15270 * often unless interrupt binding 15271 * changes. 15272 */ 15273 IP_STAT(ipst, ip_input_multi_squeue); 15274 squeue_enter_chain(curr_sqp, head, 15275 tail, cnt, SQTAG_IP_INPUT); 15276 curr_sqp = GET_SQUEUE(mp); 15277 head = mp; 15278 tail = mp; 15279 cnt = 1; 15280 } 15281 } 15282 continue; 15283 case IPPROTO_UDP: 15284 ASSERT(first_mp == mp); 15285 ip_udp_input(q, mp, ipha, ire, ill); 15286 continue; 15287 case IPPROTO_SCTP: 15288 ASSERT(first_mp == mp); 15289 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15290 q, dst); 15291 /* ire has been released by ip_sctp_input */ 15292 ire = NULL; 15293 continue; 15294 default: 15295 ip_proto_input(q, first_mp, ipha, ire, ill, B_FALSE); 15296 continue; 15297 } 15298 } 15299 15300 if (ire != NULL) 15301 ire_refrele(ire); 15302 15303 if (head != NULL) 15304 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15305 15306 /* 15307 * This code is there just to make netperf/ttcp look good. 15308 * 15309 * Its possible that after being in polling mode (and having cleared 15310 * the backlog), squeues have turned the interrupt frequency higher 15311 * to improve latency at the expense of more CPU utilization (less 15312 * packets per interrupts or more number of interrupts). Workloads 15313 * like ttcp/netperf do manage to tickle polling once in a while 15314 * but for the remaining time, stay in higher interrupt mode since 15315 * their packet arrival rate is pretty uniform and this shows up 15316 * as higher CPU utilization. Since people care about CPU utilization 15317 * while running netperf/ttcp, turn the interrupt frequency back to 15318 * normal/default if polling has not been used in ip_poll_normal_ticks. 15319 */ 15320 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15321 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15322 ip_ring->rr_poll_state &= ~ILL_POLLING; 15323 ip_ring->rr_blank(ip_ring->rr_handle, 15324 ip_ring->rr_normal_blank_time, 15325 ip_ring->rr_normal_pkt_cnt); 15326 } 15327 } 15328 15329 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15330 "ip_input_end: q %p (%S)", q, "end"); 15331 #undef rptr 15332 } 15333 15334 static void 15335 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15336 t_uscalar_t err) 15337 { 15338 if (dl_err == DL_SYSERR) { 15339 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15340 "%s: %s failed: DL_SYSERR (errno %u)\n", 15341 ill->ill_name, dlpi_prim_str(prim), err); 15342 return; 15343 } 15344 15345 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15346 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15347 dlpi_err_str(dl_err)); 15348 } 15349 15350 /* 15351 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15352 * than DL_UNITDATA_IND messages. If we need to process this message 15353 * exclusively, we call qwriter_ip, in which case we also need to call 15354 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15355 */ 15356 void 15357 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15358 { 15359 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15360 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15361 ill_t *ill = (ill_t *)q->q_ptr; 15362 boolean_t pending; 15363 15364 ip1dbg(("ip_rput_dlpi")); 15365 if (dloa->dl_primitive == DL_ERROR_ACK) { 15366 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15367 "%s (0x%x), unix %u\n", ill->ill_name, 15368 dlpi_prim_str(dlea->dl_error_primitive), 15369 dlea->dl_error_primitive, 15370 dlpi_err_str(dlea->dl_errno), 15371 dlea->dl_errno, 15372 dlea->dl_unix_errno)); 15373 } 15374 15375 /* 15376 * If we received an ACK but didn't send a request for it, then it 15377 * can't be part of any pending operation; discard up-front. 15378 */ 15379 switch (dloa->dl_primitive) { 15380 case DL_NOTIFY_IND: 15381 pending = B_TRUE; 15382 break; 15383 case DL_ERROR_ACK: 15384 pending = ill_dlpi_pending(ill, dlea->dl_error_primitive); 15385 break; 15386 case DL_OK_ACK: 15387 pending = ill_dlpi_pending(ill, dloa->dl_correct_primitive); 15388 break; 15389 case DL_INFO_ACK: 15390 pending = ill_dlpi_pending(ill, DL_INFO_REQ); 15391 break; 15392 case DL_BIND_ACK: 15393 pending = ill_dlpi_pending(ill, DL_BIND_REQ); 15394 break; 15395 case DL_PHYS_ADDR_ACK: 15396 pending = ill_dlpi_pending(ill, DL_PHYS_ADDR_REQ); 15397 break; 15398 case DL_NOTIFY_ACK: 15399 pending = ill_dlpi_pending(ill, DL_NOTIFY_REQ); 15400 break; 15401 case DL_CONTROL_ACK: 15402 pending = ill_dlpi_pending(ill, DL_CONTROL_REQ); 15403 break; 15404 case DL_CAPABILITY_ACK: 15405 pending = ill_dlpi_pending(ill, DL_CAPABILITY_REQ); 15406 break; 15407 default: 15408 /* Not a DLPI message we support or were expecting */ 15409 freemsg(mp); 15410 return; 15411 } 15412 15413 if (!pending) { 15414 freemsg(mp); 15415 return; 15416 } 15417 15418 switch (dloa->dl_primitive) { 15419 case DL_ERROR_ACK: 15420 if (dlea->dl_error_primitive == DL_UNBIND_REQ) { 15421 mutex_enter(&ill->ill_lock); 15422 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15423 cv_signal(&ill->ill_cv); 15424 mutex_exit(&ill->ill_lock); 15425 } 15426 break; 15427 15428 case DL_OK_ACK: 15429 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15430 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15431 switch (dloa->dl_correct_primitive) { 15432 case DL_UNBIND_REQ: 15433 mutex_enter(&ill->ill_lock); 15434 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15435 cv_signal(&ill->ill_cv); 15436 mutex_exit(&ill->ill_lock); 15437 break; 15438 15439 case DL_ENABMULTI_REQ: 15440 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15441 ill->ill_dlpi_multicast_state = IDS_OK; 15442 break; 15443 } 15444 break; 15445 default: 15446 break; 15447 } 15448 15449 /* 15450 * We know the message is one we're waiting for (or DL_NOTIFY_IND), 15451 * and we need to become writer to continue to process it. If it's not 15452 * a DL_NOTIFY_IND, we assume we're in the middle of an exclusive 15453 * operation and pass CUR_OP. If this isn't true, we'll end up doing 15454 * some work as part of the current exclusive operation that actually 15455 * is not part of it -- which is wrong, but better than the 15456 * alternative of deadlock (if NEW_OP is always used). Someday, we 15457 * should track which DLPI requests have ACKs that we wait on 15458 * synchronously so we can know whether to use CUR_OP or NEW_OP. 15459 * 15460 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15461 * Since this is on the ill stream we unconditionally bump up the 15462 * refcount without doing ILL_CAN_LOOKUP(). 15463 */ 15464 ill_refhold(ill); 15465 if (dloa->dl_primitive == DL_NOTIFY_IND) 15466 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15467 else 15468 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15469 } 15470 15471 /* 15472 * Handling of DLPI messages that require exclusive access to the ipsq. 15473 * 15474 * Need to do ill_pending_mp_release on ioctl completion, which could 15475 * happen here. (along with mi_copy_done) 15476 */ 15477 /* ARGSUSED */ 15478 static void 15479 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15480 { 15481 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15482 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15483 int err = 0; 15484 ill_t *ill; 15485 ipif_t *ipif = NULL; 15486 mblk_t *mp1 = NULL; 15487 conn_t *connp = NULL; 15488 t_uscalar_t paddrreq; 15489 mblk_t *mp_hw; 15490 boolean_t success; 15491 boolean_t ioctl_aborted = B_FALSE; 15492 boolean_t log = B_TRUE; 15493 hook_nic_event_t *info; 15494 ip_stack_t *ipst; 15495 15496 ip1dbg(("ip_rput_dlpi_writer ..")); 15497 ill = (ill_t *)q->q_ptr; 15498 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15499 15500 ASSERT(IAM_WRITER_ILL(ill)); 15501 15502 ipst = ill->ill_ipst; 15503 15504 /* 15505 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15506 * both are null or non-null. However we can assert that only 15507 * after grabbing the ipsq_lock. So we don't make any assertion 15508 * here and in other places in the code. 15509 */ 15510 ipif = ipsq->ipsq_pending_ipif; 15511 /* 15512 * The current ioctl could have been aborted by the user and a new 15513 * ioctl to bring up another ill could have started. We could still 15514 * get a response from the driver later. 15515 */ 15516 if (ipif != NULL && ipif->ipif_ill != ill) 15517 ioctl_aborted = B_TRUE; 15518 15519 switch (dloa->dl_primitive) { 15520 case DL_ERROR_ACK: 15521 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15522 dlpi_prim_str(dlea->dl_error_primitive))); 15523 15524 switch (dlea->dl_error_primitive) { 15525 case DL_PROMISCON_REQ: 15526 case DL_PROMISCOFF_REQ: 15527 case DL_DISABMULTI_REQ: 15528 case DL_UNBIND_REQ: 15529 case DL_ATTACH_REQ: 15530 case DL_INFO_REQ: 15531 ill_dlpi_done(ill, dlea->dl_error_primitive); 15532 break; 15533 case DL_NOTIFY_REQ: 15534 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15535 log = B_FALSE; 15536 break; 15537 case DL_PHYS_ADDR_REQ: 15538 /* 15539 * For IPv6 only, there are two additional 15540 * phys_addr_req's sent to the driver to get the 15541 * IPv6 token and lla. This allows IP to acquire 15542 * the hardware address format for a given interface 15543 * without having built in knowledge of the hardware 15544 * address. ill_phys_addr_pend keeps track of the last 15545 * DL_PAR sent so we know which response we are 15546 * dealing with. ill_dlpi_done will update 15547 * ill_phys_addr_pend when it sends the next req. 15548 * We don't complete the IOCTL until all three DL_PARs 15549 * have been attempted, so set *_len to 0 and break. 15550 */ 15551 paddrreq = ill->ill_phys_addr_pend; 15552 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15553 if (paddrreq == DL_IPV6_TOKEN) { 15554 ill->ill_token_length = 0; 15555 log = B_FALSE; 15556 break; 15557 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15558 ill->ill_nd_lla_len = 0; 15559 log = B_FALSE; 15560 break; 15561 } 15562 /* 15563 * Something went wrong with the DL_PHYS_ADDR_REQ. 15564 * We presumably have an IOCTL hanging out waiting 15565 * for completion. Find it and complete the IOCTL 15566 * with the error noted. 15567 * However, ill_dl_phys was called on an ill queue 15568 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15569 * set. But the ioctl is known to be pending on ill_wq. 15570 */ 15571 if (!ill->ill_ifname_pending) 15572 break; 15573 ill->ill_ifname_pending = 0; 15574 if (!ioctl_aborted) 15575 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15576 if (mp1 != NULL) { 15577 /* 15578 * This operation (SIOCSLIFNAME) must have 15579 * happened on the ill. Assert there is no conn 15580 */ 15581 ASSERT(connp == NULL); 15582 q = ill->ill_wq; 15583 } 15584 break; 15585 case DL_BIND_REQ: 15586 ill_dlpi_done(ill, DL_BIND_REQ); 15587 if (ill->ill_ifname_pending) 15588 break; 15589 /* 15590 * Something went wrong with the bind. We presumably 15591 * have an IOCTL hanging out waiting for completion. 15592 * Find it, take down the interface that was coming 15593 * up, and complete the IOCTL with the error noted. 15594 */ 15595 if (!ioctl_aborted) 15596 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15597 if (mp1 != NULL) { 15598 /* 15599 * This operation (SIOCSLIFFLAGS) must have 15600 * happened from a conn. 15601 */ 15602 ASSERT(connp != NULL); 15603 q = CONNP_TO_WQ(connp); 15604 if (ill->ill_move_in_progress) { 15605 ILL_CLEAR_MOVE(ill); 15606 } 15607 (void) ipif_down(ipif, NULL, NULL); 15608 /* error is set below the switch */ 15609 } 15610 break; 15611 case DL_ENABMULTI_REQ: 15612 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15613 15614 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15615 ill->ill_dlpi_multicast_state = IDS_FAILED; 15616 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15617 ipif_t *ipif; 15618 15619 printf("ip: joining multicasts failed (%d)" 15620 " on %s - will use link layer " 15621 "broadcasts for multicast\n", 15622 dlea->dl_errno, ill->ill_name); 15623 15624 /* 15625 * Set up the multicast mapping alone. 15626 * writer, so ok to access ill->ill_ipif 15627 * without any lock. 15628 */ 15629 ipif = ill->ill_ipif; 15630 mutex_enter(&ill->ill_phyint->phyint_lock); 15631 ill->ill_phyint->phyint_flags |= 15632 PHYI_MULTI_BCAST; 15633 mutex_exit(&ill->ill_phyint->phyint_lock); 15634 15635 if (!ill->ill_isv6) { 15636 (void) ipif_arp_setup_multicast(ipif, 15637 NULL); 15638 } else { 15639 (void) ipif_ndp_setup_multicast(ipif, 15640 NULL); 15641 } 15642 } 15643 freemsg(mp); /* Don't want to pass this up */ 15644 return; 15645 15646 case DL_CAPABILITY_REQ: 15647 case DL_CONTROL_REQ: 15648 ill_dlpi_done(ill, dlea->dl_error_primitive); 15649 ill->ill_dlpi_capab_state = IDS_FAILED; 15650 freemsg(mp); 15651 return; 15652 } 15653 /* 15654 * Note the error for IOCTL completion (mp1 is set when 15655 * ready to complete ioctl). If ill_ifname_pending_err is 15656 * set, an error occured during plumbing (ill_ifname_pending), 15657 * so we want to report that error. 15658 * 15659 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15660 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15661 * expected to get errack'd if the driver doesn't support 15662 * these flags (e.g. ethernet). log will be set to B_FALSE 15663 * if these error conditions are encountered. 15664 */ 15665 if (mp1 != NULL) { 15666 if (ill->ill_ifname_pending_err != 0) { 15667 err = ill->ill_ifname_pending_err; 15668 ill->ill_ifname_pending_err = 0; 15669 } else { 15670 err = dlea->dl_unix_errno ? 15671 dlea->dl_unix_errno : ENXIO; 15672 } 15673 /* 15674 * If we're plumbing an interface and an error hasn't already 15675 * been saved, set ill_ifname_pending_err to the error passed 15676 * up. Ignore the error if log is B_FALSE (see comment above). 15677 */ 15678 } else if (log && ill->ill_ifname_pending && 15679 ill->ill_ifname_pending_err == 0) { 15680 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15681 dlea->dl_unix_errno : ENXIO; 15682 } 15683 15684 if (log) 15685 ip_dlpi_error(ill, dlea->dl_error_primitive, 15686 dlea->dl_errno, dlea->dl_unix_errno); 15687 break; 15688 case DL_CAPABILITY_ACK: 15689 /* Call a routine to handle this one. */ 15690 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15691 ill_capability_ack(ill, mp); 15692 15693 /* 15694 * If the ack is due to renegotiation, we will need to send 15695 * a new CAPABILITY_REQ to start the renegotiation. 15696 */ 15697 if (ill->ill_capab_reneg) { 15698 ill->ill_capab_reneg = B_FALSE; 15699 ill_capability_probe(ill); 15700 } 15701 break; 15702 case DL_CONTROL_ACK: 15703 /* We treat all of these as "fire and forget" */ 15704 ill_dlpi_done(ill, DL_CONTROL_REQ); 15705 break; 15706 case DL_INFO_ACK: 15707 /* Call a routine to handle this one. */ 15708 ill_dlpi_done(ill, DL_INFO_REQ); 15709 ip_ll_subnet_defaults(ill, mp); 15710 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15711 return; 15712 case DL_BIND_ACK: 15713 /* 15714 * We should have an IOCTL waiting on this unless 15715 * sent by ill_dl_phys, in which case just return 15716 */ 15717 ill_dlpi_done(ill, DL_BIND_REQ); 15718 if (ill->ill_ifname_pending) 15719 break; 15720 15721 if (!ioctl_aborted) 15722 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15723 if (mp1 == NULL) 15724 break; 15725 /* 15726 * Because mp1 was added by ill_dl_up(), and it always 15727 * passes a valid connp, connp must be valid here. 15728 */ 15729 ASSERT(connp != NULL); 15730 q = CONNP_TO_WQ(connp); 15731 15732 /* 15733 * We are exclusive. So nothing can change even after 15734 * we get the pending mp. If need be we can put it back 15735 * and restart, as in calling ipif_arp_up() below. 15736 */ 15737 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15738 15739 mutex_enter(&ill->ill_lock); 15740 15741 ill->ill_dl_up = 1; 15742 15743 if ((info = ill->ill_nic_event_info) != NULL) { 15744 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15745 "attached for %s\n", info->hne_event, 15746 ill->ill_name)); 15747 if (info->hne_data != NULL) 15748 kmem_free(info->hne_data, info->hne_datalen); 15749 kmem_free(info, sizeof (hook_nic_event_t)); 15750 } 15751 15752 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15753 if (info != NULL) { 15754 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 15755 info->hne_lif = 0; 15756 info->hne_event = NE_UP; 15757 info->hne_data = NULL; 15758 info->hne_datalen = 0; 15759 info->hne_family = ill->ill_isv6 ? 15760 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 15761 } else 15762 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15763 "event information for %s (ENOMEM)\n", 15764 ill->ill_name)); 15765 15766 ill->ill_nic_event_info = info; 15767 15768 mutex_exit(&ill->ill_lock); 15769 15770 /* 15771 * Now bring up the resolver; when that is complete, we'll 15772 * create IREs. Note that we intentionally mirror what 15773 * ipif_up() would have done, because we got here by way of 15774 * ill_dl_up(), which stopped ipif_up()'s processing. 15775 */ 15776 if (ill->ill_isv6) { 15777 /* 15778 * v6 interfaces. 15779 * Unlike ARP which has to do another bind 15780 * and attach, once we get here we are 15781 * done with NDP. Except in the case of 15782 * ILLF_XRESOLV, in which case we send an 15783 * AR_INTERFACE_UP to the external resolver. 15784 * If all goes well, the ioctl will complete 15785 * in ip_rput(). If there's an error, we 15786 * complete it here. 15787 */ 15788 if ((err = ipif_ndp_up(ipif)) == 0) { 15789 if (ill->ill_flags & ILLF_XRESOLV) { 15790 mutex_enter(&connp->conn_lock); 15791 mutex_enter(&ill->ill_lock); 15792 success = ipsq_pending_mp_add( 15793 connp, ipif, q, mp1, 0); 15794 mutex_exit(&ill->ill_lock); 15795 mutex_exit(&connp->conn_lock); 15796 if (success) { 15797 err = ipif_resolver_up(ipif, 15798 Res_act_initial); 15799 if (err == EINPROGRESS) { 15800 freemsg(mp); 15801 return; 15802 } 15803 ASSERT(err != 0); 15804 mp1 = ipsq_pending_mp_get(ipsq, 15805 &connp); 15806 ASSERT(mp1 != NULL); 15807 } else { 15808 /* conn has started closing */ 15809 err = EINTR; 15810 } 15811 } else { /* Non XRESOLV interface */ 15812 (void) ipif_resolver_up(ipif, 15813 Res_act_initial); 15814 err = ipif_up_done_v6(ipif); 15815 } 15816 } 15817 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15818 /* 15819 * ARP and other v4 external resolvers. 15820 * Leave the pending mblk intact so that 15821 * the ioctl completes in ip_rput(). 15822 */ 15823 mutex_enter(&connp->conn_lock); 15824 mutex_enter(&ill->ill_lock); 15825 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15826 mutex_exit(&ill->ill_lock); 15827 mutex_exit(&connp->conn_lock); 15828 if (success) { 15829 err = ipif_resolver_up(ipif, Res_act_initial); 15830 if (err == EINPROGRESS) { 15831 freemsg(mp); 15832 return; 15833 } 15834 ASSERT(err != 0); 15835 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15836 } else { 15837 /* The conn has started closing */ 15838 err = EINTR; 15839 } 15840 } else { 15841 /* 15842 * This one is complete. Reply to pending ioctl. 15843 */ 15844 (void) ipif_resolver_up(ipif, Res_act_initial); 15845 err = ipif_up_done(ipif); 15846 } 15847 15848 if ((err == 0) && (ill->ill_up_ipifs)) { 15849 err = ill_up_ipifs(ill, q, mp1); 15850 if (err == EINPROGRESS) { 15851 freemsg(mp); 15852 return; 15853 } 15854 } 15855 15856 if (ill->ill_up_ipifs) { 15857 ill_group_cleanup(ill); 15858 } 15859 15860 break; 15861 case DL_NOTIFY_IND: { 15862 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15863 ire_t *ire; 15864 boolean_t need_ire_walk_v4 = B_FALSE; 15865 boolean_t need_ire_walk_v6 = B_FALSE; 15866 15867 switch (notify->dl_notification) { 15868 case DL_NOTE_PHYS_ADDR: 15869 err = ill_set_phys_addr(ill, mp); 15870 break; 15871 15872 case DL_NOTE_FASTPATH_FLUSH: 15873 ill_fastpath_flush(ill); 15874 break; 15875 15876 case DL_NOTE_SDU_SIZE: 15877 /* 15878 * Change the MTU size of the interface, of all 15879 * attached ipif's, and of all relevant ire's. The 15880 * new value's a uint32_t at notify->dl_data. 15881 * Mtu change Vs. new ire creation - protocol below. 15882 * 15883 * a Mark the ipif as IPIF_CHANGING. 15884 * b Set the new mtu in the ipif. 15885 * c Change the ire_max_frag on all affected ires 15886 * d Unmark the IPIF_CHANGING 15887 * 15888 * To see how the protocol works, assume an interface 15889 * route is also being added simultaneously by 15890 * ip_rt_add and let 'ipif' be the ipif referenced by 15891 * the ire. If the ire is created before step a, 15892 * it will be cleaned up by step c. If the ire is 15893 * created after step d, it will see the new value of 15894 * ipif_mtu. Any attempt to create the ire between 15895 * steps a to d will fail because of the IPIF_CHANGING 15896 * flag. Note that ire_create() is passed a pointer to 15897 * the ipif_mtu, and not the value. During ire_add 15898 * under the bucket lock, the ire_max_frag of the 15899 * new ire being created is set from the ipif/ire from 15900 * which it is being derived. 15901 */ 15902 mutex_enter(&ill->ill_lock); 15903 ill->ill_max_frag = (uint_t)notify->dl_data; 15904 15905 /* 15906 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15907 * leave it alone 15908 */ 15909 if (ill->ill_mtu_userspecified) { 15910 mutex_exit(&ill->ill_lock); 15911 break; 15912 } 15913 ill->ill_max_mtu = ill->ill_max_frag; 15914 if (ill->ill_isv6) { 15915 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15916 ill->ill_max_mtu = IPV6_MIN_MTU; 15917 } else { 15918 if (ill->ill_max_mtu < IP_MIN_MTU) 15919 ill->ill_max_mtu = IP_MIN_MTU; 15920 } 15921 for (ipif = ill->ill_ipif; ipif != NULL; 15922 ipif = ipif->ipif_next) { 15923 /* 15924 * Don't override the mtu if the user 15925 * has explicitly set it. 15926 */ 15927 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15928 continue; 15929 ipif->ipif_mtu = (uint_t)notify->dl_data; 15930 if (ipif->ipif_isv6) 15931 ire = ipif_to_ire_v6(ipif); 15932 else 15933 ire = ipif_to_ire(ipif); 15934 if (ire != NULL) { 15935 ire->ire_max_frag = ipif->ipif_mtu; 15936 ire_refrele(ire); 15937 } 15938 if (ipif->ipif_flags & IPIF_UP) { 15939 if (ill->ill_isv6) 15940 need_ire_walk_v6 = B_TRUE; 15941 else 15942 need_ire_walk_v4 = B_TRUE; 15943 } 15944 } 15945 mutex_exit(&ill->ill_lock); 15946 if (need_ire_walk_v4) 15947 ire_walk_v4(ill_mtu_change, (char *)ill, 15948 ALL_ZONES, ipst); 15949 if (need_ire_walk_v6) 15950 ire_walk_v6(ill_mtu_change, (char *)ill, 15951 ALL_ZONES, ipst); 15952 break; 15953 case DL_NOTE_LINK_UP: 15954 case DL_NOTE_LINK_DOWN: { 15955 /* 15956 * We are writer. ill / phyint / ipsq assocs stable. 15957 * The RUNNING flag reflects the state of the link. 15958 */ 15959 phyint_t *phyint = ill->ill_phyint; 15960 uint64_t new_phyint_flags; 15961 boolean_t changed = B_FALSE; 15962 boolean_t went_up; 15963 15964 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 15965 mutex_enter(&phyint->phyint_lock); 15966 new_phyint_flags = went_up ? 15967 phyint->phyint_flags | PHYI_RUNNING : 15968 phyint->phyint_flags & ~PHYI_RUNNING; 15969 if (new_phyint_flags != phyint->phyint_flags) { 15970 phyint->phyint_flags = new_phyint_flags; 15971 changed = B_TRUE; 15972 } 15973 mutex_exit(&phyint->phyint_lock); 15974 /* 15975 * ill_restart_dad handles the DAD restart and routing 15976 * socket notification logic. 15977 */ 15978 if (changed) { 15979 ill_restart_dad(phyint->phyint_illv4, went_up); 15980 ill_restart_dad(phyint->phyint_illv6, went_up); 15981 } 15982 break; 15983 } 15984 case DL_NOTE_PROMISC_ON_PHYS: 15985 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15986 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 15987 mutex_enter(&ill->ill_lock); 15988 ill->ill_promisc_on_phys = B_TRUE; 15989 mutex_exit(&ill->ill_lock); 15990 break; 15991 case DL_NOTE_PROMISC_OFF_PHYS: 15992 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15993 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 15994 mutex_enter(&ill->ill_lock); 15995 ill->ill_promisc_on_phys = B_FALSE; 15996 mutex_exit(&ill->ill_lock); 15997 break; 15998 case DL_NOTE_CAPAB_RENEG: 15999 /* 16000 * Something changed on the driver side. 16001 * It wants us to renegotiate the capabilities 16002 * on this ill. One possible cause is the aggregation 16003 * interface under us where a port got added or 16004 * went away. 16005 * 16006 * If the capability negotiation is already done 16007 * or is in progress, reset the capabilities and 16008 * mark the ill's ill_capab_reneg to be B_TRUE, 16009 * so that when the ack comes back, we can start 16010 * the renegotiation process. 16011 * 16012 * Note that if ill_capab_reneg is already B_TRUE 16013 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16014 * the capability resetting request has been sent 16015 * and the renegotiation has not been started yet; 16016 * nothing needs to be done in this case. 16017 */ 16018 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) { 16019 ill_capability_reset(ill); 16020 ill->ill_capab_reneg = B_TRUE; 16021 } 16022 break; 16023 default: 16024 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16025 "type 0x%x for DL_NOTIFY_IND\n", 16026 notify->dl_notification)); 16027 break; 16028 } 16029 16030 /* 16031 * As this is an asynchronous operation, we 16032 * should not call ill_dlpi_done 16033 */ 16034 break; 16035 } 16036 case DL_NOTIFY_ACK: { 16037 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16038 16039 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16040 ill->ill_note_link = 1; 16041 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16042 break; 16043 } 16044 case DL_PHYS_ADDR_ACK: { 16045 /* 16046 * As part of plumbing the interface via SIOCSLIFNAME, 16047 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16048 * whose answers we receive here. As each answer is received, 16049 * we call ill_dlpi_done() to dispatch the next request as 16050 * we're processing the current one. Once all answers have 16051 * been received, we use ipsq_pending_mp_get() to dequeue the 16052 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16053 * is invoked from an ill queue, conn_oper_pending_ill is not 16054 * available, but we know the ioctl is pending on ill_wq.) 16055 */ 16056 uint_t paddrlen, paddroff; 16057 16058 paddrreq = ill->ill_phys_addr_pend; 16059 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16060 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16061 16062 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16063 if (paddrreq == DL_IPV6_TOKEN) { 16064 /* 16065 * bcopy to low-order bits of ill_token 16066 * 16067 * XXX Temporary hack - currently, all known tokens 16068 * are 64 bits, so I'll cheat for the moment. 16069 */ 16070 bcopy(mp->b_rptr + paddroff, 16071 &ill->ill_token.s6_addr32[2], paddrlen); 16072 ill->ill_token_length = paddrlen; 16073 break; 16074 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16075 ASSERT(ill->ill_nd_lla_mp == NULL); 16076 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16077 mp = NULL; 16078 break; 16079 } 16080 16081 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16082 ASSERT(ill->ill_phys_addr_mp == NULL); 16083 if (!ill->ill_ifname_pending) 16084 break; 16085 ill->ill_ifname_pending = 0; 16086 if (!ioctl_aborted) 16087 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16088 if (mp1 != NULL) { 16089 ASSERT(connp == NULL); 16090 q = ill->ill_wq; 16091 } 16092 /* 16093 * If any error acks received during the plumbing sequence, 16094 * ill_ifname_pending_err will be set. Break out and send up 16095 * the error to the pending ioctl. 16096 */ 16097 if (ill->ill_ifname_pending_err != 0) { 16098 err = ill->ill_ifname_pending_err; 16099 ill->ill_ifname_pending_err = 0; 16100 break; 16101 } 16102 16103 ill->ill_phys_addr_mp = mp; 16104 ill->ill_phys_addr = mp->b_rptr + paddroff; 16105 mp = NULL; 16106 16107 /* 16108 * If paddrlen is zero, the DLPI provider doesn't support 16109 * physical addresses. The other two tests were historical 16110 * workarounds for bugs in our former PPP implementation, but 16111 * now other things have grown dependencies on them -- e.g., 16112 * the tun module specifies a dl_addr_length of zero in its 16113 * DL_BIND_ACK, but then specifies an incorrect value in its 16114 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16115 * but only after careful testing ensures that all dependent 16116 * broken DLPI providers have been fixed. 16117 */ 16118 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16119 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16120 ill->ill_phys_addr = NULL; 16121 } else if (paddrlen != ill->ill_phys_addr_length) { 16122 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16123 paddrlen, ill->ill_phys_addr_length)); 16124 err = EINVAL; 16125 break; 16126 } 16127 16128 if (ill->ill_nd_lla_mp == NULL) { 16129 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16130 err = ENOMEM; 16131 break; 16132 } 16133 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16134 } 16135 16136 /* 16137 * Set the interface token. If the zeroth interface address 16138 * is unspecified, then set it to the link local address. 16139 */ 16140 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16141 (void) ill_setdefaulttoken(ill); 16142 16143 ASSERT(ill->ill_ipif->ipif_id == 0); 16144 if (ipif != NULL && 16145 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16146 (void) ipif_setlinklocal(ipif); 16147 } 16148 break; 16149 } 16150 case DL_OK_ACK: 16151 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16152 dlpi_prim_str((int)dloa->dl_correct_primitive), 16153 dloa->dl_correct_primitive)); 16154 switch (dloa->dl_correct_primitive) { 16155 case DL_PROMISCON_REQ: 16156 case DL_PROMISCOFF_REQ: 16157 case DL_ENABMULTI_REQ: 16158 case DL_DISABMULTI_REQ: 16159 case DL_UNBIND_REQ: 16160 case DL_ATTACH_REQ: 16161 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16162 break; 16163 } 16164 break; 16165 default: 16166 break; 16167 } 16168 16169 freemsg(mp); 16170 if (mp1 != NULL) { 16171 /* 16172 * The operation must complete without EINPROGRESS 16173 * since ipsq_pending_mp_get() has removed the mblk 16174 * from ipsq_pending_mp. Otherwise, the operation 16175 * will be stuck forever in the ipsq. 16176 */ 16177 ASSERT(err != EINPROGRESS); 16178 16179 switch (ipsq->ipsq_current_ioctl) { 16180 case 0: 16181 ipsq_current_finish(ipsq); 16182 break; 16183 16184 case SIOCLIFADDIF: 16185 case SIOCSLIFNAME: 16186 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16187 break; 16188 16189 default: 16190 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16191 break; 16192 } 16193 } 16194 } 16195 16196 /* 16197 * ip_rput_other is called by ip_rput to handle messages modifying the global 16198 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16199 */ 16200 /* ARGSUSED */ 16201 void 16202 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16203 { 16204 ill_t *ill; 16205 struct iocblk *iocp; 16206 mblk_t *mp1; 16207 conn_t *connp = NULL; 16208 16209 ip1dbg(("ip_rput_other ")); 16210 ill = (ill_t *)q->q_ptr; 16211 /* 16212 * This routine is not a writer in the case of SIOCGTUNPARAM 16213 * in which case ipsq is NULL. 16214 */ 16215 if (ipsq != NULL) { 16216 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16217 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16218 } 16219 16220 switch (mp->b_datap->db_type) { 16221 case M_ERROR: 16222 case M_HANGUP: 16223 /* 16224 * The device has a problem. We force the ILL down. It can 16225 * be brought up again manually using SIOCSIFFLAGS (via 16226 * ifconfig or equivalent). 16227 */ 16228 ASSERT(ipsq != NULL); 16229 if (mp->b_rptr < mp->b_wptr) 16230 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16231 if (ill->ill_error == 0) 16232 ill->ill_error = ENXIO; 16233 if (!ill_down_start(q, mp)) 16234 return; 16235 ipif_all_down_tail(ipsq, q, mp, NULL); 16236 break; 16237 case M_IOCACK: 16238 iocp = (struct iocblk *)mp->b_rptr; 16239 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16240 switch (iocp->ioc_cmd) { 16241 case SIOCSTUNPARAM: 16242 case OSIOCSTUNPARAM: 16243 ASSERT(ipsq != NULL); 16244 /* 16245 * Finish socket ioctl passed through to tun. 16246 * We should have an IOCTL waiting on this. 16247 */ 16248 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16249 if (ill->ill_isv6) { 16250 struct iftun_req *ta; 16251 16252 /* 16253 * if a source or destination is 16254 * being set, try and set the link 16255 * local address for the tunnel 16256 */ 16257 ta = (struct iftun_req *)mp->b_cont-> 16258 b_cont->b_rptr; 16259 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16260 ipif_set_tun_llink(ill, ta); 16261 } 16262 16263 } 16264 if (mp1 != NULL) { 16265 /* 16266 * Now copy back the b_next/b_prev used by 16267 * mi code for the mi_copy* functions. 16268 * See ip_sioctl_tunparam() for the reason. 16269 * Also protect against missing b_cont. 16270 */ 16271 if (mp->b_cont != NULL) { 16272 mp->b_cont->b_next = 16273 mp1->b_cont->b_next; 16274 mp->b_cont->b_prev = 16275 mp1->b_cont->b_prev; 16276 } 16277 inet_freemsg(mp1); 16278 ASSERT(connp != NULL); 16279 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16280 iocp->ioc_error, NO_COPYOUT, ipsq); 16281 } else { 16282 ASSERT(connp == NULL); 16283 putnext(q, mp); 16284 } 16285 break; 16286 case SIOCGTUNPARAM: 16287 case OSIOCGTUNPARAM: 16288 /* 16289 * This is really M_IOCDATA from the tunnel driver. 16290 * convert back and complete the ioctl. 16291 * We should have an IOCTL waiting on this. 16292 */ 16293 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16294 if (mp1) { 16295 /* 16296 * Now copy back the b_next/b_prev used by 16297 * mi code for the mi_copy* functions. 16298 * See ip_sioctl_tunparam() for the reason. 16299 * Also protect against missing b_cont. 16300 */ 16301 if (mp->b_cont != NULL) { 16302 mp->b_cont->b_next = 16303 mp1->b_cont->b_next; 16304 mp->b_cont->b_prev = 16305 mp1->b_cont->b_prev; 16306 } 16307 inet_freemsg(mp1); 16308 if (iocp->ioc_error == 0) 16309 mp->b_datap->db_type = M_IOCDATA; 16310 ASSERT(connp != NULL); 16311 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16312 iocp->ioc_error, COPYOUT, NULL); 16313 } else { 16314 ASSERT(connp == NULL); 16315 putnext(q, mp); 16316 } 16317 break; 16318 default: 16319 break; 16320 } 16321 break; 16322 case M_IOCNAK: 16323 iocp = (struct iocblk *)mp->b_rptr; 16324 16325 switch (iocp->ioc_cmd) { 16326 int mode; 16327 16328 case DL_IOC_HDR_INFO: 16329 /* 16330 * If this was the first attempt turn of the 16331 * fastpath probing. 16332 */ 16333 mutex_enter(&ill->ill_lock); 16334 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16335 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16336 mutex_exit(&ill->ill_lock); 16337 ill_fastpath_nack(ill); 16338 ip1dbg(("ip_rput: DLPI fastpath off on " 16339 "interface %s\n", 16340 ill->ill_name)); 16341 } else { 16342 mutex_exit(&ill->ill_lock); 16343 } 16344 freemsg(mp); 16345 break; 16346 case SIOCSTUNPARAM: 16347 case OSIOCSTUNPARAM: 16348 ASSERT(ipsq != NULL); 16349 /* 16350 * Finish socket ioctl passed through to tun 16351 * We should have an IOCTL waiting on this. 16352 */ 16353 /* FALLTHRU */ 16354 case SIOCGTUNPARAM: 16355 case OSIOCGTUNPARAM: 16356 /* 16357 * This is really M_IOCDATA from the tunnel driver. 16358 * convert back and complete the ioctl. 16359 * We should have an IOCTL waiting on this. 16360 */ 16361 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16362 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16363 mp1 = ill_pending_mp_get(ill, &connp, 16364 iocp->ioc_id); 16365 mode = COPYOUT; 16366 ipsq = NULL; 16367 } else { 16368 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16369 mode = NO_COPYOUT; 16370 } 16371 if (mp1 != NULL) { 16372 /* 16373 * Now copy back the b_next/b_prev used by 16374 * mi code for the mi_copy* functions. 16375 * See ip_sioctl_tunparam() for the reason. 16376 * Also protect against missing b_cont. 16377 */ 16378 if (mp->b_cont != NULL) { 16379 mp->b_cont->b_next = 16380 mp1->b_cont->b_next; 16381 mp->b_cont->b_prev = 16382 mp1->b_cont->b_prev; 16383 } 16384 inet_freemsg(mp1); 16385 if (iocp->ioc_error == 0) 16386 iocp->ioc_error = EINVAL; 16387 ASSERT(connp != NULL); 16388 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16389 iocp->ioc_error, mode, ipsq); 16390 } else { 16391 ASSERT(connp == NULL); 16392 putnext(q, mp); 16393 } 16394 break; 16395 default: 16396 break; 16397 } 16398 default: 16399 break; 16400 } 16401 } 16402 16403 /* 16404 * NOTE : This function does not ire_refrele the ire argument passed in. 16405 * 16406 * IPQoS notes 16407 * IP policy is invoked twice for a forwarded packet, once on the read side 16408 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16409 * enabled. An additional parameter, in_ill, has been added for this purpose. 16410 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16411 * because ip_mroute drops this information. 16412 * 16413 */ 16414 void 16415 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16416 { 16417 uint32_t old_pkt_len; 16418 uint32_t pkt_len; 16419 queue_t *q; 16420 uint32_t sum; 16421 #define rptr ((uchar_t *)ipha) 16422 uint32_t max_frag; 16423 uint32_t ill_index; 16424 ill_t *out_ill; 16425 mib2_ipIfStatsEntry_t *mibptr; 16426 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16427 16428 /* Get the ill_index of the incoming ILL */ 16429 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16430 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16431 16432 /* Initiate Read side IPPF processing */ 16433 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16434 ip_process(IPP_FWD_IN, &mp, ill_index); 16435 if (mp == NULL) { 16436 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16437 "during IPPF processing\n")); 16438 return; 16439 } 16440 } 16441 16442 /* Adjust the checksum to reflect the ttl decrement. */ 16443 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16444 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16445 16446 if (ipha->ipha_ttl-- <= 1) { 16447 if (ip_csum_hdr(ipha)) { 16448 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16449 goto drop_pkt; 16450 } 16451 /* 16452 * Note: ire_stq this will be NULL for multicast 16453 * datagrams using the long path through arp (the IRE 16454 * is not an IRE_CACHE). This should not cause 16455 * problems since we don't generate ICMP errors for 16456 * multicast packets. 16457 */ 16458 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16459 q = ire->ire_stq; 16460 if (q != NULL) { 16461 /* Sent by forwarding path, and router is global zone */ 16462 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16463 GLOBAL_ZONEID, ipst); 16464 } else 16465 freemsg(mp); 16466 return; 16467 } 16468 16469 /* 16470 * Don't forward if the interface is down 16471 */ 16472 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16473 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16474 ip2dbg(("ip_rput_forward:interface is down\n")); 16475 goto drop_pkt; 16476 } 16477 16478 /* Get the ill_index of the outgoing ILL */ 16479 out_ill = ire_to_ill(ire); 16480 ill_index = out_ill->ill_phyint->phyint_ifindex; 16481 16482 DTRACE_PROBE4(ip4__forwarding__start, 16483 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16484 16485 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16486 ipst->ips_ipv4firewall_forwarding, 16487 in_ill, out_ill, ipha, mp, mp, ipst); 16488 16489 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16490 16491 if (mp == NULL) 16492 return; 16493 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16494 16495 if (is_system_labeled()) { 16496 mblk_t *mp1; 16497 16498 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16499 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16500 goto drop_pkt; 16501 } 16502 /* Size may have changed */ 16503 mp = mp1; 16504 ipha = (ipha_t *)mp->b_rptr; 16505 pkt_len = ntohs(ipha->ipha_length); 16506 } 16507 16508 /* Check if there are options to update */ 16509 if (!IS_SIMPLE_IPH(ipha)) { 16510 if (ip_csum_hdr(ipha)) { 16511 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16512 goto drop_pkt; 16513 } 16514 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16515 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16516 return; 16517 } 16518 16519 ipha->ipha_hdr_checksum = 0; 16520 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16521 } 16522 max_frag = ire->ire_max_frag; 16523 if (pkt_len > max_frag) { 16524 /* 16525 * It needs fragging on its way out. We haven't 16526 * verified the header checksum yet. Since we 16527 * are going to put a surely good checksum in the 16528 * outgoing header, we have to make sure that it 16529 * was good coming in. 16530 */ 16531 if (ip_csum_hdr(ipha)) { 16532 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16533 goto drop_pkt; 16534 } 16535 /* Initiate Write side IPPF processing */ 16536 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16537 ip_process(IPP_FWD_OUT, &mp, ill_index); 16538 if (mp == NULL) { 16539 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16540 " during IPPF processing\n")); 16541 return; 16542 } 16543 } 16544 /* 16545 * Handle labeled packet resizing. 16546 * 16547 * If we have added a label, inform ip_wput_frag() of its 16548 * effect on the MTU for ICMP messages. 16549 */ 16550 if (pkt_len > old_pkt_len) { 16551 uint32_t secopt_size; 16552 16553 secopt_size = pkt_len - old_pkt_len; 16554 if (secopt_size < max_frag) 16555 max_frag -= secopt_size; 16556 } 16557 16558 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16559 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16560 return; 16561 } 16562 16563 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16564 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16565 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16566 ipst->ips_ipv4firewall_physical_out, 16567 NULL, out_ill, ipha, mp, mp, ipst); 16568 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16569 if (mp == NULL) 16570 return; 16571 16572 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16573 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16574 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16575 /* ip_xmit_v4 always consumes the packet */ 16576 return; 16577 16578 drop_pkt:; 16579 ip1dbg(("ip_rput_forward: drop pkt\n")); 16580 freemsg(mp); 16581 #undef rptr 16582 } 16583 16584 void 16585 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16586 { 16587 ire_t *ire; 16588 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16589 16590 ASSERT(!ipif->ipif_isv6); 16591 /* 16592 * Find an IRE which matches the destination and the outgoing 16593 * queue in the cache table. All we need is an IRE_CACHE which 16594 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16595 * then it is enough to have some IRE_CACHE in the group. 16596 */ 16597 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16598 dst = ipif->ipif_pp_dst_addr; 16599 16600 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16601 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16602 if (ire == NULL) { 16603 /* 16604 * Mark this packet to make it be delivered to 16605 * ip_rput_forward after the new ire has been 16606 * created. 16607 */ 16608 mp->b_prev = NULL; 16609 mp->b_next = mp; 16610 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16611 NULL, 0, GLOBAL_ZONEID, &zero_info); 16612 } else { 16613 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16614 IRE_REFRELE(ire); 16615 } 16616 } 16617 16618 /* Update any source route, record route or timestamp options */ 16619 static int 16620 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16621 { 16622 ipoptp_t opts; 16623 uchar_t *opt; 16624 uint8_t optval; 16625 uint8_t optlen; 16626 ipaddr_t dst; 16627 uint32_t ts; 16628 ire_t *dst_ire = NULL; 16629 ire_t *tmp_ire = NULL; 16630 timestruc_t now; 16631 16632 ip2dbg(("ip_rput_forward_options\n")); 16633 dst = ipha->ipha_dst; 16634 for (optval = ipoptp_first(&opts, ipha); 16635 optval != IPOPT_EOL; 16636 optval = ipoptp_next(&opts)) { 16637 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16638 opt = opts.ipoptp_cur; 16639 optlen = opts.ipoptp_len; 16640 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16641 optval, opts.ipoptp_len)); 16642 switch (optval) { 16643 uint32_t off; 16644 case IPOPT_SSRR: 16645 case IPOPT_LSRR: 16646 /* Check if adminstratively disabled */ 16647 if (!ipst->ips_ip_forward_src_routed) { 16648 if (ire->ire_stq != NULL) { 16649 /* 16650 * Sent by forwarding path, and router 16651 * is global zone 16652 */ 16653 icmp_unreachable(ire->ire_stq, mp, 16654 ICMP_SOURCE_ROUTE_FAILED, 16655 GLOBAL_ZONEID, ipst); 16656 } else { 16657 ip0dbg(("ip_rput_forward_options: " 16658 "unable to send unreach\n")); 16659 freemsg(mp); 16660 } 16661 return (-1); 16662 } 16663 16664 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16665 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16666 if (dst_ire == NULL) { 16667 /* 16668 * Must be partial since ip_rput_options 16669 * checked for strict. 16670 */ 16671 break; 16672 } 16673 off = opt[IPOPT_OFFSET]; 16674 off--; 16675 redo_srr: 16676 if (optlen < IP_ADDR_LEN || 16677 off > optlen - IP_ADDR_LEN) { 16678 /* End of source route */ 16679 ip1dbg(( 16680 "ip_rput_forward_options: end of SR\n")); 16681 ire_refrele(dst_ire); 16682 break; 16683 } 16684 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16685 bcopy(&ire->ire_src_addr, (char *)opt + off, 16686 IP_ADDR_LEN); 16687 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16688 ntohl(dst))); 16689 16690 /* 16691 * Check if our address is present more than 16692 * once as consecutive hops in source route. 16693 */ 16694 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16695 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16696 if (tmp_ire != NULL) { 16697 ire_refrele(tmp_ire); 16698 off += IP_ADDR_LEN; 16699 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16700 goto redo_srr; 16701 } 16702 ipha->ipha_dst = dst; 16703 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16704 ire_refrele(dst_ire); 16705 break; 16706 case IPOPT_RR: 16707 off = opt[IPOPT_OFFSET]; 16708 off--; 16709 if (optlen < IP_ADDR_LEN || 16710 off > optlen - IP_ADDR_LEN) { 16711 /* No more room - ignore */ 16712 ip1dbg(( 16713 "ip_rput_forward_options: end of RR\n")); 16714 break; 16715 } 16716 bcopy(&ire->ire_src_addr, (char *)opt + off, 16717 IP_ADDR_LEN); 16718 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16719 break; 16720 case IPOPT_TS: 16721 /* Insert timestamp if there is room */ 16722 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16723 case IPOPT_TS_TSONLY: 16724 off = IPOPT_TS_TIMELEN; 16725 break; 16726 case IPOPT_TS_PRESPEC: 16727 case IPOPT_TS_PRESPEC_RFC791: 16728 /* Verify that the address matched */ 16729 off = opt[IPOPT_OFFSET] - 1; 16730 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16731 dst_ire = ire_ctable_lookup(dst, 0, 16732 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16733 MATCH_IRE_TYPE, ipst); 16734 if (dst_ire == NULL) { 16735 /* Not for us */ 16736 break; 16737 } 16738 ire_refrele(dst_ire); 16739 /* FALLTHRU */ 16740 case IPOPT_TS_TSANDADDR: 16741 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16742 break; 16743 default: 16744 /* 16745 * ip_*put_options should have already 16746 * dropped this packet. 16747 */ 16748 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16749 "unknown IT - bug in ip_rput_options?\n"); 16750 return (0); /* Keep "lint" happy */ 16751 } 16752 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16753 /* Increase overflow counter */ 16754 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16755 opt[IPOPT_POS_OV_FLG] = 16756 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16757 (off << 4)); 16758 break; 16759 } 16760 off = opt[IPOPT_OFFSET] - 1; 16761 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16762 case IPOPT_TS_PRESPEC: 16763 case IPOPT_TS_PRESPEC_RFC791: 16764 case IPOPT_TS_TSANDADDR: 16765 bcopy(&ire->ire_src_addr, 16766 (char *)opt + off, IP_ADDR_LEN); 16767 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16768 /* FALLTHRU */ 16769 case IPOPT_TS_TSONLY: 16770 off = opt[IPOPT_OFFSET] - 1; 16771 /* Compute # of milliseconds since midnight */ 16772 gethrestime(&now); 16773 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16774 now.tv_nsec / (NANOSEC / MILLISEC); 16775 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16776 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16777 break; 16778 } 16779 break; 16780 } 16781 } 16782 return (0); 16783 } 16784 16785 /* 16786 * This is called after processing at least one of AH/ESP headers. 16787 * 16788 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16789 * the actual, physical interface on which the packet was received, 16790 * but, when ip_strict_dst_multihoming is set to 1, could be the 16791 * interface which had the ipha_dst configured when the packet went 16792 * through ip_rput. The ill_index corresponding to the recv_ill 16793 * is saved in ipsec_in_rill_index 16794 * 16795 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16796 * cannot assume "ire" points to valid data for any IPv6 cases. 16797 */ 16798 void 16799 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16800 { 16801 mblk_t *mp; 16802 ipaddr_t dst; 16803 in6_addr_t *v6dstp; 16804 ipha_t *ipha; 16805 ip6_t *ip6h; 16806 ipsec_in_t *ii; 16807 boolean_t ill_need_rele = B_FALSE; 16808 boolean_t rill_need_rele = B_FALSE; 16809 boolean_t ire_need_rele = B_FALSE; 16810 netstack_t *ns; 16811 ip_stack_t *ipst; 16812 16813 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16814 ASSERT(ii->ipsec_in_ill_index != 0); 16815 ns = ii->ipsec_in_ns; 16816 ASSERT(ii->ipsec_in_ns != NULL); 16817 ipst = ns->netstack_ip; 16818 16819 mp = ipsec_mp->b_cont; 16820 ASSERT(mp != NULL); 16821 16822 16823 if (ill == NULL) { 16824 ASSERT(recv_ill == NULL); 16825 /* 16826 * We need to get the original queue on which ip_rput_local 16827 * or ip_rput_data_v6 was called. 16828 */ 16829 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16830 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16831 ill_need_rele = B_TRUE; 16832 16833 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16834 recv_ill = ill_lookup_on_ifindex( 16835 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16836 NULL, NULL, NULL, NULL, ipst); 16837 rill_need_rele = B_TRUE; 16838 } else { 16839 recv_ill = ill; 16840 } 16841 16842 if ((ill == NULL) || (recv_ill == NULL)) { 16843 ip0dbg(("ip_fanout_proto_again: interface " 16844 "disappeared\n")); 16845 if (ill != NULL) 16846 ill_refrele(ill); 16847 if (recv_ill != NULL) 16848 ill_refrele(recv_ill); 16849 freemsg(ipsec_mp); 16850 return; 16851 } 16852 } 16853 16854 ASSERT(ill != NULL && recv_ill != NULL); 16855 16856 if (mp->b_datap->db_type == M_CTL) { 16857 /* 16858 * AH/ESP is returning the ICMP message after 16859 * removing their headers. Fanout again till 16860 * it gets to the right protocol. 16861 */ 16862 if (ii->ipsec_in_v4) { 16863 icmph_t *icmph; 16864 int iph_hdr_length; 16865 int hdr_length; 16866 16867 ipha = (ipha_t *)mp->b_rptr; 16868 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16869 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16870 ipha = (ipha_t *)&icmph[1]; 16871 hdr_length = IPH_HDR_LENGTH(ipha); 16872 /* 16873 * icmp_inbound_error_fanout may need to do pullupmsg. 16874 * Reset the type to M_DATA. 16875 */ 16876 mp->b_datap->db_type = M_DATA; 16877 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16878 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16879 B_FALSE, ill, ii->ipsec_in_zoneid); 16880 } else { 16881 icmp6_t *icmp6; 16882 int hdr_length; 16883 16884 ip6h = (ip6_t *)mp->b_rptr; 16885 /* Don't call hdr_length_v6() unless you have to. */ 16886 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16887 hdr_length = ip_hdr_length_v6(mp, ip6h); 16888 else 16889 hdr_length = IPV6_HDR_LEN; 16890 16891 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16892 /* 16893 * icmp_inbound_error_fanout_v6 may need to do 16894 * pullupmsg. Reset the type to M_DATA. 16895 */ 16896 mp->b_datap->db_type = M_DATA; 16897 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16898 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16899 } 16900 if (ill_need_rele) 16901 ill_refrele(ill); 16902 if (rill_need_rele) 16903 ill_refrele(recv_ill); 16904 return; 16905 } 16906 16907 if (ii->ipsec_in_v4) { 16908 ipha = (ipha_t *)mp->b_rptr; 16909 dst = ipha->ipha_dst; 16910 if (CLASSD(dst)) { 16911 /* 16912 * Multicast has to be delivered to all streams. 16913 */ 16914 dst = INADDR_BROADCAST; 16915 } 16916 16917 if (ire == NULL) { 16918 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16919 MBLK_GETLABEL(mp), ipst); 16920 if (ire == NULL) { 16921 if (ill_need_rele) 16922 ill_refrele(ill); 16923 if (rill_need_rele) 16924 ill_refrele(recv_ill); 16925 ip1dbg(("ip_fanout_proto_again: " 16926 "IRE not found")); 16927 freemsg(ipsec_mp); 16928 return; 16929 } 16930 ire_need_rele = B_TRUE; 16931 } 16932 16933 switch (ipha->ipha_protocol) { 16934 case IPPROTO_UDP: 16935 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16936 recv_ill); 16937 if (ire_need_rele) 16938 ire_refrele(ire); 16939 break; 16940 case IPPROTO_TCP: 16941 if (!ire_need_rele) 16942 IRE_REFHOLD(ire); 16943 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 16944 ire, ipsec_mp, 0, ill->ill_rq, NULL); 16945 IRE_REFRELE(ire); 16946 if (mp != NULL) 16947 squeue_enter_chain(GET_SQUEUE(mp), mp, 16948 mp, 1, SQTAG_IP_PROTO_AGAIN); 16949 break; 16950 case IPPROTO_SCTP: 16951 if (!ire_need_rele) 16952 IRE_REFHOLD(ire); 16953 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 16954 ipsec_mp, 0, ill->ill_rq, dst); 16955 break; 16956 default: 16957 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 16958 recv_ill, B_FALSE); 16959 if (ire_need_rele) 16960 ire_refrele(ire); 16961 break; 16962 } 16963 } else { 16964 uint32_t rput_flags = 0; 16965 16966 ip6h = (ip6_t *)mp->b_rptr; 16967 v6dstp = &ip6h->ip6_dst; 16968 /* 16969 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 16970 * address. 16971 * 16972 * Currently, we don't store that state in the IPSEC_IN 16973 * message, and we may need to. 16974 */ 16975 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 16976 IP6_IN_LLMCAST : 0); 16977 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 16978 NULL, NULL); 16979 } 16980 if (ill_need_rele) 16981 ill_refrele(ill); 16982 if (rill_need_rele) 16983 ill_refrele(recv_ill); 16984 } 16985 16986 /* 16987 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 16988 * returns 'true' if there are still fragments left on the queue, in 16989 * which case we restart the timer. 16990 */ 16991 void 16992 ill_frag_timer(void *arg) 16993 { 16994 ill_t *ill = (ill_t *)arg; 16995 boolean_t frag_pending; 16996 ip_stack_t *ipst = ill->ill_ipst; 16997 16998 mutex_enter(&ill->ill_lock); 16999 ASSERT(!ill->ill_fragtimer_executing); 17000 if (ill->ill_state_flags & ILL_CONDEMNED) { 17001 ill->ill_frag_timer_id = 0; 17002 mutex_exit(&ill->ill_lock); 17003 return; 17004 } 17005 ill->ill_fragtimer_executing = 1; 17006 mutex_exit(&ill->ill_lock); 17007 17008 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17009 17010 /* 17011 * Restart the timer, if we have fragments pending or if someone 17012 * wanted us to be scheduled again. 17013 */ 17014 mutex_enter(&ill->ill_lock); 17015 ill->ill_fragtimer_executing = 0; 17016 ill->ill_frag_timer_id = 0; 17017 if (frag_pending || ill->ill_fragtimer_needrestart) 17018 ill_frag_timer_start(ill); 17019 mutex_exit(&ill->ill_lock); 17020 } 17021 17022 void 17023 ill_frag_timer_start(ill_t *ill) 17024 { 17025 ip_stack_t *ipst = ill->ill_ipst; 17026 17027 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17028 17029 /* If the ill is closing or opening don't proceed */ 17030 if (ill->ill_state_flags & ILL_CONDEMNED) 17031 return; 17032 17033 if (ill->ill_fragtimer_executing) { 17034 /* 17035 * ill_frag_timer is currently executing. Just record the 17036 * the fact that we want the timer to be restarted. 17037 * ill_frag_timer will post a timeout before it returns, 17038 * ensuring it will be called again. 17039 */ 17040 ill->ill_fragtimer_needrestart = 1; 17041 return; 17042 } 17043 17044 if (ill->ill_frag_timer_id == 0) { 17045 /* 17046 * The timer is neither running nor is the timeout handler 17047 * executing. Post a timeout so that ill_frag_timer will be 17048 * called 17049 */ 17050 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17051 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17052 ill->ill_fragtimer_needrestart = 0; 17053 } 17054 } 17055 17056 /* 17057 * This routine is needed for loopback when forwarding multicasts. 17058 * 17059 * IPQoS Notes: 17060 * IPPF processing is done in fanout routines. 17061 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17062 * processing for IPsec packets is done when it comes back in clear. 17063 * NOTE : The callers of this function need to do the ire_refrele for the 17064 * ire that is being passed in. 17065 */ 17066 void 17067 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17068 ill_t *recv_ill, boolean_t esp_in_udp_packet) 17069 { 17070 ill_t *ill = (ill_t *)q->q_ptr; 17071 uint32_t sum; 17072 uint32_t u1; 17073 uint32_t u2; 17074 int hdr_length; 17075 boolean_t mctl_present; 17076 mblk_t *first_mp = mp; 17077 mblk_t *hada_mp = NULL; 17078 ipha_t *inner_ipha; 17079 ip_stack_t *ipst; 17080 17081 ASSERT(recv_ill != NULL); 17082 ipst = recv_ill->ill_ipst; 17083 17084 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17085 "ip_rput_locl_start: q %p", q); 17086 17087 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17088 ASSERT(ill != NULL); 17089 17090 17091 #define rptr ((uchar_t *)ipha) 17092 #define iphs ((uint16_t *)ipha) 17093 17094 /* 17095 * no UDP or TCP packet should come here anymore. 17096 */ 17097 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17098 ipha->ipha_protocol != IPPROTO_UDP); 17099 17100 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17101 if (mctl_present && 17102 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17103 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17104 17105 /* 17106 * It's an IPsec accelerated packet. 17107 * Keep a pointer to the data attributes around until 17108 * we allocate the ipsec_info_t. 17109 */ 17110 IPSECHW_DEBUG(IPSECHW_PKT, 17111 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17112 hada_mp = first_mp; 17113 hada_mp->b_cont = NULL; 17114 /* 17115 * Since it is accelerated, it comes directly from 17116 * the ill and the data attributes is followed by 17117 * the packet data. 17118 */ 17119 ASSERT(mp->b_datap->db_type != M_CTL); 17120 first_mp = mp; 17121 mctl_present = B_FALSE; 17122 } 17123 17124 /* 17125 * IF M_CTL is not present, then ipsec_in_is_secure 17126 * should return B_TRUE. There is a case where loopback 17127 * packets has an M_CTL in the front with all the 17128 * IPsec options set to IPSEC_PREF_NEVER - which means 17129 * ipsec_in_is_secure will return B_FALSE. As loopback 17130 * packets never comes here, it is safe to ASSERT the 17131 * following. 17132 */ 17133 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17134 17135 /* 17136 * Also, we should never have an mctl_present if this is an 17137 * ESP-in-UDP packet. 17138 */ 17139 ASSERT(!mctl_present || !esp_in_udp_packet); 17140 17141 17142 /* u1 is # words of IP options */ 17143 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17144 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17145 17146 if (u1 || (!esp_in_udp_packet && !mctl_present)) { 17147 if (u1) { 17148 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17149 if (hada_mp != NULL) 17150 freemsg(hada_mp); 17151 return; 17152 } 17153 } else { 17154 /* Check the IP header checksum. */ 17155 #define uph ((uint16_t *)ipha) 17156 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17157 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17158 #undef uph 17159 /* finish doing IP checksum */ 17160 sum = (sum & 0xFFFF) + (sum >> 16); 17161 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17162 if (sum && sum != 0xFFFF) { 17163 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17164 goto drop_pkt; 17165 } 17166 } 17167 } 17168 17169 /* 17170 * Count for SNMP of inbound packets for ire. As ip_proto_input 17171 * might be called more than once for secure packets, count only 17172 * the first time. 17173 */ 17174 if (!mctl_present) { 17175 UPDATE_IB_PKT_COUNT(ire); 17176 ire->ire_last_used_time = lbolt; 17177 } 17178 17179 /* Check for fragmentation offset. */ 17180 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17181 u1 = u2 & (IPH_MF | IPH_OFFSET); 17182 if (u1) { 17183 /* 17184 * We re-assemble fragments before we do the AH/ESP 17185 * processing. Thus, M_CTL should not be present 17186 * while we are re-assembling. 17187 */ 17188 ASSERT(!mctl_present); 17189 ASSERT(first_mp == mp); 17190 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17191 return; 17192 } 17193 /* 17194 * Make sure that first_mp points back to mp as 17195 * the mp we came in with could have changed in 17196 * ip_rput_fragment(). 17197 */ 17198 ipha = (ipha_t *)mp->b_rptr; 17199 first_mp = mp; 17200 } 17201 17202 /* 17203 * Clear hardware checksumming flag as it is currently only 17204 * used by TCP and UDP. 17205 */ 17206 DB_CKSUMFLAGS(mp) = 0; 17207 17208 /* Now we have a complete datagram, destined for this machine. */ 17209 u1 = IPH_HDR_LENGTH(ipha); 17210 switch (ipha->ipha_protocol) { 17211 case IPPROTO_ICMP: { 17212 ire_t *ire_zone; 17213 ilm_t *ilm; 17214 mblk_t *mp1; 17215 zoneid_t last_zoneid; 17216 17217 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17218 ASSERT(ire->ire_type == IRE_BROADCAST); 17219 /* 17220 * In the multicast case, applications may have joined 17221 * the group from different zones, so we need to deliver 17222 * the packet to each of them. Loop through the 17223 * multicast memberships structures (ilm) on the receive 17224 * ill and send a copy of the packet up each matching 17225 * one. However, we don't do this for multicasts sent on 17226 * the loopback interface (PHYI_LOOPBACK flag set) as 17227 * they must stay in the sender's zone. 17228 * 17229 * ilm_add_v6() ensures that ilms in the same zone are 17230 * contiguous in the ill_ilm list. We use this property 17231 * to avoid sending duplicates needed when two 17232 * applications in the same zone join the same group on 17233 * different logical interfaces: we ignore the ilm if 17234 * its zoneid is the same as the last matching one. 17235 * In addition, the sending of the packet for 17236 * ire_zoneid is delayed until all of the other ilms 17237 * have been exhausted. 17238 */ 17239 last_zoneid = -1; 17240 ILM_WALKER_HOLD(recv_ill); 17241 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17242 ilm = ilm->ilm_next) { 17243 if ((ilm->ilm_flags & ILM_DELETED) || 17244 ipha->ipha_dst != ilm->ilm_addr || 17245 ilm->ilm_zoneid == last_zoneid || 17246 ilm->ilm_zoneid == ire->ire_zoneid || 17247 ilm->ilm_zoneid == ALL_ZONES || 17248 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17249 continue; 17250 mp1 = ip_copymsg(first_mp); 17251 if (mp1 == NULL) 17252 continue; 17253 icmp_inbound(q, mp1, B_TRUE, ill, 17254 0, sum, mctl_present, B_TRUE, 17255 recv_ill, ilm->ilm_zoneid); 17256 last_zoneid = ilm->ilm_zoneid; 17257 } 17258 ILM_WALKER_RELE(recv_ill); 17259 } else if (ire->ire_type == IRE_BROADCAST) { 17260 /* 17261 * In the broadcast case, there may be many zones 17262 * which need a copy of the packet delivered to them. 17263 * There is one IRE_BROADCAST per broadcast address 17264 * and per zone; we walk those using a helper function. 17265 * In addition, the sending of the packet for ire is 17266 * delayed until all of the other ires have been 17267 * processed. 17268 */ 17269 IRB_REFHOLD(ire->ire_bucket); 17270 ire_zone = NULL; 17271 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17272 ire)) != NULL) { 17273 mp1 = ip_copymsg(first_mp); 17274 if (mp1 == NULL) 17275 continue; 17276 17277 UPDATE_IB_PKT_COUNT(ire_zone); 17278 ire_zone->ire_last_used_time = lbolt; 17279 icmp_inbound(q, mp1, B_TRUE, ill, 17280 0, sum, mctl_present, B_TRUE, 17281 recv_ill, ire_zone->ire_zoneid); 17282 } 17283 IRB_REFRELE(ire->ire_bucket); 17284 } 17285 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17286 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17287 ire->ire_zoneid); 17288 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17289 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17290 return; 17291 } 17292 case IPPROTO_IGMP: 17293 /* 17294 * If we are not willing to accept IGMP packets in clear, 17295 * then check with global policy. 17296 */ 17297 if (ipst->ips_igmp_accept_clear_messages == 0) { 17298 first_mp = ipsec_check_global_policy(first_mp, NULL, 17299 ipha, NULL, mctl_present, ipst->ips_netstack); 17300 if (first_mp == NULL) 17301 return; 17302 } 17303 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17304 freemsg(first_mp); 17305 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17306 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17307 return; 17308 } 17309 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17310 /* Bad packet - discarded by igmp_input */ 17311 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17312 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17313 if (mctl_present) 17314 freeb(first_mp); 17315 return; 17316 } 17317 /* 17318 * igmp_input() may have returned the pulled up message. 17319 * So first_mp and ipha need to be reinitialized. 17320 */ 17321 ipha = (ipha_t *)mp->b_rptr; 17322 if (mctl_present) 17323 first_mp->b_cont = mp; 17324 else 17325 first_mp = mp; 17326 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17327 connf_head != NULL) { 17328 /* No user-level listener for IGMP packets */ 17329 goto drop_pkt; 17330 } 17331 /* deliver to local raw users */ 17332 break; 17333 case IPPROTO_PIM: 17334 /* 17335 * If we are not willing to accept PIM packets in clear, 17336 * then check with global policy. 17337 */ 17338 if (ipst->ips_pim_accept_clear_messages == 0) { 17339 first_mp = ipsec_check_global_policy(first_mp, NULL, 17340 ipha, NULL, mctl_present, ipst->ips_netstack); 17341 if (first_mp == NULL) 17342 return; 17343 } 17344 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17345 freemsg(first_mp); 17346 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17347 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17348 return; 17349 } 17350 if (pim_input(q, mp, ill) != 0) { 17351 /* Bad packet - discarded by pim_input */ 17352 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17353 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17354 if (mctl_present) 17355 freeb(first_mp); 17356 return; 17357 } 17358 17359 /* 17360 * pim_input() may have pulled up the message so ipha needs to 17361 * be reinitialized. 17362 */ 17363 ipha = (ipha_t *)mp->b_rptr; 17364 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17365 connf_head != NULL) { 17366 /* No user-level listener for PIM packets */ 17367 goto drop_pkt; 17368 } 17369 /* deliver to local raw users */ 17370 break; 17371 case IPPROTO_ENCAP: 17372 /* 17373 * Handle self-encapsulated packets (IP-in-IP where 17374 * the inner addresses == the outer addresses). 17375 */ 17376 hdr_length = IPH_HDR_LENGTH(ipha); 17377 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17378 mp->b_wptr) { 17379 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17380 sizeof (ipha_t) - mp->b_rptr)) { 17381 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17382 freemsg(first_mp); 17383 return; 17384 } 17385 ipha = (ipha_t *)mp->b_rptr; 17386 } 17387 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17388 /* 17389 * Check the sanity of the inner IP header. 17390 */ 17391 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17392 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17393 freemsg(first_mp); 17394 return; 17395 } 17396 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17397 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17398 freemsg(first_mp); 17399 return; 17400 } 17401 if (inner_ipha->ipha_src == ipha->ipha_src && 17402 inner_ipha->ipha_dst == ipha->ipha_dst) { 17403 ipsec_in_t *ii; 17404 17405 /* 17406 * Self-encapsulated tunnel packet. Remove 17407 * the outer IP header and fanout again. 17408 * We also need to make sure that the inner 17409 * header is pulled up until options. 17410 */ 17411 mp->b_rptr = (uchar_t *)inner_ipha; 17412 ipha = inner_ipha; 17413 hdr_length = IPH_HDR_LENGTH(ipha); 17414 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17415 if (!pullupmsg(mp, (uchar_t *)ipha + 17416 + hdr_length - mp->b_rptr)) { 17417 freemsg(first_mp); 17418 return; 17419 } 17420 ipha = (ipha_t *)mp->b_rptr; 17421 } 17422 if (!mctl_present) { 17423 ASSERT(first_mp == mp); 17424 /* 17425 * This means that somebody is sending 17426 * Self-encapsualted packets without AH/ESP. 17427 * If AH/ESP was present, we would have already 17428 * allocated the first_mp. 17429 */ 17430 first_mp = ipsec_in_alloc(B_TRUE, 17431 ipst->ips_netstack); 17432 if (first_mp == NULL) { 17433 ip1dbg(("ip_proto_input: IPSEC_IN " 17434 "allocation failure.\n")); 17435 BUMP_MIB(ill->ill_ip_mib, 17436 ipIfStatsInDiscards); 17437 freemsg(mp); 17438 return; 17439 } 17440 first_mp->b_cont = mp; 17441 } 17442 /* 17443 * We generally store the ill_index if we need to 17444 * do IPsec processing as we lose the ill queue when 17445 * we come back. But in this case, we never should 17446 * have to store the ill_index here as it should have 17447 * been stored previously when we processed the 17448 * AH/ESP header in this routine or for non-ipsec 17449 * cases, we still have the queue. But for some bad 17450 * packets from the wire, we can get to IPsec after 17451 * this and we better store the index for that case. 17452 */ 17453 ill = (ill_t *)q->q_ptr; 17454 ii = (ipsec_in_t *)first_mp->b_rptr; 17455 ii->ipsec_in_ill_index = 17456 ill->ill_phyint->phyint_ifindex; 17457 ii->ipsec_in_rill_index = 17458 recv_ill->ill_phyint->phyint_ifindex; 17459 if (ii->ipsec_in_decaps) { 17460 /* 17461 * This packet is self-encapsulated multiple 17462 * times. We don't want to recurse infinitely. 17463 * To keep it simple, drop the packet. 17464 */ 17465 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17466 freemsg(first_mp); 17467 return; 17468 } 17469 ii->ipsec_in_decaps = B_TRUE; 17470 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17471 ire); 17472 return; 17473 } 17474 break; 17475 case IPPROTO_AH: 17476 case IPPROTO_ESP: { 17477 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17478 17479 /* 17480 * Fast path for AH/ESP. If this is the first time 17481 * we are sending a datagram to AH/ESP, allocate 17482 * a IPSEC_IN message and prepend it. Otherwise, 17483 * just fanout. 17484 */ 17485 17486 int ipsec_rc; 17487 ipsec_in_t *ii; 17488 netstack_t *ns = ipst->ips_netstack; 17489 17490 IP_STAT(ipst, ipsec_proto_ahesp); 17491 if (!mctl_present) { 17492 ASSERT(first_mp == mp); 17493 first_mp = ipsec_in_alloc(B_TRUE, ns); 17494 if (first_mp == NULL) { 17495 ip1dbg(("ip_proto_input: IPSEC_IN " 17496 "allocation failure.\n")); 17497 freemsg(hada_mp); /* okay ifnull */ 17498 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17499 freemsg(mp); 17500 return; 17501 } 17502 /* 17503 * Store the ill_index so that when we come back 17504 * from IPsec we ride on the same queue. 17505 */ 17506 ill = (ill_t *)q->q_ptr; 17507 ii = (ipsec_in_t *)first_mp->b_rptr; 17508 ii->ipsec_in_ill_index = 17509 ill->ill_phyint->phyint_ifindex; 17510 ii->ipsec_in_rill_index = 17511 recv_ill->ill_phyint->phyint_ifindex; 17512 first_mp->b_cont = mp; 17513 /* 17514 * Cache hardware acceleration info. 17515 */ 17516 if (hada_mp != NULL) { 17517 IPSECHW_DEBUG(IPSECHW_PKT, 17518 ("ip_rput_local: caching data attr.\n")); 17519 ii->ipsec_in_accelerated = B_TRUE; 17520 ii->ipsec_in_da = hada_mp; 17521 hada_mp = NULL; 17522 } 17523 } else { 17524 ii = (ipsec_in_t *)first_mp->b_rptr; 17525 } 17526 17527 if (!ipsec_loaded(ipss)) { 17528 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17529 ire->ire_zoneid, ipst); 17530 return; 17531 } 17532 17533 ns = ipst->ips_netstack; 17534 /* select inbound SA and have IPsec process the pkt */ 17535 if (ipha->ipha_protocol == IPPROTO_ESP) { 17536 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17537 boolean_t esp_in_udp_sa; 17538 if (esph == NULL) 17539 return; 17540 ASSERT(ii->ipsec_in_esp_sa != NULL); 17541 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17542 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17543 IPSA_F_NATT) != 0); 17544 /* 17545 * The following is a fancy, but quick, way of saying: 17546 * ESP-in-UDP SA and Raw ESP packet --> drop 17547 * OR 17548 * ESP SA and ESP-in-UDP packet --> drop 17549 */ 17550 if (esp_in_udp_sa != esp_in_udp_packet) { 17551 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17552 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17553 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17554 &ns->netstack_ipsec->ipsec_dropper); 17555 return; 17556 } 17557 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17558 first_mp, esph); 17559 } else { 17560 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17561 if (ah == NULL) 17562 return; 17563 ASSERT(ii->ipsec_in_ah_sa != NULL); 17564 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17565 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17566 first_mp, ah); 17567 } 17568 17569 switch (ipsec_rc) { 17570 case IPSEC_STATUS_SUCCESS: 17571 break; 17572 case IPSEC_STATUS_FAILED: 17573 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17574 /* FALLTHRU */ 17575 case IPSEC_STATUS_PENDING: 17576 return; 17577 } 17578 /* we're done with IPsec processing, send it up */ 17579 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17580 return; 17581 } 17582 default: 17583 break; 17584 } 17585 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17586 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17587 ire->ire_zoneid)); 17588 goto drop_pkt; 17589 } 17590 /* 17591 * Handle protocols with which IP is less intimate. There 17592 * can be more than one stream bound to a particular 17593 * protocol. When this is the case, each one gets a copy 17594 * of any incoming packets. 17595 */ 17596 ip_fanout_proto(q, first_mp, ill, ipha, 17597 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17598 B_TRUE, recv_ill, ire->ire_zoneid); 17599 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17600 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17601 return; 17602 17603 drop_pkt: 17604 freemsg(first_mp); 17605 if (hada_mp != NULL) 17606 freeb(hada_mp); 17607 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17608 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17609 #undef rptr 17610 #undef iphs 17611 17612 } 17613 17614 /* 17615 * Update any source route, record route or timestamp options. 17616 * Check that we are at end of strict source route. 17617 * The options have already been checked for sanity in ip_rput_options(). 17618 */ 17619 static boolean_t 17620 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17621 ip_stack_t *ipst) 17622 { 17623 ipoptp_t opts; 17624 uchar_t *opt; 17625 uint8_t optval; 17626 uint8_t optlen; 17627 ipaddr_t dst; 17628 uint32_t ts; 17629 ire_t *dst_ire; 17630 timestruc_t now; 17631 zoneid_t zoneid; 17632 ill_t *ill; 17633 17634 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17635 17636 ip2dbg(("ip_rput_local_options\n")); 17637 17638 for (optval = ipoptp_first(&opts, ipha); 17639 optval != IPOPT_EOL; 17640 optval = ipoptp_next(&opts)) { 17641 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17642 opt = opts.ipoptp_cur; 17643 optlen = opts.ipoptp_len; 17644 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17645 optval, optlen)); 17646 switch (optval) { 17647 uint32_t off; 17648 case IPOPT_SSRR: 17649 case IPOPT_LSRR: 17650 off = opt[IPOPT_OFFSET]; 17651 off--; 17652 if (optlen < IP_ADDR_LEN || 17653 off > optlen - IP_ADDR_LEN) { 17654 /* End of source route */ 17655 ip1dbg(("ip_rput_local_options: end of SR\n")); 17656 break; 17657 } 17658 /* 17659 * This will only happen if two consecutive entries 17660 * in the source route contains our address or if 17661 * it is a packet with a loose source route which 17662 * reaches us before consuming the whole source route 17663 */ 17664 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17665 if (optval == IPOPT_SSRR) { 17666 goto bad_src_route; 17667 } 17668 /* 17669 * Hack: instead of dropping the packet truncate the 17670 * source route to what has been used by filling the 17671 * rest with IPOPT_NOP. 17672 */ 17673 opt[IPOPT_OLEN] = (uint8_t)off; 17674 while (off < optlen) { 17675 opt[off++] = IPOPT_NOP; 17676 } 17677 break; 17678 case IPOPT_RR: 17679 off = opt[IPOPT_OFFSET]; 17680 off--; 17681 if (optlen < IP_ADDR_LEN || 17682 off > optlen - IP_ADDR_LEN) { 17683 /* No more room - ignore */ 17684 ip1dbg(( 17685 "ip_rput_local_options: end of RR\n")); 17686 break; 17687 } 17688 bcopy(&ire->ire_src_addr, (char *)opt + off, 17689 IP_ADDR_LEN); 17690 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17691 break; 17692 case IPOPT_TS: 17693 /* Insert timestamp if there is romm */ 17694 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17695 case IPOPT_TS_TSONLY: 17696 off = IPOPT_TS_TIMELEN; 17697 break; 17698 case IPOPT_TS_PRESPEC: 17699 case IPOPT_TS_PRESPEC_RFC791: 17700 /* Verify that the address matched */ 17701 off = opt[IPOPT_OFFSET] - 1; 17702 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17703 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17704 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17705 ipst); 17706 if (dst_ire == NULL) { 17707 /* Not for us */ 17708 break; 17709 } 17710 ire_refrele(dst_ire); 17711 /* FALLTHRU */ 17712 case IPOPT_TS_TSANDADDR: 17713 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17714 break; 17715 default: 17716 /* 17717 * ip_*put_options should have already 17718 * dropped this packet. 17719 */ 17720 cmn_err(CE_PANIC, "ip_rput_local_options: " 17721 "unknown IT - bug in ip_rput_options?\n"); 17722 return (B_TRUE); /* Keep "lint" happy */ 17723 } 17724 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17725 /* Increase overflow counter */ 17726 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17727 opt[IPOPT_POS_OV_FLG] = 17728 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17729 (off << 4)); 17730 break; 17731 } 17732 off = opt[IPOPT_OFFSET] - 1; 17733 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17734 case IPOPT_TS_PRESPEC: 17735 case IPOPT_TS_PRESPEC_RFC791: 17736 case IPOPT_TS_TSANDADDR: 17737 bcopy(&ire->ire_src_addr, (char *)opt + off, 17738 IP_ADDR_LEN); 17739 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17740 /* FALLTHRU */ 17741 case IPOPT_TS_TSONLY: 17742 off = opt[IPOPT_OFFSET] - 1; 17743 /* Compute # of milliseconds since midnight */ 17744 gethrestime(&now); 17745 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17746 now.tv_nsec / (NANOSEC / MILLISEC); 17747 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17748 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17749 break; 17750 } 17751 break; 17752 } 17753 } 17754 return (B_TRUE); 17755 17756 bad_src_route: 17757 q = WR(q); 17758 if (q->q_next != NULL) 17759 ill = q->q_ptr; 17760 else 17761 ill = NULL; 17762 17763 /* make sure we clear any indication of a hardware checksum */ 17764 DB_CKSUMFLAGS(mp) = 0; 17765 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17766 if (zoneid == ALL_ZONES) 17767 freemsg(mp); 17768 else 17769 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17770 return (B_FALSE); 17771 17772 } 17773 17774 /* 17775 * Process IP options in an inbound packet. If an option affects the 17776 * effective destination address, return the next hop address via dstp. 17777 * Returns -1 if something fails in which case an ICMP error has been sent 17778 * and mp freed. 17779 */ 17780 static int 17781 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17782 ip_stack_t *ipst) 17783 { 17784 ipoptp_t opts; 17785 uchar_t *opt; 17786 uint8_t optval; 17787 uint8_t optlen; 17788 ipaddr_t dst; 17789 intptr_t code = 0; 17790 ire_t *ire = NULL; 17791 zoneid_t zoneid; 17792 ill_t *ill; 17793 17794 ip2dbg(("ip_rput_options\n")); 17795 dst = ipha->ipha_dst; 17796 for (optval = ipoptp_first(&opts, ipha); 17797 optval != IPOPT_EOL; 17798 optval = ipoptp_next(&opts)) { 17799 opt = opts.ipoptp_cur; 17800 optlen = opts.ipoptp_len; 17801 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17802 optval, optlen)); 17803 /* 17804 * Note: we need to verify the checksum before we 17805 * modify anything thus this routine only extracts the next 17806 * hop dst from any source route. 17807 */ 17808 switch (optval) { 17809 uint32_t off; 17810 case IPOPT_SSRR: 17811 case IPOPT_LSRR: 17812 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17813 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17814 if (ire == NULL) { 17815 if (optval == IPOPT_SSRR) { 17816 ip1dbg(("ip_rput_options: not next" 17817 " strict source route 0x%x\n", 17818 ntohl(dst))); 17819 code = (char *)&ipha->ipha_dst - 17820 (char *)ipha; 17821 goto param_prob; /* RouterReq's */ 17822 } 17823 ip2dbg(("ip_rput_options: " 17824 "not next source route 0x%x\n", 17825 ntohl(dst))); 17826 break; 17827 } 17828 ire_refrele(ire); 17829 17830 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17831 ip1dbg(( 17832 "ip_rput_options: bad option offset\n")); 17833 code = (char *)&opt[IPOPT_OLEN] - 17834 (char *)ipha; 17835 goto param_prob; 17836 } 17837 off = opt[IPOPT_OFFSET]; 17838 off--; 17839 redo_srr: 17840 if (optlen < IP_ADDR_LEN || 17841 off > optlen - IP_ADDR_LEN) { 17842 /* End of source route */ 17843 ip1dbg(("ip_rput_options: end of SR\n")); 17844 break; 17845 } 17846 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17847 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17848 ntohl(dst))); 17849 17850 /* 17851 * Check if our address is present more than 17852 * once as consecutive hops in source route. 17853 * XXX verify per-interface ip_forwarding 17854 * for source route? 17855 */ 17856 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17857 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17858 17859 if (ire != NULL) { 17860 ire_refrele(ire); 17861 off += IP_ADDR_LEN; 17862 goto redo_srr; 17863 } 17864 17865 if (dst == htonl(INADDR_LOOPBACK)) { 17866 ip1dbg(("ip_rput_options: loopback addr in " 17867 "source route!\n")); 17868 goto bad_src_route; 17869 } 17870 /* 17871 * For strict: verify that dst is directly 17872 * reachable. 17873 */ 17874 if (optval == IPOPT_SSRR) { 17875 ire = ire_ftable_lookup(dst, 0, 0, 17876 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17877 MBLK_GETLABEL(mp), 17878 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 17879 if (ire == NULL) { 17880 ip1dbg(("ip_rput_options: SSRR not " 17881 "directly reachable: 0x%x\n", 17882 ntohl(dst))); 17883 goto bad_src_route; 17884 } 17885 ire_refrele(ire); 17886 } 17887 /* 17888 * Defer update of the offset and the record route 17889 * until the packet is forwarded. 17890 */ 17891 break; 17892 case IPOPT_RR: 17893 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17894 ip1dbg(( 17895 "ip_rput_options: bad option offset\n")); 17896 code = (char *)&opt[IPOPT_OLEN] - 17897 (char *)ipha; 17898 goto param_prob; 17899 } 17900 break; 17901 case IPOPT_TS: 17902 /* 17903 * Verify that length >= 5 and that there is either 17904 * room for another timestamp or that the overflow 17905 * counter is not maxed out. 17906 */ 17907 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17908 if (optlen < IPOPT_MINLEN_IT) { 17909 goto param_prob; 17910 } 17911 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17912 ip1dbg(( 17913 "ip_rput_options: bad option offset\n")); 17914 code = (char *)&opt[IPOPT_OFFSET] - 17915 (char *)ipha; 17916 goto param_prob; 17917 } 17918 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17919 case IPOPT_TS_TSONLY: 17920 off = IPOPT_TS_TIMELEN; 17921 break; 17922 case IPOPT_TS_TSANDADDR: 17923 case IPOPT_TS_PRESPEC: 17924 case IPOPT_TS_PRESPEC_RFC791: 17925 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17926 break; 17927 default: 17928 code = (char *)&opt[IPOPT_POS_OV_FLG] - 17929 (char *)ipha; 17930 goto param_prob; 17931 } 17932 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 17933 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 17934 /* 17935 * No room and the overflow counter is 15 17936 * already. 17937 */ 17938 goto param_prob; 17939 } 17940 break; 17941 } 17942 } 17943 17944 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 17945 *dstp = dst; 17946 return (0); 17947 } 17948 17949 ip1dbg(("ip_rput_options: error processing IP options.")); 17950 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 17951 17952 param_prob: 17953 q = WR(q); 17954 if (q->q_next != NULL) 17955 ill = q->q_ptr; 17956 else 17957 ill = NULL; 17958 17959 /* make sure we clear any indication of a hardware checksum */ 17960 DB_CKSUMFLAGS(mp) = 0; 17961 /* Don't know whether this is for non-global or global/forwarding */ 17962 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 17963 if (zoneid == ALL_ZONES) 17964 freemsg(mp); 17965 else 17966 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 17967 return (-1); 17968 17969 bad_src_route: 17970 q = WR(q); 17971 if (q->q_next != NULL) 17972 ill = q->q_ptr; 17973 else 17974 ill = NULL; 17975 17976 /* make sure we clear any indication of a hardware checksum */ 17977 DB_CKSUMFLAGS(mp) = 0; 17978 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 17979 if (zoneid == ALL_ZONES) 17980 freemsg(mp); 17981 else 17982 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17983 return (-1); 17984 } 17985 17986 /* 17987 * IP & ICMP info in >=14 msg's ... 17988 * - ip fixed part (mib2_ip_t) 17989 * - icmp fixed part (mib2_icmp_t) 17990 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 17991 * - ipRouteEntryTable (ip 21) all IPv4 IREs 17992 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 17993 * - ipRouteAttributeTable (ip 102) labeled routes 17994 * - ip multicast membership (ip_member_t) 17995 * - ip multicast source filtering (ip_grpsrc_t) 17996 * - igmp fixed part (struct igmpstat) 17997 * - multicast routing stats (struct mrtstat) 17998 * - multicast routing vifs (array of struct vifctl) 17999 * - multicast routing routes (array of struct mfcctl) 18000 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18001 * One per ill plus one generic 18002 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18003 * One per ill plus one generic 18004 * - ipv6RouteEntry all IPv6 IREs 18005 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18006 * - ipv6NetToMediaEntry all Neighbor Cache entries 18007 * - ipv6AddrEntry all IPv6 ipifs 18008 * - ipv6 multicast membership (ipv6_member_t) 18009 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18010 * 18011 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18012 * 18013 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18014 * already filled in by the caller. 18015 * Return value of 0 indicates that no messages were sent and caller 18016 * should free mpctl. 18017 */ 18018 int 18019 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18020 { 18021 ip_stack_t *ipst; 18022 sctp_stack_t *sctps; 18023 18024 if (q->q_next != NULL) { 18025 ipst = ILLQ_TO_IPST(q); 18026 } else { 18027 ipst = CONNQ_TO_IPST(q); 18028 } 18029 ASSERT(ipst != NULL); 18030 sctps = ipst->ips_netstack->netstack_sctp; 18031 18032 if (mpctl == NULL || mpctl->b_cont == NULL) { 18033 return (0); 18034 } 18035 18036 /* 18037 * For the purposes of the (broken) packet shell use 18038 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18039 * to make TCP and UDP appear first in the list of mib items. 18040 * TBD: We could expand this and use it in netstat so that 18041 * the kernel doesn't have to produce large tables (connections, 18042 * routes, etc) when netstat only wants the statistics or a particular 18043 * table. 18044 */ 18045 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18046 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18047 return (1); 18048 } 18049 } 18050 18051 if (level != MIB2_TCP) { 18052 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18053 return (1); 18054 } 18055 } 18056 18057 if (level != MIB2_UDP) { 18058 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18059 return (1); 18060 } 18061 } 18062 18063 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18064 ipst)) == NULL) { 18065 return (1); 18066 } 18067 18068 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18069 return (1); 18070 } 18071 18072 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18073 return (1); 18074 } 18075 18076 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18077 return (1); 18078 } 18079 18080 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18081 return (1); 18082 } 18083 18084 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18085 return (1); 18086 } 18087 18088 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18089 return (1); 18090 } 18091 18092 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18093 return (1); 18094 } 18095 18096 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18097 return (1); 18098 } 18099 18100 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18101 return (1); 18102 } 18103 18104 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18105 return (1); 18106 } 18107 18108 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18109 return (1); 18110 } 18111 18112 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18113 return (1); 18114 } 18115 18116 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18117 return (1); 18118 } 18119 18120 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18121 return (1); 18122 } 18123 18124 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18125 if (mpctl == NULL) { 18126 return (1); 18127 } 18128 18129 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18130 return (1); 18131 } 18132 freemsg(mpctl); 18133 return (1); 18134 } 18135 18136 18137 /* Get global (legacy) IPv4 statistics */ 18138 static mblk_t * 18139 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18140 ip_stack_t *ipst) 18141 { 18142 mib2_ip_t old_ip_mib; 18143 struct opthdr *optp; 18144 mblk_t *mp2ctl; 18145 18146 /* 18147 * make a copy of the original message 18148 */ 18149 mp2ctl = copymsg(mpctl); 18150 18151 /* fixed length IP structure... */ 18152 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18153 optp->level = MIB2_IP; 18154 optp->name = 0; 18155 SET_MIB(old_ip_mib.ipForwarding, 18156 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18157 SET_MIB(old_ip_mib.ipDefaultTTL, 18158 (uint32_t)ipst->ips_ip_def_ttl); 18159 SET_MIB(old_ip_mib.ipReasmTimeout, 18160 ipst->ips_ip_g_frag_timeout); 18161 SET_MIB(old_ip_mib.ipAddrEntrySize, 18162 sizeof (mib2_ipAddrEntry_t)); 18163 SET_MIB(old_ip_mib.ipRouteEntrySize, 18164 sizeof (mib2_ipRouteEntry_t)); 18165 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18166 sizeof (mib2_ipNetToMediaEntry_t)); 18167 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18168 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18169 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18170 sizeof (mib2_ipAttributeEntry_t)); 18171 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18172 18173 /* 18174 * Grab the statistics from the new IP MIB 18175 */ 18176 SET_MIB(old_ip_mib.ipInReceives, 18177 (uint32_t)ipmib->ipIfStatsHCInReceives); 18178 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18179 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18180 SET_MIB(old_ip_mib.ipForwDatagrams, 18181 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18182 SET_MIB(old_ip_mib.ipInUnknownProtos, 18183 ipmib->ipIfStatsInUnknownProtos); 18184 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18185 SET_MIB(old_ip_mib.ipInDelivers, 18186 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18187 SET_MIB(old_ip_mib.ipOutRequests, 18188 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18189 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18190 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18191 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18192 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18193 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18194 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18195 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18196 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18197 18198 /* ipRoutingDiscards is not being used */ 18199 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18200 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18201 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18202 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18203 SET_MIB(old_ip_mib.ipReasmDuplicates, 18204 ipmib->ipIfStatsReasmDuplicates); 18205 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18206 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18207 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18208 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18209 SET_MIB(old_ip_mib.rawipInOverflows, 18210 ipmib->rawipIfStatsInOverflows); 18211 18212 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18213 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18214 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18215 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18216 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18217 ipmib->ipIfStatsOutSwitchIPVersion); 18218 18219 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18220 (int)sizeof (old_ip_mib))) { 18221 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18222 (uint_t)sizeof (old_ip_mib))); 18223 } 18224 18225 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18226 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18227 (int)optp->level, (int)optp->name, (int)optp->len)); 18228 qreply(q, mpctl); 18229 return (mp2ctl); 18230 } 18231 18232 /* Per interface IPv4 statistics */ 18233 static mblk_t * 18234 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18235 { 18236 struct opthdr *optp; 18237 mblk_t *mp2ctl; 18238 ill_t *ill; 18239 ill_walk_context_t ctx; 18240 mblk_t *mp_tail = NULL; 18241 mib2_ipIfStatsEntry_t global_ip_mib; 18242 18243 /* 18244 * Make a copy of the original message 18245 */ 18246 mp2ctl = copymsg(mpctl); 18247 18248 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18249 optp->level = MIB2_IP; 18250 optp->name = MIB2_IP_TRAFFIC_STATS; 18251 /* Include "unknown interface" ip_mib */ 18252 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18253 ipst->ips_ip_mib.ipIfStatsIfIndex = 18254 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18255 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18256 (ipst->ips_ip_g_forward ? 1 : 2)); 18257 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18258 (uint32_t)ipst->ips_ip_def_ttl); 18259 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18260 sizeof (mib2_ipIfStatsEntry_t)); 18261 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18262 sizeof (mib2_ipAddrEntry_t)); 18263 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18264 sizeof (mib2_ipRouteEntry_t)); 18265 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18266 sizeof (mib2_ipNetToMediaEntry_t)); 18267 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18268 sizeof (ip_member_t)); 18269 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18270 sizeof (ip_grpsrc_t)); 18271 18272 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18273 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18274 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18275 "failed to allocate %u bytes\n", 18276 (uint_t)sizeof (ipst->ips_ip_mib))); 18277 } 18278 18279 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18280 18281 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18282 ill = ILL_START_WALK_V4(&ctx, ipst); 18283 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18284 ill->ill_ip_mib->ipIfStatsIfIndex = 18285 ill->ill_phyint->phyint_ifindex; 18286 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18287 (ipst->ips_ip_g_forward ? 1 : 2)); 18288 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18289 (uint32_t)ipst->ips_ip_def_ttl); 18290 18291 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18292 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18293 (char *)ill->ill_ip_mib, 18294 (int)sizeof (*ill->ill_ip_mib))) { 18295 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18296 "failed to allocate %u bytes\n", 18297 (uint_t)sizeof (*ill->ill_ip_mib))); 18298 } 18299 } 18300 rw_exit(&ipst->ips_ill_g_lock); 18301 18302 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18303 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18304 "level %d, name %d, len %d\n", 18305 (int)optp->level, (int)optp->name, (int)optp->len)); 18306 qreply(q, mpctl); 18307 18308 if (mp2ctl == NULL) 18309 return (NULL); 18310 18311 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18312 } 18313 18314 /* Global IPv4 ICMP statistics */ 18315 static mblk_t * 18316 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18317 { 18318 struct opthdr *optp; 18319 mblk_t *mp2ctl; 18320 18321 /* 18322 * Make a copy of the original message 18323 */ 18324 mp2ctl = copymsg(mpctl); 18325 18326 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18327 optp->level = MIB2_ICMP; 18328 optp->name = 0; 18329 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18330 (int)sizeof (ipst->ips_icmp_mib))) { 18331 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18332 (uint_t)sizeof (ipst->ips_icmp_mib))); 18333 } 18334 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18335 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18336 (int)optp->level, (int)optp->name, (int)optp->len)); 18337 qreply(q, mpctl); 18338 return (mp2ctl); 18339 } 18340 18341 /* Global IPv4 IGMP statistics */ 18342 static mblk_t * 18343 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18344 { 18345 struct opthdr *optp; 18346 mblk_t *mp2ctl; 18347 18348 /* 18349 * make a copy of the original message 18350 */ 18351 mp2ctl = copymsg(mpctl); 18352 18353 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18354 optp->level = EXPER_IGMP; 18355 optp->name = 0; 18356 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18357 (int)sizeof (ipst->ips_igmpstat))) { 18358 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18359 (uint_t)sizeof (ipst->ips_igmpstat))); 18360 } 18361 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18362 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18363 (int)optp->level, (int)optp->name, (int)optp->len)); 18364 qreply(q, mpctl); 18365 return (mp2ctl); 18366 } 18367 18368 /* Global IPv4 Multicast Routing statistics */ 18369 static mblk_t * 18370 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18371 { 18372 struct opthdr *optp; 18373 mblk_t *mp2ctl; 18374 18375 /* 18376 * make a copy of the original message 18377 */ 18378 mp2ctl = copymsg(mpctl); 18379 18380 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18381 optp->level = EXPER_DVMRP; 18382 optp->name = 0; 18383 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18384 ip0dbg(("ip_mroute_stats: failed\n")); 18385 } 18386 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18387 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18388 (int)optp->level, (int)optp->name, (int)optp->len)); 18389 qreply(q, mpctl); 18390 return (mp2ctl); 18391 } 18392 18393 /* IPv4 address information */ 18394 static mblk_t * 18395 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18396 { 18397 struct opthdr *optp; 18398 mblk_t *mp2ctl; 18399 mblk_t *mp_tail = NULL; 18400 ill_t *ill; 18401 ipif_t *ipif; 18402 uint_t bitval; 18403 mib2_ipAddrEntry_t mae; 18404 zoneid_t zoneid; 18405 ill_walk_context_t ctx; 18406 18407 /* 18408 * make a copy of the original message 18409 */ 18410 mp2ctl = copymsg(mpctl); 18411 18412 /* ipAddrEntryTable */ 18413 18414 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18415 optp->level = MIB2_IP; 18416 optp->name = MIB2_IP_ADDR; 18417 zoneid = Q_TO_CONN(q)->conn_zoneid; 18418 18419 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18420 ill = ILL_START_WALK_V4(&ctx, ipst); 18421 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18422 for (ipif = ill->ill_ipif; ipif != NULL; 18423 ipif = ipif->ipif_next) { 18424 if (ipif->ipif_zoneid != zoneid && 18425 ipif->ipif_zoneid != ALL_ZONES) 18426 continue; 18427 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18428 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18429 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18430 18431 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18432 OCTET_LENGTH); 18433 mae.ipAdEntIfIndex.o_length = 18434 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18435 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18436 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18437 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18438 mae.ipAdEntInfo.ae_subnet_len = 18439 ip_mask_to_plen(ipif->ipif_net_mask); 18440 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18441 for (bitval = 1; 18442 bitval && 18443 !(bitval & ipif->ipif_brd_addr); 18444 bitval <<= 1) 18445 noop; 18446 mae.ipAdEntBcastAddr = bitval; 18447 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18448 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18449 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18450 mae.ipAdEntInfo.ae_broadcast_addr = 18451 ipif->ipif_brd_addr; 18452 mae.ipAdEntInfo.ae_pp_dst_addr = 18453 ipif->ipif_pp_dst_addr; 18454 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18455 ill->ill_flags | ill->ill_phyint->phyint_flags; 18456 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18457 18458 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18459 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18460 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18461 "allocate %u bytes\n", 18462 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18463 } 18464 } 18465 } 18466 rw_exit(&ipst->ips_ill_g_lock); 18467 18468 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18469 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18470 (int)optp->level, (int)optp->name, (int)optp->len)); 18471 qreply(q, mpctl); 18472 return (mp2ctl); 18473 } 18474 18475 /* IPv6 address information */ 18476 static mblk_t * 18477 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18478 { 18479 struct opthdr *optp; 18480 mblk_t *mp2ctl; 18481 mblk_t *mp_tail = NULL; 18482 ill_t *ill; 18483 ipif_t *ipif; 18484 mib2_ipv6AddrEntry_t mae6; 18485 zoneid_t zoneid; 18486 ill_walk_context_t ctx; 18487 18488 /* 18489 * make a copy of the original message 18490 */ 18491 mp2ctl = copymsg(mpctl); 18492 18493 /* ipv6AddrEntryTable */ 18494 18495 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18496 optp->level = MIB2_IP6; 18497 optp->name = MIB2_IP6_ADDR; 18498 zoneid = Q_TO_CONN(q)->conn_zoneid; 18499 18500 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18501 ill = ILL_START_WALK_V6(&ctx, ipst); 18502 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18503 for (ipif = ill->ill_ipif; ipif != NULL; 18504 ipif = ipif->ipif_next) { 18505 if (ipif->ipif_zoneid != zoneid && 18506 ipif->ipif_zoneid != ALL_ZONES) 18507 continue; 18508 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18509 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18510 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18511 18512 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18513 OCTET_LENGTH); 18514 mae6.ipv6AddrIfIndex.o_length = 18515 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18516 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18517 mae6.ipv6AddrPfxLength = 18518 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18519 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18520 mae6.ipv6AddrInfo.ae_subnet_len = 18521 mae6.ipv6AddrPfxLength; 18522 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18523 18524 /* Type: stateless(1), stateful(2), unknown(3) */ 18525 if (ipif->ipif_flags & IPIF_ADDRCONF) 18526 mae6.ipv6AddrType = 1; 18527 else 18528 mae6.ipv6AddrType = 2; 18529 /* Anycast: true(1), false(2) */ 18530 if (ipif->ipif_flags & IPIF_ANYCAST) 18531 mae6.ipv6AddrAnycastFlag = 1; 18532 else 18533 mae6.ipv6AddrAnycastFlag = 2; 18534 18535 /* 18536 * Address status: preferred(1), deprecated(2), 18537 * invalid(3), inaccessible(4), unknown(5) 18538 */ 18539 if (ipif->ipif_flags & IPIF_NOLOCAL) 18540 mae6.ipv6AddrStatus = 3; 18541 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18542 mae6.ipv6AddrStatus = 2; 18543 else 18544 mae6.ipv6AddrStatus = 1; 18545 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18546 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18547 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18548 ipif->ipif_v6pp_dst_addr; 18549 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18550 ill->ill_flags | ill->ill_phyint->phyint_flags; 18551 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18552 mae6.ipv6AddrIdentifier = ill->ill_token; 18553 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18554 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18555 mae6.ipv6AddrRetransmitTime = 18556 ill->ill_reachable_retrans_time; 18557 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18558 (char *)&mae6, 18559 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18560 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18561 "allocate %u bytes\n", 18562 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18563 } 18564 } 18565 } 18566 rw_exit(&ipst->ips_ill_g_lock); 18567 18568 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18569 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18570 (int)optp->level, (int)optp->name, (int)optp->len)); 18571 qreply(q, mpctl); 18572 return (mp2ctl); 18573 } 18574 18575 /* IPv4 multicast group membership. */ 18576 static mblk_t * 18577 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18578 { 18579 struct opthdr *optp; 18580 mblk_t *mp2ctl; 18581 ill_t *ill; 18582 ipif_t *ipif; 18583 ilm_t *ilm; 18584 ip_member_t ipm; 18585 mblk_t *mp_tail = NULL; 18586 ill_walk_context_t ctx; 18587 zoneid_t zoneid; 18588 18589 /* 18590 * make a copy of the original message 18591 */ 18592 mp2ctl = copymsg(mpctl); 18593 zoneid = Q_TO_CONN(q)->conn_zoneid; 18594 18595 /* ipGroupMember table */ 18596 optp = (struct opthdr *)&mpctl->b_rptr[ 18597 sizeof (struct T_optmgmt_ack)]; 18598 optp->level = MIB2_IP; 18599 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18600 18601 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18602 ill = ILL_START_WALK_V4(&ctx, ipst); 18603 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18604 ILM_WALKER_HOLD(ill); 18605 for (ipif = ill->ill_ipif; ipif != NULL; 18606 ipif = ipif->ipif_next) { 18607 if (ipif->ipif_zoneid != zoneid && 18608 ipif->ipif_zoneid != ALL_ZONES) 18609 continue; /* not this zone */ 18610 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18611 OCTET_LENGTH); 18612 ipm.ipGroupMemberIfIndex.o_length = 18613 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18614 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18615 ASSERT(ilm->ilm_ipif != NULL); 18616 ASSERT(ilm->ilm_ill == NULL); 18617 if (ilm->ilm_ipif != ipif) 18618 continue; 18619 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18620 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18621 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18622 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18623 (char *)&ipm, (int)sizeof (ipm))) { 18624 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18625 "failed to allocate %u bytes\n", 18626 (uint_t)sizeof (ipm))); 18627 } 18628 } 18629 } 18630 ILM_WALKER_RELE(ill); 18631 } 18632 rw_exit(&ipst->ips_ill_g_lock); 18633 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18634 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18635 (int)optp->level, (int)optp->name, (int)optp->len)); 18636 qreply(q, mpctl); 18637 return (mp2ctl); 18638 } 18639 18640 /* IPv6 multicast group membership. */ 18641 static mblk_t * 18642 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18643 { 18644 struct opthdr *optp; 18645 mblk_t *mp2ctl; 18646 ill_t *ill; 18647 ilm_t *ilm; 18648 ipv6_member_t ipm6; 18649 mblk_t *mp_tail = NULL; 18650 ill_walk_context_t ctx; 18651 zoneid_t zoneid; 18652 18653 /* 18654 * make a copy of the original message 18655 */ 18656 mp2ctl = copymsg(mpctl); 18657 zoneid = Q_TO_CONN(q)->conn_zoneid; 18658 18659 /* ip6GroupMember table */ 18660 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18661 optp->level = MIB2_IP6; 18662 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18663 18664 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18665 ill = ILL_START_WALK_V6(&ctx, ipst); 18666 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18667 ILM_WALKER_HOLD(ill); 18668 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18669 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18670 ASSERT(ilm->ilm_ipif == NULL); 18671 ASSERT(ilm->ilm_ill != NULL); 18672 if (ilm->ilm_zoneid != zoneid) 18673 continue; /* not this zone */ 18674 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18675 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18676 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18677 if (!snmp_append_data2(mpctl->b_cont, 18678 &mp_tail, 18679 (char *)&ipm6, (int)sizeof (ipm6))) { 18680 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18681 "failed to allocate %u bytes\n", 18682 (uint_t)sizeof (ipm6))); 18683 } 18684 } 18685 ILM_WALKER_RELE(ill); 18686 } 18687 rw_exit(&ipst->ips_ill_g_lock); 18688 18689 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18690 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18691 (int)optp->level, (int)optp->name, (int)optp->len)); 18692 qreply(q, mpctl); 18693 return (mp2ctl); 18694 } 18695 18696 /* IP multicast filtered sources */ 18697 static mblk_t * 18698 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18699 { 18700 struct opthdr *optp; 18701 mblk_t *mp2ctl; 18702 ill_t *ill; 18703 ipif_t *ipif; 18704 ilm_t *ilm; 18705 ip_grpsrc_t ips; 18706 mblk_t *mp_tail = NULL; 18707 ill_walk_context_t ctx; 18708 zoneid_t zoneid; 18709 int i; 18710 slist_t *sl; 18711 18712 /* 18713 * make a copy of the original message 18714 */ 18715 mp2ctl = copymsg(mpctl); 18716 zoneid = Q_TO_CONN(q)->conn_zoneid; 18717 18718 /* ipGroupSource table */ 18719 optp = (struct opthdr *)&mpctl->b_rptr[ 18720 sizeof (struct T_optmgmt_ack)]; 18721 optp->level = MIB2_IP; 18722 optp->name = EXPER_IP_GROUP_SOURCES; 18723 18724 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18725 ill = ILL_START_WALK_V4(&ctx, ipst); 18726 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18727 ILM_WALKER_HOLD(ill); 18728 for (ipif = ill->ill_ipif; ipif != NULL; 18729 ipif = ipif->ipif_next) { 18730 if (ipif->ipif_zoneid != zoneid) 18731 continue; /* not this zone */ 18732 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18733 OCTET_LENGTH); 18734 ips.ipGroupSourceIfIndex.o_length = 18735 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18736 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18737 ASSERT(ilm->ilm_ipif != NULL); 18738 ASSERT(ilm->ilm_ill == NULL); 18739 sl = ilm->ilm_filter; 18740 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18741 continue; 18742 ips.ipGroupSourceGroup = ilm->ilm_addr; 18743 for (i = 0; i < sl->sl_numsrc; i++) { 18744 if (!IN6_IS_ADDR_V4MAPPED( 18745 &sl->sl_addr[i])) 18746 continue; 18747 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18748 ips.ipGroupSourceAddress); 18749 if (snmp_append_data2(mpctl->b_cont, 18750 &mp_tail, (char *)&ips, 18751 (int)sizeof (ips)) == 0) { 18752 ip1dbg(("ip_snmp_get_mib2_" 18753 "ip_group_src: failed to " 18754 "allocate %u bytes\n", 18755 (uint_t)sizeof (ips))); 18756 } 18757 } 18758 } 18759 } 18760 ILM_WALKER_RELE(ill); 18761 } 18762 rw_exit(&ipst->ips_ill_g_lock); 18763 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18764 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18765 (int)optp->level, (int)optp->name, (int)optp->len)); 18766 qreply(q, mpctl); 18767 return (mp2ctl); 18768 } 18769 18770 /* IPv6 multicast filtered sources. */ 18771 static mblk_t * 18772 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18773 { 18774 struct opthdr *optp; 18775 mblk_t *mp2ctl; 18776 ill_t *ill; 18777 ilm_t *ilm; 18778 ipv6_grpsrc_t ips6; 18779 mblk_t *mp_tail = NULL; 18780 ill_walk_context_t ctx; 18781 zoneid_t zoneid; 18782 int i; 18783 slist_t *sl; 18784 18785 /* 18786 * make a copy of the original message 18787 */ 18788 mp2ctl = copymsg(mpctl); 18789 zoneid = Q_TO_CONN(q)->conn_zoneid; 18790 18791 /* ip6GroupMember table */ 18792 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18793 optp->level = MIB2_IP6; 18794 optp->name = EXPER_IP6_GROUP_SOURCES; 18795 18796 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18797 ill = ILL_START_WALK_V6(&ctx, ipst); 18798 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18799 ILM_WALKER_HOLD(ill); 18800 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18801 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18802 ASSERT(ilm->ilm_ipif == NULL); 18803 ASSERT(ilm->ilm_ill != NULL); 18804 sl = ilm->ilm_filter; 18805 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18806 continue; 18807 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18808 for (i = 0; i < sl->sl_numsrc; i++) { 18809 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18810 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18811 (char *)&ips6, (int)sizeof (ips6))) { 18812 ip1dbg(("ip_snmp_get_mib2_ip6_" 18813 "group_src: failed to allocate " 18814 "%u bytes\n", 18815 (uint_t)sizeof (ips6))); 18816 } 18817 } 18818 } 18819 ILM_WALKER_RELE(ill); 18820 } 18821 rw_exit(&ipst->ips_ill_g_lock); 18822 18823 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18824 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18825 (int)optp->level, (int)optp->name, (int)optp->len)); 18826 qreply(q, mpctl); 18827 return (mp2ctl); 18828 } 18829 18830 /* Multicast routing virtual interface table. */ 18831 static mblk_t * 18832 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18833 { 18834 struct opthdr *optp; 18835 mblk_t *mp2ctl; 18836 18837 /* 18838 * make a copy of the original message 18839 */ 18840 mp2ctl = copymsg(mpctl); 18841 18842 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18843 optp->level = EXPER_DVMRP; 18844 optp->name = EXPER_DVMRP_VIF; 18845 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18846 ip0dbg(("ip_mroute_vif: failed\n")); 18847 } 18848 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18849 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18850 (int)optp->level, (int)optp->name, (int)optp->len)); 18851 qreply(q, mpctl); 18852 return (mp2ctl); 18853 } 18854 18855 /* Multicast routing table. */ 18856 static mblk_t * 18857 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18858 { 18859 struct opthdr *optp; 18860 mblk_t *mp2ctl; 18861 18862 /* 18863 * make a copy of the original message 18864 */ 18865 mp2ctl = copymsg(mpctl); 18866 18867 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18868 optp->level = EXPER_DVMRP; 18869 optp->name = EXPER_DVMRP_MRT; 18870 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 18871 ip0dbg(("ip_mroute_mrt: failed\n")); 18872 } 18873 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18874 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18875 (int)optp->level, (int)optp->name, (int)optp->len)); 18876 qreply(q, mpctl); 18877 return (mp2ctl); 18878 } 18879 18880 /* 18881 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18882 * in one IRE walk. 18883 */ 18884 static mblk_t * 18885 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18886 { 18887 struct opthdr *optp; 18888 mblk_t *mp2ctl; /* Returned */ 18889 mblk_t *mp3ctl; /* nettomedia */ 18890 mblk_t *mp4ctl; /* routeattrs */ 18891 iproutedata_t ird; 18892 zoneid_t zoneid; 18893 18894 /* 18895 * make copies of the original message 18896 * - mp2ctl is returned unchanged to the caller for his use 18897 * - mpctl is sent upstream as ipRouteEntryTable 18898 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18899 * - mp4ctl is sent upstream as ipRouteAttributeTable 18900 */ 18901 mp2ctl = copymsg(mpctl); 18902 mp3ctl = copymsg(mpctl); 18903 mp4ctl = copymsg(mpctl); 18904 if (mp3ctl == NULL || mp4ctl == NULL) { 18905 freemsg(mp4ctl); 18906 freemsg(mp3ctl); 18907 freemsg(mp2ctl); 18908 freemsg(mpctl); 18909 return (NULL); 18910 } 18911 18912 bzero(&ird, sizeof (ird)); 18913 18914 ird.ird_route.lp_head = mpctl->b_cont; 18915 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18916 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18917 18918 zoneid = Q_TO_CONN(q)->conn_zoneid; 18919 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 18920 18921 /* ipRouteEntryTable in mpctl */ 18922 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18923 optp->level = MIB2_IP; 18924 optp->name = MIB2_IP_ROUTE; 18925 optp->len = msgdsize(ird.ird_route.lp_head); 18926 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18927 (int)optp->level, (int)optp->name, (int)optp->len)); 18928 qreply(q, mpctl); 18929 18930 /* ipNetToMediaEntryTable in mp3ctl */ 18931 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18932 optp->level = MIB2_IP; 18933 optp->name = MIB2_IP_MEDIA; 18934 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18935 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18936 (int)optp->level, (int)optp->name, (int)optp->len)); 18937 qreply(q, mp3ctl); 18938 18939 /* ipRouteAttributeTable in mp4ctl */ 18940 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18941 optp->level = MIB2_IP; 18942 optp->name = EXPER_IP_RTATTR; 18943 optp->len = msgdsize(ird.ird_attrs.lp_head); 18944 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18945 (int)optp->level, (int)optp->name, (int)optp->len)); 18946 if (optp->len == 0) 18947 freemsg(mp4ctl); 18948 else 18949 qreply(q, mp4ctl); 18950 18951 return (mp2ctl); 18952 } 18953 18954 /* 18955 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 18956 * ipv6NetToMediaEntryTable in an NDP walk. 18957 */ 18958 static mblk_t * 18959 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18960 { 18961 struct opthdr *optp; 18962 mblk_t *mp2ctl; /* Returned */ 18963 mblk_t *mp3ctl; /* nettomedia */ 18964 mblk_t *mp4ctl; /* routeattrs */ 18965 iproutedata_t ird; 18966 zoneid_t zoneid; 18967 18968 /* 18969 * make copies of the original message 18970 * - mp2ctl is returned unchanged to the caller for his use 18971 * - mpctl is sent upstream as ipv6RouteEntryTable 18972 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 18973 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 18974 */ 18975 mp2ctl = copymsg(mpctl); 18976 mp3ctl = copymsg(mpctl); 18977 mp4ctl = copymsg(mpctl); 18978 if (mp3ctl == NULL || mp4ctl == NULL) { 18979 freemsg(mp4ctl); 18980 freemsg(mp3ctl); 18981 freemsg(mp2ctl); 18982 freemsg(mpctl); 18983 return (NULL); 18984 } 18985 18986 bzero(&ird, sizeof (ird)); 18987 18988 ird.ird_route.lp_head = mpctl->b_cont; 18989 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18990 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18991 18992 zoneid = Q_TO_CONN(q)->conn_zoneid; 18993 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 18994 18995 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18996 optp->level = MIB2_IP6; 18997 optp->name = MIB2_IP6_ROUTE; 18998 optp->len = msgdsize(ird.ird_route.lp_head); 18999 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19000 (int)optp->level, (int)optp->name, (int)optp->len)); 19001 qreply(q, mpctl); 19002 19003 /* ipv6NetToMediaEntryTable in mp3ctl */ 19004 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19005 19006 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19007 optp->level = MIB2_IP6; 19008 optp->name = MIB2_IP6_MEDIA; 19009 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19010 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19011 (int)optp->level, (int)optp->name, (int)optp->len)); 19012 qreply(q, mp3ctl); 19013 19014 /* ipv6RouteAttributeTable in mp4ctl */ 19015 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19016 optp->level = MIB2_IP6; 19017 optp->name = EXPER_IP_RTATTR; 19018 optp->len = msgdsize(ird.ird_attrs.lp_head); 19019 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19020 (int)optp->level, (int)optp->name, (int)optp->len)); 19021 if (optp->len == 0) 19022 freemsg(mp4ctl); 19023 else 19024 qreply(q, mp4ctl); 19025 19026 return (mp2ctl); 19027 } 19028 19029 /* 19030 * IPv6 mib: One per ill 19031 */ 19032 static mblk_t * 19033 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19034 { 19035 struct opthdr *optp; 19036 mblk_t *mp2ctl; 19037 ill_t *ill; 19038 ill_walk_context_t ctx; 19039 mblk_t *mp_tail = NULL; 19040 19041 /* 19042 * Make a copy of the original message 19043 */ 19044 mp2ctl = copymsg(mpctl); 19045 19046 /* fixed length IPv6 structure ... */ 19047 19048 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19049 optp->level = MIB2_IP6; 19050 optp->name = 0; 19051 /* Include "unknown interface" ip6_mib */ 19052 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19053 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19054 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19055 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19056 ipst->ips_ipv6_forward ? 1 : 2); 19057 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19058 ipst->ips_ipv6_def_hops); 19059 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19060 sizeof (mib2_ipIfStatsEntry_t)); 19061 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19062 sizeof (mib2_ipv6AddrEntry_t)); 19063 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19064 sizeof (mib2_ipv6RouteEntry_t)); 19065 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19066 sizeof (mib2_ipv6NetToMediaEntry_t)); 19067 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19068 sizeof (ipv6_member_t)); 19069 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19070 sizeof (ipv6_grpsrc_t)); 19071 19072 /* 19073 * Synchronize 64- and 32-bit counters 19074 */ 19075 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19076 ipIfStatsHCInReceives); 19077 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19078 ipIfStatsHCInDelivers); 19079 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19080 ipIfStatsHCOutRequests); 19081 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19082 ipIfStatsHCOutForwDatagrams); 19083 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19084 ipIfStatsHCOutMcastPkts); 19085 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19086 ipIfStatsHCInMcastPkts); 19087 19088 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19089 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19090 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19091 (uint_t)sizeof (ipst->ips_ip6_mib))); 19092 } 19093 19094 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19095 ill = ILL_START_WALK_V6(&ctx, ipst); 19096 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19097 ill->ill_ip_mib->ipIfStatsIfIndex = 19098 ill->ill_phyint->phyint_ifindex; 19099 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19100 ipst->ips_ipv6_forward ? 1 : 2); 19101 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19102 ill->ill_max_hops); 19103 19104 /* 19105 * Synchronize 64- and 32-bit counters 19106 */ 19107 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19108 ipIfStatsHCInReceives); 19109 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19110 ipIfStatsHCInDelivers); 19111 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19112 ipIfStatsHCOutRequests); 19113 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19114 ipIfStatsHCOutForwDatagrams); 19115 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19116 ipIfStatsHCOutMcastPkts); 19117 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19118 ipIfStatsHCInMcastPkts); 19119 19120 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19121 (char *)ill->ill_ip_mib, 19122 (int)sizeof (*ill->ill_ip_mib))) { 19123 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19124 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19125 } 19126 } 19127 rw_exit(&ipst->ips_ill_g_lock); 19128 19129 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19130 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19131 (int)optp->level, (int)optp->name, (int)optp->len)); 19132 qreply(q, mpctl); 19133 return (mp2ctl); 19134 } 19135 19136 /* 19137 * ICMPv6 mib: One per ill 19138 */ 19139 static mblk_t * 19140 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19141 { 19142 struct opthdr *optp; 19143 mblk_t *mp2ctl; 19144 ill_t *ill; 19145 ill_walk_context_t ctx; 19146 mblk_t *mp_tail = NULL; 19147 /* 19148 * Make a copy of the original message 19149 */ 19150 mp2ctl = copymsg(mpctl); 19151 19152 /* fixed length ICMPv6 structure ... */ 19153 19154 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19155 optp->level = MIB2_ICMP6; 19156 optp->name = 0; 19157 /* Include "unknown interface" icmp6_mib */ 19158 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19159 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19160 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19161 sizeof (mib2_ipv6IfIcmpEntry_t); 19162 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19163 (char *)&ipst->ips_icmp6_mib, 19164 (int)sizeof (ipst->ips_icmp6_mib))) { 19165 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19166 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19167 } 19168 19169 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19170 ill = ILL_START_WALK_V6(&ctx, ipst); 19171 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19172 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19173 ill->ill_phyint->phyint_ifindex; 19174 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19175 (char *)ill->ill_icmp6_mib, 19176 (int)sizeof (*ill->ill_icmp6_mib))) { 19177 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19178 "%u bytes\n", 19179 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19180 } 19181 } 19182 rw_exit(&ipst->ips_ill_g_lock); 19183 19184 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19185 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19186 (int)optp->level, (int)optp->name, (int)optp->len)); 19187 qreply(q, mpctl); 19188 return (mp2ctl); 19189 } 19190 19191 /* 19192 * ire_walk routine to create both ipRouteEntryTable and 19193 * ipRouteAttributeTable in one IRE walk 19194 */ 19195 static void 19196 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19197 { 19198 ill_t *ill; 19199 ipif_t *ipif; 19200 mib2_ipRouteEntry_t *re; 19201 mib2_ipAttributeEntry_t *iae, *iaeptr; 19202 ipaddr_t gw_addr; 19203 tsol_ire_gw_secattr_t *attrp; 19204 tsol_gc_t *gc = NULL; 19205 tsol_gcgrp_t *gcgrp = NULL; 19206 uint_t sacnt = 0; 19207 int i; 19208 19209 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19210 19211 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19212 return; 19213 19214 if ((attrp = ire->ire_gw_secattr) != NULL) { 19215 mutex_enter(&attrp->igsa_lock); 19216 if ((gc = attrp->igsa_gc) != NULL) { 19217 gcgrp = gc->gc_grp; 19218 ASSERT(gcgrp != NULL); 19219 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19220 sacnt = 1; 19221 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19222 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19223 gc = gcgrp->gcgrp_head; 19224 sacnt = gcgrp->gcgrp_count; 19225 } 19226 mutex_exit(&attrp->igsa_lock); 19227 19228 /* do nothing if there's no gc to report */ 19229 if (gc == NULL) { 19230 ASSERT(sacnt == 0); 19231 if (gcgrp != NULL) { 19232 /* we might as well drop the lock now */ 19233 rw_exit(&gcgrp->gcgrp_rwlock); 19234 gcgrp = NULL; 19235 } 19236 attrp = NULL; 19237 } 19238 19239 ASSERT(gc == NULL || (gcgrp != NULL && 19240 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19241 } 19242 ASSERT(sacnt == 0 || gc != NULL); 19243 19244 if (sacnt != 0 && 19245 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19246 kmem_free(re, sizeof (*re)); 19247 rw_exit(&gcgrp->gcgrp_rwlock); 19248 return; 19249 } 19250 19251 /* 19252 * Return all IRE types for route table... let caller pick and choose 19253 */ 19254 re->ipRouteDest = ire->ire_addr; 19255 ipif = ire->ire_ipif; 19256 re->ipRouteIfIndex.o_length = 0; 19257 if (ire->ire_type == IRE_CACHE) { 19258 ill = (ill_t *)ire->ire_stq->q_ptr; 19259 re->ipRouteIfIndex.o_length = 19260 ill->ill_name_length == 0 ? 0 : 19261 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19262 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19263 re->ipRouteIfIndex.o_length); 19264 } else if (ipif != NULL) { 19265 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19266 re->ipRouteIfIndex.o_length = 19267 mi_strlen(re->ipRouteIfIndex.o_bytes); 19268 } 19269 re->ipRouteMetric1 = -1; 19270 re->ipRouteMetric2 = -1; 19271 re->ipRouteMetric3 = -1; 19272 re->ipRouteMetric4 = -1; 19273 19274 gw_addr = ire->ire_gateway_addr; 19275 19276 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19277 re->ipRouteNextHop = ire->ire_src_addr; 19278 else 19279 re->ipRouteNextHop = gw_addr; 19280 /* indirect(4), direct(3), or invalid(2) */ 19281 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19282 re->ipRouteType = 2; 19283 else 19284 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19285 re->ipRouteProto = -1; 19286 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19287 re->ipRouteMask = ire->ire_mask; 19288 re->ipRouteMetric5 = -1; 19289 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19290 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19291 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19292 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19293 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19294 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19295 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19296 re->ipRouteInfo.re_flags = ire->ire_flags; 19297 19298 if (ire->ire_flags & RTF_DYNAMIC) { 19299 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19300 } else { 19301 re->ipRouteInfo.re_ire_type = ire->ire_type; 19302 } 19303 19304 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19305 (char *)re, (int)sizeof (*re))) { 19306 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19307 (uint_t)sizeof (*re))); 19308 } 19309 19310 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19311 iaeptr->iae_routeidx = ird->ird_idx; 19312 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19313 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19314 } 19315 19316 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19317 (char *)iae, sacnt * sizeof (*iae))) { 19318 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19319 (unsigned)(sacnt * sizeof (*iae)))); 19320 } 19321 19322 /* bump route index for next pass */ 19323 ird->ird_idx++; 19324 19325 kmem_free(re, sizeof (*re)); 19326 if (sacnt != 0) 19327 kmem_free(iae, sacnt * sizeof (*iae)); 19328 19329 if (gcgrp != NULL) 19330 rw_exit(&gcgrp->gcgrp_rwlock); 19331 } 19332 19333 /* 19334 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19335 */ 19336 static void 19337 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19338 { 19339 ill_t *ill; 19340 ipif_t *ipif; 19341 mib2_ipv6RouteEntry_t *re; 19342 mib2_ipAttributeEntry_t *iae, *iaeptr; 19343 in6_addr_t gw_addr_v6; 19344 tsol_ire_gw_secattr_t *attrp; 19345 tsol_gc_t *gc = NULL; 19346 tsol_gcgrp_t *gcgrp = NULL; 19347 uint_t sacnt = 0; 19348 int i; 19349 19350 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19351 19352 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19353 return; 19354 19355 if ((attrp = ire->ire_gw_secattr) != NULL) { 19356 mutex_enter(&attrp->igsa_lock); 19357 if ((gc = attrp->igsa_gc) != NULL) { 19358 gcgrp = gc->gc_grp; 19359 ASSERT(gcgrp != NULL); 19360 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19361 sacnt = 1; 19362 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19363 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19364 gc = gcgrp->gcgrp_head; 19365 sacnt = gcgrp->gcgrp_count; 19366 } 19367 mutex_exit(&attrp->igsa_lock); 19368 19369 /* do nothing if there's no gc to report */ 19370 if (gc == NULL) { 19371 ASSERT(sacnt == 0); 19372 if (gcgrp != NULL) { 19373 /* we might as well drop the lock now */ 19374 rw_exit(&gcgrp->gcgrp_rwlock); 19375 gcgrp = NULL; 19376 } 19377 attrp = NULL; 19378 } 19379 19380 ASSERT(gc == NULL || (gcgrp != NULL && 19381 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19382 } 19383 ASSERT(sacnt == 0 || gc != NULL); 19384 19385 if (sacnt != 0 && 19386 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19387 kmem_free(re, sizeof (*re)); 19388 rw_exit(&gcgrp->gcgrp_rwlock); 19389 return; 19390 } 19391 19392 /* 19393 * Return all IRE types for route table... let caller pick and choose 19394 */ 19395 re->ipv6RouteDest = ire->ire_addr_v6; 19396 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19397 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19398 re->ipv6RouteIfIndex.o_length = 0; 19399 ipif = ire->ire_ipif; 19400 if (ire->ire_type == IRE_CACHE) { 19401 ill = (ill_t *)ire->ire_stq->q_ptr; 19402 re->ipv6RouteIfIndex.o_length = 19403 ill->ill_name_length == 0 ? 0 : 19404 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19405 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19406 re->ipv6RouteIfIndex.o_length); 19407 } else if (ipif != NULL) { 19408 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19409 re->ipv6RouteIfIndex.o_length = 19410 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19411 } 19412 19413 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19414 19415 mutex_enter(&ire->ire_lock); 19416 gw_addr_v6 = ire->ire_gateway_addr_v6; 19417 mutex_exit(&ire->ire_lock); 19418 19419 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19420 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19421 else 19422 re->ipv6RouteNextHop = gw_addr_v6; 19423 19424 /* remote(4), local(3), or discard(2) */ 19425 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19426 re->ipv6RouteType = 2; 19427 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19428 re->ipv6RouteType = 3; 19429 else 19430 re->ipv6RouteType = 4; 19431 19432 re->ipv6RouteProtocol = -1; 19433 re->ipv6RoutePolicy = 0; 19434 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19435 re->ipv6RouteNextHopRDI = 0; 19436 re->ipv6RouteWeight = 0; 19437 re->ipv6RouteMetric = 0; 19438 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19439 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19440 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19441 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19442 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19443 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19444 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19445 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19446 19447 if (ire->ire_flags & RTF_DYNAMIC) { 19448 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19449 } else { 19450 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19451 } 19452 19453 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19454 (char *)re, (int)sizeof (*re))) { 19455 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19456 (uint_t)sizeof (*re))); 19457 } 19458 19459 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19460 iaeptr->iae_routeidx = ird->ird_idx; 19461 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19462 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19463 } 19464 19465 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19466 (char *)iae, sacnt * sizeof (*iae))) { 19467 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19468 (unsigned)(sacnt * sizeof (*iae)))); 19469 } 19470 19471 /* bump route index for next pass */ 19472 ird->ird_idx++; 19473 19474 kmem_free(re, sizeof (*re)); 19475 if (sacnt != 0) 19476 kmem_free(iae, sacnt * sizeof (*iae)); 19477 19478 if (gcgrp != NULL) 19479 rw_exit(&gcgrp->gcgrp_rwlock); 19480 } 19481 19482 /* 19483 * ndp_walk routine to create ipv6NetToMediaEntryTable 19484 */ 19485 static int 19486 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19487 { 19488 ill_t *ill; 19489 mib2_ipv6NetToMediaEntry_t ntme; 19490 dl_unitdata_req_t *dl; 19491 19492 ill = nce->nce_ill; 19493 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19494 return (0); 19495 19496 /* 19497 * Neighbor cache entry attached to IRE with on-link 19498 * destination. 19499 */ 19500 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19501 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19502 if ((ill->ill_flags & ILLF_XRESOLV) && 19503 (nce->nce_res_mp != NULL)) { 19504 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19505 ntme.ipv6NetToMediaPhysAddress.o_length = 19506 dl->dl_dest_addr_length; 19507 } else { 19508 ntme.ipv6NetToMediaPhysAddress.o_length = 19509 ill->ill_phys_addr_length; 19510 } 19511 if (nce->nce_res_mp != NULL) { 19512 bcopy((char *)nce->nce_res_mp->b_rptr + 19513 NCE_LL_ADDR_OFFSET(ill), 19514 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19515 ntme.ipv6NetToMediaPhysAddress.o_length); 19516 } else { 19517 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19518 ill->ill_phys_addr_length); 19519 } 19520 /* 19521 * Note: Returns ND_* states. Should be: 19522 * reachable(1), stale(2), delay(3), probe(4), 19523 * invalid(5), unknown(6) 19524 */ 19525 ntme.ipv6NetToMediaState = nce->nce_state; 19526 ntme.ipv6NetToMediaLastUpdated = 0; 19527 19528 /* other(1), dynamic(2), static(3), local(4) */ 19529 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19530 ntme.ipv6NetToMediaType = 4; 19531 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19532 ntme.ipv6NetToMediaType = 1; 19533 } else { 19534 ntme.ipv6NetToMediaType = 2; 19535 } 19536 19537 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19538 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19539 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19540 (uint_t)sizeof (ntme))); 19541 } 19542 return (0); 19543 } 19544 19545 /* 19546 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19547 */ 19548 /* ARGSUSED */ 19549 int 19550 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19551 { 19552 switch (level) { 19553 case MIB2_IP: 19554 case MIB2_ICMP: 19555 switch (name) { 19556 default: 19557 break; 19558 } 19559 return (1); 19560 default: 19561 return (1); 19562 } 19563 } 19564 19565 /* 19566 * When there exists both a 64- and 32-bit counter of a particular type 19567 * (i.e., InReceives), only the 64-bit counters are added. 19568 */ 19569 void 19570 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19571 { 19572 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19573 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19574 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19575 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19576 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19577 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19578 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19579 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19580 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19581 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19582 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19583 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19584 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19585 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19586 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19587 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19588 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19589 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19590 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19591 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19592 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19593 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19594 o2->ipIfStatsInWrongIPVersion); 19595 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19596 o2->ipIfStatsInWrongIPVersion); 19597 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19598 o2->ipIfStatsOutSwitchIPVersion); 19599 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19600 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19601 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19602 o2->ipIfStatsHCInForwDatagrams); 19603 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19604 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19605 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19606 o2->ipIfStatsHCOutForwDatagrams); 19607 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19608 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19609 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19610 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19611 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19612 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19613 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19614 o2->ipIfStatsHCOutMcastOctets); 19615 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19616 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19617 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19618 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19619 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19620 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19621 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19622 } 19623 19624 void 19625 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19626 { 19627 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19628 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19629 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19630 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19631 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19632 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19633 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19634 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19635 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19636 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19637 o2->ipv6IfIcmpInRouterSolicits); 19638 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19639 o2->ipv6IfIcmpInRouterAdvertisements); 19640 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19641 o2->ipv6IfIcmpInNeighborSolicits); 19642 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19643 o2->ipv6IfIcmpInNeighborAdvertisements); 19644 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19645 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19646 o2->ipv6IfIcmpInGroupMembQueries); 19647 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19648 o2->ipv6IfIcmpInGroupMembResponses); 19649 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19650 o2->ipv6IfIcmpInGroupMembReductions); 19651 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19652 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19653 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19654 o2->ipv6IfIcmpOutDestUnreachs); 19655 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19656 o2->ipv6IfIcmpOutAdminProhibs); 19657 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19658 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19659 o2->ipv6IfIcmpOutParmProblems); 19660 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19661 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19662 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19663 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19664 o2->ipv6IfIcmpOutRouterSolicits); 19665 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19666 o2->ipv6IfIcmpOutRouterAdvertisements); 19667 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19668 o2->ipv6IfIcmpOutNeighborSolicits); 19669 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19670 o2->ipv6IfIcmpOutNeighborAdvertisements); 19671 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19672 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19673 o2->ipv6IfIcmpOutGroupMembQueries); 19674 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19675 o2->ipv6IfIcmpOutGroupMembResponses); 19676 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19677 o2->ipv6IfIcmpOutGroupMembReductions); 19678 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19679 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19680 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19681 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19682 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19683 o2->ipv6IfIcmpInBadNeighborSolicitations); 19684 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19685 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19686 o2->ipv6IfIcmpInGroupMembTotal); 19687 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19688 o2->ipv6IfIcmpInGroupMembBadQueries); 19689 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19690 o2->ipv6IfIcmpInGroupMembBadReports); 19691 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19692 o2->ipv6IfIcmpInGroupMembOurReports); 19693 } 19694 19695 /* 19696 * Called before the options are updated to check if this packet will 19697 * be source routed from here. 19698 * This routine assumes that the options are well formed i.e. that they 19699 * have already been checked. 19700 */ 19701 static boolean_t 19702 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19703 { 19704 ipoptp_t opts; 19705 uchar_t *opt; 19706 uint8_t optval; 19707 uint8_t optlen; 19708 ipaddr_t dst; 19709 ire_t *ire; 19710 19711 if (IS_SIMPLE_IPH(ipha)) { 19712 ip2dbg(("not source routed\n")); 19713 return (B_FALSE); 19714 } 19715 dst = ipha->ipha_dst; 19716 for (optval = ipoptp_first(&opts, ipha); 19717 optval != IPOPT_EOL; 19718 optval = ipoptp_next(&opts)) { 19719 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19720 opt = opts.ipoptp_cur; 19721 optlen = opts.ipoptp_len; 19722 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19723 optval, optlen)); 19724 switch (optval) { 19725 uint32_t off; 19726 case IPOPT_SSRR: 19727 case IPOPT_LSRR: 19728 /* 19729 * If dst is one of our addresses and there are some 19730 * entries left in the source route return (true). 19731 */ 19732 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19733 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19734 if (ire == NULL) { 19735 ip2dbg(("ip_source_routed: not next" 19736 " source route 0x%x\n", 19737 ntohl(dst))); 19738 return (B_FALSE); 19739 } 19740 ire_refrele(ire); 19741 off = opt[IPOPT_OFFSET]; 19742 off--; 19743 if (optlen < IP_ADDR_LEN || 19744 off > optlen - IP_ADDR_LEN) { 19745 /* End of source route */ 19746 ip1dbg(("ip_source_routed: end of SR\n")); 19747 return (B_FALSE); 19748 } 19749 return (B_TRUE); 19750 } 19751 } 19752 ip2dbg(("not source routed\n")); 19753 return (B_FALSE); 19754 } 19755 19756 /* 19757 * Check if the packet contains any source route. 19758 */ 19759 static boolean_t 19760 ip_source_route_included(ipha_t *ipha) 19761 { 19762 ipoptp_t opts; 19763 uint8_t optval; 19764 19765 if (IS_SIMPLE_IPH(ipha)) 19766 return (B_FALSE); 19767 for (optval = ipoptp_first(&opts, ipha); 19768 optval != IPOPT_EOL; 19769 optval = ipoptp_next(&opts)) { 19770 switch (optval) { 19771 case IPOPT_SSRR: 19772 case IPOPT_LSRR: 19773 return (B_TRUE); 19774 } 19775 } 19776 return (B_FALSE); 19777 } 19778 19779 /* 19780 * Called when the IRE expiration timer fires. 19781 */ 19782 void 19783 ip_trash_timer_expire(void *args) 19784 { 19785 int flush_flag = 0; 19786 ire_expire_arg_t iea; 19787 ip_stack_t *ipst = (ip_stack_t *)args; 19788 19789 iea.iea_ipst = ipst; /* No netstack_hold */ 19790 19791 /* 19792 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19793 * This lock makes sure that a new invocation of this function 19794 * that occurs due to an almost immediate timer firing will not 19795 * progress beyond this point until the current invocation is done 19796 */ 19797 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19798 ipst->ips_ip_ire_expire_id = 0; 19799 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19800 19801 /* Periodic timer */ 19802 if (ipst->ips_ip_ire_arp_time_elapsed >= 19803 ipst->ips_ip_ire_arp_interval) { 19804 /* 19805 * Remove all IRE_CACHE entries since they might 19806 * contain arp information. 19807 */ 19808 flush_flag |= FLUSH_ARP_TIME; 19809 ipst->ips_ip_ire_arp_time_elapsed = 0; 19810 IP_STAT(ipst, ip_ire_arp_timer_expired); 19811 } 19812 if (ipst->ips_ip_ire_rd_time_elapsed >= 19813 ipst->ips_ip_ire_redir_interval) { 19814 /* Remove all redirects */ 19815 flush_flag |= FLUSH_REDIRECT_TIME; 19816 ipst->ips_ip_ire_rd_time_elapsed = 0; 19817 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19818 } 19819 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19820 ipst->ips_ip_ire_pathmtu_interval) { 19821 /* Increase path mtu */ 19822 flush_flag |= FLUSH_MTU_TIME; 19823 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 19824 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 19825 } 19826 19827 /* 19828 * Optimize for the case when there are no redirects in the 19829 * ftable, that is, no need to walk the ftable in that case. 19830 */ 19831 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19832 iea.iea_flush_flag = flush_flag; 19833 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19834 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 19835 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 19836 NULL, ALL_ZONES, ipst); 19837 } 19838 if ((flush_flag & FLUSH_REDIRECT_TIME) && 19839 ipst->ips_ip_redirect_cnt > 0) { 19840 iea.iea_flush_flag = flush_flag; 19841 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19842 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 19843 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 19844 } 19845 if (flush_flag & FLUSH_MTU_TIME) { 19846 /* 19847 * Walk all IPv6 IRE's and update them 19848 * Note that ARP and redirect timers are not 19849 * needed since NUD handles stale entries. 19850 */ 19851 flush_flag = FLUSH_MTU_TIME; 19852 iea.iea_flush_flag = flush_flag; 19853 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 19854 ALL_ZONES, ipst); 19855 } 19856 19857 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 19858 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 19859 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 19860 19861 /* 19862 * Hold the lock to serialize timeout calls and prevent 19863 * stale values in ip_ire_expire_id. Otherwise it is possible 19864 * for the timer to fire and a new invocation of this function 19865 * to start before the return value of timeout has been stored 19866 * in ip_ire_expire_id by the current invocation. 19867 */ 19868 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19869 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 19870 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 19871 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19872 } 19873 19874 /* 19875 * Called by the memory allocator subsystem directly, when the system 19876 * is running low on memory. 19877 */ 19878 /* ARGSUSED */ 19879 void 19880 ip_trash_ire_reclaim(void *args) 19881 { 19882 netstack_handle_t nh; 19883 netstack_t *ns; 19884 19885 netstack_next_init(&nh); 19886 while ((ns = netstack_next(&nh)) != NULL) { 19887 ip_trash_ire_reclaim_stack(ns->netstack_ip); 19888 netstack_rele(ns); 19889 } 19890 netstack_next_fini(&nh); 19891 } 19892 19893 static void 19894 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 19895 { 19896 ire_cache_count_t icc; 19897 ire_cache_reclaim_t icr; 19898 ncc_cache_count_t ncc; 19899 nce_cache_reclaim_t ncr; 19900 uint_t delete_cnt; 19901 /* 19902 * Memory reclaim call back. 19903 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19904 * Then, with a target of freeing 1/Nth of IRE_CACHE 19905 * entries, determine what fraction to free for 19906 * each category of IRE_CACHE entries giving absolute priority 19907 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19908 * entry will be freed unless all offlink entries are freed). 19909 */ 19910 icc.icc_total = 0; 19911 icc.icc_unused = 0; 19912 icc.icc_offlink = 0; 19913 icc.icc_pmtu = 0; 19914 icc.icc_onlink = 0; 19915 ire_walk(ire_cache_count, (char *)&icc, ipst); 19916 19917 /* 19918 * Free NCEs for IPv6 like the onlink ires. 19919 */ 19920 ncc.ncc_total = 0; 19921 ncc.ncc_host = 0; 19922 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 19923 19924 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 19925 icc.icc_pmtu + icc.icc_onlink); 19926 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 19927 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 19928 if (delete_cnt == 0) 19929 return; 19930 IP_STAT(ipst, ip_trash_ire_reclaim_success); 19931 /* Always delete all unused offlink entries */ 19932 icr.icr_ipst = ipst; 19933 icr.icr_unused = 1; 19934 if (delete_cnt <= icc.icc_unused) { 19935 /* 19936 * Only need to free unused entries. In other words, 19937 * there are enough unused entries to free to meet our 19938 * target number of freed ire cache entries. 19939 */ 19940 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 19941 ncr.ncr_host = 0; 19942 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 19943 /* 19944 * Only need to free unused entries, plus a fraction of offlink 19945 * entries. It follows from the first if statement that 19946 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 19947 */ 19948 delete_cnt -= icc.icc_unused; 19949 /* Round up # deleted by truncating fraction */ 19950 icr.icr_offlink = icc.icc_offlink / delete_cnt; 19951 icr.icr_pmtu = icr.icr_onlink = 0; 19952 ncr.ncr_host = 0; 19953 } else if (delete_cnt <= 19954 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 19955 /* 19956 * Free all unused and offlink entries, plus a fraction of 19957 * pmtu entries. It follows from the previous if statement 19958 * that icc_pmtu is non-zero, and that 19959 * delete_cnt != icc_unused + icc_offlink. 19960 */ 19961 icr.icr_offlink = 1; 19962 delete_cnt -= icc.icc_unused + icc.icc_offlink; 19963 /* Round up # deleted by truncating fraction */ 19964 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 19965 icr.icr_onlink = 0; 19966 ncr.ncr_host = 0; 19967 } else { 19968 /* 19969 * Free all unused, offlink, and pmtu entries, plus a fraction 19970 * of onlink entries. If we're here, then we know that 19971 * icc_onlink is non-zero, and that 19972 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 19973 */ 19974 icr.icr_offlink = icr.icr_pmtu = 1; 19975 delete_cnt -= icc.icc_unused + icc.icc_offlink + 19976 icc.icc_pmtu; 19977 /* Round up # deleted by truncating fraction */ 19978 icr.icr_onlink = icc.icc_onlink / delete_cnt; 19979 /* Using the same delete fraction as for onlink IREs */ 19980 ncr.ncr_host = ncc.ncc_host / delete_cnt; 19981 } 19982 #ifdef DEBUG 19983 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 19984 "fractions %d/%d/%d/%d\n", 19985 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 19986 icc.icc_unused, icc.icc_offlink, 19987 icc.icc_pmtu, icc.icc_onlink, 19988 icr.icr_unused, icr.icr_offlink, 19989 icr.icr_pmtu, icr.icr_onlink)); 19990 #endif 19991 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 19992 if (ncr.ncr_host != 0) 19993 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 19994 (uchar_t *)&ncr, ipst); 19995 #ifdef DEBUG 19996 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 19997 icc.icc_pmtu = 0; icc.icc_onlink = 0; 19998 ire_walk(ire_cache_count, (char *)&icc, ipst); 19999 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20000 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20001 icc.icc_pmtu, icc.icc_onlink)); 20002 #endif 20003 } 20004 20005 /* 20006 * ip_unbind is called when a copy of an unbind request is received from the 20007 * upper level protocol. We remove this conn from any fanout hash list it is 20008 * on, and zero out the bind information. No reply is expected up above. 20009 */ 20010 mblk_t * 20011 ip_unbind(queue_t *q, mblk_t *mp) 20012 { 20013 conn_t *connp = Q_TO_CONN(q); 20014 20015 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20016 20017 if (is_system_labeled() && connp->conn_anon_port) { 20018 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20019 connp->conn_mlp_type, connp->conn_ulp, 20020 ntohs(connp->conn_lport), B_FALSE); 20021 connp->conn_anon_port = 0; 20022 } 20023 connp->conn_mlp_type = mlptSingle; 20024 20025 ipcl_hash_remove(connp); 20026 20027 ASSERT(mp->b_cont == NULL); 20028 /* 20029 * Convert mp into a T_OK_ACK 20030 */ 20031 mp = mi_tpi_ok_ack_alloc(mp); 20032 20033 /* 20034 * should not happen in practice... T_OK_ACK is smaller than the 20035 * original message. 20036 */ 20037 if (mp == NULL) 20038 return (NULL); 20039 20040 return (mp); 20041 } 20042 20043 /* 20044 * Write side put procedure. Outbound data, IOCTLs, responses from 20045 * resolvers, etc, come down through here. 20046 * 20047 * arg2 is always a queue_t *. 20048 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20049 * the zoneid. 20050 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20051 */ 20052 void 20053 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20054 { 20055 ip_output_options(arg, mp, arg2, caller, &zero_info); 20056 } 20057 20058 void 20059 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20060 ip_opt_info_t *infop) 20061 { 20062 conn_t *connp = NULL; 20063 queue_t *q = (queue_t *)arg2; 20064 ipha_t *ipha; 20065 #define rptr ((uchar_t *)ipha) 20066 ire_t *ire = NULL; 20067 ire_t *sctp_ire = NULL; 20068 uint32_t v_hlen_tos_len; 20069 ipaddr_t dst; 20070 mblk_t *first_mp = NULL; 20071 boolean_t mctl_present; 20072 ipsec_out_t *io; 20073 int match_flags; 20074 ill_t *attach_ill = NULL; 20075 /* Bind to IPIF_NOFAILOVER ill etc. */ 20076 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20077 ipif_t *dst_ipif; 20078 boolean_t multirt_need_resolve = B_FALSE; 20079 mblk_t *copy_mp = NULL; 20080 int err; 20081 zoneid_t zoneid; 20082 int adjust; 20083 uint16_t iplen; 20084 boolean_t need_decref = B_FALSE; 20085 boolean_t ignore_dontroute = B_FALSE; 20086 boolean_t ignore_nexthop = B_FALSE; 20087 boolean_t ip_nexthop = B_FALSE; 20088 ipaddr_t nexthop_addr; 20089 ip_stack_t *ipst; 20090 20091 #ifdef _BIG_ENDIAN 20092 #define V_HLEN (v_hlen_tos_len >> 24) 20093 #else 20094 #define V_HLEN (v_hlen_tos_len & 0xFF) 20095 #endif 20096 20097 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20098 "ip_wput_start: q %p", q); 20099 20100 /* 20101 * ip_wput fast path 20102 */ 20103 20104 /* is packet from ARP ? */ 20105 if (q->q_next != NULL) { 20106 zoneid = (zoneid_t)(uintptr_t)arg; 20107 goto qnext; 20108 } 20109 20110 connp = (conn_t *)arg; 20111 ASSERT(connp != NULL); 20112 zoneid = connp->conn_zoneid; 20113 ipst = connp->conn_netstack->netstack_ip; 20114 20115 /* is queue flow controlled? */ 20116 if ((q->q_first != NULL || connp->conn_draining) && 20117 (caller == IP_WPUT)) { 20118 ASSERT(!need_decref); 20119 (void) putq(q, mp); 20120 return; 20121 } 20122 20123 /* Multidata transmit? */ 20124 if (DB_TYPE(mp) == M_MULTIDATA) { 20125 /* 20126 * We should never get here, since all Multidata messages 20127 * originating from tcp should have been directed over to 20128 * tcp_multisend() in the first place. 20129 */ 20130 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20131 freemsg(mp); 20132 return; 20133 } else if (DB_TYPE(mp) != M_DATA) 20134 goto notdata; 20135 20136 if (mp->b_flag & MSGHASREF) { 20137 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20138 mp->b_flag &= ~MSGHASREF; 20139 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20140 need_decref = B_TRUE; 20141 } 20142 ipha = (ipha_t *)mp->b_rptr; 20143 20144 /* is IP header non-aligned or mblk smaller than basic IP header */ 20145 #ifndef SAFETY_BEFORE_SPEED 20146 if (!OK_32PTR(rptr) || 20147 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20148 goto hdrtoosmall; 20149 #endif 20150 20151 ASSERT(OK_32PTR(ipha)); 20152 20153 /* 20154 * This function assumes that mp points to an IPv4 packet. If it's the 20155 * wrong version, we'll catch it again in ip_output_v6. 20156 * 20157 * Note that this is *only* locally-generated output here, and never 20158 * forwarded data, and that we need to deal only with transports that 20159 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20160 * label.) 20161 */ 20162 if (is_system_labeled() && 20163 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20164 !connp->conn_ulp_labeled) { 20165 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 20166 connp->conn_mac_exempt, ipst); 20167 ipha = (ipha_t *)mp->b_rptr; 20168 if (err != 0) { 20169 first_mp = mp; 20170 if (err == EINVAL) 20171 goto icmp_parameter_problem; 20172 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20173 goto discard_pkt; 20174 } 20175 iplen = ntohs(ipha->ipha_length) + adjust; 20176 ipha->ipha_length = htons(iplen); 20177 } 20178 20179 ASSERT(infop != NULL); 20180 20181 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20182 /* 20183 * IP_PKTINFO ancillary option is present. 20184 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20185 * allows using address of any zone as the source address. 20186 */ 20187 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20188 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20189 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20190 if (ire == NULL) 20191 goto drop_pkt; 20192 ire_refrele(ire); 20193 ire = NULL; 20194 } 20195 20196 /* 20197 * IP_DONTFAILOVER_IF and IP_BOUND_IF have precedence over ill index 20198 * passed in IP_PKTINFO. 20199 */ 20200 if (infop->ip_opt_ill_index != 0 && 20201 connp->conn_outgoing_ill == NULL && 20202 connp->conn_nofailover_ill == NULL) { 20203 20204 xmit_ill = ill_lookup_on_ifindex( 20205 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20206 ipst); 20207 20208 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20209 goto drop_pkt; 20210 /* 20211 * check that there is an ipif belonging 20212 * to our zone. IPCL_ZONEID is not used because 20213 * IP_ALLZONES option is valid only when the ill is 20214 * accessible from all zones i.e has a valid ipif in 20215 * all zones. 20216 */ 20217 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20218 goto drop_pkt; 20219 } 20220 } 20221 20222 /* 20223 * If there is a policy, try to attach an ipsec_out in 20224 * the front. At the end, first_mp either points to a 20225 * M_DATA message or IPSEC_OUT message linked to a 20226 * M_DATA message. We have to do it now as we might 20227 * lose the "conn" if we go through ip_newroute. 20228 */ 20229 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20230 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20231 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20232 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20233 if (need_decref) 20234 CONN_DEC_REF(connp); 20235 return; 20236 } else { 20237 ASSERT(mp->b_datap->db_type == M_CTL); 20238 first_mp = mp; 20239 mp = mp->b_cont; 20240 mctl_present = B_TRUE; 20241 } 20242 } else { 20243 first_mp = mp; 20244 mctl_present = B_FALSE; 20245 } 20246 20247 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20248 20249 /* is wrong version or IP options present */ 20250 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20251 goto version_hdrlen_check; 20252 dst = ipha->ipha_dst; 20253 20254 if (connp->conn_nofailover_ill != NULL) { 20255 attach_ill = conn_get_held_ill(connp, 20256 &connp->conn_nofailover_ill, &err); 20257 if (err == ILL_LOOKUP_FAILED) { 20258 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20259 if (need_decref) 20260 CONN_DEC_REF(connp); 20261 freemsg(first_mp); 20262 return; 20263 } 20264 } 20265 20266 /* If IP_BOUND_IF has been set, use that ill. */ 20267 if (connp->conn_outgoing_ill != NULL) { 20268 xmit_ill = conn_get_held_ill(connp, 20269 &connp->conn_outgoing_ill, &err); 20270 if (err == ILL_LOOKUP_FAILED) 20271 goto drop_pkt; 20272 20273 goto send_from_ill; 20274 } 20275 20276 /* is packet multicast? */ 20277 if (CLASSD(dst)) 20278 goto multicast; 20279 20280 /* 20281 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20282 * takes precedence over conn_dontroute and conn_nexthop_set 20283 */ 20284 if (xmit_ill != NULL) 20285 goto send_from_ill; 20286 20287 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20288 /* 20289 * If the destination is a broadcast, local, or loopback 20290 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20291 * standard path. 20292 */ 20293 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20294 if ((ire == NULL) || (ire->ire_type & 20295 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20296 if (ire != NULL) { 20297 ire_refrele(ire); 20298 /* No more access to ire */ 20299 ire = NULL; 20300 } 20301 /* 20302 * bypass routing checks and go directly to interface. 20303 */ 20304 if (connp->conn_dontroute) 20305 goto dontroute; 20306 20307 ASSERT(connp->conn_nexthop_set); 20308 ip_nexthop = B_TRUE; 20309 nexthop_addr = connp->conn_nexthop_v4; 20310 goto send_from_ill; 20311 } 20312 20313 /* Must be a broadcast, a loopback or a local ire */ 20314 ire_refrele(ire); 20315 /* No more access to ire */ 20316 ire = NULL; 20317 } 20318 20319 if (attach_ill != NULL) 20320 goto send_from_ill; 20321 20322 /* 20323 * We cache IRE_CACHEs to avoid lookups. We don't do 20324 * this for the tcp global queue and listen end point 20325 * as it does not really have a real destination to 20326 * talk to. This is also true for SCTP. 20327 */ 20328 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20329 !connp->conn_fully_bound) { 20330 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20331 if (ire == NULL) 20332 goto noirefound; 20333 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20334 "ip_wput_end: q %p (%S)", q, "end"); 20335 20336 /* 20337 * Check if the ire has the RTF_MULTIRT flag, inherited 20338 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20339 */ 20340 if (ire->ire_flags & RTF_MULTIRT) { 20341 20342 /* 20343 * Force the TTL of multirouted packets if required. 20344 * The TTL of such packets is bounded by the 20345 * ip_multirt_ttl ndd variable. 20346 */ 20347 if ((ipst->ips_ip_multirt_ttl > 0) && 20348 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20349 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20350 "(was %d), dst 0x%08x\n", 20351 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20352 ntohl(ire->ire_addr))); 20353 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20354 } 20355 /* 20356 * We look at this point if there are pending 20357 * unresolved routes. ire_multirt_resolvable() 20358 * checks in O(n) that all IRE_OFFSUBNET ire 20359 * entries for the packet's destination and 20360 * flagged RTF_MULTIRT are currently resolved. 20361 * If some remain unresolved, we make a copy 20362 * of the current message. It will be used 20363 * to initiate additional route resolutions. 20364 */ 20365 multirt_need_resolve = 20366 ire_multirt_need_resolve(ire->ire_addr, 20367 MBLK_GETLABEL(first_mp), ipst); 20368 ip2dbg(("ip_wput[TCP]: ire %p, " 20369 "multirt_need_resolve %d, first_mp %p\n", 20370 (void *)ire, multirt_need_resolve, 20371 (void *)first_mp)); 20372 if (multirt_need_resolve) { 20373 copy_mp = copymsg(first_mp); 20374 if (copy_mp != NULL) { 20375 MULTIRT_DEBUG_TAG(copy_mp); 20376 } 20377 } 20378 } 20379 20380 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20381 20382 /* 20383 * Try to resolve another multiroute if 20384 * ire_multirt_need_resolve() deemed it necessary. 20385 */ 20386 if (copy_mp != NULL) 20387 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20388 if (need_decref) 20389 CONN_DEC_REF(connp); 20390 return; 20391 } 20392 20393 /* 20394 * Access to conn_ire_cache. (protected by conn_lock) 20395 * 20396 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20397 * the ire bucket lock here to check for CONDEMNED as it is okay to 20398 * send a packet or two with the IRE_CACHE that is going away. 20399 * Access to the ire requires an ire refhold on the ire prior to 20400 * its use since an interface unplumb thread may delete the cached 20401 * ire and release the refhold at any time. 20402 * 20403 * Caching an ire in the conn_ire_cache 20404 * 20405 * o Caching an ire pointer in the conn requires a strict check for 20406 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20407 * ires before cleaning up the conns. So the caching of an ire pointer 20408 * in the conn is done after making sure under the bucket lock that the 20409 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20410 * caching an ire after the unplumb thread has cleaned up the conn. 20411 * If the conn does not send a packet subsequently the unplumb thread 20412 * will be hanging waiting for the ire count to drop to zero. 20413 * 20414 * o We also need to atomically test for a null conn_ire_cache and 20415 * set the conn_ire_cache under the the protection of the conn_lock 20416 * to avoid races among concurrent threads trying to simultaneously 20417 * cache an ire in the conn_ire_cache. 20418 */ 20419 mutex_enter(&connp->conn_lock); 20420 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20421 20422 if (ire != NULL && ire->ire_addr == dst && 20423 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20424 20425 IRE_REFHOLD(ire); 20426 mutex_exit(&connp->conn_lock); 20427 20428 } else { 20429 boolean_t cached = B_FALSE; 20430 connp->conn_ire_cache = NULL; 20431 mutex_exit(&connp->conn_lock); 20432 /* Release the old ire */ 20433 if (ire != NULL && sctp_ire == NULL) 20434 IRE_REFRELE_NOTR(ire); 20435 20436 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20437 if (ire == NULL) 20438 goto noirefound; 20439 IRE_REFHOLD_NOTR(ire); 20440 20441 mutex_enter(&connp->conn_lock); 20442 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20443 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20444 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20445 if (connp->conn_ulp == IPPROTO_TCP) 20446 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20447 connp->conn_ire_cache = ire; 20448 cached = B_TRUE; 20449 } 20450 rw_exit(&ire->ire_bucket->irb_lock); 20451 } 20452 mutex_exit(&connp->conn_lock); 20453 20454 /* 20455 * We can continue to use the ire but since it was 20456 * not cached, we should drop the extra reference. 20457 */ 20458 if (!cached) 20459 IRE_REFRELE_NOTR(ire); 20460 } 20461 20462 20463 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20464 "ip_wput_end: q %p (%S)", q, "end"); 20465 20466 /* 20467 * Check if the ire has the RTF_MULTIRT flag, inherited 20468 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20469 */ 20470 if (ire->ire_flags & RTF_MULTIRT) { 20471 20472 /* 20473 * Force the TTL of multirouted packets if required. 20474 * The TTL of such packets is bounded by the 20475 * ip_multirt_ttl ndd variable. 20476 */ 20477 if ((ipst->ips_ip_multirt_ttl > 0) && 20478 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20479 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20480 "(was %d), dst 0x%08x\n", 20481 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20482 ntohl(ire->ire_addr))); 20483 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20484 } 20485 20486 /* 20487 * At this point, we check to see if there are any pending 20488 * unresolved routes. ire_multirt_resolvable() 20489 * checks in O(n) that all IRE_OFFSUBNET ire 20490 * entries for the packet's destination and 20491 * flagged RTF_MULTIRT are currently resolved. 20492 * If some remain unresolved, we make a copy 20493 * of the current message. It will be used 20494 * to initiate additional route resolutions. 20495 */ 20496 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20497 MBLK_GETLABEL(first_mp), ipst); 20498 ip2dbg(("ip_wput[not TCP]: ire %p, " 20499 "multirt_need_resolve %d, first_mp %p\n", 20500 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20501 if (multirt_need_resolve) { 20502 copy_mp = copymsg(first_mp); 20503 if (copy_mp != NULL) { 20504 MULTIRT_DEBUG_TAG(copy_mp); 20505 } 20506 } 20507 } 20508 20509 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20510 20511 /* 20512 * Try to resolve another multiroute if 20513 * ire_multirt_resolvable() deemed it necessary 20514 */ 20515 if (copy_mp != NULL) 20516 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20517 if (need_decref) 20518 CONN_DEC_REF(connp); 20519 return; 20520 20521 qnext: 20522 /* 20523 * Upper Level Protocols pass down complete IP datagrams 20524 * as M_DATA messages. Everything else is a sideshow. 20525 * 20526 * 1) We could be re-entering ip_wput because of ip_neworute 20527 * in which case we could have a IPSEC_OUT message. We 20528 * need to pass through ip_wput like other datagrams and 20529 * hence cannot branch to ip_wput_nondata. 20530 * 20531 * 2) ARP, AH, ESP, and other clients who are on the module 20532 * instance of IP stream, give us something to deal with. 20533 * We will handle AH and ESP here and rest in ip_wput_nondata. 20534 * 20535 * 3) ICMP replies also could come here. 20536 */ 20537 ipst = ILLQ_TO_IPST(q); 20538 20539 if (DB_TYPE(mp) != M_DATA) { 20540 notdata: 20541 if (DB_TYPE(mp) == M_CTL) { 20542 /* 20543 * M_CTL messages are used by ARP, AH and ESP to 20544 * communicate with IP. We deal with IPSEC_IN and 20545 * IPSEC_OUT here. ip_wput_nondata handles other 20546 * cases. 20547 */ 20548 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20549 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20550 first_mp = mp->b_cont; 20551 first_mp->b_flag &= ~MSGHASREF; 20552 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20553 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20554 CONN_DEC_REF(connp); 20555 connp = NULL; 20556 } 20557 if (ii->ipsec_info_type == IPSEC_IN) { 20558 /* 20559 * Either this message goes back to 20560 * IPsec for further processing or to 20561 * ULP after policy checks. 20562 */ 20563 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20564 return; 20565 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20566 io = (ipsec_out_t *)ii; 20567 if (io->ipsec_out_proc_begin) { 20568 /* 20569 * IPsec processing has already started. 20570 * Complete it. 20571 * IPQoS notes: We don't care what is 20572 * in ipsec_out_ill_index since this 20573 * won't be processed for IPQoS policies 20574 * in ipsec_out_process. 20575 */ 20576 ipsec_out_process(q, mp, NULL, 20577 io->ipsec_out_ill_index); 20578 return; 20579 } else { 20580 connp = (q->q_next != NULL) ? 20581 NULL : Q_TO_CONN(q); 20582 first_mp = mp; 20583 mp = mp->b_cont; 20584 mctl_present = B_TRUE; 20585 } 20586 zoneid = io->ipsec_out_zoneid; 20587 ASSERT(zoneid != ALL_ZONES); 20588 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20589 /* 20590 * It's an IPsec control message requesting 20591 * an SADB update to be sent to the IPsec 20592 * hardware acceleration capable ills. 20593 */ 20594 ipsec_ctl_t *ipsec_ctl = 20595 (ipsec_ctl_t *)mp->b_rptr; 20596 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20597 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20598 mblk_t *cmp = mp->b_cont; 20599 20600 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20601 ASSERT(cmp != NULL); 20602 20603 freeb(mp); 20604 ill_ipsec_capab_send_all(satype, cmp, sa, 20605 ipst->ips_netstack); 20606 return; 20607 } else { 20608 /* 20609 * This must be ARP or special TSOL signaling. 20610 */ 20611 ip_wput_nondata(NULL, q, mp, NULL); 20612 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20613 "ip_wput_end: q %p (%S)", q, "nondata"); 20614 return; 20615 } 20616 } else { 20617 /* 20618 * This must be non-(ARP/AH/ESP) messages. 20619 */ 20620 ASSERT(!need_decref); 20621 ip_wput_nondata(NULL, q, mp, NULL); 20622 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20623 "ip_wput_end: q %p (%S)", q, "nondata"); 20624 return; 20625 } 20626 } else { 20627 first_mp = mp; 20628 mctl_present = B_FALSE; 20629 } 20630 20631 ASSERT(first_mp != NULL); 20632 /* 20633 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20634 * to make sure that this packet goes out on the same interface it 20635 * came in. We handle that here. 20636 */ 20637 if (mctl_present) { 20638 uint_t ifindex; 20639 20640 io = (ipsec_out_t *)first_mp->b_rptr; 20641 if (io->ipsec_out_attach_if || io->ipsec_out_ip_nexthop) { 20642 /* 20643 * We may have lost the conn context if we are 20644 * coming here from ip_newroute(). Copy the 20645 * nexthop information. 20646 */ 20647 if (io->ipsec_out_ip_nexthop) { 20648 ip_nexthop = B_TRUE; 20649 nexthop_addr = io->ipsec_out_nexthop_addr; 20650 20651 ipha = (ipha_t *)mp->b_rptr; 20652 dst = ipha->ipha_dst; 20653 goto send_from_ill; 20654 } else { 20655 ASSERT(io->ipsec_out_ill_index != 0); 20656 ifindex = io->ipsec_out_ill_index; 20657 attach_ill = ill_lookup_on_ifindex(ifindex, 20658 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20659 if (attach_ill == NULL) { 20660 ASSERT(xmit_ill == NULL); 20661 ip1dbg(("ip_output: bad ifindex for " 20662 "(BIND TO IPIF_NOFAILOVER) %d\n", 20663 ifindex)); 20664 freemsg(first_mp); 20665 BUMP_MIB(&ipst->ips_ip_mib, 20666 ipIfStatsOutDiscards); 20667 ASSERT(!need_decref); 20668 return; 20669 } 20670 } 20671 } 20672 } 20673 20674 ASSERT(xmit_ill == NULL); 20675 20676 /* We have a complete IP datagram heading outbound. */ 20677 ipha = (ipha_t *)mp->b_rptr; 20678 20679 #ifndef SPEED_BEFORE_SAFETY 20680 /* 20681 * Make sure we have a full-word aligned message and that at least 20682 * a simple IP header is accessible in the first message. If not, 20683 * try a pullup. 20684 */ 20685 if (!OK_32PTR(rptr) || 20686 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20687 hdrtoosmall: 20688 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20689 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20690 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20691 if (first_mp == NULL) 20692 first_mp = mp; 20693 goto discard_pkt; 20694 } 20695 20696 /* This function assumes that mp points to an IPv4 packet. */ 20697 if (is_system_labeled() && q->q_next == NULL && 20698 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20699 !connp->conn_ulp_labeled) { 20700 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20701 &adjust, connp->conn_mac_exempt, ipst); 20702 ipha = (ipha_t *)mp->b_rptr; 20703 if (first_mp != NULL) 20704 first_mp->b_cont = mp; 20705 if (err != 0) { 20706 if (first_mp == NULL) 20707 first_mp = mp; 20708 if (err == EINVAL) 20709 goto icmp_parameter_problem; 20710 ip2dbg(("ip_wput: label check failed (%d)\n", 20711 err)); 20712 goto discard_pkt; 20713 } 20714 iplen = ntohs(ipha->ipha_length) + adjust; 20715 ipha->ipha_length = htons(iplen); 20716 } 20717 20718 ipha = (ipha_t *)mp->b_rptr; 20719 if (first_mp == NULL) { 20720 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20721 /* 20722 * If we got here because of "goto hdrtoosmall" 20723 * We need to attach a IPSEC_OUT. 20724 */ 20725 if (connp->conn_out_enforce_policy) { 20726 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20727 NULL, ipha->ipha_protocol, 20728 ipst->ips_netstack)) == NULL)) { 20729 BUMP_MIB(&ipst->ips_ip_mib, 20730 ipIfStatsOutDiscards); 20731 if (need_decref) 20732 CONN_DEC_REF(connp); 20733 return; 20734 } else { 20735 ASSERT(mp->b_datap->db_type == M_CTL); 20736 first_mp = mp; 20737 mp = mp->b_cont; 20738 mctl_present = B_TRUE; 20739 } 20740 } else { 20741 first_mp = mp; 20742 mctl_present = B_FALSE; 20743 } 20744 } 20745 } 20746 #endif 20747 20748 /* Most of the code below is written for speed, not readability */ 20749 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20750 20751 /* 20752 * If ip_newroute() fails, we're going to need a full 20753 * header for the icmp wraparound. 20754 */ 20755 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20756 uint_t v_hlen; 20757 version_hdrlen_check: 20758 ASSERT(first_mp != NULL); 20759 v_hlen = V_HLEN; 20760 /* 20761 * siphon off IPv6 packets coming down from transport 20762 * layer modules here. 20763 * Note: high-order bit carries NUD reachability confirmation 20764 */ 20765 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20766 /* 20767 * FIXME: assume that callers of ip_output* call 20768 * the right version? 20769 */ 20770 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20771 ASSERT(xmit_ill == NULL); 20772 if (attach_ill != NULL) 20773 ill_refrele(attach_ill); 20774 if (need_decref) 20775 mp->b_flag |= MSGHASREF; 20776 (void) ip_output_v6(arg, first_mp, arg2, caller); 20777 return; 20778 } 20779 20780 if ((v_hlen >> 4) != IP_VERSION) { 20781 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20782 "ip_wput_end: q %p (%S)", q, "badvers"); 20783 goto discard_pkt; 20784 } 20785 /* 20786 * Is the header length at least 20 bytes? 20787 * 20788 * Are there enough bytes accessible in the header? If 20789 * not, try a pullup. 20790 */ 20791 v_hlen &= 0xF; 20792 v_hlen <<= 2; 20793 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20794 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20795 "ip_wput_end: q %p (%S)", q, "badlen"); 20796 goto discard_pkt; 20797 } 20798 if (v_hlen > (mp->b_wptr - rptr)) { 20799 if (!pullupmsg(mp, v_hlen)) { 20800 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20801 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20802 goto discard_pkt; 20803 } 20804 ipha = (ipha_t *)mp->b_rptr; 20805 } 20806 /* 20807 * Move first entry from any source route into ipha_dst and 20808 * verify the options 20809 */ 20810 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20811 zoneid, ipst)) { 20812 ASSERT(xmit_ill == NULL); 20813 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20814 if (attach_ill != NULL) 20815 ill_refrele(attach_ill); 20816 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20817 "ip_wput_end: q %p (%S)", q, "badopts"); 20818 if (need_decref) 20819 CONN_DEC_REF(connp); 20820 return; 20821 } 20822 } 20823 dst = ipha->ipha_dst; 20824 20825 /* 20826 * Try to get an IRE_CACHE for the destination address. If we can't, 20827 * we have to run the packet through ip_newroute which will take 20828 * the appropriate action to arrange for an IRE_CACHE, such as querying 20829 * a resolver, or assigning a default gateway, etc. 20830 */ 20831 if (CLASSD(dst)) { 20832 ipif_t *ipif; 20833 uint32_t setsrc = 0; 20834 20835 multicast: 20836 ASSERT(first_mp != NULL); 20837 ip2dbg(("ip_wput: CLASSD\n")); 20838 if (connp == NULL) { 20839 /* 20840 * Use the first good ipif on the ill. 20841 * XXX Should this ever happen? (Appears 20842 * to show up with just ppp and no ethernet due 20843 * to in.rdisc.) 20844 * However, ire_send should be able to 20845 * call ip_wput_ire directly. 20846 * 20847 * XXX Also, this can happen for ICMP and other packets 20848 * with multicast source addresses. Perhaps we should 20849 * fix things so that we drop the packet in question, 20850 * but for now, just run with it. 20851 */ 20852 ill_t *ill = (ill_t *)q->q_ptr; 20853 20854 /* 20855 * Don't honor attach_if for this case. If ill 20856 * is part of the group, ipif could belong to 20857 * any ill and we cannot maintain attach_ill 20858 * and ipif_ill same anymore and the assert 20859 * below would fail. 20860 */ 20861 if (mctl_present && io->ipsec_out_attach_if) { 20862 io->ipsec_out_ill_index = 0; 20863 io->ipsec_out_attach_if = B_FALSE; 20864 ASSERT(attach_ill != NULL); 20865 ill_refrele(attach_ill); 20866 attach_ill = NULL; 20867 } 20868 20869 ASSERT(attach_ill == NULL); 20870 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20871 if (ipif == NULL) { 20872 if (need_decref) 20873 CONN_DEC_REF(connp); 20874 freemsg(first_mp); 20875 return; 20876 } 20877 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20878 ntohl(dst), ill->ill_name)); 20879 } else { 20880 /* 20881 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 20882 * and IP_MULTICAST_IF. The block comment above this 20883 * function explains the locking mechanism used here. 20884 */ 20885 if (xmit_ill == NULL) { 20886 xmit_ill = conn_get_held_ill(connp, 20887 &connp->conn_outgoing_ill, &err); 20888 if (err == ILL_LOOKUP_FAILED) { 20889 ip1dbg(("ip_wput: No ill for " 20890 "IP_BOUND_IF\n")); 20891 BUMP_MIB(&ipst->ips_ip_mib, 20892 ipIfStatsOutNoRoutes); 20893 goto drop_pkt; 20894 } 20895 } 20896 20897 if (xmit_ill == NULL) { 20898 ipif = conn_get_held_ipif(connp, 20899 &connp->conn_multicast_ipif, &err); 20900 if (err == IPIF_LOOKUP_FAILED) { 20901 ip1dbg(("ip_wput: No ipif for " 20902 "multicast\n")); 20903 BUMP_MIB(&ipst->ips_ip_mib, 20904 ipIfStatsOutNoRoutes); 20905 goto drop_pkt; 20906 } 20907 } 20908 if (xmit_ill != NULL) { 20909 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20910 if (ipif == NULL) { 20911 ip1dbg(("ip_wput: No ipif for " 20912 "xmit_ill\n")); 20913 BUMP_MIB(&ipst->ips_ip_mib, 20914 ipIfStatsOutNoRoutes); 20915 goto drop_pkt; 20916 } 20917 } else if (ipif == NULL || ipif->ipif_isv6) { 20918 /* 20919 * We must do this ipif determination here 20920 * else we could pass through ip_newroute 20921 * and come back here without the conn context. 20922 * 20923 * Note: we do late binding i.e. we bind to 20924 * the interface when the first packet is sent. 20925 * For performance reasons we do not rebind on 20926 * each packet but keep the binding until the 20927 * next IP_MULTICAST_IF option. 20928 * 20929 * conn_multicast_{ipif,ill} are shared between 20930 * IPv4 and IPv6 and AF_INET6 sockets can 20931 * send both IPv4 and IPv6 packets. Hence 20932 * we have to check that "isv6" matches above. 20933 */ 20934 if (ipif != NULL) 20935 ipif_refrele(ipif); 20936 ipif = ipif_lookup_group(dst, zoneid, ipst); 20937 if (ipif == NULL) { 20938 ip1dbg(("ip_wput: No ipif for " 20939 "multicast\n")); 20940 BUMP_MIB(&ipst->ips_ip_mib, 20941 ipIfStatsOutNoRoutes); 20942 goto drop_pkt; 20943 } 20944 err = conn_set_held_ipif(connp, 20945 &connp->conn_multicast_ipif, ipif); 20946 if (err == IPIF_LOOKUP_FAILED) { 20947 ipif_refrele(ipif); 20948 ip1dbg(("ip_wput: No ipif for " 20949 "multicast\n")); 20950 BUMP_MIB(&ipst->ips_ip_mib, 20951 ipIfStatsOutNoRoutes); 20952 goto drop_pkt; 20953 } 20954 } 20955 } 20956 ASSERT(!ipif->ipif_isv6); 20957 /* 20958 * As we may lose the conn by the time we reach ip_wput_ire, 20959 * we copy conn_multicast_loop and conn_dontroute on to an 20960 * ipsec_out. In case if this datagram goes out secure, 20961 * we need the ill_index also. Copy that also into the 20962 * ipsec_out. 20963 */ 20964 if (mctl_present) { 20965 io = (ipsec_out_t *)first_mp->b_rptr; 20966 ASSERT(first_mp->b_datap->db_type == M_CTL); 20967 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20968 } else { 20969 ASSERT(mp == first_mp); 20970 if ((first_mp = allocb(sizeof (ipsec_info_t), 20971 BPRI_HI)) == NULL) { 20972 ipif_refrele(ipif); 20973 first_mp = mp; 20974 goto discard_pkt; 20975 } 20976 first_mp->b_datap->db_type = M_CTL; 20977 first_mp->b_wptr += sizeof (ipsec_info_t); 20978 /* ipsec_out_secure is B_FALSE now */ 20979 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 20980 io = (ipsec_out_t *)first_mp->b_rptr; 20981 io->ipsec_out_type = IPSEC_OUT; 20982 io->ipsec_out_len = sizeof (ipsec_out_t); 20983 io->ipsec_out_use_global_policy = B_TRUE; 20984 io->ipsec_out_ns = ipst->ips_netstack; 20985 first_mp->b_cont = mp; 20986 mctl_present = B_TRUE; 20987 } 20988 if (attach_ill != NULL) { 20989 ASSERT(attach_ill == ipif->ipif_ill); 20990 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20991 20992 /* 20993 * Check if we need an ire that will not be 20994 * looked up by anybody else i.e. HIDDEN. 20995 */ 20996 if (ill_is_probeonly(attach_ill)) { 20997 match_flags |= MATCH_IRE_MARK_HIDDEN; 20998 } 20999 io->ipsec_out_ill_index = 21000 attach_ill->ill_phyint->phyint_ifindex; 21001 io->ipsec_out_attach_if = B_TRUE; 21002 } else { 21003 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21004 io->ipsec_out_ill_index = 21005 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21006 } 21007 if (connp != NULL) { 21008 io->ipsec_out_multicast_loop = 21009 connp->conn_multicast_loop; 21010 io->ipsec_out_dontroute = connp->conn_dontroute; 21011 io->ipsec_out_zoneid = connp->conn_zoneid; 21012 } 21013 /* 21014 * If the application uses IP_MULTICAST_IF with 21015 * different logical addresses of the same ILL, we 21016 * need to make sure that the soruce address of 21017 * the packet matches the logical IP address used 21018 * in the option. We do it by initializing ipha_src 21019 * here. This should keep IPsec also happy as 21020 * when we return from IPsec processing, we don't 21021 * have to worry about getting the right address on 21022 * the packet. Thus it is sufficient to look for 21023 * IRE_CACHE using MATCH_IRE_ILL rathen than 21024 * MATCH_IRE_IPIF. 21025 * 21026 * NOTE : We need to do it for non-secure case also as 21027 * this might go out secure if there is a global policy 21028 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21029 * address, the source should be initialized already and 21030 * hence we won't be initializing here. 21031 * 21032 * As we do not have the ire yet, it is possible that 21033 * we set the source address here and then later discover 21034 * that the ire implies the source address to be assigned 21035 * through the RTF_SETSRC flag. 21036 * In that case, the setsrc variable will remind us 21037 * that overwritting the source address by the one 21038 * of the RTF_SETSRC-flagged ire is allowed. 21039 */ 21040 if (ipha->ipha_src == INADDR_ANY && 21041 (connp == NULL || !connp->conn_unspec_src)) { 21042 ipha->ipha_src = ipif->ipif_src_addr; 21043 setsrc = RTF_SETSRC; 21044 } 21045 /* 21046 * Find an IRE which matches the destination and the outgoing 21047 * queue (i.e. the outgoing interface.) 21048 * For loopback use a unicast IP address for 21049 * the ire lookup. 21050 */ 21051 if (IS_LOOPBACK(ipif->ipif_ill)) 21052 dst = ipif->ipif_lcl_addr; 21053 21054 /* 21055 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21056 * We don't need to lookup ire in ctable as the packet 21057 * needs to be sent to the destination through the specified 21058 * ill irrespective of ires in the cache table. 21059 */ 21060 ire = NULL; 21061 if (xmit_ill == NULL) { 21062 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21063 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21064 } 21065 21066 /* 21067 * refrele attach_ill as its not needed anymore. 21068 */ 21069 if (attach_ill != NULL) { 21070 ill_refrele(attach_ill); 21071 attach_ill = NULL; 21072 } 21073 21074 if (ire == NULL) { 21075 /* 21076 * Multicast loopback and multicast forwarding is 21077 * done in ip_wput_ire. 21078 * 21079 * Mark this packet to make it be delivered to 21080 * ip_wput_ire after the new ire has been 21081 * created. 21082 * 21083 * The call to ip_newroute_ipif takes into account 21084 * the setsrc reminder. In any case, we take care 21085 * of the RTF_MULTIRT flag. 21086 */ 21087 mp->b_prev = mp->b_next = NULL; 21088 if (xmit_ill == NULL || 21089 xmit_ill->ill_ipif_up_count > 0) { 21090 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21091 setsrc | RTF_MULTIRT, zoneid, infop); 21092 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21093 "ip_wput_end: q %p (%S)", q, "noire"); 21094 } else { 21095 freemsg(first_mp); 21096 } 21097 ipif_refrele(ipif); 21098 if (xmit_ill != NULL) 21099 ill_refrele(xmit_ill); 21100 if (need_decref) 21101 CONN_DEC_REF(connp); 21102 return; 21103 } 21104 21105 ipif_refrele(ipif); 21106 ipif = NULL; 21107 ASSERT(xmit_ill == NULL); 21108 21109 /* 21110 * Honor the RTF_SETSRC flag for multicast packets, 21111 * if allowed by the setsrc reminder. 21112 */ 21113 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21114 ipha->ipha_src = ire->ire_src_addr; 21115 } 21116 21117 /* 21118 * Unconditionally force the TTL to 1 for 21119 * multirouted multicast packets: 21120 * multirouted multicast should not cross 21121 * multicast routers. 21122 */ 21123 if (ire->ire_flags & RTF_MULTIRT) { 21124 if (ipha->ipha_ttl > 1) { 21125 ip2dbg(("ip_wput: forcing multicast " 21126 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21127 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21128 ipha->ipha_ttl = 1; 21129 } 21130 } 21131 } else { 21132 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21133 if ((ire != NULL) && (ire->ire_type & 21134 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21135 ignore_dontroute = B_TRUE; 21136 ignore_nexthop = B_TRUE; 21137 } 21138 if (ire != NULL) { 21139 ire_refrele(ire); 21140 ire = NULL; 21141 } 21142 /* 21143 * Guard against coming in from arp in which case conn is NULL. 21144 * Also guard against non M_DATA with dontroute set but 21145 * destined to local, loopback or broadcast addresses. 21146 */ 21147 if (connp != NULL && connp->conn_dontroute && 21148 !ignore_dontroute) { 21149 dontroute: 21150 /* 21151 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21152 * routing protocols from seeing false direct 21153 * connectivity. 21154 */ 21155 ipha->ipha_ttl = 1; 21156 21157 /* If suitable ipif not found, drop packet */ 21158 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21159 if (dst_ipif == NULL) { 21160 noroute: 21161 ip1dbg(("ip_wput: no route for dst using" 21162 " SO_DONTROUTE\n")); 21163 BUMP_MIB(&ipst->ips_ip_mib, 21164 ipIfStatsOutNoRoutes); 21165 mp->b_prev = mp->b_next = NULL; 21166 if (first_mp == NULL) 21167 first_mp = mp; 21168 goto drop_pkt; 21169 } else { 21170 /* 21171 * If suitable ipif has been found, set 21172 * xmit_ill to the corresponding 21173 * ipif_ill because we'll be using the 21174 * send_from_ill logic below. 21175 */ 21176 ASSERT(xmit_ill == NULL); 21177 xmit_ill = dst_ipif->ipif_ill; 21178 mutex_enter(&xmit_ill->ill_lock); 21179 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21180 mutex_exit(&xmit_ill->ill_lock); 21181 xmit_ill = NULL; 21182 ipif_refrele(dst_ipif); 21183 goto noroute; 21184 } 21185 ill_refhold_locked(xmit_ill); 21186 mutex_exit(&xmit_ill->ill_lock); 21187 ipif_refrele(dst_ipif); 21188 } 21189 } 21190 /* 21191 * If we are bound to IPIF_NOFAILOVER address, look for 21192 * an IRE_CACHE matching the ill. 21193 */ 21194 send_from_ill: 21195 if (attach_ill != NULL) { 21196 ipif_t *attach_ipif; 21197 21198 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21199 21200 /* 21201 * Check if we need an ire that will not be 21202 * looked up by anybody else i.e. HIDDEN. 21203 */ 21204 if (ill_is_probeonly(attach_ill)) { 21205 match_flags |= MATCH_IRE_MARK_HIDDEN; 21206 } 21207 21208 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21209 if (attach_ipif == NULL) { 21210 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21211 goto discard_pkt; 21212 } 21213 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21214 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21215 ipif_refrele(attach_ipif); 21216 } else if (xmit_ill != NULL) { 21217 ipif_t *ipif; 21218 21219 /* 21220 * Mark this packet as originated locally 21221 */ 21222 mp->b_prev = mp->b_next = NULL; 21223 21224 /* 21225 * Could be SO_DONTROUTE case also. 21226 * Verify that at least one ipif is up on the ill. 21227 */ 21228 if (xmit_ill->ill_ipif_up_count == 0) { 21229 ip1dbg(("ip_output: xmit_ill %s is down\n", 21230 xmit_ill->ill_name)); 21231 goto drop_pkt; 21232 } 21233 21234 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21235 if (ipif == NULL) { 21236 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21237 xmit_ill->ill_name)); 21238 goto drop_pkt; 21239 } 21240 21241 /* 21242 * Look for a ire that is part of the group, 21243 * if found use it else call ip_newroute_ipif. 21244 * IPCL_ZONEID is not used for matching because 21245 * IP_ALLZONES option is valid only when the 21246 * ill is accessible from all zones i.e has a 21247 * valid ipif in all zones. 21248 */ 21249 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21250 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21251 MBLK_GETLABEL(mp), match_flags, ipst); 21252 /* 21253 * If an ire exists use it or else create 21254 * an ire but don't add it to the cache. 21255 * Adding an ire may cause issues with 21256 * asymmetric routing. 21257 * In case of multiroute always act as if 21258 * ire does not exist. 21259 */ 21260 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21261 if (ire != NULL) 21262 ire_refrele(ire); 21263 ip_newroute_ipif(q, first_mp, ipif, 21264 dst, connp, 0, zoneid, infop); 21265 ipif_refrele(ipif); 21266 ip1dbg(("ip_output: xmit_ill via %s\n", 21267 xmit_ill->ill_name)); 21268 ill_refrele(xmit_ill); 21269 if (need_decref) 21270 CONN_DEC_REF(connp); 21271 return; 21272 } 21273 ipif_refrele(ipif); 21274 } else if (ip_nexthop || (connp != NULL && 21275 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21276 if (!ip_nexthop) { 21277 ip_nexthop = B_TRUE; 21278 nexthop_addr = connp->conn_nexthop_v4; 21279 } 21280 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21281 MATCH_IRE_GW; 21282 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21283 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21284 } else { 21285 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21286 ipst); 21287 } 21288 if (!ire) { 21289 /* 21290 * Make sure we don't load spread if this 21291 * is IPIF_NOFAILOVER case. 21292 */ 21293 if ((attach_ill != NULL) || 21294 (ip_nexthop && !ignore_nexthop)) { 21295 if (mctl_present) { 21296 io = (ipsec_out_t *)first_mp->b_rptr; 21297 ASSERT(first_mp->b_datap->db_type == 21298 M_CTL); 21299 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21300 } else { 21301 ASSERT(mp == first_mp); 21302 first_mp = allocb( 21303 sizeof (ipsec_info_t), BPRI_HI); 21304 if (first_mp == NULL) { 21305 first_mp = mp; 21306 goto discard_pkt; 21307 } 21308 first_mp->b_datap->db_type = M_CTL; 21309 first_mp->b_wptr += 21310 sizeof (ipsec_info_t); 21311 /* ipsec_out_secure is B_FALSE now */ 21312 bzero(first_mp->b_rptr, 21313 sizeof (ipsec_info_t)); 21314 io = (ipsec_out_t *)first_mp->b_rptr; 21315 io->ipsec_out_type = IPSEC_OUT; 21316 io->ipsec_out_len = 21317 sizeof (ipsec_out_t); 21318 io->ipsec_out_use_global_policy = 21319 B_TRUE; 21320 io->ipsec_out_ns = ipst->ips_netstack; 21321 first_mp->b_cont = mp; 21322 mctl_present = B_TRUE; 21323 } 21324 if (attach_ill != NULL) { 21325 io->ipsec_out_ill_index = attach_ill-> 21326 ill_phyint->phyint_ifindex; 21327 io->ipsec_out_attach_if = B_TRUE; 21328 } else { 21329 io->ipsec_out_ip_nexthop = ip_nexthop; 21330 io->ipsec_out_nexthop_addr = 21331 nexthop_addr; 21332 } 21333 } 21334 noirefound: 21335 /* 21336 * Mark this packet as having originated on 21337 * this machine. This will be noted in 21338 * ire_add_then_send, which needs to know 21339 * whether to run it back through ip_wput or 21340 * ip_rput following successful resolution. 21341 */ 21342 mp->b_prev = NULL; 21343 mp->b_next = NULL; 21344 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21345 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21346 "ip_wput_end: q %p (%S)", q, "newroute"); 21347 if (attach_ill != NULL) 21348 ill_refrele(attach_ill); 21349 if (xmit_ill != NULL) 21350 ill_refrele(xmit_ill); 21351 if (need_decref) 21352 CONN_DEC_REF(connp); 21353 return; 21354 } 21355 } 21356 21357 /* We now know where we are going with it. */ 21358 21359 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21360 "ip_wput_end: q %p (%S)", q, "end"); 21361 21362 /* 21363 * Check if the ire has the RTF_MULTIRT flag, inherited 21364 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21365 */ 21366 if (ire->ire_flags & RTF_MULTIRT) { 21367 /* 21368 * Force the TTL of multirouted packets if required. 21369 * The TTL of such packets is bounded by the 21370 * ip_multirt_ttl ndd variable. 21371 */ 21372 if ((ipst->ips_ip_multirt_ttl > 0) && 21373 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21374 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21375 "(was %d), dst 0x%08x\n", 21376 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21377 ntohl(ire->ire_addr))); 21378 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21379 } 21380 /* 21381 * At this point, we check to see if there are any pending 21382 * unresolved routes. ire_multirt_resolvable() 21383 * checks in O(n) that all IRE_OFFSUBNET ire 21384 * entries for the packet's destination and 21385 * flagged RTF_MULTIRT are currently resolved. 21386 * If some remain unresolved, we make a copy 21387 * of the current message. It will be used 21388 * to initiate additional route resolutions. 21389 */ 21390 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21391 MBLK_GETLABEL(first_mp), ipst); 21392 ip2dbg(("ip_wput[noirefound]: ire %p, " 21393 "multirt_need_resolve %d, first_mp %p\n", 21394 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21395 if (multirt_need_resolve) { 21396 copy_mp = copymsg(first_mp); 21397 if (copy_mp != NULL) { 21398 MULTIRT_DEBUG_TAG(copy_mp); 21399 } 21400 } 21401 } 21402 21403 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21404 /* 21405 * Try to resolve another multiroute if 21406 * ire_multirt_resolvable() deemed it necessary. 21407 * At this point, we need to distinguish 21408 * multicasts from other packets. For multicasts, 21409 * we call ip_newroute_ipif() and request that both 21410 * multirouting and setsrc flags are checked. 21411 */ 21412 if (copy_mp != NULL) { 21413 if (CLASSD(dst)) { 21414 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21415 if (ipif) { 21416 ASSERT(infop->ip_opt_ill_index == 0); 21417 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21418 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21419 ipif_refrele(ipif); 21420 } else { 21421 MULTIRT_DEBUG_UNTAG(copy_mp); 21422 freemsg(copy_mp); 21423 copy_mp = NULL; 21424 } 21425 } else { 21426 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21427 } 21428 } 21429 if (attach_ill != NULL) 21430 ill_refrele(attach_ill); 21431 if (xmit_ill != NULL) 21432 ill_refrele(xmit_ill); 21433 if (need_decref) 21434 CONN_DEC_REF(connp); 21435 return; 21436 21437 icmp_parameter_problem: 21438 /* could not have originated externally */ 21439 ASSERT(mp->b_prev == NULL); 21440 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21441 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21442 /* it's the IP header length that's in trouble */ 21443 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21444 first_mp = NULL; 21445 } 21446 21447 discard_pkt: 21448 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21449 drop_pkt: 21450 ip1dbg(("ip_wput: dropped packet\n")); 21451 if (ire != NULL) 21452 ire_refrele(ire); 21453 if (need_decref) 21454 CONN_DEC_REF(connp); 21455 freemsg(first_mp); 21456 if (attach_ill != NULL) 21457 ill_refrele(attach_ill); 21458 if (xmit_ill != NULL) 21459 ill_refrele(xmit_ill); 21460 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21461 "ip_wput_end: q %p (%S)", q, "droppkt"); 21462 } 21463 21464 /* 21465 * If this is a conn_t queue, then we pass in the conn. This includes the 21466 * zoneid. 21467 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21468 * in which case we use the global zoneid since those are all part of 21469 * the global zone. 21470 */ 21471 void 21472 ip_wput(queue_t *q, mblk_t *mp) 21473 { 21474 if (CONN_Q(q)) 21475 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21476 else 21477 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21478 } 21479 21480 /* 21481 * 21482 * The following rules must be observed when accessing any ipif or ill 21483 * that has been cached in the conn. Typically conn_nofailover_ill, 21484 * conn_outgoing_ill, conn_multicast_ipif and conn_multicast_ill. 21485 * 21486 * Access: The ipif or ill pointed to from the conn can be accessed under 21487 * the protection of the conn_lock or after it has been refheld under the 21488 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21489 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21490 * The reason for this is that a concurrent unplumb could actually be 21491 * cleaning up these cached pointers by walking the conns and might have 21492 * finished cleaning up the conn in question. The macros check that an 21493 * unplumb has not yet started on the ipif or ill. 21494 * 21495 * Caching: An ipif or ill pointer may be cached in the conn only after 21496 * making sure that an unplumb has not started. So the caching is done 21497 * while holding both the conn_lock and the ill_lock and after using the 21498 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21499 * flag before starting the cleanup of conns. 21500 * 21501 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21502 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21503 * or a reference to the ipif or a reference to an ire that references the 21504 * ipif. An ipif does not change its ill except for failover/failback. Since 21505 * failover/failback happens only after bringing down the ipif and making sure 21506 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21507 * the above holds. 21508 */ 21509 ipif_t * 21510 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21511 { 21512 ipif_t *ipif; 21513 ill_t *ill; 21514 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21515 21516 *err = 0; 21517 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21518 mutex_enter(&connp->conn_lock); 21519 ipif = *ipifp; 21520 if (ipif != NULL) { 21521 ill = ipif->ipif_ill; 21522 mutex_enter(&ill->ill_lock); 21523 if (IPIF_CAN_LOOKUP(ipif)) { 21524 ipif_refhold_locked(ipif); 21525 mutex_exit(&ill->ill_lock); 21526 mutex_exit(&connp->conn_lock); 21527 rw_exit(&ipst->ips_ill_g_lock); 21528 return (ipif); 21529 } else { 21530 *err = IPIF_LOOKUP_FAILED; 21531 } 21532 mutex_exit(&ill->ill_lock); 21533 } 21534 mutex_exit(&connp->conn_lock); 21535 rw_exit(&ipst->ips_ill_g_lock); 21536 return (NULL); 21537 } 21538 21539 ill_t * 21540 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21541 { 21542 ill_t *ill; 21543 21544 *err = 0; 21545 mutex_enter(&connp->conn_lock); 21546 ill = *illp; 21547 if (ill != NULL) { 21548 mutex_enter(&ill->ill_lock); 21549 if (ILL_CAN_LOOKUP(ill)) { 21550 ill_refhold_locked(ill); 21551 mutex_exit(&ill->ill_lock); 21552 mutex_exit(&connp->conn_lock); 21553 return (ill); 21554 } else { 21555 *err = ILL_LOOKUP_FAILED; 21556 } 21557 mutex_exit(&ill->ill_lock); 21558 } 21559 mutex_exit(&connp->conn_lock); 21560 return (NULL); 21561 } 21562 21563 static int 21564 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21565 { 21566 ill_t *ill; 21567 21568 ill = ipif->ipif_ill; 21569 mutex_enter(&connp->conn_lock); 21570 mutex_enter(&ill->ill_lock); 21571 if (IPIF_CAN_LOOKUP(ipif)) { 21572 *ipifp = ipif; 21573 mutex_exit(&ill->ill_lock); 21574 mutex_exit(&connp->conn_lock); 21575 return (0); 21576 } 21577 mutex_exit(&ill->ill_lock); 21578 mutex_exit(&connp->conn_lock); 21579 return (IPIF_LOOKUP_FAILED); 21580 } 21581 21582 /* 21583 * This is called if the outbound datagram needs fragmentation. 21584 * 21585 * NOTE : This function does not ire_refrele the ire argument passed in. 21586 */ 21587 static void 21588 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21589 ip_stack_t *ipst) 21590 { 21591 ipha_t *ipha; 21592 mblk_t *mp; 21593 uint32_t v_hlen_tos_len; 21594 uint32_t max_frag; 21595 uint32_t frag_flag; 21596 boolean_t dont_use; 21597 21598 if (ipsec_mp->b_datap->db_type == M_CTL) { 21599 mp = ipsec_mp->b_cont; 21600 } else { 21601 mp = ipsec_mp; 21602 } 21603 21604 ipha = (ipha_t *)mp->b_rptr; 21605 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21606 21607 #ifdef _BIG_ENDIAN 21608 #define V_HLEN (v_hlen_tos_len >> 24) 21609 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21610 #else 21611 #define V_HLEN (v_hlen_tos_len & 0xFF) 21612 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21613 #endif 21614 21615 #ifndef SPEED_BEFORE_SAFETY 21616 /* 21617 * Check that ipha_length is consistent with 21618 * the mblk length 21619 */ 21620 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21621 ip0dbg(("Packet length mismatch: %d, %ld\n", 21622 LENGTH, msgdsize(mp))); 21623 freemsg(ipsec_mp); 21624 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21625 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21626 "packet length mismatch"); 21627 return; 21628 } 21629 #endif 21630 /* 21631 * Don't use frag_flag if pre-built packet or source 21632 * routed or if multicast (since multicast packets do not solicit 21633 * ICMP "packet too big" messages). Get the values of 21634 * max_frag and frag_flag atomically by acquiring the 21635 * ire_lock. 21636 */ 21637 mutex_enter(&ire->ire_lock); 21638 max_frag = ire->ire_max_frag; 21639 frag_flag = ire->ire_frag_flag; 21640 mutex_exit(&ire->ire_lock); 21641 21642 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21643 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21644 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21645 21646 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21647 (dont_use ? 0 : frag_flag), zoneid, ipst); 21648 } 21649 21650 /* 21651 * Used for deciding the MSS size for the upper layer. Thus 21652 * we need to check the outbound policy values in the conn. 21653 */ 21654 int 21655 conn_ipsec_length(conn_t *connp) 21656 { 21657 ipsec_latch_t *ipl; 21658 21659 ipl = connp->conn_latch; 21660 if (ipl == NULL) 21661 return (0); 21662 21663 if (ipl->ipl_out_policy == NULL) 21664 return (0); 21665 21666 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21667 } 21668 21669 /* 21670 * Returns an estimate of the IPsec headers size. This is used if 21671 * we don't want to call into IPsec to get the exact size. 21672 */ 21673 int 21674 ipsec_out_extra_length(mblk_t *ipsec_mp) 21675 { 21676 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21677 ipsec_action_t *a; 21678 21679 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21680 if (!io->ipsec_out_secure) 21681 return (0); 21682 21683 a = io->ipsec_out_act; 21684 21685 if (a == NULL) { 21686 ASSERT(io->ipsec_out_policy != NULL); 21687 a = io->ipsec_out_policy->ipsp_act; 21688 } 21689 ASSERT(a != NULL); 21690 21691 return (a->ipa_ovhd); 21692 } 21693 21694 /* 21695 * Returns an estimate of the IPsec headers size. This is used if 21696 * we don't want to call into IPsec to get the exact size. 21697 */ 21698 int 21699 ipsec_in_extra_length(mblk_t *ipsec_mp) 21700 { 21701 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21702 ipsec_action_t *a; 21703 21704 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21705 21706 a = ii->ipsec_in_action; 21707 return (a == NULL ? 0 : a->ipa_ovhd); 21708 } 21709 21710 /* 21711 * If there are any source route options, return the true final 21712 * destination. Otherwise, return the destination. 21713 */ 21714 ipaddr_t 21715 ip_get_dst(ipha_t *ipha) 21716 { 21717 ipoptp_t opts; 21718 uchar_t *opt; 21719 uint8_t optval; 21720 uint8_t optlen; 21721 ipaddr_t dst; 21722 uint32_t off; 21723 21724 dst = ipha->ipha_dst; 21725 21726 if (IS_SIMPLE_IPH(ipha)) 21727 return (dst); 21728 21729 for (optval = ipoptp_first(&opts, ipha); 21730 optval != IPOPT_EOL; 21731 optval = ipoptp_next(&opts)) { 21732 opt = opts.ipoptp_cur; 21733 optlen = opts.ipoptp_len; 21734 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21735 switch (optval) { 21736 case IPOPT_SSRR: 21737 case IPOPT_LSRR: 21738 off = opt[IPOPT_OFFSET]; 21739 /* 21740 * If one of the conditions is true, it means 21741 * end of options and dst already has the right 21742 * value. 21743 */ 21744 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21745 off = optlen - IP_ADDR_LEN; 21746 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21747 } 21748 return (dst); 21749 default: 21750 break; 21751 } 21752 } 21753 21754 return (dst); 21755 } 21756 21757 mblk_t * 21758 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21759 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21760 { 21761 ipsec_out_t *io; 21762 mblk_t *first_mp; 21763 boolean_t policy_present; 21764 ip_stack_t *ipst; 21765 ipsec_stack_t *ipss; 21766 21767 ASSERT(ire != NULL); 21768 ipst = ire->ire_ipst; 21769 ipss = ipst->ips_netstack->netstack_ipsec; 21770 21771 first_mp = mp; 21772 if (mp->b_datap->db_type == M_CTL) { 21773 io = (ipsec_out_t *)first_mp->b_rptr; 21774 /* 21775 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21776 * 21777 * 1) There is per-socket policy (including cached global 21778 * policy) or a policy on the IP-in-IP tunnel. 21779 * 2) There is no per-socket policy, but it is 21780 * a multicast packet that needs to go out 21781 * on a specific interface. This is the case 21782 * where (ip_wput and ip_wput_multicast) attaches 21783 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21784 * 21785 * In case (2) we check with global policy to 21786 * see if there is a match and set the ill_index 21787 * appropriately so that we can lookup the ire 21788 * properly in ip_wput_ipsec_out. 21789 */ 21790 21791 /* 21792 * ipsec_out_use_global_policy is set to B_FALSE 21793 * in ipsec_in_to_out(). Refer to that function for 21794 * details. 21795 */ 21796 if ((io->ipsec_out_latch == NULL) && 21797 (io->ipsec_out_use_global_policy)) { 21798 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21799 ire, connp, unspec_src, zoneid)); 21800 } 21801 if (!io->ipsec_out_secure) { 21802 /* 21803 * If this is not a secure packet, drop 21804 * the IPSEC_OUT mp and treat it as a clear 21805 * packet. This happens when we are sending 21806 * a ICMP reply back to a clear packet. See 21807 * ipsec_in_to_out() for details. 21808 */ 21809 mp = first_mp->b_cont; 21810 freeb(first_mp); 21811 } 21812 return (mp); 21813 } 21814 /* 21815 * See whether we need to attach a global policy here. We 21816 * don't depend on the conn (as it could be null) for deciding 21817 * what policy this datagram should go through because it 21818 * should have happened in ip_wput if there was some 21819 * policy. This normally happens for connections which are not 21820 * fully bound preventing us from caching policies in 21821 * ip_bind. Packets coming from the TCP listener/global queue 21822 * - which are non-hard_bound - could also be affected by 21823 * applying policy here. 21824 * 21825 * If this packet is coming from tcp global queue or listener, 21826 * we will be applying policy here. This may not be *right* 21827 * if these packets are coming from the detached connection as 21828 * it could have gone in clear before. This happens only if a 21829 * TCP connection started when there is no policy and somebody 21830 * added policy before it became detached. Thus packets of the 21831 * detached connection could go out secure and the other end 21832 * would drop it because it will be expecting in clear. The 21833 * converse is not true i.e if somebody starts a TCP 21834 * connection and deletes the policy, all the packets will 21835 * still go out with the policy that existed before deleting 21836 * because ip_unbind sends up policy information which is used 21837 * by TCP on subsequent ip_wputs. The right solution is to fix 21838 * TCP to attach a dummy IPSEC_OUT and set 21839 * ipsec_out_use_global_policy to B_FALSE. As this might 21840 * affect performance for normal cases, we are not doing it. 21841 * Thus, set policy before starting any TCP connections. 21842 * 21843 * NOTE - We might apply policy even for a hard bound connection 21844 * - for which we cached policy in ip_bind - if somebody added 21845 * global policy after we inherited the policy in ip_bind. 21846 * This means that the packets that were going out in clear 21847 * previously would start going secure and hence get dropped 21848 * on the other side. To fix this, TCP attaches a dummy 21849 * ipsec_out and make sure that we don't apply global policy. 21850 */ 21851 if (ipha != NULL) 21852 policy_present = ipss->ipsec_outbound_v4_policy_present; 21853 else 21854 policy_present = ipss->ipsec_outbound_v6_policy_present; 21855 if (!policy_present) 21856 return (mp); 21857 21858 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21859 zoneid)); 21860 } 21861 21862 ire_t * 21863 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21864 { 21865 ipaddr_t addr; 21866 ire_t *save_ire; 21867 irb_t *irb; 21868 ill_group_t *illgrp; 21869 int err; 21870 21871 save_ire = ire; 21872 addr = ire->ire_addr; 21873 21874 ASSERT(ire->ire_type == IRE_BROADCAST); 21875 21876 illgrp = connp->conn_outgoing_ill->ill_group; 21877 if (illgrp == NULL) { 21878 *conn_outgoing_ill = conn_get_held_ill(connp, 21879 &connp->conn_outgoing_ill, &err); 21880 if (err == ILL_LOOKUP_FAILED) { 21881 ire_refrele(save_ire); 21882 return (NULL); 21883 } 21884 return (save_ire); 21885 } 21886 /* 21887 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21888 * If it is part of the group, we need to send on the ire 21889 * that has been cleared of IRE_MARK_NORECV and that belongs 21890 * to this group. This is okay as IP_BOUND_IF really means 21891 * any ill in the group. We depend on the fact that the 21892 * first ire in the group is always cleared of IRE_MARK_NORECV 21893 * if such an ire exists. This is possible only if you have 21894 * at least one ill in the group that has not failed. 21895 * 21896 * First get to the ire that matches the address and group. 21897 * 21898 * We don't look for an ire with a matching zoneid because a given zone 21899 * won't always have broadcast ires on all ills in the group. 21900 */ 21901 irb = ire->ire_bucket; 21902 rw_enter(&irb->irb_lock, RW_READER); 21903 if (ire->ire_marks & IRE_MARK_NORECV) { 21904 /* 21905 * If the current zone only has an ire broadcast for this 21906 * address marked NORECV, the ire we want is ahead in the 21907 * bucket, so we look it up deliberately ignoring the zoneid. 21908 */ 21909 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21910 if (ire->ire_addr != addr) 21911 continue; 21912 /* skip over deleted ires */ 21913 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21914 continue; 21915 } 21916 } 21917 while (ire != NULL) { 21918 /* 21919 * If a new interface is coming up, we could end up 21920 * seeing the loopback ire and the non-loopback ire 21921 * may not have been added yet. So check for ire_stq 21922 */ 21923 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 21924 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 21925 break; 21926 } 21927 ire = ire->ire_next; 21928 } 21929 if (ire != NULL && ire->ire_addr == addr && 21930 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 21931 IRE_REFHOLD(ire); 21932 rw_exit(&irb->irb_lock); 21933 ire_refrele(save_ire); 21934 *conn_outgoing_ill = ire_to_ill(ire); 21935 /* 21936 * Refhold the ill to make the conn_outgoing_ill 21937 * independent of the ire. ip_wput_ire goes in a loop 21938 * and may refrele the ire. Since we have an ire at this 21939 * point we don't need to use ILL_CAN_LOOKUP on the ill. 21940 */ 21941 ill_refhold(*conn_outgoing_ill); 21942 return (ire); 21943 } 21944 rw_exit(&irb->irb_lock); 21945 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 21946 /* 21947 * If we can't find a suitable ire, return the original ire. 21948 */ 21949 return (save_ire); 21950 } 21951 21952 /* 21953 * This function does the ire_refrele of the ire passed in as the 21954 * argument. As this function looks up more ires i.e broadcast ires, 21955 * it needs to REFRELE them. Currently, for simplicity we don't 21956 * differentiate the one passed in and looked up here. We always 21957 * REFRELE. 21958 * IPQoS Notes: 21959 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21960 * IPsec packets are done in ipsec_out_process. 21961 * 21962 */ 21963 void 21964 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 21965 zoneid_t zoneid) 21966 { 21967 ipha_t *ipha; 21968 #define rptr ((uchar_t *)ipha) 21969 queue_t *stq; 21970 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21971 uint32_t v_hlen_tos_len; 21972 uint32_t ttl_protocol; 21973 ipaddr_t src; 21974 ipaddr_t dst; 21975 uint32_t cksum; 21976 ipaddr_t orig_src; 21977 ire_t *ire1; 21978 mblk_t *next_mp; 21979 uint_t hlen; 21980 uint16_t *up; 21981 uint32_t max_frag = ire->ire_max_frag; 21982 ill_t *ill = ire_to_ill(ire); 21983 int clusterwide; 21984 uint16_t ip_hdr_included; /* IP header included by ULP? */ 21985 int ipsec_len; 21986 mblk_t *first_mp; 21987 ipsec_out_t *io; 21988 boolean_t conn_dontroute; /* conn value for multicast */ 21989 boolean_t conn_multicast_loop; /* conn value for multicast */ 21990 boolean_t multicast_forward; /* Should we forward ? */ 21991 boolean_t unspec_src; 21992 ill_t *conn_outgoing_ill = NULL; 21993 ill_t *ire_ill; 21994 ill_t *ire1_ill; 21995 ill_t *out_ill; 21996 uint32_t ill_index = 0; 21997 boolean_t multirt_send = B_FALSE; 21998 int err; 21999 ipxmit_state_t pktxmit_state; 22000 ip_stack_t *ipst = ire->ire_ipst; 22001 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22002 22003 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22004 "ip_wput_ire_start: q %p", q); 22005 22006 multicast_forward = B_FALSE; 22007 unspec_src = (connp != NULL && connp->conn_unspec_src); 22008 22009 if (ire->ire_flags & RTF_MULTIRT) { 22010 /* 22011 * Multirouting case. The bucket where ire is stored 22012 * probably holds other RTF_MULTIRT flagged ire 22013 * to the destination. In this call to ip_wput_ire, 22014 * we attempt to send the packet through all 22015 * those ires. Thus, we first ensure that ire is the 22016 * first RTF_MULTIRT ire in the bucket, 22017 * before walking the ire list. 22018 */ 22019 ire_t *first_ire; 22020 irb_t *irb = ire->ire_bucket; 22021 ASSERT(irb != NULL); 22022 22023 /* Make sure we do not omit any multiroute ire. */ 22024 IRB_REFHOLD(irb); 22025 for (first_ire = irb->irb_ire; 22026 first_ire != NULL; 22027 first_ire = first_ire->ire_next) { 22028 if ((first_ire->ire_flags & RTF_MULTIRT) && 22029 (first_ire->ire_addr == ire->ire_addr) && 22030 !(first_ire->ire_marks & 22031 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 22032 break; 22033 } 22034 } 22035 22036 if ((first_ire != NULL) && (first_ire != ire)) { 22037 IRE_REFHOLD(first_ire); 22038 ire_refrele(ire); 22039 ire = first_ire; 22040 ill = ire_to_ill(ire); 22041 } 22042 IRB_REFRELE(irb); 22043 } 22044 22045 /* 22046 * conn_outgoing_ill variable is used only in the broadcast loop. 22047 * for performance we don't grab the mutexs in the fastpath 22048 */ 22049 if ((connp != NULL) && 22050 (ire->ire_type == IRE_BROADCAST) && 22051 ((connp->conn_nofailover_ill != NULL) || 22052 (connp->conn_outgoing_ill != NULL))) { 22053 /* 22054 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22055 * option. So, see if this endpoint is bound to a 22056 * IPIF_NOFAILOVER address. If so, honor it. This implies 22057 * that if the interface is failed, we will still send 22058 * the packet on the same ill which is what we want. 22059 */ 22060 conn_outgoing_ill = conn_get_held_ill(connp, 22061 &connp->conn_nofailover_ill, &err); 22062 if (err == ILL_LOOKUP_FAILED) { 22063 ire_refrele(ire); 22064 freemsg(mp); 22065 return; 22066 } 22067 if (conn_outgoing_ill == NULL) { 22068 /* 22069 * Choose a good ill in the group to send the 22070 * packets on. 22071 */ 22072 ire = conn_set_outgoing_ill(connp, ire, 22073 &conn_outgoing_ill); 22074 if (ire == NULL) { 22075 freemsg(mp); 22076 return; 22077 } 22078 } 22079 } 22080 22081 if (mp->b_datap->db_type != M_CTL) { 22082 ipha = (ipha_t *)mp->b_rptr; 22083 } else { 22084 io = (ipsec_out_t *)mp->b_rptr; 22085 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22086 ASSERT(zoneid == io->ipsec_out_zoneid); 22087 ASSERT(zoneid != ALL_ZONES); 22088 ipha = (ipha_t *)mp->b_cont->b_rptr; 22089 dst = ipha->ipha_dst; 22090 /* 22091 * For the multicast case, ipsec_out carries conn_dontroute and 22092 * conn_multicast_loop as conn may not be available here. We 22093 * need this for multicast loopback and forwarding which is done 22094 * later in the code. 22095 */ 22096 if (CLASSD(dst)) { 22097 conn_dontroute = io->ipsec_out_dontroute; 22098 conn_multicast_loop = io->ipsec_out_multicast_loop; 22099 /* 22100 * If conn_dontroute is not set or conn_multicast_loop 22101 * is set, we need to do forwarding/loopback. For 22102 * datagrams from ip_wput_multicast, conn_dontroute is 22103 * set to B_TRUE and conn_multicast_loop is set to 22104 * B_FALSE so that we neither do forwarding nor 22105 * loopback. 22106 */ 22107 if (!conn_dontroute || conn_multicast_loop) 22108 multicast_forward = B_TRUE; 22109 } 22110 } 22111 22112 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22113 ire->ire_zoneid != ALL_ZONES) { 22114 /* 22115 * When a zone sends a packet to another zone, we try to deliver 22116 * the packet under the same conditions as if the destination 22117 * was a real node on the network. To do so, we look for a 22118 * matching route in the forwarding table. 22119 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22120 * ip_newroute() does. 22121 * Note that IRE_LOCAL are special, since they are used 22122 * when the zoneid doesn't match in some cases. This means that 22123 * we need to handle ipha_src differently since ire_src_addr 22124 * belongs to the receiving zone instead of the sending zone. 22125 * When ip_restrict_interzone_loopback is set, then 22126 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22127 * for loopback between zones when the logical "Ethernet" would 22128 * have looped them back. 22129 */ 22130 ire_t *src_ire; 22131 22132 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22133 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22134 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22135 if (src_ire != NULL && 22136 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22137 (!ipst->ips_ip_restrict_interzone_loopback || 22138 ire_local_same_ill_group(ire, src_ire))) { 22139 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22140 ipha->ipha_src = src_ire->ire_src_addr; 22141 ire_refrele(src_ire); 22142 } else { 22143 ire_refrele(ire); 22144 if (conn_outgoing_ill != NULL) 22145 ill_refrele(conn_outgoing_ill); 22146 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22147 if (src_ire != NULL) { 22148 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22149 ire_refrele(src_ire); 22150 freemsg(mp); 22151 return; 22152 } 22153 ire_refrele(src_ire); 22154 } 22155 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22156 /* Failed */ 22157 freemsg(mp); 22158 return; 22159 } 22160 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22161 ipst); 22162 return; 22163 } 22164 } 22165 22166 if (mp->b_datap->db_type == M_CTL || 22167 ipss->ipsec_outbound_v4_policy_present) { 22168 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22169 unspec_src, zoneid); 22170 if (mp == NULL) { 22171 ire_refrele(ire); 22172 if (conn_outgoing_ill != NULL) 22173 ill_refrele(conn_outgoing_ill); 22174 return; 22175 } 22176 } 22177 22178 first_mp = mp; 22179 ipsec_len = 0; 22180 22181 if (first_mp->b_datap->db_type == M_CTL) { 22182 io = (ipsec_out_t *)first_mp->b_rptr; 22183 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22184 mp = first_mp->b_cont; 22185 ipsec_len = ipsec_out_extra_length(first_mp); 22186 ASSERT(ipsec_len >= 0); 22187 /* We already picked up the zoneid from the M_CTL above */ 22188 ASSERT(zoneid == io->ipsec_out_zoneid); 22189 ASSERT(zoneid != ALL_ZONES); 22190 22191 /* 22192 * Drop M_CTL here if IPsec processing is not needed. 22193 * (Non-IPsec use of M_CTL extracted any information it 22194 * needed above). 22195 */ 22196 if (ipsec_len == 0) { 22197 freeb(first_mp); 22198 first_mp = mp; 22199 } 22200 } 22201 22202 /* 22203 * Fast path for ip_wput_ire 22204 */ 22205 22206 ipha = (ipha_t *)mp->b_rptr; 22207 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22208 dst = ipha->ipha_dst; 22209 22210 /* 22211 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22212 * if the socket is a SOCK_RAW type. The transport checksum should 22213 * be provided in the pre-built packet, so we don't need to compute it. 22214 * Also, other application set flags, like DF, should not be altered. 22215 * Other transport MUST pass down zero. 22216 */ 22217 ip_hdr_included = ipha->ipha_ident; 22218 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22219 22220 if (CLASSD(dst)) { 22221 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22222 ntohl(dst), 22223 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22224 ntohl(ire->ire_addr))); 22225 } 22226 22227 /* Macros to extract header fields from data already in registers */ 22228 #ifdef _BIG_ENDIAN 22229 #define V_HLEN (v_hlen_tos_len >> 24) 22230 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22231 #define PROTO (ttl_protocol & 0xFF) 22232 #else 22233 #define V_HLEN (v_hlen_tos_len & 0xFF) 22234 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22235 #define PROTO (ttl_protocol >> 8) 22236 #endif 22237 22238 22239 orig_src = src = ipha->ipha_src; 22240 /* (The loop back to "another" is explained down below.) */ 22241 another:; 22242 /* 22243 * Assign an ident value for this packet. We assign idents on 22244 * a per destination basis out of the IRE. There could be 22245 * other threads targeting the same destination, so we have to 22246 * arrange for a atomic increment. Note that we use a 32-bit 22247 * atomic add because it has better performance than its 22248 * 16-bit sibling. 22249 * 22250 * If running in cluster mode and if the source address 22251 * belongs to a replicated service then vector through 22252 * cl_inet_ipident vector to allocate ip identifier 22253 * NOTE: This is a contract private interface with the 22254 * clustering group. 22255 */ 22256 clusterwide = 0; 22257 if (cl_inet_ipident) { 22258 ASSERT(cl_inet_isclusterwide); 22259 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22260 AF_INET, (uint8_t *)(uintptr_t)src)) { 22261 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22262 AF_INET, (uint8_t *)(uintptr_t)src, 22263 (uint8_t *)(uintptr_t)dst); 22264 clusterwide = 1; 22265 } 22266 } 22267 if (!clusterwide) { 22268 ipha->ipha_ident = 22269 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22270 } 22271 22272 #ifndef _BIG_ENDIAN 22273 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22274 #endif 22275 22276 /* 22277 * Set source address unless sent on an ill or conn_unspec_src is set. 22278 * This is needed to obey conn_unspec_src when packets go through 22279 * ip_newroute + arp. 22280 * Assumes ip_newroute{,_multi} sets the source address as well. 22281 */ 22282 if (src == INADDR_ANY && !unspec_src) { 22283 /* 22284 * Assign the appropriate source address from the IRE if none 22285 * was specified. 22286 */ 22287 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22288 22289 /* 22290 * With IP multipathing, broadcast packets are sent on the ire 22291 * that has been cleared of IRE_MARK_NORECV and that belongs to 22292 * the group. However, this ire might not be in the same zone so 22293 * we can't always use its source address. We look for a 22294 * broadcast ire in the same group and in the right zone. 22295 */ 22296 if (ire->ire_type == IRE_BROADCAST && 22297 ire->ire_zoneid != zoneid) { 22298 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22299 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22300 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22301 if (src_ire != NULL) { 22302 src = src_ire->ire_src_addr; 22303 ire_refrele(src_ire); 22304 } else { 22305 ire_refrele(ire); 22306 if (conn_outgoing_ill != NULL) 22307 ill_refrele(conn_outgoing_ill); 22308 freemsg(first_mp); 22309 if (ill != NULL) { 22310 BUMP_MIB(ill->ill_ip_mib, 22311 ipIfStatsOutDiscards); 22312 } else { 22313 BUMP_MIB(&ipst->ips_ip_mib, 22314 ipIfStatsOutDiscards); 22315 } 22316 return; 22317 } 22318 } else { 22319 src = ire->ire_src_addr; 22320 } 22321 22322 if (connp == NULL) { 22323 ip1dbg(("ip_wput_ire: no connp and no src " 22324 "address for dst 0x%x, using src 0x%x\n", 22325 ntohl(dst), 22326 ntohl(src))); 22327 } 22328 ipha->ipha_src = src; 22329 } 22330 stq = ire->ire_stq; 22331 22332 /* 22333 * We only allow ire chains for broadcasts since there will 22334 * be multiple IRE_CACHE entries for the same multicast 22335 * address (one per ipif). 22336 */ 22337 next_mp = NULL; 22338 22339 /* broadcast packet */ 22340 if (ire->ire_type == IRE_BROADCAST) 22341 goto broadcast; 22342 22343 /* loopback ? */ 22344 if (stq == NULL) 22345 goto nullstq; 22346 22347 /* The ill_index for outbound ILL */ 22348 ill_index = Q_TO_INDEX(stq); 22349 22350 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22351 ttl_protocol = ((uint16_t *)ipha)[4]; 22352 22353 /* pseudo checksum (do it in parts for IP header checksum) */ 22354 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22355 22356 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22357 queue_t *dev_q = stq->q_next; 22358 22359 /* flow controlled */ 22360 if ((dev_q->q_next || dev_q->q_first) && 22361 !canput(dev_q)) 22362 goto blocked; 22363 if ((PROTO == IPPROTO_UDP) && 22364 (ip_hdr_included != IP_HDR_INCLUDED)) { 22365 hlen = (V_HLEN & 0xF) << 2; 22366 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22367 if (*up != 0) { 22368 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22369 hlen, LENGTH, max_frag, ipsec_len, cksum); 22370 /* Software checksum? */ 22371 if (DB_CKSUMFLAGS(mp) == 0) { 22372 IP_STAT(ipst, ip_out_sw_cksum); 22373 IP_STAT_UPDATE(ipst, 22374 ip_udp_out_sw_cksum_bytes, 22375 LENGTH - hlen); 22376 } 22377 } 22378 } 22379 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22380 hlen = (V_HLEN & 0xF) << 2; 22381 if (PROTO == IPPROTO_TCP) { 22382 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22383 /* 22384 * The packet header is processed once and for all, even 22385 * in the multirouting case. We disable hardware 22386 * checksum if the packet is multirouted, as it will be 22387 * replicated via several interfaces, and not all of 22388 * them may have this capability. 22389 */ 22390 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22391 LENGTH, max_frag, ipsec_len, cksum); 22392 /* Software checksum? */ 22393 if (DB_CKSUMFLAGS(mp) == 0) { 22394 IP_STAT(ipst, ip_out_sw_cksum); 22395 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22396 LENGTH - hlen); 22397 } 22398 } else { 22399 sctp_hdr_t *sctph; 22400 22401 ASSERT(PROTO == IPPROTO_SCTP); 22402 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22403 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22404 /* 22405 * Zero out the checksum field to ensure proper 22406 * checksum calculation. 22407 */ 22408 sctph->sh_chksum = 0; 22409 #ifdef DEBUG 22410 if (!skip_sctp_cksum) 22411 #endif 22412 sctph->sh_chksum = sctp_cksum(mp, hlen); 22413 } 22414 } 22415 22416 /* 22417 * If this is a multicast packet and originated from ip_wput 22418 * we need to do loopback and forwarding checks. If it comes 22419 * from ip_wput_multicast, we SHOULD not do this. 22420 */ 22421 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22422 22423 /* checksum */ 22424 cksum += ttl_protocol; 22425 22426 /* fragment the packet */ 22427 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22428 goto fragmentit; 22429 /* 22430 * Don't use frag_flag if packet is pre-built or source 22431 * routed or if multicast (since multicast packets do 22432 * not solicit ICMP "packet too big" messages). 22433 */ 22434 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22435 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22436 !ip_source_route_included(ipha)) && 22437 !CLASSD(ipha->ipha_dst)) 22438 ipha->ipha_fragment_offset_and_flags |= 22439 htons(ire->ire_frag_flag); 22440 22441 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22442 /* calculate IP header checksum */ 22443 cksum += ipha->ipha_ident; 22444 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22445 cksum += ipha->ipha_fragment_offset_and_flags; 22446 22447 /* IP options present */ 22448 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22449 if (hlen) 22450 goto checksumoptions; 22451 22452 /* calculate hdr checksum */ 22453 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22454 cksum = ~(cksum + (cksum >> 16)); 22455 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22456 } 22457 if (ipsec_len != 0) { 22458 /* 22459 * We will do the rest of the processing after 22460 * we come back from IPsec in ip_wput_ipsec_out(). 22461 */ 22462 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22463 22464 io = (ipsec_out_t *)first_mp->b_rptr; 22465 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22466 ill_phyint->phyint_ifindex; 22467 22468 ipsec_out_process(q, first_mp, ire, ill_index); 22469 ire_refrele(ire); 22470 if (conn_outgoing_ill != NULL) 22471 ill_refrele(conn_outgoing_ill); 22472 return; 22473 } 22474 22475 /* 22476 * In most cases, the emission loop below is entered only 22477 * once. Only in the case where the ire holds the 22478 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22479 * flagged ires in the bucket, and send the packet 22480 * through all crossed RTF_MULTIRT routes. 22481 */ 22482 if (ire->ire_flags & RTF_MULTIRT) { 22483 multirt_send = B_TRUE; 22484 } 22485 do { 22486 if (multirt_send) { 22487 irb_t *irb; 22488 /* 22489 * We are in a multiple send case, need to get 22490 * the next ire and make a duplicate of the packet. 22491 * ire1 holds here the next ire to process in the 22492 * bucket. If multirouting is expected, 22493 * any non-RTF_MULTIRT ire that has the 22494 * right destination address is ignored. 22495 */ 22496 irb = ire->ire_bucket; 22497 ASSERT(irb != NULL); 22498 22499 IRB_REFHOLD(irb); 22500 for (ire1 = ire->ire_next; 22501 ire1 != NULL; 22502 ire1 = ire1->ire_next) { 22503 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22504 continue; 22505 if (ire1->ire_addr != ire->ire_addr) 22506 continue; 22507 if (ire1->ire_marks & 22508 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22509 continue; 22510 22511 /* Got one */ 22512 IRE_REFHOLD(ire1); 22513 break; 22514 } 22515 IRB_REFRELE(irb); 22516 22517 if (ire1 != NULL) { 22518 next_mp = copyb(mp); 22519 if ((next_mp == NULL) || 22520 ((mp->b_cont != NULL) && 22521 ((next_mp->b_cont = 22522 dupmsg(mp->b_cont)) == NULL))) { 22523 freemsg(next_mp); 22524 next_mp = NULL; 22525 ire_refrele(ire1); 22526 ire1 = NULL; 22527 } 22528 } 22529 22530 /* Last multiroute ire; don't loop anymore. */ 22531 if (ire1 == NULL) { 22532 multirt_send = B_FALSE; 22533 } 22534 } 22535 22536 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22537 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22538 mblk_t *, mp); 22539 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22540 ipst->ips_ipv4firewall_physical_out, 22541 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, ipst); 22542 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22543 if (mp == NULL) 22544 goto release_ire_and_ill; 22545 22546 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22547 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22548 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22549 if ((pktxmit_state == SEND_FAILED) || 22550 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22551 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22552 "- packet dropped\n")); 22553 release_ire_and_ill: 22554 ire_refrele(ire); 22555 if (next_mp != NULL) { 22556 freemsg(next_mp); 22557 ire_refrele(ire1); 22558 } 22559 if (conn_outgoing_ill != NULL) 22560 ill_refrele(conn_outgoing_ill); 22561 return; 22562 } 22563 22564 if (CLASSD(dst)) { 22565 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22566 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22567 LENGTH); 22568 } 22569 22570 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22571 "ip_wput_ire_end: q %p (%S)", 22572 q, "last copy out"); 22573 IRE_REFRELE(ire); 22574 22575 if (multirt_send) { 22576 ASSERT(ire1); 22577 /* 22578 * Proceed with the next RTF_MULTIRT ire, 22579 * Also set up the send-to queue accordingly. 22580 */ 22581 ire = ire1; 22582 ire1 = NULL; 22583 stq = ire->ire_stq; 22584 mp = next_mp; 22585 next_mp = NULL; 22586 ipha = (ipha_t *)mp->b_rptr; 22587 ill_index = Q_TO_INDEX(stq); 22588 ill = (ill_t *)stq->q_ptr; 22589 } 22590 } while (multirt_send); 22591 if (conn_outgoing_ill != NULL) 22592 ill_refrele(conn_outgoing_ill); 22593 return; 22594 22595 /* 22596 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22597 */ 22598 broadcast: 22599 { 22600 /* 22601 * To avoid broadcast storms, we usually set the TTL to 1 for 22602 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22603 * can be overridden stack-wide through the ip_broadcast_ttl 22604 * ndd tunable, or on a per-connection basis through the 22605 * IP_BROADCAST_TTL socket option. 22606 * 22607 * In the event that we are replying to incoming ICMP packets, 22608 * connp could be NULL. 22609 */ 22610 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22611 if (connp != NULL) { 22612 if (connp->conn_dontroute) 22613 ipha->ipha_ttl = 1; 22614 else if (connp->conn_broadcast_ttl != 0) 22615 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22616 } 22617 22618 /* 22619 * Note that we are not doing a IRB_REFHOLD here. 22620 * Actually we don't care if the list changes i.e 22621 * if somebody deletes an IRE from the list while 22622 * we drop the lock, the next time we come around 22623 * ire_next will be NULL and hence we won't send 22624 * out multiple copies which is fine. 22625 */ 22626 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22627 ire1 = ire->ire_next; 22628 if (conn_outgoing_ill != NULL) { 22629 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22630 ASSERT(ire1 == ire->ire_next); 22631 if (ire1 != NULL && ire1->ire_addr == dst) { 22632 ire_refrele(ire); 22633 ire = ire1; 22634 IRE_REFHOLD(ire); 22635 ire1 = ire->ire_next; 22636 continue; 22637 } 22638 rw_exit(&ire->ire_bucket->irb_lock); 22639 /* Did not find a matching ill */ 22640 ip1dbg(("ip_wput_ire: broadcast with no " 22641 "matching IP_BOUND_IF ill %s dst %x\n", 22642 conn_outgoing_ill->ill_name, dst)); 22643 freemsg(first_mp); 22644 if (ire != NULL) 22645 ire_refrele(ire); 22646 ill_refrele(conn_outgoing_ill); 22647 return; 22648 } 22649 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22650 /* 22651 * If the next IRE has the same address and is not one 22652 * of the two copies that we need to send, try to see 22653 * whether this copy should be sent at all. This 22654 * assumes that we insert loopbacks first and then 22655 * non-loopbacks. This is acheived by inserting the 22656 * loopback always before non-loopback. 22657 * This is used to send a single copy of a broadcast 22658 * packet out all physical interfaces that have an 22659 * matching IRE_BROADCAST while also looping 22660 * back one copy (to ip_wput_local) for each 22661 * matching physical interface. However, we avoid 22662 * sending packets out different logical that match by 22663 * having ipif_up/ipif_down supress duplicate 22664 * IRE_BROADCASTS. 22665 * 22666 * This feature is currently used to get broadcasts 22667 * sent to multiple interfaces, when the broadcast 22668 * address being used applies to multiple interfaces. 22669 * For example, a whole net broadcast will be 22670 * replicated on every connected subnet of 22671 * the target net. 22672 * 22673 * Each zone has its own set of IRE_BROADCASTs, so that 22674 * we're able to distribute inbound packets to multiple 22675 * zones who share a broadcast address. We avoid looping 22676 * back outbound packets in different zones but on the 22677 * same ill, as the application would see duplicates. 22678 * 22679 * If the interfaces are part of the same group, 22680 * we would want to send only one copy out for 22681 * whole group. 22682 * 22683 * This logic assumes that ire_add_v4() groups the 22684 * IRE_BROADCAST entries so that those with the same 22685 * ire_addr and ill_group are kept together. 22686 */ 22687 ire_ill = ire->ire_ipif->ipif_ill; 22688 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22689 if (ire_ill->ill_group != NULL && 22690 (ire->ire_marks & IRE_MARK_NORECV)) { 22691 /* 22692 * If the current zone only has an ire 22693 * broadcast for this address marked 22694 * NORECV, the ire we want is ahead in 22695 * the bucket, so we look it up 22696 * deliberately ignoring the zoneid. 22697 */ 22698 for (ire1 = ire->ire_bucket->irb_ire; 22699 ire1 != NULL; 22700 ire1 = ire1->ire_next) { 22701 ire1_ill = 22702 ire1->ire_ipif->ipif_ill; 22703 if (ire1->ire_addr != dst) 22704 continue; 22705 /* skip over the current ire */ 22706 if (ire1 == ire) 22707 continue; 22708 /* skip over deleted ires */ 22709 if (ire1->ire_marks & 22710 IRE_MARK_CONDEMNED) 22711 continue; 22712 /* 22713 * non-loopback ire in our 22714 * group: use it for the next 22715 * pass in the loop 22716 */ 22717 if (ire1->ire_stq != NULL && 22718 ire1_ill->ill_group == 22719 ire_ill->ill_group) 22720 break; 22721 } 22722 } 22723 } else { 22724 while (ire1 != NULL && ire1->ire_addr == dst) { 22725 ire1_ill = ire1->ire_ipif->ipif_ill; 22726 /* 22727 * We can have two broadcast ires on the 22728 * same ill in different zones; here 22729 * we'll send a copy of the packet on 22730 * each ill and the fanout code will 22731 * call conn_wantpacket() to check that 22732 * the zone has the broadcast address 22733 * configured on the ill. If the two 22734 * ires are in the same group we only 22735 * send one copy up. 22736 */ 22737 if (ire1_ill != ire_ill && 22738 (ire1_ill->ill_group == NULL || 22739 ire_ill->ill_group == NULL || 22740 ire1_ill->ill_group != 22741 ire_ill->ill_group)) { 22742 break; 22743 } 22744 ire1 = ire1->ire_next; 22745 } 22746 } 22747 } 22748 ASSERT(multirt_send == B_FALSE); 22749 if (ire1 != NULL && ire1->ire_addr == dst) { 22750 if ((ire->ire_flags & RTF_MULTIRT) && 22751 (ire1->ire_flags & RTF_MULTIRT)) { 22752 /* 22753 * We are in the multirouting case. 22754 * The message must be sent at least 22755 * on both ires. These ires have been 22756 * inserted AFTER the standard ones 22757 * in ip_rt_add(). There are thus no 22758 * other ire entries for the destination 22759 * address in the rest of the bucket 22760 * that do not have the RTF_MULTIRT 22761 * flag. We don't process a copy 22762 * of the message here. This will be 22763 * done in the final sending loop. 22764 */ 22765 multirt_send = B_TRUE; 22766 } else { 22767 next_mp = ip_copymsg(first_mp); 22768 if (next_mp != NULL) 22769 IRE_REFHOLD(ire1); 22770 } 22771 } 22772 rw_exit(&ire->ire_bucket->irb_lock); 22773 } 22774 22775 if (stq) { 22776 /* 22777 * A non-NULL send-to queue means this packet is going 22778 * out of this machine. 22779 */ 22780 out_ill = (ill_t *)stq->q_ptr; 22781 22782 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22783 ttl_protocol = ((uint16_t *)ipha)[4]; 22784 /* 22785 * We accumulate the pseudo header checksum in cksum. 22786 * This is pretty hairy code, so watch close. One 22787 * thing to keep in mind is that UDP and TCP have 22788 * stored their respective datagram lengths in their 22789 * checksum fields. This lines things up real nice. 22790 */ 22791 cksum = (dst >> 16) + (dst & 0xFFFF) + 22792 (src >> 16) + (src & 0xFFFF); 22793 /* 22794 * We assume the udp checksum field contains the 22795 * length, so to compute the pseudo header checksum, 22796 * all we need is the protocol number and src/dst. 22797 */ 22798 /* Provide the checksums for UDP and TCP. */ 22799 if ((PROTO == IPPROTO_TCP) && 22800 (ip_hdr_included != IP_HDR_INCLUDED)) { 22801 /* hlen gets the number of uchar_ts in the IP header */ 22802 hlen = (V_HLEN & 0xF) << 2; 22803 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22804 IP_STAT(ipst, ip_out_sw_cksum); 22805 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22806 LENGTH - hlen); 22807 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22808 } else if (PROTO == IPPROTO_SCTP && 22809 (ip_hdr_included != IP_HDR_INCLUDED)) { 22810 sctp_hdr_t *sctph; 22811 22812 hlen = (V_HLEN & 0xF) << 2; 22813 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22814 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22815 sctph->sh_chksum = 0; 22816 #ifdef DEBUG 22817 if (!skip_sctp_cksum) 22818 #endif 22819 sctph->sh_chksum = sctp_cksum(mp, hlen); 22820 } else { 22821 queue_t *dev_q = stq->q_next; 22822 22823 if ((dev_q->q_next || dev_q->q_first) && 22824 !canput(dev_q)) { 22825 blocked: 22826 ipha->ipha_ident = ip_hdr_included; 22827 /* 22828 * If we don't have a conn to apply 22829 * backpressure, free the message. 22830 * In the ire_send path, we don't know 22831 * the position to requeue the packet. Rather 22832 * than reorder packets, we just drop this 22833 * packet. 22834 */ 22835 if (ipst->ips_ip_output_queue && 22836 connp != NULL && 22837 caller != IRE_SEND) { 22838 if (caller == IP_WSRV) { 22839 connp->conn_did_putbq = 1; 22840 (void) putbq(connp->conn_wq, 22841 first_mp); 22842 conn_drain_insert(connp); 22843 /* 22844 * This is the service thread, 22845 * and the queue is already 22846 * noenabled. The check for 22847 * canput and the putbq is not 22848 * atomic. So we need to check 22849 * again. 22850 */ 22851 if (canput(stq->q_next)) 22852 connp->conn_did_putbq 22853 = 0; 22854 IP_STAT(ipst, ip_conn_flputbq); 22855 } else { 22856 /* 22857 * We are not the service proc. 22858 * ip_wsrv will be scheduled or 22859 * is already running. 22860 */ 22861 (void) putq(connp->conn_wq, 22862 first_mp); 22863 } 22864 } else { 22865 out_ill = (ill_t *)stq->q_ptr; 22866 BUMP_MIB(out_ill->ill_ip_mib, 22867 ipIfStatsOutDiscards); 22868 freemsg(first_mp); 22869 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22870 "ip_wput_ire_end: q %p (%S)", 22871 q, "discard"); 22872 } 22873 ire_refrele(ire); 22874 if (next_mp) { 22875 ire_refrele(ire1); 22876 freemsg(next_mp); 22877 } 22878 if (conn_outgoing_ill != NULL) 22879 ill_refrele(conn_outgoing_ill); 22880 return; 22881 } 22882 if ((PROTO == IPPROTO_UDP) && 22883 (ip_hdr_included != IP_HDR_INCLUDED)) { 22884 /* 22885 * hlen gets the number of uchar_ts in the 22886 * IP header 22887 */ 22888 hlen = (V_HLEN & 0xF) << 2; 22889 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22890 max_frag = ire->ire_max_frag; 22891 if (*up != 0) { 22892 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22893 up, PROTO, hlen, LENGTH, max_frag, 22894 ipsec_len, cksum); 22895 /* Software checksum? */ 22896 if (DB_CKSUMFLAGS(mp) == 0) { 22897 IP_STAT(ipst, ip_out_sw_cksum); 22898 IP_STAT_UPDATE(ipst, 22899 ip_udp_out_sw_cksum_bytes, 22900 LENGTH - hlen); 22901 } 22902 } 22903 } 22904 } 22905 /* 22906 * Need to do this even when fragmenting. The local 22907 * loopback can be done without computing checksums 22908 * but forwarding out other interface must be done 22909 * after the IP checksum (and ULP checksums) have been 22910 * computed. 22911 * 22912 * NOTE : multicast_forward is set only if this packet 22913 * originated from ip_wput. For packets originating from 22914 * ip_wput_multicast, it is not set. 22915 */ 22916 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22917 multi_loopback: 22918 ip2dbg(("ip_wput: multicast, loop %d\n", 22919 conn_multicast_loop)); 22920 22921 /* Forget header checksum offload */ 22922 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22923 22924 /* 22925 * Local loopback of multicasts? Check the 22926 * ill. 22927 * 22928 * Note that the loopback function will not come 22929 * in through ip_rput - it will only do the 22930 * client fanout thus we need to do an mforward 22931 * as well. The is different from the BSD 22932 * logic. 22933 */ 22934 if (ill != NULL) { 22935 ilm_t *ilm; 22936 22937 ILM_WALKER_HOLD(ill); 22938 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 22939 ALL_ZONES); 22940 ILM_WALKER_RELE(ill); 22941 if (ilm != NULL) { 22942 /* 22943 * Pass along the virtual output q. 22944 * ip_wput_local() will distribute the 22945 * packet to all the matching zones, 22946 * except the sending zone when 22947 * IP_MULTICAST_LOOP is false. 22948 */ 22949 ip_multicast_loopback(q, ill, first_mp, 22950 conn_multicast_loop ? 0 : 22951 IP_FF_NO_MCAST_LOOP, zoneid); 22952 } 22953 } 22954 if (ipha->ipha_ttl == 0) { 22955 /* 22956 * 0 => only to this host i.e. we are 22957 * done. We are also done if this was the 22958 * loopback interface since it is sufficient 22959 * to loopback one copy of a multicast packet. 22960 */ 22961 freemsg(first_mp); 22962 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22963 "ip_wput_ire_end: q %p (%S)", 22964 q, "loopback"); 22965 ire_refrele(ire); 22966 if (conn_outgoing_ill != NULL) 22967 ill_refrele(conn_outgoing_ill); 22968 return; 22969 } 22970 /* 22971 * ILLF_MULTICAST is checked in ip_newroute 22972 * i.e. we don't need to check it here since 22973 * all IRE_CACHEs come from ip_newroute. 22974 * For multicast traffic, SO_DONTROUTE is interpreted 22975 * to mean only send the packet out the interface 22976 * (optionally specified with IP_MULTICAST_IF) 22977 * and do not forward it out additional interfaces. 22978 * RSVP and the rsvp daemon is an example of a 22979 * protocol and user level process that 22980 * handles it's own routing. Hence, it uses the 22981 * SO_DONTROUTE option to accomplish this. 22982 */ 22983 22984 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 22985 ill != NULL) { 22986 /* Unconditionally redo the checksum */ 22987 ipha->ipha_hdr_checksum = 0; 22988 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22989 22990 /* 22991 * If this needs to go out secure, we need 22992 * to wait till we finish the IPsec 22993 * processing. 22994 */ 22995 if (ipsec_len == 0 && 22996 ip_mforward(ill, ipha, mp)) { 22997 freemsg(first_mp); 22998 ip1dbg(("ip_wput: mforward failed\n")); 22999 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23000 "ip_wput_ire_end: q %p (%S)", 23001 q, "mforward failed"); 23002 ire_refrele(ire); 23003 if (conn_outgoing_ill != NULL) 23004 ill_refrele(conn_outgoing_ill); 23005 return; 23006 } 23007 } 23008 } 23009 max_frag = ire->ire_max_frag; 23010 cksum += ttl_protocol; 23011 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23012 /* No fragmentation required for this one. */ 23013 /* 23014 * Don't use frag_flag if packet is pre-built or source 23015 * routed or if multicast (since multicast packets do 23016 * not solicit ICMP "packet too big" messages). 23017 */ 23018 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23019 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23020 !ip_source_route_included(ipha)) && 23021 !CLASSD(ipha->ipha_dst)) 23022 ipha->ipha_fragment_offset_and_flags |= 23023 htons(ire->ire_frag_flag); 23024 23025 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23026 /* Complete the IP header checksum. */ 23027 cksum += ipha->ipha_ident; 23028 cksum += (v_hlen_tos_len >> 16)+ 23029 (v_hlen_tos_len & 0xFFFF); 23030 cksum += ipha->ipha_fragment_offset_and_flags; 23031 hlen = (V_HLEN & 0xF) - 23032 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23033 if (hlen) { 23034 checksumoptions: 23035 /* 23036 * Account for the IP Options in the IP 23037 * header checksum. 23038 */ 23039 up = (uint16_t *)(rptr+ 23040 IP_SIMPLE_HDR_LENGTH); 23041 do { 23042 cksum += up[0]; 23043 cksum += up[1]; 23044 up += 2; 23045 } while (--hlen); 23046 } 23047 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23048 cksum = ~(cksum + (cksum >> 16)); 23049 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23050 } 23051 if (ipsec_len != 0) { 23052 ipsec_out_process(q, first_mp, ire, ill_index); 23053 if (!next_mp) { 23054 ire_refrele(ire); 23055 if (conn_outgoing_ill != NULL) 23056 ill_refrele(conn_outgoing_ill); 23057 return; 23058 } 23059 goto next; 23060 } 23061 23062 /* 23063 * multirt_send has already been handled 23064 * for broadcast, but not yet for multicast 23065 * or IP options. 23066 */ 23067 if (next_mp == NULL) { 23068 if (ire->ire_flags & RTF_MULTIRT) { 23069 multirt_send = B_TRUE; 23070 } 23071 } 23072 23073 /* 23074 * In most cases, the emission loop below is 23075 * entered only once. Only in the case where 23076 * the ire holds the RTF_MULTIRT flag, do we loop 23077 * to process all RTF_MULTIRT ires in the bucket, 23078 * and send the packet through all crossed 23079 * RTF_MULTIRT routes. 23080 */ 23081 do { 23082 if (multirt_send) { 23083 irb_t *irb; 23084 23085 irb = ire->ire_bucket; 23086 ASSERT(irb != NULL); 23087 /* 23088 * We are in a multiple send case, 23089 * need to get the next IRE and make 23090 * a duplicate of the packet. 23091 */ 23092 IRB_REFHOLD(irb); 23093 for (ire1 = ire->ire_next; 23094 ire1 != NULL; 23095 ire1 = ire1->ire_next) { 23096 if (!(ire1->ire_flags & 23097 RTF_MULTIRT)) { 23098 continue; 23099 } 23100 if (ire1->ire_addr != 23101 ire->ire_addr) { 23102 continue; 23103 } 23104 if (ire1->ire_marks & 23105 (IRE_MARK_CONDEMNED| 23106 IRE_MARK_HIDDEN)) { 23107 continue; 23108 } 23109 23110 /* Got one */ 23111 IRE_REFHOLD(ire1); 23112 break; 23113 } 23114 IRB_REFRELE(irb); 23115 23116 if (ire1 != NULL) { 23117 next_mp = copyb(mp); 23118 if ((next_mp == NULL) || 23119 ((mp->b_cont != NULL) && 23120 ((next_mp->b_cont = 23121 dupmsg(mp->b_cont)) 23122 == NULL))) { 23123 freemsg(next_mp); 23124 next_mp = NULL; 23125 ire_refrele(ire1); 23126 ire1 = NULL; 23127 } 23128 } 23129 23130 /* 23131 * Last multiroute ire; don't loop 23132 * anymore. The emission is over 23133 * and next_mp is NULL. 23134 */ 23135 if (ire1 == NULL) { 23136 multirt_send = B_FALSE; 23137 } 23138 } 23139 23140 out_ill = ire_to_ill(ire); 23141 DTRACE_PROBE4(ip4__physical__out__start, 23142 ill_t *, NULL, 23143 ill_t *, out_ill, 23144 ipha_t *, ipha, mblk_t *, mp); 23145 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23146 ipst->ips_ipv4firewall_physical_out, 23147 NULL, out_ill, ipha, mp, mp, ipst); 23148 DTRACE_PROBE1(ip4__physical__out__end, 23149 mblk_t *, mp); 23150 if (mp == NULL) 23151 goto release_ire_and_ill_2; 23152 23153 ASSERT(ipsec_len == 0); 23154 mp->b_prev = 23155 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23156 DTRACE_PROBE2(ip__xmit__2, 23157 mblk_t *, mp, ire_t *, ire); 23158 pktxmit_state = ip_xmit_v4(mp, ire, 23159 NULL, B_TRUE); 23160 if ((pktxmit_state == SEND_FAILED) || 23161 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23162 release_ire_and_ill_2: 23163 if (next_mp) { 23164 freemsg(next_mp); 23165 ire_refrele(ire1); 23166 } 23167 ire_refrele(ire); 23168 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23169 "ip_wput_ire_end: q %p (%S)", 23170 q, "discard MDATA"); 23171 if (conn_outgoing_ill != NULL) 23172 ill_refrele(conn_outgoing_ill); 23173 return; 23174 } 23175 23176 if (CLASSD(dst)) { 23177 BUMP_MIB(out_ill->ill_ip_mib, 23178 ipIfStatsHCOutMcastPkts); 23179 UPDATE_MIB(out_ill->ill_ip_mib, 23180 ipIfStatsHCOutMcastOctets, 23181 LENGTH); 23182 } else if (ire->ire_type == IRE_BROADCAST) { 23183 BUMP_MIB(out_ill->ill_ip_mib, 23184 ipIfStatsHCOutBcastPkts); 23185 } 23186 23187 if (multirt_send) { 23188 /* 23189 * We are in a multiple send case, 23190 * need to re-enter the sending loop 23191 * using the next ire. 23192 */ 23193 ire_refrele(ire); 23194 ire = ire1; 23195 stq = ire->ire_stq; 23196 mp = next_mp; 23197 next_mp = NULL; 23198 ipha = (ipha_t *)mp->b_rptr; 23199 ill_index = Q_TO_INDEX(stq); 23200 } 23201 } while (multirt_send); 23202 23203 if (!next_mp) { 23204 /* 23205 * Last copy going out (the ultra-common 23206 * case). Note that we intentionally replicate 23207 * the putnext rather than calling it before 23208 * the next_mp check in hopes of a little 23209 * tail-call action out of the compiler. 23210 */ 23211 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23212 "ip_wput_ire_end: q %p (%S)", 23213 q, "last copy out(1)"); 23214 ire_refrele(ire); 23215 if (conn_outgoing_ill != NULL) 23216 ill_refrele(conn_outgoing_ill); 23217 return; 23218 } 23219 /* More copies going out below. */ 23220 } else { 23221 int offset; 23222 fragmentit: 23223 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23224 /* 23225 * If this would generate a icmp_frag_needed message, 23226 * we need to handle it before we do the IPsec 23227 * processing. Otherwise, we need to strip the IPsec 23228 * headers before we send up the message to the ULPs 23229 * which becomes messy and difficult. 23230 */ 23231 if (ipsec_len != 0) { 23232 if ((max_frag < (unsigned int)(LENGTH + 23233 ipsec_len)) && (offset & IPH_DF)) { 23234 out_ill = (ill_t *)stq->q_ptr; 23235 BUMP_MIB(out_ill->ill_ip_mib, 23236 ipIfStatsOutFragFails); 23237 BUMP_MIB(out_ill->ill_ip_mib, 23238 ipIfStatsOutFragReqds); 23239 ipha->ipha_hdr_checksum = 0; 23240 ipha->ipha_hdr_checksum = 23241 (uint16_t)ip_csum_hdr(ipha); 23242 icmp_frag_needed(ire->ire_stq, first_mp, 23243 max_frag, zoneid, ipst); 23244 if (!next_mp) { 23245 ire_refrele(ire); 23246 if (conn_outgoing_ill != NULL) { 23247 ill_refrele( 23248 conn_outgoing_ill); 23249 } 23250 return; 23251 } 23252 } else { 23253 /* 23254 * This won't cause a icmp_frag_needed 23255 * message. to be generated. Send it on 23256 * the wire. Note that this could still 23257 * cause fragmentation and all we 23258 * do is the generation of the message 23259 * to the ULP if needed before IPsec. 23260 */ 23261 if (!next_mp) { 23262 ipsec_out_process(q, first_mp, 23263 ire, ill_index); 23264 TRACE_2(TR_FAC_IP, 23265 TR_IP_WPUT_IRE_END, 23266 "ip_wput_ire_end: q %p " 23267 "(%S)", q, 23268 "last ipsec_out_process"); 23269 ire_refrele(ire); 23270 if (conn_outgoing_ill != NULL) { 23271 ill_refrele( 23272 conn_outgoing_ill); 23273 } 23274 return; 23275 } 23276 ipsec_out_process(q, first_mp, 23277 ire, ill_index); 23278 } 23279 } else { 23280 /* 23281 * Initiate IPPF processing. For 23282 * fragmentable packets we finish 23283 * all QOS packet processing before 23284 * calling: 23285 * ip_wput_ire_fragmentit->ip_wput_frag 23286 */ 23287 23288 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23289 ip_process(IPP_LOCAL_OUT, &mp, 23290 ill_index); 23291 if (mp == NULL) { 23292 out_ill = (ill_t *)stq->q_ptr; 23293 BUMP_MIB(out_ill->ill_ip_mib, 23294 ipIfStatsOutDiscards); 23295 if (next_mp != NULL) { 23296 freemsg(next_mp); 23297 ire_refrele(ire1); 23298 } 23299 ire_refrele(ire); 23300 TRACE_2(TR_FAC_IP, 23301 TR_IP_WPUT_IRE_END, 23302 "ip_wput_ire: q %p (%S)", 23303 q, "discard MDATA"); 23304 if (conn_outgoing_ill != NULL) { 23305 ill_refrele( 23306 conn_outgoing_ill); 23307 } 23308 return; 23309 } 23310 } 23311 if (!next_mp) { 23312 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23313 "ip_wput_ire_end: q %p (%S)", 23314 q, "last fragmentation"); 23315 ip_wput_ire_fragmentit(mp, ire, 23316 zoneid, ipst); 23317 ire_refrele(ire); 23318 if (conn_outgoing_ill != NULL) 23319 ill_refrele(conn_outgoing_ill); 23320 return; 23321 } 23322 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23323 } 23324 } 23325 } else { 23326 nullstq: 23327 /* A NULL stq means the destination address is local. */ 23328 UPDATE_OB_PKT_COUNT(ire); 23329 ire->ire_last_used_time = lbolt; 23330 ASSERT(ire->ire_ipif != NULL); 23331 if (!next_mp) { 23332 /* 23333 * Is there an "in" and "out" for traffic local 23334 * to a host (loopback)? The code in Solaris doesn't 23335 * explicitly draw a line in its code for in vs out, 23336 * so we've had to draw a line in the sand: ip_wput_ire 23337 * is considered to be the "output" side and 23338 * ip_wput_local to be the "input" side. 23339 */ 23340 out_ill = ire_to_ill(ire); 23341 23342 DTRACE_PROBE4(ip4__loopback__out__start, 23343 ill_t *, NULL, ill_t *, out_ill, 23344 ipha_t *, ipha, mblk_t *, first_mp); 23345 23346 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23347 ipst->ips_ipv4firewall_loopback_out, 23348 NULL, out_ill, ipha, first_mp, mp, ipst); 23349 23350 DTRACE_PROBE1(ip4__loopback__out_end, 23351 mblk_t *, first_mp); 23352 23353 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23354 "ip_wput_ire_end: q %p (%S)", 23355 q, "local address"); 23356 23357 if (first_mp != NULL) 23358 ip_wput_local(q, out_ill, ipha, 23359 first_mp, ire, 0, ire->ire_zoneid); 23360 ire_refrele(ire); 23361 if (conn_outgoing_ill != NULL) 23362 ill_refrele(conn_outgoing_ill); 23363 return; 23364 } 23365 23366 out_ill = ire_to_ill(ire); 23367 23368 DTRACE_PROBE4(ip4__loopback__out__start, 23369 ill_t *, NULL, ill_t *, out_ill, 23370 ipha_t *, ipha, mblk_t *, first_mp); 23371 23372 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23373 ipst->ips_ipv4firewall_loopback_out, 23374 NULL, out_ill, ipha, first_mp, mp, ipst); 23375 23376 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23377 23378 if (first_mp != NULL) 23379 ip_wput_local(q, out_ill, ipha, 23380 first_mp, ire, 0, ire->ire_zoneid); 23381 } 23382 next: 23383 /* 23384 * More copies going out to additional interfaces. 23385 * ire1 has already been held. We don't need the 23386 * "ire" anymore. 23387 */ 23388 ire_refrele(ire); 23389 ire = ire1; 23390 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23391 mp = next_mp; 23392 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23393 ill = ire_to_ill(ire); 23394 first_mp = mp; 23395 if (ipsec_len != 0) { 23396 ASSERT(first_mp->b_datap->db_type == M_CTL); 23397 mp = mp->b_cont; 23398 } 23399 dst = ire->ire_addr; 23400 ipha = (ipha_t *)mp->b_rptr; 23401 /* 23402 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23403 * Restore ipha_ident "no checksum" flag. 23404 */ 23405 src = orig_src; 23406 ipha->ipha_ident = ip_hdr_included; 23407 goto another; 23408 23409 #undef rptr 23410 #undef Q_TO_INDEX 23411 } 23412 23413 /* 23414 * Routine to allocate a message that is used to notify the ULP about MDT. 23415 * The caller may provide a pointer to the link-layer MDT capabilities, 23416 * or NULL if MDT is to be disabled on the stream. 23417 */ 23418 mblk_t * 23419 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23420 { 23421 mblk_t *mp; 23422 ip_mdt_info_t *mdti; 23423 ill_mdt_capab_t *idst; 23424 23425 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23426 DB_TYPE(mp) = M_CTL; 23427 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23428 mdti = (ip_mdt_info_t *)mp->b_rptr; 23429 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23430 idst = &(mdti->mdt_capab); 23431 23432 /* 23433 * If the caller provides us with the capability, copy 23434 * it over into our notification message; otherwise 23435 * we zero out the capability portion. 23436 */ 23437 if (isrc != NULL) 23438 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23439 else 23440 bzero((caddr_t)idst, sizeof (*idst)); 23441 } 23442 return (mp); 23443 } 23444 23445 /* 23446 * Routine which determines whether MDT can be enabled on the destination 23447 * IRE and IPC combination, and if so, allocates and returns the MDT 23448 * notification mblk that may be used by ULP. We also check if we need to 23449 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23450 * MDT usage in the past have been lifted. This gets called during IP 23451 * and ULP binding. 23452 */ 23453 mblk_t * 23454 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23455 ill_mdt_capab_t *mdt_cap) 23456 { 23457 mblk_t *mp; 23458 boolean_t rc = B_FALSE; 23459 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23460 23461 ASSERT(dst_ire != NULL); 23462 ASSERT(connp != NULL); 23463 ASSERT(mdt_cap != NULL); 23464 23465 /* 23466 * Currently, we only support simple TCP/{IPv4,IPv6} with 23467 * Multidata, which is handled in tcp_multisend(). This 23468 * is the reason why we do all these checks here, to ensure 23469 * that we don't enable Multidata for the cases which we 23470 * can't handle at the moment. 23471 */ 23472 do { 23473 /* Only do TCP at the moment */ 23474 if (connp->conn_ulp != IPPROTO_TCP) 23475 break; 23476 23477 /* 23478 * IPsec outbound policy present? Note that we get here 23479 * after calling ipsec_conn_cache_policy() where the global 23480 * policy checking is performed. conn_latch will be 23481 * non-NULL as long as there's a policy defined, 23482 * i.e. conn_out_enforce_policy may be NULL in such case 23483 * when the connection is non-secure, and hence we check 23484 * further if the latch refers to an outbound policy. 23485 */ 23486 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23487 break; 23488 23489 /* CGTP (multiroute) is enabled? */ 23490 if (dst_ire->ire_flags & RTF_MULTIRT) 23491 break; 23492 23493 /* Outbound IPQoS enabled? */ 23494 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23495 /* 23496 * In this case, we disable MDT for this and all 23497 * future connections going over the interface. 23498 */ 23499 mdt_cap->ill_mdt_on = 0; 23500 break; 23501 } 23502 23503 /* socket option(s) present? */ 23504 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23505 break; 23506 23507 rc = B_TRUE; 23508 /* CONSTCOND */ 23509 } while (0); 23510 23511 /* Remember the result */ 23512 connp->conn_mdt_ok = rc; 23513 23514 if (!rc) 23515 return (NULL); 23516 else if (!mdt_cap->ill_mdt_on) { 23517 /* 23518 * If MDT has been previously turned off in the past, and we 23519 * currently can do MDT (due to IPQoS policy removal, etc.) 23520 * then enable it for this interface. 23521 */ 23522 mdt_cap->ill_mdt_on = 1; 23523 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23524 "interface %s\n", ill_name)); 23525 } 23526 23527 /* Allocate the MDT info mblk */ 23528 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23529 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23530 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23531 return (NULL); 23532 } 23533 return (mp); 23534 } 23535 23536 /* 23537 * Routine to allocate a message that is used to notify the ULP about LSO. 23538 * The caller may provide a pointer to the link-layer LSO capabilities, 23539 * or NULL if LSO is to be disabled on the stream. 23540 */ 23541 mblk_t * 23542 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23543 { 23544 mblk_t *mp; 23545 ip_lso_info_t *lsoi; 23546 ill_lso_capab_t *idst; 23547 23548 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23549 DB_TYPE(mp) = M_CTL; 23550 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23551 lsoi = (ip_lso_info_t *)mp->b_rptr; 23552 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23553 idst = &(lsoi->lso_capab); 23554 23555 /* 23556 * If the caller provides us with the capability, copy 23557 * it over into our notification message; otherwise 23558 * we zero out the capability portion. 23559 */ 23560 if (isrc != NULL) 23561 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23562 else 23563 bzero((caddr_t)idst, sizeof (*idst)); 23564 } 23565 return (mp); 23566 } 23567 23568 /* 23569 * Routine which determines whether LSO can be enabled on the destination 23570 * IRE and IPC combination, and if so, allocates and returns the LSO 23571 * notification mblk that may be used by ULP. We also check if we need to 23572 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23573 * LSO usage in the past have been lifted. This gets called during IP 23574 * and ULP binding. 23575 */ 23576 mblk_t * 23577 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23578 ill_lso_capab_t *lso_cap) 23579 { 23580 mblk_t *mp; 23581 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23582 23583 ASSERT(dst_ire != NULL); 23584 ASSERT(connp != NULL); 23585 ASSERT(lso_cap != NULL); 23586 23587 connp->conn_lso_ok = B_TRUE; 23588 23589 if ((connp->conn_ulp != IPPROTO_TCP) || 23590 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23591 (dst_ire->ire_flags & RTF_MULTIRT) || 23592 !CONN_IS_LSO_MD_FASTPATH(connp) || 23593 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23594 connp->conn_lso_ok = B_FALSE; 23595 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23596 /* 23597 * Disable LSO for this and all future connections going 23598 * over the interface. 23599 */ 23600 lso_cap->ill_lso_on = 0; 23601 } 23602 } 23603 23604 if (!connp->conn_lso_ok) 23605 return (NULL); 23606 else if (!lso_cap->ill_lso_on) { 23607 /* 23608 * If LSO has been previously turned off in the past, and we 23609 * currently can do LSO (due to IPQoS policy removal, etc.) 23610 * then enable it for this interface. 23611 */ 23612 lso_cap->ill_lso_on = 1; 23613 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23614 ill_name)); 23615 } 23616 23617 /* Allocate the LSO info mblk */ 23618 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23619 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23620 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23621 23622 return (mp); 23623 } 23624 23625 /* 23626 * Create destination address attribute, and fill it with the physical 23627 * destination address and SAP taken from the template DL_UNITDATA_REQ 23628 * message block. 23629 */ 23630 boolean_t 23631 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23632 { 23633 dl_unitdata_req_t *dlurp; 23634 pattr_t *pa; 23635 pattrinfo_t pa_info; 23636 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23637 uint_t das_len, das_off; 23638 23639 ASSERT(dlmp != NULL); 23640 23641 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23642 das_len = dlurp->dl_dest_addr_length; 23643 das_off = dlurp->dl_dest_addr_offset; 23644 23645 pa_info.type = PATTR_DSTADDRSAP; 23646 pa_info.len = sizeof (**das) + das_len - 1; 23647 23648 /* create and associate the attribute */ 23649 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23650 if (pa != NULL) { 23651 ASSERT(*das != NULL); 23652 (*das)->addr_is_group = 0; 23653 (*das)->addr_len = (uint8_t)das_len; 23654 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23655 } 23656 23657 return (pa != NULL); 23658 } 23659 23660 /* 23661 * Create hardware checksum attribute and fill it with the values passed. 23662 */ 23663 boolean_t 23664 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23665 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23666 { 23667 pattr_t *pa; 23668 pattrinfo_t pa_info; 23669 23670 ASSERT(mmd != NULL); 23671 23672 pa_info.type = PATTR_HCKSUM; 23673 pa_info.len = sizeof (pattr_hcksum_t); 23674 23675 /* create and associate the attribute */ 23676 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23677 if (pa != NULL) { 23678 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23679 23680 hck->hcksum_start_offset = start_offset; 23681 hck->hcksum_stuff_offset = stuff_offset; 23682 hck->hcksum_end_offset = end_offset; 23683 hck->hcksum_flags = flags; 23684 } 23685 return (pa != NULL); 23686 } 23687 23688 /* 23689 * Create zerocopy attribute and fill it with the specified flags 23690 */ 23691 boolean_t 23692 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23693 { 23694 pattr_t *pa; 23695 pattrinfo_t pa_info; 23696 23697 ASSERT(mmd != NULL); 23698 pa_info.type = PATTR_ZCOPY; 23699 pa_info.len = sizeof (pattr_zcopy_t); 23700 23701 /* create and associate the attribute */ 23702 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23703 if (pa != NULL) { 23704 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23705 23706 zcopy->zcopy_flags = flags; 23707 } 23708 return (pa != NULL); 23709 } 23710 23711 /* 23712 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23713 * block chain. We could rewrite to handle arbitrary message block chains but 23714 * that would make the code complicated and slow. Right now there three 23715 * restrictions: 23716 * 23717 * 1. The first message block must contain the complete IP header and 23718 * at least 1 byte of payload data. 23719 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23720 * so that we can use a single Multidata message. 23721 * 3. No frag must be distributed over two or more message blocks so 23722 * that we don't need more than two packet descriptors per frag. 23723 * 23724 * The above restrictions allow us to support userland applications (which 23725 * will send down a single message block) and NFS over UDP (which will 23726 * send down a chain of at most three message blocks). 23727 * 23728 * We also don't use MDT for payloads with less than or equal to 23729 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23730 */ 23731 boolean_t 23732 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23733 { 23734 int blocks; 23735 ssize_t total, missing, size; 23736 23737 ASSERT(mp != NULL); 23738 ASSERT(hdr_len > 0); 23739 23740 size = MBLKL(mp) - hdr_len; 23741 if (size <= 0) 23742 return (B_FALSE); 23743 23744 /* The first mblk contains the header and some payload. */ 23745 blocks = 1; 23746 total = size; 23747 size %= len; 23748 missing = (size == 0) ? 0 : (len - size); 23749 mp = mp->b_cont; 23750 23751 while (mp != NULL) { 23752 /* 23753 * Give up if we encounter a zero length message block. 23754 * In practice, this should rarely happen and therefore 23755 * not worth the trouble of freeing and re-linking the 23756 * mblk from the chain to handle such case. 23757 */ 23758 if ((size = MBLKL(mp)) == 0) 23759 return (B_FALSE); 23760 23761 /* Too many payload buffers for a single Multidata message? */ 23762 if (++blocks > MULTIDATA_MAX_PBUFS) 23763 return (B_FALSE); 23764 23765 total += size; 23766 /* Is a frag distributed over two or more message blocks? */ 23767 if (missing > size) 23768 return (B_FALSE); 23769 size -= missing; 23770 23771 size %= len; 23772 missing = (size == 0) ? 0 : (len - size); 23773 23774 mp = mp->b_cont; 23775 } 23776 23777 return (total > ip_wput_frag_mdt_min); 23778 } 23779 23780 /* 23781 * Outbound IPv4 fragmentation routine using MDT. 23782 */ 23783 static void 23784 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23785 uint32_t frag_flag, int offset) 23786 { 23787 ipha_t *ipha_orig; 23788 int i1, ip_data_end; 23789 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23790 mblk_t *hdr_mp, *md_mp = NULL; 23791 unsigned char *hdr_ptr, *pld_ptr; 23792 multidata_t *mmd; 23793 ip_pdescinfo_t pdi; 23794 ill_t *ill; 23795 ip_stack_t *ipst = ire->ire_ipst; 23796 23797 ASSERT(DB_TYPE(mp) == M_DATA); 23798 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23799 23800 ill = ire_to_ill(ire); 23801 ASSERT(ill != NULL); 23802 23803 ipha_orig = (ipha_t *)mp->b_rptr; 23804 mp->b_rptr += sizeof (ipha_t); 23805 23806 /* Calculate how many packets we will send out */ 23807 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23808 pkts = (i1 + len - 1) / len; 23809 ASSERT(pkts > 1); 23810 23811 /* Allocate a message block which will hold all the IP Headers. */ 23812 wroff = ipst->ips_ip_wroff_extra; 23813 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23814 23815 i1 = pkts * hdr_chunk_len; 23816 /* 23817 * Create the header buffer, Multidata and destination address 23818 * and SAP attribute that should be associated with it. 23819 */ 23820 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23821 ((hdr_mp->b_wptr += i1), 23822 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23823 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23824 freemsg(mp); 23825 if (md_mp == NULL) { 23826 freemsg(hdr_mp); 23827 } else { 23828 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23829 freemsg(md_mp); 23830 } 23831 IP_STAT(ipst, ip_frag_mdt_allocfail); 23832 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23833 return; 23834 } 23835 IP_STAT(ipst, ip_frag_mdt_allocd); 23836 23837 /* 23838 * Add a payload buffer to the Multidata; this operation must not 23839 * fail, or otherwise our logic in this routine is broken. There 23840 * is no memory allocation done by the routine, so any returned 23841 * failure simply tells us that we've done something wrong. 23842 * 23843 * A failure tells us that either we're adding the same payload 23844 * buffer more than once, or we're trying to add more buffers than 23845 * allowed. None of the above cases should happen, and we panic 23846 * because either there's horrible heap corruption, and/or 23847 * programming mistake. 23848 */ 23849 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23850 goto pbuf_panic; 23851 23852 hdr_ptr = hdr_mp->b_rptr; 23853 pld_ptr = mp->b_rptr; 23854 23855 /* Establish the ending byte offset, based on the starting offset. */ 23856 offset <<= 3; 23857 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23858 IP_SIMPLE_HDR_LENGTH; 23859 23860 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23861 23862 while (pld_ptr < mp->b_wptr) { 23863 ipha_t *ipha; 23864 uint16_t offset_and_flags; 23865 uint16_t ip_len; 23866 int error; 23867 23868 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23869 ipha = (ipha_t *)(hdr_ptr + wroff); 23870 ASSERT(OK_32PTR(ipha)); 23871 *ipha = *ipha_orig; 23872 23873 if (ip_data_end - offset > len) { 23874 offset_and_flags = IPH_MF; 23875 } else { 23876 /* 23877 * Last frag. Set len to the length of this last piece. 23878 */ 23879 len = ip_data_end - offset; 23880 /* A frag of a frag might have IPH_MF non-zero */ 23881 offset_and_flags = 23882 ntohs(ipha->ipha_fragment_offset_and_flags) & 23883 IPH_MF; 23884 } 23885 offset_and_flags |= (uint16_t)(offset >> 3); 23886 offset_and_flags |= (uint16_t)frag_flag; 23887 /* Store the offset and flags in the IP header. */ 23888 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23889 23890 /* Store the length in the IP header. */ 23891 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23892 ipha->ipha_length = htons(ip_len); 23893 23894 /* 23895 * Set the IP header checksum. Note that mp is just 23896 * the header, so this is easy to pass to ip_csum. 23897 */ 23898 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23899 23900 /* 23901 * Record offset and size of header and data of the next packet 23902 * in the multidata message. 23903 */ 23904 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23905 PDESC_PLD_INIT(&pdi); 23906 i1 = MIN(mp->b_wptr - pld_ptr, len); 23907 ASSERT(i1 > 0); 23908 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23909 if (i1 == len) { 23910 pld_ptr += len; 23911 } else { 23912 i1 = len - i1; 23913 mp = mp->b_cont; 23914 ASSERT(mp != NULL); 23915 ASSERT(MBLKL(mp) >= i1); 23916 /* 23917 * Attach the next payload message block to the 23918 * multidata message. 23919 */ 23920 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23921 goto pbuf_panic; 23922 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23923 pld_ptr = mp->b_rptr + i1; 23924 } 23925 23926 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23927 KM_NOSLEEP)) == NULL) { 23928 /* 23929 * Any failure other than ENOMEM indicates that we 23930 * have passed in invalid pdesc info or parameters 23931 * to mmd_addpdesc, which must not happen. 23932 * 23933 * EINVAL is a result of failure on boundary checks 23934 * against the pdesc info contents. It should not 23935 * happen, and we panic because either there's 23936 * horrible heap corruption, and/or programming 23937 * mistake. 23938 */ 23939 if (error != ENOMEM) { 23940 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23941 "pdesc logic error detected for " 23942 "mmd %p pinfo %p (%d)\n", 23943 (void *)mmd, (void *)&pdi, error); 23944 /* NOTREACHED */ 23945 } 23946 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 23947 /* Free unattached payload message blocks as well */ 23948 md_mp->b_cont = mp->b_cont; 23949 goto free_mmd; 23950 } 23951 23952 /* Advance fragment offset. */ 23953 offset += len; 23954 23955 /* Advance to location for next header in the buffer. */ 23956 hdr_ptr += hdr_chunk_len; 23957 23958 /* Did we reach the next payload message block? */ 23959 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23960 mp = mp->b_cont; 23961 /* 23962 * Attach the next message block with payload 23963 * data to the multidata message. 23964 */ 23965 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23966 goto pbuf_panic; 23967 pld_ptr = mp->b_rptr; 23968 } 23969 } 23970 23971 ASSERT(hdr_mp->b_wptr == hdr_ptr); 23972 ASSERT(mp->b_wptr == pld_ptr); 23973 23974 /* Update IP statistics */ 23975 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 23976 23977 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 23978 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 23979 23980 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 23981 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 23982 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 23983 23984 if (pkt_type == OB_PKT) { 23985 ire->ire_ob_pkt_count += pkts; 23986 if (ire->ire_ipif != NULL) 23987 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 23988 } else { 23989 /* The type is IB_PKT in the forwarding path. */ 23990 ire->ire_ib_pkt_count += pkts; 23991 ASSERT(!IRE_IS_LOCAL(ire)); 23992 if (ire->ire_type & IRE_BROADCAST) { 23993 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 23994 } else { 23995 UPDATE_MIB(ill->ill_ip_mib, 23996 ipIfStatsHCOutForwDatagrams, pkts); 23997 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 23998 } 23999 } 24000 ire->ire_last_used_time = lbolt; 24001 /* Send it down */ 24002 putnext(ire->ire_stq, md_mp); 24003 return; 24004 24005 pbuf_panic: 24006 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24007 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24008 pbuf_idx); 24009 /* NOTREACHED */ 24010 } 24011 24012 /* 24013 * Outbound IP fragmentation routine. 24014 * 24015 * NOTE : This routine does not ire_refrele the ire that is passed in 24016 * as the argument. 24017 */ 24018 static void 24019 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24020 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 24021 { 24022 int i1; 24023 mblk_t *ll_hdr_mp; 24024 int ll_hdr_len; 24025 int hdr_len; 24026 mblk_t *hdr_mp; 24027 ipha_t *ipha; 24028 int ip_data_end; 24029 int len; 24030 mblk_t *mp = mp_orig, *mp1; 24031 int offset; 24032 queue_t *q; 24033 uint32_t v_hlen_tos_len; 24034 mblk_t *first_mp; 24035 boolean_t mctl_present; 24036 ill_t *ill; 24037 ill_t *out_ill; 24038 mblk_t *xmit_mp; 24039 mblk_t *carve_mp; 24040 ire_t *ire1 = NULL; 24041 ire_t *save_ire = NULL; 24042 mblk_t *next_mp = NULL; 24043 boolean_t last_frag = B_FALSE; 24044 boolean_t multirt_send = B_FALSE; 24045 ire_t *first_ire = NULL; 24046 irb_t *irb = NULL; 24047 mib2_ipIfStatsEntry_t *mibptr = NULL; 24048 24049 ill = ire_to_ill(ire); 24050 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24051 24052 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24053 24054 if (max_frag == 0) { 24055 ip1dbg(("ip_wput_frag: ire frag size is 0" 24056 " - dropping packet\n")); 24057 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24058 freemsg(mp); 24059 return; 24060 } 24061 24062 /* 24063 * IPsec does not allow hw accelerated packets to be fragmented 24064 * This check is made in ip_wput_ipsec_out prior to coming here 24065 * via ip_wput_ire_fragmentit. 24066 * 24067 * If at this point we have an ire whose ARP request has not 24068 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24069 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24070 * This packet and all fragmentable packets for this ire will 24071 * continue to get dropped while ire_nce->nce_state remains in 24072 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24073 * ND_REACHABLE, all subsquent large packets for this ire will 24074 * get fragemented and sent out by this function. 24075 */ 24076 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24077 /* If nce_state is ND_INITIAL, trigger ARP query */ 24078 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24079 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24080 " - dropping packet\n")); 24081 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24082 freemsg(mp); 24083 return; 24084 } 24085 24086 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24087 "ip_wput_frag_start:"); 24088 24089 if (mp->b_datap->db_type == M_CTL) { 24090 first_mp = mp; 24091 mp_orig = mp = mp->b_cont; 24092 mctl_present = B_TRUE; 24093 } else { 24094 first_mp = mp; 24095 mctl_present = B_FALSE; 24096 } 24097 24098 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24099 ipha = (ipha_t *)mp->b_rptr; 24100 24101 /* 24102 * If the Don't Fragment flag is on, generate an ICMP destination 24103 * unreachable, fragmentation needed. 24104 */ 24105 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24106 if (offset & IPH_DF) { 24107 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24108 if (is_system_labeled()) { 24109 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24110 ire->ire_max_frag - max_frag, AF_INET); 24111 } 24112 /* 24113 * Need to compute hdr checksum if called from ip_wput_ire. 24114 * Note that ip_rput_forward verifies the checksum before 24115 * calling this routine so in that case this is a noop. 24116 */ 24117 ipha->ipha_hdr_checksum = 0; 24118 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24119 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24120 ipst); 24121 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24122 "ip_wput_frag_end:(%S)", 24123 "don't fragment"); 24124 return; 24125 } 24126 /* 24127 * Labeled systems adjust max_frag if they add a label 24128 * to send the correct path mtu. We need the real mtu since we 24129 * are fragmenting the packet after label adjustment. 24130 */ 24131 if (is_system_labeled()) 24132 max_frag = ire->ire_max_frag; 24133 if (mctl_present) 24134 freeb(first_mp); 24135 /* 24136 * Establish the starting offset. May not be zero if we are fragging 24137 * a fragment that is being forwarded. 24138 */ 24139 offset = offset & IPH_OFFSET; 24140 24141 /* TODO why is this test needed? */ 24142 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24143 if (((max_frag - LENGTH) & ~7) < 8) { 24144 /* TODO: notify ulp somehow */ 24145 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24146 freemsg(mp); 24147 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24148 "ip_wput_frag_end:(%S)", 24149 "len < 8"); 24150 return; 24151 } 24152 24153 hdr_len = (V_HLEN & 0xF) << 2; 24154 24155 ipha->ipha_hdr_checksum = 0; 24156 24157 /* 24158 * Establish the number of bytes maximum per frag, after putting 24159 * in the header. 24160 */ 24161 len = (max_frag - hdr_len) & ~7; 24162 24163 /* Check if we can use MDT to send out the frags. */ 24164 ASSERT(!IRE_IS_LOCAL(ire)); 24165 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24166 ipst->ips_ip_multidata_outbound && 24167 !(ire->ire_flags & RTF_MULTIRT) && 24168 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24169 ill != NULL && ILL_MDT_CAPABLE(ill) && 24170 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24171 ASSERT(ill->ill_mdt_capab != NULL); 24172 if (!ill->ill_mdt_capab->ill_mdt_on) { 24173 /* 24174 * If MDT has been previously turned off in the past, 24175 * and we currently can do MDT (due to IPQoS policy 24176 * removal, etc.) then enable it for this interface. 24177 */ 24178 ill->ill_mdt_capab->ill_mdt_on = 1; 24179 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24180 ill->ill_name)); 24181 } 24182 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24183 offset); 24184 return; 24185 } 24186 24187 /* Get a copy of the header for the trailing frags */ 24188 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24189 if (!hdr_mp) { 24190 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24191 freemsg(mp); 24192 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24193 "ip_wput_frag_end:(%S)", 24194 "couldn't copy hdr"); 24195 return; 24196 } 24197 if (DB_CRED(mp) != NULL) 24198 mblk_setcred(hdr_mp, DB_CRED(mp)); 24199 24200 /* Store the starting offset, with the MoreFrags flag. */ 24201 i1 = offset | IPH_MF | frag_flag; 24202 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24203 24204 /* Establish the ending byte offset, based on the starting offset. */ 24205 offset <<= 3; 24206 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24207 24208 /* Store the length of the first fragment in the IP header. */ 24209 i1 = len + hdr_len; 24210 ASSERT(i1 <= IP_MAXPACKET); 24211 ipha->ipha_length = htons((uint16_t)i1); 24212 24213 /* 24214 * Compute the IP header checksum for the first frag. We have to 24215 * watch out that we stop at the end of the header. 24216 */ 24217 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24218 24219 /* 24220 * Now carve off the first frag. Note that this will include the 24221 * original IP header. 24222 */ 24223 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24224 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24225 freeb(hdr_mp); 24226 freemsg(mp_orig); 24227 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24228 "ip_wput_frag_end:(%S)", 24229 "couldn't carve first"); 24230 return; 24231 } 24232 24233 /* 24234 * Multirouting case. Each fragment is replicated 24235 * via all non-condemned RTF_MULTIRT routes 24236 * currently resolved. 24237 * We ensure that first_ire is the first RTF_MULTIRT 24238 * ire in the bucket. 24239 */ 24240 if (ire->ire_flags & RTF_MULTIRT) { 24241 irb = ire->ire_bucket; 24242 ASSERT(irb != NULL); 24243 24244 multirt_send = B_TRUE; 24245 24246 /* Make sure we do not omit any multiroute ire. */ 24247 IRB_REFHOLD(irb); 24248 for (first_ire = irb->irb_ire; 24249 first_ire != NULL; 24250 first_ire = first_ire->ire_next) { 24251 if ((first_ire->ire_flags & RTF_MULTIRT) && 24252 (first_ire->ire_addr == ire->ire_addr) && 24253 !(first_ire->ire_marks & 24254 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24255 break; 24256 } 24257 } 24258 24259 if (first_ire != NULL) { 24260 if (first_ire != ire) { 24261 IRE_REFHOLD(first_ire); 24262 /* 24263 * Do not release the ire passed in 24264 * as the argument. 24265 */ 24266 ire = first_ire; 24267 } else { 24268 first_ire = NULL; 24269 } 24270 } 24271 IRB_REFRELE(irb); 24272 24273 /* 24274 * Save the first ire; we will need to restore it 24275 * for the trailing frags. 24276 * We REFHOLD save_ire, as each iterated ire will be 24277 * REFRELEd. 24278 */ 24279 save_ire = ire; 24280 IRE_REFHOLD(save_ire); 24281 } 24282 24283 /* 24284 * First fragment emission loop. 24285 * In most cases, the emission loop below is entered only 24286 * once. Only in the case where the ire holds the RTF_MULTIRT 24287 * flag, do we loop to process all RTF_MULTIRT ires in the 24288 * bucket, and send the fragment through all crossed 24289 * RTF_MULTIRT routes. 24290 */ 24291 do { 24292 if (ire->ire_flags & RTF_MULTIRT) { 24293 /* 24294 * We are in a multiple send case, need to get 24295 * the next ire and make a copy of the packet. 24296 * ire1 holds here the next ire to process in the 24297 * bucket. If multirouting is expected, 24298 * any non-RTF_MULTIRT ire that has the 24299 * right destination address is ignored. 24300 * 24301 * We have to take into account the MTU of 24302 * each walked ire. max_frag is set by the 24303 * the caller and generally refers to 24304 * the primary ire entry. Here we ensure that 24305 * no route with a lower MTU will be used, as 24306 * fragments are carved once for all ires, 24307 * then replicated. 24308 */ 24309 ASSERT(irb != NULL); 24310 IRB_REFHOLD(irb); 24311 for (ire1 = ire->ire_next; 24312 ire1 != NULL; 24313 ire1 = ire1->ire_next) { 24314 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24315 continue; 24316 if (ire1->ire_addr != ire->ire_addr) 24317 continue; 24318 if (ire1->ire_marks & 24319 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24320 continue; 24321 /* 24322 * Ensure we do not exceed the MTU 24323 * of the next route. 24324 */ 24325 if (ire1->ire_max_frag < max_frag) { 24326 ip_multirt_bad_mtu(ire1, max_frag); 24327 continue; 24328 } 24329 24330 /* Got one. */ 24331 IRE_REFHOLD(ire1); 24332 break; 24333 } 24334 IRB_REFRELE(irb); 24335 24336 if (ire1 != NULL) { 24337 next_mp = copyb(mp); 24338 if ((next_mp == NULL) || 24339 ((mp->b_cont != NULL) && 24340 ((next_mp->b_cont = 24341 dupmsg(mp->b_cont)) == NULL))) { 24342 freemsg(next_mp); 24343 next_mp = NULL; 24344 ire_refrele(ire1); 24345 ire1 = NULL; 24346 } 24347 } 24348 24349 /* Last multiroute ire; don't loop anymore. */ 24350 if (ire1 == NULL) { 24351 multirt_send = B_FALSE; 24352 } 24353 } 24354 24355 ll_hdr_len = 0; 24356 LOCK_IRE_FP_MP(ire); 24357 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24358 if (ll_hdr_mp != NULL) { 24359 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24360 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24361 } else { 24362 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24363 } 24364 24365 /* If there is a transmit header, get a copy for this frag. */ 24366 /* 24367 * TODO: should check db_ref before calling ip_carve_mp since 24368 * it might give us a dup. 24369 */ 24370 if (!ll_hdr_mp) { 24371 /* No xmit header. */ 24372 xmit_mp = mp; 24373 24374 /* We have a link-layer header that can fit in our mblk. */ 24375 } else if (mp->b_datap->db_ref == 1 && 24376 ll_hdr_len != 0 && 24377 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24378 /* M_DATA fastpath */ 24379 mp->b_rptr -= ll_hdr_len; 24380 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24381 xmit_mp = mp; 24382 24383 /* Corner case if copyb has failed */ 24384 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24385 UNLOCK_IRE_FP_MP(ire); 24386 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24387 freeb(hdr_mp); 24388 freemsg(mp); 24389 freemsg(mp_orig); 24390 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24391 "ip_wput_frag_end:(%S)", 24392 "discard"); 24393 24394 if (multirt_send) { 24395 ASSERT(ire1); 24396 ASSERT(next_mp); 24397 24398 freemsg(next_mp); 24399 ire_refrele(ire1); 24400 } 24401 if (save_ire != NULL) 24402 IRE_REFRELE(save_ire); 24403 24404 if (first_ire != NULL) 24405 ire_refrele(first_ire); 24406 return; 24407 24408 /* 24409 * Case of res_mp OR the fastpath mp can't fit 24410 * in the mblk 24411 */ 24412 } else { 24413 xmit_mp->b_cont = mp; 24414 if (DB_CRED(mp) != NULL) 24415 mblk_setcred(xmit_mp, DB_CRED(mp)); 24416 /* 24417 * Get priority marking, if any. 24418 * We propagate the CoS marking from the 24419 * original packet that went to QoS processing 24420 * in ip_wput_ire to the newly carved mp. 24421 */ 24422 if (DB_TYPE(xmit_mp) == M_DATA) 24423 xmit_mp->b_band = mp->b_band; 24424 } 24425 UNLOCK_IRE_FP_MP(ire); 24426 24427 q = ire->ire_stq; 24428 out_ill = (ill_t *)q->q_ptr; 24429 24430 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24431 24432 DTRACE_PROBE4(ip4__physical__out__start, 24433 ill_t *, NULL, ill_t *, out_ill, 24434 ipha_t *, ipha, mblk_t *, xmit_mp); 24435 24436 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24437 ipst->ips_ipv4firewall_physical_out, 24438 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24439 24440 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24441 24442 if (xmit_mp != NULL) { 24443 putnext(q, xmit_mp); 24444 24445 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24446 UPDATE_MIB(out_ill->ill_ip_mib, 24447 ipIfStatsHCOutOctets, i1); 24448 24449 if (pkt_type != OB_PKT) { 24450 /* 24451 * Update the packet count and MIB stats 24452 * of trailing RTF_MULTIRT ires. 24453 */ 24454 UPDATE_OB_PKT_COUNT(ire); 24455 BUMP_MIB(out_ill->ill_ip_mib, 24456 ipIfStatsOutFragReqds); 24457 } 24458 } 24459 24460 if (multirt_send) { 24461 /* 24462 * We are in a multiple send case; look for 24463 * the next ire and re-enter the loop. 24464 */ 24465 ASSERT(ire1); 24466 ASSERT(next_mp); 24467 /* REFRELE the current ire before looping */ 24468 ire_refrele(ire); 24469 ire = ire1; 24470 ire1 = NULL; 24471 mp = next_mp; 24472 next_mp = NULL; 24473 } 24474 } while (multirt_send); 24475 24476 ASSERT(ire1 == NULL); 24477 24478 /* Restore the original ire; we need it for the trailing frags */ 24479 if (save_ire != NULL) { 24480 /* REFRELE the last iterated ire */ 24481 ire_refrele(ire); 24482 /* save_ire has been REFHOLDed */ 24483 ire = save_ire; 24484 save_ire = NULL; 24485 q = ire->ire_stq; 24486 } 24487 24488 if (pkt_type == OB_PKT) { 24489 UPDATE_OB_PKT_COUNT(ire); 24490 } else { 24491 out_ill = (ill_t *)q->q_ptr; 24492 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24493 UPDATE_IB_PKT_COUNT(ire); 24494 } 24495 24496 /* Advance the offset to the second frag starting point. */ 24497 offset += len; 24498 /* 24499 * Update hdr_len from the copied header - there might be less options 24500 * in the later fragments. 24501 */ 24502 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24503 /* Loop until done. */ 24504 for (;;) { 24505 uint16_t offset_and_flags; 24506 uint16_t ip_len; 24507 24508 if (ip_data_end - offset > len) { 24509 /* 24510 * Carve off the appropriate amount from the original 24511 * datagram. 24512 */ 24513 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24514 mp = NULL; 24515 break; 24516 } 24517 /* 24518 * More frags after this one. Get another copy 24519 * of the header. 24520 */ 24521 if (carve_mp->b_datap->db_ref == 1 && 24522 hdr_mp->b_wptr - hdr_mp->b_rptr < 24523 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24524 /* Inline IP header */ 24525 carve_mp->b_rptr -= hdr_mp->b_wptr - 24526 hdr_mp->b_rptr; 24527 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24528 hdr_mp->b_wptr - hdr_mp->b_rptr); 24529 mp = carve_mp; 24530 } else { 24531 if (!(mp = copyb(hdr_mp))) { 24532 freemsg(carve_mp); 24533 break; 24534 } 24535 /* Get priority marking, if any. */ 24536 mp->b_band = carve_mp->b_band; 24537 mp->b_cont = carve_mp; 24538 } 24539 ipha = (ipha_t *)mp->b_rptr; 24540 offset_and_flags = IPH_MF; 24541 } else { 24542 /* 24543 * Last frag. Consume the header. Set len to 24544 * the length of this last piece. 24545 */ 24546 len = ip_data_end - offset; 24547 24548 /* 24549 * Carve off the appropriate amount from the original 24550 * datagram. 24551 */ 24552 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24553 mp = NULL; 24554 break; 24555 } 24556 if (carve_mp->b_datap->db_ref == 1 && 24557 hdr_mp->b_wptr - hdr_mp->b_rptr < 24558 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24559 /* Inline IP header */ 24560 carve_mp->b_rptr -= hdr_mp->b_wptr - 24561 hdr_mp->b_rptr; 24562 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24563 hdr_mp->b_wptr - hdr_mp->b_rptr); 24564 mp = carve_mp; 24565 freeb(hdr_mp); 24566 hdr_mp = mp; 24567 } else { 24568 mp = hdr_mp; 24569 /* Get priority marking, if any. */ 24570 mp->b_band = carve_mp->b_band; 24571 mp->b_cont = carve_mp; 24572 } 24573 ipha = (ipha_t *)mp->b_rptr; 24574 /* A frag of a frag might have IPH_MF non-zero */ 24575 offset_and_flags = 24576 ntohs(ipha->ipha_fragment_offset_and_flags) & 24577 IPH_MF; 24578 } 24579 offset_and_flags |= (uint16_t)(offset >> 3); 24580 offset_and_flags |= (uint16_t)frag_flag; 24581 /* Store the offset and flags in the IP header. */ 24582 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24583 24584 /* Store the length in the IP header. */ 24585 ip_len = (uint16_t)(len + hdr_len); 24586 ipha->ipha_length = htons(ip_len); 24587 24588 /* 24589 * Set the IP header checksum. Note that mp is just 24590 * the header, so this is easy to pass to ip_csum. 24591 */ 24592 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24593 24594 /* Attach a transmit header, if any, and ship it. */ 24595 if (pkt_type == OB_PKT) { 24596 UPDATE_OB_PKT_COUNT(ire); 24597 } else { 24598 out_ill = (ill_t *)q->q_ptr; 24599 BUMP_MIB(out_ill->ill_ip_mib, 24600 ipIfStatsHCOutForwDatagrams); 24601 UPDATE_IB_PKT_COUNT(ire); 24602 } 24603 24604 if (ire->ire_flags & RTF_MULTIRT) { 24605 irb = ire->ire_bucket; 24606 ASSERT(irb != NULL); 24607 24608 multirt_send = B_TRUE; 24609 24610 /* 24611 * Save the original ire; we will need to restore it 24612 * for the tailing frags. 24613 */ 24614 save_ire = ire; 24615 IRE_REFHOLD(save_ire); 24616 } 24617 /* 24618 * Emission loop for this fragment, similar 24619 * to what is done for the first fragment. 24620 */ 24621 do { 24622 if (multirt_send) { 24623 /* 24624 * We are in a multiple send case, need to get 24625 * the next ire and make a copy of the packet. 24626 */ 24627 ASSERT(irb != NULL); 24628 IRB_REFHOLD(irb); 24629 for (ire1 = ire->ire_next; 24630 ire1 != NULL; 24631 ire1 = ire1->ire_next) { 24632 if (!(ire1->ire_flags & RTF_MULTIRT)) 24633 continue; 24634 if (ire1->ire_addr != ire->ire_addr) 24635 continue; 24636 if (ire1->ire_marks & 24637 (IRE_MARK_CONDEMNED| 24638 IRE_MARK_HIDDEN)) { 24639 continue; 24640 } 24641 /* 24642 * Ensure we do not exceed the MTU 24643 * of the next route. 24644 */ 24645 if (ire1->ire_max_frag < max_frag) { 24646 ip_multirt_bad_mtu(ire1, 24647 max_frag); 24648 continue; 24649 } 24650 24651 /* Got one. */ 24652 IRE_REFHOLD(ire1); 24653 break; 24654 } 24655 IRB_REFRELE(irb); 24656 24657 if (ire1 != NULL) { 24658 next_mp = copyb(mp); 24659 if ((next_mp == NULL) || 24660 ((mp->b_cont != NULL) && 24661 ((next_mp->b_cont = 24662 dupmsg(mp->b_cont)) == NULL))) { 24663 freemsg(next_mp); 24664 next_mp = NULL; 24665 ire_refrele(ire1); 24666 ire1 = NULL; 24667 } 24668 } 24669 24670 /* Last multiroute ire; don't loop anymore. */ 24671 if (ire1 == NULL) { 24672 multirt_send = B_FALSE; 24673 } 24674 } 24675 24676 /* Update transmit header */ 24677 ll_hdr_len = 0; 24678 LOCK_IRE_FP_MP(ire); 24679 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24680 if (ll_hdr_mp != NULL) { 24681 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24682 ll_hdr_len = MBLKL(ll_hdr_mp); 24683 } else { 24684 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24685 } 24686 24687 if (!ll_hdr_mp) { 24688 xmit_mp = mp; 24689 24690 /* 24691 * We have link-layer header that can fit in 24692 * our mblk. 24693 */ 24694 } else if (mp->b_datap->db_ref == 1 && 24695 ll_hdr_len != 0 && 24696 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24697 /* M_DATA fastpath */ 24698 mp->b_rptr -= ll_hdr_len; 24699 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24700 ll_hdr_len); 24701 xmit_mp = mp; 24702 24703 /* 24704 * Case of res_mp OR the fastpath mp can't fit 24705 * in the mblk 24706 */ 24707 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24708 xmit_mp->b_cont = mp; 24709 if (DB_CRED(mp) != NULL) 24710 mblk_setcred(xmit_mp, DB_CRED(mp)); 24711 /* Get priority marking, if any. */ 24712 if (DB_TYPE(xmit_mp) == M_DATA) 24713 xmit_mp->b_band = mp->b_band; 24714 24715 /* Corner case if copyb failed */ 24716 } else { 24717 /* 24718 * Exit both the replication and 24719 * fragmentation loops. 24720 */ 24721 UNLOCK_IRE_FP_MP(ire); 24722 goto drop_pkt; 24723 } 24724 UNLOCK_IRE_FP_MP(ire); 24725 24726 mp1 = mp; 24727 out_ill = (ill_t *)q->q_ptr; 24728 24729 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24730 24731 DTRACE_PROBE4(ip4__physical__out__start, 24732 ill_t *, NULL, ill_t *, out_ill, 24733 ipha_t *, ipha, mblk_t *, xmit_mp); 24734 24735 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24736 ipst->ips_ipv4firewall_physical_out, 24737 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24738 24739 DTRACE_PROBE1(ip4__physical__out__end, 24740 mblk_t *, xmit_mp); 24741 24742 if (mp != mp1 && hdr_mp == mp1) 24743 hdr_mp = mp; 24744 if (mp != mp1 && mp_orig == mp1) 24745 mp_orig = mp; 24746 24747 if (xmit_mp != NULL) { 24748 putnext(q, xmit_mp); 24749 24750 BUMP_MIB(out_ill->ill_ip_mib, 24751 ipIfStatsHCOutTransmits); 24752 UPDATE_MIB(out_ill->ill_ip_mib, 24753 ipIfStatsHCOutOctets, ip_len); 24754 24755 if (pkt_type != OB_PKT) { 24756 /* 24757 * Update the packet count of trailing 24758 * RTF_MULTIRT ires. 24759 */ 24760 UPDATE_OB_PKT_COUNT(ire); 24761 } 24762 } 24763 24764 /* All done if we just consumed the hdr_mp. */ 24765 if (mp == hdr_mp) { 24766 last_frag = B_TRUE; 24767 BUMP_MIB(out_ill->ill_ip_mib, 24768 ipIfStatsOutFragOKs); 24769 } 24770 24771 if (multirt_send) { 24772 /* 24773 * We are in a multiple send case; look for 24774 * the next ire and re-enter the loop. 24775 */ 24776 ASSERT(ire1); 24777 ASSERT(next_mp); 24778 /* REFRELE the current ire before looping */ 24779 ire_refrele(ire); 24780 ire = ire1; 24781 ire1 = NULL; 24782 q = ire->ire_stq; 24783 mp = next_mp; 24784 next_mp = NULL; 24785 } 24786 } while (multirt_send); 24787 /* 24788 * Restore the original ire; we need it for the 24789 * trailing frags 24790 */ 24791 if (save_ire != NULL) { 24792 ASSERT(ire1 == NULL); 24793 /* REFRELE the last iterated ire */ 24794 ire_refrele(ire); 24795 /* save_ire has been REFHOLDed */ 24796 ire = save_ire; 24797 q = ire->ire_stq; 24798 save_ire = NULL; 24799 } 24800 24801 if (last_frag) { 24802 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24803 "ip_wput_frag_end:(%S)", 24804 "consumed hdr_mp"); 24805 24806 if (first_ire != NULL) 24807 ire_refrele(first_ire); 24808 return; 24809 } 24810 /* Otherwise, advance and loop. */ 24811 offset += len; 24812 } 24813 24814 drop_pkt: 24815 /* Clean up following allocation failure. */ 24816 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24817 freemsg(mp); 24818 if (mp != hdr_mp) 24819 freeb(hdr_mp); 24820 if (mp != mp_orig) 24821 freemsg(mp_orig); 24822 24823 if (save_ire != NULL) 24824 IRE_REFRELE(save_ire); 24825 if (first_ire != NULL) 24826 ire_refrele(first_ire); 24827 24828 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24829 "ip_wput_frag_end:(%S)", 24830 "end--alloc failure"); 24831 } 24832 24833 /* 24834 * Copy the header plus those options which have the copy bit set 24835 */ 24836 static mblk_t * 24837 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 24838 { 24839 mblk_t *mp; 24840 uchar_t *up; 24841 24842 /* 24843 * Quick check if we need to look for options without the copy bit 24844 * set 24845 */ 24846 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 24847 if (!mp) 24848 return (mp); 24849 mp->b_rptr += ipst->ips_ip_wroff_extra; 24850 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24851 bcopy(rptr, mp->b_rptr, hdr_len); 24852 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24853 return (mp); 24854 } 24855 up = mp->b_rptr; 24856 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24857 up += IP_SIMPLE_HDR_LENGTH; 24858 rptr += IP_SIMPLE_HDR_LENGTH; 24859 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24860 while (hdr_len > 0) { 24861 uint32_t optval; 24862 uint32_t optlen; 24863 24864 optval = *rptr; 24865 if (optval == IPOPT_EOL) 24866 break; 24867 if (optval == IPOPT_NOP) 24868 optlen = 1; 24869 else 24870 optlen = rptr[1]; 24871 if (optval & IPOPT_COPY) { 24872 bcopy(rptr, up, optlen); 24873 up += optlen; 24874 } 24875 rptr += optlen; 24876 hdr_len -= optlen; 24877 } 24878 /* 24879 * Make sure that we drop an even number of words by filling 24880 * with EOL to the next word boundary. 24881 */ 24882 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24883 hdr_len & 0x3; hdr_len++) 24884 *up++ = IPOPT_EOL; 24885 mp->b_wptr = up; 24886 /* Update header length */ 24887 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24888 return (mp); 24889 } 24890 24891 /* 24892 * Delivery to local recipients including fanout to multiple recipients. 24893 * Does not do checksumming of UDP/TCP. 24894 * Note: q should be the read side queue for either the ill or conn. 24895 * Note: rq should be the read side q for the lower (ill) stream. 24896 * We don't send packets to IPPF processing, thus the last argument 24897 * to all the fanout calls are B_FALSE. 24898 */ 24899 void 24900 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24901 int fanout_flags, zoneid_t zoneid) 24902 { 24903 uint32_t protocol; 24904 mblk_t *first_mp; 24905 boolean_t mctl_present; 24906 int ire_type; 24907 #define rptr ((uchar_t *)ipha) 24908 ip_stack_t *ipst = ill->ill_ipst; 24909 24910 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24911 "ip_wput_local_start: q %p", q); 24912 24913 if (ire != NULL) { 24914 ire_type = ire->ire_type; 24915 } else { 24916 /* 24917 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24918 * packet is not multicast, we can't tell the ire type. 24919 */ 24920 ASSERT(CLASSD(ipha->ipha_dst)); 24921 ire_type = IRE_BROADCAST; 24922 } 24923 24924 first_mp = mp; 24925 if (first_mp->b_datap->db_type == M_CTL) { 24926 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24927 if (!io->ipsec_out_secure) { 24928 /* 24929 * This ipsec_out_t was allocated in ip_wput 24930 * for multicast packets to store the ill_index. 24931 * As this is being delivered locally, we don't 24932 * need this anymore. 24933 */ 24934 mp = first_mp->b_cont; 24935 freeb(first_mp); 24936 first_mp = mp; 24937 mctl_present = B_FALSE; 24938 } else { 24939 /* 24940 * Convert IPSEC_OUT to IPSEC_IN, preserving all 24941 * security properties for the looped-back packet. 24942 */ 24943 mctl_present = B_TRUE; 24944 mp = first_mp->b_cont; 24945 ASSERT(mp != NULL); 24946 ipsec_out_to_in(first_mp); 24947 } 24948 } else { 24949 mctl_present = B_FALSE; 24950 } 24951 24952 DTRACE_PROBE4(ip4__loopback__in__start, 24953 ill_t *, ill, ill_t *, NULL, 24954 ipha_t *, ipha, mblk_t *, first_mp); 24955 24956 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 24957 ipst->ips_ipv4firewall_loopback_in, 24958 ill, NULL, ipha, first_mp, mp, ipst); 24959 24960 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 24961 24962 if (first_mp == NULL) 24963 return; 24964 24965 ipst->ips_loopback_packets++; 24966 24967 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 24968 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 24969 if (!IS_SIMPLE_IPH(ipha)) { 24970 ip_wput_local_options(ipha, ipst); 24971 } 24972 24973 protocol = ipha->ipha_protocol; 24974 switch (protocol) { 24975 case IPPROTO_ICMP: { 24976 ire_t *ire_zone; 24977 ilm_t *ilm; 24978 mblk_t *mp1; 24979 zoneid_t last_zoneid; 24980 24981 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 24982 ASSERT(ire_type == IRE_BROADCAST); 24983 /* 24984 * In the multicast case, applications may have joined 24985 * the group from different zones, so we need to deliver 24986 * the packet to each of them. Loop through the 24987 * multicast memberships structures (ilm) on the receive 24988 * ill and send a copy of the packet up each matching 24989 * one. However, we don't do this for multicasts sent on 24990 * the loopback interface (PHYI_LOOPBACK flag set) as 24991 * they must stay in the sender's zone. 24992 * 24993 * ilm_add_v6() ensures that ilms in the same zone are 24994 * contiguous in the ill_ilm list. We use this property 24995 * to avoid sending duplicates needed when two 24996 * applications in the same zone join the same group on 24997 * different logical interfaces: we ignore the ilm if 24998 * it's zoneid is the same as the last matching one. 24999 * In addition, the sending of the packet for 25000 * ire_zoneid is delayed until all of the other ilms 25001 * have been exhausted. 25002 */ 25003 last_zoneid = -1; 25004 ILM_WALKER_HOLD(ill); 25005 for (ilm = ill->ill_ilm; ilm != NULL; 25006 ilm = ilm->ilm_next) { 25007 if ((ilm->ilm_flags & ILM_DELETED) || 25008 ipha->ipha_dst != ilm->ilm_addr || 25009 ilm->ilm_zoneid == last_zoneid || 25010 ilm->ilm_zoneid == zoneid || 25011 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25012 continue; 25013 mp1 = ip_copymsg(first_mp); 25014 if (mp1 == NULL) 25015 continue; 25016 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25017 mctl_present, B_FALSE, ill, 25018 ilm->ilm_zoneid); 25019 last_zoneid = ilm->ilm_zoneid; 25020 } 25021 ILM_WALKER_RELE(ill); 25022 /* 25023 * Loopback case: the sending endpoint has 25024 * IP_MULTICAST_LOOP disabled, therefore we don't 25025 * dispatch the multicast packet to the sending zone. 25026 */ 25027 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25028 freemsg(first_mp); 25029 return; 25030 } 25031 } else if (ire_type == IRE_BROADCAST) { 25032 /* 25033 * In the broadcast case, there may be many zones 25034 * which need a copy of the packet delivered to them. 25035 * There is one IRE_BROADCAST per broadcast address 25036 * and per zone; we walk those using a helper function. 25037 * In addition, the sending of the packet for zoneid is 25038 * delayed until all of the other ires have been 25039 * processed. 25040 */ 25041 IRB_REFHOLD(ire->ire_bucket); 25042 ire_zone = NULL; 25043 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25044 ire)) != NULL) { 25045 mp1 = ip_copymsg(first_mp); 25046 if (mp1 == NULL) 25047 continue; 25048 25049 UPDATE_IB_PKT_COUNT(ire_zone); 25050 ire_zone->ire_last_used_time = lbolt; 25051 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25052 mctl_present, B_FALSE, ill, 25053 ire_zone->ire_zoneid); 25054 } 25055 IRB_REFRELE(ire->ire_bucket); 25056 } 25057 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25058 0, mctl_present, B_FALSE, ill, zoneid); 25059 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25060 "ip_wput_local_end: q %p (%S)", 25061 q, "icmp"); 25062 return; 25063 } 25064 case IPPROTO_IGMP: 25065 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25066 /* Bad packet - discarded by igmp_input */ 25067 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25068 "ip_wput_local_end: q %p (%S)", 25069 q, "igmp_input--bad packet"); 25070 if (mctl_present) 25071 freeb(first_mp); 25072 return; 25073 } 25074 /* 25075 * igmp_input() may have returned the pulled up message. 25076 * So first_mp and ipha need to be reinitialized. 25077 */ 25078 ipha = (ipha_t *)mp->b_rptr; 25079 if (mctl_present) 25080 first_mp->b_cont = mp; 25081 else 25082 first_mp = mp; 25083 /* deliver to local raw users */ 25084 break; 25085 case IPPROTO_ENCAP: 25086 /* 25087 * This case is covered by either ip_fanout_proto, or by 25088 * the above security processing for self-tunneled packets. 25089 */ 25090 break; 25091 case IPPROTO_UDP: { 25092 uint16_t *up; 25093 uint32_t ports; 25094 25095 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25096 UDP_PORTS_OFFSET); 25097 /* Force a 'valid' checksum. */ 25098 up[3] = 0; 25099 25100 ports = *(uint32_t *)up; 25101 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25102 (ire_type == IRE_BROADCAST), 25103 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25104 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25105 ill, zoneid); 25106 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25107 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25108 return; 25109 } 25110 case IPPROTO_TCP: { 25111 25112 /* 25113 * For TCP, discard broadcast packets. 25114 */ 25115 if ((ushort_t)ire_type == IRE_BROADCAST) { 25116 freemsg(first_mp); 25117 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25118 ip2dbg(("ip_wput_local: discard broadcast\n")); 25119 return; 25120 } 25121 25122 if (mp->b_datap->db_type == M_DATA) { 25123 /* 25124 * M_DATA mblk, so init mblk (chain) for no struio(). 25125 */ 25126 mblk_t *mp1 = mp; 25127 25128 do { 25129 mp1->b_datap->db_struioflag = 0; 25130 } while ((mp1 = mp1->b_cont) != NULL); 25131 } 25132 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25133 <= mp->b_wptr); 25134 ip_fanout_tcp(q, first_mp, ill, ipha, 25135 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25136 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25137 mctl_present, B_FALSE, zoneid); 25138 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25139 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25140 return; 25141 } 25142 case IPPROTO_SCTP: 25143 { 25144 uint32_t ports; 25145 25146 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25147 ip_fanout_sctp(first_mp, ill, ipha, ports, 25148 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25149 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25150 return; 25151 } 25152 25153 default: 25154 break; 25155 } 25156 /* 25157 * Find a client for some other protocol. We give 25158 * copies to multiple clients, if more than one is 25159 * bound. 25160 */ 25161 ip_fanout_proto(q, first_mp, ill, ipha, 25162 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25163 mctl_present, B_FALSE, ill, zoneid); 25164 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25165 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25166 #undef rptr 25167 } 25168 25169 /* 25170 * Update any source route, record route, or timestamp options. 25171 * Check that we are at end of strict source route. 25172 * The options have been sanity checked by ip_wput_options(). 25173 */ 25174 static void 25175 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25176 { 25177 ipoptp_t opts; 25178 uchar_t *opt; 25179 uint8_t optval; 25180 uint8_t optlen; 25181 ipaddr_t dst; 25182 uint32_t ts; 25183 ire_t *ire; 25184 timestruc_t now; 25185 25186 ip2dbg(("ip_wput_local_options\n")); 25187 for (optval = ipoptp_first(&opts, ipha); 25188 optval != IPOPT_EOL; 25189 optval = ipoptp_next(&opts)) { 25190 opt = opts.ipoptp_cur; 25191 optlen = opts.ipoptp_len; 25192 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25193 switch (optval) { 25194 uint32_t off; 25195 case IPOPT_SSRR: 25196 case IPOPT_LSRR: 25197 off = opt[IPOPT_OFFSET]; 25198 off--; 25199 if (optlen < IP_ADDR_LEN || 25200 off > optlen - IP_ADDR_LEN) { 25201 /* End of source route */ 25202 break; 25203 } 25204 /* 25205 * This will only happen if two consecutive entries 25206 * in the source route contains our address or if 25207 * it is a packet with a loose source route which 25208 * reaches us before consuming the whole source route 25209 */ 25210 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25211 if (optval == IPOPT_SSRR) { 25212 return; 25213 } 25214 /* 25215 * Hack: instead of dropping the packet truncate the 25216 * source route to what has been used by filling the 25217 * rest with IPOPT_NOP. 25218 */ 25219 opt[IPOPT_OLEN] = (uint8_t)off; 25220 while (off < optlen) { 25221 opt[off++] = IPOPT_NOP; 25222 } 25223 break; 25224 case IPOPT_RR: 25225 off = opt[IPOPT_OFFSET]; 25226 off--; 25227 if (optlen < IP_ADDR_LEN || 25228 off > optlen - IP_ADDR_LEN) { 25229 /* No more room - ignore */ 25230 ip1dbg(( 25231 "ip_wput_forward_options: end of RR\n")); 25232 break; 25233 } 25234 dst = htonl(INADDR_LOOPBACK); 25235 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25236 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25237 break; 25238 case IPOPT_TS: 25239 /* Insert timestamp if there is romm */ 25240 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25241 case IPOPT_TS_TSONLY: 25242 off = IPOPT_TS_TIMELEN; 25243 break; 25244 case IPOPT_TS_PRESPEC: 25245 case IPOPT_TS_PRESPEC_RFC791: 25246 /* Verify that the address matched */ 25247 off = opt[IPOPT_OFFSET] - 1; 25248 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25249 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25250 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25251 ipst); 25252 if (ire == NULL) { 25253 /* Not for us */ 25254 break; 25255 } 25256 ire_refrele(ire); 25257 /* FALLTHRU */ 25258 case IPOPT_TS_TSANDADDR: 25259 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25260 break; 25261 default: 25262 /* 25263 * ip_*put_options should have already 25264 * dropped this packet. 25265 */ 25266 cmn_err(CE_PANIC, "ip_wput_local_options: " 25267 "unknown IT - bug in ip_wput_options?\n"); 25268 return; /* Keep "lint" happy */ 25269 } 25270 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25271 /* Increase overflow counter */ 25272 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25273 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25274 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25275 (off << 4); 25276 break; 25277 } 25278 off = opt[IPOPT_OFFSET] - 1; 25279 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25280 case IPOPT_TS_PRESPEC: 25281 case IPOPT_TS_PRESPEC_RFC791: 25282 case IPOPT_TS_TSANDADDR: 25283 dst = htonl(INADDR_LOOPBACK); 25284 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25285 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25286 /* FALLTHRU */ 25287 case IPOPT_TS_TSONLY: 25288 off = opt[IPOPT_OFFSET] - 1; 25289 /* Compute # of milliseconds since midnight */ 25290 gethrestime(&now); 25291 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25292 now.tv_nsec / (NANOSEC / MILLISEC); 25293 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25294 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25295 break; 25296 } 25297 break; 25298 } 25299 } 25300 } 25301 25302 /* 25303 * Send out a multicast packet on interface ipif. 25304 * The sender does not have an conn. 25305 * Caller verifies that this isn't a PHYI_LOOPBACK. 25306 */ 25307 void 25308 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25309 { 25310 ipha_t *ipha; 25311 ire_t *ire; 25312 ipaddr_t dst; 25313 mblk_t *first_mp; 25314 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25315 25316 /* igmp_sendpkt always allocates a ipsec_out_t */ 25317 ASSERT(mp->b_datap->db_type == M_CTL); 25318 ASSERT(!ipif->ipif_isv6); 25319 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25320 25321 first_mp = mp; 25322 mp = first_mp->b_cont; 25323 ASSERT(mp->b_datap->db_type == M_DATA); 25324 ipha = (ipha_t *)mp->b_rptr; 25325 25326 /* 25327 * Find an IRE which matches the destination and the outgoing 25328 * queue (i.e. the outgoing interface.) 25329 */ 25330 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25331 dst = ipif->ipif_pp_dst_addr; 25332 else 25333 dst = ipha->ipha_dst; 25334 /* 25335 * The source address has already been initialized by the 25336 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25337 * be sufficient rather than MATCH_IRE_IPIF. 25338 * 25339 * This function is used for sending IGMP packets. We need 25340 * to make sure that we send the packet out of the interface 25341 * (ipif->ipif_ill) where we joined the group. This is to 25342 * prevent from switches doing IGMP snooping to send us multicast 25343 * packets for a given group on the interface we have joined. 25344 * If we can't find an ire, igmp_sendpkt has already initialized 25345 * ipsec_out_attach_if so that this will not be load spread in 25346 * ip_newroute_ipif. 25347 */ 25348 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25349 MATCH_IRE_ILL, ipst); 25350 if (!ire) { 25351 /* 25352 * Mark this packet to make it be delivered to 25353 * ip_wput_ire after the new ire has been 25354 * created. 25355 */ 25356 mp->b_prev = NULL; 25357 mp->b_next = NULL; 25358 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25359 zoneid, &zero_info); 25360 return; 25361 } 25362 25363 /* 25364 * Honor the RTF_SETSRC flag; this is the only case 25365 * where we force this addr whatever the current src addr is, 25366 * because this address is set by igmp_sendpkt(), and 25367 * cannot be specified by any user. 25368 */ 25369 if (ire->ire_flags & RTF_SETSRC) { 25370 ipha->ipha_src = ire->ire_src_addr; 25371 } 25372 25373 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25374 } 25375 25376 /* 25377 * NOTE : This function does not ire_refrele the ire argument passed in. 25378 * 25379 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25380 * failure. The nce_fp_mp can vanish any time in the case of 25381 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25382 * the ire_lock to access the nce_fp_mp in this case. 25383 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25384 * prepending a fastpath message IPQoS processing must precede it, we also set 25385 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25386 * (IPQoS might have set the b_band for CoS marking). 25387 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25388 * must follow it so that IPQoS can mark the dl_priority field for CoS 25389 * marking, if needed. 25390 */ 25391 static mblk_t * 25392 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 25393 { 25394 uint_t hlen; 25395 ipha_t *ipha; 25396 mblk_t *mp1; 25397 boolean_t qos_done = B_FALSE; 25398 uchar_t *ll_hdr; 25399 ip_stack_t *ipst = ire->ire_ipst; 25400 25401 #define rptr ((uchar_t *)ipha) 25402 25403 ipha = (ipha_t *)mp->b_rptr; 25404 hlen = 0; 25405 LOCK_IRE_FP_MP(ire); 25406 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25407 ASSERT(DB_TYPE(mp1) == M_DATA); 25408 /* Initiate IPPF processing */ 25409 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25410 UNLOCK_IRE_FP_MP(ire); 25411 ip_process(proc, &mp, ill_index); 25412 if (mp == NULL) 25413 return (NULL); 25414 25415 ipha = (ipha_t *)mp->b_rptr; 25416 LOCK_IRE_FP_MP(ire); 25417 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25418 qos_done = B_TRUE; 25419 goto no_fp_mp; 25420 } 25421 ASSERT(DB_TYPE(mp1) == M_DATA); 25422 } 25423 hlen = MBLKL(mp1); 25424 /* 25425 * Check if we have enough room to prepend fastpath 25426 * header 25427 */ 25428 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25429 ll_hdr = rptr - hlen; 25430 bcopy(mp1->b_rptr, ll_hdr, hlen); 25431 /* 25432 * Set the b_rptr to the start of the link layer 25433 * header 25434 */ 25435 mp->b_rptr = ll_hdr; 25436 mp1 = mp; 25437 } else { 25438 mp1 = copyb(mp1); 25439 if (mp1 == NULL) 25440 goto unlock_err; 25441 mp1->b_band = mp->b_band; 25442 mp1->b_cont = mp; 25443 /* 25444 * certain system generated traffic may not 25445 * have cred/label in ip header block. This 25446 * is true even for a labeled system. But for 25447 * labeled traffic, inherit the label in the 25448 * new header. 25449 */ 25450 if (DB_CRED(mp) != NULL) 25451 mblk_setcred(mp1, DB_CRED(mp)); 25452 /* 25453 * XXX disable ICK_VALID and compute checksum 25454 * here; can happen if nce_fp_mp changes and 25455 * it can't be copied now due to insufficient 25456 * space. (unlikely, fp mp can change, but it 25457 * does not increase in length) 25458 */ 25459 } 25460 UNLOCK_IRE_FP_MP(ire); 25461 } else { 25462 no_fp_mp: 25463 mp1 = copyb(ire->ire_nce->nce_res_mp); 25464 if (mp1 == NULL) { 25465 unlock_err: 25466 UNLOCK_IRE_FP_MP(ire); 25467 freemsg(mp); 25468 return (NULL); 25469 } 25470 UNLOCK_IRE_FP_MP(ire); 25471 mp1->b_cont = mp; 25472 /* 25473 * certain system generated traffic may not 25474 * have cred/label in ip header block. This 25475 * is true even for a labeled system. But for 25476 * labeled traffic, inherit the label in the 25477 * new header. 25478 */ 25479 if (DB_CRED(mp) != NULL) 25480 mblk_setcred(mp1, DB_CRED(mp)); 25481 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25482 ip_process(proc, &mp1, ill_index); 25483 if (mp1 == NULL) 25484 return (NULL); 25485 } 25486 } 25487 return (mp1); 25488 #undef rptr 25489 } 25490 25491 /* 25492 * Finish the outbound IPsec processing for an IPv6 packet. This function 25493 * is called from ipsec_out_process() if the IPsec packet was processed 25494 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25495 * asynchronously. 25496 */ 25497 void 25498 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25499 ire_t *ire_arg) 25500 { 25501 in6_addr_t *v6dstp; 25502 ire_t *ire; 25503 mblk_t *mp; 25504 ip6_t *ip6h1; 25505 uint_t ill_index; 25506 ipsec_out_t *io; 25507 boolean_t attach_if, hwaccel; 25508 uint32_t flags = IP6_NO_IPPOLICY; 25509 int match_flags; 25510 zoneid_t zoneid; 25511 boolean_t ill_need_rele = B_FALSE; 25512 boolean_t ire_need_rele = B_FALSE; 25513 ip_stack_t *ipst; 25514 25515 mp = ipsec_mp->b_cont; 25516 ip6h1 = (ip6_t *)mp->b_rptr; 25517 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25518 ASSERT(io->ipsec_out_ns != NULL); 25519 ipst = io->ipsec_out_ns->netstack_ip; 25520 ill_index = io->ipsec_out_ill_index; 25521 if (io->ipsec_out_reachable) { 25522 flags |= IPV6_REACHABILITY_CONFIRMATION; 25523 } 25524 attach_if = io->ipsec_out_attach_if; 25525 hwaccel = io->ipsec_out_accelerated; 25526 zoneid = io->ipsec_out_zoneid; 25527 ASSERT(zoneid != ALL_ZONES); 25528 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25529 /* Multicast addresses should have non-zero ill_index. */ 25530 v6dstp = &ip6h->ip6_dst; 25531 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25532 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25533 ASSERT(!attach_if || ill_index != 0); 25534 if (ill_index != 0) { 25535 if (ill == NULL) { 25536 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25537 B_TRUE, ipst); 25538 25539 /* Failure case frees things for us. */ 25540 if (ill == NULL) 25541 return; 25542 25543 ill_need_rele = B_TRUE; 25544 } 25545 /* 25546 * If this packet needs to go out on a particular interface 25547 * honor it. 25548 */ 25549 if (attach_if) { 25550 match_flags = MATCH_IRE_ILL; 25551 25552 /* 25553 * Check if we need an ire that will not be 25554 * looked up by anybody else i.e. HIDDEN. 25555 */ 25556 if (ill_is_probeonly(ill)) { 25557 match_flags |= MATCH_IRE_MARK_HIDDEN; 25558 } 25559 } 25560 } 25561 ASSERT(mp != NULL); 25562 25563 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25564 boolean_t unspec_src; 25565 ipif_t *ipif; 25566 25567 /* 25568 * Use the ill_index to get the right ill. 25569 */ 25570 unspec_src = io->ipsec_out_unspec_src; 25571 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25572 if (ipif == NULL) { 25573 if (ill_need_rele) 25574 ill_refrele(ill); 25575 freemsg(ipsec_mp); 25576 return; 25577 } 25578 25579 if (ire_arg != NULL) { 25580 ire = ire_arg; 25581 } else { 25582 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25583 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25584 ire_need_rele = B_TRUE; 25585 } 25586 if (ire != NULL) { 25587 ipif_refrele(ipif); 25588 /* 25589 * XXX Do the multicast forwarding now, as the IPsec 25590 * processing has been done. 25591 */ 25592 goto send; 25593 } 25594 25595 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25596 mp->b_prev = NULL; 25597 mp->b_next = NULL; 25598 25599 /* 25600 * If the IPsec packet was processed asynchronously, 25601 * drop it now. 25602 */ 25603 if (q == NULL) { 25604 if (ill_need_rele) 25605 ill_refrele(ill); 25606 freemsg(ipsec_mp); 25607 return; 25608 } 25609 25610 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25611 unspec_src, zoneid); 25612 ipif_refrele(ipif); 25613 } else { 25614 if (attach_if) { 25615 ipif_t *ipif; 25616 25617 ipif = ipif_get_next_ipif(NULL, ill); 25618 if (ipif == NULL) { 25619 if (ill_need_rele) 25620 ill_refrele(ill); 25621 freemsg(ipsec_mp); 25622 return; 25623 } 25624 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25625 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25626 ire_need_rele = B_TRUE; 25627 ipif_refrele(ipif); 25628 } else { 25629 if (ire_arg != NULL) { 25630 ire = ire_arg; 25631 } else { 25632 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25633 ipst); 25634 ire_need_rele = B_TRUE; 25635 } 25636 } 25637 if (ire != NULL) 25638 goto send; 25639 /* 25640 * ire disappeared underneath. 25641 * 25642 * What we need to do here is the ip_newroute 25643 * logic to get the ire without doing the IPsec 25644 * processing. Follow the same old path. But this 25645 * time, ip_wput or ire_add_then_send will call us 25646 * directly as all the IPsec operations are done. 25647 */ 25648 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25649 mp->b_prev = NULL; 25650 mp->b_next = NULL; 25651 25652 /* 25653 * If the IPsec packet was processed asynchronously, 25654 * drop it now. 25655 */ 25656 if (q == NULL) { 25657 if (ill_need_rele) 25658 ill_refrele(ill); 25659 freemsg(ipsec_mp); 25660 return; 25661 } 25662 25663 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25664 zoneid, ipst); 25665 } 25666 if (ill != NULL && ill_need_rele) 25667 ill_refrele(ill); 25668 return; 25669 send: 25670 if (ill != NULL && ill_need_rele) 25671 ill_refrele(ill); 25672 25673 /* Local delivery */ 25674 if (ire->ire_stq == NULL) { 25675 ill_t *out_ill; 25676 ASSERT(q != NULL); 25677 25678 /* PFHooks: LOOPBACK_OUT */ 25679 out_ill = ire_to_ill(ire); 25680 25681 DTRACE_PROBE4(ip6__loopback__out__start, 25682 ill_t *, NULL, ill_t *, out_ill, 25683 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25684 25685 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25686 ipst->ips_ipv6firewall_loopback_out, 25687 NULL, out_ill, ip6h1, ipsec_mp, mp, ipst); 25688 25689 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25690 25691 if (ipsec_mp != NULL) 25692 ip_wput_local_v6(RD(q), out_ill, 25693 ip6h, ipsec_mp, ire, 0); 25694 if (ire_need_rele) 25695 ire_refrele(ire); 25696 return; 25697 } 25698 /* 25699 * Everything is done. Send it out on the wire. 25700 * We force the insertion of a fragment header using the 25701 * IPH_FRAG_HDR flag in two cases: 25702 * - after reception of an ICMPv6 "packet too big" message 25703 * with a MTU < 1280 (cf. RFC 2460 section 5) 25704 * - for multirouted IPv6 packets, so that the receiver can 25705 * discard duplicates according to their fragment identifier 25706 */ 25707 /* XXX fix flow control problems. */ 25708 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25709 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25710 if (hwaccel) { 25711 /* 25712 * hardware acceleration does not handle these 25713 * "slow path" cases. 25714 */ 25715 /* IPsec KSTATS: should bump bean counter here. */ 25716 if (ire_need_rele) 25717 ire_refrele(ire); 25718 freemsg(ipsec_mp); 25719 return; 25720 } 25721 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25722 (mp->b_cont ? msgdsize(mp) : 25723 mp->b_wptr - (uchar_t *)ip6h)) { 25724 /* IPsec KSTATS: should bump bean counter here. */ 25725 ip0dbg(("Packet length mismatch: %d, %ld\n", 25726 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25727 msgdsize(mp))); 25728 if (ire_need_rele) 25729 ire_refrele(ire); 25730 freemsg(ipsec_mp); 25731 return; 25732 } 25733 ASSERT(mp->b_prev == NULL); 25734 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25735 ntohs(ip6h->ip6_plen) + 25736 IPV6_HDR_LEN, ire->ire_max_frag)); 25737 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25738 ire->ire_max_frag); 25739 } else { 25740 UPDATE_OB_PKT_COUNT(ire); 25741 ire->ire_last_used_time = lbolt; 25742 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25743 } 25744 if (ire_need_rele) 25745 ire_refrele(ire); 25746 freeb(ipsec_mp); 25747 } 25748 25749 void 25750 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25751 { 25752 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25753 da_ipsec_t *hada; /* data attributes */ 25754 ill_t *ill = (ill_t *)q->q_ptr; 25755 25756 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25757 25758 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25759 /* IPsec KSTATS: Bump lose counter here! */ 25760 freemsg(mp); 25761 return; 25762 } 25763 25764 /* 25765 * It's an IPsec packet that must be 25766 * accelerated by the Provider, and the 25767 * outbound ill is IPsec acceleration capable. 25768 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25769 * to the ill. 25770 * IPsec KSTATS: should bump packet counter here. 25771 */ 25772 25773 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25774 if (hada_mp == NULL) { 25775 /* IPsec KSTATS: should bump packet counter here. */ 25776 freemsg(mp); 25777 return; 25778 } 25779 25780 hada_mp->b_datap->db_type = M_CTL; 25781 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25782 hada_mp->b_cont = mp; 25783 25784 hada = (da_ipsec_t *)hada_mp->b_rptr; 25785 bzero(hada, sizeof (da_ipsec_t)); 25786 hada->da_type = IPHADA_M_CTL; 25787 25788 putnext(q, hada_mp); 25789 } 25790 25791 /* 25792 * Finish the outbound IPsec processing. This function is called from 25793 * ipsec_out_process() if the IPsec packet was processed 25794 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25795 * asynchronously. 25796 */ 25797 void 25798 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25799 ire_t *ire_arg) 25800 { 25801 uint32_t v_hlen_tos_len; 25802 ipaddr_t dst; 25803 ipif_t *ipif = NULL; 25804 ire_t *ire; 25805 ire_t *ire1 = NULL; 25806 mblk_t *next_mp = NULL; 25807 uint32_t max_frag; 25808 boolean_t multirt_send = B_FALSE; 25809 mblk_t *mp; 25810 ipha_t *ipha1; 25811 uint_t ill_index; 25812 ipsec_out_t *io; 25813 boolean_t attach_if; 25814 int match_flags; 25815 irb_t *irb = NULL; 25816 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25817 zoneid_t zoneid; 25818 ipxmit_state_t pktxmit_state; 25819 ip_stack_t *ipst; 25820 25821 #ifdef _BIG_ENDIAN 25822 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25823 #else 25824 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25825 #endif 25826 25827 mp = ipsec_mp->b_cont; 25828 ipha1 = (ipha_t *)mp->b_rptr; 25829 ASSERT(mp != NULL); 25830 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25831 dst = ipha->ipha_dst; 25832 25833 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25834 ill_index = io->ipsec_out_ill_index; 25835 attach_if = io->ipsec_out_attach_if; 25836 zoneid = io->ipsec_out_zoneid; 25837 ASSERT(zoneid != ALL_ZONES); 25838 ipst = io->ipsec_out_ns->netstack_ip; 25839 ASSERT(io->ipsec_out_ns != NULL); 25840 25841 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25842 if (ill_index != 0) { 25843 if (ill == NULL) { 25844 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25845 ill_index, B_FALSE, ipst); 25846 25847 /* Failure case frees things for us. */ 25848 if (ill == NULL) 25849 return; 25850 25851 ill_need_rele = B_TRUE; 25852 } 25853 /* 25854 * If this packet needs to go out on a particular interface 25855 * honor it. 25856 */ 25857 if (attach_if) { 25858 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25859 25860 /* 25861 * Check if we need an ire that will not be 25862 * looked up by anybody else i.e. HIDDEN. 25863 */ 25864 if (ill_is_probeonly(ill)) { 25865 match_flags |= MATCH_IRE_MARK_HIDDEN; 25866 } 25867 } 25868 } 25869 25870 if (CLASSD(dst)) { 25871 boolean_t conn_dontroute; 25872 /* 25873 * Use the ill_index to get the right ipif. 25874 */ 25875 conn_dontroute = io->ipsec_out_dontroute; 25876 if (ill_index == 0) 25877 ipif = ipif_lookup_group(dst, zoneid, ipst); 25878 else 25879 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25880 if (ipif == NULL) { 25881 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25882 " multicast\n")); 25883 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25884 freemsg(ipsec_mp); 25885 goto done; 25886 } 25887 /* 25888 * ipha_src has already been intialized with the 25889 * value of the ipif in ip_wput. All we need now is 25890 * an ire to send this downstream. 25891 */ 25892 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25893 MBLK_GETLABEL(mp), match_flags, ipst); 25894 if (ire != NULL) { 25895 ill_t *ill1; 25896 /* 25897 * Do the multicast forwarding now, as the IPsec 25898 * processing has been done. 25899 */ 25900 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25901 (ill1 = ire_to_ill(ire))) { 25902 if (ip_mforward(ill1, ipha, mp)) { 25903 freemsg(ipsec_mp); 25904 ip1dbg(("ip_wput_ipsec_out: mforward " 25905 "failed\n")); 25906 ire_refrele(ire); 25907 goto done; 25908 } 25909 } 25910 goto send; 25911 } 25912 25913 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25914 mp->b_prev = NULL; 25915 mp->b_next = NULL; 25916 25917 /* 25918 * If the IPsec packet was processed asynchronously, 25919 * drop it now. 25920 */ 25921 if (q == NULL) { 25922 freemsg(ipsec_mp); 25923 goto done; 25924 } 25925 25926 /* 25927 * We may be using a wrong ipif to create the ire. 25928 * But it is okay as the source address is assigned 25929 * for the packet already. Next outbound packet would 25930 * create the IRE with the right IPIF in ip_wput. 25931 * 25932 * Also handle RTF_MULTIRT routes. 25933 */ 25934 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25935 zoneid, &zero_info); 25936 } else { 25937 if (attach_if) { 25938 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 25939 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25940 } else { 25941 if (ire_arg != NULL) { 25942 ire = ire_arg; 25943 ire_need_rele = B_FALSE; 25944 } else { 25945 ire = ire_cache_lookup(dst, zoneid, 25946 MBLK_GETLABEL(mp), ipst); 25947 } 25948 } 25949 if (ire != NULL) { 25950 goto send; 25951 } 25952 25953 /* 25954 * ire disappeared underneath. 25955 * 25956 * What we need to do here is the ip_newroute 25957 * logic to get the ire without doing the IPsec 25958 * processing. Follow the same old path. But this 25959 * time, ip_wput or ire_add_then_put will call us 25960 * directly as all the IPsec operations are done. 25961 */ 25962 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25963 mp->b_prev = NULL; 25964 mp->b_next = NULL; 25965 25966 /* 25967 * If the IPsec packet was processed asynchronously, 25968 * drop it now. 25969 */ 25970 if (q == NULL) { 25971 freemsg(ipsec_mp); 25972 goto done; 25973 } 25974 25975 /* 25976 * Since we're going through ip_newroute() again, we 25977 * need to make sure we don't: 25978 * 25979 * 1.) Trigger the ASSERT() with the ipha_ident 25980 * overloading. 25981 * 2.) Redo transport-layer checksumming, since we've 25982 * already done all that to get this far. 25983 * 25984 * The easiest way not do either of the above is to set 25985 * the ipha_ident field to IP_HDR_INCLUDED. 25986 */ 25987 ipha->ipha_ident = IP_HDR_INCLUDED; 25988 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 25989 zoneid, ipst); 25990 } 25991 goto done; 25992 send: 25993 if (ire->ire_stq == NULL) { 25994 ill_t *out_ill; 25995 /* 25996 * Loopbacks go through ip_wput_local except for one case. 25997 * We come here if we generate a icmp_frag_needed message 25998 * after IPsec processing is over. When this function calls 25999 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26000 * icmp_frag_needed. The message generated comes back here 26001 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26002 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26003 * source address as it is usually set in ip_wput_ire. As 26004 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26005 * and we end up here. We can't enter ip_wput_ire once the 26006 * IPsec processing is over and hence we need to do it here. 26007 */ 26008 ASSERT(q != NULL); 26009 UPDATE_OB_PKT_COUNT(ire); 26010 ire->ire_last_used_time = lbolt; 26011 if (ipha->ipha_src == 0) 26012 ipha->ipha_src = ire->ire_src_addr; 26013 26014 /* PFHooks: LOOPBACK_OUT */ 26015 out_ill = ire_to_ill(ire); 26016 26017 DTRACE_PROBE4(ip4__loopback__out__start, 26018 ill_t *, NULL, ill_t *, out_ill, 26019 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26020 26021 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26022 ipst->ips_ipv4firewall_loopback_out, 26023 NULL, out_ill, ipha1, ipsec_mp, mp, ipst); 26024 26025 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26026 26027 if (ipsec_mp != NULL) 26028 ip_wput_local(RD(q), out_ill, 26029 ipha, ipsec_mp, ire, 0, zoneid); 26030 if (ire_need_rele) 26031 ire_refrele(ire); 26032 goto done; 26033 } 26034 26035 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26036 /* 26037 * We are through with IPsec processing. 26038 * Fragment this and send it on the wire. 26039 */ 26040 if (io->ipsec_out_accelerated) { 26041 /* 26042 * The packet has been accelerated but must 26043 * be fragmented. This should not happen 26044 * since AH and ESP must not accelerate 26045 * packets that need fragmentation, however 26046 * the configuration could have changed 26047 * since the AH or ESP processing. 26048 * Drop packet. 26049 * IPsec KSTATS: bump bean counter here. 26050 */ 26051 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26052 "fragmented accelerated packet!\n")); 26053 freemsg(ipsec_mp); 26054 } else { 26055 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26056 } 26057 if (ire_need_rele) 26058 ire_refrele(ire); 26059 goto done; 26060 } 26061 26062 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26063 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26064 (void *)ire->ire_ipif, (void *)ipif)); 26065 26066 /* 26067 * Multiroute the secured packet, unless IPsec really 26068 * requires the packet to go out only through a particular 26069 * interface. 26070 */ 26071 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26072 ire_t *first_ire; 26073 irb = ire->ire_bucket; 26074 ASSERT(irb != NULL); 26075 /* 26076 * This ire has been looked up as the one that 26077 * goes through the given ipif; 26078 * make sure we do not omit any other multiroute ire 26079 * that may be present in the bucket before this one. 26080 */ 26081 IRB_REFHOLD(irb); 26082 for (first_ire = irb->irb_ire; 26083 first_ire != NULL; 26084 first_ire = first_ire->ire_next) { 26085 if ((first_ire->ire_flags & RTF_MULTIRT) && 26086 (first_ire->ire_addr == ire->ire_addr) && 26087 !(first_ire->ire_marks & 26088 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26089 break; 26090 } 26091 } 26092 26093 if ((first_ire != NULL) && (first_ire != ire)) { 26094 /* 26095 * Don't change the ire if the packet must 26096 * be fragmented if sent via this new one. 26097 */ 26098 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26099 IRE_REFHOLD(first_ire); 26100 if (ire_need_rele) 26101 ire_refrele(ire); 26102 else 26103 ire_need_rele = B_TRUE; 26104 ire = first_ire; 26105 } 26106 } 26107 IRB_REFRELE(irb); 26108 26109 multirt_send = B_TRUE; 26110 max_frag = ire->ire_max_frag; 26111 } else { 26112 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26113 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26114 "flag, attach_if %d\n", attach_if)); 26115 } 26116 } 26117 26118 /* 26119 * In most cases, the emission loop below is entered only once. 26120 * Only in the case where the ire holds the RTF_MULTIRT 26121 * flag, we loop to process all RTF_MULTIRT ires in the 26122 * bucket, and send the packet through all crossed 26123 * RTF_MULTIRT routes. 26124 */ 26125 do { 26126 if (multirt_send) { 26127 /* 26128 * ire1 holds here the next ire to process in the 26129 * bucket. If multirouting is expected, 26130 * any non-RTF_MULTIRT ire that has the 26131 * right destination address is ignored. 26132 */ 26133 ASSERT(irb != NULL); 26134 IRB_REFHOLD(irb); 26135 for (ire1 = ire->ire_next; 26136 ire1 != NULL; 26137 ire1 = ire1->ire_next) { 26138 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26139 continue; 26140 if (ire1->ire_addr != ire->ire_addr) 26141 continue; 26142 if (ire1->ire_marks & 26143 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26144 continue; 26145 /* No loopback here */ 26146 if (ire1->ire_stq == NULL) 26147 continue; 26148 /* 26149 * Ensure we do not exceed the MTU 26150 * of the next route. 26151 */ 26152 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26153 ip_multirt_bad_mtu(ire1, max_frag); 26154 continue; 26155 } 26156 26157 IRE_REFHOLD(ire1); 26158 break; 26159 } 26160 IRB_REFRELE(irb); 26161 if (ire1 != NULL) { 26162 /* 26163 * We are in a multiple send case, need to 26164 * make a copy of the packet. 26165 */ 26166 next_mp = copymsg(ipsec_mp); 26167 if (next_mp == NULL) { 26168 ire_refrele(ire1); 26169 ire1 = NULL; 26170 } 26171 } 26172 } 26173 /* 26174 * Everything is done. Send it out on the wire 26175 * 26176 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26177 * either send it on the wire or, in the case of 26178 * HW acceleration, call ipsec_hw_putnext. 26179 */ 26180 if (ire->ire_nce && 26181 ire->ire_nce->nce_state != ND_REACHABLE) { 26182 DTRACE_PROBE2(ip__wput__ipsec__bail, 26183 (ire_t *), ire, (mblk_t *), ipsec_mp); 26184 /* 26185 * If ire's link-layer is unresolved (this 26186 * would only happen if the incomplete ire 26187 * was added to cachetable via forwarding path) 26188 * don't bother going to ip_xmit_v4. Just drop the 26189 * packet. 26190 * There is a slight risk here, in that, if we 26191 * have the forwarding path create an incomplete 26192 * IRE, then until the IRE is completed, any 26193 * transmitted IPsec packets will be dropped 26194 * instead of being queued waiting for resolution. 26195 * 26196 * But the likelihood of a forwarding packet and a wput 26197 * packet sending to the same dst at the same time 26198 * and there not yet be an ARP entry for it is small. 26199 * Furthermore, if this actually happens, it might 26200 * be likely that wput would generate multiple 26201 * packets (and forwarding would also have a train 26202 * of packets) for that destination. If this is 26203 * the case, some of them would have been dropped 26204 * anyway, since ARP only queues a few packets while 26205 * waiting for resolution 26206 * 26207 * NOTE: We should really call ip_xmit_v4, 26208 * and let it queue the packet and send the 26209 * ARP query and have ARP come back thus: 26210 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26211 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26212 * hw accel work. But it's too complex to get 26213 * the IPsec hw acceleration approach to fit 26214 * well with ip_xmit_v4 doing ARP without 26215 * doing IPsec simplification. For now, we just 26216 * poke ip_xmit_v4 to trigger the arp resolve, so 26217 * that we can continue with the send on the next 26218 * attempt. 26219 * 26220 * XXX THis should be revisited, when 26221 * the IPsec/IP interaction is cleaned up 26222 */ 26223 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26224 " - dropping packet\n")); 26225 freemsg(ipsec_mp); 26226 /* 26227 * Call ip_xmit_v4() to trigger ARP query 26228 * in case the nce_state is ND_INITIAL 26229 */ 26230 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26231 goto drop_pkt; 26232 } 26233 26234 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26235 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26236 mblk_t *, ipsec_mp); 26237 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26238 ipst->ips_ipv4firewall_physical_out, 26239 NULL, ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, ipst); 26240 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26241 if (ipsec_mp == NULL) 26242 goto drop_pkt; 26243 26244 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26245 pktxmit_state = ip_xmit_v4(mp, ire, 26246 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26247 26248 if ((pktxmit_state == SEND_FAILED) || 26249 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26250 26251 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26252 drop_pkt: 26253 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26254 ipIfStatsOutDiscards); 26255 if (ire_need_rele) 26256 ire_refrele(ire); 26257 if (ire1 != NULL) { 26258 ire_refrele(ire1); 26259 freemsg(next_mp); 26260 } 26261 goto done; 26262 } 26263 26264 freeb(ipsec_mp); 26265 if (ire_need_rele) 26266 ire_refrele(ire); 26267 26268 if (ire1 != NULL) { 26269 ire = ire1; 26270 ire_need_rele = B_TRUE; 26271 ASSERT(next_mp); 26272 ipsec_mp = next_mp; 26273 mp = ipsec_mp->b_cont; 26274 ire1 = NULL; 26275 next_mp = NULL; 26276 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26277 } else { 26278 multirt_send = B_FALSE; 26279 } 26280 } while (multirt_send); 26281 done: 26282 if (ill != NULL && ill_need_rele) 26283 ill_refrele(ill); 26284 if (ipif != NULL) 26285 ipif_refrele(ipif); 26286 } 26287 26288 /* 26289 * Get the ill corresponding to the specified ire, and compare its 26290 * capabilities with the protocol and algorithms specified by the 26291 * the SA obtained from ipsec_out. If they match, annotate the 26292 * ipsec_out structure to indicate that the packet needs acceleration. 26293 * 26294 * 26295 * A packet is eligible for outbound hardware acceleration if the 26296 * following conditions are satisfied: 26297 * 26298 * 1. the packet will not be fragmented 26299 * 2. the provider supports the algorithm 26300 * 3. there is no pending control message being exchanged 26301 * 4. snoop is not attached 26302 * 5. the destination address is not a broadcast or multicast address. 26303 * 26304 * Rationale: 26305 * - Hardware drivers do not support fragmentation with 26306 * the current interface. 26307 * - snoop, multicast, and broadcast may result in exposure of 26308 * a cleartext datagram. 26309 * We check all five of these conditions here. 26310 * 26311 * XXX would like to nuke "ire_t *" parameter here; problem is that 26312 * IRE is only way to figure out if a v4 address is a broadcast and 26313 * thus ineligible for acceleration... 26314 */ 26315 static void 26316 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26317 { 26318 ipsec_out_t *io; 26319 mblk_t *data_mp; 26320 uint_t plen, overhead; 26321 ip_stack_t *ipst; 26322 26323 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26324 return; 26325 26326 if (ill == NULL) 26327 return; 26328 ipst = ill->ill_ipst; 26329 /* 26330 * Destination address is a broadcast or multicast. Punt. 26331 */ 26332 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26333 IRE_LOCAL))) 26334 return; 26335 26336 data_mp = ipsec_mp->b_cont; 26337 26338 if (ill->ill_isv6) { 26339 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26340 26341 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26342 return; 26343 26344 plen = ip6h->ip6_plen; 26345 } else { 26346 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26347 26348 if (CLASSD(ipha->ipha_dst)) 26349 return; 26350 26351 plen = ipha->ipha_length; 26352 } 26353 /* 26354 * Is there a pending DLPI control message being exchanged 26355 * between IP/IPsec and the DLS Provider? If there is, it 26356 * could be a SADB update, and the state of the DLS Provider 26357 * SADB might not be in sync with the SADB maintained by 26358 * IPsec. To avoid dropping packets or using the wrong keying 26359 * material, we do not accelerate this packet. 26360 */ 26361 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26362 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26363 "ill_dlpi_pending! don't accelerate packet\n")); 26364 return; 26365 } 26366 26367 /* 26368 * Is the Provider in promiscous mode? If it does, we don't 26369 * accelerate the packet since it will bounce back up to the 26370 * listeners in the clear. 26371 */ 26372 if (ill->ill_promisc_on_phys) { 26373 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26374 "ill in promiscous mode, don't accelerate packet\n")); 26375 return; 26376 } 26377 26378 /* 26379 * Will the packet require fragmentation? 26380 */ 26381 26382 /* 26383 * IPsec ESP note: this is a pessimistic estimate, but the same 26384 * as is used elsewhere. 26385 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26386 * + 2-byte trailer 26387 */ 26388 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26389 IPSEC_BASE_ESP_HDR_SIZE(sa); 26390 26391 if ((plen + overhead) > ill->ill_max_mtu) 26392 return; 26393 26394 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26395 26396 /* 26397 * Can the ill accelerate this IPsec protocol and algorithm 26398 * specified by the SA? 26399 */ 26400 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26401 ill->ill_isv6, sa, ipst->ips_netstack)) { 26402 return; 26403 } 26404 26405 /* 26406 * Tell AH or ESP that the outbound ill is capable of 26407 * accelerating this packet. 26408 */ 26409 io->ipsec_out_is_capab_ill = B_TRUE; 26410 } 26411 26412 /* 26413 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26414 * 26415 * If this function returns B_TRUE, the requested SA's have been filled 26416 * into the ipsec_out_*_sa pointers. 26417 * 26418 * If the function returns B_FALSE, the packet has been "consumed", most 26419 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26420 * 26421 * The SA references created by the protocol-specific "select" 26422 * function will be released when the ipsec_mp is freed, thanks to the 26423 * ipsec_out_free destructor -- see spd.c. 26424 */ 26425 static boolean_t 26426 ipsec_out_select_sa(mblk_t *ipsec_mp) 26427 { 26428 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26429 ipsec_out_t *io; 26430 ipsec_policy_t *pp; 26431 ipsec_action_t *ap; 26432 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26433 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26434 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26435 26436 if (!io->ipsec_out_secure) { 26437 /* 26438 * We came here by mistake. 26439 * Don't bother with ipsec processing 26440 * We should "discourage" this path in the future. 26441 */ 26442 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26443 return (B_FALSE); 26444 } 26445 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26446 ASSERT((io->ipsec_out_policy != NULL) || 26447 (io->ipsec_out_act != NULL)); 26448 26449 ASSERT(io->ipsec_out_failed == B_FALSE); 26450 26451 /* 26452 * IPsec processing has started. 26453 */ 26454 io->ipsec_out_proc_begin = B_TRUE; 26455 ap = io->ipsec_out_act; 26456 if (ap == NULL) { 26457 pp = io->ipsec_out_policy; 26458 ASSERT(pp != NULL); 26459 ap = pp->ipsp_act; 26460 ASSERT(ap != NULL); 26461 } 26462 26463 /* 26464 * We have an action. now, let's select SA's. 26465 * (In the future, we can cache this in the conn_t..) 26466 */ 26467 if (ap->ipa_want_esp) { 26468 if (io->ipsec_out_esp_sa == NULL) { 26469 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26470 IPPROTO_ESP); 26471 } 26472 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26473 } 26474 26475 if (ap->ipa_want_ah) { 26476 if (io->ipsec_out_ah_sa == NULL) { 26477 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26478 IPPROTO_AH); 26479 } 26480 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26481 /* 26482 * The ESP and AH processing order needs to be preserved 26483 * when both protocols are required (ESP should be applied 26484 * before AH for an outbound packet). Force an ESP ACQUIRE 26485 * when both ESP and AH are required, and an AH ACQUIRE 26486 * is needed. 26487 */ 26488 if (ap->ipa_want_esp && need_ah_acquire) 26489 need_esp_acquire = B_TRUE; 26490 } 26491 26492 /* 26493 * Send an ACQUIRE (extended, regular, or both) if we need one. 26494 * Release SAs that got referenced, but will not be used until we 26495 * acquire _all_ of the SAs we need. 26496 */ 26497 if (need_ah_acquire || need_esp_acquire) { 26498 if (io->ipsec_out_ah_sa != NULL) { 26499 IPSA_REFRELE(io->ipsec_out_ah_sa); 26500 io->ipsec_out_ah_sa = NULL; 26501 } 26502 if (io->ipsec_out_esp_sa != NULL) { 26503 IPSA_REFRELE(io->ipsec_out_esp_sa); 26504 io->ipsec_out_esp_sa = NULL; 26505 } 26506 26507 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26508 return (B_FALSE); 26509 } 26510 26511 return (B_TRUE); 26512 } 26513 26514 /* 26515 * Process an IPSEC_OUT message and see what you can 26516 * do with it. 26517 * IPQoS Notes: 26518 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26519 * IPsec. 26520 * XXX would like to nuke ire_t. 26521 * XXX ill_index better be "real" 26522 */ 26523 void 26524 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26525 { 26526 ipsec_out_t *io; 26527 ipsec_policy_t *pp; 26528 ipsec_action_t *ap; 26529 ipha_t *ipha; 26530 ip6_t *ip6h; 26531 mblk_t *mp; 26532 ill_t *ill; 26533 zoneid_t zoneid; 26534 ipsec_status_t ipsec_rc; 26535 boolean_t ill_need_rele = B_FALSE; 26536 ip_stack_t *ipst; 26537 ipsec_stack_t *ipss; 26538 26539 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26540 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26541 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26542 ipst = io->ipsec_out_ns->netstack_ip; 26543 mp = ipsec_mp->b_cont; 26544 26545 /* 26546 * Initiate IPPF processing. We do it here to account for packets 26547 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26548 * We can check for ipsec_out_proc_begin even for such packets, as 26549 * they will always be false (asserted below). 26550 */ 26551 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26552 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26553 io->ipsec_out_ill_index : ill_index); 26554 if (mp == NULL) { 26555 ip2dbg(("ipsec_out_process: packet dropped "\ 26556 "during IPPF processing\n")); 26557 freeb(ipsec_mp); 26558 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26559 return; 26560 } 26561 } 26562 26563 if (!io->ipsec_out_secure) { 26564 /* 26565 * We came here by mistake. 26566 * Don't bother with ipsec processing 26567 * Should "discourage" this path in the future. 26568 */ 26569 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26570 goto done; 26571 } 26572 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26573 ASSERT((io->ipsec_out_policy != NULL) || 26574 (io->ipsec_out_act != NULL)); 26575 ASSERT(io->ipsec_out_failed == B_FALSE); 26576 26577 ipss = ipst->ips_netstack->netstack_ipsec; 26578 if (!ipsec_loaded(ipss)) { 26579 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26580 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26581 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26582 } else { 26583 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26584 } 26585 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26586 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26587 &ipss->ipsec_dropper); 26588 return; 26589 } 26590 26591 /* 26592 * IPsec processing has started. 26593 */ 26594 io->ipsec_out_proc_begin = B_TRUE; 26595 ap = io->ipsec_out_act; 26596 if (ap == NULL) { 26597 pp = io->ipsec_out_policy; 26598 ASSERT(pp != NULL); 26599 ap = pp->ipsp_act; 26600 ASSERT(ap != NULL); 26601 } 26602 26603 /* 26604 * Save the outbound ill index. When the packet comes back 26605 * from IPsec, we make sure the ill hasn't changed or disappeared 26606 * before sending it the accelerated packet. 26607 */ 26608 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26609 int ifindex; 26610 ill = ire_to_ill(ire); 26611 ifindex = ill->ill_phyint->phyint_ifindex; 26612 io->ipsec_out_capab_ill_index = ifindex; 26613 } 26614 26615 /* 26616 * The order of processing is first insert a IP header if needed. 26617 * Then insert the ESP header and then the AH header. 26618 */ 26619 if ((io->ipsec_out_se_done == B_FALSE) && 26620 (ap->ipa_want_se)) { 26621 /* 26622 * First get the outer IP header before sending 26623 * it to ESP. 26624 */ 26625 ipha_t *oipha, *iipha; 26626 mblk_t *outer_mp, *inner_mp; 26627 26628 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26629 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26630 "ipsec_out_process: " 26631 "Self-Encapsulation failed: Out of memory\n"); 26632 freemsg(ipsec_mp); 26633 if (ill != NULL) { 26634 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26635 } else { 26636 BUMP_MIB(&ipst->ips_ip_mib, 26637 ipIfStatsOutDiscards); 26638 } 26639 return; 26640 } 26641 inner_mp = ipsec_mp->b_cont; 26642 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26643 oipha = (ipha_t *)outer_mp->b_rptr; 26644 iipha = (ipha_t *)inner_mp->b_rptr; 26645 *oipha = *iipha; 26646 outer_mp->b_wptr += sizeof (ipha_t); 26647 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26648 sizeof (ipha_t)); 26649 oipha->ipha_protocol = IPPROTO_ENCAP; 26650 oipha->ipha_version_and_hdr_length = 26651 IP_SIMPLE_HDR_VERSION; 26652 oipha->ipha_hdr_checksum = 0; 26653 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26654 outer_mp->b_cont = inner_mp; 26655 ipsec_mp->b_cont = outer_mp; 26656 26657 io->ipsec_out_se_done = B_TRUE; 26658 io->ipsec_out_tunnel = B_TRUE; 26659 } 26660 26661 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26662 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26663 !ipsec_out_select_sa(ipsec_mp)) 26664 return; 26665 26666 /* 26667 * By now, we know what SA's to use. Toss over to ESP & AH 26668 * to do the heavy lifting. 26669 */ 26670 zoneid = io->ipsec_out_zoneid; 26671 ASSERT(zoneid != ALL_ZONES); 26672 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26673 ASSERT(io->ipsec_out_esp_sa != NULL); 26674 io->ipsec_out_esp_done = B_TRUE; 26675 /* 26676 * Note that since hw accel can only apply one transform, 26677 * not two, we skip hw accel for ESP if we also have AH 26678 * This is an design limitation of the interface 26679 * which should be revisited. 26680 */ 26681 ASSERT(ire != NULL); 26682 if (io->ipsec_out_ah_sa == NULL) { 26683 ill = (ill_t *)ire->ire_stq->q_ptr; 26684 ipsec_out_is_accelerated(ipsec_mp, 26685 io->ipsec_out_esp_sa, ill, ire); 26686 } 26687 26688 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26689 switch (ipsec_rc) { 26690 case IPSEC_STATUS_SUCCESS: 26691 break; 26692 case IPSEC_STATUS_FAILED: 26693 if (ill != NULL) { 26694 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26695 } else { 26696 BUMP_MIB(&ipst->ips_ip_mib, 26697 ipIfStatsOutDiscards); 26698 } 26699 /* FALLTHRU */ 26700 case IPSEC_STATUS_PENDING: 26701 return; 26702 } 26703 } 26704 26705 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26706 ASSERT(io->ipsec_out_ah_sa != NULL); 26707 io->ipsec_out_ah_done = B_TRUE; 26708 if (ire == NULL) { 26709 int idx = io->ipsec_out_capab_ill_index; 26710 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26711 NULL, NULL, NULL, NULL, ipst); 26712 ill_need_rele = B_TRUE; 26713 } else { 26714 ill = (ill_t *)ire->ire_stq->q_ptr; 26715 } 26716 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26717 ire); 26718 26719 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26720 switch (ipsec_rc) { 26721 case IPSEC_STATUS_SUCCESS: 26722 break; 26723 case IPSEC_STATUS_FAILED: 26724 if (ill != NULL) { 26725 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26726 } else { 26727 BUMP_MIB(&ipst->ips_ip_mib, 26728 ipIfStatsOutDiscards); 26729 } 26730 /* FALLTHRU */ 26731 case IPSEC_STATUS_PENDING: 26732 if (ill != NULL && ill_need_rele) 26733 ill_refrele(ill); 26734 return; 26735 } 26736 } 26737 /* 26738 * We are done with IPsec processing. Send it over 26739 * the wire. 26740 */ 26741 done: 26742 mp = ipsec_mp->b_cont; 26743 ipha = (ipha_t *)mp->b_rptr; 26744 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26745 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26746 } else { 26747 ip6h = (ip6_t *)ipha; 26748 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26749 } 26750 if (ill != NULL && ill_need_rele) 26751 ill_refrele(ill); 26752 } 26753 26754 /* ARGSUSED */ 26755 void 26756 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26757 { 26758 opt_restart_t *or; 26759 int err; 26760 conn_t *connp; 26761 26762 ASSERT(CONN_Q(q)); 26763 connp = Q_TO_CONN(q); 26764 26765 ASSERT(first_mp->b_datap->db_type == M_CTL); 26766 or = (opt_restart_t *)first_mp->b_rptr; 26767 /* 26768 * We don't need to pass any credentials here since this is just 26769 * a restart. The credentials are passed in when svr4_optcom_req 26770 * is called the first time (from ip_wput_nondata). 26771 */ 26772 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26773 err = svr4_optcom_req(q, first_mp, NULL, 26774 &ip_opt_obj, B_FALSE); 26775 } else { 26776 ASSERT(or->or_type == T_OPTMGMT_REQ); 26777 err = tpi_optcom_req(q, first_mp, NULL, 26778 &ip_opt_obj, B_FALSE); 26779 } 26780 if (err != EINPROGRESS) { 26781 /* operation is done */ 26782 CONN_OPER_PENDING_DONE(connp); 26783 } 26784 } 26785 26786 /* 26787 * ioctls that go through a down/up sequence may need to wait for the down 26788 * to complete. This involves waiting for the ire and ipif refcnts to go down 26789 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26790 */ 26791 /* ARGSUSED */ 26792 void 26793 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26794 { 26795 struct iocblk *iocp; 26796 mblk_t *mp1; 26797 ip_ioctl_cmd_t *ipip; 26798 int err; 26799 sin_t *sin; 26800 struct lifreq *lifr; 26801 struct ifreq *ifr; 26802 26803 iocp = (struct iocblk *)mp->b_rptr; 26804 ASSERT(ipsq != NULL); 26805 /* Existence of mp1 verified in ip_wput_nondata */ 26806 mp1 = mp->b_cont->b_cont; 26807 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26808 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26809 /* 26810 * Special case where ipsq_current_ipif is not set: 26811 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26812 * ill could also have become part of a ipmp group in the 26813 * process, we are here as were not able to complete the 26814 * operation in ipif_set_values because we could not become 26815 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26816 * will not be set so we need to set it. 26817 */ 26818 ill_t *ill = q->q_ptr; 26819 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26820 } 26821 ASSERT(ipsq->ipsq_current_ipif != NULL); 26822 26823 if (ipip->ipi_cmd_type == IF_CMD) { 26824 /* This a old style SIOC[GS]IF* command */ 26825 ifr = (struct ifreq *)mp1->b_rptr; 26826 sin = (sin_t *)&ifr->ifr_addr; 26827 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26828 /* This a new style SIOC[GS]LIF* command */ 26829 lifr = (struct lifreq *)mp1->b_rptr; 26830 sin = (sin_t *)&lifr->lifr_addr; 26831 } else { 26832 sin = NULL; 26833 } 26834 26835 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 26836 ipip, mp1->b_rptr); 26837 26838 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26839 } 26840 26841 /* 26842 * ioctl processing 26843 * 26844 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26845 * the ioctl command in the ioctl tables, determines the copyin data size 26846 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26847 * 26848 * ioctl processing then continues when the M_IOCDATA makes its way down to 26849 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26850 * associated 'conn' is refheld till the end of the ioctl and the general 26851 * ioctl processing function ip_process_ioctl() is called to extract the 26852 * arguments and process the ioctl. To simplify extraction, ioctl commands 26853 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26854 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26855 * is used to extract the ioctl's arguments. 26856 * 26857 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26858 * so goes thru the serialization primitive ipsq_try_enter. Then the 26859 * appropriate function to handle the ioctl is called based on the entry in 26860 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26861 * which also refreleases the 'conn' that was refheld at the start of the 26862 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26863 * 26864 * Many exclusive ioctls go thru an internal down up sequence as part of 26865 * the operation. For example an attempt to change the IP address of an 26866 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26867 * does all the cleanup such as deleting all ires that use this address. 26868 * Then we need to wait till all references to the interface go away. 26869 */ 26870 void 26871 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26872 { 26873 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26874 ip_ioctl_cmd_t *ipip = arg; 26875 ip_extract_func_t *extract_funcp; 26876 cmd_info_t ci; 26877 int err; 26878 boolean_t entered_ipsq = B_FALSE; 26879 26880 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26881 26882 if (ipip == NULL) 26883 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26884 26885 /* 26886 * SIOCLIFADDIF needs to go thru a special path since the 26887 * ill may not exist yet. This happens in the case of lo0 26888 * which is created using this ioctl. 26889 */ 26890 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26891 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26892 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26893 return; 26894 } 26895 26896 ci.ci_ipif = NULL; 26897 if (ipip->ipi_cmd_type == MISC_CMD) { 26898 /* 26899 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 26900 */ 26901 if (ipip->ipi_cmd == IF_UNITSEL) { 26902 /* ioctl comes down the ill */ 26903 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26904 ipif_refhold(ci.ci_ipif); 26905 } 26906 err = 0; 26907 ci.ci_sin = NULL; 26908 ci.ci_sin6 = NULL; 26909 ci.ci_lifr = NULL; 26910 } else { 26911 switch (ipip->ipi_cmd_type) { 26912 case IF_CMD: 26913 case LIF_CMD: 26914 extract_funcp = ip_extract_lifreq; 26915 break; 26916 26917 case ARP_CMD: 26918 case XARP_CMD: 26919 extract_funcp = ip_extract_arpreq; 26920 break; 26921 26922 case TUN_CMD: 26923 extract_funcp = ip_extract_tunreq; 26924 break; 26925 26926 case MSFILT_CMD: 26927 extract_funcp = ip_extract_msfilter; 26928 break; 26929 26930 default: 26931 ASSERT(0); 26932 } 26933 26934 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 26935 if (err != 0) { 26936 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26937 return; 26938 } 26939 26940 /* 26941 * All of the extraction functions return a refheld ipif. 26942 */ 26943 ASSERT(ci.ci_ipif != NULL); 26944 } 26945 26946 /* 26947 * If ipsq is non-null, we are already being called exclusively 26948 */ 26949 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26950 if (!(ipip->ipi_flags & IPI_WR)) { 26951 /* 26952 * A return value of EINPROGRESS means the ioctl is 26953 * either queued and waiting for some reason or has 26954 * already completed. 26955 */ 26956 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26957 ci.ci_lifr); 26958 if (ci.ci_ipif != NULL) 26959 ipif_refrele(ci.ci_ipif); 26960 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26961 return; 26962 } 26963 26964 ASSERT(ci.ci_ipif != NULL); 26965 26966 if (ipsq == NULL) { 26967 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 26968 ip_process_ioctl, NEW_OP, B_TRUE); 26969 entered_ipsq = B_TRUE; 26970 } 26971 /* 26972 * Release the ipif so that ipif_down and friends that wait for 26973 * references to go away are not misled about the current ipif_refcnt 26974 * values. We are writer so we can access the ipif even after releasing 26975 * the ipif. 26976 */ 26977 ipif_refrele(ci.ci_ipif); 26978 if (ipsq == NULL) 26979 return; 26980 26981 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 26982 26983 /* 26984 * For most set ioctls that come here, this serves as a single point 26985 * where we set the IPIF_CHANGING flag. This ensures that there won't 26986 * be any new references to the ipif. This helps functions that go 26987 * through this path and end up trying to wait for the refcnts 26988 * associated with the ipif to go down to zero. Some exceptions are 26989 * Failover, Failback, and Groupname commands that operate on more than 26990 * just the ci.ci_ipif. These commands internally determine the 26991 * set of ipif's they operate on and set and clear the IPIF_CHANGING 26992 * flags on that set. Another exception is the Removeif command that 26993 * sets the IPIF_CONDEMNED flag internally after identifying the right 26994 * ipif to operate on. 26995 */ 26996 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 26997 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 26998 ipip->ipi_cmd != SIOCLIFFAILOVER && 26999 ipip->ipi_cmd != SIOCLIFFAILBACK && 27000 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 27001 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27002 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27003 27004 /* 27005 * A return value of EINPROGRESS means the ioctl is 27006 * either queued and waiting for some reason or has 27007 * already completed. 27008 */ 27009 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27010 27011 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27012 27013 if (entered_ipsq) 27014 ipsq_exit(ipsq, B_TRUE, B_TRUE); 27015 } 27016 27017 /* 27018 * Complete the ioctl. Typically ioctls use the mi package and need to 27019 * do mi_copyout/mi_copy_done. 27020 */ 27021 void 27022 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27023 { 27024 conn_t *connp = NULL; 27025 27026 if (err == EINPROGRESS) 27027 return; 27028 27029 if (CONN_Q(q)) { 27030 connp = Q_TO_CONN(q); 27031 ASSERT(connp->conn_ref >= 2); 27032 } 27033 27034 switch (mode) { 27035 case COPYOUT: 27036 if (err == 0) 27037 mi_copyout(q, mp); 27038 else 27039 mi_copy_done(q, mp, err); 27040 break; 27041 27042 case NO_COPYOUT: 27043 mi_copy_done(q, mp, err); 27044 break; 27045 27046 default: 27047 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27048 break; 27049 } 27050 27051 /* 27052 * The refhold placed at the start of the ioctl is released here. 27053 */ 27054 if (connp != NULL) 27055 CONN_OPER_PENDING_DONE(connp); 27056 27057 if (ipsq != NULL) 27058 ipsq_current_finish(ipsq); 27059 } 27060 27061 /* 27062 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27063 */ 27064 /* ARGSUSED */ 27065 void 27066 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27067 { 27068 conn_t *connp = arg; 27069 tcp_t *tcp; 27070 27071 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27072 tcp = connp->conn_tcp; 27073 27074 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27075 freemsg(mp); 27076 else 27077 tcp_rput_other(tcp, mp); 27078 CONN_OPER_PENDING_DONE(connp); 27079 } 27080 27081 /* Called from ip_wput for all non data messages */ 27082 /* ARGSUSED */ 27083 void 27084 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27085 { 27086 mblk_t *mp1; 27087 ire_t *ire, *fake_ire; 27088 ill_t *ill; 27089 struct iocblk *iocp; 27090 ip_ioctl_cmd_t *ipip; 27091 cred_t *cr; 27092 conn_t *connp; 27093 int err; 27094 nce_t *nce; 27095 ipif_t *ipif; 27096 ip_stack_t *ipst; 27097 char *proto_str; 27098 27099 if (CONN_Q(q)) { 27100 connp = Q_TO_CONN(q); 27101 ipst = connp->conn_netstack->netstack_ip; 27102 } else { 27103 connp = NULL; 27104 ipst = ILLQ_TO_IPST(q); 27105 } 27106 27107 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27108 27109 switch (DB_TYPE(mp)) { 27110 case M_IOCTL: 27111 /* 27112 * IOCTL processing begins in ip_sioctl_copyin_setup which 27113 * will arrange to copy in associated control structures. 27114 */ 27115 ip_sioctl_copyin_setup(q, mp); 27116 return; 27117 case M_IOCDATA: 27118 /* 27119 * Ensure that this is associated with one of our trans- 27120 * parent ioctls. If it's not ours, discard it if we're 27121 * running as a driver, or pass it on if we're a module. 27122 */ 27123 iocp = (struct iocblk *)mp->b_rptr; 27124 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27125 if (ipip == NULL) { 27126 if (q->q_next == NULL) { 27127 goto nak; 27128 } else { 27129 putnext(q, mp); 27130 } 27131 return; 27132 } 27133 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27134 /* 27135 * the ioctl is one we recognise, but is not 27136 * consumed by IP as a module, pass M_IOCDATA 27137 * for processing downstream, but only for 27138 * common Streams ioctls. 27139 */ 27140 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27141 putnext(q, mp); 27142 return; 27143 } else { 27144 goto nak; 27145 } 27146 } 27147 27148 /* IOCTL continuation following copyin or copyout. */ 27149 if (mi_copy_state(q, mp, NULL) == -1) { 27150 /* 27151 * The copy operation failed. mi_copy_state already 27152 * cleaned up, so we're out of here. 27153 */ 27154 return; 27155 } 27156 /* 27157 * If we just completed a copy in, we become writer and 27158 * continue processing in ip_sioctl_copyin_done. If it 27159 * was a copy out, we call mi_copyout again. If there is 27160 * nothing more to copy out, it will complete the IOCTL. 27161 */ 27162 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27163 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27164 mi_copy_done(q, mp, EPROTO); 27165 return; 27166 } 27167 /* 27168 * Check for cases that need more copying. A return 27169 * value of 0 means a second copyin has been started, 27170 * so we return; a return value of 1 means no more 27171 * copying is needed, so we continue. 27172 */ 27173 if (ipip->ipi_cmd_type == MSFILT_CMD && 27174 MI_COPY_COUNT(mp) == 1) { 27175 if (ip_copyin_msfilter(q, mp) == 0) 27176 return; 27177 } 27178 /* 27179 * Refhold the conn, till the ioctl completes. This is 27180 * needed in case the ioctl ends up in the pending mp 27181 * list. Every mp in the ill_pending_mp list and 27182 * the ipsq_pending_mp must have a refhold on the conn 27183 * to resume processing. The refhold is released when 27184 * the ioctl completes. (normally or abnormally) 27185 * In all cases ip_ioctl_finish is called to finish 27186 * the ioctl. 27187 */ 27188 if (connp != NULL) { 27189 /* This is not a reentry */ 27190 ASSERT(ipsq == NULL); 27191 CONN_INC_REF(connp); 27192 } else { 27193 if (!(ipip->ipi_flags & IPI_MODOK)) { 27194 mi_copy_done(q, mp, EINVAL); 27195 return; 27196 } 27197 } 27198 27199 ip_process_ioctl(ipsq, q, mp, ipip); 27200 27201 } else { 27202 mi_copyout(q, mp); 27203 } 27204 return; 27205 nak: 27206 iocp->ioc_error = EINVAL; 27207 mp->b_datap->db_type = M_IOCNAK; 27208 iocp->ioc_count = 0; 27209 qreply(q, mp); 27210 return; 27211 27212 case M_IOCNAK: 27213 /* 27214 * The only way we could get here is if a resolver didn't like 27215 * an IOCTL we sent it. This shouldn't happen. 27216 */ 27217 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27218 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27219 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27220 freemsg(mp); 27221 return; 27222 case M_IOCACK: 27223 /* /dev/ip shouldn't see this */ 27224 if (CONN_Q(q)) 27225 goto nak; 27226 27227 /* Finish socket ioctls passed through to ARP. */ 27228 ip_sioctl_iocack(q, mp); 27229 return; 27230 case M_FLUSH: 27231 if (*mp->b_rptr & FLUSHW) 27232 flushq(q, FLUSHALL); 27233 if (q->q_next) { 27234 putnext(q, mp); 27235 return; 27236 } 27237 if (*mp->b_rptr & FLUSHR) { 27238 *mp->b_rptr &= ~FLUSHW; 27239 qreply(q, mp); 27240 return; 27241 } 27242 freemsg(mp); 27243 return; 27244 case IRE_DB_REQ_TYPE: 27245 if (connp == NULL) { 27246 proto_str = "IRE_DB_REQ_TYPE"; 27247 goto protonak; 27248 } 27249 /* An Upper Level Protocol wants a copy of an IRE. */ 27250 ip_ire_req(q, mp); 27251 return; 27252 case M_CTL: 27253 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27254 break; 27255 27256 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27257 TUN_HELLO) { 27258 ASSERT(connp != NULL); 27259 connp->conn_flags |= IPCL_IPTUN; 27260 freeb(mp); 27261 return; 27262 } 27263 27264 /* M_CTL messages are used by ARP to tell us things. */ 27265 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27266 break; 27267 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27268 case AR_ENTRY_SQUERY: 27269 ip_wput_ctl(q, mp); 27270 return; 27271 case AR_CLIENT_NOTIFY: 27272 ip_arp_news(q, mp); 27273 return; 27274 case AR_DLPIOP_DONE: 27275 ASSERT(q->q_next != NULL); 27276 ill = (ill_t *)q->q_ptr; 27277 /* qwriter_ip releases the refhold */ 27278 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27279 ill_refhold(ill); 27280 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27281 return; 27282 case AR_ARP_CLOSING: 27283 /* 27284 * ARP (above us) is closing. If no ARP bringup is 27285 * currently pending, ack the message so that ARP 27286 * can complete its close. Also mark ill_arp_closing 27287 * so that new ARP bringups will fail. If any 27288 * ARP bringup is currently in progress, we will 27289 * ack this when the current ARP bringup completes. 27290 */ 27291 ASSERT(q->q_next != NULL); 27292 ill = (ill_t *)q->q_ptr; 27293 mutex_enter(&ill->ill_lock); 27294 ill->ill_arp_closing = 1; 27295 if (!ill->ill_arp_bringup_pending) { 27296 mutex_exit(&ill->ill_lock); 27297 qreply(q, mp); 27298 } else { 27299 mutex_exit(&ill->ill_lock); 27300 freemsg(mp); 27301 } 27302 return; 27303 case AR_ARP_EXTEND: 27304 /* 27305 * The ARP module above us is capable of duplicate 27306 * address detection. Old ATM drivers will not send 27307 * this message. 27308 */ 27309 ASSERT(q->q_next != NULL); 27310 ill = (ill_t *)q->q_ptr; 27311 ill->ill_arp_extend = B_TRUE; 27312 freemsg(mp); 27313 return; 27314 default: 27315 break; 27316 } 27317 break; 27318 case M_PROTO: 27319 case M_PCPROTO: 27320 /* 27321 * The only PROTO messages we expect are ULP binds and 27322 * copies of option negotiation acknowledgements. 27323 */ 27324 switch (((union T_primitives *)mp->b_rptr)->type) { 27325 case O_T_BIND_REQ: 27326 case T_BIND_REQ: { 27327 /* Request can get queued in bind */ 27328 if (connp == NULL) { 27329 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27330 goto protonak; 27331 } 27332 /* 27333 * The transports except SCTP call ip_bind_{v4,v6}() 27334 * directly instead of a a putnext. SCTP doesn't 27335 * generate any T_BIND_REQ since it has its own 27336 * fanout data structures. However, ESP and AH 27337 * come in for regular binds; all other cases are 27338 * bind retries. 27339 */ 27340 ASSERT(!IPCL_IS_SCTP(connp)); 27341 27342 /* Don't increment refcnt if this is a re-entry */ 27343 if (ipsq == NULL) 27344 CONN_INC_REF(connp); 27345 27346 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27347 connp, NULL) : ip_bind_v4(q, mp, connp); 27348 if (mp == NULL) 27349 return; 27350 if (IPCL_IS_TCP(connp)) { 27351 /* 27352 * In the case of TCP endpoint we 27353 * come here only for bind retries 27354 */ 27355 ASSERT(ipsq != NULL); 27356 CONN_INC_REF(connp); 27357 squeue_fill(connp->conn_sqp, mp, 27358 ip_resume_tcp_bind, connp, 27359 SQTAG_BIND_RETRY); 27360 } else if (IPCL_IS_UDP(connp)) { 27361 /* 27362 * In the case of UDP endpoint we 27363 * come here only for bind retries 27364 */ 27365 ASSERT(ipsq != NULL); 27366 udp_resume_bind(connp, mp); 27367 } else if (IPCL_IS_RAWIP(connp)) { 27368 /* 27369 * In the case of RAWIP endpoint we 27370 * come here only for bind retries 27371 */ 27372 ASSERT(ipsq != NULL); 27373 rawip_resume_bind(connp, mp); 27374 } else { 27375 /* The case of AH and ESP */ 27376 qreply(q, mp); 27377 CONN_OPER_PENDING_DONE(connp); 27378 } 27379 return; 27380 } 27381 case T_SVR4_OPTMGMT_REQ: 27382 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27383 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27384 27385 if (connp == NULL) { 27386 proto_str = "T_SVR4_OPTMGMT_REQ"; 27387 goto protonak; 27388 } 27389 27390 if (!snmpcom_req(q, mp, ip_snmp_set, 27391 ip_snmp_get, cr)) { 27392 /* 27393 * Call svr4_optcom_req so that it can 27394 * generate the ack. We don't come here 27395 * if this operation is being restarted. 27396 * ip_restart_optmgmt will drop the conn ref. 27397 * In the case of ipsec option after the ipsec 27398 * load is complete conn_restart_ipsec_waiter 27399 * drops the conn ref. 27400 */ 27401 ASSERT(ipsq == NULL); 27402 CONN_INC_REF(connp); 27403 if (ip_check_for_ipsec_opt(q, mp)) 27404 return; 27405 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27406 B_FALSE); 27407 if (err != EINPROGRESS) { 27408 /* Operation is done */ 27409 CONN_OPER_PENDING_DONE(connp); 27410 } 27411 } 27412 return; 27413 case T_OPTMGMT_REQ: 27414 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27415 /* 27416 * Note: No snmpcom_req support through new 27417 * T_OPTMGMT_REQ. 27418 * Call tpi_optcom_req so that it can 27419 * generate the ack. 27420 */ 27421 if (connp == NULL) { 27422 proto_str = "T_OPTMGMT_REQ"; 27423 goto protonak; 27424 } 27425 27426 ASSERT(ipsq == NULL); 27427 /* 27428 * We don't come here for restart. ip_restart_optmgmt 27429 * will drop the conn ref. In the case of ipsec option 27430 * after the ipsec load is complete 27431 * conn_restart_ipsec_waiter drops the conn ref. 27432 */ 27433 CONN_INC_REF(connp); 27434 if (ip_check_for_ipsec_opt(q, mp)) 27435 return; 27436 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27437 if (err != EINPROGRESS) { 27438 /* Operation is done */ 27439 CONN_OPER_PENDING_DONE(connp); 27440 } 27441 return; 27442 case T_UNBIND_REQ: 27443 if (connp == NULL) { 27444 proto_str = "T_UNBIND_REQ"; 27445 goto protonak; 27446 } 27447 mp = ip_unbind(q, mp); 27448 qreply(q, mp); 27449 return; 27450 default: 27451 /* 27452 * Have to drop any DLPI messages coming down from 27453 * arp (such as an info_req which would cause ip 27454 * to receive an extra info_ack if it was passed 27455 * through. 27456 */ 27457 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27458 (int)*(uint_t *)mp->b_rptr)); 27459 freemsg(mp); 27460 return; 27461 } 27462 /* NOTREACHED */ 27463 case IRE_DB_TYPE: { 27464 nce_t *nce; 27465 ill_t *ill; 27466 in6_addr_t gw_addr_v6; 27467 27468 27469 /* 27470 * This is a response back from a resolver. It 27471 * consists of a message chain containing: 27472 * IRE_MBLK-->LL_HDR_MBLK->pkt 27473 * The IRE_MBLK is the one we allocated in ip_newroute. 27474 * The LL_HDR_MBLK is the DLPI header to use to get 27475 * the attached packet, and subsequent ones for the 27476 * same destination, transmitted. 27477 */ 27478 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27479 break; 27480 /* 27481 * First, check to make sure the resolution succeeded. 27482 * If it failed, the second mblk will be empty. 27483 * If it is, free the chain, dropping the packet. 27484 * (We must ire_delete the ire; that frees the ire mblk) 27485 * We're doing this now to support PVCs for ATM; it's 27486 * a partial xresolv implementation. When we fully implement 27487 * xresolv interfaces, instead of freeing everything here 27488 * we'll initiate neighbor discovery. 27489 * 27490 * For v4 (ARP and other external resolvers) the resolver 27491 * frees the message, so no check is needed. This check 27492 * is required, though, for a full xresolve implementation. 27493 * Including this code here now both shows how external 27494 * resolvers can NACK a resolution request using an 27495 * existing design that has no specific provisions for NACKs, 27496 * and also takes into account that the current non-ARP 27497 * external resolver has been coded to use this method of 27498 * NACKing for all IPv6 (xresolv) cases, 27499 * whether our xresolv implementation is complete or not. 27500 * 27501 */ 27502 ire = (ire_t *)mp->b_rptr; 27503 ill = ire_to_ill(ire); 27504 mp1 = mp->b_cont; /* dl_unitdata_req */ 27505 if (mp1->b_rptr == mp1->b_wptr) { 27506 if (ire->ire_ipversion == IPV6_VERSION) { 27507 /* 27508 * XRESOLV interface. 27509 */ 27510 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27511 mutex_enter(&ire->ire_lock); 27512 gw_addr_v6 = ire->ire_gateway_addr_v6; 27513 mutex_exit(&ire->ire_lock); 27514 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27515 nce = ndp_lookup_v6(ill, 27516 &ire->ire_addr_v6, B_FALSE); 27517 } else { 27518 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27519 B_FALSE); 27520 } 27521 if (nce != NULL) { 27522 nce_resolv_failed(nce); 27523 ndp_delete(nce); 27524 NCE_REFRELE(nce); 27525 } 27526 } 27527 mp->b_cont = NULL; 27528 freemsg(mp1); /* frees the pkt as well */ 27529 ASSERT(ire->ire_nce == NULL); 27530 ire_delete((ire_t *)mp->b_rptr); 27531 return; 27532 } 27533 27534 /* 27535 * Split them into IRE_MBLK and pkt and feed it into 27536 * ire_add_then_send. Then in ire_add_then_send 27537 * the IRE will be added, and then the packet will be 27538 * run back through ip_wput. This time it will make 27539 * it to the wire. 27540 */ 27541 mp->b_cont = NULL; 27542 mp = mp1->b_cont; /* now, mp points to pkt */ 27543 mp1->b_cont = NULL; 27544 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27545 if (ire->ire_ipversion == IPV6_VERSION) { 27546 /* 27547 * XRESOLV interface. Find the nce and put a copy 27548 * of the dl_unitdata_req in nce_res_mp 27549 */ 27550 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27551 mutex_enter(&ire->ire_lock); 27552 gw_addr_v6 = ire->ire_gateway_addr_v6; 27553 mutex_exit(&ire->ire_lock); 27554 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27555 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27556 B_FALSE); 27557 } else { 27558 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27559 } 27560 if (nce != NULL) { 27561 /* 27562 * We have to protect nce_res_mp here 27563 * from being accessed by other threads 27564 * while we change the mblk pointer. 27565 * Other functions will also lock the nce when 27566 * accessing nce_res_mp. 27567 * 27568 * The reason we change the mblk pointer 27569 * here rather than copying the resolved address 27570 * into the template is that, unlike with 27571 * ethernet, we have no guarantee that the 27572 * resolved address length will be 27573 * smaller than or equal to the lla length 27574 * with which the template was allocated, 27575 * (for ethernet, they're equal) 27576 * so we have to use the actual resolved 27577 * address mblk - which holds the real 27578 * dl_unitdata_req with the resolved address. 27579 * 27580 * Doing this is the same behavior as was 27581 * previously used in the v4 ARP case. 27582 */ 27583 mutex_enter(&nce->nce_lock); 27584 if (nce->nce_res_mp != NULL) 27585 freemsg(nce->nce_res_mp); 27586 nce->nce_res_mp = mp1; 27587 mutex_exit(&nce->nce_lock); 27588 /* 27589 * We do a fastpath probe here because 27590 * we have resolved the address without 27591 * using Neighbor Discovery. 27592 * In the non-XRESOLV v6 case, the fastpath 27593 * probe is done right after neighbor 27594 * discovery completes. 27595 */ 27596 if (nce->nce_res_mp != NULL) { 27597 int res; 27598 nce_fastpath_list_add(nce); 27599 res = ill_fastpath_probe(ill, 27600 nce->nce_res_mp); 27601 if (res != 0 && res != EAGAIN) 27602 nce_fastpath_list_delete(nce); 27603 } 27604 27605 ire_add_then_send(q, ire, mp); 27606 /* 27607 * Now we have to clean out any packets 27608 * that may have been queued on the nce 27609 * while it was waiting for address resolution 27610 * to complete. 27611 */ 27612 mutex_enter(&nce->nce_lock); 27613 mp1 = nce->nce_qd_mp; 27614 nce->nce_qd_mp = NULL; 27615 mutex_exit(&nce->nce_lock); 27616 while (mp1 != NULL) { 27617 mblk_t *nxt_mp; 27618 queue_t *fwdq = NULL; 27619 ill_t *inbound_ill; 27620 uint_t ifindex; 27621 27622 nxt_mp = mp1->b_next; 27623 mp1->b_next = NULL; 27624 /* 27625 * Retrieve ifindex stored in 27626 * ip_rput_data_v6() 27627 */ 27628 ifindex = 27629 (uint_t)(uintptr_t)mp1->b_prev; 27630 inbound_ill = 27631 ill_lookup_on_ifindex(ifindex, 27632 B_TRUE, NULL, NULL, NULL, 27633 NULL, ipst); 27634 mp1->b_prev = NULL; 27635 if (inbound_ill != NULL) 27636 fwdq = inbound_ill->ill_rq; 27637 27638 if (fwdq != NULL) { 27639 put(fwdq, mp1); 27640 ill_refrele(inbound_ill); 27641 } else 27642 put(WR(ill->ill_rq), mp1); 27643 mp1 = nxt_mp; 27644 } 27645 NCE_REFRELE(nce); 27646 } else { /* nce is NULL; clean up */ 27647 ire_delete(ire); 27648 freemsg(mp); 27649 freemsg(mp1); 27650 return; 27651 } 27652 } else { 27653 nce_t *arpce; 27654 /* 27655 * Link layer resolution succeeded. Recompute the 27656 * ire_nce. 27657 */ 27658 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27659 if ((arpce = ndp_lookup_v4(ill, 27660 (ire->ire_gateway_addr != INADDR_ANY ? 27661 &ire->ire_gateway_addr : &ire->ire_addr), 27662 B_FALSE)) == NULL) { 27663 freeb(ire->ire_mp); 27664 freeb(mp1); 27665 freemsg(mp); 27666 return; 27667 } 27668 mutex_enter(&arpce->nce_lock); 27669 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27670 if (arpce->nce_state == ND_REACHABLE) { 27671 /* 27672 * Someone resolved this before us; 27673 * cleanup the res_mp. Since ire has 27674 * not been added yet, the call to ire_add_v4 27675 * from ire_add_then_send (when a dup is 27676 * detected) will clean up the ire. 27677 */ 27678 freeb(mp1); 27679 } else { 27680 ASSERT(arpce->nce_res_mp == NULL); 27681 arpce->nce_res_mp = mp1; 27682 arpce->nce_state = ND_REACHABLE; 27683 } 27684 mutex_exit(&arpce->nce_lock); 27685 if (ire->ire_marks & IRE_MARK_NOADD) { 27686 /* 27687 * this ire will not be added to the ire 27688 * cache table, so we can set the ire_nce 27689 * here, as there are no atomicity constraints. 27690 */ 27691 ire->ire_nce = arpce; 27692 /* 27693 * We are associating this nce with the ire 27694 * so change the nce ref taken in 27695 * ndp_lookup_v4() from 27696 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27697 */ 27698 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27699 } else { 27700 NCE_REFRELE(arpce); 27701 } 27702 ire_add_then_send(q, ire, mp); 27703 } 27704 return; /* All is well, the packet has been sent. */ 27705 } 27706 case IRE_ARPRESOLVE_TYPE: { 27707 27708 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27709 break; 27710 mp1 = mp->b_cont; /* dl_unitdata_req */ 27711 mp->b_cont = NULL; 27712 /* 27713 * First, check to make sure the resolution succeeded. 27714 * If it failed, the second mblk will be empty. 27715 */ 27716 if (mp1->b_rptr == mp1->b_wptr) { 27717 /* cleanup the incomplete ire, free queued packets */ 27718 freemsg(mp); /* fake ire */ 27719 freeb(mp1); /* dl_unitdata response */ 27720 return; 27721 } 27722 27723 /* 27724 * update any incomplete nce_t found. we lookup the ctable 27725 * and find the nce from the ire->ire_nce because we need 27726 * to pass the ire to ip_xmit_v4 later, and can find both 27727 * ire and nce in one lookup from the ctable. 27728 */ 27729 fake_ire = (ire_t *)mp->b_rptr; 27730 /* 27731 * By the time we come back here from ARP 27732 * the logical outgoing interface of the incomplete ire 27733 * we added in ire_forward could have disappeared, 27734 * causing the incomplete ire to also have 27735 * dissapeared. So we need to retreive the 27736 * proper ipif for the ire before looking 27737 * in ctable; do the ctablelookup based on ire_ipif_seqid 27738 */ 27739 ill = q->q_ptr; 27740 27741 /* Get the outgoing ipif */ 27742 mutex_enter(&ill->ill_lock); 27743 if (ill->ill_state_flags & ILL_CONDEMNED) { 27744 mutex_exit(&ill->ill_lock); 27745 freemsg(mp); /* fake ire */ 27746 freeb(mp1); /* dl_unitdata response */ 27747 return; 27748 } 27749 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27750 27751 if (ipif == NULL) { 27752 mutex_exit(&ill->ill_lock); 27753 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27754 freemsg(mp); 27755 freeb(mp1); 27756 return; 27757 } 27758 ipif_refhold_locked(ipif); 27759 mutex_exit(&ill->ill_lock); 27760 ire = ire_ctable_lookup(fake_ire->ire_addr, 27761 fake_ire->ire_gateway_addr, IRE_CACHE, 27762 ipif, fake_ire->ire_zoneid, NULL, 27763 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY), ipst); 27764 ipif_refrele(ipif); 27765 if (ire == NULL) { 27766 /* 27767 * no ire was found; check if there is an nce 27768 * for this lookup; if it has no ire's pointing at it 27769 * cleanup. 27770 */ 27771 if ((nce = ndp_lookup_v4(ill, 27772 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27773 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27774 B_FALSE)) != NULL) { 27775 /* 27776 * cleanup: 27777 * We check for refcnt 2 (one for the nce 27778 * hash list + 1 for the ref taken by 27779 * ndp_lookup_v4) to check that there are 27780 * no ire's pointing at the nce. 27781 */ 27782 if (nce->nce_refcnt == 2) 27783 ndp_delete(nce); 27784 NCE_REFRELE(nce); 27785 } 27786 freeb(mp1); /* dl_unitdata response */ 27787 freemsg(mp); /* fake ire */ 27788 return; 27789 } 27790 nce = ire->ire_nce; 27791 DTRACE_PROBE2(ire__arpresolve__type, 27792 ire_t *, ire, nce_t *, nce); 27793 ASSERT(nce->nce_state != ND_INITIAL); 27794 mutex_enter(&nce->nce_lock); 27795 nce->nce_last = TICK_TO_MSEC(lbolt64); 27796 if (nce->nce_state == ND_REACHABLE) { 27797 /* 27798 * Someone resolved this before us; 27799 * our response is not needed any more. 27800 */ 27801 mutex_exit(&nce->nce_lock); 27802 freeb(mp1); /* dl_unitdata response */ 27803 } else { 27804 ASSERT(nce->nce_res_mp == NULL); 27805 nce->nce_res_mp = mp1; 27806 nce->nce_state = ND_REACHABLE; 27807 mutex_exit(&nce->nce_lock); 27808 nce_fastpath(nce); 27809 } 27810 /* 27811 * The cached nce_t has been updated to be reachable; 27812 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27813 */ 27814 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27815 freemsg(mp); 27816 /* 27817 * send out queued packets. 27818 */ 27819 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27820 27821 IRE_REFRELE(ire); 27822 return; 27823 } 27824 default: 27825 break; 27826 } 27827 if (q->q_next) { 27828 putnext(q, mp); 27829 } else 27830 freemsg(mp); 27831 return; 27832 27833 protonak: 27834 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27835 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27836 qreply(q, mp); 27837 } 27838 27839 /* 27840 * Process IP options in an outbound packet. Modify the destination if there 27841 * is a source route option. 27842 * Returns non-zero if something fails in which case an ICMP error has been 27843 * sent and mp freed. 27844 */ 27845 static int 27846 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27847 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27848 { 27849 ipoptp_t opts; 27850 uchar_t *opt; 27851 uint8_t optval; 27852 uint8_t optlen; 27853 ipaddr_t dst; 27854 intptr_t code = 0; 27855 mblk_t *mp; 27856 ire_t *ire = NULL; 27857 27858 ip2dbg(("ip_wput_options\n")); 27859 mp = ipsec_mp; 27860 if (mctl_present) { 27861 mp = ipsec_mp->b_cont; 27862 } 27863 27864 dst = ipha->ipha_dst; 27865 for (optval = ipoptp_first(&opts, ipha); 27866 optval != IPOPT_EOL; 27867 optval = ipoptp_next(&opts)) { 27868 opt = opts.ipoptp_cur; 27869 optlen = opts.ipoptp_len; 27870 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27871 optval, optlen)); 27872 switch (optval) { 27873 uint32_t off; 27874 case IPOPT_SSRR: 27875 case IPOPT_LSRR: 27876 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27877 ip1dbg(( 27878 "ip_wput_options: bad option offset\n")); 27879 code = (char *)&opt[IPOPT_OLEN] - 27880 (char *)ipha; 27881 goto param_prob; 27882 } 27883 off = opt[IPOPT_OFFSET]; 27884 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27885 ntohl(dst))); 27886 /* 27887 * For strict: verify that dst is directly 27888 * reachable. 27889 */ 27890 if (optval == IPOPT_SSRR) { 27891 ire = ire_ftable_lookup(dst, 0, 0, 27892 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27893 MBLK_GETLABEL(mp), 27894 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27895 if (ire == NULL) { 27896 ip1dbg(("ip_wput_options: SSRR not" 27897 " directly reachable: 0x%x\n", 27898 ntohl(dst))); 27899 goto bad_src_route; 27900 } 27901 ire_refrele(ire); 27902 } 27903 break; 27904 case IPOPT_RR: 27905 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27906 ip1dbg(( 27907 "ip_wput_options: bad option offset\n")); 27908 code = (char *)&opt[IPOPT_OLEN] - 27909 (char *)ipha; 27910 goto param_prob; 27911 } 27912 break; 27913 case IPOPT_TS: 27914 /* 27915 * Verify that length >=5 and that there is either 27916 * room for another timestamp or that the overflow 27917 * counter is not maxed out. 27918 */ 27919 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27920 if (optlen < IPOPT_MINLEN_IT) { 27921 goto param_prob; 27922 } 27923 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27924 ip1dbg(( 27925 "ip_wput_options: bad option offset\n")); 27926 code = (char *)&opt[IPOPT_OFFSET] - 27927 (char *)ipha; 27928 goto param_prob; 27929 } 27930 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27931 case IPOPT_TS_TSONLY: 27932 off = IPOPT_TS_TIMELEN; 27933 break; 27934 case IPOPT_TS_TSANDADDR: 27935 case IPOPT_TS_PRESPEC: 27936 case IPOPT_TS_PRESPEC_RFC791: 27937 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27938 break; 27939 default: 27940 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27941 (char *)ipha; 27942 goto param_prob; 27943 } 27944 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27945 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27946 /* 27947 * No room and the overflow counter is 15 27948 * already. 27949 */ 27950 goto param_prob; 27951 } 27952 break; 27953 } 27954 } 27955 27956 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 27957 return (0); 27958 27959 ip1dbg(("ip_wput_options: error processing IP options.")); 27960 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 27961 27962 param_prob: 27963 /* 27964 * Since ip_wput() isn't close to finished, we fill 27965 * in enough of the header for credible error reporting. 27966 */ 27967 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27968 /* Failed */ 27969 freemsg(ipsec_mp); 27970 return (-1); 27971 } 27972 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 27973 return (-1); 27974 27975 bad_src_route: 27976 /* 27977 * Since ip_wput() isn't close to finished, we fill 27978 * in enough of the header for credible error reporting. 27979 */ 27980 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27981 /* Failed */ 27982 freemsg(ipsec_mp); 27983 return (-1); 27984 } 27985 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 27986 return (-1); 27987 } 27988 27989 /* 27990 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 27991 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 27992 * thru /etc/system. 27993 */ 27994 #define CONN_MAXDRAINCNT 64 27995 27996 static void 27997 conn_drain_init(ip_stack_t *ipst) 27998 { 27999 int i; 28000 28001 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28002 28003 if ((ipst->ips_conn_drain_list_cnt == 0) || 28004 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28005 /* 28006 * Default value of the number of drainers is the 28007 * number of cpus, subject to maximum of 8 drainers. 28008 */ 28009 if (boot_max_ncpus != -1) 28010 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28011 else 28012 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28013 } 28014 28015 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28016 sizeof (idl_t), KM_SLEEP); 28017 28018 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28019 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28020 MUTEX_DEFAULT, NULL); 28021 } 28022 } 28023 28024 static void 28025 conn_drain_fini(ip_stack_t *ipst) 28026 { 28027 int i; 28028 28029 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28030 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28031 kmem_free(ipst->ips_conn_drain_list, 28032 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28033 ipst->ips_conn_drain_list = NULL; 28034 } 28035 28036 /* 28037 * Note: For an overview of how flowcontrol is handled in IP please see the 28038 * IP Flowcontrol notes at the top of this file. 28039 * 28040 * Flow control has blocked us from proceeding. Insert the given conn in one 28041 * of the conn drain lists. These conn wq's will be qenabled later on when 28042 * STREAMS flow control does a backenable. conn_walk_drain will enable 28043 * the first conn in each of these drain lists. Each of these qenabled conns 28044 * in turn enables the next in the list, after it runs, or when it closes, 28045 * thus sustaining the drain process. 28046 * 28047 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28048 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28049 * running at any time, on a given conn, since there can be only 1 service proc 28050 * running on a queue at any time. 28051 */ 28052 void 28053 conn_drain_insert(conn_t *connp) 28054 { 28055 idl_t *idl; 28056 uint_t index; 28057 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28058 28059 mutex_enter(&connp->conn_lock); 28060 if (connp->conn_state_flags & CONN_CLOSING) { 28061 /* 28062 * The conn is closing as a result of which CONN_CLOSING 28063 * is set. Return. 28064 */ 28065 mutex_exit(&connp->conn_lock); 28066 return; 28067 } else if (connp->conn_idl == NULL) { 28068 /* 28069 * Assign the next drain list round robin. We dont' use 28070 * a lock, and thus it may not be strictly round robin. 28071 * Atomicity of load/stores is enough to make sure that 28072 * conn_drain_list_index is always within bounds. 28073 */ 28074 index = ipst->ips_conn_drain_list_index; 28075 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28076 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28077 index++; 28078 if (index == ipst->ips_conn_drain_list_cnt) 28079 index = 0; 28080 ipst->ips_conn_drain_list_index = index; 28081 } 28082 mutex_exit(&connp->conn_lock); 28083 28084 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28085 if ((connp->conn_drain_prev != NULL) || 28086 (connp->conn_state_flags & CONN_CLOSING)) { 28087 /* 28088 * The conn is already in the drain list, OR 28089 * the conn is closing. We need to check again for 28090 * the closing case again since close can happen 28091 * after we drop the conn_lock, and before we 28092 * acquire the CONN_DRAIN_LIST_LOCK. 28093 */ 28094 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28095 return; 28096 } else { 28097 idl = connp->conn_idl; 28098 } 28099 28100 /* 28101 * The conn is not in the drain list. Insert it at the 28102 * tail of the drain list. The drain list is circular 28103 * and doubly linked. idl_conn points to the 1st element 28104 * in the list. 28105 */ 28106 if (idl->idl_conn == NULL) { 28107 idl->idl_conn = connp; 28108 connp->conn_drain_next = connp; 28109 connp->conn_drain_prev = connp; 28110 } else { 28111 conn_t *head = idl->idl_conn; 28112 28113 connp->conn_drain_next = head; 28114 connp->conn_drain_prev = head->conn_drain_prev; 28115 head->conn_drain_prev->conn_drain_next = connp; 28116 head->conn_drain_prev = connp; 28117 } 28118 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28119 } 28120 28121 /* 28122 * This conn is closing, and we are called from ip_close. OR 28123 * This conn has been serviced by ip_wsrv, and we need to do the tail 28124 * processing. 28125 * If this conn is part of the drain list, we may need to sustain the drain 28126 * process by qenabling the next conn in the drain list. We may also need to 28127 * remove this conn from the list, if it is done. 28128 */ 28129 static void 28130 conn_drain_tail(conn_t *connp, boolean_t closing) 28131 { 28132 idl_t *idl; 28133 28134 /* 28135 * connp->conn_idl is stable at this point, and no lock is needed 28136 * to check it. If we are called from ip_close, close has already 28137 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28138 * called us only because conn_idl is non-null. If we are called thru 28139 * service, conn_idl could be null, but it cannot change because 28140 * service is single-threaded per queue, and there cannot be another 28141 * instance of service trying to call conn_drain_insert on this conn 28142 * now. 28143 */ 28144 ASSERT(!closing || (connp->conn_idl != NULL)); 28145 28146 /* 28147 * If connp->conn_idl is null, the conn has not been inserted into any 28148 * drain list even once since creation of the conn. Just return. 28149 */ 28150 if (connp->conn_idl == NULL) 28151 return; 28152 28153 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28154 28155 if (connp->conn_drain_prev == NULL) { 28156 /* This conn is currently not in the drain list. */ 28157 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28158 return; 28159 } 28160 idl = connp->conn_idl; 28161 if (idl->idl_conn_draining == connp) { 28162 /* 28163 * This conn is the current drainer. If this is the last conn 28164 * in the drain list, we need to do more checks, in the 'if' 28165 * below. Otherwwise we need to just qenable the next conn, 28166 * to sustain the draining, and is handled in the 'else' 28167 * below. 28168 */ 28169 if (connp->conn_drain_next == idl->idl_conn) { 28170 /* 28171 * This conn is the last in this list. This round 28172 * of draining is complete. If idl_repeat is set, 28173 * it means another flow enabling has happened from 28174 * the driver/streams and we need to another round 28175 * of draining. 28176 * If there are more than 2 conns in the drain list, 28177 * do a left rotate by 1, so that all conns except the 28178 * conn at the head move towards the head by 1, and the 28179 * the conn at the head goes to the tail. This attempts 28180 * a more even share for all queues that are being 28181 * drained. 28182 */ 28183 if ((connp->conn_drain_next != connp) && 28184 (idl->idl_conn->conn_drain_next != connp)) { 28185 idl->idl_conn = idl->idl_conn->conn_drain_next; 28186 } 28187 if (idl->idl_repeat) { 28188 qenable(idl->idl_conn->conn_wq); 28189 idl->idl_conn_draining = idl->idl_conn; 28190 idl->idl_repeat = 0; 28191 } else { 28192 idl->idl_conn_draining = NULL; 28193 } 28194 } else { 28195 /* 28196 * If the next queue that we are now qenable'ing, 28197 * is closing, it will remove itself from this list 28198 * and qenable the subsequent queue in ip_close(). 28199 * Serialization is acheived thru idl_lock. 28200 */ 28201 qenable(connp->conn_drain_next->conn_wq); 28202 idl->idl_conn_draining = connp->conn_drain_next; 28203 } 28204 } 28205 if (!connp->conn_did_putbq || closing) { 28206 /* 28207 * Remove ourself from the drain list, if we did not do 28208 * a putbq, or if the conn is closing. 28209 * Note: It is possible that q->q_first is non-null. It means 28210 * that these messages landed after we did a enableok() in 28211 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28212 * service them. 28213 */ 28214 if (connp->conn_drain_next == connp) { 28215 /* Singleton in the list */ 28216 ASSERT(connp->conn_drain_prev == connp); 28217 idl->idl_conn = NULL; 28218 idl->idl_conn_draining = NULL; 28219 } else { 28220 connp->conn_drain_prev->conn_drain_next = 28221 connp->conn_drain_next; 28222 connp->conn_drain_next->conn_drain_prev = 28223 connp->conn_drain_prev; 28224 if (idl->idl_conn == connp) 28225 idl->idl_conn = connp->conn_drain_next; 28226 ASSERT(idl->idl_conn_draining != connp); 28227 28228 } 28229 connp->conn_drain_next = NULL; 28230 connp->conn_drain_prev = NULL; 28231 } 28232 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28233 } 28234 28235 /* 28236 * Write service routine. Shared perimeter entry point. 28237 * ip_wsrv can be called in any of the following ways. 28238 * 1. The device queue's messages has fallen below the low water mark 28239 * and STREAMS has backenabled the ill_wq. We walk thru all the 28240 * the drain lists and backenable the first conn in each list. 28241 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28242 * qenabled non-tcp upper layers. We start dequeing messages and call 28243 * ip_wput for each message. 28244 */ 28245 28246 void 28247 ip_wsrv(queue_t *q) 28248 { 28249 conn_t *connp; 28250 ill_t *ill; 28251 mblk_t *mp; 28252 28253 if (q->q_next) { 28254 ill = (ill_t *)q->q_ptr; 28255 if (ill->ill_state_flags == 0) { 28256 /* 28257 * The device flow control has opened up. 28258 * Walk through conn drain lists and qenable the 28259 * first conn in each list. This makes sense only 28260 * if the stream is fully plumbed and setup. 28261 * Hence the if check above. 28262 */ 28263 ip1dbg(("ip_wsrv: walking\n")); 28264 conn_walk_drain(ill->ill_ipst); 28265 } 28266 return; 28267 } 28268 28269 connp = Q_TO_CONN(q); 28270 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28271 28272 /* 28273 * 1. Set conn_draining flag to signal that service is active. 28274 * 28275 * 2. ip_output determines whether it has been called from service, 28276 * based on the last parameter. If it is IP_WSRV it concludes it 28277 * has been called from service. 28278 * 28279 * 3. Message ordering is preserved by the following logic. 28280 * i. A directly called ip_output (i.e. not thru service) will queue 28281 * the message at the tail, if conn_draining is set (i.e. service 28282 * is running) or if q->q_first is non-null. 28283 * 28284 * ii. If ip_output is called from service, and if ip_output cannot 28285 * putnext due to flow control, it does a putbq. 28286 * 28287 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28288 * (causing an infinite loop). 28289 */ 28290 ASSERT(!connp->conn_did_putbq); 28291 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28292 connp->conn_draining = 1; 28293 noenable(q); 28294 while ((mp = getq(q)) != NULL) { 28295 ASSERT(CONN_Q(q)); 28296 28297 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28298 if (connp->conn_did_putbq) { 28299 /* ip_wput did a putbq */ 28300 break; 28301 } 28302 } 28303 /* 28304 * At this point, a thread coming down from top, calling 28305 * ip_wput, may end up queueing the message. We have not yet 28306 * enabled the queue, so ip_wsrv won't be called again. 28307 * To avoid this race, check q->q_first again (in the loop) 28308 * If the other thread queued the message before we call 28309 * enableok(), we will catch it in the q->q_first check. 28310 * If the other thread queues the message after we call 28311 * enableok(), ip_wsrv will be called again by STREAMS. 28312 */ 28313 connp->conn_draining = 0; 28314 enableok(q); 28315 } 28316 28317 /* Enable the next conn for draining */ 28318 conn_drain_tail(connp, B_FALSE); 28319 28320 connp->conn_did_putbq = 0; 28321 } 28322 28323 /* 28324 * Walk the list of all conn's calling the function provided with the 28325 * specified argument for each. Note that this only walks conn's that 28326 * have been bound. 28327 * Applies to both IPv4 and IPv6. 28328 */ 28329 static void 28330 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28331 { 28332 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28333 ipst->ips_ipcl_udp_fanout_size, 28334 func, arg, zoneid); 28335 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28336 ipst->ips_ipcl_conn_fanout_size, 28337 func, arg, zoneid); 28338 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28339 ipst->ips_ipcl_bind_fanout_size, 28340 func, arg, zoneid); 28341 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28342 IPPROTO_MAX, func, arg, zoneid); 28343 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28344 IPPROTO_MAX, func, arg, zoneid); 28345 } 28346 28347 /* 28348 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28349 * of conns that need to be drained, check if drain is already in progress. 28350 * If so set the idl_repeat bit, indicating that the last conn in the list 28351 * needs to reinitiate the drain once again, for the list. If drain is not 28352 * in progress for the list, initiate the draining, by qenabling the 1st 28353 * conn in the list. The drain is self-sustaining, each qenabled conn will 28354 * in turn qenable the next conn, when it is done/blocked/closing. 28355 */ 28356 static void 28357 conn_walk_drain(ip_stack_t *ipst) 28358 { 28359 int i; 28360 idl_t *idl; 28361 28362 IP_STAT(ipst, ip_conn_walk_drain); 28363 28364 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28365 idl = &ipst->ips_conn_drain_list[i]; 28366 mutex_enter(&idl->idl_lock); 28367 if (idl->idl_conn == NULL) { 28368 mutex_exit(&idl->idl_lock); 28369 continue; 28370 } 28371 /* 28372 * If this list is not being drained currently by 28373 * an ip_wsrv thread, start the process. 28374 */ 28375 if (idl->idl_conn_draining == NULL) { 28376 ASSERT(idl->idl_repeat == 0); 28377 qenable(idl->idl_conn->conn_wq); 28378 idl->idl_conn_draining = idl->idl_conn; 28379 } else { 28380 idl->idl_repeat = 1; 28381 } 28382 mutex_exit(&idl->idl_lock); 28383 } 28384 } 28385 28386 /* 28387 * Walk an conn hash table of `count' buckets, calling func for each entry. 28388 */ 28389 static void 28390 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28391 zoneid_t zoneid) 28392 { 28393 conn_t *connp; 28394 28395 while (count-- > 0) { 28396 mutex_enter(&connfp->connf_lock); 28397 for (connp = connfp->connf_head; connp != NULL; 28398 connp = connp->conn_next) { 28399 if (zoneid == GLOBAL_ZONEID || 28400 zoneid == connp->conn_zoneid) { 28401 CONN_INC_REF(connp); 28402 mutex_exit(&connfp->connf_lock); 28403 (*func)(connp, arg); 28404 mutex_enter(&connfp->connf_lock); 28405 CONN_DEC_REF(connp); 28406 } 28407 } 28408 mutex_exit(&connfp->connf_lock); 28409 connfp++; 28410 } 28411 } 28412 28413 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */ 28414 static void 28415 conn_report1(conn_t *connp, void *mp) 28416 { 28417 char buf1[INET6_ADDRSTRLEN]; 28418 char buf2[INET6_ADDRSTRLEN]; 28419 uint_t print_len, buf_len; 28420 28421 ASSERT(connp != NULL); 28422 28423 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28424 if (buf_len <= 0) 28425 return; 28426 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28427 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28428 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28429 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28430 "%5d %s/%05d %s/%05d\n", 28431 (void *)connp, (void *)CONNP_TO_RQ(connp), 28432 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28433 buf1, connp->conn_lport, 28434 buf2, connp->conn_fport); 28435 if (print_len < buf_len) { 28436 ((mblk_t *)mp)->b_wptr += print_len; 28437 } else { 28438 ((mblk_t *)mp)->b_wptr += buf_len; 28439 } 28440 } 28441 28442 /* 28443 * Named Dispatch routine to produce a formatted report on all conns 28444 * that are listed in one of the fanout tables. 28445 * This report is accessed by using the ndd utility to "get" ND variable 28446 * "ip_conn_status". 28447 */ 28448 /* ARGSUSED */ 28449 static int 28450 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28451 { 28452 conn_t *connp = Q_TO_CONN(q); 28453 28454 (void) mi_mpprintf(mp, 28455 "CONN " MI_COL_HDRPAD_STR 28456 "rfq " MI_COL_HDRPAD_STR 28457 "stq " MI_COL_HDRPAD_STR 28458 " zone local remote"); 28459 28460 /* 28461 * Because of the ndd constraint, at most we can have 64K buffer 28462 * to put in all conn info. So to be more efficient, just 28463 * allocate a 64K buffer here, assuming we need that large buffer. 28464 * This should be OK as only privileged processes can do ndd /dev/ip. 28465 */ 28466 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28467 /* The following may work even if we cannot get a large buf. */ 28468 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28469 return (0); 28470 } 28471 28472 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28473 connp->conn_netstack->netstack_ip); 28474 return (0); 28475 } 28476 28477 /* 28478 * Determine if the ill and multicast aspects of that packets 28479 * "matches" the conn. 28480 */ 28481 boolean_t 28482 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28483 zoneid_t zoneid) 28484 { 28485 ill_t *in_ill; 28486 boolean_t found; 28487 ipif_t *ipif; 28488 ire_t *ire; 28489 ipaddr_t dst, src; 28490 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28491 28492 dst = ipha->ipha_dst; 28493 src = ipha->ipha_src; 28494 28495 /* 28496 * conn_incoming_ill is set by IP_BOUND_IF which limits 28497 * unicast, broadcast and multicast reception to 28498 * conn_incoming_ill. conn_wantpacket itself is called 28499 * only for BROADCAST and multicast. 28500 * 28501 * 1) ip_rput supresses duplicate broadcasts if the ill 28502 * is part of a group. Hence, we should be receiving 28503 * just one copy of broadcast for the whole group. 28504 * Thus, if it is part of the group the packet could 28505 * come on any ill of the group and hence we need a 28506 * match on the group. Otherwise, match on ill should 28507 * be sufficient. 28508 * 28509 * 2) ip_rput does not suppress duplicate multicast packets. 28510 * If there are two interfaces in a ill group and we have 28511 * 2 applications (conns) joined a multicast group G on 28512 * both the interfaces, ilm_lookup_ill filter in ip_rput 28513 * will give us two packets because we join G on both the 28514 * interfaces rather than nominating just one interface 28515 * for receiving multicast like broadcast above. So, 28516 * we have to call ilg_lookup_ill to filter out duplicate 28517 * copies, if ill is part of a group. 28518 */ 28519 in_ill = connp->conn_incoming_ill; 28520 if (in_ill != NULL) { 28521 if (in_ill->ill_group == NULL) { 28522 if (in_ill != ill) 28523 return (B_FALSE); 28524 } else if (in_ill->ill_group != ill->ill_group) { 28525 return (B_FALSE); 28526 } 28527 } 28528 28529 if (!CLASSD(dst)) { 28530 if (IPCL_ZONE_MATCH(connp, zoneid)) 28531 return (B_TRUE); 28532 /* 28533 * The conn is in a different zone; we need to check that this 28534 * broadcast address is configured in the application's zone and 28535 * on one ill in the group. 28536 */ 28537 ipif = ipif_get_next_ipif(NULL, ill); 28538 if (ipif == NULL) 28539 return (B_FALSE); 28540 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28541 connp->conn_zoneid, NULL, 28542 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28543 ipif_refrele(ipif); 28544 if (ire != NULL) { 28545 ire_refrele(ire); 28546 return (B_TRUE); 28547 } else { 28548 return (B_FALSE); 28549 } 28550 } 28551 28552 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28553 connp->conn_zoneid == zoneid) { 28554 /* 28555 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28556 * disabled, therefore we don't dispatch the multicast packet to 28557 * the sending zone. 28558 */ 28559 return (B_FALSE); 28560 } 28561 28562 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28563 /* 28564 * Multicast packet on the loopback interface: we only match 28565 * conns who joined the group in the specified zone. 28566 */ 28567 return (B_FALSE); 28568 } 28569 28570 if (connp->conn_multi_router) { 28571 /* multicast packet and multicast router socket: send up */ 28572 return (B_TRUE); 28573 } 28574 28575 mutex_enter(&connp->conn_lock); 28576 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28577 mutex_exit(&connp->conn_lock); 28578 return (found); 28579 } 28580 28581 /* 28582 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28583 */ 28584 /* ARGSUSED */ 28585 static void 28586 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28587 { 28588 ill_t *ill = (ill_t *)q->q_ptr; 28589 mblk_t *mp1, *mp2; 28590 ipif_t *ipif; 28591 int err = 0; 28592 conn_t *connp = NULL; 28593 ipsq_t *ipsq; 28594 arc_t *arc; 28595 28596 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28597 28598 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28599 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28600 28601 ASSERT(IAM_WRITER_ILL(ill)); 28602 mp2 = mp->b_cont; 28603 mp->b_cont = NULL; 28604 28605 /* 28606 * We have now received the arp bringup completion message 28607 * from ARP. Mark the arp bringup as done. Also if the arp 28608 * stream has already started closing, send up the AR_ARP_CLOSING 28609 * ack now since ARP is waiting in close for this ack. 28610 */ 28611 mutex_enter(&ill->ill_lock); 28612 ill->ill_arp_bringup_pending = 0; 28613 if (ill->ill_arp_closing) { 28614 mutex_exit(&ill->ill_lock); 28615 /* Let's reuse the mp for sending the ack */ 28616 arc = (arc_t *)mp->b_rptr; 28617 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28618 arc->arc_cmd = AR_ARP_CLOSING; 28619 qreply(q, mp); 28620 } else { 28621 mutex_exit(&ill->ill_lock); 28622 freeb(mp); 28623 } 28624 28625 ipsq = ill->ill_phyint->phyint_ipsq; 28626 ipif = ipsq->ipsq_pending_ipif; 28627 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28628 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28629 if (mp1 == NULL) { 28630 /* bringup was aborted by the user */ 28631 freemsg(mp2); 28632 return; 28633 } 28634 28635 /* 28636 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28637 * must have an associated conn_t. Otherwise, we're bringing this 28638 * interface back up as part of handling an asynchronous event (e.g., 28639 * physical address change). 28640 */ 28641 if (ipsq->ipsq_current_ioctl != 0) { 28642 ASSERT(connp != NULL); 28643 q = CONNP_TO_WQ(connp); 28644 } else { 28645 ASSERT(connp == NULL); 28646 q = ill->ill_rq; 28647 } 28648 28649 /* 28650 * If the DL_BIND_REQ fails, it is noted 28651 * in arc_name_offset. 28652 */ 28653 err = *((int *)mp2->b_rptr); 28654 if (err == 0) { 28655 if (ipif->ipif_isv6) { 28656 if ((err = ipif_up_done_v6(ipif)) != 0) 28657 ip0dbg(("ip_arp_done: init failed\n")); 28658 } else { 28659 if ((err = ipif_up_done(ipif)) != 0) 28660 ip0dbg(("ip_arp_done: init failed\n")); 28661 } 28662 } else { 28663 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28664 } 28665 28666 freemsg(mp2); 28667 28668 if ((err == 0) && (ill->ill_up_ipifs)) { 28669 err = ill_up_ipifs(ill, q, mp1); 28670 if (err == EINPROGRESS) 28671 return; 28672 } 28673 28674 if (ill->ill_up_ipifs) 28675 ill_group_cleanup(ill); 28676 28677 /* 28678 * The operation must complete without EINPROGRESS since 28679 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 28680 * Otherwise, the operation will be stuck forever in the ipsq. 28681 */ 28682 ASSERT(err != EINPROGRESS); 28683 if (ipsq->ipsq_current_ioctl != 0) 28684 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28685 else 28686 ipsq_current_finish(ipsq); 28687 } 28688 28689 /* Allocate the private structure */ 28690 static int 28691 ip_priv_alloc(void **bufp) 28692 { 28693 void *buf; 28694 28695 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28696 return (ENOMEM); 28697 28698 *bufp = buf; 28699 return (0); 28700 } 28701 28702 /* Function to delete the private structure */ 28703 void 28704 ip_priv_free(void *buf) 28705 { 28706 ASSERT(buf != NULL); 28707 kmem_free(buf, sizeof (ip_priv_t)); 28708 } 28709 28710 /* 28711 * The entry point for IPPF processing. 28712 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28713 * routine just returns. 28714 * 28715 * When called, ip_process generates an ipp_packet_t structure 28716 * which holds the state information for this packet and invokes the 28717 * the classifier (via ipp_packet_process). The classification, depending on 28718 * configured filters, results in a list of actions for this packet. Invoking 28719 * an action may cause the packet to be dropped, in which case the resulting 28720 * mblk (*mpp) is NULL. proc indicates the callout position for 28721 * this packet and ill_index is the interface this packet on or will leave 28722 * on (inbound and outbound resp.). 28723 */ 28724 void 28725 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28726 { 28727 mblk_t *mp; 28728 ip_priv_t *priv; 28729 ipp_action_id_t aid; 28730 int rc = 0; 28731 ipp_packet_t *pp; 28732 #define IP_CLASS "ip" 28733 28734 /* If the classifier is not loaded, return */ 28735 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28736 return; 28737 } 28738 28739 mp = *mpp; 28740 ASSERT(mp != NULL); 28741 28742 /* Allocate the packet structure */ 28743 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28744 if (rc != 0) { 28745 *mpp = NULL; 28746 freemsg(mp); 28747 return; 28748 } 28749 28750 /* Allocate the private structure */ 28751 rc = ip_priv_alloc((void **)&priv); 28752 if (rc != 0) { 28753 *mpp = NULL; 28754 freemsg(mp); 28755 ipp_packet_free(pp); 28756 return; 28757 } 28758 priv->proc = proc; 28759 priv->ill_index = ill_index; 28760 ipp_packet_set_private(pp, priv, ip_priv_free); 28761 ipp_packet_set_data(pp, mp); 28762 28763 /* Invoke the classifier */ 28764 rc = ipp_packet_process(&pp); 28765 if (pp != NULL) { 28766 mp = ipp_packet_get_data(pp); 28767 ipp_packet_free(pp); 28768 if (rc != 0) { 28769 freemsg(mp); 28770 *mpp = NULL; 28771 } 28772 } else { 28773 *mpp = NULL; 28774 } 28775 #undef IP_CLASS 28776 } 28777 28778 /* 28779 * Propagate a multicast group membership operation (add/drop) on 28780 * all the interfaces crossed by the related multirt routes. 28781 * The call is considered successful if the operation succeeds 28782 * on at least one interface. 28783 */ 28784 static int 28785 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28786 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28787 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28788 mblk_t *first_mp) 28789 { 28790 ire_t *ire_gw; 28791 irb_t *irb; 28792 int error = 0; 28793 opt_restart_t *or; 28794 ip_stack_t *ipst = ire->ire_ipst; 28795 28796 irb = ire->ire_bucket; 28797 ASSERT(irb != NULL); 28798 28799 ASSERT(DB_TYPE(first_mp) == M_CTL); 28800 28801 or = (opt_restart_t *)first_mp->b_rptr; 28802 IRB_REFHOLD(irb); 28803 for (; ire != NULL; ire = ire->ire_next) { 28804 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28805 continue; 28806 if (ire->ire_addr != group) 28807 continue; 28808 28809 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28810 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28811 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28812 /* No resolver exists for the gateway; skip this ire. */ 28813 if (ire_gw == NULL) 28814 continue; 28815 28816 /* 28817 * This function can return EINPROGRESS. If so the operation 28818 * will be restarted from ip_restart_optmgmt which will 28819 * call ip_opt_set and option processing will restart for 28820 * this option. So we may end up calling 'fn' more than once. 28821 * This requires that 'fn' is idempotent except for the 28822 * return value. The operation is considered a success if 28823 * it succeeds at least once on any one interface. 28824 */ 28825 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28826 NULL, fmode, src, first_mp); 28827 if (error == 0) 28828 or->or_private = CGTP_MCAST_SUCCESS; 28829 28830 if (ip_debug > 0) { 28831 ulong_t off; 28832 char *ksym; 28833 ksym = kobj_getsymname((uintptr_t)fn, &off); 28834 ip2dbg(("ip_multirt_apply_membership: " 28835 "called %s, multirt group 0x%08x via itf 0x%08x, " 28836 "error %d [success %u]\n", 28837 ksym ? ksym : "?", 28838 ntohl(group), ntohl(ire_gw->ire_src_addr), 28839 error, or->or_private)); 28840 } 28841 28842 ire_refrele(ire_gw); 28843 if (error == EINPROGRESS) { 28844 IRB_REFRELE(irb); 28845 return (error); 28846 } 28847 } 28848 IRB_REFRELE(irb); 28849 /* 28850 * Consider the call as successful if we succeeded on at least 28851 * one interface. Otherwise, return the last encountered error. 28852 */ 28853 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28854 } 28855 28856 28857 /* 28858 * Issue a warning regarding a route crossing an interface with an 28859 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28860 * amount of time is logged. 28861 */ 28862 static void 28863 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28864 { 28865 hrtime_t current = gethrtime(); 28866 char buf[INET_ADDRSTRLEN]; 28867 ip_stack_t *ipst = ire->ire_ipst; 28868 28869 /* Convert interval in ms to hrtime in ns */ 28870 if (ipst->ips_multirt_bad_mtu_last_time + 28871 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28872 current) { 28873 cmn_err(CE_WARN, "ip: ignoring multiroute " 28874 "to %s, incorrect MTU %u (expected %u)\n", 28875 ip_dot_addr(ire->ire_addr, buf), 28876 ire->ire_max_frag, max_frag); 28877 28878 ipst->ips_multirt_bad_mtu_last_time = current; 28879 } 28880 } 28881 28882 28883 /* 28884 * Get the CGTP (multirouting) filtering status. 28885 * If 0, the CGTP hooks are transparent. 28886 */ 28887 /* ARGSUSED */ 28888 static int 28889 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28890 { 28891 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28892 28893 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28894 return (0); 28895 } 28896 28897 28898 /* 28899 * Set the CGTP (multirouting) filtering status. 28900 * If the status is changed from active to transparent 28901 * or from transparent to active, forward the new status 28902 * to the filtering module (if loaded). 28903 */ 28904 /* ARGSUSED */ 28905 static int 28906 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28907 cred_t *ioc_cr) 28908 { 28909 long new_value; 28910 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28911 ip_stack_t *ipst = CONNQ_TO_IPST(q); 28912 28913 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 28914 return (EPERM); 28915 28916 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28917 new_value < 0 || new_value > 1) { 28918 return (EINVAL); 28919 } 28920 28921 if ((!*ip_cgtp_filter_value) && new_value) { 28922 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28923 ipst->ips_ip_cgtp_filter_ops == NULL ? 28924 " (module not loaded)" : ""); 28925 } 28926 if (*ip_cgtp_filter_value && (!new_value)) { 28927 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28928 ipst->ips_ip_cgtp_filter_ops == NULL ? 28929 " (module not loaded)" : ""); 28930 } 28931 28932 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28933 int res; 28934 netstackid_t stackid; 28935 28936 stackid = ipst->ips_netstack->netstack_stackid; 28937 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 28938 new_value); 28939 if (res) 28940 return (res); 28941 } 28942 28943 *ip_cgtp_filter_value = (boolean_t)new_value; 28944 28945 return (0); 28946 } 28947 28948 28949 /* 28950 * Return the expected CGTP hooks version number. 28951 */ 28952 int 28953 ip_cgtp_filter_supported(void) 28954 { 28955 return (ip_cgtp_filter_rev); 28956 } 28957 28958 28959 /* 28960 * CGTP hooks can be registered by invoking this function. 28961 * Checks that the version number matches. 28962 */ 28963 int 28964 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 28965 { 28966 netstack_t *ns; 28967 ip_stack_t *ipst; 28968 28969 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 28970 return (ENOTSUP); 28971 28972 ns = netstack_find_by_stackid(stackid); 28973 if (ns == NULL) 28974 return (EINVAL); 28975 ipst = ns->netstack_ip; 28976 ASSERT(ipst != NULL); 28977 28978 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28979 netstack_rele(ns); 28980 return (EALREADY); 28981 } 28982 28983 ipst->ips_ip_cgtp_filter_ops = ops; 28984 netstack_rele(ns); 28985 return (0); 28986 } 28987 28988 /* 28989 * CGTP hooks can be unregistered by invoking this function. 28990 * Returns ENXIO if there was no registration. 28991 * Returns EBUSY if the ndd variable has not been turned off. 28992 */ 28993 int 28994 ip_cgtp_filter_unregister(netstackid_t stackid) 28995 { 28996 netstack_t *ns; 28997 ip_stack_t *ipst; 28998 28999 ns = netstack_find_by_stackid(stackid); 29000 if (ns == NULL) 29001 return (EINVAL); 29002 ipst = ns->netstack_ip; 29003 ASSERT(ipst != NULL); 29004 29005 if (ipst->ips_ip_cgtp_filter) { 29006 netstack_rele(ns); 29007 return (EBUSY); 29008 } 29009 29010 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 29011 netstack_rele(ns); 29012 return (ENXIO); 29013 } 29014 ipst->ips_ip_cgtp_filter_ops = NULL; 29015 netstack_rele(ns); 29016 return (0); 29017 } 29018 29019 /* 29020 * Check whether there is a CGTP filter registration. 29021 * Returns non-zero if there is a registration, otherwise returns zero. 29022 * Note: returns zero if bad stackid. 29023 */ 29024 int 29025 ip_cgtp_filter_is_registered(netstackid_t stackid) 29026 { 29027 netstack_t *ns; 29028 ip_stack_t *ipst; 29029 int ret; 29030 29031 ns = netstack_find_by_stackid(stackid); 29032 if (ns == NULL) 29033 return (0); 29034 ipst = ns->netstack_ip; 29035 ASSERT(ipst != NULL); 29036 29037 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29038 ret = 1; 29039 else 29040 ret = 0; 29041 29042 netstack_rele(ns); 29043 return (ret); 29044 } 29045 29046 static squeue_func_t 29047 ip_squeue_switch(int val) 29048 { 29049 squeue_func_t rval = squeue_fill; 29050 29051 switch (val) { 29052 case IP_SQUEUE_ENTER_NODRAIN: 29053 rval = squeue_enter_nodrain; 29054 break; 29055 case IP_SQUEUE_ENTER: 29056 rval = squeue_enter; 29057 break; 29058 default: 29059 break; 29060 } 29061 return (rval); 29062 } 29063 29064 /* ARGSUSED */ 29065 static int 29066 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29067 caddr_t addr, cred_t *cr) 29068 { 29069 int *v = (int *)addr; 29070 long new_value; 29071 29072 if (secpolicy_net_config(cr, B_FALSE) != 0) 29073 return (EPERM); 29074 29075 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29076 return (EINVAL); 29077 29078 ip_input_proc = ip_squeue_switch(new_value); 29079 *v = new_value; 29080 return (0); 29081 } 29082 29083 /* 29084 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29085 * ip_debug. 29086 */ 29087 /* ARGSUSED */ 29088 static int 29089 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29090 caddr_t addr, cred_t *cr) 29091 { 29092 int *v = (int *)addr; 29093 long new_value; 29094 29095 if (secpolicy_net_config(cr, B_FALSE) != 0) 29096 return (EPERM); 29097 29098 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29099 return (EINVAL); 29100 29101 *v = new_value; 29102 return (0); 29103 } 29104 29105 /* 29106 * Handle changes to ipmp_hook_emulation ndd variable. 29107 * Need to update phyint_hook_ifindex. 29108 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29109 */ 29110 static void 29111 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29112 { 29113 phyint_t *phyi; 29114 phyint_t *phyi_tmp; 29115 char *groupname; 29116 int namelen; 29117 ill_t *ill; 29118 boolean_t new_group; 29119 29120 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29121 /* 29122 * Group indicies are stored in the phyint - a common structure 29123 * to both IPv4 and IPv6. 29124 */ 29125 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29126 for (; phyi != NULL; 29127 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29128 phyi, AVL_AFTER)) { 29129 /* Ignore the ones that do not have a group */ 29130 if (phyi->phyint_groupname_len == 0) 29131 continue; 29132 29133 /* 29134 * Look for other phyint in group. 29135 * Clear name/namelen so the lookup doesn't find ourselves. 29136 */ 29137 namelen = phyi->phyint_groupname_len; 29138 groupname = phyi->phyint_groupname; 29139 phyi->phyint_groupname_len = 0; 29140 phyi->phyint_groupname = NULL; 29141 29142 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29143 /* Restore */ 29144 phyi->phyint_groupname_len = namelen; 29145 phyi->phyint_groupname = groupname; 29146 29147 new_group = B_FALSE; 29148 if (ipst->ips_ipmp_hook_emulation) { 29149 /* 29150 * If the group already exists and has already 29151 * been assigned a group ifindex, we use the existing 29152 * group_ifindex, otherwise we pick a new group_ifindex 29153 * here. 29154 */ 29155 if (phyi_tmp != NULL && 29156 phyi_tmp->phyint_group_ifindex != 0) { 29157 phyi->phyint_group_ifindex = 29158 phyi_tmp->phyint_group_ifindex; 29159 } else { 29160 /* XXX We need a recovery strategy here. */ 29161 if (!ip_assign_ifindex( 29162 &phyi->phyint_group_ifindex, ipst)) 29163 cmn_err(CE_PANIC, 29164 "ip_assign_ifindex() failed"); 29165 new_group = B_TRUE; 29166 } 29167 } else { 29168 phyi->phyint_group_ifindex = 0; 29169 } 29170 if (ipst->ips_ipmp_hook_emulation) 29171 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29172 else 29173 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29174 29175 /* 29176 * For IP Filter to find out the relationship between 29177 * names and interface indicies, we need to generate 29178 * a NE_PLUMB event when a new group can appear. 29179 * We always generate events when a new interface appears 29180 * (even when ipmp_hook_emulation is set) so there 29181 * is no need to generate NE_PLUMB events when 29182 * ipmp_hook_emulation is turned off. 29183 * And since it isn't critical for IP Filter to get 29184 * the NE_UNPLUMB events we skip those here. 29185 */ 29186 if (new_group) { 29187 /* 29188 * First phyint in group - generate group PLUMB event. 29189 * Since we are not running inside the ipsq we do 29190 * the dispatch immediately. 29191 */ 29192 if (phyi->phyint_illv4 != NULL) 29193 ill = phyi->phyint_illv4; 29194 else 29195 ill = phyi->phyint_illv6; 29196 29197 if (ill != NULL) { 29198 mutex_enter(&ill->ill_lock); 29199 ill_nic_info_plumb(ill, B_TRUE); 29200 ill_nic_info_dispatch(ill); 29201 mutex_exit(&ill->ill_lock); 29202 } 29203 } 29204 } 29205 rw_exit(&ipst->ips_ill_g_lock); 29206 } 29207 29208 /* ARGSUSED */ 29209 static int 29210 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29211 caddr_t addr, cred_t *cr) 29212 { 29213 int *v = (int *)addr; 29214 long new_value; 29215 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29216 29217 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29218 return (EINVAL); 29219 29220 if (*v != new_value) { 29221 *v = new_value; 29222 ipmp_hook_emulation_changed(ipst); 29223 } 29224 return (0); 29225 } 29226 29227 static void * 29228 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29229 { 29230 kstat_t *ksp; 29231 29232 ip_stat_t template = { 29233 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29234 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29235 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29236 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29237 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29238 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29239 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29240 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29241 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29242 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29243 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29244 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29245 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29246 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29247 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29248 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29249 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29250 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29251 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29252 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29253 { "ip_opt", KSTAT_DATA_UINT64 }, 29254 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29255 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29256 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29257 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29258 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29259 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29260 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29261 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29262 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29263 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29264 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29265 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29266 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29267 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29268 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29269 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29270 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29271 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29272 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29273 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29274 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29275 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29276 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29277 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29278 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29279 }; 29280 29281 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29282 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29283 KSTAT_FLAG_VIRTUAL, stackid); 29284 29285 if (ksp == NULL) 29286 return (NULL); 29287 29288 bcopy(&template, ip_statisticsp, sizeof (template)); 29289 ksp->ks_data = (void *)ip_statisticsp; 29290 ksp->ks_private = (void *)(uintptr_t)stackid; 29291 29292 kstat_install(ksp); 29293 return (ksp); 29294 } 29295 29296 static void 29297 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29298 { 29299 if (ksp != NULL) { 29300 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29301 kstat_delete_netstack(ksp, stackid); 29302 } 29303 } 29304 29305 static void * 29306 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29307 { 29308 kstat_t *ksp; 29309 29310 ip_named_kstat_t template = { 29311 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29312 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29313 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29314 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29315 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29316 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29317 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29318 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29319 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29320 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29321 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29322 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29323 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29324 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29325 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29326 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29327 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29328 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29329 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29330 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29331 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29332 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29333 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29334 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29335 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29336 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29337 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29338 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29339 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29340 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29341 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29342 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29343 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29344 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29345 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29346 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29347 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29348 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29349 }; 29350 29351 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29352 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29353 if (ksp == NULL || ksp->ks_data == NULL) 29354 return (NULL); 29355 29356 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29357 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29358 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29359 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29360 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29361 29362 template.netToMediaEntrySize.value.i32 = 29363 sizeof (mib2_ipNetToMediaEntry_t); 29364 29365 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29366 29367 bcopy(&template, ksp->ks_data, sizeof (template)); 29368 ksp->ks_update = ip_kstat_update; 29369 ksp->ks_private = (void *)(uintptr_t)stackid; 29370 29371 kstat_install(ksp); 29372 return (ksp); 29373 } 29374 29375 static void 29376 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29377 { 29378 if (ksp != NULL) { 29379 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29380 kstat_delete_netstack(ksp, stackid); 29381 } 29382 } 29383 29384 static int 29385 ip_kstat_update(kstat_t *kp, int rw) 29386 { 29387 ip_named_kstat_t *ipkp; 29388 mib2_ipIfStatsEntry_t ipmib; 29389 ill_walk_context_t ctx; 29390 ill_t *ill; 29391 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29392 netstack_t *ns; 29393 ip_stack_t *ipst; 29394 29395 if (kp == NULL || kp->ks_data == NULL) 29396 return (EIO); 29397 29398 if (rw == KSTAT_WRITE) 29399 return (EACCES); 29400 29401 ns = netstack_find_by_stackid(stackid); 29402 if (ns == NULL) 29403 return (-1); 29404 ipst = ns->netstack_ip; 29405 if (ipst == NULL) { 29406 netstack_rele(ns); 29407 return (-1); 29408 } 29409 ipkp = (ip_named_kstat_t *)kp->ks_data; 29410 29411 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29412 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29413 ill = ILL_START_WALK_V4(&ctx, ipst); 29414 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29415 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29416 rw_exit(&ipst->ips_ill_g_lock); 29417 29418 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29419 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29420 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29421 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29422 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29423 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29424 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29425 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29426 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29427 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29428 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29429 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29430 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29431 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29432 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29433 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29434 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29435 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29436 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29437 29438 ipkp->routingDiscards.value.ui32 = 0; 29439 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29440 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29441 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29442 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29443 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29444 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29445 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29446 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29447 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29448 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29449 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29450 29451 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29452 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29453 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29454 29455 netstack_rele(ns); 29456 29457 return (0); 29458 } 29459 29460 static void * 29461 icmp_kstat_init(netstackid_t stackid) 29462 { 29463 kstat_t *ksp; 29464 29465 icmp_named_kstat_t template = { 29466 { "inMsgs", KSTAT_DATA_UINT32 }, 29467 { "inErrors", KSTAT_DATA_UINT32 }, 29468 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29469 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29470 { "inParmProbs", KSTAT_DATA_UINT32 }, 29471 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29472 { "inRedirects", KSTAT_DATA_UINT32 }, 29473 { "inEchos", KSTAT_DATA_UINT32 }, 29474 { "inEchoReps", KSTAT_DATA_UINT32 }, 29475 { "inTimestamps", KSTAT_DATA_UINT32 }, 29476 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29477 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29478 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29479 { "outMsgs", KSTAT_DATA_UINT32 }, 29480 { "outErrors", KSTAT_DATA_UINT32 }, 29481 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29482 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29483 { "outParmProbs", KSTAT_DATA_UINT32 }, 29484 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29485 { "outRedirects", KSTAT_DATA_UINT32 }, 29486 { "outEchos", KSTAT_DATA_UINT32 }, 29487 { "outEchoReps", KSTAT_DATA_UINT32 }, 29488 { "outTimestamps", KSTAT_DATA_UINT32 }, 29489 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29490 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29491 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29492 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29493 { "inUnknowns", KSTAT_DATA_UINT32 }, 29494 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29495 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29496 { "outDrops", KSTAT_DATA_UINT32 }, 29497 { "inOverFlows", KSTAT_DATA_UINT32 }, 29498 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29499 }; 29500 29501 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29502 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29503 if (ksp == NULL || ksp->ks_data == NULL) 29504 return (NULL); 29505 29506 bcopy(&template, ksp->ks_data, sizeof (template)); 29507 29508 ksp->ks_update = icmp_kstat_update; 29509 ksp->ks_private = (void *)(uintptr_t)stackid; 29510 29511 kstat_install(ksp); 29512 return (ksp); 29513 } 29514 29515 static void 29516 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29517 { 29518 if (ksp != NULL) { 29519 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29520 kstat_delete_netstack(ksp, stackid); 29521 } 29522 } 29523 29524 static int 29525 icmp_kstat_update(kstat_t *kp, int rw) 29526 { 29527 icmp_named_kstat_t *icmpkp; 29528 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29529 netstack_t *ns; 29530 ip_stack_t *ipst; 29531 29532 if ((kp == NULL) || (kp->ks_data == NULL)) 29533 return (EIO); 29534 29535 if (rw == KSTAT_WRITE) 29536 return (EACCES); 29537 29538 ns = netstack_find_by_stackid(stackid); 29539 if (ns == NULL) 29540 return (-1); 29541 ipst = ns->netstack_ip; 29542 if (ipst == NULL) { 29543 netstack_rele(ns); 29544 return (-1); 29545 } 29546 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29547 29548 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29549 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29550 icmpkp->inDestUnreachs.value.ui32 = 29551 ipst->ips_icmp_mib.icmpInDestUnreachs; 29552 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29553 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29554 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29555 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29556 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29557 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29558 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29559 icmpkp->inTimestampReps.value.ui32 = 29560 ipst->ips_icmp_mib.icmpInTimestampReps; 29561 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29562 icmpkp->inAddrMaskReps.value.ui32 = 29563 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29564 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29565 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29566 icmpkp->outDestUnreachs.value.ui32 = 29567 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29568 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29569 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29570 icmpkp->outSrcQuenchs.value.ui32 = 29571 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29572 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29573 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29574 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29575 icmpkp->outTimestamps.value.ui32 = 29576 ipst->ips_icmp_mib.icmpOutTimestamps; 29577 icmpkp->outTimestampReps.value.ui32 = 29578 ipst->ips_icmp_mib.icmpOutTimestampReps; 29579 icmpkp->outAddrMasks.value.ui32 = 29580 ipst->ips_icmp_mib.icmpOutAddrMasks; 29581 icmpkp->outAddrMaskReps.value.ui32 = 29582 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29583 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29584 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29585 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29586 icmpkp->outFragNeeded.value.ui32 = 29587 ipst->ips_icmp_mib.icmpOutFragNeeded; 29588 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29589 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29590 icmpkp->inBadRedirects.value.ui32 = 29591 ipst->ips_icmp_mib.icmpInBadRedirects; 29592 29593 netstack_rele(ns); 29594 return (0); 29595 } 29596 29597 /* 29598 * This is the fanout function for raw socket opened for SCTP. Note 29599 * that it is called after SCTP checks that there is no socket which 29600 * wants a packet. Then before SCTP handles this out of the blue packet, 29601 * this function is called to see if there is any raw socket for SCTP. 29602 * If there is and it is bound to the correct address, the packet will 29603 * be sent to that socket. Note that only one raw socket can be bound to 29604 * a port. This is assured in ipcl_sctp_hash_insert(); 29605 */ 29606 void 29607 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29608 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29609 zoneid_t zoneid) 29610 { 29611 conn_t *connp; 29612 queue_t *rq; 29613 mblk_t *first_mp; 29614 boolean_t secure; 29615 ip6_t *ip6h; 29616 ip_stack_t *ipst = recv_ill->ill_ipst; 29617 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29618 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29619 boolean_t sctp_csum_err = B_FALSE; 29620 29621 if (flags & IP_FF_SCTP_CSUM_ERR) { 29622 sctp_csum_err = B_TRUE; 29623 flags &= ~IP_FF_SCTP_CSUM_ERR; 29624 } 29625 29626 first_mp = mp; 29627 if (mctl_present) { 29628 mp = first_mp->b_cont; 29629 secure = ipsec_in_is_secure(first_mp); 29630 ASSERT(mp != NULL); 29631 } else { 29632 secure = B_FALSE; 29633 } 29634 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29635 29636 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29637 if (connp == NULL) { 29638 /* 29639 * Although raw sctp is not summed, OOB chunks must be. 29640 * Drop the packet here if the sctp checksum failed. 29641 */ 29642 if (sctp_csum_err) { 29643 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29644 freemsg(first_mp); 29645 return; 29646 } 29647 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29648 return; 29649 } 29650 rq = connp->conn_rq; 29651 if (!canputnext(rq)) { 29652 CONN_DEC_REF(connp); 29653 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29654 freemsg(first_mp); 29655 return; 29656 } 29657 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29658 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29659 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29660 (isv4 ? ipha : NULL), ip6h, mctl_present); 29661 if (first_mp == NULL) { 29662 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29663 CONN_DEC_REF(connp); 29664 return; 29665 } 29666 } 29667 /* 29668 * We probably should not send M_CTL message up to 29669 * raw socket. 29670 */ 29671 if (mctl_present) 29672 freeb(first_mp); 29673 29674 /* Initiate IPPF processing here if needed. */ 29675 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29676 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29677 ip_process(IPP_LOCAL_IN, &mp, 29678 recv_ill->ill_phyint->phyint_ifindex); 29679 if (mp == NULL) { 29680 CONN_DEC_REF(connp); 29681 return; 29682 } 29683 } 29684 29685 if (connp->conn_recvif || connp->conn_recvslla || 29686 ((connp->conn_ip_recvpktinfo || 29687 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29688 (flags & IP_FF_IPINFO))) { 29689 int in_flags = 0; 29690 29691 /* 29692 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29693 * IPF_RECVIF. 29694 */ 29695 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29696 in_flags = IPF_RECVIF; 29697 } 29698 if (connp->conn_recvslla) { 29699 in_flags |= IPF_RECVSLLA; 29700 } 29701 if (isv4) { 29702 mp = ip_add_info(mp, recv_ill, in_flags, 29703 IPCL_ZONEID(connp), ipst); 29704 } else { 29705 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29706 if (mp == NULL) { 29707 BUMP_MIB(recv_ill->ill_ip_mib, 29708 ipIfStatsInDiscards); 29709 CONN_DEC_REF(connp); 29710 return; 29711 } 29712 } 29713 } 29714 29715 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29716 /* 29717 * We are sending the IPSEC_IN message also up. Refer 29718 * to comments above this function. 29719 * This is the SOCK_RAW, IPPROTO_SCTP case. 29720 */ 29721 (connp->conn_recv)(connp, mp, NULL); 29722 CONN_DEC_REF(connp); 29723 } 29724 29725 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29726 { \ 29727 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29728 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29729 } 29730 /* 29731 * This function should be called only if all packet processing 29732 * including fragmentation is complete. Callers of this function 29733 * must set mp->b_prev to one of these values: 29734 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29735 * prior to handing over the mp as first argument to this function. 29736 * 29737 * If the ire passed by caller is incomplete, this function 29738 * queues the packet and if necessary, sends ARP request and bails. 29739 * If the ire passed is fully resolved, we simply prepend 29740 * the link-layer header to the packet, do ipsec hw acceleration 29741 * work if necessary, and send the packet out on the wire. 29742 * 29743 * NOTE: IPsec will only call this function with fully resolved 29744 * ires if hw acceleration is involved. 29745 * TODO list : 29746 * a Handle M_MULTIDATA so that 29747 * tcp_multisend->tcp_multisend_data can 29748 * call ip_xmit_v4 directly 29749 * b Handle post-ARP work for fragments so that 29750 * ip_wput_frag can call this function. 29751 */ 29752 ipxmit_state_t 29753 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 29754 { 29755 nce_t *arpce; 29756 queue_t *q; 29757 int ill_index; 29758 mblk_t *nxt_mp, *first_mp; 29759 boolean_t xmit_drop = B_FALSE; 29760 ip_proc_t proc; 29761 ill_t *out_ill; 29762 int pkt_len; 29763 29764 arpce = ire->ire_nce; 29765 ASSERT(arpce != NULL); 29766 29767 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29768 29769 mutex_enter(&arpce->nce_lock); 29770 switch (arpce->nce_state) { 29771 case ND_REACHABLE: 29772 /* If there are other queued packets, queue this packet */ 29773 if (arpce->nce_qd_mp != NULL) { 29774 if (mp != NULL) 29775 nce_queue_mp_common(arpce, mp, B_FALSE); 29776 mp = arpce->nce_qd_mp; 29777 } 29778 arpce->nce_qd_mp = NULL; 29779 mutex_exit(&arpce->nce_lock); 29780 29781 /* 29782 * Flush the queue. In the common case, where the 29783 * ARP is already resolved, it will go through the 29784 * while loop only once. 29785 */ 29786 while (mp != NULL) { 29787 29788 nxt_mp = mp->b_next; 29789 mp->b_next = NULL; 29790 ASSERT(mp->b_datap->db_type != M_CTL); 29791 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29792 /* 29793 * This info is needed for IPQOS to do COS marking 29794 * in ip_wput_attach_llhdr->ip_process. 29795 */ 29796 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29797 mp->b_prev = NULL; 29798 29799 /* set up ill index for outbound qos processing */ 29800 out_ill = ire_to_ill(ire); 29801 ill_index = out_ill->ill_phyint->phyint_ifindex; 29802 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29803 ill_index); 29804 if (first_mp == NULL) { 29805 xmit_drop = B_TRUE; 29806 BUMP_MIB(out_ill->ill_ip_mib, 29807 ipIfStatsOutDiscards); 29808 goto next_mp; 29809 } 29810 /* non-ipsec hw accel case */ 29811 if (io == NULL || !io->ipsec_out_accelerated) { 29812 /* send it */ 29813 q = ire->ire_stq; 29814 if (proc == IPP_FWD_OUT) { 29815 UPDATE_IB_PKT_COUNT(ire); 29816 } else { 29817 UPDATE_OB_PKT_COUNT(ire); 29818 } 29819 ire->ire_last_used_time = lbolt; 29820 29821 if (flow_ctl_enabled || canputnext(q)) { 29822 if (proc == IPP_FWD_OUT) { 29823 29824 BUMP_MIB(out_ill->ill_ip_mib, 29825 ipIfStatsHCOutForwDatagrams); 29826 29827 } 29828 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29829 pkt_len); 29830 29831 putnext(q, first_mp); 29832 } else { 29833 BUMP_MIB(out_ill->ill_ip_mib, 29834 ipIfStatsOutDiscards); 29835 xmit_drop = B_TRUE; 29836 freemsg(first_mp); 29837 } 29838 } else { 29839 /* 29840 * Safety Pup says: make sure this 29841 * is going to the right interface! 29842 */ 29843 ill_t *ill1 = 29844 (ill_t *)ire->ire_stq->q_ptr; 29845 int ifindex = 29846 ill1->ill_phyint->phyint_ifindex; 29847 if (ifindex != 29848 io->ipsec_out_capab_ill_index) { 29849 xmit_drop = B_TRUE; 29850 freemsg(mp); 29851 } else { 29852 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29853 pkt_len); 29854 ipsec_hw_putnext(ire->ire_stq, mp); 29855 } 29856 } 29857 next_mp: 29858 mp = nxt_mp; 29859 } /* while (mp != NULL) */ 29860 if (xmit_drop) 29861 return (SEND_FAILED); 29862 else 29863 return (SEND_PASSED); 29864 29865 case ND_INITIAL: 29866 case ND_INCOMPLETE: 29867 29868 /* 29869 * While we do send off packets to dests that 29870 * use fully-resolved CGTP routes, we do not 29871 * handle unresolved CGTP routes. 29872 */ 29873 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29874 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29875 29876 if (mp != NULL) { 29877 /* queue the packet */ 29878 nce_queue_mp_common(arpce, mp, B_FALSE); 29879 } 29880 29881 if (arpce->nce_state == ND_INCOMPLETE) { 29882 mutex_exit(&arpce->nce_lock); 29883 DTRACE_PROBE3(ip__xmit__incomplete, 29884 (ire_t *), ire, (mblk_t *), mp, 29885 (ipsec_out_t *), io); 29886 return (LOOKUP_IN_PROGRESS); 29887 } 29888 29889 arpce->nce_state = ND_INCOMPLETE; 29890 mutex_exit(&arpce->nce_lock); 29891 /* 29892 * Note that ire_add() (called from ire_forward()) 29893 * holds a ref on the ire until ARP is completed. 29894 */ 29895 29896 ire_arpresolve(ire, ire_to_ill(ire)); 29897 return (LOOKUP_IN_PROGRESS); 29898 default: 29899 ASSERT(0); 29900 mutex_exit(&arpce->nce_lock); 29901 return (LLHDR_RESLV_FAILED); 29902 } 29903 } 29904 29905 #undef UPDATE_IP_MIB_OB_COUNTERS 29906 29907 /* 29908 * Return B_TRUE if the buffers differ in length or content. 29909 * This is used for comparing extension header buffers. 29910 * Note that an extension header would be declared different 29911 * even if all that changed was the next header value in that header i.e. 29912 * what really changed is the next extension header. 29913 */ 29914 boolean_t 29915 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29916 uint_t blen) 29917 { 29918 if (!b_valid) 29919 blen = 0; 29920 29921 if (alen != blen) 29922 return (B_TRUE); 29923 if (alen == 0) 29924 return (B_FALSE); /* Both zero length */ 29925 return (bcmp(abuf, bbuf, alen)); 29926 } 29927 29928 /* 29929 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29930 * Return B_FALSE if memory allocation fails - don't change any state! 29931 */ 29932 boolean_t 29933 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29934 const void *src, uint_t srclen) 29935 { 29936 void *dst; 29937 29938 if (!src_valid) 29939 srclen = 0; 29940 29941 ASSERT(*dstlenp == 0); 29942 if (src != NULL && srclen != 0) { 29943 dst = mi_alloc(srclen, BPRI_MED); 29944 if (dst == NULL) 29945 return (B_FALSE); 29946 } else { 29947 dst = NULL; 29948 } 29949 if (*dstp != NULL) 29950 mi_free(*dstp); 29951 *dstp = dst; 29952 *dstlenp = dst == NULL ? 0 : srclen; 29953 return (B_TRUE); 29954 } 29955 29956 /* 29957 * Replace what is in *dst, *dstlen with the source. 29958 * Assumes ip_allocbuf has already been called. 29959 */ 29960 void 29961 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29962 const void *src, uint_t srclen) 29963 { 29964 if (!src_valid) 29965 srclen = 0; 29966 29967 ASSERT(*dstlenp == srclen); 29968 if (src != NULL && srclen != 0) 29969 bcopy(src, *dstp, srclen); 29970 } 29971 29972 /* 29973 * Free the storage pointed to by the members of an ip6_pkt_t. 29974 */ 29975 void 29976 ip6_pkt_free(ip6_pkt_t *ipp) 29977 { 29978 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 29979 29980 if (ipp->ipp_fields & IPPF_HOPOPTS) { 29981 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 29982 ipp->ipp_hopopts = NULL; 29983 ipp->ipp_hopoptslen = 0; 29984 } 29985 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 29986 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 29987 ipp->ipp_rtdstopts = NULL; 29988 ipp->ipp_rtdstoptslen = 0; 29989 } 29990 if (ipp->ipp_fields & IPPF_DSTOPTS) { 29991 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 29992 ipp->ipp_dstopts = NULL; 29993 ipp->ipp_dstoptslen = 0; 29994 } 29995 if (ipp->ipp_fields & IPPF_RTHDR) { 29996 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 29997 ipp->ipp_rthdr = NULL; 29998 ipp->ipp_rthdrlen = 0; 29999 } 30000 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30001 IPPF_RTHDR); 30002 } 30003