1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/stream.h> 31 #include <sys/dlpi.h> 32 #include <sys/stropts.h> 33 #include <sys/sysmacros.h> 34 #include <sys/strsubr.h> 35 #include <sys/strlog.h> 36 #include <sys/strsun.h> 37 #include <sys/zone.h> 38 #define _SUN_TPI_VERSION 2 39 #include <sys/tihdr.h> 40 #include <sys/xti_inet.h> 41 #include <sys/ddi.h> 42 #include <sys/sunddi.h> 43 #include <sys/cmn_err.h> 44 #include <sys/debug.h> 45 #include <sys/kobj.h> 46 #include <sys/modctl.h> 47 #include <sys/atomic.h> 48 #include <sys/policy.h> 49 #include <sys/priv.h> 50 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/kmem.h> 54 #include <sys/sdt.h> 55 #include <sys/socket.h> 56 #include <sys/vtrace.h> 57 #include <sys/isa_defs.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/kstatcom.h> 72 73 #include <netinet/igmp_var.h> 74 #include <netinet/ip6.h> 75 #include <netinet/icmp6.h> 76 #include <netinet/sctp.h> 77 78 #include <inet/ip.h> 79 #include <inet/ip_impl.h> 80 #include <inet/ip6.h> 81 #include <inet/ip6_asp.h> 82 #include <inet/tcp.h> 83 #include <inet/tcp_impl.h> 84 #include <inet/ip_multi.h> 85 #include <inet/ip_if.h> 86 #include <inet/ip_ire.h> 87 #include <inet/ip_ftable.h> 88 #include <inet/ip_rts.h> 89 #include <inet/optcom.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/tun.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <sys/sunddi.h> 121 122 #include <sys/tsol/label.h> 123 #include <sys/tsol/tnet.h> 124 125 #include <rpc/pmap_prot.h> 126 127 /* 128 * Values for squeue switch: 129 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 130 * IP_SQUEUE_ENTER: squeue_enter 131 * IP_SQUEUE_FILL: squeue_fill 132 */ 133 int ip_squeue_enter = 2; 134 squeue_func_t ip_input_proc; 135 /* 136 * IP statistics. 137 */ 138 #define IP_STAT(x) (ip_statistics.x.value.ui64++) 139 #define IP_STAT_UPDATE(x, n) (ip_statistics.x.value.ui64 += (n)) 140 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 141 142 typedef struct ip_stat { 143 kstat_named_t ipsec_fanout_proto; 144 kstat_named_t ip_udp_fannorm; 145 kstat_named_t ip_udp_fanmb; 146 kstat_named_t ip_udp_fanothers; 147 kstat_named_t ip_udp_fast_path; 148 kstat_named_t ip_udp_slow_path; 149 kstat_named_t ip_udp_input_err; 150 kstat_named_t ip_tcppullup; 151 kstat_named_t ip_tcpoptions; 152 kstat_named_t ip_multipkttcp; 153 kstat_named_t ip_tcp_fast_path; 154 kstat_named_t ip_tcp_slow_path; 155 kstat_named_t ip_tcp_input_error; 156 kstat_named_t ip_db_ref; 157 kstat_named_t ip_notaligned1; 158 kstat_named_t ip_notaligned2; 159 kstat_named_t ip_multimblk3; 160 kstat_named_t ip_multimblk4; 161 kstat_named_t ip_ipoptions; 162 kstat_named_t ip_classify_fail; 163 kstat_named_t ip_opt; 164 kstat_named_t ip_udp_rput_local; 165 kstat_named_t ipsec_proto_ahesp; 166 kstat_named_t ip_conn_flputbq; 167 kstat_named_t ip_conn_walk_drain; 168 kstat_named_t ip_out_sw_cksum; 169 kstat_named_t ip_in_sw_cksum; 170 kstat_named_t ip_trash_ire_reclaim_calls; 171 kstat_named_t ip_trash_ire_reclaim_success; 172 kstat_named_t ip_ire_arp_timer_expired; 173 kstat_named_t ip_ire_redirect_timer_expired; 174 kstat_named_t ip_ire_pmtu_timer_expired; 175 kstat_named_t ip_input_multi_squeue; 176 kstat_named_t ip_tcp_in_full_hw_cksum_err; 177 kstat_named_t ip_tcp_in_part_hw_cksum_err; 178 kstat_named_t ip_tcp_in_sw_cksum_err; 179 kstat_named_t ip_tcp_out_sw_cksum_bytes; 180 kstat_named_t ip_udp_in_full_hw_cksum_err; 181 kstat_named_t ip_udp_in_part_hw_cksum_err; 182 kstat_named_t ip_udp_in_sw_cksum_err; 183 kstat_named_t ip_udp_out_sw_cksum_bytes; 184 kstat_named_t ip_frag_mdt_pkt_out; 185 kstat_named_t ip_frag_mdt_discarded; 186 kstat_named_t ip_frag_mdt_allocfail; 187 kstat_named_t ip_frag_mdt_addpdescfail; 188 kstat_named_t ip_frag_mdt_allocd; 189 } ip_stat_t; 190 191 static ip_stat_t ip_statistics = { 192 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 193 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 194 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 195 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 196 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 197 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 198 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 199 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 200 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 201 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 202 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 203 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 204 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 205 { "ip_db_ref", KSTAT_DATA_UINT64 }, 206 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 207 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 208 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 209 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 210 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 211 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 212 { "ip_opt", KSTAT_DATA_UINT64 }, 213 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 214 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 215 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 216 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 217 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 218 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 219 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 220 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 221 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 222 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 223 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 224 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 225 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 226 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 227 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 228 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 229 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 230 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 231 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 232 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 233 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 234 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 235 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 236 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 237 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 238 }; 239 240 static kstat_t *ip_kstat; 241 242 #define TCP6 "tcp6" 243 #define TCP "tcp" 244 #define SCTP "sctp" 245 #define SCTP6 "sctp6" 246 247 major_t TCP6_MAJ; 248 major_t TCP_MAJ; 249 major_t SCTP_MAJ; 250 major_t SCTP6_MAJ; 251 252 int ip_poll_normal_ms = 100; 253 int ip_poll_normal_ticks = 0; 254 255 /* 256 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 257 */ 258 259 struct listptr_s { 260 mblk_t *lp_head; /* pointer to the head of the list */ 261 mblk_t *lp_tail; /* pointer to the tail of the list */ 262 }; 263 264 typedef struct listptr_s listptr_t; 265 266 /* 267 * This is used by ip_snmp_get_mib2_ip_route_media and 268 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 269 */ 270 typedef struct iproutedata_s { 271 uint_t ird_idx; 272 listptr_t ird_route; /* ipRouteEntryTable */ 273 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 274 listptr_t ird_attrs; /* ipRouteAttributeTable */ 275 } iproutedata_t; 276 277 /* 278 * Cluster specific hooks. These should be NULL when booted as a non-cluster 279 */ 280 281 /* 282 * Hook functions to enable cluster networking 283 * On non-clustered systems these vectors must always be NULL. 284 * 285 * Hook function to Check ip specified ip address is a shared ip address 286 * in the cluster 287 * 288 */ 289 int (*cl_inet_isclusterwide)(uint8_t protocol, 290 sa_family_t addr_family, uint8_t *laddrp) = NULL; 291 292 /* 293 * Hook function to generate cluster wide ip fragment identifier 294 */ 295 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 296 uint8_t *laddrp, uint8_t *faddrp) = NULL; 297 298 /* 299 * Synchronization notes: 300 * 301 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 302 * MT level protection given by STREAMS. IP uses a combination of its own 303 * internal serialization mechanism and standard Solaris locking techniques. 304 * The internal serialization is per phyint (no IPMP) or per IPMP group. 305 * This is used to serialize plumbing operations, IPMP operations, certain 306 * multicast operations, most set ioctls, igmp/mld timers etc. 307 * 308 * Plumbing is a long sequence of operations involving message 309 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 310 * involved in plumbing operations. A natural model is to serialize these 311 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 312 * parallel without any interference. But various set ioctls on hme0 are best 313 * serialized. However if the system uses IPMP, the operations are easier if 314 * they are serialized on a per IPMP group basis since IPMP operations 315 * happen across ill's of a group. Thus the lowest common denominator is to 316 * serialize most set ioctls, multicast join/leave operations, IPMP operations 317 * igmp/mld timer operations, and processing of DLPI control messages received 318 * from drivers on a per IPMP group basis. If the system does not employ 319 * IPMP the serialization is on a per phyint basis. This serialization is 320 * provided by the ipsq_t and primitives operating on this. Details can 321 * be found in ip_if.c above the core primitives operating on ipsq_t. 322 * 323 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 324 * Simiarly lookup of an ire by a thread also returns a refheld ire. 325 * In addition ipif's and ill's referenced by the ire are also indirectly 326 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 327 * the ipif's address or netmask change as long as an ipif is refheld 328 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 329 * address of an ipif has to go through the ipsq_t. This ensures that only 330 * 1 such exclusive operation proceeds at any time on the ipif. It then 331 * deletes all ires associated with this ipif, and waits for all refcnts 332 * associated with this ipif to come down to zero. The address is changed 333 * only after the ipif has been quiesced. Then the ipif is brought up again. 334 * More details are described above the comment in ip_sioctl_flags. 335 * 336 * Packet processing is based mostly on IREs and are fully multi-threaded 337 * using standard Solaris MT techniques. 338 * 339 * There are explicit locks in IP to handle: 340 * - The ip_g_head list maintained by mi_open_link() and friends. 341 * 342 * - The reassembly data structures (one lock per hash bucket) 343 * 344 * - conn_lock is meant to protect conn_t fields. The fields actually 345 * protected by conn_lock are documented in the conn_t definition. 346 * 347 * - ire_lock to protect some of the fields of the ire, IRE tables 348 * (one lock per hash bucket). Refer to ip_ire.c for details. 349 * 350 * - ndp_g_lock and nce_lock for protecting NCEs. 351 * 352 * - ill_lock protects fields of the ill and ipif. Details in ip.h 353 * 354 * - ill_g_lock: This is a global reader/writer lock. Protects the following 355 * * The AVL tree based global multi list of all ills. 356 * * The linked list of all ipifs of an ill 357 * * The <ill-ipsq> mapping 358 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 359 * * The illgroup list threaded by ill_group_next. 360 * * <ill-phyint> association 361 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 362 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 363 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 364 * will all have to hold the ill_g_lock as writer for the actual duration 365 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 366 * may be found in the IPMP section. 367 * 368 * - ill_lock: This is a per ill mutex. 369 * It protects some members of the ill and is documented below. 370 * It also protects the <ill-ipsq> mapping 371 * It also protects the illgroup list threaded by ill_group_next. 372 * It also protects the <ill-phyint> assoc. 373 * It also protects the list of ipifs hanging off the ill. 374 * 375 * - ipsq_lock: This is a per ipsq_t mutex lock. 376 * This protects all the other members of the ipsq struct except 377 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 378 * 379 * - illgrp_lock: This is a per ill_group mutex lock. 380 * The only thing it protects is the illgrp_ill_schednext member of ill_group 381 * which dictates which is the next ill in an ill_group that is to be chosen 382 * for sending outgoing packets, through creation of an IRE_CACHE that 383 * references this ill. 384 * 385 * - phyint_lock: This is a per phyint mutex lock. Protects just the 386 * phyint_flags 387 * 388 * - ip_g_nd_lock: This is a global reader/writer lock. 389 * Any call to nd_load to load a new parameter to the ND table must hold the 390 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 391 * as reader. 392 * 393 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 394 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 395 * uniqueness check also done atomically. 396 * 397 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 398 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 399 * as a writer when adding or deleting elements from these lists, and 400 * as a reader when walking these lists to send a SADB update to the 401 * IPsec capable ills. 402 * 403 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 404 * group list linked by ill_usesrc_grp_next. It also protects the 405 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 406 * group is being added or deleted. This lock is taken as a reader when 407 * walking the list/group(eg: to get the number of members in a usesrc group). 408 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 409 * field is changing state i.e from NULL to non-NULL or vice-versa. For 410 * example, it is not necessary to take this lock in the initial portion 411 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 412 * ip_sioctl_flags since the these operations are executed exclusively and 413 * that ensures that the "usesrc group state" cannot change. The "usesrc 414 * group state" change can happen only in the latter part of 415 * ip_sioctl_slifusesrc and in ill_delete. 416 * 417 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 418 * 419 * To change the <ill-phyint> association, the ill_g_lock must be held 420 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 421 * must be held. 422 * 423 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 424 * and the ill_lock of the ill in question must be held. 425 * 426 * To change the <ill-illgroup> association the ill_g_lock must be held as 427 * writer and the ill_lock of the ill in question must be held. 428 * 429 * To add or delete an ipif from the list of ipifs hanging off the ill, 430 * ill_g_lock (writer) and ill_lock must be held and the thread must be 431 * a writer on the associated ipsq,. 432 * 433 * To add or delete an ill to the system, the ill_g_lock must be held as 434 * writer and the thread must be a writer on the associated ipsq. 435 * 436 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 437 * must be a writer on the associated ipsq. 438 * 439 * Lock hierarchy 440 * 441 * Some lock hierarchy scenarios are listed below. 442 * 443 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 444 * ill_g_lock -> illgrp_lock -> ill_lock 445 * ill_g_lock -> ill_lock(s) -> phyint_lock 446 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 447 * ill_g_lock -> ip_addr_avail_lock 448 * conn_lock -> irb_lock -> ill_lock -> ire_lock 449 * ill_g_lock -> ip_g_nd_lock 450 * 451 * When more than 1 ill lock is needed to be held, all ill lock addresses 452 * are sorted on address and locked starting from highest addressed lock 453 * downward. 454 * 455 * Mobile-IP scenarios 456 * 457 * irb_lock -> ill_lock -> ire_mrtun_lock 458 * irb_lock -> ill_lock -> ire_srcif_table_lock 459 * 460 * IPsec scenarios 461 * 462 * ipsa_lock -> ill_g_lock -> ill_lock 463 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 464 * ipsec_capab_ills_lock -> ipsa_lock 465 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 466 * 467 * Trusted Solaris scenarios 468 * 469 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 470 * igsa_lock -> gcdb_lock 471 * gcgrp_rwlock -> ire_lock 472 * gcgrp_rwlock -> gcdb_lock 473 * 474 * 475 * Routing/forwarding table locking notes: 476 * 477 * Lock acquisition order: Radix tree lock, irb_lock. 478 * Requirements: 479 * i. Walker must not hold any locks during the walker callback. 480 * ii Walker must not see a truncated tree during the walk because of any node 481 * deletion. 482 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 483 * in many places in the code to walk the irb list. Thus even if all the 484 * ires in a bucket have been deleted, we still can't free the radix node 485 * until the ires have actually been inactive'd (freed). 486 * 487 * Tree traversal - Need to hold the global tree lock in read mode. 488 * Before dropping the global tree lock, need to either increment the ire_refcnt 489 * to ensure that the radix node can't be deleted. 490 * 491 * Tree add - Need to hold the global tree lock in write mode to add a 492 * radix node. To prevent the node from being deleted, increment the 493 * irb_refcnt, after the node is added to the tree. The ire itself is 494 * added later while holding the irb_lock, but not the tree lock. 495 * 496 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 497 * All associated ires must be inactive (i.e. freed), and irb_refcnt 498 * must be zero. 499 * 500 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 501 * global tree lock (read mode) for traversal. 502 * 503 * IPSEC notes : 504 * 505 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 506 * in front of the actual packet. For outbound datagrams, the M_CTL 507 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 508 * information used by the IPSEC code for applying the right level of 509 * protection. The information initialized by IP in the ipsec_out_t 510 * is determined by the per-socket policy or global policy in the system. 511 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 512 * ipsec_info.h) which starts out with nothing in it. It gets filled 513 * with the right information if it goes through the AH/ESP code, which 514 * happens if the incoming packet is secure. The information initialized 515 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 516 * the policy requirements needed by per-socket policy or global policy 517 * is met or not. 518 * 519 * If there is both per-socket policy (set using setsockopt) and there 520 * is also global policy match for the 5 tuples of the socket, 521 * ipsec_override_policy() makes the decision of which one to use. 522 * 523 * For fully connected sockets i.e dst, src [addr, port] is known, 524 * conn_policy_cached is set indicating that policy has been cached. 525 * conn_in_enforce_policy may or may not be set depending on whether 526 * there is a global policy match or per-socket policy match. 527 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 528 * Once the right policy is set on the conn_t, policy cannot change for 529 * this socket. This makes life simpler for TCP (UDP ?) where 530 * re-transmissions go out with the same policy. For symmetry, policy 531 * is cached for fully connected UDP sockets also. Thus if policy is cached, 532 * it also implies that policy is latched i.e policy cannot change 533 * on these sockets. As we have the right policy on the conn, we don't 534 * have to lookup global policy for every outbound and inbound datagram 535 * and thus serving as an optimization. Note that a global policy change 536 * does not affect fully connected sockets if they have policy. If fully 537 * connected sockets did not have any policy associated with it, global 538 * policy change may affect them. 539 * 540 * IP Flow control notes: 541 * 542 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 543 * cannot be sent down to the driver by IP, because of a canput failure, IP 544 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 545 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 546 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 547 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 548 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 549 * the queued messages, and removes the conn from the drain list, if all 550 * messages were drained. It also qenables the next conn in the drain list to 551 * continue the drain process. 552 * 553 * In reality the drain list is not a single list, but a configurable number 554 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 555 * list. If the ip_wsrv of the next qenabled conn does not run, because the 556 * stream closes, ip_close takes responsibility to qenable the next conn in 557 * the drain list. The directly called ip_wput path always does a putq, if 558 * it cannot putnext. Thus synchronization problems are handled between 559 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 560 * functions that manipulate this drain list. Furthermore conn_drain_insert 561 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 562 * running on a queue at any time. conn_drain_tail can be simultaneously called 563 * from both ip_wsrv and ip_close. 564 * 565 * IPQOS notes: 566 * 567 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 568 * and IPQoS modules. IPPF includes hooks in IP at different control points 569 * (callout positions) which direct packets to IPQoS modules for policy 570 * processing. Policies, if present, are global. 571 * 572 * The callout positions are located in the following paths: 573 * o local_in (packets destined for this host) 574 * o local_out (packets orginating from this host ) 575 * o fwd_in (packets forwarded by this m/c - inbound) 576 * o fwd_out (packets forwarded by this m/c - outbound) 577 * Hooks at these callout points can be enabled/disabled using the ndd variable 578 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 579 * By default all the callout positions are enabled. 580 * 581 * Outbound (local_out) 582 * Hooks are placed in ip_wput_ire and ipsec_out_process. 583 * 584 * Inbound (local_in) 585 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 586 * TCP and UDP fanout routines. 587 * 588 * Forwarding (in and out) 589 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 590 * 591 * IP Policy Framework processing (IPPF processing) 592 * Policy processing for a packet is initiated by ip_process, which ascertains 593 * that the classifier (ipgpc) is loaded and configured, failing which the 594 * packet resumes normal processing in IP. If the clasifier is present, the 595 * packet is acted upon by one or more IPQoS modules (action instances), per 596 * filters configured in ipgpc and resumes normal IP processing thereafter. 597 * An action instance can drop a packet in course of its processing. 598 * 599 * A boolean variable, ip_policy, is used in all the fanout routines that can 600 * invoke ip_process for a packet. This variable indicates if the packet should 601 * to be sent for policy processing. The variable is set to B_TRUE by default, 602 * i.e. when the routines are invoked in the normal ip procesing path for a 603 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 604 * ip_policy is set to B_FALSE for all the routines called in these two 605 * functions because, in the former case, we don't process loopback traffic 606 * currently while in the latter, the packets have already been processed in 607 * icmp_inbound. 608 * 609 * Zones notes: 610 * 611 * The partitioning rules for networking are as follows: 612 * 1) Packets coming from a zone must have a source address belonging to that 613 * zone. 614 * 2) Packets coming from a zone can only be sent on a physical interface on 615 * which the zone has an IP address. 616 * 3) Between two zones on the same machine, packet delivery is only allowed if 617 * there's a matching route for the destination and zone in the forwarding 618 * table. 619 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 620 * different zones can bind to the same port with the wildcard address 621 * (INADDR_ANY). 622 * 623 * The granularity of interface partitioning is at the logical interface level. 624 * Therefore, every zone has its own IP addresses, and incoming packets can be 625 * attributed to a zone unambiguously. A logical interface is placed into a zone 626 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 627 * structure. Rule (1) is implemented by modifying the source address selection 628 * algorithm so that the list of eligible addresses is filtered based on the 629 * sending process zone. 630 * 631 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 632 * across all zones, depending on their type. Here is the break-up: 633 * 634 * IRE type Shared/exclusive 635 * -------- ---------------- 636 * IRE_BROADCAST Exclusive 637 * IRE_DEFAULT (default routes) Shared (*) 638 * IRE_LOCAL Exclusive (x) 639 * IRE_LOOPBACK Exclusive 640 * IRE_PREFIX (net routes) Shared (*) 641 * IRE_CACHE Exclusive 642 * IRE_IF_NORESOLVER (interface routes) Exclusive 643 * IRE_IF_RESOLVER (interface routes) Exclusive 644 * IRE_HOST (host routes) Shared (*) 645 * 646 * (*) A zone can only use a default or off-subnet route if the gateway is 647 * directly reachable from the zone, that is, if the gateway's address matches 648 * one of the zone's logical interfaces. 649 * 650 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 651 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 652 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 653 * address of the zone itself (the destination). Since IRE_LOCAL is used 654 * for communication between zones, ip_wput_ire has special logic to set 655 * the right source address when sending using an IRE_LOCAL. 656 * 657 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 658 * ire_cache_lookup restricts loopback using an IRE_LOCAL 659 * between zone to the case when L2 would have conceptually looped the packet 660 * back, i.e. the loopback which is required since neither Ethernet drivers 661 * nor Ethernet hardware loops them back. This is the case when the normal 662 * routes (ignoring IREs with different zoneids) would send out the packet on 663 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 664 * associated. 665 * 666 * Multiple zones can share a common broadcast address; typically all zones 667 * share the 255.255.255.255 address. Incoming as well as locally originated 668 * broadcast packets must be dispatched to all the zones on the broadcast 669 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 670 * since some zones may not be on the 10.16.72/24 network. To handle this, each 671 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 672 * sent to every zone that has an IRE_BROADCAST entry for the destination 673 * address on the input ill, see conn_wantpacket(). 674 * 675 * Applications in different zones can join the same multicast group address. 676 * For IPv4, group memberships are per-logical interface, so they're already 677 * inherently part of a zone. For IPv6, group memberships are per-physical 678 * interface, so we distinguish IPv6 group memberships based on group address, 679 * interface and zoneid. In both cases, received multicast packets are sent to 680 * every zone for which a group membership entry exists. On IPv6 we need to 681 * check that the target zone still has an address on the receiving physical 682 * interface; it could have been removed since the application issued the 683 * IPV6_JOIN_GROUP. 684 */ 685 686 /* 687 * Squeue Fanout flags: 688 * 0: No fanout. 689 * 1: Fanout across all squeues 690 */ 691 boolean_t ip_squeue_fanout = 0; 692 693 /* 694 * Maximum dups allowed per packet. 695 */ 696 uint_t ip_max_frag_dups = 10; 697 698 #define IS_SIMPLE_IPH(ipha) \ 699 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 700 701 /* RFC1122 Conformance */ 702 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 703 704 #define ILL_MAX_NAMELEN LIFNAMSIZ 705 706 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 707 708 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 709 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 710 711 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t); 712 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 713 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 714 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 715 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 716 mblk_t *, int); 717 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 718 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 719 ill_t *, zoneid_t); 720 static void icmp_options_update(ipha_t *); 721 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t); 722 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 723 zoneid_t zoneid); 724 static mblk_t *icmp_pkt_err_ok(mblk_t *); 725 static void icmp_redirect(mblk_t *); 726 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t); 727 728 static void ip_arp_news(queue_t *, mblk_t *); 729 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *); 730 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 731 char *ip_dot_addr(ipaddr_t, char *); 732 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 733 int ip_close(queue_t *, int); 734 static char *ip_dot_saddr(uchar_t *, char *); 735 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 736 boolean_t, boolean_t, ill_t *, zoneid_t); 737 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 738 boolean_t, boolean_t, zoneid_t); 739 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 740 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 741 static void ip_lrput(queue_t *, mblk_t *); 742 ipaddr_t ip_massage_options(ipha_t *); 743 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 744 ipaddr_t ip_net_mask(ipaddr_t); 745 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *, 746 zoneid_t); 747 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 748 conn_t *, uint32_t, zoneid_t); 749 char *ip_nv_lookup(nv_t *, int); 750 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 751 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 752 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 753 static boolean_t ip_param_register(ipparam_t *, size_t, ipndp_t *, 754 size_t); 755 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 756 void ip_rput(queue_t *, mblk_t *); 757 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 758 void *dummy_arg); 759 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 760 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *); 761 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 762 ire_t *); 763 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *); 764 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 765 uint16_t *); 766 int ip_snmp_get(queue_t *, mblk_t *); 767 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *); 768 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *); 769 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *); 770 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *); 771 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *); 772 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *); 773 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *); 774 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *); 775 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *); 776 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *); 777 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *); 778 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *); 779 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *); 780 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *); 781 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *); 782 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *); 783 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 784 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 785 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 786 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 787 static boolean_t ip_source_routed(ipha_t *); 788 static boolean_t ip_source_route_included(ipha_t *); 789 790 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 791 zoneid_t); 792 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int); 793 static void ip_wput_local_options(ipha_t *); 794 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 795 zoneid_t); 796 797 static void conn_drain_init(void); 798 static void conn_drain_fini(void); 799 static void conn_drain_tail(conn_t *connp, boolean_t closing); 800 801 static void conn_walk_drain(void); 802 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 803 zoneid_t); 804 805 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 806 zoneid_t); 807 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 808 void *dummy_arg); 809 810 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 811 812 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 813 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 814 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 815 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 816 817 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 818 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 819 caddr_t, cred_t *); 820 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 821 caddr_t cp, cred_t *cr); 822 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 823 cred_t *); 824 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 825 caddr_t cp, cred_t *cr); 826 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 827 cred_t *); 828 static squeue_func_t ip_squeue_switch(int); 829 830 static void ip_kstat_init(void); 831 static void ip_kstat_fini(void); 832 static int ip_kstat_update(kstat_t *kp, int rw); 833 static void icmp_kstat_init(void); 834 static void icmp_kstat_fini(void); 835 static int icmp_kstat_update(kstat_t *kp, int rw); 836 837 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 838 839 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 840 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 841 842 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 843 ipha_t *, ill_t *, boolean_t); 844 845 timeout_id_t ip_ire_expire_id; /* IRE expiration timer. */ 846 static clock_t ip_ire_arp_time_elapsed; /* Time since IRE cache last flushed */ 847 static clock_t ip_ire_rd_time_elapsed; /* ... redirect IREs last flushed */ 848 static clock_t ip_ire_pmtu_time_elapsed; /* Time since path mtu increase */ 849 850 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 851 clock_t icmp_pkt_err_last = 0; /* Time since last icmp_pkt_err */ 852 uint_t icmp_pkt_err_sent = 0; /* Number of packets sent in burst */ 853 854 /* How long, in seconds, we allow frags to hang around. */ 855 #define IP_FRAG_TIMEOUT 60 856 857 time_t ip_g_frag_timeout = IP_FRAG_TIMEOUT; 858 clock_t ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 859 860 /* 861 * Threshold which determines whether MDT should be used when 862 * generating IP fragments; payload size must be greater than 863 * this threshold for MDT to take place. 864 */ 865 #define IP_WPUT_FRAG_MDT_MIN 32768 866 867 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 868 869 /* Protected by ip_mi_lock */ 870 static void *ip_g_head; /* Instance Data List Head */ 871 kmutex_t ip_mi_lock; /* Lock for list of instances */ 872 873 /* Only modified during _init and _fini thus no locking is needed. */ 874 caddr_t ip_g_nd; /* Named Dispatch List Head */ 875 876 877 static long ip_rput_pullups; 878 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 879 880 vmem_t *ip_minor_arena; 881 882 /* 883 * MIB-2 stuff for SNMP (both IP and ICMP) 884 */ 885 mib2_ip_t ip_mib; 886 mib2_icmp_t icmp_mib; 887 888 #ifdef DEBUG 889 uint32_t ipsechw_debug = 0; 890 #endif 891 892 kstat_t *ip_mibkp; /* kstat exporting ip_mib data */ 893 kstat_t *icmp_mibkp; /* kstat exporting icmp_mib data */ 894 895 uint_t loopback_packets = 0; 896 897 /* 898 * Multirouting/CGTP stuff 899 */ 900 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 901 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 902 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 903 /* Interval (in ms) between consecutive 'bad MTU' warnings */ 904 hrtime_t ip_multirt_log_interval = 1000; 905 /* Time since last warning issued. */ 906 static hrtime_t multirt_bad_mtu_last_time = 0; 907 908 kmutex_t ip_trash_timer_lock; 909 krwlock_t ip_g_nd_lock; 910 911 /* 912 * XXX following really should only be in a header. Would need more 913 * header and .c clean up first. 914 */ 915 extern optdb_obj_t ip_opt_obj; 916 917 ulong_t ip_squeue_enter_unbound = 0; 918 919 /* 920 * Named Dispatch Parameter Table. 921 * All of these are alterable, within the min/max values given, at run time. 922 */ 923 static ipparam_t lcl_param_arr[] = { 924 /* min max value name */ 925 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 926 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 927 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 928 { 0, 1, 0, "ip_respond_to_timestamp"}, 929 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 930 { 0, 1, 1, "ip_send_redirects"}, 931 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 932 { 0, 10, 0, "ip_debug"}, 933 { 0, 10, 0, "ip_mrtdebug"}, 934 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 935 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 936 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 937 { 1, 255, 255, "ip_def_ttl" }, 938 { 0, 1, 0, "ip_forward_src_routed"}, 939 { 0, 256, 32, "ip_wroff_extra" }, 940 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 941 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 942 { 0, 1, 1, "ip_path_mtu_discovery" }, 943 { 0, 240, 30, "ip_ignore_delete_time" }, 944 { 0, 1, 0, "ip_ignore_redirect" }, 945 { 0, 1, 1, "ip_output_queue" }, 946 { 1, 254, 1, "ip_broadcast_ttl" }, 947 { 0, 99999, 100, "ip_icmp_err_interval" }, 948 { 1, 99999, 10, "ip_icmp_err_burst" }, 949 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 950 { 0, 1, 0, "ip_strict_dst_multihoming" }, 951 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 952 { 0, 1, 0, "ipsec_override_persocket_policy" }, 953 { 0, 1, 1, "icmp_accept_clear_messages" }, 954 { 0, 1, 1, "igmp_accept_clear_messages" }, 955 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 956 "ip_ndp_delay_first_probe_time"}, 957 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 958 "ip_ndp_max_unicast_solicit"}, 959 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 960 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 961 { 0, 1, 0, "ip6_forward_src_routed"}, 962 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 963 { 0, 1, 1, "ip6_send_redirects"}, 964 { 0, 1, 0, "ip6_ignore_redirect" }, 965 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 966 967 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 968 969 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 970 971 { 0, 1, 1, "pim_accept_clear_messages" }, 972 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 973 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 974 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 975 { 0, 15, 0, "ip_policy_mask" }, 976 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 977 { 0, 255, 1, "ip_multirt_ttl" }, 978 { 0, 1, 1, "ip_multidata_outbound" }, 979 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 980 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 981 { 0, 1000, 1, "ip_max_temp_defend" }, 982 { 0, 1000, 3, "ip_max_defend" }, 983 { 0, 999999, 30, "ip_defend_interval" }, 984 { 0, 3600000, 300000, "ip_dup_recovery" }, 985 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 986 #ifdef DEBUG 987 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 988 #endif 989 }; 990 991 ipparam_t *ip_param_arr = lcl_param_arr; 992 993 /* Extended NDP table */ 994 static ipndp_t lcl_ndp_arr[] = { 995 /* getf setf data name */ 996 { ip_param_generic_get, ip_forward_set, (caddr_t)&ip_g_forward, 997 "ip_forwarding" }, 998 { ip_param_generic_get, ip_forward_set, (caddr_t)&ipv6_forward, 999 "ip6_forwarding" }, 1000 { ip_ill_report, NULL, NULL, 1001 "ip_ill_status" }, 1002 { ip_ipif_report, NULL, NULL, 1003 "ip_ipif_status" }, 1004 { ip_ire_report, NULL, NULL, 1005 "ipv4_ire_status" }, 1006 { ip_ire_report_mrtun, NULL, NULL, 1007 "ipv4_mrtun_ire_status" }, 1008 { ip_ire_report_srcif, NULL, NULL, 1009 "ipv4_srcif_ire_status" }, 1010 { ip_ire_report_v6, NULL, NULL, 1011 "ipv6_ire_status" }, 1012 { ip_conn_report, NULL, NULL, 1013 "ip_conn_status" }, 1014 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 1015 "ip_rput_pullups" }, 1016 { ndp_report, NULL, NULL, 1017 "ip_ndp_cache_report" }, 1018 { ip_srcid_report, NULL, NULL, 1019 "ip_srcid_status" }, 1020 { ip_param_generic_get, ip_squeue_profile_set, 1021 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 1022 { ip_param_generic_get, ip_squeue_bind_set, 1023 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 1024 { ip_param_generic_get, ip_input_proc_set, 1025 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 1026 { ip_param_generic_get, ip_int_set, 1027 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 1028 { ip_cgtp_filter_get, ip_cgtp_filter_set, (caddr_t)&ip_cgtp_filter, 1029 "ip_cgtp_filter" }, 1030 { ip_param_generic_get, ip_int_set, 1031 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" } 1032 }; 1033 1034 /* 1035 * ip_g_forward controls IP forwarding. It takes two values: 1036 * 0: IP_FORWARD_NEVER Don't forward packets ever. 1037 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 1038 * 1039 * RFC1122 says there must be a configuration switch to control forwarding, 1040 * but that the default MUST be to not forward packets ever. Implicit 1041 * control based on configuration of multiple interfaces MUST NOT be 1042 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 1043 * and, in fact, it was the default. That capability is now provided in the 1044 * /etc/rc2.d/S69inet script. 1045 */ 1046 int ip_g_forward = IP_FORWARD_DEFAULT; 1047 1048 /* It also has an IPv6 counterpart. */ 1049 1050 int ipv6_forward = IP_FORWARD_DEFAULT; 1051 1052 /* 1053 * Table of IP ioctls encoding the various properties of the ioctl and 1054 * indexed based on the last byte of the ioctl command. Occasionally there 1055 * is a clash, and there is more than 1 ioctl with the same last byte. 1056 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1057 * ioctls are encoded in the misc table. An entry in the ndx table is 1058 * retrieved by indexing on the last byte of the ioctl command and comparing 1059 * the ioctl command with the value in the ndx table. In the event of a 1060 * mismatch the misc table is then searched sequentially for the desired 1061 * ioctl command. 1062 * 1063 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1064 */ 1065 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1066 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 1077 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1078 MISC_CMD, ip_siocaddrt, NULL }, 1079 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1080 MISC_CMD, ip_siocdelrt, NULL }, 1081 1082 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1083 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1084 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1085 IF_CMD, ip_sioctl_get_addr, NULL }, 1086 1087 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1088 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1089 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1090 IPI_GET_CMD | IPI_REPL, 1091 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1092 1093 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1094 IPI_PRIV | IPI_WR | IPI_REPL, 1095 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1096 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1097 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 1098 IF_CMD, ip_sioctl_get_flags, NULL }, 1099 1100 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 1103 /* copyin size cannot be coded for SIOCGIFCONF */ 1104 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1105 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1106 1107 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1108 IF_CMD, ip_sioctl_mtu, NULL }, 1109 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1110 IF_CMD, ip_sioctl_get_mtu, NULL }, 1111 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1112 IPI_GET_CMD | IPI_REPL, 1113 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1114 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1115 IF_CMD, ip_sioctl_brdaddr, NULL }, 1116 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1117 IPI_GET_CMD | IPI_REPL, 1118 IF_CMD, ip_sioctl_get_netmask, NULL }, 1119 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1120 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1121 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1122 IPI_GET_CMD | IPI_REPL, 1123 IF_CMD, ip_sioctl_get_metric, NULL }, 1124 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1125 IF_CMD, ip_sioctl_metric, NULL }, 1126 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 1128 /* See 166-168 below for extended SIOC*XARP ioctls */ 1129 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1130 MISC_CMD, ip_sioctl_arp, NULL }, 1131 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1132 MISC_CMD, ip_sioctl_arp, NULL }, 1133 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1134 MISC_CMD, ip_sioctl_arp, NULL }, 1135 1136 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1137 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1138 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1153 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1154 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1155 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1156 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1157 1158 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1159 MISC_CMD, if_unitsel, if_unitsel_restart }, 1160 1161 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1162 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1163 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1164 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1165 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1166 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1167 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1168 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1169 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1170 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1179 1180 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1181 IPI_PRIV | IPI_WR | IPI_MODOK, 1182 IF_CMD, ip_sioctl_sifname, NULL }, 1183 1184 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1187 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1188 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1189 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1190 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1191 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1192 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1193 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1194 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1195 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1196 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1197 1198 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1199 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1200 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1201 IF_CMD, ip_sioctl_get_muxid, NULL }, 1202 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1203 IPI_PRIV | IPI_WR | IPI_REPL, 1204 IF_CMD, ip_sioctl_muxid, NULL }, 1205 1206 /* Both if and lif variants share same func */ 1207 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1208 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1209 /* Both if and lif variants share same func */ 1210 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1211 IPI_PRIV | IPI_WR | IPI_REPL, 1212 IF_CMD, ip_sioctl_slifindex, NULL }, 1213 1214 /* copyin size cannot be coded for SIOCGIFCONF */ 1215 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1216 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1217 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1218 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1219 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1220 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1221 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1222 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1223 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1224 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1225 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1226 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1227 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1228 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1229 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1230 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1231 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1232 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1233 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1234 1235 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1236 IPI_PRIV | IPI_WR | IPI_REPL, 1237 LIF_CMD, ip_sioctl_removeif, 1238 ip_sioctl_removeif_restart }, 1239 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1240 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1241 LIF_CMD, ip_sioctl_addif, NULL }, 1242 #define SIOCLIFADDR_NDX 112 1243 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1244 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1245 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1246 IPI_GET_CMD | IPI_REPL, 1247 LIF_CMD, ip_sioctl_get_addr, NULL }, 1248 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1249 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1250 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1251 IPI_GET_CMD | IPI_REPL, 1252 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1253 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1254 IPI_PRIV | IPI_WR | IPI_REPL, 1255 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1256 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1257 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1258 LIF_CMD, ip_sioctl_get_flags, NULL }, 1259 1260 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1261 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1262 1263 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1264 ip_sioctl_get_lifconf, NULL }, 1265 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1266 LIF_CMD, ip_sioctl_mtu, NULL }, 1267 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1268 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1269 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1270 IPI_GET_CMD | IPI_REPL, 1271 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1272 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1273 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1274 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1275 IPI_GET_CMD | IPI_REPL, 1276 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1277 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1278 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1279 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1280 IPI_GET_CMD | IPI_REPL, 1281 LIF_CMD, ip_sioctl_get_metric, NULL }, 1282 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1283 LIF_CMD, ip_sioctl_metric, NULL }, 1284 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1285 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1286 LIF_CMD, ip_sioctl_slifname, 1287 ip_sioctl_slifname_restart }, 1288 1289 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1290 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1291 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1292 IPI_GET_CMD | IPI_REPL, 1293 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1294 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1295 IPI_PRIV | IPI_WR | IPI_REPL, 1296 LIF_CMD, ip_sioctl_muxid, NULL }, 1297 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1298 IPI_GET_CMD | IPI_REPL, 1299 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1300 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1301 IPI_PRIV | IPI_WR | IPI_REPL, 1302 LIF_CMD, ip_sioctl_slifindex, 0 }, 1303 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1304 LIF_CMD, ip_sioctl_token, NULL }, 1305 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1306 IPI_GET_CMD | IPI_REPL, 1307 LIF_CMD, ip_sioctl_get_token, NULL }, 1308 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1309 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1310 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1311 IPI_GET_CMD | IPI_REPL, 1312 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1313 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1314 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1315 1316 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1317 IPI_GET_CMD | IPI_REPL, 1318 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1319 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1320 LIF_CMD, ip_siocdelndp_v6, NULL }, 1321 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1322 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1323 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1324 LIF_CMD, ip_siocsetndp_v6, NULL }, 1325 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1326 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1327 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1328 MISC_CMD, ip_sioctl_tonlink, NULL }, 1329 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1330 MISC_CMD, ip_sioctl_tmysite, NULL }, 1331 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1332 TUN_CMD, ip_sioctl_tunparam, NULL }, 1333 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1334 IPI_PRIV | IPI_WR, 1335 TUN_CMD, ip_sioctl_tunparam, NULL }, 1336 1337 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1338 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1339 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1340 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1341 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1342 1343 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1344 IPI_PRIV | IPI_WR | IPI_REPL, 1345 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1346 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1347 IPI_PRIV | IPI_WR | IPI_REPL, 1348 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1349 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1350 IPI_PRIV | IPI_WR, 1351 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1352 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1353 IPI_GET_CMD | IPI_REPL, 1354 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1355 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1356 IPI_GET_CMD | IPI_REPL, 1357 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1358 1359 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1360 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1361 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1362 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1363 1364 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1365 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1366 1367 /* These are handled in ip_sioctl_copyin_setup itself */ 1368 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1369 MISC_CMD, NULL, NULL }, 1370 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1371 MISC_CMD, NULL, NULL }, 1372 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1373 1374 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1375 ip_sioctl_get_lifconf, NULL }, 1376 1377 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1378 MISC_CMD, ip_sioctl_xarp, NULL }, 1379 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1380 MISC_CMD, ip_sioctl_xarp, NULL }, 1381 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1382 MISC_CMD, ip_sioctl_xarp, NULL }, 1383 1384 /* SIOCPOPSOCKFS is not handled by IP */ 1385 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1386 1387 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1388 IPI_GET_CMD | IPI_REPL, 1389 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1390 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1391 IPI_PRIV | IPI_WR | IPI_REPL, 1392 LIF_CMD, ip_sioctl_slifzone, 1393 ip_sioctl_slifzone_restart }, 1394 /* 172-174 are SCTP ioctls and not handled by IP */ 1395 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1396 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1397 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1398 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1399 IPI_GET_CMD, LIF_CMD, 1400 ip_sioctl_get_lifusesrc, 0 }, 1401 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1402 IPI_PRIV | IPI_WR, 1403 LIF_CMD, ip_sioctl_slifusesrc, 1404 NULL }, 1405 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1406 ip_sioctl_get_lifsrcof, NULL }, 1407 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1408 MISC_CMD, ip_sioctl_msfilter, NULL }, 1409 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1410 MISC_CMD, ip_sioctl_msfilter, NULL }, 1411 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1412 MISC_CMD, ip_sioctl_msfilter, NULL }, 1413 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1414 MISC_CMD, ip_sioctl_msfilter, NULL }, 1415 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1416 ip_sioctl_set_ipmpfailback, NULL } 1417 }; 1418 1419 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1420 1421 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1422 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1423 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1424 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1425 TUN_CMD, ip_sioctl_tunparam, NULL }, 1426 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1427 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1428 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1429 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1430 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1431 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1432 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1433 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1434 MISC_CMD, mrt_ioctl}, 1435 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1436 MISC_CMD, mrt_ioctl}, 1437 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1438 MISC_CMD, mrt_ioctl} 1439 }; 1440 1441 int ip_misc_ioctl_count = 1442 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1443 1444 static idl_t *conn_drain_list; /* The array of conn drain lists */ 1445 static uint_t conn_drain_list_cnt; /* Total count of conn_drain_list */ 1446 static int conn_drain_list_index; /* Next drain_list to be used */ 1447 int conn_drain_nthreads; /* Number of drainers reqd. */ 1448 /* Settable in /etc/system */ 1449 uint_t ip_redirect_cnt; /* Num of redirect routes in ftable */ 1450 1451 /* Defined in ip_ire.c */ 1452 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1453 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1454 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1455 1456 static nv_t ire_nv_arr[] = { 1457 { IRE_BROADCAST, "BROADCAST" }, 1458 { IRE_LOCAL, "LOCAL" }, 1459 { IRE_LOOPBACK, "LOOPBACK" }, 1460 { IRE_CACHE, "CACHE" }, 1461 { IRE_DEFAULT, "DEFAULT" }, 1462 { IRE_PREFIX, "PREFIX" }, 1463 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1464 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1465 { IRE_HOST, "HOST" }, 1466 { 0 } 1467 }; 1468 1469 nv_t *ire_nv_tbl = ire_nv_arr; 1470 1471 /* Defined in ip_if.c, protect the list of IPsec capable ills */ 1472 extern krwlock_t ipsec_capab_ills_lock; 1473 1474 /* Defined in ip_netinfo.c */ 1475 extern ddi_taskq_t *eventq_queue_nic; 1476 1477 /* Packet dropper for IP IPsec processing failures */ 1478 ipdropper_t ip_dropper; 1479 1480 /* Simple ICMP IP Header Template */ 1481 static ipha_t icmp_ipha = { 1482 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1483 }; 1484 1485 struct module_info ip_mod_info = { 1486 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1487 }; 1488 1489 /* 1490 * Duplicate static symbols within a module confuses mdb; so we avoid the 1491 * problem by making the symbols here distinct from those in udp.c. 1492 */ 1493 1494 static struct qinit iprinit = { 1495 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1496 &ip_mod_info 1497 }; 1498 1499 static struct qinit ipwinit = { 1500 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1501 &ip_mod_info 1502 }; 1503 1504 static struct qinit iplrinit = { 1505 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1506 &ip_mod_info 1507 }; 1508 1509 static struct qinit iplwinit = { 1510 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1511 &ip_mod_info 1512 }; 1513 1514 struct streamtab ipinfo = { 1515 &iprinit, &ipwinit, &iplrinit, &iplwinit 1516 }; 1517 1518 #ifdef DEBUG 1519 static boolean_t skip_sctp_cksum = B_FALSE; 1520 #endif 1521 1522 /* 1523 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1524 * ip_rput_v6(), ip_output(), etc. If the message 1525 * block already has a M_CTL at the front of it, then simply set the zoneid 1526 * appropriately. 1527 */ 1528 mblk_t * 1529 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid) 1530 { 1531 mblk_t *first_mp; 1532 ipsec_out_t *io; 1533 1534 ASSERT(zoneid != ALL_ZONES); 1535 if (mp->b_datap->db_type == M_CTL) { 1536 io = (ipsec_out_t *)mp->b_rptr; 1537 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1538 io->ipsec_out_zoneid = zoneid; 1539 return (mp); 1540 } 1541 1542 first_mp = ipsec_alloc_ipsec_out(); 1543 if (first_mp == NULL) 1544 return (NULL); 1545 io = (ipsec_out_t *)first_mp->b_rptr; 1546 /* This is not a secure packet */ 1547 io->ipsec_out_secure = B_FALSE; 1548 io->ipsec_out_zoneid = zoneid; 1549 first_mp->b_cont = mp; 1550 return (first_mp); 1551 } 1552 1553 /* 1554 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1555 */ 1556 mblk_t * 1557 ip_copymsg(mblk_t *mp) 1558 { 1559 mblk_t *nmp; 1560 ipsec_info_t *in; 1561 1562 if (mp->b_datap->db_type != M_CTL) 1563 return (copymsg(mp)); 1564 1565 in = (ipsec_info_t *)mp->b_rptr; 1566 1567 /* 1568 * Note that M_CTL is also used for delivering ICMP error messages 1569 * upstream to transport layers. 1570 */ 1571 if (in->ipsec_info_type != IPSEC_OUT && 1572 in->ipsec_info_type != IPSEC_IN) 1573 return (copymsg(mp)); 1574 1575 nmp = copymsg(mp->b_cont); 1576 1577 if (in->ipsec_info_type == IPSEC_OUT) 1578 return (ipsec_out_tag(mp, nmp)); 1579 else 1580 return (ipsec_in_tag(mp, nmp)); 1581 } 1582 1583 /* Generate an ICMP fragmentation needed message. */ 1584 static void 1585 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid) 1586 { 1587 icmph_t icmph; 1588 mblk_t *first_mp; 1589 boolean_t mctl_present; 1590 1591 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1592 1593 if (!(mp = icmp_pkt_err_ok(mp))) { 1594 if (mctl_present) 1595 freeb(first_mp); 1596 return; 1597 } 1598 1599 bzero(&icmph, sizeof (icmph_t)); 1600 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1601 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1602 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1603 BUMP_MIB(&icmp_mib, icmpOutFragNeeded); 1604 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 1605 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 1606 } 1607 1608 /* 1609 * icmp_inbound deals with ICMP messages in the following ways. 1610 * 1611 * 1) It needs to send a reply back and possibly delivering it 1612 * to the "interested" upper clients. 1613 * 2) It needs to send it to the upper clients only. 1614 * 3) It needs to change some values in IP only. 1615 * 4) It needs to change some values in IP and upper layers e.g TCP. 1616 * 1617 * We need to accomodate icmp messages coming in clear until we get 1618 * everything secure from the wire. If icmp_accept_clear_messages 1619 * is zero we check with the global policy and act accordingly. If 1620 * it is non-zero, we accept the message without any checks. But 1621 * *this does not mean* that this will be delivered to the upper 1622 * clients. By accepting we might send replies back, change our MTU 1623 * value etc. but delivery to the ULP/clients depends on their policy 1624 * dispositions. 1625 * 1626 * We handle the above 4 cases in the context of IPSEC in the 1627 * following way : 1628 * 1629 * 1) Send the reply back in the same way as the request came in. 1630 * If it came in encrypted, it goes out encrypted. If it came in 1631 * clear, it goes out in clear. Thus, this will prevent chosen 1632 * plain text attack. 1633 * 2) The client may or may not expect things to come in secure. 1634 * If it comes in secure, the policy constraints are checked 1635 * before delivering it to the upper layers. If it comes in 1636 * clear, ipsec_inbound_accept_clear will decide whether to 1637 * accept this in clear or not. In both the cases, if the returned 1638 * message (IP header + 8 bytes) that caused the icmp message has 1639 * AH/ESP headers, it is sent up to AH/ESP for validation before 1640 * sending up. If there are only 8 bytes of returned message, then 1641 * upper client will not be notified. 1642 * 3) Check with global policy to see whether it matches the constaints. 1643 * But this will be done only if icmp_accept_messages_in_clear is 1644 * zero. 1645 * 4) If we need to change both in IP and ULP, then the decision taken 1646 * while affecting the values in IP and while delivering up to TCP 1647 * should be the same. 1648 * 1649 * There are two cases. 1650 * 1651 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1652 * failed), we will not deliver it to the ULP, even though they 1653 * are *willing* to accept in *clear*. This is fine as our global 1654 * disposition to icmp messages asks us reject the datagram. 1655 * 1656 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1657 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1658 * to deliver it to ULP (policy failed), it can lead to 1659 * consistency problems. The cases known at this time are 1660 * ICMP_DESTINATION_UNREACHABLE messages with following code 1661 * values : 1662 * 1663 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1664 * and Upper layer rejects. Then the communication will 1665 * come to a stop. This is solved by making similar decisions 1666 * at both levels. Currently, when we are unable to deliver 1667 * to the Upper Layer (due to policy failures) while IP has 1668 * adjusted ire_max_frag, the next outbound datagram would 1669 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1670 * will be with the right level of protection. Thus the right 1671 * value will be communicated even if we are not able to 1672 * communicate when we get from the wire initially. But this 1673 * assumes there would be at least one outbound datagram after 1674 * IP has adjusted its ire_max_frag value. To make things 1675 * simpler, we accept in clear after the validation of 1676 * AH/ESP headers. 1677 * 1678 * - Other ICMP ERRORS : We may not be able to deliver it to the 1679 * upper layer depending on the level of protection the upper 1680 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1681 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1682 * should be accepted in clear when the Upper layer expects secure. 1683 * Thus the communication may get aborted by some bad ICMP 1684 * packets. 1685 * 1686 * IPQoS Notes: 1687 * The only instance when a packet is sent for processing is when there 1688 * isn't an ICMP client and if we are interested in it. 1689 * If there is a client, IPPF processing will take place in the 1690 * ip_fanout_proto routine. 1691 * 1692 * Zones notes: 1693 * The packet is only processed in the context of the specified zone: typically 1694 * only this zone will reply to an echo request, and only interested clients in 1695 * this zone will receive a copy of the packet. This means that the caller must 1696 * call icmp_inbound() for each relevant zone. 1697 */ 1698 static void 1699 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1700 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1701 ill_t *recv_ill, zoneid_t zoneid) 1702 { 1703 icmph_t *icmph; 1704 ipha_t *ipha; 1705 int iph_hdr_length; 1706 int hdr_length; 1707 boolean_t interested; 1708 uint32_t ts; 1709 uchar_t *wptr; 1710 ipif_t *ipif; 1711 mblk_t *first_mp; 1712 ipsec_in_t *ii; 1713 ire_t *src_ire; 1714 boolean_t onlink; 1715 timestruc_t now; 1716 uint32_t ill_index; 1717 1718 ASSERT(ill != NULL); 1719 1720 first_mp = mp; 1721 if (mctl_present) { 1722 mp = first_mp->b_cont; 1723 ASSERT(mp != NULL); 1724 } 1725 1726 ipha = (ipha_t *)mp->b_rptr; 1727 if (icmp_accept_clear_messages == 0) { 1728 first_mp = ipsec_check_global_policy(first_mp, NULL, 1729 ipha, NULL, mctl_present); 1730 if (first_mp == NULL) 1731 return; 1732 } 1733 1734 /* 1735 * On a labeled system, we have to check whether the zone itself is 1736 * permitted to receive raw traffic. 1737 */ 1738 if (is_system_labeled()) { 1739 if (zoneid == ALL_ZONES) 1740 zoneid = tsol_packet_to_zoneid(mp); 1741 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1742 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1743 zoneid)); 1744 BUMP_MIB(&icmp_mib, icmpInErrors); 1745 freemsg(first_mp); 1746 return; 1747 } 1748 } 1749 1750 /* 1751 * We have accepted the ICMP message. It means that we will 1752 * respond to the packet if needed. It may not be delivered 1753 * to the upper client depending on the policy constraints 1754 * and the disposition in ipsec_inbound_accept_clear. 1755 */ 1756 1757 ASSERT(ill != NULL); 1758 1759 BUMP_MIB(&icmp_mib, icmpInMsgs); 1760 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1761 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1762 /* Last chance to get real. */ 1763 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1764 BUMP_MIB(&icmp_mib, icmpInErrors); 1765 freemsg(first_mp); 1766 return; 1767 } 1768 /* Refresh iph following the pullup. */ 1769 ipha = (ipha_t *)mp->b_rptr; 1770 } 1771 /* ICMP header checksum, including checksum field, should be zero. */ 1772 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1773 IP_CSUM(mp, iph_hdr_length, 0)) { 1774 BUMP_MIB(&icmp_mib, icmpInCksumErrs); 1775 freemsg(first_mp); 1776 return; 1777 } 1778 /* The IP header will always be a multiple of four bytes */ 1779 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1780 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1781 icmph->icmph_code)); 1782 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1783 /* We will set "interested" to "true" if we want a copy */ 1784 interested = B_FALSE; 1785 switch (icmph->icmph_type) { 1786 case ICMP_ECHO_REPLY: 1787 BUMP_MIB(&icmp_mib, icmpInEchoReps); 1788 break; 1789 case ICMP_DEST_UNREACHABLE: 1790 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1791 BUMP_MIB(&icmp_mib, icmpInFragNeeded); 1792 interested = B_TRUE; /* Pass up to transport */ 1793 BUMP_MIB(&icmp_mib, icmpInDestUnreachs); 1794 break; 1795 case ICMP_SOURCE_QUENCH: 1796 interested = B_TRUE; /* Pass up to transport */ 1797 BUMP_MIB(&icmp_mib, icmpInSrcQuenchs); 1798 break; 1799 case ICMP_REDIRECT: 1800 if (!ip_ignore_redirect) 1801 interested = B_TRUE; 1802 BUMP_MIB(&icmp_mib, icmpInRedirects); 1803 break; 1804 case ICMP_ECHO_REQUEST: 1805 /* 1806 * Whether to respond to echo requests that come in as IP 1807 * broadcasts or as IP multicast is subject to debate 1808 * (what isn't?). We aim to please, you pick it. 1809 * Default is do it. 1810 */ 1811 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1812 /* unicast: always respond */ 1813 interested = B_TRUE; 1814 } else if (CLASSD(ipha->ipha_dst)) { 1815 /* multicast: respond based on tunable */ 1816 interested = ip_g_resp_to_echo_mcast; 1817 } else if (broadcast) { 1818 /* broadcast: respond based on tunable */ 1819 interested = ip_g_resp_to_echo_bcast; 1820 } 1821 BUMP_MIB(&icmp_mib, icmpInEchos); 1822 break; 1823 case ICMP_ROUTER_ADVERTISEMENT: 1824 case ICMP_ROUTER_SOLICITATION: 1825 break; 1826 case ICMP_TIME_EXCEEDED: 1827 interested = B_TRUE; /* Pass up to transport */ 1828 BUMP_MIB(&icmp_mib, icmpInTimeExcds); 1829 break; 1830 case ICMP_PARAM_PROBLEM: 1831 interested = B_TRUE; /* Pass up to transport */ 1832 BUMP_MIB(&icmp_mib, icmpInParmProbs); 1833 break; 1834 case ICMP_TIME_STAMP_REQUEST: 1835 /* Response to Time Stamp Requests is local policy. */ 1836 if (ip_g_resp_to_timestamp && 1837 /* So is whether to respond if it was an IP broadcast. */ 1838 (!broadcast || ip_g_resp_to_timestamp_bcast)) { 1839 int tstamp_len = 3 * sizeof (uint32_t); 1840 1841 if (wptr + tstamp_len > mp->b_wptr) { 1842 if (!pullupmsg(mp, wptr + tstamp_len - 1843 mp->b_rptr)) { 1844 BUMP_MIB(&ip_mib, ipInDiscards); 1845 freemsg(first_mp); 1846 return; 1847 } 1848 /* Refresh ipha following the pullup. */ 1849 ipha = (ipha_t *)mp->b_rptr; 1850 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1851 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1852 } 1853 interested = B_TRUE; 1854 } 1855 BUMP_MIB(&icmp_mib, icmpInTimestamps); 1856 break; 1857 case ICMP_TIME_STAMP_REPLY: 1858 BUMP_MIB(&icmp_mib, icmpInTimestampReps); 1859 break; 1860 case ICMP_INFO_REQUEST: 1861 /* Per RFC 1122 3.2.2.7, ignore this. */ 1862 case ICMP_INFO_REPLY: 1863 break; 1864 case ICMP_ADDRESS_MASK_REQUEST: 1865 if ((ip_respond_to_address_mask_broadcast || !broadcast) && 1866 /* TODO m_pullup of complete header? */ 1867 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1868 interested = B_TRUE; 1869 BUMP_MIB(&icmp_mib, icmpInAddrMasks); 1870 break; 1871 case ICMP_ADDRESS_MASK_REPLY: 1872 BUMP_MIB(&icmp_mib, icmpInAddrMaskReps); 1873 break; 1874 default: 1875 interested = B_TRUE; /* Pass up to transport */ 1876 BUMP_MIB(&icmp_mib, icmpInUnknowns); 1877 break; 1878 } 1879 /* See if there is an ICMP client. */ 1880 if (ipcl_proto_search(IPPROTO_ICMP) != NULL) { 1881 /* If there is an ICMP client and we want one too, copy it. */ 1882 mblk_t *first_mp1; 1883 1884 if (!interested) { 1885 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1886 ip_policy, recv_ill, zoneid); 1887 return; 1888 } 1889 first_mp1 = ip_copymsg(first_mp); 1890 if (first_mp1 != NULL) { 1891 ip_fanout_proto(q, first_mp1, ill, ipha, 1892 0, mctl_present, ip_policy, recv_ill, zoneid); 1893 } 1894 } else if (!interested) { 1895 freemsg(first_mp); 1896 return; 1897 } else { 1898 /* 1899 * Initiate policy processing for this packet if ip_policy 1900 * is true. 1901 */ 1902 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 1903 ill_index = ill->ill_phyint->phyint_ifindex; 1904 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1905 if (mp == NULL) { 1906 if (mctl_present) { 1907 freeb(first_mp); 1908 } 1909 BUMP_MIB(&icmp_mib, icmpInErrors); 1910 return; 1911 } 1912 } 1913 } 1914 /* We want to do something with it. */ 1915 /* Check db_ref to make sure we can modify the packet. */ 1916 if (mp->b_datap->db_ref > 1) { 1917 mblk_t *first_mp1; 1918 1919 first_mp1 = ip_copymsg(first_mp); 1920 freemsg(first_mp); 1921 if (!first_mp1) { 1922 BUMP_MIB(&icmp_mib, icmpOutDrops); 1923 return; 1924 } 1925 first_mp = first_mp1; 1926 if (mctl_present) { 1927 mp = first_mp->b_cont; 1928 ASSERT(mp != NULL); 1929 } else { 1930 mp = first_mp; 1931 } 1932 ipha = (ipha_t *)mp->b_rptr; 1933 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1934 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1935 } 1936 switch (icmph->icmph_type) { 1937 case ICMP_ADDRESS_MASK_REQUEST: 1938 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1939 if (ipif == NULL) { 1940 freemsg(first_mp); 1941 return; 1942 } 1943 /* 1944 * outging interface must be IPv4 1945 */ 1946 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1947 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1948 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1949 ipif_refrele(ipif); 1950 BUMP_MIB(&icmp_mib, icmpOutAddrMaskReps); 1951 break; 1952 case ICMP_ECHO_REQUEST: 1953 icmph->icmph_type = ICMP_ECHO_REPLY; 1954 BUMP_MIB(&icmp_mib, icmpOutEchoReps); 1955 break; 1956 case ICMP_TIME_STAMP_REQUEST: { 1957 uint32_t *tsp; 1958 1959 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1960 tsp = (uint32_t *)wptr; 1961 tsp++; /* Skip past 'originate time' */ 1962 /* Compute # of milliseconds since midnight */ 1963 gethrestime(&now); 1964 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1965 now.tv_nsec / (NANOSEC / MILLISEC); 1966 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1967 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1968 BUMP_MIB(&icmp_mib, icmpOutTimestampReps); 1969 break; 1970 } 1971 default: 1972 ipha = (ipha_t *)&icmph[1]; 1973 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1974 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1975 BUMP_MIB(&ip_mib, ipInDiscards); 1976 freemsg(first_mp); 1977 return; 1978 } 1979 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1980 ipha = (ipha_t *)&icmph[1]; 1981 } 1982 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1983 BUMP_MIB(&ip_mib, ipInDiscards); 1984 freemsg(first_mp); 1985 return; 1986 } 1987 hdr_length = IPH_HDR_LENGTH(ipha); 1988 if (hdr_length < sizeof (ipha_t)) { 1989 BUMP_MIB(&ip_mib, ipInDiscards); 1990 freemsg(first_mp); 1991 return; 1992 } 1993 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1994 if (!pullupmsg(mp, 1995 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1996 BUMP_MIB(&ip_mib, ipInDiscards); 1997 freemsg(first_mp); 1998 return; 1999 } 2000 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2001 ipha = (ipha_t *)&icmph[1]; 2002 } 2003 switch (icmph->icmph_type) { 2004 case ICMP_REDIRECT: 2005 /* 2006 * As there is no upper client to deliver, we don't 2007 * need the first_mp any more. 2008 */ 2009 if (mctl_present) { 2010 freeb(first_mp); 2011 } 2012 icmp_redirect(mp); 2013 return; 2014 case ICMP_DEST_UNREACHABLE: 2015 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 2016 if (!icmp_inbound_too_big(icmph, ipha, ill, 2017 zoneid, mp, iph_hdr_length)) { 2018 freemsg(first_mp); 2019 return; 2020 } 2021 /* 2022 * icmp_inbound_too_big() may alter mp. 2023 * Resynch ipha and icmph accordingly. 2024 */ 2025 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2026 ipha = (ipha_t *)&icmph[1]; 2027 } 2028 /* FALLTHRU */ 2029 default : 2030 /* 2031 * IPQoS notes: Since we have already done IPQoS 2032 * processing we don't want to do it again in 2033 * the fanout routines called by 2034 * icmp_inbound_error_fanout, hence the last 2035 * argument, ip_policy, is B_FALSE. 2036 */ 2037 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 2038 ipha, iph_hdr_length, hdr_length, mctl_present, 2039 B_FALSE, recv_ill, zoneid); 2040 } 2041 return; 2042 } 2043 /* Send out an ICMP packet */ 2044 icmph->icmph_checksum = 0; 2045 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 2046 if (icmph->icmph_checksum == 0) 2047 icmph->icmph_checksum = 0xFFFF; 2048 if (broadcast || CLASSD(ipha->ipha_dst)) { 2049 ipif_t *ipif_chosen; 2050 /* 2051 * Make it look like it was directed to us, so we don't look 2052 * like a fool with a broadcast or multicast source address. 2053 */ 2054 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 2055 /* 2056 * Make sure that we haven't grabbed an interface that's DOWN. 2057 */ 2058 if (ipif != NULL) { 2059 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2060 ipha->ipha_src, zoneid); 2061 if (ipif_chosen != NULL) { 2062 ipif_refrele(ipif); 2063 ipif = ipif_chosen; 2064 } 2065 } 2066 if (ipif == NULL) { 2067 ip0dbg(("icmp_inbound: " 2068 "No source for broadcast/multicast:\n" 2069 "\tsrc 0x%x dst 0x%x ill %p " 2070 "ipif_lcl_addr 0x%x\n", 2071 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2072 (void *)ill, 2073 ill->ill_ipif->ipif_lcl_addr)); 2074 freemsg(first_mp); 2075 return; 2076 } 2077 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2078 ipha->ipha_dst = ipif->ipif_src_addr; 2079 ipif_refrele(ipif); 2080 } 2081 /* Reset time to live. */ 2082 ipha->ipha_ttl = ip_def_ttl; 2083 { 2084 /* Swap source and destination addresses */ 2085 ipaddr_t tmp; 2086 2087 tmp = ipha->ipha_src; 2088 ipha->ipha_src = ipha->ipha_dst; 2089 ipha->ipha_dst = tmp; 2090 } 2091 ipha->ipha_ident = 0; 2092 if (!IS_SIMPLE_IPH(ipha)) 2093 icmp_options_update(ipha); 2094 2095 /* 2096 * ICMP echo replies should go out on the same interface 2097 * the request came on as probes used by in.mpathd for detecting 2098 * NIC failures are ECHO packets. We turn-off load spreading 2099 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2100 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2101 * function. This is in turn handled by ip_wput and ip_newroute 2102 * to make sure that the packet goes out on the interface it came 2103 * in on. If we don't turnoff load spreading, the packets might get 2104 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2105 * to go out and in.mpathd would wrongly detect a failure or 2106 * mis-detect a NIC failure for link failure. As load spreading 2107 * can happen only if ill_group is not NULL, we do only for 2108 * that case and this does not affect the normal case. 2109 * 2110 * We turn off load spreading only on echo packets that came from 2111 * on-link hosts. If the interface route has been deleted, this will 2112 * not be enforced as we can't do much. For off-link hosts, as the 2113 * default routes in IPv4 does not typically have an ire_ipif 2114 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2115 * Moreover, expecting a default route through this interface may 2116 * not be correct. We use ipha_dst because of the swap above. 2117 */ 2118 onlink = B_FALSE; 2119 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2120 /* 2121 * First, we need to make sure that it is not one of our 2122 * local addresses. If we set onlink when it is one of 2123 * our local addresses, we will end up creating IRE_CACHES 2124 * for one of our local addresses. Then, we will never 2125 * accept packets for them afterwards. 2126 */ 2127 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2128 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2129 if (src_ire == NULL) { 2130 ipif = ipif_get_next_ipif(NULL, ill); 2131 if (ipif == NULL) { 2132 BUMP_MIB(&ip_mib, ipInDiscards); 2133 freemsg(mp); 2134 return; 2135 } 2136 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2137 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2138 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE); 2139 ipif_refrele(ipif); 2140 if (src_ire != NULL) { 2141 onlink = B_TRUE; 2142 ire_refrele(src_ire); 2143 } 2144 } else { 2145 ire_refrele(src_ire); 2146 } 2147 } 2148 if (!mctl_present) { 2149 /* 2150 * This packet should go out the same way as it 2151 * came in i.e in clear. To make sure that global 2152 * policy will not be applied to this in ip_wput_ire, 2153 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2154 */ 2155 ASSERT(first_mp == mp); 2156 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 2157 BUMP_MIB(&ip_mib, ipInDiscards); 2158 freemsg(mp); 2159 return; 2160 } 2161 ii = (ipsec_in_t *)first_mp->b_rptr; 2162 2163 /* This is not a secure packet */ 2164 ii->ipsec_in_secure = B_FALSE; 2165 if (onlink) { 2166 ii->ipsec_in_attach_if = B_TRUE; 2167 ii->ipsec_in_ill_index = 2168 ill->ill_phyint->phyint_ifindex; 2169 ii->ipsec_in_rill_index = 2170 recv_ill->ill_phyint->phyint_ifindex; 2171 } 2172 first_mp->b_cont = mp; 2173 } else if (onlink) { 2174 ii = (ipsec_in_t *)first_mp->b_rptr; 2175 ii->ipsec_in_attach_if = B_TRUE; 2176 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2177 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2178 } else { 2179 ii = (ipsec_in_t *)first_mp->b_rptr; 2180 } 2181 ii->ipsec_in_zoneid = zoneid; 2182 ASSERT(zoneid != ALL_ZONES); 2183 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2184 BUMP_MIB(&ip_mib, ipInDiscards); 2185 return; 2186 } 2187 BUMP_MIB(&icmp_mib, icmpOutMsgs); 2188 put(WR(q), first_mp); 2189 } 2190 2191 static ipaddr_t 2192 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2193 { 2194 conn_t *connp; 2195 connf_t *connfp; 2196 ipaddr_t nexthop_addr = INADDR_ANY; 2197 int hdr_length = IPH_HDR_LENGTH(ipha); 2198 uint16_t *up; 2199 uint32_t ports; 2200 2201 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2202 switch (ipha->ipha_protocol) { 2203 case IPPROTO_TCP: 2204 { 2205 tcph_t *tcph; 2206 2207 /* do a reverse lookup */ 2208 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2209 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2210 TCPS_LISTEN); 2211 break; 2212 } 2213 case IPPROTO_UDP: 2214 { 2215 uint32_t dstport, srcport; 2216 2217 ((uint16_t *)&ports)[0] = up[1]; 2218 ((uint16_t *)&ports)[1] = up[0]; 2219 2220 /* Extract ports in net byte order */ 2221 dstport = htons(ntohl(ports) & 0xFFFF); 2222 srcport = htons(ntohl(ports) >> 16); 2223 2224 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 2225 mutex_enter(&connfp->connf_lock); 2226 connp = connfp->connf_head; 2227 2228 /* do a reverse lookup */ 2229 while ((connp != NULL) && 2230 (!IPCL_UDP_MATCH(connp, dstport, 2231 ipha->ipha_src, srcport, ipha->ipha_dst) || 2232 !IPCL_ZONE_MATCH(connp, zoneid))) { 2233 connp = connp->conn_next; 2234 } 2235 if (connp != NULL) 2236 CONN_INC_REF(connp); 2237 mutex_exit(&connfp->connf_lock); 2238 break; 2239 } 2240 case IPPROTO_SCTP: 2241 { 2242 in6_addr_t map_src, map_dst; 2243 2244 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2245 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2246 ((uint16_t *)&ports)[0] = up[1]; 2247 ((uint16_t *)&ports)[1] = up[0]; 2248 2249 if ((connp = sctp_find_conn(&map_src, &map_dst, ports, 2250 0, zoneid)) == NULL) { 2251 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2252 zoneid, ports, ipha); 2253 } else { 2254 CONN_INC_REF(connp); 2255 SCTP_REFRELE(CONN2SCTP(connp)); 2256 } 2257 break; 2258 } 2259 default: 2260 { 2261 ipha_t ripha; 2262 2263 ripha.ipha_src = ipha->ipha_dst; 2264 ripha.ipha_dst = ipha->ipha_src; 2265 ripha.ipha_protocol = ipha->ipha_protocol; 2266 2267 connfp = &ipcl_proto_fanout[ipha->ipha_protocol]; 2268 mutex_enter(&connfp->connf_lock); 2269 connp = connfp->connf_head; 2270 for (connp = connfp->connf_head; connp != NULL; 2271 connp = connp->conn_next) { 2272 if (IPCL_PROTO_MATCH(connp, 2273 ipha->ipha_protocol, &ripha, ill, 2274 0, zoneid)) { 2275 CONN_INC_REF(connp); 2276 break; 2277 } 2278 } 2279 mutex_exit(&connfp->connf_lock); 2280 } 2281 } 2282 if (connp != NULL) { 2283 if (connp->conn_nexthop_set) 2284 nexthop_addr = connp->conn_nexthop_v4; 2285 CONN_DEC_REF(connp); 2286 } 2287 return (nexthop_addr); 2288 } 2289 2290 /* Table from RFC 1191 */ 2291 static int icmp_frag_size_table[] = 2292 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2293 2294 /* 2295 * Process received ICMP Packet too big. 2296 * After updating any IRE it does the fanout to any matching transport streams. 2297 * Assumes the message has been pulled up till the IP header that caused 2298 * the error. 2299 * 2300 * Returns B_FALSE on failure and B_TRUE on success. 2301 */ 2302 static boolean_t 2303 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2304 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length) 2305 { 2306 ire_t *ire, *first_ire; 2307 int mtu; 2308 int hdr_length; 2309 ipaddr_t nexthop_addr; 2310 2311 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2312 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2313 2314 hdr_length = IPH_HDR_LENGTH(ipha); 2315 2316 /* Drop if the original packet contained a source route */ 2317 if (ip_source_route_included(ipha)) { 2318 return (B_FALSE); 2319 } 2320 /* 2321 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2322 * header. 2323 */ 2324 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2325 mp->b_wptr) { 2326 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2327 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2328 BUMP_MIB(&ip_mib, ipInDiscards); 2329 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2330 return (B_FALSE); 2331 } 2332 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2333 ipha = (ipha_t *)&icmph[1]; 2334 } 2335 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2336 if (nexthop_addr != INADDR_ANY) { 2337 /* nexthop set */ 2338 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2339 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2340 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW); 2341 } else { 2342 /* nexthop not set */ 2343 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2344 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2345 } 2346 2347 if (!first_ire) { 2348 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2349 ntohl(ipha->ipha_dst))); 2350 return (B_FALSE); 2351 } 2352 /* Check for MTU discovery advice as described in RFC 1191 */ 2353 mtu = ntohs(icmph->icmph_du_mtu); 2354 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2355 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2356 ire = ire->ire_next) { 2357 /* 2358 * Look for the connection to which this ICMP message is 2359 * directed. If it has the IP_NEXTHOP option set, then the 2360 * search is limited to IREs with the MATCH_IRE_PRIVATE 2361 * option. Else the search is limited to regular IREs. 2362 */ 2363 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2364 (nexthop_addr != ire->ire_gateway_addr)) || 2365 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2366 (nexthop_addr != INADDR_ANY))) 2367 continue; 2368 2369 mutex_enter(&ire->ire_lock); 2370 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2371 /* Reduce the IRE max frag value as advised. */ 2372 ip1dbg(("Received mtu from router: %d (was %d)\n", 2373 mtu, ire->ire_max_frag)); 2374 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2375 } else { 2376 uint32_t length; 2377 int i; 2378 2379 /* 2380 * Use the table from RFC 1191 to figure out 2381 * the next "plateau" based on the length in 2382 * the original IP packet. 2383 */ 2384 length = ntohs(ipha->ipha_length); 2385 if (ire->ire_max_frag <= length && 2386 ire->ire_max_frag >= length - hdr_length) { 2387 /* 2388 * Handle broken BSD 4.2 systems that 2389 * return the wrong iph_length in ICMP 2390 * errors. 2391 */ 2392 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2393 length, ire->ire_max_frag)); 2394 length -= hdr_length; 2395 } 2396 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2397 if (length > icmp_frag_size_table[i]) 2398 break; 2399 } 2400 if (i == A_CNT(icmp_frag_size_table)) { 2401 /* Smaller than 68! */ 2402 ip1dbg(("Too big for packet size %d\n", 2403 length)); 2404 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2405 ire->ire_frag_flag = 0; 2406 } else { 2407 mtu = icmp_frag_size_table[i]; 2408 ip1dbg(("Calculated mtu %d, packet size %d, " 2409 "before %d", mtu, length, 2410 ire->ire_max_frag)); 2411 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2412 ip1dbg((", after %d\n", ire->ire_max_frag)); 2413 } 2414 /* Record the new max frag size for the ULP. */ 2415 icmph->icmph_du_zero = 0; 2416 icmph->icmph_du_mtu = 2417 htons((uint16_t)ire->ire_max_frag); 2418 } 2419 mutex_exit(&ire->ire_lock); 2420 } 2421 rw_exit(&first_ire->ire_bucket->irb_lock); 2422 ire_refrele(first_ire); 2423 return (B_TRUE); 2424 } 2425 2426 /* 2427 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2428 * calls this function. 2429 */ 2430 static mblk_t * 2431 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2432 { 2433 ipha_t *ipha; 2434 icmph_t *icmph; 2435 ipha_t *in_ipha; 2436 int length; 2437 2438 ASSERT(mp->b_datap->db_type == M_DATA); 2439 2440 /* 2441 * For Self-encapsulated packets, we added an extra IP header 2442 * without the options. Inner IP header is the one from which 2443 * the outer IP header was formed. Thus, we need to remove the 2444 * outer IP header. To do this, we pullup the whole message 2445 * and overlay whatever follows the outer IP header over the 2446 * outer IP header. 2447 */ 2448 2449 if (!pullupmsg(mp, -1)) { 2450 BUMP_MIB(&ip_mib, ipInDiscards); 2451 return (NULL); 2452 } 2453 2454 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2455 ipha = (ipha_t *)&icmph[1]; 2456 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2457 2458 /* 2459 * The length that we want to overlay is following the inner 2460 * IP header. Subtracting the IP header + icmp header + outer 2461 * IP header's length should give us the length that we want to 2462 * overlay. 2463 */ 2464 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2465 hdr_length; 2466 /* 2467 * Overlay whatever follows the inner header over the 2468 * outer header. 2469 */ 2470 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2471 2472 /* Set the wptr to account for the outer header */ 2473 mp->b_wptr -= hdr_length; 2474 return (mp); 2475 } 2476 2477 /* 2478 * Try to pass the ICMP message upstream in case the ULP cares. 2479 * 2480 * If the packet that caused the ICMP error is secure, we send 2481 * it to AH/ESP to make sure that the attached packet has a 2482 * valid association. ipha in the code below points to the 2483 * IP header of the packet that caused the error. 2484 * 2485 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2486 * in the context of IPSEC. Normally we tell the upper layer 2487 * whenever we send the ire (including ip_bind), the IPSEC header 2488 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2489 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2490 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2491 * same thing. As TCP has the IPSEC options size that needs to be 2492 * adjusted, we just pass the MTU unchanged. 2493 * 2494 * IFN could have been generated locally or by some router. 2495 * 2496 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2497 * This happens because IP adjusted its value of MTU on an 2498 * earlier IFN message and could not tell the upper layer, 2499 * the new adjusted value of MTU e.g. Packet was encrypted 2500 * or there was not enough information to fanout to upper 2501 * layers. Thus on the next outbound datagram, ip_wput_ire 2502 * generates the IFN, where IPSEC processing has *not* been 2503 * done. 2504 * 2505 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2506 * could have generated this. This happens because ire_max_frag 2507 * value in IP was set to a new value, while the IPSEC processing 2508 * was being done and after we made the fragmentation check in 2509 * ip_wput_ire. Thus on return from IPSEC processing, 2510 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2511 * and generates the IFN. As IPSEC processing is over, we fanout 2512 * to AH/ESP to remove the header. 2513 * 2514 * In both these cases, ipsec_in_loopback will be set indicating 2515 * that IFN was generated locally. 2516 * 2517 * ROUTER : IFN could be secure or non-secure. 2518 * 2519 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2520 * packet in error has AH/ESP headers to validate the AH/ESP 2521 * headers. AH/ESP will verify whether there is a valid SA or 2522 * not and send it back. We will fanout again if we have more 2523 * data in the packet. 2524 * 2525 * If the packet in error does not have AH/ESP, we handle it 2526 * like any other case. 2527 * 2528 * * NON_SECURE : If the packet in error has AH/ESP headers, 2529 * we attach a dummy ipsec_in and send it up to AH/ESP 2530 * for validation. AH/ESP will verify whether there is a 2531 * valid SA or not and send it back. We will fanout again if 2532 * we have more data in the packet. 2533 * 2534 * If the packet in error does not have AH/ESP, we handle it 2535 * like any other case. 2536 */ 2537 static void 2538 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2539 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2540 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2541 zoneid_t zoneid) 2542 { 2543 uint16_t *up; /* Pointer to ports in ULP header */ 2544 uint32_t ports; /* reversed ports for fanout */ 2545 ipha_t ripha; /* With reversed addresses */ 2546 mblk_t *first_mp; 2547 ipsec_in_t *ii; 2548 tcph_t *tcph; 2549 conn_t *connp; 2550 2551 first_mp = mp; 2552 if (mctl_present) { 2553 mp = first_mp->b_cont; 2554 ASSERT(mp != NULL); 2555 2556 ii = (ipsec_in_t *)first_mp->b_rptr; 2557 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2558 } else { 2559 ii = NULL; 2560 } 2561 2562 switch (ipha->ipha_protocol) { 2563 case IPPROTO_UDP: 2564 /* 2565 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2566 * transport header. 2567 */ 2568 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2569 mp->b_wptr) { 2570 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2571 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2572 BUMP_MIB(&ip_mib, ipInDiscards); 2573 goto drop_pkt; 2574 } 2575 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2576 ipha = (ipha_t *)&icmph[1]; 2577 } 2578 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2579 2580 /* 2581 * Attempt to find a client stream based on port. 2582 * Note that we do a reverse lookup since the header is 2583 * in the form we sent it out. 2584 * The ripha header is only used for the IP_UDP_MATCH and we 2585 * only set the src and dst addresses and protocol. 2586 */ 2587 ripha.ipha_src = ipha->ipha_dst; 2588 ripha.ipha_dst = ipha->ipha_src; 2589 ripha.ipha_protocol = ipha->ipha_protocol; 2590 ((uint16_t *)&ports)[0] = up[1]; 2591 ((uint16_t *)&ports)[1] = up[0]; 2592 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2593 ntohl(ipha->ipha_src), ntohs(up[0]), 2594 ntohl(ipha->ipha_dst), ntohs(up[1]), 2595 icmph->icmph_type, icmph->icmph_code)); 2596 2597 /* Have to change db_type after any pullupmsg */ 2598 DB_TYPE(mp) = M_CTL; 2599 2600 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2601 mctl_present, ip_policy, recv_ill, zoneid); 2602 return; 2603 2604 case IPPROTO_TCP: 2605 /* 2606 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2607 * transport header. 2608 */ 2609 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2610 mp->b_wptr) { 2611 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2612 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2613 BUMP_MIB(&ip_mib, ipInDiscards); 2614 goto drop_pkt; 2615 } 2616 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2617 ipha = (ipha_t *)&icmph[1]; 2618 } 2619 /* 2620 * Find a TCP client stream for this packet. 2621 * Note that we do a reverse lookup since the header is 2622 * in the form we sent it out. 2623 */ 2624 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2625 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN); 2626 if (connp == NULL) { 2627 BUMP_MIB(&ip_mib, ipInDiscards); 2628 goto drop_pkt; 2629 } 2630 2631 /* Have to change db_type after any pullupmsg */ 2632 DB_TYPE(mp) = M_CTL; 2633 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2634 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2635 return; 2636 2637 case IPPROTO_SCTP: 2638 /* 2639 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2640 * transport header. 2641 */ 2642 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2643 mp->b_wptr) { 2644 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2645 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2646 BUMP_MIB(&ip_mib, ipInDiscards); 2647 goto drop_pkt; 2648 } 2649 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2650 ipha = (ipha_t *)&icmph[1]; 2651 } 2652 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2653 /* 2654 * Find a SCTP client stream for this packet. 2655 * Note that we do a reverse lookup since the header is 2656 * in the form we sent it out. 2657 * The ripha header is only used for the matching and we 2658 * only set the src and dst addresses, protocol, and version. 2659 */ 2660 ripha.ipha_src = ipha->ipha_dst; 2661 ripha.ipha_dst = ipha->ipha_src; 2662 ripha.ipha_protocol = ipha->ipha_protocol; 2663 ripha.ipha_version_and_hdr_length = 2664 ipha->ipha_version_and_hdr_length; 2665 ((uint16_t *)&ports)[0] = up[1]; 2666 ((uint16_t *)&ports)[1] = up[0]; 2667 2668 /* Have to change db_type after any pullupmsg */ 2669 DB_TYPE(mp) = M_CTL; 2670 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2671 mctl_present, ip_policy, 0, zoneid); 2672 return; 2673 2674 case IPPROTO_ESP: 2675 case IPPROTO_AH: { 2676 int ipsec_rc; 2677 2678 /* 2679 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2680 * We will re-use the IPSEC_IN if it is already present as 2681 * AH/ESP will not affect any fields in the IPSEC_IN for 2682 * ICMP errors. If there is no IPSEC_IN, allocate a new 2683 * one and attach it in the front. 2684 */ 2685 if (ii != NULL) { 2686 /* 2687 * ip_fanout_proto_again converts the ICMP errors 2688 * that come back from AH/ESP to M_DATA so that 2689 * if it is non-AH/ESP and we do a pullupmsg in 2690 * this function, it would work. Convert it back 2691 * to M_CTL before we send up as this is a ICMP 2692 * error. This could have been generated locally or 2693 * by some router. Validate the inner IPSEC 2694 * headers. 2695 * 2696 * NOTE : ill_index is used by ip_fanout_proto_again 2697 * to locate the ill. 2698 */ 2699 ASSERT(ill != NULL); 2700 ii->ipsec_in_ill_index = 2701 ill->ill_phyint->phyint_ifindex; 2702 ii->ipsec_in_rill_index = 2703 recv_ill->ill_phyint->phyint_ifindex; 2704 DB_TYPE(first_mp->b_cont) = M_CTL; 2705 } else { 2706 /* 2707 * IPSEC_IN is not present. We attach a ipsec_in 2708 * message and send up to IPSEC for validating 2709 * and removing the IPSEC headers. Clear 2710 * ipsec_in_secure so that when we return 2711 * from IPSEC, we don't mistakenly think that this 2712 * is a secure packet came from the network. 2713 * 2714 * NOTE : ill_index is used by ip_fanout_proto_again 2715 * to locate the ill. 2716 */ 2717 ASSERT(first_mp == mp); 2718 first_mp = ipsec_in_alloc(B_TRUE); 2719 if (first_mp == NULL) { 2720 freemsg(mp); 2721 BUMP_MIB(&ip_mib, ipInDiscards); 2722 return; 2723 } 2724 ii = (ipsec_in_t *)first_mp->b_rptr; 2725 2726 /* This is not a secure packet */ 2727 ii->ipsec_in_secure = B_FALSE; 2728 first_mp->b_cont = mp; 2729 DB_TYPE(mp) = M_CTL; 2730 ASSERT(ill != NULL); 2731 ii->ipsec_in_ill_index = 2732 ill->ill_phyint->phyint_ifindex; 2733 ii->ipsec_in_rill_index = 2734 recv_ill->ill_phyint->phyint_ifindex; 2735 } 2736 ip2dbg(("icmp_inbound_error: ipsec\n")); 2737 2738 if (!ipsec_loaded()) { 2739 ip_proto_not_sup(q, first_mp, 0, zoneid); 2740 return; 2741 } 2742 2743 if (ipha->ipha_protocol == IPPROTO_ESP) 2744 ipsec_rc = ipsecesp_icmp_error(first_mp); 2745 else 2746 ipsec_rc = ipsecah_icmp_error(first_mp); 2747 if (ipsec_rc == IPSEC_STATUS_FAILED) 2748 return; 2749 2750 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2751 return; 2752 } 2753 default: 2754 /* 2755 * The ripha header is only used for the lookup and we 2756 * only set the src and dst addresses and protocol. 2757 */ 2758 ripha.ipha_src = ipha->ipha_dst; 2759 ripha.ipha_dst = ipha->ipha_src; 2760 ripha.ipha_protocol = ipha->ipha_protocol; 2761 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2762 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2763 ntohl(ipha->ipha_dst), 2764 icmph->icmph_type, icmph->icmph_code)); 2765 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2766 ipha_t *in_ipha; 2767 2768 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2769 mp->b_wptr) { 2770 if (!pullupmsg(mp, (uchar_t *)ipha + 2771 hdr_length + sizeof (ipha_t) - 2772 mp->b_rptr)) { 2773 2774 BUMP_MIB(&ip_mib, ipInDiscards); 2775 goto drop_pkt; 2776 } 2777 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2778 ipha = (ipha_t *)&icmph[1]; 2779 } 2780 /* 2781 * Caller has verified that length has to be 2782 * at least the size of IP header. 2783 */ 2784 ASSERT(hdr_length >= sizeof (ipha_t)); 2785 /* 2786 * Check the sanity of the inner IP header like 2787 * we did for the outer header. 2788 */ 2789 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2790 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2791 BUMP_MIB(&ip_mib, ipInDiscards); 2792 goto drop_pkt; 2793 } 2794 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2795 BUMP_MIB(&ip_mib, ipInDiscards); 2796 goto drop_pkt; 2797 } 2798 /* Check for Self-encapsulated tunnels */ 2799 if (in_ipha->ipha_src == ipha->ipha_src && 2800 in_ipha->ipha_dst == ipha->ipha_dst) { 2801 2802 mp = icmp_inbound_self_encap_error(mp, 2803 iph_hdr_length, hdr_length); 2804 if (mp == NULL) 2805 goto drop_pkt; 2806 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2807 ipha = (ipha_t *)&icmph[1]; 2808 hdr_length = IPH_HDR_LENGTH(ipha); 2809 /* 2810 * The packet in error is self-encapsualted. 2811 * And we are finding it further encapsulated 2812 * which we could not have possibly generated. 2813 */ 2814 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2815 BUMP_MIB(&ip_mib, ipInDiscards); 2816 goto drop_pkt; 2817 } 2818 icmp_inbound_error_fanout(q, ill, first_mp, 2819 icmph, ipha, iph_hdr_length, hdr_length, 2820 mctl_present, ip_policy, recv_ill, zoneid); 2821 return; 2822 } 2823 } 2824 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2825 ipha->ipha_protocol == IPPROTO_IPV6) && 2826 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2827 ii != NULL && 2828 ii->ipsec_in_loopback && 2829 ii->ipsec_in_secure) { 2830 /* 2831 * For IP tunnels that get a looped-back 2832 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2833 * reported new MTU to take into account the IPsec 2834 * headers protecting this configured tunnel. 2835 * 2836 * This allows the tunnel module (tun.c) to blindly 2837 * accept the MTU reported in an ICMP "too big" 2838 * message. 2839 * 2840 * Non-looped back ICMP messages will just be 2841 * handled by the security protocols (if needed), 2842 * and the first subsequent packet will hit this 2843 * path. 2844 */ 2845 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2846 ipsec_in_extra_length(first_mp)); 2847 } 2848 /* Have to change db_type after any pullupmsg */ 2849 DB_TYPE(mp) = M_CTL; 2850 2851 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2852 ip_policy, recv_ill, zoneid); 2853 return; 2854 } 2855 /* NOTREACHED */ 2856 drop_pkt:; 2857 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2858 freemsg(first_mp); 2859 } 2860 2861 /* 2862 * Common IP options parser. 2863 * 2864 * Setup routine: fill in *optp with options-parsing state, then 2865 * tail-call ipoptp_next to return the first option. 2866 */ 2867 uint8_t 2868 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2869 { 2870 uint32_t totallen; /* total length of all options */ 2871 2872 totallen = ipha->ipha_version_and_hdr_length - 2873 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2874 totallen <<= 2; 2875 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2876 optp->ipoptp_end = optp->ipoptp_next + totallen; 2877 optp->ipoptp_flags = 0; 2878 return (ipoptp_next(optp)); 2879 } 2880 2881 /* 2882 * Common IP options parser: extract next option. 2883 */ 2884 uint8_t 2885 ipoptp_next(ipoptp_t *optp) 2886 { 2887 uint8_t *end = optp->ipoptp_end; 2888 uint8_t *cur = optp->ipoptp_next; 2889 uint8_t opt, len, pointer; 2890 2891 /* 2892 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2893 * has been corrupted. 2894 */ 2895 ASSERT(cur <= end); 2896 2897 if (cur == end) 2898 return (IPOPT_EOL); 2899 2900 opt = cur[IPOPT_OPTVAL]; 2901 2902 /* 2903 * Skip any NOP options. 2904 */ 2905 while (opt == IPOPT_NOP) { 2906 cur++; 2907 if (cur == end) 2908 return (IPOPT_EOL); 2909 opt = cur[IPOPT_OPTVAL]; 2910 } 2911 2912 if (opt == IPOPT_EOL) 2913 return (IPOPT_EOL); 2914 2915 /* 2916 * Option requiring a length. 2917 */ 2918 if ((cur + 1) >= end) { 2919 optp->ipoptp_flags |= IPOPTP_ERROR; 2920 return (IPOPT_EOL); 2921 } 2922 len = cur[IPOPT_OLEN]; 2923 if (len < 2) { 2924 optp->ipoptp_flags |= IPOPTP_ERROR; 2925 return (IPOPT_EOL); 2926 } 2927 optp->ipoptp_cur = cur; 2928 optp->ipoptp_len = len; 2929 optp->ipoptp_next = cur + len; 2930 if (cur + len > end) { 2931 optp->ipoptp_flags |= IPOPTP_ERROR; 2932 return (IPOPT_EOL); 2933 } 2934 2935 /* 2936 * For the options which require a pointer field, make sure 2937 * its there, and make sure it points to either something 2938 * inside this option, or the end of the option. 2939 */ 2940 switch (opt) { 2941 case IPOPT_RR: 2942 case IPOPT_TS: 2943 case IPOPT_LSRR: 2944 case IPOPT_SSRR: 2945 if (len <= IPOPT_OFFSET) { 2946 optp->ipoptp_flags |= IPOPTP_ERROR; 2947 return (opt); 2948 } 2949 pointer = cur[IPOPT_OFFSET]; 2950 if (pointer - 1 > len) { 2951 optp->ipoptp_flags |= IPOPTP_ERROR; 2952 return (opt); 2953 } 2954 break; 2955 } 2956 2957 /* 2958 * Sanity check the pointer field based on the type of the 2959 * option. 2960 */ 2961 switch (opt) { 2962 case IPOPT_RR: 2963 case IPOPT_SSRR: 2964 case IPOPT_LSRR: 2965 if (pointer < IPOPT_MINOFF_SR) 2966 optp->ipoptp_flags |= IPOPTP_ERROR; 2967 break; 2968 case IPOPT_TS: 2969 if (pointer < IPOPT_MINOFF_IT) 2970 optp->ipoptp_flags |= IPOPTP_ERROR; 2971 /* 2972 * Note that the Internet Timestamp option also 2973 * contains two four bit fields (the Overflow field, 2974 * and the Flag field), which follow the pointer 2975 * field. We don't need to check that these fields 2976 * fall within the length of the option because this 2977 * was implicitely done above. We've checked that the 2978 * pointer value is at least IPOPT_MINOFF_IT, and that 2979 * it falls within the option. Since IPOPT_MINOFF_IT > 2980 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2981 */ 2982 ASSERT(len > IPOPT_POS_OV_FLG); 2983 break; 2984 } 2985 2986 return (opt); 2987 } 2988 2989 /* 2990 * Use the outgoing IP header to create an IP_OPTIONS option the way 2991 * it was passed down from the application. 2992 */ 2993 int 2994 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2995 { 2996 ipoptp_t opts; 2997 const uchar_t *opt; 2998 uint8_t optval; 2999 uint8_t optlen; 3000 uint32_t len = 0; 3001 uchar_t *buf1 = buf; 3002 3003 buf += IP_ADDR_LEN; /* Leave room for final destination */ 3004 len += IP_ADDR_LEN; 3005 bzero(buf1, IP_ADDR_LEN); 3006 3007 /* 3008 * OK to cast away const here, as we don't store through the returned 3009 * opts.ipoptp_cur pointer. 3010 */ 3011 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 3012 optval != IPOPT_EOL; 3013 optval = ipoptp_next(&opts)) { 3014 int off; 3015 3016 opt = opts.ipoptp_cur; 3017 optlen = opts.ipoptp_len; 3018 switch (optval) { 3019 case IPOPT_SSRR: 3020 case IPOPT_LSRR: 3021 3022 /* 3023 * Insert ipha_dst as the first entry in the source 3024 * route and move down the entries on step. 3025 * The last entry gets placed at buf1. 3026 */ 3027 buf[IPOPT_OPTVAL] = optval; 3028 buf[IPOPT_OLEN] = optlen; 3029 buf[IPOPT_OFFSET] = optlen; 3030 3031 off = optlen - IP_ADDR_LEN; 3032 if (off < 0) { 3033 /* No entries in source route */ 3034 break; 3035 } 3036 /* Last entry in source route */ 3037 bcopy(opt + off, buf1, IP_ADDR_LEN); 3038 off -= IP_ADDR_LEN; 3039 3040 while (off > 0) { 3041 bcopy(opt + off, 3042 buf + off + IP_ADDR_LEN, 3043 IP_ADDR_LEN); 3044 off -= IP_ADDR_LEN; 3045 } 3046 /* ipha_dst into first slot */ 3047 bcopy(&ipha->ipha_dst, 3048 buf + off + IP_ADDR_LEN, 3049 IP_ADDR_LEN); 3050 buf += optlen; 3051 len += optlen; 3052 break; 3053 3054 case IPOPT_COMSEC: 3055 case IPOPT_SECURITY: 3056 /* if passing up a label is not ok, then remove */ 3057 if (is_system_labeled()) 3058 break; 3059 /* FALLTHROUGH */ 3060 default: 3061 bcopy(opt, buf, optlen); 3062 buf += optlen; 3063 len += optlen; 3064 break; 3065 } 3066 } 3067 done: 3068 /* Pad the resulting options */ 3069 while (len & 0x3) { 3070 *buf++ = IPOPT_EOL; 3071 len++; 3072 } 3073 return (len); 3074 } 3075 3076 /* 3077 * Update any record route or timestamp options to include this host. 3078 * Reverse any source route option. 3079 * This routine assumes that the options are well formed i.e. that they 3080 * have already been checked. 3081 */ 3082 static void 3083 icmp_options_update(ipha_t *ipha) 3084 { 3085 ipoptp_t opts; 3086 uchar_t *opt; 3087 uint8_t optval; 3088 ipaddr_t src; /* Our local address */ 3089 ipaddr_t dst; 3090 3091 ip2dbg(("icmp_options_update\n")); 3092 src = ipha->ipha_src; 3093 dst = ipha->ipha_dst; 3094 3095 for (optval = ipoptp_first(&opts, ipha); 3096 optval != IPOPT_EOL; 3097 optval = ipoptp_next(&opts)) { 3098 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3099 opt = opts.ipoptp_cur; 3100 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3101 optval, opts.ipoptp_len)); 3102 switch (optval) { 3103 int off1, off2; 3104 case IPOPT_SSRR: 3105 case IPOPT_LSRR: 3106 /* 3107 * Reverse the source route. The first entry 3108 * should be the next to last one in the current 3109 * source route (the last entry is our address). 3110 * The last entry should be the final destination. 3111 */ 3112 off1 = IPOPT_MINOFF_SR - 1; 3113 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3114 if (off2 < 0) { 3115 /* No entries in source route */ 3116 ip1dbg(( 3117 "icmp_options_update: bad src route\n")); 3118 break; 3119 } 3120 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3121 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3122 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3123 off2 -= IP_ADDR_LEN; 3124 3125 while (off1 < off2) { 3126 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3127 bcopy((char *)opt + off2, (char *)opt + off1, 3128 IP_ADDR_LEN); 3129 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3130 off1 += IP_ADDR_LEN; 3131 off2 -= IP_ADDR_LEN; 3132 } 3133 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3134 break; 3135 } 3136 } 3137 } 3138 3139 /* 3140 * Process received ICMP Redirect messages. 3141 */ 3142 /* ARGSUSED */ 3143 static void 3144 icmp_redirect(mblk_t *mp) 3145 { 3146 ipha_t *ipha; 3147 int iph_hdr_length; 3148 icmph_t *icmph; 3149 ipha_t *ipha_err; 3150 ire_t *ire; 3151 ire_t *prev_ire; 3152 ire_t *save_ire; 3153 ipaddr_t src, dst, gateway; 3154 iulp_t ulp_info = { 0 }; 3155 int error; 3156 3157 ipha = (ipha_t *)mp->b_rptr; 3158 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3159 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3160 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3161 BUMP_MIB(&icmp_mib, icmpInErrors); 3162 freemsg(mp); 3163 return; 3164 } 3165 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3166 ipha_err = (ipha_t *)&icmph[1]; 3167 src = ipha->ipha_src; 3168 dst = ipha_err->ipha_dst; 3169 gateway = icmph->icmph_rd_gateway; 3170 /* Make sure the new gateway is reachable somehow. */ 3171 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3172 ALL_ZONES, NULL, MATCH_IRE_TYPE); 3173 /* 3174 * Make sure we had a route for the dest in question and that 3175 * that route was pointing to the old gateway (the source of the 3176 * redirect packet.) 3177 */ 3178 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3179 NULL, MATCH_IRE_GW); 3180 /* 3181 * Check that 3182 * the redirect was not from ourselves 3183 * the new gateway and the old gateway are directly reachable 3184 */ 3185 if (!prev_ire || 3186 !ire || 3187 ire->ire_type == IRE_LOCAL) { 3188 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3189 freemsg(mp); 3190 if (ire != NULL) 3191 ire_refrele(ire); 3192 if (prev_ire != NULL) 3193 ire_refrele(prev_ire); 3194 return; 3195 } 3196 3197 /* 3198 * Should we use the old ULP info to create the new gateway? From 3199 * a user's perspective, we should inherit the info so that it 3200 * is a "smooth" transition. If we do not do that, then new 3201 * connections going thru the new gateway will have no route metrics, 3202 * which is counter-intuitive to user. From a network point of 3203 * view, this may or may not make sense even though the new gateway 3204 * is still directly connected to us so the route metrics should not 3205 * change much. 3206 * 3207 * But if the old ire_uinfo is not initialized, we do another 3208 * recursive lookup on the dest using the new gateway. There may 3209 * be a route to that. If so, use it to initialize the redirect 3210 * route. 3211 */ 3212 if (prev_ire->ire_uinfo.iulp_set) { 3213 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3214 } else { 3215 ire_t *tmp_ire; 3216 ire_t *sire; 3217 3218 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3219 ALL_ZONES, 0, NULL, 3220 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT)); 3221 if (sire != NULL) { 3222 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3223 /* 3224 * If sire != NULL, ire_ftable_lookup() should not 3225 * return a NULL value. 3226 */ 3227 ASSERT(tmp_ire != NULL); 3228 ire_refrele(tmp_ire); 3229 ire_refrele(sire); 3230 } else if (tmp_ire != NULL) { 3231 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3232 sizeof (iulp_t)); 3233 ire_refrele(tmp_ire); 3234 } 3235 } 3236 if (prev_ire->ire_type == IRE_CACHE) 3237 ire_delete(prev_ire); 3238 ire_refrele(prev_ire); 3239 /* 3240 * TODO: more precise handling for cases 0, 2, 3, the latter two 3241 * require TOS routing 3242 */ 3243 switch (icmph->icmph_code) { 3244 case 0: 3245 case 1: 3246 /* TODO: TOS specificity for cases 2 and 3 */ 3247 case 2: 3248 case 3: 3249 break; 3250 default: 3251 freemsg(mp); 3252 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3253 ire_refrele(ire); 3254 return; 3255 } 3256 /* 3257 * Create a Route Association. This will allow us to remember that 3258 * someone we believe told us to use the particular gateway. 3259 */ 3260 save_ire = ire; 3261 ire = ire_create( 3262 (uchar_t *)&dst, /* dest addr */ 3263 (uchar_t *)&ip_g_all_ones, /* mask */ 3264 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3265 (uchar_t *)&gateway, /* gateway addr */ 3266 NULL, /* no in_srcaddr */ 3267 &save_ire->ire_max_frag, /* max frag */ 3268 NULL, /* Fast Path header */ 3269 NULL, /* no rfq */ 3270 NULL, /* no stq */ 3271 IRE_HOST, 3272 NULL, 3273 NULL, 3274 NULL, 3275 0, 3276 0, 3277 0, 3278 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3279 &ulp_info, 3280 NULL, 3281 NULL); 3282 3283 if (ire == NULL) { 3284 freemsg(mp); 3285 ire_refrele(save_ire); 3286 return; 3287 } 3288 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3289 ire_refrele(save_ire); 3290 atomic_inc_32(&ip_redirect_cnt); 3291 3292 if (error == 0) { 3293 ire_refrele(ire); /* Held in ire_add_v4 */ 3294 /* tell routing sockets that we received a redirect */ 3295 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3296 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3297 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR)); 3298 } 3299 3300 /* 3301 * Delete any existing IRE_HOST type redirect ires for this destination. 3302 * This together with the added IRE has the effect of 3303 * modifying an existing redirect. 3304 */ 3305 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3306 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE)); 3307 if (prev_ire != NULL) { 3308 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3309 ire_delete(prev_ire); 3310 ire_refrele(prev_ire); 3311 } 3312 3313 freemsg(mp); 3314 } 3315 3316 /* 3317 * Generate an ICMP parameter problem message. 3318 */ 3319 static void 3320 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid) 3321 { 3322 icmph_t icmph; 3323 boolean_t mctl_present; 3324 mblk_t *first_mp; 3325 3326 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3327 3328 if (!(mp = icmp_pkt_err_ok(mp))) { 3329 if (mctl_present) 3330 freeb(first_mp); 3331 return; 3332 } 3333 3334 bzero(&icmph, sizeof (icmph_t)); 3335 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3336 icmph.icmph_pp_ptr = ptr; 3337 BUMP_MIB(&icmp_mib, icmpOutParmProbs); 3338 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 3339 } 3340 3341 /* 3342 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3343 * the ICMP header pointed to by "stuff". (May be called as writer.) 3344 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3345 * an icmp error packet can be sent. 3346 * Assigns an appropriate source address to the packet. If ipha_dst is 3347 * one of our addresses use it for source. Otherwise pick a source based 3348 * on a route lookup back to ipha_src. 3349 * Note that ipha_src must be set here since the 3350 * packet is likely to arrive on an ill queue in ip_wput() which will 3351 * not set a source address. 3352 */ 3353 static void 3354 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3355 boolean_t mctl_present, zoneid_t zoneid) 3356 { 3357 ipaddr_t dst; 3358 icmph_t *icmph; 3359 ipha_t *ipha; 3360 uint_t len_needed; 3361 size_t msg_len; 3362 mblk_t *mp1; 3363 ipaddr_t src; 3364 ire_t *ire; 3365 mblk_t *ipsec_mp; 3366 ipsec_out_t *io = NULL; 3367 boolean_t xmit_if_on = B_FALSE; 3368 3369 if (mctl_present) { 3370 /* 3371 * If it is : 3372 * 3373 * 1) a IPSEC_OUT, then this is caused by outbound 3374 * datagram originating on this host. IPSEC processing 3375 * may or may not have been done. Refer to comments above 3376 * icmp_inbound_error_fanout for details. 3377 * 3378 * 2) a IPSEC_IN if we are generating a icmp_message 3379 * for an incoming datagram destined for us i.e called 3380 * from ip_fanout_send_icmp. 3381 */ 3382 ipsec_info_t *in; 3383 ipsec_mp = mp; 3384 mp = ipsec_mp->b_cont; 3385 3386 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3387 ipha = (ipha_t *)mp->b_rptr; 3388 3389 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3390 in->ipsec_info_type == IPSEC_IN); 3391 3392 if (in->ipsec_info_type == IPSEC_IN) { 3393 /* 3394 * Convert the IPSEC_IN to IPSEC_OUT. 3395 */ 3396 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3397 BUMP_MIB(&ip_mib, ipOutDiscards); 3398 return; 3399 } 3400 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3401 } else { 3402 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3403 io = (ipsec_out_t *)in; 3404 if (io->ipsec_out_xmit_if) 3405 xmit_if_on = B_TRUE; 3406 /* 3407 * Clear out ipsec_out_proc_begin, so we do a fresh 3408 * ire lookup. 3409 */ 3410 io->ipsec_out_proc_begin = B_FALSE; 3411 } 3412 ASSERT(zoneid == io->ipsec_out_zoneid); 3413 ASSERT(zoneid != ALL_ZONES); 3414 } else { 3415 /* 3416 * This is in clear. The icmp message we are building 3417 * here should go out in clear. 3418 * 3419 * Pardon the convolution of it all, but it's easier to 3420 * allocate a "use cleartext" IPSEC_IN message and convert 3421 * it than it is to allocate a new one. 3422 */ 3423 ipsec_in_t *ii; 3424 ASSERT(DB_TYPE(mp) == M_DATA); 3425 if ((ipsec_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 3426 freemsg(mp); 3427 BUMP_MIB(&ip_mib, ipOutDiscards); 3428 return; 3429 } 3430 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3431 3432 /* This is not a secure packet */ 3433 ii->ipsec_in_secure = B_FALSE; 3434 /* 3435 * For trusted extensions using a shared IP address we can 3436 * send using any zoneid. 3437 */ 3438 if (zoneid == ALL_ZONES) 3439 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3440 else 3441 ii->ipsec_in_zoneid = zoneid; 3442 ipsec_mp->b_cont = mp; 3443 ipha = (ipha_t *)mp->b_rptr; 3444 /* 3445 * Convert the IPSEC_IN to IPSEC_OUT. 3446 */ 3447 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3448 BUMP_MIB(&ip_mib, ipOutDiscards); 3449 return; 3450 } 3451 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3452 } 3453 3454 /* Remember our eventual destination */ 3455 dst = ipha->ipha_src; 3456 3457 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3458 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE); 3459 if (ire != NULL && 3460 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3461 src = ipha->ipha_dst; 3462 } else if (!xmit_if_on) { 3463 if (ire != NULL) 3464 ire_refrele(ire); 3465 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3466 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY)); 3467 if (ire == NULL) { 3468 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3469 freemsg(ipsec_mp); 3470 return; 3471 } 3472 src = ire->ire_src_addr; 3473 } else { 3474 ipif_t *ipif = NULL; 3475 ill_t *ill; 3476 /* 3477 * This must be an ICMP error coming from 3478 * ip_mrtun_forward(). The src addr should 3479 * be equal to the IP-addr of the outgoing 3480 * interface. 3481 */ 3482 if (io == NULL) { 3483 /* This is not a IPSEC_OUT type control msg */ 3484 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3485 freemsg(ipsec_mp); 3486 return; 3487 } 3488 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3489 NULL, NULL, NULL, NULL); 3490 if (ill != NULL) { 3491 ipif = ipif_get_next_ipif(NULL, ill); 3492 ill_refrele(ill); 3493 } 3494 if (ipif == NULL) { 3495 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3496 freemsg(ipsec_mp); 3497 return; 3498 } 3499 src = ipif->ipif_src_addr; 3500 ipif_refrele(ipif); 3501 } 3502 3503 if (ire != NULL) 3504 ire_refrele(ire); 3505 3506 /* 3507 * Check if we can send back more then 8 bytes in addition 3508 * to the IP header. We will include as much as 64 bytes. 3509 */ 3510 len_needed = IPH_HDR_LENGTH(ipha); 3511 if (ipha->ipha_protocol == IPPROTO_ENCAP && 3512 (uchar_t *)ipha + len_needed + 1 <= mp->b_wptr) { 3513 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + len_needed)); 3514 } 3515 len_needed += ip_icmp_return; 3516 msg_len = msgdsize(mp); 3517 if (msg_len > len_needed) { 3518 (void) adjmsg(mp, len_needed - msg_len); 3519 msg_len = len_needed; 3520 } 3521 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3522 if (mp1 == NULL) { 3523 BUMP_MIB(&icmp_mib, icmpOutErrors); 3524 freemsg(ipsec_mp); 3525 return; 3526 } 3527 /* 3528 * On an unlabeled system, dblks don't necessarily have creds. 3529 */ 3530 ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL); 3531 if (DB_CRED(mp) != NULL) 3532 mblk_setcred(mp1, DB_CRED(mp)); 3533 mp1->b_cont = mp; 3534 mp = mp1; 3535 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3536 ipsec_mp->b_rptr == (uint8_t *)io && 3537 io->ipsec_out_type == IPSEC_OUT); 3538 ipsec_mp->b_cont = mp; 3539 3540 /* 3541 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3542 * node generates be accepted in peace by all on-host destinations. 3543 * If we do NOT assume that all on-host destinations trust 3544 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3545 * (Look for ipsec_out_icmp_loopback). 3546 */ 3547 io->ipsec_out_icmp_loopback = B_TRUE; 3548 3549 ipha = (ipha_t *)mp->b_rptr; 3550 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3551 *ipha = icmp_ipha; 3552 ipha->ipha_src = src; 3553 ipha->ipha_dst = dst; 3554 ipha->ipha_ttl = ip_def_ttl; 3555 msg_len += sizeof (icmp_ipha) + len; 3556 if (msg_len > IP_MAXPACKET) { 3557 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3558 msg_len = IP_MAXPACKET; 3559 } 3560 ipha->ipha_length = htons((uint16_t)msg_len); 3561 icmph = (icmph_t *)&ipha[1]; 3562 bcopy(stuff, icmph, len); 3563 icmph->icmph_checksum = 0; 3564 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3565 if (icmph->icmph_checksum == 0) 3566 icmph->icmph_checksum = 0xFFFF; 3567 BUMP_MIB(&icmp_mib, icmpOutMsgs); 3568 put(q, ipsec_mp); 3569 } 3570 3571 /* 3572 * Determine if an ICMP error packet can be sent given the rate limit. 3573 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3574 * in milliseconds) and a burst size. Burst size number of packets can 3575 * be sent arbitrarely closely spaced. 3576 * The state is tracked using two variables to implement an approximate 3577 * token bucket filter: 3578 * icmp_pkt_err_last - lbolt value when the last burst started 3579 * icmp_pkt_err_sent - number of packets sent in current burst 3580 */ 3581 boolean_t 3582 icmp_err_rate_limit(void) 3583 { 3584 clock_t now = TICK_TO_MSEC(lbolt); 3585 uint_t refilled; /* Number of packets refilled in tbf since last */ 3586 uint_t err_interval = ip_icmp_err_interval; /* Guard against changes */ 3587 3588 if (err_interval == 0) 3589 return (B_FALSE); 3590 3591 if (icmp_pkt_err_last > now) { 3592 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3593 icmp_pkt_err_last = 0; 3594 icmp_pkt_err_sent = 0; 3595 } 3596 /* 3597 * If we are in a burst update the token bucket filter. 3598 * Update the "last" time to be close to "now" but make sure 3599 * we don't loose precision. 3600 */ 3601 if (icmp_pkt_err_sent != 0) { 3602 refilled = (now - icmp_pkt_err_last)/err_interval; 3603 if (refilled > icmp_pkt_err_sent) { 3604 icmp_pkt_err_sent = 0; 3605 } else { 3606 icmp_pkt_err_sent -= refilled; 3607 icmp_pkt_err_last += refilled * err_interval; 3608 } 3609 } 3610 if (icmp_pkt_err_sent == 0) { 3611 /* Start of new burst */ 3612 icmp_pkt_err_last = now; 3613 } 3614 if (icmp_pkt_err_sent < ip_icmp_err_burst) { 3615 icmp_pkt_err_sent++; 3616 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3617 icmp_pkt_err_sent)); 3618 return (B_FALSE); 3619 } 3620 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3621 return (B_TRUE); 3622 } 3623 3624 /* 3625 * Check if it is ok to send an IPv4 ICMP error packet in 3626 * response to the IPv4 packet in mp. 3627 * Free the message and return null if no 3628 * ICMP error packet should be sent. 3629 */ 3630 static mblk_t * 3631 icmp_pkt_err_ok(mblk_t *mp) 3632 { 3633 icmph_t *icmph; 3634 ipha_t *ipha; 3635 uint_t len_needed; 3636 ire_t *src_ire; 3637 ire_t *dst_ire; 3638 3639 if (!mp) 3640 return (NULL); 3641 ipha = (ipha_t *)mp->b_rptr; 3642 if (ip_csum_hdr(ipha)) { 3643 BUMP_MIB(&ip_mib, ipInCksumErrs); 3644 freemsg(mp); 3645 return (NULL); 3646 } 3647 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3648 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3649 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3650 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3651 if (src_ire != NULL || dst_ire != NULL || 3652 CLASSD(ipha->ipha_dst) || 3653 CLASSD(ipha->ipha_src) || 3654 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3655 /* Note: only errors to the fragment with offset 0 */ 3656 BUMP_MIB(&icmp_mib, icmpOutDrops); 3657 freemsg(mp); 3658 if (src_ire != NULL) 3659 ire_refrele(src_ire); 3660 if (dst_ire != NULL) 3661 ire_refrele(dst_ire); 3662 return (NULL); 3663 } 3664 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3665 /* 3666 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3667 * errors in response to any ICMP errors. 3668 */ 3669 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3670 if (mp->b_wptr - mp->b_rptr < len_needed) { 3671 if (!pullupmsg(mp, len_needed)) { 3672 BUMP_MIB(&icmp_mib, icmpInErrors); 3673 freemsg(mp); 3674 return (NULL); 3675 } 3676 ipha = (ipha_t *)mp->b_rptr; 3677 } 3678 icmph = (icmph_t *) 3679 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3680 switch (icmph->icmph_type) { 3681 case ICMP_DEST_UNREACHABLE: 3682 case ICMP_SOURCE_QUENCH: 3683 case ICMP_TIME_EXCEEDED: 3684 case ICMP_PARAM_PROBLEM: 3685 case ICMP_REDIRECT: 3686 BUMP_MIB(&icmp_mib, icmpOutDrops); 3687 freemsg(mp); 3688 return (NULL); 3689 default: 3690 break; 3691 } 3692 } 3693 /* 3694 * If this is a labeled system, then check to see if we're allowed to 3695 * send a response to this particular sender. If not, then just drop. 3696 */ 3697 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3698 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3699 BUMP_MIB(&icmp_mib, icmpOutDrops); 3700 freemsg(mp); 3701 return (NULL); 3702 } 3703 if (icmp_err_rate_limit()) { 3704 /* 3705 * Only send ICMP error packets every so often. 3706 * This should be done on a per port/source basis, 3707 * but for now this will suffice. 3708 */ 3709 freemsg(mp); 3710 return (NULL); 3711 } 3712 return (mp); 3713 } 3714 3715 /* 3716 * Generate an ICMP redirect message. 3717 */ 3718 static void 3719 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway) 3720 { 3721 icmph_t icmph; 3722 3723 /* 3724 * We are called from ip_rput where we could 3725 * not have attached an IPSEC_IN. 3726 */ 3727 ASSERT(mp->b_datap->db_type == M_DATA); 3728 3729 if (!(mp = icmp_pkt_err_ok(mp))) { 3730 return; 3731 } 3732 3733 bzero(&icmph, sizeof (icmph_t)); 3734 icmph.icmph_type = ICMP_REDIRECT; 3735 icmph.icmph_code = 1; 3736 icmph.icmph_rd_gateway = gateway; 3737 BUMP_MIB(&icmp_mib, icmpOutRedirects); 3738 /* Redirects sent by router, and router is global zone */ 3739 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID); 3740 } 3741 3742 /* 3743 * Generate an ICMP time exceeded message. 3744 */ 3745 void 3746 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid) 3747 { 3748 icmph_t icmph; 3749 boolean_t mctl_present; 3750 mblk_t *first_mp; 3751 3752 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3753 3754 if (!(mp = icmp_pkt_err_ok(mp))) { 3755 if (mctl_present) 3756 freeb(first_mp); 3757 return; 3758 } 3759 3760 bzero(&icmph, sizeof (icmph_t)); 3761 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3762 icmph.icmph_code = code; 3763 BUMP_MIB(&icmp_mib, icmpOutTimeExcds); 3764 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 3765 } 3766 3767 /* 3768 * Generate an ICMP unreachable message. 3769 */ 3770 void 3771 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid) 3772 { 3773 icmph_t icmph; 3774 mblk_t *first_mp; 3775 boolean_t mctl_present; 3776 3777 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3778 3779 if (!(mp = icmp_pkt_err_ok(mp))) { 3780 if (mctl_present) 3781 freeb(first_mp); 3782 return; 3783 } 3784 3785 bzero(&icmph, sizeof (icmph_t)); 3786 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3787 icmph.icmph_code = code; 3788 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 3789 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3790 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3791 zoneid); 3792 } 3793 3794 /* 3795 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3796 * duplicate. As long as someone else holds the address, the interface will 3797 * stay down. When that conflict goes away, the interface is brought back up. 3798 * This is done so that accidental shutdowns of addresses aren't made 3799 * permanent. Your server will recover from a failure. 3800 * 3801 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3802 * user space process (dhcpagent). 3803 * 3804 * Recovery completes if ARP reports that the address is now ours (via 3805 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3806 * 3807 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3808 */ 3809 static void 3810 ipif_dup_recovery(void *arg) 3811 { 3812 ipif_t *ipif = arg; 3813 ill_t *ill = ipif->ipif_ill; 3814 mblk_t *arp_add_mp; 3815 mblk_t *arp_del_mp; 3816 area_t *area; 3817 3818 ipif->ipif_recovery_id = 0; 3819 3820 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3821 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 3822 /* No reason to try to bring this address back. */ 3823 return; 3824 } 3825 3826 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3827 goto alloc_fail; 3828 3829 if (ipif->ipif_arp_del_mp == NULL) { 3830 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3831 goto alloc_fail; 3832 ipif->ipif_arp_del_mp = arp_del_mp; 3833 } 3834 3835 /* Setting the 'unverified' flag restarts DAD */ 3836 area = (area_t *)arp_add_mp->b_rptr; 3837 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3838 ACE_F_UNVERIFIED; 3839 putnext(ill->ill_rq, arp_add_mp); 3840 return; 3841 3842 alloc_fail: 3843 /* On allocation failure, just restart the timer */ 3844 freemsg(arp_add_mp); 3845 if (ip_dup_recovery > 0) { 3846 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3847 MSEC_TO_TICK(ip_dup_recovery)); 3848 } 3849 } 3850 3851 /* 3852 * This is for exclusive changes due to ARP. Either tear down an interface due 3853 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3854 */ 3855 /* ARGSUSED */ 3856 static void 3857 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3858 { 3859 ill_t *ill = rq->q_ptr; 3860 arh_t *arh; 3861 ipaddr_t src; 3862 ipif_t *ipif; 3863 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3864 char hbuf[MAC_STR_LEN]; 3865 char sbuf[INET_ADDRSTRLEN]; 3866 const char *failtype; 3867 boolean_t bring_up; 3868 3869 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3870 case AR_CN_READY: 3871 failtype = NULL; 3872 bring_up = B_TRUE; 3873 break; 3874 case AR_CN_FAILED: 3875 failtype = "in use"; 3876 bring_up = B_FALSE; 3877 break; 3878 default: 3879 failtype = "claimed"; 3880 bring_up = B_FALSE; 3881 break; 3882 } 3883 3884 arh = (arh_t *)mp->b_cont->b_rptr; 3885 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3886 3887 /* Handle failures due to probes */ 3888 if (src == 0) { 3889 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3890 IP_ADDR_LEN); 3891 } 3892 3893 (void) strlcpy(ibuf, ill->ill_name, sizeof (ibuf)); 3894 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3895 sizeof (hbuf)); 3896 (void) ip_dot_addr(src, sbuf); 3897 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3898 3899 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3900 ipif->ipif_lcl_addr != src) { 3901 continue; 3902 } 3903 3904 /* 3905 * If we failed on a recovery probe, then restart the timer to 3906 * try again later. 3907 */ 3908 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3909 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3910 ill->ill_net_type == IRE_IF_RESOLVER && 3911 ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0) { 3912 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3913 ipif, MSEC_TO_TICK(ip_dup_recovery)); 3914 continue; 3915 } 3916 3917 /* 3918 * If what we're trying to do has already been done, then do 3919 * nothing. 3920 */ 3921 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3922 continue; 3923 3924 if (ipif->ipif_id != 0) { 3925 (void) snprintf(ibuf + ill->ill_name_length - 1, 3926 sizeof (ibuf) - ill->ill_name_length + 1, ":%d", 3927 ipif->ipif_id); 3928 } 3929 if (failtype == NULL) { 3930 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3931 ibuf); 3932 } else { 3933 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3934 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3935 } 3936 3937 if (bring_up) { 3938 ASSERT(ill->ill_dl_up); 3939 /* 3940 * Free up the ARP delete message so we can allocate 3941 * a fresh one through the normal path. 3942 */ 3943 freemsg(ipif->ipif_arp_del_mp); 3944 ipif->ipif_arp_del_mp = NULL; 3945 if (ipif_resolver_up(ipif, Res_act_initial) != 3946 EINPROGRESS) { 3947 ipif->ipif_addr_ready = 1; 3948 (void) ipif_up_done(ipif); 3949 } 3950 continue; 3951 } 3952 3953 mutex_enter(&ill->ill_lock); 3954 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3955 ipif->ipif_flags |= IPIF_DUPLICATE; 3956 ill->ill_ipif_dup_count++; 3957 mutex_exit(&ill->ill_lock); 3958 /* 3959 * Already exclusive on the ill; no need to handle deferred 3960 * processing here. 3961 */ 3962 (void) ipif_down(ipif, NULL, NULL); 3963 ipif_down_tail(ipif); 3964 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3965 ill->ill_net_type == IRE_IF_RESOLVER && 3966 ip_dup_recovery > 0) { 3967 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3968 ipif, MSEC_TO_TICK(ip_dup_recovery)); 3969 } 3970 } 3971 freemsg(mp); 3972 } 3973 3974 /* ARGSUSED */ 3975 static void 3976 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3977 { 3978 ill_t *ill = rq->q_ptr; 3979 arh_t *arh; 3980 ipaddr_t src; 3981 ipif_t *ipif; 3982 3983 arh = (arh_t *)mp->b_cont->b_rptr; 3984 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3985 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3986 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3987 (void) ipif_resolver_up(ipif, Res_act_defend); 3988 } 3989 freemsg(mp); 3990 } 3991 3992 /* 3993 * News from ARP. ARP sends notification of interesting events down 3994 * to its clients using M_CTL messages with the interesting ARP packet 3995 * attached via b_cont. 3996 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3997 * queue as opposed to ARP sending the message to all the clients, i.e. all 3998 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3999 * table if a cache IRE is found to delete all the entries for the address in 4000 * the packet. 4001 */ 4002 static void 4003 ip_arp_news(queue_t *q, mblk_t *mp) 4004 { 4005 arcn_t *arcn; 4006 arh_t *arh; 4007 ire_t *ire = NULL; 4008 char hbuf[MAC_STR_LEN]; 4009 char sbuf[INET_ADDRSTRLEN]; 4010 ipaddr_t src; 4011 in6_addr_t v6src; 4012 boolean_t isv6 = B_FALSE; 4013 ipif_t *ipif; 4014 ill_t *ill; 4015 4016 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 4017 if (q->q_next) { 4018 putnext(q, mp); 4019 } else 4020 freemsg(mp); 4021 return; 4022 } 4023 arh = (arh_t *)mp->b_cont->b_rptr; 4024 /* Is it one we are interested in? */ 4025 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 4026 isv6 = B_TRUE; 4027 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 4028 IPV6_ADDR_LEN); 4029 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 4030 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 4031 IP_ADDR_LEN); 4032 } else { 4033 freemsg(mp); 4034 return; 4035 } 4036 4037 ill = q->q_ptr; 4038 4039 arcn = (arcn_t *)mp->b_rptr; 4040 switch (arcn->arcn_code) { 4041 case AR_CN_BOGON: 4042 /* 4043 * Someone is sending ARP packets with a source protocol 4044 * address that we have published and for which we believe our 4045 * entry is authoritative and (when ill_arp_extend is set) 4046 * verified to be unique on the network. 4047 * 4048 * The ARP module internally handles the cases where the sender 4049 * is just probing (for DAD) and where the hardware address of 4050 * a non-authoritative entry has changed. Thus, these are the 4051 * real conflicts, and we have to do resolution. 4052 * 4053 * We back away quickly from the address if it's from DHCP or 4054 * otherwise temporary and hasn't been used recently (or at 4055 * all). We'd like to include "deprecated" addresses here as 4056 * well (as there's no real reason to defend something we're 4057 * discarding), but IPMP "reuses" this flag to mean something 4058 * other than the standard meaning. 4059 * 4060 * If the ARP module above is not extended (meaning that it 4061 * doesn't know how to defend the address), then we just log 4062 * the problem as we always did and continue on. It's not 4063 * right, but there's little else we can do, and those old ATM 4064 * users are going away anyway. 4065 */ 4066 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 4067 hbuf, sizeof (hbuf)); 4068 (void) ip_dot_addr(src, sbuf); 4069 if (isv6) 4070 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL); 4071 else 4072 ire = ire_cache_lookup(src, ALL_ZONES, NULL); 4073 4074 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4075 uint32_t now; 4076 uint32_t maxage; 4077 clock_t lused; 4078 uint_t maxdefense; 4079 uint_t defs; 4080 4081 /* 4082 * First, figure out if this address hasn't been used 4083 * in a while. If it hasn't, then it's a better 4084 * candidate for abandoning. 4085 */ 4086 ipif = ire->ire_ipif; 4087 ASSERT(ipif != NULL); 4088 now = gethrestime_sec(); 4089 maxage = now - ire->ire_create_time; 4090 if (maxage > ip_max_temp_idle) 4091 maxage = ip_max_temp_idle; 4092 lused = drv_hztousec(ddi_get_lbolt() - 4093 ire->ire_last_used_time) / MICROSEC + 1; 4094 if (lused >= maxage && (ipif->ipif_flags & 4095 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4096 maxdefense = ip_max_temp_defend; 4097 else 4098 maxdefense = ip_max_defend; 4099 4100 /* 4101 * Now figure out how many times we've defended 4102 * ourselves. Ignore defenses that happened long in 4103 * the past. 4104 */ 4105 mutex_enter(&ire->ire_lock); 4106 if ((defs = ire->ire_defense_count) > 0 && 4107 now - ire->ire_defense_time > ip_defend_interval) { 4108 ire->ire_defense_count = defs = 0; 4109 } 4110 ire->ire_defense_count++; 4111 ire->ire_defense_time = now; 4112 mutex_exit(&ire->ire_lock); 4113 ill_refhold(ill); 4114 ire_refrele(ire); 4115 4116 /* 4117 * If we've defended ourselves too many times already, 4118 * then give up and tear down the interface(s) using 4119 * this address. Otherwise, defend by sending out a 4120 * gratuitous ARP. 4121 */ 4122 if (defs >= maxdefense && ill->ill_arp_extend) { 4123 (void) qwriter_ip(NULL, ill, q, mp, 4124 ip_arp_excl, CUR_OP, B_FALSE); 4125 } else { 4126 cmn_err(CE_WARN, 4127 "node %s is using our IP address %s on %s", 4128 hbuf, sbuf, ill->ill_name); 4129 /* 4130 * If this is an old (ATM) ARP module, then 4131 * don't try to defend the address. Remain 4132 * compatible with the old behavior. Defend 4133 * only with new ARP. 4134 */ 4135 if (ill->ill_arp_extend) { 4136 (void) qwriter_ip(NULL, ill, q, mp, 4137 ip_arp_defend, CUR_OP, B_FALSE); 4138 } else { 4139 ill_refrele(ill); 4140 } 4141 } 4142 return; 4143 } 4144 cmn_err(CE_WARN, 4145 "proxy ARP problem? Node '%s' is using %s on %s", 4146 hbuf, sbuf, ill->ill_name); 4147 if (ire != NULL) 4148 ire_refrele(ire); 4149 break; 4150 case AR_CN_ANNOUNCE: 4151 if (isv6) { 4152 /* 4153 * For XRESOLV interfaces. 4154 * Delete the IRE cache entry and NCE for this 4155 * v6 address 4156 */ 4157 ip_ire_clookup_and_delete_v6(&v6src); 4158 /* 4159 * If v6src is a non-zero, it's a router address 4160 * as below. Do the same sort of thing to clean 4161 * out off-net IRE_CACHE entries that go through 4162 * the router. 4163 */ 4164 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4165 ire_walk_v6(ire_delete_cache_gw_v6, 4166 (char *)&v6src, ALL_ZONES); 4167 } 4168 } else { 4169 nce_hw_map_t hwm; 4170 4171 /* 4172 * ARP gives us a copy of any packet where it thinks 4173 * the address has changed, so that we can update our 4174 * caches. We're responsible for caching known answers 4175 * in the current design. We check whether the 4176 * hardware address really has changed in all of our 4177 * entries that have cached this mapping, and if so, we 4178 * blow them away. This way we will immediately pick 4179 * up the rare case of a host changing hardware 4180 * address. 4181 */ 4182 if (src == 0) 4183 break; 4184 hwm.hwm_addr = src; 4185 hwm.hwm_hwlen = arh->arh_hlen; 4186 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4187 ndp_walk_common(&ndp4, NULL, 4188 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4189 } 4190 break; 4191 case AR_CN_READY: 4192 /* No external v6 resolver has a contract to use this */ 4193 if (isv6) 4194 break; 4195 /* If the link is down, we'll retry this later */ 4196 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4197 break; 4198 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4199 NULL, NULL); 4200 if (ipif != NULL) { 4201 /* 4202 * If this is a duplicate recovery, then we now need to 4203 * go exclusive to bring this thing back up. 4204 */ 4205 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4206 IPIF_DUPLICATE) { 4207 ipif_refrele(ipif); 4208 ill_refhold(ill); 4209 (void) qwriter_ip(NULL, ill, q, mp, 4210 ip_arp_excl, CUR_OP, B_FALSE); 4211 return; 4212 } 4213 /* 4214 * If this is the first notice that this address is 4215 * ready, then let the user know now. 4216 */ 4217 if ((ipif->ipif_flags & IPIF_UP) && 4218 !ipif->ipif_addr_ready) { 4219 ipif_mask_reply(ipif); 4220 ip_rts_ifmsg(ipif); 4221 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4222 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4223 } 4224 ipif->ipif_addr_ready = 1; 4225 ipif_refrele(ipif); 4226 } 4227 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp)); 4228 if (ire != NULL) { 4229 ire->ire_defense_count = 0; 4230 ire_refrele(ire); 4231 } 4232 break; 4233 case AR_CN_FAILED: 4234 /* No external v6 resolver has a contract to use this */ 4235 if (isv6) 4236 break; 4237 ill_refhold(ill); 4238 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_excl, CUR_OP, 4239 B_FALSE); 4240 return; 4241 } 4242 freemsg(mp); 4243 } 4244 4245 /* 4246 * Create a mblk suitable for carrying the interface index and/or source link 4247 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4248 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4249 * application. 4250 */ 4251 mblk_t * 4252 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags) 4253 { 4254 mblk_t *mp; 4255 in_pktinfo_t *pinfo; 4256 ipha_t *ipha; 4257 struct ether_header *pether; 4258 4259 mp = allocb(sizeof (in_pktinfo_t), BPRI_MED); 4260 if (mp == NULL) { 4261 ip1dbg(("ip_add_info: allocation failure.\n")); 4262 return (data_mp); 4263 } 4264 4265 ipha = (ipha_t *)data_mp->b_rptr; 4266 pinfo = (in_pktinfo_t *)mp->b_rptr; 4267 bzero(pinfo, sizeof (in_pktinfo_t)); 4268 pinfo->in_pkt_flags = (uchar_t)flags; 4269 pinfo->in_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4270 4271 if (flags & IPF_RECVIF) 4272 pinfo->in_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4273 4274 pether = (struct ether_header *)((char *)ipha 4275 - sizeof (struct ether_header)); 4276 /* 4277 * Make sure the interface is an ethernet type, since this option 4278 * is currently supported only on this type of interface. Also make 4279 * sure we are pointing correctly above db_base. 4280 */ 4281 4282 if ((flags & IPF_RECVSLLA) && 4283 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4284 (ill->ill_type == IFT_ETHER) && 4285 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4286 4287 pinfo->in_pkt_slla.sdl_type = IFT_ETHER; 4288 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4289 (uchar_t *)pinfo->in_pkt_slla.sdl_data, ETHERADDRL); 4290 } else { 4291 /* 4292 * Clear the bit. Indicate to upper layer that IP is not 4293 * sending this ancillary info. 4294 */ 4295 pinfo->in_pkt_flags = pinfo->in_pkt_flags & ~IPF_RECVSLLA; 4296 } 4297 4298 mp->b_datap->db_type = M_CTL; 4299 mp->b_wptr += sizeof (in_pktinfo_t); 4300 mp->b_cont = data_mp; 4301 4302 return (mp); 4303 } 4304 4305 /* 4306 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4307 * part of the bind request. 4308 */ 4309 4310 boolean_t 4311 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4312 { 4313 ipsec_in_t *ii; 4314 4315 ASSERT(policy_mp != NULL); 4316 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4317 4318 ii = (ipsec_in_t *)policy_mp->b_rptr; 4319 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4320 4321 connp->conn_policy = ii->ipsec_in_policy; 4322 ii->ipsec_in_policy = NULL; 4323 4324 if (ii->ipsec_in_action != NULL) { 4325 if (connp->conn_latch == NULL) { 4326 connp->conn_latch = iplatch_create(); 4327 if (connp->conn_latch == NULL) 4328 return (B_FALSE); 4329 } 4330 ipsec_latch_inbound(connp->conn_latch, ii); 4331 } 4332 return (B_TRUE); 4333 } 4334 4335 /* 4336 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4337 * and to arrange for power-fanout assist. The ULP is identified by 4338 * adding a single byte at the end of the original bind message. 4339 * A ULP other than UDP or TCP that wishes to be recognized passes 4340 * down a bind with a zero length address. 4341 * 4342 * The binding works as follows: 4343 * - A zero byte address means just bind to the protocol. 4344 * - A four byte address is treated as a request to validate 4345 * that the address is a valid local address, appropriate for 4346 * an application to bind to. This does not affect any fanout 4347 * information in IP. 4348 * - A sizeof sin_t byte address is used to bind to only the local address 4349 * and port. 4350 * - A sizeof ipa_conn_t byte address contains complete fanout information 4351 * consisting of local and remote addresses and ports. In 4352 * this case, the addresses are both validated as appropriate 4353 * for this operation, and, if so, the information is retained 4354 * for use in the inbound fanout. 4355 * 4356 * The ULP (except in the zero-length bind) can append an 4357 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4358 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4359 * a copy of the source or destination IRE (source for local bind; 4360 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4361 * policy information contained should be copied on to the conn. 4362 * 4363 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4364 */ 4365 mblk_t * 4366 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4367 { 4368 ssize_t len; 4369 struct T_bind_req *tbr; 4370 sin_t *sin; 4371 ipa_conn_t *ac; 4372 uchar_t *ucp; 4373 mblk_t *mp1; 4374 boolean_t ire_requested; 4375 boolean_t ipsec_policy_set = B_FALSE; 4376 int error = 0; 4377 int protocol; 4378 ipa_conn_x_t *acx; 4379 4380 ASSERT(!connp->conn_af_isv6); 4381 connp->conn_pkt_isv6 = B_FALSE; 4382 4383 len = MBLKL(mp); 4384 if (len < (sizeof (*tbr) + 1)) { 4385 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4386 "ip_bind: bogus msg, len %ld", len); 4387 /* XXX: Need to return something better */ 4388 goto bad_addr; 4389 } 4390 /* Back up and extract the protocol identifier. */ 4391 mp->b_wptr--; 4392 protocol = *mp->b_wptr & 0xFF; 4393 tbr = (struct T_bind_req *)mp->b_rptr; 4394 /* Reset the message type in preparation for shipping it back. */ 4395 DB_TYPE(mp) = M_PCPROTO; 4396 4397 connp->conn_ulp = (uint8_t)protocol; 4398 4399 /* 4400 * Check for a zero length address. This is from a protocol that 4401 * wants to register to receive all packets of its type. 4402 */ 4403 if (tbr->ADDR_length == 0) { 4404 /* 4405 * These protocols are now intercepted in ip_bind_v6(). 4406 * Reject protocol-level binds here for now. 4407 * 4408 * For SCTP raw socket, ICMP sends down a bind with sin_t 4409 * so that the protocol type cannot be SCTP. 4410 */ 4411 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4412 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4413 goto bad_addr; 4414 } 4415 4416 /* 4417 * 4418 * The udp module never sends down a zero-length address, 4419 * and allowing this on a labeled system will break MLP 4420 * functionality. 4421 */ 4422 if (is_system_labeled() && protocol == IPPROTO_UDP) 4423 goto bad_addr; 4424 4425 if (connp->conn_mac_exempt) 4426 goto bad_addr; 4427 4428 /* No hash here really. The table is big enough. */ 4429 connp->conn_srcv6 = ipv6_all_zeros; 4430 4431 ipcl_proto_insert(connp, protocol); 4432 4433 tbr->PRIM_type = T_BIND_ACK; 4434 return (mp); 4435 } 4436 4437 /* Extract the address pointer from the message. */ 4438 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4439 tbr->ADDR_length); 4440 if (ucp == NULL) { 4441 ip1dbg(("ip_bind: no address\n")); 4442 goto bad_addr; 4443 } 4444 if (!OK_32PTR(ucp)) { 4445 ip1dbg(("ip_bind: unaligned address\n")); 4446 goto bad_addr; 4447 } 4448 /* 4449 * Check for trailing mps. 4450 */ 4451 4452 mp1 = mp->b_cont; 4453 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4454 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4455 4456 switch (tbr->ADDR_length) { 4457 default: 4458 ip1dbg(("ip_bind: bad address length %d\n", 4459 (int)tbr->ADDR_length)); 4460 goto bad_addr; 4461 4462 case IP_ADDR_LEN: 4463 /* Verification of local address only */ 4464 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4465 ire_requested, ipsec_policy_set, B_FALSE); 4466 break; 4467 4468 case sizeof (sin_t): 4469 sin = (sin_t *)ucp; 4470 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4471 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4472 if (protocol == IPPROTO_TCP) 4473 connp->conn_recv = tcp_conn_request; 4474 break; 4475 4476 case sizeof (ipa_conn_t): 4477 ac = (ipa_conn_t *)ucp; 4478 /* For raw socket, the local port is not set. */ 4479 if (ac->ac_lport == 0) 4480 ac->ac_lport = connp->conn_lport; 4481 /* Always verify destination reachability. */ 4482 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4483 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4484 ipsec_policy_set, B_TRUE, B_TRUE); 4485 if (protocol == IPPROTO_TCP) 4486 connp->conn_recv = tcp_input; 4487 break; 4488 4489 case sizeof (ipa_conn_x_t): 4490 acx = (ipa_conn_x_t *)ucp; 4491 /* 4492 * Whether or not to verify destination reachability depends 4493 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4494 */ 4495 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4496 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4497 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4498 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4499 if (protocol == IPPROTO_TCP) 4500 connp->conn_recv = tcp_input; 4501 break; 4502 } 4503 if (error == EINPROGRESS) 4504 return (NULL); 4505 else if (error != 0) 4506 goto bad_addr; 4507 /* 4508 * Pass the IPSEC headers size in ire_ipsec_overhead. 4509 * We can't do this in ip_bind_insert_ire because the policy 4510 * may not have been inherited at that point in time and hence 4511 * conn_out_enforce_policy may not be set. 4512 */ 4513 mp1 = mp->b_cont; 4514 if (ire_requested && connp->conn_out_enforce_policy && 4515 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4516 ire_t *ire = (ire_t *)mp1->b_rptr; 4517 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4518 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4519 } 4520 4521 /* Send it home. */ 4522 mp->b_datap->db_type = M_PCPROTO; 4523 tbr->PRIM_type = T_BIND_ACK; 4524 return (mp); 4525 4526 bad_addr: 4527 /* 4528 * If error = -1 then we generate a TBADADDR - otherwise error is 4529 * a unix errno. 4530 */ 4531 if (error > 0) 4532 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4533 else 4534 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4535 return (mp); 4536 } 4537 4538 /* 4539 * Here address is verified to be a valid local address. 4540 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4541 * address is also considered a valid local address. 4542 * In the case of a broadcast/multicast address, however, the 4543 * upper protocol is expected to reset the src address 4544 * to 0 if it sees a IRE_BROADCAST type returned so that 4545 * no packets are emitted with broadcast/multicast address as 4546 * source address (that violates hosts requirements RFC1122) 4547 * The addresses valid for bind are: 4548 * (1) - INADDR_ANY (0) 4549 * (2) - IP address of an UP interface 4550 * (3) - IP address of a DOWN interface 4551 * (4) - valid local IP broadcast addresses. In this case 4552 * the conn will only receive packets destined to 4553 * the specified broadcast address. 4554 * (5) - a multicast address. In this case 4555 * the conn will only receive packets destined to 4556 * the specified multicast address. Note: the 4557 * application still has to issue an 4558 * IP_ADD_MEMBERSHIP socket option. 4559 * 4560 * On error, return -1 for TBADADDR otherwise pass the 4561 * errno with TSYSERR reply. 4562 * 4563 * In all the above cases, the bound address must be valid in the current zone. 4564 * When the address is loopback, multicast or broadcast, there might be many 4565 * matching IREs so bind has to look up based on the zone. 4566 * 4567 * Note: lport is in network byte order. 4568 */ 4569 int 4570 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4571 boolean_t ire_requested, boolean_t ipsec_policy_set, 4572 boolean_t fanout_insert) 4573 { 4574 int error = 0; 4575 ire_t *src_ire; 4576 mblk_t *policy_mp; 4577 ipif_t *ipif; 4578 zoneid_t zoneid; 4579 4580 if (ipsec_policy_set) { 4581 policy_mp = mp->b_cont; 4582 } 4583 4584 /* 4585 * If it was previously connected, conn_fully_bound would have 4586 * been set. 4587 */ 4588 connp->conn_fully_bound = B_FALSE; 4589 4590 src_ire = NULL; 4591 ipif = NULL; 4592 4593 zoneid = IPCL_ZONEID(connp); 4594 4595 if (src_addr) { 4596 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4597 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 4598 /* 4599 * If an address other than 0.0.0.0 is requested, 4600 * we verify that it is a valid address for bind 4601 * Note: Following code is in if-else-if form for 4602 * readability compared to a condition check. 4603 */ 4604 /* LINTED - statement has no consequent */ 4605 if (IRE_IS_LOCAL(src_ire)) { 4606 /* 4607 * (2) Bind to address of local UP interface 4608 */ 4609 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4610 /* 4611 * (4) Bind to broadcast address 4612 * Note: permitted only from transports that 4613 * request IRE 4614 */ 4615 if (!ire_requested) 4616 error = EADDRNOTAVAIL; 4617 } else { 4618 /* 4619 * (3) Bind to address of local DOWN interface 4620 * (ipif_lookup_addr() looks up all interfaces 4621 * but we do not get here for UP interfaces 4622 * - case (2) above) 4623 * We put the protocol byte back into the mblk 4624 * since we may come back via ip_wput_nondata() 4625 * later with this mblk if ipif_lookup_addr chooses 4626 * to defer processing. 4627 */ 4628 *mp->b_wptr++ = (char)connp->conn_ulp; 4629 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4630 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4631 &error)) != NULL) { 4632 ipif_refrele(ipif); 4633 } else if (error == EINPROGRESS) { 4634 if (src_ire != NULL) 4635 ire_refrele(src_ire); 4636 return (EINPROGRESS); 4637 } else if (CLASSD(src_addr)) { 4638 error = 0; 4639 if (src_ire != NULL) 4640 ire_refrele(src_ire); 4641 /* 4642 * (5) bind to multicast address. 4643 * Fake out the IRE returned to upper 4644 * layer to be a broadcast IRE. 4645 */ 4646 src_ire = ire_ctable_lookup( 4647 INADDR_BROADCAST, INADDR_ANY, 4648 IRE_BROADCAST, NULL, zoneid, NULL, 4649 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY)); 4650 if (src_ire == NULL || !ire_requested) 4651 error = EADDRNOTAVAIL; 4652 } else { 4653 /* 4654 * Not a valid address for bind 4655 */ 4656 error = EADDRNOTAVAIL; 4657 } 4658 /* 4659 * Just to keep it consistent with the processing in 4660 * ip_bind_v4() 4661 */ 4662 mp->b_wptr--; 4663 } 4664 if (error) { 4665 /* Red Alert! Attempting to be a bogon! */ 4666 ip1dbg(("ip_bind: bad src address 0x%x\n", 4667 ntohl(src_addr))); 4668 goto bad_addr; 4669 } 4670 } 4671 4672 /* 4673 * Allow setting new policies. For example, disconnects come 4674 * down as ipa_t bind. As we would have set conn_policy_cached 4675 * to B_TRUE before, we should set it to B_FALSE, so that policy 4676 * can change after the disconnect. 4677 */ 4678 connp->conn_policy_cached = B_FALSE; 4679 4680 /* 4681 * If not fanout_insert this was just an address verification 4682 */ 4683 if (fanout_insert) { 4684 /* 4685 * The addresses have been verified. Time to insert in 4686 * the correct fanout list. 4687 */ 4688 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4689 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4690 connp->conn_lport = lport; 4691 connp->conn_fport = 0; 4692 /* 4693 * Do we need to add a check to reject Multicast packets 4694 */ 4695 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4696 } 4697 4698 if (error == 0) { 4699 if (ire_requested) { 4700 if (!ip_bind_insert_ire(mp, src_ire, NULL)) { 4701 error = -1; 4702 /* Falls through to bad_addr */ 4703 } 4704 } else if (ipsec_policy_set) { 4705 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4706 error = -1; 4707 /* Falls through to bad_addr */ 4708 } 4709 } 4710 } 4711 bad_addr: 4712 if (error != 0) { 4713 if (connp->conn_anon_port) { 4714 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4715 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4716 B_FALSE); 4717 } 4718 connp->conn_mlp_type = mlptSingle; 4719 } 4720 if (src_ire != NULL) 4721 IRE_REFRELE(src_ire); 4722 if (ipsec_policy_set) { 4723 ASSERT(policy_mp == mp->b_cont); 4724 ASSERT(policy_mp != NULL); 4725 freeb(policy_mp); 4726 /* 4727 * As of now assume that nothing else accompanies 4728 * IPSEC_POLICY_SET. 4729 */ 4730 mp->b_cont = NULL; 4731 } 4732 return (error); 4733 } 4734 4735 /* 4736 * Verify that both the source and destination addresses 4737 * are valid. If verify_dst is false, then the destination address may be 4738 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4739 * destination reachability, while tunnels do not. 4740 * Note that we allow connect to broadcast and multicast 4741 * addresses when ire_requested is set. Thus the ULP 4742 * has to check for IRE_BROADCAST and multicast. 4743 * 4744 * Returns zero if ok. 4745 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4746 * (for use with TSYSERR reply). 4747 * 4748 * Note: lport and fport are in network byte order. 4749 */ 4750 int 4751 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4752 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4753 boolean_t ire_requested, boolean_t ipsec_policy_set, 4754 boolean_t fanout_insert, boolean_t verify_dst) 4755 { 4756 ire_t *src_ire; 4757 ire_t *dst_ire; 4758 int error = 0; 4759 int protocol; 4760 mblk_t *policy_mp; 4761 ire_t *sire = NULL; 4762 ire_t *md_dst_ire = NULL; 4763 ill_t *md_ill = NULL; 4764 zoneid_t zoneid; 4765 ipaddr_t src_addr = *src_addrp; 4766 4767 src_ire = dst_ire = NULL; 4768 protocol = *mp->b_wptr & 0xFF; 4769 4770 /* 4771 * If we never got a disconnect before, clear it now. 4772 */ 4773 connp->conn_fully_bound = B_FALSE; 4774 4775 if (ipsec_policy_set) { 4776 policy_mp = mp->b_cont; 4777 } 4778 4779 zoneid = IPCL_ZONEID(connp); 4780 4781 if (CLASSD(dst_addr)) { 4782 /* Pick up an IRE_BROADCAST */ 4783 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4784 NULL, zoneid, MBLK_GETLABEL(mp), 4785 (MATCH_IRE_RECURSIVE | 4786 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4787 MATCH_IRE_SECATTR)); 4788 } else { 4789 /* 4790 * If conn_dontroute is set or if conn_nexthop_set is set, 4791 * and onlink ipif is not found set ENETUNREACH error. 4792 */ 4793 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4794 ipif_t *ipif; 4795 4796 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4797 dst_addr : connp->conn_nexthop_v4, 4798 connp->conn_zoneid); 4799 if (ipif == NULL) { 4800 error = ENETUNREACH; 4801 goto bad_addr; 4802 } 4803 ipif_refrele(ipif); 4804 } 4805 4806 if (connp->conn_nexthop_set) { 4807 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4808 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4809 MATCH_IRE_SECATTR); 4810 } else { 4811 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4812 &sire, zoneid, MBLK_GETLABEL(mp), 4813 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4814 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4815 MATCH_IRE_SECATTR)); 4816 } 4817 } 4818 /* 4819 * dst_ire can't be a broadcast when not ire_requested. 4820 * We also prevent ire's with src address INADDR_ANY to 4821 * be used, which are created temporarily for 4822 * sending out packets from endpoints that have 4823 * conn_unspec_src set. If verify_dst is true, the destination must be 4824 * reachable. If verify_dst is false, the destination needn't be 4825 * reachable. 4826 * 4827 * If we match on a reject or black hole, then we've got a 4828 * local failure. May as well fail out the connect() attempt, 4829 * since it's never going to succeed. 4830 */ 4831 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4832 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4833 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4834 /* 4835 * If we're verifying destination reachability, we always want 4836 * to complain here. 4837 * 4838 * If we're not verifying destination reachability but the 4839 * destination has a route, we still want to fail on the 4840 * temporary address and broadcast address tests. 4841 */ 4842 if (verify_dst || (dst_ire != NULL)) { 4843 if (ip_debug > 2) { 4844 pr_addr_dbg("ip_bind_connected: bad connected " 4845 "dst %s\n", AF_INET, &dst_addr); 4846 } 4847 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4848 error = ENETUNREACH; 4849 else 4850 error = EHOSTUNREACH; 4851 goto bad_addr; 4852 } 4853 } 4854 4855 /* 4856 * We now know that routing will allow us to reach the destination. 4857 * Check whether Trusted Solaris policy allows communication with this 4858 * host, and pretend that the destination is unreachable if not. 4859 * 4860 * This is never a problem for TCP, since that transport is known to 4861 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4862 * handling. If the remote is unreachable, it will be detected at that 4863 * point, so there's no reason to check it here. 4864 * 4865 * Note that for sendto (and other datagram-oriented friends), this 4866 * check is done as part of the data path label computation instead. 4867 * The check here is just to make non-TCP connect() report the right 4868 * error. 4869 */ 4870 if (dst_ire != NULL && is_system_labeled() && 4871 !IPCL_IS_TCP(connp) && 4872 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4873 connp->conn_mac_exempt) != 0) { 4874 error = EHOSTUNREACH; 4875 if (ip_debug > 2) { 4876 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4877 AF_INET, &dst_addr); 4878 } 4879 goto bad_addr; 4880 } 4881 4882 /* 4883 * If the app does a connect(), it means that it will most likely 4884 * send more than 1 packet to the destination. It makes sense 4885 * to clear the temporary flag. 4886 */ 4887 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4888 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4889 irb_t *irb = dst_ire->ire_bucket; 4890 4891 rw_enter(&irb->irb_lock, RW_WRITER); 4892 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4893 irb->irb_tmp_ire_cnt--; 4894 rw_exit(&irb->irb_lock); 4895 } 4896 4897 /* 4898 * See if we should notify ULP about MDT; we do this whether or not 4899 * ire_requested is TRUE, in order to handle active connects; MDT 4900 * eligibility tests for passive connects are handled separately 4901 * through tcp_adapt_ire(). We do this before the source address 4902 * selection, because dst_ire may change after a call to 4903 * ipif_select_source(). This is a best-effort check, as the 4904 * packet for this connection may not actually go through 4905 * dst_ire->ire_stq, and the exact IRE can only be known after 4906 * calling ip_newroute(). This is why we further check on the 4907 * IRE during Multidata packet transmission in tcp_multisend(). 4908 */ 4909 if (ip_multidata_outbound && !ipsec_policy_set && dst_ire != NULL && 4910 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4911 (md_ill = ire_to_ill(dst_ire), md_ill != NULL) && 4912 ILL_MDT_CAPABLE(md_ill)) { 4913 md_dst_ire = dst_ire; 4914 IRE_REFHOLD(md_dst_ire); 4915 } 4916 4917 if (dst_ire != NULL && 4918 dst_ire->ire_type == IRE_LOCAL && 4919 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4920 /* 4921 * If the IRE belongs to a different zone, look for a matching 4922 * route in the forwarding table and use the source address from 4923 * that route. 4924 */ 4925 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4926 zoneid, 0, NULL, 4927 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4928 MATCH_IRE_RJ_BHOLE); 4929 if (src_ire == NULL) { 4930 error = EHOSTUNREACH; 4931 goto bad_addr; 4932 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4933 if (!(src_ire->ire_type & IRE_HOST)) 4934 error = ENETUNREACH; 4935 else 4936 error = EHOSTUNREACH; 4937 goto bad_addr; 4938 } 4939 if (src_addr == INADDR_ANY) 4940 src_addr = src_ire->ire_src_addr; 4941 ire_refrele(src_ire); 4942 src_ire = NULL; 4943 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4944 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4945 src_addr = sire->ire_src_addr; 4946 ire_refrele(dst_ire); 4947 dst_ire = sire; 4948 sire = NULL; 4949 } else { 4950 /* 4951 * Pick a source address so that a proper inbound 4952 * load spreading would happen. 4953 */ 4954 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4955 ipif_t *src_ipif = NULL; 4956 ire_t *ipif_ire; 4957 4958 /* 4959 * Supply a local source address such that inbound 4960 * load spreading happens. 4961 * 4962 * Determine the best source address on this ill for 4963 * the destination. 4964 * 4965 * 1) For broadcast, we should return a broadcast ire 4966 * found above so that upper layers know that the 4967 * destination address is a broadcast address. 4968 * 4969 * 2) If this is part of a group, select a better 4970 * source address so that better inbound load 4971 * balancing happens. Do the same if the ipif 4972 * is DEPRECATED. 4973 * 4974 * 3) If the outgoing interface is part of a usesrc 4975 * group, then try selecting a source address from 4976 * the usesrc ILL. 4977 */ 4978 if ((dst_ire->ire_zoneid != zoneid && 4979 dst_ire->ire_zoneid != ALL_ZONES) || 4980 (!(dst_ire->ire_type & IRE_BROADCAST) && 4981 ((dst_ill->ill_group != NULL) || 4982 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4983 (dst_ill->ill_usesrc_ifindex != 0)))) { 4984 /* 4985 * If the destination is reachable via a 4986 * given gateway, the selected source address 4987 * should be in the same subnet as the gateway. 4988 * Otherwise, the destination is not reachable. 4989 * 4990 * If there are no interfaces on the same subnet 4991 * as the destination, ipif_select_source gives 4992 * first non-deprecated interface which might be 4993 * on a different subnet than the gateway. 4994 * This is not desirable. Hence pass the dst_ire 4995 * source address to ipif_select_source. 4996 * It is sure that the destination is reachable 4997 * with the dst_ire source address subnet. 4998 * So passing dst_ire source address to 4999 * ipif_select_source will make sure that the 5000 * selected source will be on the same subnet 5001 * as dst_ire source address. 5002 */ 5003 ipaddr_t saddr = 5004 dst_ire->ire_ipif->ipif_src_addr; 5005 src_ipif = ipif_select_source(dst_ill, 5006 saddr, zoneid); 5007 if (src_ipif != NULL) { 5008 if (IS_VNI(src_ipif->ipif_ill)) { 5009 /* 5010 * For VNI there is no 5011 * interface route 5012 */ 5013 src_addr = 5014 src_ipif->ipif_src_addr; 5015 } else { 5016 ipif_ire = 5017 ipif_to_ire(src_ipif); 5018 if (ipif_ire != NULL) { 5019 IRE_REFRELE(dst_ire); 5020 dst_ire = ipif_ire; 5021 } 5022 src_addr = 5023 dst_ire->ire_src_addr; 5024 } 5025 ipif_refrele(src_ipif); 5026 } else { 5027 src_addr = dst_ire->ire_src_addr; 5028 } 5029 } else { 5030 src_addr = dst_ire->ire_src_addr; 5031 } 5032 } 5033 } 5034 5035 /* 5036 * We do ire_route_lookup() here (and not 5037 * interface lookup as we assert that 5038 * src_addr should only come from an 5039 * UP interface for hard binding. 5040 */ 5041 ASSERT(src_ire == NULL); 5042 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5043 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 5044 /* src_ire must be a local|loopback */ 5045 if (!IRE_IS_LOCAL(src_ire)) { 5046 if (ip_debug > 2) { 5047 pr_addr_dbg("ip_bind_connected: bad connected " 5048 "src %s\n", AF_INET, &src_addr); 5049 } 5050 error = EADDRNOTAVAIL; 5051 goto bad_addr; 5052 } 5053 5054 /* 5055 * If the source address is a loopback address, the 5056 * destination had best be local or multicast. 5057 * The transports that can't handle multicast will reject 5058 * those addresses. 5059 */ 5060 if (src_ire->ire_type == IRE_LOOPBACK && 5061 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5062 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5063 error = -1; 5064 goto bad_addr; 5065 } 5066 5067 /* 5068 * Allow setting new policies. For example, disconnects come 5069 * down as ipa_t bind. As we would have set conn_policy_cached 5070 * to B_TRUE before, we should set it to B_FALSE, so that policy 5071 * can change after the disconnect. 5072 */ 5073 connp->conn_policy_cached = B_FALSE; 5074 5075 /* 5076 * Set the conn addresses/ports immediately, so the IPsec policy calls 5077 * can handle their passed-in conn's. 5078 */ 5079 5080 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5081 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5082 connp->conn_lport = lport; 5083 connp->conn_fport = fport; 5084 *src_addrp = src_addr; 5085 5086 ASSERT(!(ipsec_policy_set && ire_requested)); 5087 if (ire_requested) { 5088 iulp_t *ulp_info = NULL; 5089 5090 /* 5091 * Note that sire will not be NULL if this is an off-link 5092 * connection and there is not cache for that dest yet. 5093 * 5094 * XXX Because of an existing bug, if there are multiple 5095 * default routes, the IRE returned now may not be the actual 5096 * default route used (default routes are chosen in a 5097 * round robin fashion). So if the metrics for different 5098 * default routes are different, we may return the wrong 5099 * metrics. This will not be a problem if the existing 5100 * bug is fixed. 5101 */ 5102 if (sire != NULL) { 5103 ulp_info = &(sire->ire_uinfo); 5104 } 5105 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info)) { 5106 error = -1; 5107 goto bad_addr; 5108 } 5109 } else if (ipsec_policy_set) { 5110 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5111 error = -1; 5112 goto bad_addr; 5113 } 5114 } 5115 5116 /* 5117 * Cache IPsec policy in this conn. If we have per-socket policy, 5118 * we'll cache that. If we don't, we'll inherit global policy. 5119 * 5120 * We can't insert until the conn reflects the policy. Note that 5121 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5122 * connections where we don't have a policy. This is to prevent 5123 * global policy lookups in the inbound path. 5124 * 5125 * If we insert before we set conn_policy_cached, 5126 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5127 * because global policy cound be non-empty. We normally call 5128 * ipsec_check_policy() for conn_policy_cached connections only if 5129 * ipc_in_enforce_policy is set. But in this case, 5130 * conn_policy_cached can get set anytime since we made the 5131 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5132 * called, which will make the above assumption false. Thus, we 5133 * need to insert after we set conn_policy_cached. 5134 */ 5135 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5136 goto bad_addr; 5137 5138 if (fanout_insert) { 5139 /* 5140 * The addresses have been verified. Time to insert in 5141 * the correct fanout list. 5142 */ 5143 error = ipcl_conn_insert(connp, protocol, src_addr, 5144 dst_addr, connp->conn_ports); 5145 } 5146 5147 if (error == 0) { 5148 connp->conn_fully_bound = B_TRUE; 5149 /* 5150 * Our initial checks for MDT have passed; the IRE is not 5151 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5152 * be supporting MDT. Pass the IRE, IPC and ILL into 5153 * ip_mdinfo_return(), which performs further checks 5154 * against them and upon success, returns the MDT info 5155 * mblk which we will attach to the bind acknowledgment. 5156 */ 5157 if (md_dst_ire != NULL) { 5158 mblk_t *mdinfo_mp; 5159 5160 ASSERT(md_ill != NULL); 5161 ASSERT(md_ill->ill_mdt_capab != NULL); 5162 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5163 md_ill->ill_name, md_ill->ill_mdt_capab)) != NULL) 5164 linkb(mp, mdinfo_mp); 5165 } 5166 } 5167 bad_addr: 5168 if (ipsec_policy_set) { 5169 ASSERT(policy_mp == mp->b_cont); 5170 ASSERT(policy_mp != NULL); 5171 freeb(policy_mp); 5172 /* 5173 * As of now assume that nothing else accompanies 5174 * IPSEC_POLICY_SET. 5175 */ 5176 mp->b_cont = NULL; 5177 } 5178 if (src_ire != NULL) 5179 IRE_REFRELE(src_ire); 5180 if (dst_ire != NULL) 5181 IRE_REFRELE(dst_ire); 5182 if (sire != NULL) 5183 IRE_REFRELE(sire); 5184 if (md_dst_ire != NULL) 5185 IRE_REFRELE(md_dst_ire); 5186 return (error); 5187 } 5188 5189 /* 5190 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5191 * Prefers dst_ire over src_ire. 5192 */ 5193 static boolean_t 5194 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info) 5195 { 5196 mblk_t *mp1; 5197 ire_t *ret_ire = NULL; 5198 5199 mp1 = mp->b_cont; 5200 ASSERT(mp1 != NULL); 5201 5202 if (ire != NULL) { 5203 /* 5204 * mp1 initialized above to IRE_DB_REQ_TYPE 5205 * appended mblk. Its <upper protocol>'s 5206 * job to make sure there is room. 5207 */ 5208 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5209 return (0); 5210 5211 mp1->b_datap->db_type = IRE_DB_TYPE; 5212 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5213 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5214 ret_ire = (ire_t *)mp1->b_rptr; 5215 /* 5216 * Pass the latest setting of the ip_path_mtu_discovery and 5217 * copy the ulp info if any. 5218 */ 5219 ret_ire->ire_frag_flag |= (ip_path_mtu_discovery) ? 5220 IPH_DF : 0; 5221 if (ulp_info != NULL) { 5222 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5223 sizeof (iulp_t)); 5224 } 5225 ret_ire->ire_mp = mp1; 5226 } else { 5227 /* 5228 * No IRE was found. Remove IRE mblk. 5229 */ 5230 mp->b_cont = mp1->b_cont; 5231 freeb(mp1); 5232 } 5233 5234 return (1); 5235 } 5236 5237 /* 5238 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5239 * the final piece where we don't. Return a pointer to the first mblk in the 5240 * result, and update the pointer to the next mblk to chew on. If anything 5241 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5242 * NULL pointer. 5243 */ 5244 mblk_t * 5245 ip_carve_mp(mblk_t **mpp, ssize_t len) 5246 { 5247 mblk_t *mp0; 5248 mblk_t *mp1; 5249 mblk_t *mp2; 5250 5251 if (!len || !mpp || !(mp0 = *mpp)) 5252 return (NULL); 5253 /* If we aren't going to consume the first mblk, we need a dup. */ 5254 if (mp0->b_wptr - mp0->b_rptr > len) { 5255 mp1 = dupb(mp0); 5256 if (mp1) { 5257 /* Partition the data between the two mblks. */ 5258 mp1->b_wptr = mp1->b_rptr + len; 5259 mp0->b_rptr = mp1->b_wptr; 5260 /* 5261 * after adjustments if mblk not consumed is now 5262 * unaligned, try to align it. If this fails free 5263 * all messages and let upper layer recover. 5264 */ 5265 if (!OK_32PTR(mp0->b_rptr)) { 5266 if (!pullupmsg(mp0, -1)) { 5267 freemsg(mp0); 5268 freemsg(mp1); 5269 *mpp = NULL; 5270 return (NULL); 5271 } 5272 } 5273 } 5274 return (mp1); 5275 } 5276 /* Eat through as many mblks as we need to get len bytes. */ 5277 len -= mp0->b_wptr - mp0->b_rptr; 5278 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5279 if (mp2->b_wptr - mp2->b_rptr > len) { 5280 /* 5281 * We won't consume the entire last mblk. Like 5282 * above, dup and partition it. 5283 */ 5284 mp1->b_cont = dupb(mp2); 5285 mp1 = mp1->b_cont; 5286 if (!mp1) { 5287 /* 5288 * Trouble. Rather than go to a lot of 5289 * trouble to clean up, we free the messages. 5290 * This won't be any worse than losing it on 5291 * the wire. 5292 */ 5293 freemsg(mp0); 5294 freemsg(mp2); 5295 *mpp = NULL; 5296 return (NULL); 5297 } 5298 mp1->b_wptr = mp1->b_rptr + len; 5299 mp2->b_rptr = mp1->b_wptr; 5300 /* 5301 * after adjustments if mblk not consumed is now 5302 * unaligned, try to align it. If this fails free 5303 * all messages and let upper layer recover. 5304 */ 5305 if (!OK_32PTR(mp2->b_rptr)) { 5306 if (!pullupmsg(mp2, -1)) { 5307 freemsg(mp0); 5308 freemsg(mp2); 5309 *mpp = NULL; 5310 return (NULL); 5311 } 5312 } 5313 *mpp = mp2; 5314 return (mp0); 5315 } 5316 /* Decrement len by the amount we just got. */ 5317 len -= mp2->b_wptr - mp2->b_rptr; 5318 } 5319 /* 5320 * len should be reduced to zero now. If not our caller has 5321 * screwed up. 5322 */ 5323 if (len) { 5324 /* Shouldn't happen! */ 5325 freemsg(mp0); 5326 *mpp = NULL; 5327 return (NULL); 5328 } 5329 /* 5330 * We consumed up to exactly the end of an mblk. Detach the part 5331 * we are returning from the rest of the chain. 5332 */ 5333 mp1->b_cont = NULL; 5334 *mpp = mp2; 5335 return (mp0); 5336 } 5337 5338 /* The ill stream is being unplumbed. Called from ip_close */ 5339 int 5340 ip_modclose(ill_t *ill) 5341 { 5342 5343 boolean_t success; 5344 ipsq_t *ipsq; 5345 ipif_t *ipif; 5346 queue_t *q = ill->ill_rq; 5347 hook_nic_event_t *info; 5348 5349 /* 5350 * Forcibly enter the ipsq after some delay. This is to take 5351 * care of the case when some ioctl does not complete because 5352 * we sent a control message to the driver and it did not 5353 * send us a reply. We want to be able to at least unplumb 5354 * and replumb rather than force the user to reboot the system. 5355 */ 5356 success = ipsq_enter(ill, B_FALSE); 5357 5358 /* 5359 * Open/close/push/pop is guaranteed to be single threaded 5360 * per stream by STREAMS. FS guarantees that all references 5361 * from top are gone before close is called. So there can't 5362 * be another close thread that has set CONDEMNED on this ill. 5363 * and cause ipsq_enter to return failure. 5364 */ 5365 ASSERT(success); 5366 ipsq = ill->ill_phyint->phyint_ipsq; 5367 5368 /* 5369 * Mark it condemned. No new reference will be made to this ill. 5370 * Lookup functions will return an error. Threads that try to 5371 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5372 * that the refcnt will drop down to zero. 5373 */ 5374 mutex_enter(&ill->ill_lock); 5375 ill->ill_state_flags |= ILL_CONDEMNED; 5376 for (ipif = ill->ill_ipif; ipif != NULL; 5377 ipif = ipif->ipif_next) { 5378 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5379 } 5380 /* 5381 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5382 * returns error if ILL_CONDEMNED is set 5383 */ 5384 cv_broadcast(&ill->ill_cv); 5385 mutex_exit(&ill->ill_lock); 5386 5387 /* 5388 * Shut down fragmentation reassembly. 5389 * ill_frag_timer won't start a timer again. 5390 * Now cancel any existing timer 5391 */ 5392 (void) untimeout(ill->ill_frag_timer_id); 5393 (void) ill_frag_timeout(ill, 0); 5394 5395 /* 5396 * If MOVE was in progress, clear the 5397 * move_in_progress fields also. 5398 */ 5399 if (ill->ill_move_in_progress) { 5400 ILL_CLEAR_MOVE(ill); 5401 } 5402 5403 /* 5404 * Call ill_delete to bring down the ipifs, ilms and ill on 5405 * this ill. Then wait for the refcnts to drop to zero. 5406 * ill_is_quiescent checks whether the ill is really quiescent. 5407 * Then make sure that threads that are waiting to enter the 5408 * ipsq have seen the error returned by ipsq_enter and have 5409 * gone away. Then we call ill_delete_tail which does the 5410 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff. 5411 */ 5412 ill_delete(ill); 5413 mutex_enter(&ill->ill_lock); 5414 while (!ill_is_quiescent(ill)) 5415 cv_wait(&ill->ill_cv, &ill->ill_lock); 5416 while (ill->ill_waiters) 5417 cv_wait(&ill->ill_cv, &ill->ill_lock); 5418 5419 mutex_exit(&ill->ill_lock); 5420 5421 /* qprocsoff is called in ill_delete_tail */ 5422 ill_delete_tail(ill); 5423 5424 /* 5425 * Walk through all upper (conn) streams and qenable 5426 * those that have queued data. 5427 * close synchronization needs this to 5428 * be done to ensure that all upper layers blocked 5429 * due to flow control to the closing device 5430 * get unblocked. 5431 */ 5432 ip1dbg(("ip_wsrv: walking\n")); 5433 conn_walk_drain(); 5434 5435 mutex_enter(&ip_mi_lock); 5436 mi_close_unlink(&ip_g_head, (IDP)ill); 5437 mutex_exit(&ip_mi_lock); 5438 5439 /* 5440 * credp could be null if the open didn't succeed and ip_modopen 5441 * itself calls ip_close. 5442 */ 5443 if (ill->ill_credp != NULL) 5444 crfree(ill->ill_credp); 5445 5446 /* 5447 * Unhook the nic event message from the ill and enqueue it into the nic 5448 * event taskq. 5449 */ 5450 if ((info = ill->ill_nic_event_info) != NULL) { 5451 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, 5452 (void *)info, DDI_SLEEP) == DDI_FAILURE) { 5453 ip2dbg(("ip_ioctl_finish:ddi_taskq_dispatch failed\n")); 5454 if (info->hne_data != NULL) 5455 kmem_free(info->hne_data, info->hne_datalen); 5456 kmem_free(info, sizeof (hook_nic_event_t)); 5457 } 5458 ill->ill_nic_event_info = NULL; 5459 } 5460 5461 mi_close_free((IDP)ill); 5462 q->q_ptr = WR(q)->q_ptr = NULL; 5463 5464 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5465 5466 return (0); 5467 } 5468 5469 /* 5470 * This is called as part of close() for both IP and UDP 5471 * in order to quiesce the conn. 5472 */ 5473 void 5474 ip_quiesce_conn(conn_t *connp) 5475 { 5476 boolean_t drain_cleanup_reqd = B_FALSE; 5477 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5478 boolean_t ilg_cleanup_reqd = B_FALSE; 5479 5480 ASSERT(!IPCL_IS_TCP(connp)); 5481 5482 /* 5483 * Mark the conn as closing, and this conn must not be 5484 * inserted in future into any list. Eg. conn_drain_insert(), 5485 * won't insert this conn into the conn_drain_list. 5486 * Similarly ill_pending_mp_add() will not add any mp to 5487 * the pending mp list, after this conn has started closing. 5488 * 5489 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5490 * cannot get set henceforth. 5491 */ 5492 mutex_enter(&connp->conn_lock); 5493 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5494 connp->conn_state_flags |= CONN_CLOSING; 5495 if (connp->conn_idl != NULL) 5496 drain_cleanup_reqd = B_TRUE; 5497 if (connp->conn_oper_pending_ill != NULL) 5498 conn_ioctl_cleanup_reqd = B_TRUE; 5499 if (connp->conn_ilg_inuse != 0) 5500 ilg_cleanup_reqd = B_TRUE; 5501 mutex_exit(&connp->conn_lock); 5502 5503 if (IPCL_IS_UDP(connp)) 5504 udp_quiesce_conn(connp); 5505 5506 if (conn_ioctl_cleanup_reqd) 5507 conn_ioctl_cleanup(connp); 5508 5509 if (is_system_labeled() && connp->conn_anon_port) { 5510 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5511 connp->conn_mlp_type, connp->conn_ulp, 5512 ntohs(connp->conn_lport), B_FALSE); 5513 connp->conn_anon_port = 0; 5514 } 5515 connp->conn_mlp_type = mlptSingle; 5516 5517 /* 5518 * Remove this conn from any fanout list it is on. 5519 * and then wait for any threads currently operating 5520 * on this endpoint to finish 5521 */ 5522 ipcl_hash_remove(connp); 5523 5524 /* 5525 * Remove this conn from the drain list, and do 5526 * any other cleanup that may be required. 5527 * (Only non-tcp streams may have a non-null conn_idl. 5528 * TCP streams are never flow controlled, and 5529 * conn_idl will be null) 5530 */ 5531 if (drain_cleanup_reqd) 5532 conn_drain_tail(connp, B_TRUE); 5533 5534 if (connp->conn_rq == ip_g_mrouter || connp->conn_wq == ip_g_mrouter) 5535 (void) ip_mrouter_done(NULL); 5536 5537 if (ilg_cleanup_reqd) 5538 ilg_delete_all(connp); 5539 5540 conn_delete_ire(connp, NULL); 5541 5542 /* 5543 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5544 * callers from write side can't be there now because close 5545 * is in progress. The only other caller is ipcl_walk 5546 * which checks for the condemned flag. 5547 */ 5548 mutex_enter(&connp->conn_lock); 5549 connp->conn_state_flags |= CONN_CONDEMNED; 5550 while (connp->conn_ref != 1) 5551 cv_wait(&connp->conn_cv, &connp->conn_lock); 5552 connp->conn_state_flags |= CONN_QUIESCED; 5553 mutex_exit(&connp->conn_lock); 5554 } 5555 5556 /* ARGSUSED */ 5557 int 5558 ip_close(queue_t *q, int flags) 5559 { 5560 conn_t *connp; 5561 5562 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5563 5564 /* 5565 * Call the appropriate delete routine depending on whether this is 5566 * a module or device. 5567 */ 5568 if (WR(q)->q_next != NULL) { 5569 /* This is a module close */ 5570 return (ip_modclose((ill_t *)q->q_ptr)); 5571 } 5572 5573 connp = q->q_ptr; 5574 ip_quiesce_conn(connp); 5575 5576 qprocsoff(q); 5577 5578 /* 5579 * Now we are truly single threaded on this stream, and can 5580 * delete the things hanging off the connp, and finally the connp. 5581 * We removed this connp from the fanout list, it cannot be 5582 * accessed thru the fanouts, and we already waited for the 5583 * conn_ref to drop to 0. We are already in close, so 5584 * there cannot be any other thread from the top. qprocsoff 5585 * has completed, and service has completed or won't run in 5586 * future. 5587 */ 5588 ASSERT(connp->conn_ref == 1); 5589 5590 /* 5591 * A conn which was previously marked as IPCL_UDP cannot 5592 * retain the flag because it would have been cleared by 5593 * udp_close(). 5594 */ 5595 ASSERT(!IPCL_IS_UDP(connp)); 5596 5597 if (connp->conn_latch != NULL) { 5598 IPLATCH_REFRELE(connp->conn_latch); 5599 connp->conn_latch = NULL; 5600 } 5601 if (connp->conn_policy != NULL) { 5602 IPPH_REFRELE(connp->conn_policy); 5603 connp->conn_policy = NULL; 5604 } 5605 if (connp->conn_ipsec_opt_mp != NULL) { 5606 freemsg(connp->conn_ipsec_opt_mp); 5607 connp->conn_ipsec_opt_mp = NULL; 5608 } 5609 5610 inet_minor_free(ip_minor_arena, connp->conn_dev); 5611 5612 connp->conn_ref--; 5613 ipcl_conn_destroy(connp); 5614 5615 q->q_ptr = WR(q)->q_ptr = NULL; 5616 return (0); 5617 } 5618 5619 int 5620 ip_snmpmod_close(queue_t *q) 5621 { 5622 conn_t *connp = Q_TO_CONN(q); 5623 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5624 5625 qprocsoff(q); 5626 5627 if (connp->conn_flags & IPCL_UDPMOD) 5628 udp_close_free(connp); 5629 5630 if (connp->conn_cred != NULL) { 5631 crfree(connp->conn_cred); 5632 connp->conn_cred = NULL; 5633 } 5634 CONN_DEC_REF(connp); 5635 q->q_ptr = WR(q)->q_ptr = NULL; 5636 return (0); 5637 } 5638 5639 /* 5640 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5641 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5642 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5643 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5644 * queues as we never enqueue messages there and we don't handle any ioctls. 5645 * Everything else is freed. 5646 */ 5647 void 5648 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5649 { 5650 conn_t *connp = q->q_ptr; 5651 pfi_t setfn; 5652 pfi_t getfn; 5653 5654 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5655 5656 switch (DB_TYPE(mp)) { 5657 case M_PROTO: 5658 case M_PCPROTO: 5659 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5660 ((((union T_primitives *)mp->b_rptr)->type == 5661 T_SVR4_OPTMGMT_REQ) || 5662 (((union T_primitives *)mp->b_rptr)->type == 5663 T_OPTMGMT_REQ))) { 5664 /* 5665 * This is the only TPI primitive supported. Its 5666 * handling does not require tcp_t, but it does require 5667 * conn_t to check permissions. 5668 */ 5669 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5670 5671 if (connp->conn_flags & IPCL_TCPMOD) { 5672 setfn = tcp_snmp_set; 5673 getfn = tcp_snmp_get; 5674 } else { 5675 setfn = udp_snmp_set; 5676 getfn = udp_snmp_get; 5677 } 5678 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5679 freemsg(mp); 5680 return; 5681 } 5682 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5683 != NULL) 5684 qreply(q, mp); 5685 break; 5686 case M_FLUSH: 5687 case M_IOCTL: 5688 putnext(q, mp); 5689 break; 5690 default: 5691 freemsg(mp); 5692 break; 5693 } 5694 } 5695 5696 /* Return the IP checksum for the IP header at "iph". */ 5697 uint16_t 5698 ip_csum_hdr(ipha_t *ipha) 5699 { 5700 uint16_t *uph; 5701 uint32_t sum; 5702 int opt_len; 5703 5704 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5705 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5706 uph = (uint16_t *)ipha; 5707 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5708 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5709 if (opt_len > 0) { 5710 do { 5711 sum += uph[10]; 5712 sum += uph[11]; 5713 uph += 2; 5714 } while (--opt_len); 5715 } 5716 sum = (sum & 0xFFFF) + (sum >> 16); 5717 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5718 if (sum == 0xffff) 5719 sum = 0; 5720 return ((uint16_t)sum); 5721 } 5722 5723 void 5724 ip_ddi_destroy(void) 5725 { 5726 ipv4_hook_destroy(); 5727 ipv6_hook_destroy(); 5728 ip_net_destroy(); 5729 5730 tnet_fini(); 5731 tcp_ddi_destroy(); 5732 sctp_ddi_destroy(); 5733 ipsec_loader_destroy(); 5734 ipsec_policy_destroy(); 5735 ipsec_kstat_destroy(); 5736 nd_free(&ip_g_nd); 5737 mutex_destroy(&igmp_timer_lock); 5738 mutex_destroy(&mld_timer_lock); 5739 mutex_destroy(&igmp_slowtimeout_lock); 5740 mutex_destroy(&mld_slowtimeout_lock); 5741 mutex_destroy(&ip_mi_lock); 5742 mutex_destroy(&rts_clients.connf_lock); 5743 ip_ire_fini(); 5744 ip6_asp_free(); 5745 conn_drain_fini(); 5746 ipcl_destroy(); 5747 inet_minor_destroy(ip_minor_arena); 5748 icmp_kstat_fini(); 5749 ip_kstat_fini(); 5750 rw_destroy(&ipsec_capab_ills_lock); 5751 rw_destroy(&ill_g_usesrc_lock); 5752 ip_drop_unregister(&ip_dropper); 5753 } 5754 5755 5756 void 5757 ip_ddi_init(void) 5758 { 5759 TCP6_MAJ = ddi_name_to_major(TCP6); 5760 TCP_MAJ = ddi_name_to_major(TCP); 5761 SCTP_MAJ = ddi_name_to_major(SCTP); 5762 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5763 5764 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5765 5766 /* IP's IPsec code calls the packet dropper */ 5767 ip_drop_register(&ip_dropper, "IP IPsec processing"); 5768 5769 if (!ip_g_nd) { 5770 if (!ip_param_register(lcl_param_arr, A_CNT(lcl_param_arr), 5771 lcl_ndp_arr, A_CNT(lcl_ndp_arr))) { 5772 nd_free(&ip_g_nd); 5773 } 5774 } 5775 5776 ipsec_loader_init(); 5777 ipsec_policy_init(); 5778 ipsec_kstat_init(); 5779 rw_init(&ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5780 mutex_init(&igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5781 mutex_init(&mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5782 mutex_init(&igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5783 mutex_init(&mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5784 mutex_init(&ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5785 mutex_init(&ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5786 rw_init(&ill_g_lock, NULL, RW_DEFAULT, NULL); 5787 rw_init(&ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5788 rw_init(&ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5789 5790 /* 5791 * For IP and TCP the minor numbers should start from 2 since we have 4 5792 * initial devices: ip, ip6, tcp, tcp6. 5793 */ 5794 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5795 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5796 cmn_err(CE_PANIC, 5797 "ip_ddi_init: ip_minor_arena creation failed\n"); 5798 } 5799 5800 ipcl_init(); 5801 mutex_init(&rts_clients.connf_lock, NULL, MUTEX_DEFAULT, NULL); 5802 ip_ire_init(); 5803 ip6_asp_init(); 5804 ipif_init(); 5805 conn_drain_init(); 5806 tcp_ddi_init(); 5807 sctp_ddi_init(); 5808 5809 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5810 5811 if ((ip_kstat = kstat_create("ip", 0, "ipstat", 5812 "net", KSTAT_TYPE_NAMED, 5813 sizeof (ip_statistics) / sizeof (kstat_named_t), 5814 KSTAT_FLAG_VIRTUAL)) != NULL) { 5815 ip_kstat->ks_data = &ip_statistics; 5816 kstat_install(ip_kstat); 5817 } 5818 ip_kstat_init(); 5819 ip6_kstat_init(); 5820 icmp_kstat_init(); 5821 ipsec_loader_start(); 5822 tnet_init(); 5823 5824 ip_net_init(); 5825 ipv4_hook_init(); 5826 ipv6_hook_init(); 5827 } 5828 5829 /* 5830 * Allocate and initialize a DLPI template of the specified length. (May be 5831 * called as writer.) 5832 */ 5833 mblk_t * 5834 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 5835 { 5836 mblk_t *mp; 5837 5838 mp = allocb(len, BPRI_MED); 5839 if (!mp) 5840 return (NULL); 5841 5842 /* 5843 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 5844 * of which we don't seem to use) are sent with M_PCPROTO, and 5845 * that other DLPI are M_PROTO. 5846 */ 5847 if (prim == DL_INFO_REQ) { 5848 mp->b_datap->db_type = M_PCPROTO; 5849 } else { 5850 mp->b_datap->db_type = M_PROTO; 5851 } 5852 5853 mp->b_wptr = mp->b_rptr + len; 5854 bzero(mp->b_rptr, len); 5855 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 5856 return (mp); 5857 } 5858 5859 const char * 5860 dlpi_prim_str(int prim) 5861 { 5862 switch (prim) { 5863 case DL_INFO_REQ: return ("DL_INFO_REQ"); 5864 case DL_INFO_ACK: return ("DL_INFO_ACK"); 5865 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 5866 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 5867 case DL_BIND_REQ: return ("DL_BIND_REQ"); 5868 case DL_BIND_ACK: return ("DL_BIND_ACK"); 5869 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 5870 case DL_OK_ACK: return ("DL_OK_ACK"); 5871 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 5872 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 5873 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 5874 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 5875 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 5876 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 5877 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 5878 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 5879 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 5880 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 5881 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 5882 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 5883 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 5884 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 5885 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 5886 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 5887 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 5888 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 5889 default: return ("<unknown primitive>"); 5890 } 5891 } 5892 5893 const char * 5894 dlpi_err_str(int err) 5895 { 5896 switch (err) { 5897 case DL_ACCESS: return ("DL_ACCESS"); 5898 case DL_BADADDR: return ("DL_BADADDR"); 5899 case DL_BADCORR: return ("DL_BADCORR"); 5900 case DL_BADDATA: return ("DL_BADDATA"); 5901 case DL_BADPPA: return ("DL_BADPPA"); 5902 case DL_BADPRIM: return ("DL_BADPRIM"); 5903 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 5904 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 5905 case DL_BADSAP: return ("DL_BADSAP"); 5906 case DL_BADTOKEN: return ("DL_BADTOKEN"); 5907 case DL_BOUND: return ("DL_BOUND"); 5908 case DL_INITFAILED: return ("DL_INITFAILED"); 5909 case DL_NOADDR: return ("DL_NOADDR"); 5910 case DL_NOTINIT: return ("DL_NOTINIT"); 5911 case DL_OUTSTATE: return ("DL_OUTSTATE"); 5912 case DL_SYSERR: return ("DL_SYSERR"); 5913 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 5914 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 5915 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 5916 case DL_TOOMANY: return ("DL_TOOMANY"); 5917 case DL_NOTENAB: return ("DL_NOTENAB"); 5918 case DL_BUSY: return ("DL_BUSY"); 5919 case DL_NOAUTO: return ("DL_NOAUTO"); 5920 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 5921 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 5922 case DL_XIDAUTO: return ("DL_XIDAUTO"); 5923 case DL_TESTAUTO: return ("DL_TESTAUTO"); 5924 case DL_PENDING: return ("DL_PENDING"); 5925 default: return ("<unknown error>"); 5926 } 5927 } 5928 5929 /* 5930 * Debug formatting routine. Returns a character string representation of the 5931 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5932 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 5933 * 5934 * Once the ndd table-printing interfaces are removed, this can be changed to 5935 * standard dotted-decimal form. 5936 */ 5937 char * 5938 ip_dot_addr(ipaddr_t addr, char *buf) 5939 { 5940 uint8_t *ap = (uint8_t *)&addr; 5941 5942 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 5943 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 5944 return (buf); 5945 } 5946 5947 /* 5948 * Write the given MAC address as a printable string in the usual colon- 5949 * separated format. 5950 */ 5951 const char * 5952 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 5953 { 5954 char *bp; 5955 5956 if (alen == 0 || buflen < 4) 5957 return ("?"); 5958 bp = buf; 5959 for (;;) { 5960 /* 5961 * If there are more MAC address bytes available, but we won't 5962 * have any room to print them, then add "..." to the string 5963 * instead. See below for the 'magic number' explanation. 5964 */ 5965 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 5966 (void) strcpy(bp, "..."); 5967 break; 5968 } 5969 (void) sprintf(bp, "%02x", *addr++); 5970 bp += 2; 5971 if (--alen == 0) 5972 break; 5973 *bp++ = ':'; 5974 buflen -= 3; 5975 /* 5976 * At this point, based on the first 'if' statement above, 5977 * either alen == 1 and buflen >= 3, or alen > 1 and 5978 * buflen >= 4. The first case leaves room for the final "xx" 5979 * number and trailing NUL byte. The second leaves room for at 5980 * least "...". Thus the apparently 'magic' numbers chosen for 5981 * that statement. 5982 */ 5983 } 5984 return (buf); 5985 } 5986 5987 /* 5988 * Send an ICMP error after patching up the packet appropriately. Returns 5989 * non-zero if the appropriate MIB should be bumped; zero otherwise. 5990 */ 5991 static boolean_t 5992 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 5993 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, zoneid_t zoneid) 5994 { 5995 ipha_t *ipha; 5996 mblk_t *first_mp; 5997 boolean_t secure; 5998 unsigned char db_type; 5999 6000 first_mp = mp; 6001 if (mctl_present) { 6002 mp = mp->b_cont; 6003 secure = ipsec_in_is_secure(first_mp); 6004 ASSERT(mp != NULL); 6005 } else { 6006 /* 6007 * If this is an ICMP error being reported - which goes 6008 * up as M_CTLs, we need to convert them to M_DATA till 6009 * we finish checking with global policy because 6010 * ipsec_check_global_policy() assumes M_DATA as clear 6011 * and M_CTL as secure. 6012 */ 6013 db_type = DB_TYPE(mp); 6014 DB_TYPE(mp) = M_DATA; 6015 secure = B_FALSE; 6016 } 6017 /* 6018 * We are generating an icmp error for some inbound packet. 6019 * Called from all ip_fanout_(udp, tcp, proto) functions. 6020 * Before we generate an error, check with global policy 6021 * to see whether this is allowed to enter the system. As 6022 * there is no "conn", we are checking with global policy. 6023 */ 6024 ipha = (ipha_t *)mp->b_rptr; 6025 if (secure || ipsec_inbound_v4_policy_present) { 6026 first_mp = ipsec_check_global_policy(first_mp, NULL, 6027 ipha, NULL, mctl_present); 6028 if (first_mp == NULL) 6029 return (B_FALSE); 6030 } 6031 6032 if (!mctl_present) 6033 DB_TYPE(mp) = db_type; 6034 6035 if (flags & IP_FF_SEND_ICMP) { 6036 if (flags & IP_FF_HDR_COMPLETE) { 6037 if (ip_hdr_complete(ipha, zoneid)) { 6038 freemsg(first_mp); 6039 return (B_TRUE); 6040 } 6041 } 6042 if (flags & IP_FF_CKSUM) { 6043 /* 6044 * Have to correct checksum since 6045 * the packet might have been 6046 * fragmented and the reassembly code in ip_rput 6047 * does not restore the IP checksum. 6048 */ 6049 ipha->ipha_hdr_checksum = 0; 6050 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6051 } 6052 switch (icmp_type) { 6053 case ICMP_DEST_UNREACHABLE: 6054 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid); 6055 break; 6056 default: 6057 freemsg(first_mp); 6058 break; 6059 } 6060 } else { 6061 freemsg(first_mp); 6062 return (B_FALSE); 6063 } 6064 6065 return (B_TRUE); 6066 } 6067 6068 /* 6069 * Used to send an ICMP error message when a packet is received for 6070 * a protocol that is not supported. The mblk passed as argument 6071 * is consumed by this function. 6072 */ 6073 void 6074 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid) 6075 { 6076 mblk_t *mp; 6077 ipha_t *ipha; 6078 ill_t *ill; 6079 ipsec_in_t *ii; 6080 6081 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6082 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6083 6084 mp = ipsec_mp->b_cont; 6085 ipsec_mp->b_cont = NULL; 6086 ipha = (ipha_t *)mp->b_rptr; 6087 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6088 if (ip_fanout_send_icmp(q, mp, flags, ICMP_DEST_UNREACHABLE, 6089 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid)) { 6090 BUMP_MIB(&ip_mib, ipInUnknownProtos); 6091 } 6092 } else { 6093 /* Get ill from index in ipsec_in_t. */ 6094 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6095 B_TRUE, NULL, NULL, NULL, NULL); 6096 if (ill != NULL) { 6097 if (ip_fanout_send_icmp_v6(q, mp, flags, 6098 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6099 0, B_FALSE, zoneid)) { 6100 BUMP_MIB(ill->ill_ip6_mib, ipv6InUnknownProtos); 6101 } 6102 6103 ill_refrele(ill); 6104 } else { /* re-link for the freemsg() below. */ 6105 ipsec_mp->b_cont = mp; 6106 } 6107 } 6108 6109 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6110 freemsg(ipsec_mp); 6111 } 6112 6113 /* 6114 * See if the inbound datagram has had IPsec processing applied to it. 6115 */ 6116 boolean_t 6117 ipsec_in_is_secure(mblk_t *ipsec_mp) 6118 { 6119 ipsec_in_t *ii; 6120 6121 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6122 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6123 6124 if (ii->ipsec_in_loopback) { 6125 return (ii->ipsec_in_secure); 6126 } else { 6127 return (ii->ipsec_in_ah_sa != NULL || 6128 ii->ipsec_in_esp_sa != NULL || 6129 ii->ipsec_in_decaps); 6130 } 6131 } 6132 6133 /* 6134 * Handle protocols with which IP is less intimate. There 6135 * can be more than one stream bound to a particular 6136 * protocol. When this is the case, normally each one gets a copy 6137 * of any incoming packets. 6138 * 6139 * IPSEC NOTE : 6140 * 6141 * Don't allow a secure packet going up a non-secure connection. 6142 * We don't allow this because 6143 * 6144 * 1) Reply might go out in clear which will be dropped at 6145 * the sending side. 6146 * 2) If the reply goes out in clear it will give the 6147 * adversary enough information for getting the key in 6148 * most of the cases. 6149 * 6150 * Moreover getting a secure packet when we expect clear 6151 * implies that SA's were added without checking for 6152 * policy on both ends. This should not happen once ISAKMP 6153 * is used to negotiate SAs as SAs will be added only after 6154 * verifying the policy. 6155 * 6156 * NOTE : If the packet was tunneled and not multicast we only send 6157 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6158 * back to delivering packets to AF_INET6 raw sockets. 6159 * 6160 * IPQoS Notes: 6161 * Once we have determined the client, invoke IPPF processing. 6162 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6163 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6164 * ip_policy will be false. 6165 * 6166 * Zones notes: 6167 * Currently only applications in the global zone can create raw sockets for 6168 * protocols other than ICMP. So unlike the broadcast / multicast case of 6169 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6170 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6171 */ 6172 static void 6173 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6174 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6175 zoneid_t zoneid) 6176 { 6177 queue_t *rq; 6178 mblk_t *mp1, *first_mp1; 6179 uint_t protocol = ipha->ipha_protocol; 6180 ipaddr_t dst; 6181 boolean_t one_only; 6182 mblk_t *first_mp = mp; 6183 boolean_t secure; 6184 uint32_t ill_index; 6185 conn_t *connp, *first_connp, *next_connp; 6186 connf_t *connfp; 6187 boolean_t shared_addr; 6188 6189 if (mctl_present) { 6190 mp = first_mp->b_cont; 6191 secure = ipsec_in_is_secure(first_mp); 6192 ASSERT(mp != NULL); 6193 } else { 6194 secure = B_FALSE; 6195 } 6196 dst = ipha->ipha_dst; 6197 /* 6198 * If the packet was tunneled and not multicast we only send to it 6199 * the first match. 6200 */ 6201 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6202 !CLASSD(dst)); 6203 6204 shared_addr = (zoneid == ALL_ZONES); 6205 if (shared_addr) { 6206 /* 6207 * We don't allow multilevel ports for raw IP, so no need to 6208 * check for that here. 6209 */ 6210 zoneid = tsol_packet_to_zoneid(mp); 6211 } 6212 6213 connfp = &ipcl_proto_fanout[protocol]; 6214 mutex_enter(&connfp->connf_lock); 6215 connp = connfp->connf_head; 6216 for (connp = connfp->connf_head; connp != NULL; 6217 connp = connp->conn_next) { 6218 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6219 zoneid) && 6220 (!is_system_labeled() || 6221 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6222 connp))) 6223 break; 6224 } 6225 6226 if (connp == NULL || connp->conn_upq == NULL) { 6227 /* 6228 * No one bound to these addresses. Is 6229 * there a client that wants all 6230 * unclaimed datagrams? 6231 */ 6232 mutex_exit(&connfp->connf_lock); 6233 /* 6234 * Check for IPPROTO_ENCAP... 6235 */ 6236 if (protocol == IPPROTO_ENCAP && ip_g_mrouter) { 6237 /* 6238 * XXX If an IPsec mblk is here on a multicast 6239 * tunnel (using ip_mroute stuff), what should 6240 * I do? 6241 * 6242 * For now, just free the IPsec mblk before 6243 * passing it up to the multicast routing 6244 * stuff. 6245 * 6246 * BTW, If I match a configured IP-in-IP 6247 * tunnel, ip_mroute_decap will never be 6248 * called. 6249 */ 6250 if (mp != first_mp) 6251 freeb(first_mp); 6252 ip_mroute_decap(q, mp); 6253 } else { 6254 /* 6255 * Otherwise send an ICMP protocol unreachable. 6256 */ 6257 if (ip_fanout_send_icmp(q, first_mp, flags, 6258 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6259 mctl_present, zoneid)) { 6260 BUMP_MIB(&ip_mib, ipInUnknownProtos); 6261 } 6262 } 6263 return; 6264 } 6265 CONN_INC_REF(connp); 6266 first_connp = connp; 6267 6268 /* 6269 * Only send message to one tunnel driver by immediately 6270 * terminating the loop. 6271 */ 6272 connp = one_only ? NULL : connp->conn_next; 6273 6274 for (;;) { 6275 while (connp != NULL) { 6276 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6277 flags, zoneid) && 6278 (!is_system_labeled() || 6279 tsol_receive_local(mp, &dst, IPV4_VERSION, 6280 shared_addr, connp))) 6281 break; 6282 connp = connp->conn_next; 6283 } 6284 6285 /* 6286 * Copy the packet. 6287 */ 6288 if (connp == NULL || connp->conn_upq == NULL || 6289 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6290 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6291 /* 6292 * No more interested clients or memory 6293 * allocation failed 6294 */ 6295 connp = first_connp; 6296 break; 6297 } 6298 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6299 CONN_INC_REF(connp); 6300 mutex_exit(&connfp->connf_lock); 6301 rq = connp->conn_rq; 6302 if (!canputnext(rq)) { 6303 if (flags & IP_FF_RAWIP) { 6304 BUMP_MIB(&ip_mib, rawipInOverflows); 6305 } else { 6306 BUMP_MIB(&icmp_mib, icmpInOverflows); 6307 } 6308 6309 freemsg(first_mp1); 6310 } else { 6311 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6312 first_mp1 = ipsec_check_inbound_policy 6313 (first_mp1, connp, ipha, NULL, 6314 mctl_present); 6315 } 6316 if (first_mp1 != NULL) { 6317 /* 6318 * ip_fanout_proto also gets called from 6319 * icmp_inbound_error_fanout, in which case 6320 * the msg type is M_CTL. Don't add info 6321 * in this case for the time being. In future 6322 * when there is a need for knowing the 6323 * inbound iface index for ICMP error msgs, 6324 * then this can be changed. 6325 */ 6326 if ((connp->conn_recvif != 0) && 6327 (mp->b_datap->db_type != M_CTL)) { 6328 /* 6329 * the actual data will be 6330 * contained in b_cont upon 6331 * successful return of the 6332 * following call else 6333 * original mblk is returned 6334 */ 6335 ASSERT(recv_ill != NULL); 6336 mp1 = ip_add_info(mp1, recv_ill, 6337 IPF_RECVIF); 6338 } 6339 BUMP_MIB(&ip_mib, ipInDelivers); 6340 if (mctl_present) 6341 freeb(first_mp1); 6342 putnext(rq, mp1); 6343 } 6344 } 6345 mutex_enter(&connfp->connf_lock); 6346 /* Follow the next pointer before releasing the conn. */ 6347 next_connp = connp->conn_next; 6348 CONN_DEC_REF(connp); 6349 connp = next_connp; 6350 } 6351 6352 /* Last one. Send it upstream. */ 6353 mutex_exit(&connfp->connf_lock); 6354 6355 /* 6356 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6357 * will be set to false. 6358 */ 6359 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6360 ill_index = ill->ill_phyint->phyint_ifindex; 6361 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6362 if (mp == NULL) { 6363 CONN_DEC_REF(connp); 6364 if (mctl_present) { 6365 freeb(first_mp); 6366 } 6367 return; 6368 } 6369 } 6370 6371 rq = connp->conn_rq; 6372 if (!canputnext(rq)) { 6373 if (flags & IP_FF_RAWIP) { 6374 BUMP_MIB(&ip_mib, rawipInOverflows); 6375 } else { 6376 BUMP_MIB(&icmp_mib, icmpInOverflows); 6377 } 6378 6379 freemsg(first_mp); 6380 } else { 6381 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6382 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6383 ipha, NULL, mctl_present); 6384 } 6385 if (first_mp != NULL) { 6386 /* 6387 * ip_fanout_proto also gets called 6388 * from icmp_inbound_error_fanout, in 6389 * which case the msg type is M_CTL. 6390 * Don't add info in this case for time 6391 * being. In future when there is a 6392 * need for knowing the inbound iface 6393 * index for ICMP error msgs, then this 6394 * can be changed 6395 */ 6396 if ((connp->conn_recvif != 0) && 6397 (mp->b_datap->db_type != M_CTL)) { 6398 /* 6399 * the actual data will be contained in 6400 * b_cont upon successful return 6401 * of the following call else original 6402 * mblk is returned 6403 */ 6404 ASSERT(recv_ill != NULL); 6405 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6406 } 6407 BUMP_MIB(&ip_mib, ipInDelivers); 6408 putnext(rq, mp); 6409 if (mctl_present) 6410 freeb(first_mp); 6411 } 6412 } 6413 CONN_DEC_REF(connp); 6414 } 6415 6416 /* 6417 * Fanout for TCP packets 6418 * The caller puts <fport, lport> in the ports parameter. 6419 * 6420 * IPQoS Notes 6421 * Before sending it to the client, invoke IPPF processing. 6422 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6423 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6424 * ip_policy is false. 6425 */ 6426 static void 6427 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6428 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6429 { 6430 mblk_t *first_mp; 6431 boolean_t secure; 6432 uint32_t ill_index; 6433 int ip_hdr_len; 6434 tcph_t *tcph; 6435 boolean_t syn_present = B_FALSE; 6436 conn_t *connp; 6437 6438 first_mp = mp; 6439 if (mctl_present) { 6440 ASSERT(first_mp->b_datap->db_type == M_CTL); 6441 mp = first_mp->b_cont; 6442 secure = ipsec_in_is_secure(first_mp); 6443 ASSERT(mp != NULL); 6444 } else { 6445 secure = B_FALSE; 6446 } 6447 6448 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6449 6450 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 6451 NULL) { 6452 /* 6453 * No connected connection or listener. Send a 6454 * TH_RST via tcp_xmit_listeners_reset. 6455 */ 6456 6457 /* Initiate IPPf processing, if needed. */ 6458 if (IPP_ENABLED(IPP_LOCAL_IN)) { 6459 uint32_t ill_index; 6460 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6461 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6462 if (first_mp == NULL) 6463 return; 6464 } 6465 BUMP_MIB(&ip_mib, ipInDelivers); 6466 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6467 zoneid)); 6468 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 6469 return; 6470 } 6471 6472 /* 6473 * Allocate the SYN for the TCP connection here itself 6474 */ 6475 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6476 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6477 if (IPCL_IS_TCP(connp)) { 6478 squeue_t *sqp; 6479 6480 /* 6481 * For fused tcp loopback, assign the eager's 6482 * squeue to be that of the active connect's. 6483 * Note that we don't check for IP_FF_LOOPBACK 6484 * here since this routine gets called only 6485 * for loopback (unlike the IPv6 counterpart). 6486 */ 6487 ASSERT(Q_TO_CONN(q) != NULL); 6488 if (do_tcp_fusion && 6489 !CONN_INBOUND_POLICY_PRESENT(connp) && !secure && 6490 !IPP_ENABLED(IPP_LOCAL_IN) && !ip_policy && 6491 IPCL_IS_TCP(Q_TO_CONN(q))) { 6492 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6493 sqp = Q_TO_CONN(q)->conn_sqp; 6494 } else { 6495 sqp = IP_SQUEUE_GET(lbolt); 6496 } 6497 6498 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6499 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6500 syn_present = B_TRUE; 6501 } 6502 } 6503 6504 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6505 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6506 if ((flags & TH_RST) || (flags & TH_URG)) { 6507 CONN_DEC_REF(connp); 6508 freemsg(first_mp); 6509 return; 6510 } 6511 if (flags & TH_ACK) { 6512 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 6513 CONN_DEC_REF(connp); 6514 return; 6515 } 6516 6517 CONN_DEC_REF(connp); 6518 freemsg(first_mp); 6519 return; 6520 } 6521 6522 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6523 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6524 NULL, mctl_present); 6525 if (first_mp == NULL) { 6526 CONN_DEC_REF(connp); 6527 return; 6528 } 6529 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6530 ASSERT(syn_present); 6531 if (mctl_present) { 6532 ASSERT(first_mp != mp); 6533 first_mp->b_datap->db_struioflag |= 6534 STRUIO_POLICY; 6535 } else { 6536 ASSERT(first_mp == mp); 6537 mp->b_datap->db_struioflag &= 6538 ~STRUIO_EAGER; 6539 mp->b_datap->db_struioflag |= 6540 STRUIO_POLICY; 6541 } 6542 } else { 6543 /* 6544 * Discard first_mp early since we're dealing with a 6545 * fully-connected conn_t and tcp doesn't do policy in 6546 * this case. 6547 */ 6548 if (mctl_present) { 6549 freeb(first_mp); 6550 mctl_present = B_FALSE; 6551 } 6552 first_mp = mp; 6553 } 6554 } 6555 6556 /* 6557 * Initiate policy processing here if needed. If we get here from 6558 * icmp_inbound_error_fanout, ip_policy is false. 6559 */ 6560 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6561 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6562 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6563 if (mp == NULL) { 6564 CONN_DEC_REF(connp); 6565 if (mctl_present) 6566 freeb(first_mp); 6567 return; 6568 } else if (mctl_present) { 6569 ASSERT(first_mp != mp); 6570 first_mp->b_cont = mp; 6571 } else { 6572 first_mp = mp; 6573 } 6574 } 6575 6576 6577 6578 /* Handle IPv6 socket options. */ 6579 if (!syn_present && 6580 connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) { 6581 /* Add header */ 6582 ASSERT(recv_ill != NULL); 6583 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6584 if (mp == NULL) { 6585 CONN_DEC_REF(connp); 6586 if (mctl_present) 6587 freeb(first_mp); 6588 return; 6589 } else if (mctl_present) { 6590 /* 6591 * ip_add_info might return a new mp. 6592 */ 6593 ASSERT(first_mp != mp); 6594 first_mp->b_cont = mp; 6595 } else { 6596 first_mp = mp; 6597 } 6598 } 6599 6600 BUMP_MIB(&ip_mib, ipInDelivers); 6601 if (IPCL_IS_TCP(connp)) { 6602 (*ip_input_proc)(connp->conn_sqp, first_mp, 6603 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6604 } else { 6605 putnext(connp->conn_rq, first_mp); 6606 CONN_DEC_REF(connp); 6607 } 6608 } 6609 6610 /* 6611 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6612 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6613 * Caller is responsible for dropping references to the conn, and freeing 6614 * first_mp. 6615 * 6616 * IPQoS Notes 6617 * Before sending it to the client, invoke IPPF processing. Policy processing 6618 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6619 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6620 * ip_wput_local, ip_policy is false. 6621 */ 6622 static void 6623 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6624 boolean_t secure, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6625 boolean_t ip_policy) 6626 { 6627 boolean_t mctl_present = (first_mp != NULL); 6628 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6629 uint32_t ill_index; 6630 6631 if (mctl_present) 6632 first_mp->b_cont = mp; 6633 else 6634 first_mp = mp; 6635 6636 if (CONN_UDP_FLOWCTLD(connp)) { 6637 BUMP_MIB(&ip_mib, udpInOverflows); 6638 freemsg(first_mp); 6639 return; 6640 } 6641 6642 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6643 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6644 NULL, mctl_present); 6645 if (first_mp == NULL) 6646 return; /* Freed by ipsec_check_inbound_policy(). */ 6647 } 6648 if (mctl_present) 6649 freeb(first_mp); 6650 6651 if (connp->conn_recvif) 6652 in_flags = IPF_RECVIF; 6653 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 6654 in_flags |= IPF_RECVSLLA; 6655 6656 /* Handle IPv6 options. */ 6657 if (connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) 6658 in_flags |= IPF_RECVIF; 6659 6660 /* 6661 * Initiate IPPF processing here, if needed. Note first_mp won't be 6662 * freed if the packet is dropped. The caller will do so. 6663 */ 6664 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6665 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6666 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6667 if (mp == NULL) { 6668 return; 6669 } 6670 } 6671 if ((in_flags != 0) && 6672 (mp->b_datap->db_type != M_CTL)) { 6673 /* 6674 * The actual data will be contained in b_cont 6675 * upon successful return of the following call 6676 * else original mblk is returned 6677 */ 6678 ASSERT(recv_ill != NULL); 6679 mp = ip_add_info(mp, recv_ill, in_flags); 6680 } 6681 BUMP_MIB(&ip_mib, ipInDelivers); 6682 6683 /* Send it upstream */ 6684 CONN_UDP_RECV(connp, mp); 6685 } 6686 6687 /* 6688 * Fanout for UDP packets. 6689 * The caller puts <fport, lport> in the ports parameter. 6690 * 6691 * If SO_REUSEADDR is set all multicast and broadcast packets 6692 * will be delivered to all streams bound to the same port. 6693 * 6694 * Zones notes: 6695 * Multicast and broadcast packets will be distributed to streams in all zones. 6696 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 6697 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 6698 * packets. To maintain this behavior with multiple zones, the conns are grouped 6699 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 6700 * each zone. If unset, all the following conns in the same zone are skipped. 6701 */ 6702 static void 6703 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 6704 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 6705 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 6706 { 6707 uint32_t dstport, srcport; 6708 ipaddr_t dst; 6709 mblk_t *first_mp; 6710 boolean_t secure; 6711 in6_addr_t v6src; 6712 conn_t *connp; 6713 connf_t *connfp; 6714 conn_t *first_connp; 6715 conn_t *next_connp; 6716 mblk_t *mp1, *first_mp1; 6717 ipaddr_t src; 6718 zoneid_t last_zoneid; 6719 boolean_t reuseaddr; 6720 boolean_t shared_addr; 6721 6722 first_mp = mp; 6723 if (mctl_present) { 6724 mp = first_mp->b_cont; 6725 first_mp->b_cont = NULL; 6726 secure = ipsec_in_is_secure(first_mp); 6727 ASSERT(mp != NULL); 6728 } else { 6729 first_mp = NULL; 6730 secure = B_FALSE; 6731 } 6732 6733 /* Extract ports in net byte order */ 6734 dstport = htons(ntohl(ports) & 0xFFFF); 6735 srcport = htons(ntohl(ports) >> 16); 6736 dst = ipha->ipha_dst; 6737 src = ipha->ipha_src; 6738 6739 shared_addr = (zoneid == ALL_ZONES); 6740 if (shared_addr) { 6741 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 6742 if (zoneid == ALL_ZONES) 6743 zoneid = tsol_packet_to_zoneid(mp); 6744 } 6745 6746 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6747 mutex_enter(&connfp->connf_lock); 6748 connp = connfp->connf_head; 6749 if (!broadcast && !CLASSD(dst)) { 6750 /* 6751 * Not broadcast or multicast. Send to the one (first) 6752 * client we find. No need to check conn_wantpacket() 6753 * since IP_BOUND_IF/conn_incoming_ill does not apply to 6754 * IPv4 unicast packets. 6755 */ 6756 while ((connp != NULL) && 6757 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 6758 !IPCL_ZONE_MATCH(connp, zoneid))) { 6759 connp = connp->conn_next; 6760 } 6761 6762 if (connp == NULL || connp->conn_upq == NULL) 6763 goto notfound; 6764 6765 if (is_system_labeled() && 6766 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6767 connp)) 6768 goto notfound; 6769 6770 CONN_INC_REF(connp); 6771 mutex_exit(&connfp->connf_lock); 6772 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6773 recv_ill, ip_policy); 6774 IP_STAT(ip_udp_fannorm); 6775 CONN_DEC_REF(connp); 6776 return; 6777 } 6778 6779 /* 6780 * Broadcast and multicast case 6781 * 6782 * Need to check conn_wantpacket(). 6783 * If SO_REUSEADDR has been set on the first we send the 6784 * packet to all clients that have joined the group and 6785 * match the port. 6786 */ 6787 6788 while (connp != NULL) { 6789 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 6790 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6791 (!is_system_labeled() || 6792 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6793 connp))) 6794 break; 6795 connp = connp->conn_next; 6796 } 6797 6798 if (connp == NULL || connp->conn_upq == NULL) 6799 goto notfound; 6800 6801 first_connp = connp; 6802 /* 6803 * When SO_REUSEADDR is not set, send the packet only to the first 6804 * matching connection in its zone by keeping track of the zoneid. 6805 */ 6806 reuseaddr = first_connp->conn_reuseaddr; 6807 last_zoneid = first_connp->conn_zoneid; 6808 6809 CONN_INC_REF(connp); 6810 connp = connp->conn_next; 6811 for (;;) { 6812 while (connp != NULL) { 6813 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 6814 (reuseaddr || connp->conn_zoneid != last_zoneid) && 6815 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6816 (!is_system_labeled() || 6817 tsol_receive_local(mp, &dst, IPV4_VERSION, 6818 shared_addr, connp))) 6819 break; 6820 connp = connp->conn_next; 6821 } 6822 /* 6823 * Just copy the data part alone. The mctl part is 6824 * needed just for verifying policy and it is never 6825 * sent up. 6826 */ 6827 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6828 ((mp1 = copymsg(mp)) == NULL))) { 6829 /* 6830 * No more interested clients or memory 6831 * allocation failed 6832 */ 6833 connp = first_connp; 6834 break; 6835 } 6836 if (connp->conn_zoneid != last_zoneid) { 6837 /* 6838 * Update the zoneid so that the packet isn't sent to 6839 * any more conns in the same zone unless SO_REUSEADDR 6840 * is set. 6841 */ 6842 reuseaddr = connp->conn_reuseaddr; 6843 last_zoneid = connp->conn_zoneid; 6844 } 6845 if (first_mp != NULL) { 6846 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6847 ipsec_info_type == IPSEC_IN); 6848 first_mp1 = ipsec_in_tag(first_mp, NULL); 6849 if (first_mp1 == NULL) { 6850 freemsg(mp1); 6851 connp = first_connp; 6852 break; 6853 } 6854 } else { 6855 first_mp1 = NULL; 6856 } 6857 CONN_INC_REF(connp); 6858 mutex_exit(&connfp->connf_lock); 6859 /* 6860 * IPQoS notes: We don't send the packet for policy 6861 * processing here, will do it for the last one (below). 6862 * i.e. we do it per-packet now, but if we do policy 6863 * processing per-conn, then we would need to do it 6864 * here too. 6865 */ 6866 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6867 ipha, flags, recv_ill, B_FALSE); 6868 mutex_enter(&connfp->connf_lock); 6869 /* Follow the next pointer before releasing the conn. */ 6870 next_connp = connp->conn_next; 6871 IP_STAT(ip_udp_fanmb); 6872 CONN_DEC_REF(connp); 6873 connp = next_connp; 6874 } 6875 6876 /* Last one. Send it upstream. */ 6877 mutex_exit(&connfp->connf_lock); 6878 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6879 ip_policy); 6880 IP_STAT(ip_udp_fanmb); 6881 CONN_DEC_REF(connp); 6882 return; 6883 6884 notfound: 6885 6886 mutex_exit(&connfp->connf_lock); 6887 IP_STAT(ip_udp_fanothers); 6888 /* 6889 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 6890 * have already been matched above, since they live in the IPv4 6891 * fanout tables. This implies we only need to 6892 * check for IPv6 in6addr_any endpoints here. 6893 * Thus we compare using ipv6_all_zeros instead of the destination 6894 * address, except for the multicast group membership lookup which 6895 * uses the IPv4 destination. 6896 */ 6897 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 6898 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6899 mutex_enter(&connfp->connf_lock); 6900 connp = connfp->connf_head; 6901 if (!broadcast && !CLASSD(dst)) { 6902 while (connp != NULL) { 6903 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6904 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 6905 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6906 !connp->conn_ipv6_v6only) 6907 break; 6908 connp = connp->conn_next; 6909 } 6910 6911 if (connp != NULL && is_system_labeled() && 6912 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6913 connp)) 6914 connp = NULL; 6915 6916 if (connp == NULL || connp->conn_upq == NULL) { 6917 /* 6918 * No one bound to this port. Is 6919 * there a client that wants all 6920 * unclaimed datagrams? 6921 */ 6922 mutex_exit(&connfp->connf_lock); 6923 6924 if (mctl_present) 6925 first_mp->b_cont = mp; 6926 else 6927 first_mp = mp; 6928 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6929 ip_fanout_proto(q, first_mp, ill, ipha, 6930 flags | IP_FF_RAWIP, mctl_present, 6931 ip_policy, recv_ill, zoneid); 6932 } else { 6933 if (ip_fanout_send_icmp(q, first_mp, flags, 6934 ICMP_DEST_UNREACHABLE, 6935 ICMP_PORT_UNREACHABLE, 6936 mctl_present, zoneid)) { 6937 BUMP_MIB(&ip_mib, udpNoPorts); 6938 } 6939 } 6940 return; 6941 } 6942 6943 CONN_INC_REF(connp); 6944 mutex_exit(&connfp->connf_lock); 6945 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6946 recv_ill, ip_policy); 6947 CONN_DEC_REF(connp); 6948 return; 6949 } 6950 /* 6951 * IPv4 multicast packet being delivered to an AF_INET6 6952 * in6addr_any endpoint. 6953 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 6954 * and not conn_wantpacket_v6() since any multicast membership is 6955 * for an IPv4-mapped multicast address. 6956 * The packet is sent to all clients in all zones that have joined the 6957 * group and match the port. 6958 */ 6959 while (connp != NULL) { 6960 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6961 srcport, v6src) && 6962 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6963 (!is_system_labeled() || 6964 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6965 connp))) 6966 break; 6967 connp = connp->conn_next; 6968 } 6969 6970 if (connp == NULL || connp->conn_upq == NULL) { 6971 /* 6972 * No one bound to this port. Is 6973 * there a client that wants all 6974 * unclaimed datagrams? 6975 */ 6976 mutex_exit(&connfp->connf_lock); 6977 6978 if (mctl_present) 6979 first_mp->b_cont = mp; 6980 else 6981 first_mp = mp; 6982 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6983 ip_fanout_proto(q, first_mp, ill, ipha, 6984 flags | IP_FF_RAWIP, mctl_present, ip_policy, 6985 recv_ill, zoneid); 6986 } else { 6987 /* 6988 * We used to attempt to send an icmp error here, but 6989 * since this is known to be a multicast packet 6990 * and we don't send icmp errors in response to 6991 * multicast, just drop the packet and give up sooner. 6992 */ 6993 BUMP_MIB(&ip_mib, udpNoPorts); 6994 freemsg(first_mp); 6995 } 6996 return; 6997 } 6998 6999 first_connp = connp; 7000 7001 CONN_INC_REF(connp); 7002 connp = connp->conn_next; 7003 for (;;) { 7004 while (connp != NULL) { 7005 if (IPCL_UDP_MATCH_V6(connp, dstport, 7006 ipv6_all_zeros, srcport, v6src) && 7007 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7008 (!is_system_labeled() || 7009 tsol_receive_local(mp, &dst, IPV4_VERSION, 7010 shared_addr, connp))) 7011 break; 7012 connp = connp->conn_next; 7013 } 7014 /* 7015 * Just copy the data part alone. The mctl part is 7016 * needed just for verifying policy and it is never 7017 * sent up. 7018 */ 7019 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7020 ((mp1 = copymsg(mp)) == NULL))) { 7021 /* 7022 * No more intested clients or memory 7023 * allocation failed 7024 */ 7025 connp = first_connp; 7026 break; 7027 } 7028 if (first_mp != NULL) { 7029 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7030 ipsec_info_type == IPSEC_IN); 7031 first_mp1 = ipsec_in_tag(first_mp, NULL); 7032 if (first_mp1 == NULL) { 7033 freemsg(mp1); 7034 connp = first_connp; 7035 break; 7036 } 7037 } else { 7038 first_mp1 = NULL; 7039 } 7040 CONN_INC_REF(connp); 7041 mutex_exit(&connfp->connf_lock); 7042 /* 7043 * IPQoS notes: We don't send the packet for policy 7044 * processing here, will do it for the last one (below). 7045 * i.e. we do it per-packet now, but if we do policy 7046 * processing per-conn, then we would need to do it 7047 * here too. 7048 */ 7049 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 7050 ipha, flags, recv_ill, B_FALSE); 7051 mutex_enter(&connfp->connf_lock); 7052 /* Follow the next pointer before releasing the conn. */ 7053 next_connp = connp->conn_next; 7054 CONN_DEC_REF(connp); 7055 connp = next_connp; 7056 } 7057 7058 /* Last one. Send it upstream. */ 7059 mutex_exit(&connfp->connf_lock); 7060 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 7061 ip_policy); 7062 CONN_DEC_REF(connp); 7063 } 7064 7065 /* 7066 * Complete the ip_wput header so that it 7067 * is possible to generate ICMP 7068 * errors. 7069 */ 7070 int 7071 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid) 7072 { 7073 ire_t *ire; 7074 7075 if (ipha->ipha_src == INADDR_ANY) { 7076 ire = ire_lookup_local(zoneid); 7077 if (ire == NULL) { 7078 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7079 return (1); 7080 } 7081 ipha->ipha_src = ire->ire_addr; 7082 ire_refrele(ire); 7083 } 7084 ipha->ipha_ttl = ip_def_ttl; 7085 ipha->ipha_hdr_checksum = 0; 7086 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7087 return (0); 7088 } 7089 7090 /* 7091 * Nobody should be sending 7092 * packets up this stream 7093 */ 7094 static void 7095 ip_lrput(queue_t *q, mblk_t *mp) 7096 { 7097 mblk_t *mp1; 7098 7099 switch (mp->b_datap->db_type) { 7100 case M_FLUSH: 7101 /* Turn around */ 7102 if (*mp->b_rptr & FLUSHW) { 7103 *mp->b_rptr &= ~FLUSHR; 7104 qreply(q, mp); 7105 return; 7106 } 7107 break; 7108 } 7109 /* Could receive messages that passed through ar_rput */ 7110 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7111 mp1->b_prev = mp1->b_next = NULL; 7112 freemsg(mp); 7113 } 7114 7115 /* Nobody should be sending packets down this stream */ 7116 /* ARGSUSED */ 7117 void 7118 ip_lwput(queue_t *q, mblk_t *mp) 7119 { 7120 freemsg(mp); 7121 } 7122 7123 /* 7124 * Move the first hop in any source route to ipha_dst and remove that part of 7125 * the source route. Called by other protocols. Errors in option formatting 7126 * are ignored - will be handled by ip_wput_options Return the final 7127 * destination (either ipha_dst or the last entry in a source route.) 7128 */ 7129 ipaddr_t 7130 ip_massage_options(ipha_t *ipha) 7131 { 7132 ipoptp_t opts; 7133 uchar_t *opt; 7134 uint8_t optval; 7135 uint8_t optlen; 7136 ipaddr_t dst; 7137 int i; 7138 ire_t *ire; 7139 7140 ip2dbg(("ip_massage_options\n")); 7141 dst = ipha->ipha_dst; 7142 for (optval = ipoptp_first(&opts, ipha); 7143 optval != IPOPT_EOL; 7144 optval = ipoptp_next(&opts)) { 7145 opt = opts.ipoptp_cur; 7146 switch (optval) { 7147 uint8_t off; 7148 case IPOPT_SSRR: 7149 case IPOPT_LSRR: 7150 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7151 ip1dbg(("ip_massage_options: bad src route\n")); 7152 break; 7153 } 7154 optlen = opts.ipoptp_len; 7155 off = opt[IPOPT_OFFSET]; 7156 off--; 7157 redo_srr: 7158 if (optlen < IP_ADDR_LEN || 7159 off > optlen - IP_ADDR_LEN) { 7160 /* End of source route */ 7161 ip1dbg(("ip_massage_options: end of SR\n")); 7162 break; 7163 } 7164 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7165 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7166 ntohl(dst))); 7167 /* 7168 * Check if our address is present more than 7169 * once as consecutive hops in source route. 7170 * XXX verify per-interface ip_forwarding 7171 * for source route? 7172 */ 7173 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7174 ALL_ZONES, NULL, MATCH_IRE_TYPE); 7175 if (ire != NULL) { 7176 ire_refrele(ire); 7177 off += IP_ADDR_LEN; 7178 goto redo_srr; 7179 } 7180 if (dst == htonl(INADDR_LOOPBACK)) { 7181 ip1dbg(("ip_massage_options: loopback addr in " 7182 "source route!\n")); 7183 break; 7184 } 7185 /* 7186 * Update ipha_dst to be the first hop and remove the 7187 * first hop from the source route (by overwriting 7188 * part of the option with NOP options). 7189 */ 7190 ipha->ipha_dst = dst; 7191 /* Put the last entry in dst */ 7192 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7193 3; 7194 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7195 7196 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7197 ntohl(dst))); 7198 /* Move down and overwrite */ 7199 opt[IP_ADDR_LEN] = opt[0]; 7200 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7201 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7202 for (i = 0; i < IP_ADDR_LEN; i++) 7203 opt[i] = IPOPT_NOP; 7204 break; 7205 } 7206 } 7207 return (dst); 7208 } 7209 7210 /* 7211 * This function's job is to forward data to the reverse tunnel (FA->HA) 7212 * after doing a few checks. It is assumed that the incoming interface 7213 * of the packet is always different than the outgoing interface and the 7214 * ire_type of the found ire has to be a non-resolver type. 7215 * 7216 * IPQoS notes 7217 * IP policy is invoked twice for a forwarded packet, once on the read side 7218 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 7219 * enabled. 7220 */ 7221 static void 7222 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 7223 { 7224 ipha_t *ipha; 7225 queue_t *q; 7226 uint32_t pkt_len; 7227 #define rptr ((uchar_t *)ipha) 7228 uint32_t sum; 7229 uint32_t max_frag; 7230 mblk_t *first_mp; 7231 uint32_t ill_index; 7232 ipxmit_state_t pktxmit_state; 7233 ill_t *out_ill; 7234 7235 ASSERT(ire != NULL); 7236 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 7237 ASSERT(ire->ire_stq != NULL); 7238 7239 /* Initiate read side IPPF processing */ 7240 if (IPP_ENABLED(IPP_FWD_IN)) { 7241 ill_index = in_ill->ill_phyint->phyint_ifindex; 7242 ip_process(IPP_FWD_IN, &mp, ill_index); 7243 if (mp == NULL) { 7244 ip2dbg(("ip_mrtun_forward: inbound pkt " 7245 "dropped during IPPF processing\n")); 7246 return; 7247 } 7248 } 7249 7250 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 7251 ILLF_ROUTER) == 0) || 7252 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 7253 BUMP_MIB(&ip_mib, ipForwProhibits); 7254 ip0dbg(("ip_mrtun_forward: Can't forward :" 7255 "forwarding is not turned on\n")); 7256 goto drop_pkt; 7257 } 7258 7259 /* 7260 * Don't forward if the interface is down 7261 */ 7262 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 7263 BUMP_MIB(&ip_mib, ipInDiscards); 7264 goto drop_pkt; 7265 } 7266 7267 ipha = (ipha_t *)mp->b_rptr; 7268 pkt_len = ntohs(ipha->ipha_length); 7269 /* Adjust the checksum to reflect the ttl decrement. */ 7270 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 7271 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 7272 if (ipha->ipha_ttl-- <= 1) { 7273 if (ip_csum_hdr(ipha)) { 7274 BUMP_MIB(&ip_mib, ipInCksumErrs); 7275 goto drop_pkt; 7276 } 7277 q = ire->ire_stq; 7278 if ((first_mp = allocb(sizeof (ipsec_info_t), 7279 BPRI_HI)) == NULL) { 7280 goto drop_pkt; 7281 } 7282 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7283 /* Sent by forwarding path, and router is global zone */ 7284 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED, 7285 GLOBAL_ZONEID); 7286 return; 7287 } 7288 7289 /* Get the ill_index of the ILL */ 7290 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 7291 7292 /* 7293 * This location is chosen for the placement of the forwarding hook 7294 * because at this point we know that we have a path out for the 7295 * packet but haven't yet applied any logic (such as fragmenting) 7296 * that happen as part of transmitting the packet out. 7297 */ 7298 out_ill = ire->ire_ipif->ipif_ill; 7299 7300 DTRACE_PROBE4(ip4__forwarding__start, 7301 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7302 7303 FW_HOOKS(ip4_forwarding_event, ipv4firewall_forwarding, 7304 MSG_FWCOOKED_FORWARD, in_ill, out_ill, ipha, mp, mp); 7305 7306 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 7307 7308 if (mp == NULL) 7309 return; 7310 pkt_len = ntohs(ipha->ipha_length); 7311 7312 /* 7313 * ip_mrtun_forward is only used by foreign agent to reverse 7314 * tunnel the incoming packet. So it does not do any option 7315 * processing for source routing. 7316 */ 7317 max_frag = ire->ire_max_frag; 7318 if (pkt_len > max_frag) { 7319 /* 7320 * It needs fragging on its way out. We haven't 7321 * verified the header checksum yet. Since we 7322 * are going to put a surely good checksum in the 7323 * outgoing header, we have to make sure that it 7324 * was good coming in. 7325 */ 7326 if (ip_csum_hdr(ipha)) { 7327 BUMP_MIB(&ip_mib, ipInCksumErrs); 7328 goto drop_pkt; 7329 } 7330 7331 /* Initiate write side IPPF processing */ 7332 if (IPP_ENABLED(IPP_FWD_OUT)) { 7333 ip_process(IPP_FWD_OUT, &mp, ill_index); 7334 if (mp == NULL) { 7335 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 7336 "dropped/deferred during ip policy "\ 7337 "processing\n")); 7338 return; 7339 } 7340 } 7341 if ((first_mp = allocb(sizeof (ipsec_info_t), 7342 BPRI_HI)) == NULL) { 7343 goto drop_pkt; 7344 } 7345 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7346 mp = first_mp; 7347 7348 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID); 7349 return; 7350 } 7351 7352 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 7353 7354 ASSERT(ire->ire_ipif != NULL); 7355 7356 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 7357 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, mblk_t *, mp); 7358 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 7359 MSG_FWCOOKED_OUT, NULL, out_ill, ipha, mp, mp); 7360 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 7361 if (mp == NULL) 7362 return; 7363 7364 /* Now send the packet to the tunnel interface */ 7365 mp->b_prev = SET_BPREV_FLAG(IPP_FWD_OUT); 7366 q = ire->ire_stq; 7367 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_FALSE); 7368 if ((pktxmit_state == SEND_FAILED) || 7369 (pktxmit_state == LLHDR_RESLV_FAILED)) { 7370 ip2dbg(("ip_mrtun_forward: failed to send packet to ill %p\n", 7371 q->q_ptr)); 7372 } 7373 7374 return; 7375 7376 drop_pkt:; 7377 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 7378 freemsg(mp); 7379 #undef rptr 7380 } 7381 7382 /* 7383 * Fills the ipsec_out_t data structure with appropriate fields and 7384 * prepends it to mp which contains the IP hdr + data that was meant 7385 * to be forwarded. Please note that ipsec_out_info data structure 7386 * is used here to communicate the outgoing ill path at ip_wput() 7387 * for the ICMP error packet. This has nothing to do with ipsec IP 7388 * security. ipsec_out_t is really used to pass the info to the module 7389 * IP where this information cannot be extracted from conn. 7390 * This functions is called by ip_mrtun_forward(). 7391 */ 7392 void 7393 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 7394 { 7395 ipsec_out_t *io; 7396 7397 ASSERT(xmit_ill != NULL); 7398 first_mp->b_datap->db_type = M_CTL; 7399 first_mp->b_wptr += sizeof (ipsec_info_t); 7400 /* 7401 * This is to pass info to ip_wput in absence of conn. 7402 * ipsec_out_secure will be B_FALSE because of this. 7403 * Thus ipsec_out_secure being B_FALSE indicates that 7404 * this is not IPSEC security related information. 7405 */ 7406 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 7407 io = (ipsec_out_t *)first_mp->b_rptr; 7408 io->ipsec_out_type = IPSEC_OUT; 7409 io->ipsec_out_len = sizeof (ipsec_out_t); 7410 first_mp->b_cont = mp; 7411 io->ipsec_out_ill_index = 7412 xmit_ill->ill_phyint->phyint_ifindex; 7413 io->ipsec_out_xmit_if = B_TRUE; 7414 } 7415 7416 /* 7417 * Return the network mask 7418 * associated with the specified address. 7419 */ 7420 ipaddr_t 7421 ip_net_mask(ipaddr_t addr) 7422 { 7423 uchar_t *up = (uchar_t *)&addr; 7424 ipaddr_t mask = 0; 7425 uchar_t *maskp = (uchar_t *)&mask; 7426 7427 #if defined(__i386) || defined(__amd64) 7428 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7429 #endif 7430 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7431 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7432 #endif 7433 if (CLASSD(addr)) { 7434 maskp[0] = 0xF0; 7435 return (mask); 7436 } 7437 if (addr == 0) 7438 return (0); 7439 maskp[0] = 0xFF; 7440 if ((up[0] & 0x80) == 0) 7441 return (mask); 7442 7443 maskp[1] = 0xFF; 7444 if ((up[0] & 0xC0) == 0x80) 7445 return (mask); 7446 7447 maskp[2] = 0xFF; 7448 if ((up[0] & 0xE0) == 0xC0) 7449 return (mask); 7450 7451 /* Must be experimental or multicast, indicate as much */ 7452 return ((ipaddr_t)0); 7453 } 7454 7455 /* 7456 * Select an ill for the packet by considering load spreading across 7457 * a different ill in the group if dst_ill is part of some group. 7458 */ 7459 ill_t * 7460 ip_newroute_get_dst_ill(ill_t *dst_ill) 7461 { 7462 ill_t *ill; 7463 7464 /* 7465 * We schedule irrespective of whether the source address is 7466 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7467 */ 7468 ill = illgrp_scheduler(dst_ill); 7469 if (ill == NULL) 7470 return (NULL); 7471 7472 /* 7473 * For groups with names ip_sioctl_groupname ensures that all 7474 * ills are of same type. For groups without names, ifgrp_insert 7475 * ensures this. 7476 */ 7477 ASSERT(dst_ill->ill_type == ill->ill_type); 7478 7479 return (ill); 7480 } 7481 7482 /* 7483 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7484 */ 7485 ill_t * 7486 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6) 7487 { 7488 ill_t *ret_ill; 7489 7490 ASSERT(ifindex != 0); 7491 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 7492 if (ret_ill == NULL || 7493 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7494 if (isv6) { 7495 if (ill != NULL) { 7496 BUMP_MIB(ill->ill_ip6_mib, ipv6OutDiscards); 7497 } else { 7498 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 7499 } 7500 ip1dbg(("ip_grab_attach_ill (IPv6): " 7501 "bad ifindex %d.\n", ifindex)); 7502 } else { 7503 BUMP_MIB(&ip_mib, ipOutDiscards); 7504 ip1dbg(("ip_grab_attach_ill (IPv4): " 7505 "bad ifindex %d.\n", ifindex)); 7506 } 7507 if (ret_ill != NULL) 7508 ill_refrele(ret_ill); 7509 freemsg(first_mp); 7510 return (NULL); 7511 } 7512 7513 return (ret_ill); 7514 } 7515 7516 /* 7517 * IPv4 - 7518 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7519 * out a packet to a destination address for which we do not have specific 7520 * (or sufficient) routing information. 7521 * 7522 * NOTE : These are the scopes of some of the variables that point at IRE, 7523 * which needs to be followed while making any future modifications 7524 * to avoid memory leaks. 7525 * 7526 * - ire and sire are the entries looked up initially by 7527 * ire_ftable_lookup. 7528 * - ipif_ire is used to hold the interface ire associated with 7529 * the new cache ire. But it's scope is limited, so we always REFRELE 7530 * it before branching out to error paths. 7531 * - save_ire is initialized before ire_create, so that ire returned 7532 * by ire_create will not over-write the ire. We REFRELE save_ire 7533 * before breaking out of the switch. 7534 * 7535 * Thus on failures, we have to REFRELE only ire and sire, if they 7536 * are not NULL. 7537 */ 7538 void 7539 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp, 7540 zoneid_t zoneid) 7541 { 7542 areq_t *areq; 7543 ipaddr_t gw = 0; 7544 ire_t *ire = NULL; 7545 mblk_t *res_mp; 7546 ipaddr_t *addrp; 7547 ipaddr_t nexthop_addr; 7548 ipif_t *src_ipif = NULL; 7549 ill_t *dst_ill = NULL; 7550 ipha_t *ipha; 7551 ire_t *sire = NULL; 7552 mblk_t *first_mp; 7553 ire_t *save_ire; 7554 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7555 ushort_t ire_marks = 0; 7556 boolean_t mctl_present; 7557 ipsec_out_t *io; 7558 mblk_t *saved_mp; 7559 ire_t *first_sire = NULL; 7560 mblk_t *copy_mp = NULL; 7561 mblk_t *xmit_mp = NULL; 7562 ipaddr_t save_dst; 7563 uint32_t multirt_flags = 7564 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7565 boolean_t multirt_is_resolvable; 7566 boolean_t multirt_resolve_next; 7567 boolean_t do_attach_ill = B_FALSE; 7568 boolean_t ip_nexthop = B_FALSE; 7569 tsol_ire_gw_secattr_t *attrp = NULL; 7570 tsol_gcgrp_t *gcgrp = NULL; 7571 tsol_gcgrp_addr_t ga; 7572 7573 if (ip_debug > 2) { 7574 /* ip1dbg */ 7575 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7576 } 7577 7578 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7579 if (mctl_present) { 7580 io = (ipsec_out_t *)first_mp->b_rptr; 7581 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7582 ASSERT(zoneid == io->ipsec_out_zoneid); 7583 ASSERT(zoneid != ALL_ZONES); 7584 } 7585 7586 ipha = (ipha_t *)mp->b_rptr; 7587 7588 /* All multicast lookups come through ip_newroute_ipif() */ 7589 if (CLASSD(dst)) { 7590 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7591 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7592 freemsg(first_mp); 7593 return; 7594 } 7595 7596 if (mctl_present && io->ipsec_out_attach_if) { 7597 /* ip_grab_attach_ill returns a held ill */ 7598 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7599 io->ipsec_out_ill_index, B_FALSE); 7600 7601 /* Failure case frees things for us. */ 7602 if (attach_ill == NULL) 7603 return; 7604 7605 /* 7606 * Check if we need an ire that will not be 7607 * looked up by anybody else i.e. HIDDEN. 7608 */ 7609 if (ill_is_probeonly(attach_ill)) 7610 ire_marks = IRE_MARK_HIDDEN; 7611 } 7612 if (mctl_present && io->ipsec_out_ip_nexthop) { 7613 ip_nexthop = B_TRUE; 7614 nexthop_addr = io->ipsec_out_nexthop_addr; 7615 } 7616 /* 7617 * If this IRE is created for forwarding or it is not for 7618 * traffic for congestion controlled protocols, mark it as temporary. 7619 */ 7620 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7621 ire_marks |= IRE_MARK_TEMPORARY; 7622 7623 /* 7624 * Get what we can from ire_ftable_lookup which will follow an IRE 7625 * chain until it gets the most specific information available. 7626 * For example, we know that there is no IRE_CACHE for this dest, 7627 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7628 * ire_ftable_lookup will look up the gateway, etc. 7629 * Check if in_ill != NULL. If it is true, the packet must be 7630 * from an incoming interface where RTA_SRCIFP is set. 7631 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7632 * to the destination, of equal netmask length in the forward table, 7633 * will be recursively explored. If no information is available 7634 * for the final gateway of that route, we force the returned ire 7635 * to be equal to sire using MATCH_IRE_PARENT. 7636 * At least, in this case we have a starting point (in the buckets) 7637 * to look for other routes to the destination in the forward table. 7638 * This is actually used only for multirouting, where a list 7639 * of routes has to be processed in sequence. 7640 * 7641 * In the process of coming up with the most specific information, 7642 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7643 * for the gateway (i.e., one for which the ire_nce->nce_state is 7644 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7645 * Two caveats when handling incomplete ire's in ip_newroute: 7646 * - we should be careful when accessing its ire_nce (specifically 7647 * the nce_res_mp) ast it might change underneath our feet, and, 7648 * - not all legacy code path callers are prepared to handle 7649 * incomplete ire's, so we should not create/add incomplete 7650 * ire_cache entries here. (See discussion about temporary solution 7651 * further below). 7652 * 7653 * In order to minimize packet dropping, and to preserve existing 7654 * behavior, we treat this case as if there were no IRE_CACHE for the 7655 * gateway, and instead use the IF_RESOLVER ire to send out 7656 * another request to ARP (this is achieved by passing the 7657 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7658 * arp response comes back in ip_wput_nondata, we will create 7659 * a per-dst ire_cache that has an ND_COMPLETE ire. 7660 * 7661 * Note that this is a temporary solution; the correct solution is 7662 * to create an incomplete per-dst ire_cache entry, and send the 7663 * packet out when the gw's nce is resolved. In order to achieve this, 7664 * all packet processing must have been completed prior to calling 7665 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7666 * to be modified to accomodate this solution. 7667 */ 7668 if (in_ill != NULL) { 7669 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 7670 in_ill, MATCH_IRE_TYPE); 7671 } else if (ip_nexthop) { 7672 /* 7673 * The first time we come here, we look for an IRE_INTERFACE 7674 * entry for the specified nexthop, set the dst to be the 7675 * nexthop address and create an IRE_CACHE entry for the 7676 * nexthop. The next time around, we are able to find an 7677 * IRE_CACHE entry for the nexthop, set the gateway to be the 7678 * nexthop address and create an IRE_CACHE entry for the 7679 * destination address via the specified nexthop. 7680 */ 7681 ire = ire_cache_lookup(nexthop_addr, zoneid, 7682 MBLK_GETLABEL(mp)); 7683 if (ire != NULL) { 7684 gw = nexthop_addr; 7685 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7686 } else { 7687 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7688 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7689 MBLK_GETLABEL(mp), 7690 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 7691 if (ire != NULL) { 7692 dst = nexthop_addr; 7693 } 7694 } 7695 } else if (attach_ill == NULL) { 7696 ire = ire_ftable_lookup(dst, 0, 0, 0, 7697 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7698 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7699 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7700 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE); 7701 } else { 7702 /* 7703 * attach_ill is set only for communicating with 7704 * on-link hosts. So, don't look for DEFAULT. 7705 */ 7706 ipif_t *attach_ipif; 7707 7708 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7709 if (attach_ipif == NULL) { 7710 ill_refrele(attach_ill); 7711 goto icmp_err_ret; 7712 } 7713 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7714 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7715 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7716 MATCH_IRE_SECATTR); 7717 ipif_refrele(attach_ipif); 7718 } 7719 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7720 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7721 7722 /* 7723 * This loop is run only once in most cases. 7724 * We loop to resolve further routes only when the destination 7725 * can be reached through multiple RTF_MULTIRT-flagged ires. 7726 */ 7727 do { 7728 /* Clear the previous iteration's values */ 7729 if (src_ipif != NULL) { 7730 ipif_refrele(src_ipif); 7731 src_ipif = NULL; 7732 } 7733 if (dst_ill != NULL) { 7734 ill_refrele(dst_ill); 7735 dst_ill = NULL; 7736 } 7737 7738 multirt_resolve_next = B_FALSE; 7739 /* 7740 * We check if packets have to be multirouted. 7741 * In this case, given the current <ire, sire> couple, 7742 * we look for the next suitable <ire, sire>. 7743 * This check is done in ire_multirt_lookup(), 7744 * which applies various criteria to find the next route 7745 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7746 * unchanged if it detects it has not been tried yet. 7747 */ 7748 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7749 ip3dbg(("ip_newroute: starting next_resolution " 7750 "with first_mp %p, tag %d\n", 7751 (void *)first_mp, 7752 MULTIRT_DEBUG_TAGGED(first_mp))); 7753 7754 ASSERT(sire != NULL); 7755 multirt_is_resolvable = 7756 ire_multirt_lookup(&ire, &sire, multirt_flags, 7757 MBLK_GETLABEL(mp)); 7758 7759 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7760 "ire %p, sire %p\n", 7761 multirt_is_resolvable, 7762 (void *)ire, (void *)sire)); 7763 7764 if (!multirt_is_resolvable) { 7765 /* 7766 * No more multirt route to resolve; give up 7767 * (all routes resolved or no more 7768 * resolvable routes). 7769 */ 7770 if (ire != NULL) { 7771 ire_refrele(ire); 7772 ire = NULL; 7773 } 7774 } else { 7775 ASSERT(sire != NULL); 7776 ASSERT(ire != NULL); 7777 /* 7778 * We simply use first_sire as a flag that 7779 * indicates if a resolvable multirt route 7780 * has already been found. 7781 * If it is not the case, we may have to send 7782 * an ICMP error to report that the 7783 * destination is unreachable. 7784 * We do not IRE_REFHOLD first_sire. 7785 */ 7786 if (first_sire == NULL) { 7787 first_sire = sire; 7788 } 7789 } 7790 } 7791 if (ire == NULL) { 7792 if (ip_debug > 3) { 7793 /* ip2dbg */ 7794 pr_addr_dbg("ip_newroute: " 7795 "can't resolve %s\n", AF_INET, &dst); 7796 } 7797 ip3dbg(("ip_newroute: " 7798 "ire %p, sire %p, first_sire %p\n", 7799 (void *)ire, (void *)sire, (void *)first_sire)); 7800 7801 if (sire != NULL) { 7802 ire_refrele(sire); 7803 sire = NULL; 7804 } 7805 7806 if (first_sire != NULL) { 7807 /* 7808 * At least one multirt route has been found 7809 * in the same call to ip_newroute(); 7810 * there is no need to report an ICMP error. 7811 * first_sire was not IRE_REFHOLDed. 7812 */ 7813 MULTIRT_DEBUG_UNTAG(first_mp); 7814 freemsg(first_mp); 7815 return; 7816 } 7817 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 7818 RTA_DST); 7819 if (attach_ill != NULL) 7820 ill_refrele(attach_ill); 7821 goto icmp_err_ret; 7822 } 7823 7824 /* 7825 * When RTA_SRCIFP is used to add a route, then an interface 7826 * route is added in the source interface's routing table. 7827 * If the outgoing interface of this route is of type 7828 * IRE_IF_RESOLVER, then upon creation of the ire, 7829 * ire_nce->nce_res_mp is set to NULL. 7830 * Later, when this route is first used for forwarding 7831 * a packet, ip_newroute() is called 7832 * to resolve the hardware address of the outgoing ipif. 7833 * We do not come here for IRE_IF_NORESOLVER entries in the 7834 * source interface based table. We only come here if the 7835 * outgoing interface is a resolver interface and we don't 7836 * have the ire_nce->nce_res_mp information yet. 7837 * If in_ill is not null that means it is called from 7838 * ip_rput. 7839 */ 7840 7841 ASSERT(ire->ire_in_ill == NULL || 7842 (ire->ire_type == IRE_IF_RESOLVER && 7843 ire->ire_nce != NULL && ire->ire_nce->nce_res_mp == NULL)); 7844 7845 /* 7846 * Verify that the returned IRE does not have either 7847 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 7848 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 7849 */ 7850 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 7851 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 7852 if (attach_ill != NULL) 7853 ill_refrele(attach_ill); 7854 goto icmp_err_ret; 7855 } 7856 /* 7857 * Increment the ire_ob_pkt_count field for ire if it is an 7858 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 7859 * increment the same for the parent IRE, sire, if it is some 7860 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST 7861 * and HOST_REDIRECT). 7862 */ 7863 if ((ire->ire_type & IRE_INTERFACE) != 0) { 7864 UPDATE_OB_PKT_COUNT(ire); 7865 ire->ire_last_used_time = lbolt; 7866 } 7867 7868 if (sire != NULL) { 7869 gw = sire->ire_gateway_addr; 7870 ASSERT((sire->ire_type & (IRE_CACHETABLE | 7871 IRE_INTERFACE)) == 0); 7872 UPDATE_OB_PKT_COUNT(sire); 7873 sire->ire_last_used_time = lbolt; 7874 } 7875 /* 7876 * We have a route to reach the destination. 7877 * 7878 * 1) If the interface is part of ill group, try to get a new 7879 * ill taking load spreading into account. 7880 * 7881 * 2) After selecting the ill, get a source address that 7882 * might create good inbound load spreading. 7883 * ipif_select_source does this for us. 7884 * 7885 * If the application specified the ill (ifindex), we still 7886 * load spread. Only if the packets needs to go out 7887 * specifically on a given ill e.g. binding to 7888 * IPIF_NOFAILOVER address, then we don't try to use a 7889 * different ill for load spreading. 7890 */ 7891 if (attach_ill == NULL) { 7892 /* 7893 * Don't perform outbound load spreading in the 7894 * case of an RTF_MULTIRT route, as we actually 7895 * typically want to replicate outgoing packets 7896 * through particular interfaces. 7897 */ 7898 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7899 dst_ill = ire->ire_ipif->ipif_ill; 7900 /* for uniformity */ 7901 ill_refhold(dst_ill); 7902 } else { 7903 /* 7904 * If we are here trying to create an IRE_CACHE 7905 * for an offlink destination and have the 7906 * IRE_CACHE for the next hop and the latter is 7907 * using virtual IP source address selection i.e 7908 * it's ire->ire_ipif is pointing to a virtual 7909 * network interface (vni) then 7910 * ip_newroute_get_dst_ll() will return the vni 7911 * interface as the dst_ill. Since the vni is 7912 * virtual i.e not associated with any physical 7913 * interface, it cannot be the dst_ill, hence 7914 * in such a case call ip_newroute_get_dst_ll() 7915 * with the stq_ill instead of the ire_ipif ILL. 7916 * The function returns a refheld ill. 7917 */ 7918 if ((ire->ire_type == IRE_CACHE) && 7919 IS_VNI(ire->ire_ipif->ipif_ill)) 7920 dst_ill = ip_newroute_get_dst_ill( 7921 ire->ire_stq->q_ptr); 7922 else 7923 dst_ill = ip_newroute_get_dst_ill( 7924 ire->ire_ipif->ipif_ill); 7925 } 7926 if (dst_ill == NULL) { 7927 if (ip_debug > 2) { 7928 pr_addr_dbg("ip_newroute: " 7929 "no dst ill for dst" 7930 " %s\n", AF_INET, &dst); 7931 } 7932 goto icmp_err_ret; 7933 } 7934 } else { 7935 dst_ill = ire->ire_ipif->ipif_ill; 7936 /* for uniformity */ 7937 ill_refhold(dst_ill); 7938 /* 7939 * We should have found a route matching ill as we 7940 * called ire_ftable_lookup with MATCH_IRE_ILL. 7941 * Rather than asserting, when there is a mismatch, 7942 * we just drop the packet. 7943 */ 7944 if (dst_ill != attach_ill) { 7945 ip0dbg(("ip_newroute: Packet dropped as " 7946 "IPIF_NOFAILOVER ill is %s, " 7947 "ire->ire_ipif->ipif_ill is %s\n", 7948 attach_ill->ill_name, 7949 dst_ill->ill_name)); 7950 ill_refrele(attach_ill); 7951 goto icmp_err_ret; 7952 } 7953 } 7954 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 7955 if (attach_ill != NULL) { 7956 ill_refrele(attach_ill); 7957 attach_ill = NULL; 7958 do_attach_ill = B_TRUE; 7959 } 7960 ASSERT(dst_ill != NULL); 7961 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 7962 7963 /* 7964 * Pick the best source address from dst_ill. 7965 * 7966 * 1) If it is part of a multipathing group, we would 7967 * like to spread the inbound packets across different 7968 * interfaces. ipif_select_source picks a random source 7969 * across the different ills in the group. 7970 * 7971 * 2) If it is not part of a multipathing group, we try 7972 * to pick the source address from the destination 7973 * route. Clustering assumes that when we have multiple 7974 * prefixes hosted on an interface, the prefix of the 7975 * source address matches the prefix of the destination 7976 * route. We do this only if the address is not 7977 * DEPRECATED. 7978 * 7979 * 3) If the conn is in a different zone than the ire, we 7980 * need to pick a source address from the right zone. 7981 * 7982 * NOTE : If we hit case (1) above, the prefix of the source 7983 * address picked may not match the prefix of the 7984 * destination routes prefix as ipif_select_source 7985 * does not look at "dst" while picking a source 7986 * address. 7987 * If we want the same behavior as (2), we will need 7988 * to change the behavior of ipif_select_source. 7989 */ 7990 ASSERT(src_ipif == NULL); 7991 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 7992 /* 7993 * The RTF_SETSRC flag is set in the parent ire (sire). 7994 * Check that the ipif matching the requested source 7995 * address still exists. 7996 */ 7997 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 7998 zoneid, NULL, NULL, NULL, NULL); 7999 } 8000 if (src_ipif == NULL) { 8001 ire_marks |= IRE_MARK_USESRC_CHECK; 8002 if ((dst_ill->ill_group != NULL) || 8003 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8004 (connp != NULL && ire->ire_zoneid != zoneid && 8005 ire->ire_zoneid != ALL_ZONES) || 8006 (dst_ill->ill_usesrc_ifindex != 0)) { 8007 /* 8008 * If the destination is reachable via a 8009 * given gateway, the selected source address 8010 * should be in the same subnet as the gateway. 8011 * Otherwise, the destination is not reachable. 8012 * 8013 * If there are no interfaces on the same subnet 8014 * as the destination, ipif_select_source gives 8015 * first non-deprecated interface which might be 8016 * on a different subnet than the gateway. 8017 * This is not desirable. Hence pass the dst_ire 8018 * source address to ipif_select_source. 8019 * It is sure that the destination is reachable 8020 * with the dst_ire source address subnet. 8021 * So passing dst_ire source address to 8022 * ipif_select_source will make sure that the 8023 * selected source will be on the same subnet 8024 * as dst_ire source address. 8025 */ 8026 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8027 src_ipif = ipif_select_source(dst_ill, saddr, 8028 zoneid); 8029 if (src_ipif == NULL) { 8030 if (ip_debug > 2) { 8031 pr_addr_dbg("ip_newroute: " 8032 "no src for dst %s ", 8033 AF_INET, &dst); 8034 printf("through interface %s\n", 8035 dst_ill->ill_name); 8036 } 8037 goto icmp_err_ret; 8038 } 8039 } else { 8040 src_ipif = ire->ire_ipif; 8041 ASSERT(src_ipif != NULL); 8042 /* hold src_ipif for uniformity */ 8043 ipif_refhold(src_ipif); 8044 } 8045 } 8046 8047 /* 8048 * Assign a source address while we have the conn. 8049 * We can't have ip_wput_ire pick a source address when the 8050 * packet returns from arp since we need to look at 8051 * conn_unspec_src and conn_zoneid, and we lose the conn when 8052 * going through arp. 8053 * 8054 * NOTE : ip_newroute_v6 does not have this piece of code as 8055 * it uses ip6i to store this information. 8056 */ 8057 if (ipha->ipha_src == INADDR_ANY && 8058 (connp == NULL || !connp->conn_unspec_src)) { 8059 ipha->ipha_src = src_ipif->ipif_src_addr; 8060 } 8061 if (ip_debug > 3) { 8062 /* ip2dbg */ 8063 pr_addr_dbg("ip_newroute: first hop %s\n", 8064 AF_INET, &gw); 8065 } 8066 ip2dbg(("\tire type %s (%d)\n", 8067 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8068 8069 /* 8070 * The TTL of multirouted packets is bounded by the 8071 * ip_multirt_ttl ndd variable. 8072 */ 8073 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8074 /* Force TTL of multirouted packets */ 8075 if ((ip_multirt_ttl > 0) && 8076 (ipha->ipha_ttl > ip_multirt_ttl)) { 8077 ip2dbg(("ip_newroute: forcing multirt TTL " 8078 "to %d (was %d), dst 0x%08x\n", 8079 ip_multirt_ttl, ipha->ipha_ttl, 8080 ntohl(sire->ire_addr))); 8081 ipha->ipha_ttl = ip_multirt_ttl; 8082 } 8083 } 8084 /* 8085 * At this point in ip_newroute(), ire is either the 8086 * IRE_CACHE of the next-hop gateway for an off-subnet 8087 * destination or an IRE_INTERFACE type that should be used 8088 * to resolve an on-subnet destination or an on-subnet 8089 * next-hop gateway. 8090 * 8091 * In the IRE_CACHE case, we have the following : 8092 * 8093 * 1) src_ipif - used for getting a source address. 8094 * 8095 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8096 * means packets using this IRE_CACHE will go out on 8097 * dst_ill. 8098 * 8099 * 3) The IRE sire will point to the prefix that is the 8100 * longest matching route for the destination. These 8101 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8102 * 8103 * The newly created IRE_CACHE entry for the off-subnet 8104 * destination is tied to both the prefix route and the 8105 * interface route used to resolve the next-hop gateway 8106 * via the ire_phandle and ire_ihandle fields, 8107 * respectively. 8108 * 8109 * In the IRE_INTERFACE case, we have the following : 8110 * 8111 * 1) src_ipif - used for getting a source address. 8112 * 8113 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8114 * means packets using the IRE_CACHE that we will build 8115 * here will go out on dst_ill. 8116 * 8117 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8118 * to be created will only be tied to the IRE_INTERFACE 8119 * that was derived from the ire_ihandle field. 8120 * 8121 * If sire is non-NULL, it means the destination is 8122 * off-link and we will first create the IRE_CACHE for the 8123 * gateway. Next time through ip_newroute, we will create 8124 * the IRE_CACHE for the final destination as described 8125 * above. 8126 * 8127 * In both cases, after the current resolution has been 8128 * completed (or possibly initialised, in the IRE_INTERFACE 8129 * case), the loop may be re-entered to attempt the resolution 8130 * of another RTF_MULTIRT route. 8131 * 8132 * When an IRE_CACHE entry for the off-subnet destination is 8133 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8134 * for further processing in emission loops. 8135 */ 8136 save_ire = ire; 8137 switch (ire->ire_type) { 8138 case IRE_CACHE: { 8139 ire_t *ipif_ire; 8140 mblk_t *ire_fp_mp; 8141 8142 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8143 if (gw == 0) 8144 gw = ire->ire_gateway_addr; 8145 /* 8146 * We need 3 ire's to create a new cache ire for an 8147 * off-link destination from the cache ire of the 8148 * gateway. 8149 * 8150 * 1. The prefix ire 'sire' (Note that this does 8151 * not apply to the conn_nexthop_set case) 8152 * 2. The cache ire of the gateway 'ire' 8153 * 3. The interface ire 'ipif_ire' 8154 * 8155 * We have (1) and (2). We lookup (3) below. 8156 * 8157 * If there is no interface route to the gateway, 8158 * it is a race condition, where we found the cache 8159 * but the interface route has been deleted. 8160 */ 8161 if (ip_nexthop) { 8162 ipif_ire = ire_ihandle_lookup_onlink(ire); 8163 } else { 8164 ipif_ire = 8165 ire_ihandle_lookup_offlink(ire, sire); 8166 } 8167 if (ipif_ire == NULL) { 8168 ip1dbg(("ip_newroute: " 8169 "ire_ihandle_lookup_offlink failed\n")); 8170 goto icmp_err_ret; 8171 } 8172 /* 8173 * XXX We are using the same res_mp 8174 * (DL_UNITDATA_REQ) though the save_ire is not 8175 * pointing at the same ill. 8176 * This is incorrect. We need to send it up to the 8177 * resolver to get the right res_mp. For ethernets 8178 * this may be okay (ill_type == DL_ETHER). 8179 */ 8180 res_mp = save_ire->ire_nce->nce_res_mp; 8181 ire_fp_mp = NULL; 8182 /* 8183 * save_ire's nce_fp_mp can't change since it is 8184 * not an IRE_MIPRTUN or IRE_BROADCAST 8185 * LOCK_IRE_FP_MP does not do any useful work in 8186 * the case of IRE_CACHE. So we don't use it below. 8187 */ 8188 if (save_ire->ire_stq == dst_ill->ill_wq) 8189 ire_fp_mp = save_ire->ire_nce->nce_fp_mp; 8190 8191 /* 8192 * Check cached gateway IRE for any security 8193 * attributes; if found, associate the gateway 8194 * credentials group to the destination IRE. 8195 */ 8196 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8197 mutex_enter(&attrp->igsa_lock); 8198 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8199 GCGRP_REFHOLD(gcgrp); 8200 mutex_exit(&attrp->igsa_lock); 8201 } 8202 8203 ire = ire_create( 8204 (uchar_t *)&dst, /* dest address */ 8205 (uchar_t *)&ip_g_all_ones, /* mask */ 8206 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8207 (uchar_t *)&gw, /* gateway address */ 8208 NULL, 8209 &save_ire->ire_max_frag, 8210 ire_fp_mp, /* Fast Path header */ 8211 dst_ill->ill_rq, /* recv-from queue */ 8212 dst_ill->ill_wq, /* send-to queue */ 8213 IRE_CACHE, /* IRE type */ 8214 res_mp, 8215 src_ipif, 8216 in_ill, /* incoming ill */ 8217 (sire != NULL) ? 8218 sire->ire_mask : 0, /* Parent mask */ 8219 (sire != NULL) ? 8220 sire->ire_phandle : 0, /* Parent handle */ 8221 ipif_ire->ire_ihandle, /* Interface handle */ 8222 (sire != NULL) ? (sire->ire_flags & 8223 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8224 (sire != NULL) ? 8225 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8226 NULL, 8227 gcgrp); 8228 8229 if (ire == NULL) { 8230 if (gcgrp != NULL) { 8231 GCGRP_REFRELE(gcgrp); 8232 gcgrp = NULL; 8233 } 8234 ire_refrele(ipif_ire); 8235 ire_refrele(save_ire); 8236 break; 8237 } 8238 8239 /* reference now held by IRE */ 8240 gcgrp = NULL; 8241 8242 ire->ire_marks |= ire_marks; 8243 8244 /* 8245 * Prevent sire and ipif_ire from getting deleted. 8246 * The newly created ire is tied to both of them via 8247 * the phandle and ihandle respectively. 8248 */ 8249 if (sire != NULL) { 8250 IRB_REFHOLD(sire->ire_bucket); 8251 /* Has it been removed already ? */ 8252 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8253 IRB_REFRELE(sire->ire_bucket); 8254 ire_refrele(ipif_ire); 8255 ire_refrele(save_ire); 8256 break; 8257 } 8258 } 8259 8260 IRB_REFHOLD(ipif_ire->ire_bucket); 8261 /* Has it been removed already ? */ 8262 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8263 IRB_REFRELE(ipif_ire->ire_bucket); 8264 if (sire != NULL) 8265 IRB_REFRELE(sire->ire_bucket); 8266 ire_refrele(ipif_ire); 8267 ire_refrele(save_ire); 8268 break; 8269 } 8270 8271 xmit_mp = first_mp; 8272 /* 8273 * In the case of multirouting, a copy 8274 * of the packet is done before its sending. 8275 * The copy is used to attempt another 8276 * route resolution, in a next loop. 8277 */ 8278 if (ire->ire_flags & RTF_MULTIRT) { 8279 copy_mp = copymsg(first_mp); 8280 if (copy_mp != NULL) { 8281 xmit_mp = copy_mp; 8282 MULTIRT_DEBUG_TAG(first_mp); 8283 } 8284 } 8285 ire_add_then_send(q, ire, xmit_mp); 8286 ire_refrele(save_ire); 8287 8288 /* Assert that sire is not deleted yet. */ 8289 if (sire != NULL) { 8290 ASSERT(sire->ire_ptpn != NULL); 8291 IRB_REFRELE(sire->ire_bucket); 8292 } 8293 8294 /* Assert that ipif_ire is not deleted yet. */ 8295 ASSERT(ipif_ire->ire_ptpn != NULL); 8296 IRB_REFRELE(ipif_ire->ire_bucket); 8297 ire_refrele(ipif_ire); 8298 8299 /* 8300 * If copy_mp is not NULL, multirouting was 8301 * requested. We loop to initiate a next 8302 * route resolution attempt, starting from sire. 8303 */ 8304 if (copy_mp != NULL) { 8305 /* 8306 * Search for the next unresolved 8307 * multirt route. 8308 */ 8309 copy_mp = NULL; 8310 ipif_ire = NULL; 8311 ire = NULL; 8312 multirt_resolve_next = B_TRUE; 8313 continue; 8314 } 8315 if (sire != NULL) 8316 ire_refrele(sire); 8317 ipif_refrele(src_ipif); 8318 ill_refrele(dst_ill); 8319 return; 8320 } 8321 case IRE_IF_NORESOLVER: { 8322 /* 8323 * We have what we need to build an IRE_CACHE. 8324 * 8325 * Create a new res_mp with the IP gateway address 8326 * in destination address in the DLPI hdr if the 8327 * physical length is exactly 4 bytes. 8328 */ 8329 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8330 uchar_t *addr; 8331 8332 if (gw) 8333 addr = (uchar_t *)&gw; 8334 else 8335 addr = (uchar_t *)&dst; 8336 8337 res_mp = ill_dlur_gen(addr, 8338 dst_ill->ill_phys_addr_length, 8339 dst_ill->ill_sap, 8340 dst_ill->ill_sap_length); 8341 8342 if (res_mp == NULL) { 8343 ip1dbg(("ip_newroute: res_mp NULL\n")); 8344 break; 8345 } 8346 } else { 8347 res_mp = NULL; 8348 } 8349 8350 /* 8351 * TSol note: We are creating the ire cache for the 8352 * destination 'dst'. If 'dst' is offlink, going 8353 * through the first hop 'gw', the security attributes 8354 * of 'dst' must be set to point to the gateway 8355 * credentials of gateway 'gw'. If 'dst' is onlink, it 8356 * is possible that 'dst' is a potential gateway that is 8357 * referenced by some route that has some security 8358 * attributes. Thus in the former case, we need to do a 8359 * gcgrp_lookup of 'gw' while in the latter case we 8360 * need to do gcgrp_lookup of 'dst' itself. 8361 */ 8362 ga.ga_af = AF_INET; 8363 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8364 &ga.ga_addr); 8365 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8366 8367 ire = ire_create( 8368 (uchar_t *)&dst, /* dest address */ 8369 (uchar_t *)&ip_g_all_ones, /* mask */ 8370 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8371 (uchar_t *)&gw, /* gateway address */ 8372 NULL, 8373 &save_ire->ire_max_frag, 8374 NULL, /* Fast Path header */ 8375 dst_ill->ill_rq, /* recv-from queue */ 8376 dst_ill->ill_wq, /* send-to queue */ 8377 IRE_CACHE, 8378 res_mp, 8379 src_ipif, 8380 in_ill, /* Incoming ill */ 8381 save_ire->ire_mask, /* Parent mask */ 8382 (sire != NULL) ? /* Parent handle */ 8383 sire->ire_phandle : 0, 8384 save_ire->ire_ihandle, /* Interface handle */ 8385 (sire != NULL) ? sire->ire_flags & 8386 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8387 &(save_ire->ire_uinfo), 8388 NULL, 8389 gcgrp); 8390 8391 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 8392 freeb(res_mp); 8393 8394 if (ire == NULL) { 8395 if (gcgrp != NULL) { 8396 GCGRP_REFRELE(gcgrp); 8397 gcgrp = NULL; 8398 } 8399 ire_refrele(save_ire); 8400 break; 8401 } 8402 8403 /* reference now held by IRE */ 8404 gcgrp = NULL; 8405 8406 ire->ire_marks |= ire_marks; 8407 8408 /* Prevent save_ire from getting deleted */ 8409 IRB_REFHOLD(save_ire->ire_bucket); 8410 /* Has it been removed already ? */ 8411 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8412 IRB_REFRELE(save_ire->ire_bucket); 8413 ire_refrele(save_ire); 8414 break; 8415 } 8416 8417 /* 8418 * In the case of multirouting, a copy 8419 * of the packet is made before it is sent. 8420 * The copy is used in the next 8421 * loop to attempt another resolution. 8422 */ 8423 xmit_mp = first_mp; 8424 if ((sire != NULL) && 8425 (sire->ire_flags & RTF_MULTIRT)) { 8426 copy_mp = copymsg(first_mp); 8427 if (copy_mp != NULL) { 8428 xmit_mp = copy_mp; 8429 MULTIRT_DEBUG_TAG(first_mp); 8430 } 8431 } 8432 ire_add_then_send(q, ire, xmit_mp); 8433 8434 /* Assert that it is not deleted yet. */ 8435 ASSERT(save_ire->ire_ptpn != NULL); 8436 IRB_REFRELE(save_ire->ire_bucket); 8437 ire_refrele(save_ire); 8438 8439 if (copy_mp != NULL) { 8440 /* 8441 * If we found a (no)resolver, we ignore any 8442 * trailing top priority IRE_CACHE in further 8443 * loops. This ensures that we do not omit any 8444 * (no)resolver. 8445 * This IRE_CACHE, if any, will be processed 8446 * by another thread entering ip_newroute(). 8447 * IRE_CACHE entries, if any, will be processed 8448 * by another thread entering ip_newroute(), 8449 * (upon resolver response, for instance). 8450 * This aims to force parallel multirt 8451 * resolutions as soon as a packet must be sent. 8452 * In the best case, after the tx of only one 8453 * packet, all reachable routes are resolved. 8454 * Otherwise, the resolution of all RTF_MULTIRT 8455 * routes would require several emissions. 8456 */ 8457 multirt_flags &= ~MULTIRT_CACHEGW; 8458 8459 /* 8460 * Search for the next unresolved multirt 8461 * route. 8462 */ 8463 copy_mp = NULL; 8464 save_ire = NULL; 8465 ire = NULL; 8466 multirt_resolve_next = B_TRUE; 8467 continue; 8468 } 8469 8470 /* 8471 * Don't need sire anymore 8472 */ 8473 if (sire != NULL) 8474 ire_refrele(sire); 8475 8476 ipif_refrele(src_ipif); 8477 ill_refrele(dst_ill); 8478 return; 8479 } 8480 case IRE_IF_RESOLVER: 8481 /* 8482 * We can't build an IRE_CACHE yet, but at least we 8483 * found a resolver that can help. 8484 */ 8485 res_mp = dst_ill->ill_resolver_mp; 8486 if (!OK_RESOLVER_MP(res_mp)) 8487 break; 8488 8489 /* 8490 * To be at this point in the code with a non-zero gw 8491 * means that dst is reachable through a gateway that 8492 * we have never resolved. By changing dst to the gw 8493 * addr we resolve the gateway first. 8494 * When ire_add_then_send() tries to put the IP dg 8495 * to dst, it will reenter ip_newroute() at which 8496 * time we will find the IRE_CACHE for the gw and 8497 * create another IRE_CACHE in case IRE_CACHE above. 8498 */ 8499 if (gw != INADDR_ANY) { 8500 /* 8501 * The source ipif that was determined above was 8502 * relative to the destination address, not the 8503 * gateway's. If src_ipif was not taken out of 8504 * the IRE_IF_RESOLVER entry, we'll need to call 8505 * ipif_select_source() again. 8506 */ 8507 if (src_ipif != ire->ire_ipif) { 8508 ipif_refrele(src_ipif); 8509 src_ipif = ipif_select_source(dst_ill, 8510 gw, zoneid); 8511 if (src_ipif == NULL) { 8512 if (ip_debug > 2) { 8513 pr_addr_dbg( 8514 "ip_newroute: no " 8515 "src for gw %s ", 8516 AF_INET, &gw); 8517 printf("through " 8518 "interface %s\n", 8519 dst_ill->ill_name); 8520 } 8521 goto icmp_err_ret; 8522 } 8523 } 8524 save_dst = dst; 8525 dst = gw; 8526 gw = INADDR_ANY; 8527 } 8528 8529 /* 8530 * We obtain a partial IRE_CACHE which we will pass 8531 * along with the resolver query. When the response 8532 * comes back it will be there ready for us to add. 8533 * The ire_max_frag is atomically set under the 8534 * irebucket lock in ire_add_v[46]. 8535 */ 8536 8537 ire = ire_create_mp( 8538 (uchar_t *)&dst, /* dest address */ 8539 (uchar_t *)&ip_g_all_ones, /* mask */ 8540 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8541 (uchar_t *)&gw, /* gateway address */ 8542 NULL, /* no in_src_addr */ 8543 NULL, /* ire_max_frag */ 8544 NULL, /* Fast Path header */ 8545 dst_ill->ill_rq, /* recv-from queue */ 8546 dst_ill->ill_wq, /* send-to queue */ 8547 IRE_CACHE, 8548 NULL, 8549 src_ipif, /* Interface ipif */ 8550 in_ill, /* Incoming ILL */ 8551 save_ire->ire_mask, /* Parent mask */ 8552 0, 8553 save_ire->ire_ihandle, /* Interface handle */ 8554 0, /* flags if any */ 8555 &(save_ire->ire_uinfo), 8556 NULL, 8557 NULL); 8558 8559 if (ire == NULL) { 8560 ire_refrele(save_ire); 8561 break; 8562 } 8563 8564 if ((sire != NULL) && 8565 (sire->ire_flags & RTF_MULTIRT)) { 8566 copy_mp = copymsg(first_mp); 8567 if (copy_mp != NULL) 8568 MULTIRT_DEBUG_TAG(copy_mp); 8569 } 8570 8571 ire->ire_marks |= ire_marks; 8572 8573 /* 8574 * Construct message chain for the resolver 8575 * of the form: 8576 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8577 * Packet could contain a IPSEC_OUT mp. 8578 * 8579 * NOTE : ire will be added later when the response 8580 * comes back from ARP. If the response does not 8581 * come back, ARP frees the packet. For this reason, 8582 * we can't REFHOLD the bucket of save_ire to prevent 8583 * deletions. We may not be able to REFRELE the bucket 8584 * if the response never comes back. Thus, before 8585 * adding the ire, ire_add_v4 will make sure that the 8586 * interface route does not get deleted. This is the 8587 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8588 * where we can always prevent deletions because of 8589 * the synchronous nature of adding IRES i.e 8590 * ire_add_then_send is called after creating the IRE. 8591 */ 8592 ASSERT(ire->ire_mp != NULL); 8593 ire->ire_mp->b_cont = first_mp; 8594 /* Have saved_mp handy, for cleanup if canput fails */ 8595 saved_mp = mp; 8596 mp = copyb(res_mp); 8597 if (mp == NULL) { 8598 /* Prepare for cleanup */ 8599 mp = saved_mp; /* pkt */ 8600 ire_delete(ire); /* ire_mp */ 8601 ire = NULL; 8602 ire_refrele(save_ire); 8603 if (copy_mp != NULL) { 8604 MULTIRT_DEBUG_UNTAG(copy_mp); 8605 freemsg(copy_mp); 8606 copy_mp = NULL; 8607 } 8608 break; 8609 } 8610 linkb(mp, ire->ire_mp); 8611 8612 /* 8613 * Fill in the source and dest addrs for the resolver. 8614 * NOTE: this depends on memory layouts imposed by 8615 * ill_init(). 8616 */ 8617 areq = (areq_t *)mp->b_rptr; 8618 addrp = (ipaddr_t *)((char *)areq + 8619 areq->areq_sender_addr_offset); 8620 if (do_attach_ill) { 8621 /* 8622 * This is bind to no failover case. 8623 * arp packet also must go out on attach_ill. 8624 */ 8625 ASSERT(ipha->ipha_src != NULL); 8626 *addrp = ipha->ipha_src; 8627 } else { 8628 *addrp = save_ire->ire_src_addr; 8629 } 8630 8631 ire_refrele(save_ire); 8632 addrp = (ipaddr_t *)((char *)areq + 8633 areq->areq_target_addr_offset); 8634 *addrp = dst; 8635 /* Up to the resolver. */ 8636 if (canputnext(dst_ill->ill_rq) && 8637 !(dst_ill->ill_arp_closing)) { 8638 putnext(dst_ill->ill_rq, mp); 8639 ire = NULL; 8640 if (copy_mp != NULL) { 8641 /* 8642 * If we found a resolver, we ignore 8643 * any trailing top priority IRE_CACHE 8644 * in the further loops. This ensures 8645 * that we do not omit any resolver. 8646 * IRE_CACHE entries, if any, will be 8647 * processed next time we enter 8648 * ip_newroute(). 8649 */ 8650 multirt_flags &= ~MULTIRT_CACHEGW; 8651 /* 8652 * Search for the next unresolved 8653 * multirt route. 8654 */ 8655 first_mp = copy_mp; 8656 copy_mp = NULL; 8657 /* Prepare the next resolution loop. */ 8658 mp = first_mp; 8659 EXTRACT_PKT_MP(mp, first_mp, 8660 mctl_present); 8661 if (mctl_present) 8662 io = (ipsec_out_t *) 8663 first_mp->b_rptr; 8664 ipha = (ipha_t *)mp->b_rptr; 8665 8666 ASSERT(sire != NULL); 8667 8668 dst = save_dst; 8669 multirt_resolve_next = B_TRUE; 8670 continue; 8671 } 8672 8673 if (sire != NULL) 8674 ire_refrele(sire); 8675 8676 /* 8677 * The response will come back in ip_wput 8678 * with db_type IRE_DB_TYPE. 8679 */ 8680 ipif_refrele(src_ipif); 8681 ill_refrele(dst_ill); 8682 return; 8683 } else { 8684 /* Prepare for cleanup */ 8685 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8686 mp); 8687 mp->b_cont = NULL; 8688 freeb(mp); /* areq */ 8689 /* 8690 * this is an ire that is not added to the 8691 * cache. ire_freemblk will handle the release 8692 * of any resources associated with the ire. 8693 */ 8694 ire_delete(ire); /* ire_mp */ 8695 mp = saved_mp; /* pkt */ 8696 ire = NULL; 8697 if (copy_mp != NULL) { 8698 MULTIRT_DEBUG_UNTAG(copy_mp); 8699 freemsg(copy_mp); 8700 copy_mp = NULL; 8701 } 8702 break; 8703 } 8704 default: 8705 break; 8706 } 8707 } while (multirt_resolve_next); 8708 8709 ip1dbg(("ip_newroute: dropped\n")); 8710 /* Did this packet originate externally? */ 8711 if (mp->b_prev) { 8712 mp->b_next = NULL; 8713 mp->b_prev = NULL; 8714 BUMP_MIB(&ip_mib, ipInDiscards); 8715 } else { 8716 BUMP_MIB(&ip_mib, ipOutDiscards); 8717 } 8718 ASSERT(copy_mp == NULL); 8719 MULTIRT_DEBUG_UNTAG(first_mp); 8720 freemsg(first_mp); 8721 if (ire != NULL) 8722 ire_refrele(ire); 8723 if (sire != NULL) 8724 ire_refrele(sire); 8725 if (src_ipif != NULL) 8726 ipif_refrele(src_ipif); 8727 if (dst_ill != NULL) 8728 ill_refrele(dst_ill); 8729 return; 8730 8731 icmp_err_ret: 8732 ip1dbg(("ip_newroute: no route\n")); 8733 if (src_ipif != NULL) 8734 ipif_refrele(src_ipif); 8735 if (dst_ill != NULL) 8736 ill_refrele(dst_ill); 8737 if (sire != NULL) 8738 ire_refrele(sire); 8739 /* Did this packet originate externally? */ 8740 if (mp->b_prev) { 8741 mp->b_next = NULL; 8742 mp->b_prev = NULL; 8743 /* XXX ipInNoRoutes */ 8744 q = WR(q); 8745 } else { 8746 /* 8747 * Since ip_wput() isn't close to finished, we fill 8748 * in enough of the header for credible error reporting. 8749 */ 8750 if (ip_hdr_complete(ipha, zoneid)) { 8751 /* Failed */ 8752 MULTIRT_DEBUG_UNTAG(first_mp); 8753 freemsg(first_mp); 8754 if (ire != NULL) 8755 ire_refrele(ire); 8756 return; 8757 } 8758 } 8759 BUMP_MIB(&ip_mib, ipOutNoRoutes); 8760 8761 /* 8762 * At this point we will have ire only if RTF_BLACKHOLE 8763 * or RTF_REJECT flags are set on the IRE. It will not 8764 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8765 */ 8766 if (ire != NULL) { 8767 if (ire->ire_flags & RTF_BLACKHOLE) { 8768 ire_refrele(ire); 8769 MULTIRT_DEBUG_UNTAG(first_mp); 8770 freemsg(first_mp); 8771 return; 8772 } 8773 ire_refrele(ire); 8774 } 8775 if (ip_source_routed(ipha)) { 8776 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8777 zoneid); 8778 return; 8779 } 8780 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid); 8781 } 8782 8783 /* 8784 * IPv4 - 8785 * ip_newroute_ipif is called by ip_wput_multicast and 8786 * ip_rput_forward_multicast whenever we need to send 8787 * out a packet to a destination address for which we do not have specific 8788 * routing information. It is used when the packet will be sent out 8789 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 8790 * socket option is set or icmp error message wants to go out on a particular 8791 * interface for a unicast packet. 8792 * 8793 * In most cases, the destination address is resolved thanks to the ipif 8794 * intrinsic resolver. However, there are some cases where the call to 8795 * ip_newroute_ipif must take into account the potential presence of 8796 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8797 * that uses the interface. This is specified through flags, 8798 * which can be a combination of: 8799 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8800 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8801 * and flags. Additionally, the packet source address has to be set to 8802 * the specified address. The caller is thus expected to set this flag 8803 * if the packet has no specific source address yet. 8804 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8805 * flag, the resulting ire will inherit the flag. All unresolved routes 8806 * to the destination must be explored in the same call to 8807 * ip_newroute_ipif(). 8808 */ 8809 static void 8810 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8811 conn_t *connp, uint32_t flags, zoneid_t zoneid) 8812 { 8813 areq_t *areq; 8814 ire_t *ire = NULL; 8815 mblk_t *res_mp; 8816 ipaddr_t *addrp; 8817 mblk_t *first_mp; 8818 ire_t *save_ire = NULL; 8819 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8820 ipif_t *src_ipif = NULL; 8821 ushort_t ire_marks = 0; 8822 ill_t *dst_ill = NULL; 8823 boolean_t mctl_present; 8824 ipsec_out_t *io; 8825 ipha_t *ipha; 8826 int ihandle = 0; 8827 mblk_t *saved_mp; 8828 ire_t *fire = NULL; 8829 mblk_t *copy_mp = NULL; 8830 boolean_t multirt_resolve_next; 8831 ipaddr_t ipha_dst; 8832 8833 /* 8834 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 8835 * here for uniformity 8836 */ 8837 ipif_refhold(ipif); 8838 8839 /* 8840 * This loop is run only once in most cases. 8841 * We loop to resolve further routes only when the destination 8842 * can be reached through multiple RTF_MULTIRT-flagged ires. 8843 */ 8844 do { 8845 if (dst_ill != NULL) { 8846 ill_refrele(dst_ill); 8847 dst_ill = NULL; 8848 } 8849 if (src_ipif != NULL) { 8850 ipif_refrele(src_ipif); 8851 src_ipif = NULL; 8852 } 8853 multirt_resolve_next = B_FALSE; 8854 8855 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 8856 ipif->ipif_ill->ill_name)); 8857 8858 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 8859 if (mctl_present) 8860 io = (ipsec_out_t *)first_mp->b_rptr; 8861 8862 ipha = (ipha_t *)mp->b_rptr; 8863 8864 /* 8865 * Save the packet destination address, we may need it after 8866 * the packet has been consumed. 8867 */ 8868 ipha_dst = ipha->ipha_dst; 8869 8870 /* 8871 * If the interface is a pt-pt interface we look for an 8872 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 8873 * local_address and the pt-pt destination address. Otherwise 8874 * we just match the local address. 8875 * NOTE: dst could be different than ipha->ipha_dst in case 8876 * of sending igmp multicast packets over a point-to-point 8877 * connection. 8878 * Thus we must be careful enough to check ipha_dst to be a 8879 * multicast address, otherwise it will take xmit_if path for 8880 * multicast packets resulting into kernel stack overflow by 8881 * repeated calls to ip_newroute_ipif from ire_send(). 8882 */ 8883 if (CLASSD(ipha_dst) && 8884 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 8885 goto err_ret; 8886 } 8887 8888 /* 8889 * We check if an IRE_OFFSUBNET for the addr that goes through 8890 * ipif exists. We need it to determine if the RTF_SETSRC and/or 8891 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 8892 * propagate its flags to the new ire. 8893 */ 8894 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 8895 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 8896 ip2dbg(("ip_newroute_ipif: " 8897 "ipif_lookup_multi_ire(" 8898 "ipif %p, dst %08x) = fire %p\n", 8899 (void *)ipif, ntohl(dst), (void *)fire)); 8900 } 8901 8902 if (mctl_present && io->ipsec_out_attach_if) { 8903 attach_ill = ip_grab_attach_ill(NULL, first_mp, 8904 io->ipsec_out_ill_index, B_FALSE); 8905 8906 /* Failure case frees things for us. */ 8907 if (attach_ill == NULL) { 8908 ipif_refrele(ipif); 8909 if (fire != NULL) 8910 ire_refrele(fire); 8911 return; 8912 } 8913 8914 /* 8915 * Check if we need an ire that will not be 8916 * looked up by anybody else i.e. HIDDEN. 8917 */ 8918 if (ill_is_probeonly(attach_ill)) { 8919 ire_marks = IRE_MARK_HIDDEN; 8920 } 8921 /* 8922 * ip_wput passes the right ipif for IPIF_NOFAILOVER 8923 * case. 8924 */ 8925 dst_ill = ipif->ipif_ill; 8926 /* attach_ill has been refheld by ip_grab_attach_ill */ 8927 ASSERT(dst_ill == attach_ill); 8928 } else { 8929 /* 8930 * If this is set by IP_XMIT_IF, then make sure that 8931 * ipif is pointing to the same ill as the IP_XMIT_IF 8932 * specified ill. 8933 */ 8934 ASSERT((connp == NULL) || 8935 (connp->conn_xmit_if_ill == NULL) || 8936 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 8937 /* 8938 * If the interface belongs to an interface group, 8939 * make sure the next possible interface in the group 8940 * is used. This encourages load spreading among 8941 * peers in an interface group. 8942 * Note: load spreading is disabled for RTF_MULTIRT 8943 * routes. 8944 */ 8945 if ((flags & RTF_MULTIRT) && (fire != NULL) && 8946 (fire->ire_flags & RTF_MULTIRT)) { 8947 /* 8948 * Don't perform outbound load spreading 8949 * in the case of an RTF_MULTIRT issued route, 8950 * we actually typically want to replicate 8951 * outgoing packets through particular 8952 * interfaces. 8953 */ 8954 dst_ill = ipif->ipif_ill; 8955 ill_refhold(dst_ill); 8956 } else { 8957 dst_ill = ip_newroute_get_dst_ill( 8958 ipif->ipif_ill); 8959 } 8960 if (dst_ill == NULL) { 8961 if (ip_debug > 2) { 8962 pr_addr_dbg("ip_newroute_ipif: " 8963 "no dst ill for dst %s\n", 8964 AF_INET, &dst); 8965 } 8966 goto err_ret; 8967 } 8968 } 8969 8970 /* 8971 * Pick a source address preferring non-deprecated ones. 8972 * Unlike ip_newroute, we don't do any source address 8973 * selection here since for multicast it really does not help 8974 * in inbound load spreading as in the unicast case. 8975 */ 8976 if ((flags & RTF_SETSRC) && (fire != NULL) && 8977 (fire->ire_flags & RTF_SETSRC)) { 8978 /* 8979 * As requested by flags, an IRE_OFFSUBNET was looked up 8980 * on that interface. This ire has RTF_SETSRC flag, so 8981 * the source address of the packet must be changed. 8982 * Check that the ipif matching the requested source 8983 * address still exists. 8984 */ 8985 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 8986 zoneid, NULL, NULL, NULL, NULL); 8987 } 8988 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 8989 (connp != NULL && ipif->ipif_zoneid != zoneid && 8990 ipif->ipif_zoneid != ALL_ZONES)) && 8991 (src_ipif == NULL)) { 8992 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 8993 if (src_ipif == NULL) { 8994 if (ip_debug > 2) { 8995 /* ip1dbg */ 8996 pr_addr_dbg("ip_newroute_ipif: " 8997 "no src for dst %s", 8998 AF_INET, &dst); 8999 } 9000 ip1dbg((" through interface %s\n", 9001 dst_ill->ill_name)); 9002 goto err_ret; 9003 } 9004 ipif_refrele(ipif); 9005 ipif = src_ipif; 9006 ipif_refhold(ipif); 9007 } 9008 if (src_ipif == NULL) { 9009 src_ipif = ipif; 9010 ipif_refhold(src_ipif); 9011 } 9012 9013 /* 9014 * Assign a source address while we have the conn. 9015 * We can't have ip_wput_ire pick a source address when the 9016 * packet returns from arp since conn_unspec_src might be set 9017 * and we loose the conn when going through arp. 9018 */ 9019 if (ipha->ipha_src == INADDR_ANY && 9020 (connp == NULL || !connp->conn_unspec_src)) { 9021 ipha->ipha_src = src_ipif->ipif_src_addr; 9022 } 9023 9024 /* 9025 * In case of IP_XMIT_IF, it is possible that the outgoing 9026 * interface does not have an interface ire. 9027 * Example: Thousands of mobileip PPP interfaces to mobile 9028 * nodes. We don't want to create interface ires because 9029 * packets from other mobile nodes must not take the route 9030 * via interface ires to the visiting mobile node without 9031 * going through the home agent, in absence of mobileip 9032 * route optimization. 9033 */ 9034 if (CLASSD(ipha_dst) && (connp == NULL || 9035 connp->conn_xmit_if_ill == NULL)) { 9036 /* ipif_to_ire returns an held ire */ 9037 ire = ipif_to_ire(ipif); 9038 if (ire == NULL) 9039 goto err_ret; 9040 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9041 goto err_ret; 9042 /* 9043 * ihandle is needed when the ire is added to 9044 * cache table. 9045 */ 9046 save_ire = ire; 9047 ihandle = save_ire->ire_ihandle; 9048 9049 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9050 "flags %04x\n", 9051 (void *)ire, (void *)ipif, flags)); 9052 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9053 (fire->ire_flags & RTF_MULTIRT)) { 9054 /* 9055 * As requested by flags, an IRE_OFFSUBNET was 9056 * looked up on that interface. This ire has 9057 * RTF_MULTIRT flag, so the resolution loop will 9058 * be re-entered to resolve additional routes on 9059 * other interfaces. For that purpose, a copy of 9060 * the packet is performed at this point. 9061 */ 9062 fire->ire_last_used_time = lbolt; 9063 copy_mp = copymsg(first_mp); 9064 if (copy_mp) { 9065 MULTIRT_DEBUG_TAG(copy_mp); 9066 } 9067 } 9068 if ((flags & RTF_SETSRC) && (fire != NULL) && 9069 (fire->ire_flags & RTF_SETSRC)) { 9070 /* 9071 * As requested by flags, an IRE_OFFSUBET was 9072 * looked up on that interface. This ire has 9073 * RTF_SETSRC flag, so the source address of the 9074 * packet must be changed. 9075 */ 9076 ipha->ipha_src = fire->ire_src_addr; 9077 } 9078 } else { 9079 ASSERT((connp == NULL) || 9080 (connp->conn_xmit_if_ill != NULL) || 9081 (connp->conn_dontroute)); 9082 /* 9083 * The only ways we can come here are: 9084 * 1) IP_XMIT_IF socket option is set 9085 * 2) ICMP error message generated from 9086 * ip_mrtun_forward() routine and it needs 9087 * to go through the specified ill. 9088 * 3) SO_DONTROUTE socket option is set 9089 * In all cases, the new ire will not be added 9090 * into cache table. 9091 */ 9092 ire_marks |= IRE_MARK_NOADD; 9093 } 9094 9095 switch (ipif->ipif_net_type) { 9096 case IRE_IF_NORESOLVER: { 9097 /* We have what we need to build an IRE_CACHE. */ 9098 mblk_t *res_mp; 9099 9100 /* 9101 * Create a new res_mp with the 9102 * IP gateway address as destination address in the 9103 * DLPI hdr if the physical length is exactly 4 bytes. 9104 */ 9105 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 9106 res_mp = ill_dlur_gen((uchar_t *)&dst, 9107 dst_ill->ill_phys_addr_length, 9108 dst_ill->ill_sap, 9109 dst_ill->ill_sap_length); 9110 } else { 9111 /* use the value set in ip_ll_subnet_defaults */ 9112 res_mp = ill_dlur_gen(NULL, 9113 dst_ill->ill_phys_addr_length, 9114 dst_ill->ill_sap, 9115 dst_ill->ill_sap_length); 9116 } 9117 9118 if (res_mp == NULL) 9119 break; 9120 /* 9121 * The new ire inherits the IRE_OFFSUBNET flags 9122 * and source address, if this was requested. 9123 */ 9124 ire = ire_create( 9125 (uchar_t *)&dst, /* dest address */ 9126 (uchar_t *)&ip_g_all_ones, /* mask */ 9127 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9128 NULL, /* gateway address */ 9129 NULL, 9130 &ipif->ipif_mtu, 9131 NULL, /* Fast Path header */ 9132 dst_ill->ill_rq, /* recv-from queue */ 9133 dst_ill->ill_wq, /* send-to queue */ 9134 IRE_CACHE, 9135 res_mp, 9136 src_ipif, 9137 NULL, 9138 (save_ire != NULL ? save_ire->ire_mask : 0), 9139 (fire != NULL) ? /* Parent handle */ 9140 fire->ire_phandle : 0, 9141 ihandle, /* Interface handle */ 9142 (fire != NULL) ? 9143 (fire->ire_flags & 9144 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9145 (save_ire == NULL ? &ire_uinfo_null : 9146 &save_ire->ire_uinfo), 9147 NULL, 9148 NULL); 9149 9150 freeb(res_mp); 9151 9152 if (ire == NULL) { 9153 if (save_ire != NULL) 9154 ire_refrele(save_ire); 9155 break; 9156 } 9157 9158 ire->ire_marks |= ire_marks; 9159 9160 /* 9161 * If IRE_MARK_NOADD is set then we need to convert 9162 * the max_fragp to a useable value now. This is 9163 * normally done in ire_add_v[46]. We also need to 9164 * associate the ire with an nce (normally would be 9165 * done in ip_wput_nondata()). 9166 * 9167 * Note that IRE_MARK_NOADD packets created here 9168 * do not have a non-null ire_mp pointer. The null 9169 * value of ire_bucket indicates that they were 9170 * never added. 9171 */ 9172 if (ire->ire_marks & IRE_MARK_NOADD) { 9173 uint_t max_frag; 9174 9175 max_frag = *ire->ire_max_fragp; 9176 ire->ire_max_fragp = NULL; 9177 ire->ire_max_frag = max_frag; 9178 9179 if ((ire->ire_nce = ndp_lookup_v4( 9180 ire_to_ill(ire), 9181 (ire->ire_gateway_addr != INADDR_ANY ? 9182 &ire->ire_gateway_addr : &ire->ire_addr), 9183 B_FALSE)) == NULL) { 9184 if (save_ire != NULL) 9185 ire_refrele(save_ire); 9186 break; 9187 } 9188 ASSERT(ire->ire_nce->nce_state == 9189 ND_REACHABLE); 9190 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9191 } 9192 9193 /* Prevent save_ire from getting deleted */ 9194 if (save_ire != NULL) { 9195 IRB_REFHOLD(save_ire->ire_bucket); 9196 /* Has it been removed already ? */ 9197 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9198 IRB_REFRELE(save_ire->ire_bucket); 9199 ire_refrele(save_ire); 9200 break; 9201 } 9202 } 9203 9204 ire_add_then_send(q, ire, first_mp); 9205 9206 /* Assert that save_ire is not deleted yet. */ 9207 if (save_ire != NULL) { 9208 ASSERT(save_ire->ire_ptpn != NULL); 9209 IRB_REFRELE(save_ire->ire_bucket); 9210 ire_refrele(save_ire); 9211 save_ire = NULL; 9212 } 9213 if (fire != NULL) { 9214 ire_refrele(fire); 9215 fire = NULL; 9216 } 9217 9218 /* 9219 * the resolution loop is re-entered if this 9220 * was requested through flags and if we 9221 * actually are in a multirouting case. 9222 */ 9223 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9224 boolean_t need_resolve = 9225 ire_multirt_need_resolve(ipha_dst, 9226 MBLK_GETLABEL(copy_mp)); 9227 if (!need_resolve) { 9228 MULTIRT_DEBUG_UNTAG(copy_mp); 9229 freemsg(copy_mp); 9230 copy_mp = NULL; 9231 } else { 9232 /* 9233 * ipif_lookup_group() calls 9234 * ire_lookup_multi() that uses 9235 * ire_ftable_lookup() to find 9236 * an IRE_INTERFACE for the group. 9237 * In the multirt case, 9238 * ire_lookup_multi() then invokes 9239 * ire_multirt_lookup() to find 9240 * the next resolvable ire. 9241 * As a result, we obtain an new 9242 * interface, derived from the 9243 * next ire. 9244 */ 9245 ipif_refrele(ipif); 9246 ipif = ipif_lookup_group(ipha_dst, 9247 zoneid); 9248 ip2dbg(("ip_newroute_ipif: " 9249 "multirt dst %08x, ipif %p\n", 9250 htonl(dst), (void *)ipif)); 9251 if (ipif != NULL) { 9252 mp = copy_mp; 9253 copy_mp = NULL; 9254 multirt_resolve_next = B_TRUE; 9255 continue; 9256 } else { 9257 freemsg(copy_mp); 9258 } 9259 } 9260 } 9261 if (ipif != NULL) 9262 ipif_refrele(ipif); 9263 ill_refrele(dst_ill); 9264 ipif_refrele(src_ipif); 9265 return; 9266 } 9267 case IRE_IF_RESOLVER: 9268 /* 9269 * We can't build an IRE_CACHE yet, but at least 9270 * we found a resolver that can help. 9271 */ 9272 res_mp = dst_ill->ill_resolver_mp; 9273 if (!OK_RESOLVER_MP(res_mp)) 9274 break; 9275 9276 /* 9277 * We obtain a partial IRE_CACHE which we will pass 9278 * along with the resolver query. When the response 9279 * comes back it will be there ready for us to add. 9280 * The new ire inherits the IRE_OFFSUBNET flags 9281 * and source address, if this was requested. 9282 * The ire_max_frag is atomically set under the 9283 * irebucket lock in ire_add_v[46]. Only in the 9284 * case of IRE_MARK_NOADD, we set it here itself. 9285 */ 9286 ire = ire_create_mp( 9287 (uchar_t *)&dst, /* dest address */ 9288 (uchar_t *)&ip_g_all_ones, /* mask */ 9289 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9290 NULL, /* gateway address */ 9291 NULL, /* no in_src_addr */ 9292 (ire_marks & IRE_MARK_NOADD) ? 9293 ipif->ipif_mtu : 0, /* max_frag */ 9294 NULL, /* Fast path header */ 9295 dst_ill->ill_rq, /* recv-from queue */ 9296 dst_ill->ill_wq, /* send-to queue */ 9297 IRE_CACHE, 9298 NULL, /* let ire_nce_init figure res_mp out */ 9299 src_ipif, 9300 NULL, 9301 (save_ire != NULL ? save_ire->ire_mask : 0), 9302 (fire != NULL) ? /* Parent handle */ 9303 fire->ire_phandle : 0, 9304 ihandle, /* Interface handle */ 9305 (fire != NULL) ? /* flags if any */ 9306 (fire->ire_flags & 9307 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9308 (save_ire == NULL ? &ire_uinfo_null : 9309 &save_ire->ire_uinfo), 9310 NULL, 9311 NULL); 9312 9313 if (save_ire != NULL) { 9314 ire_refrele(save_ire); 9315 save_ire = NULL; 9316 } 9317 if (ire == NULL) 9318 break; 9319 9320 ire->ire_marks |= ire_marks; 9321 /* 9322 * Construct message chain for the resolver of the 9323 * form: 9324 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9325 * 9326 * NOTE : ire will be added later when the response 9327 * comes back from ARP. If the response does not 9328 * come back, ARP frees the packet. For this reason, 9329 * we can't REFHOLD the bucket of save_ire to prevent 9330 * deletions. We may not be able to REFRELE the 9331 * bucket if the response never comes back. 9332 * Thus, before adding the ire, ire_add_v4 will make 9333 * sure that the interface route does not get deleted. 9334 * This is the only case unlike ip_newroute_v6, 9335 * ip_newroute_ipif_v6 where we can always prevent 9336 * deletions because ire_add_then_send is called after 9337 * creating the IRE. 9338 * If IRE_MARK_NOADD is set, then ire_add_then_send 9339 * does not add this IRE into the IRE CACHE. 9340 */ 9341 ASSERT(ire->ire_mp != NULL); 9342 ire->ire_mp->b_cont = first_mp; 9343 /* Have saved_mp handy, for cleanup if canput fails */ 9344 saved_mp = mp; 9345 mp = copyb(res_mp); 9346 if (mp == NULL) { 9347 /* Prepare for cleanup */ 9348 mp = saved_mp; /* pkt */ 9349 ire_delete(ire); /* ire_mp */ 9350 ire = NULL; 9351 if (copy_mp != NULL) { 9352 MULTIRT_DEBUG_UNTAG(copy_mp); 9353 freemsg(copy_mp); 9354 copy_mp = NULL; 9355 } 9356 break; 9357 } 9358 linkb(mp, ire->ire_mp); 9359 9360 /* 9361 * Fill in the source and dest addrs for the resolver. 9362 * NOTE: this depends on memory layouts imposed by 9363 * ill_init(). 9364 */ 9365 areq = (areq_t *)mp->b_rptr; 9366 addrp = (ipaddr_t *)((char *)areq + 9367 areq->areq_sender_addr_offset); 9368 *addrp = ire->ire_src_addr; 9369 addrp = (ipaddr_t *)((char *)areq + 9370 areq->areq_target_addr_offset); 9371 *addrp = dst; 9372 /* Up to the resolver. */ 9373 if (canputnext(dst_ill->ill_rq) && 9374 !(dst_ill->ill_arp_closing)) { 9375 putnext(dst_ill->ill_rq, mp); 9376 /* 9377 * The response will come back in ip_wput 9378 * with db_type IRE_DB_TYPE. 9379 */ 9380 } else { 9381 mp->b_cont = NULL; 9382 freeb(mp); /* areq */ 9383 ire_delete(ire); /* ire_mp */ 9384 saved_mp->b_next = NULL; 9385 saved_mp->b_prev = NULL; 9386 freemsg(first_mp); /* pkt */ 9387 ip2dbg(("ip_newroute_ipif: dropped\n")); 9388 } 9389 9390 if (fire != NULL) { 9391 ire_refrele(fire); 9392 fire = NULL; 9393 } 9394 9395 9396 /* 9397 * The resolution loop is re-entered if this was 9398 * requested through flags and we actually are 9399 * in a multirouting case. 9400 */ 9401 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9402 boolean_t need_resolve = 9403 ire_multirt_need_resolve(ipha_dst, 9404 MBLK_GETLABEL(copy_mp)); 9405 if (!need_resolve) { 9406 MULTIRT_DEBUG_UNTAG(copy_mp); 9407 freemsg(copy_mp); 9408 copy_mp = NULL; 9409 } else { 9410 /* 9411 * ipif_lookup_group() calls 9412 * ire_lookup_multi() that uses 9413 * ire_ftable_lookup() to find 9414 * an IRE_INTERFACE for the group. 9415 * In the multirt case, 9416 * ire_lookup_multi() then invokes 9417 * ire_multirt_lookup() to find 9418 * the next resolvable ire. 9419 * As a result, we obtain an new 9420 * interface, derived from the 9421 * next ire. 9422 */ 9423 ipif_refrele(ipif); 9424 ipif = ipif_lookup_group(ipha_dst, 9425 zoneid); 9426 if (ipif != NULL) { 9427 mp = copy_mp; 9428 copy_mp = NULL; 9429 multirt_resolve_next = B_TRUE; 9430 continue; 9431 } else { 9432 freemsg(copy_mp); 9433 } 9434 } 9435 } 9436 if (ipif != NULL) 9437 ipif_refrele(ipif); 9438 ill_refrele(dst_ill); 9439 ipif_refrele(src_ipif); 9440 return; 9441 default: 9442 break; 9443 } 9444 } while (multirt_resolve_next); 9445 9446 err_ret: 9447 ip2dbg(("ip_newroute_ipif: dropped\n")); 9448 if (fire != NULL) 9449 ire_refrele(fire); 9450 ipif_refrele(ipif); 9451 /* Did this packet originate externally? */ 9452 if (dst_ill != NULL) 9453 ill_refrele(dst_ill); 9454 if (src_ipif != NULL) 9455 ipif_refrele(src_ipif); 9456 if (mp->b_prev || mp->b_next) { 9457 mp->b_next = NULL; 9458 mp->b_prev = NULL; 9459 } else { 9460 /* 9461 * Since ip_wput() isn't close to finished, we fill 9462 * in enough of the header for credible error reporting. 9463 */ 9464 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 9465 /* Failed */ 9466 freemsg(first_mp); 9467 if (ire != NULL) 9468 ire_refrele(ire); 9469 return; 9470 } 9471 } 9472 /* 9473 * At this point we will have ire only if RTF_BLACKHOLE 9474 * or RTF_REJECT flags are set on the IRE. It will not 9475 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9476 */ 9477 if (ire != NULL) { 9478 if (ire->ire_flags & RTF_BLACKHOLE) { 9479 ire_refrele(ire); 9480 freemsg(first_mp); 9481 return; 9482 } 9483 ire_refrele(ire); 9484 } 9485 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid); 9486 } 9487 9488 /* Name/Value Table Lookup Routine */ 9489 char * 9490 ip_nv_lookup(nv_t *nv, int value) 9491 { 9492 if (!nv) 9493 return (NULL); 9494 for (; nv->nv_name; nv++) { 9495 if (nv->nv_value == value) 9496 return (nv->nv_name); 9497 } 9498 return ("unknown"); 9499 } 9500 9501 /* 9502 * one day it can be patched to 1 from /etc/system for machines that have few 9503 * fast network interfaces feeding multiple cpus. 9504 */ 9505 int ill_stream_putlocks = 0; 9506 9507 /* 9508 * This is a module open, i.e. this is a control stream for access 9509 * to a DLPI device. We allocate an ill_t as the instance data in 9510 * this case. 9511 */ 9512 int 9513 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9514 { 9515 uint32_t mem_cnt; 9516 uint32_t cpu_cnt; 9517 uint32_t min_cnt; 9518 pgcnt_t mem_avail; 9519 ill_t *ill; 9520 int err; 9521 9522 /* 9523 * Prevent unprivileged processes from pushing IP so that 9524 * they can't send raw IP. 9525 */ 9526 if (secpolicy_net_rawaccess(credp) != 0) 9527 return (EPERM); 9528 9529 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9530 q->q_ptr = WR(q)->q_ptr = ill; 9531 9532 /* 9533 * ill_init initializes the ill fields and then sends down 9534 * down a DL_INFO_REQ after calling qprocson. 9535 */ 9536 err = ill_init(q, ill); 9537 if (err != 0) { 9538 mi_free(ill); 9539 q->q_ptr = NULL; 9540 WR(q)->q_ptr = NULL; 9541 return (err); 9542 } 9543 9544 /* ill_init initializes the ipsq marking this thread as writer */ 9545 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9546 /* Wait for the DL_INFO_ACK */ 9547 mutex_enter(&ill->ill_lock); 9548 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9549 /* 9550 * Return value of 0 indicates a pending signal. 9551 */ 9552 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9553 if (err == 0) { 9554 mutex_exit(&ill->ill_lock); 9555 (void) ip_close(q, 0); 9556 return (EINTR); 9557 } 9558 } 9559 mutex_exit(&ill->ill_lock); 9560 9561 /* 9562 * ip_rput_other could have set an error in ill_error on 9563 * receipt of M_ERROR. 9564 */ 9565 9566 err = ill->ill_error; 9567 if (err != 0) { 9568 (void) ip_close(q, 0); 9569 return (err); 9570 } 9571 9572 /* 9573 * ip_ire_max_bucket_cnt is sized below based on the memory 9574 * size and the cpu speed of the machine. This is upper 9575 * bounded by the compile time value of ip_ire_max_bucket_cnt 9576 * and is lower bounded by the compile time value of 9577 * ip_ire_min_bucket_cnt. Similar logic applies to 9578 * ip6_ire_max_bucket_cnt. 9579 */ 9580 mem_avail = kmem_avail(); 9581 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9582 ip_cache_table_size / sizeof (ire_t); 9583 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 9584 9585 min_cnt = MIN(cpu_cnt, mem_cnt); 9586 if (min_cnt < ip_ire_min_bucket_cnt) 9587 min_cnt = ip_ire_min_bucket_cnt; 9588 if (ip_ire_max_bucket_cnt > min_cnt) { 9589 ip_ire_max_bucket_cnt = min_cnt; 9590 } 9591 9592 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9593 ip6_cache_table_size / sizeof (ire_t); 9594 min_cnt = MIN(cpu_cnt, mem_cnt); 9595 if (min_cnt < ip6_ire_min_bucket_cnt) 9596 min_cnt = ip6_ire_min_bucket_cnt; 9597 if (ip6_ire_max_bucket_cnt > min_cnt) { 9598 ip6_ire_max_bucket_cnt = min_cnt; 9599 } 9600 9601 ill->ill_credp = credp; 9602 crhold(credp); 9603 9604 mutex_enter(&ip_mi_lock); 9605 err = mi_open_link(&ip_g_head, (IDP)ill, devp, flag, sflag, credp); 9606 mutex_exit(&ip_mi_lock); 9607 if (err) { 9608 (void) ip_close(q, 0); 9609 return (err); 9610 } 9611 return (0); 9612 } 9613 9614 /* IP open routine. */ 9615 int 9616 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9617 { 9618 conn_t *connp; 9619 major_t maj; 9620 9621 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9622 9623 /* Allow reopen. */ 9624 if (q->q_ptr != NULL) 9625 return (0); 9626 9627 if (sflag & MODOPEN) { 9628 /* This is a module open */ 9629 return (ip_modopen(q, devp, flag, sflag, credp)); 9630 } 9631 9632 /* 9633 * We are opening as a device. This is an IP client stream, and we 9634 * allocate an conn_t as the instance data. 9635 */ 9636 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP); 9637 connp->conn_upq = q; 9638 q->q_ptr = WR(q)->q_ptr = connp; 9639 9640 if (flag & SO_SOCKSTR) 9641 connp->conn_flags |= IPCL_SOCKET; 9642 9643 /* Minor tells us which /dev entry was opened */ 9644 if (geteminor(*devp) == IPV6_MINOR) { 9645 connp->conn_flags |= IPCL_ISV6; 9646 connp->conn_af_isv6 = B_TRUE; 9647 ip_setqinfo(q, geteminor(*devp), B_FALSE); 9648 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9649 } else { 9650 connp->conn_af_isv6 = B_FALSE; 9651 connp->conn_pkt_isv6 = B_FALSE; 9652 } 9653 9654 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9655 q->q_ptr = WR(q)->q_ptr = NULL; 9656 CONN_DEC_REF(connp); 9657 return (EBUSY); 9658 } 9659 9660 maj = getemajor(*devp); 9661 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9662 9663 /* 9664 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9665 */ 9666 connp->conn_cred = credp; 9667 crhold(connp->conn_cred); 9668 9669 /* 9670 * If the caller has the process-wide flag set, then default to MAC 9671 * exempt mode. This allows read-down to unlabeled hosts. 9672 */ 9673 if (getpflags(NET_MAC_AWARE, credp) != 0) 9674 connp->conn_mac_exempt = B_TRUE; 9675 9676 connp->conn_zoneid = getzoneid(); 9677 9678 /* 9679 * This should only happen for ndd, netstat, raw socket or other SCTP 9680 * administrative ops. In these cases, we just need a normal conn_t 9681 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 9682 * an error will be returned. 9683 */ 9684 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 9685 connp->conn_rq = q; 9686 connp->conn_wq = WR(q); 9687 } else { 9688 connp->conn_ulp = IPPROTO_SCTP; 9689 connp->conn_rq = connp->conn_wq = NULL; 9690 } 9691 /* Non-zero default values */ 9692 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9693 9694 /* 9695 * Make the conn globally visible to walkers 9696 */ 9697 mutex_enter(&connp->conn_lock); 9698 connp->conn_state_flags &= ~CONN_INCIPIENT; 9699 mutex_exit(&connp->conn_lock); 9700 ASSERT(connp->conn_ref == 1); 9701 9702 qprocson(q); 9703 9704 return (0); 9705 } 9706 9707 /* 9708 * Change q_qinfo based on the value of isv6. 9709 * This can not called on an ill queue. 9710 * Note that there is no race since either q_qinfo works for conn queues - it 9711 * is just an optimization to enter the best wput routine directly. 9712 */ 9713 void 9714 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib) 9715 { 9716 ASSERT(q->q_flag & QREADR); 9717 ASSERT(WR(q)->q_next == NULL); 9718 ASSERT(q->q_ptr != NULL); 9719 9720 if (minor == IPV6_MINOR) { 9721 if (bump_mib) 9722 BUMP_MIB(&ip6_mib, ipv6OutSwitchIPv4); 9723 q->q_qinfo = &rinit_ipv6; 9724 WR(q)->q_qinfo = &winit_ipv6; 9725 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 9726 } else { 9727 if (bump_mib) 9728 BUMP_MIB(&ip_mib, ipOutSwitchIPv6); 9729 q->q_qinfo = &iprinit; 9730 WR(q)->q_qinfo = &ipwinit; 9731 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 9732 } 9733 9734 } 9735 9736 /* 9737 * See if IPsec needs loading because of the options in mp. 9738 */ 9739 static boolean_t 9740 ipsec_opt_present(mblk_t *mp) 9741 { 9742 uint8_t *optcp, *next_optcp, *opt_endcp; 9743 struct opthdr *opt; 9744 struct T_opthdr *topt; 9745 int opthdr_len; 9746 t_uscalar_t optname, optlevel; 9747 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9748 ipsec_req_t *ipsr; 9749 9750 /* 9751 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9752 * return TRUE. 9753 */ 9754 9755 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9756 opt_endcp = optcp + tor->OPT_length; 9757 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9758 opthdr_len = sizeof (struct T_opthdr); 9759 } else { /* O_OPTMGMT_REQ */ 9760 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9761 opthdr_len = sizeof (struct opthdr); 9762 } 9763 for (; optcp < opt_endcp; optcp = next_optcp) { 9764 if (optcp + opthdr_len > opt_endcp) 9765 return (B_FALSE); /* Not enough option header. */ 9766 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9767 topt = (struct T_opthdr *)optcp; 9768 optlevel = topt->level; 9769 optname = topt->name; 9770 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9771 } else { 9772 opt = (struct opthdr *)optcp; 9773 optlevel = opt->level; 9774 optname = opt->name; 9775 next_optcp = optcp + opthdr_len + 9776 _TPI_ALIGN_OPT(opt->len); 9777 } 9778 if ((next_optcp < optcp) || /* wraparound pointer space */ 9779 ((next_optcp >= opt_endcp) && /* last option bad len */ 9780 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9781 return (B_FALSE); /* bad option buffer */ 9782 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9783 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9784 /* 9785 * Check to see if it's an all-bypass or all-zeroes 9786 * IPsec request. Don't bother loading IPsec if 9787 * the socket doesn't want to use it. (A good example 9788 * is a bypass request.) 9789 * 9790 * Basically, if any of the non-NEVER bits are set, 9791 * load IPsec. 9792 */ 9793 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9794 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9795 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9796 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9797 != 0) 9798 return (B_TRUE); 9799 } 9800 } 9801 return (B_FALSE); 9802 } 9803 9804 /* 9805 * If conn is is waiting for ipsec to finish loading, kick it. 9806 */ 9807 /* ARGSUSED */ 9808 static void 9809 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9810 { 9811 t_scalar_t optreq_prim; 9812 mblk_t *mp; 9813 cred_t *cr; 9814 int err = 0; 9815 9816 /* 9817 * This function is called, after ipsec loading is complete. 9818 * Since IP checks exclusively and atomically (i.e it prevents 9819 * ipsec load from completing until ip_optcom_req completes) 9820 * whether ipsec load is complete, there cannot be a race with IP 9821 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9822 */ 9823 mutex_enter(&connp->conn_lock); 9824 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9825 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9826 mp = connp->conn_ipsec_opt_mp; 9827 connp->conn_ipsec_opt_mp = NULL; 9828 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9829 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 9830 mutex_exit(&connp->conn_lock); 9831 9832 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9833 9834 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9835 if (optreq_prim == T_OPTMGMT_REQ) { 9836 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9837 &ip_opt_obj); 9838 } else { 9839 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 9840 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9841 &ip_opt_obj); 9842 } 9843 if (err != EINPROGRESS) 9844 CONN_OPER_PENDING_DONE(connp); 9845 return; 9846 } 9847 mutex_exit(&connp->conn_lock); 9848 } 9849 9850 /* 9851 * Called from the ipsec_loader thread, outside any perimeter, to tell 9852 * ip qenable any of the queues waiting for the ipsec loader to 9853 * complete. 9854 * 9855 * Use ip_mi_lock to be safe here: all modifications of the mi lists 9856 * are done with this lock held, so it's guaranteed that none of the 9857 * links will change along the way. 9858 */ 9859 void 9860 ip_ipsec_load_complete() 9861 { 9862 ipcl_walk(conn_restart_ipsec_waiter, NULL); 9863 } 9864 9865 /* 9866 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 9867 * determines the grp on which it has to become exclusive, queues the mp 9868 * and sq draining restarts the optmgmt 9869 */ 9870 static boolean_t 9871 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 9872 { 9873 conn_t *connp; 9874 9875 /* 9876 * Take IPsec requests and treat them special. 9877 */ 9878 if (ipsec_opt_present(mp)) { 9879 /* First check if IPsec is loaded. */ 9880 mutex_enter(&ipsec_loader_lock); 9881 if (ipsec_loader_state != IPSEC_LOADER_WAIT) { 9882 mutex_exit(&ipsec_loader_lock); 9883 return (B_FALSE); 9884 } 9885 connp = Q_TO_CONN(q); 9886 mutex_enter(&connp->conn_lock); 9887 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 9888 9889 ASSERT(connp->conn_ipsec_opt_mp == NULL); 9890 connp->conn_ipsec_opt_mp = mp; 9891 mutex_exit(&connp->conn_lock); 9892 mutex_exit(&ipsec_loader_lock); 9893 9894 ipsec_loader_loadnow(); 9895 return (B_TRUE); 9896 } 9897 return (B_FALSE); 9898 } 9899 9900 /* 9901 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 9902 * all of them are copied to the conn_t. If the req is "zero", the policy is 9903 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 9904 * fields. 9905 * We keep only the latest setting of the policy and thus policy setting 9906 * is not incremental/cumulative. 9907 * 9908 * Requests to set policies with multiple alternative actions will 9909 * go through a different API. 9910 */ 9911 int 9912 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 9913 { 9914 uint_t ah_req = 0; 9915 uint_t esp_req = 0; 9916 uint_t se_req = 0; 9917 ipsec_selkey_t sel; 9918 ipsec_act_t *actp = NULL; 9919 uint_t nact; 9920 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 9921 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 9922 ipsec_policy_root_t *pr; 9923 ipsec_policy_head_t *ph; 9924 int fam; 9925 boolean_t is_pol_reset; 9926 int error = 0; 9927 9928 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 9929 9930 /* 9931 * The IP_SEC_OPT option does not allow variable length parameters, 9932 * hence a request cannot be NULL. 9933 */ 9934 if (req == NULL) 9935 return (EINVAL); 9936 9937 ah_req = req->ipsr_ah_req; 9938 esp_req = req->ipsr_esp_req; 9939 se_req = req->ipsr_self_encap_req; 9940 9941 /* 9942 * Are we dealing with a request to reset the policy (i.e. 9943 * zero requests). 9944 */ 9945 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 9946 (esp_req & REQ_MASK) == 0 && 9947 (se_req & REQ_MASK) == 0); 9948 9949 if (!is_pol_reset) { 9950 /* 9951 * If we couldn't load IPsec, fail with "protocol 9952 * not supported". 9953 * IPsec may not have been loaded for a request with zero 9954 * policies, so we don't fail in this case. 9955 */ 9956 mutex_enter(&ipsec_loader_lock); 9957 if (ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 9958 mutex_exit(&ipsec_loader_lock); 9959 return (EPROTONOSUPPORT); 9960 } 9961 mutex_exit(&ipsec_loader_lock); 9962 9963 /* 9964 * Test for valid requests. Invalid algorithms 9965 * need to be tested by IPSEC code because new 9966 * algorithms can be added dynamically. 9967 */ 9968 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 9969 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 9970 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 9971 return (EINVAL); 9972 } 9973 9974 /* 9975 * Only privileged users can issue these 9976 * requests. 9977 */ 9978 if (((ah_req & IPSEC_PREF_NEVER) || 9979 (esp_req & IPSEC_PREF_NEVER) || 9980 (se_req & IPSEC_PREF_NEVER)) && 9981 secpolicy_net_config(cr, B_FALSE) != 0) { 9982 return (EPERM); 9983 } 9984 9985 /* 9986 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 9987 * are mutually exclusive. 9988 */ 9989 if (((ah_req & REQ_MASK) == REQ_MASK) || 9990 ((esp_req & REQ_MASK) == REQ_MASK) || 9991 ((se_req & REQ_MASK) == REQ_MASK)) { 9992 /* Both of them are set */ 9993 return (EINVAL); 9994 } 9995 } 9996 9997 mutex_enter(&connp->conn_lock); 9998 9999 /* 10000 * If we have already cached policies in ip_bind_connected*(), don't 10001 * let them change now. We cache policies for connections 10002 * whose src,dst [addr, port] is known. The exception to this is 10003 * tunnels. Tunnels are allowed to change policies after having 10004 * become fully bound. 10005 */ 10006 if (connp->conn_policy_cached && !IPCL_IS_IPTUN(connp)) { 10007 mutex_exit(&connp->conn_lock); 10008 return (EINVAL); 10009 } 10010 10011 /* 10012 * We have a zero policies, reset the connection policy if already 10013 * set. This will cause the connection to inherit the 10014 * global policy, if any. 10015 */ 10016 if (is_pol_reset) { 10017 if (connp->conn_policy != NULL) { 10018 IPPH_REFRELE(connp->conn_policy); 10019 connp->conn_policy = NULL; 10020 } 10021 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10022 connp->conn_in_enforce_policy = B_FALSE; 10023 connp->conn_out_enforce_policy = B_FALSE; 10024 mutex_exit(&connp->conn_lock); 10025 return (0); 10026 } 10027 10028 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy); 10029 if (ph == NULL) 10030 goto enomem; 10031 10032 ipsec_actvec_from_req(req, &actp, &nact); 10033 if (actp == NULL) 10034 goto enomem; 10035 10036 /* 10037 * Always allocate IPv4 policy entries, since they can also 10038 * apply to ipv6 sockets being used in ipv4-compat mode. 10039 */ 10040 bzero(&sel, sizeof (sel)); 10041 sel.ipsl_valid = IPSL_IPV4; 10042 10043 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 10044 if (pin4 == NULL) 10045 goto enomem; 10046 10047 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 10048 if (pout4 == NULL) 10049 goto enomem; 10050 10051 if (connp->conn_pkt_isv6) { 10052 /* 10053 * We're looking at a v6 socket, also allocate the 10054 * v6-specific entries... 10055 */ 10056 sel.ipsl_valid = IPSL_IPV6; 10057 pin6 = ipsec_policy_create(&sel, actp, nact, 10058 IPSEC_PRIO_SOCKET); 10059 if (pin6 == NULL) 10060 goto enomem; 10061 10062 pout6 = ipsec_policy_create(&sel, actp, nact, 10063 IPSEC_PRIO_SOCKET); 10064 if (pout6 == NULL) 10065 goto enomem; 10066 10067 /* 10068 * .. and file them away in the right place. 10069 */ 10070 fam = IPSEC_AF_V6; 10071 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10072 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10073 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10074 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10075 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10076 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10077 } 10078 10079 ipsec_actvec_free(actp, nact); 10080 10081 /* 10082 * File the v4 policies. 10083 */ 10084 fam = IPSEC_AF_V4; 10085 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10086 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10087 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10088 10089 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10090 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10091 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10092 10093 /* 10094 * If the requests need security, set enforce_policy. 10095 * If the requests are IPSEC_PREF_NEVER, one should 10096 * still set conn_out_enforce_policy so that an ipsec_out 10097 * gets attached in ip_wput. This is needed so that 10098 * for connections that we don't cache policy in ip_bind, 10099 * if global policy matches in ip_wput_attach_policy, we 10100 * don't wrongly inherit global policy. Similarly, we need 10101 * to set conn_in_enforce_policy also so that we don't verify 10102 * policy wrongly. 10103 */ 10104 if ((ah_req & REQ_MASK) != 0 || 10105 (esp_req & REQ_MASK) != 0 || 10106 (se_req & REQ_MASK) != 0) { 10107 connp->conn_in_enforce_policy = B_TRUE; 10108 connp->conn_out_enforce_policy = B_TRUE; 10109 connp->conn_flags |= IPCL_CHECK_POLICY; 10110 } 10111 10112 /* 10113 * Tunnels are allowed to set policy after having been fully bound. 10114 * If that's the case, cache policy here. 10115 */ 10116 if (IPCL_IS_IPTUN(connp) && connp->conn_fully_bound) 10117 error = ipsec_conn_cache_policy(connp, !connp->conn_af_isv6); 10118 10119 mutex_exit(&connp->conn_lock); 10120 return (error); 10121 #undef REQ_MASK 10122 10123 /* 10124 * Common memory-allocation-failure exit path. 10125 */ 10126 enomem: 10127 mutex_exit(&connp->conn_lock); 10128 if (actp != NULL) 10129 ipsec_actvec_free(actp, nact); 10130 if (pin4 != NULL) 10131 IPPOL_REFRELE(pin4); 10132 if (pout4 != NULL) 10133 IPPOL_REFRELE(pout4); 10134 if (pin6 != NULL) 10135 IPPOL_REFRELE(pin6); 10136 if (pout6 != NULL) 10137 IPPOL_REFRELE(pout6); 10138 return (ENOMEM); 10139 } 10140 10141 /* 10142 * Only for options that pass in an IP addr. Currently only V4 options 10143 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10144 * So this function assumes level is IPPROTO_IP 10145 */ 10146 int 10147 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10148 mblk_t *first_mp) 10149 { 10150 ipif_t *ipif = NULL; 10151 int error; 10152 ill_t *ill; 10153 int zoneid; 10154 10155 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10156 10157 if (addr != INADDR_ANY || checkonly) { 10158 ASSERT(connp != NULL); 10159 zoneid = IPCL_ZONEID(connp); 10160 if (option == IP_NEXTHOP) { 10161 ipif = ipif_lookup_onlink_addr(addr, 10162 connp->conn_zoneid); 10163 } else { 10164 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10165 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10166 &error); 10167 } 10168 if (ipif == NULL) { 10169 if (error == EINPROGRESS) 10170 return (error); 10171 else if ((option == IP_MULTICAST_IF) || 10172 (option == IP_NEXTHOP)) 10173 return (EHOSTUNREACH); 10174 else 10175 return (EINVAL); 10176 } else if (checkonly) { 10177 if (option == IP_MULTICAST_IF) { 10178 ill = ipif->ipif_ill; 10179 /* not supported by the virtual network iface */ 10180 if (IS_VNI(ill)) { 10181 ipif_refrele(ipif); 10182 return (EINVAL); 10183 } 10184 } 10185 ipif_refrele(ipif); 10186 return (0); 10187 } 10188 ill = ipif->ipif_ill; 10189 mutex_enter(&connp->conn_lock); 10190 mutex_enter(&ill->ill_lock); 10191 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10192 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10193 mutex_exit(&ill->ill_lock); 10194 mutex_exit(&connp->conn_lock); 10195 ipif_refrele(ipif); 10196 return (option == IP_MULTICAST_IF ? 10197 EHOSTUNREACH : EINVAL); 10198 } 10199 } else { 10200 mutex_enter(&connp->conn_lock); 10201 } 10202 10203 /* None of the options below are supported on the VNI */ 10204 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10205 mutex_exit(&ill->ill_lock); 10206 mutex_exit(&connp->conn_lock); 10207 ipif_refrele(ipif); 10208 return (EINVAL); 10209 } 10210 10211 switch (option) { 10212 case IP_DONTFAILOVER_IF: 10213 /* 10214 * This option is used by in.mpathd to ensure 10215 * that IPMP probe packets only go out on the 10216 * test interfaces. in.mpathd sets this option 10217 * on the non-failover interfaces. 10218 * For backward compatibility, this option 10219 * implicitly sets IP_MULTICAST_IF, as used 10220 * be done in bind(), so that ip_wput gets 10221 * this ipif to send mcast packets. 10222 */ 10223 if (ipif != NULL) { 10224 ASSERT(addr != INADDR_ANY); 10225 connp->conn_nofailover_ill = ipif->ipif_ill; 10226 connp->conn_multicast_ipif = ipif; 10227 } else { 10228 ASSERT(addr == INADDR_ANY); 10229 connp->conn_nofailover_ill = NULL; 10230 connp->conn_multicast_ipif = NULL; 10231 } 10232 break; 10233 10234 case IP_MULTICAST_IF: 10235 connp->conn_multicast_ipif = ipif; 10236 break; 10237 case IP_NEXTHOP: 10238 connp->conn_nexthop_v4 = addr; 10239 connp->conn_nexthop_set = B_TRUE; 10240 break; 10241 } 10242 10243 if (ipif != NULL) { 10244 mutex_exit(&ill->ill_lock); 10245 mutex_exit(&connp->conn_lock); 10246 ipif_refrele(ipif); 10247 return (0); 10248 } 10249 mutex_exit(&connp->conn_lock); 10250 /* We succeded in cleared the option */ 10251 return (0); 10252 } 10253 10254 /* 10255 * For options that pass in an ifindex specifying the ill. V6 options always 10256 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10257 */ 10258 int 10259 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10260 int level, int option, mblk_t *first_mp) 10261 { 10262 ill_t *ill = NULL; 10263 int error = 0; 10264 10265 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10266 if (ifindex != 0) { 10267 ASSERT(connp != NULL); 10268 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10269 first_mp, ip_restart_optmgmt, &error); 10270 if (ill != NULL) { 10271 if (checkonly) { 10272 /* not supported by the virtual network iface */ 10273 if (IS_VNI(ill)) { 10274 ill_refrele(ill); 10275 return (EINVAL); 10276 } 10277 ill_refrele(ill); 10278 return (0); 10279 } 10280 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10281 0, NULL)) { 10282 ill_refrele(ill); 10283 ill = NULL; 10284 mutex_enter(&connp->conn_lock); 10285 goto setit; 10286 } 10287 mutex_enter(&connp->conn_lock); 10288 mutex_enter(&ill->ill_lock); 10289 if (ill->ill_state_flags & ILL_CONDEMNED) { 10290 mutex_exit(&ill->ill_lock); 10291 mutex_exit(&connp->conn_lock); 10292 ill_refrele(ill); 10293 ill = NULL; 10294 mutex_enter(&connp->conn_lock); 10295 } 10296 goto setit; 10297 } else if (error == EINPROGRESS) { 10298 return (error); 10299 } else { 10300 error = 0; 10301 } 10302 } 10303 mutex_enter(&connp->conn_lock); 10304 setit: 10305 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10306 10307 /* 10308 * The options below assume that the ILL (if any) transmits and/or 10309 * receives traffic. Neither of which is true for the virtual network 10310 * interface, so fail setting these on a VNI. 10311 */ 10312 if (IS_VNI(ill)) { 10313 ASSERT(ill != NULL); 10314 mutex_exit(&ill->ill_lock); 10315 mutex_exit(&connp->conn_lock); 10316 ill_refrele(ill); 10317 return (EINVAL); 10318 } 10319 10320 if (level == IPPROTO_IP) { 10321 switch (option) { 10322 case IP_BOUND_IF: 10323 connp->conn_incoming_ill = ill; 10324 connp->conn_outgoing_ill = ill; 10325 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10326 0 : ifindex; 10327 break; 10328 10329 case IP_XMIT_IF: 10330 /* 10331 * Similar to IP_BOUND_IF, but this only 10332 * determines the outgoing interface for 10333 * unicast packets. Also no IRE_CACHE entry 10334 * is added for the destination of the 10335 * outgoing packets. This feature is needed 10336 * for mobile IP. 10337 */ 10338 connp->conn_xmit_if_ill = ill; 10339 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 10340 0 : ifindex; 10341 break; 10342 10343 case IP_MULTICAST_IF: 10344 /* 10345 * This option is an internal special. The socket 10346 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10347 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10348 * specifies an ifindex and we try first on V6 ill's. 10349 * If we don't find one, we they try using on v4 ill's 10350 * intenally and we come here. 10351 */ 10352 if (!checkonly && ill != NULL) { 10353 ipif_t *ipif; 10354 ipif = ill->ill_ipif; 10355 10356 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10357 mutex_exit(&ill->ill_lock); 10358 mutex_exit(&connp->conn_lock); 10359 ill_refrele(ill); 10360 ill = NULL; 10361 mutex_enter(&connp->conn_lock); 10362 } else { 10363 connp->conn_multicast_ipif = ipif; 10364 } 10365 } 10366 break; 10367 } 10368 } else { 10369 switch (option) { 10370 case IPV6_BOUND_IF: 10371 connp->conn_incoming_ill = ill; 10372 connp->conn_outgoing_ill = ill; 10373 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10374 0 : ifindex; 10375 break; 10376 10377 case IPV6_BOUND_PIF: 10378 /* 10379 * Limit all transmit to this ill. 10380 * Unlike IPV6_BOUND_IF, using this option 10381 * prevents load spreading and failover from 10382 * happening when the interface is part of the 10383 * group. That's why we don't need to remember 10384 * the ifindex in orig_bound_ifindex as in 10385 * IPV6_BOUND_IF. 10386 */ 10387 connp->conn_outgoing_pill = ill; 10388 break; 10389 10390 case IPV6_DONTFAILOVER_IF: 10391 /* 10392 * This option is used by in.mpathd to ensure 10393 * that IPMP probe packets only go out on the 10394 * test interfaces. in.mpathd sets this option 10395 * on the non-failover interfaces. 10396 */ 10397 connp->conn_nofailover_ill = ill; 10398 /* 10399 * For backward compatibility, this option 10400 * implicitly sets ip_multicast_ill as used in 10401 * IP_MULTICAST_IF so that ip_wput gets 10402 * this ipif to send mcast packets. 10403 */ 10404 connp->conn_multicast_ill = ill; 10405 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10406 0 : ifindex; 10407 break; 10408 10409 case IPV6_MULTICAST_IF: 10410 /* 10411 * Set conn_multicast_ill to be the IPv6 ill. 10412 * Set conn_multicast_ipif to be an IPv4 ipif 10413 * for ifindex to make IPv4 mapped addresses 10414 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10415 * Even if no IPv6 ill exists for the ifindex 10416 * we need to check for an IPv4 ifindex in order 10417 * for this to work with mapped addresses. In that 10418 * case only set conn_multicast_ipif. 10419 */ 10420 if (!checkonly) { 10421 if (ifindex == 0) { 10422 connp->conn_multicast_ill = NULL; 10423 connp->conn_orig_multicast_ifindex = 0; 10424 connp->conn_multicast_ipif = NULL; 10425 } else if (ill != NULL) { 10426 connp->conn_multicast_ill = ill; 10427 connp->conn_orig_multicast_ifindex = 10428 ifindex; 10429 } 10430 } 10431 break; 10432 } 10433 } 10434 10435 if (ill != NULL) { 10436 mutex_exit(&ill->ill_lock); 10437 mutex_exit(&connp->conn_lock); 10438 ill_refrele(ill); 10439 return (0); 10440 } 10441 mutex_exit(&connp->conn_lock); 10442 /* 10443 * We succeeded in clearing the option (ifindex == 0) or failed to 10444 * locate the ill and could not set the option (ifindex != 0) 10445 */ 10446 return (ifindex == 0 ? 0 : EINVAL); 10447 } 10448 10449 /* This routine sets socket options. */ 10450 /* ARGSUSED */ 10451 int 10452 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10453 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10454 void *dummy, cred_t *cr, mblk_t *first_mp) 10455 { 10456 int *i1 = (int *)invalp; 10457 conn_t *connp = Q_TO_CONN(q); 10458 int error = 0; 10459 boolean_t checkonly; 10460 ire_t *ire; 10461 boolean_t found; 10462 10463 switch (optset_context) { 10464 10465 case SETFN_OPTCOM_CHECKONLY: 10466 checkonly = B_TRUE; 10467 /* 10468 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10469 * inlen != 0 implies value supplied and 10470 * we have to "pretend" to set it. 10471 * inlen == 0 implies that there is no 10472 * value part in T_CHECK request and just validation 10473 * done elsewhere should be enough, we just return here. 10474 */ 10475 if (inlen == 0) { 10476 *outlenp = 0; 10477 return (0); 10478 } 10479 break; 10480 case SETFN_OPTCOM_NEGOTIATE: 10481 case SETFN_UD_NEGOTIATE: 10482 case SETFN_CONN_NEGOTIATE: 10483 checkonly = B_FALSE; 10484 break; 10485 default: 10486 /* 10487 * We should never get here 10488 */ 10489 *outlenp = 0; 10490 return (EINVAL); 10491 } 10492 10493 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10494 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10495 10496 /* 10497 * For fixed length options, no sanity check 10498 * of passed in length is done. It is assumed *_optcom_req() 10499 * routines do the right thing. 10500 */ 10501 10502 switch (level) { 10503 case SOL_SOCKET: 10504 /* 10505 * conn_lock protects the bitfields, and is used to 10506 * set the fields atomically. 10507 */ 10508 switch (name) { 10509 case SO_BROADCAST: 10510 if (!checkonly) { 10511 /* TODO: use value someplace? */ 10512 mutex_enter(&connp->conn_lock); 10513 connp->conn_broadcast = *i1 ? 1 : 0; 10514 mutex_exit(&connp->conn_lock); 10515 } 10516 break; /* goto sizeof (int) option return */ 10517 case SO_USELOOPBACK: 10518 if (!checkonly) { 10519 /* TODO: use value someplace? */ 10520 mutex_enter(&connp->conn_lock); 10521 connp->conn_loopback = *i1 ? 1 : 0; 10522 mutex_exit(&connp->conn_lock); 10523 } 10524 break; /* goto sizeof (int) option return */ 10525 case SO_DONTROUTE: 10526 if (!checkonly) { 10527 mutex_enter(&connp->conn_lock); 10528 connp->conn_dontroute = *i1 ? 1 : 0; 10529 mutex_exit(&connp->conn_lock); 10530 } 10531 break; /* goto sizeof (int) option return */ 10532 case SO_REUSEADDR: 10533 if (!checkonly) { 10534 mutex_enter(&connp->conn_lock); 10535 connp->conn_reuseaddr = *i1 ? 1 : 0; 10536 mutex_exit(&connp->conn_lock); 10537 } 10538 break; /* goto sizeof (int) option return */ 10539 case SO_PROTOTYPE: 10540 if (!checkonly) { 10541 mutex_enter(&connp->conn_lock); 10542 connp->conn_proto = *i1; 10543 mutex_exit(&connp->conn_lock); 10544 } 10545 break; /* goto sizeof (int) option return */ 10546 case SO_ALLZONES: 10547 if (!checkonly) { 10548 mutex_enter(&connp->conn_lock); 10549 if (IPCL_IS_BOUND(connp)) { 10550 mutex_exit(&connp->conn_lock); 10551 return (EINVAL); 10552 } 10553 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10554 mutex_exit(&connp->conn_lock); 10555 } 10556 break; /* goto sizeof (int) option return */ 10557 case SO_ANON_MLP: 10558 if (!checkonly) { 10559 mutex_enter(&connp->conn_lock); 10560 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10561 mutex_exit(&connp->conn_lock); 10562 } 10563 break; /* goto sizeof (int) option return */ 10564 case SO_MAC_EXEMPT: 10565 if (secpolicy_net_mac_aware(cr) != 0 || 10566 IPCL_IS_BOUND(connp)) 10567 return (EACCES); 10568 if (!checkonly) { 10569 mutex_enter(&connp->conn_lock); 10570 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10571 mutex_exit(&connp->conn_lock); 10572 } 10573 break; /* goto sizeof (int) option return */ 10574 default: 10575 /* 10576 * "soft" error (negative) 10577 * option not handled at this level 10578 * Note: Do not modify *outlenp 10579 */ 10580 return (-EINVAL); 10581 } 10582 break; 10583 case IPPROTO_IP: 10584 switch (name) { 10585 case IP_NEXTHOP: 10586 if (secpolicy_net_config(cr, B_FALSE) != 0) 10587 return (EPERM); 10588 /* FALLTHRU */ 10589 case IP_MULTICAST_IF: 10590 case IP_DONTFAILOVER_IF: { 10591 ipaddr_t addr = *i1; 10592 10593 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10594 first_mp); 10595 if (error != 0) 10596 return (error); 10597 break; /* goto sizeof (int) option return */ 10598 } 10599 10600 case IP_MULTICAST_TTL: 10601 /* Recorded in transport above IP */ 10602 *outvalp = *invalp; 10603 *outlenp = sizeof (uchar_t); 10604 return (0); 10605 case IP_MULTICAST_LOOP: 10606 if (!checkonly) { 10607 mutex_enter(&connp->conn_lock); 10608 connp->conn_multicast_loop = *invalp ? 1 : 0; 10609 mutex_exit(&connp->conn_lock); 10610 } 10611 *outvalp = *invalp; 10612 *outlenp = sizeof (uchar_t); 10613 return (0); 10614 case IP_ADD_MEMBERSHIP: 10615 case MCAST_JOIN_GROUP: 10616 case IP_DROP_MEMBERSHIP: 10617 case MCAST_LEAVE_GROUP: { 10618 struct ip_mreq *mreqp; 10619 struct group_req *greqp; 10620 ire_t *ire; 10621 boolean_t done = B_FALSE; 10622 ipaddr_t group, ifaddr; 10623 struct sockaddr_in *sin; 10624 uint32_t *ifindexp; 10625 boolean_t mcast_opt = B_TRUE; 10626 mcast_record_t fmode; 10627 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10628 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10629 10630 switch (name) { 10631 case IP_ADD_MEMBERSHIP: 10632 mcast_opt = B_FALSE; 10633 /* FALLTHRU */ 10634 case MCAST_JOIN_GROUP: 10635 fmode = MODE_IS_EXCLUDE; 10636 optfn = ip_opt_add_group; 10637 break; 10638 10639 case IP_DROP_MEMBERSHIP: 10640 mcast_opt = B_FALSE; 10641 /* FALLTHRU */ 10642 case MCAST_LEAVE_GROUP: 10643 fmode = MODE_IS_INCLUDE; 10644 optfn = ip_opt_delete_group; 10645 break; 10646 } 10647 10648 if (mcast_opt) { 10649 greqp = (struct group_req *)i1; 10650 sin = (struct sockaddr_in *)&greqp->gr_group; 10651 if (sin->sin_family != AF_INET) { 10652 *outlenp = 0; 10653 return (ENOPROTOOPT); 10654 } 10655 group = (ipaddr_t)sin->sin_addr.s_addr; 10656 ifaddr = INADDR_ANY; 10657 ifindexp = &greqp->gr_interface; 10658 } else { 10659 mreqp = (struct ip_mreq *)i1; 10660 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10661 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10662 ifindexp = NULL; 10663 } 10664 10665 /* 10666 * In the multirouting case, we need to replicate 10667 * the request on all interfaces that will take part 10668 * in replication. We do so because multirouting is 10669 * reflective, thus we will probably receive multi- 10670 * casts on those interfaces. 10671 * The ip_multirt_apply_membership() succeeds if the 10672 * operation succeeds on at least one interface. 10673 */ 10674 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10675 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10676 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10677 if (ire != NULL) { 10678 if (ire->ire_flags & RTF_MULTIRT) { 10679 error = ip_multirt_apply_membership( 10680 optfn, ire, connp, checkonly, group, 10681 fmode, INADDR_ANY, first_mp); 10682 done = B_TRUE; 10683 } 10684 ire_refrele(ire); 10685 } 10686 if (!done) { 10687 error = optfn(connp, checkonly, group, ifaddr, 10688 ifindexp, fmode, INADDR_ANY, first_mp); 10689 } 10690 if (error) { 10691 /* 10692 * EINPROGRESS is a soft error, needs retry 10693 * so don't make *outlenp zero. 10694 */ 10695 if (error != EINPROGRESS) 10696 *outlenp = 0; 10697 return (error); 10698 } 10699 /* OK return - copy input buffer into output buffer */ 10700 if (invalp != outvalp) { 10701 /* don't trust bcopy for identical src/dst */ 10702 bcopy(invalp, outvalp, inlen); 10703 } 10704 *outlenp = inlen; 10705 return (0); 10706 } 10707 case IP_BLOCK_SOURCE: 10708 case IP_UNBLOCK_SOURCE: 10709 case IP_ADD_SOURCE_MEMBERSHIP: 10710 case IP_DROP_SOURCE_MEMBERSHIP: 10711 case MCAST_BLOCK_SOURCE: 10712 case MCAST_UNBLOCK_SOURCE: 10713 case MCAST_JOIN_SOURCE_GROUP: 10714 case MCAST_LEAVE_SOURCE_GROUP: { 10715 struct ip_mreq_source *imreqp; 10716 struct group_source_req *gsreqp; 10717 in_addr_t grp, src, ifaddr = INADDR_ANY; 10718 uint32_t ifindex = 0; 10719 mcast_record_t fmode; 10720 struct sockaddr_in *sin; 10721 ire_t *ire; 10722 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10723 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10724 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10725 10726 switch (name) { 10727 case IP_BLOCK_SOURCE: 10728 mcast_opt = B_FALSE; 10729 /* FALLTHRU */ 10730 case MCAST_BLOCK_SOURCE: 10731 fmode = MODE_IS_EXCLUDE; 10732 optfn = ip_opt_add_group; 10733 break; 10734 10735 case IP_UNBLOCK_SOURCE: 10736 mcast_opt = B_FALSE; 10737 /* FALLTHRU */ 10738 case MCAST_UNBLOCK_SOURCE: 10739 fmode = MODE_IS_EXCLUDE; 10740 optfn = ip_opt_delete_group; 10741 break; 10742 10743 case IP_ADD_SOURCE_MEMBERSHIP: 10744 mcast_opt = B_FALSE; 10745 /* FALLTHRU */ 10746 case MCAST_JOIN_SOURCE_GROUP: 10747 fmode = MODE_IS_INCLUDE; 10748 optfn = ip_opt_add_group; 10749 break; 10750 10751 case IP_DROP_SOURCE_MEMBERSHIP: 10752 mcast_opt = B_FALSE; 10753 /* FALLTHRU */ 10754 case MCAST_LEAVE_SOURCE_GROUP: 10755 fmode = MODE_IS_INCLUDE; 10756 optfn = ip_opt_delete_group; 10757 break; 10758 } 10759 10760 if (mcast_opt) { 10761 gsreqp = (struct group_source_req *)i1; 10762 if (gsreqp->gsr_group.ss_family != AF_INET) { 10763 *outlenp = 0; 10764 return (ENOPROTOOPT); 10765 } 10766 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10767 grp = (ipaddr_t)sin->sin_addr.s_addr; 10768 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10769 src = (ipaddr_t)sin->sin_addr.s_addr; 10770 ifindex = gsreqp->gsr_interface; 10771 } else { 10772 imreqp = (struct ip_mreq_source *)i1; 10773 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10774 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10775 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10776 } 10777 10778 /* 10779 * In the multirouting case, we need to replicate 10780 * the request as noted in the mcast cases above. 10781 */ 10782 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10783 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10784 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10785 if (ire != NULL) { 10786 if (ire->ire_flags & RTF_MULTIRT) { 10787 error = ip_multirt_apply_membership( 10788 optfn, ire, connp, checkonly, grp, 10789 fmode, src, first_mp); 10790 done = B_TRUE; 10791 } 10792 ire_refrele(ire); 10793 } 10794 if (!done) { 10795 error = optfn(connp, checkonly, grp, ifaddr, 10796 &ifindex, fmode, src, first_mp); 10797 } 10798 if (error != 0) { 10799 /* 10800 * EINPROGRESS is a soft error, needs retry 10801 * so don't make *outlenp zero. 10802 */ 10803 if (error != EINPROGRESS) 10804 *outlenp = 0; 10805 return (error); 10806 } 10807 /* OK return - copy input buffer into output buffer */ 10808 if (invalp != outvalp) { 10809 bcopy(invalp, outvalp, inlen); 10810 } 10811 *outlenp = inlen; 10812 return (0); 10813 } 10814 case IP_SEC_OPT: 10815 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10816 if (error != 0) { 10817 *outlenp = 0; 10818 return (error); 10819 } 10820 break; 10821 case IP_HDRINCL: 10822 case IP_OPTIONS: 10823 case T_IP_OPTIONS: 10824 case IP_TOS: 10825 case T_IP_TOS: 10826 case IP_TTL: 10827 case IP_RECVDSTADDR: 10828 case IP_RECVOPTS: 10829 /* OK return - copy input buffer into output buffer */ 10830 if (invalp != outvalp) { 10831 /* don't trust bcopy for identical src/dst */ 10832 bcopy(invalp, outvalp, inlen); 10833 } 10834 *outlenp = inlen; 10835 return (0); 10836 case IP_RECVIF: 10837 /* Retrieve the inbound interface index */ 10838 if (!checkonly) { 10839 mutex_enter(&connp->conn_lock); 10840 connp->conn_recvif = *i1 ? 1 : 0; 10841 mutex_exit(&connp->conn_lock); 10842 } 10843 break; /* goto sizeof (int) option return */ 10844 case IP_RECVSLLA: 10845 /* Retrieve the source link layer address */ 10846 if (!checkonly) { 10847 mutex_enter(&connp->conn_lock); 10848 connp->conn_recvslla = *i1 ? 1 : 0; 10849 mutex_exit(&connp->conn_lock); 10850 } 10851 break; /* goto sizeof (int) option return */ 10852 case MRT_INIT: 10853 case MRT_DONE: 10854 case MRT_ADD_VIF: 10855 case MRT_DEL_VIF: 10856 case MRT_ADD_MFC: 10857 case MRT_DEL_MFC: 10858 case MRT_ASSERT: 10859 if ((error = secpolicy_net_config(cr, B_FALSE)) != 0) { 10860 *outlenp = 0; 10861 return (error); 10862 } 10863 error = ip_mrouter_set((int)name, q, checkonly, 10864 (uchar_t *)invalp, inlen, first_mp); 10865 if (error) { 10866 *outlenp = 0; 10867 return (error); 10868 } 10869 /* OK return - copy input buffer into output buffer */ 10870 if (invalp != outvalp) { 10871 /* don't trust bcopy for identical src/dst */ 10872 bcopy(invalp, outvalp, inlen); 10873 } 10874 *outlenp = inlen; 10875 return (0); 10876 case IP_BOUND_IF: 10877 case IP_XMIT_IF: 10878 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10879 level, name, first_mp); 10880 if (error != 0) 10881 return (error); 10882 break; /* goto sizeof (int) option return */ 10883 10884 case IP_UNSPEC_SRC: 10885 /* Allow sending with a zero source address */ 10886 if (!checkonly) { 10887 mutex_enter(&connp->conn_lock); 10888 connp->conn_unspec_src = *i1 ? 1 : 0; 10889 mutex_exit(&connp->conn_lock); 10890 } 10891 break; /* goto sizeof (int) option return */ 10892 default: 10893 /* 10894 * "soft" error (negative) 10895 * option not handled at this level 10896 * Note: Do not modify *outlenp 10897 */ 10898 return (-EINVAL); 10899 } 10900 break; 10901 case IPPROTO_IPV6: 10902 switch (name) { 10903 case IPV6_BOUND_IF: 10904 case IPV6_BOUND_PIF: 10905 case IPV6_DONTFAILOVER_IF: 10906 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10907 level, name, first_mp); 10908 if (error != 0) 10909 return (error); 10910 break; /* goto sizeof (int) option return */ 10911 10912 case IPV6_MULTICAST_IF: 10913 /* 10914 * The only possible errors are EINPROGRESS and 10915 * EINVAL. EINPROGRESS will be restarted and is not 10916 * a hard error. We call this option on both V4 and V6 10917 * If both return EINVAL, then this call returns 10918 * EINVAL. If at least one of them succeeds we 10919 * return success. 10920 */ 10921 found = B_FALSE; 10922 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10923 level, name, first_mp); 10924 if (error == EINPROGRESS) 10925 return (error); 10926 if (error == 0) 10927 found = B_TRUE; 10928 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10929 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 10930 if (error == 0) 10931 found = B_TRUE; 10932 if (!found) 10933 return (error); 10934 break; /* goto sizeof (int) option return */ 10935 10936 case IPV6_MULTICAST_HOPS: 10937 /* Recorded in transport above IP */ 10938 break; /* goto sizeof (int) option return */ 10939 case IPV6_MULTICAST_LOOP: 10940 if (!checkonly) { 10941 mutex_enter(&connp->conn_lock); 10942 connp->conn_multicast_loop = *i1; 10943 mutex_exit(&connp->conn_lock); 10944 } 10945 break; /* goto sizeof (int) option return */ 10946 case IPV6_JOIN_GROUP: 10947 case MCAST_JOIN_GROUP: 10948 case IPV6_LEAVE_GROUP: 10949 case MCAST_LEAVE_GROUP: { 10950 struct ipv6_mreq *ip_mreqp; 10951 struct group_req *greqp; 10952 ire_t *ire; 10953 boolean_t done = B_FALSE; 10954 in6_addr_t groupv6; 10955 uint32_t ifindex; 10956 boolean_t mcast_opt = B_TRUE; 10957 mcast_record_t fmode; 10958 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 10959 int, mcast_record_t, const in6_addr_t *, mblk_t *); 10960 10961 switch (name) { 10962 case IPV6_JOIN_GROUP: 10963 mcast_opt = B_FALSE; 10964 /* FALLTHRU */ 10965 case MCAST_JOIN_GROUP: 10966 fmode = MODE_IS_EXCLUDE; 10967 optfn = ip_opt_add_group_v6; 10968 break; 10969 10970 case IPV6_LEAVE_GROUP: 10971 mcast_opt = B_FALSE; 10972 /* FALLTHRU */ 10973 case MCAST_LEAVE_GROUP: 10974 fmode = MODE_IS_INCLUDE; 10975 optfn = ip_opt_delete_group_v6; 10976 break; 10977 } 10978 10979 if (mcast_opt) { 10980 struct sockaddr_in *sin; 10981 struct sockaddr_in6 *sin6; 10982 greqp = (struct group_req *)i1; 10983 if (greqp->gr_group.ss_family == AF_INET) { 10984 sin = (struct sockaddr_in *) 10985 &(greqp->gr_group); 10986 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 10987 &groupv6); 10988 } else { 10989 sin6 = (struct sockaddr_in6 *) 10990 &(greqp->gr_group); 10991 groupv6 = sin6->sin6_addr; 10992 } 10993 ifindex = greqp->gr_interface; 10994 } else { 10995 ip_mreqp = (struct ipv6_mreq *)i1; 10996 groupv6 = ip_mreqp->ipv6mr_multiaddr; 10997 ifindex = ip_mreqp->ipv6mr_interface; 10998 } 10999 /* 11000 * In the multirouting case, we need to replicate 11001 * the request on all interfaces that will take part 11002 * in replication. We do so because multirouting is 11003 * reflective, thus we will probably receive multi- 11004 * casts on those interfaces. 11005 * The ip_multirt_apply_membership_v6() succeeds if 11006 * the operation succeeds on at least one interface. 11007 */ 11008 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11009 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11010 MATCH_IRE_MASK | MATCH_IRE_TYPE); 11011 if (ire != NULL) { 11012 if (ire->ire_flags & RTF_MULTIRT) { 11013 error = ip_multirt_apply_membership_v6( 11014 optfn, ire, connp, checkonly, 11015 &groupv6, fmode, &ipv6_all_zeros, 11016 first_mp); 11017 done = B_TRUE; 11018 } 11019 ire_refrele(ire); 11020 } 11021 if (!done) { 11022 error = optfn(connp, checkonly, &groupv6, 11023 ifindex, fmode, &ipv6_all_zeros, first_mp); 11024 } 11025 if (error) { 11026 /* 11027 * EINPROGRESS is a soft error, needs retry 11028 * so don't make *outlenp zero. 11029 */ 11030 if (error != EINPROGRESS) 11031 *outlenp = 0; 11032 return (error); 11033 } 11034 /* OK return - copy input buffer into output buffer */ 11035 if (invalp != outvalp) { 11036 /* don't trust bcopy for identical src/dst */ 11037 bcopy(invalp, outvalp, inlen); 11038 } 11039 *outlenp = inlen; 11040 return (0); 11041 } 11042 case MCAST_BLOCK_SOURCE: 11043 case MCAST_UNBLOCK_SOURCE: 11044 case MCAST_JOIN_SOURCE_GROUP: 11045 case MCAST_LEAVE_SOURCE_GROUP: { 11046 struct group_source_req *gsreqp; 11047 in6_addr_t v6grp, v6src; 11048 uint32_t ifindex; 11049 mcast_record_t fmode; 11050 ire_t *ire; 11051 boolean_t done = B_FALSE; 11052 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11053 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11054 11055 switch (name) { 11056 case MCAST_BLOCK_SOURCE: 11057 fmode = MODE_IS_EXCLUDE; 11058 optfn = ip_opt_add_group_v6; 11059 break; 11060 case MCAST_UNBLOCK_SOURCE: 11061 fmode = MODE_IS_EXCLUDE; 11062 optfn = ip_opt_delete_group_v6; 11063 break; 11064 case MCAST_JOIN_SOURCE_GROUP: 11065 fmode = MODE_IS_INCLUDE; 11066 optfn = ip_opt_add_group_v6; 11067 break; 11068 case MCAST_LEAVE_SOURCE_GROUP: 11069 fmode = MODE_IS_INCLUDE; 11070 optfn = ip_opt_delete_group_v6; 11071 break; 11072 } 11073 11074 gsreqp = (struct group_source_req *)i1; 11075 ifindex = gsreqp->gsr_interface; 11076 if (gsreqp->gsr_group.ss_family == AF_INET) { 11077 struct sockaddr_in *s; 11078 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11079 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11080 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11081 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11082 } else { 11083 struct sockaddr_in6 *s6; 11084 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11085 v6grp = s6->sin6_addr; 11086 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11087 v6src = s6->sin6_addr; 11088 } 11089 11090 /* 11091 * In the multirouting case, we need to replicate 11092 * the request as noted in the mcast cases above. 11093 */ 11094 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11095 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11096 MATCH_IRE_MASK | MATCH_IRE_TYPE); 11097 if (ire != NULL) { 11098 if (ire->ire_flags & RTF_MULTIRT) { 11099 error = ip_multirt_apply_membership_v6( 11100 optfn, ire, connp, checkonly, 11101 &v6grp, fmode, &v6src, first_mp); 11102 done = B_TRUE; 11103 } 11104 ire_refrele(ire); 11105 } 11106 if (!done) { 11107 error = optfn(connp, checkonly, &v6grp, 11108 ifindex, fmode, &v6src, first_mp); 11109 } 11110 if (error != 0) { 11111 /* 11112 * EINPROGRESS is a soft error, needs retry 11113 * so don't make *outlenp zero. 11114 */ 11115 if (error != EINPROGRESS) 11116 *outlenp = 0; 11117 return (error); 11118 } 11119 /* OK return - copy input buffer into output buffer */ 11120 if (invalp != outvalp) { 11121 bcopy(invalp, outvalp, inlen); 11122 } 11123 *outlenp = inlen; 11124 return (0); 11125 } 11126 case IPV6_UNICAST_HOPS: 11127 /* Recorded in transport above IP */ 11128 break; /* goto sizeof (int) option return */ 11129 case IPV6_UNSPEC_SRC: 11130 /* Allow sending with a zero source address */ 11131 if (!checkonly) { 11132 mutex_enter(&connp->conn_lock); 11133 connp->conn_unspec_src = *i1 ? 1 : 0; 11134 mutex_exit(&connp->conn_lock); 11135 } 11136 break; /* goto sizeof (int) option return */ 11137 case IPV6_RECVPKTINFO: 11138 if (!checkonly) { 11139 mutex_enter(&connp->conn_lock); 11140 connp->conn_ipv6_recvpktinfo = *i1 ? 1 : 0; 11141 mutex_exit(&connp->conn_lock); 11142 } 11143 break; /* goto sizeof (int) option return */ 11144 case IPV6_RECVTCLASS: 11145 if (!checkonly) { 11146 if (*i1 < 0 || *i1 > 1) { 11147 return (EINVAL); 11148 } 11149 mutex_enter(&connp->conn_lock); 11150 connp->conn_ipv6_recvtclass = *i1; 11151 mutex_exit(&connp->conn_lock); 11152 } 11153 break; 11154 case IPV6_RECVPATHMTU: 11155 if (!checkonly) { 11156 if (*i1 < 0 || *i1 > 1) { 11157 return (EINVAL); 11158 } 11159 mutex_enter(&connp->conn_lock); 11160 connp->conn_ipv6_recvpathmtu = *i1; 11161 mutex_exit(&connp->conn_lock); 11162 } 11163 break; 11164 case IPV6_RECVHOPLIMIT: 11165 if (!checkonly) { 11166 mutex_enter(&connp->conn_lock); 11167 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11168 mutex_exit(&connp->conn_lock); 11169 } 11170 break; /* goto sizeof (int) option return */ 11171 case IPV6_RECVHOPOPTS: 11172 if (!checkonly) { 11173 mutex_enter(&connp->conn_lock); 11174 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11175 mutex_exit(&connp->conn_lock); 11176 } 11177 break; /* goto sizeof (int) option return */ 11178 case IPV6_RECVDSTOPTS: 11179 if (!checkonly) { 11180 mutex_enter(&connp->conn_lock); 11181 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11182 mutex_exit(&connp->conn_lock); 11183 } 11184 break; /* goto sizeof (int) option return */ 11185 case IPV6_RECVRTHDR: 11186 if (!checkonly) { 11187 mutex_enter(&connp->conn_lock); 11188 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11189 mutex_exit(&connp->conn_lock); 11190 } 11191 break; /* goto sizeof (int) option return */ 11192 case IPV6_RECVRTHDRDSTOPTS: 11193 if (!checkonly) { 11194 mutex_enter(&connp->conn_lock); 11195 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11196 mutex_exit(&connp->conn_lock); 11197 } 11198 break; /* goto sizeof (int) option return */ 11199 case IPV6_PKTINFO: 11200 if (inlen == 0) 11201 return (-EINVAL); /* clearing option */ 11202 error = ip6_set_pktinfo(cr, connp, 11203 (struct in6_pktinfo *)invalp, first_mp); 11204 if (error != 0) 11205 *outlenp = 0; 11206 else 11207 *outlenp = inlen; 11208 return (error); 11209 case IPV6_NEXTHOP: { 11210 struct sockaddr_in6 *sin6; 11211 11212 /* Verify that the nexthop is reachable */ 11213 if (inlen == 0) 11214 return (-EINVAL); /* clearing option */ 11215 11216 sin6 = (struct sockaddr_in6 *)invalp; 11217 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11218 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11219 NULL, MATCH_IRE_DEFAULT); 11220 11221 if (ire == NULL) { 11222 *outlenp = 0; 11223 return (EHOSTUNREACH); 11224 } 11225 ire_refrele(ire); 11226 return (-EINVAL); 11227 } 11228 case IPV6_SEC_OPT: 11229 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11230 if (error != 0) { 11231 *outlenp = 0; 11232 return (error); 11233 } 11234 break; 11235 case IPV6_SRC_PREFERENCES: { 11236 /* 11237 * This is implemented strictly in the ip module 11238 * (here and in tcp_opt_*() to accomodate tcp 11239 * sockets). Modules above ip pass this option 11240 * down here since ip is the only one that needs to 11241 * be aware of source address preferences. 11242 * 11243 * This socket option only affects connected 11244 * sockets that haven't already bound to a specific 11245 * IPv6 address. In other words, sockets that 11246 * don't call bind() with an address other than the 11247 * unspecified address and that call connect(). 11248 * ip_bind_connected_v6() passes these preferences 11249 * to the ipif_select_source_v6() function. 11250 */ 11251 if (inlen != sizeof (uint32_t)) 11252 return (EINVAL); 11253 error = ip6_set_src_preferences(connp, 11254 *(uint32_t *)invalp); 11255 if (error != 0) { 11256 *outlenp = 0; 11257 return (error); 11258 } else { 11259 *outlenp = sizeof (uint32_t); 11260 } 11261 break; 11262 } 11263 case IPV6_V6ONLY: 11264 if (*i1 < 0 || *i1 > 1) { 11265 return (EINVAL); 11266 } 11267 mutex_enter(&connp->conn_lock); 11268 connp->conn_ipv6_v6only = *i1; 11269 mutex_exit(&connp->conn_lock); 11270 break; 11271 default: 11272 return (-EINVAL); 11273 } 11274 break; 11275 default: 11276 /* 11277 * "soft" error (negative) 11278 * option not handled at this level 11279 * Note: Do not modify *outlenp 11280 */ 11281 return (-EINVAL); 11282 } 11283 /* 11284 * Common case of return from an option that is sizeof (int) 11285 */ 11286 *(int *)outvalp = *i1; 11287 *outlenp = sizeof (int); 11288 return (0); 11289 } 11290 11291 /* 11292 * This routine gets default values of certain options whose default 11293 * values are maintained by protocol specific code 11294 */ 11295 /* ARGSUSED */ 11296 int 11297 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11298 { 11299 int *i1 = (int *)ptr; 11300 11301 switch (level) { 11302 case IPPROTO_IP: 11303 switch (name) { 11304 case IP_MULTICAST_TTL: 11305 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11306 return (sizeof (uchar_t)); 11307 case IP_MULTICAST_LOOP: 11308 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11309 return (sizeof (uchar_t)); 11310 default: 11311 return (-1); 11312 } 11313 case IPPROTO_IPV6: 11314 switch (name) { 11315 case IPV6_UNICAST_HOPS: 11316 *i1 = ipv6_def_hops; 11317 return (sizeof (int)); 11318 case IPV6_MULTICAST_HOPS: 11319 *i1 = IP_DEFAULT_MULTICAST_TTL; 11320 return (sizeof (int)); 11321 case IPV6_MULTICAST_LOOP: 11322 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11323 return (sizeof (int)); 11324 case IPV6_V6ONLY: 11325 *i1 = 1; 11326 return (sizeof (int)); 11327 default: 11328 return (-1); 11329 } 11330 default: 11331 return (-1); 11332 } 11333 /* NOTREACHED */ 11334 } 11335 11336 /* 11337 * Given a destination address and a pointer to where to put the information 11338 * this routine fills in the mtuinfo. 11339 */ 11340 int 11341 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11342 struct ip6_mtuinfo *mtuinfo) 11343 { 11344 ire_t *ire; 11345 11346 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11347 return (-1); 11348 11349 bzero(mtuinfo, sizeof (*mtuinfo)); 11350 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11351 mtuinfo->ip6m_addr.sin6_port = port; 11352 mtuinfo->ip6m_addr.sin6_addr = *in6; 11353 11354 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL); 11355 if (ire != NULL) { 11356 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11357 ire_refrele(ire); 11358 } else { 11359 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11360 } 11361 return (sizeof (struct ip6_mtuinfo)); 11362 } 11363 11364 /* 11365 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11366 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11367 * isn't. This doesn't matter as the error checking is done properly for the 11368 * other MRT options coming in through ip_opt_set. 11369 */ 11370 int 11371 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11372 { 11373 conn_t *connp = Q_TO_CONN(q); 11374 ipsec_req_t *req = (ipsec_req_t *)ptr; 11375 11376 switch (level) { 11377 case IPPROTO_IP: 11378 switch (name) { 11379 case MRT_VERSION: 11380 case MRT_ASSERT: 11381 (void) ip_mrouter_get(name, q, ptr); 11382 return (sizeof (int)); 11383 case IP_SEC_OPT: 11384 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11385 case IP_NEXTHOP: 11386 if (connp->conn_nexthop_set) { 11387 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11388 return (sizeof (ipaddr_t)); 11389 } else 11390 return (0); 11391 default: 11392 break; 11393 } 11394 break; 11395 case IPPROTO_IPV6: 11396 switch (name) { 11397 case IPV6_SEC_OPT: 11398 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11399 case IPV6_SRC_PREFERENCES: { 11400 return (ip6_get_src_preferences(connp, 11401 (uint32_t *)ptr)); 11402 } 11403 case IPV6_V6ONLY: 11404 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11405 return (sizeof (int)); 11406 case IPV6_PATHMTU: 11407 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11408 (struct ip6_mtuinfo *)ptr)); 11409 default: 11410 break; 11411 } 11412 break; 11413 default: 11414 break; 11415 } 11416 return (-1); 11417 } 11418 11419 /* Named Dispatch routine to get a current value out of our parameter table. */ 11420 /* ARGSUSED */ 11421 static int 11422 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11423 { 11424 ipparam_t *ippa = (ipparam_t *)cp; 11425 11426 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11427 return (0); 11428 } 11429 11430 /* ARGSUSED */ 11431 static int 11432 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11433 { 11434 11435 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11436 return (0); 11437 } 11438 11439 /* 11440 * Set ip{,6}_forwarding values. This means walking through all of the 11441 * ill's and toggling their forwarding values. 11442 */ 11443 /* ARGSUSED */ 11444 static int 11445 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11446 { 11447 long new_value; 11448 int *forwarding_value = (int *)cp; 11449 ill_t *walker; 11450 boolean_t isv6 = (forwarding_value == &ipv6_forward); 11451 ill_walk_context_t ctx; 11452 11453 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11454 new_value < 0 || new_value > 1) { 11455 return (EINVAL); 11456 } 11457 11458 *forwarding_value = new_value; 11459 11460 /* 11461 * Regardless of the current value of ip_forwarding, set all per-ill 11462 * values of ip_forwarding to the value being set. 11463 * 11464 * Bring all the ill's up to date with the new global value. 11465 */ 11466 rw_enter(&ill_g_lock, RW_READER); 11467 11468 if (isv6) 11469 walker = ILL_START_WALK_V6(&ctx); 11470 else 11471 walker = ILL_START_WALK_V4(&ctx); 11472 for (; walker != NULL; walker = ill_next(&ctx, walker)) { 11473 (void) ill_forward_set(q, mp, (new_value != 0), 11474 (caddr_t)walker); 11475 } 11476 rw_exit(&ill_g_lock); 11477 11478 return (0); 11479 } 11480 11481 /* 11482 * Walk through the param array specified registering each element with the 11483 * Named Dispatch handler. This is called only during init. So it is ok 11484 * not to acquire any locks 11485 */ 11486 static boolean_t 11487 ip_param_register(ipparam_t *ippa, size_t ippa_cnt, 11488 ipndp_t *ipnd, size_t ipnd_cnt) 11489 { 11490 for (; ippa_cnt-- > 0; ippa++) { 11491 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11492 if (!nd_load(&ip_g_nd, ippa->ip_param_name, 11493 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11494 nd_free(&ip_g_nd); 11495 return (B_FALSE); 11496 } 11497 } 11498 } 11499 11500 for (; ipnd_cnt-- > 0; ipnd++) { 11501 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11502 if (!nd_load(&ip_g_nd, ipnd->ip_ndp_name, 11503 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11504 ipnd->ip_ndp_data)) { 11505 nd_free(&ip_g_nd); 11506 return (B_FALSE); 11507 } 11508 } 11509 } 11510 11511 return (B_TRUE); 11512 } 11513 11514 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11515 /* ARGSUSED */ 11516 static int 11517 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11518 { 11519 long new_value; 11520 ipparam_t *ippa = (ipparam_t *)cp; 11521 11522 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11523 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11524 return (EINVAL); 11525 } 11526 ippa->ip_param_value = new_value; 11527 return (0); 11528 } 11529 11530 /* 11531 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11532 * When an ipf is passed here for the first time, if 11533 * we already have in-order fragments on the queue, we convert from the fast- 11534 * path reassembly scheme to the hard-case scheme. From then on, additional 11535 * fragments are reassembled here. We keep track of the start and end offsets 11536 * of each piece, and the number of holes in the chain. When the hole count 11537 * goes to zero, we are done! 11538 * 11539 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11540 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11541 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11542 * after the call to ip_reassemble(). 11543 */ 11544 int 11545 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11546 size_t msg_len) 11547 { 11548 uint_t end; 11549 mblk_t *next_mp; 11550 mblk_t *mp1; 11551 uint_t offset; 11552 boolean_t incr_dups = B_TRUE; 11553 boolean_t offset_zero_seen = B_FALSE; 11554 boolean_t pkt_boundary_checked = B_FALSE; 11555 11556 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11557 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11558 11559 /* Add in byte count */ 11560 ipf->ipf_count += msg_len; 11561 if (ipf->ipf_end) { 11562 /* 11563 * We were part way through in-order reassembly, but now there 11564 * is a hole. We walk through messages already queued, and 11565 * mark them for hard case reassembly. We know that up till 11566 * now they were in order starting from offset zero. 11567 */ 11568 offset = 0; 11569 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11570 IP_REASS_SET_START(mp1, offset); 11571 if (offset == 0) { 11572 ASSERT(ipf->ipf_nf_hdr_len != 0); 11573 offset = -ipf->ipf_nf_hdr_len; 11574 } 11575 offset += mp1->b_wptr - mp1->b_rptr; 11576 IP_REASS_SET_END(mp1, offset); 11577 } 11578 /* One hole at the end. */ 11579 ipf->ipf_hole_cnt = 1; 11580 /* Brand it as a hard case, forever. */ 11581 ipf->ipf_end = 0; 11582 } 11583 /* Walk through all the new pieces. */ 11584 do { 11585 end = start + (mp->b_wptr - mp->b_rptr); 11586 /* 11587 * If start is 0, decrease 'end' only for the first mblk of 11588 * the fragment. Otherwise 'end' can get wrong value in the 11589 * second pass of the loop if first mblk is exactly the 11590 * size of ipf_nf_hdr_len. 11591 */ 11592 if (start == 0 && !offset_zero_seen) { 11593 /* First segment */ 11594 ASSERT(ipf->ipf_nf_hdr_len != 0); 11595 end -= ipf->ipf_nf_hdr_len; 11596 offset_zero_seen = B_TRUE; 11597 } 11598 next_mp = mp->b_cont; 11599 /* 11600 * We are checking to see if there is any interesing data 11601 * to process. If there isn't and the mblk isn't the 11602 * one which carries the unfragmentable header then we 11603 * drop it. It's possible to have just the unfragmentable 11604 * header come through without any data. That needs to be 11605 * saved. 11606 * 11607 * If the assert at the top of this function holds then the 11608 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11609 * is infrequently traveled enough that the test is left in 11610 * to protect against future code changes which break that 11611 * invariant. 11612 */ 11613 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11614 /* Empty. Blast it. */ 11615 IP_REASS_SET_START(mp, 0); 11616 IP_REASS_SET_END(mp, 0); 11617 /* 11618 * If the ipf points to the mblk we are about to free, 11619 * update ipf to point to the next mblk (or NULL 11620 * if none). 11621 */ 11622 if (ipf->ipf_mp->b_cont == mp) 11623 ipf->ipf_mp->b_cont = next_mp; 11624 freeb(mp); 11625 continue; 11626 } 11627 mp->b_cont = NULL; 11628 IP_REASS_SET_START(mp, start); 11629 IP_REASS_SET_END(mp, end); 11630 if (!ipf->ipf_tail_mp) { 11631 ipf->ipf_tail_mp = mp; 11632 ipf->ipf_mp->b_cont = mp; 11633 if (start == 0 || !more) { 11634 ipf->ipf_hole_cnt = 1; 11635 /* 11636 * if the first fragment comes in more than one 11637 * mblk, this loop will be executed for each 11638 * mblk. Need to adjust hole count so exiting 11639 * this routine will leave hole count at 1. 11640 */ 11641 if (next_mp) 11642 ipf->ipf_hole_cnt++; 11643 } else 11644 ipf->ipf_hole_cnt = 2; 11645 continue; 11646 } else if (ipf->ipf_last_frag_seen && !more && 11647 !pkt_boundary_checked) { 11648 /* 11649 * We check datagram boundary only if this fragment 11650 * claims to be the last fragment and we have seen a 11651 * last fragment in the past too. We do this only 11652 * once for a given fragment. 11653 * 11654 * start cannot be 0 here as fragments with start=0 11655 * and MF=0 gets handled as a complete packet. These 11656 * fragments should not reach here. 11657 */ 11658 11659 if (start + msgdsize(mp) != 11660 IP_REASS_END(ipf->ipf_tail_mp)) { 11661 /* 11662 * We have two fragments both of which claim 11663 * to be the last fragment but gives conflicting 11664 * information about the whole datagram size. 11665 * Something fishy is going on. Drop the 11666 * fragment and free up the reassembly list. 11667 */ 11668 return (IP_REASS_FAILED); 11669 } 11670 11671 /* 11672 * We shouldn't come to this code block again for this 11673 * particular fragment. 11674 */ 11675 pkt_boundary_checked = B_TRUE; 11676 } 11677 11678 /* New stuff at or beyond tail? */ 11679 offset = IP_REASS_END(ipf->ipf_tail_mp); 11680 if (start >= offset) { 11681 if (ipf->ipf_last_frag_seen) { 11682 /* current fragment is beyond last fragment */ 11683 return (IP_REASS_FAILED); 11684 } 11685 /* Link it on end. */ 11686 ipf->ipf_tail_mp->b_cont = mp; 11687 ipf->ipf_tail_mp = mp; 11688 if (more) { 11689 if (start != offset) 11690 ipf->ipf_hole_cnt++; 11691 } else if (start == offset && next_mp == NULL) 11692 ipf->ipf_hole_cnt--; 11693 continue; 11694 } 11695 mp1 = ipf->ipf_mp->b_cont; 11696 offset = IP_REASS_START(mp1); 11697 /* New stuff at the front? */ 11698 if (start < offset) { 11699 if (start == 0) { 11700 if (end >= offset) { 11701 /* Nailed the hole at the begining. */ 11702 ipf->ipf_hole_cnt--; 11703 } 11704 } else if (end < offset) { 11705 /* 11706 * A hole, stuff, and a hole where there used 11707 * to be just a hole. 11708 */ 11709 ipf->ipf_hole_cnt++; 11710 } 11711 mp->b_cont = mp1; 11712 /* Check for overlap. */ 11713 while (end > offset) { 11714 if (end < IP_REASS_END(mp1)) { 11715 mp->b_wptr -= end - offset; 11716 IP_REASS_SET_END(mp, offset); 11717 if (ill->ill_isv6) { 11718 BUMP_MIB(ill->ill_ip6_mib, 11719 ipv6ReasmPartDups); 11720 } else { 11721 BUMP_MIB(&ip_mib, 11722 ipReasmPartDups); 11723 } 11724 break; 11725 } 11726 /* Did we cover another hole? */ 11727 if ((mp1->b_cont && 11728 IP_REASS_END(mp1) != 11729 IP_REASS_START(mp1->b_cont) && 11730 end >= IP_REASS_START(mp1->b_cont)) || 11731 (!ipf->ipf_last_frag_seen && !more)) { 11732 ipf->ipf_hole_cnt--; 11733 } 11734 /* Clip out mp1. */ 11735 if ((mp->b_cont = mp1->b_cont) == NULL) { 11736 /* 11737 * After clipping out mp1, this guy 11738 * is now hanging off the end. 11739 */ 11740 ipf->ipf_tail_mp = mp; 11741 } 11742 IP_REASS_SET_START(mp1, 0); 11743 IP_REASS_SET_END(mp1, 0); 11744 /* Subtract byte count */ 11745 ipf->ipf_count -= mp1->b_datap->db_lim - 11746 mp1->b_datap->db_base; 11747 freeb(mp1); 11748 if (ill->ill_isv6) { 11749 BUMP_MIB(ill->ill_ip6_mib, 11750 ipv6ReasmPartDups); 11751 } else { 11752 BUMP_MIB(&ip_mib, ipReasmPartDups); 11753 } 11754 mp1 = mp->b_cont; 11755 if (!mp1) 11756 break; 11757 offset = IP_REASS_START(mp1); 11758 } 11759 ipf->ipf_mp->b_cont = mp; 11760 continue; 11761 } 11762 /* 11763 * The new piece starts somewhere between the start of the head 11764 * and before the end of the tail. 11765 */ 11766 for (; mp1; mp1 = mp1->b_cont) { 11767 offset = IP_REASS_END(mp1); 11768 if (start < offset) { 11769 if (end <= offset) { 11770 /* Nothing new. */ 11771 IP_REASS_SET_START(mp, 0); 11772 IP_REASS_SET_END(mp, 0); 11773 /* Subtract byte count */ 11774 ipf->ipf_count -= mp->b_datap->db_lim - 11775 mp->b_datap->db_base; 11776 if (incr_dups) { 11777 ipf->ipf_num_dups++; 11778 incr_dups = B_FALSE; 11779 } 11780 freeb(mp); 11781 if (ill->ill_isv6) { 11782 BUMP_MIB(ill->ill_ip6_mib, 11783 ipv6ReasmDuplicates); 11784 } else { 11785 BUMP_MIB(&ip_mib, 11786 ipReasmDuplicates); 11787 } 11788 break; 11789 } 11790 /* 11791 * Trim redundant stuff off beginning of new 11792 * piece. 11793 */ 11794 IP_REASS_SET_START(mp, offset); 11795 mp->b_rptr += offset - start; 11796 if (ill->ill_isv6) { 11797 BUMP_MIB(ill->ill_ip6_mib, 11798 ipv6ReasmPartDups); 11799 } else { 11800 BUMP_MIB(&ip_mib, ipReasmPartDups); 11801 } 11802 start = offset; 11803 if (!mp1->b_cont) { 11804 /* 11805 * After trimming, this guy is now 11806 * hanging off the end. 11807 */ 11808 mp1->b_cont = mp; 11809 ipf->ipf_tail_mp = mp; 11810 if (!more) { 11811 ipf->ipf_hole_cnt--; 11812 } 11813 break; 11814 } 11815 } 11816 if (start >= IP_REASS_START(mp1->b_cont)) 11817 continue; 11818 /* Fill a hole */ 11819 if (start > offset) 11820 ipf->ipf_hole_cnt++; 11821 mp->b_cont = mp1->b_cont; 11822 mp1->b_cont = mp; 11823 mp1 = mp->b_cont; 11824 offset = IP_REASS_START(mp1); 11825 if (end >= offset) { 11826 ipf->ipf_hole_cnt--; 11827 /* Check for overlap. */ 11828 while (end > offset) { 11829 if (end < IP_REASS_END(mp1)) { 11830 mp->b_wptr -= end - offset; 11831 IP_REASS_SET_END(mp, offset); 11832 /* 11833 * TODO we might bump 11834 * this up twice if there is 11835 * overlap at both ends. 11836 */ 11837 if (ill->ill_isv6) { 11838 BUMP_MIB( 11839 ill->ill_ip6_mib, 11840 ipv6ReasmPartDups); 11841 } else { 11842 BUMP_MIB(&ip_mib, 11843 ipReasmPartDups); 11844 } 11845 break; 11846 } 11847 /* Did we cover another hole? */ 11848 if ((mp1->b_cont && 11849 IP_REASS_END(mp1) 11850 != IP_REASS_START(mp1->b_cont) && 11851 end >= 11852 IP_REASS_START(mp1->b_cont)) || 11853 (!ipf->ipf_last_frag_seen && 11854 !more)) { 11855 ipf->ipf_hole_cnt--; 11856 } 11857 /* Clip out mp1. */ 11858 if ((mp->b_cont = mp1->b_cont) == 11859 NULL) { 11860 /* 11861 * After clipping out mp1, 11862 * this guy is now hanging 11863 * off the end. 11864 */ 11865 ipf->ipf_tail_mp = mp; 11866 } 11867 IP_REASS_SET_START(mp1, 0); 11868 IP_REASS_SET_END(mp1, 0); 11869 /* Subtract byte count */ 11870 ipf->ipf_count -= 11871 mp1->b_datap->db_lim - 11872 mp1->b_datap->db_base; 11873 freeb(mp1); 11874 if (ill->ill_isv6) { 11875 BUMP_MIB(ill->ill_ip6_mib, 11876 ipv6ReasmPartDups); 11877 } else { 11878 BUMP_MIB(&ip_mib, 11879 ipReasmPartDups); 11880 } 11881 mp1 = mp->b_cont; 11882 if (!mp1) 11883 break; 11884 offset = IP_REASS_START(mp1); 11885 } 11886 } 11887 break; 11888 } 11889 } while (start = end, mp = next_mp); 11890 11891 /* Fragment just processed could be the last one. Remember this fact */ 11892 if (!more) 11893 ipf->ipf_last_frag_seen = B_TRUE; 11894 11895 /* Still got holes? */ 11896 if (ipf->ipf_hole_cnt) 11897 return (IP_REASS_PARTIAL); 11898 /* Clean up overloaded fields to avoid upstream disasters. */ 11899 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11900 IP_REASS_SET_START(mp1, 0); 11901 IP_REASS_SET_END(mp1, 0); 11902 } 11903 return (IP_REASS_COMPLETE); 11904 } 11905 11906 /* 11907 * ipsec processing for the fast path, used for input UDP Packets 11908 */ 11909 static boolean_t 11910 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 11911 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 11912 { 11913 uint32_t ill_index; 11914 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 11915 11916 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11917 /* The ill_index of the incoming ILL */ 11918 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 11919 11920 /* pass packet up to the transport */ 11921 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 11922 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 11923 NULL, mctl_present); 11924 if (*first_mpp == NULL) { 11925 return (B_FALSE); 11926 } 11927 } 11928 11929 /* Initiate IPPF processing for fastpath UDP */ 11930 if (IPP_ENABLED(IPP_LOCAL_IN)) { 11931 ip_process(IPP_LOCAL_IN, mpp, ill_index); 11932 if (*mpp == NULL) { 11933 ip2dbg(("ip_input_ipsec_process: UDP pkt " 11934 "deferred/dropped during IPPF processing\n")); 11935 return (B_FALSE); 11936 } 11937 } 11938 /* 11939 * We make the checks as below since we are in the fast path 11940 * and want to minimize the number of checks if the IP_RECVIF and/or 11941 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 11942 */ 11943 if (connp->conn_recvif || connp->conn_recvslla || 11944 connp->conn_ipv6_recvpktinfo) { 11945 if (connp->conn_recvif || 11946 connp->conn_ipv6_recvpktinfo) { 11947 in_flags = IPF_RECVIF; 11948 } 11949 if (connp->conn_recvslla) { 11950 in_flags |= IPF_RECVSLLA; 11951 } 11952 /* 11953 * since in_flags are being set ill will be 11954 * referenced in ip_add_info, so it better not 11955 * be NULL. 11956 */ 11957 /* 11958 * the actual data will be contained in b_cont 11959 * upon successful return of the following call. 11960 * If the call fails then the original mblk is 11961 * returned. 11962 */ 11963 *mpp = ip_add_info(*mpp, ill, in_flags); 11964 } 11965 11966 return (B_TRUE); 11967 } 11968 11969 /* 11970 * Fragmentation reassembly. Each ILL has a hash table for 11971 * queuing packets undergoing reassembly for all IPIFs 11972 * associated with the ILL. The hash is based on the packet 11973 * IP ident field. The ILL frag hash table was allocated 11974 * as a timer block at the time the ILL was created. Whenever 11975 * there is anything on the reassembly queue, the timer will 11976 * be running. Returns B_TRUE if successful else B_FALSE; 11977 * frees mp on failure. 11978 */ 11979 static boolean_t 11980 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 11981 uint32_t *cksum_val, uint16_t *cksum_flags) 11982 { 11983 uint32_t frag_offset_flags; 11984 ill_t *ill = (ill_t *)q->q_ptr; 11985 mblk_t *mp = *mpp; 11986 mblk_t *t_mp; 11987 ipaddr_t dst; 11988 uint8_t proto = ipha->ipha_protocol; 11989 uint32_t sum_val; 11990 uint16_t sum_flags; 11991 ipf_t *ipf; 11992 ipf_t **ipfp; 11993 ipfb_t *ipfb; 11994 uint16_t ident; 11995 uint32_t offset; 11996 ipaddr_t src; 11997 uint_t hdr_length; 11998 uint32_t end; 11999 mblk_t *mp1; 12000 mblk_t *tail_mp; 12001 size_t count; 12002 size_t msg_len; 12003 uint8_t ecn_info = 0; 12004 uint32_t packet_size; 12005 boolean_t pruned = B_FALSE; 12006 12007 if (cksum_val != NULL) 12008 *cksum_val = 0; 12009 if (cksum_flags != NULL) 12010 *cksum_flags = 0; 12011 12012 /* 12013 * Drop the fragmented as early as possible, if 12014 * we don't have resource(s) to re-assemble. 12015 */ 12016 if (ip_reass_queue_bytes == 0) { 12017 freemsg(mp); 12018 return (B_FALSE); 12019 } 12020 12021 /* Check for fragmentation offset; return if there's none */ 12022 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12023 (IPH_MF | IPH_OFFSET)) == 0) 12024 return (B_TRUE); 12025 12026 /* 12027 * We utilize hardware computed checksum info only for UDP since 12028 * IP fragmentation is a normal occurence for the protocol. In 12029 * addition, checksum offload support for IP fragments carrying 12030 * UDP payload is commonly implemented across network adapters. 12031 */ 12032 ASSERT(ill != NULL); 12033 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12034 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12035 mblk_t *mp1 = mp->b_cont; 12036 int32_t len; 12037 12038 /* Record checksum information from the packet */ 12039 sum_val = (uint32_t)DB_CKSUM16(mp); 12040 sum_flags = DB_CKSUMFLAGS(mp); 12041 12042 /* IP payload offset from beginning of mblk */ 12043 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12044 12045 if ((sum_flags & HCK_PARTIALCKSUM) && 12046 (mp1 == NULL || mp1->b_cont == NULL) && 12047 offset >= DB_CKSUMSTART(mp) && 12048 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12049 uint32_t adj; 12050 /* 12051 * Partial checksum has been calculated by hardware 12052 * and attached to the packet; in addition, any 12053 * prepended extraneous data is even byte aligned. 12054 * If any such data exists, we adjust the checksum; 12055 * this would also handle any postpended data. 12056 */ 12057 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12058 mp, mp1, len, adj); 12059 12060 /* One's complement subtract extraneous checksum */ 12061 if (adj >= sum_val) 12062 sum_val = ~(adj - sum_val) & 0xFFFF; 12063 else 12064 sum_val -= adj; 12065 } 12066 } else { 12067 sum_val = 0; 12068 sum_flags = 0; 12069 } 12070 12071 /* Clear hardware checksumming flag */ 12072 DB_CKSUMFLAGS(mp) = 0; 12073 12074 ident = ipha->ipha_ident; 12075 offset = (frag_offset_flags << 3) & 0xFFFF; 12076 src = ipha->ipha_src; 12077 dst = ipha->ipha_dst; 12078 hdr_length = IPH_HDR_LENGTH(ipha); 12079 end = ntohs(ipha->ipha_length) - hdr_length; 12080 12081 /* If end == 0 then we have a packet with no data, so just free it */ 12082 if (end == 0) { 12083 freemsg(mp); 12084 return (B_FALSE); 12085 } 12086 12087 /* Record the ECN field info. */ 12088 ecn_info = (ipha->ipha_type_of_service & 0x3); 12089 if (offset != 0) { 12090 /* 12091 * If this isn't the first piece, strip the header, and 12092 * add the offset to the end value. 12093 */ 12094 mp->b_rptr += hdr_length; 12095 end += offset; 12096 } 12097 12098 msg_len = MBLKSIZE(mp); 12099 tail_mp = mp; 12100 while (tail_mp->b_cont != NULL) { 12101 tail_mp = tail_mp->b_cont; 12102 msg_len += MBLKSIZE(tail_mp); 12103 } 12104 12105 /* If the reassembly list for this ILL will get too big, prune it */ 12106 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12107 ip_reass_queue_bytes) { 12108 ill_frag_prune(ill, 12109 (ip_reass_queue_bytes < msg_len) ? 0 : 12110 (ip_reass_queue_bytes - msg_len)); 12111 pruned = B_TRUE; 12112 } 12113 12114 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12115 mutex_enter(&ipfb->ipfb_lock); 12116 12117 ipfp = &ipfb->ipfb_ipf; 12118 /* Try to find an existing fragment queue for this packet. */ 12119 for (;;) { 12120 ipf = ipfp[0]; 12121 if (ipf != NULL) { 12122 /* 12123 * It has to match on ident and src/dst address. 12124 */ 12125 if (ipf->ipf_ident == ident && 12126 ipf->ipf_src == src && 12127 ipf->ipf_dst == dst && 12128 ipf->ipf_protocol == proto) { 12129 /* 12130 * If we have received too many 12131 * duplicate fragments for this packet 12132 * free it. 12133 */ 12134 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12135 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12136 freemsg(mp); 12137 mutex_exit(&ipfb->ipfb_lock); 12138 return (B_FALSE); 12139 } 12140 /* Found it. */ 12141 break; 12142 } 12143 ipfp = &ipf->ipf_hash_next; 12144 continue; 12145 } 12146 12147 /* 12148 * If we pruned the list, do we want to store this new 12149 * fragment?. We apply an optimization here based on the 12150 * fact that most fragments will be received in order. 12151 * So if the offset of this incoming fragment is zero, 12152 * it is the first fragment of a new packet. We will 12153 * keep it. Otherwise drop the fragment, as we have 12154 * probably pruned the packet already (since the 12155 * packet cannot be found). 12156 */ 12157 if (pruned && offset != 0) { 12158 mutex_exit(&ipfb->ipfb_lock); 12159 freemsg(mp); 12160 return (B_FALSE); 12161 } 12162 12163 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS) { 12164 /* 12165 * Too many fragmented packets in this hash 12166 * bucket. Free the oldest. 12167 */ 12168 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12169 } 12170 12171 /* New guy. Allocate a frag message. */ 12172 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12173 if (mp1 == NULL) { 12174 BUMP_MIB(&ip_mib, ipInDiscards); 12175 freemsg(mp); 12176 reass_done: 12177 mutex_exit(&ipfb->ipfb_lock); 12178 return (B_FALSE); 12179 } 12180 12181 12182 BUMP_MIB(&ip_mib, ipReasmReqds); 12183 mp1->b_cont = mp; 12184 12185 /* Initialize the fragment header. */ 12186 ipf = (ipf_t *)mp1->b_rptr; 12187 ipf->ipf_mp = mp1; 12188 ipf->ipf_ptphn = ipfp; 12189 ipfp[0] = ipf; 12190 ipf->ipf_hash_next = NULL; 12191 ipf->ipf_ident = ident; 12192 ipf->ipf_protocol = proto; 12193 ipf->ipf_src = src; 12194 ipf->ipf_dst = dst; 12195 ipf->ipf_nf_hdr_len = 0; 12196 /* Record reassembly start time. */ 12197 ipf->ipf_timestamp = gethrestime_sec(); 12198 /* Record ipf generation and account for frag header */ 12199 ipf->ipf_gen = ill->ill_ipf_gen++; 12200 ipf->ipf_count = MBLKSIZE(mp1); 12201 ipf->ipf_last_frag_seen = B_FALSE; 12202 ipf->ipf_ecn = ecn_info; 12203 ipf->ipf_num_dups = 0; 12204 ipfb->ipfb_frag_pkts++; 12205 ipf->ipf_checksum = 0; 12206 ipf->ipf_checksum_flags = 0; 12207 12208 /* Store checksum value in fragment header */ 12209 if (sum_flags != 0) { 12210 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12211 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12212 ipf->ipf_checksum = sum_val; 12213 ipf->ipf_checksum_flags = sum_flags; 12214 } 12215 12216 /* 12217 * We handle reassembly two ways. In the easy case, 12218 * where all the fragments show up in order, we do 12219 * minimal bookkeeping, and just clip new pieces on 12220 * the end. If we ever see a hole, then we go off 12221 * to ip_reassemble which has to mark the pieces and 12222 * keep track of the number of holes, etc. Obviously, 12223 * the point of having both mechanisms is so we can 12224 * handle the easy case as efficiently as possible. 12225 */ 12226 if (offset == 0) { 12227 /* Easy case, in-order reassembly so far. */ 12228 ipf->ipf_count += msg_len; 12229 ipf->ipf_tail_mp = tail_mp; 12230 /* 12231 * Keep track of next expected offset in 12232 * ipf_end. 12233 */ 12234 ipf->ipf_end = end; 12235 ipf->ipf_nf_hdr_len = hdr_length; 12236 } else { 12237 /* Hard case, hole at the beginning. */ 12238 ipf->ipf_tail_mp = NULL; 12239 /* 12240 * ipf_end == 0 means that we have given up 12241 * on easy reassembly. 12242 */ 12243 ipf->ipf_end = 0; 12244 12245 /* Forget checksum offload from now on */ 12246 ipf->ipf_checksum_flags = 0; 12247 12248 /* 12249 * ipf_hole_cnt is set by ip_reassemble. 12250 * ipf_count is updated by ip_reassemble. 12251 * No need to check for return value here 12252 * as we don't expect reassembly to complete 12253 * or fail for the first fragment itself. 12254 */ 12255 (void) ip_reassemble(mp, ipf, 12256 (frag_offset_flags & IPH_OFFSET) << 3, 12257 (frag_offset_flags & IPH_MF), ill, msg_len); 12258 } 12259 /* Update per ipfb and ill byte counts */ 12260 ipfb->ipfb_count += ipf->ipf_count; 12261 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12262 ill->ill_frag_count += ipf->ipf_count; 12263 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 12264 /* If the frag timer wasn't already going, start it. */ 12265 mutex_enter(&ill->ill_lock); 12266 ill_frag_timer_start(ill); 12267 mutex_exit(&ill->ill_lock); 12268 goto reass_done; 12269 } 12270 12271 /* 12272 * If the packet's flag has changed (it could be coming up 12273 * from an interface different than the previous, therefore 12274 * possibly different checksum capability), then forget about 12275 * any stored checksum states. Otherwise add the value to 12276 * the existing one stored in the fragment header. 12277 */ 12278 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12279 sum_val += ipf->ipf_checksum; 12280 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12281 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12282 ipf->ipf_checksum = sum_val; 12283 } else if (ipf->ipf_checksum_flags != 0) { 12284 /* Forget checksum offload from now on */ 12285 ipf->ipf_checksum_flags = 0; 12286 } 12287 12288 /* 12289 * We have a new piece of a datagram which is already being 12290 * reassembled. Update the ECN info if all IP fragments 12291 * are ECN capable. If there is one which is not, clear 12292 * all the info. If there is at least one which has CE 12293 * code point, IP needs to report that up to transport. 12294 */ 12295 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12296 if (ecn_info == IPH_ECN_CE) 12297 ipf->ipf_ecn = IPH_ECN_CE; 12298 } else { 12299 ipf->ipf_ecn = IPH_ECN_NECT; 12300 } 12301 if (offset && ipf->ipf_end == offset) { 12302 /* The new fragment fits at the end */ 12303 ipf->ipf_tail_mp->b_cont = mp; 12304 /* Update the byte count */ 12305 ipf->ipf_count += msg_len; 12306 /* Update per ipfb and ill byte counts */ 12307 ipfb->ipfb_count += msg_len; 12308 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12309 ill->ill_frag_count += msg_len; 12310 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 12311 if (frag_offset_flags & IPH_MF) { 12312 /* More to come. */ 12313 ipf->ipf_end = end; 12314 ipf->ipf_tail_mp = tail_mp; 12315 goto reass_done; 12316 } 12317 } else { 12318 /* Go do the hard cases. */ 12319 int ret; 12320 12321 if (offset == 0) 12322 ipf->ipf_nf_hdr_len = hdr_length; 12323 12324 /* Save current byte count */ 12325 count = ipf->ipf_count; 12326 ret = ip_reassemble(mp, ipf, 12327 (frag_offset_flags & IPH_OFFSET) << 3, 12328 (frag_offset_flags & IPH_MF), ill, msg_len); 12329 /* Count of bytes added and subtracted (freeb()ed) */ 12330 count = ipf->ipf_count - count; 12331 if (count) { 12332 /* Update per ipfb and ill byte counts */ 12333 ipfb->ipfb_count += count; 12334 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12335 ill->ill_frag_count += count; 12336 ASSERT(ill->ill_frag_count > 0); 12337 } 12338 if (ret == IP_REASS_PARTIAL) { 12339 goto reass_done; 12340 } else if (ret == IP_REASS_FAILED) { 12341 /* Reassembly failed. Free up all resources */ 12342 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12343 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12344 IP_REASS_SET_START(t_mp, 0); 12345 IP_REASS_SET_END(t_mp, 0); 12346 } 12347 freemsg(mp); 12348 goto reass_done; 12349 } 12350 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12351 } 12352 /* 12353 * We have completed reassembly. Unhook the frag header from 12354 * the reassembly list. 12355 * 12356 * Before we free the frag header, record the ECN info 12357 * to report back to the transport. 12358 */ 12359 ecn_info = ipf->ipf_ecn; 12360 BUMP_MIB(&ip_mib, ipReasmOKs); 12361 ipfp = ipf->ipf_ptphn; 12362 12363 /* We need to supply these to caller */ 12364 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12365 sum_val = ipf->ipf_checksum; 12366 else 12367 sum_val = 0; 12368 12369 mp1 = ipf->ipf_mp; 12370 count = ipf->ipf_count; 12371 ipf = ipf->ipf_hash_next; 12372 if (ipf != NULL) 12373 ipf->ipf_ptphn = ipfp; 12374 ipfp[0] = ipf; 12375 ill->ill_frag_count -= count; 12376 ASSERT(ipfb->ipfb_count >= count); 12377 ipfb->ipfb_count -= count; 12378 ipfb->ipfb_frag_pkts--; 12379 mutex_exit(&ipfb->ipfb_lock); 12380 /* Ditch the frag header. */ 12381 mp = mp1->b_cont; 12382 12383 freeb(mp1); 12384 12385 /* Restore original IP length in header. */ 12386 packet_size = (uint32_t)msgdsize(mp); 12387 if (packet_size > IP_MAXPACKET) { 12388 freemsg(mp); 12389 BUMP_MIB(&ip_mib, ipInHdrErrors); 12390 return (B_FALSE); 12391 } 12392 12393 if (DB_REF(mp) > 1) { 12394 mblk_t *mp2 = copymsg(mp); 12395 12396 freemsg(mp); 12397 if (mp2 == NULL) { 12398 BUMP_MIB(&ip_mib, ipInDiscards); 12399 return (B_FALSE); 12400 } 12401 mp = mp2; 12402 } 12403 ipha = (ipha_t *)mp->b_rptr; 12404 12405 ipha->ipha_length = htons((uint16_t)packet_size); 12406 /* We're now complete, zip the frag state */ 12407 ipha->ipha_fragment_offset_and_flags = 0; 12408 /* Record the ECN info. */ 12409 ipha->ipha_type_of_service &= 0xFC; 12410 ipha->ipha_type_of_service |= ecn_info; 12411 *mpp = mp; 12412 12413 /* Reassembly is successful; return checksum information if needed */ 12414 if (cksum_val != NULL) 12415 *cksum_val = sum_val; 12416 if (cksum_flags != NULL) 12417 *cksum_flags = sum_flags; 12418 12419 return (B_TRUE); 12420 } 12421 12422 /* 12423 * Perform ip header check sum update local options. 12424 * return B_TRUE if all is well, else return B_FALSE and release 12425 * the mp. caller is responsible for decrementing ire ref cnt. 12426 */ 12427 static boolean_t 12428 ip_options_cksum(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 12429 { 12430 mblk_t *first_mp; 12431 boolean_t mctl_present; 12432 uint16_t sum; 12433 12434 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12435 /* 12436 * Don't do the checksum if it has gone through AH/ESP 12437 * processing. 12438 */ 12439 if (!mctl_present) { 12440 sum = ip_csum_hdr(ipha); 12441 if (sum != 0) { 12442 BUMP_MIB(&ip_mib, ipInCksumErrs); 12443 freemsg(first_mp); 12444 return (B_FALSE); 12445 } 12446 } 12447 12448 if (!ip_rput_local_options(q, mp, ipha, ire)) { 12449 if (mctl_present) 12450 freeb(first_mp); 12451 return (B_FALSE); 12452 } 12453 12454 return (B_TRUE); 12455 } 12456 12457 /* 12458 * All udp packet are delivered to the local host via this routine. 12459 */ 12460 void 12461 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12462 ill_t *recv_ill) 12463 { 12464 uint32_t sum; 12465 uint32_t u1; 12466 boolean_t mctl_present; 12467 conn_t *connp; 12468 mblk_t *first_mp; 12469 uint16_t *up; 12470 ill_t *ill = (ill_t *)q->q_ptr; 12471 uint16_t reass_hck_flags = 0; 12472 12473 #define rptr ((uchar_t *)ipha) 12474 12475 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12476 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12477 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12478 12479 /* 12480 * FAST PATH for udp packets 12481 */ 12482 12483 /* u1 is # words of IP options */ 12484 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12485 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12486 12487 /* IP options present */ 12488 if (u1 != 0) 12489 goto ipoptions; 12490 12491 /* Check the IP header checksum. */ 12492 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12493 /* Clear the IP header h/w cksum flag */ 12494 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12495 } else { 12496 #define uph ((uint16_t *)ipha) 12497 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12498 uph[6] + uph[7] + uph[8] + uph[9]; 12499 #undef uph 12500 /* finish doing IP checksum */ 12501 sum = (sum & 0xFFFF) + (sum >> 16); 12502 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12503 /* 12504 * Don't verify header checksum if this packet is coming 12505 * back from AH/ESP as we already did it. 12506 */ 12507 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 12508 BUMP_MIB(&ip_mib, ipInCksumErrs); 12509 freemsg(first_mp); 12510 return; 12511 } 12512 } 12513 12514 /* 12515 * Count for SNMP of inbound packets for ire. 12516 * if mctl is present this might be a secure packet and 12517 * has already been counted for in ip_proto_input(). 12518 */ 12519 if (!mctl_present) { 12520 UPDATE_IB_PKT_COUNT(ire); 12521 ire->ire_last_used_time = lbolt; 12522 } 12523 12524 /* packet part of fragmented IP packet? */ 12525 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12526 if (u1 & (IPH_MF | IPH_OFFSET)) { 12527 goto fragmented; 12528 } 12529 12530 /* u1 = IP header length (20 bytes) */ 12531 u1 = IP_SIMPLE_HDR_LENGTH; 12532 12533 /* packet does not contain complete IP & UDP headers */ 12534 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12535 goto udppullup; 12536 12537 /* up points to UDP header */ 12538 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12539 #define iphs ((uint16_t *)ipha) 12540 12541 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12542 if (up[3] != 0) { 12543 mblk_t *mp1 = mp->b_cont; 12544 boolean_t cksum_err; 12545 uint16_t hck_flags = 0; 12546 12547 /* Pseudo-header checksum */ 12548 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12549 iphs[9] + up[2]; 12550 12551 /* 12552 * Revert to software checksum calculation if the interface 12553 * isn't capable of checksum offload or if IPsec is present. 12554 */ 12555 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12556 hck_flags = DB_CKSUMFLAGS(mp); 12557 12558 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12559 IP_STAT(ip_in_sw_cksum); 12560 12561 IP_CKSUM_RECV(hck_flags, u1, 12562 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12563 (int32_t)((uchar_t *)up - rptr), 12564 mp, mp1, cksum_err); 12565 12566 if (cksum_err) { 12567 BUMP_MIB(&ip_mib, udpInCksumErrs); 12568 12569 if (hck_flags & HCK_FULLCKSUM) 12570 IP_STAT(ip_udp_in_full_hw_cksum_err); 12571 else if (hck_flags & HCK_PARTIALCKSUM) 12572 IP_STAT(ip_udp_in_part_hw_cksum_err); 12573 else 12574 IP_STAT(ip_udp_in_sw_cksum_err); 12575 12576 freemsg(first_mp); 12577 return; 12578 } 12579 } 12580 12581 /* Non-fragmented broadcast or multicast packet? */ 12582 if (ire->ire_type == IRE_BROADCAST) 12583 goto udpslowpath; 12584 12585 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12586 ire->ire_zoneid)) != NULL) { 12587 ASSERT(connp->conn_upq != NULL); 12588 IP_STAT(ip_udp_fast_path); 12589 12590 if (CONN_UDP_FLOWCTLD(connp)) { 12591 freemsg(mp); 12592 BUMP_MIB(&ip_mib, udpInOverflows); 12593 } else { 12594 if (!mctl_present) { 12595 BUMP_MIB(&ip_mib, ipInDelivers); 12596 } 12597 /* 12598 * mp and first_mp can change. 12599 */ 12600 if (ip_udp_check(q, connp, recv_ill, 12601 ipha, &mp, &first_mp, mctl_present)) { 12602 /* Send it upstream */ 12603 CONN_UDP_RECV(connp, mp); 12604 } 12605 } 12606 /* 12607 * freeb() cannot deal with null mblk being passed 12608 * in and first_mp can be set to null in the call 12609 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12610 */ 12611 if (mctl_present && first_mp != NULL) { 12612 freeb(first_mp); 12613 } 12614 CONN_DEC_REF(connp); 12615 return; 12616 } 12617 12618 /* 12619 * if we got here we know the packet is not fragmented and 12620 * has no options. The classifier could not find a conn_t and 12621 * most likely its an icmp packet so send it through slow path. 12622 */ 12623 12624 goto udpslowpath; 12625 12626 ipoptions: 12627 if (!ip_options_cksum(q, mp, ipha, ire)) { 12628 goto slow_done; 12629 } 12630 12631 UPDATE_IB_PKT_COUNT(ire); 12632 ire->ire_last_used_time = lbolt; 12633 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12634 if (u1 & (IPH_MF | IPH_OFFSET)) { 12635 fragmented: 12636 /* 12637 * "sum" and "reass_hck_flags" are non-zero if the 12638 * reassembled packet has a valid hardware computed 12639 * checksum information associated with it. 12640 */ 12641 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12642 goto slow_done; 12643 /* 12644 * Make sure that first_mp points back to mp as 12645 * the mp we came in with could have changed in 12646 * ip_rput_fragment(). 12647 */ 12648 ASSERT(!mctl_present); 12649 ipha = (ipha_t *)mp->b_rptr; 12650 first_mp = mp; 12651 } 12652 12653 /* Now we have a complete datagram, destined for this machine. */ 12654 u1 = IPH_HDR_LENGTH(ipha); 12655 /* Pull up the UDP header, if necessary. */ 12656 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12657 udppullup: 12658 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12659 BUMP_MIB(&ip_mib, ipInDiscards); 12660 freemsg(first_mp); 12661 goto slow_done; 12662 } 12663 ipha = (ipha_t *)mp->b_rptr; 12664 } 12665 12666 /* 12667 * Validate the checksum for the reassembled packet; for the 12668 * pullup case we calculate the payload checksum in software. 12669 */ 12670 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12671 if (up[3] != 0) { 12672 boolean_t cksum_err; 12673 12674 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12675 IP_STAT(ip_in_sw_cksum); 12676 12677 IP_CKSUM_RECV_REASS(reass_hck_flags, 12678 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12679 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12680 iphs[9] + up[2], sum, cksum_err); 12681 12682 if (cksum_err) { 12683 BUMP_MIB(&ip_mib, udpInCksumErrs); 12684 12685 if (reass_hck_flags & HCK_FULLCKSUM) 12686 IP_STAT(ip_udp_in_full_hw_cksum_err); 12687 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12688 IP_STAT(ip_udp_in_part_hw_cksum_err); 12689 else 12690 IP_STAT(ip_udp_in_sw_cksum_err); 12691 12692 freemsg(first_mp); 12693 goto slow_done; 12694 } 12695 } 12696 udpslowpath: 12697 12698 /* Clear hardware checksum flag to be safe */ 12699 DB_CKSUMFLAGS(mp) = 0; 12700 12701 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12702 (ire->ire_type == IRE_BROADCAST), 12703 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IP6INFO, 12704 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12705 12706 slow_done: 12707 IP_STAT(ip_udp_slow_path); 12708 return; 12709 12710 #undef iphs 12711 #undef rptr 12712 } 12713 12714 /* ARGSUSED */ 12715 static mblk_t * 12716 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12717 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12718 ill_rx_ring_t *ill_ring) 12719 { 12720 conn_t *connp; 12721 uint32_t sum; 12722 uint32_t u1; 12723 uint16_t *up; 12724 int offset; 12725 ssize_t len; 12726 mblk_t *mp1; 12727 boolean_t syn_present = B_FALSE; 12728 tcph_t *tcph; 12729 uint_t ip_hdr_len; 12730 ill_t *ill = (ill_t *)q->q_ptr; 12731 zoneid_t zoneid = ire->ire_zoneid; 12732 boolean_t cksum_err; 12733 uint16_t hck_flags = 0; 12734 12735 #define rptr ((uchar_t *)ipha) 12736 12737 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12738 12739 /* 12740 * FAST PATH for tcp packets 12741 */ 12742 12743 /* u1 is # words of IP options */ 12744 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12745 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12746 12747 /* IP options present */ 12748 if (u1) { 12749 goto ipoptions; 12750 } else { 12751 /* Check the IP header checksum. */ 12752 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12753 /* Clear the IP header h/w cksum flag */ 12754 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12755 } else { 12756 #define uph ((uint16_t *)ipha) 12757 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12758 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12759 #undef uph 12760 /* finish doing IP checksum */ 12761 sum = (sum & 0xFFFF) + (sum >> 16); 12762 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12763 /* 12764 * Don't verify header checksum if this packet 12765 * is coming back from AH/ESP as we already did it. 12766 */ 12767 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 12768 BUMP_MIB(&ip_mib, ipInCksumErrs); 12769 goto error; 12770 } 12771 } 12772 } 12773 12774 if (!mctl_present) { 12775 UPDATE_IB_PKT_COUNT(ire); 12776 ire->ire_last_used_time = lbolt; 12777 } 12778 12779 /* packet part of fragmented IP packet? */ 12780 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12781 if (u1 & (IPH_MF | IPH_OFFSET)) { 12782 goto fragmented; 12783 } 12784 12785 /* u1 = IP header length (20 bytes) */ 12786 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12787 12788 /* does packet contain IP+TCP headers? */ 12789 len = mp->b_wptr - rptr; 12790 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12791 IP_STAT(ip_tcppullup); 12792 goto tcppullup; 12793 } 12794 12795 /* TCP options present? */ 12796 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12797 12798 /* 12799 * If options need to be pulled up, then goto tcpoptions. 12800 * otherwise we are still in the fast path 12801 */ 12802 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12803 IP_STAT(ip_tcpoptions); 12804 goto tcpoptions; 12805 } 12806 12807 /* multiple mblks of tcp data? */ 12808 if ((mp1 = mp->b_cont) != NULL) { 12809 /* more then two? */ 12810 if (mp1->b_cont != NULL) { 12811 IP_STAT(ip_multipkttcp); 12812 goto multipkttcp; 12813 } 12814 len += mp1->b_wptr - mp1->b_rptr; 12815 } 12816 12817 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 12818 12819 /* part of pseudo checksum */ 12820 12821 /* TCP datagram length */ 12822 u1 = len - IP_SIMPLE_HDR_LENGTH; 12823 12824 #define iphs ((uint16_t *)ipha) 12825 12826 #ifdef _BIG_ENDIAN 12827 u1 += IPPROTO_TCP; 12828 #else 12829 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12830 #endif 12831 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12832 12833 /* 12834 * Revert to software checksum calculation if the interface 12835 * isn't capable of checksum offload or if IPsec is present. 12836 */ 12837 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12838 hck_flags = DB_CKSUMFLAGS(mp); 12839 12840 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12841 IP_STAT(ip_in_sw_cksum); 12842 12843 IP_CKSUM_RECV(hck_flags, u1, 12844 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12845 (int32_t)((uchar_t *)up - rptr), 12846 mp, mp1, cksum_err); 12847 12848 if (cksum_err) { 12849 BUMP_MIB(&ip_mib, tcpInErrs); 12850 12851 if (hck_flags & HCK_FULLCKSUM) 12852 IP_STAT(ip_tcp_in_full_hw_cksum_err); 12853 else if (hck_flags & HCK_PARTIALCKSUM) 12854 IP_STAT(ip_tcp_in_part_hw_cksum_err); 12855 else 12856 IP_STAT(ip_tcp_in_sw_cksum_err); 12857 12858 goto error; 12859 } 12860 12861 try_again: 12862 12863 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 12864 NULL) { 12865 /* Send the TH_RST */ 12866 goto no_conn; 12867 } 12868 12869 /* 12870 * TCP FAST PATH for AF_INET socket. 12871 * 12872 * TCP fast path to avoid extra work. An AF_INET socket type 12873 * does not have facility to receive extra information via 12874 * ip_process or ip_add_info. Also, when the connection was 12875 * established, we made a check if this connection is impacted 12876 * by any global IPSec policy or per connection policy (a 12877 * policy that comes in effect later will not apply to this 12878 * connection). Since all this can be determined at the 12879 * connection establishment time, a quick check of flags 12880 * can avoid extra work. 12881 */ 12882 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 12883 !IPP_ENABLED(IPP_LOCAL_IN)) { 12884 ASSERT(first_mp == mp); 12885 SET_SQUEUE(mp, tcp_rput_data, connp); 12886 return (mp); 12887 } 12888 12889 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 12890 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 12891 if (IPCL_IS_TCP(connp)) { 12892 mp->b_datap->db_struioflag |= STRUIO_EAGER; 12893 DB_CKSUMSTART(mp) = 12894 (intptr_t)ip_squeue_get(ill_ring); 12895 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 12896 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12897 SET_SQUEUE(mp, connp->conn_recv, connp); 12898 return (mp); 12899 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 12900 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12901 ip_squeue_enter_unbound++; 12902 SET_SQUEUE(mp, tcp_conn_request_unbound, 12903 connp); 12904 return (mp); 12905 } 12906 syn_present = B_TRUE; 12907 } 12908 12909 } 12910 12911 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 12912 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12913 12914 /* No need to send this packet to TCP */ 12915 if ((flags & TH_RST) || (flags & TH_URG)) { 12916 CONN_DEC_REF(connp); 12917 freemsg(first_mp); 12918 return (NULL); 12919 } 12920 if (flags & TH_ACK) { 12921 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 12922 CONN_DEC_REF(connp); 12923 return (NULL); 12924 } 12925 12926 CONN_DEC_REF(connp); 12927 freemsg(first_mp); 12928 return (NULL); 12929 } 12930 12931 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 12932 first_mp = ipsec_check_inbound_policy(first_mp, connp, 12933 ipha, NULL, mctl_present); 12934 if (first_mp == NULL) { 12935 CONN_DEC_REF(connp); 12936 return (NULL); 12937 } 12938 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 12939 ASSERT(syn_present); 12940 if (mctl_present) { 12941 ASSERT(first_mp != mp); 12942 first_mp->b_datap->db_struioflag |= 12943 STRUIO_POLICY; 12944 } else { 12945 ASSERT(first_mp == mp); 12946 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 12947 mp->b_datap->db_struioflag |= STRUIO_POLICY; 12948 } 12949 } else { 12950 /* 12951 * Discard first_mp early since we're dealing with a 12952 * fully-connected conn_t and tcp doesn't do policy in 12953 * this case. 12954 */ 12955 if (mctl_present) { 12956 freeb(first_mp); 12957 mctl_present = B_FALSE; 12958 } 12959 first_mp = mp; 12960 } 12961 } 12962 12963 /* Initiate IPPF processing for fastpath */ 12964 if (IPP_ENABLED(IPP_LOCAL_IN)) { 12965 uint32_t ill_index; 12966 12967 ill_index = recv_ill->ill_phyint->phyint_ifindex; 12968 ip_process(IPP_LOCAL_IN, &mp, ill_index); 12969 if (mp == NULL) { 12970 ip2dbg(("ip_input_ipsec_process: TCP pkt " 12971 "deferred/dropped during IPPF processing\n")); 12972 CONN_DEC_REF(connp); 12973 if (mctl_present) 12974 freeb(first_mp); 12975 return (NULL); 12976 } else if (mctl_present) { 12977 /* 12978 * ip_process might return a new mp. 12979 */ 12980 ASSERT(first_mp != mp); 12981 first_mp->b_cont = mp; 12982 } else { 12983 first_mp = mp; 12984 } 12985 12986 } 12987 12988 if (!syn_present && connp->conn_ipv6_recvpktinfo) { 12989 mp = ip_add_info(mp, recv_ill, flags); 12990 if (mp == NULL) { 12991 CONN_DEC_REF(connp); 12992 if (mctl_present) 12993 freeb(first_mp); 12994 return (NULL); 12995 } else if (mctl_present) { 12996 /* 12997 * ip_add_info might return a new mp. 12998 */ 12999 ASSERT(first_mp != mp); 13000 first_mp->b_cont = mp; 13001 } else { 13002 first_mp = mp; 13003 } 13004 } 13005 13006 if (IPCL_IS_TCP(connp)) { 13007 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13008 return (first_mp); 13009 } else { 13010 putnext(connp->conn_rq, first_mp); 13011 CONN_DEC_REF(connp); 13012 return (NULL); 13013 } 13014 13015 no_conn: 13016 /* Initiate IPPf processing, if needed. */ 13017 if (IPP_ENABLED(IPP_LOCAL_IN)) { 13018 uint32_t ill_index; 13019 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13020 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13021 if (first_mp == NULL) { 13022 return (NULL); 13023 } 13024 } 13025 BUMP_MIB(&ip_mib, ipInDelivers); 13026 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid); 13027 return (NULL); 13028 ipoptions: 13029 if (!ip_options_cksum(q, first_mp, ipha, ire)) { 13030 goto slow_done; 13031 } 13032 13033 UPDATE_IB_PKT_COUNT(ire); 13034 ire->ire_last_used_time = lbolt; 13035 13036 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13037 if (u1 & (IPH_MF | IPH_OFFSET)) { 13038 fragmented: 13039 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13040 if (mctl_present) 13041 freeb(first_mp); 13042 goto slow_done; 13043 } 13044 /* 13045 * Make sure that first_mp points back to mp as 13046 * the mp we came in with could have changed in 13047 * ip_rput_fragment(). 13048 */ 13049 ASSERT(!mctl_present); 13050 ipha = (ipha_t *)mp->b_rptr; 13051 first_mp = mp; 13052 } 13053 13054 /* Now we have a complete datagram, destined for this machine. */ 13055 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13056 13057 len = mp->b_wptr - mp->b_rptr; 13058 /* Pull up a minimal TCP header, if necessary. */ 13059 if (len < (u1 + 20)) { 13060 tcppullup: 13061 if (!pullupmsg(mp, u1 + 20)) { 13062 BUMP_MIB(&ip_mib, ipInDiscards); 13063 goto error; 13064 } 13065 ipha = (ipha_t *)mp->b_rptr; 13066 len = mp->b_wptr - mp->b_rptr; 13067 } 13068 13069 /* 13070 * Extract the offset field from the TCP header. As usual, we 13071 * try to help the compiler more than the reader. 13072 */ 13073 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13074 if (offset != 5) { 13075 tcpoptions: 13076 if (offset < 5) { 13077 BUMP_MIB(&ip_mib, ipInDiscards); 13078 goto error; 13079 } 13080 /* 13081 * There must be TCP options. 13082 * Make sure we can grab them. 13083 */ 13084 offset <<= 2; 13085 offset += u1; 13086 if (len < offset) { 13087 if (!pullupmsg(mp, offset)) { 13088 BUMP_MIB(&ip_mib, ipInDiscards); 13089 goto error; 13090 } 13091 ipha = (ipha_t *)mp->b_rptr; 13092 len = mp->b_wptr - rptr; 13093 } 13094 } 13095 13096 /* Get the total packet length in len, including headers. */ 13097 if (mp->b_cont) { 13098 multipkttcp: 13099 len = msgdsize(mp); 13100 } 13101 13102 /* 13103 * Check the TCP checksum by pulling together the pseudo- 13104 * header checksum, and passing it to ip_csum to be added in 13105 * with the TCP datagram. 13106 * 13107 * Since we are not using the hwcksum if available we must 13108 * clear the flag. We may come here via tcppullup or tcpoptions. 13109 * If either of these fails along the way the mblk is freed. 13110 * If this logic ever changes and mblk is reused to say send 13111 * ICMP's back, then this flag may need to be cleared in 13112 * other places as well. 13113 */ 13114 DB_CKSUMFLAGS(mp) = 0; 13115 13116 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13117 13118 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13119 #ifdef _BIG_ENDIAN 13120 u1 += IPPROTO_TCP; 13121 #else 13122 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13123 #endif 13124 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13125 /* 13126 * Not M_DATA mblk or its a dup, so do the checksum now. 13127 */ 13128 IP_STAT(ip_in_sw_cksum); 13129 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13130 BUMP_MIB(&ip_mib, tcpInErrs); 13131 goto error; 13132 } 13133 13134 IP_STAT(ip_tcp_slow_path); 13135 goto try_again; 13136 #undef iphs 13137 #undef rptr 13138 13139 error: 13140 freemsg(first_mp); 13141 slow_done: 13142 return (NULL); 13143 } 13144 13145 /* ARGSUSED */ 13146 static void 13147 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13148 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13149 { 13150 conn_t *connp; 13151 uint32_t sum; 13152 uint32_t u1; 13153 ssize_t len; 13154 sctp_hdr_t *sctph; 13155 zoneid_t zoneid = ire->ire_zoneid; 13156 uint32_t pktsum; 13157 uint32_t calcsum; 13158 uint32_t ports; 13159 uint_t ipif_seqid; 13160 in6_addr_t map_src, map_dst; 13161 ill_t *ill = (ill_t *)q->q_ptr; 13162 13163 #define rptr ((uchar_t *)ipha) 13164 13165 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13166 13167 /* u1 is # words of IP options */ 13168 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13169 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13170 13171 /* IP options present */ 13172 if (u1 > 0) { 13173 goto ipoptions; 13174 } else { 13175 /* Check the IP header checksum. */ 13176 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13177 #define uph ((uint16_t *)ipha) 13178 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13179 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13180 #undef uph 13181 /* finish doing IP checksum */ 13182 sum = (sum & 0xFFFF) + (sum >> 16); 13183 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13184 /* 13185 * Don't verify header checksum if this packet 13186 * is coming back from AH/ESP as we already did it. 13187 */ 13188 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13189 BUMP_MIB(&ip_mib, ipInCksumErrs); 13190 goto error; 13191 } 13192 } 13193 /* 13194 * Since there is no SCTP h/w cksum support yet, just 13195 * clear the flag. 13196 */ 13197 DB_CKSUMFLAGS(mp) = 0; 13198 } 13199 13200 /* 13201 * Don't verify header checksum if this packet is coming 13202 * back from AH/ESP as we already did it. 13203 */ 13204 if (!mctl_present) { 13205 UPDATE_IB_PKT_COUNT(ire); 13206 ire->ire_last_used_time = lbolt; 13207 } 13208 13209 /* packet part of fragmented IP packet? */ 13210 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13211 if (u1 & (IPH_MF | IPH_OFFSET)) 13212 goto fragmented; 13213 13214 /* u1 = IP header length (20 bytes) */ 13215 u1 = IP_SIMPLE_HDR_LENGTH; 13216 13217 find_sctp_client: 13218 /* Pullup if we don't have the sctp common header. */ 13219 len = MBLKL(mp); 13220 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13221 if (mp->b_cont == NULL || 13222 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13223 BUMP_MIB(&ip_mib, ipInDiscards); 13224 goto error; 13225 } 13226 ipha = (ipha_t *)mp->b_rptr; 13227 len = MBLKL(mp); 13228 } 13229 13230 sctph = (sctp_hdr_t *)(rptr + u1); 13231 #ifdef DEBUG 13232 if (!skip_sctp_cksum) { 13233 #endif 13234 pktsum = sctph->sh_chksum; 13235 sctph->sh_chksum = 0; 13236 calcsum = sctp_cksum(mp, u1); 13237 if (calcsum != pktsum) { 13238 BUMP_MIB(&sctp_mib, sctpChecksumError); 13239 goto error; 13240 } 13241 sctph->sh_chksum = pktsum; 13242 #ifdef DEBUG /* skip_sctp_cksum */ 13243 } 13244 #endif 13245 /* get the ports */ 13246 ports = *(uint32_t *)&sctph->sh_sport; 13247 13248 ipif_seqid = ire->ire_ipif->ipif_seqid; 13249 IRE_REFRELE(ire); 13250 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13251 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13252 if ((connp = sctp_fanout(&map_src, &map_dst, ports, ipif_seqid, zoneid, 13253 mp)) == NULL) { 13254 /* Check for raw socket or OOTB handling */ 13255 goto no_conn; 13256 } 13257 13258 /* Found a client; up it goes */ 13259 BUMP_MIB(&ip_mib, ipInDelivers); 13260 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13261 return; 13262 13263 no_conn: 13264 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13265 ports, mctl_present, flags, B_TRUE, ipif_seqid, zoneid); 13266 return; 13267 13268 ipoptions: 13269 DB_CKSUMFLAGS(mp) = 0; 13270 if (!ip_options_cksum(q, first_mp, ipha, ire)) 13271 goto slow_done; 13272 13273 UPDATE_IB_PKT_COUNT(ire); 13274 ire->ire_last_used_time = lbolt; 13275 13276 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13277 if (u1 & (IPH_MF | IPH_OFFSET)) { 13278 fragmented: 13279 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13280 goto slow_done; 13281 /* 13282 * Make sure that first_mp points back to mp as 13283 * the mp we came in with could have changed in 13284 * ip_rput_fragment(). 13285 */ 13286 ASSERT(!mctl_present); 13287 ipha = (ipha_t *)mp->b_rptr; 13288 first_mp = mp; 13289 } 13290 13291 /* Now we have a complete datagram, destined for this machine. */ 13292 u1 = IPH_HDR_LENGTH(ipha); 13293 goto find_sctp_client; 13294 #undef iphs 13295 #undef rptr 13296 13297 error: 13298 freemsg(first_mp); 13299 slow_done: 13300 IRE_REFRELE(ire); 13301 } 13302 13303 #define VER_BITS 0xF0 13304 #define VERSION_6 0x60 13305 13306 static boolean_t 13307 ip_rput_multimblk_ipoptions(queue_t *q, mblk_t *mp, ipha_t **iphapp, 13308 ipaddr_t *dstp) 13309 { 13310 uint_t opt_len; 13311 ipha_t *ipha; 13312 ssize_t len; 13313 uint_t pkt_len; 13314 13315 IP_STAT(ip_ipoptions); 13316 ipha = *iphapp; 13317 13318 #define rptr ((uchar_t *)ipha) 13319 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13320 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13321 BUMP_MIB(&ip_mib, ipInIPv6); 13322 freemsg(mp); 13323 return (B_FALSE); 13324 } 13325 13326 /* multiple mblk or too short */ 13327 pkt_len = ntohs(ipha->ipha_length); 13328 13329 /* Get the number of words of IP options in the IP header. */ 13330 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13331 if (opt_len) { 13332 /* IP Options present! Validate and process. */ 13333 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13334 BUMP_MIB(&ip_mib, ipInHdrErrors); 13335 goto done; 13336 } 13337 /* 13338 * Recompute complete header length and make sure we 13339 * have access to all of it. 13340 */ 13341 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13342 if (len > (mp->b_wptr - rptr)) { 13343 if (len > pkt_len) { 13344 BUMP_MIB(&ip_mib, ipInHdrErrors); 13345 goto done; 13346 } 13347 if (!pullupmsg(mp, len)) { 13348 BUMP_MIB(&ip_mib, ipInDiscards); 13349 goto done; 13350 } 13351 ipha = (ipha_t *)mp->b_rptr; 13352 } 13353 /* 13354 * Go off to ip_rput_options which returns the next hop 13355 * destination address, which may have been affected 13356 * by source routing. 13357 */ 13358 IP_STAT(ip_opt); 13359 if (ip_rput_options(q, mp, ipha, dstp) == -1) { 13360 return (B_FALSE); 13361 } 13362 } 13363 *iphapp = ipha; 13364 return (B_TRUE); 13365 done: 13366 /* clear b_prev - used by ip_mroute_decap */ 13367 mp->b_prev = NULL; 13368 freemsg(mp); 13369 return (B_FALSE); 13370 #undef rptr 13371 } 13372 13373 /* 13374 * Deal with the fact that there is no ire for the destination. 13375 * The incoming ill (in_ill) is passed in to ip_newroute only 13376 * in the case of packets coming from mobile ip forward tunnel. 13377 * It must be null otherwise. 13378 */ 13379 static ire_t * 13380 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 13381 ipaddr_t dst) 13382 { 13383 ipha_t *ipha; 13384 ill_t *ill; 13385 ire_t *ire; 13386 boolean_t check_multirt = B_FALSE; 13387 13388 ipha = (ipha_t *)mp->b_rptr; 13389 ill = (ill_t *)q->q_ptr; 13390 13391 ASSERT(ill != NULL); 13392 /* 13393 * No IRE for this destination, so it can't be for us. 13394 * Unless we are forwarding, drop the packet. 13395 * We have to let source routed packets through 13396 * since we don't yet know if they are 'ping -l' 13397 * packets i.e. if they will go out over the 13398 * same interface as they came in on. 13399 */ 13400 if (ll_multicast) { 13401 freemsg(mp); 13402 return (NULL); 13403 } 13404 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha)) { 13405 BUMP_MIB(&ip_mib, ipForwProhibits); 13406 freemsg(mp); 13407 return (NULL); 13408 } 13409 13410 /* 13411 * Mark this packet as having originated externally. 13412 * 13413 * For non-forwarding code path, ire_send later double 13414 * checks this interface to see if it is still exists 13415 * post-ARP resolution. 13416 * 13417 * Also, IPQOS uses this to differentiate between 13418 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13419 * QOS packet processing in ip_wput_attach_llhdr(). 13420 * The QoS module can mark the b_band for a fastpath message 13421 * or the dl_priority field in a unitdata_req header for 13422 * CoS marking. This info can only be found in 13423 * ip_wput_attach_llhdr(). 13424 */ 13425 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13426 /* 13427 * Clear the indication that this may have a hardware checksum 13428 * as we are not using it 13429 */ 13430 DB_CKSUMFLAGS(mp) = 0; 13431 13432 if (in_ill != NULL) { 13433 /* 13434 * Now hand the packet to ip_newroute. 13435 */ 13436 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID); 13437 return (NULL); 13438 } 13439 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13440 MBLK_GETLABEL(mp)); 13441 13442 if (ire == NULL && check_multirt) { 13443 /* Let ip_newroute handle CGTP */ 13444 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID); 13445 return (NULL); 13446 } 13447 13448 if (ire != NULL) 13449 return (ire); 13450 13451 mp->b_prev = mp->b_next = 0; 13452 /* send icmp unreachable */ 13453 q = WR(q); 13454 /* Sent by forwarding path, and router is global zone */ 13455 if (ip_source_routed(ipha)) { 13456 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13457 GLOBAL_ZONEID); 13458 } else { 13459 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID); 13460 } 13461 13462 return (NULL); 13463 13464 } 13465 13466 /* 13467 * check ip header length and align it. 13468 */ 13469 static boolean_t 13470 ip_check_and_align_header(queue_t *q, mblk_t *mp) 13471 { 13472 ssize_t len; 13473 ill_t *ill; 13474 ipha_t *ipha; 13475 13476 len = MBLKL(mp); 13477 13478 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13479 if (!OK_32PTR(mp->b_rptr)) 13480 IP_STAT(ip_notaligned1); 13481 else 13482 IP_STAT(ip_notaligned2); 13483 /* Guard against bogus device drivers */ 13484 if (len < 0) { 13485 /* clear b_prev - used by ip_mroute_decap */ 13486 mp->b_prev = NULL; 13487 BUMP_MIB(&ip_mib, ipInHdrErrors); 13488 freemsg(mp); 13489 return (B_FALSE); 13490 } 13491 13492 if (ip_rput_pullups++ == 0) { 13493 ill = (ill_t *)q->q_ptr; 13494 ipha = (ipha_t *)mp->b_rptr; 13495 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13496 "ip_check_and_align_header: %s forced us to " 13497 " pullup pkt, hdr len %ld, hdr addr %p", 13498 ill->ill_name, len, ipha); 13499 } 13500 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13501 /* clear b_prev - used by ip_mroute_decap */ 13502 mp->b_prev = NULL; 13503 BUMP_MIB(&ip_mib, ipInDiscards); 13504 freemsg(mp); 13505 return (B_FALSE); 13506 } 13507 } 13508 return (B_TRUE); 13509 } 13510 13511 static boolean_t 13512 ip_rput_notforus(queue_t **qp, mblk_t *mp, ire_t *ire, ill_t *ill) 13513 { 13514 ill_group_t *ill_group; 13515 ill_group_t *ire_group; 13516 queue_t *q; 13517 ill_t *ire_ill; 13518 uint_t ill_ifindex; 13519 13520 q = *qp; 13521 /* 13522 * We need to check to make sure the packet came in 13523 * on the queue associated with the destination IRE. 13524 * Note that for multicast packets and broadcast packets sent to 13525 * a broadcast address which is shared between multiple interfaces 13526 * we should not do this since we just got a random broadcast ire. 13527 */ 13528 if (ire->ire_rfq && ire->ire_type != IRE_BROADCAST) { 13529 boolean_t check_multi = B_TRUE; 13530 13531 /* 13532 * This packet came in on an interface other than the 13533 * one associated with the destination address. 13534 * "Gateway" it to the appropriate interface here. 13535 * As long as the ills belong to the same group, 13536 * we don't consider them to arriving on the wrong 13537 * interface. Thus, when the switch is doing inbound 13538 * load spreading, we won't drop packets when we 13539 * are doing strict multihoming checks. Note, the 13540 * same holds true for 'usesrc groups' where the 13541 * destination address may belong to another interface 13542 * to allow multipathing to happen 13543 */ 13544 ill_group = ill->ill_group; 13545 ire_ill = (ill_t *)(ire->ire_rfq)->q_ptr; 13546 ill_ifindex = ill->ill_usesrc_ifindex; 13547 ire_group = ire_ill->ill_group; 13548 13549 /* 13550 * If it's part of the same IPMP group, or if it's a legal 13551 * address on the 'usesrc' interface, then bypass strict 13552 * checks. 13553 */ 13554 if (ill_group != NULL && ill_group == ire_group) { 13555 check_multi = B_FALSE; 13556 } else if (ill_ifindex != 0 && 13557 ill_ifindex == ire_ill->ill_phyint->phyint_ifindex) { 13558 check_multi = B_FALSE; 13559 } 13560 13561 if (check_multi && 13562 ip_strict_dst_multihoming && 13563 ((ill->ill_flags & 13564 ire->ire_ipif->ipif_ill->ill_flags & 13565 ILLF_ROUTER) == 0)) { 13566 /* Drop packet */ 13567 BUMP_MIB(&ip_mib, ipForwProhibits); 13568 freemsg(mp); 13569 return (B_TRUE); 13570 } 13571 13572 /* 13573 * Change the queue (for non-virtual destination network 13574 * interfaces) and ip_rput_local will be called with the right 13575 * queue 13576 */ 13577 q = ire->ire_rfq; 13578 } 13579 /* Must be broadcast. We'll take it. */ 13580 *qp = q; 13581 return (B_FALSE); 13582 } 13583 13584 ire_t * 13585 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13586 { 13587 ipha_t *ipha; 13588 ipaddr_t ip_dst, ip_src; 13589 ire_t *src_ire = NULL; 13590 ill_t *stq_ill; 13591 uint_t hlen; 13592 uint32_t sum; 13593 queue_t *dev_q; 13594 boolean_t check_multirt = B_FALSE; 13595 13596 13597 ipha = (ipha_t *)mp->b_rptr; 13598 13599 /* 13600 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13601 * The loopback address check for both src and dst has already 13602 * been checked in ip_input 13603 */ 13604 ip_dst = ntohl(dst); 13605 ip_src = ntohl(ipha->ipha_src); 13606 13607 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 13608 IN_CLASSD(ip_src)) { 13609 BUMP_MIB(&ip_mib, ipForwProhibits); 13610 goto drop; 13611 } 13612 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13613 ALL_ZONES, NULL, MATCH_IRE_TYPE); 13614 13615 if (src_ire != NULL) { 13616 BUMP_MIB(&ip_mib, ipForwProhibits); 13617 goto drop; 13618 } 13619 13620 /* No ire cache of nexthop. So first create one */ 13621 if (ire == NULL) { 13622 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL); 13623 /* 13624 * We only come to ip_fast_forward if ip_cgtp_filter is 13625 * is not set. So upon return from ire_forward 13626 * check_multirt should remain as false. 13627 */ 13628 ASSERT(!check_multirt); 13629 if (ire == NULL) { 13630 BUMP_MIB(&ip_mib, ipInDiscards); 13631 mp->b_prev = mp->b_next = 0; 13632 /* send icmp unreachable */ 13633 /* Sent by forwarding path, and router is global zone */ 13634 if (ip_source_routed(ipha)) { 13635 icmp_unreachable(ill->ill_wq, mp, 13636 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID); 13637 } else { 13638 icmp_unreachable(ill->ill_wq, mp, 13639 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID); 13640 } 13641 return (ire); 13642 } 13643 } 13644 13645 /* 13646 * Forwarding fastpath exception case: 13647 * If either of the follwoing case is true, we take 13648 * the slowpath 13649 * o forwarding is not enabled 13650 * o IPMP is enabled 13651 * o corresponding ire is in incomplete state 13652 * o packet needs fragmentation 13653 * 13654 * The codeflow from here on is thus: 13655 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13656 */ 13657 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13658 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13659 !(ill->ill_flags & ILLF_ROUTER) || SAME_IPMP_GROUP(ill, stq_ill) || 13660 (ire->ire_nce == NULL) || 13661 (ire->ire_nce->nce_state != ND_REACHABLE) || 13662 (ntohs(ipha->ipha_length) > ire->ire_max_frag) || 13663 ipha->ipha_ttl <= 1) { 13664 ip_rput_process_forward(ill->ill_rq, mp, ire, 13665 ipha, ill, B_FALSE); 13666 return (ire); 13667 } 13668 13669 DTRACE_PROBE4(ip4__forwarding__start, 13670 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13671 13672 FW_HOOKS(ip4_forwarding_event, ipv4firewall_forwarding, 13673 MSG_FWCOOKED_FORWARD, ill, stq_ill, ipha, mp, mp); 13674 13675 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13676 13677 if (mp == NULL) 13678 goto drop; 13679 13680 mp->b_datap->db_struioun.cksum.flags = 0; 13681 /* Adjust the checksum to reflect the ttl decrement. */ 13682 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13683 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13684 ipha->ipha_ttl--; 13685 13686 dev_q = ire->ire_stq->q_next; 13687 if ((dev_q->q_next != NULL || 13688 dev_q->q_first != NULL) && !canput(dev_q)) { 13689 goto indiscard; 13690 } 13691 13692 hlen = ire->ire_nce->nce_fp_mp != NULL ? 13693 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 13694 13695 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 13696 mblk_t *mpip = mp; 13697 13698 mp = ip_wput_attach_llhdr(mpip, ire, 0, 0); 13699 if (mp != NULL) { 13700 DTRACE_PROBE4(ip4__physical__out__start, 13701 ill_t *, NULL, ill_t *, stq_ill, 13702 ipha_t *, ipha, mblk_t *, mp); 13703 FW_HOOKS(ip4_physical_out_event, 13704 ipv4firewall_physical_out, MSG_FWCOOKED_OUT, NULL, 13705 stq_ill, ipha, mp, mpip); 13706 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, 13707 mp); 13708 if (mp == NULL) 13709 goto drop; 13710 13711 UPDATE_IB_PKT_COUNT(ire); 13712 ire->ire_last_used_time = lbolt; 13713 BUMP_MIB(&ip_mib, ipForwDatagrams); 13714 putnext(ire->ire_stq, mp); 13715 return (ire); 13716 } 13717 } 13718 13719 indiscard: 13720 BUMP_MIB(&ip_mib, ipInDiscards); 13721 drop: 13722 if (mp != NULL) 13723 freemsg(mp); 13724 if (src_ire != NULL) 13725 ire_refrele(src_ire); 13726 return (ire); 13727 13728 } 13729 13730 /* 13731 * This function is called in the forwarding slowpath, when 13732 * either the ire lacks the link-layer address, or the packet needs 13733 * further processing(eg. fragmentation), before transmission. 13734 */ 13735 static void 13736 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13737 ill_t *ill, boolean_t ll_multicast) 13738 { 13739 ill_group_t *ill_group; 13740 ill_group_t *ire_group; 13741 queue_t *dev_q; 13742 ire_t *src_ire; 13743 13744 ASSERT(ire->ire_stq != NULL); 13745 13746 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 13747 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 13748 13749 if (ll_multicast != 0) 13750 goto drop_pkt; 13751 13752 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13753 ALL_ZONES, NULL, MATCH_IRE_TYPE); 13754 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 13755 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 13756 if (src_ire != NULL) 13757 ire_refrele(src_ire); 13758 BUMP_MIB(&ip_mib, ipForwProhibits); 13759 ip2dbg(("ip_rput_process_forward: Received packet with" 13760 " bad src/dst address on %s\n", ill->ill_name)); 13761 } 13762 13763 ill_group = ill->ill_group; 13764 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 13765 /* 13766 * Check if we want to forward this one at this time. 13767 * We allow source routed packets on a host provided that 13768 * they go out the same interface or same interface group 13769 * as they came in on. 13770 * 13771 * XXX To be quicker, we may wish to not chase pointers to 13772 * get the ILLF_ROUTER flag and instead store the 13773 * forwarding policy in the ire. An unfortunate 13774 * side-effect of that would be requiring an ire flush 13775 * whenever the ILLF_ROUTER flag changes. 13776 */ 13777 if (((ill->ill_flags & 13778 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 13779 ILLF_ROUTER) == 0) && 13780 !(ip_source_routed(ipha) && (ire->ire_rfq == q || 13781 (ill_group != NULL && ill_group == ire_group)))) { 13782 BUMP_MIB(&ip_mib, ipForwProhibits); 13783 if (ip_source_routed(ipha)) { 13784 q = WR(q); 13785 /* 13786 * Clear the indication that this may have 13787 * hardware checksum as we are not using it. 13788 */ 13789 DB_CKSUMFLAGS(mp) = 0; 13790 /* Sent by forwarding path, and router is global zone */ 13791 icmp_unreachable(q, mp, 13792 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID); 13793 return; 13794 } 13795 goto drop_pkt; 13796 } 13797 13798 /* Packet is being forwarded. Turning off hwcksum flag. */ 13799 DB_CKSUMFLAGS(mp) = 0; 13800 if (ip_g_send_redirects) { 13801 /* 13802 * Check whether the incoming interface and outgoing 13803 * interface is part of the same group. If so, 13804 * send redirects. 13805 * 13806 * Check the source address to see if it originated 13807 * on the same logical subnet it is going back out on. 13808 * If so, we should be able to send it a redirect. 13809 * Avoid sending a redirect if the destination 13810 * is directly connected (gw_addr == 0), 13811 * or if the packet was source routed out this 13812 * interface. 13813 */ 13814 ipaddr_t src; 13815 mblk_t *mp1; 13816 ire_t *src_ire = NULL; 13817 13818 /* 13819 * Check whether ire_rfq and q are from the same ill 13820 * or if they are not same, they at least belong 13821 * to the same group. If so, send redirects. 13822 */ 13823 if ((ire->ire_rfq == q || 13824 (ill_group != NULL && ill_group == ire_group)) && 13825 (ire->ire_gateway_addr != 0) && 13826 !ip_source_routed(ipha)) { 13827 13828 src = ipha->ipha_src; 13829 src_ire = ire_ftable_lookup(src, 0, 0, 13830 IRE_INTERFACE, ire->ire_ipif, NULL, ALL_ZONES, 13831 0, NULL, MATCH_IRE_IPIF | MATCH_IRE_TYPE); 13832 13833 if (src_ire != NULL) { 13834 /* 13835 * The source is directly connected. 13836 * Just copy the ip header (which is 13837 * in the first mblk) 13838 */ 13839 mp1 = copyb(mp); 13840 if (mp1 != NULL) { 13841 icmp_send_redirect(WR(q), mp1, 13842 ire->ire_gateway_addr); 13843 } 13844 ire_refrele(src_ire); 13845 } 13846 } 13847 } 13848 13849 dev_q = ire->ire_stq->q_next; 13850 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 13851 BUMP_MIB(&ip_mib, ipInDiscards); 13852 freemsg(mp); 13853 return; 13854 } 13855 13856 ip_rput_forward(ire, ipha, mp, ill); 13857 return; 13858 13859 drop_pkt: 13860 ip2dbg(("ip_rput_forward: drop pkt\n")); 13861 freemsg(mp); 13862 } 13863 13864 ire_t * 13865 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13866 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 13867 { 13868 queue_t *q; 13869 uint16_t hcksumflags; 13870 13871 q = *qp; 13872 13873 /* 13874 * Clear the indication that this may have hardware 13875 * checksum as we are not using it for forwarding. 13876 */ 13877 hcksumflags = DB_CKSUMFLAGS(mp); 13878 DB_CKSUMFLAGS(mp) = 0; 13879 13880 /* 13881 * Directed broadcast forwarding: if the packet came in over a 13882 * different interface then it is routed out over we can forward it. 13883 */ 13884 if (ipha->ipha_protocol == IPPROTO_TCP) { 13885 ire_refrele(ire); 13886 freemsg(mp); 13887 BUMP_MIB(&ip_mib, ipInDiscards); 13888 return (NULL); 13889 } 13890 /* 13891 * For multicast we have set dst to be INADDR_BROADCAST 13892 * for delivering to all STREAMS. IRE_MARK_NORECV is really 13893 * only for broadcast packets. 13894 */ 13895 if (!CLASSD(ipha->ipha_dst)) { 13896 ire_t *new_ire; 13897 ipif_t *ipif; 13898 /* 13899 * For ill groups, as the switch duplicates broadcasts 13900 * across all the ports, we need to filter out and 13901 * send up only one copy. There is one copy for every 13902 * broadcast address on each ill. Thus, we look for a 13903 * specific IRE on this ill and look at IRE_MARK_NORECV 13904 * later to see whether this ill is eligible to receive 13905 * them or not. ill_nominate_bcast_rcv() nominates only 13906 * one set of IREs for receiving. 13907 */ 13908 13909 ipif = ipif_get_next_ipif(NULL, ill); 13910 if (ipif == NULL) { 13911 ire_refrele(ire); 13912 freemsg(mp); 13913 BUMP_MIB(&ip_mib, ipInDiscards); 13914 return (NULL); 13915 } 13916 new_ire = ire_ctable_lookup(dst, 0, 0, 13917 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL); 13918 ipif_refrele(ipif); 13919 13920 if (new_ire != NULL) { 13921 if (new_ire->ire_marks & IRE_MARK_NORECV) { 13922 ire_refrele(ire); 13923 ire_refrele(new_ire); 13924 freemsg(mp); 13925 BUMP_MIB(&ip_mib, ipInDiscards); 13926 return (NULL); 13927 } 13928 /* 13929 * In the special case of multirouted broadcast 13930 * packets, we unconditionally need to "gateway" 13931 * them to the appropriate interface here. 13932 * In the normal case, this cannot happen, because 13933 * there is no broadcast IRE tagged with the 13934 * RTF_MULTIRT flag. 13935 */ 13936 if (new_ire->ire_flags & RTF_MULTIRT) { 13937 ire_refrele(new_ire); 13938 if (ire->ire_rfq != NULL) { 13939 q = ire->ire_rfq; 13940 *qp = q; 13941 } 13942 } else { 13943 ire_refrele(ire); 13944 ire = new_ire; 13945 } 13946 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 13947 if (!ip_g_forward_directed_bcast) { 13948 /* 13949 * Free the message if 13950 * ip_g_forward_directed_bcast is turned 13951 * off for non-local broadcast. 13952 */ 13953 ire_refrele(ire); 13954 freemsg(mp); 13955 BUMP_MIB(&ip_mib, ipInDiscards); 13956 return (NULL); 13957 } 13958 } else { 13959 /* 13960 * This CGTP packet successfully passed the 13961 * CGTP filter, but the related CGTP 13962 * broadcast IRE has not been found, 13963 * meaning that the redundant ipif is 13964 * probably down. However, if we discarded 13965 * this packet, its duplicate would be 13966 * filtered out by the CGTP filter so none 13967 * of them would get through. So we keep 13968 * going with this one. 13969 */ 13970 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 13971 if (ire->ire_rfq != NULL) { 13972 q = ire->ire_rfq; 13973 *qp = q; 13974 } 13975 } 13976 } 13977 if (ip_g_forward_directed_bcast && ll_multicast == 0) { 13978 /* 13979 * Verify that there are not more then one 13980 * IRE_BROADCAST with this broadcast address which 13981 * has ire_stq set. 13982 * TODO: simplify, loop over all IRE's 13983 */ 13984 ire_t *ire1; 13985 int num_stq = 0; 13986 mblk_t *mp1; 13987 13988 /* Find the first one with ire_stq set */ 13989 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 13990 for (ire1 = ire; ire1 && 13991 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 13992 ire1 = ire1->ire_next) 13993 ; 13994 if (ire1) { 13995 ire_refrele(ire); 13996 ire = ire1; 13997 IRE_REFHOLD(ire); 13998 } 13999 14000 /* Check if there are additional ones with stq set */ 14001 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14002 if (ire->ire_addr != ire1->ire_addr) 14003 break; 14004 if (ire1->ire_stq) { 14005 num_stq++; 14006 break; 14007 } 14008 } 14009 rw_exit(&ire->ire_bucket->irb_lock); 14010 if (num_stq == 1 && ire->ire_stq != NULL) { 14011 ip1dbg(("ip_rput_process_broadcast: directed " 14012 "broadcast to 0x%x\n", 14013 ntohl(ire->ire_addr))); 14014 mp1 = copymsg(mp); 14015 if (mp1) { 14016 switch (ipha->ipha_protocol) { 14017 case IPPROTO_UDP: 14018 ip_udp_input(q, mp1, ipha, ire, ill); 14019 break; 14020 default: 14021 ip_proto_input(q, mp1, ipha, ire, ill); 14022 break; 14023 } 14024 } 14025 /* 14026 * Adjust ttl to 2 (1+1 - the forward engine 14027 * will decrement it by one. 14028 */ 14029 if (ip_csum_hdr(ipha)) { 14030 BUMP_MIB(&ip_mib, ipInCksumErrs); 14031 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14032 freemsg(mp); 14033 ire_refrele(ire); 14034 return (NULL); 14035 } 14036 ipha->ipha_ttl = ip_broadcast_ttl + 1; 14037 ipha->ipha_hdr_checksum = 0; 14038 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14039 ip_rput_process_forward(q, mp, ire, ipha, 14040 ill, ll_multicast); 14041 ire_refrele(ire); 14042 return (NULL); 14043 } 14044 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14045 ntohl(ire->ire_addr))); 14046 } 14047 14048 14049 /* Restore any hardware checksum flags */ 14050 DB_CKSUMFLAGS(mp) = hcksumflags; 14051 return (ire); 14052 } 14053 14054 /* ARGSUSED */ 14055 static boolean_t 14056 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14057 int *ll_multicast, ipaddr_t *dstp) 14058 { 14059 /* 14060 * Forward packets only if we have joined the allmulti 14061 * group on this interface. 14062 */ 14063 if (ip_g_mrouter && ill->ill_join_allmulti) { 14064 int retval; 14065 14066 /* 14067 * Clear the indication that this may have hardware 14068 * checksum as we are not using it. 14069 */ 14070 DB_CKSUMFLAGS(mp) = 0; 14071 retval = ip_mforward(ill, ipha, mp); 14072 /* ip_mforward updates mib variables if needed */ 14073 /* clear b_prev - used by ip_mroute_decap */ 14074 mp->b_prev = NULL; 14075 14076 switch (retval) { 14077 case 0: 14078 /* 14079 * pkt is okay and arrived on phyint. 14080 * 14081 * If we are running as a multicast router 14082 * we need to see all IGMP and/or PIM packets. 14083 */ 14084 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14085 (ipha->ipha_protocol == IPPROTO_PIM)) { 14086 goto done; 14087 } 14088 break; 14089 case -1: 14090 /* pkt is mal-formed, toss it */ 14091 goto drop_pkt; 14092 case 1: 14093 /* pkt is okay and arrived on a tunnel */ 14094 /* 14095 * If we are running a multicast router 14096 * we need to see all igmp packets. 14097 */ 14098 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14099 *dstp = INADDR_BROADCAST; 14100 *ll_multicast = 1; 14101 return (B_FALSE); 14102 } 14103 14104 goto drop_pkt; 14105 } 14106 } 14107 14108 ILM_WALKER_HOLD(ill); 14109 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14110 /* 14111 * This might just be caused by the fact that 14112 * multiple IP Multicast addresses map to the same 14113 * link layer multicast - no need to increment counter! 14114 */ 14115 ILM_WALKER_RELE(ill); 14116 freemsg(mp); 14117 return (B_TRUE); 14118 } 14119 ILM_WALKER_RELE(ill); 14120 done: 14121 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14122 /* 14123 * This assumes the we deliver to all streams for multicast 14124 * and broadcast packets. 14125 */ 14126 *dstp = INADDR_BROADCAST; 14127 *ll_multicast = 1; 14128 return (B_FALSE); 14129 drop_pkt: 14130 ip2dbg(("ip_rput: drop pkt\n")); 14131 freemsg(mp); 14132 return (B_TRUE); 14133 } 14134 14135 static boolean_t 14136 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14137 int *ll_multicast, mblk_t **mpp) 14138 { 14139 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14140 boolean_t must_copy = B_FALSE; 14141 struct iocblk *iocp; 14142 ipha_t *ipha; 14143 14144 #define rptr ((uchar_t *)ipha) 14145 14146 first_mp = *first_mpp; 14147 mp = *mpp; 14148 14149 ASSERT(first_mp == mp); 14150 14151 /* 14152 * if db_ref > 1 then copymsg and free original. Packet may be 14153 * changed and do not want other entity who has a reference to this 14154 * message to trip over the changes. This is a blind change because 14155 * trying to catch all places that might change packet is too 14156 * difficult (since it may be a module above this one) 14157 * 14158 * This corresponds to the non-fast path case. We walk down the full 14159 * chain in this case, and check the db_ref count of all the dblks, 14160 * and do a copymsg if required. It is possible that the db_ref counts 14161 * of the data blocks in the mblk chain can be different. 14162 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14163 * count of 1, followed by a M_DATA block with a ref count of 2, if 14164 * 'snoop' is running. 14165 */ 14166 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14167 if (mp1->b_datap->db_ref > 1) { 14168 must_copy = B_TRUE; 14169 break; 14170 } 14171 } 14172 14173 if (must_copy) { 14174 mp1 = copymsg(mp); 14175 if (mp1 == NULL) { 14176 for (mp1 = mp; mp1 != NULL; 14177 mp1 = mp1->b_cont) { 14178 mp1->b_next = NULL; 14179 mp1->b_prev = NULL; 14180 } 14181 freemsg(mp); 14182 BUMP_MIB(&ip_mib, ipInDiscards); 14183 return (B_TRUE); 14184 } 14185 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14186 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14187 /* Copy b_prev - used by ip_mroute_decap */ 14188 to_mp->b_prev = from_mp->b_prev; 14189 from_mp->b_prev = NULL; 14190 } 14191 *first_mpp = first_mp = mp1; 14192 freemsg(mp); 14193 mp = mp1; 14194 *mpp = mp1; 14195 } 14196 14197 ipha = (ipha_t *)mp->b_rptr; 14198 14199 /* 14200 * previous code has a case for M_DATA. 14201 * We want to check how that happens. 14202 */ 14203 ASSERT(first_mp->b_datap->db_type != M_DATA); 14204 switch (first_mp->b_datap->db_type) { 14205 case M_PROTO: 14206 case M_PCPROTO: 14207 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14208 DL_UNITDATA_IND) { 14209 /* Go handle anything other than data elsewhere. */ 14210 ip_rput_dlpi(q, mp); 14211 return (B_TRUE); 14212 } 14213 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14214 /* Ditch the DLPI header. */ 14215 mp1 = mp->b_cont; 14216 ASSERT(first_mp == mp); 14217 *first_mpp = mp1; 14218 freeb(mp); 14219 *mpp = mp1; 14220 return (B_FALSE); 14221 case M_IOCACK: 14222 ip1dbg(("got iocack ")); 14223 iocp = (struct iocblk *)mp->b_rptr; 14224 switch (iocp->ioc_cmd) { 14225 case DL_IOC_HDR_INFO: 14226 ill = (ill_t *)q->q_ptr; 14227 ill_fastpath_ack(ill, mp); 14228 return (B_TRUE); 14229 case SIOCSTUNPARAM: 14230 case OSIOCSTUNPARAM: 14231 /* Go through qwriter_ip */ 14232 break; 14233 case SIOCGTUNPARAM: 14234 case OSIOCGTUNPARAM: 14235 ip_rput_other(NULL, q, mp, NULL); 14236 return (B_TRUE); 14237 default: 14238 putnext(q, mp); 14239 return (B_TRUE); 14240 } 14241 /* FALLTHRU */ 14242 case M_ERROR: 14243 case M_HANGUP: 14244 /* 14245 * Since this is on the ill stream we unconditionally 14246 * bump up the refcount 14247 */ 14248 ill_refhold(ill); 14249 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP, 14250 B_FALSE); 14251 return (B_TRUE); 14252 case M_CTL: 14253 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14254 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14255 IPHADA_M_CTL)) { 14256 /* 14257 * It's an IPsec accelerated packet. 14258 * Make sure that the ill from which we received the 14259 * packet has enabled IPsec hardware acceleration. 14260 */ 14261 if (!(ill->ill_capabilities & 14262 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14263 /* IPsec kstats: bean counter */ 14264 freemsg(mp); 14265 return (B_TRUE); 14266 } 14267 14268 /* 14269 * Make mp point to the mblk following the M_CTL, 14270 * then process according to type of mp. 14271 * After this processing, first_mp will point to 14272 * the data-attributes and mp to the pkt following 14273 * the M_CTL. 14274 */ 14275 mp = first_mp->b_cont; 14276 if (mp == NULL) { 14277 freemsg(first_mp); 14278 return (B_TRUE); 14279 } 14280 /* 14281 * A Hardware Accelerated packet can only be M_DATA 14282 * ESP or AH packet. 14283 */ 14284 if (mp->b_datap->db_type != M_DATA) { 14285 /* non-M_DATA IPsec accelerated packet */ 14286 IPSECHW_DEBUG(IPSECHW_PKT, 14287 ("non-M_DATA IPsec accelerated pkt\n")); 14288 freemsg(first_mp); 14289 return (B_TRUE); 14290 } 14291 ipha = (ipha_t *)mp->b_rptr; 14292 if (ipha->ipha_protocol != IPPROTO_AH && 14293 ipha->ipha_protocol != IPPROTO_ESP) { 14294 IPSECHW_DEBUG(IPSECHW_PKT, 14295 ("non-M_DATA IPsec accelerated pkt\n")); 14296 freemsg(first_mp); 14297 return (B_TRUE); 14298 } 14299 *mpp = mp; 14300 return (B_FALSE); 14301 } 14302 putnext(q, mp); 14303 return (B_TRUE); 14304 case M_FLUSH: 14305 if (*mp->b_rptr & FLUSHW) { 14306 *mp->b_rptr &= ~FLUSHR; 14307 qreply(q, mp); 14308 return (B_TRUE); 14309 } 14310 freemsg(mp); 14311 return (B_TRUE); 14312 case M_IOCNAK: 14313 ip1dbg(("got iocnak ")); 14314 iocp = (struct iocblk *)mp->b_rptr; 14315 switch (iocp->ioc_cmd) { 14316 case DL_IOC_HDR_INFO: 14317 case SIOCSTUNPARAM: 14318 case OSIOCSTUNPARAM: 14319 /* 14320 * Since this is on the ill stream we unconditionally 14321 * bump up the refcount 14322 */ 14323 ill_refhold(ill); 14324 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, 14325 CUR_OP, B_FALSE); 14326 return (B_TRUE); 14327 case SIOCGTUNPARAM: 14328 case OSIOCGTUNPARAM: 14329 ip_rput_other(NULL, q, mp, NULL); 14330 return (B_TRUE); 14331 default: 14332 break; 14333 } 14334 /* FALLTHRU */ 14335 default: 14336 putnext(q, mp); 14337 return (B_TRUE); 14338 } 14339 } 14340 14341 /* Read side put procedure. Packets coming from the wire arrive here. */ 14342 void 14343 ip_rput(queue_t *q, mblk_t *mp) 14344 { 14345 ill_t *ill; 14346 mblk_t *dmp = NULL; 14347 14348 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14349 14350 ill = (ill_t *)q->q_ptr; 14351 14352 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14353 union DL_primitives *dl; 14354 14355 /* 14356 * Things are opening or closing. Only accept DLPI control 14357 * messages. In the open case, the ill->ill_ipif has not yet 14358 * been created. In the close case, things hanging off the 14359 * ill could have been freed already. In either case it 14360 * may not be safe to proceed further. 14361 */ 14362 14363 dl = (union DL_primitives *)mp->b_rptr; 14364 if ((mp->b_datap->db_type != M_PCPROTO) || 14365 (dl->dl_primitive == DL_UNITDATA_IND)) { 14366 /* 14367 * Also SIOC[GS]TUN* ioctls can come here. 14368 */ 14369 inet_freemsg(mp); 14370 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14371 "ip_input_end: q %p (%S)", q, "uninit"); 14372 return; 14373 } 14374 } 14375 14376 /* 14377 * if db_ref > 1 then copymsg and free original. Packet may be 14378 * changed and we do not want the other entity who has a reference to 14379 * this message to trip over the changes. This is a blind change because 14380 * trying to catch all places that might change the packet is too 14381 * difficult. 14382 * 14383 * This corresponds to the fast path case, where we have a chain of 14384 * M_DATA mblks. We check the db_ref count of only the 1st data block 14385 * in the mblk chain. There doesn't seem to be a reason why a device 14386 * driver would send up data with varying db_ref counts in the mblk 14387 * chain. In any case the Fast path is a private interface, and our 14388 * drivers don't do such a thing. Given the above assumption, there is 14389 * no need to walk down the entire mblk chain (which could have a 14390 * potential performance problem) 14391 */ 14392 if (mp->b_datap->db_ref > 1) { 14393 mblk_t *mp1; 14394 boolean_t adjusted = B_FALSE; 14395 IP_STAT(ip_db_ref); 14396 14397 /* 14398 * The IP_RECVSLLA option depends on having the link layer 14399 * header. First check that: 14400 * a> the underlying device is of type ether, since this 14401 * option is currently supported only over ethernet. 14402 * b> there is enough room to copy over the link layer header. 14403 * 14404 * Once the checks are done, adjust rptr so that the link layer 14405 * header will be copied via copymsg. Note that, IFT_ETHER may 14406 * be returned by some non-ethernet drivers but in this case the 14407 * second check will fail. 14408 */ 14409 if (ill->ill_type == IFT_ETHER && 14410 (mp->b_rptr - mp->b_datap->db_base) >= 14411 sizeof (struct ether_header)) { 14412 mp->b_rptr -= sizeof (struct ether_header); 14413 adjusted = B_TRUE; 14414 } 14415 mp1 = copymsg(mp); 14416 if (mp1 == NULL) { 14417 mp->b_next = NULL; 14418 /* clear b_prev - used by ip_mroute_decap */ 14419 mp->b_prev = NULL; 14420 freemsg(mp); 14421 BUMP_MIB(&ip_mib, ipInDiscards); 14422 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14423 "ip_rput_end: q %p (%S)", q, "copymsg"); 14424 return; 14425 } 14426 if (adjusted) { 14427 /* 14428 * Copy is done. Restore the pointer in the _new_ mblk 14429 */ 14430 mp1->b_rptr += sizeof (struct ether_header); 14431 } 14432 /* Copy b_prev - used by ip_mroute_decap */ 14433 mp1->b_prev = mp->b_prev; 14434 mp->b_prev = NULL; 14435 freemsg(mp); 14436 mp = mp1; 14437 } 14438 if (DB_TYPE(mp) == M_DATA) { 14439 dmp = mp; 14440 } else if (DB_TYPE(mp) == M_PROTO && 14441 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14442 dmp = mp->b_cont; 14443 } 14444 if (dmp != NULL) { 14445 /* 14446 * IP header ptr not aligned? 14447 * OR IP header not complete in first mblk 14448 */ 14449 if (!OK_32PTR(dmp->b_rptr) || 14450 (dmp->b_wptr - dmp->b_rptr) < IP_SIMPLE_HDR_LENGTH) { 14451 if (!ip_check_and_align_header(q, dmp)) 14452 return; 14453 } 14454 } 14455 14456 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14457 "ip_rput_end: q %p (%S)", q, "end"); 14458 14459 ip_input(ill, NULL, mp, NULL); 14460 } 14461 14462 /* 14463 * Direct read side procedure capable of dealing with chains. GLDv3 based 14464 * drivers call this function directly with mblk chains while STREAMS 14465 * read side procedure ip_rput() calls this for single packet with ip_ring 14466 * set to NULL to process one packet at a time. 14467 * 14468 * The ill will always be valid if this function is called directly from 14469 * the driver. 14470 * 14471 * If ip_input() is called from GLDv3: 14472 * 14473 * - This must be a non-VLAN IP stream. 14474 * - 'mp' is either an untagged or a special priority-tagged packet. 14475 * - Any VLAN tag that was in the MAC header has been stripped. 14476 * 14477 * Thus, there is no need to adjust b_rptr in this function. 14478 */ 14479 /* ARGSUSED */ 14480 void 14481 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14482 struct mac_header_info_s *mhip) 14483 { 14484 ipaddr_t dst = NULL; 14485 ipaddr_t prev_dst; 14486 ire_t *ire = NULL; 14487 ipha_t *ipha; 14488 uint_t pkt_len; 14489 ssize_t len; 14490 uint_t opt_len; 14491 int ll_multicast; 14492 int cgtp_flt_pkt; 14493 queue_t *q = ill->ill_rq; 14494 squeue_t *curr_sqp = NULL; 14495 mblk_t *head = NULL; 14496 mblk_t *tail = NULL; 14497 mblk_t *first_mp; 14498 mblk_t *mp; 14499 int cnt = 0; 14500 14501 ASSERT(mp_chain != NULL); 14502 ASSERT(ill != NULL); 14503 14504 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14505 14506 #define rptr ((uchar_t *)ipha) 14507 14508 while (mp_chain != NULL) { 14509 first_mp = mp = mp_chain; 14510 mp_chain = mp_chain->b_next; 14511 mp->b_next = NULL; 14512 ll_multicast = 0; 14513 14514 /* 14515 * We do ire caching from one iteration to 14516 * another. In the event the packet chain contains 14517 * all packets from the same dst, this caching saves 14518 * an ire_cache_lookup for each of the succeeding 14519 * packets in a packet chain. 14520 */ 14521 prev_dst = dst; 14522 14523 /* 14524 * ip_input fast path 14525 */ 14526 14527 /* mblk type is not M_DATA */ 14528 if (mp->b_datap->db_type != M_DATA) { 14529 if (ip_rput_process_notdata(q, &first_mp, ill, 14530 &ll_multicast, &mp)) 14531 continue; 14532 } 14533 14534 /* Make sure its an M_DATA and that its aligned */ 14535 ASSERT(mp->b_datap->db_type == M_DATA); 14536 ASSERT(mp->b_datap->db_ref == 1 && OK_32PTR(mp->b_rptr)); 14537 14538 ipha = (ipha_t *)mp->b_rptr; 14539 len = mp->b_wptr - rptr; 14540 14541 BUMP_MIB(&ip_mib, ipInReceives); 14542 14543 14544 /* multiple mblk or too short */ 14545 pkt_len = ntohs(ipha->ipha_length); 14546 len -= pkt_len; 14547 if (len != 0) { 14548 /* 14549 * Make sure we have data length consistent 14550 * with the IP header. 14551 */ 14552 if (mp->b_cont == NULL) { 14553 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14554 BUMP_MIB(&ip_mib, ipInHdrErrors); 14555 ip2dbg(("ip_input: drop pkt\n")); 14556 freemsg(mp); 14557 continue; 14558 } 14559 mp->b_wptr = rptr + pkt_len; 14560 } else if (len += msgdsize(mp->b_cont)) { 14561 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14562 BUMP_MIB(&ip_mib, ipInHdrErrors); 14563 ip2dbg(("ip_input: drop pkt\n")); 14564 freemsg(mp); 14565 continue; 14566 } 14567 (void) adjmsg(mp, -len); 14568 IP_STAT(ip_multimblk3); 14569 } 14570 } 14571 14572 /* 14573 * The event for packets being received from a 'physical' 14574 * interface is placed before validation of the source and/or 14575 * destination address as being local so that packets such as 14576 * these that are found on the network can be observed via 14577 * this interface. The checks prior to this have all been 14578 * to do with validating the sanity of the packet - length 14579 * fields vs data in the buffer, buffer size, etc, otherwise 14580 * uninteresting packet flaws that will always lead to them 14581 * being discarded. 14582 */ 14583 DTRACE_PROBE4(ip4__physical__in__start, 14584 ill_t *, ill, ill_t *, NULL, 14585 ipha_t *, ipha, mblk_t *, first_mp); 14586 14587 FW_HOOKS(ip4_physical_in_event, ipv4firewall_physical_in, 14588 MSG_FWCOOKED_IN, ill, NULL, ipha, first_mp, mp); 14589 14590 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 14591 14592 if (first_mp == NULL) { 14593 continue; 14594 } 14595 14596 /* Obtain the dst of the current packet */ 14597 dst = ipha->ipha_dst; 14598 14599 if (IP_LOOPBACK_ADDR(dst) || 14600 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 14601 BUMP_MIB(&ip_mib, ipInAddrErrors); 14602 cmn_err(CE_CONT, "dst %X src %X\n", 14603 dst, ipha->ipha_src); 14604 freemsg(mp); 14605 continue; 14606 } 14607 14608 /* 14609 * The event for packets being received from a 'physical' 14610 * interface is placed after validation of the source and/or 14611 * destination address as being local so that packets can be 14612 * redirected to loopback addresses using ipnat. 14613 */ 14614 DTRACE_PROBE4(ip4__physical__in__start, 14615 ill_t *, ill, ill_t *, NULL, 14616 ipha_t *, ipha, mblk_t *, first_mp); 14617 14618 FW_HOOKS(ip4_physical_in_event, ipv4firewall_physical_in, 14619 MSG_FWCOOKED_IN, ill, NULL, ipha, first_mp, mp); 14620 14621 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 14622 14623 if (first_mp == NULL) { 14624 continue; 14625 } 14626 dst = ipha->ipha_dst; 14627 14628 /* 14629 * Attach any necessary label information to 14630 * this packet 14631 */ 14632 if (is_system_labeled() && 14633 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 14634 BUMP_MIB(&ip_mib, ipInDiscards); 14635 freemsg(mp); 14636 continue; 14637 } 14638 14639 /* 14640 * Reuse the cached ire only if the ipha_dst of the previous 14641 * packet is the same as the current packet AND it is not 14642 * INADDR_ANY. 14643 */ 14644 if (!(dst == prev_dst && dst != INADDR_ANY) && 14645 (ire != NULL)) { 14646 ire_refrele(ire); 14647 ire = NULL; 14648 } 14649 opt_len = ipha->ipha_version_and_hdr_length - 14650 IP_SIMPLE_HDR_VERSION; 14651 14652 /* 14653 * Check to see if we can take the fastpath. 14654 * That is possible if the following conditions are met 14655 * o Tsol disabled 14656 * o CGTP disabled 14657 * o ipp_action_count is 0 14658 * o Mobile IP not running 14659 * o no options in the packet 14660 * o not a RSVP packet 14661 * o not a multicast packet 14662 */ 14663 if (!is_system_labeled() && 14664 !ip_cgtp_filter && ipp_action_count == 0 && 14665 ill->ill_mrtun_refcnt == 0 && ill->ill_srcif_refcnt == 0 && 14666 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 14667 !ll_multicast && !CLASSD(dst)) { 14668 if (ire == NULL) 14669 ire = ire_cache_lookup(dst, ALL_ZONES, NULL); 14670 14671 /* incoming packet is for forwarding */ 14672 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 14673 ire = ip_fast_forward(ire, dst, ill, mp); 14674 continue; 14675 } 14676 /* incoming packet is for local consumption */ 14677 if (ire->ire_type & IRE_LOCAL) 14678 goto local; 14679 } 14680 14681 /* 14682 * Disable ire caching for anything more complex 14683 * than the simple fast path case we checked for above. 14684 */ 14685 if (ire != NULL) { 14686 ire_refrele(ire); 14687 ire = NULL; 14688 } 14689 14690 /* Full-blown slow path */ 14691 if (opt_len != 0) { 14692 if (len != 0) 14693 IP_STAT(ip_multimblk4); 14694 else 14695 IP_STAT(ip_ipoptions); 14696 if (!ip_rput_multimblk_ipoptions(q, mp, &ipha, &dst)) 14697 continue; 14698 } 14699 14700 /* 14701 * Invoke the CGTP (multirouting) filtering module to process 14702 * the incoming packet. Packets identified as duplicates 14703 * must be discarded. Filtering is active only if the 14704 * the ip_cgtp_filter ndd variable is non-zero. 14705 */ 14706 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 14707 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL)) { 14708 cgtp_flt_pkt = 14709 ip_cgtp_filter_ops->cfo_filter(q, mp); 14710 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 14711 freemsg(first_mp); 14712 continue; 14713 } 14714 } 14715 14716 /* 14717 * If rsvpd is running, let RSVP daemon handle its processing 14718 * and forwarding of RSVP multicast/unicast packets. 14719 * If rsvpd is not running but mrouted is running, RSVP 14720 * multicast packets are forwarded as multicast traffic 14721 * and RSVP unicast packets are forwarded by unicast router. 14722 * If neither rsvpd nor mrouted is running, RSVP multicast 14723 * packets are not forwarded, but the unicast packets are 14724 * forwarded like unicast traffic. 14725 */ 14726 if (ipha->ipha_protocol == IPPROTO_RSVP && 14727 ipcl_proto_search(IPPROTO_RSVP) != NULL) { 14728 /* RSVP packet and rsvpd running. Treat as ours */ 14729 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 14730 /* 14731 * This assumes that we deliver to all streams for 14732 * multicast and broadcast packets. 14733 * We have to force ll_multicast to 1 to handle the 14734 * M_DATA messages passed in from ip_mroute_decap. 14735 */ 14736 dst = INADDR_BROADCAST; 14737 ll_multicast = 1; 14738 } else if (CLASSD(dst)) { 14739 /* packet is multicast */ 14740 mp->b_next = NULL; 14741 if (ip_rput_process_multicast(q, mp, ill, ipha, 14742 &ll_multicast, &dst)) 14743 continue; 14744 } 14745 14746 14747 /* 14748 * Check if the packet is coming from the Mobile IP 14749 * forward tunnel interface 14750 */ 14751 if (ill->ill_srcif_refcnt > 0) { 14752 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 14753 NULL, ill, MATCH_IRE_TYPE); 14754 if (ire != NULL && ire->ire_nce->nce_res_mp == NULL && 14755 ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER) { 14756 14757 /* We need to resolve the link layer info */ 14758 ire_refrele(ire); 14759 ire = NULL; 14760 (void) ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 14761 ll_multicast, dst); 14762 continue; 14763 } 14764 } 14765 14766 if (ire == NULL) { 14767 ire = ire_cache_lookup(dst, ALL_ZONES, 14768 MBLK_GETLABEL(mp)); 14769 } 14770 14771 /* 14772 * If mipagent is running and reverse tunnel is created as per 14773 * mobile node request, then any packet coming through the 14774 * incoming interface from the mobile-node, should be reverse 14775 * tunneled to it's home agent except those that are destined 14776 * to foreign agent only. 14777 * This needs source address based ire lookup. The routing 14778 * entries for source address based lookup are only created by 14779 * mipagent program only when a reverse tunnel is created. 14780 * Reference : RFC2002, RFC2344 14781 */ 14782 if (ill->ill_mrtun_refcnt > 0) { 14783 ipaddr_t srcaddr; 14784 ire_t *tmp_ire; 14785 14786 tmp_ire = ire; /* Save, we might need it later */ 14787 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 14788 ire->ire_type != IRE_BROADCAST)) { 14789 srcaddr = ipha->ipha_src; 14790 ire = ire_mrtun_lookup(srcaddr, ill); 14791 if (ire != NULL) { 14792 /* 14793 * Should not be getting iphada packet 14794 * here. we should only get those for 14795 * IRE_LOCAL traffic, excluded above. 14796 * Fail-safe (drop packet) in the event 14797 * hardware is misbehaving. 14798 */ 14799 if (first_mp != mp) { 14800 /* IPsec KSTATS: beancount me */ 14801 freemsg(first_mp); 14802 } else { 14803 /* 14804 * This packet must be forwarded 14805 * to Reverse Tunnel 14806 */ 14807 ip_mrtun_forward(ire, ill, mp); 14808 } 14809 ire_refrele(ire); 14810 ire = NULL; 14811 if (tmp_ire != NULL) { 14812 ire_refrele(tmp_ire); 14813 tmp_ire = NULL; 14814 } 14815 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14816 "ip_input_end: q %p (%S)", 14817 q, "uninit"); 14818 continue; 14819 } 14820 } 14821 /* 14822 * If this packet is from a non-mobilenode or a 14823 * mobile-node which does not request reverse 14824 * tunnel service 14825 */ 14826 ire = tmp_ire; 14827 } 14828 14829 14830 /* 14831 * If we reach here that means the incoming packet satisfies 14832 * one of the following conditions: 14833 * - packet is from a mobile node which does not request 14834 * reverse tunnel 14835 * - packet is from a non-mobile node, which is the most 14836 * common case 14837 * - packet is from a reverse tunnel enabled mobile node 14838 * and destined to foreign agent only 14839 */ 14840 14841 if (ire == NULL) { 14842 /* 14843 * No IRE for this destination, so it can't be for us. 14844 * Unless we are forwarding, drop the packet. 14845 * We have to let source routed packets through 14846 * since we don't yet know if they are 'ping -l' 14847 * packets i.e. if they will go out over the 14848 * same interface as they came in on. 14849 */ 14850 ire = ip_rput_noire(q, NULL, mp, ll_multicast, dst); 14851 if (ire == NULL) 14852 continue; 14853 } 14854 14855 /* 14856 * Broadcast IRE may indicate either broadcast or 14857 * multicast packet 14858 */ 14859 if (ire->ire_type == IRE_BROADCAST) { 14860 /* 14861 * Skip broadcast checks if packet is UDP multicast; 14862 * we'd rather not enter ip_rput_process_broadcast() 14863 * unless the packet is broadcast for real, since 14864 * that routine is a no-op for multicast. 14865 */ 14866 if (ipha->ipha_protocol != IPPROTO_UDP || 14867 !CLASSD(ipha->ipha_dst)) { 14868 ire = ip_rput_process_broadcast(&q, mp, 14869 ire, ipha, ill, dst, cgtp_flt_pkt, 14870 ll_multicast); 14871 if (ire == NULL) 14872 continue; 14873 } 14874 } else if (ire->ire_stq != NULL) { 14875 /* fowarding? */ 14876 ip_rput_process_forward(q, mp, ire, ipha, ill, 14877 ll_multicast); 14878 /* ip_rput_process_forward consumed the packet */ 14879 continue; 14880 } 14881 14882 local: 14883 /* packet not for us */ 14884 if (ire->ire_rfq != q) { 14885 if (ip_rput_notforus(&q, mp, ire, ill)) 14886 continue; 14887 } 14888 14889 switch (ipha->ipha_protocol) { 14890 case IPPROTO_TCP: 14891 ASSERT(first_mp == mp); 14892 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 14893 mp, 0, q, ip_ring)) != NULL) { 14894 if (curr_sqp == NULL) { 14895 curr_sqp = GET_SQUEUE(mp); 14896 ASSERT(cnt == 0); 14897 cnt++; 14898 head = tail = mp; 14899 } else if (curr_sqp == GET_SQUEUE(mp)) { 14900 ASSERT(tail != NULL); 14901 cnt++; 14902 tail->b_next = mp; 14903 tail = mp; 14904 } else { 14905 /* 14906 * A different squeue. Send the 14907 * chain for the previous squeue on 14908 * its way. This shouldn't happen 14909 * often unless interrupt binding 14910 * changes. 14911 */ 14912 IP_STAT(ip_input_multi_squeue); 14913 squeue_enter_chain(curr_sqp, head, 14914 tail, cnt, SQTAG_IP_INPUT); 14915 curr_sqp = GET_SQUEUE(mp); 14916 head = mp; 14917 tail = mp; 14918 cnt = 1; 14919 } 14920 } 14921 continue; 14922 case IPPROTO_UDP: 14923 ASSERT(first_mp == mp); 14924 ip_udp_input(q, mp, ipha, ire, ill); 14925 continue; 14926 case IPPROTO_SCTP: 14927 ASSERT(first_mp == mp); 14928 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 14929 q, dst); 14930 /* ire has been released by ip_sctp_input */ 14931 ire = NULL; 14932 continue; 14933 default: 14934 ip_proto_input(q, first_mp, ipha, ire, ill); 14935 continue; 14936 } 14937 } 14938 14939 if (ire != NULL) 14940 ire_refrele(ire); 14941 14942 if (head != NULL) 14943 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 14944 14945 /* 14946 * This code is there just to make netperf/ttcp look good. 14947 * 14948 * Its possible that after being in polling mode (and having cleared 14949 * the backlog), squeues have turned the interrupt frequency higher 14950 * to improve latency at the expense of more CPU utilization (less 14951 * packets per interrupts or more number of interrupts). Workloads 14952 * like ttcp/netperf do manage to tickle polling once in a while 14953 * but for the remaining time, stay in higher interrupt mode since 14954 * their packet arrival rate is pretty uniform and this shows up 14955 * as higher CPU utilization. Since people care about CPU utilization 14956 * while running netperf/ttcp, turn the interrupt frequency back to 14957 * normal/default if polling has not been used in ip_poll_normal_ticks. 14958 */ 14959 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 14960 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 14961 ip_ring->rr_poll_state &= ~ILL_POLLING; 14962 ip_ring->rr_blank(ip_ring->rr_handle, 14963 ip_ring->rr_normal_blank_time, 14964 ip_ring->rr_normal_pkt_cnt); 14965 } 14966 } 14967 14968 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14969 "ip_input_end: q %p (%S)", q, "end"); 14970 #undef rptr 14971 } 14972 14973 static void 14974 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 14975 t_uscalar_t err) 14976 { 14977 if (dl_err == DL_SYSERR) { 14978 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14979 "%s: %s failed: DL_SYSERR (errno %u)\n", 14980 ill->ill_name, dlpi_prim_str(prim), err); 14981 return; 14982 } 14983 14984 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14985 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 14986 dlpi_err_str(dl_err)); 14987 } 14988 14989 /* 14990 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 14991 * than DL_UNITDATA_IND messages. If we need to process this message 14992 * exclusively, we call qwriter_ip, in which case we also need to call 14993 * ill_refhold before that, since qwriter_ip does an ill_refrele. 14994 */ 14995 void 14996 ip_rput_dlpi(queue_t *q, mblk_t *mp) 14997 { 14998 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 14999 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15000 ill_t *ill; 15001 15002 ip1dbg(("ip_rput_dlpi")); 15003 ill = (ill_t *)q->q_ptr; 15004 switch (dloa->dl_primitive) { 15005 case DL_ERROR_ACK: 15006 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15007 "%s (0x%x), unix %u\n", ill->ill_name, 15008 dlpi_prim_str(dlea->dl_error_primitive), 15009 dlea->dl_error_primitive, 15010 dlpi_err_str(dlea->dl_errno), 15011 dlea->dl_errno, 15012 dlea->dl_unix_errno)); 15013 switch (dlea->dl_error_primitive) { 15014 case DL_UNBIND_REQ: 15015 mutex_enter(&ill->ill_lock); 15016 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15017 cv_signal(&ill->ill_cv); 15018 mutex_exit(&ill->ill_lock); 15019 /* FALLTHRU */ 15020 case DL_NOTIFY_REQ: 15021 case DL_ATTACH_REQ: 15022 case DL_DETACH_REQ: 15023 case DL_INFO_REQ: 15024 case DL_BIND_REQ: 15025 case DL_ENABMULTI_REQ: 15026 case DL_PHYS_ADDR_REQ: 15027 case DL_CAPABILITY_REQ: 15028 case DL_CONTROL_REQ: 15029 /* 15030 * Refhold the ill to match qwriter_ip which does a 15031 * refrele. Since this is on the ill stream we 15032 * unconditionally bump up the refcount without 15033 * checking for ILL_CAN_LOOKUP 15034 */ 15035 ill_refhold(ill); 15036 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15037 CUR_OP, B_FALSE); 15038 return; 15039 case DL_DISABMULTI_REQ: 15040 freemsg(mp); /* Don't want to pass this up */ 15041 return; 15042 default: 15043 break; 15044 } 15045 ip_dlpi_error(ill, dlea->dl_error_primitive, 15046 dlea->dl_errno, dlea->dl_unix_errno); 15047 freemsg(mp); 15048 return; 15049 case DL_INFO_ACK: 15050 case DL_BIND_ACK: 15051 case DL_PHYS_ADDR_ACK: 15052 case DL_NOTIFY_ACK: 15053 case DL_CAPABILITY_ACK: 15054 case DL_CONTROL_ACK: 15055 /* 15056 * Refhold the ill to match qwriter_ip which does a refrele 15057 * Since this is on the ill stream we unconditionally 15058 * bump up the refcount without doing ILL_CAN_LOOKUP. 15059 */ 15060 ill_refhold(ill); 15061 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15062 CUR_OP, B_FALSE); 15063 return; 15064 case DL_NOTIFY_IND: 15065 ill_refhold(ill); 15066 /* 15067 * The DL_NOTIFY_IND is an asynchronous message that has no 15068 * relation to the current ioctl in progress (if any). Hence we 15069 * pass in NEW_OP in this case. 15070 */ 15071 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15072 NEW_OP, B_FALSE); 15073 return; 15074 case DL_OK_ACK: 15075 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15076 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15077 switch (dloa->dl_correct_primitive) { 15078 case DL_UNBIND_REQ: 15079 mutex_enter(&ill->ill_lock); 15080 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15081 cv_signal(&ill->ill_cv); 15082 mutex_exit(&ill->ill_lock); 15083 /* FALLTHRU */ 15084 case DL_ATTACH_REQ: 15085 case DL_DETACH_REQ: 15086 /* 15087 * Refhold the ill to match qwriter_ip which does a 15088 * refrele. Since this is on the ill stream we 15089 * unconditionally bump up the refcount 15090 */ 15091 ill_refhold(ill); 15092 qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15093 CUR_OP, B_FALSE); 15094 return; 15095 case DL_ENABMULTI_REQ: 15096 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15097 ill->ill_dlpi_multicast_state = IDS_OK; 15098 break; 15099 15100 } 15101 break; 15102 default: 15103 break; 15104 } 15105 freemsg(mp); 15106 } 15107 15108 /* 15109 * Handling of DLPI messages that require exclusive access to the ipsq. 15110 * 15111 * Need to do ill_pending_mp_release on ioctl completion, which could 15112 * happen here. (along with mi_copy_done) 15113 */ 15114 /* ARGSUSED */ 15115 static void 15116 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15117 { 15118 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15119 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15120 int err = 0; 15121 ill_t *ill; 15122 ipif_t *ipif = NULL; 15123 mblk_t *mp1 = NULL; 15124 conn_t *connp = NULL; 15125 t_uscalar_t physaddr_req; 15126 mblk_t *mp_hw; 15127 union DL_primitives *dlp; 15128 boolean_t success; 15129 boolean_t ioctl_aborted = B_FALSE; 15130 boolean_t log = B_TRUE; 15131 hook_nic_event_t *info; 15132 15133 ip1dbg(("ip_rput_dlpi_writer ..")); 15134 ill = (ill_t *)q->q_ptr; 15135 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15136 15137 ASSERT(IAM_WRITER_ILL(ill)); 15138 15139 /* 15140 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15141 * both are null or non-null. However we can assert that only 15142 * after grabbing the ipsq_lock. So we don't make any assertion 15143 * here and in other places in the code. 15144 */ 15145 ipif = ipsq->ipsq_pending_ipif; 15146 /* 15147 * The current ioctl could have been aborted by the user and a new 15148 * ioctl to bring up another ill could have started. We could still 15149 * get a response from the driver later. 15150 */ 15151 if (ipif != NULL && ipif->ipif_ill != ill) 15152 ioctl_aborted = B_TRUE; 15153 15154 switch (dloa->dl_primitive) { 15155 case DL_ERROR_ACK: 15156 switch (dlea->dl_error_primitive) { 15157 case DL_UNBIND_REQ: 15158 case DL_ATTACH_REQ: 15159 case DL_DETACH_REQ: 15160 case DL_INFO_REQ: 15161 ill_dlpi_done(ill, dlea->dl_error_primitive); 15162 break; 15163 case DL_NOTIFY_REQ: 15164 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15165 log = B_FALSE; 15166 break; 15167 case DL_PHYS_ADDR_REQ: 15168 /* 15169 * For IPv6 only, there are two additional 15170 * phys_addr_req's sent to the driver to get the 15171 * IPv6 token and lla. This allows IP to acquire 15172 * the hardware address format for a given interface 15173 * without having built in knowledge of the hardware 15174 * address. ill_phys_addr_pend keeps track of the last 15175 * DL_PAR sent so we know which response we are 15176 * dealing with. ill_dlpi_done will update 15177 * ill_phys_addr_pend when it sends the next req. 15178 * We don't complete the IOCTL until all three DL_PARs 15179 * have been attempted, so set *_len to 0 and break. 15180 */ 15181 physaddr_req = ill->ill_phys_addr_pend; 15182 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15183 if (physaddr_req == DL_IPV6_TOKEN) { 15184 ill->ill_token_length = 0; 15185 log = B_FALSE; 15186 break; 15187 } else if (physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 15188 ill->ill_nd_lla_len = 0; 15189 log = B_FALSE; 15190 break; 15191 } 15192 /* 15193 * Something went wrong with the DL_PHYS_ADDR_REQ. 15194 * We presumably have an IOCTL hanging out waiting 15195 * for completion. Find it and complete the IOCTL 15196 * with the error noted. 15197 * However, ill_dl_phys was called on an ill queue 15198 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15199 * set. But the ioctl is known to be pending on ill_wq. 15200 */ 15201 if (!ill->ill_ifname_pending) 15202 break; 15203 ill->ill_ifname_pending = 0; 15204 if (!ioctl_aborted) 15205 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15206 if (mp1 != NULL) { 15207 /* 15208 * This operation (SIOCSLIFNAME) must have 15209 * happened on the ill. Assert there is no conn 15210 */ 15211 ASSERT(connp == NULL); 15212 q = ill->ill_wq; 15213 } 15214 break; 15215 case DL_BIND_REQ: 15216 ill_dlpi_done(ill, DL_BIND_REQ); 15217 if (ill->ill_ifname_pending) 15218 break; 15219 /* 15220 * Something went wrong with the bind. We presumably 15221 * have an IOCTL hanging out waiting for completion. 15222 * Find it, take down the interface that was coming 15223 * up, and complete the IOCTL with the error noted. 15224 */ 15225 if (!ioctl_aborted) 15226 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15227 if (mp1 != NULL) { 15228 /* 15229 * This operation (SIOCSLIFFLAGS) must have 15230 * happened from a conn. 15231 */ 15232 ASSERT(connp != NULL); 15233 q = CONNP_TO_WQ(connp); 15234 if (ill->ill_move_in_progress) { 15235 ILL_CLEAR_MOVE(ill); 15236 } 15237 (void) ipif_down(ipif, NULL, NULL); 15238 /* error is set below the switch */ 15239 } 15240 break; 15241 case DL_ENABMULTI_REQ: 15242 ip1dbg(("DL_ERROR_ACK to enabmulti\n")); 15243 15244 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15245 ill->ill_dlpi_multicast_state = IDS_FAILED; 15246 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15247 ipif_t *ipif; 15248 15249 log = B_FALSE; 15250 printf("ip: joining multicasts failed (%d)" 15251 " on %s - will use link layer " 15252 "broadcasts for multicast\n", 15253 dlea->dl_errno, ill->ill_name); 15254 15255 /* 15256 * Set up the multicast mapping alone. 15257 * writer, so ok to access ill->ill_ipif 15258 * without any lock. 15259 */ 15260 ipif = ill->ill_ipif; 15261 mutex_enter(&ill->ill_phyint->phyint_lock); 15262 ill->ill_phyint->phyint_flags |= 15263 PHYI_MULTI_BCAST; 15264 mutex_exit(&ill->ill_phyint->phyint_lock); 15265 15266 if (!ill->ill_isv6) { 15267 (void) ipif_arp_setup_multicast(ipif, 15268 NULL); 15269 } else { 15270 (void) ipif_ndp_setup_multicast(ipif, 15271 NULL); 15272 } 15273 } 15274 freemsg(mp); /* Don't want to pass this up */ 15275 return; 15276 case DL_CAPABILITY_REQ: 15277 case DL_CONTROL_REQ: 15278 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15279 "DL_CAPABILITY/CONTROL REQ\n")); 15280 ill_dlpi_done(ill, dlea->dl_error_primitive); 15281 ill->ill_dlpi_capab_state = IDS_FAILED; 15282 freemsg(mp); 15283 return; 15284 } 15285 /* 15286 * Note the error for IOCTL completion (mp1 is set when 15287 * ready to complete ioctl). If ill_ifname_pending_err is 15288 * set, an error occured during plumbing (ill_ifname_pending), 15289 * so we want to report that error. 15290 * 15291 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15292 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15293 * expected to get errack'd if the driver doesn't support 15294 * these flags (e.g. ethernet). log will be set to B_FALSE 15295 * if these error conditions are encountered. 15296 */ 15297 if (mp1 != NULL) { 15298 if (ill->ill_ifname_pending_err != 0) { 15299 err = ill->ill_ifname_pending_err; 15300 ill->ill_ifname_pending_err = 0; 15301 } else { 15302 err = dlea->dl_unix_errno ? 15303 dlea->dl_unix_errno : ENXIO; 15304 } 15305 /* 15306 * If we're plumbing an interface and an error hasn't already 15307 * been saved, set ill_ifname_pending_err to the error passed 15308 * up. Ignore the error if log is B_FALSE (see comment above). 15309 */ 15310 } else if (log && ill->ill_ifname_pending && 15311 ill->ill_ifname_pending_err == 0) { 15312 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15313 dlea->dl_unix_errno : ENXIO; 15314 } 15315 15316 if (log) 15317 ip_dlpi_error(ill, dlea->dl_error_primitive, 15318 dlea->dl_errno, dlea->dl_unix_errno); 15319 break; 15320 case DL_CAPABILITY_ACK: { 15321 boolean_t reneg_flag = B_FALSE; 15322 /* Call a routine to handle this one. */ 15323 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15324 /* 15325 * Check if the ACK is due to renegotiation case since we 15326 * will need to send a new CAPABILITY_REQ later. 15327 */ 15328 if (ill->ill_dlpi_capab_state == IDS_RENEG) { 15329 /* This is the ack for a renogiation case */ 15330 reneg_flag = B_TRUE; 15331 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 15332 } 15333 ill_capability_ack(ill, mp); 15334 if (reneg_flag) 15335 ill_capability_probe(ill); 15336 break; 15337 } 15338 case DL_CONTROL_ACK: 15339 /* We treat all of these as "fire and forget" */ 15340 ill_dlpi_done(ill, DL_CONTROL_REQ); 15341 break; 15342 case DL_INFO_ACK: 15343 /* Call a routine to handle this one. */ 15344 ill_dlpi_done(ill, DL_INFO_REQ); 15345 ip_ll_subnet_defaults(ill, mp); 15346 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15347 return; 15348 case DL_BIND_ACK: 15349 /* 15350 * We should have an IOCTL waiting on this unless 15351 * sent by ill_dl_phys, in which case just return 15352 */ 15353 ill_dlpi_done(ill, DL_BIND_REQ); 15354 if (ill->ill_ifname_pending) 15355 break; 15356 15357 if (!ioctl_aborted) 15358 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15359 if (mp1 == NULL) 15360 break; 15361 ASSERT(connp != NULL); 15362 q = CONNP_TO_WQ(connp); 15363 15364 /* 15365 * We are exclusive. So nothing can change even after 15366 * we get the pending mp. If need be we can put it back 15367 * and restart, as in calling ipif_arp_up() below. 15368 */ 15369 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15370 15371 mutex_enter(&ill->ill_lock); 15372 15373 ill->ill_dl_up = 1; 15374 15375 if ((info = ill->ill_nic_event_info) != NULL) { 15376 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15377 "attached for %s\n", info->hne_event, 15378 ill->ill_name)); 15379 if (info->hne_data != NULL) 15380 kmem_free(info->hne_data, info->hne_datalen); 15381 kmem_free(info, sizeof (hook_nic_event_t)); 15382 } 15383 15384 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15385 if (info != NULL) { 15386 info->hne_nic = ill->ill_phyint->phyint_ifindex; 15387 info->hne_lif = 0; 15388 info->hne_event = NE_UP; 15389 info->hne_data = NULL; 15390 info->hne_datalen = 0; 15391 info->hne_family = ill->ill_isv6 ? ipv6 : ipv4; 15392 } else 15393 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15394 "event information for %s (ENOMEM)\n", 15395 ill->ill_name)); 15396 15397 ill->ill_nic_event_info = info; 15398 15399 mutex_exit(&ill->ill_lock); 15400 15401 /* 15402 * Now bring up the resolver; when that is complete, we'll 15403 * create IREs. Note that we intentionally mirror what 15404 * ipif_up() would have done, because we got here by way of 15405 * ill_dl_up(), which stopped ipif_up()'s processing. 15406 */ 15407 if (ill->ill_isv6) { 15408 /* 15409 * v6 interfaces. 15410 * Unlike ARP which has to do another bind 15411 * and attach, once we get here we are 15412 * done with NDP. Except in the case of 15413 * ILLF_XRESOLV, in which case we send an 15414 * AR_INTERFACE_UP to the external resolver. 15415 * If all goes well, the ioctl will complete 15416 * in ip_rput(). If there's an error, we 15417 * complete it here. 15418 */ 15419 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 15420 B_FALSE); 15421 if (err == 0) { 15422 if (ill->ill_flags & ILLF_XRESOLV) { 15423 mutex_enter(&connp->conn_lock); 15424 mutex_enter(&ill->ill_lock); 15425 success = ipsq_pending_mp_add( 15426 connp, ipif, q, mp1, 0); 15427 mutex_exit(&ill->ill_lock); 15428 mutex_exit(&connp->conn_lock); 15429 if (success) { 15430 err = ipif_resolver_up(ipif, 15431 Res_act_initial); 15432 if (err == EINPROGRESS) { 15433 freemsg(mp); 15434 return; 15435 } 15436 ASSERT(err != 0); 15437 mp1 = ipsq_pending_mp_get(ipsq, 15438 &connp); 15439 ASSERT(mp1 != NULL); 15440 } else { 15441 /* conn has started closing */ 15442 err = EINTR; 15443 } 15444 } else { /* Non XRESOLV interface */ 15445 (void) ipif_resolver_up(ipif, 15446 Res_act_initial); 15447 err = ipif_up_done_v6(ipif); 15448 } 15449 } 15450 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15451 /* 15452 * ARP and other v4 external resolvers. 15453 * Leave the pending mblk intact so that 15454 * the ioctl completes in ip_rput(). 15455 */ 15456 mutex_enter(&connp->conn_lock); 15457 mutex_enter(&ill->ill_lock); 15458 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15459 mutex_exit(&ill->ill_lock); 15460 mutex_exit(&connp->conn_lock); 15461 if (success) { 15462 err = ipif_resolver_up(ipif, Res_act_initial); 15463 if (err == EINPROGRESS) { 15464 freemsg(mp); 15465 return; 15466 } 15467 ASSERT(err != 0); 15468 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15469 } else { 15470 /* The conn has started closing */ 15471 err = EINTR; 15472 } 15473 } else { 15474 /* 15475 * This one is complete. Reply to pending ioctl. 15476 */ 15477 (void) ipif_resolver_up(ipif, Res_act_initial); 15478 err = ipif_up_done(ipif); 15479 } 15480 15481 if ((err == 0) && (ill->ill_up_ipifs)) { 15482 err = ill_up_ipifs(ill, q, mp1); 15483 if (err == EINPROGRESS) { 15484 freemsg(mp); 15485 return; 15486 } 15487 } 15488 15489 if (ill->ill_up_ipifs) { 15490 ill_group_cleanup(ill); 15491 } 15492 15493 break; 15494 case DL_NOTIFY_IND: { 15495 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15496 ire_t *ire; 15497 boolean_t need_ire_walk_v4 = B_FALSE; 15498 boolean_t need_ire_walk_v6 = B_FALSE; 15499 15500 /* 15501 * Change the address everywhere we need to. 15502 * What we're getting here is a link-level addr or phys addr. 15503 * The new addr is at notify + notify->dl_addr_offset 15504 * The address length is notify->dl_addr_length; 15505 */ 15506 switch (notify->dl_notification) { 15507 case DL_NOTE_PHYS_ADDR: 15508 mp_hw = copyb(mp); 15509 if (mp_hw == NULL) { 15510 err = ENOMEM; 15511 break; 15512 } 15513 dlp = (union DL_primitives *)mp_hw->b_rptr; 15514 /* 15515 * We currently don't support changing 15516 * the token via DL_NOTIFY_IND. 15517 * When we do support it, we have to consider 15518 * what the implications are with respect to 15519 * the token and the link local address. 15520 */ 15521 mutex_enter(&ill->ill_lock); 15522 if (dlp->notify_ind.dl_data == 15523 DL_IPV6_LINK_LAYER_ADDR) { 15524 if (ill->ill_nd_lla_mp != NULL) 15525 freemsg(ill->ill_nd_lla_mp); 15526 ill->ill_nd_lla_mp = mp_hw; 15527 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 15528 dlp->notify_ind.dl_addr_offset; 15529 ill->ill_nd_lla_len = 15530 dlp->notify_ind.dl_addr_length - 15531 ABS(ill->ill_sap_length); 15532 mutex_exit(&ill->ill_lock); 15533 break; 15534 } else if (dlp->notify_ind.dl_data == 15535 DL_CURR_PHYS_ADDR) { 15536 if (ill->ill_phys_addr_mp != NULL) 15537 freemsg(ill->ill_phys_addr_mp); 15538 ill->ill_phys_addr_mp = mp_hw; 15539 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 15540 dlp->notify_ind.dl_addr_offset; 15541 ill->ill_phys_addr_length = 15542 dlp->notify_ind.dl_addr_length - 15543 ABS(ill->ill_sap_length); 15544 if (ill->ill_isv6 && 15545 !(ill->ill_flags & ILLF_XRESOLV)) { 15546 if (ill->ill_nd_lla_mp != NULL) 15547 freemsg(ill->ill_nd_lla_mp); 15548 ill->ill_nd_lla_mp = copyb(mp_hw); 15549 ill->ill_nd_lla = (uchar_t *) 15550 ill->ill_nd_lla_mp->b_rptr + 15551 dlp->notify_ind.dl_addr_offset; 15552 ill->ill_nd_lla_len = 15553 ill->ill_phys_addr_length; 15554 } 15555 } 15556 mutex_exit(&ill->ill_lock); 15557 /* 15558 * Send out gratuitous arp request for our new 15559 * hardware address. 15560 */ 15561 for (ipif = ill->ill_ipif; ipif != NULL; 15562 ipif = ipif->ipif_next) { 15563 if (!(ipif->ipif_flags & IPIF_UP)) 15564 continue; 15565 if (ill->ill_isv6) { 15566 ipif_ndp_down(ipif); 15567 /* 15568 * Set B_TRUE to enable 15569 * ipif_ndp_up() to send out 15570 * unsolicited advertisements. 15571 */ 15572 err = ipif_ndp_up(ipif, 15573 &ipif->ipif_v6lcl_addr, 15574 B_TRUE); 15575 if (err) { 15576 ip1dbg(( 15577 "ip_rput_dlpi_writer: " 15578 "Failed to update ndp " 15579 "err %d\n", err)); 15580 } 15581 } else { 15582 /* 15583 * IPv4 ARP case 15584 * 15585 * Set Res_act_move, as we only want 15586 * ipif_resolver_up to send an 15587 * AR_ENTRY_ADD request up to 15588 * ARP. 15589 */ 15590 err = ipif_resolver_up(ipif, 15591 Res_act_move); 15592 if (err) { 15593 ip1dbg(( 15594 "ip_rput_dlpi_writer: " 15595 "Failed to update arp " 15596 "err %d\n", err)); 15597 } 15598 } 15599 } 15600 /* 15601 * Allow "fall through" to the DL_NOTE_FASTPATH_FLUSH 15602 * case so that all old fastpath information can be 15603 * purged from IRE caches. 15604 */ 15605 /* FALLTHRU */ 15606 case DL_NOTE_FASTPATH_FLUSH: 15607 /* 15608 * Any fastpath probe sent henceforth will get the 15609 * new fp mp. So we first delete any ires that are 15610 * waiting for the fastpath. Then walk all ires and 15611 * delete the ire or delete the fp mp. In the case of 15612 * IRE_MIPRTUN and IRE_BROADCAST it is difficult to 15613 * recreate the ire's without going through a complex 15614 * ipif up/down dance. So we don't delete the ire 15615 * itself, but just the nce_fp_mp for these 2 ire's 15616 * In the case of the other ire's we delete the ire's 15617 * themselves. Access to nce_fp_mp is completely 15618 * protected by ire_lock for IRE_MIPRTUN and 15619 * IRE_BROADCAST. Deleting the ire is preferable in the 15620 * other cases for performance. 15621 */ 15622 if (ill->ill_isv6) { 15623 nce_fastpath_list_dispatch(ill, NULL, NULL); 15624 ndp_walk(ill, (pfi_t)ndp_fastpath_flush, 15625 NULL); 15626 } else { 15627 ire_fastpath_list_dispatch(ill, NULL, NULL); 15628 ire_walk_ill_v4(MATCH_IRE_WQ | MATCH_IRE_TYPE, 15629 IRE_CACHE | IRE_BROADCAST, 15630 ire_fastpath_flush, NULL, ill); 15631 mutex_enter(&ire_mrtun_lock); 15632 if (ire_mrtun_count != 0) { 15633 mutex_exit(&ire_mrtun_lock); 15634 ire_walk_ill_mrtun(MATCH_IRE_WQ, 15635 IRE_MIPRTUN, ire_fastpath_flush, 15636 NULL, ill); 15637 } else { 15638 mutex_exit(&ire_mrtun_lock); 15639 } 15640 } 15641 break; 15642 case DL_NOTE_SDU_SIZE: 15643 /* 15644 * Change the MTU size of the interface, of all 15645 * attached ipif's, and of all relevant ire's. The 15646 * new value's a uint32_t at notify->dl_data. 15647 * Mtu change Vs. new ire creation - protocol below. 15648 * 15649 * a Mark the ipif as IPIF_CHANGING. 15650 * b Set the new mtu in the ipif. 15651 * c Change the ire_max_frag on all affected ires 15652 * d Unmark the IPIF_CHANGING 15653 * 15654 * To see how the protocol works, assume an interface 15655 * route is also being added simultaneously by 15656 * ip_rt_add and let 'ipif' be the ipif referenced by 15657 * the ire. If the ire is created before step a, 15658 * it will be cleaned up by step c. If the ire is 15659 * created after step d, it will see the new value of 15660 * ipif_mtu. Any attempt to create the ire between 15661 * steps a to d will fail because of the IPIF_CHANGING 15662 * flag. Note that ire_create() is passed a pointer to 15663 * the ipif_mtu, and not the value. During ire_add 15664 * under the bucket lock, the ire_max_frag of the 15665 * new ire being created is set from the ipif/ire from 15666 * which it is being derived. 15667 */ 15668 mutex_enter(&ill->ill_lock); 15669 ill->ill_max_frag = (uint_t)notify->dl_data; 15670 15671 /* 15672 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15673 * leave it alone 15674 */ 15675 if (ill->ill_mtu_userspecified) { 15676 mutex_exit(&ill->ill_lock); 15677 break; 15678 } 15679 ill->ill_max_mtu = ill->ill_max_frag; 15680 if (ill->ill_isv6) { 15681 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15682 ill->ill_max_mtu = IPV6_MIN_MTU; 15683 } else { 15684 if (ill->ill_max_mtu < IP_MIN_MTU) 15685 ill->ill_max_mtu = IP_MIN_MTU; 15686 } 15687 for (ipif = ill->ill_ipif; ipif != NULL; 15688 ipif = ipif->ipif_next) { 15689 /* 15690 * Don't override the mtu if the user 15691 * has explicitly set it. 15692 */ 15693 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15694 continue; 15695 ipif->ipif_mtu = (uint_t)notify->dl_data; 15696 if (ipif->ipif_isv6) 15697 ire = ipif_to_ire_v6(ipif); 15698 else 15699 ire = ipif_to_ire(ipif); 15700 if (ire != NULL) { 15701 ire->ire_max_frag = ipif->ipif_mtu; 15702 ire_refrele(ire); 15703 } 15704 if (ipif->ipif_flags & IPIF_UP) { 15705 if (ill->ill_isv6) 15706 need_ire_walk_v6 = B_TRUE; 15707 else 15708 need_ire_walk_v4 = B_TRUE; 15709 } 15710 } 15711 mutex_exit(&ill->ill_lock); 15712 if (need_ire_walk_v4) 15713 ire_walk_v4(ill_mtu_change, (char *)ill, 15714 ALL_ZONES); 15715 if (need_ire_walk_v6) 15716 ire_walk_v6(ill_mtu_change, (char *)ill, 15717 ALL_ZONES); 15718 break; 15719 case DL_NOTE_LINK_UP: 15720 case DL_NOTE_LINK_DOWN: { 15721 /* 15722 * We are writer. ill / phyint / ipsq assocs stable. 15723 * The RUNNING flag reflects the state of the link. 15724 */ 15725 phyint_t *phyint = ill->ill_phyint; 15726 uint64_t new_phyint_flags; 15727 boolean_t changed = B_FALSE; 15728 boolean_t went_up; 15729 15730 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 15731 mutex_enter(&phyint->phyint_lock); 15732 new_phyint_flags = went_up ? 15733 phyint->phyint_flags | PHYI_RUNNING : 15734 phyint->phyint_flags & ~PHYI_RUNNING; 15735 if (new_phyint_flags != phyint->phyint_flags) { 15736 phyint->phyint_flags = new_phyint_flags; 15737 changed = B_TRUE; 15738 } 15739 mutex_exit(&phyint->phyint_lock); 15740 /* 15741 * ill_restart_dad handles the DAD restart and routing 15742 * socket notification logic. 15743 */ 15744 if (changed) { 15745 ill_restart_dad(phyint->phyint_illv4, went_up); 15746 ill_restart_dad(phyint->phyint_illv6, went_up); 15747 } 15748 break; 15749 } 15750 case DL_NOTE_PROMISC_ON_PHYS: 15751 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15752 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 15753 mutex_enter(&ill->ill_lock); 15754 ill->ill_promisc_on_phys = B_TRUE; 15755 mutex_exit(&ill->ill_lock); 15756 break; 15757 case DL_NOTE_PROMISC_OFF_PHYS: 15758 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15759 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 15760 mutex_enter(&ill->ill_lock); 15761 ill->ill_promisc_on_phys = B_FALSE; 15762 mutex_exit(&ill->ill_lock); 15763 break; 15764 case DL_NOTE_CAPAB_RENEG: 15765 /* 15766 * Something changed on the driver side. 15767 * It wants us to renegotiate the capabilities 15768 * on this ill. The most likely cause is the 15769 * aggregation interface under us where a 15770 * port got added or went away. 15771 * 15772 * We reset the capabilities and set the 15773 * state to IDS_RENG so that when the ack 15774 * comes back, we can start the 15775 * renegotiation process. 15776 */ 15777 ill_capability_reset(ill); 15778 ill->ill_dlpi_capab_state = IDS_RENEG; 15779 break; 15780 default: 15781 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 15782 "type 0x%x for DL_NOTIFY_IND\n", 15783 notify->dl_notification)); 15784 break; 15785 } 15786 15787 /* 15788 * As this is an asynchronous operation, we 15789 * should not call ill_dlpi_done 15790 */ 15791 break; 15792 } 15793 case DL_NOTIFY_ACK: { 15794 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 15795 15796 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 15797 ill->ill_note_link = 1; 15798 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15799 break; 15800 } 15801 case DL_PHYS_ADDR_ACK: { 15802 /* 15803 * We should have an IOCTL waiting on this when request 15804 * sent by ill_dl_phys. 15805 * However, ill_dl_phys was called on an ill queue (from 15806 * SIOCSLIFNAME), thus conn_pending_ill is not set. But the 15807 * ioctl is known to be pending on ill_wq. 15808 * There are two additional phys_addr_req's sent to the 15809 * driver to get the token and lla. ill_phys_addr_pend 15810 * keeps track of the last one sent so we know which 15811 * response we are dealing with. ill_dlpi_done will 15812 * update ill_phys_addr_pend when it sends the next req. 15813 * We don't complete the IOCTL until all three DL_PARs 15814 * have been attempted. 15815 * 15816 * We don't need any lock to update ill_nd_lla* fields, 15817 * since the ill is not yet up, We grab the lock just 15818 * for uniformity with other code that accesses ill_nd_lla. 15819 */ 15820 physaddr_req = ill->ill_phys_addr_pend; 15821 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15822 if (physaddr_req == DL_IPV6_TOKEN || 15823 physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 15824 if (physaddr_req == DL_IPV6_TOKEN) { 15825 /* 15826 * bcopy to low-order bits of ill_token 15827 * 15828 * XXX Temporary hack - currently, 15829 * all known tokens are 64 bits, 15830 * so I'll cheat for the moment. 15831 */ 15832 dlp = (union DL_primitives *)mp->b_rptr; 15833 15834 mutex_enter(&ill->ill_lock); 15835 bcopy((uchar_t *)(mp->b_rptr + 15836 dlp->physaddr_ack.dl_addr_offset), 15837 (void *)&ill->ill_token.s6_addr32[2], 15838 dlp->physaddr_ack.dl_addr_length); 15839 ill->ill_token_length = 15840 dlp->physaddr_ack.dl_addr_length; 15841 mutex_exit(&ill->ill_lock); 15842 } else { 15843 ASSERT(ill->ill_nd_lla_mp == NULL); 15844 mp_hw = copyb(mp); 15845 if (mp_hw == NULL) { 15846 err = ENOMEM; 15847 break; 15848 } 15849 dlp = (union DL_primitives *)mp_hw->b_rptr; 15850 mutex_enter(&ill->ill_lock); 15851 ill->ill_nd_lla_mp = mp_hw; 15852 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 15853 dlp->physaddr_ack.dl_addr_offset; 15854 ill->ill_nd_lla_len = 15855 dlp->physaddr_ack.dl_addr_length; 15856 mutex_exit(&ill->ill_lock); 15857 } 15858 break; 15859 } 15860 ASSERT(physaddr_req == DL_CURR_PHYS_ADDR); 15861 ASSERT(ill->ill_phys_addr_mp == NULL); 15862 if (!ill->ill_ifname_pending) 15863 break; 15864 ill->ill_ifname_pending = 0; 15865 if (!ioctl_aborted) 15866 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15867 if (mp1 != NULL) { 15868 ASSERT(connp == NULL); 15869 q = ill->ill_wq; 15870 } 15871 /* 15872 * If any error acks received during the plumbing sequence, 15873 * ill_ifname_pending_err will be set. Break out and send up 15874 * the error to the pending ioctl. 15875 */ 15876 if (ill->ill_ifname_pending_err != 0) { 15877 err = ill->ill_ifname_pending_err; 15878 ill->ill_ifname_pending_err = 0; 15879 break; 15880 } 15881 /* 15882 * Get the interface token. If the zeroth interface 15883 * address is zero then set the address to the link local 15884 * address 15885 */ 15886 mp_hw = copyb(mp); 15887 if (mp_hw == NULL) { 15888 err = ENOMEM; 15889 break; 15890 } 15891 dlp = (union DL_primitives *)mp_hw->b_rptr; 15892 ill->ill_phys_addr_mp = mp_hw; 15893 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 15894 dlp->physaddr_ack.dl_addr_offset; 15895 if (dlp->physaddr_ack.dl_addr_length == 0 || 15896 ill->ill_phys_addr_length == 0 || 15897 ill->ill_phys_addr_length == IP_ADDR_LEN) { 15898 /* 15899 * Compatibility: atun driver returns a length of 0. 15900 * ipdptp has an ill_phys_addr_length of zero(from 15901 * DL_BIND_ACK) but a non-zero length here. 15902 * ipd has an ill_phys_addr_length of 4(from 15903 * DL_BIND_ACK) but a non-zero length here. 15904 */ 15905 ill->ill_phys_addr = NULL; 15906 } else if (dlp->physaddr_ack.dl_addr_length != 15907 ill->ill_phys_addr_length) { 15908 ip0dbg(("DL_PHYS_ADDR_ACK: " 15909 "Address length mismatch %d %d\n", 15910 dlp->physaddr_ack.dl_addr_length, 15911 ill->ill_phys_addr_length)); 15912 err = EINVAL; 15913 break; 15914 } 15915 mutex_enter(&ill->ill_lock); 15916 if (ill->ill_nd_lla_mp == NULL) { 15917 ill->ill_nd_lla_mp = copyb(mp_hw); 15918 if (ill->ill_nd_lla_mp == NULL) { 15919 err = ENOMEM; 15920 mutex_exit(&ill->ill_lock); 15921 break; 15922 } 15923 ill->ill_nd_lla = 15924 (uchar_t *)ill->ill_nd_lla_mp->b_rptr + 15925 dlp->physaddr_ack.dl_addr_offset; 15926 ill->ill_nd_lla_len = ill->ill_phys_addr_length; 15927 } 15928 mutex_exit(&ill->ill_lock); 15929 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 15930 (void) ill_setdefaulttoken(ill); 15931 15932 /* 15933 * If the ill zero interface has a zero address assign 15934 * it the proper link local address. 15935 */ 15936 ASSERT(ill->ill_ipif->ipif_id == 0); 15937 if (ipif != NULL && 15938 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 15939 (void) ipif_setlinklocal(ipif); 15940 break; 15941 } 15942 case DL_OK_ACK: 15943 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 15944 dlpi_prim_str((int)dloa->dl_correct_primitive), 15945 dloa->dl_correct_primitive)); 15946 switch (dloa->dl_correct_primitive) { 15947 case DL_UNBIND_REQ: 15948 case DL_ATTACH_REQ: 15949 case DL_DETACH_REQ: 15950 ill_dlpi_done(ill, dloa->dl_correct_primitive); 15951 break; 15952 } 15953 break; 15954 default: 15955 break; 15956 } 15957 15958 freemsg(mp); 15959 if (mp1) { 15960 struct iocblk *iocp; 15961 int mode; 15962 15963 /* 15964 * Complete the waiting IOCTL. For SIOCLIFADDIF or 15965 * SIOCSLIFNAME do a copyout. 15966 */ 15967 iocp = (struct iocblk *)mp1->b_rptr; 15968 15969 if (iocp->ioc_cmd == SIOCLIFADDIF || 15970 iocp->ioc_cmd == SIOCSLIFNAME) 15971 mode = COPYOUT; 15972 else 15973 mode = NO_COPYOUT; 15974 /* 15975 * The ioctl must complete now without EINPROGRESS 15976 * since ipsq_pending_mp_get has removed the ioctl mblk 15977 * from ipsq_pending_mp. Otherwise the ioctl will be 15978 * stuck for ever in the ipsq. 15979 */ 15980 ASSERT(err != EINPROGRESS); 15981 ip_ioctl_finish(q, mp1, err, mode, ipif, ipsq); 15982 15983 } 15984 } 15985 15986 /* 15987 * ip_rput_other is called by ip_rput to handle messages modifying the global 15988 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 15989 */ 15990 /* ARGSUSED */ 15991 void 15992 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15993 { 15994 ill_t *ill; 15995 struct iocblk *iocp; 15996 mblk_t *mp1; 15997 conn_t *connp = NULL; 15998 15999 ip1dbg(("ip_rput_other ")); 16000 ill = (ill_t *)q->q_ptr; 16001 /* 16002 * This routine is not a writer in the case of SIOCGTUNPARAM 16003 * in which case ipsq is NULL. 16004 */ 16005 if (ipsq != NULL) { 16006 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16007 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16008 } 16009 16010 switch (mp->b_datap->db_type) { 16011 case M_ERROR: 16012 case M_HANGUP: 16013 /* 16014 * The device has a problem. We force the ILL down. It can 16015 * be brought up again manually using SIOCSIFFLAGS (via 16016 * ifconfig or equivalent). 16017 */ 16018 ASSERT(ipsq != NULL); 16019 if (mp->b_rptr < mp->b_wptr) 16020 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16021 if (ill->ill_error == 0) 16022 ill->ill_error = ENXIO; 16023 if (!ill_down_start(q, mp)) 16024 return; 16025 ipif_all_down_tail(ipsq, q, mp, NULL); 16026 break; 16027 case M_IOCACK: 16028 iocp = (struct iocblk *)mp->b_rptr; 16029 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16030 switch (iocp->ioc_cmd) { 16031 case SIOCSTUNPARAM: 16032 case OSIOCSTUNPARAM: 16033 ASSERT(ipsq != NULL); 16034 /* 16035 * Finish socket ioctl passed through to tun. 16036 * We should have an IOCTL waiting on this. 16037 */ 16038 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16039 if (ill->ill_isv6) { 16040 struct iftun_req *ta; 16041 16042 /* 16043 * if a source or destination is 16044 * being set, try and set the link 16045 * local address for the tunnel 16046 */ 16047 ta = (struct iftun_req *)mp->b_cont-> 16048 b_cont->b_rptr; 16049 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16050 ipif_set_tun_llink(ill, ta); 16051 } 16052 16053 } 16054 if (mp1 != NULL) { 16055 /* 16056 * Now copy back the b_next/b_prev used by 16057 * mi code for the mi_copy* functions. 16058 * See ip_sioctl_tunparam() for the reason. 16059 * Also protect against missing b_cont. 16060 */ 16061 if (mp->b_cont != NULL) { 16062 mp->b_cont->b_next = 16063 mp1->b_cont->b_next; 16064 mp->b_cont->b_prev = 16065 mp1->b_cont->b_prev; 16066 } 16067 inet_freemsg(mp1); 16068 ASSERT(ipsq->ipsq_current_ipif != NULL); 16069 ASSERT(connp != NULL); 16070 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16071 iocp->ioc_error, NO_COPYOUT, 16072 ipsq->ipsq_current_ipif, ipsq); 16073 } else { 16074 ASSERT(connp == NULL); 16075 putnext(q, mp); 16076 } 16077 break; 16078 case SIOCGTUNPARAM: 16079 case OSIOCGTUNPARAM: 16080 /* 16081 * This is really M_IOCDATA from the tunnel driver. 16082 * convert back and complete the ioctl. 16083 * We should have an IOCTL waiting on this. 16084 */ 16085 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16086 if (mp1) { 16087 /* 16088 * Now copy back the b_next/b_prev used by 16089 * mi code for the mi_copy* functions. 16090 * See ip_sioctl_tunparam() for the reason. 16091 * Also protect against missing b_cont. 16092 */ 16093 if (mp->b_cont != NULL) { 16094 mp->b_cont->b_next = 16095 mp1->b_cont->b_next; 16096 mp->b_cont->b_prev = 16097 mp1->b_cont->b_prev; 16098 } 16099 inet_freemsg(mp1); 16100 if (iocp->ioc_error == 0) 16101 mp->b_datap->db_type = M_IOCDATA; 16102 ASSERT(connp != NULL); 16103 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16104 iocp->ioc_error, COPYOUT, NULL, NULL); 16105 } else { 16106 ASSERT(connp == NULL); 16107 putnext(q, mp); 16108 } 16109 break; 16110 default: 16111 break; 16112 } 16113 break; 16114 case M_IOCNAK: 16115 iocp = (struct iocblk *)mp->b_rptr; 16116 16117 switch (iocp->ioc_cmd) { 16118 int mode; 16119 ipif_t *ipif; 16120 16121 case DL_IOC_HDR_INFO: 16122 /* 16123 * If this was the first attempt turn of the 16124 * fastpath probing. 16125 */ 16126 mutex_enter(&ill->ill_lock); 16127 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16128 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16129 mutex_exit(&ill->ill_lock); 16130 ill_fastpath_nack(ill); 16131 ip1dbg(("ip_rput: DLPI fastpath off on " 16132 "interface %s\n", 16133 ill->ill_name)); 16134 } else { 16135 mutex_exit(&ill->ill_lock); 16136 } 16137 freemsg(mp); 16138 break; 16139 case SIOCSTUNPARAM: 16140 case OSIOCSTUNPARAM: 16141 ASSERT(ipsq != NULL); 16142 /* 16143 * Finish socket ioctl passed through to tun 16144 * We should have an IOCTL waiting on this. 16145 */ 16146 /* FALLTHRU */ 16147 case SIOCGTUNPARAM: 16148 case OSIOCGTUNPARAM: 16149 /* 16150 * This is really M_IOCDATA from the tunnel driver. 16151 * convert back and complete the ioctl. 16152 * We should have an IOCTL waiting on this. 16153 */ 16154 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16155 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16156 mp1 = ill_pending_mp_get(ill, &connp, 16157 iocp->ioc_id); 16158 mode = COPYOUT; 16159 ipsq = NULL; 16160 ipif = NULL; 16161 } else { 16162 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16163 mode = NO_COPYOUT; 16164 ASSERT(ipsq->ipsq_current_ipif != NULL); 16165 ipif = ipsq->ipsq_current_ipif; 16166 } 16167 if (mp1 != NULL) { 16168 /* 16169 * Now copy back the b_next/b_prev used by 16170 * mi code for the mi_copy* functions. 16171 * See ip_sioctl_tunparam() for the reason. 16172 * Also protect against missing b_cont. 16173 */ 16174 if (mp->b_cont != NULL) { 16175 mp->b_cont->b_next = 16176 mp1->b_cont->b_next; 16177 mp->b_cont->b_prev = 16178 mp1->b_cont->b_prev; 16179 } 16180 inet_freemsg(mp1); 16181 if (iocp->ioc_error == 0) 16182 iocp->ioc_error = EINVAL; 16183 ASSERT(connp != NULL); 16184 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16185 iocp->ioc_error, mode, ipif, ipsq); 16186 } else { 16187 ASSERT(connp == NULL); 16188 putnext(q, mp); 16189 } 16190 break; 16191 default: 16192 break; 16193 } 16194 default: 16195 break; 16196 } 16197 } 16198 16199 /* 16200 * NOTE : This function does not ire_refrele the ire argument passed in. 16201 * 16202 * IPQoS notes 16203 * IP policy is invoked twice for a forwarded packet, once on the read side 16204 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16205 * enabled. An additional parameter, in_ill, has been added for this purpose. 16206 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16207 * because ip_mroute drops this information. 16208 * 16209 */ 16210 void 16211 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16212 { 16213 uint32_t pkt_len; 16214 queue_t *q; 16215 uint32_t sum; 16216 #define rptr ((uchar_t *)ipha) 16217 uint32_t max_frag; 16218 uint32_t ill_index; 16219 ill_t *out_ill; 16220 16221 /* Get the ill_index of the incoming ILL */ 16222 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16223 16224 /* Initiate Read side IPPF processing */ 16225 if (IPP_ENABLED(IPP_FWD_IN)) { 16226 ip_process(IPP_FWD_IN, &mp, ill_index); 16227 if (mp == NULL) { 16228 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16229 "during IPPF processing\n")); 16230 return; 16231 } 16232 } 16233 16234 pkt_len = ntohs(ipha->ipha_length); 16235 16236 /* Adjust the checksum to reflect the ttl decrement. */ 16237 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16238 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16239 16240 if (ipha->ipha_ttl-- <= 1) { 16241 if (ip_csum_hdr(ipha)) { 16242 BUMP_MIB(&ip_mib, ipInCksumErrs); 16243 goto drop_pkt; 16244 } 16245 /* 16246 * Note: ire_stq this will be NULL for multicast 16247 * datagrams using the long path through arp (the IRE 16248 * is not an IRE_CACHE). This should not cause 16249 * problems since we don't generate ICMP errors for 16250 * multicast packets. 16251 */ 16252 q = ire->ire_stq; 16253 if (q != NULL) { 16254 /* Sent by forwarding path, and router is global zone */ 16255 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16256 GLOBAL_ZONEID); 16257 } else 16258 freemsg(mp); 16259 return; 16260 } 16261 16262 /* 16263 * Don't forward if the interface is down 16264 */ 16265 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16266 BUMP_MIB(&ip_mib, ipInDiscards); 16267 ip2dbg(("ip_rput_forward:interface is down\n")); 16268 goto drop_pkt; 16269 } 16270 16271 /* Get the ill_index of the outgoing ILL */ 16272 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 16273 16274 out_ill = ire->ire_ipif->ipif_ill; 16275 16276 DTRACE_PROBE4(ip4__forwarding__start, 16277 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16278 16279 FW_HOOKS(ip4_forwarding_event, ipv4firewall_forwarding, 16280 MSG_FWCOOKED_FORWARD, in_ill, out_ill, ipha, mp, mp); 16281 16282 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16283 16284 if (mp == NULL) 16285 return; 16286 pkt_len = ntohs(ipha->ipha_length); 16287 16288 if (is_system_labeled()) { 16289 mblk_t *mp1; 16290 16291 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16292 BUMP_MIB(&ip_mib, ipForwProhibits); 16293 goto drop_pkt; 16294 } 16295 /* Size may have changed */ 16296 mp = mp1; 16297 ipha = (ipha_t *)mp->b_rptr; 16298 pkt_len = ntohs(ipha->ipha_length); 16299 } 16300 16301 /* Check if there are options to update */ 16302 if (!IS_SIMPLE_IPH(ipha)) { 16303 if (ip_csum_hdr(ipha)) { 16304 BUMP_MIB(&ip_mib, ipInCksumErrs); 16305 goto drop_pkt; 16306 } 16307 if (ip_rput_forward_options(mp, ipha, ire)) { 16308 return; 16309 } 16310 16311 ipha->ipha_hdr_checksum = 0; 16312 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16313 } 16314 max_frag = ire->ire_max_frag; 16315 if (pkt_len > max_frag) { 16316 /* 16317 * It needs fragging on its way out. We haven't 16318 * verified the header checksum yet. Since we 16319 * are going to put a surely good checksum in the 16320 * outgoing header, we have to make sure that it 16321 * was good coming in. 16322 */ 16323 if (ip_csum_hdr(ipha)) { 16324 BUMP_MIB(&ip_mib, ipInCksumErrs); 16325 goto drop_pkt; 16326 } 16327 /* Initiate Write side IPPF processing */ 16328 if (IPP_ENABLED(IPP_FWD_OUT)) { 16329 ip_process(IPP_FWD_OUT, &mp, ill_index); 16330 if (mp == NULL) { 16331 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16332 " during IPPF processing\n")); 16333 return; 16334 } 16335 } 16336 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID); 16337 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16338 return; 16339 } 16340 16341 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16342 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, mblk_t *, mp); 16343 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 16344 MSG_FWCOOKED_OUT, NULL, out_ill, ipha, mp, mp); 16345 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16346 if (mp == NULL) 16347 return; 16348 16349 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16350 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16351 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16352 /* ip_xmit_v4 always consumes the packet */ 16353 return; 16354 16355 drop_pkt:; 16356 ip1dbg(("ip_rput_forward: drop pkt\n")); 16357 freemsg(mp); 16358 #undef rptr 16359 } 16360 16361 void 16362 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16363 { 16364 ire_t *ire; 16365 16366 ASSERT(!ipif->ipif_isv6); 16367 /* 16368 * Find an IRE which matches the destination and the outgoing 16369 * queue in the cache table. All we need is an IRE_CACHE which 16370 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16371 * then it is enough to have some IRE_CACHE in the group. 16372 */ 16373 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16374 dst = ipif->ipif_pp_dst_addr; 16375 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16376 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR); 16377 if (ire == NULL) { 16378 /* 16379 * Mark this packet to make it be delivered to 16380 * ip_rput_forward after the new ire has been 16381 * created. 16382 */ 16383 mp->b_prev = NULL; 16384 mp->b_next = mp; 16385 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16386 NULL, 0, GLOBAL_ZONEID); 16387 } else { 16388 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16389 IRE_REFRELE(ire); 16390 } 16391 } 16392 16393 /* Update any source route, record route or timestamp options */ 16394 static int 16395 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire) 16396 { 16397 ipoptp_t opts; 16398 uchar_t *opt; 16399 uint8_t optval; 16400 uint8_t optlen; 16401 ipaddr_t dst; 16402 uint32_t ts; 16403 ire_t *dst_ire = NULL; 16404 ire_t *tmp_ire = NULL; 16405 timestruc_t now; 16406 16407 ip2dbg(("ip_rput_forward_options\n")); 16408 dst = ipha->ipha_dst; 16409 for (optval = ipoptp_first(&opts, ipha); 16410 optval != IPOPT_EOL; 16411 optval = ipoptp_next(&opts)) { 16412 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16413 opt = opts.ipoptp_cur; 16414 optlen = opts.ipoptp_len; 16415 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16416 optval, opts.ipoptp_len)); 16417 switch (optval) { 16418 uint32_t off; 16419 case IPOPT_SSRR: 16420 case IPOPT_LSRR: 16421 /* Check if adminstratively disabled */ 16422 if (!ip_forward_src_routed) { 16423 BUMP_MIB(&ip_mib, ipForwProhibits); 16424 if (ire->ire_stq != NULL) { 16425 /* 16426 * Sent by forwarding path, and router 16427 * is global zone 16428 */ 16429 icmp_unreachable(ire->ire_stq, mp, 16430 ICMP_SOURCE_ROUTE_FAILED, 16431 GLOBAL_ZONEID); 16432 } else { 16433 ip0dbg(("ip_rput_forward_options: " 16434 "unable to send unreach\n")); 16435 freemsg(mp); 16436 } 16437 return (-1); 16438 } 16439 16440 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16441 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 16442 if (dst_ire == NULL) { 16443 /* 16444 * Must be partial since ip_rput_options 16445 * checked for strict. 16446 */ 16447 break; 16448 } 16449 off = opt[IPOPT_OFFSET]; 16450 off--; 16451 redo_srr: 16452 if (optlen < IP_ADDR_LEN || 16453 off > optlen - IP_ADDR_LEN) { 16454 /* End of source route */ 16455 ip1dbg(( 16456 "ip_rput_forward_options: end of SR\n")); 16457 ire_refrele(dst_ire); 16458 break; 16459 } 16460 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16461 bcopy(&ire->ire_src_addr, (char *)opt + off, 16462 IP_ADDR_LEN); 16463 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16464 ntohl(dst))); 16465 16466 /* 16467 * Check if our address is present more than 16468 * once as consecutive hops in source route. 16469 */ 16470 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16471 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 16472 if (tmp_ire != NULL) { 16473 ire_refrele(tmp_ire); 16474 off += IP_ADDR_LEN; 16475 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16476 goto redo_srr; 16477 } 16478 ipha->ipha_dst = dst; 16479 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16480 ire_refrele(dst_ire); 16481 break; 16482 case IPOPT_RR: 16483 off = opt[IPOPT_OFFSET]; 16484 off--; 16485 if (optlen < IP_ADDR_LEN || 16486 off > optlen - IP_ADDR_LEN) { 16487 /* No more room - ignore */ 16488 ip1dbg(( 16489 "ip_rput_forward_options: end of RR\n")); 16490 break; 16491 } 16492 bcopy(&ire->ire_src_addr, (char *)opt + off, 16493 IP_ADDR_LEN); 16494 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16495 break; 16496 case IPOPT_TS: 16497 /* Insert timestamp if there is room */ 16498 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16499 case IPOPT_TS_TSONLY: 16500 off = IPOPT_TS_TIMELEN; 16501 break; 16502 case IPOPT_TS_PRESPEC: 16503 case IPOPT_TS_PRESPEC_RFC791: 16504 /* Verify that the address matched */ 16505 off = opt[IPOPT_OFFSET] - 1; 16506 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16507 dst_ire = ire_ctable_lookup(dst, 0, 16508 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16509 MATCH_IRE_TYPE); 16510 16511 if (dst_ire == NULL) { 16512 /* Not for us */ 16513 break; 16514 } 16515 ire_refrele(dst_ire); 16516 /* FALLTHRU */ 16517 case IPOPT_TS_TSANDADDR: 16518 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16519 break; 16520 default: 16521 /* 16522 * ip_*put_options should have already 16523 * dropped this packet. 16524 */ 16525 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16526 "unknown IT - bug in ip_rput_options?\n"); 16527 return (0); /* Keep "lint" happy */ 16528 } 16529 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16530 /* Increase overflow counter */ 16531 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16532 opt[IPOPT_POS_OV_FLG] = 16533 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16534 (off << 4)); 16535 break; 16536 } 16537 off = opt[IPOPT_OFFSET] - 1; 16538 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16539 case IPOPT_TS_PRESPEC: 16540 case IPOPT_TS_PRESPEC_RFC791: 16541 case IPOPT_TS_TSANDADDR: 16542 bcopy(&ire->ire_src_addr, 16543 (char *)opt + off, IP_ADDR_LEN); 16544 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16545 /* FALLTHRU */ 16546 case IPOPT_TS_TSONLY: 16547 off = opt[IPOPT_OFFSET] - 1; 16548 /* Compute # of milliseconds since midnight */ 16549 gethrestime(&now); 16550 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16551 now.tv_nsec / (NANOSEC / MILLISEC); 16552 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16553 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16554 break; 16555 } 16556 break; 16557 } 16558 } 16559 return (0); 16560 } 16561 16562 /* 16563 * This is called after processing at least one of AH/ESP headers. 16564 * 16565 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16566 * the actual, physical interface on which the packet was received, 16567 * but, when ip_strict_dst_multihoming is set to 1, could be the 16568 * interface which had the ipha_dst configured when the packet went 16569 * through ip_rput. The ill_index corresponding to the recv_ill 16570 * is saved in ipsec_in_rill_index 16571 */ 16572 void 16573 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16574 { 16575 mblk_t *mp; 16576 ipaddr_t dst; 16577 in6_addr_t *v6dstp; 16578 ipha_t *ipha; 16579 ip6_t *ip6h; 16580 ipsec_in_t *ii; 16581 boolean_t ill_need_rele = B_FALSE; 16582 boolean_t rill_need_rele = B_FALSE; 16583 boolean_t ire_need_rele = B_FALSE; 16584 16585 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16586 ASSERT(ii->ipsec_in_ill_index != 0); 16587 16588 mp = ipsec_mp->b_cont; 16589 ASSERT(mp != NULL); 16590 16591 16592 if (ill == NULL) { 16593 ASSERT(recv_ill == NULL); 16594 /* 16595 * We need to get the original queue on which ip_rput_local 16596 * or ip_rput_data_v6 was called. 16597 */ 16598 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16599 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL); 16600 ill_need_rele = B_TRUE; 16601 16602 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16603 recv_ill = ill_lookup_on_ifindex( 16604 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16605 NULL, NULL, NULL, NULL); 16606 rill_need_rele = B_TRUE; 16607 } else { 16608 recv_ill = ill; 16609 } 16610 16611 if ((ill == NULL) || (recv_ill == NULL)) { 16612 ip0dbg(("ip_fanout_proto_again: interface " 16613 "disappeared\n")); 16614 if (ill != NULL) 16615 ill_refrele(ill); 16616 if (recv_ill != NULL) 16617 ill_refrele(recv_ill); 16618 freemsg(ipsec_mp); 16619 return; 16620 } 16621 } 16622 16623 ASSERT(ill != NULL && recv_ill != NULL); 16624 16625 if (mp->b_datap->db_type == M_CTL) { 16626 /* 16627 * AH/ESP is returning the ICMP message after 16628 * removing their headers. Fanout again till 16629 * it gets to the right protocol. 16630 */ 16631 if (ii->ipsec_in_v4) { 16632 icmph_t *icmph; 16633 int iph_hdr_length; 16634 int hdr_length; 16635 16636 ipha = (ipha_t *)mp->b_rptr; 16637 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16638 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16639 ipha = (ipha_t *)&icmph[1]; 16640 hdr_length = IPH_HDR_LENGTH(ipha); 16641 /* 16642 * icmp_inbound_error_fanout may need to do pullupmsg. 16643 * Reset the type to M_DATA. 16644 */ 16645 mp->b_datap->db_type = M_DATA; 16646 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16647 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16648 B_FALSE, ill, ii->ipsec_in_zoneid); 16649 } else { 16650 icmp6_t *icmp6; 16651 int hdr_length; 16652 16653 ip6h = (ip6_t *)mp->b_rptr; 16654 /* Don't call hdr_length_v6() unless you have to. */ 16655 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16656 hdr_length = ip_hdr_length_v6(mp, ip6h); 16657 else 16658 hdr_length = IPV6_HDR_LEN; 16659 16660 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16661 /* 16662 * icmp_inbound_error_fanout_v6 may need to do 16663 * pullupmsg. Reset the type to M_DATA. 16664 */ 16665 mp->b_datap->db_type = M_DATA; 16666 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16667 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16668 } 16669 if (ill_need_rele) 16670 ill_refrele(ill); 16671 if (rill_need_rele) 16672 ill_refrele(recv_ill); 16673 return; 16674 } 16675 16676 if (ii->ipsec_in_v4) { 16677 ipha = (ipha_t *)mp->b_rptr; 16678 dst = ipha->ipha_dst; 16679 if (CLASSD(dst)) { 16680 /* 16681 * Multicast has to be delivered to all streams. 16682 */ 16683 dst = INADDR_BROADCAST; 16684 } 16685 16686 if (ire == NULL) { 16687 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16688 MBLK_GETLABEL(mp)); 16689 if (ire == NULL) { 16690 if (ill_need_rele) 16691 ill_refrele(ill); 16692 if (rill_need_rele) 16693 ill_refrele(recv_ill); 16694 ip1dbg(("ip_fanout_proto_again: " 16695 "IRE not found")); 16696 freemsg(ipsec_mp); 16697 return; 16698 } 16699 ire_need_rele = B_TRUE; 16700 } 16701 16702 switch (ipha->ipha_protocol) { 16703 case IPPROTO_UDP: 16704 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16705 recv_ill); 16706 if (ire_need_rele) 16707 ire_refrele(ire); 16708 break; 16709 case IPPROTO_TCP: 16710 if (!ire_need_rele) 16711 IRE_REFHOLD(ire); 16712 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 16713 ire, ipsec_mp, 0, ill->ill_rq, NULL); 16714 IRE_REFRELE(ire); 16715 if (mp != NULL) 16716 squeue_enter_chain(GET_SQUEUE(mp), mp, 16717 mp, 1, SQTAG_IP_PROTO_AGAIN); 16718 break; 16719 case IPPROTO_SCTP: 16720 if (!ire_need_rele) 16721 IRE_REFHOLD(ire); 16722 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 16723 ipsec_mp, 0, ill->ill_rq, dst); 16724 break; 16725 default: 16726 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 16727 recv_ill); 16728 if (ire_need_rele) 16729 ire_refrele(ire); 16730 break; 16731 } 16732 } else { 16733 uint32_t rput_flags = 0; 16734 16735 ip6h = (ip6_t *)mp->b_rptr; 16736 v6dstp = &ip6h->ip6_dst; 16737 /* 16738 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 16739 * address. 16740 * 16741 * Currently, we don't store that state in the IPSEC_IN 16742 * message, and we may need to. 16743 */ 16744 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 16745 IP6_IN_LLMCAST : 0); 16746 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 16747 NULL, NULL); 16748 } 16749 if (ill_need_rele) 16750 ill_refrele(ill); 16751 if (rill_need_rele) 16752 ill_refrele(recv_ill); 16753 } 16754 16755 /* 16756 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 16757 * returns 'true' if there are still fragments left on the queue, in 16758 * which case we restart the timer. 16759 */ 16760 void 16761 ill_frag_timer(void *arg) 16762 { 16763 ill_t *ill = (ill_t *)arg; 16764 boolean_t frag_pending; 16765 16766 mutex_enter(&ill->ill_lock); 16767 ASSERT(!ill->ill_fragtimer_executing); 16768 if (ill->ill_state_flags & ILL_CONDEMNED) { 16769 ill->ill_frag_timer_id = 0; 16770 mutex_exit(&ill->ill_lock); 16771 return; 16772 } 16773 ill->ill_fragtimer_executing = 1; 16774 mutex_exit(&ill->ill_lock); 16775 16776 frag_pending = ill_frag_timeout(ill, ip_g_frag_timeout); 16777 16778 /* 16779 * Restart the timer, if we have fragments pending or if someone 16780 * wanted us to be scheduled again. 16781 */ 16782 mutex_enter(&ill->ill_lock); 16783 ill->ill_fragtimer_executing = 0; 16784 ill->ill_frag_timer_id = 0; 16785 if (frag_pending || ill->ill_fragtimer_needrestart) 16786 ill_frag_timer_start(ill); 16787 mutex_exit(&ill->ill_lock); 16788 } 16789 16790 void 16791 ill_frag_timer_start(ill_t *ill) 16792 { 16793 ASSERT(MUTEX_HELD(&ill->ill_lock)); 16794 16795 /* If the ill is closing or opening don't proceed */ 16796 if (ill->ill_state_flags & ILL_CONDEMNED) 16797 return; 16798 16799 if (ill->ill_fragtimer_executing) { 16800 /* 16801 * ill_frag_timer is currently executing. Just record the 16802 * the fact that we want the timer to be restarted. 16803 * ill_frag_timer will post a timeout before it returns, 16804 * ensuring it will be called again. 16805 */ 16806 ill->ill_fragtimer_needrestart = 1; 16807 return; 16808 } 16809 16810 if (ill->ill_frag_timer_id == 0) { 16811 /* 16812 * The timer is neither running nor is the timeout handler 16813 * executing. Post a timeout so that ill_frag_timer will be 16814 * called 16815 */ 16816 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 16817 MSEC_TO_TICK(ip_g_frag_timo_ms >> 1)); 16818 ill->ill_fragtimer_needrestart = 0; 16819 } 16820 } 16821 16822 /* 16823 * This routine is needed for loopback when forwarding multicasts. 16824 * 16825 * IPQoS Notes: 16826 * IPPF processing is done in fanout routines. 16827 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 16828 * processing for IPSec packets is done when it comes back in clear. 16829 * NOTE : The callers of this function need to do the ire_refrele for the 16830 * ire that is being passed in. 16831 */ 16832 void 16833 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 16834 ill_t *recv_ill) 16835 { 16836 ill_t *ill = (ill_t *)q->q_ptr; 16837 uint32_t sum; 16838 uint32_t u1; 16839 uint32_t u2; 16840 int hdr_length; 16841 boolean_t mctl_present; 16842 mblk_t *first_mp = mp; 16843 mblk_t *hada_mp = NULL; 16844 ipha_t *inner_ipha; 16845 16846 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 16847 "ip_rput_locl_start: q %p", q); 16848 16849 ASSERT(ire->ire_ipversion == IPV4_VERSION); 16850 16851 16852 #define rptr ((uchar_t *)ipha) 16853 #define iphs ((uint16_t *)ipha) 16854 16855 /* 16856 * no UDP or TCP packet should come here anymore. 16857 */ 16858 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 16859 (ipha->ipha_protocol != IPPROTO_UDP)); 16860 16861 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 16862 if (mctl_present && 16863 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 16864 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 16865 16866 /* 16867 * It's an IPsec accelerated packet. 16868 * Keep a pointer to the data attributes around until 16869 * we allocate the ipsec_info_t. 16870 */ 16871 IPSECHW_DEBUG(IPSECHW_PKT, 16872 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 16873 hada_mp = first_mp; 16874 hada_mp->b_cont = NULL; 16875 /* 16876 * Since it is accelerated, it comes directly from 16877 * the ill and the data attributes is followed by 16878 * the packet data. 16879 */ 16880 ASSERT(mp->b_datap->db_type != M_CTL); 16881 first_mp = mp; 16882 mctl_present = B_FALSE; 16883 } 16884 16885 /* 16886 * IF M_CTL is not present, then ipsec_in_is_secure 16887 * should return B_TRUE. There is a case where loopback 16888 * packets has an M_CTL in the front with all the 16889 * IPSEC options set to IPSEC_PREF_NEVER - which means 16890 * ipsec_in_is_secure will return B_FALSE. As loopback 16891 * packets never comes here, it is safe to ASSERT the 16892 * following. 16893 */ 16894 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 16895 16896 16897 /* u1 is # words of IP options */ 16898 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 16899 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 16900 16901 if (u1) { 16902 if (!ip_options_cksum(q, mp, ipha, ire)) { 16903 if (hada_mp != NULL) 16904 freemsg(hada_mp); 16905 return; 16906 } 16907 } else { 16908 /* Check the IP header checksum. */ 16909 #define uph ((uint16_t *)ipha) 16910 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 16911 uph[6] + uph[7] + uph[8] + uph[9]; 16912 #undef uph 16913 /* finish doing IP checksum */ 16914 sum = (sum & 0xFFFF) + (sum >> 16); 16915 sum = ~(sum + (sum >> 16)) & 0xFFFF; 16916 /* 16917 * Don't verify header checksum if this packet is coming 16918 * back from AH/ESP as we already did it. 16919 */ 16920 if (!mctl_present && (sum && sum != 0xFFFF)) { 16921 BUMP_MIB(&ip_mib, ipInCksumErrs); 16922 goto drop_pkt; 16923 } 16924 } 16925 16926 /* 16927 * Count for SNMP of inbound packets for ire. As ip_proto_input 16928 * might be called more than once for secure packets, count only 16929 * the first time. 16930 */ 16931 if (!mctl_present) { 16932 UPDATE_IB_PKT_COUNT(ire); 16933 ire->ire_last_used_time = lbolt; 16934 } 16935 16936 /* Check for fragmentation offset. */ 16937 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 16938 u1 = u2 & (IPH_MF | IPH_OFFSET); 16939 if (u1) { 16940 /* 16941 * We re-assemble fragments before we do the AH/ESP 16942 * processing. Thus, M_CTL should not be present 16943 * while we are re-assembling. 16944 */ 16945 ASSERT(!mctl_present); 16946 ASSERT(first_mp == mp); 16947 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 16948 return; 16949 } 16950 /* 16951 * Make sure that first_mp points back to mp as 16952 * the mp we came in with could have changed in 16953 * ip_rput_fragment(). 16954 */ 16955 ipha = (ipha_t *)mp->b_rptr; 16956 first_mp = mp; 16957 } 16958 16959 /* 16960 * Clear hardware checksumming flag as it is currently only 16961 * used by TCP and UDP. 16962 */ 16963 DB_CKSUMFLAGS(mp) = 0; 16964 16965 /* Now we have a complete datagram, destined for this machine. */ 16966 u1 = IPH_HDR_LENGTH(ipha); 16967 switch (ipha->ipha_protocol) { 16968 case IPPROTO_ICMP: { 16969 ire_t *ire_zone; 16970 ilm_t *ilm; 16971 mblk_t *mp1; 16972 zoneid_t last_zoneid; 16973 16974 if (CLASSD(ipha->ipha_dst) && 16975 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 16976 ASSERT(ire->ire_type == IRE_BROADCAST); 16977 /* 16978 * In the multicast case, applications may have joined 16979 * the group from different zones, so we need to deliver 16980 * the packet to each of them. Loop through the 16981 * multicast memberships structures (ilm) on the receive 16982 * ill and send a copy of the packet up each matching 16983 * one. However, we don't do this for multicasts sent on 16984 * the loopback interface (PHYI_LOOPBACK flag set) as 16985 * they must stay in the sender's zone. 16986 * 16987 * ilm_add_v6() ensures that ilms in the same zone are 16988 * contiguous in the ill_ilm list. We use this property 16989 * to avoid sending duplicates needed when two 16990 * applications in the same zone join the same group on 16991 * different logical interfaces: we ignore the ilm if 16992 * its zoneid is the same as the last matching one. 16993 * In addition, the sending of the packet for 16994 * ire_zoneid is delayed until all of the other ilms 16995 * have been exhausted. 16996 */ 16997 last_zoneid = -1; 16998 ILM_WALKER_HOLD(recv_ill); 16999 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17000 ilm = ilm->ilm_next) { 17001 if ((ilm->ilm_flags & ILM_DELETED) || 17002 ipha->ipha_dst != ilm->ilm_addr || 17003 ilm->ilm_zoneid == last_zoneid || 17004 ilm->ilm_zoneid == ire->ire_zoneid || 17005 ilm->ilm_zoneid == ALL_ZONES || 17006 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17007 continue; 17008 mp1 = ip_copymsg(first_mp); 17009 if (mp1 == NULL) 17010 continue; 17011 icmp_inbound(q, mp1, B_TRUE, ill, 17012 0, sum, mctl_present, B_TRUE, 17013 recv_ill, ilm->ilm_zoneid); 17014 last_zoneid = ilm->ilm_zoneid; 17015 } 17016 ILM_WALKER_RELE(recv_ill); 17017 } else if (ire->ire_type == IRE_BROADCAST) { 17018 /* 17019 * In the broadcast case, there may be many zones 17020 * which need a copy of the packet delivered to them. 17021 * There is one IRE_BROADCAST per broadcast address 17022 * and per zone; we walk those using a helper function. 17023 * In addition, the sending of the packet for ire is 17024 * delayed until all of the other ires have been 17025 * processed. 17026 */ 17027 IRB_REFHOLD(ire->ire_bucket); 17028 ire_zone = NULL; 17029 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17030 ire)) != NULL) { 17031 mp1 = ip_copymsg(first_mp); 17032 if (mp1 == NULL) 17033 continue; 17034 17035 UPDATE_IB_PKT_COUNT(ire_zone); 17036 ire_zone->ire_last_used_time = lbolt; 17037 icmp_inbound(q, mp1, B_TRUE, ill, 17038 0, sum, mctl_present, B_TRUE, 17039 recv_ill, ire_zone->ire_zoneid); 17040 } 17041 IRB_REFRELE(ire->ire_bucket); 17042 } 17043 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17044 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17045 ire->ire_zoneid); 17046 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17047 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17048 return; 17049 } 17050 case IPPROTO_IGMP: 17051 /* 17052 * If we are not willing to accept IGMP packets in clear, 17053 * then check with global policy. 17054 */ 17055 if (igmp_accept_clear_messages == 0) { 17056 first_mp = ipsec_check_global_policy(first_mp, NULL, 17057 ipha, NULL, mctl_present); 17058 if (first_mp == NULL) 17059 return; 17060 } 17061 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17062 freemsg(first_mp); 17063 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17064 BUMP_MIB(&ip_mib, ipInDiscards); 17065 return; 17066 } 17067 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17068 /* Bad packet - discarded by igmp_input */ 17069 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17070 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17071 if (mctl_present) 17072 freeb(first_mp); 17073 return; 17074 } 17075 /* 17076 * igmp_input() may have returned the pulled up message. 17077 * So first_mp and ipha need to be reinitialized. 17078 */ 17079 ipha = (ipha_t *)mp->b_rptr; 17080 if (mctl_present) 17081 first_mp->b_cont = mp; 17082 else 17083 first_mp = mp; 17084 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 17085 /* No user-level listener for IGMP packets */ 17086 goto drop_pkt; 17087 } 17088 /* deliver to local raw users */ 17089 break; 17090 case IPPROTO_PIM: 17091 /* 17092 * If we are not willing to accept PIM packets in clear, 17093 * then check with global policy. 17094 */ 17095 if (pim_accept_clear_messages == 0) { 17096 first_mp = ipsec_check_global_policy(first_mp, NULL, 17097 ipha, NULL, mctl_present); 17098 if (first_mp == NULL) 17099 return; 17100 } 17101 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17102 freemsg(first_mp); 17103 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17104 BUMP_MIB(&ip_mib, ipInDiscards); 17105 return; 17106 } 17107 if (pim_input(q, mp) != 0) { 17108 /* Bad packet - discarded by pim_input */ 17109 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17110 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17111 if (mctl_present) 17112 freeb(first_mp); 17113 return; 17114 } 17115 17116 /* 17117 * pim_input() may have pulled up the message so ipha needs to 17118 * be reinitialized. 17119 */ 17120 ipha = (ipha_t *)mp->b_rptr; 17121 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 17122 /* No user-level listener for PIM packets */ 17123 goto drop_pkt; 17124 } 17125 /* deliver to local raw users */ 17126 break; 17127 case IPPROTO_ENCAP: 17128 /* 17129 * Handle self-encapsulated packets (IP-in-IP where 17130 * the inner addresses == the outer addresses). 17131 */ 17132 hdr_length = IPH_HDR_LENGTH(ipha); 17133 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17134 mp->b_wptr) { 17135 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17136 sizeof (ipha_t) - mp->b_rptr)) { 17137 BUMP_MIB(&ip_mib, ipInDiscards); 17138 freemsg(first_mp); 17139 return; 17140 } 17141 ipha = (ipha_t *)mp->b_rptr; 17142 } 17143 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17144 /* 17145 * Check the sanity of the inner IP header. 17146 */ 17147 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17148 BUMP_MIB(&ip_mib, ipInDiscards); 17149 freemsg(first_mp); 17150 return; 17151 } 17152 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17153 BUMP_MIB(&ip_mib, ipInDiscards); 17154 freemsg(first_mp); 17155 return; 17156 } 17157 if (inner_ipha->ipha_src == ipha->ipha_src && 17158 inner_ipha->ipha_dst == ipha->ipha_dst) { 17159 ipsec_in_t *ii; 17160 17161 /* 17162 * Self-encapsulated tunnel packet. Remove 17163 * the outer IP header and fanout again. 17164 * We also need to make sure that the inner 17165 * header is pulled up until options. 17166 */ 17167 mp->b_rptr = (uchar_t *)inner_ipha; 17168 ipha = inner_ipha; 17169 hdr_length = IPH_HDR_LENGTH(ipha); 17170 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17171 if (!pullupmsg(mp, (uchar_t *)ipha + 17172 + hdr_length - mp->b_rptr)) { 17173 freemsg(first_mp); 17174 return; 17175 } 17176 ipha = (ipha_t *)mp->b_rptr; 17177 } 17178 if (!mctl_present) { 17179 ASSERT(first_mp == mp); 17180 /* 17181 * This means that somebody is sending 17182 * Self-encapsualted packets without AH/ESP. 17183 * If AH/ESP was present, we would have already 17184 * allocated the first_mp. 17185 */ 17186 if ((first_mp = ipsec_in_alloc(B_TRUE)) == 17187 NULL) { 17188 ip1dbg(("ip_proto_input: IPSEC_IN " 17189 "allocation failure.\n")); 17190 BUMP_MIB(&ip_mib, ipInDiscards); 17191 freemsg(mp); 17192 return; 17193 } 17194 first_mp->b_cont = mp; 17195 } 17196 /* 17197 * We generally store the ill_index if we need to 17198 * do IPSEC processing as we lose the ill queue when 17199 * we come back. But in this case, we never should 17200 * have to store the ill_index here as it should have 17201 * been stored previously when we processed the 17202 * AH/ESP header in this routine or for non-ipsec 17203 * cases, we still have the queue. But for some bad 17204 * packets from the wire, we can get to IPSEC after 17205 * this and we better store the index for that case. 17206 */ 17207 ill = (ill_t *)q->q_ptr; 17208 ii = (ipsec_in_t *)first_mp->b_rptr; 17209 ii->ipsec_in_ill_index = 17210 ill->ill_phyint->phyint_ifindex; 17211 ii->ipsec_in_rill_index = 17212 recv_ill->ill_phyint->phyint_ifindex; 17213 if (ii->ipsec_in_decaps) { 17214 /* 17215 * This packet is self-encapsulated multiple 17216 * times. We don't want to recurse infinitely. 17217 * To keep it simple, drop the packet. 17218 */ 17219 BUMP_MIB(&ip_mib, ipInDiscards); 17220 freemsg(first_mp); 17221 return; 17222 } 17223 ii->ipsec_in_decaps = B_TRUE; 17224 ip_proto_input(q, first_mp, ipha, ire, recv_ill); 17225 return; 17226 } 17227 break; 17228 case IPPROTO_AH: 17229 case IPPROTO_ESP: { 17230 /* 17231 * Fast path for AH/ESP. If this is the first time 17232 * we are sending a datagram to AH/ESP, allocate 17233 * a IPSEC_IN message and prepend it. Otherwise, 17234 * just fanout. 17235 */ 17236 17237 int ipsec_rc; 17238 ipsec_in_t *ii; 17239 17240 IP_STAT(ipsec_proto_ahesp); 17241 if (!mctl_present) { 17242 ASSERT(first_mp == mp); 17243 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 17244 ip1dbg(("ip_proto_input: IPSEC_IN " 17245 "allocation failure.\n")); 17246 freemsg(hada_mp); /* okay ifnull */ 17247 BUMP_MIB(&ip_mib, ipInDiscards); 17248 freemsg(mp); 17249 return; 17250 } 17251 /* 17252 * Store the ill_index so that when we come back 17253 * from IPSEC we ride on the same queue. 17254 */ 17255 ill = (ill_t *)q->q_ptr; 17256 ii = (ipsec_in_t *)first_mp->b_rptr; 17257 ii->ipsec_in_ill_index = 17258 ill->ill_phyint->phyint_ifindex; 17259 ii->ipsec_in_rill_index = 17260 recv_ill->ill_phyint->phyint_ifindex; 17261 first_mp->b_cont = mp; 17262 /* 17263 * Cache hardware acceleration info. 17264 */ 17265 if (hada_mp != NULL) { 17266 IPSECHW_DEBUG(IPSECHW_PKT, 17267 ("ip_rput_local: caching data attr.\n")); 17268 ii->ipsec_in_accelerated = B_TRUE; 17269 ii->ipsec_in_da = hada_mp; 17270 hada_mp = NULL; 17271 } 17272 } else { 17273 ii = (ipsec_in_t *)first_mp->b_rptr; 17274 } 17275 17276 if (!ipsec_loaded()) { 17277 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17278 ire->ire_zoneid); 17279 return; 17280 } 17281 17282 /* select inbound SA and have IPsec process the pkt */ 17283 if (ipha->ipha_protocol == IPPROTO_ESP) { 17284 esph_t *esph = ipsec_inbound_esp_sa(first_mp); 17285 if (esph == NULL) 17286 return; 17287 ASSERT(ii->ipsec_in_esp_sa != NULL); 17288 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17289 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17290 first_mp, esph); 17291 } else { 17292 ah_t *ah = ipsec_inbound_ah_sa(first_mp); 17293 if (ah == NULL) 17294 return; 17295 ASSERT(ii->ipsec_in_ah_sa != NULL); 17296 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17297 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17298 first_mp, ah); 17299 } 17300 17301 switch (ipsec_rc) { 17302 case IPSEC_STATUS_SUCCESS: 17303 break; 17304 case IPSEC_STATUS_FAILED: 17305 BUMP_MIB(&ip_mib, ipInDiscards); 17306 /* FALLTHRU */ 17307 case IPSEC_STATUS_PENDING: 17308 return; 17309 } 17310 /* we're done with IPsec processing, send it up */ 17311 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17312 return; 17313 } 17314 default: 17315 break; 17316 } 17317 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17318 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17319 ire->ire_zoneid)); 17320 goto drop_pkt; 17321 } 17322 /* 17323 * Handle protocols with which IP is less intimate. There 17324 * can be more than one stream bound to a particular 17325 * protocol. When this is the case, each one gets a copy 17326 * of any incoming packets. 17327 */ 17328 ip_fanout_proto(q, first_mp, ill, ipha, 17329 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17330 B_TRUE, recv_ill, ire->ire_zoneid); 17331 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17332 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17333 return; 17334 17335 drop_pkt: 17336 freemsg(first_mp); 17337 if (hada_mp != NULL) 17338 freeb(hada_mp); 17339 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17340 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17341 #undef rptr 17342 #undef iphs 17343 17344 } 17345 17346 /* 17347 * Update any source route, record route or timestamp options. 17348 * Check that we are at end of strict source route. 17349 * The options have already been checked for sanity in ip_rput_options(). 17350 */ 17351 static boolean_t 17352 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 17353 { 17354 ipoptp_t opts; 17355 uchar_t *opt; 17356 uint8_t optval; 17357 uint8_t optlen; 17358 ipaddr_t dst; 17359 uint32_t ts; 17360 ire_t *dst_ire; 17361 timestruc_t now; 17362 zoneid_t zoneid; 17363 ill_t *ill; 17364 17365 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17366 17367 ip2dbg(("ip_rput_local_options\n")); 17368 17369 for (optval = ipoptp_first(&opts, ipha); 17370 optval != IPOPT_EOL; 17371 optval = ipoptp_next(&opts)) { 17372 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17373 opt = opts.ipoptp_cur; 17374 optlen = opts.ipoptp_len; 17375 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17376 optval, optlen)); 17377 switch (optval) { 17378 uint32_t off; 17379 case IPOPT_SSRR: 17380 case IPOPT_LSRR: 17381 off = opt[IPOPT_OFFSET]; 17382 off--; 17383 if (optlen < IP_ADDR_LEN || 17384 off > optlen - IP_ADDR_LEN) { 17385 /* End of source route */ 17386 ip1dbg(("ip_rput_local_options: end of SR\n")); 17387 break; 17388 } 17389 /* 17390 * This will only happen if two consecutive entries 17391 * in the source route contains our address or if 17392 * it is a packet with a loose source route which 17393 * reaches us before consuming the whole source route 17394 */ 17395 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17396 if (optval == IPOPT_SSRR) { 17397 goto bad_src_route; 17398 } 17399 /* 17400 * Hack: instead of dropping the packet truncate the 17401 * source route to what has been used by filling the 17402 * rest with IPOPT_NOP. 17403 */ 17404 opt[IPOPT_OLEN] = (uint8_t)off; 17405 while (off < optlen) { 17406 opt[off++] = IPOPT_NOP; 17407 } 17408 break; 17409 case IPOPT_RR: 17410 off = opt[IPOPT_OFFSET]; 17411 off--; 17412 if (optlen < IP_ADDR_LEN || 17413 off > optlen - IP_ADDR_LEN) { 17414 /* No more room - ignore */ 17415 ip1dbg(( 17416 "ip_rput_local_options: end of RR\n")); 17417 break; 17418 } 17419 bcopy(&ire->ire_src_addr, (char *)opt + off, 17420 IP_ADDR_LEN); 17421 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17422 break; 17423 case IPOPT_TS: 17424 /* Insert timestamp if there is romm */ 17425 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17426 case IPOPT_TS_TSONLY: 17427 off = IPOPT_TS_TIMELEN; 17428 break; 17429 case IPOPT_TS_PRESPEC: 17430 case IPOPT_TS_PRESPEC_RFC791: 17431 /* Verify that the address matched */ 17432 off = opt[IPOPT_OFFSET] - 1; 17433 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17434 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17435 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 17436 if (dst_ire == NULL) { 17437 /* Not for us */ 17438 break; 17439 } 17440 ire_refrele(dst_ire); 17441 /* FALLTHRU */ 17442 case IPOPT_TS_TSANDADDR: 17443 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17444 break; 17445 default: 17446 /* 17447 * ip_*put_options should have already 17448 * dropped this packet. 17449 */ 17450 cmn_err(CE_PANIC, "ip_rput_local_options: " 17451 "unknown IT - bug in ip_rput_options?\n"); 17452 return (B_TRUE); /* Keep "lint" happy */ 17453 } 17454 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17455 /* Increase overflow counter */ 17456 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17457 opt[IPOPT_POS_OV_FLG] = 17458 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17459 (off << 4)); 17460 break; 17461 } 17462 off = opt[IPOPT_OFFSET] - 1; 17463 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17464 case IPOPT_TS_PRESPEC: 17465 case IPOPT_TS_PRESPEC_RFC791: 17466 case IPOPT_TS_TSANDADDR: 17467 bcopy(&ire->ire_src_addr, (char *)opt + off, 17468 IP_ADDR_LEN); 17469 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17470 /* FALLTHRU */ 17471 case IPOPT_TS_TSONLY: 17472 off = opt[IPOPT_OFFSET] - 1; 17473 /* Compute # of milliseconds since midnight */ 17474 gethrestime(&now); 17475 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17476 now.tv_nsec / (NANOSEC / MILLISEC); 17477 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17478 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17479 break; 17480 } 17481 break; 17482 } 17483 } 17484 return (B_TRUE); 17485 17486 bad_src_route: 17487 q = WR(q); 17488 if (q->q_next != NULL) 17489 ill = q->q_ptr; 17490 else 17491 ill = NULL; 17492 17493 /* make sure we clear any indication of a hardware checksum */ 17494 DB_CKSUMFLAGS(mp) = 0; 17495 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill); 17496 if (zoneid == ALL_ZONES) 17497 freemsg(mp); 17498 else 17499 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 17500 return (B_FALSE); 17501 17502 } 17503 17504 /* 17505 * Process IP options in an inbound packet. If an option affects the 17506 * effective destination address, return the next hop address via dstp. 17507 * Returns -1 if something fails in which case an ICMP error has been sent 17508 * and mp freed. 17509 */ 17510 static int 17511 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp) 17512 { 17513 ipoptp_t opts; 17514 uchar_t *opt; 17515 uint8_t optval; 17516 uint8_t optlen; 17517 ipaddr_t dst; 17518 intptr_t code = 0; 17519 ire_t *ire = NULL; 17520 zoneid_t zoneid; 17521 ill_t *ill; 17522 17523 ip2dbg(("ip_rput_options\n")); 17524 dst = ipha->ipha_dst; 17525 for (optval = ipoptp_first(&opts, ipha); 17526 optval != IPOPT_EOL; 17527 optval = ipoptp_next(&opts)) { 17528 opt = opts.ipoptp_cur; 17529 optlen = opts.ipoptp_len; 17530 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17531 optval, optlen)); 17532 /* 17533 * Note: we need to verify the checksum before we 17534 * modify anything thus this routine only extracts the next 17535 * hop dst from any source route. 17536 */ 17537 switch (optval) { 17538 uint32_t off; 17539 case IPOPT_SSRR: 17540 case IPOPT_LSRR: 17541 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17542 ALL_ZONES, NULL, MATCH_IRE_TYPE); 17543 if (ire == NULL) { 17544 if (optval == IPOPT_SSRR) { 17545 ip1dbg(("ip_rput_options: not next" 17546 " strict source route 0x%x\n", 17547 ntohl(dst))); 17548 code = (char *)&ipha->ipha_dst - 17549 (char *)ipha; 17550 goto param_prob; /* RouterReq's */ 17551 } 17552 ip2dbg(("ip_rput_options: " 17553 "not next source route 0x%x\n", 17554 ntohl(dst))); 17555 break; 17556 } 17557 ire_refrele(ire); 17558 17559 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17560 ip1dbg(( 17561 "ip_rput_options: bad option offset\n")); 17562 code = (char *)&opt[IPOPT_OLEN] - 17563 (char *)ipha; 17564 goto param_prob; 17565 } 17566 off = opt[IPOPT_OFFSET]; 17567 off--; 17568 redo_srr: 17569 if (optlen < IP_ADDR_LEN || 17570 off > optlen - IP_ADDR_LEN) { 17571 /* End of source route */ 17572 ip1dbg(("ip_rput_options: end of SR\n")); 17573 break; 17574 } 17575 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17576 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17577 ntohl(dst))); 17578 17579 /* 17580 * Check if our address is present more than 17581 * once as consecutive hops in source route. 17582 * XXX verify per-interface ip_forwarding 17583 * for source route? 17584 */ 17585 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17586 ALL_ZONES, NULL, MATCH_IRE_TYPE); 17587 17588 if (ire != NULL) { 17589 ire_refrele(ire); 17590 off += IP_ADDR_LEN; 17591 goto redo_srr; 17592 } 17593 17594 if (dst == htonl(INADDR_LOOPBACK)) { 17595 ip1dbg(("ip_rput_options: loopback addr in " 17596 "source route!\n")); 17597 goto bad_src_route; 17598 } 17599 /* 17600 * For strict: verify that dst is directly 17601 * reachable. 17602 */ 17603 if (optval == IPOPT_SSRR) { 17604 ire = ire_ftable_lookup(dst, 0, 0, 17605 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17606 MBLK_GETLABEL(mp), 17607 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 17608 if (ire == NULL) { 17609 ip1dbg(("ip_rput_options: SSRR not " 17610 "directly reachable: 0x%x\n", 17611 ntohl(dst))); 17612 goto bad_src_route; 17613 } 17614 ire_refrele(ire); 17615 } 17616 /* 17617 * Defer update of the offset and the record route 17618 * until the packet is forwarded. 17619 */ 17620 break; 17621 case IPOPT_RR: 17622 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17623 ip1dbg(( 17624 "ip_rput_options: bad option offset\n")); 17625 code = (char *)&opt[IPOPT_OLEN] - 17626 (char *)ipha; 17627 goto param_prob; 17628 } 17629 break; 17630 case IPOPT_TS: 17631 /* 17632 * Verify that length >= 5 and that there is either 17633 * room for another timestamp or that the overflow 17634 * counter is not maxed out. 17635 */ 17636 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17637 if (optlen < IPOPT_MINLEN_IT) { 17638 goto param_prob; 17639 } 17640 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17641 ip1dbg(( 17642 "ip_rput_options: bad option offset\n")); 17643 code = (char *)&opt[IPOPT_OFFSET] - 17644 (char *)ipha; 17645 goto param_prob; 17646 } 17647 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17648 case IPOPT_TS_TSONLY: 17649 off = IPOPT_TS_TIMELEN; 17650 break; 17651 case IPOPT_TS_TSANDADDR: 17652 case IPOPT_TS_PRESPEC: 17653 case IPOPT_TS_PRESPEC_RFC791: 17654 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17655 break; 17656 default: 17657 code = (char *)&opt[IPOPT_POS_OV_FLG] - 17658 (char *)ipha; 17659 goto param_prob; 17660 } 17661 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 17662 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 17663 /* 17664 * No room and the overflow counter is 15 17665 * already. 17666 */ 17667 goto param_prob; 17668 } 17669 break; 17670 } 17671 } 17672 17673 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 17674 *dstp = dst; 17675 return (0); 17676 } 17677 17678 ip1dbg(("ip_rput_options: error processing IP options.")); 17679 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 17680 17681 param_prob: 17682 q = WR(q); 17683 if (q->q_next != NULL) 17684 ill = q->q_ptr; 17685 else 17686 ill = NULL; 17687 17688 /* make sure we clear any indication of a hardware checksum */ 17689 DB_CKSUMFLAGS(mp) = 0; 17690 /* Don't know whether this is for non-global or global/forwarding */ 17691 zoneid = ipif_lookup_addr_zoneid(dst, ill); 17692 if (zoneid == ALL_ZONES) 17693 freemsg(mp); 17694 else 17695 icmp_param_problem(q, mp, (uint8_t)code, zoneid); 17696 return (-1); 17697 17698 bad_src_route: 17699 q = WR(q); 17700 if (q->q_next != NULL) 17701 ill = q->q_ptr; 17702 else 17703 ill = NULL; 17704 17705 /* make sure we clear any indication of a hardware checksum */ 17706 DB_CKSUMFLAGS(mp) = 0; 17707 zoneid = ipif_lookup_addr_zoneid(dst, ill); 17708 if (zoneid == ALL_ZONES) 17709 freemsg(mp); 17710 else 17711 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 17712 return (-1); 17713 } 17714 17715 /* 17716 * IP & ICMP info in >=14 msg's ... 17717 * - ip fixed part (mib2_ip_t) 17718 * - icmp fixed part (mib2_icmp_t) 17719 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 17720 * - ipRouteEntryTable (ip 21) all IPv4 IREs 17721 * - ipNetToMediaEntryTable (ip 22) IPv4 IREs for on-link destinations 17722 * - ipRouteAttributeTable (ip 102) labeled routes 17723 * - ip multicast membership (ip_member_t) 17724 * - ip multicast source filtering (ip_grpsrc_t) 17725 * - igmp fixed part (struct igmpstat) 17726 * - multicast routing stats (struct mrtstat) 17727 * - multicast routing vifs (array of struct vifctl) 17728 * - multicast routing routes (array of struct mfcctl) 17729 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 17730 * One per ill plus one generic 17731 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 17732 * One per ill plus one generic 17733 * - ipv6RouteEntry all IPv6 IREs 17734 * - ipv6RouteAttributeTable (ip6 102) labeled routes 17735 * - ipv6NetToMediaEntry all Neighbor Cache entries 17736 * - ipv6AddrEntry all IPv6 ipifs 17737 * - ipv6 multicast membership (ipv6_member_t) 17738 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 17739 * 17740 * IP_ROUTE and IP_MEDIA are augmented in arp to include arp cache entries not 17741 * already present. 17742 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 17743 * already filled in by the caller. 17744 * Return value of 0 indicates that no messages were sent and caller 17745 * should free mpctl. 17746 */ 17747 int 17748 ip_snmp_get(queue_t *q, mblk_t *mpctl) 17749 { 17750 17751 if (mpctl == NULL || mpctl->b_cont == NULL) { 17752 return (0); 17753 } 17754 17755 if ((mpctl = ip_snmp_get_mib2_ip(q, mpctl)) == NULL) { 17756 return (1); 17757 } 17758 17759 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl)) == NULL) { 17760 return (1); 17761 } 17762 17763 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl)) == NULL) { 17764 return (1); 17765 } 17766 17767 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl)) == NULL) { 17768 return (1); 17769 } 17770 17771 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl)) == NULL) { 17772 return (1); 17773 } 17774 17775 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl)) == NULL) { 17776 return (1); 17777 } 17778 17779 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl)) == NULL) { 17780 return (1); 17781 } 17782 17783 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl)) == NULL) { 17784 return (1); 17785 } 17786 17787 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl)) == NULL) { 17788 return (1); 17789 } 17790 17791 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl)) == NULL) { 17792 return (1); 17793 } 17794 17795 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl)) == NULL) { 17796 return (1); 17797 } 17798 17799 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl)) == NULL) { 17800 return (1); 17801 } 17802 17803 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl)) == NULL) { 17804 return (1); 17805 } 17806 17807 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl)) == NULL) { 17808 return (1); 17809 } 17810 17811 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl)) == NULL) { 17812 return (1); 17813 } 17814 17815 if ((mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl)) == NULL) { 17816 return (1); 17817 } 17818 17819 if ((mpctl = sctp_snmp_get_mib2(q, mpctl)) == NULL) { 17820 return (1); 17821 } 17822 freemsg(mpctl); 17823 return (1); 17824 } 17825 17826 17827 /* Get global IPv4 statistics */ 17828 static mblk_t * 17829 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl) 17830 { 17831 struct opthdr *optp; 17832 mblk_t *mp2ctl; 17833 17834 /* 17835 * make a copy of the original message 17836 */ 17837 mp2ctl = copymsg(mpctl); 17838 17839 /* fixed length IP structure... */ 17840 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17841 optp->level = MIB2_IP; 17842 optp->name = 0; 17843 SET_MIB(ip_mib.ipForwarding, 17844 (WE_ARE_FORWARDING ? 1 : 2)); 17845 SET_MIB(ip_mib.ipDefaultTTL, 17846 (uint32_t)ip_def_ttl); 17847 SET_MIB(ip_mib.ipReasmTimeout, 17848 ip_g_frag_timeout); 17849 SET_MIB(ip_mib.ipAddrEntrySize, 17850 sizeof (mib2_ipAddrEntry_t)); 17851 SET_MIB(ip_mib.ipRouteEntrySize, 17852 sizeof (mib2_ipRouteEntry_t)); 17853 SET_MIB(ip_mib.ipNetToMediaEntrySize, 17854 sizeof (mib2_ipNetToMediaEntry_t)); 17855 SET_MIB(ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 17856 SET_MIB(ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 17857 SET_MIB(ip_mib.ipRouteAttributeSize, sizeof (mib2_ipAttributeEntry_t)); 17858 SET_MIB(ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 17859 if (!snmp_append_data(mpctl->b_cont, (char *)&ip_mib, 17860 (int)sizeof (ip_mib))) { 17861 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 17862 (uint_t)sizeof (ip_mib))); 17863 } 17864 17865 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17866 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 17867 (int)optp->level, (int)optp->name, (int)optp->len)); 17868 qreply(q, mpctl); 17869 return (mp2ctl); 17870 } 17871 17872 /* Global IPv4 ICMP statistics */ 17873 static mblk_t * 17874 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl) 17875 { 17876 struct opthdr *optp; 17877 mblk_t *mp2ctl; 17878 17879 /* 17880 * Make a copy of the original message 17881 */ 17882 mp2ctl = copymsg(mpctl); 17883 17884 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17885 optp->level = MIB2_ICMP; 17886 optp->name = 0; 17887 if (!snmp_append_data(mpctl->b_cont, (char *)&icmp_mib, 17888 (int)sizeof (icmp_mib))) { 17889 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 17890 (uint_t)sizeof (icmp_mib))); 17891 } 17892 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17893 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 17894 (int)optp->level, (int)optp->name, (int)optp->len)); 17895 qreply(q, mpctl); 17896 return (mp2ctl); 17897 } 17898 17899 /* Global IPv4 IGMP statistics */ 17900 static mblk_t * 17901 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl) 17902 { 17903 struct opthdr *optp; 17904 mblk_t *mp2ctl; 17905 17906 /* 17907 * make a copy of the original message 17908 */ 17909 mp2ctl = copymsg(mpctl); 17910 17911 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17912 optp->level = EXPER_IGMP; 17913 optp->name = 0; 17914 if (!snmp_append_data(mpctl->b_cont, (char *)&igmpstat, 17915 (int)sizeof (igmpstat))) { 17916 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 17917 (uint_t)sizeof (igmpstat))); 17918 } 17919 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17920 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 17921 (int)optp->level, (int)optp->name, (int)optp->len)); 17922 qreply(q, mpctl); 17923 return (mp2ctl); 17924 } 17925 17926 /* Global IPv4 Multicast Routing statistics */ 17927 static mblk_t * 17928 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl) 17929 { 17930 struct opthdr *optp; 17931 mblk_t *mp2ctl; 17932 17933 /* 17934 * make a copy of the original message 17935 */ 17936 mp2ctl = copymsg(mpctl); 17937 17938 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17939 optp->level = EXPER_DVMRP; 17940 optp->name = 0; 17941 if (!ip_mroute_stats(mpctl->b_cont)) { 17942 ip0dbg(("ip_mroute_stats: failed\n")); 17943 } 17944 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17945 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 17946 (int)optp->level, (int)optp->name, (int)optp->len)); 17947 qreply(q, mpctl); 17948 return (mp2ctl); 17949 } 17950 17951 /* IPv4 address information */ 17952 static mblk_t * 17953 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl) 17954 { 17955 struct opthdr *optp; 17956 mblk_t *mp2ctl; 17957 mblk_t *mp_tail = NULL; 17958 ill_t *ill; 17959 ipif_t *ipif; 17960 uint_t bitval; 17961 mib2_ipAddrEntry_t mae; 17962 zoneid_t zoneid; 17963 ill_walk_context_t ctx; 17964 17965 /* 17966 * make a copy of the original message 17967 */ 17968 mp2ctl = copymsg(mpctl); 17969 17970 /* ipAddrEntryTable */ 17971 17972 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17973 optp->level = MIB2_IP; 17974 optp->name = MIB2_IP_ADDR; 17975 zoneid = Q_TO_CONN(q)->conn_zoneid; 17976 17977 rw_enter(&ill_g_lock, RW_READER); 17978 ill = ILL_START_WALK_V4(&ctx); 17979 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17980 for (ipif = ill->ill_ipif; ipif != NULL; 17981 ipif = ipif->ipif_next) { 17982 if (ipif->ipif_zoneid != zoneid && 17983 ipif->ipif_zoneid != ALL_ZONES) 17984 continue; 17985 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 17986 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 17987 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 17988 17989 (void) ipif_get_name(ipif, 17990 mae.ipAdEntIfIndex.o_bytes, 17991 OCTET_LENGTH); 17992 mae.ipAdEntIfIndex.o_length = 17993 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 17994 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 17995 mae.ipAdEntNetMask = ipif->ipif_net_mask; 17996 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 17997 mae.ipAdEntInfo.ae_subnet_len = 17998 ip_mask_to_plen(ipif->ipif_net_mask); 17999 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18000 for (bitval = 1; 18001 bitval && 18002 !(bitval & ipif->ipif_brd_addr); 18003 bitval <<= 1) 18004 noop; 18005 mae.ipAdEntBcastAddr = bitval; 18006 mae.ipAdEntReasmMaxSize = 65535; 18007 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18008 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18009 mae.ipAdEntInfo.ae_broadcast_addr = 18010 ipif->ipif_brd_addr; 18011 mae.ipAdEntInfo.ae_pp_dst_addr = 18012 ipif->ipif_pp_dst_addr; 18013 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18014 ill->ill_flags | ill->ill_phyint->phyint_flags; 18015 18016 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18017 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18018 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18019 "allocate %u bytes\n", 18020 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18021 } 18022 } 18023 } 18024 rw_exit(&ill_g_lock); 18025 18026 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18027 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18028 (int)optp->level, (int)optp->name, (int)optp->len)); 18029 qreply(q, mpctl); 18030 return (mp2ctl); 18031 } 18032 18033 /* IPv6 address information */ 18034 static mblk_t * 18035 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl) 18036 { 18037 struct opthdr *optp; 18038 mblk_t *mp2ctl; 18039 mblk_t *mp_tail = NULL; 18040 ill_t *ill; 18041 ipif_t *ipif; 18042 mib2_ipv6AddrEntry_t mae6; 18043 zoneid_t zoneid; 18044 ill_walk_context_t ctx; 18045 18046 /* 18047 * make a copy of the original message 18048 */ 18049 mp2ctl = copymsg(mpctl); 18050 18051 /* ipv6AddrEntryTable */ 18052 18053 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18054 optp->level = MIB2_IP6; 18055 optp->name = MIB2_IP6_ADDR; 18056 zoneid = Q_TO_CONN(q)->conn_zoneid; 18057 18058 rw_enter(&ill_g_lock, RW_READER); 18059 ill = ILL_START_WALK_V6(&ctx); 18060 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18061 for (ipif = ill->ill_ipif; ipif != NULL; 18062 ipif = ipif->ipif_next) { 18063 if (ipif->ipif_zoneid != zoneid && 18064 ipif->ipif_zoneid != ALL_ZONES) 18065 continue; 18066 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18067 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18068 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18069 18070 (void) ipif_get_name(ipif, 18071 mae6.ipv6AddrIfIndex.o_bytes, 18072 OCTET_LENGTH); 18073 mae6.ipv6AddrIfIndex.o_length = 18074 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18075 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18076 mae6.ipv6AddrPfxLength = 18077 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18078 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18079 mae6.ipv6AddrInfo.ae_subnet_len = 18080 mae6.ipv6AddrPfxLength; 18081 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18082 18083 /* Type: stateless(1), stateful(2), unknown(3) */ 18084 if (ipif->ipif_flags & IPIF_ADDRCONF) 18085 mae6.ipv6AddrType = 1; 18086 else 18087 mae6.ipv6AddrType = 2; 18088 /* Anycast: true(1), false(2) */ 18089 if (ipif->ipif_flags & IPIF_ANYCAST) 18090 mae6.ipv6AddrAnycastFlag = 1; 18091 else 18092 mae6.ipv6AddrAnycastFlag = 2; 18093 18094 /* 18095 * Address status: preferred(1), deprecated(2), 18096 * invalid(3), inaccessible(4), unknown(5) 18097 */ 18098 if (ipif->ipif_flags & IPIF_NOLOCAL) 18099 mae6.ipv6AddrStatus = 3; 18100 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18101 mae6.ipv6AddrStatus = 2; 18102 else 18103 mae6.ipv6AddrStatus = 1; 18104 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18105 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18106 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18107 ipif->ipif_v6pp_dst_addr; 18108 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18109 ill->ill_flags | ill->ill_phyint->phyint_flags; 18110 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18111 (char *)&mae6, 18112 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18113 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18114 "allocate %u bytes\n", 18115 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18116 } 18117 } 18118 } 18119 rw_exit(&ill_g_lock); 18120 18121 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18122 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18123 (int)optp->level, (int)optp->name, (int)optp->len)); 18124 qreply(q, mpctl); 18125 return (mp2ctl); 18126 } 18127 18128 /* IPv4 multicast group membership. */ 18129 static mblk_t * 18130 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl) 18131 { 18132 struct opthdr *optp; 18133 mblk_t *mp2ctl; 18134 ill_t *ill; 18135 ipif_t *ipif; 18136 ilm_t *ilm; 18137 ip_member_t ipm; 18138 mblk_t *mp_tail = NULL; 18139 ill_walk_context_t ctx; 18140 zoneid_t zoneid; 18141 18142 /* 18143 * make a copy of the original message 18144 */ 18145 mp2ctl = copymsg(mpctl); 18146 zoneid = Q_TO_CONN(q)->conn_zoneid; 18147 18148 /* ipGroupMember table */ 18149 optp = (struct opthdr *)&mpctl->b_rptr[ 18150 sizeof (struct T_optmgmt_ack)]; 18151 optp->level = MIB2_IP; 18152 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18153 18154 rw_enter(&ill_g_lock, RW_READER); 18155 ill = ILL_START_WALK_V4(&ctx); 18156 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18157 ILM_WALKER_HOLD(ill); 18158 for (ipif = ill->ill_ipif; ipif != NULL; 18159 ipif = ipif->ipif_next) { 18160 if (ipif->ipif_zoneid != zoneid && 18161 ipif->ipif_zoneid != ALL_ZONES) 18162 continue; /* not this zone */ 18163 (void) ipif_get_name(ipif, 18164 ipm.ipGroupMemberIfIndex.o_bytes, 18165 OCTET_LENGTH); 18166 ipm.ipGroupMemberIfIndex.o_length = 18167 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18168 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18169 ASSERT(ilm->ilm_ipif != NULL); 18170 ASSERT(ilm->ilm_ill == NULL); 18171 if (ilm->ilm_ipif != ipif) 18172 continue; 18173 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18174 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18175 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18176 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18177 (char *)&ipm, (int)sizeof (ipm))) { 18178 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18179 "failed to allocate %u bytes\n", 18180 (uint_t)sizeof (ipm))); 18181 } 18182 } 18183 } 18184 ILM_WALKER_RELE(ill); 18185 } 18186 rw_exit(&ill_g_lock); 18187 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18188 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18189 (int)optp->level, (int)optp->name, (int)optp->len)); 18190 qreply(q, mpctl); 18191 return (mp2ctl); 18192 } 18193 18194 /* IPv6 multicast group membership. */ 18195 static mblk_t * 18196 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl) 18197 { 18198 struct opthdr *optp; 18199 mblk_t *mp2ctl; 18200 ill_t *ill; 18201 ilm_t *ilm; 18202 ipv6_member_t ipm6; 18203 mblk_t *mp_tail = NULL; 18204 ill_walk_context_t ctx; 18205 zoneid_t zoneid; 18206 18207 /* 18208 * make a copy of the original message 18209 */ 18210 mp2ctl = copymsg(mpctl); 18211 zoneid = Q_TO_CONN(q)->conn_zoneid; 18212 18213 /* ip6GroupMember table */ 18214 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18215 optp->level = MIB2_IP6; 18216 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18217 18218 rw_enter(&ill_g_lock, RW_READER); 18219 ill = ILL_START_WALK_V6(&ctx); 18220 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18221 ILM_WALKER_HOLD(ill); 18222 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18223 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18224 ASSERT(ilm->ilm_ipif == NULL); 18225 ASSERT(ilm->ilm_ill != NULL); 18226 if (ilm->ilm_zoneid != zoneid) 18227 continue; /* not this zone */ 18228 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18229 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18230 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18231 if (!snmp_append_data2(mpctl->b_cont, 18232 &mp_tail, 18233 (char *)&ipm6, (int)sizeof (ipm6))) { 18234 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18235 "failed to allocate %u bytes\n", 18236 (uint_t)sizeof (ipm6))); 18237 } 18238 } 18239 ILM_WALKER_RELE(ill); 18240 } 18241 rw_exit(&ill_g_lock); 18242 18243 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18244 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18245 (int)optp->level, (int)optp->name, (int)optp->len)); 18246 qreply(q, mpctl); 18247 return (mp2ctl); 18248 } 18249 18250 /* IP multicast filtered sources */ 18251 static mblk_t * 18252 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl) 18253 { 18254 struct opthdr *optp; 18255 mblk_t *mp2ctl; 18256 ill_t *ill; 18257 ipif_t *ipif; 18258 ilm_t *ilm; 18259 ip_grpsrc_t ips; 18260 mblk_t *mp_tail = NULL; 18261 ill_walk_context_t ctx; 18262 zoneid_t zoneid; 18263 int i; 18264 slist_t *sl; 18265 18266 /* 18267 * make a copy of the original message 18268 */ 18269 mp2ctl = copymsg(mpctl); 18270 zoneid = Q_TO_CONN(q)->conn_zoneid; 18271 18272 /* ipGroupSource table */ 18273 optp = (struct opthdr *)&mpctl->b_rptr[ 18274 sizeof (struct T_optmgmt_ack)]; 18275 optp->level = MIB2_IP; 18276 optp->name = EXPER_IP_GROUP_SOURCES; 18277 18278 rw_enter(&ill_g_lock, RW_READER); 18279 ill = ILL_START_WALK_V4(&ctx); 18280 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18281 ILM_WALKER_HOLD(ill); 18282 for (ipif = ill->ill_ipif; ipif != NULL; 18283 ipif = ipif->ipif_next) { 18284 if (ipif->ipif_zoneid != zoneid) 18285 continue; /* not this zone */ 18286 (void) ipif_get_name(ipif, 18287 ips.ipGroupSourceIfIndex.o_bytes, 18288 OCTET_LENGTH); 18289 ips.ipGroupSourceIfIndex.o_length = 18290 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18291 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18292 ASSERT(ilm->ilm_ipif != NULL); 18293 ASSERT(ilm->ilm_ill == NULL); 18294 sl = ilm->ilm_filter; 18295 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18296 continue; 18297 ips.ipGroupSourceGroup = ilm->ilm_addr; 18298 for (i = 0; i < sl->sl_numsrc; i++) { 18299 if (!IN6_IS_ADDR_V4MAPPED( 18300 &sl->sl_addr[i])) 18301 continue; 18302 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18303 ips.ipGroupSourceAddress); 18304 if (snmp_append_data2(mpctl->b_cont, 18305 &mp_tail, (char *)&ips, 18306 (int)sizeof (ips)) == 0) { 18307 ip1dbg(("ip_snmp_get_mib2_" 18308 "ip_group_src: failed to " 18309 "allocate %u bytes\n", 18310 (uint_t)sizeof (ips))); 18311 } 18312 } 18313 } 18314 } 18315 ILM_WALKER_RELE(ill); 18316 } 18317 rw_exit(&ill_g_lock); 18318 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18319 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18320 (int)optp->level, (int)optp->name, (int)optp->len)); 18321 qreply(q, mpctl); 18322 return (mp2ctl); 18323 } 18324 18325 /* IPv6 multicast filtered sources. */ 18326 static mblk_t * 18327 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl) 18328 { 18329 struct opthdr *optp; 18330 mblk_t *mp2ctl; 18331 ill_t *ill; 18332 ilm_t *ilm; 18333 ipv6_grpsrc_t ips6; 18334 mblk_t *mp_tail = NULL; 18335 ill_walk_context_t ctx; 18336 zoneid_t zoneid; 18337 int i; 18338 slist_t *sl; 18339 18340 /* 18341 * make a copy of the original message 18342 */ 18343 mp2ctl = copymsg(mpctl); 18344 zoneid = Q_TO_CONN(q)->conn_zoneid; 18345 18346 /* ip6GroupMember table */ 18347 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18348 optp->level = MIB2_IP6; 18349 optp->name = EXPER_IP6_GROUP_SOURCES; 18350 18351 rw_enter(&ill_g_lock, RW_READER); 18352 ill = ILL_START_WALK_V6(&ctx); 18353 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18354 ILM_WALKER_HOLD(ill); 18355 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18356 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18357 ASSERT(ilm->ilm_ipif == NULL); 18358 ASSERT(ilm->ilm_ill != NULL); 18359 sl = ilm->ilm_filter; 18360 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18361 continue; 18362 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18363 for (i = 0; i < sl->sl_numsrc; i++) { 18364 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18365 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18366 (char *)&ips6, (int)sizeof (ips6))) { 18367 ip1dbg(("ip_snmp_get_mib2_ip6_" 18368 "group_src: failed to allocate " 18369 "%u bytes\n", 18370 (uint_t)sizeof (ips6))); 18371 } 18372 } 18373 } 18374 ILM_WALKER_RELE(ill); 18375 } 18376 rw_exit(&ill_g_lock); 18377 18378 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18379 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18380 (int)optp->level, (int)optp->name, (int)optp->len)); 18381 qreply(q, mpctl); 18382 return (mp2ctl); 18383 } 18384 18385 /* Multicast routing virtual interface table. */ 18386 static mblk_t * 18387 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl) 18388 { 18389 struct opthdr *optp; 18390 mblk_t *mp2ctl; 18391 18392 /* 18393 * make a copy of the original message 18394 */ 18395 mp2ctl = copymsg(mpctl); 18396 18397 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18398 optp->level = EXPER_DVMRP; 18399 optp->name = EXPER_DVMRP_VIF; 18400 if (!ip_mroute_vif(mpctl->b_cont)) { 18401 ip0dbg(("ip_mroute_vif: failed\n")); 18402 } 18403 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18404 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18405 (int)optp->level, (int)optp->name, (int)optp->len)); 18406 qreply(q, mpctl); 18407 return (mp2ctl); 18408 } 18409 18410 /* Multicast routing table. */ 18411 static mblk_t * 18412 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl) 18413 { 18414 struct opthdr *optp; 18415 mblk_t *mp2ctl; 18416 18417 /* 18418 * make a copy of the original message 18419 */ 18420 mp2ctl = copymsg(mpctl); 18421 18422 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18423 optp->level = EXPER_DVMRP; 18424 optp->name = EXPER_DVMRP_MRT; 18425 if (!ip_mroute_mrt(mpctl->b_cont)) { 18426 ip0dbg(("ip_mroute_mrt: failed\n")); 18427 } 18428 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18429 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18430 (int)optp->level, (int)optp->name, (int)optp->len)); 18431 qreply(q, mpctl); 18432 return (mp2ctl); 18433 } 18434 18435 /* 18436 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18437 * in one IRE walk. 18438 */ 18439 static mblk_t * 18440 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl) 18441 { 18442 struct opthdr *optp; 18443 mblk_t *mp2ctl; /* Returned */ 18444 mblk_t *mp3ctl; /* nettomedia */ 18445 mblk_t *mp4ctl; /* routeattrs */ 18446 iproutedata_t ird; 18447 zoneid_t zoneid; 18448 18449 /* 18450 * make copies of the original message 18451 * - mp2ctl is returned unchanged to the caller for his use 18452 * - mpctl is sent upstream as ipRouteEntryTable 18453 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18454 * - mp4ctl is sent upstream as ipRouteAttributeTable 18455 */ 18456 mp2ctl = copymsg(mpctl); 18457 mp3ctl = copymsg(mpctl); 18458 mp4ctl = copymsg(mpctl); 18459 if (mp3ctl == NULL || mp4ctl == NULL) { 18460 freemsg(mp4ctl); 18461 freemsg(mp3ctl); 18462 freemsg(mp2ctl); 18463 freemsg(mpctl); 18464 return (NULL); 18465 } 18466 18467 bzero(&ird, sizeof (ird)); 18468 18469 ird.ird_route.lp_head = mpctl->b_cont; 18470 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18471 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18472 18473 zoneid = Q_TO_CONN(q)->conn_zoneid; 18474 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid); 18475 if (zoneid == GLOBAL_ZONEID) { 18476 /* 18477 * Those IREs are used by Mobile-IP; since mipagent(1M) requires 18478 * the sys_net_config privilege, it can only run in the global 18479 * zone, so we don't display these IREs in the other zones. 18480 */ 18481 ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird); 18482 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL); 18483 } 18484 18485 /* ipRouteEntryTable in mpctl */ 18486 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18487 optp->level = MIB2_IP; 18488 optp->name = MIB2_IP_ROUTE; 18489 optp->len = msgdsize(ird.ird_route.lp_head); 18490 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18491 (int)optp->level, (int)optp->name, (int)optp->len)); 18492 qreply(q, mpctl); 18493 18494 /* ipNetToMediaEntryTable in mp3ctl */ 18495 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18496 optp->level = MIB2_IP; 18497 optp->name = MIB2_IP_MEDIA; 18498 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18499 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18500 (int)optp->level, (int)optp->name, (int)optp->len)); 18501 qreply(q, mp3ctl); 18502 18503 /* ipRouteAttributeTable in mp4ctl */ 18504 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18505 optp->level = MIB2_IP; 18506 optp->name = EXPER_IP_RTATTR; 18507 optp->len = msgdsize(ird.ird_attrs.lp_head); 18508 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18509 (int)optp->level, (int)optp->name, (int)optp->len)); 18510 if (optp->len == 0) 18511 freemsg(mp4ctl); 18512 else 18513 qreply(q, mp4ctl); 18514 18515 return (mp2ctl); 18516 } 18517 18518 /* 18519 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 18520 * ipv6NetToMediaEntryTable in an NDP walk. 18521 */ 18522 static mblk_t * 18523 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl) 18524 { 18525 struct opthdr *optp; 18526 mblk_t *mp2ctl; /* Returned */ 18527 mblk_t *mp3ctl; /* nettomedia */ 18528 mblk_t *mp4ctl; /* routeattrs */ 18529 iproutedata_t ird; 18530 zoneid_t zoneid; 18531 18532 /* 18533 * make copies of the original message 18534 * - mp2ctl is returned unchanged to the caller for his use 18535 * - mpctl is sent upstream as ipv6RouteEntryTable 18536 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 18537 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 18538 */ 18539 mp2ctl = copymsg(mpctl); 18540 mp3ctl = copymsg(mpctl); 18541 mp4ctl = copymsg(mpctl); 18542 if (mp3ctl == NULL || mp4ctl == NULL) { 18543 freemsg(mp4ctl); 18544 freemsg(mp3ctl); 18545 freemsg(mp2ctl); 18546 freemsg(mpctl); 18547 return (NULL); 18548 } 18549 18550 bzero(&ird, sizeof (ird)); 18551 18552 ird.ird_route.lp_head = mpctl->b_cont; 18553 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18554 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18555 18556 zoneid = Q_TO_CONN(q)->conn_zoneid; 18557 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid); 18558 18559 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18560 optp->level = MIB2_IP6; 18561 optp->name = MIB2_IP6_ROUTE; 18562 optp->len = msgdsize(ird.ird_route.lp_head); 18563 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18564 (int)optp->level, (int)optp->name, (int)optp->len)); 18565 qreply(q, mpctl); 18566 18567 /* ipv6NetToMediaEntryTable in mp3ctl */ 18568 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird); 18569 18570 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18571 optp->level = MIB2_IP6; 18572 optp->name = MIB2_IP6_MEDIA; 18573 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18574 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18575 (int)optp->level, (int)optp->name, (int)optp->len)); 18576 qreply(q, mp3ctl); 18577 18578 /* ipv6RouteAttributeTable in mp4ctl */ 18579 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18580 optp->level = MIB2_IP6; 18581 optp->name = EXPER_IP_RTATTR; 18582 optp->len = msgdsize(ird.ird_attrs.lp_head); 18583 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18584 (int)optp->level, (int)optp->name, (int)optp->len)); 18585 if (optp->len == 0) 18586 freemsg(mp4ctl); 18587 else 18588 qreply(q, mp4ctl); 18589 18590 return (mp2ctl); 18591 } 18592 18593 /* 18594 * ICMPv6 mib: One per ill 18595 */ 18596 static mblk_t * 18597 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl) 18598 { 18599 struct opthdr *optp; 18600 mblk_t *mp2ctl; 18601 ill_t *ill; 18602 ill_walk_context_t ctx; 18603 mblk_t *mp_tail = NULL; 18604 18605 /* 18606 * Make a copy of the original message 18607 */ 18608 mp2ctl = copymsg(mpctl); 18609 18610 /* fixed length IPv6 structure ... */ 18611 18612 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18613 optp->level = MIB2_IP6; 18614 optp->name = 0; 18615 /* Include "unknown interface" ip6_mib */ 18616 ip6_mib.ipv6IfIndex = 0; /* Flag to netstat */ 18617 SET_MIB(ip6_mib.ipv6Forwarding, ipv6_forward ? 1 : 2); 18618 SET_MIB(ip6_mib.ipv6DefaultHopLimit, ipv6_def_hops); 18619 SET_MIB(ip6_mib.ipv6IfStatsEntrySize, 18620 sizeof (mib2_ipv6IfStatsEntry_t)); 18621 SET_MIB(ip6_mib.ipv6AddrEntrySize, sizeof (mib2_ipv6AddrEntry_t)); 18622 SET_MIB(ip6_mib.ipv6RouteEntrySize, sizeof (mib2_ipv6RouteEntry_t)); 18623 SET_MIB(ip6_mib.ipv6NetToMediaEntrySize, 18624 sizeof (mib2_ipv6NetToMediaEntry_t)); 18625 SET_MIB(ip6_mib.ipv6MemberEntrySize, sizeof (ipv6_member_t)); 18626 SET_MIB(ip6_mib.ipv6GroupSourceEntrySize, sizeof (ipv6_grpsrc_t)); 18627 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&ip6_mib, 18628 (int)sizeof (ip6_mib))) { 18629 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 18630 (uint_t)sizeof (ip6_mib))); 18631 } 18632 18633 rw_enter(&ill_g_lock, RW_READER); 18634 ill = ILL_START_WALK_V6(&ctx); 18635 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18636 ill->ill_ip6_mib->ipv6IfIndex = 18637 ill->ill_phyint->phyint_ifindex; 18638 SET_MIB(ill->ill_ip6_mib->ipv6Forwarding, 18639 ipv6_forward ? 1 : 2); 18640 SET_MIB(ill->ill_ip6_mib->ipv6DefaultHopLimit, 18641 ill->ill_max_hops); 18642 SET_MIB(ill->ill_ip6_mib->ipv6IfStatsEntrySize, 18643 sizeof (mib2_ipv6IfStatsEntry_t)); 18644 SET_MIB(ill->ill_ip6_mib->ipv6AddrEntrySize, 18645 sizeof (mib2_ipv6AddrEntry_t)); 18646 SET_MIB(ill->ill_ip6_mib->ipv6RouteEntrySize, 18647 sizeof (mib2_ipv6RouteEntry_t)); 18648 SET_MIB(ill->ill_ip6_mib->ipv6NetToMediaEntrySize, 18649 sizeof (mib2_ipv6NetToMediaEntry_t)); 18650 SET_MIB(ill->ill_ip6_mib->ipv6MemberEntrySize, 18651 sizeof (ipv6_member_t)); 18652 18653 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18654 (char *)ill->ill_ip6_mib, 18655 (int)sizeof (*ill->ill_ip6_mib))) { 18656 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 18657 "%u bytes\n", 18658 (uint_t)sizeof (*ill->ill_ip6_mib))); 18659 } 18660 } 18661 rw_exit(&ill_g_lock); 18662 18663 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18664 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 18665 (int)optp->level, (int)optp->name, (int)optp->len)); 18666 qreply(q, mpctl); 18667 return (mp2ctl); 18668 } 18669 18670 /* 18671 * ICMPv6 mib: One per ill 18672 */ 18673 static mblk_t * 18674 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl) 18675 { 18676 struct opthdr *optp; 18677 mblk_t *mp2ctl; 18678 ill_t *ill; 18679 ill_walk_context_t ctx; 18680 mblk_t *mp_tail = NULL; 18681 /* 18682 * Make a copy of the original message 18683 */ 18684 mp2ctl = copymsg(mpctl); 18685 18686 /* fixed length ICMPv6 structure ... */ 18687 18688 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18689 optp->level = MIB2_ICMP6; 18690 optp->name = 0; 18691 /* Include "unknown interface" icmp6_mib */ 18692 icmp6_mib.ipv6IfIcmpIfIndex = 0; /* Flag to netstat */ 18693 icmp6_mib.ipv6IfIcmpEntrySize = sizeof (mib2_ipv6IfIcmpEntry_t); 18694 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&icmp6_mib, 18695 (int)sizeof (icmp6_mib))) { 18696 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 18697 (uint_t)sizeof (icmp6_mib))); 18698 } 18699 18700 rw_enter(&ill_g_lock, RW_READER); 18701 ill = ILL_START_WALK_V6(&ctx); 18702 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18703 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 18704 ill->ill_phyint->phyint_ifindex; 18705 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 18706 sizeof (mib2_ipv6IfIcmpEntry_t); 18707 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18708 (char *)ill->ill_icmp6_mib, 18709 (int)sizeof (*ill->ill_icmp6_mib))) { 18710 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 18711 "%u bytes\n", 18712 (uint_t)sizeof (*ill->ill_icmp6_mib))); 18713 } 18714 } 18715 rw_exit(&ill_g_lock); 18716 18717 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18718 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 18719 (int)optp->level, (int)optp->name, (int)optp->len)); 18720 qreply(q, mpctl); 18721 return (mp2ctl); 18722 } 18723 18724 /* 18725 * ire_walk routine to create both ipRouteEntryTable and 18726 * ipNetToMediaEntryTable in one IRE walk 18727 */ 18728 static void 18729 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 18730 { 18731 ill_t *ill; 18732 ipif_t *ipif; 18733 mblk_t *llmp; 18734 dl_unitdata_req_t *dlup; 18735 mib2_ipRouteEntry_t *re; 18736 mib2_ipNetToMediaEntry_t ntme; 18737 mib2_ipAttributeEntry_t *iae, *iaeptr; 18738 ipaddr_t gw_addr; 18739 tsol_ire_gw_secattr_t *attrp; 18740 tsol_gc_t *gc = NULL; 18741 tsol_gcgrp_t *gcgrp = NULL; 18742 uint_t sacnt = 0; 18743 int i; 18744 18745 ASSERT(ire->ire_ipversion == IPV4_VERSION); 18746 18747 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 18748 return; 18749 18750 if ((attrp = ire->ire_gw_secattr) != NULL) { 18751 mutex_enter(&attrp->igsa_lock); 18752 if ((gc = attrp->igsa_gc) != NULL) { 18753 gcgrp = gc->gc_grp; 18754 ASSERT(gcgrp != NULL); 18755 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18756 sacnt = 1; 18757 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 18758 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18759 gc = gcgrp->gcgrp_head; 18760 sacnt = gcgrp->gcgrp_count; 18761 } 18762 mutex_exit(&attrp->igsa_lock); 18763 18764 /* do nothing if there's no gc to report */ 18765 if (gc == NULL) { 18766 ASSERT(sacnt == 0); 18767 if (gcgrp != NULL) { 18768 /* we might as well drop the lock now */ 18769 rw_exit(&gcgrp->gcgrp_rwlock); 18770 gcgrp = NULL; 18771 } 18772 attrp = NULL; 18773 } 18774 18775 ASSERT(gc == NULL || (gcgrp != NULL && 18776 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 18777 } 18778 ASSERT(sacnt == 0 || gc != NULL); 18779 18780 if (sacnt != 0 && 18781 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 18782 kmem_free(re, sizeof (*re)); 18783 rw_exit(&gcgrp->gcgrp_rwlock); 18784 return; 18785 } 18786 18787 /* 18788 * Return all IRE types for route table... let caller pick and choose 18789 */ 18790 re->ipRouteDest = ire->ire_addr; 18791 ipif = ire->ire_ipif; 18792 re->ipRouteIfIndex.o_length = 0; 18793 if (ire->ire_type == IRE_CACHE) { 18794 ill = (ill_t *)ire->ire_stq->q_ptr; 18795 re->ipRouteIfIndex.o_length = 18796 ill->ill_name_length == 0 ? 0 : 18797 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18798 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 18799 re->ipRouteIfIndex.o_length); 18800 } else if (ipif != NULL) { 18801 (void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, 18802 OCTET_LENGTH); 18803 re->ipRouteIfIndex.o_length = 18804 mi_strlen(re->ipRouteIfIndex.o_bytes); 18805 } 18806 re->ipRouteMetric1 = -1; 18807 re->ipRouteMetric2 = -1; 18808 re->ipRouteMetric3 = -1; 18809 re->ipRouteMetric4 = -1; 18810 18811 gw_addr = ire->ire_gateway_addr; 18812 18813 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 18814 re->ipRouteNextHop = ire->ire_src_addr; 18815 else 18816 re->ipRouteNextHop = gw_addr; 18817 /* indirect(4), direct(3), or invalid(2) */ 18818 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 18819 re->ipRouteType = 2; 18820 else 18821 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 18822 re->ipRouteProto = -1; 18823 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 18824 re->ipRouteMask = ire->ire_mask; 18825 re->ipRouteMetric5 = -1; 18826 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 18827 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 18828 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 18829 if (ire->ire_nce && 18830 ire->ire_nce->nce_state == ND_REACHABLE) 18831 llmp = ire->ire_nce->nce_res_mp; 18832 else 18833 llmp = NULL; 18834 re->ipRouteInfo.re_ref = ire->ire_refcnt; 18835 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 18836 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 18837 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 18838 re->ipRouteInfo.re_flags = ire->ire_flags; 18839 re->ipRouteInfo.re_in_ill.o_length = 0; 18840 18841 if (ire->ire_flags & RTF_DYNAMIC) { 18842 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 18843 } else { 18844 re->ipRouteInfo.re_ire_type = ire->ire_type; 18845 } 18846 18847 if (ire->ire_in_ill != NULL) { 18848 re->ipRouteInfo.re_in_ill.o_length = 18849 ire->ire_in_ill->ill_name_length == 0 ? 0 : 18850 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 18851 bcopy(ire->ire_in_ill->ill_name, 18852 re->ipRouteInfo.re_in_ill.o_bytes, 18853 re->ipRouteInfo.re_in_ill.o_length); 18854 } 18855 re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 18856 18857 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 18858 (char *)re, (int)sizeof (*re))) { 18859 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18860 (uint_t)sizeof (*re))); 18861 } 18862 18863 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 18864 iaeptr->iae_routeidx = ird->ird_idx; 18865 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 18866 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 18867 } 18868 18869 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 18870 (char *)iae, sacnt * sizeof (*iae))) { 18871 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18872 (unsigned)(sacnt * sizeof (*iae)))); 18873 } 18874 18875 if (ire->ire_type != IRE_CACHE || gw_addr != 0) 18876 goto done; 18877 /* 18878 * only IRE_CACHE entries that are for a directly connected subnet 18879 * get appended to net -> phys addr table 18880 * (others in arp) 18881 */ 18882 ntme.ipNetToMediaIfIndex.o_length = 0; 18883 ill = ire_to_ill(ire); 18884 ASSERT(ill != NULL); 18885 ntme.ipNetToMediaIfIndex.o_length = 18886 ill->ill_name_length == 0 ? 0 : 18887 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18888 bcopy(ill->ill_name, ntme.ipNetToMediaIfIndex.o_bytes, 18889 ntme.ipNetToMediaIfIndex.o_length); 18890 18891 ntme.ipNetToMediaPhysAddress.o_length = 0; 18892 if (llmp) { 18893 uchar_t *addr; 18894 18895 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 18896 /* Remove sap from address */ 18897 if (ill->ill_sap_length < 0) 18898 addr = llmp->b_rptr + dlup->dl_dest_addr_offset; 18899 else 18900 addr = llmp->b_rptr + dlup->dl_dest_addr_offset + 18901 ill->ill_sap_length; 18902 18903 ntme.ipNetToMediaPhysAddress.o_length = 18904 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 18905 bcopy(addr, ntme.ipNetToMediaPhysAddress.o_bytes, 18906 ntme.ipNetToMediaPhysAddress.o_length); 18907 } 18908 ntme.ipNetToMediaNetAddress = ire->ire_addr; 18909 /* assume dynamic (may be changed in arp) */ 18910 ntme.ipNetToMediaType = 3; 18911 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (uint32_t); 18912 bcopy(&ire->ire_mask, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 18913 ntme.ipNetToMediaInfo.ntm_mask.o_length); 18914 ntme.ipNetToMediaInfo.ntm_flags = ACE_F_RESOLVED; 18915 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 18916 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 18917 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18918 (uint_t)sizeof (ntme))); 18919 } 18920 done: 18921 /* bump route index for next pass */ 18922 ird->ird_idx++; 18923 18924 kmem_free(re, sizeof (*re)); 18925 if (sacnt != 0) 18926 kmem_free(iae, sacnt * sizeof (*iae)); 18927 18928 if (gcgrp != NULL) 18929 rw_exit(&gcgrp->gcgrp_rwlock); 18930 } 18931 18932 /* 18933 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 18934 */ 18935 static void 18936 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 18937 { 18938 ill_t *ill; 18939 ipif_t *ipif; 18940 mib2_ipv6RouteEntry_t *re; 18941 mib2_ipAttributeEntry_t *iae, *iaeptr; 18942 in6_addr_t gw_addr_v6; 18943 tsol_ire_gw_secattr_t *attrp; 18944 tsol_gc_t *gc = NULL; 18945 tsol_gcgrp_t *gcgrp = NULL; 18946 uint_t sacnt = 0; 18947 int i; 18948 18949 ASSERT(ire->ire_ipversion == IPV6_VERSION); 18950 18951 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 18952 return; 18953 18954 if ((attrp = ire->ire_gw_secattr) != NULL) { 18955 mutex_enter(&attrp->igsa_lock); 18956 if ((gc = attrp->igsa_gc) != NULL) { 18957 gcgrp = gc->gc_grp; 18958 ASSERT(gcgrp != NULL); 18959 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18960 sacnt = 1; 18961 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 18962 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18963 gc = gcgrp->gcgrp_head; 18964 sacnt = gcgrp->gcgrp_count; 18965 } 18966 mutex_exit(&attrp->igsa_lock); 18967 18968 /* do nothing if there's no gc to report */ 18969 if (gc == NULL) { 18970 ASSERT(sacnt == 0); 18971 if (gcgrp != NULL) { 18972 /* we might as well drop the lock now */ 18973 rw_exit(&gcgrp->gcgrp_rwlock); 18974 gcgrp = NULL; 18975 } 18976 attrp = NULL; 18977 } 18978 18979 ASSERT(gc == NULL || (gcgrp != NULL && 18980 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 18981 } 18982 ASSERT(sacnt == 0 || gc != NULL); 18983 18984 if (sacnt != 0 && 18985 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 18986 kmem_free(re, sizeof (*re)); 18987 rw_exit(&gcgrp->gcgrp_rwlock); 18988 return; 18989 } 18990 18991 /* 18992 * Return all IRE types for route table... let caller pick and choose 18993 */ 18994 re->ipv6RouteDest = ire->ire_addr_v6; 18995 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 18996 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 18997 re->ipv6RouteIfIndex.o_length = 0; 18998 ipif = ire->ire_ipif; 18999 if (ire->ire_type == IRE_CACHE) { 19000 ill = (ill_t *)ire->ire_stq->q_ptr; 19001 re->ipv6RouteIfIndex.o_length = 19002 ill->ill_name_length == 0 ? 0 : 19003 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19004 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19005 re->ipv6RouteIfIndex.o_length); 19006 } else if (ipif != NULL) { 19007 (void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, 19008 OCTET_LENGTH); 19009 re->ipv6RouteIfIndex.o_length = 19010 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19011 } 19012 19013 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19014 19015 mutex_enter(&ire->ire_lock); 19016 gw_addr_v6 = ire->ire_gateway_addr_v6; 19017 mutex_exit(&ire->ire_lock); 19018 19019 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19020 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19021 else 19022 re->ipv6RouteNextHop = gw_addr_v6; 19023 19024 /* remote(4), local(3), or discard(2) */ 19025 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19026 re->ipv6RouteType = 2; 19027 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19028 re->ipv6RouteType = 3; 19029 else 19030 re->ipv6RouteType = 4; 19031 19032 re->ipv6RouteProtocol = -1; 19033 re->ipv6RoutePolicy = 0; 19034 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19035 re->ipv6RouteNextHopRDI = 0; 19036 re->ipv6RouteWeight = 0; 19037 re->ipv6RouteMetric = 0; 19038 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19039 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19040 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19041 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19042 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19043 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19044 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19045 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19046 19047 if (ire->ire_flags & RTF_DYNAMIC) { 19048 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19049 } else { 19050 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19051 } 19052 19053 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19054 (char *)re, (int)sizeof (*re))) { 19055 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19056 (uint_t)sizeof (*re))); 19057 } 19058 19059 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19060 iaeptr->iae_routeidx = ird->ird_idx; 19061 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19062 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19063 } 19064 19065 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19066 (char *)iae, sacnt * sizeof (*iae))) { 19067 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19068 (unsigned)(sacnt * sizeof (*iae)))); 19069 } 19070 19071 /* bump route index for next pass */ 19072 ird->ird_idx++; 19073 19074 kmem_free(re, sizeof (*re)); 19075 if (sacnt != 0) 19076 kmem_free(iae, sacnt * sizeof (*iae)); 19077 19078 if (gcgrp != NULL) 19079 rw_exit(&gcgrp->gcgrp_rwlock); 19080 } 19081 19082 /* 19083 * ndp_walk routine to create ipv6NetToMediaEntryTable 19084 */ 19085 static int 19086 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19087 { 19088 ill_t *ill; 19089 mib2_ipv6NetToMediaEntry_t ntme; 19090 dl_unitdata_req_t *dl; 19091 19092 ill = nce->nce_ill; 19093 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19094 return (0); 19095 19096 /* 19097 * Neighbor cache entry attached to IRE with on-link 19098 * destination. 19099 */ 19100 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19101 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19102 if ((ill->ill_flags & ILLF_XRESOLV) && 19103 (nce->nce_res_mp != NULL)) { 19104 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19105 ntme.ipv6NetToMediaPhysAddress.o_length = 19106 dl->dl_dest_addr_length; 19107 } else { 19108 ntme.ipv6NetToMediaPhysAddress.o_length = 19109 ill->ill_phys_addr_length; 19110 } 19111 if (nce->nce_res_mp != NULL) { 19112 bcopy((char *)nce->nce_res_mp->b_rptr + 19113 NCE_LL_ADDR_OFFSET(ill), 19114 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19115 ntme.ipv6NetToMediaPhysAddress.o_length); 19116 } else { 19117 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19118 ill->ill_phys_addr_length); 19119 } 19120 /* 19121 * Note: Returns ND_* states. Should be: 19122 * reachable(1), stale(2), delay(3), probe(4), 19123 * invalid(5), unknown(6) 19124 */ 19125 ntme.ipv6NetToMediaState = nce->nce_state; 19126 ntme.ipv6NetToMediaLastUpdated = 0; 19127 19128 /* other(1), dynamic(2), static(3), local(4) */ 19129 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19130 ntme.ipv6NetToMediaType = 4; 19131 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19132 ntme.ipv6NetToMediaType = 1; 19133 } else { 19134 ntme.ipv6NetToMediaType = 2; 19135 } 19136 19137 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19138 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19139 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19140 (uint_t)sizeof (ntme))); 19141 } 19142 return (0); 19143 } 19144 19145 /* 19146 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19147 */ 19148 /* ARGSUSED */ 19149 int 19150 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19151 { 19152 switch (level) { 19153 case MIB2_IP: 19154 case MIB2_ICMP: 19155 switch (name) { 19156 default: 19157 break; 19158 } 19159 return (1); 19160 default: 19161 return (1); 19162 } 19163 } 19164 19165 /* 19166 * Called before the options are updated to check if this packet will 19167 * be source routed from here. 19168 * This routine assumes that the options are well formed i.e. that they 19169 * have already been checked. 19170 */ 19171 static boolean_t 19172 ip_source_routed(ipha_t *ipha) 19173 { 19174 ipoptp_t opts; 19175 uchar_t *opt; 19176 uint8_t optval; 19177 uint8_t optlen; 19178 ipaddr_t dst; 19179 ire_t *ire; 19180 19181 if (IS_SIMPLE_IPH(ipha)) { 19182 ip2dbg(("not source routed\n")); 19183 return (B_FALSE); 19184 } 19185 dst = ipha->ipha_dst; 19186 for (optval = ipoptp_first(&opts, ipha); 19187 optval != IPOPT_EOL; 19188 optval = ipoptp_next(&opts)) { 19189 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19190 opt = opts.ipoptp_cur; 19191 optlen = opts.ipoptp_len; 19192 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19193 optval, optlen)); 19194 switch (optval) { 19195 uint32_t off; 19196 case IPOPT_SSRR: 19197 case IPOPT_LSRR: 19198 /* 19199 * If dst is one of our addresses and there are some 19200 * entries left in the source route return (true). 19201 */ 19202 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19203 ALL_ZONES, NULL, MATCH_IRE_TYPE); 19204 if (ire == NULL) { 19205 ip2dbg(("ip_source_routed: not next" 19206 " source route 0x%x\n", 19207 ntohl(dst))); 19208 return (B_FALSE); 19209 } 19210 ire_refrele(ire); 19211 off = opt[IPOPT_OFFSET]; 19212 off--; 19213 if (optlen < IP_ADDR_LEN || 19214 off > optlen - IP_ADDR_LEN) { 19215 /* End of source route */ 19216 ip1dbg(("ip_source_routed: end of SR\n")); 19217 return (B_FALSE); 19218 } 19219 return (B_TRUE); 19220 } 19221 } 19222 ip2dbg(("not source routed\n")); 19223 return (B_FALSE); 19224 } 19225 19226 /* 19227 * Check if the packet contains any source route. 19228 */ 19229 static boolean_t 19230 ip_source_route_included(ipha_t *ipha) 19231 { 19232 ipoptp_t opts; 19233 uint8_t optval; 19234 19235 if (IS_SIMPLE_IPH(ipha)) 19236 return (B_FALSE); 19237 for (optval = ipoptp_first(&opts, ipha); 19238 optval != IPOPT_EOL; 19239 optval = ipoptp_next(&opts)) { 19240 switch (optval) { 19241 case IPOPT_SSRR: 19242 case IPOPT_LSRR: 19243 return (B_TRUE); 19244 } 19245 } 19246 return (B_FALSE); 19247 } 19248 19249 /* 19250 * Called when the IRE expiration timer fires. 19251 */ 19252 /* ARGSUSED */ 19253 void 19254 ip_trash_timer_expire(void *args) 19255 { 19256 int flush_flag = 0; 19257 19258 /* 19259 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19260 * This lock makes sure that a new invocation of this function 19261 * that occurs due to an almost immediate timer firing will not 19262 * progress beyond this point until the current invocation is done 19263 */ 19264 mutex_enter(&ip_trash_timer_lock); 19265 ip_ire_expire_id = 0; 19266 mutex_exit(&ip_trash_timer_lock); 19267 19268 /* Periodic timer */ 19269 if (ip_ire_arp_time_elapsed >= ip_ire_arp_interval) { 19270 /* 19271 * Remove all IRE_CACHE entries since they might 19272 * contain arp information. 19273 */ 19274 flush_flag |= FLUSH_ARP_TIME; 19275 ip_ire_arp_time_elapsed = 0; 19276 IP_STAT(ip_ire_arp_timer_expired); 19277 } 19278 if (ip_ire_rd_time_elapsed >= ip_ire_redir_interval) { 19279 /* Remove all redirects */ 19280 flush_flag |= FLUSH_REDIRECT_TIME; 19281 ip_ire_rd_time_elapsed = 0; 19282 IP_STAT(ip_ire_redirect_timer_expired); 19283 } 19284 if (ip_ire_pmtu_time_elapsed >= ip_ire_pathmtu_interval) { 19285 /* Increase path mtu */ 19286 flush_flag |= FLUSH_MTU_TIME; 19287 ip_ire_pmtu_time_elapsed = 0; 19288 IP_STAT(ip_ire_pmtu_timer_expired); 19289 } 19290 19291 /* 19292 * Optimize for the case when there are no redirects in the 19293 * ftable, that is, no need to walk the ftable in that case. 19294 */ 19295 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19296 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19297 (char *)(uintptr_t)flush_flag, IP_MASK_TABLE_SIZE, 0, NULL, 19298 ip_cache_table_size, ip_cache_table, NULL, ALL_ZONES); 19299 } 19300 if ((flush_flag & FLUSH_REDIRECT_TIME) && ip_redirect_cnt > 0) { 19301 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19302 ire_expire, (char *)(uintptr_t)flush_flag, 19303 IP_MASK_TABLE_SIZE, 0, NULL, 0, NULL, NULL, ALL_ZONES); 19304 } 19305 if (flush_flag & FLUSH_MTU_TIME) { 19306 /* 19307 * Walk all IPv6 IRE's and update them 19308 * Note that ARP and redirect timers are not 19309 * needed since NUD handles stale entries. 19310 */ 19311 flush_flag = FLUSH_MTU_TIME; 19312 ire_walk_v6(ire_expire, (char *)(uintptr_t)flush_flag, 19313 ALL_ZONES); 19314 } 19315 19316 ip_ire_arp_time_elapsed += ip_timer_interval; 19317 ip_ire_rd_time_elapsed += ip_timer_interval; 19318 ip_ire_pmtu_time_elapsed += ip_timer_interval; 19319 19320 /* 19321 * Hold the lock to serialize timeout calls and prevent 19322 * stale values in ip_ire_expire_id. Otherwise it is possible 19323 * for the timer to fire and a new invocation of this function 19324 * to start before the return value of timeout has been stored 19325 * in ip_ire_expire_id by the current invocation. 19326 */ 19327 mutex_enter(&ip_trash_timer_lock); 19328 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 19329 MSEC_TO_TICK(ip_timer_interval)); 19330 mutex_exit(&ip_trash_timer_lock); 19331 } 19332 19333 /* 19334 * Called by the memory allocator subsystem directly, when the system 19335 * is running low on memory. 19336 */ 19337 /* ARGSUSED */ 19338 void 19339 ip_trash_ire_reclaim(void *args) 19340 { 19341 ire_cache_count_t icc; 19342 ire_cache_reclaim_t icr; 19343 ncc_cache_count_t ncc; 19344 nce_cache_reclaim_t ncr; 19345 uint_t delete_cnt; 19346 /* 19347 * Memory reclaim call back. 19348 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19349 * Then, with a target of freeing 1/Nth of IRE_CACHE 19350 * entries, determine what fraction to free for 19351 * each category of IRE_CACHE entries giving absolute priority 19352 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19353 * entry will be freed unless all offlink entries are freed). 19354 */ 19355 icc.icc_total = 0; 19356 icc.icc_unused = 0; 19357 icc.icc_offlink = 0; 19358 icc.icc_pmtu = 0; 19359 icc.icc_onlink = 0; 19360 ire_walk(ire_cache_count, (char *)&icc); 19361 19362 /* 19363 * Free NCEs for IPv6 like the onlink ires. 19364 */ 19365 ncc.ncc_total = 0; 19366 ncc.ncc_host = 0; 19367 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc); 19368 19369 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 19370 icc.icc_pmtu + icc.icc_onlink); 19371 delete_cnt = icc.icc_total/ip_ire_reclaim_fraction; 19372 IP_STAT(ip_trash_ire_reclaim_calls); 19373 if (delete_cnt == 0) 19374 return; 19375 IP_STAT(ip_trash_ire_reclaim_success); 19376 /* Always delete all unused offlink entries */ 19377 icr.icr_unused = 1; 19378 if (delete_cnt <= icc.icc_unused) { 19379 /* 19380 * Only need to free unused entries. In other words, 19381 * there are enough unused entries to free to meet our 19382 * target number of freed ire cache entries. 19383 */ 19384 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 19385 ncr.ncr_host = 0; 19386 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 19387 /* 19388 * Only need to free unused entries, plus a fraction of offlink 19389 * entries. It follows from the first if statement that 19390 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 19391 */ 19392 delete_cnt -= icc.icc_unused; 19393 /* Round up # deleted by truncating fraction */ 19394 icr.icr_offlink = icc.icc_offlink / delete_cnt; 19395 icr.icr_pmtu = icr.icr_onlink = 0; 19396 ncr.ncr_host = 0; 19397 } else if (delete_cnt <= 19398 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 19399 /* 19400 * Free all unused and offlink entries, plus a fraction of 19401 * pmtu entries. It follows from the previous if statement 19402 * that icc_pmtu is non-zero, and that 19403 * delete_cnt != icc_unused + icc_offlink. 19404 */ 19405 icr.icr_offlink = 1; 19406 delete_cnt -= icc.icc_unused + icc.icc_offlink; 19407 /* Round up # deleted by truncating fraction */ 19408 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 19409 icr.icr_onlink = 0; 19410 ncr.ncr_host = 0; 19411 } else { 19412 /* 19413 * Free all unused, offlink, and pmtu entries, plus a fraction 19414 * of onlink entries. If we're here, then we know that 19415 * icc_onlink is non-zero, and that 19416 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 19417 */ 19418 icr.icr_offlink = icr.icr_pmtu = 1; 19419 delete_cnt -= icc.icc_unused + icc.icc_offlink + 19420 icc.icc_pmtu; 19421 /* Round up # deleted by truncating fraction */ 19422 icr.icr_onlink = icc.icc_onlink / delete_cnt; 19423 /* Using the same delete fraction as for onlink IREs */ 19424 ncr.ncr_host = ncc.ncc_host / delete_cnt; 19425 } 19426 #ifdef DEBUG 19427 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 19428 "fractions %d/%d/%d/%d\n", 19429 icc.icc_total/ip_ire_reclaim_fraction, icc.icc_total, 19430 icc.icc_unused, icc.icc_offlink, 19431 icc.icc_pmtu, icc.icc_onlink, 19432 icr.icr_unused, icr.icr_offlink, 19433 icr.icr_pmtu, icr.icr_onlink)); 19434 #endif 19435 ire_walk(ire_cache_reclaim, (char *)&icr); 19436 if (ncr.ncr_host != 0) 19437 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 19438 (uchar_t *)&ncr); 19439 #ifdef DEBUG 19440 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 19441 icc.icc_pmtu = 0; icc.icc_onlink = 0; 19442 ire_walk(ire_cache_count, (char *)&icc); 19443 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 19444 icc.icc_total, icc.icc_unused, icc.icc_offlink, 19445 icc.icc_pmtu, icc.icc_onlink)); 19446 #endif 19447 } 19448 19449 /* 19450 * ip_unbind is called when a copy of an unbind request is received from the 19451 * upper level protocol. We remove this conn from any fanout hash list it is 19452 * on, and zero out the bind information. No reply is expected up above. 19453 */ 19454 mblk_t * 19455 ip_unbind(queue_t *q, mblk_t *mp) 19456 { 19457 conn_t *connp = Q_TO_CONN(q); 19458 19459 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 19460 19461 if (is_system_labeled() && connp->conn_anon_port) { 19462 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 19463 connp->conn_mlp_type, connp->conn_ulp, 19464 ntohs(connp->conn_lport), B_FALSE); 19465 connp->conn_anon_port = 0; 19466 } 19467 connp->conn_mlp_type = mlptSingle; 19468 19469 ipcl_hash_remove(connp); 19470 19471 ASSERT(mp->b_cont == NULL); 19472 /* 19473 * Convert mp into a T_OK_ACK 19474 */ 19475 mp = mi_tpi_ok_ack_alloc(mp); 19476 19477 /* 19478 * should not happen in practice... T_OK_ACK is smaller than the 19479 * original message. 19480 */ 19481 if (mp == NULL) 19482 return (NULL); 19483 19484 /* 19485 * Don't bzero the ports if its TCP since TCP still needs the 19486 * lport to remove it from its own bind hash. TCP will do the 19487 * cleanup. 19488 */ 19489 if (!IPCL_IS_TCP(connp)) 19490 bzero(&connp->u_port, sizeof (connp->u_port)); 19491 19492 return (mp); 19493 } 19494 19495 /* 19496 * Write side put procedure. Outbound data, IOCTLs, responses from 19497 * resolvers, etc, come down through here. 19498 * 19499 * arg2 is always a queue_t *. 19500 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 19501 * the zoneid. 19502 * When that queue is not an ill_t, then arg must be a conn_t pointer. 19503 */ 19504 void 19505 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 19506 { 19507 conn_t *connp = NULL; 19508 queue_t *q = (queue_t *)arg2; 19509 ipha_t *ipha; 19510 #define rptr ((uchar_t *)ipha) 19511 ire_t *ire = NULL; 19512 ire_t *sctp_ire = NULL; 19513 uint32_t v_hlen_tos_len; 19514 ipaddr_t dst; 19515 mblk_t *first_mp = NULL; 19516 boolean_t mctl_present; 19517 ipsec_out_t *io; 19518 int match_flags; 19519 ill_t *attach_ill = NULL; 19520 /* Bind to IPIF_NOFAILOVER ill etc. */ 19521 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 19522 ipif_t *dst_ipif; 19523 boolean_t multirt_need_resolve = B_FALSE; 19524 mblk_t *copy_mp = NULL; 19525 int err; 19526 zoneid_t zoneid; 19527 int adjust; 19528 uint16_t iplen; 19529 boolean_t need_decref = B_FALSE; 19530 boolean_t ignore_dontroute = B_FALSE; 19531 boolean_t ignore_nexthop = B_FALSE; 19532 boolean_t ip_nexthop = B_FALSE; 19533 ipaddr_t nexthop_addr; 19534 19535 #ifdef _BIG_ENDIAN 19536 #define V_HLEN (v_hlen_tos_len >> 24) 19537 #else 19538 #define V_HLEN (v_hlen_tos_len & 0xFF) 19539 #endif 19540 19541 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 19542 "ip_wput_start: q %p", q); 19543 19544 /* 19545 * ip_wput fast path 19546 */ 19547 19548 /* is packet from ARP ? */ 19549 if (q->q_next != NULL) { 19550 zoneid = (zoneid_t)(uintptr_t)arg; 19551 goto qnext; 19552 } 19553 19554 connp = (conn_t *)arg; 19555 ASSERT(connp != NULL); 19556 zoneid = connp->conn_zoneid; 19557 19558 /* is queue flow controlled? */ 19559 if ((q->q_first != NULL || connp->conn_draining) && 19560 (caller == IP_WPUT)) { 19561 ASSERT(!need_decref); 19562 (void) putq(q, mp); 19563 return; 19564 } 19565 19566 /* Multidata transmit? */ 19567 if (DB_TYPE(mp) == M_MULTIDATA) { 19568 /* 19569 * We should never get here, since all Multidata messages 19570 * originating from tcp should have been directed over to 19571 * tcp_multisend() in the first place. 19572 */ 19573 BUMP_MIB(&ip_mib, ipOutDiscards); 19574 freemsg(mp); 19575 return; 19576 } else if (DB_TYPE(mp) != M_DATA) 19577 goto notdata; 19578 19579 if (mp->b_flag & MSGHASREF) { 19580 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 19581 mp->b_flag &= ~MSGHASREF; 19582 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 19583 need_decref = B_TRUE; 19584 } 19585 ipha = (ipha_t *)mp->b_rptr; 19586 19587 /* is IP header non-aligned or mblk smaller than basic IP header */ 19588 #ifndef SAFETY_BEFORE_SPEED 19589 if (!OK_32PTR(rptr) || 19590 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 19591 goto hdrtoosmall; 19592 #endif 19593 19594 ASSERT(OK_32PTR(ipha)); 19595 19596 /* 19597 * This function assumes that mp points to an IPv4 packet. If it's the 19598 * wrong version, we'll catch it again in ip_output_v6. 19599 * 19600 * Note that this is *only* locally-generated output here, and never 19601 * forwarded data, and that we need to deal only with transports that 19602 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 19603 * label.) 19604 */ 19605 if (is_system_labeled() && 19606 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 19607 !connp->conn_ulp_labeled) { 19608 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 19609 connp->conn_mac_exempt); 19610 ipha = (ipha_t *)mp->b_rptr; 19611 if (err != 0) { 19612 first_mp = mp; 19613 if (err == EINVAL) 19614 goto icmp_parameter_problem; 19615 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 19616 goto drop_pkt; 19617 } 19618 iplen = ntohs(ipha->ipha_length) + adjust; 19619 ipha->ipha_length = htons(iplen); 19620 } 19621 19622 /* 19623 * If there is a policy, try to attach an ipsec_out in 19624 * the front. At the end, first_mp either points to a 19625 * M_DATA message or IPSEC_OUT message linked to a 19626 * M_DATA message. We have to do it now as we might 19627 * lose the "conn" if we go through ip_newroute. 19628 */ 19629 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 19630 if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL, 19631 ipha->ipha_protocol)) == NULL)) { 19632 if (need_decref) 19633 CONN_DEC_REF(connp); 19634 return; 19635 } else { 19636 ASSERT(mp->b_datap->db_type == M_CTL); 19637 first_mp = mp; 19638 mp = mp->b_cont; 19639 mctl_present = B_TRUE; 19640 } 19641 } else { 19642 first_mp = mp; 19643 mctl_present = B_FALSE; 19644 } 19645 19646 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19647 19648 /* is wrong version or IP options present */ 19649 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 19650 goto version_hdrlen_check; 19651 dst = ipha->ipha_dst; 19652 19653 if (connp->conn_nofailover_ill != NULL) { 19654 attach_ill = conn_get_held_ill(connp, 19655 &connp->conn_nofailover_ill, &err); 19656 if (err == ILL_LOOKUP_FAILED) { 19657 if (need_decref) 19658 CONN_DEC_REF(connp); 19659 freemsg(first_mp); 19660 return; 19661 } 19662 } 19663 19664 /* is packet multicast? */ 19665 if (CLASSD(dst)) 19666 goto multicast; 19667 19668 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 19669 (connp->conn_nexthop_set)) { 19670 /* 19671 * If the destination is a broadcast or a loopback 19672 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 19673 * through the standard path. But in the case of local 19674 * destination only SO_DONTROUTE and IP_NEXTHOP go through 19675 * the standard path not IP_XMIT_IF. 19676 */ 19677 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19678 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 19679 (ire->ire_type != IRE_LOOPBACK))) { 19680 if ((connp->conn_dontroute || 19681 connp->conn_nexthop_set) && (ire != NULL) && 19682 (ire->ire_type == IRE_LOCAL)) 19683 goto standard_path; 19684 19685 if (ire != NULL) { 19686 ire_refrele(ire); 19687 /* No more access to ire */ 19688 ire = NULL; 19689 } 19690 /* 19691 * bypass routing checks and go directly to 19692 * interface. 19693 */ 19694 if (connp->conn_dontroute) { 19695 goto dontroute; 19696 } else if (connp->conn_nexthop_set) { 19697 ip_nexthop = B_TRUE; 19698 nexthop_addr = connp->conn_nexthop_v4; 19699 goto send_from_ill; 19700 } 19701 19702 /* 19703 * If IP_XMIT_IF socket option is set, 19704 * then we allow unicast and multicast 19705 * packets to go through the ill. It is 19706 * quite possible that the destination 19707 * is not in the ire cache table and we 19708 * do not want to go to ip_newroute() 19709 * instead we call ip_newroute_ipif. 19710 */ 19711 xmit_ill = conn_get_held_ill(connp, 19712 &connp->conn_xmit_if_ill, &err); 19713 if (err == ILL_LOOKUP_FAILED) { 19714 if (attach_ill != NULL) 19715 ill_refrele(attach_ill); 19716 if (need_decref) 19717 CONN_DEC_REF(connp); 19718 freemsg(first_mp); 19719 return; 19720 } 19721 goto send_from_ill; 19722 } 19723 standard_path: 19724 /* Must be a broadcast, a loopback or a local ire */ 19725 if (ire != NULL) { 19726 ire_refrele(ire); 19727 /* No more access to ire */ 19728 ire = NULL; 19729 } 19730 } 19731 19732 if (attach_ill != NULL) 19733 goto send_from_ill; 19734 19735 /* 19736 * We cache IRE_CACHEs to avoid lookups. We don't do 19737 * this for the tcp global queue and listen end point 19738 * as it does not really have a real destination to 19739 * talk to. This is also true for SCTP. 19740 */ 19741 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 19742 !connp->conn_fully_bound) { 19743 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19744 if (ire == NULL) 19745 goto noirefound; 19746 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19747 "ip_wput_end: q %p (%S)", q, "end"); 19748 19749 /* 19750 * Check if the ire has the RTF_MULTIRT flag, inherited 19751 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 19752 */ 19753 if (ire->ire_flags & RTF_MULTIRT) { 19754 19755 /* 19756 * Force the TTL of multirouted packets if required. 19757 * The TTL of such packets is bounded by the 19758 * ip_multirt_ttl ndd variable. 19759 */ 19760 if ((ip_multirt_ttl > 0) && 19761 (ipha->ipha_ttl > ip_multirt_ttl)) { 19762 ip2dbg(("ip_wput: forcing multirt TTL to %d " 19763 "(was %d), dst 0x%08x\n", 19764 ip_multirt_ttl, ipha->ipha_ttl, 19765 ntohl(ire->ire_addr))); 19766 ipha->ipha_ttl = ip_multirt_ttl; 19767 } 19768 /* 19769 * We look at this point if there are pending 19770 * unresolved routes. ire_multirt_resolvable() 19771 * checks in O(n) that all IRE_OFFSUBNET ire 19772 * entries for the packet's destination and 19773 * flagged RTF_MULTIRT are currently resolved. 19774 * If some remain unresolved, we make a copy 19775 * of the current message. It will be used 19776 * to initiate additional route resolutions. 19777 */ 19778 multirt_need_resolve = 19779 ire_multirt_need_resolve(ire->ire_addr, 19780 MBLK_GETLABEL(first_mp)); 19781 ip2dbg(("ip_wput[TCP]: ire %p, " 19782 "multirt_need_resolve %d, first_mp %p\n", 19783 (void *)ire, multirt_need_resolve, 19784 (void *)first_mp)); 19785 if (multirt_need_resolve) { 19786 copy_mp = copymsg(first_mp); 19787 if (copy_mp != NULL) { 19788 MULTIRT_DEBUG_TAG(copy_mp); 19789 } 19790 } 19791 } 19792 19793 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 19794 19795 /* 19796 * Try to resolve another multiroute if 19797 * ire_multirt_need_resolve() deemed it necessary. 19798 */ 19799 if (copy_mp != NULL) { 19800 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 19801 } 19802 if (need_decref) 19803 CONN_DEC_REF(connp); 19804 return; 19805 } 19806 19807 /* 19808 * Access to conn_ire_cache. (protected by conn_lock) 19809 * 19810 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 19811 * the ire bucket lock here to check for CONDEMNED as it is okay to 19812 * send a packet or two with the IRE_CACHE that is going away. 19813 * Access to the ire requires an ire refhold on the ire prior to 19814 * its use since an interface unplumb thread may delete the cached 19815 * ire and release the refhold at any time. 19816 * 19817 * Caching an ire in the conn_ire_cache 19818 * 19819 * o Caching an ire pointer in the conn requires a strict check for 19820 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 19821 * ires before cleaning up the conns. So the caching of an ire pointer 19822 * in the conn is done after making sure under the bucket lock that the 19823 * ire has not yet been marked CONDEMNED. Otherwise we will end up 19824 * caching an ire after the unplumb thread has cleaned up the conn. 19825 * If the conn does not send a packet subsequently the unplumb thread 19826 * will be hanging waiting for the ire count to drop to zero. 19827 * 19828 * o We also need to atomically test for a null conn_ire_cache and 19829 * set the conn_ire_cache under the the protection of the conn_lock 19830 * to avoid races among concurrent threads trying to simultaneously 19831 * cache an ire in the conn_ire_cache. 19832 */ 19833 mutex_enter(&connp->conn_lock); 19834 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 19835 19836 if (ire != NULL && ire->ire_addr == dst && 19837 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19838 19839 IRE_REFHOLD(ire); 19840 mutex_exit(&connp->conn_lock); 19841 19842 } else { 19843 boolean_t cached = B_FALSE; 19844 connp->conn_ire_cache = NULL; 19845 mutex_exit(&connp->conn_lock); 19846 /* Release the old ire */ 19847 if (ire != NULL && sctp_ire == NULL) 19848 IRE_REFRELE_NOTR(ire); 19849 19850 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19851 if (ire == NULL) 19852 goto noirefound; 19853 IRE_REFHOLD_NOTR(ire); 19854 19855 mutex_enter(&connp->conn_lock); 19856 if (!(connp->conn_state_flags & CONN_CLOSING) && 19857 connp->conn_ire_cache == NULL) { 19858 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 19859 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19860 connp->conn_ire_cache = ire; 19861 cached = B_TRUE; 19862 } 19863 rw_exit(&ire->ire_bucket->irb_lock); 19864 } 19865 mutex_exit(&connp->conn_lock); 19866 19867 /* 19868 * We can continue to use the ire but since it was 19869 * not cached, we should drop the extra reference. 19870 */ 19871 if (!cached) 19872 IRE_REFRELE_NOTR(ire); 19873 } 19874 19875 19876 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19877 "ip_wput_end: q %p (%S)", q, "end"); 19878 19879 /* 19880 * Check if the ire has the RTF_MULTIRT flag, inherited 19881 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 19882 */ 19883 if (ire->ire_flags & RTF_MULTIRT) { 19884 19885 /* 19886 * Force the TTL of multirouted packets if required. 19887 * The TTL of such packets is bounded by the 19888 * ip_multirt_ttl ndd variable. 19889 */ 19890 if ((ip_multirt_ttl > 0) && 19891 (ipha->ipha_ttl > ip_multirt_ttl)) { 19892 ip2dbg(("ip_wput: forcing multirt TTL to %d " 19893 "(was %d), dst 0x%08x\n", 19894 ip_multirt_ttl, ipha->ipha_ttl, 19895 ntohl(ire->ire_addr))); 19896 ipha->ipha_ttl = ip_multirt_ttl; 19897 } 19898 19899 /* 19900 * At this point, we check to see if there are any pending 19901 * unresolved routes. ire_multirt_resolvable() 19902 * checks in O(n) that all IRE_OFFSUBNET ire 19903 * entries for the packet's destination and 19904 * flagged RTF_MULTIRT are currently resolved. 19905 * If some remain unresolved, we make a copy 19906 * of the current message. It will be used 19907 * to initiate additional route resolutions. 19908 */ 19909 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 19910 MBLK_GETLABEL(first_mp)); 19911 ip2dbg(("ip_wput[not TCP]: ire %p, " 19912 "multirt_need_resolve %d, first_mp %p\n", 19913 (void *)ire, multirt_need_resolve, (void *)first_mp)); 19914 if (multirt_need_resolve) { 19915 copy_mp = copymsg(first_mp); 19916 if (copy_mp != NULL) { 19917 MULTIRT_DEBUG_TAG(copy_mp); 19918 } 19919 } 19920 } 19921 19922 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 19923 19924 /* 19925 * Try to resolve another multiroute if 19926 * ire_multirt_resolvable() deemed it necessary 19927 */ 19928 if (copy_mp != NULL) { 19929 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 19930 } 19931 if (need_decref) 19932 CONN_DEC_REF(connp); 19933 return; 19934 19935 qnext: 19936 /* 19937 * Upper Level Protocols pass down complete IP datagrams 19938 * as M_DATA messages. Everything else is a sideshow. 19939 * 19940 * 1) We could be re-entering ip_wput because of ip_neworute 19941 * in which case we could have a IPSEC_OUT message. We 19942 * need to pass through ip_wput like other datagrams and 19943 * hence cannot branch to ip_wput_nondata. 19944 * 19945 * 2) ARP, AH, ESP, and other clients who are on the module 19946 * instance of IP stream, give us something to deal with. 19947 * We will handle AH and ESP here and rest in ip_wput_nondata. 19948 * 19949 * 3) ICMP replies also could come here. 19950 */ 19951 if (DB_TYPE(mp) != M_DATA) { 19952 notdata: 19953 if (DB_TYPE(mp) == M_CTL) { 19954 /* 19955 * M_CTL messages are used by ARP, AH and ESP to 19956 * communicate with IP. We deal with IPSEC_IN and 19957 * IPSEC_OUT here. ip_wput_nondata handles other 19958 * cases. 19959 */ 19960 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 19961 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 19962 first_mp = mp->b_cont; 19963 first_mp->b_flag &= ~MSGHASREF; 19964 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 19965 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 19966 CONN_DEC_REF(connp); 19967 connp = NULL; 19968 } 19969 if (ii->ipsec_info_type == IPSEC_IN) { 19970 /* 19971 * Either this message goes back to 19972 * IPSEC for further processing or to 19973 * ULP after policy checks. 19974 */ 19975 ip_fanout_proto_again(mp, NULL, NULL, NULL); 19976 return; 19977 } else if (ii->ipsec_info_type == IPSEC_OUT) { 19978 io = (ipsec_out_t *)ii; 19979 if (io->ipsec_out_proc_begin) { 19980 /* 19981 * IPSEC processing has already started. 19982 * Complete it. 19983 * IPQoS notes: We don't care what is 19984 * in ipsec_out_ill_index since this 19985 * won't be processed for IPQoS policies 19986 * in ipsec_out_process. 19987 */ 19988 ipsec_out_process(q, mp, NULL, 19989 io->ipsec_out_ill_index); 19990 return; 19991 } else { 19992 connp = (q->q_next != NULL) ? 19993 NULL : Q_TO_CONN(q); 19994 first_mp = mp; 19995 mp = mp->b_cont; 19996 mctl_present = B_TRUE; 19997 } 19998 zoneid = io->ipsec_out_zoneid; 19999 ASSERT(zoneid != ALL_ZONES); 20000 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20001 /* 20002 * It's an IPsec control message requesting 20003 * an SADB update to be sent to the IPsec 20004 * hardware acceleration capable ills. 20005 */ 20006 ipsec_ctl_t *ipsec_ctl = 20007 (ipsec_ctl_t *)mp->b_rptr; 20008 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20009 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20010 mblk_t *cmp = mp->b_cont; 20011 20012 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20013 ASSERT(cmp != NULL); 20014 20015 freeb(mp); 20016 ill_ipsec_capab_send_all(satype, cmp, sa); 20017 return; 20018 } else { 20019 /* 20020 * This must be ARP or special TSOL signaling. 20021 */ 20022 ip_wput_nondata(NULL, q, mp, NULL); 20023 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20024 "ip_wput_end: q %p (%S)", q, "nondata"); 20025 return; 20026 } 20027 } else { 20028 /* 20029 * This must be non-(ARP/AH/ESP) messages. 20030 */ 20031 ASSERT(!need_decref); 20032 ip_wput_nondata(NULL, q, mp, NULL); 20033 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20034 "ip_wput_end: q %p (%S)", q, "nondata"); 20035 return; 20036 } 20037 } else { 20038 first_mp = mp; 20039 mctl_present = B_FALSE; 20040 } 20041 20042 ASSERT(first_mp != NULL); 20043 /* 20044 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20045 * to make sure that this packet goes out on the same interface it 20046 * came in. We handle that here. 20047 */ 20048 if (mctl_present) { 20049 uint_t ifindex; 20050 20051 io = (ipsec_out_t *)first_mp->b_rptr; 20052 if (io->ipsec_out_attach_if || 20053 io->ipsec_out_xmit_if || 20054 io->ipsec_out_ip_nexthop) { 20055 ill_t *ill; 20056 20057 /* 20058 * We may have lost the conn context if we are 20059 * coming here from ip_newroute(). Copy the 20060 * nexthop information. 20061 */ 20062 if (io->ipsec_out_ip_nexthop) { 20063 ip_nexthop = B_TRUE; 20064 nexthop_addr = io->ipsec_out_nexthop_addr; 20065 20066 ipha = (ipha_t *)mp->b_rptr; 20067 dst = ipha->ipha_dst; 20068 goto send_from_ill; 20069 } else { 20070 ASSERT(io->ipsec_out_ill_index != 0); 20071 ifindex = io->ipsec_out_ill_index; 20072 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 20073 NULL, NULL, NULL, NULL); 20074 /* 20075 * ipsec_out_xmit_if bit is used to tell 20076 * ip_wput to use the ill to send outgoing data 20077 * as we have no conn when data comes from ICMP 20078 * error msg routines. Currently this feature is 20079 * only used by ip_mrtun_forward routine. 20080 */ 20081 if (io->ipsec_out_xmit_if) { 20082 xmit_ill = ill; 20083 if (xmit_ill == NULL) { 20084 ip1dbg(("ip_output:bad ifindex " 20085 "for xmit_ill %d\n", 20086 ifindex)); 20087 freemsg(first_mp); 20088 BUMP_MIB(&ip_mib, 20089 ipOutDiscards); 20090 ASSERT(!need_decref); 20091 return; 20092 } 20093 /* Free up the ipsec_out_t mblk */ 20094 ASSERT(first_mp->b_cont == mp); 20095 first_mp->b_cont = NULL; 20096 freeb(first_mp); 20097 /* Just send the IP header+ICMP+data */ 20098 first_mp = mp; 20099 ipha = (ipha_t *)mp->b_rptr; 20100 dst = ipha->ipha_dst; 20101 goto send_from_ill; 20102 } else { 20103 attach_ill = ill; 20104 } 20105 20106 if (attach_ill == NULL) { 20107 ASSERT(xmit_ill == NULL); 20108 ip1dbg(("ip_output: bad ifindex for " 20109 "(BIND TO IPIF_NOFAILOVER) %d\n", 20110 ifindex)); 20111 freemsg(first_mp); 20112 BUMP_MIB(&ip_mib, ipOutDiscards); 20113 ASSERT(!need_decref); 20114 return; 20115 } 20116 } 20117 } 20118 } 20119 20120 ASSERT(xmit_ill == NULL); 20121 20122 /* We have a complete IP datagram heading outbound. */ 20123 ipha = (ipha_t *)mp->b_rptr; 20124 20125 #ifndef SPEED_BEFORE_SAFETY 20126 /* 20127 * Make sure we have a full-word aligned message and that at least 20128 * a simple IP header is accessible in the first message. If not, 20129 * try a pullup. 20130 */ 20131 if (!OK_32PTR(rptr) || 20132 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20133 hdrtoosmall: 20134 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20135 BUMP_MIB(&ip_mib, ipOutDiscards); 20136 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20137 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20138 if (first_mp == NULL) 20139 first_mp = mp; 20140 goto drop_pkt; 20141 } 20142 20143 /* This function assumes that mp points to an IPv4 packet. */ 20144 if (is_system_labeled() && q->q_next == NULL && 20145 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20146 !connp->conn_ulp_labeled) { 20147 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20148 &adjust, connp->conn_mac_exempt); 20149 ipha = (ipha_t *)mp->b_rptr; 20150 if (first_mp != NULL) 20151 first_mp->b_cont = mp; 20152 if (err != 0) { 20153 if (first_mp == NULL) 20154 first_mp = mp; 20155 if (err == EINVAL) 20156 goto icmp_parameter_problem; 20157 ip2dbg(("ip_wput: label check failed (%d)\n", 20158 err)); 20159 goto drop_pkt; 20160 } 20161 iplen = ntohs(ipha->ipha_length) + adjust; 20162 ipha->ipha_length = htons(iplen); 20163 } 20164 20165 ipha = (ipha_t *)mp->b_rptr; 20166 if (first_mp == NULL) { 20167 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20168 /* 20169 * If we got here because of "goto hdrtoosmall" 20170 * We need to attach a IPSEC_OUT. 20171 */ 20172 if (connp->conn_out_enforce_policy) { 20173 if (((mp = ipsec_attach_ipsec_out(mp, connp, 20174 NULL, ipha->ipha_protocol)) == NULL)) { 20175 if (need_decref) 20176 CONN_DEC_REF(connp); 20177 return; 20178 } else { 20179 ASSERT(mp->b_datap->db_type == M_CTL); 20180 first_mp = mp; 20181 mp = mp->b_cont; 20182 mctl_present = B_TRUE; 20183 } 20184 } else { 20185 first_mp = mp; 20186 mctl_present = B_FALSE; 20187 } 20188 } 20189 } 20190 #endif 20191 20192 /* Most of the code below is written for speed, not readability */ 20193 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20194 20195 /* 20196 * If ip_newroute() fails, we're going to need a full 20197 * header for the icmp wraparound. 20198 */ 20199 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20200 uint_t v_hlen; 20201 version_hdrlen_check: 20202 ASSERT(first_mp != NULL); 20203 v_hlen = V_HLEN; 20204 /* 20205 * siphon off IPv6 packets coming down from transport 20206 * layer modules here. 20207 * Note: high-order bit carries NUD reachability confirmation 20208 */ 20209 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20210 /* 20211 * XXX implement a IPv4 and IPv6 packet counter per 20212 * conn and switch when ratio exceeds e.g. 10:1 20213 */ 20214 #ifdef notyet 20215 if (q->q_next == NULL) /* Avoid ill queue */ 20216 ip_setqinfo(RD(q), B_TRUE, B_TRUE); 20217 #endif 20218 BUMP_MIB(&ip_mib, ipOutIPv6); 20219 ASSERT(xmit_ill == NULL); 20220 if (attach_ill != NULL) 20221 ill_refrele(attach_ill); 20222 if (need_decref) 20223 mp->b_flag |= MSGHASREF; 20224 (void) ip_output_v6(arg, first_mp, arg2, caller); 20225 return; 20226 } 20227 20228 if ((v_hlen >> 4) != IP_VERSION) { 20229 BUMP_MIB(&ip_mib, ipOutDiscards); 20230 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20231 "ip_wput_end: q %p (%S)", q, "badvers"); 20232 goto drop_pkt; 20233 } 20234 /* 20235 * Is the header length at least 20 bytes? 20236 * 20237 * Are there enough bytes accessible in the header? If 20238 * not, try a pullup. 20239 */ 20240 v_hlen &= 0xF; 20241 v_hlen <<= 2; 20242 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20243 BUMP_MIB(&ip_mib, ipOutDiscards); 20244 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20245 "ip_wput_end: q %p (%S)", q, "badlen"); 20246 goto drop_pkt; 20247 } 20248 if (v_hlen > (mp->b_wptr - rptr)) { 20249 if (!pullupmsg(mp, v_hlen)) { 20250 BUMP_MIB(&ip_mib, ipOutDiscards); 20251 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20252 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20253 goto drop_pkt; 20254 } 20255 ipha = (ipha_t *)mp->b_rptr; 20256 } 20257 /* 20258 * Move first entry from any source route into ipha_dst and 20259 * verify the options 20260 */ 20261 if (ip_wput_options(q, first_mp, ipha, mctl_present, zoneid)) { 20262 ASSERT(xmit_ill == NULL); 20263 if (attach_ill != NULL) 20264 ill_refrele(attach_ill); 20265 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20266 "ip_wput_end: q %p (%S)", q, "badopts"); 20267 if (need_decref) 20268 CONN_DEC_REF(connp); 20269 return; 20270 } 20271 } 20272 dst = ipha->ipha_dst; 20273 20274 /* 20275 * Try to get an IRE_CACHE for the destination address. If we can't, 20276 * we have to run the packet through ip_newroute which will take 20277 * the appropriate action to arrange for an IRE_CACHE, such as querying 20278 * a resolver, or assigning a default gateway, etc. 20279 */ 20280 if (CLASSD(dst)) { 20281 ipif_t *ipif; 20282 uint32_t setsrc = 0; 20283 20284 multicast: 20285 ASSERT(first_mp != NULL); 20286 ASSERT(xmit_ill == NULL); 20287 ip2dbg(("ip_wput: CLASSD\n")); 20288 if (connp == NULL) { 20289 /* 20290 * Use the first good ipif on the ill. 20291 * XXX Should this ever happen? (Appears 20292 * to show up with just ppp and no ethernet due 20293 * to in.rdisc.) 20294 * However, ire_send should be able to 20295 * call ip_wput_ire directly. 20296 * 20297 * XXX Also, this can happen for ICMP and other packets 20298 * with multicast source addresses. Perhaps we should 20299 * fix things so that we drop the packet in question, 20300 * but for now, just run with it. 20301 */ 20302 ill_t *ill = (ill_t *)q->q_ptr; 20303 20304 /* 20305 * Don't honor attach_if for this case. If ill 20306 * is part of the group, ipif could belong to 20307 * any ill and we cannot maintain attach_ill 20308 * and ipif_ill same anymore and the assert 20309 * below would fail. 20310 */ 20311 if (mctl_present && io->ipsec_out_attach_if) { 20312 io->ipsec_out_ill_index = 0; 20313 io->ipsec_out_attach_if = B_FALSE; 20314 ASSERT(attach_ill != NULL); 20315 ill_refrele(attach_ill); 20316 attach_ill = NULL; 20317 } 20318 20319 ASSERT(attach_ill == NULL); 20320 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20321 if (ipif == NULL) { 20322 if (need_decref) 20323 CONN_DEC_REF(connp); 20324 freemsg(first_mp); 20325 return; 20326 } 20327 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20328 ntohl(dst), ill->ill_name)); 20329 } else { 20330 /* 20331 * If both IP_MULTICAST_IF and IP_XMIT_IF are set, 20332 * IP_XMIT_IF is honoured. 20333 * Block comment above this function explains the 20334 * locking mechanism used here 20335 */ 20336 xmit_ill = conn_get_held_ill(connp, 20337 &connp->conn_xmit_if_ill, &err); 20338 if (err == ILL_LOOKUP_FAILED) { 20339 ip1dbg(("ip_wput: No ill for IP_XMIT_IF\n")); 20340 goto drop_pkt; 20341 } 20342 if (xmit_ill == NULL) { 20343 ipif = conn_get_held_ipif(connp, 20344 &connp->conn_multicast_ipif, &err); 20345 if (err == IPIF_LOOKUP_FAILED) { 20346 ip1dbg(("ip_wput: No ipif for " 20347 "multicast\n")); 20348 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20349 goto drop_pkt; 20350 } 20351 } 20352 if (xmit_ill != NULL) { 20353 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20354 if (ipif == NULL) { 20355 ip1dbg(("ip_wput: No ipif for " 20356 "IP_XMIT_IF\n")); 20357 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20358 goto drop_pkt; 20359 } 20360 } else if (ipif == NULL || ipif->ipif_isv6) { 20361 /* 20362 * We must do this ipif determination here 20363 * else we could pass through ip_newroute 20364 * and come back here without the conn context. 20365 * 20366 * Note: we do late binding i.e. we bind to 20367 * the interface when the first packet is sent. 20368 * For performance reasons we do not rebind on 20369 * each packet but keep the binding until the 20370 * next IP_MULTICAST_IF option. 20371 * 20372 * conn_multicast_{ipif,ill} are shared between 20373 * IPv4 and IPv6 and AF_INET6 sockets can 20374 * send both IPv4 and IPv6 packets. Hence 20375 * we have to check that "isv6" matches above. 20376 */ 20377 if (ipif != NULL) 20378 ipif_refrele(ipif); 20379 ipif = ipif_lookup_group(dst, zoneid); 20380 if (ipif == NULL) { 20381 ip1dbg(("ip_wput: No ipif for " 20382 "multicast\n")); 20383 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20384 goto drop_pkt; 20385 } 20386 err = conn_set_held_ipif(connp, 20387 &connp->conn_multicast_ipif, ipif); 20388 if (err == IPIF_LOOKUP_FAILED) { 20389 ipif_refrele(ipif); 20390 ip1dbg(("ip_wput: No ipif for " 20391 "multicast\n")); 20392 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20393 goto drop_pkt; 20394 } 20395 } 20396 } 20397 ASSERT(!ipif->ipif_isv6); 20398 /* 20399 * As we may lose the conn by the time we reach ip_wput_ire, 20400 * we copy conn_multicast_loop and conn_dontroute on to an 20401 * ipsec_out. In case if this datagram goes out secure, 20402 * we need the ill_index also. Copy that also into the 20403 * ipsec_out. 20404 */ 20405 if (mctl_present) { 20406 io = (ipsec_out_t *)first_mp->b_rptr; 20407 ASSERT(first_mp->b_datap->db_type == M_CTL); 20408 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20409 } else { 20410 ASSERT(mp == first_mp); 20411 if ((first_mp = allocb(sizeof (ipsec_info_t), 20412 BPRI_HI)) == NULL) { 20413 ipif_refrele(ipif); 20414 first_mp = mp; 20415 goto drop_pkt; 20416 } 20417 first_mp->b_datap->db_type = M_CTL; 20418 first_mp->b_wptr += sizeof (ipsec_info_t); 20419 /* ipsec_out_secure is B_FALSE now */ 20420 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 20421 io = (ipsec_out_t *)first_mp->b_rptr; 20422 io->ipsec_out_type = IPSEC_OUT; 20423 io->ipsec_out_len = sizeof (ipsec_out_t); 20424 io->ipsec_out_use_global_policy = B_TRUE; 20425 first_mp->b_cont = mp; 20426 mctl_present = B_TRUE; 20427 } 20428 if (attach_ill != NULL) { 20429 ASSERT(attach_ill == ipif->ipif_ill); 20430 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20431 20432 /* 20433 * Check if we need an ire that will not be 20434 * looked up by anybody else i.e. HIDDEN. 20435 */ 20436 if (ill_is_probeonly(attach_ill)) { 20437 match_flags |= MATCH_IRE_MARK_HIDDEN; 20438 } 20439 io->ipsec_out_ill_index = 20440 attach_ill->ill_phyint->phyint_ifindex; 20441 io->ipsec_out_attach_if = B_TRUE; 20442 } else { 20443 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 20444 io->ipsec_out_ill_index = 20445 ipif->ipif_ill->ill_phyint->phyint_ifindex; 20446 } 20447 if (connp != NULL) { 20448 io->ipsec_out_multicast_loop = 20449 connp->conn_multicast_loop; 20450 io->ipsec_out_dontroute = connp->conn_dontroute; 20451 io->ipsec_out_zoneid = connp->conn_zoneid; 20452 } 20453 /* 20454 * If the application uses IP_MULTICAST_IF with 20455 * different logical addresses of the same ILL, we 20456 * need to make sure that the soruce address of 20457 * the packet matches the logical IP address used 20458 * in the option. We do it by initializing ipha_src 20459 * here. This should keep IPSEC also happy as 20460 * when we return from IPSEC processing, we don't 20461 * have to worry about getting the right address on 20462 * the packet. Thus it is sufficient to look for 20463 * IRE_CACHE using MATCH_IRE_ILL rathen than 20464 * MATCH_IRE_IPIF. 20465 * 20466 * NOTE : We need to do it for non-secure case also as 20467 * this might go out secure if there is a global policy 20468 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 20469 * address, the source should be initialized already and 20470 * hence we won't be initializing here. 20471 * 20472 * As we do not have the ire yet, it is possible that 20473 * we set the source address here and then later discover 20474 * that the ire implies the source address to be assigned 20475 * through the RTF_SETSRC flag. 20476 * In that case, the setsrc variable will remind us 20477 * that overwritting the source address by the one 20478 * of the RTF_SETSRC-flagged ire is allowed. 20479 */ 20480 if (ipha->ipha_src == INADDR_ANY && 20481 (connp == NULL || !connp->conn_unspec_src)) { 20482 ipha->ipha_src = ipif->ipif_src_addr; 20483 setsrc = RTF_SETSRC; 20484 } 20485 /* 20486 * Find an IRE which matches the destination and the outgoing 20487 * queue (i.e. the outgoing interface.) 20488 * For loopback use a unicast IP address for 20489 * the ire lookup. 20490 */ 20491 if (ipif->ipif_ill->ill_phyint->phyint_flags & 20492 PHYI_LOOPBACK) { 20493 dst = ipif->ipif_lcl_addr; 20494 } 20495 /* 20496 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 20497 * We don't need to lookup ire in ctable as the packet 20498 * needs to be sent to the destination through the specified 20499 * ill irrespective of ires in the cache table. 20500 */ 20501 ire = NULL; 20502 if (xmit_ill == NULL) { 20503 ire = ire_ctable_lookup(dst, 0, 0, ipif, 20504 zoneid, MBLK_GETLABEL(mp), match_flags); 20505 } 20506 20507 /* 20508 * refrele attach_ill as its not needed anymore. 20509 */ 20510 if (attach_ill != NULL) { 20511 ill_refrele(attach_ill); 20512 attach_ill = NULL; 20513 } 20514 20515 if (ire == NULL) { 20516 /* 20517 * Multicast loopback and multicast forwarding is 20518 * done in ip_wput_ire. 20519 * 20520 * Mark this packet to make it be delivered to 20521 * ip_wput_ire after the new ire has been 20522 * created. 20523 * 20524 * The call to ip_newroute_ipif takes into account 20525 * the setsrc reminder. In any case, we take care 20526 * of the RTF_MULTIRT flag. 20527 */ 20528 mp->b_prev = mp->b_next = NULL; 20529 if (xmit_ill == NULL || 20530 xmit_ill->ill_ipif_up_count > 0) { 20531 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 20532 setsrc | RTF_MULTIRT, zoneid); 20533 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20534 "ip_wput_end: q %p (%S)", q, "noire"); 20535 } else { 20536 freemsg(first_mp); 20537 } 20538 ipif_refrele(ipif); 20539 if (xmit_ill != NULL) 20540 ill_refrele(xmit_ill); 20541 if (need_decref) 20542 CONN_DEC_REF(connp); 20543 return; 20544 } 20545 20546 ipif_refrele(ipif); 20547 ipif = NULL; 20548 ASSERT(xmit_ill == NULL); 20549 20550 /* 20551 * Honor the RTF_SETSRC flag for multicast packets, 20552 * if allowed by the setsrc reminder. 20553 */ 20554 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 20555 ipha->ipha_src = ire->ire_src_addr; 20556 } 20557 20558 /* 20559 * Unconditionally force the TTL to 1 for 20560 * multirouted multicast packets: 20561 * multirouted multicast should not cross 20562 * multicast routers. 20563 */ 20564 if (ire->ire_flags & RTF_MULTIRT) { 20565 if (ipha->ipha_ttl > 1) { 20566 ip2dbg(("ip_wput: forcing multicast " 20567 "multirt TTL to 1 (was %d), dst 0x%08x\n", 20568 ipha->ipha_ttl, ntohl(ire->ire_addr))); 20569 ipha->ipha_ttl = 1; 20570 } 20571 } 20572 } else { 20573 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 20574 if ((ire != NULL) && (ire->ire_type & 20575 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 20576 ignore_dontroute = B_TRUE; 20577 ignore_nexthop = B_TRUE; 20578 } 20579 if (ire != NULL) { 20580 ire_refrele(ire); 20581 ire = NULL; 20582 } 20583 /* 20584 * Guard against coming in from arp in which case conn is NULL. 20585 * Also guard against non M_DATA with dontroute set but 20586 * destined to local, loopback or broadcast addresses. 20587 */ 20588 if (connp != NULL && connp->conn_dontroute && 20589 !ignore_dontroute) { 20590 dontroute: 20591 /* 20592 * Set TTL to 1 if SO_DONTROUTE is set to prevent 20593 * routing protocols from seeing false direct 20594 * connectivity. 20595 */ 20596 ipha->ipha_ttl = 1; 20597 /* 20598 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 20599 * along with SO_DONTROUTE, higher precedence is 20600 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 20601 */ 20602 if (connp->conn_xmit_if_ill == NULL) { 20603 /* If suitable ipif not found, drop packet */ 20604 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid); 20605 if (dst_ipif == NULL) { 20606 ip1dbg(("ip_wput: no route for " 20607 "dst using SO_DONTROUTE\n")); 20608 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20609 mp->b_prev = mp->b_next = NULL; 20610 if (first_mp == NULL) 20611 first_mp = mp; 20612 goto drop_pkt; 20613 } else { 20614 /* 20615 * If suitable ipif has been found, set 20616 * xmit_ill to the corresponding 20617 * ipif_ill because we'll be following 20618 * the IP_XMIT_IF logic. 20619 */ 20620 ASSERT(xmit_ill == NULL); 20621 xmit_ill = dst_ipif->ipif_ill; 20622 mutex_enter(&xmit_ill->ill_lock); 20623 if (!ILL_CAN_LOOKUP(xmit_ill)) { 20624 mutex_exit(&xmit_ill->ill_lock); 20625 xmit_ill = NULL; 20626 ipif_refrele(dst_ipif); 20627 ip1dbg(("ip_wput: no route for" 20628 " dst using" 20629 " SO_DONTROUTE\n")); 20630 BUMP_MIB(&ip_mib, 20631 ipOutNoRoutes); 20632 mp->b_prev = mp->b_next = NULL; 20633 if (first_mp == NULL) 20634 first_mp = mp; 20635 goto drop_pkt; 20636 } 20637 ill_refhold_locked(xmit_ill); 20638 mutex_exit(&xmit_ill->ill_lock); 20639 ipif_refrele(dst_ipif); 20640 } 20641 } 20642 20643 } 20644 /* 20645 * If we are bound to IPIF_NOFAILOVER address, look for 20646 * an IRE_CACHE matching the ill. 20647 */ 20648 send_from_ill: 20649 if (attach_ill != NULL) { 20650 ipif_t *attach_ipif; 20651 20652 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20653 20654 /* 20655 * Check if we need an ire that will not be 20656 * looked up by anybody else i.e. HIDDEN. 20657 */ 20658 if (ill_is_probeonly(attach_ill)) { 20659 match_flags |= MATCH_IRE_MARK_HIDDEN; 20660 } 20661 20662 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 20663 if (attach_ipif == NULL) { 20664 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 20665 goto drop_pkt; 20666 } 20667 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 20668 zoneid, MBLK_GETLABEL(mp), match_flags); 20669 ipif_refrele(attach_ipif); 20670 } else if (xmit_ill != NULL || (connp != NULL && 20671 connp->conn_xmit_if_ill != NULL)) { 20672 /* 20673 * Mark this packet as originated locally 20674 */ 20675 mp->b_prev = mp->b_next = NULL; 20676 /* 20677 * xmit_ill could be NULL if SO_DONTROUTE 20678 * is also set. 20679 */ 20680 if (xmit_ill == NULL) { 20681 xmit_ill = conn_get_held_ill(connp, 20682 &connp->conn_xmit_if_ill, &err); 20683 if (err == ILL_LOOKUP_FAILED) { 20684 if (need_decref) 20685 CONN_DEC_REF(connp); 20686 freemsg(first_mp); 20687 return; 20688 } 20689 if (xmit_ill == NULL) { 20690 if (connp->conn_dontroute) 20691 goto dontroute; 20692 goto send_from_ill; 20693 } 20694 } 20695 /* 20696 * could be SO_DONTROUTE case also. 20697 * check at least one interface is UP as 20698 * spcified by this ILL, and then call 20699 * ip_newroute_ipif() 20700 */ 20701 if (xmit_ill->ill_ipif_up_count > 0) { 20702 ipif_t *ipif; 20703 20704 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20705 if (ipif != NULL) { 20706 ip_newroute_ipif(q, first_mp, ipif, 20707 dst, connp, 0, zoneid); 20708 ipif_refrele(ipif); 20709 ip1dbg(("ip_wput: ip_unicast_if\n")); 20710 } 20711 } else { 20712 freemsg(first_mp); 20713 } 20714 ill_refrele(xmit_ill); 20715 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20716 "ip_wput_end: q %p (%S)", q, "unicast_if"); 20717 if (need_decref) 20718 CONN_DEC_REF(connp); 20719 return; 20720 } else if (ip_nexthop || (connp != NULL && 20721 (connp->conn_nexthop_set)) && !ignore_nexthop) { 20722 if (!ip_nexthop) { 20723 ip_nexthop = B_TRUE; 20724 nexthop_addr = connp->conn_nexthop_v4; 20725 } 20726 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 20727 MATCH_IRE_GW; 20728 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 20729 NULL, zoneid, MBLK_GETLABEL(mp), match_flags); 20730 } else { 20731 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 20732 } 20733 if (!ire) { 20734 /* 20735 * Make sure we don't load spread if this 20736 * is IPIF_NOFAILOVER case. 20737 */ 20738 if ((attach_ill != NULL) || 20739 (ip_nexthop && !ignore_nexthop)) { 20740 if (mctl_present) { 20741 io = (ipsec_out_t *)first_mp->b_rptr; 20742 ASSERT(first_mp->b_datap->db_type == 20743 M_CTL); 20744 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20745 } else { 20746 ASSERT(mp == first_mp); 20747 first_mp = allocb( 20748 sizeof (ipsec_info_t), BPRI_HI); 20749 if (first_mp == NULL) { 20750 first_mp = mp; 20751 goto drop_pkt; 20752 } 20753 first_mp->b_datap->db_type = M_CTL; 20754 first_mp->b_wptr += 20755 sizeof (ipsec_info_t); 20756 /* ipsec_out_secure is B_FALSE now */ 20757 bzero(first_mp->b_rptr, 20758 sizeof (ipsec_info_t)); 20759 io = (ipsec_out_t *)first_mp->b_rptr; 20760 io->ipsec_out_type = IPSEC_OUT; 20761 io->ipsec_out_len = 20762 sizeof (ipsec_out_t); 20763 io->ipsec_out_use_global_policy = 20764 B_TRUE; 20765 first_mp->b_cont = mp; 20766 mctl_present = B_TRUE; 20767 } 20768 if (attach_ill != NULL) { 20769 io->ipsec_out_ill_index = attach_ill-> 20770 ill_phyint->phyint_ifindex; 20771 io->ipsec_out_attach_if = B_TRUE; 20772 } else { 20773 io->ipsec_out_ip_nexthop = ip_nexthop; 20774 io->ipsec_out_nexthop_addr = 20775 nexthop_addr; 20776 } 20777 } 20778 noirefound: 20779 /* 20780 * Mark this packet as having originated on 20781 * this machine. This will be noted in 20782 * ire_add_then_send, which needs to know 20783 * whether to run it back through ip_wput or 20784 * ip_rput following successful resolution. 20785 */ 20786 mp->b_prev = NULL; 20787 mp->b_next = NULL; 20788 ip_newroute(q, first_mp, dst, NULL, connp, zoneid); 20789 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20790 "ip_wput_end: q %p (%S)", q, "newroute"); 20791 if (attach_ill != NULL) 20792 ill_refrele(attach_ill); 20793 if (xmit_ill != NULL) 20794 ill_refrele(xmit_ill); 20795 if (need_decref) 20796 CONN_DEC_REF(connp); 20797 return; 20798 } 20799 } 20800 20801 /* We now know where we are going with it. */ 20802 20803 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20804 "ip_wput_end: q %p (%S)", q, "end"); 20805 20806 /* 20807 * Check if the ire has the RTF_MULTIRT flag, inherited 20808 * from an IRE_OFFSUBNET ire entry in ip_newroute. 20809 */ 20810 if (ire->ire_flags & RTF_MULTIRT) { 20811 /* 20812 * Force the TTL of multirouted packets if required. 20813 * The TTL of such packets is bounded by the 20814 * ip_multirt_ttl ndd variable. 20815 */ 20816 if ((ip_multirt_ttl > 0) && 20817 (ipha->ipha_ttl > ip_multirt_ttl)) { 20818 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20819 "(was %d), dst 0x%08x\n", 20820 ip_multirt_ttl, ipha->ipha_ttl, 20821 ntohl(ire->ire_addr))); 20822 ipha->ipha_ttl = ip_multirt_ttl; 20823 } 20824 /* 20825 * At this point, we check to see if there are any pending 20826 * unresolved routes. ire_multirt_resolvable() 20827 * checks in O(n) that all IRE_OFFSUBNET ire 20828 * entries for the packet's destination and 20829 * flagged RTF_MULTIRT are currently resolved. 20830 * If some remain unresolved, we make a copy 20831 * of the current message. It will be used 20832 * to initiate additional route resolutions. 20833 */ 20834 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20835 MBLK_GETLABEL(first_mp)); 20836 ip2dbg(("ip_wput[noirefound]: ire %p, " 20837 "multirt_need_resolve %d, first_mp %p\n", 20838 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20839 if (multirt_need_resolve) { 20840 copy_mp = copymsg(first_mp); 20841 if (copy_mp != NULL) { 20842 MULTIRT_DEBUG_TAG(copy_mp); 20843 } 20844 } 20845 } 20846 20847 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20848 /* 20849 * Try to resolve another multiroute if 20850 * ire_multirt_resolvable() deemed it necessary. 20851 * At this point, we need to distinguish 20852 * multicasts from other packets. For multicasts, 20853 * we call ip_newroute_ipif() and request that both 20854 * multirouting and setsrc flags are checked. 20855 */ 20856 if (copy_mp != NULL) { 20857 if (CLASSD(dst)) { 20858 ipif_t *ipif = ipif_lookup_group(dst, zoneid); 20859 if (ipif) { 20860 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 20861 RTF_SETSRC | RTF_MULTIRT, zoneid); 20862 ipif_refrele(ipif); 20863 } else { 20864 MULTIRT_DEBUG_UNTAG(copy_mp); 20865 freemsg(copy_mp); 20866 copy_mp = NULL; 20867 } 20868 } else { 20869 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 20870 } 20871 } 20872 if (attach_ill != NULL) 20873 ill_refrele(attach_ill); 20874 if (xmit_ill != NULL) 20875 ill_refrele(xmit_ill); 20876 if (need_decref) 20877 CONN_DEC_REF(connp); 20878 return; 20879 20880 icmp_parameter_problem: 20881 /* could not have originated externally */ 20882 ASSERT(mp->b_prev == NULL); 20883 if (ip_hdr_complete(ipha, zoneid) == 0) { 20884 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20885 /* it's the IP header length that's in trouble */ 20886 icmp_param_problem(q, first_mp, 0, zoneid); 20887 first_mp = NULL; 20888 } 20889 20890 drop_pkt: 20891 ip1dbg(("ip_wput: dropped packet\n")); 20892 if (ire != NULL) 20893 ire_refrele(ire); 20894 if (need_decref) 20895 CONN_DEC_REF(connp); 20896 freemsg(first_mp); 20897 if (attach_ill != NULL) 20898 ill_refrele(attach_ill); 20899 if (xmit_ill != NULL) 20900 ill_refrele(xmit_ill); 20901 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20902 "ip_wput_end: q %p (%S)", q, "droppkt"); 20903 } 20904 20905 /* 20906 * If this is a conn_t queue, then we pass in the conn. This includes the 20907 * zoneid. 20908 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 20909 * in which case we use the global zoneid since those are all part of 20910 * the global zone. 20911 */ 20912 void 20913 ip_wput(queue_t *q, mblk_t *mp) 20914 { 20915 if (CONN_Q(q)) 20916 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 20917 else 20918 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 20919 } 20920 20921 /* 20922 * 20923 * The following rules must be observed when accessing any ipif or ill 20924 * that has been cached in the conn. Typically conn_nofailover_ill, 20925 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 20926 * 20927 * Access: The ipif or ill pointed to from the conn can be accessed under 20928 * the protection of the conn_lock or after it has been refheld under the 20929 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 20930 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 20931 * The reason for this is that a concurrent unplumb could actually be 20932 * cleaning up these cached pointers by walking the conns and might have 20933 * finished cleaning up the conn in question. The macros check that an 20934 * unplumb has not yet started on the ipif or ill. 20935 * 20936 * Caching: An ipif or ill pointer may be cached in the conn only after 20937 * making sure that an unplumb has not started. So the caching is done 20938 * while holding both the conn_lock and the ill_lock and after using the 20939 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 20940 * flag before starting the cleanup of conns. 20941 * 20942 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 20943 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 20944 * or a reference to the ipif or a reference to an ire that references the 20945 * ipif. An ipif does not change its ill except for failover/failback. Since 20946 * failover/failback happens only after bringing down the ipif and making sure 20947 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 20948 * the above holds. 20949 */ 20950 ipif_t * 20951 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 20952 { 20953 ipif_t *ipif; 20954 ill_t *ill; 20955 20956 *err = 0; 20957 rw_enter(&ill_g_lock, RW_READER); 20958 mutex_enter(&connp->conn_lock); 20959 ipif = *ipifp; 20960 if (ipif != NULL) { 20961 ill = ipif->ipif_ill; 20962 mutex_enter(&ill->ill_lock); 20963 if (IPIF_CAN_LOOKUP(ipif)) { 20964 ipif_refhold_locked(ipif); 20965 mutex_exit(&ill->ill_lock); 20966 mutex_exit(&connp->conn_lock); 20967 rw_exit(&ill_g_lock); 20968 return (ipif); 20969 } else { 20970 *err = IPIF_LOOKUP_FAILED; 20971 } 20972 mutex_exit(&ill->ill_lock); 20973 } 20974 mutex_exit(&connp->conn_lock); 20975 rw_exit(&ill_g_lock); 20976 return (NULL); 20977 } 20978 20979 ill_t * 20980 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 20981 { 20982 ill_t *ill; 20983 20984 *err = 0; 20985 mutex_enter(&connp->conn_lock); 20986 ill = *illp; 20987 if (ill != NULL) { 20988 mutex_enter(&ill->ill_lock); 20989 if (ILL_CAN_LOOKUP(ill)) { 20990 ill_refhold_locked(ill); 20991 mutex_exit(&ill->ill_lock); 20992 mutex_exit(&connp->conn_lock); 20993 return (ill); 20994 } else { 20995 *err = ILL_LOOKUP_FAILED; 20996 } 20997 mutex_exit(&ill->ill_lock); 20998 } 20999 mutex_exit(&connp->conn_lock); 21000 return (NULL); 21001 } 21002 21003 static int 21004 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21005 { 21006 ill_t *ill; 21007 21008 ill = ipif->ipif_ill; 21009 mutex_enter(&connp->conn_lock); 21010 mutex_enter(&ill->ill_lock); 21011 if (IPIF_CAN_LOOKUP(ipif)) { 21012 *ipifp = ipif; 21013 mutex_exit(&ill->ill_lock); 21014 mutex_exit(&connp->conn_lock); 21015 return (0); 21016 } 21017 mutex_exit(&ill->ill_lock); 21018 mutex_exit(&connp->conn_lock); 21019 return (IPIF_LOOKUP_FAILED); 21020 } 21021 21022 /* 21023 * This is called if the outbound datagram needs fragmentation. 21024 * 21025 * NOTE : This function does not ire_refrele the ire argument passed in. 21026 */ 21027 static void 21028 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid) 21029 { 21030 ipha_t *ipha; 21031 mblk_t *mp; 21032 uint32_t v_hlen_tos_len; 21033 uint32_t max_frag; 21034 uint32_t frag_flag; 21035 boolean_t dont_use; 21036 21037 if (ipsec_mp->b_datap->db_type == M_CTL) { 21038 mp = ipsec_mp->b_cont; 21039 } else { 21040 mp = ipsec_mp; 21041 } 21042 21043 ipha = (ipha_t *)mp->b_rptr; 21044 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21045 21046 #ifdef _BIG_ENDIAN 21047 #define V_HLEN (v_hlen_tos_len >> 24) 21048 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21049 #else 21050 #define V_HLEN (v_hlen_tos_len & 0xFF) 21051 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21052 #endif 21053 21054 #ifndef SPEED_BEFORE_SAFETY 21055 /* 21056 * Check that ipha_length is consistent with 21057 * the mblk length 21058 */ 21059 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21060 ip0dbg(("Packet length mismatch: %d, %ld\n", 21061 LENGTH, msgdsize(mp))); 21062 freemsg(ipsec_mp); 21063 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21064 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21065 "packet length mismatch"); 21066 return; 21067 } 21068 #endif 21069 /* 21070 * Don't use frag_flag if pre-built packet or source 21071 * routed or if multicast (since multicast packets do not solicit 21072 * ICMP "packet too big" messages). Get the values of 21073 * max_frag and frag_flag atomically by acquiring the 21074 * ire_lock. 21075 */ 21076 mutex_enter(&ire->ire_lock); 21077 max_frag = ire->ire_max_frag; 21078 frag_flag = ire->ire_frag_flag; 21079 mutex_exit(&ire->ire_lock); 21080 21081 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21082 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21083 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21084 21085 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21086 (dont_use ? 0 : frag_flag), zoneid); 21087 } 21088 21089 /* 21090 * Used for deciding the MSS size for the upper layer. Thus 21091 * we need to check the outbound policy values in the conn. 21092 */ 21093 int 21094 conn_ipsec_length(conn_t *connp) 21095 { 21096 ipsec_latch_t *ipl; 21097 21098 ipl = connp->conn_latch; 21099 if (ipl == NULL) 21100 return (0); 21101 21102 if (ipl->ipl_out_policy == NULL) 21103 return (0); 21104 21105 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21106 } 21107 21108 /* 21109 * Returns an estimate of the IPSEC headers size. This is used if 21110 * we don't want to call into IPSEC to get the exact size. 21111 */ 21112 int 21113 ipsec_out_extra_length(mblk_t *ipsec_mp) 21114 { 21115 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21116 ipsec_action_t *a; 21117 21118 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21119 if (!io->ipsec_out_secure) 21120 return (0); 21121 21122 a = io->ipsec_out_act; 21123 21124 if (a == NULL) { 21125 ASSERT(io->ipsec_out_policy != NULL); 21126 a = io->ipsec_out_policy->ipsp_act; 21127 } 21128 ASSERT(a != NULL); 21129 21130 return (a->ipa_ovhd); 21131 } 21132 21133 /* 21134 * Returns an estimate of the IPSEC headers size. This is used if 21135 * we don't want to call into IPSEC to get the exact size. 21136 */ 21137 int 21138 ipsec_in_extra_length(mblk_t *ipsec_mp) 21139 { 21140 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21141 ipsec_action_t *a; 21142 21143 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21144 21145 a = ii->ipsec_in_action; 21146 return (a == NULL ? 0 : a->ipa_ovhd); 21147 } 21148 21149 /* 21150 * If there are any source route options, return the true final 21151 * destination. Otherwise, return the destination. 21152 */ 21153 ipaddr_t 21154 ip_get_dst(ipha_t *ipha) 21155 { 21156 ipoptp_t opts; 21157 uchar_t *opt; 21158 uint8_t optval; 21159 uint8_t optlen; 21160 ipaddr_t dst; 21161 uint32_t off; 21162 21163 dst = ipha->ipha_dst; 21164 21165 if (IS_SIMPLE_IPH(ipha)) 21166 return (dst); 21167 21168 for (optval = ipoptp_first(&opts, ipha); 21169 optval != IPOPT_EOL; 21170 optval = ipoptp_next(&opts)) { 21171 opt = opts.ipoptp_cur; 21172 optlen = opts.ipoptp_len; 21173 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21174 switch (optval) { 21175 case IPOPT_SSRR: 21176 case IPOPT_LSRR: 21177 off = opt[IPOPT_OFFSET]; 21178 /* 21179 * If one of the conditions is true, it means 21180 * end of options and dst already has the right 21181 * value. 21182 */ 21183 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21184 off = optlen - IP_ADDR_LEN; 21185 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21186 } 21187 return (dst); 21188 default: 21189 break; 21190 } 21191 } 21192 21193 return (dst); 21194 } 21195 21196 mblk_t * 21197 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21198 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21199 { 21200 ipsec_out_t *io; 21201 mblk_t *first_mp; 21202 boolean_t policy_present; 21203 21204 first_mp = mp; 21205 if (mp->b_datap->db_type == M_CTL) { 21206 io = (ipsec_out_t *)first_mp->b_rptr; 21207 /* 21208 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21209 * 21210 * 1) There is per-socket policy (including cached global 21211 * policy). 21212 * 2) There is no per-socket policy, but it is 21213 * a multicast packet that needs to go out 21214 * on a specific interface. This is the case 21215 * where (ip_wput and ip_wput_multicast) attaches 21216 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21217 * 21218 * In case (2) we check with global policy to 21219 * see if there is a match and set the ill_index 21220 * appropriately so that we can lookup the ire 21221 * properly in ip_wput_ipsec_out. 21222 */ 21223 21224 /* 21225 * ipsec_out_use_global_policy is set to B_FALSE 21226 * in ipsec_in_to_out(). Refer to that function for 21227 * details. 21228 */ 21229 if ((io->ipsec_out_latch == NULL) && 21230 (io->ipsec_out_use_global_policy)) { 21231 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21232 ire, connp, unspec_src, zoneid)); 21233 } 21234 if (!io->ipsec_out_secure) { 21235 /* 21236 * If this is not a secure packet, drop 21237 * the IPSEC_OUT mp and treat it as a clear 21238 * packet. This happens when we are sending 21239 * a ICMP reply back to a clear packet. See 21240 * ipsec_in_to_out() for details. 21241 */ 21242 mp = first_mp->b_cont; 21243 freeb(first_mp); 21244 } 21245 return (mp); 21246 } 21247 /* 21248 * See whether we need to attach a global policy here. We 21249 * don't depend on the conn (as it could be null) for deciding 21250 * what policy this datagram should go through because it 21251 * should have happened in ip_wput if there was some 21252 * policy. This normally happens for connections which are not 21253 * fully bound preventing us from caching policies in 21254 * ip_bind. Packets coming from the TCP listener/global queue 21255 * - which are non-hard_bound - could also be affected by 21256 * applying policy here. 21257 * 21258 * If this packet is coming from tcp global queue or listener, 21259 * we will be applying policy here. This may not be *right* 21260 * if these packets are coming from the detached connection as 21261 * it could have gone in clear before. This happens only if a 21262 * TCP connection started when there is no policy and somebody 21263 * added policy before it became detached. Thus packets of the 21264 * detached connection could go out secure and the other end 21265 * would drop it because it will be expecting in clear. The 21266 * converse is not true i.e if somebody starts a TCP 21267 * connection and deletes the policy, all the packets will 21268 * still go out with the policy that existed before deleting 21269 * because ip_unbind sends up policy information which is used 21270 * by TCP on subsequent ip_wputs. The right solution is to fix 21271 * TCP to attach a dummy IPSEC_OUT and set 21272 * ipsec_out_use_global_policy to B_FALSE. As this might 21273 * affect performance for normal cases, we are not doing it. 21274 * Thus, set policy before starting any TCP connections. 21275 * 21276 * NOTE - We might apply policy even for a hard bound connection 21277 * - for which we cached policy in ip_bind - if somebody added 21278 * global policy after we inherited the policy in ip_bind. 21279 * This means that the packets that were going out in clear 21280 * previously would start going secure and hence get dropped 21281 * on the other side. To fix this, TCP attaches a dummy 21282 * ipsec_out and make sure that we don't apply global policy. 21283 */ 21284 if (ipha != NULL) 21285 policy_present = ipsec_outbound_v4_policy_present; 21286 else 21287 policy_present = ipsec_outbound_v6_policy_present; 21288 if (!policy_present) 21289 return (mp); 21290 21291 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21292 zoneid)); 21293 } 21294 21295 ire_t * 21296 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21297 { 21298 ipaddr_t addr; 21299 ire_t *save_ire; 21300 irb_t *irb; 21301 ill_group_t *illgrp; 21302 int err; 21303 21304 save_ire = ire; 21305 addr = ire->ire_addr; 21306 21307 ASSERT(ire->ire_type == IRE_BROADCAST); 21308 21309 illgrp = connp->conn_outgoing_ill->ill_group; 21310 if (illgrp == NULL) { 21311 *conn_outgoing_ill = conn_get_held_ill(connp, 21312 &connp->conn_outgoing_ill, &err); 21313 if (err == ILL_LOOKUP_FAILED) { 21314 ire_refrele(save_ire); 21315 return (NULL); 21316 } 21317 return (save_ire); 21318 } 21319 /* 21320 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21321 * If it is part of the group, we need to send on the ire 21322 * that has been cleared of IRE_MARK_NORECV and that belongs 21323 * to this group. This is okay as IP_BOUND_IF really means 21324 * any ill in the group. We depend on the fact that the 21325 * first ire in the group is always cleared of IRE_MARK_NORECV 21326 * if such an ire exists. This is possible only if you have 21327 * at least one ill in the group that has not failed. 21328 * 21329 * First get to the ire that matches the address and group. 21330 * 21331 * We don't look for an ire with a matching zoneid because a given zone 21332 * won't always have broadcast ires on all ills in the group. 21333 */ 21334 irb = ire->ire_bucket; 21335 rw_enter(&irb->irb_lock, RW_READER); 21336 if (ire->ire_marks & IRE_MARK_NORECV) { 21337 /* 21338 * If the current zone only has an ire broadcast for this 21339 * address marked NORECV, the ire we want is ahead in the 21340 * bucket, so we look it up deliberately ignoring the zoneid. 21341 */ 21342 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21343 if (ire->ire_addr != addr) 21344 continue; 21345 /* skip over deleted ires */ 21346 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21347 continue; 21348 } 21349 } 21350 while (ire != NULL) { 21351 /* 21352 * If a new interface is coming up, we could end up 21353 * seeing the loopback ire and the non-loopback ire 21354 * may not have been added yet. So check for ire_stq 21355 */ 21356 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 21357 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 21358 break; 21359 } 21360 ire = ire->ire_next; 21361 } 21362 if (ire != NULL && ire->ire_addr == addr && 21363 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 21364 IRE_REFHOLD(ire); 21365 rw_exit(&irb->irb_lock); 21366 ire_refrele(save_ire); 21367 *conn_outgoing_ill = ire_to_ill(ire); 21368 /* 21369 * Refhold the ill to make the conn_outgoing_ill 21370 * independent of the ire. ip_wput_ire goes in a loop 21371 * and may refrele the ire. Since we have an ire at this 21372 * point we don't need to use ILL_CAN_LOOKUP on the ill. 21373 */ 21374 ill_refhold(*conn_outgoing_ill); 21375 return (ire); 21376 } 21377 rw_exit(&irb->irb_lock); 21378 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 21379 /* 21380 * If we can't find a suitable ire, return the original ire. 21381 */ 21382 return (save_ire); 21383 } 21384 21385 /* 21386 * This function does the ire_refrele of the ire passed in as the 21387 * argument. As this function looks up more ires i.e broadcast ires, 21388 * it needs to REFRELE them. Currently, for simplicity we don't 21389 * differentiate the one passed in and looked up here. We always 21390 * REFRELE. 21391 * IPQoS Notes: 21392 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21393 * IPSec packets are done in ipsec_out_process. 21394 * 21395 */ 21396 void 21397 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 21398 zoneid_t zoneid) 21399 { 21400 ipha_t *ipha; 21401 #define rptr ((uchar_t *)ipha) 21402 queue_t *stq; 21403 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21404 uint32_t v_hlen_tos_len; 21405 uint32_t ttl_protocol; 21406 ipaddr_t src; 21407 ipaddr_t dst; 21408 uint32_t cksum; 21409 ipaddr_t orig_src; 21410 ire_t *ire1; 21411 mblk_t *next_mp; 21412 uint_t hlen; 21413 uint16_t *up; 21414 uint32_t max_frag = ire->ire_max_frag; 21415 ill_t *ill = ire_to_ill(ire); 21416 int clusterwide; 21417 uint16_t ip_hdr_included; /* IP header included by ULP? */ 21418 int ipsec_len; 21419 mblk_t *first_mp; 21420 ipsec_out_t *io; 21421 boolean_t conn_dontroute; /* conn value for multicast */ 21422 boolean_t conn_multicast_loop; /* conn value for multicast */ 21423 boolean_t multicast_forward; /* Should we forward ? */ 21424 boolean_t unspec_src; 21425 ill_t *conn_outgoing_ill = NULL; 21426 ill_t *ire_ill; 21427 ill_t *ire1_ill; 21428 ill_t *out_ill; 21429 uint32_t ill_index = 0; 21430 boolean_t multirt_send = B_FALSE; 21431 int err; 21432 ipxmit_state_t pktxmit_state; 21433 21434 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 21435 "ip_wput_ire_start: q %p", q); 21436 21437 multicast_forward = B_FALSE; 21438 unspec_src = (connp != NULL && connp->conn_unspec_src); 21439 21440 if (ire->ire_flags & RTF_MULTIRT) { 21441 /* 21442 * Multirouting case. The bucket where ire is stored 21443 * probably holds other RTF_MULTIRT flagged ire 21444 * to the destination. In this call to ip_wput_ire, 21445 * we attempt to send the packet through all 21446 * those ires. Thus, we first ensure that ire is the 21447 * first RTF_MULTIRT ire in the bucket, 21448 * before walking the ire list. 21449 */ 21450 ire_t *first_ire; 21451 irb_t *irb = ire->ire_bucket; 21452 ASSERT(irb != NULL); 21453 21454 /* Make sure we do not omit any multiroute ire. */ 21455 IRB_REFHOLD(irb); 21456 for (first_ire = irb->irb_ire; 21457 first_ire != NULL; 21458 first_ire = first_ire->ire_next) { 21459 if ((first_ire->ire_flags & RTF_MULTIRT) && 21460 (first_ire->ire_addr == ire->ire_addr) && 21461 !(first_ire->ire_marks & 21462 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 21463 break; 21464 } 21465 21466 if ((first_ire != NULL) && (first_ire != ire)) { 21467 IRE_REFHOLD(first_ire); 21468 ire_refrele(ire); 21469 ire = first_ire; 21470 ill = ire_to_ill(ire); 21471 } 21472 IRB_REFRELE(irb); 21473 } 21474 21475 /* 21476 * conn_outgoing_ill is used only in the broadcast loop. 21477 * for performance we don't grab the mutexs in the fastpath 21478 */ 21479 if ((connp != NULL) && 21480 (connp->conn_xmit_if_ill == NULL) && 21481 (ire->ire_type == IRE_BROADCAST) && 21482 ((connp->conn_nofailover_ill != NULL) || 21483 (connp->conn_outgoing_ill != NULL))) { 21484 /* 21485 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 21486 * option. So, see if this endpoint is bound to a 21487 * IPIF_NOFAILOVER address. If so, honor it. This implies 21488 * that if the interface is failed, we will still send 21489 * the packet on the same ill which is what we want. 21490 */ 21491 conn_outgoing_ill = conn_get_held_ill(connp, 21492 &connp->conn_nofailover_ill, &err); 21493 if (err == ILL_LOOKUP_FAILED) { 21494 ire_refrele(ire); 21495 freemsg(mp); 21496 return; 21497 } 21498 if (conn_outgoing_ill == NULL) { 21499 /* 21500 * Choose a good ill in the group to send the 21501 * packets on. 21502 */ 21503 ire = conn_set_outgoing_ill(connp, ire, 21504 &conn_outgoing_ill); 21505 if (ire == NULL) { 21506 freemsg(mp); 21507 return; 21508 } 21509 } 21510 } 21511 21512 if (mp->b_datap->db_type != M_CTL) { 21513 ipha = (ipha_t *)mp->b_rptr; 21514 } else { 21515 io = (ipsec_out_t *)mp->b_rptr; 21516 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21517 ASSERT(zoneid == io->ipsec_out_zoneid); 21518 ASSERT(zoneid != ALL_ZONES); 21519 ipha = (ipha_t *)mp->b_cont->b_rptr; 21520 dst = ipha->ipha_dst; 21521 /* 21522 * For the multicast case, ipsec_out carries conn_dontroute and 21523 * conn_multicast_loop as conn may not be available here. We 21524 * need this for multicast loopback and forwarding which is done 21525 * later in the code. 21526 */ 21527 if (CLASSD(dst)) { 21528 conn_dontroute = io->ipsec_out_dontroute; 21529 conn_multicast_loop = io->ipsec_out_multicast_loop; 21530 /* 21531 * If conn_dontroute is not set or conn_multicast_loop 21532 * is set, we need to do forwarding/loopback. For 21533 * datagrams from ip_wput_multicast, conn_dontroute is 21534 * set to B_TRUE and conn_multicast_loop is set to 21535 * B_FALSE so that we neither do forwarding nor 21536 * loopback. 21537 */ 21538 if (!conn_dontroute || conn_multicast_loop) 21539 multicast_forward = B_TRUE; 21540 } 21541 } 21542 21543 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 21544 ire->ire_zoneid != ALL_ZONES) { 21545 /* 21546 * When a zone sends a packet to another zone, we try to deliver 21547 * the packet under the same conditions as if the destination 21548 * was a real node on the network. To do so, we look for a 21549 * matching route in the forwarding table. 21550 * RTF_REJECT and RTF_BLACKHOLE are handled just like 21551 * ip_newroute() does. 21552 * Note that IRE_LOCAL are special, since they are used 21553 * when the zoneid doesn't match in some cases. This means that 21554 * we need to handle ipha_src differently since ire_src_addr 21555 * belongs to the receiving zone instead of the sending zone. 21556 * When ip_restrict_interzone_loopback is set, then 21557 * ire_cache_lookup() ensures that IRE_LOCAL are only used 21558 * for loopback between zones when the logical "Ethernet" would 21559 * have looped them back. 21560 */ 21561 ire_t *src_ire; 21562 21563 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 21564 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 21565 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE)); 21566 if (src_ire != NULL && 21567 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 21568 (!ip_restrict_interzone_loopback || 21569 ire_local_same_ill_group(ire, src_ire))) { 21570 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 21571 ipha->ipha_src = src_ire->ire_src_addr; 21572 ire_refrele(src_ire); 21573 } else { 21574 ire_refrele(ire); 21575 if (conn_outgoing_ill != NULL) 21576 ill_refrele(conn_outgoing_ill); 21577 BUMP_MIB(&ip_mib, ipOutNoRoutes); 21578 if (src_ire != NULL) { 21579 if (src_ire->ire_flags & RTF_BLACKHOLE) { 21580 ire_refrele(src_ire); 21581 freemsg(mp); 21582 return; 21583 } 21584 ire_refrele(src_ire); 21585 } 21586 if (ip_hdr_complete(ipha, zoneid)) { 21587 /* Failed */ 21588 freemsg(mp); 21589 return; 21590 } 21591 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid); 21592 return; 21593 } 21594 } 21595 21596 if (mp->b_datap->db_type == M_CTL || 21597 ipsec_outbound_v4_policy_present) { 21598 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 21599 unspec_src, zoneid); 21600 if (mp == NULL) { 21601 ire_refrele(ire); 21602 if (conn_outgoing_ill != NULL) 21603 ill_refrele(conn_outgoing_ill); 21604 return; 21605 } 21606 } 21607 21608 first_mp = mp; 21609 ipsec_len = 0; 21610 21611 if (first_mp->b_datap->db_type == M_CTL) { 21612 io = (ipsec_out_t *)first_mp->b_rptr; 21613 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21614 mp = first_mp->b_cont; 21615 ipsec_len = ipsec_out_extra_length(first_mp); 21616 ASSERT(ipsec_len >= 0); 21617 /* We already picked up the zoneid from the M_CTL above */ 21618 ASSERT(zoneid == io->ipsec_out_zoneid); 21619 ASSERT(zoneid != ALL_ZONES); 21620 21621 /* 21622 * Drop M_CTL here if IPsec processing is not needed. 21623 * (Non-IPsec use of M_CTL extracted any information it 21624 * needed above). 21625 */ 21626 if (ipsec_len == 0) { 21627 freeb(first_mp); 21628 first_mp = mp; 21629 } 21630 } 21631 21632 /* 21633 * Fast path for ip_wput_ire 21634 */ 21635 21636 ipha = (ipha_t *)mp->b_rptr; 21637 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21638 dst = ipha->ipha_dst; 21639 21640 /* 21641 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 21642 * if the socket is a SOCK_RAW type. The transport checksum should 21643 * be provided in the pre-built packet, so we don't need to compute it. 21644 * Also, other application set flags, like DF, should not be altered. 21645 * Other transport MUST pass down zero. 21646 */ 21647 ip_hdr_included = ipha->ipha_ident; 21648 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 21649 21650 if (CLASSD(dst)) { 21651 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 21652 ntohl(dst), 21653 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 21654 ntohl(ire->ire_addr))); 21655 } 21656 21657 /* Macros to extract header fields from data already in registers */ 21658 #ifdef _BIG_ENDIAN 21659 #define V_HLEN (v_hlen_tos_len >> 24) 21660 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21661 #define PROTO (ttl_protocol & 0xFF) 21662 #else 21663 #define V_HLEN (v_hlen_tos_len & 0xFF) 21664 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21665 #define PROTO (ttl_protocol >> 8) 21666 #endif 21667 21668 21669 orig_src = src = ipha->ipha_src; 21670 /* (The loop back to "another" is explained down below.) */ 21671 another:; 21672 /* 21673 * Assign an ident value for this packet. We assign idents on 21674 * a per destination basis out of the IRE. There could be 21675 * other threads targeting the same destination, so we have to 21676 * arrange for a atomic increment. Note that we use a 32-bit 21677 * atomic add because it has better performance than its 21678 * 16-bit sibling. 21679 * 21680 * If running in cluster mode and if the source address 21681 * belongs to a replicated service then vector through 21682 * cl_inet_ipident vector to allocate ip identifier 21683 * NOTE: This is a contract private interface with the 21684 * clustering group. 21685 */ 21686 clusterwide = 0; 21687 if (cl_inet_ipident) { 21688 ASSERT(cl_inet_isclusterwide); 21689 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 21690 AF_INET, (uint8_t *)(uintptr_t)src)) { 21691 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 21692 AF_INET, (uint8_t *)(uintptr_t)src, 21693 (uint8_t *)(uintptr_t)dst); 21694 clusterwide = 1; 21695 } 21696 } 21697 if (!clusterwide) { 21698 ipha->ipha_ident = 21699 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 21700 } 21701 21702 #ifndef _BIG_ENDIAN 21703 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 21704 #endif 21705 21706 /* 21707 * Set source address unless sent on an ill or conn_unspec_src is set. 21708 * This is needed to obey conn_unspec_src when packets go through 21709 * ip_newroute + arp. 21710 * Assumes ip_newroute{,_multi} sets the source address as well. 21711 */ 21712 if (src == INADDR_ANY && !unspec_src) { 21713 /* 21714 * Assign the appropriate source address from the IRE if none 21715 * was specified. 21716 */ 21717 ASSERT(ire->ire_ipversion == IPV4_VERSION); 21718 21719 /* 21720 * With IP multipathing, broadcast packets are sent on the ire 21721 * that has been cleared of IRE_MARK_NORECV and that belongs to 21722 * the group. However, this ire might not be in the same zone so 21723 * we can't always use its source address. We look for a 21724 * broadcast ire in the same group and in the right zone. 21725 */ 21726 if (ire->ire_type == IRE_BROADCAST && 21727 ire->ire_zoneid != zoneid) { 21728 ire_t *src_ire = ire_ctable_lookup(dst, 0, 21729 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 21730 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 21731 if (src_ire != NULL) { 21732 src = src_ire->ire_src_addr; 21733 ire_refrele(src_ire); 21734 } else { 21735 ire_refrele(ire); 21736 if (conn_outgoing_ill != NULL) 21737 ill_refrele(conn_outgoing_ill); 21738 freemsg(first_mp); 21739 BUMP_MIB(&ip_mib, ipOutDiscards); 21740 return; 21741 } 21742 } else { 21743 src = ire->ire_src_addr; 21744 } 21745 21746 if (connp == NULL) { 21747 ip1dbg(("ip_wput_ire: no connp and no src " 21748 "address for dst 0x%x, using src 0x%x\n", 21749 ntohl(dst), 21750 ntohl(src))); 21751 } 21752 ipha->ipha_src = src; 21753 } 21754 stq = ire->ire_stq; 21755 21756 /* 21757 * We only allow ire chains for broadcasts since there will 21758 * be multiple IRE_CACHE entries for the same multicast 21759 * address (one per ipif). 21760 */ 21761 next_mp = NULL; 21762 21763 /* broadcast packet */ 21764 if (ire->ire_type == IRE_BROADCAST) 21765 goto broadcast; 21766 21767 /* loopback ? */ 21768 if (stq == NULL) 21769 goto nullstq; 21770 21771 /* The ill_index for outbound ILL */ 21772 ill_index = Q_TO_INDEX(stq); 21773 21774 BUMP_MIB(&ip_mib, ipOutRequests); 21775 ttl_protocol = ((uint16_t *)ipha)[4]; 21776 21777 /* pseudo checksum (do it in parts for IP header checksum) */ 21778 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 21779 21780 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 21781 queue_t *dev_q = stq->q_next; 21782 21783 /* flow controlled */ 21784 if ((dev_q->q_next || dev_q->q_first) && 21785 !canput(dev_q)) 21786 goto blocked; 21787 if ((PROTO == IPPROTO_UDP) && 21788 (ip_hdr_included != IP_HDR_INCLUDED)) { 21789 hlen = (V_HLEN & 0xF) << 2; 21790 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 21791 if (*up != 0) { 21792 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 21793 hlen, LENGTH, max_frag, ipsec_len, cksum); 21794 /* Software checksum? */ 21795 if (DB_CKSUMFLAGS(mp) == 0) { 21796 IP_STAT(ip_out_sw_cksum); 21797 IP_STAT_UPDATE( 21798 ip_udp_out_sw_cksum_bytes, 21799 LENGTH - hlen); 21800 } 21801 } 21802 } 21803 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 21804 hlen = (V_HLEN & 0xF) << 2; 21805 if (PROTO == IPPROTO_TCP) { 21806 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 21807 /* 21808 * The packet header is processed once and for all, even 21809 * in the multirouting case. We disable hardware 21810 * checksum if the packet is multirouted, as it will be 21811 * replicated via several interfaces, and not all of 21812 * them may have this capability. 21813 */ 21814 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 21815 LENGTH, max_frag, ipsec_len, cksum); 21816 /* Software checksum? */ 21817 if (DB_CKSUMFLAGS(mp) == 0) { 21818 IP_STAT(ip_out_sw_cksum); 21819 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 21820 LENGTH - hlen); 21821 } 21822 } else { 21823 sctp_hdr_t *sctph; 21824 21825 ASSERT(PROTO == IPPROTO_SCTP); 21826 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 21827 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 21828 /* 21829 * Zero out the checksum field to ensure proper 21830 * checksum calculation. 21831 */ 21832 sctph->sh_chksum = 0; 21833 #ifdef DEBUG 21834 if (!skip_sctp_cksum) 21835 #endif 21836 sctph->sh_chksum = sctp_cksum(mp, hlen); 21837 } 21838 } 21839 21840 /* 21841 * If this is a multicast packet and originated from ip_wput 21842 * we need to do loopback and forwarding checks. If it comes 21843 * from ip_wput_multicast, we SHOULD not do this. 21844 */ 21845 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 21846 21847 /* checksum */ 21848 cksum += ttl_protocol; 21849 21850 /* fragment the packet */ 21851 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 21852 goto fragmentit; 21853 /* 21854 * Don't use frag_flag if packet is pre-built or source 21855 * routed or if multicast (since multicast packets do 21856 * not solicit ICMP "packet too big" messages). 21857 */ 21858 if ((ip_hdr_included != IP_HDR_INCLUDED) && 21859 (V_HLEN == IP_SIMPLE_HDR_VERSION || 21860 !ip_source_route_included(ipha)) && 21861 !CLASSD(ipha->ipha_dst)) 21862 ipha->ipha_fragment_offset_and_flags |= 21863 htons(ire->ire_frag_flag); 21864 21865 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 21866 /* calculate IP header checksum */ 21867 cksum += ipha->ipha_ident; 21868 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 21869 cksum += ipha->ipha_fragment_offset_and_flags; 21870 21871 /* IP options present */ 21872 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 21873 if (hlen) 21874 goto checksumoptions; 21875 21876 /* calculate hdr checksum */ 21877 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 21878 cksum = ~(cksum + (cksum >> 16)); 21879 ipha->ipha_hdr_checksum = (uint16_t)cksum; 21880 } 21881 if (ipsec_len != 0) { 21882 /* 21883 * We will do the rest of the processing after 21884 * we come back from IPSEC in ip_wput_ipsec_out(). 21885 */ 21886 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 21887 21888 io = (ipsec_out_t *)first_mp->b_rptr; 21889 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 21890 ill_phyint->phyint_ifindex; 21891 21892 ipsec_out_process(q, first_mp, ire, ill_index); 21893 ire_refrele(ire); 21894 if (conn_outgoing_ill != NULL) 21895 ill_refrele(conn_outgoing_ill); 21896 return; 21897 } 21898 21899 /* 21900 * In most cases, the emission loop below is entered only 21901 * once. Only in the case where the ire holds the 21902 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 21903 * flagged ires in the bucket, and send the packet 21904 * through all crossed RTF_MULTIRT routes. 21905 */ 21906 if (ire->ire_flags & RTF_MULTIRT) { 21907 multirt_send = B_TRUE; 21908 } 21909 do { 21910 if (multirt_send) { 21911 irb_t *irb; 21912 /* 21913 * We are in a multiple send case, need to get 21914 * the next ire and make a duplicate of the packet. 21915 * ire1 holds here the next ire to process in the 21916 * bucket. If multirouting is expected, 21917 * any non-RTF_MULTIRT ire that has the 21918 * right destination address is ignored. 21919 */ 21920 irb = ire->ire_bucket; 21921 ASSERT(irb != NULL); 21922 21923 IRB_REFHOLD(irb); 21924 for (ire1 = ire->ire_next; 21925 ire1 != NULL; 21926 ire1 = ire1->ire_next) { 21927 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 21928 continue; 21929 if (ire1->ire_addr != ire->ire_addr) 21930 continue; 21931 if (ire1->ire_marks & 21932 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 21933 continue; 21934 21935 /* Got one */ 21936 IRE_REFHOLD(ire1); 21937 break; 21938 } 21939 IRB_REFRELE(irb); 21940 21941 if (ire1 != NULL) { 21942 next_mp = copyb(mp); 21943 if ((next_mp == NULL) || 21944 ((mp->b_cont != NULL) && 21945 ((next_mp->b_cont = 21946 dupmsg(mp->b_cont)) == NULL))) { 21947 freemsg(next_mp); 21948 next_mp = NULL; 21949 ire_refrele(ire1); 21950 ire1 = NULL; 21951 } 21952 } 21953 21954 /* Last multiroute ire; don't loop anymore. */ 21955 if (ire1 == NULL) { 21956 multirt_send = B_FALSE; 21957 } 21958 } 21959 21960 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 21961 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 21962 mblk_t *, mp); 21963 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 21964 MSG_FWCOOKED_OUT, NULL, ire->ire_ipif->ipif_ill, 21965 ipha, mp, mp); 21966 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 21967 if (mp == NULL) 21968 goto release_ire_and_ill; 21969 21970 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 21971 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 21972 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 21973 if ((pktxmit_state == SEND_FAILED) || 21974 (pktxmit_state == LLHDR_RESLV_FAILED)) { 21975 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 21976 "- packet dropped\n")); 21977 release_ire_and_ill: 21978 ire_refrele(ire); 21979 if (next_mp != NULL) { 21980 freemsg(next_mp); 21981 ire_refrele(ire1); 21982 } 21983 if (conn_outgoing_ill != NULL) 21984 ill_refrele(conn_outgoing_ill); 21985 return; 21986 } 21987 21988 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21989 "ip_wput_ire_end: q %p (%S)", 21990 q, "last copy out"); 21991 IRE_REFRELE(ire); 21992 21993 if (multirt_send) { 21994 ASSERT(ire1); 21995 /* 21996 * Proceed with the next RTF_MULTIRT ire, 21997 * Also set up the send-to queue accordingly. 21998 */ 21999 ire = ire1; 22000 ire1 = NULL; 22001 stq = ire->ire_stq; 22002 mp = next_mp; 22003 next_mp = NULL; 22004 ipha = (ipha_t *)mp->b_rptr; 22005 ill_index = Q_TO_INDEX(stq); 22006 } 22007 } while (multirt_send); 22008 if (conn_outgoing_ill != NULL) 22009 ill_refrele(conn_outgoing_ill); 22010 return; 22011 22012 /* 22013 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22014 */ 22015 broadcast: 22016 { 22017 /* 22018 * Avoid broadcast storms by setting the ttl to 1 22019 * for broadcasts. This parameter can be set 22020 * via ndd, so make sure that for the SO_DONTROUTE 22021 * case that ipha_ttl is always set to 1. 22022 * In the event that we are replying to incoming 22023 * ICMP packets, conn could be NULL. 22024 */ 22025 if ((connp != NULL) && connp->conn_dontroute) 22026 ipha->ipha_ttl = 1; 22027 else 22028 ipha->ipha_ttl = ip_broadcast_ttl; 22029 22030 /* 22031 * Note that we are not doing a IRB_REFHOLD here. 22032 * Actually we don't care if the list changes i.e 22033 * if somebody deletes an IRE from the list while 22034 * we drop the lock, the next time we come around 22035 * ire_next will be NULL and hence we won't send 22036 * out multiple copies which is fine. 22037 */ 22038 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22039 ire1 = ire->ire_next; 22040 if (conn_outgoing_ill != NULL) { 22041 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22042 ASSERT(ire1 == ire->ire_next); 22043 if (ire1 != NULL && ire1->ire_addr == dst) { 22044 ire_refrele(ire); 22045 ire = ire1; 22046 IRE_REFHOLD(ire); 22047 ire1 = ire->ire_next; 22048 continue; 22049 } 22050 rw_exit(&ire->ire_bucket->irb_lock); 22051 /* Did not find a matching ill */ 22052 ip1dbg(("ip_wput_ire: broadcast with no " 22053 "matching IP_BOUND_IF ill %s\n", 22054 conn_outgoing_ill->ill_name)); 22055 freemsg(first_mp); 22056 if (ire != NULL) 22057 ire_refrele(ire); 22058 ill_refrele(conn_outgoing_ill); 22059 return; 22060 } 22061 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22062 /* 22063 * If the next IRE has the same address and is not one 22064 * of the two copies that we need to send, try to see 22065 * whether this copy should be sent at all. This 22066 * assumes that we insert loopbacks first and then 22067 * non-loopbacks. This is acheived by inserting the 22068 * loopback always before non-loopback. 22069 * This is used to send a single copy of a broadcast 22070 * packet out all physical interfaces that have an 22071 * matching IRE_BROADCAST while also looping 22072 * back one copy (to ip_wput_local) for each 22073 * matching physical interface. However, we avoid 22074 * sending packets out different logical that match by 22075 * having ipif_up/ipif_down supress duplicate 22076 * IRE_BROADCASTS. 22077 * 22078 * This feature is currently used to get broadcasts 22079 * sent to multiple interfaces, when the broadcast 22080 * address being used applies to multiple interfaces. 22081 * For example, a whole net broadcast will be 22082 * replicated on every connected subnet of 22083 * the target net. 22084 * 22085 * Each zone has its own set of IRE_BROADCASTs, so that 22086 * we're able to distribute inbound packets to multiple 22087 * zones who share a broadcast address. We avoid looping 22088 * back outbound packets in different zones but on the 22089 * same ill, as the application would see duplicates. 22090 * 22091 * If the interfaces are part of the same group, 22092 * we would want to send only one copy out for 22093 * whole group. 22094 * 22095 * This logic assumes that ire_add_v4() groups the 22096 * IRE_BROADCAST entries so that those with the same 22097 * ire_addr and ill_group are kept together. 22098 */ 22099 ire_ill = ire->ire_ipif->ipif_ill; 22100 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22101 if (ire_ill->ill_group != NULL && 22102 (ire->ire_marks & IRE_MARK_NORECV)) { 22103 /* 22104 * If the current zone only has an ire 22105 * broadcast for this address marked 22106 * NORECV, the ire we want is ahead in 22107 * the bucket, so we look it up 22108 * deliberately ignoring the zoneid. 22109 */ 22110 for (ire1 = ire->ire_bucket->irb_ire; 22111 ire1 != NULL; 22112 ire1 = ire1->ire_next) { 22113 ire1_ill = 22114 ire1->ire_ipif->ipif_ill; 22115 if (ire1->ire_addr != dst) 22116 continue; 22117 /* skip over the current ire */ 22118 if (ire1 == ire) 22119 continue; 22120 /* skip over deleted ires */ 22121 if (ire1->ire_marks & 22122 IRE_MARK_CONDEMNED) 22123 continue; 22124 /* 22125 * non-loopback ire in our 22126 * group: use it for the next 22127 * pass in the loop 22128 */ 22129 if (ire1->ire_stq != NULL && 22130 ire1_ill->ill_group == 22131 ire_ill->ill_group) 22132 break; 22133 } 22134 } 22135 } else { 22136 while (ire1 != NULL && ire1->ire_addr == dst) { 22137 ire1_ill = ire1->ire_ipif->ipif_ill; 22138 /* 22139 * We can have two broadcast ires on the 22140 * same ill in different zones; here 22141 * we'll send a copy of the packet on 22142 * each ill and the fanout code will 22143 * call conn_wantpacket() to check that 22144 * the zone has the broadcast address 22145 * configured on the ill. If the two 22146 * ires are in the same group we only 22147 * send one copy up. 22148 */ 22149 if (ire1_ill != ire_ill && 22150 (ire1_ill->ill_group == NULL || 22151 ire_ill->ill_group == NULL || 22152 ire1_ill->ill_group != 22153 ire_ill->ill_group)) { 22154 break; 22155 } 22156 ire1 = ire1->ire_next; 22157 } 22158 } 22159 } 22160 ASSERT(multirt_send == B_FALSE); 22161 if (ire1 != NULL && ire1->ire_addr == dst) { 22162 if ((ire->ire_flags & RTF_MULTIRT) && 22163 (ire1->ire_flags & RTF_MULTIRT)) { 22164 /* 22165 * We are in the multirouting case. 22166 * The message must be sent at least 22167 * on both ires. These ires have been 22168 * inserted AFTER the standard ones 22169 * in ip_rt_add(). There are thus no 22170 * other ire entries for the destination 22171 * address in the rest of the bucket 22172 * that do not have the RTF_MULTIRT 22173 * flag. We don't process a copy 22174 * of the message here. This will be 22175 * done in the final sending loop. 22176 */ 22177 multirt_send = B_TRUE; 22178 } else { 22179 next_mp = ip_copymsg(first_mp); 22180 if (next_mp != NULL) 22181 IRE_REFHOLD(ire1); 22182 } 22183 } 22184 rw_exit(&ire->ire_bucket->irb_lock); 22185 } 22186 22187 if (stq) { 22188 /* 22189 * A non-NULL send-to queue means this packet is going 22190 * out of this machine. 22191 */ 22192 22193 BUMP_MIB(&ip_mib, ipOutRequests); 22194 ttl_protocol = ((uint16_t *)ipha)[4]; 22195 /* 22196 * We accumulate the pseudo header checksum in cksum. 22197 * This is pretty hairy code, so watch close. One 22198 * thing to keep in mind is that UDP and TCP have 22199 * stored their respective datagram lengths in their 22200 * checksum fields. This lines things up real nice. 22201 */ 22202 cksum = (dst >> 16) + (dst & 0xFFFF) + 22203 (src >> 16) + (src & 0xFFFF); 22204 /* 22205 * We assume the udp checksum field contains the 22206 * length, so to compute the pseudo header checksum, 22207 * all we need is the protocol number and src/dst. 22208 */ 22209 /* Provide the checksums for UDP and TCP. */ 22210 if ((PROTO == IPPROTO_TCP) && 22211 (ip_hdr_included != IP_HDR_INCLUDED)) { 22212 /* hlen gets the number of uchar_ts in the IP header */ 22213 hlen = (V_HLEN & 0xF) << 2; 22214 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22215 IP_STAT(ip_out_sw_cksum); 22216 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 22217 LENGTH - hlen); 22218 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22219 if (*up == 0) 22220 *up = 0xFFFF; 22221 } else if (PROTO == IPPROTO_SCTP && 22222 (ip_hdr_included != IP_HDR_INCLUDED)) { 22223 sctp_hdr_t *sctph; 22224 22225 hlen = (V_HLEN & 0xF) << 2; 22226 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22227 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22228 sctph->sh_chksum = 0; 22229 #ifdef DEBUG 22230 if (!skip_sctp_cksum) 22231 #endif 22232 sctph->sh_chksum = sctp_cksum(mp, hlen); 22233 } else { 22234 queue_t *dev_q = stq->q_next; 22235 22236 if ((dev_q->q_next || dev_q->q_first) && 22237 !canput(dev_q)) { 22238 blocked: 22239 ipha->ipha_ident = ip_hdr_included; 22240 /* 22241 * If we don't have a conn to apply 22242 * backpressure, free the message. 22243 * In the ire_send path, we don't know 22244 * the position to requeue the packet. Rather 22245 * than reorder packets, we just drop this 22246 * packet. 22247 */ 22248 if (ip_output_queue && connp != NULL && 22249 caller != IRE_SEND) { 22250 if (caller == IP_WSRV) { 22251 connp->conn_did_putbq = 1; 22252 (void) putbq(connp->conn_wq, 22253 first_mp); 22254 conn_drain_insert(connp); 22255 /* 22256 * This is the service thread, 22257 * and the queue is already 22258 * noenabled. The check for 22259 * canput and the putbq is not 22260 * atomic. So we need to check 22261 * again. 22262 */ 22263 if (canput(stq->q_next)) 22264 connp->conn_did_putbq 22265 = 0; 22266 IP_STAT(ip_conn_flputbq); 22267 } else { 22268 /* 22269 * We are not the service proc. 22270 * ip_wsrv will be scheduled or 22271 * is already running. 22272 */ 22273 (void) putq(connp->conn_wq, 22274 first_mp); 22275 } 22276 } else { 22277 BUMP_MIB(&ip_mib, ipOutDiscards); 22278 freemsg(first_mp); 22279 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22280 "ip_wput_ire_end: q %p (%S)", 22281 q, "discard"); 22282 } 22283 ire_refrele(ire); 22284 if (next_mp) { 22285 ire_refrele(ire1); 22286 freemsg(next_mp); 22287 } 22288 if (conn_outgoing_ill != NULL) 22289 ill_refrele(conn_outgoing_ill); 22290 return; 22291 } 22292 if ((PROTO == IPPROTO_UDP) && 22293 (ip_hdr_included != IP_HDR_INCLUDED)) { 22294 /* 22295 * hlen gets the number of uchar_ts in the 22296 * IP header 22297 */ 22298 hlen = (V_HLEN & 0xF) << 2; 22299 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22300 max_frag = ire->ire_max_frag; 22301 if (*up != 0) { 22302 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 22303 up, PROTO, hlen, LENGTH, max_frag, 22304 ipsec_len, cksum); 22305 /* Software checksum? */ 22306 if (DB_CKSUMFLAGS(mp) == 0) { 22307 IP_STAT(ip_out_sw_cksum); 22308 IP_STAT_UPDATE( 22309 ip_udp_out_sw_cksum_bytes, 22310 LENGTH - hlen); 22311 } 22312 } 22313 } 22314 } 22315 /* 22316 * Need to do this even when fragmenting. The local 22317 * loopback can be done without computing checksums 22318 * but forwarding out other interface must be done 22319 * after the IP checksum (and ULP checksums) have been 22320 * computed. 22321 * 22322 * NOTE : multicast_forward is set only if this packet 22323 * originated from ip_wput. For packets originating from 22324 * ip_wput_multicast, it is not set. 22325 */ 22326 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22327 multi_loopback: 22328 ip2dbg(("ip_wput: multicast, loop %d\n", 22329 conn_multicast_loop)); 22330 22331 /* Forget header checksum offload */ 22332 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22333 22334 /* 22335 * Local loopback of multicasts? Check the 22336 * ill. 22337 * 22338 * Note that the loopback function will not come 22339 * in through ip_rput - it will only do the 22340 * client fanout thus we need to do an mforward 22341 * as well. The is different from the BSD 22342 * logic. 22343 */ 22344 if (ill != NULL) { 22345 ilm_t *ilm; 22346 22347 ILM_WALKER_HOLD(ill); 22348 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 22349 ALL_ZONES); 22350 ILM_WALKER_RELE(ill); 22351 if (ilm != NULL) { 22352 /* 22353 * Pass along the virtual output q. 22354 * ip_wput_local() will distribute the 22355 * packet to all the matching zones, 22356 * except the sending zone when 22357 * IP_MULTICAST_LOOP is false. 22358 */ 22359 ip_multicast_loopback(q, ill, first_mp, 22360 conn_multicast_loop ? 0 : 22361 IP_FF_NO_MCAST_LOOP, zoneid); 22362 } 22363 } 22364 if (ipha->ipha_ttl == 0) { 22365 /* 22366 * 0 => only to this host i.e. we are 22367 * done. We are also done if this was the 22368 * loopback interface since it is sufficient 22369 * to loopback one copy of a multicast packet. 22370 */ 22371 freemsg(first_mp); 22372 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22373 "ip_wput_ire_end: q %p (%S)", 22374 q, "loopback"); 22375 ire_refrele(ire); 22376 if (conn_outgoing_ill != NULL) 22377 ill_refrele(conn_outgoing_ill); 22378 return; 22379 } 22380 /* 22381 * ILLF_MULTICAST is checked in ip_newroute 22382 * i.e. we don't need to check it here since 22383 * all IRE_CACHEs come from ip_newroute. 22384 * For multicast traffic, SO_DONTROUTE is interpreted 22385 * to mean only send the packet out the interface 22386 * (optionally specified with IP_MULTICAST_IF) 22387 * and do not forward it out additional interfaces. 22388 * RSVP and the rsvp daemon is an example of a 22389 * protocol and user level process that 22390 * handles it's own routing. Hence, it uses the 22391 * SO_DONTROUTE option to accomplish this. 22392 */ 22393 22394 if (ip_g_mrouter && !conn_dontroute && ill != NULL) { 22395 /* Unconditionally redo the checksum */ 22396 ipha->ipha_hdr_checksum = 0; 22397 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22398 22399 /* 22400 * If this needs to go out secure, we need 22401 * to wait till we finish the IPSEC 22402 * processing. 22403 */ 22404 if (ipsec_len == 0 && 22405 ip_mforward(ill, ipha, mp)) { 22406 freemsg(first_mp); 22407 ip1dbg(("ip_wput: mforward failed\n")); 22408 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22409 "ip_wput_ire_end: q %p (%S)", 22410 q, "mforward failed"); 22411 ire_refrele(ire); 22412 if (conn_outgoing_ill != NULL) 22413 ill_refrele(conn_outgoing_ill); 22414 return; 22415 } 22416 } 22417 } 22418 max_frag = ire->ire_max_frag; 22419 cksum += ttl_protocol; 22420 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 22421 /* No fragmentation required for this one. */ 22422 /* 22423 * Don't use frag_flag if packet is pre-built or source 22424 * routed or if multicast (since multicast packets do 22425 * not solicit ICMP "packet too big" messages). 22426 */ 22427 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22428 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22429 !ip_source_route_included(ipha)) && 22430 !CLASSD(ipha->ipha_dst)) 22431 ipha->ipha_fragment_offset_and_flags |= 22432 htons(ire->ire_frag_flag); 22433 22434 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22435 /* Complete the IP header checksum. */ 22436 cksum += ipha->ipha_ident; 22437 cksum += (v_hlen_tos_len >> 16)+ 22438 (v_hlen_tos_len & 0xFFFF); 22439 cksum += ipha->ipha_fragment_offset_and_flags; 22440 hlen = (V_HLEN & 0xF) - 22441 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22442 if (hlen) { 22443 checksumoptions: 22444 /* 22445 * Account for the IP Options in the IP 22446 * header checksum. 22447 */ 22448 up = (uint16_t *)(rptr+ 22449 IP_SIMPLE_HDR_LENGTH); 22450 do { 22451 cksum += up[0]; 22452 cksum += up[1]; 22453 up += 2; 22454 } while (--hlen); 22455 } 22456 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22457 cksum = ~(cksum + (cksum >> 16)); 22458 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22459 } 22460 if (ipsec_len != 0) { 22461 ipsec_out_process(q, first_mp, ire, ill_index); 22462 if (!next_mp) { 22463 ire_refrele(ire); 22464 if (conn_outgoing_ill != NULL) 22465 ill_refrele(conn_outgoing_ill); 22466 return; 22467 } 22468 goto next; 22469 } 22470 22471 /* 22472 * multirt_send has already been handled 22473 * for broadcast, but not yet for multicast 22474 * or IP options. 22475 */ 22476 if (next_mp == NULL) { 22477 if (ire->ire_flags & RTF_MULTIRT) { 22478 multirt_send = B_TRUE; 22479 } 22480 } 22481 22482 /* 22483 * In most cases, the emission loop below is 22484 * entered only once. Only in the case where 22485 * the ire holds the RTF_MULTIRT flag, do we loop 22486 * to process all RTF_MULTIRT ires in the bucket, 22487 * and send the packet through all crossed 22488 * RTF_MULTIRT routes. 22489 */ 22490 do { 22491 if (multirt_send) { 22492 irb_t *irb; 22493 22494 irb = ire->ire_bucket; 22495 ASSERT(irb != NULL); 22496 /* 22497 * We are in a multiple send case, 22498 * need to get the next IRE and make 22499 * a duplicate of the packet. 22500 */ 22501 IRB_REFHOLD(irb); 22502 for (ire1 = ire->ire_next; 22503 ire1 != NULL; 22504 ire1 = ire1->ire_next) { 22505 if (!(ire1->ire_flags & 22506 RTF_MULTIRT)) 22507 continue; 22508 if (ire1->ire_addr != 22509 ire->ire_addr) 22510 continue; 22511 if (ire1->ire_marks & 22512 (IRE_MARK_CONDEMNED| 22513 IRE_MARK_HIDDEN)) 22514 continue; 22515 22516 /* Got one */ 22517 IRE_REFHOLD(ire1); 22518 break; 22519 } 22520 IRB_REFRELE(irb); 22521 22522 if (ire1 != NULL) { 22523 next_mp = copyb(mp); 22524 if ((next_mp == NULL) || 22525 ((mp->b_cont != NULL) && 22526 ((next_mp->b_cont = 22527 dupmsg(mp->b_cont)) 22528 == NULL))) { 22529 freemsg(next_mp); 22530 next_mp = NULL; 22531 ire_refrele(ire1); 22532 ire1 = NULL; 22533 } 22534 } 22535 22536 /* 22537 * Last multiroute ire; don't loop 22538 * anymore. The emission is over 22539 * and next_mp is NULL. 22540 */ 22541 if (ire1 == NULL) { 22542 multirt_send = B_FALSE; 22543 } 22544 } 22545 22546 out_ill = ire->ire_ipif->ipif_ill; 22547 DTRACE_PROBE4(ip4__physical__out__start, 22548 ill_t *, NULL, 22549 ill_t *, out_ill, 22550 ipha_t *, ipha, mblk_t *, mp); 22551 FW_HOOKS(ip4_physical_out_event, 22552 ipv4firewall_physical_out, 22553 MSG_FWCOOKED_OUT, NULL, out_ill, 22554 ipha, mp, mp); 22555 DTRACE_PROBE1(ip4__physical__out__end, 22556 mblk_t *, mp); 22557 if (mp == NULL) 22558 goto release_ire_and_ill_2; 22559 22560 ASSERT(ipsec_len == 0); 22561 mp->b_prev = 22562 SET_BPREV_FLAG(IPP_LOCAL_OUT); 22563 DTRACE_PROBE2(ip__xmit__2, 22564 mblk_t *, mp, ire_t *, ire); 22565 pktxmit_state = ip_xmit_v4(mp, ire, 22566 NULL, B_TRUE); 22567 if ((pktxmit_state == SEND_FAILED) || 22568 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22569 release_ire_and_ill_2: 22570 if (next_mp) { 22571 freemsg(next_mp); 22572 ire_refrele(ire1); 22573 } 22574 ire_refrele(ire); 22575 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22576 "ip_wput_ire_end: q %p (%S)", 22577 q, "discard MDATA"); 22578 if (conn_outgoing_ill != NULL) 22579 ill_refrele(conn_outgoing_ill); 22580 return; 22581 } 22582 22583 if (multirt_send) { 22584 /* 22585 * We are in a multiple send case, 22586 * need to re-enter the sending loop 22587 * using the next ire. 22588 */ 22589 ire_refrele(ire); 22590 ire = ire1; 22591 stq = ire->ire_stq; 22592 mp = next_mp; 22593 next_mp = NULL; 22594 ipha = (ipha_t *)mp->b_rptr; 22595 ill_index = Q_TO_INDEX(stq); 22596 } 22597 } while (multirt_send); 22598 22599 if (!next_mp) { 22600 /* 22601 * Last copy going out (the ultra-common 22602 * case). Note that we intentionally replicate 22603 * the putnext rather than calling it before 22604 * the next_mp check in hopes of a little 22605 * tail-call action out of the compiler. 22606 */ 22607 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22608 "ip_wput_ire_end: q %p (%S)", 22609 q, "last copy out(1)"); 22610 ire_refrele(ire); 22611 if (conn_outgoing_ill != NULL) 22612 ill_refrele(conn_outgoing_ill); 22613 return; 22614 } 22615 /* More copies going out below. */ 22616 } else { 22617 int offset; 22618 fragmentit: 22619 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 22620 /* 22621 * If this would generate a icmp_frag_needed message, 22622 * we need to handle it before we do the IPSEC 22623 * processing. Otherwise, we need to strip the IPSEC 22624 * headers before we send up the message to the ULPs 22625 * which becomes messy and difficult. 22626 */ 22627 if (ipsec_len != 0) { 22628 if ((max_frag < (unsigned int)(LENGTH + 22629 ipsec_len)) && (offset & IPH_DF)) { 22630 22631 BUMP_MIB(&ip_mib, ipFragFails); 22632 ipha->ipha_hdr_checksum = 0; 22633 ipha->ipha_hdr_checksum = 22634 (uint16_t)ip_csum_hdr(ipha); 22635 icmp_frag_needed(ire->ire_stq, first_mp, 22636 max_frag, zoneid); 22637 if (!next_mp) { 22638 ire_refrele(ire); 22639 if (conn_outgoing_ill != NULL) { 22640 ill_refrele( 22641 conn_outgoing_ill); 22642 } 22643 return; 22644 } 22645 } else { 22646 /* 22647 * This won't cause a icmp_frag_needed 22648 * message. to be gnerated. Send it on 22649 * the wire. Note that this could still 22650 * cause fragmentation and all we 22651 * do is the generation of the message 22652 * to the ULP if needed before IPSEC. 22653 */ 22654 if (!next_mp) { 22655 ipsec_out_process(q, first_mp, 22656 ire, ill_index); 22657 TRACE_2(TR_FAC_IP, 22658 TR_IP_WPUT_IRE_END, 22659 "ip_wput_ire_end: q %p " 22660 "(%S)", q, 22661 "last ipsec_out_process"); 22662 ire_refrele(ire); 22663 if (conn_outgoing_ill != NULL) { 22664 ill_refrele( 22665 conn_outgoing_ill); 22666 } 22667 return; 22668 } 22669 ipsec_out_process(q, first_mp, 22670 ire, ill_index); 22671 } 22672 } else { 22673 /* 22674 * Initiate IPPF processing. For 22675 * fragmentable packets we finish 22676 * all QOS packet processing before 22677 * calling: 22678 * ip_wput_ire_fragmentit->ip_wput_frag 22679 */ 22680 22681 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 22682 ip_process(IPP_LOCAL_OUT, &mp, 22683 ill_index); 22684 if (mp == NULL) { 22685 BUMP_MIB(&ip_mib, 22686 ipOutDiscards); 22687 if (next_mp != NULL) { 22688 freemsg(next_mp); 22689 ire_refrele(ire1); 22690 } 22691 ire_refrele(ire); 22692 TRACE_2(TR_FAC_IP, 22693 TR_IP_WPUT_IRE_END, 22694 "ip_wput_ire: q %p (%S)", 22695 q, "discard MDATA"); 22696 if (conn_outgoing_ill != NULL) { 22697 ill_refrele( 22698 conn_outgoing_ill); 22699 } 22700 return; 22701 } 22702 } 22703 if (!next_mp) { 22704 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22705 "ip_wput_ire_end: q %p (%S)", 22706 q, "last fragmentation"); 22707 ip_wput_ire_fragmentit(mp, ire, 22708 zoneid); 22709 ire_refrele(ire); 22710 if (conn_outgoing_ill != NULL) 22711 ill_refrele(conn_outgoing_ill); 22712 return; 22713 } 22714 ip_wput_ire_fragmentit(mp, ire, zoneid); 22715 } 22716 } 22717 } else { 22718 nullstq: 22719 /* A NULL stq means the destination address is local. */ 22720 UPDATE_OB_PKT_COUNT(ire); 22721 ire->ire_last_used_time = lbolt; 22722 ASSERT(ire->ire_ipif != NULL); 22723 if (!next_mp) { 22724 /* 22725 * Is there an "in" and "out" for traffic local 22726 * to a host (loopback)? The code in Solaris doesn't 22727 * explicitly draw a line in its code for in vs out, 22728 * so we've had to draw a line in the sand: ip_wput_ire 22729 * is considered to be the "output" side and 22730 * ip_wput_local to be the "input" side. 22731 */ 22732 out_ill = ire->ire_ipif->ipif_ill; 22733 22734 DTRACE_PROBE4(ip4__loopback__out__start, 22735 ill_t *, NULL, ill_t *, out_ill, 22736 ipha_t *, ipha, mblk_t *, first_mp); 22737 22738 FW_HOOKS(ip4_loopback_out_event, 22739 ipv4firewall_loopback_out, MSG_FWCOOKED_OUT, 22740 NULL, out_ill, ipha, first_mp, mp); 22741 22742 DTRACE_PROBE1(ip4__loopback__out_end, 22743 mblk_t *, first_mp); 22744 22745 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22746 "ip_wput_ire_end: q %p (%S)", 22747 q, "local address"); 22748 22749 if (first_mp != NULL) 22750 ip_wput_local(q, out_ill, ipha, 22751 first_mp, ire, 0, ire->ire_zoneid); 22752 ire_refrele(ire); 22753 if (conn_outgoing_ill != NULL) 22754 ill_refrele(conn_outgoing_ill); 22755 return; 22756 } 22757 22758 out_ill = ire->ire_ipif->ipif_ill; 22759 22760 DTRACE_PROBE4(ip4__loopback__out__start, 22761 ill_t *, NULL, ill_t *, out_ill, 22762 ipha_t *, ipha, mblk_t *, first_mp); 22763 22764 FW_HOOKS(ip4_loopback_out_event, ipv4firewall_loopback_out, 22765 MSG_FWCOOKED_OUT, NULL, out_ill, ipha, first_mp, mp); 22766 22767 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 22768 22769 if (first_mp != NULL) 22770 ip_wput_local(q, out_ill, ipha, 22771 first_mp, ire, 0, ire->ire_zoneid); 22772 } 22773 next: 22774 /* 22775 * More copies going out to additional interfaces. 22776 * ire1 has already been held. We don't need the 22777 * "ire" anymore. 22778 */ 22779 ire_refrele(ire); 22780 ire = ire1; 22781 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 22782 mp = next_mp; 22783 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22784 ill = ire_to_ill(ire); 22785 first_mp = mp; 22786 if (ipsec_len != 0) { 22787 ASSERT(first_mp->b_datap->db_type == M_CTL); 22788 mp = mp->b_cont; 22789 } 22790 dst = ire->ire_addr; 22791 ipha = (ipha_t *)mp->b_rptr; 22792 /* 22793 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 22794 * Restore ipha_ident "no checksum" flag. 22795 */ 22796 src = orig_src; 22797 ipha->ipha_ident = ip_hdr_included; 22798 goto another; 22799 22800 #undef rptr 22801 #undef Q_TO_INDEX 22802 } 22803 22804 /* 22805 * Routine to allocate a message that is used to notify the ULP about MDT. 22806 * The caller may provide a pointer to the link-layer MDT capabilities, 22807 * or NULL if MDT is to be disabled on the stream. 22808 */ 22809 mblk_t * 22810 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 22811 { 22812 mblk_t *mp; 22813 ip_mdt_info_t *mdti; 22814 ill_mdt_capab_t *idst; 22815 22816 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 22817 DB_TYPE(mp) = M_CTL; 22818 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 22819 mdti = (ip_mdt_info_t *)mp->b_rptr; 22820 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 22821 idst = &(mdti->mdt_capab); 22822 22823 /* 22824 * If the caller provides us with the capability, copy 22825 * it over into our notification message; otherwise 22826 * we zero out the capability portion. 22827 */ 22828 if (isrc != NULL) 22829 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 22830 else 22831 bzero((caddr_t)idst, sizeof (*idst)); 22832 } 22833 return (mp); 22834 } 22835 22836 /* 22837 * Routine which determines whether MDT can be enabled on the destination 22838 * IRE and IPC combination, and if so, allocates and returns the MDT 22839 * notification mblk that may be used by ULP. We also check if we need to 22840 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 22841 * MDT usage in the past have been lifted. This gets called during IP 22842 * and ULP binding. 22843 */ 22844 mblk_t * 22845 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 22846 ill_mdt_capab_t *mdt_cap) 22847 { 22848 mblk_t *mp; 22849 boolean_t rc = B_FALSE; 22850 22851 ASSERT(dst_ire != NULL); 22852 ASSERT(connp != NULL); 22853 ASSERT(mdt_cap != NULL); 22854 22855 /* 22856 * Currently, we only support simple TCP/{IPv4,IPv6} with 22857 * Multidata, which is handled in tcp_multisend(). This 22858 * is the reason why we do all these checks here, to ensure 22859 * that we don't enable Multidata for the cases which we 22860 * can't handle at the moment. 22861 */ 22862 do { 22863 /* Only do TCP at the moment */ 22864 if (connp->conn_ulp != IPPROTO_TCP) 22865 break; 22866 22867 /* 22868 * IPSEC outbound policy present? Note that we get here 22869 * after calling ipsec_conn_cache_policy() where the global 22870 * policy checking is performed. conn_latch will be 22871 * non-NULL as long as there's a policy defined, 22872 * i.e. conn_out_enforce_policy may be NULL in such case 22873 * when the connection is non-secure, and hence we check 22874 * further if the latch refers to an outbound policy. 22875 */ 22876 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 22877 break; 22878 22879 /* CGTP (multiroute) is enabled? */ 22880 if (dst_ire->ire_flags & RTF_MULTIRT) 22881 break; 22882 22883 /* Outbound IPQoS enabled? */ 22884 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 22885 /* 22886 * In this case, we disable MDT for this and all 22887 * future connections going over the interface. 22888 */ 22889 mdt_cap->ill_mdt_on = 0; 22890 break; 22891 } 22892 22893 /* socket option(s) present? */ 22894 if (!CONN_IS_MD_FASTPATH(connp)) 22895 break; 22896 22897 rc = B_TRUE; 22898 /* CONSTCOND */ 22899 } while (0); 22900 22901 /* Remember the result */ 22902 connp->conn_mdt_ok = rc; 22903 22904 if (!rc) 22905 return (NULL); 22906 else if (!mdt_cap->ill_mdt_on) { 22907 /* 22908 * If MDT has been previously turned off in the past, and we 22909 * currently can do MDT (due to IPQoS policy removal, etc.) 22910 * then enable it for this interface. 22911 */ 22912 mdt_cap->ill_mdt_on = 1; 22913 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 22914 "interface %s\n", ill_name)); 22915 } 22916 22917 /* Allocate the MDT info mblk */ 22918 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 22919 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 22920 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 22921 return (NULL); 22922 } 22923 return (mp); 22924 } 22925 22926 /* 22927 * Create destination address attribute, and fill it with the physical 22928 * destination address and SAP taken from the template DL_UNITDATA_REQ 22929 * message block. 22930 */ 22931 boolean_t 22932 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 22933 { 22934 dl_unitdata_req_t *dlurp; 22935 pattr_t *pa; 22936 pattrinfo_t pa_info; 22937 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 22938 uint_t das_len, das_off; 22939 22940 ASSERT(dlmp != NULL); 22941 22942 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 22943 das_len = dlurp->dl_dest_addr_length; 22944 das_off = dlurp->dl_dest_addr_offset; 22945 22946 pa_info.type = PATTR_DSTADDRSAP; 22947 pa_info.len = sizeof (**das) + das_len - 1; 22948 22949 /* create and associate the attribute */ 22950 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 22951 if (pa != NULL) { 22952 ASSERT(*das != NULL); 22953 (*das)->addr_is_group = 0; 22954 (*das)->addr_len = (uint8_t)das_len; 22955 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 22956 } 22957 22958 return (pa != NULL); 22959 } 22960 22961 /* 22962 * Create hardware checksum attribute and fill it with the values passed. 22963 */ 22964 boolean_t 22965 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 22966 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 22967 { 22968 pattr_t *pa; 22969 pattrinfo_t pa_info; 22970 22971 ASSERT(mmd != NULL); 22972 22973 pa_info.type = PATTR_HCKSUM; 22974 pa_info.len = sizeof (pattr_hcksum_t); 22975 22976 /* create and associate the attribute */ 22977 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 22978 if (pa != NULL) { 22979 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 22980 22981 hck->hcksum_start_offset = start_offset; 22982 hck->hcksum_stuff_offset = stuff_offset; 22983 hck->hcksum_end_offset = end_offset; 22984 hck->hcksum_flags = flags; 22985 } 22986 return (pa != NULL); 22987 } 22988 22989 /* 22990 * Create zerocopy attribute and fill it with the specified flags 22991 */ 22992 boolean_t 22993 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 22994 { 22995 pattr_t *pa; 22996 pattrinfo_t pa_info; 22997 22998 ASSERT(mmd != NULL); 22999 pa_info.type = PATTR_ZCOPY; 23000 pa_info.len = sizeof (pattr_zcopy_t); 23001 23002 /* create and associate the attribute */ 23003 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23004 if (pa != NULL) { 23005 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23006 23007 zcopy->zcopy_flags = flags; 23008 } 23009 return (pa != NULL); 23010 } 23011 23012 /* 23013 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23014 * block chain. We could rewrite to handle arbitrary message block chains but 23015 * that would make the code complicated and slow. Right now there three 23016 * restrictions: 23017 * 23018 * 1. The first message block must contain the complete IP header and 23019 * at least 1 byte of payload data. 23020 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23021 * so that we can use a single Multidata message. 23022 * 3. No frag must be distributed over two or more message blocks so 23023 * that we don't need more than two packet descriptors per frag. 23024 * 23025 * The above restrictions allow us to support userland applications (which 23026 * will send down a single message block) and NFS over UDP (which will 23027 * send down a chain of at most three message blocks). 23028 * 23029 * We also don't use MDT for payloads with less than or equal to 23030 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23031 */ 23032 boolean_t 23033 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23034 { 23035 int blocks; 23036 ssize_t total, missing, size; 23037 23038 ASSERT(mp != NULL); 23039 ASSERT(hdr_len > 0); 23040 23041 size = MBLKL(mp) - hdr_len; 23042 if (size <= 0) 23043 return (B_FALSE); 23044 23045 /* The first mblk contains the header and some payload. */ 23046 blocks = 1; 23047 total = size; 23048 size %= len; 23049 missing = (size == 0) ? 0 : (len - size); 23050 mp = mp->b_cont; 23051 23052 while (mp != NULL) { 23053 /* 23054 * Give up if we encounter a zero length message block. 23055 * In practice, this should rarely happen and therefore 23056 * not worth the trouble of freeing and re-linking the 23057 * mblk from the chain to handle such case. 23058 */ 23059 if ((size = MBLKL(mp)) == 0) 23060 return (B_FALSE); 23061 23062 /* Too many payload buffers for a single Multidata message? */ 23063 if (++blocks > MULTIDATA_MAX_PBUFS) 23064 return (B_FALSE); 23065 23066 total += size; 23067 /* Is a frag distributed over two or more message blocks? */ 23068 if (missing > size) 23069 return (B_FALSE); 23070 size -= missing; 23071 23072 size %= len; 23073 missing = (size == 0) ? 0 : (len - size); 23074 23075 mp = mp->b_cont; 23076 } 23077 23078 return (total > ip_wput_frag_mdt_min); 23079 } 23080 23081 /* 23082 * Outbound IPv4 fragmentation routine using MDT. 23083 */ 23084 static void 23085 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23086 uint32_t frag_flag, int offset) 23087 { 23088 ipha_t *ipha_orig; 23089 int i1, ip_data_end; 23090 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23091 mblk_t *hdr_mp, *md_mp = NULL; 23092 unsigned char *hdr_ptr, *pld_ptr; 23093 multidata_t *mmd; 23094 ip_pdescinfo_t pdi; 23095 23096 ASSERT(DB_TYPE(mp) == M_DATA); 23097 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23098 23099 ipha_orig = (ipha_t *)mp->b_rptr; 23100 mp->b_rptr += sizeof (ipha_t); 23101 23102 /* Calculate how many packets we will send out */ 23103 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23104 pkts = (i1 + len - 1) / len; 23105 ASSERT(pkts > 1); 23106 23107 /* Allocate a message block which will hold all the IP Headers. */ 23108 wroff = ip_wroff_extra; 23109 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23110 23111 i1 = pkts * hdr_chunk_len; 23112 /* 23113 * Create the header buffer, Multidata and destination address 23114 * and SAP attribute that should be associated with it. 23115 */ 23116 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23117 ((hdr_mp->b_wptr += i1), 23118 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23119 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23120 freemsg(mp); 23121 if (md_mp == NULL) { 23122 freemsg(hdr_mp); 23123 } else { 23124 free_mmd: IP_STAT(ip_frag_mdt_discarded); 23125 freemsg(md_mp); 23126 } 23127 IP_STAT(ip_frag_mdt_allocfail); 23128 UPDATE_MIB(&ip_mib, ipOutDiscards, pkts); 23129 return; 23130 } 23131 IP_STAT(ip_frag_mdt_allocd); 23132 23133 /* 23134 * Add a payload buffer to the Multidata; this operation must not 23135 * fail, or otherwise our logic in this routine is broken. There 23136 * is no memory allocation done by the routine, so any returned 23137 * failure simply tells us that we've done something wrong. 23138 * 23139 * A failure tells us that either we're adding the same payload 23140 * buffer more than once, or we're trying to add more buffers than 23141 * allowed. None of the above cases should happen, and we panic 23142 * because either there's horrible heap corruption, and/or 23143 * programming mistake. 23144 */ 23145 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23146 goto pbuf_panic; 23147 23148 hdr_ptr = hdr_mp->b_rptr; 23149 pld_ptr = mp->b_rptr; 23150 23151 /* Establish the ending byte offset, based on the starting offset. */ 23152 offset <<= 3; 23153 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23154 IP_SIMPLE_HDR_LENGTH; 23155 23156 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23157 23158 while (pld_ptr < mp->b_wptr) { 23159 ipha_t *ipha; 23160 uint16_t offset_and_flags; 23161 uint16_t ip_len; 23162 int error; 23163 23164 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23165 ipha = (ipha_t *)(hdr_ptr + wroff); 23166 ASSERT(OK_32PTR(ipha)); 23167 *ipha = *ipha_orig; 23168 23169 if (ip_data_end - offset > len) { 23170 offset_and_flags = IPH_MF; 23171 } else { 23172 /* 23173 * Last frag. Set len to the length of this last piece. 23174 */ 23175 len = ip_data_end - offset; 23176 /* A frag of a frag might have IPH_MF non-zero */ 23177 offset_and_flags = 23178 ntohs(ipha->ipha_fragment_offset_and_flags) & 23179 IPH_MF; 23180 } 23181 offset_and_flags |= (uint16_t)(offset >> 3); 23182 offset_and_flags |= (uint16_t)frag_flag; 23183 /* Store the offset and flags in the IP header. */ 23184 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23185 23186 /* Store the length in the IP header. */ 23187 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23188 ipha->ipha_length = htons(ip_len); 23189 23190 /* 23191 * Set the IP header checksum. Note that mp is just 23192 * the header, so this is easy to pass to ip_csum. 23193 */ 23194 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23195 23196 /* 23197 * Record offset and size of header and data of the next packet 23198 * in the multidata message. 23199 */ 23200 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23201 PDESC_PLD_INIT(&pdi); 23202 i1 = MIN(mp->b_wptr - pld_ptr, len); 23203 ASSERT(i1 > 0); 23204 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23205 if (i1 == len) { 23206 pld_ptr += len; 23207 } else { 23208 i1 = len - i1; 23209 mp = mp->b_cont; 23210 ASSERT(mp != NULL); 23211 ASSERT(MBLKL(mp) >= i1); 23212 /* 23213 * Attach the next payload message block to the 23214 * multidata message. 23215 */ 23216 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23217 goto pbuf_panic; 23218 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23219 pld_ptr = mp->b_rptr + i1; 23220 } 23221 23222 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23223 KM_NOSLEEP)) == NULL) { 23224 /* 23225 * Any failure other than ENOMEM indicates that we 23226 * have passed in invalid pdesc info or parameters 23227 * to mmd_addpdesc, which must not happen. 23228 * 23229 * EINVAL is a result of failure on boundary checks 23230 * against the pdesc info contents. It should not 23231 * happen, and we panic because either there's 23232 * horrible heap corruption, and/or programming 23233 * mistake. 23234 */ 23235 if (error != ENOMEM) { 23236 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23237 "pdesc logic error detected for " 23238 "mmd %p pinfo %p (%d)\n", 23239 (void *)mmd, (void *)&pdi, error); 23240 /* NOTREACHED */ 23241 } 23242 IP_STAT(ip_frag_mdt_addpdescfail); 23243 /* Free unattached payload message blocks as well */ 23244 md_mp->b_cont = mp->b_cont; 23245 goto free_mmd; 23246 } 23247 23248 /* Advance fragment offset. */ 23249 offset += len; 23250 23251 /* Advance to location for next header in the buffer. */ 23252 hdr_ptr += hdr_chunk_len; 23253 23254 /* Did we reach the next payload message block? */ 23255 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23256 mp = mp->b_cont; 23257 /* 23258 * Attach the next message block with payload 23259 * data to the multidata message. 23260 */ 23261 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23262 goto pbuf_panic; 23263 pld_ptr = mp->b_rptr; 23264 } 23265 } 23266 23267 ASSERT(hdr_mp->b_wptr == hdr_ptr); 23268 ASSERT(mp->b_wptr == pld_ptr); 23269 23270 /* Update IP statistics */ 23271 UPDATE_MIB(&ip_mib, ipFragCreates, pkts); 23272 BUMP_MIB(&ip_mib, ipFragOKs); 23273 IP_STAT_UPDATE(ip_frag_mdt_pkt_out, pkts); 23274 23275 if (pkt_type == OB_PKT) { 23276 ire->ire_ob_pkt_count += pkts; 23277 if (ire->ire_ipif != NULL) 23278 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 23279 } else { 23280 /* 23281 * The type is IB_PKT in the forwarding path and in 23282 * the mobile IP case when the packet is being reverse- 23283 * tunneled to the home agent. 23284 */ 23285 ire->ire_ib_pkt_count += pkts; 23286 ASSERT(!IRE_IS_LOCAL(ire)); 23287 if (ire->ire_type & IRE_BROADCAST) 23288 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 23289 else 23290 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 23291 } 23292 ire->ire_last_used_time = lbolt; 23293 /* Send it down */ 23294 putnext(ire->ire_stq, md_mp); 23295 return; 23296 23297 pbuf_panic: 23298 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 23299 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 23300 pbuf_idx); 23301 /* NOTREACHED */ 23302 } 23303 23304 /* 23305 * Outbound IP fragmentation routine. 23306 * 23307 * NOTE : This routine does not ire_refrele the ire that is passed in 23308 * as the argument. 23309 */ 23310 static void 23311 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 23312 uint32_t frag_flag, zoneid_t zoneid) 23313 { 23314 int i1; 23315 mblk_t *ll_hdr_mp; 23316 int ll_hdr_len; 23317 int hdr_len; 23318 mblk_t *hdr_mp; 23319 ipha_t *ipha; 23320 int ip_data_end; 23321 int len; 23322 mblk_t *mp = mp_orig, *mp1; 23323 int offset; 23324 queue_t *q; 23325 uint32_t v_hlen_tos_len; 23326 mblk_t *first_mp; 23327 boolean_t mctl_present; 23328 ill_t *ill; 23329 ill_t *out_ill; 23330 mblk_t *xmit_mp; 23331 mblk_t *carve_mp; 23332 ire_t *ire1 = NULL; 23333 ire_t *save_ire = NULL; 23334 mblk_t *next_mp = NULL; 23335 boolean_t last_frag = B_FALSE; 23336 boolean_t multirt_send = B_FALSE; 23337 ire_t *first_ire = NULL; 23338 irb_t *irb = NULL; 23339 23340 /* 23341 * IPSEC does not allow hw accelerated packets to be fragmented 23342 * This check is made in ip_wput_ipsec_out prior to coming here 23343 * via ip_wput_ire_fragmentit. 23344 * 23345 * If at this point we have an ire whose ARP request has not 23346 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 23347 * sending of ARP query and change ire's state to ND_INCOMPLETE. 23348 * This packet and all fragmentable packets for this ire will 23349 * continue to get dropped while ire_nce->nce_state remains in 23350 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 23351 * ND_REACHABLE, all subsquent large packets for this ire will 23352 * get fragemented and sent out by this function. 23353 */ 23354 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 23355 /* If nce_state is ND_INITIAL, trigger ARP query */ 23356 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 23357 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 23358 " - dropping packet\n")); 23359 BUMP_MIB(&ip_mib, ipFragFails); 23360 freemsg(mp); 23361 return; 23362 } 23363 23364 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 23365 "ip_wput_frag_start:"); 23366 23367 if (mp->b_datap->db_type == M_CTL) { 23368 first_mp = mp; 23369 mp_orig = mp = mp->b_cont; 23370 mctl_present = B_TRUE; 23371 } else { 23372 first_mp = mp; 23373 mctl_present = B_FALSE; 23374 } 23375 23376 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 23377 ipha = (ipha_t *)mp->b_rptr; 23378 23379 /* 23380 * If the Don't Fragment flag is on, generate an ICMP destination 23381 * unreachable, fragmentation needed. 23382 */ 23383 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23384 if (offset & IPH_DF) { 23385 BUMP_MIB(&ip_mib, ipFragFails); 23386 /* 23387 * Need to compute hdr checksum if called from ip_wput_ire. 23388 * Note that ip_rput_forward verifies the checksum before 23389 * calling this routine so in that case this is a noop. 23390 */ 23391 ipha->ipha_hdr_checksum = 0; 23392 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23393 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid); 23394 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23395 "ip_wput_frag_end:(%S)", 23396 "don't fragment"); 23397 return; 23398 } 23399 if (mctl_present) 23400 freeb(first_mp); 23401 /* 23402 * Establish the starting offset. May not be zero if we are fragging 23403 * a fragment that is being forwarded. 23404 */ 23405 offset = offset & IPH_OFFSET; 23406 23407 /* TODO why is this test needed? */ 23408 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 23409 if (((max_frag - LENGTH) & ~7) < 8) { 23410 /* TODO: notify ulp somehow */ 23411 BUMP_MIB(&ip_mib, ipFragFails); 23412 freemsg(mp); 23413 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23414 "ip_wput_frag_end:(%S)", 23415 "len < 8"); 23416 return; 23417 } 23418 23419 hdr_len = (V_HLEN & 0xF) << 2; 23420 23421 ipha->ipha_hdr_checksum = 0; 23422 23423 /* 23424 * Establish the number of bytes maximum per frag, after putting 23425 * in the header. 23426 */ 23427 len = (max_frag - hdr_len) & ~7; 23428 23429 /* Check if we can use MDT to send out the frags. */ 23430 ASSERT(!IRE_IS_LOCAL(ire)); 23431 if (hdr_len == IP_SIMPLE_HDR_LENGTH && ip_multidata_outbound && 23432 !(ire->ire_flags & RTF_MULTIRT) && !IPP_ENABLED(IPP_LOCAL_OUT) && 23433 (ill = ire_to_ill(ire)) != NULL && ILL_MDT_CAPABLE(ill) && 23434 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 23435 ASSERT(ill->ill_mdt_capab != NULL); 23436 if (!ill->ill_mdt_capab->ill_mdt_on) { 23437 /* 23438 * If MDT has been previously turned off in the past, 23439 * and we currently can do MDT (due to IPQoS policy 23440 * removal, etc.) then enable it for this interface. 23441 */ 23442 ill->ill_mdt_capab->ill_mdt_on = 1; 23443 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 23444 ill->ill_name)); 23445 } 23446 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 23447 offset); 23448 return; 23449 } 23450 23451 /* Get a copy of the header for the trailing frags */ 23452 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset); 23453 if (!hdr_mp) { 23454 BUMP_MIB(&ip_mib, ipOutDiscards); 23455 freemsg(mp); 23456 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23457 "ip_wput_frag_end:(%S)", 23458 "couldn't copy hdr"); 23459 return; 23460 } 23461 if (DB_CRED(mp) != NULL) 23462 mblk_setcred(hdr_mp, DB_CRED(mp)); 23463 23464 /* Store the starting offset, with the MoreFrags flag. */ 23465 i1 = offset | IPH_MF | frag_flag; 23466 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 23467 23468 /* Establish the ending byte offset, based on the starting offset. */ 23469 offset <<= 3; 23470 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 23471 23472 /* Store the length of the first fragment in the IP header. */ 23473 i1 = len + hdr_len; 23474 ASSERT(i1 <= IP_MAXPACKET); 23475 ipha->ipha_length = htons((uint16_t)i1); 23476 23477 /* 23478 * Compute the IP header checksum for the first frag. We have to 23479 * watch out that we stop at the end of the header. 23480 */ 23481 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23482 23483 /* 23484 * Now carve off the first frag. Note that this will include the 23485 * original IP header. 23486 */ 23487 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 23488 BUMP_MIB(&ip_mib, ipOutDiscards); 23489 freeb(hdr_mp); 23490 freemsg(mp_orig); 23491 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23492 "ip_wput_frag_end:(%S)", 23493 "couldn't carve first"); 23494 return; 23495 } 23496 23497 /* 23498 * Multirouting case. Each fragment is replicated 23499 * via all non-condemned RTF_MULTIRT routes 23500 * currently resolved. 23501 * We ensure that first_ire is the first RTF_MULTIRT 23502 * ire in the bucket. 23503 */ 23504 if (ire->ire_flags & RTF_MULTIRT) { 23505 irb = ire->ire_bucket; 23506 ASSERT(irb != NULL); 23507 23508 multirt_send = B_TRUE; 23509 23510 /* Make sure we do not omit any multiroute ire. */ 23511 IRB_REFHOLD(irb); 23512 for (first_ire = irb->irb_ire; 23513 first_ire != NULL; 23514 first_ire = first_ire->ire_next) { 23515 if ((first_ire->ire_flags & RTF_MULTIRT) && 23516 (first_ire->ire_addr == ire->ire_addr) && 23517 !(first_ire->ire_marks & 23518 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 23519 break; 23520 } 23521 23522 if (first_ire != NULL) { 23523 if (first_ire != ire) { 23524 IRE_REFHOLD(first_ire); 23525 /* 23526 * Do not release the ire passed in 23527 * as the argument. 23528 */ 23529 ire = first_ire; 23530 } else { 23531 first_ire = NULL; 23532 } 23533 } 23534 IRB_REFRELE(irb); 23535 23536 /* 23537 * Save the first ire; we will need to restore it 23538 * for the trailing frags. 23539 * We REFHOLD save_ire, as each iterated ire will be 23540 * REFRELEd. 23541 */ 23542 save_ire = ire; 23543 IRE_REFHOLD(save_ire); 23544 } 23545 23546 /* 23547 * First fragment emission loop. 23548 * In most cases, the emission loop below is entered only 23549 * once. Only in the case where the ire holds the RTF_MULTIRT 23550 * flag, do we loop to process all RTF_MULTIRT ires in the 23551 * bucket, and send the fragment through all crossed 23552 * RTF_MULTIRT routes. 23553 */ 23554 do { 23555 if (ire->ire_flags & RTF_MULTIRT) { 23556 /* 23557 * We are in a multiple send case, need to get 23558 * the next ire and make a copy of the packet. 23559 * ire1 holds here the next ire to process in the 23560 * bucket. If multirouting is expected, 23561 * any non-RTF_MULTIRT ire that has the 23562 * right destination address is ignored. 23563 * 23564 * We have to take into account the MTU of 23565 * each walked ire. max_frag is set by the 23566 * the caller and generally refers to 23567 * the primary ire entry. Here we ensure that 23568 * no route with a lower MTU will be used, as 23569 * fragments are carved once for all ires, 23570 * then replicated. 23571 */ 23572 ASSERT(irb != NULL); 23573 IRB_REFHOLD(irb); 23574 for (ire1 = ire->ire_next; 23575 ire1 != NULL; 23576 ire1 = ire1->ire_next) { 23577 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 23578 continue; 23579 if (ire1->ire_addr != ire->ire_addr) 23580 continue; 23581 if (ire1->ire_marks & 23582 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 23583 continue; 23584 /* 23585 * Ensure we do not exceed the MTU 23586 * of the next route. 23587 */ 23588 if (ire1->ire_max_frag < max_frag) { 23589 ip_multirt_bad_mtu(ire1, max_frag); 23590 continue; 23591 } 23592 23593 /* Got one. */ 23594 IRE_REFHOLD(ire1); 23595 break; 23596 } 23597 IRB_REFRELE(irb); 23598 23599 if (ire1 != NULL) { 23600 next_mp = copyb(mp); 23601 if ((next_mp == NULL) || 23602 ((mp->b_cont != NULL) && 23603 ((next_mp->b_cont = 23604 dupmsg(mp->b_cont)) == NULL))) { 23605 freemsg(next_mp); 23606 next_mp = NULL; 23607 ire_refrele(ire1); 23608 ire1 = NULL; 23609 } 23610 } 23611 23612 /* Last multiroute ire; don't loop anymore. */ 23613 if (ire1 == NULL) { 23614 multirt_send = B_FALSE; 23615 } 23616 } 23617 23618 ll_hdr_len = 0; 23619 LOCK_IRE_FP_MP(ire); 23620 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 23621 if (ll_hdr_mp != NULL) { 23622 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 23623 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 23624 } else { 23625 ll_hdr_mp = ire->ire_nce->nce_res_mp; 23626 } 23627 23628 /* If there is a transmit header, get a copy for this frag. */ 23629 /* 23630 * TODO: should check db_ref before calling ip_carve_mp since 23631 * it might give us a dup. 23632 */ 23633 if (!ll_hdr_mp) { 23634 /* No xmit header. */ 23635 xmit_mp = mp; 23636 23637 /* We have a link-layer header that can fit in our mblk. */ 23638 } else if (mp->b_datap->db_ref == 1 && 23639 ll_hdr_len != 0 && 23640 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 23641 /* M_DATA fastpath */ 23642 mp->b_rptr -= ll_hdr_len; 23643 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 23644 xmit_mp = mp; 23645 23646 /* Corner case if copyb has failed */ 23647 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 23648 UNLOCK_IRE_FP_MP(ire); 23649 BUMP_MIB(&ip_mib, ipOutDiscards); 23650 freeb(hdr_mp); 23651 freemsg(mp); 23652 freemsg(mp_orig); 23653 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23654 "ip_wput_frag_end:(%S)", 23655 "discard"); 23656 23657 if (multirt_send) { 23658 ASSERT(ire1); 23659 ASSERT(next_mp); 23660 23661 freemsg(next_mp); 23662 ire_refrele(ire1); 23663 } 23664 if (save_ire != NULL) 23665 IRE_REFRELE(save_ire); 23666 23667 if (first_ire != NULL) 23668 ire_refrele(first_ire); 23669 return; 23670 23671 /* 23672 * Case of res_mp OR the fastpath mp can't fit 23673 * in the mblk 23674 */ 23675 } else { 23676 xmit_mp->b_cont = mp; 23677 if (DB_CRED(mp) != NULL) 23678 mblk_setcred(xmit_mp, DB_CRED(mp)); 23679 /* 23680 * Get priority marking, if any. 23681 * We propagate the CoS marking from the 23682 * original packet that went to QoS processing 23683 * in ip_wput_ire to the newly carved mp. 23684 */ 23685 if (DB_TYPE(xmit_mp) == M_DATA) 23686 xmit_mp->b_band = mp->b_band; 23687 } 23688 UNLOCK_IRE_FP_MP(ire); 23689 q = ire->ire_stq; 23690 BUMP_MIB(&ip_mib, ipFragCreates); 23691 23692 out_ill = (ill_t *)q->q_ptr; 23693 23694 DTRACE_PROBE4(ip4__physical__out__start, 23695 ill_t *, NULL, ill_t *, out_ill, 23696 ipha_t *, ipha, mblk_t *, xmit_mp); 23697 23698 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 23699 MSG_FWCOOKED_OUT, NULL, out_ill, ipha, xmit_mp, mp); 23700 23701 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 23702 23703 if (xmit_mp != NULL) { 23704 putnext(q, xmit_mp); 23705 if (pkt_type != OB_PKT) { 23706 /* 23707 * Update the packet count of trailing 23708 * RTF_MULTIRT ires. 23709 */ 23710 UPDATE_OB_PKT_COUNT(ire); 23711 } 23712 } 23713 23714 if (multirt_send) { 23715 /* 23716 * We are in a multiple send case; look for 23717 * the next ire and re-enter the loop. 23718 */ 23719 ASSERT(ire1); 23720 ASSERT(next_mp); 23721 /* REFRELE the current ire before looping */ 23722 ire_refrele(ire); 23723 ire = ire1; 23724 ire1 = NULL; 23725 mp = next_mp; 23726 next_mp = NULL; 23727 } 23728 } while (multirt_send); 23729 23730 ASSERT(ire1 == NULL); 23731 23732 /* Restore the original ire; we need it for the trailing frags */ 23733 if (save_ire != NULL) { 23734 /* REFRELE the last iterated ire */ 23735 ire_refrele(ire); 23736 /* save_ire has been REFHOLDed */ 23737 ire = save_ire; 23738 save_ire = NULL; 23739 q = ire->ire_stq; 23740 } 23741 23742 if (pkt_type == OB_PKT) { 23743 UPDATE_OB_PKT_COUNT(ire); 23744 } else { 23745 UPDATE_IB_PKT_COUNT(ire); 23746 } 23747 23748 /* Advance the offset to the second frag starting point. */ 23749 offset += len; 23750 /* 23751 * Update hdr_len from the copied header - there might be less options 23752 * in the later fragments. 23753 */ 23754 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 23755 /* Loop until done. */ 23756 for (;;) { 23757 uint16_t offset_and_flags; 23758 uint16_t ip_len; 23759 23760 if (ip_data_end - offset > len) { 23761 /* 23762 * Carve off the appropriate amount from the original 23763 * datagram. 23764 */ 23765 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 23766 mp = NULL; 23767 break; 23768 } 23769 /* 23770 * More frags after this one. Get another copy 23771 * of the header. 23772 */ 23773 if (carve_mp->b_datap->db_ref == 1 && 23774 hdr_mp->b_wptr - hdr_mp->b_rptr < 23775 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 23776 /* Inline IP header */ 23777 carve_mp->b_rptr -= hdr_mp->b_wptr - 23778 hdr_mp->b_rptr; 23779 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 23780 hdr_mp->b_wptr - hdr_mp->b_rptr); 23781 mp = carve_mp; 23782 } else { 23783 if (!(mp = copyb(hdr_mp))) { 23784 freemsg(carve_mp); 23785 break; 23786 } 23787 /* Get priority marking, if any. */ 23788 mp->b_band = carve_mp->b_band; 23789 mp->b_cont = carve_mp; 23790 } 23791 ipha = (ipha_t *)mp->b_rptr; 23792 offset_and_flags = IPH_MF; 23793 } else { 23794 /* 23795 * Last frag. Consume the header. Set len to 23796 * the length of this last piece. 23797 */ 23798 len = ip_data_end - offset; 23799 23800 /* 23801 * Carve off the appropriate amount from the original 23802 * datagram. 23803 */ 23804 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 23805 mp = NULL; 23806 break; 23807 } 23808 if (carve_mp->b_datap->db_ref == 1 && 23809 hdr_mp->b_wptr - hdr_mp->b_rptr < 23810 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 23811 /* Inline IP header */ 23812 carve_mp->b_rptr -= hdr_mp->b_wptr - 23813 hdr_mp->b_rptr; 23814 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 23815 hdr_mp->b_wptr - hdr_mp->b_rptr); 23816 mp = carve_mp; 23817 freeb(hdr_mp); 23818 hdr_mp = mp; 23819 } else { 23820 mp = hdr_mp; 23821 /* Get priority marking, if any. */ 23822 mp->b_band = carve_mp->b_band; 23823 mp->b_cont = carve_mp; 23824 } 23825 ipha = (ipha_t *)mp->b_rptr; 23826 /* A frag of a frag might have IPH_MF non-zero */ 23827 offset_and_flags = 23828 ntohs(ipha->ipha_fragment_offset_and_flags) & 23829 IPH_MF; 23830 } 23831 offset_and_flags |= (uint16_t)(offset >> 3); 23832 offset_and_flags |= (uint16_t)frag_flag; 23833 /* Store the offset and flags in the IP header. */ 23834 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23835 23836 /* Store the length in the IP header. */ 23837 ip_len = (uint16_t)(len + hdr_len); 23838 ipha->ipha_length = htons(ip_len); 23839 23840 /* 23841 * Set the IP header checksum. Note that mp is just 23842 * the header, so this is easy to pass to ip_csum. 23843 */ 23844 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23845 23846 /* Attach a transmit header, if any, and ship it. */ 23847 if (pkt_type == OB_PKT) { 23848 UPDATE_OB_PKT_COUNT(ire); 23849 } else { 23850 UPDATE_IB_PKT_COUNT(ire); 23851 } 23852 23853 if (ire->ire_flags & RTF_MULTIRT) { 23854 irb = ire->ire_bucket; 23855 ASSERT(irb != NULL); 23856 23857 multirt_send = B_TRUE; 23858 23859 /* 23860 * Save the original ire; we will need to restore it 23861 * for the tailing frags. 23862 */ 23863 save_ire = ire; 23864 IRE_REFHOLD(save_ire); 23865 } 23866 /* 23867 * Emission loop for this fragment, similar 23868 * to what is done for the first fragment. 23869 */ 23870 do { 23871 if (multirt_send) { 23872 /* 23873 * We are in a multiple send case, need to get 23874 * the next ire and make a copy of the packet. 23875 */ 23876 ASSERT(irb != NULL); 23877 IRB_REFHOLD(irb); 23878 for (ire1 = ire->ire_next; 23879 ire1 != NULL; 23880 ire1 = ire1->ire_next) { 23881 if (!(ire1->ire_flags & RTF_MULTIRT)) 23882 continue; 23883 if (ire1->ire_addr != ire->ire_addr) 23884 continue; 23885 if (ire1->ire_marks & 23886 (IRE_MARK_CONDEMNED| 23887 IRE_MARK_HIDDEN)) 23888 continue; 23889 /* 23890 * Ensure we do not exceed the MTU 23891 * of the next route. 23892 */ 23893 if (ire1->ire_max_frag < max_frag) { 23894 ip_multirt_bad_mtu(ire1, 23895 max_frag); 23896 continue; 23897 } 23898 23899 /* Got one. */ 23900 IRE_REFHOLD(ire1); 23901 break; 23902 } 23903 IRB_REFRELE(irb); 23904 23905 if (ire1 != NULL) { 23906 next_mp = copyb(mp); 23907 if ((next_mp == NULL) || 23908 ((mp->b_cont != NULL) && 23909 ((next_mp->b_cont = 23910 dupmsg(mp->b_cont)) == NULL))) { 23911 freemsg(next_mp); 23912 next_mp = NULL; 23913 ire_refrele(ire1); 23914 ire1 = NULL; 23915 } 23916 } 23917 23918 /* Last multiroute ire; don't loop anymore. */ 23919 if (ire1 == NULL) { 23920 multirt_send = B_FALSE; 23921 } 23922 } 23923 23924 /* Update transmit header */ 23925 ll_hdr_len = 0; 23926 LOCK_IRE_FP_MP(ire); 23927 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 23928 if (ll_hdr_mp != NULL) { 23929 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 23930 ll_hdr_len = MBLKL(ll_hdr_mp); 23931 } else { 23932 ll_hdr_mp = ire->ire_nce->nce_res_mp; 23933 } 23934 23935 if (!ll_hdr_mp) { 23936 xmit_mp = mp; 23937 23938 /* 23939 * We have link-layer header that can fit in 23940 * our mblk. 23941 */ 23942 } else if (mp->b_datap->db_ref == 1 && 23943 ll_hdr_len != 0 && 23944 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 23945 /* M_DATA fastpath */ 23946 mp->b_rptr -= ll_hdr_len; 23947 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 23948 ll_hdr_len); 23949 xmit_mp = mp; 23950 23951 /* 23952 * Case of res_mp OR the fastpath mp can't fit 23953 * in the mblk 23954 */ 23955 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 23956 xmit_mp->b_cont = mp; 23957 if (DB_CRED(mp) != NULL) 23958 mblk_setcred(xmit_mp, DB_CRED(mp)); 23959 /* Get priority marking, if any. */ 23960 if (DB_TYPE(xmit_mp) == M_DATA) 23961 xmit_mp->b_band = mp->b_band; 23962 23963 /* Corner case if copyb failed */ 23964 } else { 23965 /* 23966 * Exit both the replication and 23967 * fragmentation loops. 23968 */ 23969 UNLOCK_IRE_FP_MP(ire); 23970 goto drop_pkt; 23971 } 23972 UNLOCK_IRE_FP_MP(ire); 23973 BUMP_MIB(&ip_mib, ipFragCreates); 23974 23975 mp1 = mp; 23976 out_ill = (ill_t *)q->q_ptr; 23977 23978 DTRACE_PROBE4(ip4__physical__out__start, 23979 ill_t *, NULL, ill_t *, out_ill, 23980 ipha_t *, ipha, mblk_t *, xmit_mp); 23981 23982 FW_HOOKS(ip4_physical_out_event, 23983 ipv4firewall_physical_out, MSG_FWCOOKED_OUT, 23984 NULL, out_ill, ipha, xmit_mp, mp); 23985 23986 DTRACE_PROBE1(ip4__physical__out__end, 23987 mblk_t *, xmit_mp); 23988 23989 if (mp != mp1 && hdr_mp == mp1) 23990 hdr_mp = mp; 23991 if (mp != mp1 && mp_orig == mp1) 23992 mp_orig = mp; 23993 23994 if (xmit_mp != NULL) { 23995 putnext(q, xmit_mp); 23996 23997 if (pkt_type != OB_PKT) { 23998 /* 23999 * Update the packet count of trailing 24000 * RTF_MULTIRT ires. 24001 */ 24002 UPDATE_OB_PKT_COUNT(ire); 24003 } 24004 } 24005 24006 /* All done if we just consumed the hdr_mp. */ 24007 if (mp == hdr_mp) { 24008 last_frag = B_TRUE; 24009 } 24010 24011 if (multirt_send) { 24012 /* 24013 * We are in a multiple send case; look for 24014 * the next ire and re-enter the loop. 24015 */ 24016 ASSERT(ire1); 24017 ASSERT(next_mp); 24018 /* REFRELE the current ire before looping */ 24019 ire_refrele(ire); 24020 ire = ire1; 24021 ire1 = NULL; 24022 q = ire->ire_stq; 24023 mp = next_mp; 24024 next_mp = NULL; 24025 } 24026 } while (multirt_send); 24027 /* 24028 * Restore the original ire; we need it for the 24029 * trailing frags 24030 */ 24031 if (save_ire != NULL) { 24032 ASSERT(ire1 == NULL); 24033 /* REFRELE the last iterated ire */ 24034 ire_refrele(ire); 24035 /* save_ire has been REFHOLDed */ 24036 ire = save_ire; 24037 q = ire->ire_stq; 24038 save_ire = NULL; 24039 } 24040 24041 if (last_frag) { 24042 BUMP_MIB(&ip_mib, ipFragOKs); 24043 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24044 "ip_wput_frag_end:(%S)", 24045 "consumed hdr_mp"); 24046 24047 if (first_ire != NULL) 24048 ire_refrele(first_ire); 24049 return; 24050 } 24051 /* Otherwise, advance and loop. */ 24052 offset += len; 24053 } 24054 24055 drop_pkt: 24056 /* Clean up following allocation failure. */ 24057 BUMP_MIB(&ip_mib, ipOutDiscards); 24058 freemsg(mp); 24059 if (mp != hdr_mp) 24060 freeb(hdr_mp); 24061 if (mp != mp_orig) 24062 freemsg(mp_orig); 24063 24064 if (save_ire != NULL) 24065 IRE_REFRELE(save_ire); 24066 if (first_ire != NULL) 24067 ire_refrele(first_ire); 24068 24069 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24070 "ip_wput_frag_end:(%S)", 24071 "end--alloc failure"); 24072 } 24073 24074 /* 24075 * Copy the header plus those options which have the copy bit set 24076 */ 24077 static mblk_t * 24078 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset) 24079 { 24080 mblk_t *mp; 24081 uchar_t *up; 24082 24083 /* 24084 * Quick check if we need to look for options without the copy bit 24085 * set 24086 */ 24087 mp = allocb(ip_wroff_extra + hdr_len, BPRI_HI); 24088 if (!mp) 24089 return (mp); 24090 mp->b_rptr += ip_wroff_extra; 24091 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24092 bcopy(rptr, mp->b_rptr, hdr_len); 24093 mp->b_wptr += hdr_len + ip_wroff_extra; 24094 return (mp); 24095 } 24096 up = mp->b_rptr; 24097 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24098 up += IP_SIMPLE_HDR_LENGTH; 24099 rptr += IP_SIMPLE_HDR_LENGTH; 24100 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24101 while (hdr_len > 0) { 24102 uint32_t optval; 24103 uint32_t optlen; 24104 24105 optval = *rptr; 24106 if (optval == IPOPT_EOL) 24107 break; 24108 if (optval == IPOPT_NOP) 24109 optlen = 1; 24110 else 24111 optlen = rptr[1]; 24112 if (optval & IPOPT_COPY) { 24113 bcopy(rptr, up, optlen); 24114 up += optlen; 24115 } 24116 rptr += optlen; 24117 hdr_len -= optlen; 24118 } 24119 /* 24120 * Make sure that we drop an even number of words by filling 24121 * with EOL to the next word boundary. 24122 */ 24123 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24124 hdr_len & 0x3; hdr_len++) 24125 *up++ = IPOPT_EOL; 24126 mp->b_wptr = up; 24127 /* Update header length */ 24128 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24129 return (mp); 24130 } 24131 24132 /* 24133 * Delivery to local recipients including fanout to multiple recipients. 24134 * Does not do checksumming of UDP/TCP. 24135 * Note: q should be the read side queue for either the ill or conn. 24136 * Note: rq should be the read side q for the lower (ill) stream. 24137 * We don't send packets to IPPF processing, thus the last argument 24138 * to all the fanout calls are B_FALSE. 24139 */ 24140 void 24141 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24142 int fanout_flags, zoneid_t zoneid) 24143 { 24144 uint32_t protocol; 24145 mblk_t *first_mp; 24146 boolean_t mctl_present; 24147 int ire_type; 24148 #define rptr ((uchar_t *)ipha) 24149 24150 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24151 "ip_wput_local_start: q %p", q); 24152 24153 if (ire != NULL) { 24154 ire_type = ire->ire_type; 24155 } else { 24156 /* 24157 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24158 * packet is not multicast, we can't tell the ire type. 24159 */ 24160 ASSERT(CLASSD(ipha->ipha_dst)); 24161 ire_type = IRE_BROADCAST; 24162 } 24163 24164 first_mp = mp; 24165 if (first_mp->b_datap->db_type == M_CTL) { 24166 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24167 if (!io->ipsec_out_secure) { 24168 /* 24169 * This ipsec_out_t was allocated in ip_wput 24170 * for multicast packets to store the ill_index. 24171 * As this is being delivered locally, we don't 24172 * need this anymore. 24173 */ 24174 mp = first_mp->b_cont; 24175 freeb(first_mp); 24176 first_mp = mp; 24177 mctl_present = B_FALSE; 24178 } else { 24179 mctl_present = B_TRUE; 24180 mp = first_mp->b_cont; 24181 ASSERT(mp != NULL); 24182 ipsec_out_to_in(first_mp); 24183 } 24184 } else { 24185 mctl_present = B_FALSE; 24186 } 24187 24188 DTRACE_PROBE4(ip4__loopback__in__start, 24189 ill_t *, ill, ill_t *, NULL, 24190 ipha_t *, ipha, mblk_t *, first_mp); 24191 24192 FW_HOOKS(ip4_loopback_in_event, ipv4firewall_loopback_in, 24193 MSG_FWCOOKED_IN, ill, NULL, ipha, first_mp, mp); 24194 24195 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 24196 24197 if (first_mp == NULL) 24198 return; 24199 24200 loopback_packets++; 24201 24202 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 24203 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 24204 if (!IS_SIMPLE_IPH(ipha)) { 24205 ip_wput_local_options(ipha); 24206 } 24207 24208 protocol = ipha->ipha_protocol; 24209 switch (protocol) { 24210 case IPPROTO_ICMP: { 24211 ire_t *ire_zone; 24212 ilm_t *ilm; 24213 mblk_t *mp1; 24214 zoneid_t last_zoneid; 24215 24216 if (CLASSD(ipha->ipha_dst) && 24217 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 24218 ASSERT(ire_type == IRE_BROADCAST); 24219 /* 24220 * In the multicast case, applications may have joined 24221 * the group from different zones, so we need to deliver 24222 * the packet to each of them. Loop through the 24223 * multicast memberships structures (ilm) on the receive 24224 * ill and send a copy of the packet up each matching 24225 * one. However, we don't do this for multicasts sent on 24226 * the loopback interface (PHYI_LOOPBACK flag set) as 24227 * they must stay in the sender's zone. 24228 * 24229 * ilm_add_v6() ensures that ilms in the same zone are 24230 * contiguous in the ill_ilm list. We use this property 24231 * to avoid sending duplicates needed when two 24232 * applications in the same zone join the same group on 24233 * different logical interfaces: we ignore the ilm if 24234 * it's zoneid is the same as the last matching one. 24235 * In addition, the sending of the packet for 24236 * ire_zoneid is delayed until all of the other ilms 24237 * have been exhausted. 24238 */ 24239 last_zoneid = -1; 24240 ILM_WALKER_HOLD(ill); 24241 for (ilm = ill->ill_ilm; ilm != NULL; 24242 ilm = ilm->ilm_next) { 24243 if ((ilm->ilm_flags & ILM_DELETED) || 24244 ipha->ipha_dst != ilm->ilm_addr || 24245 ilm->ilm_zoneid == last_zoneid || 24246 ilm->ilm_zoneid == zoneid || 24247 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 24248 continue; 24249 mp1 = ip_copymsg(first_mp); 24250 if (mp1 == NULL) 24251 continue; 24252 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 24253 mctl_present, B_FALSE, ill, 24254 ilm->ilm_zoneid); 24255 last_zoneid = ilm->ilm_zoneid; 24256 } 24257 ILM_WALKER_RELE(ill); 24258 /* 24259 * Loopback case: the sending endpoint has 24260 * IP_MULTICAST_LOOP disabled, therefore we don't 24261 * dispatch the multicast packet to the sending zone. 24262 */ 24263 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 24264 freemsg(first_mp); 24265 return; 24266 } 24267 } else if (ire_type == IRE_BROADCAST) { 24268 /* 24269 * In the broadcast case, there may be many zones 24270 * which need a copy of the packet delivered to them. 24271 * There is one IRE_BROADCAST per broadcast address 24272 * and per zone; we walk those using a helper function. 24273 * In addition, the sending of the packet for zoneid is 24274 * delayed until all of the other ires have been 24275 * processed. 24276 */ 24277 IRB_REFHOLD(ire->ire_bucket); 24278 ire_zone = NULL; 24279 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 24280 ire)) != NULL) { 24281 mp1 = ip_copymsg(first_mp); 24282 if (mp1 == NULL) 24283 continue; 24284 24285 UPDATE_IB_PKT_COUNT(ire_zone); 24286 ire_zone->ire_last_used_time = lbolt; 24287 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 24288 mctl_present, B_FALSE, ill, 24289 ire_zone->ire_zoneid); 24290 } 24291 IRB_REFRELE(ire->ire_bucket); 24292 } 24293 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 24294 0, mctl_present, B_FALSE, ill, zoneid); 24295 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24296 "ip_wput_local_end: q %p (%S)", 24297 q, "icmp"); 24298 return; 24299 } 24300 case IPPROTO_IGMP: 24301 if ((mp = igmp_input(q, mp, ill)) == NULL) { 24302 /* Bad packet - discarded by igmp_input */ 24303 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24304 "ip_wput_local_end: q %p (%S)", 24305 q, "igmp_input--bad packet"); 24306 if (mctl_present) 24307 freeb(first_mp); 24308 return; 24309 } 24310 /* 24311 * igmp_input() may have returned the pulled up message. 24312 * So first_mp and ipha need to be reinitialized. 24313 */ 24314 ipha = (ipha_t *)mp->b_rptr; 24315 if (mctl_present) 24316 first_mp->b_cont = mp; 24317 else 24318 first_mp = mp; 24319 /* deliver to local raw users */ 24320 break; 24321 case IPPROTO_ENCAP: 24322 /* 24323 * This case is covered by either ip_fanout_proto, or by 24324 * the above security processing for self-tunneled packets. 24325 */ 24326 break; 24327 case IPPROTO_UDP: { 24328 uint16_t *up; 24329 uint32_t ports; 24330 24331 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 24332 UDP_PORTS_OFFSET); 24333 /* Force a 'valid' checksum. */ 24334 up[3] = 0; 24335 24336 ports = *(uint32_t *)up; 24337 ip_fanout_udp(q, first_mp, ill, ipha, ports, 24338 (ire_type == IRE_BROADCAST), 24339 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24340 IP_FF_SEND_SLLA | IP_FF_IP6INFO, mctl_present, B_FALSE, 24341 ill, zoneid); 24342 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24343 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 24344 return; 24345 } 24346 case IPPROTO_TCP: { 24347 24348 /* 24349 * For TCP, discard broadcast packets. 24350 */ 24351 if ((ushort_t)ire_type == IRE_BROADCAST) { 24352 freemsg(first_mp); 24353 BUMP_MIB(&ip_mib, ipInDiscards); 24354 ip2dbg(("ip_wput_local: discard broadcast\n")); 24355 return; 24356 } 24357 24358 if (mp->b_datap->db_type == M_DATA) { 24359 /* 24360 * M_DATA mblk, so init mblk (chain) for no struio(). 24361 */ 24362 mblk_t *mp1 = mp; 24363 24364 do 24365 mp1->b_datap->db_struioflag = 0; 24366 while ((mp1 = mp1->b_cont) != NULL); 24367 } 24368 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 24369 <= mp->b_wptr); 24370 ip_fanout_tcp(q, first_mp, ill, ipha, 24371 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24372 IP_FF_SYN_ADDIRE | IP_FF_IP6INFO, 24373 mctl_present, B_FALSE, zoneid); 24374 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24375 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 24376 return; 24377 } 24378 case IPPROTO_SCTP: 24379 { 24380 uint32_t ports; 24381 24382 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 24383 ip_fanout_sctp(first_mp, ill, ipha, ports, 24384 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24385 IP_FF_IP6INFO, 24386 mctl_present, B_FALSE, 0, zoneid); 24387 return; 24388 } 24389 24390 default: 24391 break; 24392 } 24393 /* 24394 * Find a client for some other protocol. We give 24395 * copies to multiple clients, if more than one is 24396 * bound. 24397 */ 24398 ip_fanout_proto(q, first_mp, ill, ipha, 24399 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 24400 mctl_present, B_FALSE, ill, zoneid); 24401 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24402 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 24403 #undef rptr 24404 } 24405 24406 /* 24407 * Update any source route, record route, or timestamp options. 24408 * Check that we are at end of strict source route. 24409 * The options have been sanity checked by ip_wput_options(). 24410 */ 24411 static void 24412 ip_wput_local_options(ipha_t *ipha) 24413 { 24414 ipoptp_t opts; 24415 uchar_t *opt; 24416 uint8_t optval; 24417 uint8_t optlen; 24418 ipaddr_t dst; 24419 uint32_t ts; 24420 ire_t *ire; 24421 timestruc_t now; 24422 24423 ip2dbg(("ip_wput_local_options\n")); 24424 for (optval = ipoptp_first(&opts, ipha); 24425 optval != IPOPT_EOL; 24426 optval = ipoptp_next(&opts)) { 24427 opt = opts.ipoptp_cur; 24428 optlen = opts.ipoptp_len; 24429 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 24430 switch (optval) { 24431 uint32_t off; 24432 case IPOPT_SSRR: 24433 case IPOPT_LSRR: 24434 off = opt[IPOPT_OFFSET]; 24435 off--; 24436 if (optlen < IP_ADDR_LEN || 24437 off > optlen - IP_ADDR_LEN) { 24438 /* End of source route */ 24439 break; 24440 } 24441 /* 24442 * This will only happen if two consecutive entries 24443 * in the source route contains our address or if 24444 * it is a packet with a loose source route which 24445 * reaches us before consuming the whole source route 24446 */ 24447 ip1dbg(("ip_wput_local_options: not end of SR\n")); 24448 if (optval == IPOPT_SSRR) { 24449 return; 24450 } 24451 /* 24452 * Hack: instead of dropping the packet truncate the 24453 * source route to what has been used by filling the 24454 * rest with IPOPT_NOP. 24455 */ 24456 opt[IPOPT_OLEN] = (uint8_t)off; 24457 while (off < optlen) { 24458 opt[off++] = IPOPT_NOP; 24459 } 24460 break; 24461 case IPOPT_RR: 24462 off = opt[IPOPT_OFFSET]; 24463 off--; 24464 if (optlen < IP_ADDR_LEN || 24465 off > optlen - IP_ADDR_LEN) { 24466 /* No more room - ignore */ 24467 ip1dbg(( 24468 "ip_wput_forward_options: end of RR\n")); 24469 break; 24470 } 24471 dst = htonl(INADDR_LOOPBACK); 24472 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 24473 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 24474 break; 24475 case IPOPT_TS: 24476 /* Insert timestamp if there is romm */ 24477 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 24478 case IPOPT_TS_TSONLY: 24479 off = IPOPT_TS_TIMELEN; 24480 break; 24481 case IPOPT_TS_PRESPEC: 24482 case IPOPT_TS_PRESPEC_RFC791: 24483 /* Verify that the address matched */ 24484 off = opt[IPOPT_OFFSET] - 1; 24485 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 24486 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 24487 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 24488 if (ire == NULL) { 24489 /* Not for us */ 24490 break; 24491 } 24492 ire_refrele(ire); 24493 /* FALLTHRU */ 24494 case IPOPT_TS_TSANDADDR: 24495 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 24496 break; 24497 default: 24498 /* 24499 * ip_*put_options should have already 24500 * dropped this packet. 24501 */ 24502 cmn_err(CE_PANIC, "ip_wput_local_options: " 24503 "unknown IT - bug in ip_wput_options?\n"); 24504 return; /* Keep "lint" happy */ 24505 } 24506 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 24507 /* Increase overflow counter */ 24508 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 24509 opt[IPOPT_POS_OV_FLG] = (uint8_t) 24510 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 24511 (off << 4); 24512 break; 24513 } 24514 off = opt[IPOPT_OFFSET] - 1; 24515 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 24516 case IPOPT_TS_PRESPEC: 24517 case IPOPT_TS_PRESPEC_RFC791: 24518 case IPOPT_TS_TSANDADDR: 24519 dst = htonl(INADDR_LOOPBACK); 24520 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 24521 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 24522 /* FALLTHRU */ 24523 case IPOPT_TS_TSONLY: 24524 off = opt[IPOPT_OFFSET] - 1; 24525 /* Compute # of milliseconds since midnight */ 24526 gethrestime(&now); 24527 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 24528 now.tv_nsec / (NANOSEC / MILLISEC); 24529 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 24530 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 24531 break; 24532 } 24533 break; 24534 } 24535 } 24536 } 24537 24538 /* 24539 * Send out a multicast packet on interface ipif. 24540 * The sender does not have an conn. 24541 * Caller verifies that this isn't a PHYI_LOOPBACK. 24542 */ 24543 void 24544 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 24545 { 24546 ipha_t *ipha; 24547 ire_t *ire; 24548 ipaddr_t dst; 24549 mblk_t *first_mp; 24550 24551 /* igmp_sendpkt always allocates a ipsec_out_t */ 24552 ASSERT(mp->b_datap->db_type == M_CTL); 24553 ASSERT(!ipif->ipif_isv6); 24554 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 24555 24556 first_mp = mp; 24557 mp = first_mp->b_cont; 24558 ASSERT(mp->b_datap->db_type == M_DATA); 24559 ipha = (ipha_t *)mp->b_rptr; 24560 24561 /* 24562 * Find an IRE which matches the destination and the outgoing 24563 * queue (i.e. the outgoing interface.) 24564 */ 24565 if (ipif->ipif_flags & IPIF_POINTOPOINT) 24566 dst = ipif->ipif_pp_dst_addr; 24567 else 24568 dst = ipha->ipha_dst; 24569 /* 24570 * The source address has already been initialized by the 24571 * caller and hence matching on ILL (MATCH_IRE_ILL) would 24572 * be sufficient rather than MATCH_IRE_IPIF. 24573 * 24574 * This function is used for sending IGMP packets. We need 24575 * to make sure that we send the packet out of the interface 24576 * (ipif->ipif_ill) where we joined the group. This is to 24577 * prevent from switches doing IGMP snooping to send us multicast 24578 * packets for a given group on the interface we have joined. 24579 * If we can't find an ire, igmp_sendpkt has already initialized 24580 * ipsec_out_attach_if so that this will not be load spread in 24581 * ip_newroute_ipif. 24582 */ 24583 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 24584 MATCH_IRE_ILL); 24585 if (!ire) { 24586 /* 24587 * Mark this packet to make it be delivered to 24588 * ip_wput_ire after the new ire has been 24589 * created. 24590 */ 24591 mp->b_prev = NULL; 24592 mp->b_next = NULL; 24593 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 24594 zoneid); 24595 return; 24596 } 24597 24598 /* 24599 * Honor the RTF_SETSRC flag; this is the only case 24600 * where we force this addr whatever the current src addr is, 24601 * because this address is set by igmp_sendpkt(), and 24602 * cannot be specified by any user. 24603 */ 24604 if (ire->ire_flags & RTF_SETSRC) { 24605 ipha->ipha_src = ire->ire_src_addr; 24606 } 24607 24608 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 24609 } 24610 24611 /* 24612 * NOTE : This function does not ire_refrele the ire argument passed in. 24613 * 24614 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 24615 * failure. The nce_fp_mp can vanish any time in the case of IRE_MIPRTUN 24616 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 24617 * the ire_lock to access the nce_fp_mp in this case. 24618 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 24619 * prepending a fastpath message IPQoS processing must precede it, we also set 24620 * the b_band of the fastpath message to that of the mblk returned by IPQoS 24621 * (IPQoS might have set the b_band for CoS marking). 24622 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 24623 * must follow it so that IPQoS can mark the dl_priority field for CoS 24624 * marking, if needed. 24625 */ 24626 static mblk_t * 24627 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 24628 { 24629 uint_t hlen; 24630 ipha_t *ipha; 24631 mblk_t *mp1; 24632 boolean_t qos_done = B_FALSE; 24633 uchar_t *ll_hdr; 24634 24635 #define rptr ((uchar_t *)ipha) 24636 24637 ipha = (ipha_t *)mp->b_rptr; 24638 hlen = 0; 24639 LOCK_IRE_FP_MP(ire); 24640 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 24641 ASSERT(DB_TYPE(mp1) == M_DATA); 24642 /* Initiate IPPF processing */ 24643 if ((proc != 0) && IPP_ENABLED(proc)) { 24644 UNLOCK_IRE_FP_MP(ire); 24645 ip_process(proc, &mp, ill_index); 24646 if (mp == NULL) 24647 return (NULL); 24648 24649 ipha = (ipha_t *)mp->b_rptr; 24650 LOCK_IRE_FP_MP(ire); 24651 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 24652 qos_done = B_TRUE; 24653 goto no_fp_mp; 24654 } 24655 ASSERT(DB_TYPE(mp1) == M_DATA); 24656 } 24657 hlen = MBLKL(mp1); 24658 /* 24659 * Check if we have enough room to prepend fastpath 24660 * header 24661 */ 24662 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 24663 ll_hdr = rptr - hlen; 24664 bcopy(mp1->b_rptr, ll_hdr, hlen); 24665 /* 24666 * Set the b_rptr to the start of the link layer 24667 * header 24668 */ 24669 mp->b_rptr = ll_hdr; 24670 mp1 = mp; 24671 } else { 24672 mp1 = copyb(mp1); 24673 if (mp1 == NULL) 24674 goto unlock_err; 24675 mp1->b_band = mp->b_band; 24676 mp1->b_cont = mp; 24677 /* 24678 * certain system generated traffic may not 24679 * have cred/label in ip header block. This 24680 * is true even for a labeled system. But for 24681 * labeled traffic, inherit the label in the 24682 * new header. 24683 */ 24684 if (DB_CRED(mp) != NULL) 24685 mblk_setcred(mp1, DB_CRED(mp)); 24686 /* 24687 * XXX disable ICK_VALID and compute checksum 24688 * here; can happen if nce_fp_mp changes and 24689 * it can't be copied now due to insufficient 24690 * space. (unlikely, fp mp can change, but it 24691 * does not increase in length) 24692 */ 24693 } 24694 UNLOCK_IRE_FP_MP(ire); 24695 } else { 24696 no_fp_mp: 24697 mp1 = copyb(ire->ire_nce->nce_res_mp); 24698 if (mp1 == NULL) { 24699 unlock_err: 24700 UNLOCK_IRE_FP_MP(ire); 24701 freemsg(mp); 24702 return (NULL); 24703 } 24704 UNLOCK_IRE_FP_MP(ire); 24705 mp1->b_cont = mp; 24706 /* 24707 * certain system generated traffic may not 24708 * have cred/label in ip header block. This 24709 * is true even for a labeled system. But for 24710 * labeled traffic, inherit the label in the 24711 * new header. 24712 */ 24713 if (DB_CRED(mp) != NULL) 24714 mblk_setcred(mp1, DB_CRED(mp)); 24715 if (!qos_done && (proc != 0) && IPP_ENABLED(proc)) { 24716 ip_process(proc, &mp1, ill_index); 24717 if (mp1 == NULL) 24718 return (NULL); 24719 } 24720 } 24721 return (mp1); 24722 #undef rptr 24723 } 24724 24725 /* 24726 * Finish the outbound IPsec processing for an IPv6 packet. This function 24727 * is called from ipsec_out_process() if the IPsec packet was processed 24728 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 24729 * asynchronously. 24730 */ 24731 void 24732 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 24733 ire_t *ire_arg) 24734 { 24735 in6_addr_t *v6dstp; 24736 ire_t *ire; 24737 mblk_t *mp; 24738 uint_t ill_index; 24739 ipsec_out_t *io; 24740 boolean_t attach_if, hwaccel; 24741 uint32_t flags = IP6_NO_IPPOLICY; 24742 int match_flags; 24743 zoneid_t zoneid; 24744 boolean_t ill_need_rele = B_FALSE; 24745 boolean_t ire_need_rele = B_FALSE; 24746 ill_t *out_ill; 24747 24748 mp = ipsec_mp->b_cont; 24749 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24750 ill_index = io->ipsec_out_ill_index; 24751 if (io->ipsec_out_reachable) { 24752 flags |= IPV6_REACHABILITY_CONFIRMATION; 24753 } 24754 attach_if = io->ipsec_out_attach_if; 24755 hwaccel = io->ipsec_out_accelerated; 24756 zoneid = io->ipsec_out_zoneid; 24757 ASSERT(zoneid != ALL_ZONES); 24758 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 24759 /* Multicast addresses should have non-zero ill_index. */ 24760 v6dstp = &ip6h->ip6_dst; 24761 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 24762 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 24763 ASSERT(!attach_if || ill_index != 0); 24764 if (ill_index != 0) { 24765 if (ill == NULL) { 24766 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 24767 B_TRUE); 24768 24769 /* Failure case frees things for us. */ 24770 if (ill == NULL) 24771 return; 24772 24773 ill_need_rele = B_TRUE; 24774 } 24775 /* 24776 * If this packet needs to go out on a particular interface 24777 * honor it. 24778 */ 24779 if (attach_if) { 24780 match_flags = MATCH_IRE_ILL; 24781 24782 /* 24783 * Check if we need an ire that will not be 24784 * looked up by anybody else i.e. HIDDEN. 24785 */ 24786 if (ill_is_probeonly(ill)) { 24787 match_flags |= MATCH_IRE_MARK_HIDDEN; 24788 } 24789 } 24790 } 24791 ASSERT(mp != NULL); 24792 24793 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 24794 boolean_t unspec_src; 24795 ipif_t *ipif; 24796 24797 /* 24798 * Use the ill_index to get the right ill. 24799 */ 24800 unspec_src = io->ipsec_out_unspec_src; 24801 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 24802 if (ipif == NULL) { 24803 if (ill_need_rele) 24804 ill_refrele(ill); 24805 freemsg(ipsec_mp); 24806 return; 24807 } 24808 24809 if (ire_arg != NULL) { 24810 ire = ire_arg; 24811 } else { 24812 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 24813 zoneid, MBLK_GETLABEL(mp), match_flags); 24814 ire_need_rele = B_TRUE; 24815 } 24816 if (ire != NULL) { 24817 ipif_refrele(ipif); 24818 /* 24819 * XXX Do the multicast forwarding now, as the IPSEC 24820 * processing has been done. 24821 */ 24822 goto send; 24823 } 24824 24825 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 24826 mp->b_prev = NULL; 24827 mp->b_next = NULL; 24828 24829 /* 24830 * If the IPsec packet was processed asynchronously, 24831 * drop it now. 24832 */ 24833 if (q == NULL) { 24834 if (ill_need_rele) 24835 ill_refrele(ill); 24836 freemsg(ipsec_mp); 24837 return; 24838 } 24839 24840 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 24841 unspec_src, zoneid); 24842 ipif_refrele(ipif); 24843 } else { 24844 if (attach_if) { 24845 ipif_t *ipif; 24846 24847 ipif = ipif_get_next_ipif(NULL, ill); 24848 if (ipif == NULL) { 24849 if (ill_need_rele) 24850 ill_refrele(ill); 24851 freemsg(ipsec_mp); 24852 return; 24853 } 24854 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 24855 zoneid, MBLK_GETLABEL(mp), match_flags); 24856 ire_need_rele = B_TRUE; 24857 ipif_refrele(ipif); 24858 } else { 24859 if (ire_arg != NULL) { 24860 ire = ire_arg; 24861 } else { 24862 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL); 24863 ire_need_rele = B_TRUE; 24864 } 24865 } 24866 if (ire != NULL) 24867 goto send; 24868 /* 24869 * ire disappeared underneath. 24870 * 24871 * What we need to do here is the ip_newroute 24872 * logic to get the ire without doing the IPSEC 24873 * processing. Follow the same old path. But this 24874 * time, ip_wput or ire_add_then_send will call us 24875 * directly as all the IPSEC operations are done. 24876 */ 24877 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 24878 mp->b_prev = NULL; 24879 mp->b_next = NULL; 24880 24881 /* 24882 * If the IPsec packet was processed asynchronously, 24883 * drop it now. 24884 */ 24885 if (q == NULL) { 24886 if (ill_need_rele) 24887 ill_refrele(ill); 24888 freemsg(ipsec_mp); 24889 return; 24890 } 24891 24892 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 24893 zoneid); 24894 } 24895 if (ill != NULL && ill_need_rele) 24896 ill_refrele(ill); 24897 return; 24898 send: 24899 if (ill != NULL && ill_need_rele) 24900 ill_refrele(ill); 24901 24902 /* Local delivery */ 24903 if (ire->ire_stq == NULL) { 24904 ASSERT(q != NULL); 24905 24906 /* PFHooks: LOOPBACK_OUT */ 24907 out_ill = ire->ire_ipif->ipif_ill; 24908 24909 DTRACE_PROBE4(ip6__loopback__out__start, 24910 ill_t *, NULL, ill_t *, out_ill, 24911 ip6_t *, ip6h, mblk_t *, ipsec_mp); 24912 24913 FW_HOOKS6(ip6_loopback_out_event, ipv6firewall_loopback_out, 24914 MSG_FWCOOKED_OUT, NULL, out_ill, ip6h, 24915 ipsec_mp, mp); 24916 24917 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 24918 24919 if (ipsec_mp != NULL) 24920 ip_wput_local_v6(RD(q), out_ill, 24921 ip6h, ipsec_mp, ire, 0); 24922 if (ire_need_rele) 24923 ire_refrele(ire); 24924 return; 24925 } 24926 /* 24927 * Everything is done. Send it out on the wire. 24928 * We force the insertion of a fragment header using the 24929 * IPH_FRAG_HDR flag in two cases: 24930 * - after reception of an ICMPv6 "packet too big" message 24931 * with a MTU < 1280 (cf. RFC 2460 section 5) 24932 * - for multirouted IPv6 packets, so that the receiver can 24933 * discard duplicates according to their fragment identifier 24934 */ 24935 /* XXX fix flow control problems. */ 24936 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 24937 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 24938 if (hwaccel) { 24939 /* 24940 * hardware acceleration does not handle these 24941 * "slow path" cases. 24942 */ 24943 /* IPsec KSTATS: should bump bean counter here. */ 24944 if (ire_need_rele) 24945 ire_refrele(ire); 24946 freemsg(ipsec_mp); 24947 return; 24948 } 24949 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 24950 (mp->b_cont ? msgdsize(mp) : 24951 mp->b_wptr - (uchar_t *)ip6h)) { 24952 /* IPsec KSTATS: should bump bean counter here. */ 24953 ip0dbg(("Packet length mismatch: %d, %ld\n", 24954 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 24955 msgdsize(mp))); 24956 if (ire_need_rele) 24957 ire_refrele(ire); 24958 freemsg(ipsec_mp); 24959 return; 24960 } 24961 ASSERT(mp->b_prev == NULL); 24962 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 24963 ntohs(ip6h->ip6_plen) + 24964 IPV6_HDR_LEN, ire->ire_max_frag)); 24965 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 24966 ire->ire_max_frag); 24967 } else { 24968 UPDATE_OB_PKT_COUNT(ire); 24969 ire->ire_last_used_time = lbolt; 24970 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 24971 } 24972 if (ire_need_rele) 24973 ire_refrele(ire); 24974 freeb(ipsec_mp); 24975 } 24976 24977 void 24978 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 24979 { 24980 mblk_t *hada_mp; /* attributes M_CTL mblk */ 24981 da_ipsec_t *hada; /* data attributes */ 24982 ill_t *ill = (ill_t *)q->q_ptr; 24983 24984 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 24985 24986 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 24987 /* IPsec KSTATS: Bump lose counter here! */ 24988 freemsg(mp); 24989 return; 24990 } 24991 24992 /* 24993 * It's an IPsec packet that must be 24994 * accelerated by the Provider, and the 24995 * outbound ill is IPsec acceleration capable. 24996 * Prepends the mblk with an IPHADA_M_CTL, and ship it 24997 * to the ill. 24998 * IPsec KSTATS: should bump packet counter here. 24999 */ 25000 25001 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25002 if (hada_mp == NULL) { 25003 /* IPsec KSTATS: should bump packet counter here. */ 25004 freemsg(mp); 25005 return; 25006 } 25007 25008 hada_mp->b_datap->db_type = M_CTL; 25009 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25010 hada_mp->b_cont = mp; 25011 25012 hada = (da_ipsec_t *)hada_mp->b_rptr; 25013 bzero(hada, sizeof (da_ipsec_t)); 25014 hada->da_type = IPHADA_M_CTL; 25015 25016 putnext(q, hada_mp); 25017 } 25018 25019 /* 25020 * Finish the outbound IPsec processing. This function is called from 25021 * ipsec_out_process() if the IPsec packet was processed 25022 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25023 * asynchronously. 25024 */ 25025 void 25026 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25027 ire_t *ire_arg) 25028 { 25029 uint32_t v_hlen_tos_len; 25030 ipaddr_t dst; 25031 ipif_t *ipif = NULL; 25032 ire_t *ire; 25033 ire_t *ire1 = NULL; 25034 mblk_t *next_mp = NULL; 25035 uint32_t max_frag; 25036 boolean_t multirt_send = B_FALSE; 25037 mblk_t *mp; 25038 mblk_t *mp1; 25039 uint_t ill_index; 25040 ipsec_out_t *io; 25041 boolean_t attach_if; 25042 int match_flags, offset; 25043 irb_t *irb = NULL; 25044 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25045 zoneid_t zoneid; 25046 uint32_t cksum; 25047 uint16_t *up; 25048 ipxmit_state_t pktxmit_state; 25049 ill_t *out_ill; 25050 #ifdef _BIG_ENDIAN 25051 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25052 #else 25053 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25054 #endif 25055 25056 mp = ipsec_mp->b_cont; 25057 ASSERT(mp != NULL); 25058 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25059 dst = ipha->ipha_dst; 25060 25061 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25062 ill_index = io->ipsec_out_ill_index; 25063 attach_if = io->ipsec_out_attach_if; 25064 zoneid = io->ipsec_out_zoneid; 25065 ASSERT(zoneid != ALL_ZONES); 25066 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25067 if (ill_index != 0) { 25068 if (ill == NULL) { 25069 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25070 ill_index, B_FALSE); 25071 25072 /* Failure case frees things for us. */ 25073 if (ill == NULL) 25074 return; 25075 25076 ill_need_rele = B_TRUE; 25077 } 25078 /* 25079 * If this packet needs to go out on a particular interface 25080 * honor it. 25081 */ 25082 if (attach_if) { 25083 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25084 25085 /* 25086 * Check if we need an ire that will not be 25087 * looked up by anybody else i.e. HIDDEN. 25088 */ 25089 if (ill_is_probeonly(ill)) { 25090 match_flags |= MATCH_IRE_MARK_HIDDEN; 25091 } 25092 } 25093 } 25094 25095 if (CLASSD(dst)) { 25096 boolean_t conn_dontroute; 25097 /* 25098 * Use the ill_index to get the right ipif. 25099 */ 25100 conn_dontroute = io->ipsec_out_dontroute; 25101 if (ill_index == 0) 25102 ipif = ipif_lookup_group(dst, zoneid); 25103 else 25104 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25105 if (ipif == NULL) { 25106 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25107 " multicast\n")); 25108 BUMP_MIB(&ip_mib, ipOutNoRoutes); 25109 freemsg(ipsec_mp); 25110 goto done; 25111 } 25112 /* 25113 * ipha_src has already been intialized with the 25114 * value of the ipif in ip_wput. All we need now is 25115 * an ire to send this downstream. 25116 */ 25117 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25118 MBLK_GETLABEL(mp), match_flags); 25119 if (ire != NULL) { 25120 ill_t *ill1; 25121 /* 25122 * Do the multicast forwarding now, as the IPSEC 25123 * processing has been done. 25124 */ 25125 if (ip_g_mrouter && !conn_dontroute && 25126 (ill1 = ire_to_ill(ire))) { 25127 if (ip_mforward(ill1, ipha, mp)) { 25128 freemsg(ipsec_mp); 25129 ip1dbg(("ip_wput_ipsec_out: mforward " 25130 "failed\n")); 25131 ire_refrele(ire); 25132 goto done; 25133 } 25134 } 25135 goto send; 25136 } 25137 25138 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25139 mp->b_prev = NULL; 25140 mp->b_next = NULL; 25141 25142 /* 25143 * If the IPsec packet was processed asynchronously, 25144 * drop it now. 25145 */ 25146 if (q == NULL) { 25147 freemsg(ipsec_mp); 25148 goto done; 25149 } 25150 25151 /* 25152 * We may be using a wrong ipif to create the ire. 25153 * But it is okay as the source address is assigned 25154 * for the packet already. Next outbound packet would 25155 * create the IRE with the right IPIF in ip_wput. 25156 * 25157 * Also handle RTF_MULTIRT routes. 25158 */ 25159 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25160 zoneid); 25161 } else { 25162 if (attach_if) { 25163 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 25164 zoneid, MBLK_GETLABEL(mp), match_flags); 25165 } else { 25166 if (ire_arg != NULL) { 25167 ire = ire_arg; 25168 ire_need_rele = B_FALSE; 25169 } else { 25170 ire = ire_cache_lookup(dst, zoneid, 25171 MBLK_GETLABEL(mp)); 25172 } 25173 } 25174 if (ire != NULL) { 25175 goto send; 25176 } 25177 25178 /* 25179 * ire disappeared underneath. 25180 * 25181 * What we need to do here is the ip_newroute 25182 * logic to get the ire without doing the IPSEC 25183 * processing. Follow the same old path. But this 25184 * time, ip_wput or ire_add_then_put will call us 25185 * directly as all the IPSEC operations are done. 25186 */ 25187 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25188 mp->b_prev = NULL; 25189 mp->b_next = NULL; 25190 25191 /* 25192 * If the IPsec packet was processed asynchronously, 25193 * drop it now. 25194 */ 25195 if (q == NULL) { 25196 freemsg(ipsec_mp); 25197 goto done; 25198 } 25199 25200 /* 25201 * Since we're going through ip_newroute() again, we 25202 * need to make sure we don't: 25203 * 25204 * 1.) Trigger the ASSERT() with the ipha_ident 25205 * overloading. 25206 * 2.) Redo transport-layer checksumming, since we've 25207 * already done all that to get this far. 25208 * 25209 * The easiest way not do either of the above is to set 25210 * the ipha_ident field to IP_HDR_INCLUDED. 25211 */ 25212 ipha->ipha_ident = IP_HDR_INCLUDED; 25213 ip_newroute(q, ipsec_mp, dst, NULL, 25214 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), zoneid); 25215 } 25216 goto done; 25217 send: 25218 if (ipha->ipha_protocol == IPPROTO_UDP && udp_compute_checksum()) { 25219 /* 25220 * ESP NAT-Traversal packet. 25221 * 25222 * Just do software checksum for now. 25223 */ 25224 25225 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 25226 IP_STAT(ip_out_sw_cksum); 25227 IP_STAT_UPDATE(ip_udp_out_sw_cksum_bytes, 25228 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 25229 #define iphs ((uint16_t *)ipha) 25230 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 25231 iphs[9] + ntohs(htons(ipha->ipha_length) - 25232 IP_SIMPLE_HDR_LENGTH); 25233 #undef iphs 25234 if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0) 25235 cksum = 0xFFFF; 25236 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 25237 if (mp1->b_wptr - mp1->b_rptr >= 25238 offset + sizeof (uint16_t)) { 25239 up = (uint16_t *)(mp1->b_rptr + offset); 25240 *up = cksum; 25241 break; /* out of for loop */ 25242 } else { 25243 offset -= (mp->b_wptr - mp->b_rptr); 25244 } 25245 } /* Otherwise, just keep the all-zero checksum. */ 25246 25247 if (ire->ire_stq == NULL) { 25248 /* 25249 * Loopbacks go through ip_wput_local except for one case. 25250 * We come here if we generate a icmp_frag_needed message 25251 * after IPSEC processing is over. When this function calls 25252 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 25253 * icmp_frag_needed. The message generated comes back here 25254 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 25255 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 25256 * source address as it is usually set in ip_wput_ire. As 25257 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 25258 * and we end up here. We can't enter ip_wput_ire once the 25259 * IPSEC processing is over and hence we need to do it here. 25260 */ 25261 ASSERT(q != NULL); 25262 UPDATE_OB_PKT_COUNT(ire); 25263 ire->ire_last_used_time = lbolt; 25264 if (ipha->ipha_src == 0) 25265 ipha->ipha_src = ire->ire_src_addr; 25266 25267 /* PFHooks: LOOPBACK_OUT */ 25268 out_ill = ire->ire_ipif->ipif_ill; 25269 25270 DTRACE_PROBE4(ip4__loopback__out__start, 25271 ill_t *, NULL, ill_t *, out_ill, 25272 ipha_t *, ipha, mblk_t *, ipsec_mp); 25273 25274 FW_HOOKS(ip4_loopback_out_event, ipv4firewall_loopback_out, 25275 MSG_FWCOOKED_OUT, NULL, out_ill, ipha, ipsec_mp, mp); 25276 25277 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 25278 25279 if (ipsec_mp != NULL) 25280 ip_wput_local(RD(q), out_ill, 25281 ipha, ipsec_mp, ire, 0, zoneid); 25282 if (ire_need_rele) 25283 ire_refrele(ire); 25284 goto done; 25285 } 25286 25287 if (ire->ire_max_frag < (unsigned int)LENGTH) { 25288 /* 25289 * We are through with IPSEC processing. 25290 * Fragment this and send it on the wire. 25291 */ 25292 if (io->ipsec_out_accelerated) { 25293 /* 25294 * The packet has been accelerated but must 25295 * be fragmented. This should not happen 25296 * since AH and ESP must not accelerate 25297 * packets that need fragmentation, however 25298 * the configuration could have changed 25299 * since the AH or ESP processing. 25300 * Drop packet. 25301 * IPsec KSTATS: bump bean counter here. 25302 */ 25303 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 25304 "fragmented accelerated packet!\n")); 25305 freemsg(ipsec_mp); 25306 } else { 25307 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid); 25308 } 25309 if (ire_need_rele) 25310 ire_refrele(ire); 25311 goto done; 25312 } 25313 25314 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 25315 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 25316 (void *)ire->ire_ipif, (void *)ipif)); 25317 25318 /* 25319 * Multiroute the secured packet, unless IPsec really 25320 * requires the packet to go out only through a particular 25321 * interface. 25322 */ 25323 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 25324 ire_t *first_ire; 25325 irb = ire->ire_bucket; 25326 ASSERT(irb != NULL); 25327 /* 25328 * This ire has been looked up as the one that 25329 * goes through the given ipif; 25330 * make sure we do not omit any other multiroute ire 25331 * that may be present in the bucket before this one. 25332 */ 25333 IRB_REFHOLD(irb); 25334 for (first_ire = irb->irb_ire; 25335 first_ire != NULL; 25336 first_ire = first_ire->ire_next) { 25337 if ((first_ire->ire_flags & RTF_MULTIRT) && 25338 (first_ire->ire_addr == ire->ire_addr) && 25339 !(first_ire->ire_marks & 25340 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 25341 break; 25342 } 25343 25344 if ((first_ire != NULL) && (first_ire != ire)) { 25345 /* 25346 * Don't change the ire if the packet must 25347 * be fragmented if sent via this new one. 25348 */ 25349 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 25350 IRE_REFHOLD(first_ire); 25351 if (ire_need_rele) 25352 ire_refrele(ire); 25353 else 25354 ire_need_rele = B_TRUE; 25355 ire = first_ire; 25356 } 25357 } 25358 IRB_REFRELE(irb); 25359 25360 multirt_send = B_TRUE; 25361 max_frag = ire->ire_max_frag; 25362 } else { 25363 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 25364 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 25365 "flag, attach_if %d\n", attach_if)); 25366 } 25367 } 25368 25369 /* 25370 * In most cases, the emission loop below is entered only once. 25371 * Only in the case where the ire holds the RTF_MULTIRT 25372 * flag, we loop to process all RTF_MULTIRT ires in the 25373 * bucket, and send the packet through all crossed 25374 * RTF_MULTIRT routes. 25375 */ 25376 do { 25377 if (multirt_send) { 25378 /* 25379 * ire1 holds here the next ire to process in the 25380 * bucket. If multirouting is expected, 25381 * any non-RTF_MULTIRT ire that has the 25382 * right destination address is ignored. 25383 */ 25384 ASSERT(irb != NULL); 25385 IRB_REFHOLD(irb); 25386 for (ire1 = ire->ire_next; 25387 ire1 != NULL; 25388 ire1 = ire1->ire_next) { 25389 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 25390 continue; 25391 if (ire1->ire_addr != ire->ire_addr) 25392 continue; 25393 if (ire1->ire_marks & 25394 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 25395 continue; 25396 /* No loopback here */ 25397 if (ire1->ire_stq == NULL) 25398 continue; 25399 /* 25400 * Ensure we do not exceed the MTU 25401 * of the next route. 25402 */ 25403 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 25404 ip_multirt_bad_mtu(ire1, max_frag); 25405 continue; 25406 } 25407 25408 IRE_REFHOLD(ire1); 25409 break; 25410 } 25411 IRB_REFRELE(irb); 25412 if (ire1 != NULL) { 25413 /* 25414 * We are in a multiple send case, need to 25415 * make a copy of the packet. 25416 */ 25417 next_mp = copymsg(ipsec_mp); 25418 if (next_mp == NULL) { 25419 ire_refrele(ire1); 25420 ire1 = NULL; 25421 } 25422 } 25423 } 25424 /* 25425 * Everything is done. Send it out on the wire 25426 * 25427 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 25428 * either send it on the wire or, in the case of 25429 * HW acceleration, call ipsec_hw_putnext. 25430 */ 25431 if (ire->ire_nce && 25432 ire->ire_nce->nce_state != ND_REACHABLE) { 25433 DTRACE_PROBE2(ip__wput__ipsec__bail, 25434 (ire_t *), ire, (mblk_t *), ipsec_mp); 25435 /* 25436 * If ire's link-layer is unresolved (this 25437 * would only happen if the incomplete ire 25438 * was added to cachetable via forwarding path) 25439 * don't bother going to ip_xmit_v4. Just drop the 25440 * packet. 25441 * There is a slight risk here, in that, if we 25442 * have the forwarding path create an incomplete 25443 * IRE, then until the IRE is completed, any 25444 * transmitted IPSEC packets will be dropped 25445 * instead of being queued waiting for resolution. 25446 * 25447 * But the likelihood of a forwarding packet and a wput 25448 * packet sending to the same dst at the same time 25449 * and there not yet be an ARP entry for it is small. 25450 * Furthermore, if this actually happens, it might 25451 * be likely that wput would generate multiple 25452 * packets (and forwarding would also have a train 25453 * of packets) for that destination. If this is 25454 * the case, some of them would have been dropped 25455 * anyway, since ARP only queues a few packets while 25456 * waiting for resolution 25457 * 25458 * NOTE: We should really call ip_xmit_v4, 25459 * and let it queue the packet and send the 25460 * ARP query and have ARP come back thus: 25461 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 25462 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 25463 * hw accel work. But it's too complex to get 25464 * the IPsec hw acceleration approach to fit 25465 * well with ip_xmit_v4 doing ARP without 25466 * doing IPSEC simplification. For now, we just 25467 * poke ip_xmit_v4 to trigger the arp resolve, so 25468 * that we can continue with the send on the next 25469 * attempt. 25470 * 25471 * XXX THis should be revisited, when 25472 * the IPsec/IP interaction is cleaned up 25473 */ 25474 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 25475 " - dropping packet\n")); 25476 freemsg(ipsec_mp); 25477 /* 25478 * Call ip_xmit_v4() to trigger ARP query 25479 * in case the nce_state is ND_INITIAL 25480 */ 25481 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 25482 goto drop_pkt; 25483 } 25484 25485 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 25486 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 25487 mblk_t *, mp); 25488 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 25489 MSG_FWCOOKED_OUT, NULL, out_ill, ipha, mp, mp); 25490 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 25491 if (mp == NULL) 25492 goto drop_pkt; 25493 25494 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 25495 pktxmit_state = ip_xmit_v4(mp, ire, 25496 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 25497 25498 if ((pktxmit_state == SEND_FAILED) || 25499 (pktxmit_state == LLHDR_RESLV_FAILED)) { 25500 25501 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 25502 drop_pkt: 25503 BUMP_MIB(&ip_mib, ipOutDiscards); 25504 if (ire_need_rele) 25505 ire_refrele(ire); 25506 if (ire1 != NULL) { 25507 ire_refrele(ire1); 25508 freemsg(next_mp); 25509 } 25510 goto done; 25511 } 25512 25513 freeb(ipsec_mp); 25514 if (ire_need_rele) 25515 ire_refrele(ire); 25516 25517 if (ire1 != NULL) { 25518 ire = ire1; 25519 ire_need_rele = B_TRUE; 25520 ASSERT(next_mp); 25521 ipsec_mp = next_mp; 25522 mp = ipsec_mp->b_cont; 25523 ire1 = NULL; 25524 next_mp = NULL; 25525 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25526 } else { 25527 multirt_send = B_FALSE; 25528 } 25529 } while (multirt_send); 25530 done: 25531 if (ill != NULL && ill_need_rele) 25532 ill_refrele(ill); 25533 if (ipif != NULL) 25534 ipif_refrele(ipif); 25535 } 25536 25537 /* 25538 * Get the ill corresponding to the specified ire, and compare its 25539 * capabilities with the protocol and algorithms specified by the 25540 * the SA obtained from ipsec_out. If they match, annotate the 25541 * ipsec_out structure to indicate that the packet needs acceleration. 25542 * 25543 * 25544 * A packet is eligible for outbound hardware acceleration if the 25545 * following conditions are satisfied: 25546 * 25547 * 1. the packet will not be fragmented 25548 * 2. the provider supports the algorithm 25549 * 3. there is no pending control message being exchanged 25550 * 4. snoop is not attached 25551 * 5. the destination address is not a broadcast or multicast address. 25552 * 25553 * Rationale: 25554 * - Hardware drivers do not support fragmentation with 25555 * the current interface. 25556 * - snoop, multicast, and broadcast may result in exposure of 25557 * a cleartext datagram. 25558 * We check all five of these conditions here. 25559 * 25560 * XXX would like to nuke "ire_t *" parameter here; problem is that 25561 * IRE is only way to figure out if a v4 address is a broadcast and 25562 * thus ineligible for acceleration... 25563 */ 25564 static void 25565 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 25566 { 25567 ipsec_out_t *io; 25568 mblk_t *data_mp; 25569 uint_t plen, overhead; 25570 25571 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 25572 return; 25573 25574 if (ill == NULL) 25575 return; 25576 25577 /* 25578 * Destination address is a broadcast or multicast. Punt. 25579 */ 25580 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 25581 IRE_LOCAL))) 25582 return; 25583 25584 data_mp = ipsec_mp->b_cont; 25585 25586 if (ill->ill_isv6) { 25587 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 25588 25589 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 25590 return; 25591 25592 plen = ip6h->ip6_plen; 25593 } else { 25594 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 25595 25596 if (CLASSD(ipha->ipha_dst)) 25597 return; 25598 25599 plen = ipha->ipha_length; 25600 } 25601 /* 25602 * Is there a pending DLPI control message being exchanged 25603 * between IP/IPsec and the DLS Provider? If there is, it 25604 * could be a SADB update, and the state of the DLS Provider 25605 * SADB might not be in sync with the SADB maintained by 25606 * IPsec. To avoid dropping packets or using the wrong keying 25607 * material, we do not accelerate this packet. 25608 */ 25609 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 25610 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 25611 "ill_dlpi_pending! don't accelerate packet\n")); 25612 return; 25613 } 25614 25615 /* 25616 * Is the Provider in promiscous mode? If it does, we don't 25617 * accelerate the packet since it will bounce back up to the 25618 * listeners in the clear. 25619 */ 25620 if (ill->ill_promisc_on_phys) { 25621 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 25622 "ill in promiscous mode, don't accelerate packet\n")); 25623 return; 25624 } 25625 25626 /* 25627 * Will the packet require fragmentation? 25628 */ 25629 25630 /* 25631 * IPsec ESP note: this is a pessimistic estimate, but the same 25632 * as is used elsewhere. 25633 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 25634 * + 2-byte trailer 25635 */ 25636 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 25637 IPSEC_BASE_ESP_HDR_SIZE(sa); 25638 25639 if ((plen + overhead) > ill->ill_max_mtu) 25640 return; 25641 25642 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25643 25644 /* 25645 * Can the ill accelerate this IPsec protocol and algorithm 25646 * specified by the SA? 25647 */ 25648 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 25649 ill->ill_isv6, sa)) { 25650 return; 25651 } 25652 25653 /* 25654 * Tell AH or ESP that the outbound ill is capable of 25655 * accelerating this packet. 25656 */ 25657 io->ipsec_out_is_capab_ill = B_TRUE; 25658 } 25659 25660 /* 25661 * Select which AH & ESP SA's to use (if any) for the outbound packet. 25662 * 25663 * If this function returns B_TRUE, the requested SA's have been filled 25664 * into the ipsec_out_*_sa pointers. 25665 * 25666 * If the function returns B_FALSE, the packet has been "consumed", most 25667 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 25668 * 25669 * The SA references created by the protocol-specific "select" 25670 * function will be released when the ipsec_mp is freed, thanks to the 25671 * ipsec_out_free destructor -- see spd.c. 25672 */ 25673 static boolean_t 25674 ipsec_out_select_sa(mblk_t *ipsec_mp) 25675 { 25676 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 25677 ipsec_out_t *io; 25678 ipsec_policy_t *pp; 25679 ipsec_action_t *ap; 25680 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25681 ASSERT(io->ipsec_out_type == IPSEC_OUT); 25682 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 25683 25684 if (!io->ipsec_out_secure) { 25685 /* 25686 * We came here by mistake. 25687 * Don't bother with ipsec processing 25688 * We should "discourage" this path in the future. 25689 */ 25690 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 25691 return (B_FALSE); 25692 } 25693 ASSERT(io->ipsec_out_need_policy == B_FALSE); 25694 ASSERT((io->ipsec_out_policy != NULL) || 25695 (io->ipsec_out_act != NULL)); 25696 25697 ASSERT(io->ipsec_out_failed == B_FALSE); 25698 25699 /* 25700 * IPSEC processing has started. 25701 */ 25702 io->ipsec_out_proc_begin = B_TRUE; 25703 ap = io->ipsec_out_act; 25704 if (ap == NULL) { 25705 pp = io->ipsec_out_policy; 25706 ASSERT(pp != NULL); 25707 ap = pp->ipsp_act; 25708 ASSERT(ap != NULL); 25709 } 25710 25711 /* 25712 * We have an action. now, let's select SA's. 25713 * (In the future, we can cache this in the conn_t..) 25714 */ 25715 if (ap->ipa_want_esp) { 25716 if (io->ipsec_out_esp_sa == NULL) { 25717 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 25718 IPPROTO_ESP); 25719 } 25720 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 25721 } 25722 25723 if (ap->ipa_want_ah) { 25724 if (io->ipsec_out_ah_sa == NULL) { 25725 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 25726 IPPROTO_AH); 25727 } 25728 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 25729 /* 25730 * The ESP and AH processing order needs to be preserved 25731 * when both protocols are required (ESP should be applied 25732 * before AH for an outbound packet). Force an ESP ACQUIRE 25733 * when both ESP and AH are required, and an AH ACQUIRE 25734 * is needed. 25735 */ 25736 if (ap->ipa_want_esp && need_ah_acquire) 25737 need_esp_acquire = B_TRUE; 25738 } 25739 25740 /* 25741 * Send an ACQUIRE (extended, regular, or both) if we need one. 25742 * Release SAs that got referenced, but will not be used until we 25743 * acquire _all_ of the SAs we need. 25744 */ 25745 if (need_ah_acquire || need_esp_acquire) { 25746 if (io->ipsec_out_ah_sa != NULL) { 25747 IPSA_REFRELE(io->ipsec_out_ah_sa); 25748 io->ipsec_out_ah_sa = NULL; 25749 } 25750 if (io->ipsec_out_esp_sa != NULL) { 25751 IPSA_REFRELE(io->ipsec_out_esp_sa); 25752 io->ipsec_out_esp_sa = NULL; 25753 } 25754 25755 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 25756 return (B_FALSE); 25757 } 25758 25759 return (B_TRUE); 25760 } 25761 25762 /* 25763 * Process an IPSEC_OUT message and see what you can 25764 * do with it. 25765 * IPQoS Notes: 25766 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 25767 * IPSec. 25768 * XXX would like to nuke ire_t. 25769 * XXX ill_index better be "real" 25770 */ 25771 void 25772 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 25773 { 25774 ipsec_out_t *io; 25775 ipsec_policy_t *pp; 25776 ipsec_action_t *ap; 25777 ipha_t *ipha; 25778 ip6_t *ip6h; 25779 mblk_t *mp; 25780 ill_t *ill; 25781 zoneid_t zoneid; 25782 ipsec_status_t ipsec_rc; 25783 boolean_t ill_need_rele = B_FALSE; 25784 25785 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25786 ASSERT(io->ipsec_out_type == IPSEC_OUT); 25787 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 25788 mp = ipsec_mp->b_cont; 25789 25790 /* 25791 * Initiate IPPF processing. We do it here to account for packets 25792 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 25793 * We can check for ipsec_out_proc_begin even for such packets, as 25794 * they will always be false (asserted below). 25795 */ 25796 if (IPP_ENABLED(IPP_LOCAL_OUT) && !io->ipsec_out_proc_begin) { 25797 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 25798 io->ipsec_out_ill_index : ill_index); 25799 if (mp == NULL) { 25800 ip2dbg(("ipsec_out_process: packet dropped "\ 25801 "during IPPF processing\n")); 25802 freeb(ipsec_mp); 25803 BUMP_MIB(&ip_mib, ipOutDiscards); 25804 return; 25805 } 25806 } 25807 25808 if (!io->ipsec_out_secure) { 25809 /* 25810 * We came here by mistake. 25811 * Don't bother with ipsec processing 25812 * Should "discourage" this path in the future. 25813 */ 25814 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 25815 goto done; 25816 } 25817 ASSERT(io->ipsec_out_need_policy == B_FALSE); 25818 ASSERT((io->ipsec_out_policy != NULL) || 25819 (io->ipsec_out_act != NULL)); 25820 ASSERT(io->ipsec_out_failed == B_FALSE); 25821 25822 if (!ipsec_loaded()) { 25823 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 25824 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 25825 BUMP_MIB(&ip_mib, ipOutDiscards); 25826 } else { 25827 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 25828 } 25829 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 25830 &ipdrops_ip_ipsec_not_loaded, &ip_dropper); 25831 return; 25832 } 25833 25834 /* 25835 * IPSEC processing has started. 25836 */ 25837 io->ipsec_out_proc_begin = B_TRUE; 25838 ap = io->ipsec_out_act; 25839 if (ap == NULL) { 25840 pp = io->ipsec_out_policy; 25841 ASSERT(pp != NULL); 25842 ap = pp->ipsp_act; 25843 ASSERT(ap != NULL); 25844 } 25845 25846 /* 25847 * Save the outbound ill index. When the packet comes back 25848 * from IPsec, we make sure the ill hasn't changed or disappeared 25849 * before sending it the accelerated packet. 25850 */ 25851 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 25852 int ifindex; 25853 ill = ire_to_ill(ire); 25854 ifindex = ill->ill_phyint->phyint_ifindex; 25855 io->ipsec_out_capab_ill_index = ifindex; 25856 } 25857 25858 /* 25859 * The order of processing is first insert a IP header if needed. 25860 * Then insert the ESP header and then the AH header. 25861 */ 25862 if ((io->ipsec_out_se_done == B_FALSE) && 25863 (ap->ipa_want_se)) { 25864 /* 25865 * First get the outer IP header before sending 25866 * it to ESP. 25867 */ 25868 ipha_t *oipha, *iipha; 25869 mblk_t *outer_mp, *inner_mp; 25870 25871 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 25872 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 25873 "ipsec_out_process: " 25874 "Self-Encapsulation failed: Out of memory\n"); 25875 freemsg(ipsec_mp); 25876 BUMP_MIB(&ip_mib, ipOutDiscards); 25877 return; 25878 } 25879 inner_mp = ipsec_mp->b_cont; 25880 ASSERT(inner_mp->b_datap->db_type == M_DATA); 25881 oipha = (ipha_t *)outer_mp->b_rptr; 25882 iipha = (ipha_t *)inner_mp->b_rptr; 25883 *oipha = *iipha; 25884 outer_mp->b_wptr += sizeof (ipha_t); 25885 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 25886 sizeof (ipha_t)); 25887 oipha->ipha_protocol = IPPROTO_ENCAP; 25888 oipha->ipha_version_and_hdr_length = 25889 IP_SIMPLE_HDR_VERSION; 25890 oipha->ipha_hdr_checksum = 0; 25891 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 25892 outer_mp->b_cont = inner_mp; 25893 ipsec_mp->b_cont = outer_mp; 25894 25895 io->ipsec_out_se_done = B_TRUE; 25896 io->ipsec_out_encaps = B_TRUE; 25897 } 25898 25899 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 25900 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 25901 !ipsec_out_select_sa(ipsec_mp)) 25902 return; 25903 25904 /* 25905 * By now, we know what SA's to use. Toss over to ESP & AH 25906 * to do the heavy lifting. 25907 */ 25908 zoneid = io->ipsec_out_zoneid; 25909 ASSERT(zoneid != ALL_ZONES); 25910 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 25911 ASSERT(io->ipsec_out_esp_sa != NULL); 25912 io->ipsec_out_esp_done = B_TRUE; 25913 /* 25914 * Note that since hw accel can only apply one transform, 25915 * not two, we skip hw accel for ESP if we also have AH 25916 * This is an design limitation of the interface 25917 * which should be revisited. 25918 */ 25919 ASSERT(ire != NULL); 25920 if (io->ipsec_out_ah_sa == NULL) { 25921 ill = (ill_t *)ire->ire_stq->q_ptr; 25922 ipsec_out_is_accelerated(ipsec_mp, 25923 io->ipsec_out_esp_sa, ill, ire); 25924 } 25925 25926 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 25927 switch (ipsec_rc) { 25928 case IPSEC_STATUS_SUCCESS: 25929 break; 25930 case IPSEC_STATUS_FAILED: 25931 BUMP_MIB(&ip_mib, ipOutDiscards); 25932 /* FALLTHRU */ 25933 case IPSEC_STATUS_PENDING: 25934 return; 25935 } 25936 } 25937 25938 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 25939 ASSERT(io->ipsec_out_ah_sa != NULL); 25940 io->ipsec_out_ah_done = B_TRUE; 25941 if (ire == NULL) { 25942 int idx = io->ipsec_out_capab_ill_index; 25943 ill = ill_lookup_on_ifindex(idx, B_FALSE, 25944 NULL, NULL, NULL, NULL); 25945 ill_need_rele = B_TRUE; 25946 } else { 25947 ill = (ill_t *)ire->ire_stq->q_ptr; 25948 } 25949 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 25950 ire); 25951 25952 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 25953 switch (ipsec_rc) { 25954 case IPSEC_STATUS_SUCCESS: 25955 break; 25956 case IPSEC_STATUS_FAILED: 25957 BUMP_MIB(&ip_mib, ipOutDiscards); 25958 /* FALLTHRU */ 25959 case IPSEC_STATUS_PENDING: 25960 if (ill != NULL && ill_need_rele) 25961 ill_refrele(ill); 25962 return; 25963 } 25964 } 25965 /* 25966 * We are done with IPSEC processing. Send it over 25967 * the wire. 25968 */ 25969 done: 25970 mp = ipsec_mp->b_cont; 25971 ipha = (ipha_t *)mp->b_rptr; 25972 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 25973 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 25974 } else { 25975 ip6h = (ip6_t *)ipha; 25976 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 25977 } 25978 if (ill != NULL && ill_need_rele) 25979 ill_refrele(ill); 25980 } 25981 25982 /* ARGSUSED */ 25983 void 25984 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 25985 { 25986 opt_restart_t *or; 25987 int err; 25988 conn_t *connp; 25989 25990 ASSERT(CONN_Q(q)); 25991 connp = Q_TO_CONN(q); 25992 25993 ASSERT(first_mp->b_datap->db_type == M_CTL); 25994 or = (opt_restart_t *)first_mp->b_rptr; 25995 /* 25996 * We don't need to pass any credentials here since this is just 25997 * a restart. The credentials are passed in when svr4_optcom_req 25998 * is called the first time (from ip_wput_nondata). 25999 */ 26000 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26001 err = svr4_optcom_req(q, first_mp, NULL, 26002 &ip_opt_obj); 26003 } else { 26004 ASSERT(or->or_type == T_OPTMGMT_REQ); 26005 err = tpi_optcom_req(q, first_mp, NULL, 26006 &ip_opt_obj); 26007 } 26008 if (err != EINPROGRESS) { 26009 /* operation is done */ 26010 CONN_OPER_PENDING_DONE(connp); 26011 } 26012 } 26013 26014 /* 26015 * ioctls that go through a down/up sequence may need to wait for the down 26016 * to complete. This involves waiting for the ire and ipif refcnts to go down 26017 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26018 */ 26019 /* ARGSUSED */ 26020 void 26021 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26022 { 26023 struct iocblk *iocp; 26024 mblk_t *mp1; 26025 ipif_t *ipif; 26026 ip_ioctl_cmd_t *ipip; 26027 int err; 26028 sin_t *sin; 26029 struct lifreq *lifr; 26030 struct ifreq *ifr; 26031 26032 iocp = (struct iocblk *)mp->b_rptr; 26033 ASSERT(ipsq != NULL); 26034 /* Existence of mp1 verified in ip_wput_nondata */ 26035 mp1 = mp->b_cont->b_cont; 26036 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26037 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26038 ill_t *ill; 26039 /* 26040 * Special case where ipsq_current_ipif may not be set. 26041 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26042 * ill could also have become part of a ipmp group in the 26043 * process, we are here as were not able to complete the 26044 * operation in ipif_set_values because we could not become 26045 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26046 * will not be set so we need to set it. 26047 */ 26048 ill = (ill_t *)q->q_ptr; 26049 ipsq->ipsq_current_ipif = ill->ill_ipif; 26050 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 26051 } 26052 26053 ipif = ipsq->ipsq_current_ipif; 26054 ASSERT(ipif != NULL); 26055 if (ipip->ipi_cmd_type == IF_CMD) { 26056 /* This a old style SIOC[GS]IF* command */ 26057 ifr = (struct ifreq *)mp1->b_rptr; 26058 sin = (sin_t *)&ifr->ifr_addr; 26059 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26060 /* This a new style SIOC[GS]LIF* command */ 26061 lifr = (struct lifreq *)mp1->b_rptr; 26062 sin = (sin_t *)&lifr->lifr_addr; 26063 } else { 26064 sin = NULL; 26065 } 26066 26067 err = (*ipip->ipi_func_restart)(ipif, sin, q, mp, ipip, 26068 (void *)mp1->b_rptr); 26069 26070 /* SIOCLIFREMOVEIF could have removed the ipif */ 26071 ip_ioctl_finish(q, mp, err, 26072 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 26073 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ipif, ipsq); 26074 } 26075 26076 /* 26077 * ioctl processing 26078 * 26079 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 26080 * the ioctl command in the ioctl tables and determines the copyin data size 26081 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 26082 * size. 26083 * 26084 * ioctl processing then continues when the M_IOCDATA makes its way down. 26085 * Now the ioctl is looked up again in the ioctl table, and its properties are 26086 * extracted. The associated 'conn' is then refheld till the end of the ioctl 26087 * and the general ioctl processing function ip_process_ioctl is called. 26088 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26089 * so goes thru the serialization primitive ipsq_try_enter. Then the 26090 * appropriate function to handle the ioctl is called based on the entry in 26091 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26092 * which also refreleases the 'conn' that was refheld at the start of the 26093 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26094 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 26095 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 26096 * 26097 * Many exclusive ioctls go thru an internal down up sequence as part of 26098 * the operation. For example an attempt to change the IP address of an 26099 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26100 * does all the cleanup such as deleting all ires that use this address. 26101 * Then we need to wait till all references to the interface go away. 26102 */ 26103 void 26104 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26105 { 26106 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26107 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 26108 cmd_info_t ci; 26109 int err; 26110 boolean_t entered_ipsq = B_FALSE; 26111 26112 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26113 26114 if (ipip == NULL) 26115 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26116 26117 /* 26118 * SIOCLIFADDIF needs to go thru a special path since the 26119 * ill may not exist yet. This happens in the case of lo0 26120 * which is created using this ioctl. 26121 */ 26122 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26123 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26124 ip_ioctl_finish(q, mp, err, 26125 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 26126 NULL, NULL); 26127 return; 26128 } 26129 26130 ci.ci_ipif = NULL; 26131 switch (ipip->ipi_cmd_type) { 26132 case IF_CMD: 26133 case LIF_CMD: 26134 /* 26135 * ioctls that pass in a [l]ifreq appear here. 26136 * ip_extract_lifreq_cmn returns a refheld ipif in 26137 * ci.ci_ipif 26138 */ 26139 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 26140 ipip->ipi_flags, &ci, ip_process_ioctl); 26141 if (err != 0) { 26142 ip_ioctl_finish(q, mp, err, 26143 ipip->ipi_flags & IPI_GET_CMD ? 26144 COPYOUT : NO_COPYOUT, NULL, NULL); 26145 return; 26146 } 26147 ASSERT(ci.ci_ipif != NULL); 26148 break; 26149 26150 case TUN_CMD: 26151 /* 26152 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 26153 * a refheld ipif in ci.ci_ipif 26154 */ 26155 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 26156 if (err != 0) { 26157 ip_ioctl_finish(q, mp, err, 26158 ipip->ipi_flags & IPI_GET_CMD ? 26159 COPYOUT : NO_COPYOUT, NULL, NULL); 26160 return; 26161 } 26162 ASSERT(ci.ci_ipif != NULL); 26163 break; 26164 26165 case MISC_CMD: 26166 /* 26167 * ioctls that neither pass in [l]ifreq or iftun_req come here 26168 * For eg. SIOCGLIFCONF will appear here. 26169 */ 26170 switch (ipip->ipi_cmd) { 26171 case IF_UNITSEL: 26172 /* ioctl comes down the ill */ 26173 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26174 ipif_refhold(ci.ci_ipif); 26175 break; 26176 case SIOCGMSFILTER: 26177 case SIOCSMSFILTER: 26178 case SIOCGIPMSFILTER: 26179 case SIOCSIPMSFILTER: 26180 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 26181 ip_process_ioctl); 26182 if (err != 0) { 26183 ip_ioctl_finish(q, mp, err, 26184 ipip->ipi_flags & IPI_GET_CMD ? 26185 COPYOUT : NO_COPYOUT, NULL, NULL); 26186 return; 26187 } 26188 break; 26189 } 26190 err = 0; 26191 ci.ci_sin = NULL; 26192 ci.ci_sin6 = NULL; 26193 ci.ci_lifr = NULL; 26194 break; 26195 } 26196 26197 /* 26198 * If ipsq is non-null, we are already being called exclusively 26199 */ 26200 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26201 if (!(ipip->ipi_flags & IPI_WR)) { 26202 /* 26203 * A return value of EINPROGRESS means the ioctl is 26204 * either queued and waiting for some reason or has 26205 * already completed. 26206 */ 26207 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26208 ci.ci_lifr); 26209 if (ci.ci_ipif != NULL) 26210 ipif_refrele(ci.ci_ipif); 26211 ip_ioctl_finish(q, mp, err, 26212 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 26213 NULL, NULL); 26214 return; 26215 } 26216 26217 ASSERT(ci.ci_ipif != NULL); 26218 26219 if (ipsq == NULL) { 26220 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 26221 ip_process_ioctl, NEW_OP, B_TRUE); 26222 entered_ipsq = B_TRUE; 26223 } 26224 /* 26225 * Release the ipif so that ipif_down and friends that wait for 26226 * references to go away are not misled about the current ipif_refcnt 26227 * values. We are writer so we can access the ipif even after releasing 26228 * the ipif. 26229 */ 26230 ipif_refrele(ci.ci_ipif); 26231 if (ipsq == NULL) 26232 return; 26233 26234 mutex_enter(&ipsq->ipsq_lock); 26235 ASSERT(ipsq->ipsq_current_ipif == NULL); 26236 ipsq->ipsq_current_ipif = ci.ci_ipif; 26237 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 26238 mutex_exit(&ipsq->ipsq_lock); 26239 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 26240 /* 26241 * For most set ioctls that come here, this serves as a single point 26242 * where we set the IPIF_CHANGING flag. This ensures that there won't 26243 * be any new references to the ipif. This helps functions that go 26244 * through this path and end up trying to wait for the refcnts 26245 * associated with the ipif to go down to zero. Some exceptions are 26246 * Failover, Failback, and Groupname commands that operate on more than 26247 * just the ci.ci_ipif. These commands internally determine the 26248 * set of ipif's they operate on and set and clear the IPIF_CHANGING 26249 * flags on that set. Another exception is the Removeif command that 26250 * sets the IPIF_CONDEMNED flag internally after identifying the right 26251 * ipif to operate on. 26252 */ 26253 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 26254 ipip->ipi_cmd != SIOCLIFFAILOVER && 26255 ipip->ipi_cmd != SIOCLIFFAILBACK && 26256 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 26257 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 26258 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 26259 26260 /* 26261 * A return value of EINPROGRESS means the ioctl is 26262 * either queued and waiting for some reason or has 26263 * already completed. 26264 */ 26265 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26266 ci.ci_lifr); 26267 26268 /* SIOCLIFREMOVEIF could have removed the ipif */ 26269 ip_ioctl_finish(q, mp, err, 26270 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 26271 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ci.ci_ipif, ipsq); 26272 26273 if (entered_ipsq) 26274 ipsq_exit(ipsq, B_TRUE, B_TRUE); 26275 } 26276 26277 /* 26278 * Complete the ioctl. Typically ioctls use the mi package and need to 26279 * do mi_copyout/mi_copy_done. 26280 */ 26281 void 26282 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, 26283 ipif_t *ipif, ipsq_t *ipsq) 26284 { 26285 conn_t *connp = NULL; 26286 hook_nic_event_t *info; 26287 26288 if (err == EINPROGRESS) 26289 return; 26290 26291 if (CONN_Q(q)) { 26292 connp = Q_TO_CONN(q); 26293 ASSERT(connp->conn_ref >= 2); 26294 } 26295 26296 switch (mode) { 26297 case COPYOUT: 26298 if (err == 0) 26299 mi_copyout(q, mp); 26300 else 26301 mi_copy_done(q, mp, err); 26302 break; 26303 26304 case NO_COPYOUT: 26305 mi_copy_done(q, mp, err); 26306 break; 26307 26308 default: 26309 /* An ioctl aborted through a conn close would take this path */ 26310 break; 26311 } 26312 26313 /* 26314 * The refhold placed at the start of the ioctl is released here. 26315 */ 26316 if (connp != NULL) 26317 CONN_OPER_PENDING_DONE(connp); 26318 26319 /* 26320 * If the ioctl were an exclusive ioctl it would have set 26321 * IPIF_CHANGING at the start of the ioctl which is undone here. 26322 */ 26323 if (ipif != NULL) { 26324 mutex_enter(&(ipif)->ipif_ill->ill_lock); 26325 ipif->ipif_state_flags &= ~IPIF_CHANGING; 26326 26327 /* 26328 * Unhook the nic event message from the ill and enqueue it into 26329 * the nic event taskq. 26330 */ 26331 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 26332 if (ddi_taskq_dispatch(eventq_queue_nic, 26333 ip_ne_queue_func, (void *)info, DDI_SLEEP) 26334 == DDI_FAILURE) { 26335 ip2dbg(("ip_ioctl_finish: ddi_taskq_dispatch" 26336 "failed\n")); 26337 if (info->hne_data != NULL) 26338 kmem_free(info->hne_data, 26339 info->hne_datalen); 26340 kmem_free(info, sizeof (hook_nic_event_t)); 26341 } 26342 26343 ipif->ipif_ill->ill_nic_event_info = NULL; 26344 } 26345 26346 mutex_exit(&(ipif)->ipif_ill->ill_lock); 26347 } 26348 26349 /* 26350 * Clear the current ipif in the ipsq at the completion of the ioctl. 26351 * Note that a non-null ipsq_current_ipif prevents new ioctls from 26352 * entering the ipsq 26353 */ 26354 if (ipsq != NULL) { 26355 mutex_enter(&ipsq->ipsq_lock); 26356 ipsq->ipsq_current_ipif = NULL; 26357 mutex_exit(&ipsq->ipsq_lock); 26358 } 26359 } 26360 26361 /* 26362 * This is called from ip_wput_nondata to resume a deferred TCP bind. 26363 */ 26364 /* ARGSUSED */ 26365 void 26366 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 26367 { 26368 conn_t *connp = arg; 26369 tcp_t *tcp; 26370 26371 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 26372 tcp = connp->conn_tcp; 26373 26374 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 26375 freemsg(mp); 26376 else 26377 tcp_rput_other(tcp, mp); 26378 CONN_OPER_PENDING_DONE(connp); 26379 } 26380 26381 /* Called from ip_wput for all non data messages */ 26382 /* ARGSUSED */ 26383 void 26384 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26385 { 26386 mblk_t *mp1; 26387 ire_t *ire, *fake_ire; 26388 ill_t *ill; 26389 struct iocblk *iocp; 26390 ip_ioctl_cmd_t *ipip; 26391 cred_t *cr; 26392 conn_t *connp = NULL; 26393 int cmd, err; 26394 nce_t *nce; 26395 ipif_t *ipif; 26396 26397 if (CONN_Q(q)) 26398 connp = Q_TO_CONN(q); 26399 26400 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 26401 26402 /* Check if it is a queue to /dev/sctp. */ 26403 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 26404 connp->conn_rq == NULL) { 26405 sctp_wput(q, mp); 26406 return; 26407 } 26408 26409 switch (DB_TYPE(mp)) { 26410 case M_IOCTL: 26411 /* 26412 * IOCTL processing begins in ip_sioctl_copyin_setup which 26413 * will arrange to copy in associated control structures. 26414 */ 26415 ip_sioctl_copyin_setup(q, mp); 26416 return; 26417 case M_IOCDATA: 26418 /* 26419 * Ensure that this is associated with one of our trans- 26420 * parent ioctls. If it's not ours, discard it if we're 26421 * running as a driver, or pass it on if we're a module. 26422 */ 26423 iocp = (struct iocblk *)mp->b_rptr; 26424 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26425 if (ipip == NULL) { 26426 if (q->q_next == NULL) { 26427 goto nak; 26428 } else { 26429 putnext(q, mp); 26430 } 26431 return; 26432 } else if ((q->q_next != NULL) && 26433 !(ipip->ipi_flags & IPI_MODOK)) { 26434 /* 26435 * the ioctl is one we recognise, but is not 26436 * consumed by IP as a module, pass M_IOCDATA 26437 * for processing downstream, but only for 26438 * common Streams ioctls. 26439 */ 26440 if (ipip->ipi_flags & IPI_PASS_DOWN) { 26441 putnext(q, mp); 26442 return; 26443 } else { 26444 goto nak; 26445 } 26446 } 26447 26448 /* IOCTL continuation following copyin or copyout. */ 26449 if (mi_copy_state(q, mp, NULL) == -1) { 26450 /* 26451 * The copy operation failed. mi_copy_state already 26452 * cleaned up, so we're out of here. 26453 */ 26454 return; 26455 } 26456 /* 26457 * If we just completed a copy in, we become writer and 26458 * continue processing in ip_sioctl_copyin_done. If it 26459 * was a copy out, we call mi_copyout again. If there is 26460 * nothing more to copy out, it will complete the IOCTL. 26461 */ 26462 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 26463 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 26464 mi_copy_done(q, mp, EPROTO); 26465 return; 26466 } 26467 /* 26468 * Check for cases that need more copying. A return 26469 * value of 0 means a second copyin has been started, 26470 * so we return; a return value of 1 means no more 26471 * copying is needed, so we continue. 26472 */ 26473 cmd = iocp->ioc_cmd; 26474 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 26475 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 26476 MI_COPY_COUNT(mp) == 1) { 26477 if (ip_copyin_msfilter(q, mp) == 0) 26478 return; 26479 } 26480 /* 26481 * Refhold the conn, till the ioctl completes. This is 26482 * needed in case the ioctl ends up in the pending mp 26483 * list. Every mp in the ill_pending_mp list and 26484 * the ipsq_pending_mp must have a refhold on the conn 26485 * to resume processing. The refhold is released when 26486 * the ioctl completes. (normally or abnormally) 26487 * In all cases ip_ioctl_finish is called to finish 26488 * the ioctl. 26489 */ 26490 if (connp != NULL) { 26491 /* This is not a reentry */ 26492 ASSERT(ipsq == NULL); 26493 CONN_INC_REF(connp); 26494 } else { 26495 if (!(ipip->ipi_flags & IPI_MODOK)) { 26496 mi_copy_done(q, mp, EINVAL); 26497 return; 26498 } 26499 } 26500 26501 ip_process_ioctl(ipsq, q, mp, ipip); 26502 26503 } else { 26504 mi_copyout(q, mp); 26505 } 26506 return; 26507 nak: 26508 iocp->ioc_error = EINVAL; 26509 mp->b_datap->db_type = M_IOCNAK; 26510 iocp->ioc_count = 0; 26511 qreply(q, mp); 26512 return; 26513 26514 case M_IOCNAK: 26515 /* 26516 * The only way we could get here is if a resolver didn't like 26517 * an IOCTL we sent it. This shouldn't happen. 26518 */ 26519 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 26520 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 26521 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 26522 freemsg(mp); 26523 return; 26524 case M_IOCACK: 26525 /* Finish socket ioctls passed through to ARP. */ 26526 ip_sioctl_iocack(q, mp); 26527 return; 26528 case M_FLUSH: 26529 if (*mp->b_rptr & FLUSHW) 26530 flushq(q, FLUSHALL); 26531 if (q->q_next) { 26532 /* 26533 * M_FLUSH is sent up to IP by some drivers during 26534 * unbind. ip_rput has already replied to it. We are 26535 * here for the M_FLUSH that we originated in IP 26536 * before sending the unbind request to the driver. 26537 * Just free it as we don't queue packets in IP 26538 * on the write side of the device instance. 26539 */ 26540 freemsg(mp); 26541 return; 26542 } 26543 if (*mp->b_rptr & FLUSHR) { 26544 *mp->b_rptr &= ~FLUSHW; 26545 qreply(q, mp); 26546 return; 26547 } 26548 freemsg(mp); 26549 return; 26550 case IRE_DB_REQ_TYPE: 26551 /* An Upper Level Protocol wants a copy of an IRE. */ 26552 ip_ire_req(q, mp); 26553 return; 26554 case M_CTL: 26555 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 26556 break; 26557 26558 if (connp != NULL && *(uint32_t *)mp->b_rptr == 26559 IP_ULP_OUT_LABELED) { 26560 out_labeled_t *olp; 26561 26562 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 26563 break; 26564 olp = (out_labeled_t *)mp->b_rptr; 26565 connp->conn_ulp_labeled = olp->out_qnext == q; 26566 freemsg(mp); 26567 return; 26568 } 26569 26570 /* M_CTL messages are used by ARP to tell us things. */ 26571 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 26572 break; 26573 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 26574 case AR_ENTRY_SQUERY: 26575 ip_wput_ctl(q, mp); 26576 return; 26577 case AR_CLIENT_NOTIFY: 26578 ip_arp_news(q, mp); 26579 return; 26580 case AR_DLPIOP_DONE: 26581 ASSERT(q->q_next != NULL); 26582 ill = (ill_t *)q->q_ptr; 26583 /* qwriter_ip releases the refhold */ 26584 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 26585 ill_refhold(ill); 26586 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_done, 26587 CUR_OP, B_FALSE); 26588 return; 26589 case AR_ARP_CLOSING: 26590 /* 26591 * ARP (above us) is closing. If no ARP bringup is 26592 * currently pending, ack the message so that ARP 26593 * can complete its close. Also mark ill_arp_closing 26594 * so that new ARP bringups will fail. If any 26595 * ARP bringup is currently in progress, we will 26596 * ack this when the current ARP bringup completes. 26597 */ 26598 ASSERT(q->q_next != NULL); 26599 ill = (ill_t *)q->q_ptr; 26600 mutex_enter(&ill->ill_lock); 26601 ill->ill_arp_closing = 1; 26602 if (!ill->ill_arp_bringup_pending) { 26603 mutex_exit(&ill->ill_lock); 26604 qreply(q, mp); 26605 } else { 26606 mutex_exit(&ill->ill_lock); 26607 freemsg(mp); 26608 } 26609 return; 26610 case AR_ARP_EXTEND: 26611 /* 26612 * The ARP module above us is capable of duplicate 26613 * address detection. Old ATM drivers will not send 26614 * this message. 26615 */ 26616 ASSERT(q->q_next != NULL); 26617 ill = (ill_t *)q->q_ptr; 26618 ill->ill_arp_extend = B_TRUE; 26619 freemsg(mp); 26620 return; 26621 default: 26622 break; 26623 } 26624 break; 26625 case M_PROTO: 26626 case M_PCPROTO: 26627 /* 26628 * The only PROTO messages we expect are ULP binds and 26629 * copies of option negotiation acknowledgements. 26630 */ 26631 switch (((union T_primitives *)mp->b_rptr)->type) { 26632 case O_T_BIND_REQ: 26633 case T_BIND_REQ: { 26634 /* Request can get queued in bind */ 26635 ASSERT(connp != NULL); 26636 /* 26637 * Both TCP and UDP call ip_bind_{v4,v6}() directly 26638 * instead of going through this path. We only get 26639 * here in the following cases: 26640 * 26641 * a. Bind retries, where ipsq is non-NULL. 26642 * b. T_BIND_REQ is issued from non TCP/UDP 26643 * transport, e.g. icmp for raw socket, 26644 * in which case ipsq will be NULL. 26645 */ 26646 ASSERT(ipsq != NULL || 26647 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 26648 26649 /* Don't increment refcnt if this is a re-entry */ 26650 if (ipsq == NULL) 26651 CONN_INC_REF(connp); 26652 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 26653 connp, NULL) : ip_bind_v4(q, mp, connp); 26654 if (mp == NULL) 26655 return; 26656 if (IPCL_IS_TCP(connp)) { 26657 /* 26658 * In the case of TCP endpoint we 26659 * come here only for bind retries 26660 */ 26661 ASSERT(ipsq != NULL); 26662 CONN_INC_REF(connp); 26663 squeue_fill(connp->conn_sqp, mp, 26664 ip_resume_tcp_bind, connp, 26665 SQTAG_BIND_RETRY); 26666 return; 26667 } else if (IPCL_IS_UDP(connp)) { 26668 /* 26669 * In the case of UDP endpoint we 26670 * come here only for bind retries 26671 */ 26672 ASSERT(ipsq != NULL); 26673 udp_resume_bind(connp, mp); 26674 return; 26675 } 26676 qreply(q, mp); 26677 CONN_OPER_PENDING_DONE(connp); 26678 return; 26679 } 26680 case T_SVR4_OPTMGMT_REQ: 26681 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 26682 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 26683 26684 ASSERT(connp != NULL); 26685 if (!snmpcom_req(q, mp, ip_snmp_set, 26686 ip_snmp_get, cr)) { 26687 /* 26688 * Call svr4_optcom_req so that it can 26689 * generate the ack. We don't come here 26690 * if this operation is being restarted. 26691 * ip_restart_optmgmt will drop the conn ref. 26692 * In the case of ipsec option after the ipsec 26693 * load is complete conn_restart_ipsec_waiter 26694 * drops the conn ref. 26695 */ 26696 ASSERT(ipsq == NULL); 26697 CONN_INC_REF(connp); 26698 if (ip_check_for_ipsec_opt(q, mp)) 26699 return; 26700 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 26701 if (err != EINPROGRESS) { 26702 /* Operation is done */ 26703 CONN_OPER_PENDING_DONE(connp); 26704 } 26705 } 26706 return; 26707 case T_OPTMGMT_REQ: 26708 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 26709 /* 26710 * Note: No snmpcom_req support through new 26711 * T_OPTMGMT_REQ. 26712 * Call tpi_optcom_req so that it can 26713 * generate the ack. 26714 */ 26715 ASSERT(connp != NULL); 26716 ASSERT(ipsq == NULL); 26717 /* 26718 * We don't come here for restart. ip_restart_optmgmt 26719 * will drop the conn ref. In the case of ipsec option 26720 * after the ipsec load is complete 26721 * conn_restart_ipsec_waiter drops the conn ref. 26722 */ 26723 CONN_INC_REF(connp); 26724 if (ip_check_for_ipsec_opt(q, mp)) 26725 return; 26726 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 26727 if (err != EINPROGRESS) { 26728 /* Operation is done */ 26729 CONN_OPER_PENDING_DONE(connp); 26730 } 26731 return; 26732 case T_UNBIND_REQ: 26733 mp = ip_unbind(q, mp); 26734 qreply(q, mp); 26735 return; 26736 default: 26737 /* 26738 * Have to drop any DLPI messages coming down from 26739 * arp (such as an info_req which would cause ip 26740 * to receive an extra info_ack if it was passed 26741 * through. 26742 */ 26743 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 26744 (int)*(uint_t *)mp->b_rptr)); 26745 freemsg(mp); 26746 return; 26747 } 26748 /* NOTREACHED */ 26749 case IRE_DB_TYPE: { 26750 nce_t *nce; 26751 ill_t *ill; 26752 in6_addr_t gw_addr_v6; 26753 26754 26755 /* 26756 * This is a response back from a resolver. It 26757 * consists of a message chain containing: 26758 * IRE_MBLK-->LL_HDR_MBLK->pkt 26759 * The IRE_MBLK is the one we allocated in ip_newroute. 26760 * The LL_HDR_MBLK is the DLPI header to use to get 26761 * the attached packet, and subsequent ones for the 26762 * same destination, transmitted. 26763 */ 26764 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 26765 break; 26766 /* 26767 * First, check to make sure the resolution succeeded. 26768 * If it failed, the second mblk will be empty. 26769 * If it is, free the chain, dropping the packet. 26770 * (We must ire_delete the ire; that frees the ire mblk) 26771 * We're doing this now to support PVCs for ATM; it's 26772 * a partial xresolv implementation. When we fully implement 26773 * xresolv interfaces, instead of freeing everything here 26774 * we'll initiate neighbor discovery. 26775 * 26776 * For v4 (ARP and other external resolvers) the resolver 26777 * frees the message, so no check is needed. This check 26778 * is required, though, for a full xresolve implementation. 26779 * Including this code here now both shows how external 26780 * resolvers can NACK a resolution request using an 26781 * existing design that has no specific provisions for NACKs, 26782 * and also takes into account that the current non-ARP 26783 * external resolver has been coded to use this method of 26784 * NACKing for all IPv6 (xresolv) cases, 26785 * whether our xresolv implementation is complete or not. 26786 * 26787 */ 26788 ire = (ire_t *)mp->b_rptr; 26789 ill = ire_to_ill(ire); 26790 mp1 = mp->b_cont; /* dl_unitdata_req */ 26791 if (mp1->b_rptr == mp1->b_wptr) { 26792 if (ire->ire_ipversion == IPV6_VERSION) { 26793 /* 26794 * XRESOLV interface. 26795 */ 26796 ASSERT(ill->ill_flags & ILLF_XRESOLV); 26797 mutex_enter(&ire->ire_lock); 26798 gw_addr_v6 = ire->ire_gateway_addr_v6; 26799 mutex_exit(&ire->ire_lock); 26800 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 26801 nce = ndp_lookup_v6(ill, 26802 &ire->ire_addr_v6, B_FALSE); 26803 } else { 26804 nce = ndp_lookup_v6(ill, &gw_addr_v6, 26805 B_FALSE); 26806 } 26807 if (nce != NULL) { 26808 nce_resolv_failed(nce); 26809 ndp_delete(nce); 26810 NCE_REFRELE(nce); 26811 } 26812 } 26813 mp->b_cont = NULL; 26814 freemsg(mp1); /* frees the pkt as well */ 26815 ASSERT(ire->ire_nce == NULL); 26816 ire_delete((ire_t *)mp->b_rptr); 26817 return; 26818 } 26819 26820 /* 26821 * Split them into IRE_MBLK and pkt and feed it into 26822 * ire_add_then_send. Then in ire_add_then_send 26823 * the IRE will be added, and then the packet will be 26824 * run back through ip_wput. This time it will make 26825 * it to the wire. 26826 */ 26827 mp->b_cont = NULL; 26828 mp = mp1->b_cont; /* now, mp points to pkt */ 26829 mp1->b_cont = NULL; 26830 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 26831 if (ire->ire_ipversion == IPV6_VERSION) { 26832 /* 26833 * XRESOLV interface. Find the nce and put a copy 26834 * of the dl_unitdata_req in nce_res_mp 26835 */ 26836 ASSERT(ill->ill_flags & ILLF_XRESOLV); 26837 mutex_enter(&ire->ire_lock); 26838 gw_addr_v6 = ire->ire_gateway_addr_v6; 26839 mutex_exit(&ire->ire_lock); 26840 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 26841 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 26842 B_FALSE); 26843 } else { 26844 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 26845 } 26846 if (nce != NULL) { 26847 /* 26848 * We have to protect nce_res_mp here 26849 * from being accessed by other threads 26850 * while we change the mblk pointer. 26851 * Other functions will also lock the nce when 26852 * accessing nce_res_mp. 26853 * 26854 * The reason we change the mblk pointer 26855 * here rather than copying the resolved address 26856 * into the template is that, unlike with 26857 * ethernet, we have no guarantee that the 26858 * resolved address length will be 26859 * smaller than or equal to the lla length 26860 * with which the template was allocated, 26861 * (for ethernet, they're equal) 26862 * so we have to use the actual resolved 26863 * address mblk - which holds the real 26864 * dl_unitdata_req with the resolved address. 26865 * 26866 * Doing this is the same behavior as was 26867 * previously used in the v4 ARP case. 26868 */ 26869 mutex_enter(&nce->nce_lock); 26870 if (nce->nce_res_mp != NULL) 26871 freemsg(nce->nce_res_mp); 26872 nce->nce_res_mp = mp1; 26873 mutex_exit(&nce->nce_lock); 26874 /* 26875 * We do a fastpath probe here because 26876 * we have resolved the address without 26877 * using Neighbor Discovery. 26878 * In the non-XRESOLV v6 case, the fastpath 26879 * probe is done right after neighbor 26880 * discovery completes. 26881 */ 26882 if (nce->nce_res_mp != NULL) { 26883 int res; 26884 nce_fastpath_list_add(nce); 26885 res = ill_fastpath_probe(ill, 26886 nce->nce_res_mp); 26887 if (res != 0 && res != EAGAIN) 26888 nce_fastpath_list_delete(nce); 26889 } 26890 26891 ire_add_then_send(q, ire, mp); 26892 /* 26893 * Now we have to clean out any packets 26894 * that may have been queued on the nce 26895 * while it was waiting for address resolution 26896 * to complete. 26897 */ 26898 mutex_enter(&nce->nce_lock); 26899 mp1 = nce->nce_qd_mp; 26900 nce->nce_qd_mp = NULL; 26901 mutex_exit(&nce->nce_lock); 26902 while (mp1 != NULL) { 26903 mblk_t *nxt_mp; 26904 queue_t *fwdq = NULL; 26905 ill_t *inbound_ill; 26906 uint_t ifindex; 26907 26908 nxt_mp = mp1->b_next; 26909 mp1->b_next = NULL; 26910 /* 26911 * Retrieve ifindex stored in 26912 * ip_rput_data_v6() 26913 */ 26914 ifindex = 26915 (uint_t)(uintptr_t)mp1->b_prev; 26916 inbound_ill = 26917 ill_lookup_on_ifindex(ifindex, 26918 B_TRUE, NULL, NULL, NULL, 26919 NULL); 26920 mp1->b_prev = NULL; 26921 if (inbound_ill != NULL) 26922 fwdq = inbound_ill->ill_rq; 26923 26924 if (fwdq != NULL) { 26925 put(fwdq, mp1); 26926 ill_refrele(inbound_ill); 26927 } else 26928 put(WR(ill->ill_rq), mp1); 26929 mp1 = nxt_mp; 26930 } 26931 NCE_REFRELE(nce); 26932 } else { /* nce is NULL; clean up */ 26933 ire_delete(ire); 26934 freemsg(mp); 26935 freemsg(mp1); 26936 return; 26937 } 26938 } else { 26939 nce_t *arpce; 26940 /* 26941 * Link layer resolution succeeded. Recompute the 26942 * ire_nce. 26943 */ 26944 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 26945 if ((arpce = ndp_lookup_v4(ill, 26946 (ire->ire_gateway_addr != INADDR_ANY ? 26947 &ire->ire_gateway_addr : &ire->ire_addr), 26948 B_FALSE)) == NULL) { 26949 freeb(ire->ire_mp); 26950 freeb(mp1); 26951 freemsg(mp); 26952 return; 26953 } 26954 mutex_enter(&arpce->nce_lock); 26955 arpce->nce_last = TICK_TO_MSEC(lbolt64); 26956 if (arpce->nce_state == ND_REACHABLE) { 26957 /* 26958 * Someone resolved this before us; 26959 * cleanup the res_mp. Since ire has 26960 * not been added yet, the call to ire_add_v4 26961 * from ire_add_then_send (when a dup is 26962 * detected) will clean up the ire. 26963 */ 26964 freeb(mp1); 26965 } else { 26966 if (arpce->nce_res_mp != NULL) 26967 freemsg(arpce->nce_res_mp); 26968 arpce->nce_res_mp = mp1; 26969 arpce->nce_state = ND_REACHABLE; 26970 } 26971 mutex_exit(&arpce->nce_lock); 26972 if (ire->ire_marks & IRE_MARK_NOADD) { 26973 /* 26974 * this ire will not be added to the ire 26975 * cache table, so we can set the ire_nce 26976 * here, as there are no atomicity constraints. 26977 */ 26978 ire->ire_nce = arpce; 26979 /* 26980 * We are associating this nce with the ire 26981 * so change the nce ref taken in 26982 * ndp_lookup_v4() from 26983 * NCE_REFHOLD to NCE_REFHOLD_NOTR 26984 */ 26985 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 26986 } else { 26987 NCE_REFRELE(arpce); 26988 } 26989 ire_add_then_send(q, ire, mp); 26990 } 26991 return; /* All is well, the packet has been sent. */ 26992 } 26993 case IRE_ARPRESOLVE_TYPE: { 26994 26995 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 26996 break; 26997 mp1 = mp->b_cont; /* dl_unitdata_req */ 26998 mp->b_cont = NULL; 26999 /* 27000 * First, check to make sure the resolution succeeded. 27001 * If it failed, the second mblk will be empty. 27002 */ 27003 if (mp1->b_rptr == mp1->b_wptr) { 27004 /* cleanup the incomplete ire, free queued packets */ 27005 freemsg(mp); /* fake ire */ 27006 freeb(mp1); /* dl_unitdata response */ 27007 return; 27008 } 27009 27010 /* 27011 * update any incomplete nce_t found. we lookup the ctable 27012 * and find the nce from the ire->ire_nce because we need 27013 * to pass the ire to ip_xmit_v4 later, and can find both 27014 * ire and nce in one lookup from the ctable. 27015 */ 27016 fake_ire = (ire_t *)mp->b_rptr; 27017 /* 27018 * By the time we come back here from ARP 27019 * the logical outgoing interface of the incomplete ire 27020 * we added in ire_forward could have disappeared, 27021 * causing the incomplete ire to also have 27022 * dissapeared. So we need to retreive the 27023 * proper ipif for the ire before looking 27024 * in ctable; do the ctablelookup based on ire_ipif_seqid 27025 */ 27026 ill = q->q_ptr; 27027 27028 /* Get the outgoing ipif */ 27029 mutex_enter(&ill->ill_lock); 27030 if (ill->ill_state_flags & ILL_CONDEMNED) { 27031 mutex_exit(&ill->ill_lock); 27032 freemsg(mp); /* fake ire */ 27033 freeb(mp1); /* dl_unitdata response */ 27034 return; 27035 } 27036 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27037 27038 if (ipif == NULL) { 27039 mutex_exit(&ill->ill_lock); 27040 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27041 freemsg(mp); 27042 freeb(mp1); 27043 return; 27044 } 27045 ipif_refhold_locked(ipif); 27046 mutex_exit(&ill->ill_lock); 27047 ire = ire_ctable_lookup(fake_ire->ire_addr, 27048 fake_ire->ire_gateway_addr, IRE_CACHE, 27049 ipif, fake_ire->ire_zoneid, NULL, 27050 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY)); 27051 ipif_refrele(ipif); 27052 if (ire == NULL) { 27053 /* 27054 * no ire was found; check if there is an nce 27055 * for this lookup; if it has no ire's pointing at it 27056 * cleanup. 27057 */ 27058 if ((nce = ndp_lookup_v4(ill, 27059 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27060 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27061 B_FALSE)) != NULL) { 27062 /* 27063 * cleanup: just reset nce. 27064 * We check for refcnt 2 (one for the nce 27065 * hash list + 1 for the ref taken by 27066 * ndp_lookup_v4) to ensure that there are 27067 * no ire's pointing at the nce. 27068 */ 27069 if (nce->nce_refcnt == 2) { 27070 nce = nce_reinit(nce); 27071 } 27072 if (nce != NULL) 27073 NCE_REFRELE(nce); 27074 } 27075 freeb(mp1); /* dl_unitdata response */ 27076 freemsg(mp); /* fake ire */ 27077 return; 27078 } 27079 nce = ire->ire_nce; 27080 DTRACE_PROBE2(ire__arpresolve__type, 27081 ire_t *, ire, nce_t *, nce); 27082 ASSERT(nce->nce_state != ND_INITIAL); 27083 mutex_enter(&nce->nce_lock); 27084 nce->nce_last = TICK_TO_MSEC(lbolt64); 27085 if (nce->nce_state == ND_REACHABLE) { 27086 /* 27087 * Someone resolved this before us; 27088 * our response is not needed any more. 27089 */ 27090 mutex_exit(&nce->nce_lock); 27091 freeb(mp1); /* dl_unitdata response */ 27092 } else { 27093 if (nce->nce_res_mp != NULL) { 27094 freemsg(nce->nce_res_mp); 27095 /* existing dl_unitdata template */ 27096 } 27097 nce->nce_res_mp = mp1; 27098 nce->nce_state = ND_REACHABLE; 27099 mutex_exit(&nce->nce_lock); 27100 ire_fastpath(ire); 27101 } 27102 /* 27103 * The cached nce_t has been updated to be reachable; 27104 * Set the IRE_MARK_UNCACHED flag and free the fake_ire. 27105 */ 27106 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27107 freemsg(mp); 27108 /* 27109 * send out queued packets. 27110 */ 27111 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27112 27113 IRE_REFRELE(ire); 27114 return; 27115 } 27116 default: 27117 break; 27118 } 27119 if (q->q_next) { 27120 putnext(q, mp); 27121 } else 27122 freemsg(mp); 27123 } 27124 27125 /* 27126 * Process IP options in an outbound packet. Modify the destination if there 27127 * is a source route option. 27128 * Returns non-zero if something fails in which case an ICMP error has been 27129 * sent and mp freed. 27130 */ 27131 static int 27132 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27133 boolean_t mctl_present, zoneid_t zoneid) 27134 { 27135 ipoptp_t opts; 27136 uchar_t *opt; 27137 uint8_t optval; 27138 uint8_t optlen; 27139 ipaddr_t dst; 27140 intptr_t code = 0; 27141 mblk_t *mp; 27142 ire_t *ire = NULL; 27143 27144 ip2dbg(("ip_wput_options\n")); 27145 mp = ipsec_mp; 27146 if (mctl_present) { 27147 mp = ipsec_mp->b_cont; 27148 } 27149 27150 dst = ipha->ipha_dst; 27151 for (optval = ipoptp_first(&opts, ipha); 27152 optval != IPOPT_EOL; 27153 optval = ipoptp_next(&opts)) { 27154 opt = opts.ipoptp_cur; 27155 optlen = opts.ipoptp_len; 27156 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27157 optval, optlen)); 27158 switch (optval) { 27159 uint32_t off; 27160 case IPOPT_SSRR: 27161 case IPOPT_LSRR: 27162 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27163 ip1dbg(( 27164 "ip_wput_options: bad option offset\n")); 27165 code = (char *)&opt[IPOPT_OLEN] - 27166 (char *)ipha; 27167 goto param_prob; 27168 } 27169 off = opt[IPOPT_OFFSET]; 27170 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27171 ntohl(dst))); 27172 /* 27173 * For strict: verify that dst is directly 27174 * reachable. 27175 */ 27176 if (optval == IPOPT_SSRR) { 27177 ire = ire_ftable_lookup(dst, 0, 0, 27178 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27179 MBLK_GETLABEL(mp), 27180 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 27181 if (ire == NULL) { 27182 ip1dbg(("ip_wput_options: SSRR not" 27183 " directly reachable: 0x%x\n", 27184 ntohl(dst))); 27185 goto bad_src_route; 27186 } 27187 ire_refrele(ire); 27188 } 27189 break; 27190 case IPOPT_RR: 27191 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27192 ip1dbg(( 27193 "ip_wput_options: bad option offset\n")); 27194 code = (char *)&opt[IPOPT_OLEN] - 27195 (char *)ipha; 27196 goto param_prob; 27197 } 27198 break; 27199 case IPOPT_TS: 27200 /* 27201 * Verify that length >=5 and that there is either 27202 * room for another timestamp or that the overflow 27203 * counter is not maxed out. 27204 */ 27205 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27206 if (optlen < IPOPT_MINLEN_IT) { 27207 goto param_prob; 27208 } 27209 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27210 ip1dbg(( 27211 "ip_wput_options: bad option offset\n")); 27212 code = (char *)&opt[IPOPT_OFFSET] - 27213 (char *)ipha; 27214 goto param_prob; 27215 } 27216 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27217 case IPOPT_TS_TSONLY: 27218 off = IPOPT_TS_TIMELEN; 27219 break; 27220 case IPOPT_TS_TSANDADDR: 27221 case IPOPT_TS_PRESPEC: 27222 case IPOPT_TS_PRESPEC_RFC791: 27223 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27224 break; 27225 default: 27226 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27227 (char *)ipha; 27228 goto param_prob; 27229 } 27230 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27231 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27232 /* 27233 * No room and the overflow counter is 15 27234 * already. 27235 */ 27236 goto param_prob; 27237 } 27238 break; 27239 } 27240 } 27241 27242 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 27243 return (0); 27244 27245 ip1dbg(("ip_wput_options: error processing IP options.")); 27246 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 27247 27248 param_prob: 27249 /* 27250 * Since ip_wput() isn't close to finished, we fill 27251 * in enough of the header for credible error reporting. 27252 */ 27253 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 27254 /* Failed */ 27255 freemsg(ipsec_mp); 27256 return (-1); 27257 } 27258 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid); 27259 return (-1); 27260 27261 bad_src_route: 27262 /* 27263 * Since ip_wput() isn't close to finished, we fill 27264 * in enough of the header for credible error reporting. 27265 */ 27266 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 27267 /* Failed */ 27268 freemsg(ipsec_mp); 27269 return (-1); 27270 } 27271 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 27272 return (-1); 27273 } 27274 27275 /* 27276 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 27277 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 27278 * thru /etc/system. 27279 */ 27280 #define CONN_MAXDRAINCNT 64 27281 27282 static void 27283 conn_drain_init(void) 27284 { 27285 int i; 27286 27287 conn_drain_list_cnt = conn_drain_nthreads; 27288 27289 if ((conn_drain_list_cnt == 0) || 27290 (conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 27291 /* 27292 * Default value of the number of drainers is the 27293 * number of cpus, subject to maximum of 8 drainers. 27294 */ 27295 if (boot_max_ncpus != -1) 27296 conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 27297 else 27298 conn_drain_list_cnt = MIN(max_ncpus, 8); 27299 } 27300 27301 conn_drain_list = kmem_zalloc(conn_drain_list_cnt * sizeof (idl_t), 27302 KM_SLEEP); 27303 27304 for (i = 0; i < conn_drain_list_cnt; i++) { 27305 mutex_init(&conn_drain_list[i].idl_lock, NULL, 27306 MUTEX_DEFAULT, NULL); 27307 } 27308 } 27309 27310 static void 27311 conn_drain_fini(void) 27312 { 27313 int i; 27314 27315 for (i = 0; i < conn_drain_list_cnt; i++) 27316 mutex_destroy(&conn_drain_list[i].idl_lock); 27317 kmem_free(conn_drain_list, conn_drain_list_cnt * sizeof (idl_t)); 27318 conn_drain_list = NULL; 27319 } 27320 27321 /* 27322 * Note: For an overview of how flowcontrol is handled in IP please see the 27323 * IP Flowcontrol notes at the top of this file. 27324 * 27325 * Flow control has blocked us from proceeding. Insert the given conn in one 27326 * of the conn drain lists. These conn wq's will be qenabled later on when 27327 * STREAMS flow control does a backenable. conn_walk_drain will enable 27328 * the first conn in each of these drain lists. Each of these qenabled conns 27329 * in turn enables the next in the list, after it runs, or when it closes, 27330 * thus sustaining the drain process. 27331 * 27332 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 27333 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 27334 * running at any time, on a given conn, since there can be only 1 service proc 27335 * running on a queue at any time. 27336 */ 27337 void 27338 conn_drain_insert(conn_t *connp) 27339 { 27340 idl_t *idl; 27341 uint_t index; 27342 27343 mutex_enter(&connp->conn_lock); 27344 if (connp->conn_state_flags & CONN_CLOSING) { 27345 /* 27346 * The conn is closing as a result of which CONN_CLOSING 27347 * is set. Return. 27348 */ 27349 mutex_exit(&connp->conn_lock); 27350 return; 27351 } else if (connp->conn_idl == NULL) { 27352 /* 27353 * Assign the next drain list round robin. We dont' use 27354 * a lock, and thus it may not be strictly round robin. 27355 * Atomicity of load/stores is enough to make sure that 27356 * conn_drain_list_index is always within bounds. 27357 */ 27358 index = conn_drain_list_index; 27359 ASSERT(index < conn_drain_list_cnt); 27360 connp->conn_idl = &conn_drain_list[index]; 27361 index++; 27362 if (index == conn_drain_list_cnt) 27363 index = 0; 27364 conn_drain_list_index = index; 27365 } 27366 mutex_exit(&connp->conn_lock); 27367 27368 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 27369 if ((connp->conn_drain_prev != NULL) || 27370 (connp->conn_state_flags & CONN_CLOSING)) { 27371 /* 27372 * The conn is already in the drain list, OR 27373 * the conn is closing. We need to check again for 27374 * the closing case again since close can happen 27375 * after we drop the conn_lock, and before we 27376 * acquire the CONN_DRAIN_LIST_LOCK. 27377 */ 27378 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27379 return; 27380 } else { 27381 idl = connp->conn_idl; 27382 } 27383 27384 /* 27385 * The conn is not in the drain list. Insert it at the 27386 * tail of the drain list. The drain list is circular 27387 * and doubly linked. idl_conn points to the 1st element 27388 * in the list. 27389 */ 27390 if (idl->idl_conn == NULL) { 27391 idl->idl_conn = connp; 27392 connp->conn_drain_next = connp; 27393 connp->conn_drain_prev = connp; 27394 } else { 27395 conn_t *head = idl->idl_conn; 27396 27397 connp->conn_drain_next = head; 27398 connp->conn_drain_prev = head->conn_drain_prev; 27399 head->conn_drain_prev->conn_drain_next = connp; 27400 head->conn_drain_prev = connp; 27401 } 27402 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27403 } 27404 27405 /* 27406 * This conn is closing, and we are called from ip_close. OR 27407 * This conn has been serviced by ip_wsrv, and we need to do the tail 27408 * processing. 27409 * If this conn is part of the drain list, we may need to sustain the drain 27410 * process by qenabling the next conn in the drain list. We may also need to 27411 * remove this conn from the list, if it is done. 27412 */ 27413 static void 27414 conn_drain_tail(conn_t *connp, boolean_t closing) 27415 { 27416 idl_t *idl; 27417 27418 /* 27419 * connp->conn_idl is stable at this point, and no lock is needed 27420 * to check it. If we are called from ip_close, close has already 27421 * set CONN_CLOSING, thus freezing the value of conn_idl, and 27422 * called us only because conn_idl is non-null. If we are called thru 27423 * service, conn_idl could be null, but it cannot change because 27424 * service is single-threaded per queue, and there cannot be another 27425 * instance of service trying to call conn_drain_insert on this conn 27426 * now. 27427 */ 27428 ASSERT(!closing || (connp->conn_idl != NULL)); 27429 27430 /* 27431 * If connp->conn_idl is null, the conn has not been inserted into any 27432 * drain list even once since creation of the conn. Just return. 27433 */ 27434 if (connp->conn_idl == NULL) 27435 return; 27436 27437 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 27438 27439 if (connp->conn_drain_prev == NULL) { 27440 /* This conn is currently not in the drain list. */ 27441 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27442 return; 27443 } 27444 idl = connp->conn_idl; 27445 if (idl->idl_conn_draining == connp) { 27446 /* 27447 * This conn is the current drainer. If this is the last conn 27448 * in the drain list, we need to do more checks, in the 'if' 27449 * below. Otherwwise we need to just qenable the next conn, 27450 * to sustain the draining, and is handled in the 'else' 27451 * below. 27452 */ 27453 if (connp->conn_drain_next == idl->idl_conn) { 27454 /* 27455 * This conn is the last in this list. This round 27456 * of draining is complete. If idl_repeat is set, 27457 * it means another flow enabling has happened from 27458 * the driver/streams and we need to another round 27459 * of draining. 27460 * If there are more than 2 conns in the drain list, 27461 * do a left rotate by 1, so that all conns except the 27462 * conn at the head move towards the head by 1, and the 27463 * the conn at the head goes to the tail. This attempts 27464 * a more even share for all queues that are being 27465 * drained. 27466 */ 27467 if ((connp->conn_drain_next != connp) && 27468 (idl->idl_conn->conn_drain_next != connp)) { 27469 idl->idl_conn = idl->idl_conn->conn_drain_next; 27470 } 27471 if (idl->idl_repeat) { 27472 qenable(idl->idl_conn->conn_wq); 27473 idl->idl_conn_draining = idl->idl_conn; 27474 idl->idl_repeat = 0; 27475 } else { 27476 idl->idl_conn_draining = NULL; 27477 } 27478 } else { 27479 /* 27480 * If the next queue that we are now qenable'ing, 27481 * is closing, it will remove itself from this list 27482 * and qenable the subsequent queue in ip_close(). 27483 * Serialization is acheived thru idl_lock. 27484 */ 27485 qenable(connp->conn_drain_next->conn_wq); 27486 idl->idl_conn_draining = connp->conn_drain_next; 27487 } 27488 } 27489 if (!connp->conn_did_putbq || closing) { 27490 /* 27491 * Remove ourself from the drain list, if we did not do 27492 * a putbq, or if the conn is closing. 27493 * Note: It is possible that q->q_first is non-null. It means 27494 * that these messages landed after we did a enableok() in 27495 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 27496 * service them. 27497 */ 27498 if (connp->conn_drain_next == connp) { 27499 /* Singleton in the list */ 27500 ASSERT(connp->conn_drain_prev == connp); 27501 idl->idl_conn = NULL; 27502 idl->idl_conn_draining = NULL; 27503 } else { 27504 connp->conn_drain_prev->conn_drain_next = 27505 connp->conn_drain_next; 27506 connp->conn_drain_next->conn_drain_prev = 27507 connp->conn_drain_prev; 27508 if (idl->idl_conn == connp) 27509 idl->idl_conn = connp->conn_drain_next; 27510 ASSERT(idl->idl_conn_draining != connp); 27511 27512 } 27513 connp->conn_drain_next = NULL; 27514 connp->conn_drain_prev = NULL; 27515 } 27516 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27517 } 27518 27519 /* 27520 * Write service routine. Shared perimeter entry point. 27521 * ip_wsrv can be called in any of the following ways. 27522 * 1. The device queue's messages has fallen below the low water mark 27523 * and STREAMS has backenabled the ill_wq. We walk thru all the 27524 * the drain lists and backenable the first conn in each list. 27525 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 27526 * qenabled non-tcp upper layers. We start dequeing messages and call 27527 * ip_wput for each message. 27528 */ 27529 27530 void 27531 ip_wsrv(queue_t *q) 27532 { 27533 conn_t *connp; 27534 ill_t *ill; 27535 mblk_t *mp; 27536 27537 if (q->q_next) { 27538 ill = (ill_t *)q->q_ptr; 27539 if (ill->ill_state_flags == 0) { 27540 /* 27541 * The device flow control has opened up. 27542 * Walk through conn drain lists and qenable the 27543 * first conn in each list. This makes sense only 27544 * if the stream is fully plumbed and setup. 27545 * Hence the if check above. 27546 */ 27547 ip1dbg(("ip_wsrv: walking\n")); 27548 conn_walk_drain(); 27549 } 27550 return; 27551 } 27552 27553 connp = Q_TO_CONN(q); 27554 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 27555 27556 /* 27557 * 1. Set conn_draining flag to signal that service is active. 27558 * 27559 * 2. ip_output determines whether it has been called from service, 27560 * based on the last parameter. If it is IP_WSRV it concludes it 27561 * has been called from service. 27562 * 27563 * 3. Message ordering is preserved by the following logic. 27564 * i. A directly called ip_output (i.e. not thru service) will queue 27565 * the message at the tail, if conn_draining is set (i.e. service 27566 * is running) or if q->q_first is non-null. 27567 * 27568 * ii. If ip_output is called from service, and if ip_output cannot 27569 * putnext due to flow control, it does a putbq. 27570 * 27571 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 27572 * (causing an infinite loop). 27573 */ 27574 ASSERT(!connp->conn_did_putbq); 27575 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 27576 connp->conn_draining = 1; 27577 noenable(q); 27578 while ((mp = getq(q)) != NULL) { 27579 ASSERT(CONN_Q(q)); 27580 27581 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 27582 if (connp->conn_did_putbq) { 27583 /* ip_wput did a putbq */ 27584 break; 27585 } 27586 } 27587 /* 27588 * At this point, a thread coming down from top, calling 27589 * ip_wput, may end up queueing the message. We have not yet 27590 * enabled the queue, so ip_wsrv won't be called again. 27591 * To avoid this race, check q->q_first again (in the loop) 27592 * If the other thread queued the message before we call 27593 * enableok(), we will catch it in the q->q_first check. 27594 * If the other thread queues the message after we call 27595 * enableok(), ip_wsrv will be called again by STREAMS. 27596 */ 27597 connp->conn_draining = 0; 27598 enableok(q); 27599 } 27600 27601 /* Enable the next conn for draining */ 27602 conn_drain_tail(connp, B_FALSE); 27603 27604 connp->conn_did_putbq = 0; 27605 } 27606 27607 /* 27608 * Walk the list of all conn's calling the function provided with the 27609 * specified argument for each. Note that this only walks conn's that 27610 * have been bound. 27611 * Applies to both IPv4 and IPv6. 27612 */ 27613 static void 27614 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid) 27615 { 27616 conn_walk_fanout_table(ipcl_udp_fanout, ipcl_udp_fanout_size, 27617 func, arg, zoneid); 27618 conn_walk_fanout_table(ipcl_conn_fanout, ipcl_conn_fanout_size, 27619 func, arg, zoneid); 27620 conn_walk_fanout_table(ipcl_bind_fanout, ipcl_bind_fanout_size, 27621 func, arg, zoneid); 27622 conn_walk_fanout_table(ipcl_proto_fanout, 27623 A_CNT(ipcl_proto_fanout), func, arg, zoneid); 27624 conn_walk_fanout_table(ipcl_proto_fanout_v6, 27625 A_CNT(ipcl_proto_fanout_v6), func, arg, zoneid); 27626 } 27627 27628 /* 27629 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 27630 * of conns that need to be drained, check if drain is already in progress. 27631 * If so set the idl_repeat bit, indicating that the last conn in the list 27632 * needs to reinitiate the drain once again, for the list. If drain is not 27633 * in progress for the list, initiate the draining, by qenabling the 1st 27634 * conn in the list. The drain is self-sustaining, each qenabled conn will 27635 * in turn qenable the next conn, when it is done/blocked/closing. 27636 */ 27637 static void 27638 conn_walk_drain(void) 27639 { 27640 int i; 27641 idl_t *idl; 27642 27643 IP_STAT(ip_conn_walk_drain); 27644 27645 for (i = 0; i < conn_drain_list_cnt; i++) { 27646 idl = &conn_drain_list[i]; 27647 mutex_enter(&idl->idl_lock); 27648 if (idl->idl_conn == NULL) { 27649 mutex_exit(&idl->idl_lock); 27650 continue; 27651 } 27652 /* 27653 * If this list is not being drained currently by 27654 * an ip_wsrv thread, start the process. 27655 */ 27656 if (idl->idl_conn_draining == NULL) { 27657 ASSERT(idl->idl_repeat == 0); 27658 qenable(idl->idl_conn->conn_wq); 27659 idl->idl_conn_draining = idl->idl_conn; 27660 } else { 27661 idl->idl_repeat = 1; 27662 } 27663 mutex_exit(&idl->idl_lock); 27664 } 27665 } 27666 27667 /* 27668 * Walk an conn hash table of `count' buckets, calling func for each entry. 27669 */ 27670 static void 27671 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 27672 zoneid_t zoneid) 27673 { 27674 conn_t *connp; 27675 27676 while (count-- > 0) { 27677 mutex_enter(&connfp->connf_lock); 27678 for (connp = connfp->connf_head; connp != NULL; 27679 connp = connp->conn_next) { 27680 if (zoneid == GLOBAL_ZONEID || 27681 zoneid == connp->conn_zoneid) { 27682 CONN_INC_REF(connp); 27683 mutex_exit(&connfp->connf_lock); 27684 (*func)(connp, arg); 27685 mutex_enter(&connfp->connf_lock); 27686 CONN_DEC_REF(connp); 27687 } 27688 } 27689 mutex_exit(&connfp->connf_lock); 27690 connfp++; 27691 } 27692 } 27693 27694 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 27695 static void 27696 conn_report1(conn_t *connp, void *mp) 27697 { 27698 char buf1[INET6_ADDRSTRLEN]; 27699 char buf2[INET6_ADDRSTRLEN]; 27700 uint_t print_len, buf_len; 27701 27702 ASSERT(connp != NULL); 27703 27704 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 27705 if (buf_len <= 0) 27706 return; 27707 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 27708 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 27709 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 27710 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 27711 "%5d %s/%05d %s/%05d\n", 27712 (void *)connp, (void *)CONNP_TO_RQ(connp), 27713 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 27714 buf1, connp->conn_lport, 27715 buf2, connp->conn_fport); 27716 if (print_len < buf_len) { 27717 ((mblk_t *)mp)->b_wptr += print_len; 27718 } else { 27719 ((mblk_t *)mp)->b_wptr += buf_len; 27720 } 27721 } 27722 27723 /* 27724 * Named Dispatch routine to produce a formatted report on all conns 27725 * that are listed in one of the fanout tables. 27726 * This report is accessed by using the ndd utility to "get" ND variable 27727 * "ip_conn_status". 27728 */ 27729 /* ARGSUSED */ 27730 static int 27731 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 27732 { 27733 (void) mi_mpprintf(mp, 27734 "CONN " MI_COL_HDRPAD_STR 27735 "rfq " MI_COL_HDRPAD_STR 27736 "stq " MI_COL_HDRPAD_STR 27737 " zone local remote"); 27738 27739 /* 27740 * Because of the ndd constraint, at most we can have 64K buffer 27741 * to put in all conn info. So to be more efficient, just 27742 * allocate a 64K buffer here, assuming we need that large buffer. 27743 * This should be OK as only privileged processes can do ndd /dev/ip. 27744 */ 27745 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 27746 /* The following may work even if we cannot get a large buf. */ 27747 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 27748 return (0); 27749 } 27750 27751 conn_walk_fanout(conn_report1, mp->b_cont, Q_TO_CONN(q)->conn_zoneid); 27752 return (0); 27753 } 27754 27755 /* 27756 * Determine if the ill and multicast aspects of that packets 27757 * "matches" the conn. 27758 */ 27759 boolean_t 27760 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 27761 zoneid_t zoneid) 27762 { 27763 ill_t *in_ill; 27764 boolean_t found; 27765 ipif_t *ipif; 27766 ire_t *ire; 27767 ipaddr_t dst, src; 27768 27769 dst = ipha->ipha_dst; 27770 src = ipha->ipha_src; 27771 27772 /* 27773 * conn_incoming_ill is set by IP_BOUND_IF which limits 27774 * unicast, broadcast and multicast reception to 27775 * conn_incoming_ill. conn_wantpacket itself is called 27776 * only for BROADCAST and multicast. 27777 * 27778 * 1) ip_rput supresses duplicate broadcasts if the ill 27779 * is part of a group. Hence, we should be receiving 27780 * just one copy of broadcast for the whole group. 27781 * Thus, if it is part of the group the packet could 27782 * come on any ill of the group and hence we need a 27783 * match on the group. Otherwise, match on ill should 27784 * be sufficient. 27785 * 27786 * 2) ip_rput does not suppress duplicate multicast packets. 27787 * If there are two interfaces in a ill group and we have 27788 * 2 applications (conns) joined a multicast group G on 27789 * both the interfaces, ilm_lookup_ill filter in ip_rput 27790 * will give us two packets because we join G on both the 27791 * interfaces rather than nominating just one interface 27792 * for receiving multicast like broadcast above. So, 27793 * we have to call ilg_lookup_ill to filter out duplicate 27794 * copies, if ill is part of a group. 27795 */ 27796 in_ill = connp->conn_incoming_ill; 27797 if (in_ill != NULL) { 27798 if (in_ill->ill_group == NULL) { 27799 if (in_ill != ill) 27800 return (B_FALSE); 27801 } else if (in_ill->ill_group != ill->ill_group) { 27802 return (B_FALSE); 27803 } 27804 } 27805 27806 if (!CLASSD(dst)) { 27807 if (IPCL_ZONE_MATCH(connp, zoneid)) 27808 return (B_TRUE); 27809 /* 27810 * The conn is in a different zone; we need to check that this 27811 * broadcast address is configured in the application's zone and 27812 * on one ill in the group. 27813 */ 27814 ipif = ipif_get_next_ipif(NULL, ill); 27815 if (ipif == NULL) 27816 return (B_FALSE); 27817 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 27818 connp->conn_zoneid, NULL, 27819 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 27820 ipif_refrele(ipif); 27821 if (ire != NULL) { 27822 ire_refrele(ire); 27823 return (B_TRUE); 27824 } else { 27825 return (B_FALSE); 27826 } 27827 } 27828 27829 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 27830 connp->conn_zoneid == zoneid) { 27831 /* 27832 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 27833 * disabled, therefore we don't dispatch the multicast packet to 27834 * the sending zone. 27835 */ 27836 return (B_FALSE); 27837 } 27838 27839 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 27840 connp->conn_zoneid != zoneid) { 27841 /* 27842 * Multicast packet on the loopback interface: we only match 27843 * conns who joined the group in the specified zone. 27844 */ 27845 return (B_FALSE); 27846 } 27847 27848 if (connp->conn_multi_router) { 27849 /* multicast packet and multicast router socket: send up */ 27850 return (B_TRUE); 27851 } 27852 27853 mutex_enter(&connp->conn_lock); 27854 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 27855 mutex_exit(&connp->conn_lock); 27856 return (found); 27857 } 27858 27859 /* 27860 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 27861 */ 27862 /* ARGSUSED */ 27863 static void 27864 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 27865 { 27866 ill_t *ill = (ill_t *)q->q_ptr; 27867 mblk_t *mp1, *mp2; 27868 ipif_t *ipif; 27869 int err = 0; 27870 conn_t *connp = NULL; 27871 ipsq_t *ipsq; 27872 arc_t *arc; 27873 27874 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 27875 27876 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 27877 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 27878 27879 ASSERT(IAM_WRITER_ILL(ill)); 27880 mp2 = mp->b_cont; 27881 mp->b_cont = NULL; 27882 27883 /* 27884 * We have now received the arp bringup completion message 27885 * from ARP. Mark the arp bringup as done. Also if the arp 27886 * stream has already started closing, send up the AR_ARP_CLOSING 27887 * ack now since ARP is waiting in close for this ack. 27888 */ 27889 mutex_enter(&ill->ill_lock); 27890 ill->ill_arp_bringup_pending = 0; 27891 if (ill->ill_arp_closing) { 27892 mutex_exit(&ill->ill_lock); 27893 /* Let's reuse the mp for sending the ack */ 27894 arc = (arc_t *)mp->b_rptr; 27895 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 27896 arc->arc_cmd = AR_ARP_CLOSING; 27897 qreply(q, mp); 27898 } else { 27899 mutex_exit(&ill->ill_lock); 27900 freeb(mp); 27901 } 27902 27903 /* We should have an IOCTL waiting on this. */ 27904 ipsq = ill->ill_phyint->phyint_ipsq; 27905 ipif = ipsq->ipsq_pending_ipif; 27906 mp1 = ipsq_pending_mp_get(ipsq, &connp); 27907 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 27908 if (mp1 == NULL) { 27909 /* bringup was aborted by the user */ 27910 freemsg(mp2); 27911 return; 27912 } 27913 ASSERT(connp != NULL); 27914 q = CONNP_TO_WQ(connp); 27915 /* 27916 * If the DL_BIND_REQ fails, it is noted 27917 * in arc_name_offset. 27918 */ 27919 err = *((int *)mp2->b_rptr); 27920 if (err == 0) { 27921 if (ipif->ipif_isv6) { 27922 if ((err = ipif_up_done_v6(ipif)) != 0) 27923 ip0dbg(("ip_arp_done: init failed\n")); 27924 } else { 27925 if ((err = ipif_up_done(ipif)) != 0) 27926 ip0dbg(("ip_arp_done: init failed\n")); 27927 } 27928 } else { 27929 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 27930 } 27931 27932 freemsg(mp2); 27933 27934 if ((err == 0) && (ill->ill_up_ipifs)) { 27935 err = ill_up_ipifs(ill, q, mp1); 27936 if (err == EINPROGRESS) 27937 return; 27938 } 27939 27940 if (ill->ill_up_ipifs) { 27941 ill_group_cleanup(ill); 27942 } 27943 27944 /* 27945 * The ioctl must complete now without EINPROGRESS 27946 * since ipsq_pending_mp_get has removed the ioctl mblk 27947 * from ipsq_pending_mp. Otherwise the ioctl will be 27948 * stuck for ever in the ipsq. 27949 */ 27950 ASSERT(err != EINPROGRESS); 27951 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipif, ipsq); 27952 } 27953 27954 /* Allocate the private structure */ 27955 static int 27956 ip_priv_alloc(void **bufp) 27957 { 27958 void *buf; 27959 27960 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 27961 return (ENOMEM); 27962 27963 *bufp = buf; 27964 return (0); 27965 } 27966 27967 /* Function to delete the private structure */ 27968 void 27969 ip_priv_free(void *buf) 27970 { 27971 ASSERT(buf != NULL); 27972 kmem_free(buf, sizeof (ip_priv_t)); 27973 } 27974 27975 /* 27976 * The entry point for IPPF processing. 27977 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 27978 * routine just returns. 27979 * 27980 * When called, ip_process generates an ipp_packet_t structure 27981 * which holds the state information for this packet and invokes the 27982 * the classifier (via ipp_packet_process). The classification, depending on 27983 * configured filters, results in a list of actions for this packet. Invoking 27984 * an action may cause the packet to be dropped, in which case the resulting 27985 * mblk (*mpp) is NULL. proc indicates the callout position for 27986 * this packet and ill_index is the interface this packet on or will leave 27987 * on (inbound and outbound resp.). 27988 */ 27989 void 27990 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 27991 { 27992 mblk_t *mp; 27993 ip_priv_t *priv; 27994 ipp_action_id_t aid; 27995 int rc = 0; 27996 ipp_packet_t *pp; 27997 #define IP_CLASS "ip" 27998 27999 /* If the classifier is not loaded, return */ 28000 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28001 return; 28002 } 28003 28004 mp = *mpp; 28005 ASSERT(mp != NULL); 28006 28007 /* Allocate the packet structure */ 28008 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28009 if (rc != 0) { 28010 *mpp = NULL; 28011 freemsg(mp); 28012 return; 28013 } 28014 28015 /* Allocate the private structure */ 28016 rc = ip_priv_alloc((void **)&priv); 28017 if (rc != 0) { 28018 *mpp = NULL; 28019 freemsg(mp); 28020 ipp_packet_free(pp); 28021 return; 28022 } 28023 priv->proc = proc; 28024 priv->ill_index = ill_index; 28025 ipp_packet_set_private(pp, priv, ip_priv_free); 28026 ipp_packet_set_data(pp, mp); 28027 28028 /* Invoke the classifier */ 28029 rc = ipp_packet_process(&pp); 28030 if (pp != NULL) { 28031 mp = ipp_packet_get_data(pp); 28032 ipp_packet_free(pp); 28033 if (rc != 0) { 28034 freemsg(mp); 28035 *mpp = NULL; 28036 } 28037 } else { 28038 *mpp = NULL; 28039 } 28040 #undef IP_CLASS 28041 } 28042 28043 /* 28044 * Propagate a multicast group membership operation (add/drop) on 28045 * all the interfaces crossed by the related multirt routes. 28046 * The call is considered successful if the operation succeeds 28047 * on at least one interface. 28048 */ 28049 static int 28050 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28051 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28052 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28053 mblk_t *first_mp) 28054 { 28055 ire_t *ire_gw; 28056 irb_t *irb; 28057 int error = 0; 28058 opt_restart_t *or; 28059 28060 irb = ire->ire_bucket; 28061 ASSERT(irb != NULL); 28062 28063 ASSERT(DB_TYPE(first_mp) == M_CTL); 28064 28065 or = (opt_restart_t *)first_mp->b_rptr; 28066 IRB_REFHOLD(irb); 28067 for (; ire != NULL; ire = ire->ire_next) { 28068 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28069 continue; 28070 if (ire->ire_addr != group) 28071 continue; 28072 28073 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28074 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28075 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE); 28076 /* No resolver exists for the gateway; skip this ire. */ 28077 if (ire_gw == NULL) 28078 continue; 28079 28080 /* 28081 * This function can return EINPROGRESS. If so the operation 28082 * will be restarted from ip_restart_optmgmt which will 28083 * call ip_opt_set and option processing will restart for 28084 * this option. So we may end up calling 'fn' more than once. 28085 * This requires that 'fn' is idempotent except for the 28086 * return value. The operation is considered a success if 28087 * it succeeds at least once on any one interface. 28088 */ 28089 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28090 NULL, fmode, src, first_mp); 28091 if (error == 0) 28092 or->or_private = CGTP_MCAST_SUCCESS; 28093 28094 if (ip_debug > 0) { 28095 ulong_t off; 28096 char *ksym; 28097 ksym = kobj_getsymname((uintptr_t)fn, &off); 28098 ip2dbg(("ip_multirt_apply_membership: " 28099 "called %s, multirt group 0x%08x via itf 0x%08x, " 28100 "error %d [success %u]\n", 28101 ksym ? ksym : "?", 28102 ntohl(group), ntohl(ire_gw->ire_src_addr), 28103 error, or->or_private)); 28104 } 28105 28106 ire_refrele(ire_gw); 28107 if (error == EINPROGRESS) { 28108 IRB_REFRELE(irb); 28109 return (error); 28110 } 28111 } 28112 IRB_REFRELE(irb); 28113 /* 28114 * Consider the call as successful if we succeeded on at least 28115 * one interface. Otherwise, return the last encountered error. 28116 */ 28117 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28118 } 28119 28120 28121 /* 28122 * Issue a warning regarding a route crossing an interface with an 28123 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28124 * amount of time is logged. 28125 */ 28126 static void 28127 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28128 { 28129 hrtime_t current = gethrtime(); 28130 char buf[INET_ADDRSTRLEN]; 28131 28132 /* Convert interval in ms to hrtime in ns */ 28133 if (multirt_bad_mtu_last_time + 28134 ((hrtime_t)ip_multirt_log_interval * (hrtime_t)1000000) <= 28135 current) { 28136 cmn_err(CE_WARN, "ip: ignoring multiroute " 28137 "to %s, incorrect MTU %u (expected %u)\n", 28138 ip_dot_addr(ire->ire_addr, buf), 28139 ire->ire_max_frag, max_frag); 28140 28141 multirt_bad_mtu_last_time = current; 28142 } 28143 } 28144 28145 28146 /* 28147 * Get the CGTP (multirouting) filtering status. 28148 * If 0, the CGTP hooks are transparent. 28149 */ 28150 /* ARGSUSED */ 28151 static int 28152 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28153 { 28154 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28155 28156 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28157 return (0); 28158 } 28159 28160 28161 /* 28162 * Set the CGTP (multirouting) filtering status. 28163 * If the status is changed from active to transparent 28164 * or from transparent to active, forward the new status 28165 * to the filtering module (if loaded). 28166 */ 28167 /* ARGSUSED */ 28168 static int 28169 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28170 cred_t *ioc_cr) 28171 { 28172 long new_value; 28173 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28174 28175 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28176 new_value < 0 || new_value > 1) { 28177 return (EINVAL); 28178 } 28179 28180 /* 28181 * Do not enable CGTP filtering - thus preventing the hooks 28182 * from being invoked - if the version number of the 28183 * filtering module hooks does not match. 28184 */ 28185 if ((ip_cgtp_filter_ops != NULL) && 28186 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 28187 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 28188 "(module hooks version %d, expecting %d)\n", 28189 ip_cgtp_filter_ops->cfo_filter_rev, CGTP_FILTER_REV); 28190 return (ENOTSUP); 28191 } 28192 28193 if ((!*ip_cgtp_filter_value) && new_value) { 28194 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28195 ip_cgtp_filter_ops == NULL ? 28196 " (module not loaded)" : ""); 28197 } 28198 if (*ip_cgtp_filter_value && (!new_value)) { 28199 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28200 ip_cgtp_filter_ops == NULL ? 28201 " (module not loaded)" : ""); 28202 } 28203 28204 if (ip_cgtp_filter_ops != NULL) { 28205 int res; 28206 if ((res = ip_cgtp_filter_ops->cfo_change_state(new_value))) { 28207 return (res); 28208 } 28209 } 28210 28211 *ip_cgtp_filter_value = (boolean_t)new_value; 28212 28213 return (0); 28214 } 28215 28216 28217 /* 28218 * Return the expected CGTP hooks version number. 28219 */ 28220 int 28221 ip_cgtp_filter_supported(void) 28222 { 28223 return (ip_cgtp_filter_rev); 28224 } 28225 28226 28227 /* 28228 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 28229 * or by invoking this function. In the first case, the version number 28230 * of the registered structure is checked at hooks activation time 28231 * in ip_cgtp_filter_set(). 28232 */ 28233 int 28234 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 28235 { 28236 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 28237 return (ENOTSUP); 28238 28239 ip_cgtp_filter_ops = ops; 28240 return (0); 28241 } 28242 28243 static squeue_func_t 28244 ip_squeue_switch(int val) 28245 { 28246 squeue_func_t rval = squeue_fill; 28247 28248 switch (val) { 28249 case IP_SQUEUE_ENTER_NODRAIN: 28250 rval = squeue_enter_nodrain; 28251 break; 28252 case IP_SQUEUE_ENTER: 28253 rval = squeue_enter; 28254 break; 28255 default: 28256 break; 28257 } 28258 return (rval); 28259 } 28260 28261 /* ARGSUSED */ 28262 static int 28263 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 28264 caddr_t addr, cred_t *cr) 28265 { 28266 int *v = (int *)addr; 28267 long new_value; 28268 28269 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28270 return (EINVAL); 28271 28272 ip_input_proc = ip_squeue_switch(new_value); 28273 *v = new_value; 28274 return (0); 28275 } 28276 28277 /* ARGSUSED */ 28278 static int 28279 ip_int_set(queue_t *q, mblk_t *mp, char *value, 28280 caddr_t addr, cred_t *cr) 28281 { 28282 int *v = (int *)addr; 28283 long new_value; 28284 28285 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28286 return (EINVAL); 28287 28288 *v = new_value; 28289 return (0); 28290 } 28291 28292 static void 28293 ip_kstat_init(void) 28294 { 28295 ip_named_kstat_t template = { 28296 { "forwarding", KSTAT_DATA_UINT32, 0 }, 28297 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 28298 { "inReceives", KSTAT_DATA_UINT32, 0 }, 28299 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 28300 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 28301 { "forwDatagrams", KSTAT_DATA_UINT32, 0 }, 28302 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 28303 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 28304 { "inDelivers", KSTAT_DATA_UINT32, 0 }, 28305 { "outRequests", KSTAT_DATA_UINT32, 0 }, 28306 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 28307 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 28308 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 28309 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 28310 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 28311 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 28312 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 28313 { "fragFails", KSTAT_DATA_UINT32, 0 }, 28314 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 28315 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 28316 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 28317 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 28318 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 28319 { "inErrs", KSTAT_DATA_UINT32, 0 }, 28320 { "noPorts", KSTAT_DATA_UINT32, 0 }, 28321 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 28322 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 28323 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 28324 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 28325 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 28326 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 28327 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 28328 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 28329 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 28330 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 28331 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 28332 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 28333 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 28334 }; 28335 28336 ip_mibkp = kstat_create("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 28337 NUM_OF_FIELDS(ip_named_kstat_t), 28338 0); 28339 if (!ip_mibkp) 28340 return; 28341 28342 template.forwarding.value.ui32 = WE_ARE_FORWARDING ? 1:2; 28343 template.defaultTTL.value.ui32 = (uint32_t)ip_def_ttl; 28344 template.reasmTimeout.value.ui32 = ip_g_frag_timeout; 28345 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 28346 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 28347 28348 template.netToMediaEntrySize.value.i32 = 28349 sizeof (mib2_ipNetToMediaEntry_t); 28350 28351 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 28352 28353 bcopy(&template, ip_mibkp->ks_data, sizeof (template)); 28354 28355 ip_mibkp->ks_update = ip_kstat_update; 28356 28357 kstat_install(ip_mibkp); 28358 } 28359 28360 static void 28361 ip_kstat_fini(void) 28362 { 28363 28364 if (ip_mibkp != NULL) { 28365 kstat_delete(ip_mibkp); 28366 ip_mibkp = NULL; 28367 } 28368 } 28369 28370 static int 28371 ip_kstat_update(kstat_t *kp, int rw) 28372 { 28373 ip_named_kstat_t *ipkp; 28374 28375 if (!kp || !kp->ks_data) 28376 return (EIO); 28377 28378 if (rw == KSTAT_WRITE) 28379 return (EACCES); 28380 28381 ipkp = (ip_named_kstat_t *)kp->ks_data; 28382 28383 ipkp->forwarding.value.ui32 = ip_mib.ipForwarding; 28384 ipkp->defaultTTL.value.ui32 = ip_mib.ipDefaultTTL; 28385 ipkp->inReceives.value.ui32 = ip_mib.ipInReceives; 28386 ipkp->inHdrErrors.value.ui32 = ip_mib.ipInHdrErrors; 28387 ipkp->inAddrErrors.value.ui32 = ip_mib.ipInAddrErrors; 28388 ipkp->forwDatagrams.value.ui32 = ip_mib.ipForwDatagrams; 28389 ipkp->inUnknownProtos.value.ui32 = ip_mib.ipInUnknownProtos; 28390 ipkp->inDiscards.value.ui32 = ip_mib.ipInDiscards; 28391 ipkp->inDelivers.value.ui32 = ip_mib.ipInDelivers; 28392 ipkp->outRequests.value.ui32 = ip_mib.ipOutRequests; 28393 ipkp->outDiscards.value.ui32 = ip_mib.ipOutDiscards; 28394 ipkp->outNoRoutes.value.ui32 = ip_mib.ipOutNoRoutes; 28395 ipkp->reasmTimeout.value.ui32 = ip_mib.ipReasmTimeout; 28396 ipkp->reasmReqds.value.ui32 = ip_mib.ipReasmReqds; 28397 ipkp->reasmOKs.value.ui32 = ip_mib.ipReasmOKs; 28398 ipkp->reasmFails.value.ui32 = ip_mib.ipReasmFails; 28399 ipkp->fragOKs.value.ui32 = ip_mib.ipFragOKs; 28400 ipkp->fragFails.value.ui32 = ip_mib.ipFragFails; 28401 ipkp->fragCreates.value.ui32 = ip_mib.ipFragCreates; 28402 28403 ipkp->routingDiscards.value.ui32 = ip_mib.ipRoutingDiscards; 28404 ipkp->inErrs.value.ui32 = ip_mib.tcpInErrs; 28405 ipkp->noPorts.value.ui32 = ip_mib.udpNoPorts; 28406 ipkp->inCksumErrs.value.ui32 = ip_mib.ipInCksumErrs; 28407 ipkp->reasmDuplicates.value.ui32 = ip_mib.ipReasmDuplicates; 28408 ipkp->reasmPartDups.value.ui32 = ip_mib.ipReasmPartDups; 28409 ipkp->forwProhibits.value.ui32 = ip_mib.ipForwProhibits; 28410 ipkp->udpInCksumErrs.value.ui32 = ip_mib.udpInCksumErrs; 28411 ipkp->udpInOverflows.value.ui32 = ip_mib.udpInOverflows; 28412 ipkp->rawipInOverflows.value.ui32 = ip_mib.rawipInOverflows; 28413 ipkp->ipsecInSucceeded.value.ui32 = ip_mib.ipsecInSucceeded; 28414 ipkp->ipsecInFailed.value.i32 = ip_mib.ipsecInFailed; 28415 28416 ipkp->inIPv6.value.ui32 = ip_mib.ipInIPv6; 28417 ipkp->outIPv6.value.ui32 = ip_mib.ipOutIPv6; 28418 ipkp->outSwitchIPv6.value.ui32 = ip_mib.ipOutSwitchIPv6; 28419 28420 return (0); 28421 } 28422 28423 static void 28424 icmp_kstat_init(void) 28425 { 28426 icmp_named_kstat_t template = { 28427 { "inMsgs", KSTAT_DATA_UINT32 }, 28428 { "inErrors", KSTAT_DATA_UINT32 }, 28429 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 28430 { "inTimeExcds", KSTAT_DATA_UINT32 }, 28431 { "inParmProbs", KSTAT_DATA_UINT32 }, 28432 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 28433 { "inRedirects", KSTAT_DATA_UINT32 }, 28434 { "inEchos", KSTAT_DATA_UINT32 }, 28435 { "inEchoReps", KSTAT_DATA_UINT32 }, 28436 { "inTimestamps", KSTAT_DATA_UINT32 }, 28437 { "inTimestampReps", KSTAT_DATA_UINT32 }, 28438 { "inAddrMasks", KSTAT_DATA_UINT32 }, 28439 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 28440 { "outMsgs", KSTAT_DATA_UINT32 }, 28441 { "outErrors", KSTAT_DATA_UINT32 }, 28442 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 28443 { "outTimeExcds", KSTAT_DATA_UINT32 }, 28444 { "outParmProbs", KSTAT_DATA_UINT32 }, 28445 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 28446 { "outRedirects", KSTAT_DATA_UINT32 }, 28447 { "outEchos", KSTAT_DATA_UINT32 }, 28448 { "outEchoReps", KSTAT_DATA_UINT32 }, 28449 { "outTimestamps", KSTAT_DATA_UINT32 }, 28450 { "outTimestampReps", KSTAT_DATA_UINT32 }, 28451 { "outAddrMasks", KSTAT_DATA_UINT32 }, 28452 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 28453 { "inChksumErrs", KSTAT_DATA_UINT32 }, 28454 { "inUnknowns", KSTAT_DATA_UINT32 }, 28455 { "inFragNeeded", KSTAT_DATA_UINT32 }, 28456 { "outFragNeeded", KSTAT_DATA_UINT32 }, 28457 { "outDrops", KSTAT_DATA_UINT32 }, 28458 { "inOverFlows", KSTAT_DATA_UINT32 }, 28459 { "inBadRedirects", KSTAT_DATA_UINT32 }, 28460 }; 28461 28462 icmp_mibkp = kstat_create("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 28463 NUM_OF_FIELDS(icmp_named_kstat_t), 28464 0); 28465 if (icmp_mibkp == NULL) 28466 return; 28467 28468 bcopy(&template, icmp_mibkp->ks_data, sizeof (template)); 28469 28470 icmp_mibkp->ks_update = icmp_kstat_update; 28471 28472 kstat_install(icmp_mibkp); 28473 } 28474 28475 static void 28476 icmp_kstat_fini(void) 28477 { 28478 28479 if (icmp_mibkp != NULL) { 28480 kstat_delete(icmp_mibkp); 28481 icmp_mibkp = NULL; 28482 } 28483 } 28484 28485 static int 28486 icmp_kstat_update(kstat_t *kp, int rw) 28487 { 28488 icmp_named_kstat_t *icmpkp; 28489 28490 if ((kp == NULL) || (kp->ks_data == NULL)) 28491 return (EIO); 28492 28493 if (rw == KSTAT_WRITE) 28494 return (EACCES); 28495 28496 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 28497 28498 icmpkp->inMsgs.value.ui32 = icmp_mib.icmpInMsgs; 28499 icmpkp->inErrors.value.ui32 = icmp_mib.icmpInErrors; 28500 icmpkp->inDestUnreachs.value.ui32 = icmp_mib.icmpInDestUnreachs; 28501 icmpkp->inTimeExcds.value.ui32 = icmp_mib.icmpInTimeExcds; 28502 icmpkp->inParmProbs.value.ui32 = icmp_mib.icmpInParmProbs; 28503 icmpkp->inSrcQuenchs.value.ui32 = icmp_mib.icmpInSrcQuenchs; 28504 icmpkp->inRedirects.value.ui32 = icmp_mib.icmpInRedirects; 28505 icmpkp->inEchos.value.ui32 = icmp_mib.icmpInEchos; 28506 icmpkp->inEchoReps.value.ui32 = icmp_mib.icmpInEchoReps; 28507 icmpkp->inTimestamps.value.ui32 = icmp_mib.icmpInTimestamps; 28508 icmpkp->inTimestampReps.value.ui32 = icmp_mib.icmpInTimestampReps; 28509 icmpkp->inAddrMasks.value.ui32 = icmp_mib.icmpInAddrMasks; 28510 icmpkp->inAddrMaskReps.value.ui32 = icmp_mib.icmpInAddrMaskReps; 28511 icmpkp->outMsgs.value.ui32 = icmp_mib.icmpOutMsgs; 28512 icmpkp->outErrors.value.ui32 = icmp_mib.icmpOutErrors; 28513 icmpkp->outDestUnreachs.value.ui32 = icmp_mib.icmpOutDestUnreachs; 28514 icmpkp->outTimeExcds.value.ui32 = icmp_mib.icmpOutTimeExcds; 28515 icmpkp->outParmProbs.value.ui32 = icmp_mib.icmpOutParmProbs; 28516 icmpkp->outSrcQuenchs.value.ui32 = icmp_mib.icmpOutSrcQuenchs; 28517 icmpkp->outRedirects.value.ui32 = icmp_mib.icmpOutRedirects; 28518 icmpkp->outEchos.value.ui32 = icmp_mib.icmpOutEchos; 28519 icmpkp->outEchoReps.value.ui32 = icmp_mib.icmpOutEchoReps; 28520 icmpkp->outTimestamps.value.ui32 = icmp_mib.icmpOutTimestamps; 28521 icmpkp->outTimestampReps.value.ui32 = icmp_mib.icmpOutTimestampReps; 28522 icmpkp->outAddrMasks.value.ui32 = icmp_mib.icmpOutAddrMasks; 28523 icmpkp->outAddrMaskReps.value.ui32 = icmp_mib.icmpOutAddrMaskReps; 28524 icmpkp->inCksumErrs.value.ui32 = icmp_mib.icmpInCksumErrs; 28525 icmpkp->inUnknowns.value.ui32 = icmp_mib.icmpInUnknowns; 28526 icmpkp->inFragNeeded.value.ui32 = icmp_mib.icmpInFragNeeded; 28527 icmpkp->outFragNeeded.value.ui32 = icmp_mib.icmpOutFragNeeded; 28528 icmpkp->outDrops.value.ui32 = icmp_mib.icmpOutDrops; 28529 icmpkp->inOverflows.value.ui32 = icmp_mib.icmpInOverflows; 28530 icmpkp->inBadRedirects.value.ui32 = icmp_mib.icmpInBadRedirects; 28531 28532 return (0); 28533 } 28534 28535 /* 28536 * This is the fanout function for raw socket opened for SCTP. Note 28537 * that it is called after SCTP checks that there is no socket which 28538 * wants a packet. Then before SCTP handles this out of the blue packet, 28539 * this function is called to see if there is any raw socket for SCTP. 28540 * If there is and it is bound to the correct address, the packet will 28541 * be sent to that socket. Note that only one raw socket can be bound to 28542 * a port. This is assured in ipcl_sctp_hash_insert(); 28543 */ 28544 void 28545 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 28546 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 28547 uint_t ipif_seqid, zoneid_t zoneid) 28548 { 28549 conn_t *connp; 28550 queue_t *rq; 28551 mblk_t *first_mp; 28552 boolean_t secure; 28553 ip6_t *ip6h; 28554 28555 first_mp = mp; 28556 if (mctl_present) { 28557 mp = first_mp->b_cont; 28558 secure = ipsec_in_is_secure(first_mp); 28559 ASSERT(mp != NULL); 28560 } else { 28561 secure = B_FALSE; 28562 } 28563 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 28564 28565 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha); 28566 if (connp == NULL) { 28567 sctp_ootb_input(first_mp, recv_ill, ipif_seqid, zoneid, 28568 mctl_present); 28569 return; 28570 } 28571 rq = connp->conn_rq; 28572 if (!canputnext(rq)) { 28573 CONN_DEC_REF(connp); 28574 BUMP_MIB(&ip_mib, rawipInOverflows); 28575 freemsg(first_mp); 28576 return; 28577 } 28578 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp) : 28579 CONN_INBOUND_POLICY_PRESENT_V6(connp)) || secure) { 28580 first_mp = ipsec_check_inbound_policy(first_mp, connp, 28581 (isv4 ? ipha : NULL), ip6h, mctl_present); 28582 if (first_mp == NULL) { 28583 CONN_DEC_REF(connp); 28584 return; 28585 } 28586 } 28587 /* 28588 * We probably should not send M_CTL message up to 28589 * raw socket. 28590 */ 28591 if (mctl_present) 28592 freeb(first_mp); 28593 28594 /* Initiate IPPF processing here if needed. */ 28595 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) || 28596 (!isv4 && IP6_IN_IPP(flags))) { 28597 ip_process(IPP_LOCAL_IN, &mp, 28598 recv_ill->ill_phyint->phyint_ifindex); 28599 if (mp == NULL) { 28600 CONN_DEC_REF(connp); 28601 return; 28602 } 28603 } 28604 28605 if (connp->conn_recvif || connp->conn_recvslla || 28606 ((connp->conn_ipv6_recvpktinfo || 28607 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 28608 (flags & IP_FF_IP6INFO))) { 28609 int in_flags = 0; 28610 28611 if (connp->conn_recvif || connp->conn_ipv6_recvpktinfo) { 28612 in_flags = IPF_RECVIF; 28613 } 28614 if (connp->conn_recvslla) { 28615 in_flags |= IPF_RECVSLLA; 28616 } 28617 if (isv4) { 28618 mp = ip_add_info(mp, recv_ill, in_flags); 28619 } else { 28620 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 28621 if (mp == NULL) { 28622 CONN_DEC_REF(connp); 28623 return; 28624 } 28625 } 28626 } 28627 28628 BUMP_MIB(&ip_mib, ipInDelivers); 28629 /* 28630 * We are sending the IPSEC_IN message also up. Refer 28631 * to comments above this function. 28632 */ 28633 putnext(rq, mp); 28634 CONN_DEC_REF(connp); 28635 } 28636 28637 /* 28638 * This function should be called only if all packet processing 28639 * including fragmentation is complete. Callers of this function 28640 * must set mp->b_prev to one of these values: 28641 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 28642 * prior to handing over the mp as first argument to this function. 28643 * 28644 * If the ire passed by caller is incomplete, this function 28645 * queues the packet and if necessary, sends ARP request and bails. 28646 * If the ire passed is fully resolved, we simply prepend 28647 * the link-layer header to the packet, do ipsec hw acceleration 28648 * work if necessary, and send the packet out on the wire. 28649 * 28650 * NOTE: IPSEC will only call this function with fully resolved 28651 * ires if hw acceleration is involved. 28652 * TODO list : 28653 * a Handle M_MULTIDATA so that 28654 * tcp_multisend->tcp_multisend_data can 28655 * call ip_xmit_v4 directly 28656 * b Handle post-ARP work for fragments so that 28657 * ip_wput_frag can call this function. 28658 */ 28659 ipxmit_state_t 28660 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 28661 { 28662 nce_t *arpce; 28663 queue_t *q; 28664 int ill_index; 28665 mblk_t *nxt_mp, *first_mp; 28666 boolean_t xmit_drop = B_FALSE; 28667 ip_proc_t proc; 28668 ill_t *out_ill; 28669 28670 arpce = ire->ire_nce; 28671 ASSERT(arpce != NULL); 28672 28673 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 28674 28675 mutex_enter(&arpce->nce_lock); 28676 switch (arpce->nce_state) { 28677 case ND_REACHABLE: 28678 /* If there are other queued packets, queue this packet */ 28679 if (arpce->nce_qd_mp != NULL) { 28680 if (mp != NULL) 28681 nce_queue_mp_common(arpce, mp, B_FALSE); 28682 mp = arpce->nce_qd_mp; 28683 } 28684 arpce->nce_qd_mp = NULL; 28685 mutex_exit(&arpce->nce_lock); 28686 28687 /* 28688 * Flush the queue. In the common case, where the 28689 * ARP is already resolved, it will go through the 28690 * while loop only once. 28691 */ 28692 while (mp != NULL) { 28693 28694 nxt_mp = mp->b_next; 28695 mp->b_next = NULL; 28696 /* 28697 * This info is needed for IPQOS to do COS marking 28698 * in ip_wput_attach_llhdr->ip_process. 28699 */ 28700 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 28701 mp->b_prev = NULL; 28702 28703 /* set up ill index for outbound qos processing */ 28704 out_ill = ire->ire_ipif->ipif_ill; 28705 ill_index = out_ill->ill_phyint->phyint_ifindex; 28706 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 28707 ill_index); 28708 if (first_mp == NULL) { 28709 xmit_drop = B_TRUE; 28710 if (proc == IPP_FWD_OUT) { 28711 BUMP_MIB(&ip_mib, ipInDiscards); 28712 } else { 28713 BUMP_MIB(&ip_mib, ipOutDiscards); 28714 } 28715 goto next_mp; 28716 } 28717 /* non-ipsec hw accel case */ 28718 if (io == NULL || !io->ipsec_out_accelerated) { 28719 /* send it */ 28720 q = ire->ire_stq; 28721 if (proc == IPP_FWD_OUT) { 28722 UPDATE_IB_PKT_COUNT(ire); 28723 } else { 28724 UPDATE_OB_PKT_COUNT(ire); 28725 } 28726 ire->ire_last_used_time = lbolt; 28727 28728 if (flow_ctl_enabled || canputnext(q)) { 28729 if (proc == IPP_FWD_OUT) { 28730 BUMP_MIB(&ip_mib, 28731 ipForwDatagrams); 28732 } 28733 28734 if (mp == NULL) 28735 goto next_mp; 28736 putnext(q, first_mp); 28737 } else { 28738 BUMP_MIB(&ip_mib, 28739 ipOutDiscards); 28740 xmit_drop = B_TRUE; 28741 freemsg(first_mp); 28742 } 28743 } else { 28744 /* 28745 * Safety Pup says: make sure this 28746 * is going to the right interface! 28747 */ 28748 ill_t *ill1 = 28749 (ill_t *)ire->ire_stq->q_ptr; 28750 int ifindex = 28751 ill1->ill_phyint->phyint_ifindex; 28752 if (ifindex != 28753 io->ipsec_out_capab_ill_index) { 28754 xmit_drop = B_TRUE; 28755 freemsg(mp); 28756 } else { 28757 ipsec_hw_putnext(ire->ire_stq, 28758 mp); 28759 } 28760 } 28761 next_mp: 28762 mp = nxt_mp; 28763 } /* while (mp != NULL) */ 28764 if (xmit_drop) 28765 return (SEND_FAILED); 28766 else 28767 return (SEND_PASSED); 28768 28769 case ND_INITIAL: 28770 case ND_INCOMPLETE: 28771 28772 /* 28773 * While we do send off packets to dests that 28774 * use fully-resolved CGTP routes, we do not 28775 * handle unresolved CGTP routes. 28776 */ 28777 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 28778 ASSERT(io == NULL || !io->ipsec_out_accelerated); 28779 28780 if (mp != NULL) { 28781 /* queue the packet */ 28782 nce_queue_mp_common(arpce, mp, B_FALSE); 28783 } 28784 28785 if (arpce->nce_state == ND_INCOMPLETE) { 28786 mutex_exit(&arpce->nce_lock); 28787 DTRACE_PROBE3(ip__xmit__incomplete, 28788 (ire_t *), ire, (mblk_t *), mp, 28789 (ipsec_out_t *), io); 28790 return (LOOKUP_IN_PROGRESS); 28791 } 28792 28793 arpce->nce_state = ND_INCOMPLETE; 28794 mutex_exit(&arpce->nce_lock); 28795 /* 28796 * Note that ire_add() (called from ire_forward()) 28797 * holds a ref on the ire until ARP is completed. 28798 */ 28799 28800 ire_arpresolve(ire, ire_to_ill(ire)); 28801 return (LOOKUP_IN_PROGRESS); 28802 default: 28803 ASSERT(0); 28804 mutex_exit(&arpce->nce_lock); 28805 return (LLHDR_RESLV_FAILED); 28806 } 28807 } 28808 28809 /* 28810 * Return B_TRUE if the buffers differ in length or content. 28811 * This is used for comparing extension header buffers. 28812 * Note that an extension header would be declared different 28813 * even if all that changed was the next header value in that header i.e. 28814 * what really changed is the next extension header. 28815 */ 28816 boolean_t 28817 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 28818 uint_t blen) 28819 { 28820 if (!b_valid) 28821 blen = 0; 28822 28823 if (alen != blen) 28824 return (B_TRUE); 28825 if (alen == 0) 28826 return (B_FALSE); /* Both zero length */ 28827 return (bcmp(abuf, bbuf, alen)); 28828 } 28829 28830 /* 28831 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 28832 * Return B_FALSE if memory allocation fails - don't change any state! 28833 */ 28834 boolean_t 28835 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 28836 const void *src, uint_t srclen) 28837 { 28838 void *dst; 28839 28840 if (!src_valid) 28841 srclen = 0; 28842 28843 ASSERT(*dstlenp == 0); 28844 if (src != NULL && srclen != 0) { 28845 dst = mi_alloc(srclen, BPRI_MED); 28846 if (dst == NULL) 28847 return (B_FALSE); 28848 } else { 28849 dst = NULL; 28850 } 28851 if (*dstp != NULL) 28852 mi_free(*dstp); 28853 *dstp = dst; 28854 *dstlenp = dst == NULL ? 0 : srclen; 28855 return (B_TRUE); 28856 } 28857 28858 /* 28859 * Replace what is in *dst, *dstlen with the source. 28860 * Assumes ip_allocbuf has already been called. 28861 */ 28862 void 28863 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 28864 const void *src, uint_t srclen) 28865 { 28866 if (!src_valid) 28867 srclen = 0; 28868 28869 ASSERT(*dstlenp == srclen); 28870 if (src != NULL && srclen != 0) 28871 bcopy(src, *dstp, srclen); 28872 } 28873 28874 /* 28875 * Free the storage pointed to by the members of an ip6_pkt_t. 28876 */ 28877 void 28878 ip6_pkt_free(ip6_pkt_t *ipp) 28879 { 28880 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 28881 28882 if (ipp->ipp_fields & IPPF_HOPOPTS) { 28883 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 28884 ipp->ipp_hopopts = NULL; 28885 ipp->ipp_hopoptslen = 0; 28886 } 28887 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 28888 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 28889 ipp->ipp_rtdstopts = NULL; 28890 ipp->ipp_rtdstoptslen = 0; 28891 } 28892 if (ipp->ipp_fields & IPPF_DSTOPTS) { 28893 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 28894 ipp->ipp_dstopts = NULL; 28895 ipp->ipp_dstoptslen = 0; 28896 } 28897 if (ipp->ipp_fields & IPPF_RTHDR) { 28898 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 28899 ipp->ipp_rthdr = NULL; 28900 ipp->ipp_rthdrlen = 0; 28901 } 28902 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 28903 IPPF_RTHDR); 28904 } 28905