1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/kobj.h> 44 #include <sys/modctl.h> 45 #include <sys/atomic.h> 46 #include <sys/policy.h> 47 #include <sys/priv.h> 48 #include <sys/taskq.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/tun.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <inet/rawip_impl.h> 121 #include <inet/rts_impl.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 #include <sys/squeue_impl.h> 128 129 /* 130 * Values for squeue switch: 131 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 132 * IP_SQUEUE_ENTER: SQ_PROCESS 133 * IP_SQUEUE_FILL: SQ_FILL 134 */ 135 int ip_squeue_enter = 2; /* Setable in /etc/system */ 136 137 int ip_squeue_flag; 138 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 139 140 /* 141 * Setable in /etc/system 142 */ 143 int ip_poll_normal_ms = 100; 144 int ip_poll_normal_ticks = 0; 145 int ip_modclose_ackwait_ms = 3000; 146 147 /* 148 * It would be nice to have these present only in DEBUG systems, but the 149 * current design of the global symbol checking logic requires them to be 150 * unconditionally present. 151 */ 152 uint_t ip_thread_data; /* TSD key for debug support */ 153 krwlock_t ip_thread_rwlock; 154 list_t ip_thread_list; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 uint_t ird_flags; /* see below */ 174 listptr_t ird_route; /* ipRouteEntryTable */ 175 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 176 listptr_t ird_attrs; /* ipRouteAttributeTable */ 177 } iproutedata_t; 178 179 #define IRD_REPORT_TESTHIDDEN 0x01 /* include IRE_MARK_TESTHIDDEN routes */ 180 181 /* 182 * Cluster specific hooks. These should be NULL when booted as a non-cluster 183 */ 184 185 /* 186 * Hook functions to enable cluster networking 187 * On non-clustered systems these vectors must always be NULL. 188 * 189 * Hook function to Check ip specified ip address is a shared ip address 190 * in the cluster 191 * 192 */ 193 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 194 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 195 196 /* 197 * Hook function to generate cluster wide ip fragment identifier 198 */ 199 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 200 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 201 void *args) = NULL; 202 203 /* 204 * Hook function to generate cluster wide SPI. 205 */ 206 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 207 void *) = NULL; 208 209 /* 210 * Hook function to verify if the SPI is already utlized. 211 */ 212 213 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 214 215 /* 216 * Hook function to delete the SPI from the cluster wide repository. 217 */ 218 219 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 220 221 /* 222 * Hook function to inform the cluster when packet received on an IDLE SA 223 */ 224 225 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 226 in6_addr_t, in6_addr_t, void *) = NULL; 227 228 /* 229 * Synchronization notes: 230 * 231 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 232 * MT level protection given by STREAMS. IP uses a combination of its own 233 * internal serialization mechanism and standard Solaris locking techniques. 234 * The internal serialization is per phyint. This is used to serialize 235 * plumbing operations, certain multicast operations, most set ioctls, 236 * igmp/mld timers etc. 237 * 238 * Plumbing is a long sequence of operations involving message 239 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 240 * involved in plumbing operations. A natural model is to serialize these 241 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 242 * parallel without any interference. But various set ioctls on hme0 are best 243 * serialized, along with multicast join/leave operations, igmp/mld timer 244 * operations, and processing of DLPI control messages received from drivers 245 * on a per phyint basis. This serialization is provided by the ipsq_t and 246 * primitives operating on this. Details can be found in ip_if.c above the 247 * core primitives operating on ipsq_t. 248 * 249 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 250 * Simiarly lookup of an ire by a thread also returns a refheld ire. 251 * In addition ipif's and ill's referenced by the ire are also indirectly 252 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 253 * the ipif's address or netmask change as long as an ipif is refheld 254 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 255 * address of an ipif has to go through the ipsq_t. This ensures that only 256 * 1 such exclusive operation proceeds at any time on the ipif. It then 257 * deletes all ires associated with this ipif, and waits for all refcnts 258 * associated with this ipif to come down to zero. The address is changed 259 * only after the ipif has been quiesced. Then the ipif is brought up again. 260 * More details are described above the comment in ip_sioctl_flags. 261 * 262 * Packet processing is based mostly on IREs and are fully multi-threaded 263 * using standard Solaris MT techniques. 264 * 265 * There are explicit locks in IP to handle: 266 * - The ip_g_head list maintained by mi_open_link() and friends. 267 * 268 * - The reassembly data structures (one lock per hash bucket) 269 * 270 * - conn_lock is meant to protect conn_t fields. The fields actually 271 * protected by conn_lock are documented in the conn_t definition. 272 * 273 * - ire_lock to protect some of the fields of the ire, IRE tables 274 * (one lock per hash bucket). Refer to ip_ire.c for details. 275 * 276 * - ndp_g_lock and nce_lock for protecting NCEs. 277 * 278 * - ill_lock protects fields of the ill and ipif. Details in ip.h 279 * 280 * - ill_g_lock: This is a global reader/writer lock. Protects the following 281 * * The AVL tree based global multi list of all ills. 282 * * The linked list of all ipifs of an ill 283 * * The <ipsq-xop> mapping 284 * * <ill-phyint> association 285 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 286 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 287 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 288 * writer for the actual duration of the insertion/deletion/change. 289 * 290 * - ill_lock: This is a per ill mutex. 291 * It protects some members of the ill_t struct; see ip.h for details. 292 * It also protects the <ill-phyint> assoc. 293 * It also protects the list of ipifs hanging off the ill. 294 * 295 * - ipsq_lock: This is a per ipsq_t mutex lock. 296 * This protects some members of the ipsq_t struct; see ip.h for details. 297 * It also protects the <ipsq-ipxop> mapping 298 * 299 * - ipx_lock: This is a per ipxop_t mutex lock. 300 * This protects some members of the ipxop_t struct; see ip.h for details. 301 * 302 * - phyint_lock: This is a per phyint mutex lock. Protects just the 303 * phyint_flags 304 * 305 * - ip_g_nd_lock: This is a global reader/writer lock. 306 * Any call to nd_load to load a new parameter to the ND table must hold the 307 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 308 * as reader. 309 * 310 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 311 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 312 * uniqueness check also done atomically. 313 * 314 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 315 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 316 * as a writer when adding or deleting elements from these lists, and 317 * as a reader when walking these lists to send a SADB update to the 318 * IPsec capable ills. 319 * 320 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 321 * group list linked by ill_usesrc_grp_next. It also protects the 322 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 323 * group is being added or deleted. This lock is taken as a reader when 324 * walking the list/group(eg: to get the number of members in a usesrc group). 325 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 326 * field is changing state i.e from NULL to non-NULL or vice-versa. For 327 * example, it is not necessary to take this lock in the initial portion 328 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 329 * operations are executed exclusively and that ensures that the "usesrc 330 * group state" cannot change. The "usesrc group state" change can happen 331 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 332 * 333 * Changing <ill-phyint>, <ipsq-xop> assocications: 334 * 335 * To change the <ill-phyint> association, the ill_g_lock must be held 336 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 337 * must be held. 338 * 339 * To change the <ipsq-xop> association, the ill_g_lock must be held as 340 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 341 * This is only done when ills are added or removed from IPMP groups. 342 * 343 * To add or delete an ipif from the list of ipifs hanging off the ill, 344 * ill_g_lock (writer) and ill_lock must be held and the thread must be 345 * a writer on the associated ipsq. 346 * 347 * To add or delete an ill to the system, the ill_g_lock must be held as 348 * writer and the thread must be a writer on the associated ipsq. 349 * 350 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 351 * must be a writer on the associated ipsq. 352 * 353 * Lock hierarchy 354 * 355 * Some lock hierarchy scenarios are listed below. 356 * 357 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 358 * ill_g_lock -> ill_lock(s) -> phyint_lock 359 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 360 * ill_g_lock -> ip_addr_avail_lock 361 * conn_lock -> irb_lock -> ill_lock -> ire_lock 362 * ill_g_lock -> ip_g_nd_lock 363 * 364 * When more than 1 ill lock is needed to be held, all ill lock addresses 365 * are sorted on address and locked starting from highest addressed lock 366 * downward. 367 * 368 * IPsec scenarios 369 * 370 * ipsa_lock -> ill_g_lock -> ill_lock 371 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 372 * ipsec_capab_ills_lock -> ipsa_lock 373 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 374 * 375 * Trusted Solaris scenarios 376 * 377 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 378 * igsa_lock -> gcdb_lock 379 * gcgrp_rwlock -> ire_lock 380 * gcgrp_rwlock -> gcdb_lock 381 * 382 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 383 * 384 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 385 * sq_lock -> conn_lock -> QLOCK(q) 386 * ill_lock -> ft_lock -> fe_lock 387 * 388 * Routing/forwarding table locking notes: 389 * 390 * Lock acquisition order: Radix tree lock, irb_lock. 391 * Requirements: 392 * i. Walker must not hold any locks during the walker callback. 393 * ii Walker must not see a truncated tree during the walk because of any node 394 * deletion. 395 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 396 * in many places in the code to walk the irb list. Thus even if all the 397 * ires in a bucket have been deleted, we still can't free the radix node 398 * until the ires have actually been inactive'd (freed). 399 * 400 * Tree traversal - Need to hold the global tree lock in read mode. 401 * Before dropping the global tree lock, need to either increment the ire_refcnt 402 * to ensure that the radix node can't be deleted. 403 * 404 * Tree add - Need to hold the global tree lock in write mode to add a 405 * radix node. To prevent the node from being deleted, increment the 406 * irb_refcnt, after the node is added to the tree. The ire itself is 407 * added later while holding the irb_lock, but not the tree lock. 408 * 409 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 410 * All associated ires must be inactive (i.e. freed), and irb_refcnt 411 * must be zero. 412 * 413 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 414 * global tree lock (read mode) for traversal. 415 * 416 * IPsec notes : 417 * 418 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 419 * in front of the actual packet. For outbound datagrams, the M_CTL 420 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 421 * information used by the IPsec code for applying the right level of 422 * protection. The information initialized by IP in the ipsec_out_t 423 * is determined by the per-socket policy or global policy in the system. 424 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 425 * ipsec_info.h) which starts out with nothing in it. It gets filled 426 * with the right information if it goes through the AH/ESP code, which 427 * happens if the incoming packet is secure. The information initialized 428 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 429 * the policy requirements needed by per-socket policy or global policy 430 * is met or not. 431 * 432 * If there is both per-socket policy (set using setsockopt) and there 433 * is also global policy match for the 5 tuples of the socket, 434 * ipsec_override_policy() makes the decision of which one to use. 435 * 436 * For fully connected sockets i.e dst, src [addr, port] is known, 437 * conn_policy_cached is set indicating that policy has been cached. 438 * conn_in_enforce_policy may or may not be set depending on whether 439 * there is a global policy match or per-socket policy match. 440 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 441 * Once the right policy is set on the conn_t, policy cannot change for 442 * this socket. This makes life simpler for TCP (UDP ?) where 443 * re-transmissions go out with the same policy. For symmetry, policy 444 * is cached for fully connected UDP sockets also. Thus if policy is cached, 445 * it also implies that policy is latched i.e policy cannot change 446 * on these sockets. As we have the right policy on the conn, we don't 447 * have to lookup global policy for every outbound and inbound datagram 448 * and thus serving as an optimization. Note that a global policy change 449 * does not affect fully connected sockets if they have policy. If fully 450 * connected sockets did not have any policy associated with it, global 451 * policy change may affect them. 452 * 453 * IP Flow control notes: 454 * --------------------- 455 * Non-TCP streams are flow controlled by IP. The way this is accomplished 456 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 457 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 458 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 459 * functions. 460 * 461 * Per Tx ring udp flow control: 462 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 463 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 464 * 465 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 466 * To achieve best performance, outgoing traffic need to be fanned out among 467 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 468 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 469 * the address of connp as fanout hint to mac_tx(). Under flow controlled 470 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 471 * cookie points to a specific Tx ring that is blocked. The cookie is used to 472 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 473 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 474 * connp's. The drain list is not a single list but a configurable number of 475 * lists. 476 * 477 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 478 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 479 * which is equal to 128. This array in turn contains a pointer to idl_t[], 480 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 481 * list will point to the list of connp's that are flow controlled. 482 * 483 * --------------- ------- ------- ------- 484 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 485 * | --------------- ------- ------- ------- 486 * | --------------- ------- ------- ------- 487 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 488 * ---------------- | --------------- ------- ------- ------- 489 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 490 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 491 * | --------------- ------- ------- ------- 492 * . . . . . 493 * | --------------- ------- ------- ------- 494 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 495 * --------------- ------- ------- ------- 496 * --------------- ------- ------- ------- 497 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 498 * | --------------- ------- ------- ------- 499 * | --------------- ------- ------- ------- 500 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 501 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 502 * ---------------- | . . . . 503 * | --------------- ------- ------- ------- 504 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 505 * --------------- ------- ------- ------- 506 * ..... 507 * ---------------- 508 * |idl_tx_list[n]|-> ... 509 * ---------------- 510 * 511 * When mac_tx() returns a cookie, the cookie is used to hash into a 512 * idl_tx_list in ips_idl_tx_list[] array. Then conn_drain_insert() is 513 * called passing idl_tx_list. The connp gets inserted in a drain list 514 * pointed to by idl_tx_list. conn_drain_list() asserts flow control for 515 * the sockets (non stream based) and sets QFULL condition for conn_wq. 516 * connp->conn_direct_blocked will be set to indicate the blocked 517 * condition. 518 * 519 * GLDv3 mac layer calls ill_flow_enable() when flow control is relieved. 520 * A cookie is passed in the call to ill_flow_enable() that identifies the 521 * blocked Tx ring. This cookie is used to get to the idl_tx_list that 522 * contains the blocked connp's. conn_walk_drain() uses the idl_tx_list_t 523 * and goes through each of the drain list (q)enabling the conn_wq of the 524 * first conn in each of the drain list. This causes ip_wsrv to run for the 525 * conn. ip_wsrv drains the queued messages, and removes the conn from the 526 * drain list, if all messages were drained. It also qenables the next conn 527 * in the drain list to continue the drain process. 528 * 529 * In reality the drain list is not a single list, but a configurable number 530 * of lists. conn_drain_walk() in the IP module, qenables the first conn in 531 * each list. If the ip_wsrv of the next qenabled conn does not run, because 532 * the stream closes, ip_close takes responsibility to qenable the next conn 533 * in the drain list. conn_drain_insert and conn_drain_tail are the only 534 * functions that manipulate this drain list. conn_drain_insert is called in 535 * ip_wput context itself (as opposed to from ip_wsrv context for STREAMS 536 * case -- see below). The synchronization between drain insertion and flow 537 * control wakeup is handled by using idl_txl->txl_lock. 538 * 539 * Flow control using STREAMS: 540 * When ILL_DIRECT_CAPABLE() is not TRUE, STREAMS flow control mechanism 541 * is used. On the send side, if the packet cannot be sent down to the 542 * driver by IP, because of a canput failure, IP does a putq on the conn_wq. 543 * This will cause ip_wsrv to run on the conn_wq. ip_wsrv in turn, inserts 544 * the conn in a list of conn's that need to be drained when the flow 545 * control condition subsides. The blocked connps are put in first member 546 * of ips_idl_tx_list[] array. Ultimately STREAMS backenables the ip_wsrv 547 * on the IP module. It calls conn_walk_drain() passing ips_idl_tx_list[0]. 548 * ips_idl_tx_list[0] contains the drain lists of blocked conns. The 549 * conn_wq of the first conn in the drain lists is (q)enabled to run. 550 * ip_wsrv on this conn drains the queued messages, and removes the conn 551 * from the drain list, if all messages were drained. It also qenables the 552 * next conn in the drain list to continue the drain process. 553 * 554 * If the ip_wsrv of the next qenabled conn does not run, because the 555 * stream closes, ip_close takes responsibility to qenable the next conn in 556 * the drain list. The directly called ip_wput path always does a putq, if 557 * it cannot putnext. Thus synchronization problems are handled between 558 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 559 * functions that manipulate this drain list. Furthermore conn_drain_insert 560 * is called only from ip_wsrv for the STREAMS case, and there can be only 1 561 * instance of ip_wsrv running on a queue at any time. conn_drain_tail can 562 * be simultaneously called from both ip_wsrv and ip_close. 563 * 564 * IPQOS notes: 565 * 566 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 567 * and IPQoS modules. IPPF includes hooks in IP at different control points 568 * (callout positions) which direct packets to IPQoS modules for policy 569 * processing. Policies, if present, are global. 570 * 571 * The callout positions are located in the following paths: 572 * o local_in (packets destined for this host) 573 * o local_out (packets orginating from this host ) 574 * o fwd_in (packets forwarded by this m/c - inbound) 575 * o fwd_out (packets forwarded by this m/c - outbound) 576 * Hooks at these callout points can be enabled/disabled using the ndd variable 577 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 578 * By default all the callout positions are enabled. 579 * 580 * Outbound (local_out) 581 * Hooks are placed in ip_wput_ire and ipsec_out_process. 582 * 583 * Inbound (local_in) 584 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 585 * TCP and UDP fanout routines. 586 * 587 * Forwarding (in and out) 588 * Hooks are placed in ip_rput_forward. 589 * 590 * IP Policy Framework processing (IPPF processing) 591 * Policy processing for a packet is initiated by ip_process, which ascertains 592 * that the classifier (ipgpc) is loaded and configured, failing which the 593 * packet resumes normal processing in IP. If the clasifier is present, the 594 * packet is acted upon by one or more IPQoS modules (action instances), per 595 * filters configured in ipgpc and resumes normal IP processing thereafter. 596 * An action instance can drop a packet in course of its processing. 597 * 598 * A boolean variable, ip_policy, is used in all the fanout routines that can 599 * invoke ip_process for a packet. This variable indicates if the packet should 600 * to be sent for policy processing. The variable is set to B_TRUE by default, 601 * i.e. when the routines are invoked in the normal ip procesing path for a 602 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 603 * ip_policy is set to B_FALSE for all the routines called in these two 604 * functions because, in the former case, we don't process loopback traffic 605 * currently while in the latter, the packets have already been processed in 606 * icmp_inbound. 607 * 608 * Zones notes: 609 * 610 * The partitioning rules for networking are as follows: 611 * 1) Packets coming from a zone must have a source address belonging to that 612 * zone. 613 * 2) Packets coming from a zone can only be sent on a physical interface on 614 * which the zone has an IP address. 615 * 3) Between two zones on the same machine, packet delivery is only allowed if 616 * there's a matching route for the destination and zone in the forwarding 617 * table. 618 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 619 * different zones can bind to the same port with the wildcard address 620 * (INADDR_ANY). 621 * 622 * The granularity of interface partitioning is at the logical interface level. 623 * Therefore, every zone has its own IP addresses, and incoming packets can be 624 * attributed to a zone unambiguously. A logical interface is placed into a zone 625 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 626 * structure. Rule (1) is implemented by modifying the source address selection 627 * algorithm so that the list of eligible addresses is filtered based on the 628 * sending process zone. 629 * 630 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 631 * across all zones, depending on their type. Here is the break-up: 632 * 633 * IRE type Shared/exclusive 634 * -------- ---------------- 635 * IRE_BROADCAST Exclusive 636 * IRE_DEFAULT (default routes) Shared (*) 637 * IRE_LOCAL Exclusive (x) 638 * IRE_LOOPBACK Exclusive 639 * IRE_PREFIX (net routes) Shared (*) 640 * IRE_CACHE Exclusive 641 * IRE_IF_NORESOLVER (interface routes) Exclusive 642 * IRE_IF_RESOLVER (interface routes) Exclusive 643 * IRE_HOST (host routes) Shared (*) 644 * 645 * (*) A zone can only use a default or off-subnet route if the gateway is 646 * directly reachable from the zone, that is, if the gateway's address matches 647 * one of the zone's logical interfaces. 648 * 649 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 650 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 651 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 652 * address of the zone itself (the destination). Since IRE_LOCAL is used 653 * for communication between zones, ip_wput_ire has special logic to set 654 * the right source address when sending using an IRE_LOCAL. 655 * 656 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 657 * ire_cache_lookup restricts loopback using an IRE_LOCAL 658 * between zone to the case when L2 would have conceptually looped the packet 659 * back, i.e. the loopback which is required since neither Ethernet drivers 660 * nor Ethernet hardware loops them back. This is the case when the normal 661 * routes (ignoring IREs with different zoneids) would send out the packet on 662 * the same ill as the ill with which is IRE_LOCAL is associated. 663 * 664 * Multiple zones can share a common broadcast address; typically all zones 665 * share the 255.255.255.255 address. Incoming as well as locally originated 666 * broadcast packets must be dispatched to all the zones on the broadcast 667 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 668 * since some zones may not be on the 10.16.72/24 network. To handle this, each 669 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 670 * sent to every zone that has an IRE_BROADCAST entry for the destination 671 * address on the input ill, see conn_wantpacket(). 672 * 673 * Applications in different zones can join the same multicast group address. 674 * For IPv4, group memberships are per-logical interface, so they're already 675 * inherently part of a zone. For IPv6, group memberships are per-physical 676 * interface, so we distinguish IPv6 group memberships based on group address, 677 * interface and zoneid. In both cases, received multicast packets are sent to 678 * every zone for which a group membership entry exists. On IPv6 we need to 679 * check that the target zone still has an address on the receiving physical 680 * interface; it could have been removed since the application issued the 681 * IPV6_JOIN_GROUP. 682 */ 683 684 /* 685 * Squeue Fanout flags: 686 * 0: No fanout. 687 * 1: Fanout across all squeues 688 */ 689 boolean_t ip_squeue_fanout = 0; 690 691 /* 692 * Maximum dups allowed per packet. 693 */ 694 uint_t ip_max_frag_dups = 10; 695 696 #define IS_SIMPLE_IPH(ipha) \ 697 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 698 699 /* RFC 1122 Conformance */ 700 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 701 702 #define ILL_MAX_NAMELEN LIFNAMSIZ 703 704 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 705 706 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 707 cred_t *credp, boolean_t isv6); 708 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t, 709 ipha_t **); 710 711 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 712 ip_stack_t *); 713 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 714 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 715 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 716 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 717 mblk_t *, int, ip_stack_t *); 718 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 719 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 720 ill_t *, zoneid_t); 721 static void icmp_options_update(ipha_t *); 722 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 723 ip_stack_t *); 724 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 725 zoneid_t zoneid, ip_stack_t *); 726 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 727 static void icmp_redirect(ill_t *, mblk_t *); 728 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 729 ip_stack_t *); 730 731 static void ip_arp_news(queue_t *, mblk_t *); 732 static boolean_t ip_bind_get_ire_v4(mblk_t **, ire_t *, iulp_t *, ip_stack_t *); 733 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 734 char *ip_dot_addr(ipaddr_t, char *); 735 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 736 int ip_close(queue_t *, int); 737 static char *ip_dot_saddr(uchar_t *, char *); 738 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 739 boolean_t, boolean_t, ill_t *, zoneid_t); 740 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 741 boolean_t, boolean_t, zoneid_t); 742 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 743 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 744 static void ip_lrput(queue_t *, mblk_t *); 745 ipaddr_t ip_net_mask(ipaddr_t); 746 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 747 ip_stack_t *); 748 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 749 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 750 char *ip_nv_lookup(nv_t *, int); 751 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 752 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 753 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 754 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 755 ipndp_t *, size_t); 756 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 757 void ip_rput(queue_t *, mblk_t *); 758 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 759 void *dummy_arg); 760 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 761 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 762 ip_stack_t *); 763 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 764 ire_t *, ip_stack_t *); 765 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 766 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 767 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 768 ip_stack_t *); 769 static boolean_t ip_rput_fragment(ill_t *, ill_t *, mblk_t **, ipha_t *, 770 uint32_t *, uint16_t *); 771 int ip_snmp_get(queue_t *, mblk_t *, int); 772 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 773 mib2_ipIfStatsEntry_t *, ip_stack_t *); 774 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 775 ip_stack_t *); 776 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 777 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 778 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 779 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 780 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 781 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 782 ip_stack_t *ipst); 783 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 784 ip_stack_t *ipst); 785 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 786 ip_stack_t *ipst); 787 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 788 ip_stack_t *ipst); 789 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 790 ip_stack_t *ipst); 791 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 792 ip_stack_t *ipst); 793 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 794 ip_stack_t *ipst); 795 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 796 ip_stack_t *ipst); 797 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 798 ip_stack_t *ipst); 799 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 800 ip_stack_t *ipst); 801 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 802 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 803 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 804 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 805 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 806 static boolean_t ip_source_route_included(ipha_t *); 807 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 808 809 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 810 zoneid_t, ip_stack_t *, conn_t *); 811 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *, 812 mblk_t *); 813 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 814 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 815 zoneid_t, ip_stack_t *); 816 817 static void conn_drain_init(ip_stack_t *); 818 static void conn_drain_fini(ip_stack_t *); 819 static void conn_drain_tail(conn_t *connp, boolean_t closing); 820 821 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 822 static void conn_setqfull(conn_t *); 823 static void conn_clrqfull(conn_t *); 824 825 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 826 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 827 static void ip_stack_fini(netstackid_t stackid, void *arg); 828 829 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 830 zoneid_t); 831 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 832 void *dummy_arg); 833 834 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 835 836 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 837 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 838 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 839 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 840 841 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 842 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 843 caddr_t, cred_t *); 844 extern int ip_helper_stream_setup(queue_t *, dev_t *, int, int, 845 cred_t *, boolean_t); 846 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 847 caddr_t cp, cred_t *cr); 848 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 849 cred_t *); 850 static int ip_squeue_switch(int); 851 852 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 853 static void ip_kstat_fini(netstackid_t, kstat_t *); 854 static int ip_kstat_update(kstat_t *kp, int rw); 855 static void *icmp_kstat_init(netstackid_t); 856 static void icmp_kstat_fini(netstackid_t, kstat_t *); 857 static int icmp_kstat_update(kstat_t *kp, int rw); 858 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 859 static void ip_kstat2_fini(netstackid_t, kstat_t *); 860 861 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 862 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 863 864 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 865 ipha_t *, ill_t *, boolean_t, boolean_t); 866 867 static void ipobs_init(ip_stack_t *); 868 static void ipobs_fini(ip_stack_t *); 869 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 870 871 /* How long, in seconds, we allow frags to hang around. */ 872 #define IP_FRAG_TIMEOUT 15 873 874 /* 875 * Threshold which determines whether MDT should be used when 876 * generating IP fragments; payload size must be greater than 877 * this threshold for MDT to take place. 878 */ 879 #define IP_WPUT_FRAG_MDT_MIN 32768 880 881 /* Setable in /etc/system only */ 882 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 883 884 static long ip_rput_pullups; 885 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 886 887 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 888 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 889 890 int ip_debug; 891 892 #ifdef DEBUG 893 uint32_t ipsechw_debug = 0; 894 #endif 895 896 /* 897 * Multirouting/CGTP stuff 898 */ 899 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 900 901 /* 902 * XXX following really should only be in a header. Would need more 903 * header and .c clean up first. 904 */ 905 extern optdb_obj_t ip_opt_obj; 906 907 ulong_t ip_squeue_enter_unbound = 0; 908 909 /* 910 * Named Dispatch Parameter Table. 911 * All of these are alterable, within the min/max values given, at run time. 912 */ 913 static ipparam_t lcl_param_arr[] = { 914 /* min max value name */ 915 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 916 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 917 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 918 { 0, 1, 0, "ip_respond_to_timestamp"}, 919 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 920 { 0, 1, 1, "ip_send_redirects"}, 921 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 922 { 0, 10, 0, "ip_mrtdebug"}, 923 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 924 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 925 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 926 { 1, 255, 255, "ip_def_ttl" }, 927 { 0, 1, 0, "ip_forward_src_routed"}, 928 { 0, 256, 32, "ip_wroff_extra" }, 929 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 930 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 931 { 0, 1, 1, "ip_path_mtu_discovery" }, 932 { 0, 240, 30, "ip_ignore_delete_time" }, 933 { 0, 1, 0, "ip_ignore_redirect" }, 934 { 0, 1, 1, "ip_output_queue" }, 935 { 1, 254, 1, "ip_broadcast_ttl" }, 936 { 0, 99999, 100, "ip_icmp_err_interval" }, 937 { 1, 99999, 10, "ip_icmp_err_burst" }, 938 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 939 { 0, 1, 0, "ip_strict_dst_multihoming" }, 940 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 941 { 0, 1, 0, "ipsec_override_persocket_policy" }, 942 { 0, 1, 1, "icmp_accept_clear_messages" }, 943 { 0, 1, 1, "igmp_accept_clear_messages" }, 944 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 945 "ip_ndp_delay_first_probe_time"}, 946 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 947 "ip_ndp_max_unicast_solicit"}, 948 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 949 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 950 { 0, 1, 0, "ip6_forward_src_routed"}, 951 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 952 { 0, 1, 1, "ip6_send_redirects"}, 953 { 0, 1, 0, "ip6_ignore_redirect" }, 954 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 955 956 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 957 958 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 959 960 { 0, 1, 1, "pim_accept_clear_messages" }, 961 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 962 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 963 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 964 { 0, 15, 0, "ip_policy_mask" }, 965 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 966 { 0, 255, 1, "ip_multirt_ttl" }, 967 { 0, 1, 1, "ip_multidata_outbound" }, 968 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 969 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 970 { 0, 1000, 1, "ip_max_temp_defend" }, 971 { 0, 1000, 3, "ip_max_defend" }, 972 { 0, 999999, 30, "ip_defend_interval" }, 973 { 0, 3600000, 300000, "ip_dup_recovery" }, 974 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 975 { 0, 1, 1, "ip_lso_outbound" }, 976 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 977 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 978 { 68, 65535, 576, "ip_pmtu_min" }, 979 #ifdef DEBUG 980 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 981 #else 982 { 0, 0, 0, "" }, 983 #endif 984 }; 985 986 /* 987 * Extended NDP table 988 * The addresses for the first two are filled in to be ips_ip_g_forward 989 * and ips_ipv6_forward at init time. 990 */ 991 static ipndp_t lcl_ndp_arr[] = { 992 /* getf setf data name */ 993 #define IPNDP_IP_FORWARDING_OFFSET 0 994 { ip_param_generic_get, ip_forward_set, NULL, 995 "ip_forwarding" }, 996 #define IPNDP_IP6_FORWARDING_OFFSET 1 997 { ip_param_generic_get, ip_forward_set, NULL, 998 "ip6_forwarding" }, 999 { ip_param_generic_get, ip_input_proc_set, 1000 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 1001 { ip_param_generic_get, ip_int_set, 1002 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 1003 #define IPNDP_CGTP_FILTER_OFFSET 4 1004 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 1005 "ip_cgtp_filter" }, 1006 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 1007 "ip_debug" }, 1008 }; 1009 1010 /* 1011 * Table of IP ioctls encoding the various properties of the ioctl and 1012 * indexed based on the last byte of the ioctl command. Occasionally there 1013 * is a clash, and there is more than 1 ioctl with the same last byte. 1014 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1015 * ioctls are encoded in the misc table. An entry in the ndx table is 1016 * retrieved by indexing on the last byte of the ioctl command and comparing 1017 * the ioctl command with the value in the ndx table. In the event of a 1018 * mismatch the misc table is then searched sequentially for the desired 1019 * ioctl command. 1020 * 1021 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1022 */ 1023 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1024 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 1035 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1036 MISC_CMD, ip_siocaddrt, NULL }, 1037 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1038 MISC_CMD, ip_siocdelrt, NULL }, 1039 1040 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1041 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1042 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 1043 IF_CMD, ip_sioctl_get_addr, NULL }, 1044 1045 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1046 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1047 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1048 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1049 1050 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1051 IPI_PRIV | IPI_WR, 1052 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1053 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1054 IPI_MODOK | IPI_GET_CMD, 1055 IF_CMD, ip_sioctl_get_flags, NULL }, 1056 1057 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 1060 /* copyin size cannot be coded for SIOCGIFCONF */ 1061 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 1062 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1063 1064 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1065 IF_CMD, ip_sioctl_mtu, NULL }, 1066 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 1067 IF_CMD, ip_sioctl_get_mtu, NULL }, 1068 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1069 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1070 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1071 IF_CMD, ip_sioctl_brdaddr, NULL }, 1072 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1073 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 1074 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1075 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1076 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1077 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 1078 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1079 IF_CMD, ip_sioctl_metric, NULL }, 1080 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 1082 /* See 166-168 below for extended SIOC*XARP ioctls */ 1083 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1084 ARP_CMD, ip_sioctl_arp, NULL }, 1085 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 1086 ARP_CMD, ip_sioctl_arp, NULL }, 1087 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1088 ARP_CMD, ip_sioctl_arp, NULL }, 1089 1090 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1091 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1092 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1093 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1094 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1095 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 1112 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1113 MISC_CMD, if_unitsel, if_unitsel_restart }, 1114 1115 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1128 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1129 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1130 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1131 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1132 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1133 1134 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1135 IPI_PRIV | IPI_WR | IPI_MODOK, 1136 IF_CMD, ip_sioctl_sifname, NULL }, 1137 1138 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 1152 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 1153 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1154 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 1155 IF_CMD, ip_sioctl_get_muxid, NULL }, 1156 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1157 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 1158 1159 /* Both if and lif variants share same func */ 1160 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 1161 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1162 /* Both if and lif variants share same func */ 1163 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1164 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 1165 1166 /* copyin size cannot be coded for SIOCGIFCONF */ 1167 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1168 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1169 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1170 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1179 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1180 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1181 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1182 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1183 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1184 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 1187 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1188 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 1189 ip_sioctl_removeif_restart }, 1190 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1191 IPI_GET_CMD | IPI_PRIV | IPI_WR, 1192 LIF_CMD, ip_sioctl_addif, NULL }, 1193 #define SIOCLIFADDR_NDX 112 1194 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1195 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1196 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1197 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 1198 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1199 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1200 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1201 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1202 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1203 IPI_PRIV | IPI_WR, 1204 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1205 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1206 IPI_GET_CMD | IPI_MODOK, 1207 LIF_CMD, ip_sioctl_get_flags, NULL }, 1208 1209 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1210 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1211 1212 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1213 ip_sioctl_get_lifconf, NULL }, 1214 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1215 LIF_CMD, ip_sioctl_mtu, NULL }, 1216 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 1217 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1218 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1219 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1220 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1221 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1222 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1223 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 1224 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1225 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1226 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1227 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 1228 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1229 LIF_CMD, ip_sioctl_metric, NULL }, 1230 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1231 IPI_PRIV | IPI_WR | IPI_MODOK, 1232 LIF_CMD, ip_sioctl_slifname, 1233 ip_sioctl_slifname_restart }, 1234 1235 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 1236 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1237 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1238 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 1239 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1240 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1241 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1242 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1243 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1244 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1245 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1246 LIF_CMD, ip_sioctl_token, NULL }, 1247 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1248 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1249 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1250 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1251 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1252 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1253 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1254 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1255 1256 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1257 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1258 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1259 LIF_CMD, ip_siocdelndp_v6, NULL }, 1260 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1261 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1262 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1263 LIF_CMD, ip_siocsetndp_v6, NULL }, 1264 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1265 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1266 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1267 MISC_CMD, ip_sioctl_tonlink, NULL }, 1268 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1269 MISC_CMD, ip_sioctl_tmysite, NULL }, 1270 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), 0, 1271 TUN_CMD, ip_sioctl_tunparam, NULL }, 1272 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1273 IPI_PRIV | IPI_WR, 1274 TUN_CMD, ip_sioctl_tunparam, NULL }, 1275 1276 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1277 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1278 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1279 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1280 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1281 1282 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1283 1284 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1285 LIF_CMD, ip_sioctl_get_binding, NULL }, 1286 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1287 IPI_PRIV | IPI_WR, 1288 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1289 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1290 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1291 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1292 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1293 1294 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1295 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1296 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1297 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1298 1299 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1300 1301 /* These are handled in ip_sioctl_copyin_setup itself */ 1302 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1303 MISC_CMD, NULL, NULL }, 1304 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1305 MISC_CMD, NULL, NULL }, 1306 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1307 1308 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1309 ip_sioctl_get_lifconf, NULL }, 1310 1311 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1312 XARP_CMD, ip_sioctl_arp, NULL }, 1313 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1314 XARP_CMD, ip_sioctl_arp, NULL }, 1315 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1316 XARP_CMD, ip_sioctl_arp, NULL }, 1317 1318 /* SIOCPOPSOCKFS is not handled by IP */ 1319 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1320 1321 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1322 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1323 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1324 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1325 ip_sioctl_slifzone_restart }, 1326 /* 172-174 are SCTP ioctls and not handled by IP */ 1327 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1328 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1329 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1330 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1331 IPI_GET_CMD, LIF_CMD, 1332 ip_sioctl_get_lifusesrc, 0 }, 1333 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1334 IPI_PRIV | IPI_WR, 1335 LIF_CMD, ip_sioctl_slifusesrc, 1336 NULL }, 1337 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1338 ip_sioctl_get_lifsrcof, NULL }, 1339 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1340 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1341 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1342 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1343 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1344 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1345 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1346 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1347 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1348 /* SIOCSENABLESDP is handled by SDP */ 1349 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1350 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1351 }; 1352 1353 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1354 1355 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1356 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1357 IPI_GET_CMD, TUN_CMD, ip_sioctl_tunparam, NULL }, 1358 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1359 TUN_CMD, ip_sioctl_tunparam, NULL }, 1360 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1361 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1362 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1363 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1364 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1365 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1366 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1367 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1368 MISC_CMD, mrt_ioctl}, 1369 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1370 MISC_CMD, mrt_ioctl}, 1371 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1372 MISC_CMD, mrt_ioctl} 1373 }; 1374 1375 int ip_misc_ioctl_count = 1376 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1377 1378 int conn_drain_nthreads; /* Number of drainers reqd. */ 1379 /* Settable in /etc/system */ 1380 /* Defined in ip_ire.c */ 1381 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1382 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1383 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1384 1385 static nv_t ire_nv_arr[] = { 1386 { IRE_BROADCAST, "BROADCAST" }, 1387 { IRE_LOCAL, "LOCAL" }, 1388 { IRE_LOOPBACK, "LOOPBACK" }, 1389 { IRE_CACHE, "CACHE" }, 1390 { IRE_DEFAULT, "DEFAULT" }, 1391 { IRE_PREFIX, "PREFIX" }, 1392 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1393 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1394 { IRE_HOST, "HOST" }, 1395 { 0 } 1396 }; 1397 1398 nv_t *ire_nv_tbl = ire_nv_arr; 1399 1400 /* Simple ICMP IP Header Template */ 1401 static ipha_t icmp_ipha = { 1402 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1403 }; 1404 1405 struct module_info ip_mod_info = { 1406 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1407 IP_MOD_LOWAT 1408 }; 1409 1410 /* 1411 * Duplicate static symbols within a module confuses mdb; so we avoid the 1412 * problem by making the symbols here distinct from those in udp.c. 1413 */ 1414 1415 /* 1416 * Entry points for IP as a device and as a module. 1417 * FIXME: down the road we might want a separate module and driver qinit. 1418 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1419 */ 1420 static struct qinit iprinitv4 = { 1421 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1422 &ip_mod_info 1423 }; 1424 1425 struct qinit iprinitv6 = { 1426 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1427 &ip_mod_info 1428 }; 1429 1430 static struct qinit ipwinitv4 = { 1431 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1432 &ip_mod_info 1433 }; 1434 1435 struct qinit ipwinitv6 = { 1436 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1437 &ip_mod_info 1438 }; 1439 1440 static struct qinit iplrinit = { 1441 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1442 &ip_mod_info 1443 }; 1444 1445 static struct qinit iplwinit = { 1446 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1447 &ip_mod_info 1448 }; 1449 1450 /* For AF_INET aka /dev/ip */ 1451 struct streamtab ipinfov4 = { 1452 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1453 }; 1454 1455 /* For AF_INET6 aka /dev/ip6 */ 1456 struct streamtab ipinfov6 = { 1457 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1458 }; 1459 1460 #ifdef DEBUG 1461 static boolean_t skip_sctp_cksum = B_FALSE; 1462 #endif 1463 1464 /* 1465 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1466 * ip_rput_v6(), ip_output(), etc. If the message 1467 * block already has a M_CTL at the front of it, then simply set the zoneid 1468 * appropriately. 1469 */ 1470 mblk_t * 1471 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1472 { 1473 mblk_t *first_mp; 1474 ipsec_out_t *io; 1475 1476 ASSERT(zoneid != ALL_ZONES); 1477 if (mp->b_datap->db_type == M_CTL) { 1478 io = (ipsec_out_t *)mp->b_rptr; 1479 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1480 io->ipsec_out_zoneid = zoneid; 1481 return (mp); 1482 } 1483 1484 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1485 if (first_mp == NULL) 1486 return (NULL); 1487 io = (ipsec_out_t *)first_mp->b_rptr; 1488 /* This is not a secure packet */ 1489 io->ipsec_out_secure = B_FALSE; 1490 io->ipsec_out_zoneid = zoneid; 1491 first_mp->b_cont = mp; 1492 return (first_mp); 1493 } 1494 1495 /* 1496 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1497 */ 1498 mblk_t * 1499 ip_copymsg(mblk_t *mp) 1500 { 1501 mblk_t *nmp; 1502 ipsec_info_t *in; 1503 1504 if (mp->b_datap->db_type != M_CTL) 1505 return (copymsg(mp)); 1506 1507 in = (ipsec_info_t *)mp->b_rptr; 1508 1509 /* 1510 * Note that M_CTL is also used for delivering ICMP error messages 1511 * upstream to transport layers. 1512 */ 1513 if (in->ipsec_info_type != IPSEC_OUT && 1514 in->ipsec_info_type != IPSEC_IN) 1515 return (copymsg(mp)); 1516 1517 nmp = copymsg(mp->b_cont); 1518 1519 if (in->ipsec_info_type == IPSEC_OUT) { 1520 return (ipsec_out_tag(mp, nmp, 1521 ((ipsec_out_t *)in)->ipsec_out_ns)); 1522 } else { 1523 return (ipsec_in_tag(mp, nmp, 1524 ((ipsec_in_t *)in)->ipsec_in_ns)); 1525 } 1526 } 1527 1528 /* Generate an ICMP fragmentation needed message. */ 1529 static void 1530 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1531 ip_stack_t *ipst) 1532 { 1533 icmph_t icmph; 1534 mblk_t *first_mp; 1535 boolean_t mctl_present; 1536 1537 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1538 1539 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1540 if (mctl_present) 1541 freeb(first_mp); 1542 return; 1543 } 1544 1545 bzero(&icmph, sizeof (icmph_t)); 1546 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1547 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1548 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1549 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1550 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1551 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1552 ipst); 1553 } 1554 1555 /* 1556 * icmp_inbound deals with ICMP messages in the following ways. 1557 * 1558 * 1) It needs to send a reply back and possibly delivering it 1559 * to the "interested" upper clients. 1560 * 2) It needs to send it to the upper clients only. 1561 * 3) It needs to change some values in IP only. 1562 * 4) It needs to change some values in IP and upper layers e.g TCP. 1563 * 1564 * We need to accomodate icmp messages coming in clear until we get 1565 * everything secure from the wire. If icmp_accept_clear_messages 1566 * is zero we check with the global policy and act accordingly. If 1567 * it is non-zero, we accept the message without any checks. But 1568 * *this does not mean* that this will be delivered to the upper 1569 * clients. By accepting we might send replies back, change our MTU 1570 * value etc. but delivery to the ULP/clients depends on their policy 1571 * dispositions. 1572 * 1573 * We handle the above 4 cases in the context of IPsec in the 1574 * following way : 1575 * 1576 * 1) Send the reply back in the same way as the request came in. 1577 * If it came in encrypted, it goes out encrypted. If it came in 1578 * clear, it goes out in clear. Thus, this will prevent chosen 1579 * plain text attack. 1580 * 2) The client may or may not expect things to come in secure. 1581 * If it comes in secure, the policy constraints are checked 1582 * before delivering it to the upper layers. If it comes in 1583 * clear, ipsec_inbound_accept_clear will decide whether to 1584 * accept this in clear or not. In both the cases, if the returned 1585 * message (IP header + 8 bytes) that caused the icmp message has 1586 * AH/ESP headers, it is sent up to AH/ESP for validation before 1587 * sending up. If there are only 8 bytes of returned message, then 1588 * upper client will not be notified. 1589 * 3) Check with global policy to see whether it matches the constaints. 1590 * But this will be done only if icmp_accept_messages_in_clear is 1591 * zero. 1592 * 4) If we need to change both in IP and ULP, then the decision taken 1593 * while affecting the values in IP and while delivering up to TCP 1594 * should be the same. 1595 * 1596 * There are two cases. 1597 * 1598 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1599 * failed), we will not deliver it to the ULP, even though they 1600 * are *willing* to accept in *clear*. This is fine as our global 1601 * disposition to icmp messages asks us reject the datagram. 1602 * 1603 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1604 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1605 * to deliver it to ULP (policy failed), it can lead to 1606 * consistency problems. The cases known at this time are 1607 * ICMP_DESTINATION_UNREACHABLE messages with following code 1608 * values : 1609 * 1610 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1611 * and Upper layer rejects. Then the communication will 1612 * come to a stop. This is solved by making similar decisions 1613 * at both levels. Currently, when we are unable to deliver 1614 * to the Upper Layer (due to policy failures) while IP has 1615 * adjusted ire_max_frag, the next outbound datagram would 1616 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1617 * will be with the right level of protection. Thus the right 1618 * value will be communicated even if we are not able to 1619 * communicate when we get from the wire initially. But this 1620 * assumes there would be at least one outbound datagram after 1621 * IP has adjusted its ire_max_frag value. To make things 1622 * simpler, we accept in clear after the validation of 1623 * AH/ESP headers. 1624 * 1625 * - Other ICMP ERRORS : We may not be able to deliver it to the 1626 * upper layer depending on the level of protection the upper 1627 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1628 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1629 * should be accepted in clear when the Upper layer expects secure. 1630 * Thus the communication may get aborted by some bad ICMP 1631 * packets. 1632 * 1633 * IPQoS Notes: 1634 * The only instance when a packet is sent for processing is when there 1635 * isn't an ICMP client and if we are interested in it. 1636 * If there is a client, IPPF processing will take place in the 1637 * ip_fanout_proto routine. 1638 * 1639 * Zones notes: 1640 * The packet is only processed in the context of the specified zone: typically 1641 * only this zone will reply to an echo request, and only interested clients in 1642 * this zone will receive a copy of the packet. This means that the caller must 1643 * call icmp_inbound() for each relevant zone. 1644 */ 1645 static void 1646 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1647 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1648 ill_t *recv_ill, zoneid_t zoneid) 1649 { 1650 icmph_t *icmph; 1651 ipha_t *ipha; 1652 int iph_hdr_length; 1653 int hdr_length; 1654 boolean_t interested; 1655 uint32_t ts; 1656 uchar_t *wptr; 1657 ipif_t *ipif; 1658 mblk_t *first_mp; 1659 ipsec_in_t *ii; 1660 timestruc_t now; 1661 uint32_t ill_index; 1662 ip_stack_t *ipst; 1663 1664 ASSERT(ill != NULL); 1665 ipst = ill->ill_ipst; 1666 1667 first_mp = mp; 1668 if (mctl_present) { 1669 mp = first_mp->b_cont; 1670 ASSERT(mp != NULL); 1671 } 1672 1673 ipha = (ipha_t *)mp->b_rptr; 1674 if (ipst->ips_icmp_accept_clear_messages == 0) { 1675 first_mp = ipsec_check_global_policy(first_mp, NULL, 1676 ipha, NULL, mctl_present, ipst->ips_netstack); 1677 if (first_mp == NULL) 1678 return; 1679 } 1680 1681 /* 1682 * On a labeled system, we have to check whether the zone itself is 1683 * permitted to receive raw traffic. 1684 */ 1685 if (is_system_labeled()) { 1686 if (zoneid == ALL_ZONES) 1687 zoneid = tsol_packet_to_zoneid(mp); 1688 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1689 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1690 zoneid)); 1691 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1692 freemsg(first_mp); 1693 return; 1694 } 1695 } 1696 1697 /* 1698 * We have accepted the ICMP message. It means that we will 1699 * respond to the packet if needed. It may not be delivered 1700 * to the upper client depending on the policy constraints 1701 * and the disposition in ipsec_inbound_accept_clear. 1702 */ 1703 1704 ASSERT(ill != NULL); 1705 1706 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1707 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1708 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1709 /* Last chance to get real. */ 1710 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1711 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1712 freemsg(first_mp); 1713 return; 1714 } 1715 /* Refresh iph following the pullup. */ 1716 ipha = (ipha_t *)mp->b_rptr; 1717 } 1718 /* ICMP header checksum, including checksum field, should be zero. */ 1719 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1720 IP_CSUM(mp, iph_hdr_length, 0)) { 1721 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1722 freemsg(first_mp); 1723 return; 1724 } 1725 /* The IP header will always be a multiple of four bytes */ 1726 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1727 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1728 icmph->icmph_code)); 1729 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1730 /* We will set "interested" to "true" if we want a copy */ 1731 interested = B_FALSE; 1732 switch (icmph->icmph_type) { 1733 case ICMP_ECHO_REPLY: 1734 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1735 break; 1736 case ICMP_DEST_UNREACHABLE: 1737 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1738 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1739 interested = B_TRUE; /* Pass up to transport */ 1740 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1741 break; 1742 case ICMP_SOURCE_QUENCH: 1743 interested = B_TRUE; /* Pass up to transport */ 1744 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1745 break; 1746 case ICMP_REDIRECT: 1747 if (!ipst->ips_ip_ignore_redirect) 1748 interested = B_TRUE; 1749 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1750 break; 1751 case ICMP_ECHO_REQUEST: 1752 /* 1753 * Whether to respond to echo requests that come in as IP 1754 * broadcasts or as IP multicast is subject to debate 1755 * (what isn't?). We aim to please, you pick it. 1756 * Default is do it. 1757 */ 1758 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1759 /* unicast: always respond */ 1760 interested = B_TRUE; 1761 } else if (CLASSD(ipha->ipha_dst)) { 1762 /* multicast: respond based on tunable */ 1763 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1764 } else if (broadcast) { 1765 /* broadcast: respond based on tunable */ 1766 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1767 } 1768 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1769 break; 1770 case ICMP_ROUTER_ADVERTISEMENT: 1771 case ICMP_ROUTER_SOLICITATION: 1772 break; 1773 case ICMP_TIME_EXCEEDED: 1774 interested = B_TRUE; /* Pass up to transport */ 1775 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1776 break; 1777 case ICMP_PARAM_PROBLEM: 1778 interested = B_TRUE; /* Pass up to transport */ 1779 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1780 break; 1781 case ICMP_TIME_STAMP_REQUEST: 1782 /* Response to Time Stamp Requests is local policy. */ 1783 if (ipst->ips_ip_g_resp_to_timestamp && 1784 /* So is whether to respond if it was an IP broadcast. */ 1785 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1786 int tstamp_len = 3 * sizeof (uint32_t); 1787 1788 if (wptr + tstamp_len > mp->b_wptr) { 1789 if (!pullupmsg(mp, wptr + tstamp_len - 1790 mp->b_rptr)) { 1791 BUMP_MIB(ill->ill_ip_mib, 1792 ipIfStatsInDiscards); 1793 freemsg(first_mp); 1794 return; 1795 } 1796 /* Refresh ipha following the pullup. */ 1797 ipha = (ipha_t *)mp->b_rptr; 1798 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1799 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1800 } 1801 interested = B_TRUE; 1802 } 1803 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1804 break; 1805 case ICMP_TIME_STAMP_REPLY: 1806 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1807 break; 1808 case ICMP_INFO_REQUEST: 1809 /* Per RFC 1122 3.2.2.7, ignore this. */ 1810 case ICMP_INFO_REPLY: 1811 break; 1812 case ICMP_ADDRESS_MASK_REQUEST: 1813 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1814 !broadcast) && 1815 /* TODO m_pullup of complete header? */ 1816 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1817 interested = B_TRUE; 1818 } 1819 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1820 break; 1821 case ICMP_ADDRESS_MASK_REPLY: 1822 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1823 break; 1824 default: 1825 interested = B_TRUE; /* Pass up to transport */ 1826 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1827 break; 1828 } 1829 /* See if there is an ICMP client. */ 1830 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1831 /* If there is an ICMP client and we want one too, copy it. */ 1832 mblk_t *first_mp1; 1833 1834 if (!interested) { 1835 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1836 ip_policy, recv_ill, zoneid); 1837 return; 1838 } 1839 first_mp1 = ip_copymsg(first_mp); 1840 if (first_mp1 != NULL) { 1841 ip_fanout_proto(q, first_mp1, ill, ipha, 1842 0, mctl_present, ip_policy, recv_ill, zoneid); 1843 } 1844 } else if (!interested) { 1845 freemsg(first_mp); 1846 return; 1847 } else { 1848 /* 1849 * Initiate policy processing for this packet if ip_policy 1850 * is true. 1851 */ 1852 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1853 ill_index = ill->ill_phyint->phyint_ifindex; 1854 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1855 if (mp == NULL) { 1856 if (mctl_present) { 1857 freeb(first_mp); 1858 } 1859 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1860 return; 1861 } 1862 } 1863 } 1864 /* We want to do something with it. */ 1865 /* Check db_ref to make sure we can modify the packet. */ 1866 if (mp->b_datap->db_ref > 1) { 1867 mblk_t *first_mp1; 1868 1869 first_mp1 = ip_copymsg(first_mp); 1870 freemsg(first_mp); 1871 if (!first_mp1) { 1872 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1873 return; 1874 } 1875 first_mp = first_mp1; 1876 if (mctl_present) { 1877 mp = first_mp->b_cont; 1878 ASSERT(mp != NULL); 1879 } else { 1880 mp = first_mp; 1881 } 1882 ipha = (ipha_t *)mp->b_rptr; 1883 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1884 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1885 } 1886 switch (icmph->icmph_type) { 1887 case ICMP_ADDRESS_MASK_REQUEST: 1888 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1889 if (ipif == NULL) { 1890 freemsg(first_mp); 1891 return; 1892 } 1893 /* 1894 * outging interface must be IPv4 1895 */ 1896 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1897 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1898 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1899 ipif_refrele(ipif); 1900 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1901 break; 1902 case ICMP_ECHO_REQUEST: 1903 icmph->icmph_type = ICMP_ECHO_REPLY; 1904 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1905 break; 1906 case ICMP_TIME_STAMP_REQUEST: { 1907 uint32_t *tsp; 1908 1909 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1910 tsp = (uint32_t *)wptr; 1911 tsp++; /* Skip past 'originate time' */ 1912 /* Compute # of milliseconds since midnight */ 1913 gethrestime(&now); 1914 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1915 now.tv_nsec / (NANOSEC / MILLISEC); 1916 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1917 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1918 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1919 break; 1920 } 1921 default: 1922 ipha = (ipha_t *)&icmph[1]; 1923 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1924 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1925 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1926 freemsg(first_mp); 1927 return; 1928 } 1929 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1930 ipha = (ipha_t *)&icmph[1]; 1931 } 1932 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1933 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1934 freemsg(first_mp); 1935 return; 1936 } 1937 hdr_length = IPH_HDR_LENGTH(ipha); 1938 if (hdr_length < sizeof (ipha_t)) { 1939 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1940 freemsg(first_mp); 1941 return; 1942 } 1943 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1944 if (!pullupmsg(mp, 1945 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1946 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1947 freemsg(first_mp); 1948 return; 1949 } 1950 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1951 ipha = (ipha_t *)&icmph[1]; 1952 } 1953 switch (icmph->icmph_type) { 1954 case ICMP_REDIRECT: 1955 /* 1956 * As there is no upper client to deliver, we don't 1957 * need the first_mp any more. 1958 */ 1959 if (mctl_present) { 1960 freeb(first_mp); 1961 } 1962 icmp_redirect(ill, mp); 1963 return; 1964 case ICMP_DEST_UNREACHABLE: 1965 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1966 if (!icmp_inbound_too_big(icmph, ipha, ill, 1967 zoneid, mp, iph_hdr_length, ipst)) { 1968 freemsg(first_mp); 1969 return; 1970 } 1971 /* 1972 * icmp_inbound_too_big() may alter mp. 1973 * Resynch ipha and icmph accordingly. 1974 */ 1975 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1976 ipha = (ipha_t *)&icmph[1]; 1977 } 1978 /* FALLTHRU */ 1979 default : 1980 /* 1981 * IPQoS notes: Since we have already done IPQoS 1982 * processing we don't want to do it again in 1983 * the fanout routines called by 1984 * icmp_inbound_error_fanout, hence the last 1985 * argument, ip_policy, is B_FALSE. 1986 */ 1987 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1988 ipha, iph_hdr_length, hdr_length, mctl_present, 1989 B_FALSE, recv_ill, zoneid); 1990 } 1991 return; 1992 } 1993 /* Send out an ICMP packet */ 1994 icmph->icmph_checksum = 0; 1995 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1996 if (broadcast || CLASSD(ipha->ipha_dst)) { 1997 ipif_t *ipif_chosen; 1998 /* 1999 * Make it look like it was directed to us, so we don't look 2000 * like a fool with a broadcast or multicast source address. 2001 */ 2002 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 2003 /* 2004 * Make sure that we haven't grabbed an interface that's DOWN. 2005 */ 2006 if (ipif != NULL) { 2007 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2008 ipha->ipha_src, zoneid); 2009 if (ipif_chosen != NULL) { 2010 ipif_refrele(ipif); 2011 ipif = ipif_chosen; 2012 } 2013 } 2014 if (ipif == NULL) { 2015 ip0dbg(("icmp_inbound: " 2016 "No source for broadcast/multicast:\n" 2017 "\tsrc 0x%x dst 0x%x ill %p " 2018 "ipif_lcl_addr 0x%x\n", 2019 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2020 (void *)ill, 2021 ill->ill_ipif->ipif_lcl_addr)); 2022 freemsg(first_mp); 2023 return; 2024 } 2025 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2026 ipha->ipha_dst = ipif->ipif_src_addr; 2027 ipif_refrele(ipif); 2028 } 2029 /* Reset time to live. */ 2030 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2031 { 2032 /* Swap source and destination addresses */ 2033 ipaddr_t tmp; 2034 2035 tmp = ipha->ipha_src; 2036 ipha->ipha_src = ipha->ipha_dst; 2037 ipha->ipha_dst = tmp; 2038 } 2039 ipha->ipha_ident = 0; 2040 if (!IS_SIMPLE_IPH(ipha)) 2041 icmp_options_update(ipha); 2042 2043 if (!mctl_present) { 2044 /* 2045 * This packet should go out the same way as it 2046 * came in i.e in clear. To make sure that global 2047 * policy will not be applied to this in ip_wput_ire, 2048 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2049 */ 2050 ASSERT(first_mp == mp); 2051 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2052 if (first_mp == NULL) { 2053 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2054 freemsg(mp); 2055 return; 2056 } 2057 ii = (ipsec_in_t *)first_mp->b_rptr; 2058 2059 /* This is not a secure packet */ 2060 ii->ipsec_in_secure = B_FALSE; 2061 first_mp->b_cont = mp; 2062 } else { 2063 ii = (ipsec_in_t *)first_mp->b_rptr; 2064 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2065 } 2066 ii->ipsec_in_zoneid = zoneid; 2067 ASSERT(zoneid != ALL_ZONES); 2068 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2069 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2070 return; 2071 } 2072 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2073 put(WR(q), first_mp); 2074 } 2075 2076 static ipaddr_t 2077 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2078 { 2079 conn_t *connp; 2080 connf_t *connfp; 2081 ipaddr_t nexthop_addr = INADDR_ANY; 2082 int hdr_length = IPH_HDR_LENGTH(ipha); 2083 uint16_t *up; 2084 uint32_t ports; 2085 ip_stack_t *ipst = ill->ill_ipst; 2086 2087 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2088 switch (ipha->ipha_protocol) { 2089 case IPPROTO_TCP: 2090 { 2091 tcph_t *tcph; 2092 2093 /* do a reverse lookup */ 2094 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2095 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2096 TCPS_LISTEN, ipst); 2097 break; 2098 } 2099 case IPPROTO_UDP: 2100 { 2101 uint32_t dstport, srcport; 2102 2103 ((uint16_t *)&ports)[0] = up[1]; 2104 ((uint16_t *)&ports)[1] = up[0]; 2105 2106 /* Extract ports in net byte order */ 2107 dstport = htons(ntohl(ports) & 0xFFFF); 2108 srcport = htons(ntohl(ports) >> 16); 2109 2110 connfp = &ipst->ips_ipcl_udp_fanout[ 2111 IPCL_UDP_HASH(dstport, ipst)]; 2112 mutex_enter(&connfp->connf_lock); 2113 connp = connfp->connf_head; 2114 2115 /* do a reverse lookup */ 2116 while ((connp != NULL) && 2117 (!IPCL_UDP_MATCH(connp, dstport, 2118 ipha->ipha_src, srcport, ipha->ipha_dst) || 2119 !IPCL_ZONE_MATCH(connp, zoneid))) { 2120 connp = connp->conn_next; 2121 } 2122 if (connp != NULL) 2123 CONN_INC_REF(connp); 2124 mutex_exit(&connfp->connf_lock); 2125 break; 2126 } 2127 case IPPROTO_SCTP: 2128 { 2129 in6_addr_t map_src, map_dst; 2130 2131 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2132 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2133 ((uint16_t *)&ports)[0] = up[1]; 2134 ((uint16_t *)&ports)[1] = up[0]; 2135 2136 connp = sctp_find_conn(&map_src, &map_dst, ports, 2137 zoneid, ipst->ips_netstack->netstack_sctp); 2138 if (connp == NULL) { 2139 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2140 zoneid, ports, ipha, ipst); 2141 } else { 2142 CONN_INC_REF(connp); 2143 SCTP_REFRELE(CONN2SCTP(connp)); 2144 } 2145 break; 2146 } 2147 default: 2148 { 2149 ipha_t ripha; 2150 2151 ripha.ipha_src = ipha->ipha_dst; 2152 ripha.ipha_dst = ipha->ipha_src; 2153 ripha.ipha_protocol = ipha->ipha_protocol; 2154 2155 connfp = &ipst->ips_ipcl_proto_fanout[ 2156 ipha->ipha_protocol]; 2157 mutex_enter(&connfp->connf_lock); 2158 connp = connfp->connf_head; 2159 for (connp = connfp->connf_head; connp != NULL; 2160 connp = connp->conn_next) { 2161 if (IPCL_PROTO_MATCH(connp, 2162 ipha->ipha_protocol, &ripha, ill, 2163 0, zoneid)) { 2164 CONN_INC_REF(connp); 2165 break; 2166 } 2167 } 2168 mutex_exit(&connfp->connf_lock); 2169 } 2170 } 2171 if (connp != NULL) { 2172 if (connp->conn_nexthop_set) 2173 nexthop_addr = connp->conn_nexthop_v4; 2174 CONN_DEC_REF(connp); 2175 } 2176 return (nexthop_addr); 2177 } 2178 2179 /* Table from RFC 1191 */ 2180 static int icmp_frag_size_table[] = 2181 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2182 2183 /* 2184 * Process received ICMP Packet too big. 2185 * After updating any IRE it does the fanout to any matching transport streams. 2186 * Assumes the message has been pulled up till the IP header that caused 2187 * the error. 2188 * 2189 * Returns B_FALSE on failure and B_TRUE on success. 2190 */ 2191 static boolean_t 2192 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2193 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2194 ip_stack_t *ipst) 2195 { 2196 ire_t *ire, *first_ire; 2197 int mtu, orig_mtu; 2198 int hdr_length; 2199 ipaddr_t nexthop_addr; 2200 boolean_t disable_pmtud; 2201 2202 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2203 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2204 ASSERT(ill != NULL); 2205 2206 hdr_length = IPH_HDR_LENGTH(ipha); 2207 2208 /* Drop if the original packet contained a source route */ 2209 if (ip_source_route_included(ipha)) { 2210 return (B_FALSE); 2211 } 2212 /* 2213 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2214 * header. 2215 */ 2216 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2217 mp->b_wptr) { 2218 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2219 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2220 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2221 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2222 return (B_FALSE); 2223 } 2224 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2225 ipha = (ipha_t *)&icmph[1]; 2226 } 2227 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2228 if (nexthop_addr != INADDR_ANY) { 2229 /* nexthop set */ 2230 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2231 nexthop_addr, 0, NULL, ALL_ZONES, msg_getlabel(mp), 2232 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2233 } else { 2234 /* nexthop not set */ 2235 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2236 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2237 } 2238 2239 if (!first_ire) { 2240 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2241 ntohl(ipha->ipha_dst))); 2242 return (B_FALSE); 2243 } 2244 2245 /* Check for MTU discovery advice as described in RFC 1191 */ 2246 mtu = ntohs(icmph->icmph_du_mtu); 2247 orig_mtu = mtu; 2248 disable_pmtud = B_FALSE; 2249 2250 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2251 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2252 ire = ire->ire_next) { 2253 /* 2254 * Look for the connection to which this ICMP message is 2255 * directed. If it has the IP_NEXTHOP option set, then the 2256 * search is limited to IREs with the MATCH_IRE_PRIVATE 2257 * option. Else the search is limited to regular IREs. 2258 */ 2259 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2260 (nexthop_addr != ire->ire_gateway_addr)) || 2261 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2262 (nexthop_addr != INADDR_ANY))) 2263 continue; 2264 2265 mutex_enter(&ire->ire_lock); 2266 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 2267 uint32_t length; 2268 int i; 2269 2270 /* 2271 * Use the table from RFC 1191 to figure out 2272 * the next "plateau" based on the length in 2273 * the original IP packet. 2274 */ 2275 length = ntohs(ipha->ipha_length); 2276 DTRACE_PROBE2(ip4__pmtu__guess, ire_t *, ire, 2277 uint32_t, length); 2278 if (ire->ire_max_frag <= length && 2279 ire->ire_max_frag >= length - hdr_length) { 2280 /* 2281 * Handle broken BSD 4.2 systems that 2282 * return the wrong iph_length in ICMP 2283 * errors. 2284 */ 2285 length -= hdr_length; 2286 } 2287 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2288 if (length > icmp_frag_size_table[i]) 2289 break; 2290 } 2291 if (i == A_CNT(icmp_frag_size_table)) { 2292 /* Smaller than 68! */ 2293 disable_pmtud = B_TRUE; 2294 mtu = ipst->ips_ip_pmtu_min; 2295 } else { 2296 mtu = icmp_frag_size_table[i]; 2297 if (mtu < ipst->ips_ip_pmtu_min) { 2298 mtu = ipst->ips_ip_pmtu_min; 2299 disable_pmtud = B_TRUE; 2300 } 2301 } 2302 /* Fool the ULP into believing our guessed PMTU. */ 2303 icmph->icmph_du_zero = 0; 2304 icmph->icmph_du_mtu = htons(mtu); 2305 } 2306 if (disable_pmtud) 2307 ire->ire_frag_flag = 0; 2308 /* Reduce the IRE max frag value as advised. */ 2309 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2310 mutex_exit(&ire->ire_lock); 2311 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, ire_t *, 2312 ire, int, orig_mtu, int, mtu); 2313 } 2314 rw_exit(&first_ire->ire_bucket->irb_lock); 2315 ire_refrele(first_ire); 2316 return (B_TRUE); 2317 } 2318 2319 /* 2320 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2321 * calls this function. 2322 */ 2323 static mblk_t * 2324 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2325 { 2326 ipha_t *ipha; 2327 icmph_t *icmph; 2328 ipha_t *in_ipha; 2329 int length; 2330 2331 ASSERT(mp->b_datap->db_type == M_DATA); 2332 2333 /* 2334 * For Self-encapsulated packets, we added an extra IP header 2335 * without the options. Inner IP header is the one from which 2336 * the outer IP header was formed. Thus, we need to remove the 2337 * outer IP header. To do this, we pullup the whole message 2338 * and overlay whatever follows the outer IP header over the 2339 * outer IP header. 2340 */ 2341 2342 if (!pullupmsg(mp, -1)) 2343 return (NULL); 2344 2345 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2346 ipha = (ipha_t *)&icmph[1]; 2347 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2348 2349 /* 2350 * The length that we want to overlay is following the inner 2351 * IP header. Subtracting the IP header + icmp header + outer 2352 * IP header's length should give us the length that we want to 2353 * overlay. 2354 */ 2355 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2356 hdr_length; 2357 /* 2358 * Overlay whatever follows the inner header over the 2359 * outer header. 2360 */ 2361 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2362 2363 /* Set the wptr to account for the outer header */ 2364 mp->b_wptr -= hdr_length; 2365 return (mp); 2366 } 2367 2368 /* 2369 * Try to pass the ICMP message upstream in case the ULP cares. 2370 * 2371 * If the packet that caused the ICMP error is secure, we send 2372 * it to AH/ESP to make sure that the attached packet has a 2373 * valid association. ipha in the code below points to the 2374 * IP header of the packet that caused the error. 2375 * 2376 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2377 * in the context of IPsec. Normally we tell the upper layer 2378 * whenever we send the ire (including ip_bind), the IPsec header 2379 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2380 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2381 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2382 * same thing. As TCP has the IPsec options size that needs to be 2383 * adjusted, we just pass the MTU unchanged. 2384 * 2385 * IFN could have been generated locally or by some router. 2386 * 2387 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2388 * This happens because IP adjusted its value of MTU on an 2389 * earlier IFN message and could not tell the upper layer, 2390 * the new adjusted value of MTU e.g. Packet was encrypted 2391 * or there was not enough information to fanout to upper 2392 * layers. Thus on the next outbound datagram, ip_wput_ire 2393 * generates the IFN, where IPsec processing has *not* been 2394 * done. 2395 * 2396 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2397 * could have generated this. This happens because ire_max_frag 2398 * value in IP was set to a new value, while the IPsec processing 2399 * was being done and after we made the fragmentation check in 2400 * ip_wput_ire. Thus on return from IPsec processing, 2401 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2402 * and generates the IFN. As IPsec processing is over, we fanout 2403 * to AH/ESP to remove the header. 2404 * 2405 * In both these cases, ipsec_in_loopback will be set indicating 2406 * that IFN was generated locally. 2407 * 2408 * ROUTER : IFN could be secure or non-secure. 2409 * 2410 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2411 * packet in error has AH/ESP headers to validate the AH/ESP 2412 * headers. AH/ESP will verify whether there is a valid SA or 2413 * not and send it back. We will fanout again if we have more 2414 * data in the packet. 2415 * 2416 * If the packet in error does not have AH/ESP, we handle it 2417 * like any other case. 2418 * 2419 * * NON_SECURE : If the packet in error has AH/ESP headers, 2420 * we attach a dummy ipsec_in and send it up to AH/ESP 2421 * for validation. AH/ESP will verify whether there is a 2422 * valid SA or not and send it back. We will fanout again if 2423 * we have more data in the packet. 2424 * 2425 * If the packet in error does not have AH/ESP, we handle it 2426 * like any other case. 2427 */ 2428 static void 2429 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2430 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2431 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2432 zoneid_t zoneid) 2433 { 2434 uint16_t *up; /* Pointer to ports in ULP header */ 2435 uint32_t ports; /* reversed ports for fanout */ 2436 ipha_t ripha; /* With reversed addresses */ 2437 mblk_t *first_mp; 2438 ipsec_in_t *ii; 2439 tcph_t *tcph; 2440 conn_t *connp; 2441 ip_stack_t *ipst; 2442 2443 ASSERT(ill != NULL); 2444 2445 ASSERT(recv_ill != NULL); 2446 ipst = recv_ill->ill_ipst; 2447 2448 first_mp = mp; 2449 if (mctl_present) { 2450 mp = first_mp->b_cont; 2451 ASSERT(mp != NULL); 2452 2453 ii = (ipsec_in_t *)first_mp->b_rptr; 2454 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2455 } else { 2456 ii = NULL; 2457 } 2458 2459 switch (ipha->ipha_protocol) { 2460 case IPPROTO_UDP: 2461 /* 2462 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2463 * transport header. 2464 */ 2465 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2466 mp->b_wptr) { 2467 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2468 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2469 goto discard_pkt; 2470 } 2471 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2472 ipha = (ipha_t *)&icmph[1]; 2473 } 2474 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2475 2476 /* 2477 * Attempt to find a client stream based on port. 2478 * Note that we do a reverse lookup since the header is 2479 * in the form we sent it out. 2480 * The ripha header is only used for the IP_UDP_MATCH and we 2481 * only set the src and dst addresses and protocol. 2482 */ 2483 ripha.ipha_src = ipha->ipha_dst; 2484 ripha.ipha_dst = ipha->ipha_src; 2485 ripha.ipha_protocol = ipha->ipha_protocol; 2486 ((uint16_t *)&ports)[0] = up[1]; 2487 ((uint16_t *)&ports)[1] = up[0]; 2488 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2489 ntohl(ipha->ipha_src), ntohs(up[0]), 2490 ntohl(ipha->ipha_dst), ntohs(up[1]), 2491 icmph->icmph_type, icmph->icmph_code)); 2492 2493 /* Have to change db_type after any pullupmsg */ 2494 DB_TYPE(mp) = M_CTL; 2495 2496 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2497 mctl_present, ip_policy, recv_ill, zoneid); 2498 return; 2499 2500 case IPPROTO_TCP: 2501 /* 2502 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2503 * transport header. 2504 */ 2505 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2506 mp->b_wptr) { 2507 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2508 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2509 goto discard_pkt; 2510 } 2511 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2512 ipha = (ipha_t *)&icmph[1]; 2513 } 2514 /* 2515 * Find a TCP client stream for this packet. 2516 * Note that we do a reverse lookup since the header is 2517 * in the form we sent it out. 2518 */ 2519 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2520 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2521 ipst); 2522 if (connp == NULL) 2523 goto discard_pkt; 2524 2525 /* Have to change db_type after any pullupmsg */ 2526 DB_TYPE(mp) = M_CTL; 2527 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, tcp_input, connp, 2528 SQ_FILL, SQTAG_TCP_INPUT_ICMP_ERR); 2529 return; 2530 2531 case IPPROTO_SCTP: 2532 /* 2533 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2534 * transport header. 2535 */ 2536 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2537 mp->b_wptr) { 2538 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2539 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2540 goto discard_pkt; 2541 } 2542 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2543 ipha = (ipha_t *)&icmph[1]; 2544 } 2545 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2546 /* 2547 * Find a SCTP client stream for this packet. 2548 * Note that we do a reverse lookup since the header is 2549 * in the form we sent it out. 2550 * The ripha header is only used for the matching and we 2551 * only set the src and dst addresses, protocol, and version. 2552 */ 2553 ripha.ipha_src = ipha->ipha_dst; 2554 ripha.ipha_dst = ipha->ipha_src; 2555 ripha.ipha_protocol = ipha->ipha_protocol; 2556 ripha.ipha_version_and_hdr_length = 2557 ipha->ipha_version_and_hdr_length; 2558 ((uint16_t *)&ports)[0] = up[1]; 2559 ((uint16_t *)&ports)[1] = up[0]; 2560 2561 /* Have to change db_type after any pullupmsg */ 2562 DB_TYPE(mp) = M_CTL; 2563 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2564 mctl_present, ip_policy, zoneid); 2565 return; 2566 2567 case IPPROTO_ESP: 2568 case IPPROTO_AH: { 2569 int ipsec_rc; 2570 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2571 2572 /* 2573 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2574 * We will re-use the IPSEC_IN if it is already present as 2575 * AH/ESP will not affect any fields in the IPSEC_IN for 2576 * ICMP errors. If there is no IPSEC_IN, allocate a new 2577 * one and attach it in the front. 2578 */ 2579 if (ii != NULL) { 2580 /* 2581 * ip_fanout_proto_again converts the ICMP errors 2582 * that come back from AH/ESP to M_DATA so that 2583 * if it is non-AH/ESP and we do a pullupmsg in 2584 * this function, it would work. Convert it back 2585 * to M_CTL before we send up as this is a ICMP 2586 * error. This could have been generated locally or 2587 * by some router. Validate the inner IPsec 2588 * headers. 2589 * 2590 * NOTE : ill_index is used by ip_fanout_proto_again 2591 * to locate the ill. 2592 */ 2593 ASSERT(ill != NULL); 2594 ii->ipsec_in_ill_index = 2595 ill->ill_phyint->phyint_ifindex; 2596 ii->ipsec_in_rill_index = 2597 recv_ill->ill_phyint->phyint_ifindex; 2598 DB_TYPE(first_mp->b_cont) = M_CTL; 2599 } else { 2600 /* 2601 * IPSEC_IN is not present. We attach a ipsec_in 2602 * message and send up to IPsec for validating 2603 * and removing the IPsec headers. Clear 2604 * ipsec_in_secure so that when we return 2605 * from IPsec, we don't mistakenly think that this 2606 * is a secure packet came from the network. 2607 * 2608 * NOTE : ill_index is used by ip_fanout_proto_again 2609 * to locate the ill. 2610 */ 2611 ASSERT(first_mp == mp); 2612 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2613 if (first_mp == NULL) { 2614 freemsg(mp); 2615 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2616 return; 2617 } 2618 ii = (ipsec_in_t *)first_mp->b_rptr; 2619 2620 /* This is not a secure packet */ 2621 ii->ipsec_in_secure = B_FALSE; 2622 first_mp->b_cont = mp; 2623 DB_TYPE(mp) = M_CTL; 2624 ASSERT(ill != NULL); 2625 ii->ipsec_in_ill_index = 2626 ill->ill_phyint->phyint_ifindex; 2627 ii->ipsec_in_rill_index = 2628 recv_ill->ill_phyint->phyint_ifindex; 2629 } 2630 ip2dbg(("icmp_inbound_error: ipsec\n")); 2631 2632 if (!ipsec_loaded(ipss)) { 2633 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2634 return; 2635 } 2636 2637 if (ipha->ipha_protocol == IPPROTO_ESP) 2638 ipsec_rc = ipsecesp_icmp_error(first_mp); 2639 else 2640 ipsec_rc = ipsecah_icmp_error(first_mp); 2641 if (ipsec_rc == IPSEC_STATUS_FAILED) 2642 return; 2643 2644 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2645 return; 2646 } 2647 default: 2648 /* 2649 * The ripha header is only used for the lookup and we 2650 * only set the src and dst addresses and protocol. 2651 */ 2652 ripha.ipha_src = ipha->ipha_dst; 2653 ripha.ipha_dst = ipha->ipha_src; 2654 ripha.ipha_protocol = ipha->ipha_protocol; 2655 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2656 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2657 ntohl(ipha->ipha_dst), 2658 icmph->icmph_type, icmph->icmph_code)); 2659 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2660 ipha_t *in_ipha; 2661 2662 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2663 mp->b_wptr) { 2664 if (!pullupmsg(mp, (uchar_t *)ipha + 2665 hdr_length + sizeof (ipha_t) - 2666 mp->b_rptr)) { 2667 goto discard_pkt; 2668 } 2669 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2670 ipha = (ipha_t *)&icmph[1]; 2671 } 2672 /* 2673 * Caller has verified that length has to be 2674 * at least the size of IP header. 2675 */ 2676 ASSERT(hdr_length >= sizeof (ipha_t)); 2677 /* 2678 * Check the sanity of the inner IP header like 2679 * we did for the outer header. 2680 */ 2681 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2682 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2683 goto discard_pkt; 2684 } 2685 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2686 goto discard_pkt; 2687 } 2688 /* Check for Self-encapsulated tunnels */ 2689 if (in_ipha->ipha_src == ipha->ipha_src && 2690 in_ipha->ipha_dst == ipha->ipha_dst) { 2691 2692 mp = icmp_inbound_self_encap_error(mp, 2693 iph_hdr_length, hdr_length); 2694 if (mp == NULL) 2695 goto discard_pkt; 2696 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2697 ipha = (ipha_t *)&icmph[1]; 2698 hdr_length = IPH_HDR_LENGTH(ipha); 2699 /* 2700 * The packet in error is self-encapsualted. 2701 * And we are finding it further encapsulated 2702 * which we could not have possibly generated. 2703 */ 2704 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2705 goto discard_pkt; 2706 } 2707 icmp_inbound_error_fanout(q, ill, first_mp, 2708 icmph, ipha, iph_hdr_length, hdr_length, 2709 mctl_present, ip_policy, recv_ill, zoneid); 2710 return; 2711 } 2712 } 2713 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2714 ipha->ipha_protocol == IPPROTO_IPV6) && 2715 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2716 ii != NULL && 2717 ii->ipsec_in_loopback && 2718 ii->ipsec_in_secure) { 2719 /* 2720 * For IP tunnels that get a looped-back 2721 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2722 * reported new MTU to take into account the IPsec 2723 * headers protecting this configured tunnel. 2724 * 2725 * This allows the tunnel module (tun.c) to blindly 2726 * accept the MTU reported in an ICMP "too big" 2727 * message. 2728 * 2729 * Non-looped back ICMP messages will just be 2730 * handled by the security protocols (if needed), 2731 * and the first subsequent packet will hit this 2732 * path. 2733 */ 2734 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2735 ipsec_in_extra_length(first_mp)); 2736 } 2737 /* Have to change db_type after any pullupmsg */ 2738 DB_TYPE(mp) = M_CTL; 2739 2740 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2741 ip_policy, recv_ill, zoneid); 2742 return; 2743 } 2744 /* NOTREACHED */ 2745 discard_pkt: 2746 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2747 drop_pkt:; 2748 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2749 freemsg(first_mp); 2750 } 2751 2752 /* 2753 * Common IP options parser. 2754 * 2755 * Setup routine: fill in *optp with options-parsing state, then 2756 * tail-call ipoptp_next to return the first option. 2757 */ 2758 uint8_t 2759 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2760 { 2761 uint32_t totallen; /* total length of all options */ 2762 2763 totallen = ipha->ipha_version_and_hdr_length - 2764 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2765 totallen <<= 2; 2766 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2767 optp->ipoptp_end = optp->ipoptp_next + totallen; 2768 optp->ipoptp_flags = 0; 2769 return (ipoptp_next(optp)); 2770 } 2771 2772 /* 2773 * Common IP options parser: extract next option. 2774 */ 2775 uint8_t 2776 ipoptp_next(ipoptp_t *optp) 2777 { 2778 uint8_t *end = optp->ipoptp_end; 2779 uint8_t *cur = optp->ipoptp_next; 2780 uint8_t opt, len, pointer; 2781 2782 /* 2783 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2784 * has been corrupted. 2785 */ 2786 ASSERT(cur <= end); 2787 2788 if (cur == end) 2789 return (IPOPT_EOL); 2790 2791 opt = cur[IPOPT_OPTVAL]; 2792 2793 /* 2794 * Skip any NOP options. 2795 */ 2796 while (opt == IPOPT_NOP) { 2797 cur++; 2798 if (cur == end) 2799 return (IPOPT_EOL); 2800 opt = cur[IPOPT_OPTVAL]; 2801 } 2802 2803 if (opt == IPOPT_EOL) 2804 return (IPOPT_EOL); 2805 2806 /* 2807 * Option requiring a length. 2808 */ 2809 if ((cur + 1) >= end) { 2810 optp->ipoptp_flags |= IPOPTP_ERROR; 2811 return (IPOPT_EOL); 2812 } 2813 len = cur[IPOPT_OLEN]; 2814 if (len < 2) { 2815 optp->ipoptp_flags |= IPOPTP_ERROR; 2816 return (IPOPT_EOL); 2817 } 2818 optp->ipoptp_cur = cur; 2819 optp->ipoptp_len = len; 2820 optp->ipoptp_next = cur + len; 2821 if (cur + len > end) { 2822 optp->ipoptp_flags |= IPOPTP_ERROR; 2823 return (IPOPT_EOL); 2824 } 2825 2826 /* 2827 * For the options which require a pointer field, make sure 2828 * its there, and make sure it points to either something 2829 * inside this option, or the end of the option. 2830 */ 2831 switch (opt) { 2832 case IPOPT_RR: 2833 case IPOPT_TS: 2834 case IPOPT_LSRR: 2835 case IPOPT_SSRR: 2836 if (len <= IPOPT_OFFSET) { 2837 optp->ipoptp_flags |= IPOPTP_ERROR; 2838 return (opt); 2839 } 2840 pointer = cur[IPOPT_OFFSET]; 2841 if (pointer - 1 > len) { 2842 optp->ipoptp_flags |= IPOPTP_ERROR; 2843 return (opt); 2844 } 2845 break; 2846 } 2847 2848 /* 2849 * Sanity check the pointer field based on the type of the 2850 * option. 2851 */ 2852 switch (opt) { 2853 case IPOPT_RR: 2854 case IPOPT_SSRR: 2855 case IPOPT_LSRR: 2856 if (pointer < IPOPT_MINOFF_SR) 2857 optp->ipoptp_flags |= IPOPTP_ERROR; 2858 break; 2859 case IPOPT_TS: 2860 if (pointer < IPOPT_MINOFF_IT) 2861 optp->ipoptp_flags |= IPOPTP_ERROR; 2862 /* 2863 * Note that the Internet Timestamp option also 2864 * contains two four bit fields (the Overflow field, 2865 * and the Flag field), which follow the pointer 2866 * field. We don't need to check that these fields 2867 * fall within the length of the option because this 2868 * was implicitely done above. We've checked that the 2869 * pointer value is at least IPOPT_MINOFF_IT, and that 2870 * it falls within the option. Since IPOPT_MINOFF_IT > 2871 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2872 */ 2873 ASSERT(len > IPOPT_POS_OV_FLG); 2874 break; 2875 } 2876 2877 return (opt); 2878 } 2879 2880 /* 2881 * Use the outgoing IP header to create an IP_OPTIONS option the way 2882 * it was passed down from the application. 2883 */ 2884 int 2885 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2886 { 2887 ipoptp_t opts; 2888 const uchar_t *opt; 2889 uint8_t optval; 2890 uint8_t optlen; 2891 uint32_t len = 0; 2892 uchar_t *buf1 = buf; 2893 2894 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2895 len += IP_ADDR_LEN; 2896 bzero(buf1, IP_ADDR_LEN); 2897 2898 /* 2899 * OK to cast away const here, as we don't store through the returned 2900 * opts.ipoptp_cur pointer. 2901 */ 2902 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2903 optval != IPOPT_EOL; 2904 optval = ipoptp_next(&opts)) { 2905 int off; 2906 2907 opt = opts.ipoptp_cur; 2908 optlen = opts.ipoptp_len; 2909 switch (optval) { 2910 case IPOPT_SSRR: 2911 case IPOPT_LSRR: 2912 2913 /* 2914 * Insert ipha_dst as the first entry in the source 2915 * route and move down the entries on step. 2916 * The last entry gets placed at buf1. 2917 */ 2918 buf[IPOPT_OPTVAL] = optval; 2919 buf[IPOPT_OLEN] = optlen; 2920 buf[IPOPT_OFFSET] = optlen; 2921 2922 off = optlen - IP_ADDR_LEN; 2923 if (off < 0) { 2924 /* No entries in source route */ 2925 break; 2926 } 2927 /* Last entry in source route */ 2928 bcopy(opt + off, buf1, IP_ADDR_LEN); 2929 off -= IP_ADDR_LEN; 2930 2931 while (off > 0) { 2932 bcopy(opt + off, 2933 buf + off + IP_ADDR_LEN, 2934 IP_ADDR_LEN); 2935 off -= IP_ADDR_LEN; 2936 } 2937 /* ipha_dst into first slot */ 2938 bcopy(&ipha->ipha_dst, 2939 buf + off + IP_ADDR_LEN, 2940 IP_ADDR_LEN); 2941 buf += optlen; 2942 len += optlen; 2943 break; 2944 2945 case IPOPT_COMSEC: 2946 case IPOPT_SECURITY: 2947 /* if passing up a label is not ok, then remove */ 2948 if (is_system_labeled()) 2949 break; 2950 /* FALLTHROUGH */ 2951 default: 2952 bcopy(opt, buf, optlen); 2953 buf += optlen; 2954 len += optlen; 2955 break; 2956 } 2957 } 2958 done: 2959 /* Pad the resulting options */ 2960 while (len & 0x3) { 2961 *buf++ = IPOPT_EOL; 2962 len++; 2963 } 2964 return (len); 2965 } 2966 2967 /* 2968 * Update any record route or timestamp options to include this host. 2969 * Reverse any source route option. 2970 * This routine assumes that the options are well formed i.e. that they 2971 * have already been checked. 2972 */ 2973 static void 2974 icmp_options_update(ipha_t *ipha) 2975 { 2976 ipoptp_t opts; 2977 uchar_t *opt; 2978 uint8_t optval; 2979 ipaddr_t src; /* Our local address */ 2980 ipaddr_t dst; 2981 2982 ip2dbg(("icmp_options_update\n")); 2983 src = ipha->ipha_src; 2984 dst = ipha->ipha_dst; 2985 2986 for (optval = ipoptp_first(&opts, ipha); 2987 optval != IPOPT_EOL; 2988 optval = ipoptp_next(&opts)) { 2989 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2990 opt = opts.ipoptp_cur; 2991 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2992 optval, opts.ipoptp_len)); 2993 switch (optval) { 2994 int off1, off2; 2995 case IPOPT_SSRR: 2996 case IPOPT_LSRR: 2997 /* 2998 * Reverse the source route. The first entry 2999 * should be the next to last one in the current 3000 * source route (the last entry is our address). 3001 * The last entry should be the final destination. 3002 */ 3003 off1 = IPOPT_MINOFF_SR - 1; 3004 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3005 if (off2 < 0) { 3006 /* No entries in source route */ 3007 ip1dbg(( 3008 "icmp_options_update: bad src route\n")); 3009 break; 3010 } 3011 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3012 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3013 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3014 off2 -= IP_ADDR_LEN; 3015 3016 while (off1 < off2) { 3017 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3018 bcopy((char *)opt + off2, (char *)opt + off1, 3019 IP_ADDR_LEN); 3020 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3021 off1 += IP_ADDR_LEN; 3022 off2 -= IP_ADDR_LEN; 3023 } 3024 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3025 break; 3026 } 3027 } 3028 } 3029 3030 /* 3031 * Process received ICMP Redirect messages. 3032 */ 3033 static void 3034 icmp_redirect(ill_t *ill, mblk_t *mp) 3035 { 3036 ipha_t *ipha; 3037 int iph_hdr_length; 3038 icmph_t *icmph; 3039 ipha_t *ipha_err; 3040 ire_t *ire; 3041 ire_t *prev_ire; 3042 ire_t *save_ire; 3043 ipaddr_t src, dst, gateway; 3044 iulp_t ulp_info = { 0 }; 3045 int error; 3046 ip_stack_t *ipst; 3047 3048 ASSERT(ill != NULL); 3049 ipst = ill->ill_ipst; 3050 3051 ipha = (ipha_t *)mp->b_rptr; 3052 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3053 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3054 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3055 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3056 freemsg(mp); 3057 return; 3058 } 3059 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3060 ipha_err = (ipha_t *)&icmph[1]; 3061 src = ipha->ipha_src; 3062 dst = ipha_err->ipha_dst; 3063 gateway = icmph->icmph_rd_gateway; 3064 /* Make sure the new gateway is reachable somehow. */ 3065 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3066 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3067 /* 3068 * Make sure we had a route for the dest in question and that 3069 * that route was pointing to the old gateway (the source of the 3070 * redirect packet.) 3071 */ 3072 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3073 NULL, MATCH_IRE_GW, ipst); 3074 /* 3075 * Check that 3076 * the redirect was not from ourselves 3077 * the new gateway and the old gateway are directly reachable 3078 */ 3079 if (!prev_ire || 3080 !ire || 3081 ire->ire_type == IRE_LOCAL) { 3082 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3083 freemsg(mp); 3084 if (ire != NULL) 3085 ire_refrele(ire); 3086 if (prev_ire != NULL) 3087 ire_refrele(prev_ire); 3088 return; 3089 } 3090 3091 /* 3092 * Should we use the old ULP info to create the new gateway? From 3093 * a user's perspective, we should inherit the info so that it 3094 * is a "smooth" transition. If we do not do that, then new 3095 * connections going thru the new gateway will have no route metrics, 3096 * which is counter-intuitive to user. From a network point of 3097 * view, this may or may not make sense even though the new gateway 3098 * is still directly connected to us so the route metrics should not 3099 * change much. 3100 * 3101 * But if the old ire_uinfo is not initialized, we do another 3102 * recursive lookup on the dest using the new gateway. There may 3103 * be a route to that. If so, use it to initialize the redirect 3104 * route. 3105 */ 3106 if (prev_ire->ire_uinfo.iulp_set) { 3107 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3108 } else { 3109 ire_t *tmp_ire; 3110 ire_t *sire; 3111 3112 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3113 ALL_ZONES, 0, NULL, 3114 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3115 ipst); 3116 if (sire != NULL) { 3117 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3118 /* 3119 * If sire != NULL, ire_ftable_lookup() should not 3120 * return a NULL value. 3121 */ 3122 ASSERT(tmp_ire != NULL); 3123 ire_refrele(tmp_ire); 3124 ire_refrele(sire); 3125 } else if (tmp_ire != NULL) { 3126 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3127 sizeof (iulp_t)); 3128 ire_refrele(tmp_ire); 3129 } 3130 } 3131 if (prev_ire->ire_type == IRE_CACHE) 3132 ire_delete(prev_ire); 3133 ire_refrele(prev_ire); 3134 /* 3135 * TODO: more precise handling for cases 0, 2, 3, the latter two 3136 * require TOS routing 3137 */ 3138 switch (icmph->icmph_code) { 3139 case 0: 3140 case 1: 3141 /* TODO: TOS specificity for cases 2 and 3 */ 3142 case 2: 3143 case 3: 3144 break; 3145 default: 3146 freemsg(mp); 3147 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3148 ire_refrele(ire); 3149 return; 3150 } 3151 /* 3152 * Create a Route Association. This will allow us to remember that 3153 * someone we believe told us to use the particular gateway. 3154 */ 3155 save_ire = ire; 3156 ire = ire_create( 3157 (uchar_t *)&dst, /* dest addr */ 3158 (uchar_t *)&ip_g_all_ones, /* mask */ 3159 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3160 (uchar_t *)&gateway, /* gateway addr */ 3161 &save_ire->ire_max_frag, /* max frag */ 3162 NULL, /* no src nce */ 3163 NULL, /* no rfq */ 3164 NULL, /* no stq */ 3165 IRE_HOST, 3166 NULL, /* ipif */ 3167 0, /* cmask */ 3168 0, /* phandle */ 3169 0, /* ihandle */ 3170 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3171 &ulp_info, 3172 NULL, /* tsol_gc_t */ 3173 NULL, /* gcgrp */ 3174 ipst); 3175 3176 if (ire == NULL) { 3177 freemsg(mp); 3178 ire_refrele(save_ire); 3179 return; 3180 } 3181 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3182 ire_refrele(save_ire); 3183 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3184 3185 if (error == 0) { 3186 ire_refrele(ire); /* Held in ire_add_v4 */ 3187 /* tell routing sockets that we received a redirect */ 3188 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3189 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3190 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3191 } 3192 3193 /* 3194 * Delete any existing IRE_HOST type redirect ires for this destination. 3195 * This together with the added IRE has the effect of 3196 * modifying an existing redirect. 3197 */ 3198 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3199 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3200 if (prev_ire != NULL) { 3201 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3202 ire_delete(prev_ire); 3203 ire_refrele(prev_ire); 3204 } 3205 3206 freemsg(mp); 3207 } 3208 3209 /* 3210 * Generate an ICMP parameter problem message. 3211 */ 3212 static void 3213 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3214 ip_stack_t *ipst) 3215 { 3216 icmph_t icmph; 3217 boolean_t mctl_present; 3218 mblk_t *first_mp; 3219 3220 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3221 3222 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3223 if (mctl_present) 3224 freeb(first_mp); 3225 return; 3226 } 3227 3228 bzero(&icmph, sizeof (icmph_t)); 3229 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3230 icmph.icmph_pp_ptr = ptr; 3231 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3232 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3233 ipst); 3234 } 3235 3236 /* 3237 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3238 * the ICMP header pointed to by "stuff". (May be called as writer.) 3239 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3240 * an icmp error packet can be sent. 3241 * Assigns an appropriate source address to the packet. If ipha_dst is 3242 * one of our addresses use it for source. Otherwise pick a source based 3243 * on a route lookup back to ipha_src. 3244 * Note that ipha_src must be set here since the 3245 * packet is likely to arrive on an ill queue in ip_wput() which will 3246 * not set a source address. 3247 */ 3248 static void 3249 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3250 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3251 { 3252 ipaddr_t dst; 3253 icmph_t *icmph; 3254 ipha_t *ipha; 3255 uint_t len_needed; 3256 size_t msg_len; 3257 mblk_t *mp1; 3258 ipaddr_t src; 3259 ire_t *ire; 3260 mblk_t *ipsec_mp; 3261 ipsec_out_t *io = NULL; 3262 3263 if (mctl_present) { 3264 /* 3265 * If it is : 3266 * 3267 * 1) a IPSEC_OUT, then this is caused by outbound 3268 * datagram originating on this host. IPsec processing 3269 * may or may not have been done. Refer to comments above 3270 * icmp_inbound_error_fanout for details. 3271 * 3272 * 2) a IPSEC_IN if we are generating a icmp_message 3273 * for an incoming datagram destined for us i.e called 3274 * from ip_fanout_send_icmp. 3275 */ 3276 ipsec_info_t *in; 3277 ipsec_mp = mp; 3278 mp = ipsec_mp->b_cont; 3279 3280 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3281 ipha = (ipha_t *)mp->b_rptr; 3282 3283 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3284 in->ipsec_info_type == IPSEC_IN); 3285 3286 if (in->ipsec_info_type == IPSEC_IN) { 3287 /* 3288 * Convert the IPSEC_IN to IPSEC_OUT. 3289 */ 3290 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3291 BUMP_MIB(&ipst->ips_ip_mib, 3292 ipIfStatsOutDiscards); 3293 return; 3294 } 3295 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3296 } else { 3297 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3298 io = (ipsec_out_t *)in; 3299 /* 3300 * Clear out ipsec_out_proc_begin, so we do a fresh 3301 * ire lookup. 3302 */ 3303 io->ipsec_out_proc_begin = B_FALSE; 3304 } 3305 ASSERT(zoneid == io->ipsec_out_zoneid); 3306 ASSERT(zoneid != ALL_ZONES); 3307 } else { 3308 /* 3309 * This is in clear. The icmp message we are building 3310 * here should go out in clear. 3311 * 3312 * Pardon the convolution of it all, but it's easier to 3313 * allocate a "use cleartext" IPSEC_IN message and convert 3314 * it than it is to allocate a new one. 3315 */ 3316 ipsec_in_t *ii; 3317 ASSERT(DB_TYPE(mp) == M_DATA); 3318 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3319 if (ipsec_mp == NULL) { 3320 freemsg(mp); 3321 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3322 return; 3323 } 3324 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3325 3326 /* This is not a secure packet */ 3327 ii->ipsec_in_secure = B_FALSE; 3328 /* 3329 * For trusted extensions using a shared IP address we can 3330 * send using any zoneid. 3331 */ 3332 if (zoneid == ALL_ZONES) 3333 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3334 else 3335 ii->ipsec_in_zoneid = zoneid; 3336 ipsec_mp->b_cont = mp; 3337 ipha = (ipha_t *)mp->b_rptr; 3338 /* 3339 * Convert the IPSEC_IN to IPSEC_OUT. 3340 */ 3341 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3342 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3343 return; 3344 } 3345 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3346 } 3347 3348 /* Remember our eventual destination */ 3349 dst = ipha->ipha_src; 3350 3351 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3352 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3353 if (ire != NULL && 3354 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3355 src = ipha->ipha_dst; 3356 } else { 3357 if (ire != NULL) 3358 ire_refrele(ire); 3359 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3360 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3361 ipst); 3362 if (ire == NULL) { 3363 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3364 freemsg(ipsec_mp); 3365 return; 3366 } 3367 src = ire->ire_src_addr; 3368 } 3369 3370 if (ire != NULL) 3371 ire_refrele(ire); 3372 3373 /* 3374 * Check if we can send back more then 8 bytes in addition to 3375 * the IP header. We try to send 64 bytes of data and the internal 3376 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3377 */ 3378 len_needed = IPH_HDR_LENGTH(ipha); 3379 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3380 ipha->ipha_protocol == IPPROTO_IPV6) { 3381 3382 if (!pullupmsg(mp, -1)) { 3383 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3384 freemsg(ipsec_mp); 3385 return; 3386 } 3387 ipha = (ipha_t *)mp->b_rptr; 3388 3389 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3390 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3391 len_needed)); 3392 } else { 3393 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3394 3395 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3396 len_needed += ip_hdr_length_v6(mp, ip6h); 3397 } 3398 } 3399 len_needed += ipst->ips_ip_icmp_return; 3400 msg_len = msgdsize(mp); 3401 if (msg_len > len_needed) { 3402 (void) adjmsg(mp, len_needed - msg_len); 3403 msg_len = len_needed; 3404 } 3405 /* Make sure we propagate the cred/label for TX */ 3406 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3407 if (mp1 == NULL) { 3408 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3409 freemsg(ipsec_mp); 3410 return; 3411 } 3412 mp1->b_cont = mp; 3413 mp = mp1; 3414 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3415 ipsec_mp->b_rptr == (uint8_t *)io && 3416 io->ipsec_out_type == IPSEC_OUT); 3417 ipsec_mp->b_cont = mp; 3418 3419 /* 3420 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3421 * node generates be accepted in peace by all on-host destinations. 3422 * If we do NOT assume that all on-host destinations trust 3423 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3424 * (Look for ipsec_out_icmp_loopback). 3425 */ 3426 io->ipsec_out_icmp_loopback = B_TRUE; 3427 3428 ipha = (ipha_t *)mp->b_rptr; 3429 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3430 *ipha = icmp_ipha; 3431 ipha->ipha_src = src; 3432 ipha->ipha_dst = dst; 3433 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3434 msg_len += sizeof (icmp_ipha) + len; 3435 if (msg_len > IP_MAXPACKET) { 3436 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3437 msg_len = IP_MAXPACKET; 3438 } 3439 ipha->ipha_length = htons((uint16_t)msg_len); 3440 icmph = (icmph_t *)&ipha[1]; 3441 bcopy(stuff, icmph, len); 3442 icmph->icmph_checksum = 0; 3443 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3444 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3445 put(q, ipsec_mp); 3446 } 3447 3448 /* 3449 * Determine if an ICMP error packet can be sent given the rate limit. 3450 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3451 * in milliseconds) and a burst size. Burst size number of packets can 3452 * be sent arbitrarely closely spaced. 3453 * The state is tracked using two variables to implement an approximate 3454 * token bucket filter: 3455 * icmp_pkt_err_last - lbolt value when the last burst started 3456 * icmp_pkt_err_sent - number of packets sent in current burst 3457 */ 3458 boolean_t 3459 icmp_err_rate_limit(ip_stack_t *ipst) 3460 { 3461 clock_t now = TICK_TO_MSEC(lbolt); 3462 uint_t refilled; /* Number of packets refilled in tbf since last */ 3463 /* Guard against changes by loading into local variable */ 3464 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3465 3466 if (err_interval == 0) 3467 return (B_FALSE); 3468 3469 if (ipst->ips_icmp_pkt_err_last > now) { 3470 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3471 ipst->ips_icmp_pkt_err_last = 0; 3472 ipst->ips_icmp_pkt_err_sent = 0; 3473 } 3474 /* 3475 * If we are in a burst update the token bucket filter. 3476 * Update the "last" time to be close to "now" but make sure 3477 * we don't loose precision. 3478 */ 3479 if (ipst->ips_icmp_pkt_err_sent != 0) { 3480 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3481 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3482 ipst->ips_icmp_pkt_err_sent = 0; 3483 } else { 3484 ipst->ips_icmp_pkt_err_sent -= refilled; 3485 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3486 } 3487 } 3488 if (ipst->ips_icmp_pkt_err_sent == 0) { 3489 /* Start of new burst */ 3490 ipst->ips_icmp_pkt_err_last = now; 3491 } 3492 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3493 ipst->ips_icmp_pkt_err_sent++; 3494 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3495 ipst->ips_icmp_pkt_err_sent)); 3496 return (B_FALSE); 3497 } 3498 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3499 return (B_TRUE); 3500 } 3501 3502 /* 3503 * Check if it is ok to send an IPv4 ICMP error packet in 3504 * response to the IPv4 packet in mp. 3505 * Free the message and return null if no 3506 * ICMP error packet should be sent. 3507 */ 3508 static mblk_t * 3509 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3510 { 3511 icmph_t *icmph; 3512 ipha_t *ipha; 3513 uint_t len_needed; 3514 ire_t *src_ire; 3515 ire_t *dst_ire; 3516 3517 if (!mp) 3518 return (NULL); 3519 ipha = (ipha_t *)mp->b_rptr; 3520 if (ip_csum_hdr(ipha)) { 3521 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3522 freemsg(mp); 3523 return (NULL); 3524 } 3525 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3526 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3527 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3528 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3529 if (src_ire != NULL || dst_ire != NULL || 3530 CLASSD(ipha->ipha_dst) || 3531 CLASSD(ipha->ipha_src) || 3532 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3533 /* Note: only errors to the fragment with offset 0 */ 3534 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3535 freemsg(mp); 3536 if (src_ire != NULL) 3537 ire_refrele(src_ire); 3538 if (dst_ire != NULL) 3539 ire_refrele(dst_ire); 3540 return (NULL); 3541 } 3542 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3543 /* 3544 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3545 * errors in response to any ICMP errors. 3546 */ 3547 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3548 if (mp->b_wptr - mp->b_rptr < len_needed) { 3549 if (!pullupmsg(mp, len_needed)) { 3550 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3551 freemsg(mp); 3552 return (NULL); 3553 } 3554 ipha = (ipha_t *)mp->b_rptr; 3555 } 3556 icmph = (icmph_t *) 3557 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3558 switch (icmph->icmph_type) { 3559 case ICMP_DEST_UNREACHABLE: 3560 case ICMP_SOURCE_QUENCH: 3561 case ICMP_TIME_EXCEEDED: 3562 case ICMP_PARAM_PROBLEM: 3563 case ICMP_REDIRECT: 3564 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3565 freemsg(mp); 3566 return (NULL); 3567 default: 3568 break; 3569 } 3570 } 3571 /* 3572 * If this is a labeled system, then check to see if we're allowed to 3573 * send a response to this particular sender. If not, then just drop. 3574 */ 3575 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3576 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3577 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3578 freemsg(mp); 3579 return (NULL); 3580 } 3581 if (icmp_err_rate_limit(ipst)) { 3582 /* 3583 * Only send ICMP error packets every so often. 3584 * This should be done on a per port/source basis, 3585 * but for now this will suffice. 3586 */ 3587 freemsg(mp); 3588 return (NULL); 3589 } 3590 return (mp); 3591 } 3592 3593 /* 3594 * Generate an ICMP redirect message. 3595 */ 3596 static void 3597 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3598 { 3599 icmph_t icmph; 3600 3601 /* 3602 * We are called from ip_rput where we could 3603 * not have attached an IPSEC_IN. 3604 */ 3605 ASSERT(mp->b_datap->db_type == M_DATA); 3606 3607 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3608 return; 3609 } 3610 3611 bzero(&icmph, sizeof (icmph_t)); 3612 icmph.icmph_type = ICMP_REDIRECT; 3613 icmph.icmph_code = 1; 3614 icmph.icmph_rd_gateway = gateway; 3615 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3616 /* Redirects sent by router, and router is global zone */ 3617 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3618 } 3619 3620 /* 3621 * Generate an ICMP time exceeded message. 3622 */ 3623 void 3624 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3625 ip_stack_t *ipst) 3626 { 3627 icmph_t icmph; 3628 boolean_t mctl_present; 3629 mblk_t *first_mp; 3630 3631 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3632 3633 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3634 if (mctl_present) 3635 freeb(first_mp); 3636 return; 3637 } 3638 3639 bzero(&icmph, sizeof (icmph_t)); 3640 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3641 icmph.icmph_code = code; 3642 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3643 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3644 ipst); 3645 } 3646 3647 /* 3648 * Generate an ICMP unreachable message. 3649 */ 3650 void 3651 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3652 ip_stack_t *ipst) 3653 { 3654 icmph_t icmph; 3655 mblk_t *first_mp; 3656 boolean_t mctl_present; 3657 3658 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3659 3660 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3661 if (mctl_present) 3662 freeb(first_mp); 3663 return; 3664 } 3665 3666 bzero(&icmph, sizeof (icmph_t)); 3667 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3668 icmph.icmph_code = code; 3669 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3670 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3671 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3672 zoneid, ipst); 3673 } 3674 3675 /* 3676 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3677 * duplicate. As long as someone else holds the address, the interface will 3678 * stay down. When that conflict goes away, the interface is brought back up. 3679 * This is done so that accidental shutdowns of addresses aren't made 3680 * permanent. Your server will recover from a failure. 3681 * 3682 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3683 * user space process (dhcpagent). 3684 * 3685 * Recovery completes if ARP reports that the address is now ours (via 3686 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3687 * 3688 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3689 */ 3690 static void 3691 ipif_dup_recovery(void *arg) 3692 { 3693 ipif_t *ipif = arg; 3694 ill_t *ill = ipif->ipif_ill; 3695 mblk_t *arp_add_mp; 3696 mblk_t *arp_del_mp; 3697 ip_stack_t *ipst = ill->ill_ipst; 3698 3699 ipif->ipif_recovery_id = 0; 3700 3701 /* 3702 * No lock needed for moving or condemned check, as this is just an 3703 * optimization. 3704 */ 3705 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3706 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3707 (ipif->ipif_state_flags & (IPIF_CONDEMNED))) { 3708 /* No reason to try to bring this address back. */ 3709 return; 3710 } 3711 3712 /* ACE_F_UNVERIFIED restarts DAD */ 3713 if ((arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) 3714 goto alloc_fail; 3715 3716 if (ipif->ipif_arp_del_mp == NULL) { 3717 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3718 goto alloc_fail; 3719 ipif->ipif_arp_del_mp = arp_del_mp; 3720 } 3721 3722 putnext(ill->ill_rq, arp_add_mp); 3723 return; 3724 3725 alloc_fail: 3726 /* 3727 * On allocation failure, just restart the timer. Note that the ipif 3728 * is down here, so no other thread could be trying to start a recovery 3729 * timer. The ill_lock protects the condemned flag and the recovery 3730 * timer ID. 3731 */ 3732 freemsg(arp_add_mp); 3733 mutex_enter(&ill->ill_lock); 3734 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3735 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3736 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3737 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3738 } 3739 mutex_exit(&ill->ill_lock); 3740 } 3741 3742 /* 3743 * This is for exclusive changes due to ARP. Either tear down an interface due 3744 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3745 */ 3746 /* ARGSUSED */ 3747 static void 3748 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3749 { 3750 ill_t *ill = rq->q_ptr; 3751 arh_t *arh; 3752 ipaddr_t src; 3753 ipif_t *ipif; 3754 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3755 char hbuf[MAC_STR_LEN]; 3756 char sbuf[INET_ADDRSTRLEN]; 3757 const char *failtype; 3758 boolean_t bring_up; 3759 ip_stack_t *ipst = ill->ill_ipst; 3760 3761 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3762 case AR_CN_READY: 3763 failtype = NULL; 3764 bring_up = B_TRUE; 3765 break; 3766 case AR_CN_FAILED: 3767 failtype = "in use"; 3768 bring_up = B_FALSE; 3769 break; 3770 default: 3771 failtype = "claimed"; 3772 bring_up = B_FALSE; 3773 break; 3774 } 3775 3776 arh = (arh_t *)mp->b_cont->b_rptr; 3777 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3778 3779 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3780 sizeof (hbuf)); 3781 (void) ip_dot_addr(src, sbuf); 3782 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3783 3784 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3785 ipif->ipif_lcl_addr != src) { 3786 continue; 3787 } 3788 3789 /* 3790 * If we failed on a recovery probe, then restart the timer to 3791 * try again later. 3792 */ 3793 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3794 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3795 ill->ill_net_type == IRE_IF_RESOLVER && 3796 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3797 ipst->ips_ip_dup_recovery > 0 && 3798 ipif->ipif_recovery_id == 0) { 3799 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3800 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3801 continue; 3802 } 3803 3804 /* 3805 * If what we're trying to do has already been done, then do 3806 * nothing. 3807 */ 3808 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3809 continue; 3810 3811 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3812 3813 if (failtype == NULL) { 3814 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3815 ibuf); 3816 } else { 3817 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3818 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3819 } 3820 3821 if (bring_up) { 3822 ASSERT(ill->ill_dl_up); 3823 /* 3824 * Free up the ARP delete message so we can allocate 3825 * a fresh one through the normal path. 3826 */ 3827 freemsg(ipif->ipif_arp_del_mp); 3828 ipif->ipif_arp_del_mp = NULL; 3829 if (ipif_resolver_up(ipif, Res_act_initial) != 3830 EINPROGRESS) { 3831 ipif->ipif_addr_ready = 1; 3832 (void) ipif_up_done(ipif); 3833 ASSERT(ill->ill_move_ipif == NULL); 3834 } 3835 continue; 3836 } 3837 3838 mutex_enter(&ill->ill_lock); 3839 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3840 ipif->ipif_flags |= IPIF_DUPLICATE; 3841 ill->ill_ipif_dup_count++; 3842 mutex_exit(&ill->ill_lock); 3843 /* 3844 * Already exclusive on the ill; no need to handle deferred 3845 * processing here. 3846 */ 3847 (void) ipif_down(ipif, NULL, NULL); 3848 ipif_down_tail(ipif); 3849 mutex_enter(&ill->ill_lock); 3850 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3851 ill->ill_net_type == IRE_IF_RESOLVER && 3852 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3853 ipst->ips_ip_dup_recovery > 0) { 3854 ASSERT(ipif->ipif_recovery_id == 0); 3855 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3856 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3857 } 3858 mutex_exit(&ill->ill_lock); 3859 } 3860 freemsg(mp); 3861 } 3862 3863 /* ARGSUSED */ 3864 static void 3865 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3866 { 3867 ill_t *ill = rq->q_ptr; 3868 arh_t *arh; 3869 ipaddr_t src; 3870 ipif_t *ipif; 3871 3872 arh = (arh_t *)mp->b_cont->b_rptr; 3873 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3874 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3875 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3876 (void) ipif_resolver_up(ipif, Res_act_defend); 3877 } 3878 freemsg(mp); 3879 } 3880 3881 /* 3882 * News from ARP. ARP sends notification of interesting events down 3883 * to its clients using M_CTL messages with the interesting ARP packet 3884 * attached via b_cont. 3885 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3886 * queue as opposed to ARP sending the message to all the clients, i.e. all 3887 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3888 * table if a cache IRE is found to delete all the entries for the address in 3889 * the packet. 3890 */ 3891 static void 3892 ip_arp_news(queue_t *q, mblk_t *mp) 3893 { 3894 arcn_t *arcn; 3895 arh_t *arh; 3896 ire_t *ire = NULL; 3897 char hbuf[MAC_STR_LEN]; 3898 char sbuf[INET_ADDRSTRLEN]; 3899 ipaddr_t src; 3900 in6_addr_t v6src; 3901 boolean_t isv6 = B_FALSE; 3902 ipif_t *ipif; 3903 ill_t *ill; 3904 ip_stack_t *ipst; 3905 3906 if (CONN_Q(q)) { 3907 conn_t *connp = Q_TO_CONN(q); 3908 3909 ipst = connp->conn_netstack->netstack_ip; 3910 } else { 3911 ill_t *ill = (ill_t *)q->q_ptr; 3912 3913 ipst = ill->ill_ipst; 3914 } 3915 3916 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3917 if (q->q_next) { 3918 putnext(q, mp); 3919 } else 3920 freemsg(mp); 3921 return; 3922 } 3923 arh = (arh_t *)mp->b_cont->b_rptr; 3924 /* Is it one we are interested in? */ 3925 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3926 isv6 = B_TRUE; 3927 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3928 IPV6_ADDR_LEN); 3929 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3930 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3931 IP_ADDR_LEN); 3932 } else { 3933 freemsg(mp); 3934 return; 3935 } 3936 3937 ill = q->q_ptr; 3938 3939 arcn = (arcn_t *)mp->b_rptr; 3940 switch (arcn->arcn_code) { 3941 case AR_CN_BOGON: 3942 /* 3943 * Someone is sending ARP packets with a source protocol 3944 * address that we have published and for which we believe our 3945 * entry is authoritative and (when ill_arp_extend is set) 3946 * verified to be unique on the network. 3947 * 3948 * The ARP module internally handles the cases where the sender 3949 * is just probing (for DAD) and where the hardware address of 3950 * a non-authoritative entry has changed. Thus, these are the 3951 * real conflicts, and we have to do resolution. 3952 * 3953 * We back away quickly from the address if it's from DHCP or 3954 * otherwise temporary and hasn't been used recently (or at 3955 * all). We'd like to include "deprecated" addresses here as 3956 * well (as there's no real reason to defend something we're 3957 * discarding), but IPMP "reuses" this flag to mean something 3958 * other than the standard meaning. 3959 * 3960 * If the ARP module above is not extended (meaning that it 3961 * doesn't know how to defend the address), then we just log 3962 * the problem as we always did and continue on. It's not 3963 * right, but there's little else we can do, and those old ATM 3964 * users are going away anyway. 3965 */ 3966 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3967 hbuf, sizeof (hbuf)); 3968 (void) ip_dot_addr(src, sbuf); 3969 if (isv6) { 3970 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3971 ipst); 3972 } else { 3973 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3974 } 3975 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3976 uint32_t now; 3977 uint32_t maxage; 3978 clock_t lused; 3979 uint_t maxdefense; 3980 uint_t defs; 3981 3982 /* 3983 * First, figure out if this address hasn't been used 3984 * in a while. If it hasn't, then it's a better 3985 * candidate for abandoning. 3986 */ 3987 ipif = ire->ire_ipif; 3988 ASSERT(ipif != NULL); 3989 now = gethrestime_sec(); 3990 maxage = now - ire->ire_create_time; 3991 if (maxage > ipst->ips_ip_max_temp_idle) 3992 maxage = ipst->ips_ip_max_temp_idle; 3993 lused = drv_hztousec(ddi_get_lbolt() - 3994 ire->ire_last_used_time) / MICROSEC + 1; 3995 if (lused >= maxage && (ipif->ipif_flags & 3996 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 3997 maxdefense = ipst->ips_ip_max_temp_defend; 3998 else 3999 maxdefense = ipst->ips_ip_max_defend; 4000 4001 /* 4002 * Now figure out how many times we've defended 4003 * ourselves. Ignore defenses that happened long in 4004 * the past. 4005 */ 4006 mutex_enter(&ire->ire_lock); 4007 if ((defs = ire->ire_defense_count) > 0 && 4008 now - ire->ire_defense_time > 4009 ipst->ips_ip_defend_interval) { 4010 ire->ire_defense_count = defs = 0; 4011 } 4012 ire->ire_defense_count++; 4013 ire->ire_defense_time = now; 4014 mutex_exit(&ire->ire_lock); 4015 ill_refhold(ill); 4016 ire_refrele(ire); 4017 4018 /* 4019 * If we've defended ourselves too many times already, 4020 * then give up and tear down the interface(s) using 4021 * this address. Otherwise, defend by sending out a 4022 * gratuitous ARP. 4023 */ 4024 if (defs >= maxdefense && ill->ill_arp_extend) { 4025 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4026 B_FALSE); 4027 } else { 4028 cmn_err(CE_WARN, 4029 "node %s is using our IP address %s on %s", 4030 hbuf, sbuf, ill->ill_name); 4031 /* 4032 * If this is an old (ATM) ARP module, then 4033 * don't try to defend the address. Remain 4034 * compatible with the old behavior. Defend 4035 * only with new ARP. 4036 */ 4037 if (ill->ill_arp_extend) { 4038 qwriter_ip(ill, q, mp, ip_arp_defend, 4039 NEW_OP, B_FALSE); 4040 } else { 4041 ill_refrele(ill); 4042 } 4043 } 4044 return; 4045 } 4046 cmn_err(CE_WARN, 4047 "proxy ARP problem? Node '%s' is using %s on %s", 4048 hbuf, sbuf, ill->ill_name); 4049 if (ire != NULL) 4050 ire_refrele(ire); 4051 break; 4052 case AR_CN_ANNOUNCE: 4053 if (isv6) { 4054 /* 4055 * For XRESOLV interfaces. 4056 * Delete the IRE cache entry and NCE for this 4057 * v6 address 4058 */ 4059 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4060 /* 4061 * If v6src is a non-zero, it's a router address 4062 * as below. Do the same sort of thing to clean 4063 * out off-net IRE_CACHE entries that go through 4064 * the router. 4065 */ 4066 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4067 ire_walk_v6(ire_delete_cache_gw_v6, 4068 (char *)&v6src, ALL_ZONES, ipst); 4069 } 4070 } else { 4071 nce_hw_map_t hwm; 4072 4073 /* 4074 * ARP gives us a copy of any packet where it thinks 4075 * the address has changed, so that we can update our 4076 * caches. We're responsible for caching known answers 4077 * in the current design. We check whether the 4078 * hardware address really has changed in all of our 4079 * entries that have cached this mapping, and if so, we 4080 * blow them away. This way we will immediately pick 4081 * up the rare case of a host changing hardware 4082 * address. 4083 */ 4084 if (src == 0) 4085 break; 4086 hwm.hwm_addr = src; 4087 hwm.hwm_hwlen = arh->arh_hlen; 4088 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4089 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4090 ndp_walk_common(ipst->ips_ndp4, NULL, 4091 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4092 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4093 } 4094 break; 4095 case AR_CN_READY: 4096 /* No external v6 resolver has a contract to use this */ 4097 if (isv6) 4098 break; 4099 /* If the link is down, we'll retry this later */ 4100 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4101 break; 4102 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4103 NULL, NULL, ipst); 4104 if (ipif != NULL) { 4105 /* 4106 * If this is a duplicate recovery, then we now need to 4107 * go exclusive to bring this thing back up. 4108 */ 4109 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4110 IPIF_DUPLICATE) { 4111 ipif_refrele(ipif); 4112 ill_refhold(ill); 4113 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4114 B_FALSE); 4115 return; 4116 } 4117 /* 4118 * If this is the first notice that this address is 4119 * ready, then let the user know now. 4120 */ 4121 if ((ipif->ipif_flags & IPIF_UP) && 4122 !ipif->ipif_addr_ready) { 4123 ipif_mask_reply(ipif); 4124 ipif_up_notify(ipif); 4125 } 4126 ipif->ipif_addr_ready = 1; 4127 ipif_refrele(ipif); 4128 } 4129 ire = ire_cache_lookup(src, ALL_ZONES, msg_getlabel(mp), ipst); 4130 if (ire != NULL) { 4131 ire->ire_defense_count = 0; 4132 ire_refrele(ire); 4133 } 4134 break; 4135 case AR_CN_FAILED: 4136 /* No external v6 resolver has a contract to use this */ 4137 if (isv6) 4138 break; 4139 if (!ill->ill_arp_extend) { 4140 (void) mac_colon_addr((uint8_t *)(arh + 1), 4141 arh->arh_hlen, hbuf, sizeof (hbuf)); 4142 (void) ip_dot_addr(src, sbuf); 4143 4144 cmn_err(CE_WARN, 4145 "node %s is using our IP address %s on %s", 4146 hbuf, sbuf, ill->ill_name); 4147 break; 4148 } 4149 ill_refhold(ill); 4150 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4151 return; 4152 } 4153 freemsg(mp); 4154 } 4155 4156 /* 4157 * Create a mblk suitable for carrying the interface index and/or source link 4158 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4159 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4160 * application. 4161 */ 4162 mblk_t * 4163 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4164 ip_stack_t *ipst) 4165 { 4166 mblk_t *mp; 4167 ip_pktinfo_t *pinfo; 4168 ipha_t *ipha; 4169 struct ether_header *pether; 4170 boolean_t ipmp_ill_held = B_FALSE; 4171 4172 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4173 if (mp == NULL) { 4174 ip1dbg(("ip_add_info: allocation failure.\n")); 4175 return (data_mp); 4176 } 4177 4178 ipha = (ipha_t *)data_mp->b_rptr; 4179 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4180 bzero(pinfo, sizeof (ip_pktinfo_t)); 4181 pinfo->ip_pkt_flags = (uchar_t)flags; 4182 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4183 4184 pether = (struct ether_header *)((char *)ipha 4185 - sizeof (struct ether_header)); 4186 4187 /* 4188 * Make sure the interface is an ethernet type, since this option 4189 * is currently supported only on this type of interface. Also make 4190 * sure we are pointing correctly above db_base. 4191 */ 4192 if ((flags & IPF_RECVSLLA) && 4193 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4194 (ill->ill_type == IFT_ETHER) && 4195 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4196 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4197 bcopy(pether->ether_shost.ether_addr_octet, 4198 pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4199 } else { 4200 /* 4201 * Clear the bit. Indicate to upper layer that IP is not 4202 * sending this ancillary info. 4203 */ 4204 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4205 } 4206 4207 /* 4208 * If `ill' is in an IPMP group, use the IPMP ill to determine 4209 * IPF_RECVIF and IPF_RECVADDR. (This currently assumes that 4210 * IPF_RECVADDR support on test addresses is not needed.) 4211 * 4212 * Note that `ill' may already be an IPMP ill if e.g. we're 4213 * processing a packet looped back to an IPMP data address 4214 * (since those IRE_LOCALs are tied to IPMP ills). 4215 */ 4216 if (IS_UNDER_IPMP(ill)) { 4217 if ((ill = ipmp_ill_hold_ipmp_ill(ill)) == NULL) { 4218 ip1dbg(("ip_add_info: cannot hold IPMP ill.\n")); 4219 freemsg(mp); 4220 return (data_mp); 4221 } 4222 ipmp_ill_held = B_TRUE; 4223 } 4224 4225 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4226 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4227 if (flags & IPF_RECVADDR) { 4228 ipif_t *ipif; 4229 ire_t *ire; 4230 4231 /* 4232 * Only valid for V4 4233 */ 4234 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4235 (IPV4_VERSION << 4)); 4236 4237 ipif = ipif_get_next_ipif(NULL, ill); 4238 if (ipif != NULL) { 4239 /* 4240 * Since a decision has already been made to deliver the 4241 * packet, there is no need to test for SECATTR and 4242 * ZONEONLY. 4243 * When a multicast packet is transmitted 4244 * a cache entry is created for the multicast address. 4245 * When delivering a copy of the packet or when new 4246 * packets are received we do not want to match on the 4247 * cached entry so explicitly match on 4248 * IRE_LOCAL and IRE_LOOPBACK 4249 */ 4250 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4251 IRE_LOCAL | IRE_LOOPBACK, 4252 ipif, zoneid, NULL, 4253 MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 4254 if (ire == NULL) { 4255 /* 4256 * packet must have come on a different 4257 * interface. 4258 * Since a decision has already been made to 4259 * deliver the packet, there is no need to test 4260 * for SECATTR and ZONEONLY. 4261 * Only match on local and broadcast ire's. 4262 * See detailed comment above. 4263 */ 4264 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4265 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4266 NULL, MATCH_IRE_TYPE, ipst); 4267 } 4268 4269 if (ire == NULL) { 4270 /* 4271 * This is either a multicast packet or 4272 * the address has been removed since 4273 * the packet was received. 4274 * Return INADDR_ANY so that normal source 4275 * selection occurs for the response. 4276 */ 4277 4278 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4279 } else { 4280 pinfo->ip_pkt_match_addr.s_addr = 4281 ire->ire_src_addr; 4282 ire_refrele(ire); 4283 } 4284 ipif_refrele(ipif); 4285 } else { 4286 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4287 } 4288 } 4289 4290 if (ipmp_ill_held) 4291 ill_refrele(ill); 4292 4293 mp->b_datap->db_type = M_CTL; 4294 mp->b_wptr += sizeof (ip_pktinfo_t); 4295 mp->b_cont = data_mp; 4296 4297 return (mp); 4298 } 4299 4300 /* 4301 * Used to determine the most accurate cred_t to use for TX. 4302 * First priority is SCM_UCRED having set the label in the message, 4303 * which is used for MLP on UDP. Second priority is the peers label (aka 4304 * conn_peercred), which is needed for MLP on TCP/SCTP. Last priority is the 4305 * open credentials. 4306 */ 4307 cred_t * 4308 ip_best_cred(mblk_t *mp, conn_t *connp) 4309 { 4310 cred_t *cr; 4311 4312 cr = msg_getcred(mp, NULL); 4313 if (cr != NULL && crgetlabel(cr) != NULL) 4314 return (cr); 4315 return (CONN_CRED(connp)); 4316 } 4317 4318 /* 4319 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4320 * part of the bind request. 4321 */ 4322 4323 boolean_t 4324 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4325 { 4326 ipsec_in_t *ii; 4327 4328 ASSERT(policy_mp != NULL); 4329 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4330 4331 ii = (ipsec_in_t *)policy_mp->b_rptr; 4332 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4333 4334 connp->conn_policy = ii->ipsec_in_policy; 4335 ii->ipsec_in_policy = NULL; 4336 4337 if (ii->ipsec_in_action != NULL) { 4338 if (connp->conn_latch == NULL) { 4339 connp->conn_latch = iplatch_create(); 4340 if (connp->conn_latch == NULL) 4341 return (B_FALSE); 4342 } 4343 ipsec_latch_inbound(connp->conn_latch, ii); 4344 } 4345 return (B_TRUE); 4346 } 4347 4348 static void 4349 ip_bind_post_handling(conn_t *connp, mblk_t *mp, boolean_t ire_requested) 4350 { 4351 /* 4352 * Pass the IPsec headers size in ire_ipsec_overhead. 4353 * We can't do this in ip_bind_get_ire because the policy 4354 * may not have been inherited at that point in time and hence 4355 * conn_out_enforce_policy may not be set. 4356 */ 4357 if (ire_requested && connp->conn_out_enforce_policy && 4358 mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE) { 4359 ire_t *ire = (ire_t *)mp->b_rptr; 4360 ASSERT(MBLKL(mp) >= sizeof (ire_t)); 4361 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4362 } 4363 } 4364 4365 /* 4366 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4367 * and to arrange for power-fanout assist. The ULP is identified by 4368 * adding a single byte at the end of the original bind message. 4369 * A ULP other than UDP or TCP that wishes to be recognized passes 4370 * down a bind with a zero length address. 4371 * 4372 * The binding works as follows: 4373 * - A zero byte address means just bind to the protocol. 4374 * - A four byte address is treated as a request to validate 4375 * that the address is a valid local address, appropriate for 4376 * an application to bind to. This does not affect any fanout 4377 * information in IP. 4378 * - A sizeof sin_t byte address is used to bind to only the local address 4379 * and port. 4380 * - A sizeof ipa_conn_t byte address contains complete fanout information 4381 * consisting of local and remote addresses and ports. In 4382 * this case, the addresses are both validated as appropriate 4383 * for this operation, and, if so, the information is retained 4384 * for use in the inbound fanout. 4385 * 4386 * The ULP (except in the zero-length bind) can append an 4387 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4388 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4389 * a copy of the source or destination IRE (source for local bind; 4390 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4391 * policy information contained should be copied on to the conn. 4392 * 4393 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4394 */ 4395 mblk_t * 4396 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4397 { 4398 ssize_t len; 4399 struct T_bind_req *tbr; 4400 sin_t *sin; 4401 ipa_conn_t *ac; 4402 uchar_t *ucp; 4403 mblk_t *mp1; 4404 boolean_t ire_requested; 4405 int error = 0; 4406 int protocol; 4407 ipa_conn_x_t *acx; 4408 cred_t *cr; 4409 4410 /* 4411 * All Solaris components should pass a db_credp 4412 * for this TPI message, hence we ASSERT. 4413 * But in case there is some other M_PROTO that looks 4414 * like a TPI message sent by some other kernel 4415 * component, we check and return an error. 4416 */ 4417 cr = msg_getcred(mp, NULL); 4418 ASSERT(cr != NULL); 4419 if (cr == NULL) { 4420 error = EINVAL; 4421 goto bad_addr; 4422 } 4423 4424 ASSERT(!connp->conn_af_isv6); 4425 connp->conn_pkt_isv6 = B_FALSE; 4426 4427 len = MBLKL(mp); 4428 if (len < (sizeof (*tbr) + 1)) { 4429 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4430 "ip_bind: bogus msg, len %ld", len); 4431 /* XXX: Need to return something better */ 4432 goto bad_addr; 4433 } 4434 /* Back up and extract the protocol identifier. */ 4435 mp->b_wptr--; 4436 protocol = *mp->b_wptr & 0xFF; 4437 tbr = (struct T_bind_req *)mp->b_rptr; 4438 /* Reset the message type in preparation for shipping it back. */ 4439 DB_TYPE(mp) = M_PCPROTO; 4440 4441 connp->conn_ulp = (uint8_t)protocol; 4442 4443 /* 4444 * Check for a zero length address. This is from a protocol that 4445 * wants to register to receive all packets of its type. 4446 */ 4447 if (tbr->ADDR_length == 0) { 4448 /* 4449 * These protocols are now intercepted in ip_bind_v6(). 4450 * Reject protocol-level binds here for now. 4451 * 4452 * For SCTP raw socket, ICMP sends down a bind with sin_t 4453 * so that the protocol type cannot be SCTP. 4454 */ 4455 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4456 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4457 goto bad_addr; 4458 } 4459 4460 /* 4461 * 4462 * The udp module never sends down a zero-length address, 4463 * and allowing this on a labeled system will break MLP 4464 * functionality. 4465 */ 4466 if (is_system_labeled() && protocol == IPPROTO_UDP) 4467 goto bad_addr; 4468 4469 if (connp->conn_mac_exempt) 4470 goto bad_addr; 4471 4472 /* No hash here really. The table is big enough. */ 4473 connp->conn_srcv6 = ipv6_all_zeros; 4474 4475 ipcl_proto_insert(connp, protocol); 4476 4477 tbr->PRIM_type = T_BIND_ACK; 4478 return (mp); 4479 } 4480 4481 /* Extract the address pointer from the message. */ 4482 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4483 tbr->ADDR_length); 4484 if (ucp == NULL) { 4485 ip1dbg(("ip_bind: no address\n")); 4486 goto bad_addr; 4487 } 4488 if (!OK_32PTR(ucp)) { 4489 ip1dbg(("ip_bind: unaligned address\n")); 4490 goto bad_addr; 4491 } 4492 /* 4493 * Check for trailing mps. 4494 */ 4495 4496 mp1 = mp->b_cont; 4497 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4498 4499 switch (tbr->ADDR_length) { 4500 default: 4501 ip1dbg(("ip_bind: bad address length %d\n", 4502 (int)tbr->ADDR_length)); 4503 goto bad_addr; 4504 4505 case IP_ADDR_LEN: 4506 /* Verification of local address only */ 4507 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4508 *(ipaddr_t *)ucp, 0, B_FALSE); 4509 break; 4510 4511 case sizeof (sin_t): 4512 sin = (sin_t *)ucp; 4513 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4514 sin->sin_addr.s_addr, sin->sin_port, B_TRUE); 4515 break; 4516 4517 case sizeof (ipa_conn_t): 4518 ac = (ipa_conn_t *)ucp; 4519 /* For raw socket, the local port is not set. */ 4520 if (ac->ac_lport == 0) 4521 ac->ac_lport = connp->conn_lport; 4522 /* Always verify destination reachability. */ 4523 error = ip_bind_connected_v4(connp, &mp1, protocol, 4524 &ac->ac_laddr, ac->ac_lport, ac->ac_faddr, ac->ac_fport, 4525 B_TRUE, B_TRUE, cr); 4526 break; 4527 4528 case sizeof (ipa_conn_x_t): 4529 acx = (ipa_conn_x_t *)ucp; 4530 /* 4531 * Whether or not to verify destination reachability depends 4532 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4533 */ 4534 error = ip_bind_connected_v4(connp, &mp1, protocol, 4535 &acx->acx_conn.ac_laddr, acx->acx_conn.ac_lport, 4536 acx->acx_conn.ac_faddr, acx->acx_conn.ac_fport, 4537 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0, cr); 4538 break; 4539 } 4540 ASSERT(error != EINPROGRESS); 4541 if (error != 0) 4542 goto bad_addr; 4543 4544 ip_bind_post_handling(connp, mp->b_cont, ire_requested); 4545 4546 /* Send it home. */ 4547 mp->b_datap->db_type = M_PCPROTO; 4548 tbr->PRIM_type = T_BIND_ACK; 4549 return (mp); 4550 4551 bad_addr: 4552 /* 4553 * If error = -1 then we generate a TBADADDR - otherwise error is 4554 * a unix errno. 4555 */ 4556 if (error > 0) 4557 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4558 else 4559 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4560 return (mp); 4561 } 4562 4563 /* 4564 * Here address is verified to be a valid local address. 4565 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4566 * address is also considered a valid local address. 4567 * In the case of a broadcast/multicast address, however, the 4568 * upper protocol is expected to reset the src address 4569 * to 0 if it sees a IRE_BROADCAST type returned so that 4570 * no packets are emitted with broadcast/multicast address as 4571 * source address (that violates hosts requirements RFC 1122) 4572 * The addresses valid for bind are: 4573 * (1) - INADDR_ANY (0) 4574 * (2) - IP address of an UP interface 4575 * (3) - IP address of a DOWN interface 4576 * (4) - valid local IP broadcast addresses. In this case 4577 * the conn will only receive packets destined to 4578 * the specified broadcast address. 4579 * (5) - a multicast address. In this case 4580 * the conn will only receive packets destined to 4581 * the specified multicast address. Note: the 4582 * application still has to issue an 4583 * IP_ADD_MEMBERSHIP socket option. 4584 * 4585 * On error, return -1 for TBADADDR otherwise pass the 4586 * errno with TSYSERR reply. 4587 * 4588 * In all the above cases, the bound address must be valid in the current zone. 4589 * When the address is loopback, multicast or broadcast, there might be many 4590 * matching IREs so bind has to look up based on the zone. 4591 * 4592 * Note: lport is in network byte order. 4593 * 4594 */ 4595 int 4596 ip_bind_laddr_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4597 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4598 { 4599 int error = 0; 4600 ire_t *src_ire; 4601 zoneid_t zoneid; 4602 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4603 mblk_t *mp = NULL; 4604 boolean_t ire_requested = B_FALSE; 4605 boolean_t ipsec_policy_set = B_FALSE; 4606 4607 if (mpp) 4608 mp = *mpp; 4609 4610 if (mp != NULL) { 4611 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4612 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4613 } 4614 4615 /* 4616 * If it was previously connected, conn_fully_bound would have 4617 * been set. 4618 */ 4619 connp->conn_fully_bound = B_FALSE; 4620 4621 src_ire = NULL; 4622 4623 zoneid = IPCL_ZONEID(connp); 4624 4625 if (src_addr) { 4626 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4627 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4628 /* 4629 * If an address other than 0.0.0.0 is requested, 4630 * we verify that it is a valid address for bind 4631 * Note: Following code is in if-else-if form for 4632 * readability compared to a condition check. 4633 */ 4634 /* LINTED - statement has no consequence */ 4635 if (IRE_IS_LOCAL(src_ire)) { 4636 /* 4637 * (2) Bind to address of local UP interface 4638 */ 4639 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4640 /* 4641 * (4) Bind to broadcast address 4642 * Note: permitted only from transports that 4643 * request IRE 4644 */ 4645 if (!ire_requested) 4646 error = EADDRNOTAVAIL; 4647 } else { 4648 /* 4649 * (3) Bind to address of local DOWN interface 4650 * (ipif_lookup_addr() looks up all interfaces 4651 * but we do not get here for UP interfaces 4652 * - case (2) above) 4653 */ 4654 /* LINTED - statement has no consequent */ 4655 if (ip_addr_exists(src_addr, zoneid, ipst)) { 4656 /* The address exists */ 4657 } else if (CLASSD(src_addr)) { 4658 error = 0; 4659 if (src_ire != NULL) 4660 ire_refrele(src_ire); 4661 /* 4662 * (5) bind to multicast address. 4663 * Fake out the IRE returned to upper 4664 * layer to be a broadcast IRE. 4665 */ 4666 src_ire = ire_ctable_lookup( 4667 INADDR_BROADCAST, INADDR_ANY, 4668 IRE_BROADCAST, NULL, zoneid, NULL, 4669 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4670 ipst); 4671 if (src_ire == NULL || !ire_requested) 4672 error = EADDRNOTAVAIL; 4673 } else { 4674 /* 4675 * Not a valid address for bind 4676 */ 4677 error = EADDRNOTAVAIL; 4678 } 4679 } 4680 if (error) { 4681 /* Red Alert! Attempting to be a bogon! */ 4682 ip1dbg(("ip_bind_laddr_v4: bad src address 0x%x\n", 4683 ntohl(src_addr))); 4684 goto bad_addr; 4685 } 4686 } 4687 4688 /* 4689 * Allow setting new policies. For example, disconnects come 4690 * down as ipa_t bind. As we would have set conn_policy_cached 4691 * to B_TRUE before, we should set it to B_FALSE, so that policy 4692 * can change after the disconnect. 4693 */ 4694 connp->conn_policy_cached = B_FALSE; 4695 4696 /* 4697 * If not fanout_insert this was just an address verification 4698 */ 4699 if (fanout_insert) { 4700 /* 4701 * The addresses have been verified. Time to insert in 4702 * the correct fanout list. 4703 */ 4704 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4705 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4706 connp->conn_lport = lport; 4707 connp->conn_fport = 0; 4708 /* 4709 * Do we need to add a check to reject Multicast packets 4710 */ 4711 error = ipcl_bind_insert(connp, protocol, src_addr, lport); 4712 } 4713 4714 if (error == 0) { 4715 if (ire_requested) { 4716 if (!ip_bind_get_ire_v4(mpp, src_ire, NULL, ipst)) { 4717 error = -1; 4718 /* Falls through to bad_addr */ 4719 } 4720 } else if (ipsec_policy_set) { 4721 if (!ip_bind_ipsec_policy_set(connp, mp)) { 4722 error = -1; 4723 /* Falls through to bad_addr */ 4724 } 4725 } 4726 } 4727 bad_addr: 4728 if (error != 0) { 4729 if (connp->conn_anon_port) { 4730 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4731 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4732 B_FALSE); 4733 } 4734 connp->conn_mlp_type = mlptSingle; 4735 } 4736 if (src_ire != NULL) 4737 IRE_REFRELE(src_ire); 4738 return (error); 4739 } 4740 4741 int 4742 ip_proto_bind_laddr_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 4743 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4744 { 4745 int error; 4746 mblk_t *mp = NULL; 4747 boolean_t ire_requested; 4748 4749 if (ire_mpp) 4750 mp = *ire_mpp; 4751 ire_requested = (mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4752 4753 ASSERT(!connp->conn_af_isv6); 4754 connp->conn_pkt_isv6 = B_FALSE; 4755 connp->conn_ulp = protocol; 4756 4757 error = ip_bind_laddr_v4(connp, ire_mpp, protocol, src_addr, lport, 4758 fanout_insert); 4759 if (error == 0) { 4760 ip_bind_post_handling(connp, ire_mpp ? *ire_mpp : NULL, 4761 ire_requested); 4762 } else if (error < 0) { 4763 error = -TBADADDR; 4764 } 4765 return (error); 4766 } 4767 4768 /* 4769 * Verify that both the source and destination addresses 4770 * are valid. If verify_dst is false, then the destination address may be 4771 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4772 * destination reachability, while tunnels do not. 4773 * Note that we allow connect to broadcast and multicast 4774 * addresses when ire_requested is set. Thus the ULP 4775 * has to check for IRE_BROADCAST and multicast. 4776 * 4777 * Returns zero if ok. 4778 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4779 * (for use with TSYSERR reply). 4780 * 4781 * Note: lport and fport are in network byte order. 4782 */ 4783 int 4784 ip_bind_connected_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4785 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4786 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 4787 { 4788 4789 ire_t *src_ire; 4790 ire_t *dst_ire; 4791 int error = 0; 4792 ire_t *sire = NULL; 4793 ire_t *md_dst_ire = NULL; 4794 ire_t *lso_dst_ire = NULL; 4795 ill_t *ill = NULL; 4796 zoneid_t zoneid; 4797 ipaddr_t src_addr = *src_addrp; 4798 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4799 mblk_t *mp = NULL; 4800 boolean_t ire_requested = B_FALSE; 4801 boolean_t ipsec_policy_set = B_FALSE; 4802 ts_label_t *tsl = NULL; 4803 4804 if (mpp) 4805 mp = *mpp; 4806 4807 if (mp != NULL) { 4808 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4809 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4810 } 4811 if (cr != NULL) 4812 tsl = crgetlabel(cr); 4813 4814 src_ire = dst_ire = NULL; 4815 4816 /* 4817 * If we never got a disconnect before, clear it now. 4818 */ 4819 connp->conn_fully_bound = B_FALSE; 4820 4821 zoneid = IPCL_ZONEID(connp); 4822 4823 if (CLASSD(dst_addr)) { 4824 /* Pick up an IRE_BROADCAST */ 4825 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4826 NULL, zoneid, tsl, 4827 (MATCH_IRE_RECURSIVE | 4828 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4829 MATCH_IRE_SECATTR), ipst); 4830 } else { 4831 /* 4832 * If conn_dontroute is set or if conn_nexthop_set is set, 4833 * and onlink ipif is not found set ENETUNREACH error. 4834 */ 4835 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4836 ipif_t *ipif; 4837 4838 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4839 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4840 if (ipif == NULL) { 4841 error = ENETUNREACH; 4842 goto bad_addr; 4843 } 4844 ipif_refrele(ipif); 4845 } 4846 4847 if (connp->conn_nexthop_set) { 4848 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4849 0, 0, NULL, NULL, zoneid, tsl, 4850 MATCH_IRE_SECATTR, ipst); 4851 } else { 4852 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4853 &sire, zoneid, tsl, 4854 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4855 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4856 MATCH_IRE_SECATTR), ipst); 4857 } 4858 } 4859 /* 4860 * dst_ire can't be a broadcast when not ire_requested. 4861 * We also prevent ire's with src address INADDR_ANY to 4862 * be used, which are created temporarily for 4863 * sending out packets from endpoints that have 4864 * conn_unspec_src set. If verify_dst is true, the destination must be 4865 * reachable. If verify_dst is false, the destination needn't be 4866 * reachable. 4867 * 4868 * If we match on a reject or black hole, then we've got a 4869 * local failure. May as well fail out the connect() attempt, 4870 * since it's never going to succeed. 4871 */ 4872 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4873 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4874 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4875 /* 4876 * If we're verifying destination reachability, we always want 4877 * to complain here. 4878 * 4879 * If we're not verifying destination reachability but the 4880 * destination has a route, we still want to fail on the 4881 * temporary address and broadcast address tests. 4882 */ 4883 if (verify_dst || (dst_ire != NULL)) { 4884 if (ip_debug > 2) { 4885 pr_addr_dbg("ip_bind_connected_v4:" 4886 "bad connected dst %s\n", 4887 AF_INET, &dst_addr); 4888 } 4889 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4890 error = ENETUNREACH; 4891 else 4892 error = EHOSTUNREACH; 4893 goto bad_addr; 4894 } 4895 } 4896 4897 /* 4898 * We now know that routing will allow us to reach the destination. 4899 * Check whether Trusted Solaris policy allows communication with this 4900 * host, and pretend that the destination is unreachable if not. 4901 * 4902 * This is never a problem for TCP, since that transport is known to 4903 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4904 * handling. If the remote is unreachable, it will be detected at that 4905 * point, so there's no reason to check it here. 4906 * 4907 * Note that for sendto (and other datagram-oriented friends), this 4908 * check is done as part of the data path label computation instead. 4909 * The check here is just to make non-TCP connect() report the right 4910 * error. 4911 */ 4912 if (dst_ire != NULL && is_system_labeled() && 4913 !IPCL_IS_TCP(connp) && 4914 tsol_compute_label(cr, dst_addr, NULL, 4915 connp->conn_mac_exempt, ipst) != 0) { 4916 error = EHOSTUNREACH; 4917 if (ip_debug > 2) { 4918 pr_addr_dbg("ip_bind_connected_v4:" 4919 " no label for dst %s\n", 4920 AF_INET, &dst_addr); 4921 } 4922 goto bad_addr; 4923 } 4924 4925 /* 4926 * If the app does a connect(), it means that it will most likely 4927 * send more than 1 packet to the destination. It makes sense 4928 * to clear the temporary flag. 4929 */ 4930 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4931 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4932 irb_t *irb = dst_ire->ire_bucket; 4933 4934 rw_enter(&irb->irb_lock, RW_WRITER); 4935 /* 4936 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4937 * the lock to guarantee irb_tmp_ire_cnt. 4938 */ 4939 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4940 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4941 irb->irb_tmp_ire_cnt--; 4942 } 4943 rw_exit(&irb->irb_lock); 4944 } 4945 4946 /* 4947 * See if we should notify ULP about LSO/MDT; we do this whether or not 4948 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4949 * eligibility tests for passive connects are handled separately 4950 * through tcp_adapt_ire(). We do this before the source address 4951 * selection, because dst_ire may change after a call to 4952 * ipif_select_source(). This is a best-effort check, as the 4953 * packet for this connection may not actually go through 4954 * dst_ire->ire_stq, and the exact IRE can only be known after 4955 * calling ip_newroute(). This is why we further check on the 4956 * IRE during LSO/Multidata packet transmission in 4957 * tcp_lsosend()/tcp_multisend(). 4958 */ 4959 if (!ipsec_policy_set && dst_ire != NULL && 4960 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4961 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4962 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4963 lso_dst_ire = dst_ire; 4964 IRE_REFHOLD(lso_dst_ire); 4965 } else if (ipst->ips_ip_multidata_outbound && 4966 ILL_MDT_CAPABLE(ill)) { 4967 md_dst_ire = dst_ire; 4968 IRE_REFHOLD(md_dst_ire); 4969 } 4970 } 4971 4972 if (dst_ire != NULL && dst_ire->ire_type == IRE_LOCAL && 4973 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4974 /* 4975 * If the IRE belongs to a different zone, look for a matching 4976 * route in the forwarding table and use the source address from 4977 * that route. 4978 */ 4979 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4980 zoneid, 0, NULL, 4981 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4982 MATCH_IRE_RJ_BHOLE, ipst); 4983 if (src_ire == NULL) { 4984 error = EHOSTUNREACH; 4985 goto bad_addr; 4986 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4987 if (!(src_ire->ire_type & IRE_HOST)) 4988 error = ENETUNREACH; 4989 else 4990 error = EHOSTUNREACH; 4991 goto bad_addr; 4992 } 4993 if (src_addr == INADDR_ANY) 4994 src_addr = src_ire->ire_src_addr; 4995 ire_refrele(src_ire); 4996 src_ire = NULL; 4997 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4998 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4999 src_addr = sire->ire_src_addr; 5000 ire_refrele(dst_ire); 5001 dst_ire = sire; 5002 sire = NULL; 5003 } else { 5004 /* 5005 * Pick a source address so that a proper inbound 5006 * load spreading would happen. 5007 */ 5008 ill_t *ire_ill = dst_ire->ire_ipif->ipif_ill; 5009 ipif_t *src_ipif = NULL; 5010 ire_t *ipif_ire; 5011 5012 /* 5013 * Supply a local source address such that inbound 5014 * load spreading happens. 5015 * 5016 * Determine the best source address on this ill for 5017 * the destination. 5018 * 5019 * 1) For broadcast, we should return a broadcast ire 5020 * found above so that upper layers know that the 5021 * destination address is a broadcast address. 5022 * 5023 * 2) If the ipif is DEPRECATED, select a better 5024 * source address. Similarly, if the ipif is on 5025 * the IPMP meta-interface, pick a source address 5026 * at random to improve inbound load spreading. 5027 * 5028 * 3) If the outgoing interface is part of a usesrc 5029 * group, then try selecting a source address from 5030 * the usesrc ILL. 5031 */ 5032 if ((dst_ire->ire_zoneid != zoneid && 5033 dst_ire->ire_zoneid != ALL_ZONES) || 5034 (!(dst_ire->ire_flags & RTF_SETSRC)) && 5035 (!(dst_ire->ire_type & IRE_BROADCAST) && 5036 (IS_IPMP(ire_ill) || 5037 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 5038 (ire_ill->ill_usesrc_ifindex != 0)))) { 5039 /* 5040 * If the destination is reachable via a 5041 * given gateway, the selected source address 5042 * should be in the same subnet as the gateway. 5043 * Otherwise, the destination is not reachable. 5044 * 5045 * If there are no interfaces on the same subnet 5046 * as the destination, ipif_select_source gives 5047 * first non-deprecated interface which might be 5048 * on a different subnet than the gateway. 5049 * This is not desirable. Hence pass the dst_ire 5050 * source address to ipif_select_source. 5051 * It is sure that the destination is reachable 5052 * with the dst_ire source address subnet. 5053 * So passing dst_ire source address to 5054 * ipif_select_source will make sure that the 5055 * selected source will be on the same subnet 5056 * as dst_ire source address. 5057 */ 5058 ipaddr_t saddr = 5059 dst_ire->ire_ipif->ipif_src_addr; 5060 src_ipif = ipif_select_source(ire_ill, 5061 saddr, zoneid); 5062 if (src_ipif != NULL) { 5063 if (IS_VNI(src_ipif->ipif_ill)) { 5064 /* 5065 * For VNI there is no 5066 * interface route 5067 */ 5068 src_addr = 5069 src_ipif->ipif_src_addr; 5070 } else { 5071 ipif_ire = 5072 ipif_to_ire(src_ipif); 5073 if (ipif_ire != NULL) { 5074 IRE_REFRELE(dst_ire); 5075 dst_ire = ipif_ire; 5076 } 5077 src_addr = 5078 dst_ire->ire_src_addr; 5079 } 5080 ipif_refrele(src_ipif); 5081 } else { 5082 src_addr = dst_ire->ire_src_addr; 5083 } 5084 } else { 5085 src_addr = dst_ire->ire_src_addr; 5086 } 5087 } 5088 } 5089 5090 /* 5091 * We do ire_route_lookup() here (and not 5092 * interface lookup as we assert that 5093 * src_addr should only come from an 5094 * UP interface for hard binding. 5095 */ 5096 ASSERT(src_ire == NULL); 5097 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5098 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5099 /* src_ire must be a local|loopback */ 5100 if (!IRE_IS_LOCAL(src_ire)) { 5101 if (ip_debug > 2) { 5102 pr_addr_dbg("ip_bind_connected_v4: bad connected " 5103 "src %s\n", AF_INET, &src_addr); 5104 } 5105 error = EADDRNOTAVAIL; 5106 goto bad_addr; 5107 } 5108 5109 /* 5110 * If the source address is a loopback address, the 5111 * destination had best be local or multicast. 5112 * The transports that can't handle multicast will reject 5113 * those addresses. 5114 */ 5115 if (src_ire->ire_type == IRE_LOOPBACK && 5116 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5117 ip1dbg(("ip_bind_connected_v4: bad connected loopback\n")); 5118 error = -1; 5119 goto bad_addr; 5120 } 5121 5122 /* 5123 * Allow setting new policies. For example, disconnects come 5124 * down as ipa_t bind. As we would have set conn_policy_cached 5125 * to B_TRUE before, we should set it to B_FALSE, so that policy 5126 * can change after the disconnect. 5127 */ 5128 connp->conn_policy_cached = B_FALSE; 5129 5130 /* 5131 * Set the conn addresses/ports immediately, so the IPsec policy calls 5132 * can handle their passed-in conn's. 5133 */ 5134 5135 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5136 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5137 connp->conn_lport = lport; 5138 connp->conn_fport = fport; 5139 *src_addrp = src_addr; 5140 5141 ASSERT(!(ipsec_policy_set && ire_requested)); 5142 if (ire_requested) { 5143 iulp_t *ulp_info = NULL; 5144 5145 /* 5146 * Note that sire will not be NULL if this is an off-link 5147 * connection and there is not cache for that dest yet. 5148 * 5149 * XXX Because of an existing bug, if there are multiple 5150 * default routes, the IRE returned now may not be the actual 5151 * default route used (default routes are chosen in a 5152 * round robin fashion). So if the metrics for different 5153 * default routes are different, we may return the wrong 5154 * metrics. This will not be a problem if the existing 5155 * bug is fixed. 5156 */ 5157 if (sire != NULL) { 5158 ulp_info = &(sire->ire_uinfo); 5159 } 5160 if (!ip_bind_get_ire_v4(mpp, dst_ire, ulp_info, ipst)) { 5161 error = -1; 5162 goto bad_addr; 5163 } 5164 mp = *mpp; 5165 } else if (ipsec_policy_set) { 5166 if (!ip_bind_ipsec_policy_set(connp, mp)) { 5167 error = -1; 5168 goto bad_addr; 5169 } 5170 } 5171 5172 /* 5173 * Cache IPsec policy in this conn. If we have per-socket policy, 5174 * we'll cache that. If we don't, we'll inherit global policy. 5175 * 5176 * We can't insert until the conn reflects the policy. Note that 5177 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5178 * connections where we don't have a policy. This is to prevent 5179 * global policy lookups in the inbound path. 5180 * 5181 * If we insert before we set conn_policy_cached, 5182 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5183 * because global policy cound be non-empty. We normally call 5184 * ipsec_check_policy() for conn_policy_cached connections only if 5185 * ipc_in_enforce_policy is set. But in this case, 5186 * conn_policy_cached can get set anytime since we made the 5187 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5188 * called, which will make the above assumption false. Thus, we 5189 * need to insert after we set conn_policy_cached. 5190 */ 5191 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5192 goto bad_addr; 5193 5194 if (fanout_insert) { 5195 /* 5196 * The addresses have been verified. Time to insert in 5197 * the correct fanout list. 5198 */ 5199 error = ipcl_conn_insert(connp, protocol, src_addr, 5200 dst_addr, connp->conn_ports); 5201 } 5202 5203 if (error == 0) { 5204 connp->conn_fully_bound = B_TRUE; 5205 /* 5206 * Our initial checks for LSO/MDT have passed; the IRE is not 5207 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5208 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5209 * ip_xxinfo_return(), which performs further checks 5210 * against them and upon success, returns the LSO/MDT info 5211 * mblk which we will attach to the bind acknowledgment. 5212 */ 5213 if (lso_dst_ire != NULL) { 5214 mblk_t *lsoinfo_mp; 5215 5216 ASSERT(ill->ill_lso_capab != NULL); 5217 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5218 ill->ill_name, ill->ill_lso_capab)) != NULL) { 5219 if (mp == NULL) { 5220 *mpp = lsoinfo_mp; 5221 } else { 5222 linkb(mp, lsoinfo_mp); 5223 } 5224 } 5225 } else if (md_dst_ire != NULL) { 5226 mblk_t *mdinfo_mp; 5227 5228 ASSERT(ill->ill_mdt_capab != NULL); 5229 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5230 ill->ill_name, ill->ill_mdt_capab)) != NULL) { 5231 if (mp == NULL) { 5232 *mpp = mdinfo_mp; 5233 } else { 5234 linkb(mp, mdinfo_mp); 5235 } 5236 } 5237 } 5238 } 5239 bad_addr: 5240 if (ipsec_policy_set) { 5241 ASSERT(mp != NULL); 5242 freeb(mp); 5243 /* 5244 * As of now assume that nothing else accompanies 5245 * IPSEC_POLICY_SET. 5246 */ 5247 *mpp = NULL; 5248 } 5249 if (src_ire != NULL) 5250 IRE_REFRELE(src_ire); 5251 if (dst_ire != NULL) 5252 IRE_REFRELE(dst_ire); 5253 if (sire != NULL) 5254 IRE_REFRELE(sire); 5255 if (md_dst_ire != NULL) 5256 IRE_REFRELE(md_dst_ire); 5257 if (lso_dst_ire != NULL) 5258 IRE_REFRELE(lso_dst_ire); 5259 return (error); 5260 } 5261 5262 int 5263 ip_proto_bind_connected_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 5264 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 5265 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 5266 { 5267 int error; 5268 mblk_t *mp = NULL; 5269 boolean_t ire_requested; 5270 5271 if (ire_mpp) 5272 mp = *ire_mpp; 5273 ire_requested = (mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE); 5274 5275 ASSERT(!connp->conn_af_isv6); 5276 connp->conn_pkt_isv6 = B_FALSE; 5277 connp->conn_ulp = protocol; 5278 5279 /* For raw socket, the local port is not set. */ 5280 if (lport == 0) 5281 lport = connp->conn_lport; 5282 error = ip_bind_connected_v4(connp, ire_mpp, protocol, 5283 src_addrp, lport, dst_addr, fport, fanout_insert, verify_dst, cr); 5284 if (error == 0) { 5285 ip_bind_post_handling(connp, ire_mpp ? *ire_mpp : NULL, 5286 ire_requested); 5287 } else if (error < 0) { 5288 error = -TBADADDR; 5289 } 5290 return (error); 5291 } 5292 5293 /* 5294 * Get the ire in *mpp. Returns false if it fails (due to lack of space). 5295 * Prefers dst_ire over src_ire. 5296 */ 5297 static boolean_t 5298 ip_bind_get_ire_v4(mblk_t **mpp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5299 { 5300 mblk_t *mp = *mpp; 5301 ire_t *ret_ire; 5302 5303 ASSERT(mp != NULL); 5304 5305 if (ire != NULL) { 5306 /* 5307 * mp initialized above to IRE_DB_REQ_TYPE 5308 * appended mblk. Its <upper protocol>'s 5309 * job to make sure there is room. 5310 */ 5311 if ((mp->b_datap->db_lim - mp->b_rptr) < sizeof (ire_t)) 5312 return (B_FALSE); 5313 5314 mp->b_datap->db_type = IRE_DB_TYPE; 5315 mp->b_wptr = mp->b_rptr + sizeof (ire_t); 5316 bcopy(ire, mp->b_rptr, sizeof (ire_t)); 5317 ret_ire = (ire_t *)mp->b_rptr; 5318 /* 5319 * Pass the latest setting of the ip_path_mtu_discovery and 5320 * copy the ulp info if any. 5321 */ 5322 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5323 IPH_DF : 0; 5324 if (ulp_info != NULL) { 5325 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5326 sizeof (iulp_t)); 5327 } 5328 ret_ire->ire_mp = mp; 5329 } else { 5330 /* 5331 * No IRE was found. Remove IRE mblk. 5332 */ 5333 *mpp = mp->b_cont; 5334 freeb(mp); 5335 } 5336 return (B_TRUE); 5337 } 5338 5339 /* 5340 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5341 * the final piece where we don't. Return a pointer to the first mblk in the 5342 * result, and update the pointer to the next mblk to chew on. If anything 5343 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5344 * NULL pointer. 5345 */ 5346 mblk_t * 5347 ip_carve_mp(mblk_t **mpp, ssize_t len) 5348 { 5349 mblk_t *mp0; 5350 mblk_t *mp1; 5351 mblk_t *mp2; 5352 5353 if (!len || !mpp || !(mp0 = *mpp)) 5354 return (NULL); 5355 /* If we aren't going to consume the first mblk, we need a dup. */ 5356 if (mp0->b_wptr - mp0->b_rptr > len) { 5357 mp1 = dupb(mp0); 5358 if (mp1) { 5359 /* Partition the data between the two mblks. */ 5360 mp1->b_wptr = mp1->b_rptr + len; 5361 mp0->b_rptr = mp1->b_wptr; 5362 /* 5363 * after adjustments if mblk not consumed is now 5364 * unaligned, try to align it. If this fails free 5365 * all messages and let upper layer recover. 5366 */ 5367 if (!OK_32PTR(mp0->b_rptr)) { 5368 if (!pullupmsg(mp0, -1)) { 5369 freemsg(mp0); 5370 freemsg(mp1); 5371 *mpp = NULL; 5372 return (NULL); 5373 } 5374 } 5375 } 5376 return (mp1); 5377 } 5378 /* Eat through as many mblks as we need to get len bytes. */ 5379 len -= mp0->b_wptr - mp0->b_rptr; 5380 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5381 if (mp2->b_wptr - mp2->b_rptr > len) { 5382 /* 5383 * We won't consume the entire last mblk. Like 5384 * above, dup and partition it. 5385 */ 5386 mp1->b_cont = dupb(mp2); 5387 mp1 = mp1->b_cont; 5388 if (!mp1) { 5389 /* 5390 * Trouble. Rather than go to a lot of 5391 * trouble to clean up, we free the messages. 5392 * This won't be any worse than losing it on 5393 * the wire. 5394 */ 5395 freemsg(mp0); 5396 freemsg(mp2); 5397 *mpp = NULL; 5398 return (NULL); 5399 } 5400 mp1->b_wptr = mp1->b_rptr + len; 5401 mp2->b_rptr = mp1->b_wptr; 5402 /* 5403 * after adjustments if mblk not consumed is now 5404 * unaligned, try to align it. If this fails free 5405 * all messages and let upper layer recover. 5406 */ 5407 if (!OK_32PTR(mp2->b_rptr)) { 5408 if (!pullupmsg(mp2, -1)) { 5409 freemsg(mp0); 5410 freemsg(mp2); 5411 *mpp = NULL; 5412 return (NULL); 5413 } 5414 } 5415 *mpp = mp2; 5416 return (mp0); 5417 } 5418 /* Decrement len by the amount we just got. */ 5419 len -= mp2->b_wptr - mp2->b_rptr; 5420 } 5421 /* 5422 * len should be reduced to zero now. If not our caller has 5423 * screwed up. 5424 */ 5425 if (len) { 5426 /* Shouldn't happen! */ 5427 freemsg(mp0); 5428 *mpp = NULL; 5429 return (NULL); 5430 } 5431 /* 5432 * We consumed up to exactly the end of an mblk. Detach the part 5433 * we are returning from the rest of the chain. 5434 */ 5435 mp1->b_cont = NULL; 5436 *mpp = mp2; 5437 return (mp0); 5438 } 5439 5440 /* The ill stream is being unplumbed. Called from ip_close */ 5441 int 5442 ip_modclose(ill_t *ill) 5443 { 5444 boolean_t success; 5445 ipsq_t *ipsq; 5446 ipif_t *ipif; 5447 queue_t *q = ill->ill_rq; 5448 ip_stack_t *ipst = ill->ill_ipst; 5449 int i; 5450 5451 /* 5452 * The punlink prior to this may have initiated a capability 5453 * negotiation. But ipsq_enter will block until that finishes or 5454 * times out. 5455 */ 5456 success = ipsq_enter(ill, B_FALSE, NEW_OP); 5457 5458 /* 5459 * Open/close/push/pop is guaranteed to be single threaded 5460 * per stream by STREAMS. FS guarantees that all references 5461 * from top are gone before close is called. So there can't 5462 * be another close thread that has set CONDEMNED on this ill. 5463 * and cause ipsq_enter to return failure. 5464 */ 5465 ASSERT(success); 5466 ipsq = ill->ill_phyint->phyint_ipsq; 5467 5468 /* 5469 * Mark it condemned. No new reference will be made to this ill. 5470 * Lookup functions will return an error. Threads that try to 5471 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5472 * that the refcnt will drop down to zero. 5473 */ 5474 mutex_enter(&ill->ill_lock); 5475 ill->ill_state_flags |= ILL_CONDEMNED; 5476 for (ipif = ill->ill_ipif; ipif != NULL; 5477 ipif = ipif->ipif_next) { 5478 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5479 } 5480 /* 5481 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5482 * returns error if ILL_CONDEMNED is set 5483 */ 5484 cv_broadcast(&ill->ill_cv); 5485 mutex_exit(&ill->ill_lock); 5486 5487 /* 5488 * Send all the deferred DLPI messages downstream which came in 5489 * during the small window right before ipsq_enter(). We do this 5490 * without waiting for the ACKs because all the ACKs for M_PROTO 5491 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5492 */ 5493 ill_dlpi_send_deferred(ill); 5494 5495 /* 5496 * Shut down fragmentation reassembly. 5497 * ill_frag_timer won't start a timer again. 5498 * Now cancel any existing timer 5499 */ 5500 (void) untimeout(ill->ill_frag_timer_id); 5501 (void) ill_frag_timeout(ill, 0); 5502 5503 /* 5504 * Call ill_delete to bring down the ipifs, ilms and ill on 5505 * this ill. Then wait for the refcnts to drop to zero. 5506 * ill_is_freeable checks whether the ill is really quiescent. 5507 * Then make sure that threads that are waiting to enter the 5508 * ipsq have seen the error returned by ipsq_enter and have 5509 * gone away. Then we call ill_delete_tail which does the 5510 * DL_UNBIND_REQ with the driver and then qprocsoff. 5511 */ 5512 ill_delete(ill); 5513 mutex_enter(&ill->ill_lock); 5514 while (!ill_is_freeable(ill)) 5515 cv_wait(&ill->ill_cv, &ill->ill_lock); 5516 while (ill->ill_waiters) 5517 cv_wait(&ill->ill_cv, &ill->ill_lock); 5518 5519 mutex_exit(&ill->ill_lock); 5520 5521 /* 5522 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5523 * it held until the end of the function since the cleanup 5524 * below needs to be able to use the ip_stack_t. 5525 */ 5526 netstack_hold(ipst->ips_netstack); 5527 5528 /* qprocsoff is done via ill_delete_tail */ 5529 ill_delete_tail(ill); 5530 ASSERT(ill->ill_ipst == NULL); 5531 5532 /* 5533 * Walk through all upper (conn) streams and qenable 5534 * those that have queued data. 5535 * close synchronization needs this to 5536 * be done to ensure that all upper layers blocked 5537 * due to flow control to the closing device 5538 * get unblocked. 5539 */ 5540 ip1dbg(("ip_wsrv: walking\n")); 5541 for (i = 0; i < TX_FANOUT_SIZE; i++) { 5542 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 5543 } 5544 5545 mutex_enter(&ipst->ips_ip_mi_lock); 5546 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5547 mutex_exit(&ipst->ips_ip_mi_lock); 5548 5549 /* 5550 * credp could be null if the open didn't succeed and ip_modopen 5551 * itself calls ip_close. 5552 */ 5553 if (ill->ill_credp != NULL) 5554 crfree(ill->ill_credp); 5555 5556 /* 5557 * Now we are done with the module close pieces that 5558 * need the netstack_t. 5559 */ 5560 netstack_rele(ipst->ips_netstack); 5561 5562 mi_close_free((IDP)ill); 5563 q->q_ptr = WR(q)->q_ptr = NULL; 5564 5565 ipsq_exit(ipsq); 5566 5567 return (0); 5568 } 5569 5570 /* 5571 * This is called as part of close() for IP, UDP, ICMP, and RTS 5572 * in order to quiesce the conn. 5573 */ 5574 void 5575 ip_quiesce_conn(conn_t *connp) 5576 { 5577 boolean_t drain_cleanup_reqd = B_FALSE; 5578 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5579 boolean_t ilg_cleanup_reqd = B_FALSE; 5580 ip_stack_t *ipst; 5581 5582 ASSERT(!IPCL_IS_TCP(connp)); 5583 ipst = connp->conn_netstack->netstack_ip; 5584 5585 /* 5586 * Mark the conn as closing, and this conn must not be 5587 * inserted in future into any list. Eg. conn_drain_insert(), 5588 * won't insert this conn into the conn_drain_list. 5589 * Similarly ill_pending_mp_add() will not add any mp to 5590 * the pending mp list, after this conn has started closing. 5591 * 5592 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5593 * cannot get set henceforth. 5594 */ 5595 mutex_enter(&connp->conn_lock); 5596 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5597 connp->conn_state_flags |= CONN_CLOSING; 5598 if (connp->conn_idl != NULL) 5599 drain_cleanup_reqd = B_TRUE; 5600 if (connp->conn_oper_pending_ill != NULL) 5601 conn_ioctl_cleanup_reqd = B_TRUE; 5602 if (connp->conn_dhcpinit_ill != NULL) { 5603 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5604 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5605 connp->conn_dhcpinit_ill = NULL; 5606 } 5607 if (connp->conn_ilg_inuse != 0) 5608 ilg_cleanup_reqd = B_TRUE; 5609 mutex_exit(&connp->conn_lock); 5610 5611 if (conn_ioctl_cleanup_reqd) 5612 conn_ioctl_cleanup(connp); 5613 5614 if (is_system_labeled() && connp->conn_anon_port) { 5615 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5616 connp->conn_mlp_type, connp->conn_ulp, 5617 ntohs(connp->conn_lport), B_FALSE); 5618 connp->conn_anon_port = 0; 5619 } 5620 connp->conn_mlp_type = mlptSingle; 5621 5622 /* 5623 * Remove this conn from any fanout list it is on. 5624 * and then wait for any threads currently operating 5625 * on this endpoint to finish 5626 */ 5627 ipcl_hash_remove(connp); 5628 5629 /* 5630 * Remove this conn from the drain list, and do 5631 * any other cleanup that may be required. 5632 * (Only non-tcp streams may have a non-null conn_idl. 5633 * TCP streams are never flow controlled, and 5634 * conn_idl will be null) 5635 */ 5636 if (drain_cleanup_reqd) 5637 conn_drain_tail(connp, B_TRUE); 5638 5639 if (connp == ipst->ips_ip_g_mrouter) 5640 (void) ip_mrouter_done(NULL, ipst); 5641 5642 if (ilg_cleanup_reqd) 5643 ilg_delete_all(connp); 5644 5645 conn_delete_ire(connp, NULL); 5646 5647 /* 5648 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5649 * callers from write side can't be there now because close 5650 * is in progress. The only other caller is ipcl_walk 5651 * which checks for the condemned flag. 5652 */ 5653 mutex_enter(&connp->conn_lock); 5654 connp->conn_state_flags |= CONN_CONDEMNED; 5655 while (connp->conn_ref != 1) 5656 cv_wait(&connp->conn_cv, &connp->conn_lock); 5657 connp->conn_state_flags |= CONN_QUIESCED; 5658 mutex_exit(&connp->conn_lock); 5659 } 5660 5661 /* ARGSUSED */ 5662 int 5663 ip_close(queue_t *q, int flags) 5664 { 5665 conn_t *connp; 5666 5667 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5668 5669 /* 5670 * Call the appropriate delete routine depending on whether this is 5671 * a module or device. 5672 */ 5673 if (WR(q)->q_next != NULL) { 5674 /* This is a module close */ 5675 return (ip_modclose((ill_t *)q->q_ptr)); 5676 } 5677 5678 connp = q->q_ptr; 5679 ip_quiesce_conn(connp); 5680 5681 qprocsoff(q); 5682 5683 /* 5684 * Now we are truly single threaded on this stream, and can 5685 * delete the things hanging off the connp, and finally the connp. 5686 * We removed this connp from the fanout list, it cannot be 5687 * accessed thru the fanouts, and we already waited for the 5688 * conn_ref to drop to 0. We are already in close, so 5689 * there cannot be any other thread from the top. qprocsoff 5690 * has completed, and service has completed or won't run in 5691 * future. 5692 */ 5693 ASSERT(connp->conn_ref == 1); 5694 5695 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5696 5697 connp->conn_ref--; 5698 ipcl_conn_destroy(connp); 5699 5700 q->q_ptr = WR(q)->q_ptr = NULL; 5701 return (0); 5702 } 5703 5704 /* 5705 * Wapper around putnext() so that ip_rts_request can merely use 5706 * conn_recv. 5707 */ 5708 /*ARGSUSED2*/ 5709 static void 5710 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5711 { 5712 conn_t *connp = (conn_t *)arg1; 5713 5714 putnext(connp->conn_rq, mp); 5715 } 5716 5717 /* 5718 * Called when the module is about to be unloaded 5719 */ 5720 void 5721 ip_ddi_destroy(void) 5722 { 5723 tnet_fini(); 5724 5725 icmp_ddi_g_destroy(); 5726 rts_ddi_g_destroy(); 5727 udp_ddi_g_destroy(); 5728 sctp_ddi_g_destroy(); 5729 tcp_ddi_g_destroy(); 5730 ipsec_policy_g_destroy(); 5731 ipcl_g_destroy(); 5732 ip_net_g_destroy(); 5733 ip_ire_g_fini(); 5734 inet_minor_destroy(ip_minor_arena_sa); 5735 #if defined(_LP64) 5736 inet_minor_destroy(ip_minor_arena_la); 5737 #endif 5738 5739 #ifdef DEBUG 5740 list_destroy(&ip_thread_list); 5741 rw_destroy(&ip_thread_rwlock); 5742 tsd_destroy(&ip_thread_data); 5743 #endif 5744 5745 netstack_unregister(NS_IP); 5746 } 5747 5748 /* 5749 * First step in cleanup. 5750 */ 5751 /* ARGSUSED */ 5752 static void 5753 ip_stack_shutdown(netstackid_t stackid, void *arg) 5754 { 5755 ip_stack_t *ipst = (ip_stack_t *)arg; 5756 5757 #ifdef NS_DEBUG 5758 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5759 #endif 5760 5761 /* Get rid of loopback interfaces and their IREs */ 5762 ip_loopback_cleanup(ipst); 5763 5764 /* 5765 * The *_hook_shutdown()s start the process of notifying any 5766 * consumers that things are going away.... nothing is destroyed. 5767 */ 5768 ipv4_hook_shutdown(ipst); 5769 ipv6_hook_shutdown(ipst); 5770 5771 mutex_enter(&ipst->ips_capab_taskq_lock); 5772 ipst->ips_capab_taskq_quit = B_TRUE; 5773 cv_signal(&ipst->ips_capab_taskq_cv); 5774 mutex_exit(&ipst->ips_capab_taskq_lock); 5775 5776 mutex_enter(&ipst->ips_mrt_lock); 5777 ipst->ips_mrt_flags |= IP_MRT_STOP; 5778 cv_signal(&ipst->ips_mrt_cv); 5779 mutex_exit(&ipst->ips_mrt_lock); 5780 } 5781 5782 /* 5783 * Free the IP stack instance. 5784 */ 5785 static void 5786 ip_stack_fini(netstackid_t stackid, void *arg) 5787 { 5788 ip_stack_t *ipst = (ip_stack_t *)arg; 5789 int ret; 5790 5791 #ifdef NS_DEBUG 5792 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5793 #endif 5794 /* 5795 * At this point, all of the notifications that the events and 5796 * protocols are going away have been run, meaning that we can 5797 * now set about starting to clean things up. 5798 */ 5799 ipv4_hook_destroy(ipst); 5800 ipv6_hook_destroy(ipst); 5801 ip_net_destroy(ipst); 5802 5803 mutex_destroy(&ipst->ips_capab_taskq_lock); 5804 cv_destroy(&ipst->ips_capab_taskq_cv); 5805 list_destroy(&ipst->ips_capab_taskq_list); 5806 5807 mutex_enter(&ipst->ips_mrt_lock); 5808 while (!(ipst->ips_mrt_flags & IP_MRT_DONE)) 5809 cv_wait(&ipst->ips_mrt_done_cv, &ipst->ips_mrt_lock); 5810 mutex_destroy(&ipst->ips_mrt_lock); 5811 cv_destroy(&ipst->ips_mrt_cv); 5812 cv_destroy(&ipst->ips_mrt_done_cv); 5813 5814 ipmp_destroy(ipst); 5815 rw_destroy(&ipst->ips_srcid_lock); 5816 5817 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5818 ipst->ips_ip_mibkp = NULL; 5819 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5820 ipst->ips_icmp_mibkp = NULL; 5821 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5822 ipst->ips_ip_kstat = NULL; 5823 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5824 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5825 ipst->ips_ip6_kstat = NULL; 5826 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5827 5828 nd_free(&ipst->ips_ip_g_nd); 5829 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5830 ipst->ips_param_arr = NULL; 5831 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5832 ipst->ips_ndp_arr = NULL; 5833 5834 ip_mrouter_stack_destroy(ipst); 5835 5836 mutex_destroy(&ipst->ips_ip_mi_lock); 5837 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5838 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5839 rw_destroy(&ipst->ips_ip_g_nd_lock); 5840 5841 ret = untimeout(ipst->ips_igmp_timeout_id); 5842 if (ret == -1) { 5843 ASSERT(ipst->ips_igmp_timeout_id == 0); 5844 } else { 5845 ASSERT(ipst->ips_igmp_timeout_id != 0); 5846 ipst->ips_igmp_timeout_id = 0; 5847 } 5848 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5849 if (ret == -1) { 5850 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5851 } else { 5852 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5853 ipst->ips_igmp_slowtimeout_id = 0; 5854 } 5855 ret = untimeout(ipst->ips_mld_timeout_id); 5856 if (ret == -1) { 5857 ASSERT(ipst->ips_mld_timeout_id == 0); 5858 } else { 5859 ASSERT(ipst->ips_mld_timeout_id != 0); 5860 ipst->ips_mld_timeout_id = 0; 5861 } 5862 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5863 if (ret == -1) { 5864 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5865 } else { 5866 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5867 ipst->ips_mld_slowtimeout_id = 0; 5868 } 5869 ret = untimeout(ipst->ips_ip_ire_expire_id); 5870 if (ret == -1) { 5871 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5872 } else { 5873 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5874 ipst->ips_ip_ire_expire_id = 0; 5875 } 5876 5877 mutex_destroy(&ipst->ips_igmp_timer_lock); 5878 mutex_destroy(&ipst->ips_mld_timer_lock); 5879 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5880 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5881 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5882 rw_destroy(&ipst->ips_ill_g_lock); 5883 5884 ipobs_fini(ipst); 5885 ip_ire_fini(ipst); 5886 ip6_asp_free(ipst); 5887 conn_drain_fini(ipst); 5888 ipcl_destroy(ipst); 5889 5890 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5891 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5892 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5893 ipst->ips_ndp4 = NULL; 5894 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5895 ipst->ips_ndp6 = NULL; 5896 5897 if (ipst->ips_loopback_ksp != NULL) { 5898 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5899 ipst->ips_loopback_ksp = NULL; 5900 } 5901 5902 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5903 ipst->ips_phyint_g_list = NULL; 5904 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5905 ipst->ips_ill_g_heads = NULL; 5906 5907 ldi_ident_release(ipst->ips_ldi_ident); 5908 kmem_free(ipst, sizeof (*ipst)); 5909 } 5910 5911 /* 5912 * This function is called from the TSD destructor, and is used to debug 5913 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5914 * details. 5915 */ 5916 static void 5917 ip_thread_exit(void *phash) 5918 { 5919 th_hash_t *thh = phash; 5920 5921 rw_enter(&ip_thread_rwlock, RW_WRITER); 5922 list_remove(&ip_thread_list, thh); 5923 rw_exit(&ip_thread_rwlock); 5924 mod_hash_destroy_hash(thh->thh_hash); 5925 kmem_free(thh, sizeof (*thh)); 5926 } 5927 5928 /* 5929 * Called when the IP kernel module is loaded into the kernel 5930 */ 5931 void 5932 ip_ddi_init(void) 5933 { 5934 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 5935 5936 /* 5937 * For IP and TCP the minor numbers should start from 2 since we have 4 5938 * initial devices: ip, ip6, tcp, tcp6. 5939 */ 5940 /* 5941 * If this is a 64-bit kernel, then create two separate arenas - 5942 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5943 * other for socket apps in the range 2^^18 through 2^^32-1. 5944 */ 5945 ip_minor_arena_la = NULL; 5946 ip_minor_arena_sa = NULL; 5947 #if defined(_LP64) 5948 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5949 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5950 cmn_err(CE_PANIC, 5951 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5952 } 5953 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5954 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5955 cmn_err(CE_PANIC, 5956 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5957 } 5958 #else 5959 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5960 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5961 cmn_err(CE_PANIC, 5962 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5963 } 5964 #endif 5965 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5966 5967 ipcl_g_init(); 5968 ip_ire_g_init(); 5969 ip_net_g_init(); 5970 5971 #ifdef DEBUG 5972 tsd_create(&ip_thread_data, ip_thread_exit); 5973 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5974 list_create(&ip_thread_list, sizeof (th_hash_t), 5975 offsetof(th_hash_t, thh_link)); 5976 #endif 5977 5978 /* 5979 * We want to be informed each time a stack is created or 5980 * destroyed in the kernel, so we can maintain the 5981 * set of udp_stack_t's. 5982 */ 5983 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5984 ip_stack_fini); 5985 5986 ipsec_policy_g_init(); 5987 tcp_ddi_g_init(); 5988 sctp_ddi_g_init(); 5989 5990 tnet_init(); 5991 5992 udp_ddi_g_init(); 5993 rts_ddi_g_init(); 5994 icmp_ddi_g_init(); 5995 } 5996 5997 /* 5998 * Initialize the IP stack instance. 5999 */ 6000 static void * 6001 ip_stack_init(netstackid_t stackid, netstack_t *ns) 6002 { 6003 ip_stack_t *ipst; 6004 ipparam_t *pa; 6005 ipndp_t *na; 6006 major_t major; 6007 6008 #ifdef NS_DEBUG 6009 printf("ip_stack_init(stack %d)\n", stackid); 6010 #endif 6011 6012 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 6013 ipst->ips_netstack = ns; 6014 6015 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 6016 KM_SLEEP); 6017 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 6018 KM_SLEEP); 6019 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 6020 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 6021 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 6022 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 6023 6024 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 6025 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 6026 ipst->ips_igmp_deferred_next = INFINITY; 6027 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 6028 ipst->ips_mld_deferred_next = INFINITY; 6029 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6030 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6031 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 6032 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 6033 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 6034 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 6035 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 6036 6037 ipcl_init(ipst); 6038 ip_ire_init(ipst); 6039 ip6_asp_init(ipst); 6040 ipif_init(ipst); 6041 conn_drain_init(ipst); 6042 ip_mrouter_stack_init(ipst); 6043 6044 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 6045 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 6046 6047 ipst->ips_ip_multirt_log_interval = 1000; 6048 6049 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 6050 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 6051 ipst->ips_ill_index = 1; 6052 6053 ipst->ips_saved_ip_g_forward = -1; 6054 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 6055 6056 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6057 ipst->ips_param_arr = pa; 6058 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6059 6060 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6061 ipst->ips_ndp_arr = na; 6062 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6063 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6064 (caddr_t)&ipst->ips_ip_g_forward; 6065 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6066 (caddr_t)&ipst->ips_ipv6_forward; 6067 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6068 "ip_cgtp_filter") == 0); 6069 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6070 (caddr_t)&ipst->ips_ip_cgtp_filter; 6071 6072 (void) ip_param_register(&ipst->ips_ip_g_nd, 6073 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6074 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6075 6076 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6077 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6078 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6079 ipst->ips_ip6_kstat = 6080 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6081 6082 ipst->ips_ip_src_id = 1; 6083 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6084 6085 ipobs_init(ipst); 6086 ip_net_init(ipst, ns); 6087 ipv4_hook_init(ipst); 6088 ipv6_hook_init(ipst); 6089 ipmp_init(ipst); 6090 6091 /* 6092 * Create the taskq dispatcher thread and initialize related stuff. 6093 */ 6094 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 6095 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 6096 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 6097 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 6098 list_create(&ipst->ips_capab_taskq_list, sizeof (mblk_t), 6099 offsetof(mblk_t, b_next)); 6100 6101 /* 6102 * Create the mcast_restart_timers_thread() worker thread. 6103 */ 6104 mutex_init(&ipst->ips_mrt_lock, NULL, MUTEX_DEFAULT, NULL); 6105 cv_init(&ipst->ips_mrt_cv, NULL, CV_DEFAULT, NULL); 6106 cv_init(&ipst->ips_mrt_done_cv, NULL, CV_DEFAULT, NULL); 6107 ipst->ips_mrt_thread = thread_create(NULL, 0, 6108 mcast_restart_timers_thread, ipst, 0, &p0, TS_RUN, minclsyspri); 6109 6110 major = mod_name_to_major(INET_NAME); 6111 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 6112 return (ipst); 6113 } 6114 6115 /* 6116 * Allocate and initialize a DLPI template of the specified length. (May be 6117 * called as writer.) 6118 */ 6119 mblk_t * 6120 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6121 { 6122 mblk_t *mp; 6123 6124 mp = allocb(len, BPRI_MED); 6125 if (!mp) 6126 return (NULL); 6127 6128 /* 6129 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6130 * of which we don't seem to use) are sent with M_PCPROTO, and 6131 * that other DLPI are M_PROTO. 6132 */ 6133 if (prim == DL_INFO_REQ) { 6134 mp->b_datap->db_type = M_PCPROTO; 6135 } else { 6136 mp->b_datap->db_type = M_PROTO; 6137 } 6138 6139 mp->b_wptr = mp->b_rptr + len; 6140 bzero(mp->b_rptr, len); 6141 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6142 return (mp); 6143 } 6144 6145 /* 6146 * Allocate and initialize a DLPI notification. (May be called as writer.) 6147 */ 6148 mblk_t * 6149 ip_dlnotify_alloc(uint_t notification, uint_t data) 6150 { 6151 dl_notify_ind_t *notifyp; 6152 mblk_t *mp; 6153 6154 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 6155 return (NULL); 6156 6157 notifyp = (dl_notify_ind_t *)mp->b_rptr; 6158 notifyp->dl_notification = notification; 6159 notifyp->dl_data = data; 6160 return (mp); 6161 } 6162 6163 /* 6164 * Debug formatting routine. Returns a character string representation of the 6165 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6166 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6167 * 6168 * Once the ndd table-printing interfaces are removed, this can be changed to 6169 * standard dotted-decimal form. 6170 */ 6171 char * 6172 ip_dot_addr(ipaddr_t addr, char *buf) 6173 { 6174 uint8_t *ap = (uint8_t *)&addr; 6175 6176 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6177 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6178 return (buf); 6179 } 6180 6181 /* 6182 * Write the given MAC address as a printable string in the usual colon- 6183 * separated format. 6184 */ 6185 const char * 6186 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6187 { 6188 char *bp; 6189 6190 if (alen == 0 || buflen < 4) 6191 return ("?"); 6192 bp = buf; 6193 for (;;) { 6194 /* 6195 * If there are more MAC address bytes available, but we won't 6196 * have any room to print them, then add "..." to the string 6197 * instead. See below for the 'magic number' explanation. 6198 */ 6199 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6200 (void) strcpy(bp, "..."); 6201 break; 6202 } 6203 (void) sprintf(bp, "%02x", *addr++); 6204 bp += 2; 6205 if (--alen == 0) 6206 break; 6207 *bp++ = ':'; 6208 buflen -= 3; 6209 /* 6210 * At this point, based on the first 'if' statement above, 6211 * either alen == 1 and buflen >= 3, or alen > 1 and 6212 * buflen >= 4. The first case leaves room for the final "xx" 6213 * number and trailing NUL byte. The second leaves room for at 6214 * least "...". Thus the apparently 'magic' numbers chosen for 6215 * that statement. 6216 */ 6217 } 6218 return (buf); 6219 } 6220 6221 /* 6222 * Send an ICMP error after patching up the packet appropriately. Returns 6223 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6224 */ 6225 static boolean_t 6226 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6227 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6228 zoneid_t zoneid, ip_stack_t *ipst) 6229 { 6230 ipha_t *ipha; 6231 mblk_t *first_mp; 6232 boolean_t secure; 6233 unsigned char db_type; 6234 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6235 6236 first_mp = mp; 6237 if (mctl_present) { 6238 mp = mp->b_cont; 6239 secure = ipsec_in_is_secure(first_mp); 6240 ASSERT(mp != NULL); 6241 } else { 6242 /* 6243 * If this is an ICMP error being reported - which goes 6244 * up as M_CTLs, we need to convert them to M_DATA till 6245 * we finish checking with global policy because 6246 * ipsec_check_global_policy() assumes M_DATA as clear 6247 * and M_CTL as secure. 6248 */ 6249 db_type = DB_TYPE(mp); 6250 DB_TYPE(mp) = M_DATA; 6251 secure = B_FALSE; 6252 } 6253 /* 6254 * We are generating an icmp error for some inbound packet. 6255 * Called from all ip_fanout_(udp, tcp, proto) functions. 6256 * Before we generate an error, check with global policy 6257 * to see whether this is allowed to enter the system. As 6258 * there is no "conn", we are checking with global policy. 6259 */ 6260 ipha = (ipha_t *)mp->b_rptr; 6261 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6262 first_mp = ipsec_check_global_policy(first_mp, NULL, 6263 ipha, NULL, mctl_present, ipst->ips_netstack); 6264 if (first_mp == NULL) 6265 return (B_FALSE); 6266 } 6267 6268 if (!mctl_present) 6269 DB_TYPE(mp) = db_type; 6270 6271 if (flags & IP_FF_SEND_ICMP) { 6272 if (flags & IP_FF_HDR_COMPLETE) { 6273 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6274 freemsg(first_mp); 6275 return (B_TRUE); 6276 } 6277 } 6278 if (flags & IP_FF_CKSUM) { 6279 /* 6280 * Have to correct checksum since 6281 * the packet might have been 6282 * fragmented and the reassembly code in ip_rput 6283 * does not restore the IP checksum. 6284 */ 6285 ipha->ipha_hdr_checksum = 0; 6286 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6287 } 6288 switch (icmp_type) { 6289 case ICMP_DEST_UNREACHABLE: 6290 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6291 ipst); 6292 break; 6293 default: 6294 freemsg(first_mp); 6295 break; 6296 } 6297 } else { 6298 freemsg(first_mp); 6299 return (B_FALSE); 6300 } 6301 6302 return (B_TRUE); 6303 } 6304 6305 /* 6306 * Used to send an ICMP error message when a packet is received for 6307 * a protocol that is not supported. The mblk passed as argument 6308 * is consumed by this function. 6309 */ 6310 void 6311 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6312 ip_stack_t *ipst) 6313 { 6314 mblk_t *mp; 6315 ipha_t *ipha; 6316 ill_t *ill; 6317 ipsec_in_t *ii; 6318 6319 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6320 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6321 6322 mp = ipsec_mp->b_cont; 6323 ipsec_mp->b_cont = NULL; 6324 ipha = (ipha_t *)mp->b_rptr; 6325 /* Get ill from index in ipsec_in_t. */ 6326 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6327 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6328 ipst); 6329 if (ill != NULL) { 6330 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6331 if (ip_fanout_send_icmp(q, mp, flags, 6332 ICMP_DEST_UNREACHABLE, 6333 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6334 BUMP_MIB(ill->ill_ip_mib, 6335 ipIfStatsInUnknownProtos); 6336 } 6337 } else { 6338 if (ip_fanout_send_icmp_v6(q, mp, flags, 6339 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6340 0, B_FALSE, zoneid, ipst)) { 6341 BUMP_MIB(ill->ill_ip_mib, 6342 ipIfStatsInUnknownProtos); 6343 } 6344 } 6345 ill_refrele(ill); 6346 } else { /* re-link for the freemsg() below. */ 6347 ipsec_mp->b_cont = mp; 6348 } 6349 6350 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6351 freemsg(ipsec_mp); 6352 } 6353 6354 /* 6355 * See if the inbound datagram has had IPsec processing applied to it. 6356 */ 6357 boolean_t 6358 ipsec_in_is_secure(mblk_t *ipsec_mp) 6359 { 6360 ipsec_in_t *ii; 6361 6362 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6363 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6364 6365 if (ii->ipsec_in_loopback) { 6366 return (ii->ipsec_in_secure); 6367 } else { 6368 return (ii->ipsec_in_ah_sa != NULL || 6369 ii->ipsec_in_esp_sa != NULL || 6370 ii->ipsec_in_decaps); 6371 } 6372 } 6373 6374 /* 6375 * Handle protocols with which IP is less intimate. There 6376 * can be more than one stream bound to a particular 6377 * protocol. When this is the case, normally each one gets a copy 6378 * of any incoming packets. 6379 * 6380 * IPsec NOTE : 6381 * 6382 * Don't allow a secure packet going up a non-secure connection. 6383 * We don't allow this because 6384 * 6385 * 1) Reply might go out in clear which will be dropped at 6386 * the sending side. 6387 * 2) If the reply goes out in clear it will give the 6388 * adversary enough information for getting the key in 6389 * most of the cases. 6390 * 6391 * Moreover getting a secure packet when we expect clear 6392 * implies that SA's were added without checking for 6393 * policy on both ends. This should not happen once ISAKMP 6394 * is used to negotiate SAs as SAs will be added only after 6395 * verifying the policy. 6396 * 6397 * NOTE : If the packet was tunneled and not multicast we only send 6398 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6399 * back to delivering packets to AF_INET6 raw sockets. 6400 * 6401 * IPQoS Notes: 6402 * Once we have determined the client, invoke IPPF processing. 6403 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6404 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6405 * ip_policy will be false. 6406 * 6407 * Zones notes: 6408 * Currently only applications in the global zone can create raw sockets for 6409 * protocols other than ICMP. So unlike the broadcast / multicast case of 6410 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6411 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6412 */ 6413 static void 6414 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6415 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6416 zoneid_t zoneid) 6417 { 6418 queue_t *rq; 6419 mblk_t *mp1, *first_mp1; 6420 uint_t protocol = ipha->ipha_protocol; 6421 ipaddr_t dst; 6422 boolean_t one_only; 6423 mblk_t *first_mp = mp; 6424 boolean_t secure; 6425 uint32_t ill_index; 6426 conn_t *connp, *first_connp, *next_connp; 6427 connf_t *connfp; 6428 boolean_t shared_addr; 6429 mib2_ipIfStatsEntry_t *mibptr; 6430 ip_stack_t *ipst = recv_ill->ill_ipst; 6431 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6432 6433 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6434 if (mctl_present) { 6435 mp = first_mp->b_cont; 6436 secure = ipsec_in_is_secure(first_mp); 6437 ASSERT(mp != NULL); 6438 } else { 6439 secure = B_FALSE; 6440 } 6441 dst = ipha->ipha_dst; 6442 /* 6443 * If the packet was tunneled and not multicast we only send to it 6444 * the first match. 6445 */ 6446 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6447 !CLASSD(dst)); 6448 6449 shared_addr = (zoneid == ALL_ZONES); 6450 if (shared_addr) { 6451 /* 6452 * We don't allow multilevel ports for raw IP, so no need to 6453 * check for that here. 6454 */ 6455 zoneid = tsol_packet_to_zoneid(mp); 6456 } 6457 6458 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6459 mutex_enter(&connfp->connf_lock); 6460 connp = connfp->connf_head; 6461 for (connp = connfp->connf_head; connp != NULL; 6462 connp = connp->conn_next) { 6463 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6464 zoneid) && 6465 (!is_system_labeled() || 6466 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6467 connp))) { 6468 break; 6469 } 6470 } 6471 6472 if (connp == NULL) { 6473 /* 6474 * No one bound to these addresses. Is 6475 * there a client that wants all 6476 * unclaimed datagrams? 6477 */ 6478 mutex_exit(&connfp->connf_lock); 6479 /* 6480 * Check for IPPROTO_ENCAP... 6481 */ 6482 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6483 /* 6484 * If an IPsec mblk is here on a multicast 6485 * tunnel (using ip_mroute stuff), check policy here, 6486 * THEN ship off to ip_mroute_decap(). 6487 * 6488 * BTW, If I match a configured IP-in-IP 6489 * tunnel, this path will not be reached, and 6490 * ip_mroute_decap will never be called. 6491 */ 6492 first_mp = ipsec_check_global_policy(first_mp, connp, 6493 ipha, NULL, mctl_present, ipst->ips_netstack); 6494 if (first_mp != NULL) { 6495 if (mctl_present) 6496 freeb(first_mp); 6497 ip_mroute_decap(q, mp, ill); 6498 } /* Else we already freed everything! */ 6499 } else { 6500 /* 6501 * Otherwise send an ICMP protocol unreachable. 6502 */ 6503 if (ip_fanout_send_icmp(q, first_mp, flags, 6504 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6505 mctl_present, zoneid, ipst)) { 6506 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6507 } 6508 } 6509 return; 6510 } 6511 6512 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 6513 6514 CONN_INC_REF(connp); 6515 first_connp = connp; 6516 6517 /* 6518 * Only send message to one tunnel driver by immediately 6519 * terminating the loop. 6520 */ 6521 connp = one_only ? NULL : connp->conn_next; 6522 6523 for (;;) { 6524 while (connp != NULL) { 6525 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6526 flags, zoneid) && 6527 (!is_system_labeled() || 6528 tsol_receive_local(mp, &dst, IPV4_VERSION, 6529 shared_addr, connp))) 6530 break; 6531 connp = connp->conn_next; 6532 } 6533 6534 /* 6535 * Copy the packet. 6536 */ 6537 if (connp == NULL || 6538 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6539 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6540 /* 6541 * No more interested clients or memory 6542 * allocation failed 6543 */ 6544 connp = first_connp; 6545 break; 6546 } 6547 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 6548 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6549 CONN_INC_REF(connp); 6550 mutex_exit(&connfp->connf_lock); 6551 rq = connp->conn_rq; 6552 6553 /* 6554 * Check flow control 6555 */ 6556 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6557 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6558 if (flags & IP_FF_RAWIP) { 6559 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6560 } else { 6561 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6562 } 6563 6564 freemsg(first_mp1); 6565 } else { 6566 /* 6567 * Don't enforce here if we're an actual tunnel - 6568 * let "tun" do it instead. 6569 */ 6570 if (!IPCL_IS_IPTUN(connp) && 6571 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6572 secure)) { 6573 first_mp1 = ipsec_check_inbound_policy 6574 (first_mp1, connp, ipha, NULL, 6575 mctl_present); 6576 } 6577 if (first_mp1 != NULL) { 6578 int in_flags = 0; 6579 /* 6580 * ip_fanout_proto also gets called from 6581 * icmp_inbound_error_fanout, in which case 6582 * the msg type is M_CTL. Don't add info 6583 * in this case for the time being. In future 6584 * when there is a need for knowing the 6585 * inbound iface index for ICMP error msgs, 6586 * then this can be changed. 6587 */ 6588 if (connp->conn_recvif) 6589 in_flags = IPF_RECVIF; 6590 /* 6591 * The ULP may support IP_RECVPKTINFO for both 6592 * IP v4 and v6 so pass the appropriate argument 6593 * based on conn IP version. 6594 */ 6595 if (connp->conn_ip_recvpktinfo) { 6596 if (connp->conn_af_isv6) { 6597 /* 6598 * V6 only needs index 6599 */ 6600 in_flags |= IPF_RECVIF; 6601 } else { 6602 /* 6603 * V4 needs index + 6604 * matching address. 6605 */ 6606 in_flags |= IPF_RECVADDR; 6607 } 6608 } 6609 if ((in_flags != 0) && 6610 (mp->b_datap->db_type != M_CTL)) { 6611 /* 6612 * the actual data will be 6613 * contained in b_cont upon 6614 * successful return of the 6615 * following call else 6616 * original mblk is returned 6617 */ 6618 ASSERT(recv_ill != NULL); 6619 mp1 = ip_add_info(mp1, recv_ill, 6620 in_flags, IPCL_ZONEID(connp), ipst); 6621 } 6622 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6623 if (mctl_present) 6624 freeb(first_mp1); 6625 (connp->conn_recv)(connp, mp1, NULL); 6626 } 6627 } 6628 mutex_enter(&connfp->connf_lock); 6629 /* Follow the next pointer before releasing the conn. */ 6630 next_connp = connp->conn_next; 6631 CONN_DEC_REF(connp); 6632 connp = next_connp; 6633 } 6634 6635 /* Last one. Send it upstream. */ 6636 mutex_exit(&connfp->connf_lock); 6637 6638 /* 6639 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6640 * will be set to false. 6641 */ 6642 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6643 ill_index = ill->ill_phyint->phyint_ifindex; 6644 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6645 if (mp == NULL) { 6646 CONN_DEC_REF(connp); 6647 if (mctl_present) { 6648 freeb(first_mp); 6649 } 6650 return; 6651 } 6652 } 6653 6654 rq = connp->conn_rq; 6655 /* 6656 * Check flow control 6657 */ 6658 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6659 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6660 if (flags & IP_FF_RAWIP) { 6661 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6662 } else { 6663 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6664 } 6665 6666 freemsg(first_mp); 6667 } else { 6668 if (IPCL_IS_IPTUN(connp)) { 6669 /* 6670 * Tunneled packet. We enforce policy in the tunnel 6671 * module itself. 6672 * 6673 * Send the WHOLE packet up (incl. IPSEC_IN) without 6674 * a policy check. 6675 * FIXME to use conn_recv for tun later. 6676 */ 6677 putnext(rq, first_mp); 6678 CONN_DEC_REF(connp); 6679 return; 6680 } 6681 6682 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6683 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6684 ipha, NULL, mctl_present); 6685 } 6686 6687 if (first_mp != NULL) { 6688 int in_flags = 0; 6689 6690 /* 6691 * ip_fanout_proto also gets called 6692 * from icmp_inbound_error_fanout, in 6693 * which case the msg type is M_CTL. 6694 * Don't add info in this case for time 6695 * being. In future when there is a 6696 * need for knowing the inbound iface 6697 * index for ICMP error msgs, then this 6698 * can be changed 6699 */ 6700 if (connp->conn_recvif) 6701 in_flags = IPF_RECVIF; 6702 if (connp->conn_ip_recvpktinfo) { 6703 if (connp->conn_af_isv6) { 6704 /* 6705 * V6 only needs index 6706 */ 6707 in_flags |= IPF_RECVIF; 6708 } else { 6709 /* 6710 * V4 needs index + 6711 * matching address. 6712 */ 6713 in_flags |= IPF_RECVADDR; 6714 } 6715 } 6716 if ((in_flags != 0) && 6717 (mp->b_datap->db_type != M_CTL)) { 6718 6719 /* 6720 * the actual data will be contained in 6721 * b_cont upon successful return 6722 * of the following call else original 6723 * mblk is returned 6724 */ 6725 ASSERT(recv_ill != NULL); 6726 mp = ip_add_info(mp, recv_ill, 6727 in_flags, IPCL_ZONEID(connp), ipst); 6728 } 6729 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6730 (connp->conn_recv)(connp, mp, NULL); 6731 if (mctl_present) 6732 freeb(first_mp); 6733 } 6734 } 6735 CONN_DEC_REF(connp); 6736 } 6737 6738 /* 6739 * Serialize tcp resets by calling tcp_xmit_reset_serialize through 6740 * SQUEUE_ENTER_ONE(SQ_FILL). We do this to ensure the reset is handled on 6741 * the correct squeue, in this case the same squeue as a valid listener with 6742 * no current connection state for the packet we are processing. The function 6743 * is called for synchronizing both IPv4 and IPv6. 6744 */ 6745 void 6746 ip_xmit_reset_serialize(mblk_t *mp, int hdrlen, zoneid_t zoneid, 6747 tcp_stack_t *tcps, conn_t *connp) 6748 { 6749 mblk_t *rst_mp; 6750 tcp_xmit_reset_event_t *eventp; 6751 6752 rst_mp = allocb(sizeof (tcp_xmit_reset_event_t), BPRI_HI); 6753 6754 if (rst_mp == NULL) { 6755 freemsg(mp); 6756 return; 6757 } 6758 6759 rst_mp->b_datap->db_type = M_PROTO; 6760 rst_mp->b_wptr += sizeof (tcp_xmit_reset_event_t); 6761 6762 eventp = (tcp_xmit_reset_event_t *)rst_mp->b_rptr; 6763 eventp->tcp_xre_event = TCP_XRE_EVENT_IP_FANOUT_TCP; 6764 eventp->tcp_xre_iphdrlen = hdrlen; 6765 eventp->tcp_xre_zoneid = zoneid; 6766 eventp->tcp_xre_tcps = tcps; 6767 6768 rst_mp->b_cont = mp; 6769 mp = rst_mp; 6770 6771 /* 6772 * Increment the connref, this ref will be released by the squeue 6773 * framework. 6774 */ 6775 CONN_INC_REF(connp); 6776 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_xmit_reset, connp, 6777 SQ_FILL, SQTAG_XMIT_EARLY_RESET); 6778 } 6779 6780 /* 6781 * Fanout for TCP packets 6782 * The caller puts <fport, lport> in the ports parameter. 6783 * 6784 * IPQoS Notes 6785 * Before sending it to the client, invoke IPPF processing. 6786 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6787 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6788 * ip_policy is false. 6789 */ 6790 static void 6791 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6792 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6793 { 6794 mblk_t *first_mp; 6795 boolean_t secure; 6796 uint32_t ill_index; 6797 int ip_hdr_len; 6798 tcph_t *tcph; 6799 boolean_t syn_present = B_FALSE; 6800 conn_t *connp; 6801 ip_stack_t *ipst = recv_ill->ill_ipst; 6802 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6803 6804 ASSERT(recv_ill != NULL); 6805 6806 first_mp = mp; 6807 if (mctl_present) { 6808 ASSERT(first_mp->b_datap->db_type == M_CTL); 6809 mp = first_mp->b_cont; 6810 secure = ipsec_in_is_secure(first_mp); 6811 ASSERT(mp != NULL); 6812 } else { 6813 secure = B_FALSE; 6814 } 6815 6816 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6817 6818 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6819 zoneid, ipst)) == NULL) { 6820 /* 6821 * No connected connection or listener. Send a 6822 * TH_RST via tcp_xmit_listeners_reset. 6823 */ 6824 6825 /* Initiate IPPf processing, if needed. */ 6826 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6827 uint32_t ill_index; 6828 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6829 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6830 if (first_mp == NULL) 6831 return; 6832 } 6833 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6834 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6835 zoneid)); 6836 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6837 ipst->ips_netstack->netstack_tcp, NULL); 6838 return; 6839 } 6840 6841 /* 6842 * Allocate the SYN for the TCP connection here itself 6843 */ 6844 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6845 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6846 if (IPCL_IS_TCP(connp)) { 6847 squeue_t *sqp; 6848 6849 /* 6850 * For fused tcp loopback, assign the eager's 6851 * squeue to be that of the active connect's. 6852 * Note that we don't check for IP_FF_LOOPBACK 6853 * here since this routine gets called only 6854 * for loopback (unlike the IPv6 counterpart). 6855 */ 6856 ASSERT(Q_TO_CONN(q) != NULL); 6857 if (do_tcp_fusion && 6858 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6859 !secure && 6860 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6861 IPCL_IS_TCP(Q_TO_CONN(q))) { 6862 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6863 sqp = Q_TO_CONN(q)->conn_sqp; 6864 } else { 6865 sqp = IP_SQUEUE_GET(lbolt); 6866 } 6867 6868 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6869 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6870 syn_present = B_TRUE; 6871 } 6872 } 6873 6874 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6875 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6876 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6877 if ((flags & TH_RST) || (flags & TH_URG)) { 6878 CONN_DEC_REF(connp); 6879 freemsg(first_mp); 6880 return; 6881 } 6882 if (flags & TH_ACK) { 6883 ip_xmit_reset_serialize(first_mp, ip_hdr_len, zoneid, 6884 ipst->ips_netstack->netstack_tcp, connp); 6885 CONN_DEC_REF(connp); 6886 return; 6887 } 6888 6889 CONN_DEC_REF(connp); 6890 freemsg(first_mp); 6891 return; 6892 } 6893 6894 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6895 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6896 NULL, mctl_present); 6897 if (first_mp == NULL) { 6898 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6899 CONN_DEC_REF(connp); 6900 return; 6901 } 6902 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6903 ASSERT(syn_present); 6904 if (mctl_present) { 6905 ASSERT(first_mp != mp); 6906 first_mp->b_datap->db_struioflag |= 6907 STRUIO_POLICY; 6908 } else { 6909 ASSERT(first_mp == mp); 6910 mp->b_datap->db_struioflag &= 6911 ~STRUIO_EAGER; 6912 mp->b_datap->db_struioflag |= 6913 STRUIO_POLICY; 6914 } 6915 } else { 6916 /* 6917 * Discard first_mp early since we're dealing with a 6918 * fully-connected conn_t and tcp doesn't do policy in 6919 * this case. 6920 */ 6921 if (mctl_present) { 6922 freeb(first_mp); 6923 mctl_present = B_FALSE; 6924 } 6925 first_mp = mp; 6926 } 6927 } 6928 6929 /* 6930 * Initiate policy processing here if needed. If we get here from 6931 * icmp_inbound_error_fanout, ip_policy is false. 6932 */ 6933 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6934 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6935 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6936 if (mp == NULL) { 6937 CONN_DEC_REF(connp); 6938 if (mctl_present) 6939 freeb(first_mp); 6940 return; 6941 } else if (mctl_present) { 6942 ASSERT(first_mp != mp); 6943 first_mp->b_cont = mp; 6944 } else { 6945 first_mp = mp; 6946 } 6947 } 6948 6949 /* Handle socket options. */ 6950 if (!syn_present && 6951 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6952 /* Add header */ 6953 ASSERT(recv_ill != NULL); 6954 /* 6955 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6956 * IPF_RECVIF. 6957 */ 6958 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6959 ipst); 6960 if (mp == NULL) { 6961 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6962 CONN_DEC_REF(connp); 6963 if (mctl_present) 6964 freeb(first_mp); 6965 return; 6966 } else if (mctl_present) { 6967 /* 6968 * ip_add_info might return a new mp. 6969 */ 6970 ASSERT(first_mp != mp); 6971 first_mp->b_cont = mp; 6972 } else { 6973 first_mp = mp; 6974 } 6975 } 6976 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6977 if (IPCL_IS_TCP(connp)) { 6978 /* do not drain, certain use cases can blow the stack */ 6979 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, connp->conn_recv, 6980 connp, ip_squeue_flag, SQTAG_IP_FANOUT_TCP); 6981 } else { 6982 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6983 (connp->conn_recv)(connp, first_mp, NULL); 6984 CONN_DEC_REF(connp); 6985 } 6986 } 6987 6988 /* 6989 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6990 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6991 * is not consumed. 6992 * 6993 * One of four things can happen, all of which affect the passed-in mblk: 6994 * 6995 * 1.) ICMP messages that go through here just get returned TRUE. 6996 * 6997 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6998 * 6999 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 7000 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 7001 * 7002 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 7003 */ 7004 static boolean_t 7005 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 7006 ipsec_stack_t *ipss) 7007 { 7008 int shift, plen, iph_len; 7009 ipha_t *ipha; 7010 udpha_t *udpha; 7011 uint32_t *spi; 7012 uint32_t esp_ports; 7013 uint8_t *orptr; 7014 boolean_t free_ire; 7015 7016 if (DB_TYPE(mp) == M_CTL) { 7017 /* 7018 * ICMP message with UDP inside. Don't bother stripping, just 7019 * send it up. 7020 * 7021 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 7022 * to ignore errors set by ICMP anyway ('cause they might be 7023 * forged), but that's the app's decision, not ours. 7024 */ 7025 7026 /* Bunch of reality checks for DEBUG kernels... */ 7027 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 7028 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 7029 7030 return (B_TRUE); 7031 } 7032 7033 ipha = (ipha_t *)mp->b_rptr; 7034 iph_len = IPH_HDR_LENGTH(ipha); 7035 plen = ntohs(ipha->ipha_length); 7036 7037 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 7038 /* 7039 * Most likely a keepalive for the benefit of an intervening 7040 * NAT. These aren't for us, per se, so drop it. 7041 * 7042 * RFC 3947/8 doesn't say for sure what to do for 2-3 7043 * byte packets (keepalives are 1-byte), but we'll drop them 7044 * also. 7045 */ 7046 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 7047 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 7048 return (B_FALSE); 7049 } 7050 7051 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 7052 /* might as well pull it all up - it might be ESP. */ 7053 if (!pullupmsg(mp, -1)) { 7054 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 7055 DROPPER(ipss, ipds_esp_nomem), 7056 &ipss->ipsec_dropper); 7057 return (B_FALSE); 7058 } 7059 7060 ipha = (ipha_t *)mp->b_rptr; 7061 } 7062 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 7063 if (*spi == 0) { 7064 /* UDP packet - remove 0-spi. */ 7065 shift = sizeof (uint32_t); 7066 } else { 7067 /* ESP-in-UDP packet - reduce to ESP. */ 7068 ipha->ipha_protocol = IPPROTO_ESP; 7069 shift = sizeof (udpha_t); 7070 } 7071 7072 /* Fix IP header */ 7073 ipha->ipha_length = htons(plen - shift); 7074 ipha->ipha_hdr_checksum = 0; 7075 7076 orptr = mp->b_rptr; 7077 mp->b_rptr += shift; 7078 7079 udpha = (udpha_t *)(orptr + iph_len); 7080 if (*spi == 0) { 7081 ASSERT((uint8_t *)ipha == orptr); 7082 udpha->uha_length = htons(plen - shift - iph_len); 7083 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 7084 esp_ports = 0; 7085 } else { 7086 esp_ports = *((uint32_t *)udpha); 7087 ASSERT(esp_ports != 0); 7088 } 7089 ovbcopy(orptr, orptr + shift, iph_len); 7090 if (esp_ports != 0) /* Punt up for ESP processing. */ { 7091 ipha = (ipha_t *)(orptr + shift); 7092 7093 free_ire = (ire == NULL); 7094 if (free_ire) { 7095 /* Re-acquire ire. */ 7096 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 7097 ipss->ipsec_netstack->netstack_ip); 7098 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 7099 if (ire != NULL) 7100 ire_refrele(ire); 7101 /* 7102 * Do a regular freemsg(), as this is an IP 7103 * error (no local route) not an IPsec one. 7104 */ 7105 freemsg(mp); 7106 } 7107 } 7108 7109 ip_proto_input(q, mp, ipha, ire, recv_ill, esp_ports); 7110 if (free_ire) 7111 ire_refrele(ire); 7112 } 7113 7114 return (esp_ports == 0); 7115 } 7116 7117 /* 7118 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 7119 * We are responsible for disposing of mp, such as by freemsg() or putnext() 7120 * Caller is responsible for dropping references to the conn, and freeing 7121 * first_mp. 7122 * 7123 * IPQoS Notes 7124 * Before sending it to the client, invoke IPPF processing. Policy processing 7125 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 7126 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 7127 * ip_wput_local, ip_policy is false. 7128 */ 7129 static void 7130 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 7131 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 7132 boolean_t ip_policy) 7133 { 7134 boolean_t mctl_present = (first_mp != NULL); 7135 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 7136 uint32_t ill_index; 7137 ip_stack_t *ipst = recv_ill->ill_ipst; 7138 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 7139 7140 ASSERT(ill != NULL); 7141 7142 if (mctl_present) 7143 first_mp->b_cont = mp; 7144 else 7145 first_mp = mp; 7146 7147 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 7148 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 7149 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7150 freemsg(first_mp); 7151 return; 7152 } 7153 7154 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7155 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7156 NULL, mctl_present); 7157 /* Freed by ipsec_check_inbound_policy(). */ 7158 if (first_mp == NULL) { 7159 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7160 return; 7161 } 7162 } 7163 if (mctl_present) 7164 freeb(first_mp); 7165 7166 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7167 if (connp->conn_udp->udp_nat_t_endpoint) { 7168 if (mctl_present) { 7169 /* mctl_present *shouldn't* happen. */ 7170 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7171 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7172 &ipss->ipsec_dropper); 7173 return; 7174 } 7175 7176 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7177 return; 7178 } 7179 7180 /* Handle options. */ 7181 if (connp->conn_recvif) 7182 in_flags = IPF_RECVIF; 7183 /* 7184 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7185 * passed to ip_add_info is based on IP version of connp. 7186 */ 7187 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7188 if (connp->conn_af_isv6) { 7189 /* 7190 * V6 only needs index 7191 */ 7192 in_flags |= IPF_RECVIF; 7193 } else { 7194 /* 7195 * V4 needs index + matching address. 7196 */ 7197 in_flags |= IPF_RECVADDR; 7198 } 7199 } 7200 7201 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7202 in_flags |= IPF_RECVSLLA; 7203 7204 /* 7205 * Initiate IPPF processing here, if needed. Note first_mp won't be 7206 * freed if the packet is dropped. The caller will do so. 7207 */ 7208 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7209 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7210 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7211 if (mp == NULL) { 7212 return; 7213 } 7214 } 7215 if ((in_flags != 0) && 7216 (mp->b_datap->db_type != M_CTL)) { 7217 /* 7218 * The actual data will be contained in b_cont 7219 * upon successful return of the following call 7220 * else original mblk is returned 7221 */ 7222 ASSERT(recv_ill != NULL); 7223 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7224 ipst); 7225 } 7226 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7227 /* Send it upstream */ 7228 (connp->conn_recv)(connp, mp, NULL); 7229 } 7230 7231 /* 7232 * Fanout for UDP packets. 7233 * The caller puts <fport, lport> in the ports parameter. 7234 * 7235 * If SO_REUSEADDR is set all multicast and broadcast packets 7236 * will be delivered to all streams bound to the same port. 7237 * 7238 * Zones notes: 7239 * Multicast and broadcast packets will be distributed to streams in all zones. 7240 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7241 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7242 * packets. To maintain this behavior with multiple zones, the conns are grouped 7243 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7244 * each zone. If unset, all the following conns in the same zone are skipped. 7245 */ 7246 static void 7247 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7248 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7249 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7250 { 7251 uint32_t dstport, srcport; 7252 ipaddr_t dst; 7253 mblk_t *first_mp; 7254 boolean_t secure; 7255 in6_addr_t v6src; 7256 conn_t *connp; 7257 connf_t *connfp; 7258 conn_t *first_connp; 7259 conn_t *next_connp; 7260 mblk_t *mp1, *first_mp1; 7261 ipaddr_t src; 7262 zoneid_t last_zoneid; 7263 boolean_t reuseaddr; 7264 boolean_t shared_addr; 7265 boolean_t unlabeled; 7266 ip_stack_t *ipst; 7267 7268 ASSERT(recv_ill != NULL); 7269 ipst = recv_ill->ill_ipst; 7270 7271 first_mp = mp; 7272 if (mctl_present) { 7273 mp = first_mp->b_cont; 7274 first_mp->b_cont = NULL; 7275 secure = ipsec_in_is_secure(first_mp); 7276 ASSERT(mp != NULL); 7277 } else { 7278 first_mp = NULL; 7279 secure = B_FALSE; 7280 } 7281 7282 /* Extract ports in net byte order */ 7283 dstport = htons(ntohl(ports) & 0xFFFF); 7284 srcport = htons(ntohl(ports) >> 16); 7285 dst = ipha->ipha_dst; 7286 src = ipha->ipha_src; 7287 7288 unlabeled = B_FALSE; 7289 if (is_system_labeled()) 7290 /* Cred cannot be null on IPv4 */ 7291 unlabeled = (msg_getlabel(mp)->tsl_flags & 7292 TSLF_UNLABELED) != 0; 7293 shared_addr = (zoneid == ALL_ZONES); 7294 if (shared_addr) { 7295 /* 7296 * No need to handle exclusive-stack zones since ALL_ZONES 7297 * only applies to the shared stack. 7298 */ 7299 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7300 /* 7301 * If no shared MLP is found, tsol_mlp_findzone returns 7302 * ALL_ZONES. In that case, we assume it's SLP, and 7303 * search for the zone based on the packet label. 7304 * 7305 * If there is such a zone, we prefer to find a 7306 * connection in it. Otherwise, we look for a 7307 * MAC-exempt connection in any zone whose label 7308 * dominates the default label on the packet. 7309 */ 7310 if (zoneid == ALL_ZONES) 7311 zoneid = tsol_packet_to_zoneid(mp); 7312 else 7313 unlabeled = B_FALSE; 7314 } 7315 7316 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7317 mutex_enter(&connfp->connf_lock); 7318 connp = connfp->connf_head; 7319 if (!broadcast && !CLASSD(dst)) { 7320 /* 7321 * Not broadcast or multicast. Send to the one (first) 7322 * client we find. No need to check conn_wantpacket() 7323 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7324 * IPv4 unicast packets. 7325 */ 7326 while ((connp != NULL) && 7327 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7328 (!IPCL_ZONE_MATCH(connp, zoneid) && 7329 !(unlabeled && connp->conn_mac_exempt)))) { 7330 /* 7331 * We keep searching since the conn did not match, 7332 * or its zone did not match and it is not either 7333 * an allzones conn or a mac exempt conn (if the 7334 * sender is unlabeled.) 7335 */ 7336 connp = connp->conn_next; 7337 } 7338 7339 if (connp == NULL || 7340 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7341 goto notfound; 7342 7343 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7344 7345 if (is_system_labeled() && 7346 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7347 connp)) 7348 goto notfound; 7349 7350 CONN_INC_REF(connp); 7351 mutex_exit(&connfp->connf_lock); 7352 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7353 flags, recv_ill, ip_policy); 7354 IP_STAT(ipst, ip_udp_fannorm); 7355 CONN_DEC_REF(connp); 7356 return; 7357 } 7358 7359 /* 7360 * Broadcast and multicast case 7361 * 7362 * Need to check conn_wantpacket(). 7363 * If SO_REUSEADDR has been set on the first we send the 7364 * packet to all clients that have joined the group and 7365 * match the port. 7366 */ 7367 7368 while (connp != NULL) { 7369 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7370 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7371 (!is_system_labeled() || 7372 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7373 connp))) 7374 break; 7375 connp = connp->conn_next; 7376 } 7377 7378 if (connp == NULL || 7379 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7380 goto notfound; 7381 7382 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7383 7384 first_connp = connp; 7385 /* 7386 * When SO_REUSEADDR is not set, send the packet only to the first 7387 * matching connection in its zone by keeping track of the zoneid. 7388 */ 7389 reuseaddr = first_connp->conn_reuseaddr; 7390 last_zoneid = first_connp->conn_zoneid; 7391 7392 CONN_INC_REF(connp); 7393 connp = connp->conn_next; 7394 for (;;) { 7395 while (connp != NULL) { 7396 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7397 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7398 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7399 (!is_system_labeled() || 7400 tsol_receive_local(mp, &dst, IPV4_VERSION, 7401 shared_addr, connp))) 7402 break; 7403 connp = connp->conn_next; 7404 } 7405 /* 7406 * Just copy the data part alone. The mctl part is 7407 * needed just for verifying policy and it is never 7408 * sent up. 7409 */ 7410 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7411 ((mp1 = copymsg(mp)) == NULL))) { 7412 /* 7413 * No more interested clients or memory 7414 * allocation failed 7415 */ 7416 connp = first_connp; 7417 break; 7418 } 7419 if (connp->conn_zoneid != last_zoneid) { 7420 /* 7421 * Update the zoneid so that the packet isn't sent to 7422 * any more conns in the same zone unless SO_REUSEADDR 7423 * is set. 7424 */ 7425 reuseaddr = connp->conn_reuseaddr; 7426 last_zoneid = connp->conn_zoneid; 7427 } 7428 if (first_mp != NULL) { 7429 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7430 ipsec_info_type == IPSEC_IN); 7431 first_mp1 = ipsec_in_tag(first_mp, NULL, 7432 ipst->ips_netstack); 7433 if (first_mp1 == NULL) { 7434 freemsg(mp1); 7435 connp = first_connp; 7436 break; 7437 } 7438 } else { 7439 first_mp1 = NULL; 7440 } 7441 CONN_INC_REF(connp); 7442 mutex_exit(&connfp->connf_lock); 7443 /* 7444 * IPQoS notes: We don't send the packet for policy 7445 * processing here, will do it for the last one (below). 7446 * i.e. we do it per-packet now, but if we do policy 7447 * processing per-conn, then we would need to do it 7448 * here too. 7449 */ 7450 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7451 ipha, flags, recv_ill, B_FALSE); 7452 mutex_enter(&connfp->connf_lock); 7453 /* Follow the next pointer before releasing the conn. */ 7454 next_connp = connp->conn_next; 7455 IP_STAT(ipst, ip_udp_fanmb); 7456 CONN_DEC_REF(connp); 7457 connp = next_connp; 7458 } 7459 7460 /* Last one. Send it upstream. */ 7461 mutex_exit(&connfp->connf_lock); 7462 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7463 recv_ill, ip_policy); 7464 IP_STAT(ipst, ip_udp_fanmb); 7465 CONN_DEC_REF(connp); 7466 return; 7467 7468 notfound: 7469 7470 mutex_exit(&connfp->connf_lock); 7471 IP_STAT(ipst, ip_udp_fanothers); 7472 /* 7473 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7474 * have already been matched above, since they live in the IPv4 7475 * fanout tables. This implies we only need to 7476 * check for IPv6 in6addr_any endpoints here. 7477 * Thus we compare using ipv6_all_zeros instead of the destination 7478 * address, except for the multicast group membership lookup which 7479 * uses the IPv4 destination. 7480 */ 7481 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7482 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7483 mutex_enter(&connfp->connf_lock); 7484 connp = connfp->connf_head; 7485 if (!broadcast && !CLASSD(dst)) { 7486 while (connp != NULL) { 7487 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7488 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7489 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7490 !connp->conn_ipv6_v6only) 7491 break; 7492 connp = connp->conn_next; 7493 } 7494 7495 if (connp != NULL && is_system_labeled() && 7496 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7497 connp)) 7498 connp = NULL; 7499 7500 if (connp == NULL || 7501 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7502 /* 7503 * No one bound to this port. Is 7504 * there a client that wants all 7505 * unclaimed datagrams? 7506 */ 7507 mutex_exit(&connfp->connf_lock); 7508 7509 if (mctl_present) 7510 first_mp->b_cont = mp; 7511 else 7512 first_mp = mp; 7513 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7514 connf_head != NULL) { 7515 ip_fanout_proto(q, first_mp, ill, ipha, 7516 flags | IP_FF_RAWIP, mctl_present, 7517 ip_policy, recv_ill, zoneid); 7518 } else { 7519 if (ip_fanout_send_icmp(q, first_mp, flags, 7520 ICMP_DEST_UNREACHABLE, 7521 ICMP_PORT_UNREACHABLE, 7522 mctl_present, zoneid, ipst)) { 7523 BUMP_MIB(ill->ill_ip_mib, 7524 udpIfStatsNoPorts); 7525 } 7526 } 7527 return; 7528 } 7529 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7530 7531 CONN_INC_REF(connp); 7532 mutex_exit(&connfp->connf_lock); 7533 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7534 flags, recv_ill, ip_policy); 7535 CONN_DEC_REF(connp); 7536 return; 7537 } 7538 /* 7539 * IPv4 multicast packet being delivered to an AF_INET6 7540 * in6addr_any endpoint. 7541 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7542 * and not conn_wantpacket_v6() since any multicast membership is 7543 * for an IPv4-mapped multicast address. 7544 * The packet is sent to all clients in all zones that have joined the 7545 * group and match the port. 7546 */ 7547 while (connp != NULL) { 7548 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7549 srcport, v6src) && 7550 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7551 (!is_system_labeled() || 7552 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7553 connp))) 7554 break; 7555 connp = connp->conn_next; 7556 } 7557 7558 if (connp == NULL || 7559 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7560 /* 7561 * No one bound to this port. Is 7562 * there a client that wants all 7563 * unclaimed datagrams? 7564 */ 7565 mutex_exit(&connfp->connf_lock); 7566 7567 if (mctl_present) 7568 first_mp->b_cont = mp; 7569 else 7570 first_mp = mp; 7571 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7572 NULL) { 7573 ip_fanout_proto(q, first_mp, ill, ipha, 7574 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7575 recv_ill, zoneid); 7576 } else { 7577 /* 7578 * We used to attempt to send an icmp error here, but 7579 * since this is known to be a multicast packet 7580 * and we don't send icmp errors in response to 7581 * multicast, just drop the packet and give up sooner. 7582 */ 7583 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7584 freemsg(first_mp); 7585 } 7586 return; 7587 } 7588 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7589 7590 first_connp = connp; 7591 7592 CONN_INC_REF(connp); 7593 connp = connp->conn_next; 7594 for (;;) { 7595 while (connp != NULL) { 7596 if (IPCL_UDP_MATCH_V6(connp, dstport, 7597 ipv6_all_zeros, srcport, v6src) && 7598 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7599 (!is_system_labeled() || 7600 tsol_receive_local(mp, &dst, IPV4_VERSION, 7601 shared_addr, connp))) 7602 break; 7603 connp = connp->conn_next; 7604 } 7605 /* 7606 * Just copy the data part alone. The mctl part is 7607 * needed just for verifying policy and it is never 7608 * sent up. 7609 */ 7610 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7611 ((mp1 = copymsg(mp)) == NULL))) { 7612 /* 7613 * No more intested clients or memory 7614 * allocation failed 7615 */ 7616 connp = first_connp; 7617 break; 7618 } 7619 if (first_mp != NULL) { 7620 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7621 ipsec_info_type == IPSEC_IN); 7622 first_mp1 = ipsec_in_tag(first_mp, NULL, 7623 ipst->ips_netstack); 7624 if (first_mp1 == NULL) { 7625 freemsg(mp1); 7626 connp = first_connp; 7627 break; 7628 } 7629 } else { 7630 first_mp1 = NULL; 7631 } 7632 CONN_INC_REF(connp); 7633 mutex_exit(&connfp->connf_lock); 7634 /* 7635 * IPQoS notes: We don't send the packet for policy 7636 * processing here, will do it for the last one (below). 7637 * i.e. we do it per-packet now, but if we do policy 7638 * processing per-conn, then we would need to do it 7639 * here too. 7640 */ 7641 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7642 ipha, flags, recv_ill, B_FALSE); 7643 mutex_enter(&connfp->connf_lock); 7644 /* Follow the next pointer before releasing the conn. */ 7645 next_connp = connp->conn_next; 7646 CONN_DEC_REF(connp); 7647 connp = next_connp; 7648 } 7649 7650 /* Last one. Send it upstream. */ 7651 mutex_exit(&connfp->connf_lock); 7652 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7653 recv_ill, ip_policy); 7654 CONN_DEC_REF(connp); 7655 } 7656 7657 /* 7658 * Complete the ip_wput header so that it 7659 * is possible to generate ICMP 7660 * errors. 7661 */ 7662 int 7663 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7664 { 7665 ire_t *ire; 7666 7667 if (ipha->ipha_src == INADDR_ANY) { 7668 ire = ire_lookup_local(zoneid, ipst); 7669 if (ire == NULL) { 7670 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7671 return (1); 7672 } 7673 ipha->ipha_src = ire->ire_addr; 7674 ire_refrele(ire); 7675 } 7676 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7677 ipha->ipha_hdr_checksum = 0; 7678 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7679 return (0); 7680 } 7681 7682 /* 7683 * Nobody should be sending 7684 * packets up this stream 7685 */ 7686 static void 7687 ip_lrput(queue_t *q, mblk_t *mp) 7688 { 7689 mblk_t *mp1; 7690 7691 switch (mp->b_datap->db_type) { 7692 case M_FLUSH: 7693 /* Turn around */ 7694 if (*mp->b_rptr & FLUSHW) { 7695 *mp->b_rptr &= ~FLUSHR; 7696 qreply(q, mp); 7697 return; 7698 } 7699 break; 7700 } 7701 /* Could receive messages that passed through ar_rput */ 7702 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7703 mp1->b_prev = mp1->b_next = NULL; 7704 freemsg(mp); 7705 } 7706 7707 /* Nobody should be sending packets down this stream */ 7708 /* ARGSUSED */ 7709 void 7710 ip_lwput(queue_t *q, mblk_t *mp) 7711 { 7712 freemsg(mp); 7713 } 7714 7715 /* 7716 * Move the first hop in any source route to ipha_dst and remove that part of 7717 * the source route. Called by other protocols. Errors in option formatting 7718 * are ignored - will be handled by ip_wput_options Return the final 7719 * destination (either ipha_dst or the last entry in a source route.) 7720 */ 7721 ipaddr_t 7722 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7723 { 7724 ipoptp_t opts; 7725 uchar_t *opt; 7726 uint8_t optval; 7727 uint8_t optlen; 7728 ipaddr_t dst; 7729 int i; 7730 ire_t *ire; 7731 ip_stack_t *ipst = ns->netstack_ip; 7732 7733 ip2dbg(("ip_massage_options\n")); 7734 dst = ipha->ipha_dst; 7735 for (optval = ipoptp_first(&opts, ipha); 7736 optval != IPOPT_EOL; 7737 optval = ipoptp_next(&opts)) { 7738 opt = opts.ipoptp_cur; 7739 switch (optval) { 7740 uint8_t off; 7741 case IPOPT_SSRR: 7742 case IPOPT_LSRR: 7743 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7744 ip1dbg(("ip_massage_options: bad src route\n")); 7745 break; 7746 } 7747 optlen = opts.ipoptp_len; 7748 off = opt[IPOPT_OFFSET]; 7749 off--; 7750 redo_srr: 7751 if (optlen < IP_ADDR_LEN || 7752 off > optlen - IP_ADDR_LEN) { 7753 /* End of source route */ 7754 ip1dbg(("ip_massage_options: end of SR\n")); 7755 break; 7756 } 7757 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7758 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7759 ntohl(dst))); 7760 /* 7761 * Check if our address is present more than 7762 * once as consecutive hops in source route. 7763 * XXX verify per-interface ip_forwarding 7764 * for source route? 7765 */ 7766 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7767 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7768 if (ire != NULL) { 7769 ire_refrele(ire); 7770 off += IP_ADDR_LEN; 7771 goto redo_srr; 7772 } 7773 if (dst == htonl(INADDR_LOOPBACK)) { 7774 ip1dbg(("ip_massage_options: loopback addr in " 7775 "source route!\n")); 7776 break; 7777 } 7778 /* 7779 * Update ipha_dst to be the first hop and remove the 7780 * first hop from the source route (by overwriting 7781 * part of the option with NOP options). 7782 */ 7783 ipha->ipha_dst = dst; 7784 /* Put the last entry in dst */ 7785 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7786 3; 7787 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7788 7789 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7790 ntohl(dst))); 7791 /* Move down and overwrite */ 7792 opt[IP_ADDR_LEN] = opt[0]; 7793 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7794 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7795 for (i = 0; i < IP_ADDR_LEN; i++) 7796 opt[i] = IPOPT_NOP; 7797 break; 7798 } 7799 } 7800 return (dst); 7801 } 7802 7803 /* 7804 * Return the network mask 7805 * associated with the specified address. 7806 */ 7807 ipaddr_t 7808 ip_net_mask(ipaddr_t addr) 7809 { 7810 uchar_t *up = (uchar_t *)&addr; 7811 ipaddr_t mask = 0; 7812 uchar_t *maskp = (uchar_t *)&mask; 7813 7814 #if defined(__i386) || defined(__amd64) 7815 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7816 #endif 7817 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7818 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7819 #endif 7820 if (CLASSD(addr)) { 7821 maskp[0] = 0xF0; 7822 return (mask); 7823 } 7824 7825 /* We assume Class E default netmask to be 32 */ 7826 if (CLASSE(addr)) 7827 return (0xffffffffU); 7828 7829 if (addr == 0) 7830 return (0); 7831 maskp[0] = 0xFF; 7832 if ((up[0] & 0x80) == 0) 7833 return (mask); 7834 7835 maskp[1] = 0xFF; 7836 if ((up[0] & 0xC0) == 0x80) 7837 return (mask); 7838 7839 maskp[2] = 0xFF; 7840 if ((up[0] & 0xE0) == 0xC0) 7841 return (mask); 7842 7843 /* Otherwise return no mask */ 7844 return ((ipaddr_t)0); 7845 } 7846 7847 /* 7848 * Helper ill lookup function used by IPsec. 7849 */ 7850 ill_t * 7851 ip_grab_ill(mblk_t *first_mp, int ifindex, boolean_t isv6, ip_stack_t *ipst) 7852 { 7853 ill_t *ret_ill; 7854 7855 ASSERT(ifindex != 0); 7856 7857 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7858 ipst); 7859 if (ret_ill == NULL) { 7860 if (isv6) { 7861 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 7862 ip1dbg(("ip_grab_ill (IPv6): bad ifindex %d.\n", 7863 ifindex)); 7864 } else { 7865 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 7866 ip1dbg(("ip_grab_ill (IPv4): bad ifindex %d.\n", 7867 ifindex)); 7868 } 7869 freemsg(first_mp); 7870 return (NULL); 7871 } 7872 return (ret_ill); 7873 } 7874 7875 /* 7876 * IPv4 - 7877 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7878 * out a packet to a destination address for which we do not have specific 7879 * (or sufficient) routing information. 7880 * 7881 * NOTE : These are the scopes of some of the variables that point at IRE, 7882 * which needs to be followed while making any future modifications 7883 * to avoid memory leaks. 7884 * 7885 * - ire and sire are the entries looked up initially by 7886 * ire_ftable_lookup. 7887 * - ipif_ire is used to hold the interface ire associated with 7888 * the new cache ire. But it's scope is limited, so we always REFRELE 7889 * it before branching out to error paths. 7890 * - save_ire is initialized before ire_create, so that ire returned 7891 * by ire_create will not over-write the ire. We REFRELE save_ire 7892 * before breaking out of the switch. 7893 * 7894 * Thus on failures, we have to REFRELE only ire and sire, if they 7895 * are not NULL. 7896 */ 7897 void 7898 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7899 zoneid_t zoneid, ip_stack_t *ipst) 7900 { 7901 areq_t *areq; 7902 ipaddr_t gw = 0; 7903 ire_t *ire = NULL; 7904 mblk_t *res_mp; 7905 ipaddr_t *addrp; 7906 ipaddr_t nexthop_addr; 7907 ipif_t *src_ipif = NULL; 7908 ill_t *dst_ill = NULL; 7909 ipha_t *ipha; 7910 ire_t *sire = NULL; 7911 mblk_t *first_mp; 7912 ire_t *save_ire; 7913 ushort_t ire_marks = 0; 7914 boolean_t mctl_present; 7915 ipsec_out_t *io; 7916 mblk_t *saved_mp; 7917 ire_t *first_sire = NULL; 7918 mblk_t *copy_mp = NULL; 7919 mblk_t *xmit_mp = NULL; 7920 ipaddr_t save_dst; 7921 uint32_t multirt_flags = 7922 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7923 boolean_t multirt_is_resolvable; 7924 boolean_t multirt_resolve_next; 7925 boolean_t unspec_src; 7926 boolean_t ip_nexthop = B_FALSE; 7927 tsol_ire_gw_secattr_t *attrp = NULL; 7928 tsol_gcgrp_t *gcgrp = NULL; 7929 tsol_gcgrp_addr_t ga; 7930 7931 if (ip_debug > 2) { 7932 /* ip1dbg */ 7933 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7934 } 7935 7936 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7937 if (mctl_present) { 7938 io = (ipsec_out_t *)first_mp->b_rptr; 7939 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7940 ASSERT(zoneid == io->ipsec_out_zoneid); 7941 ASSERT(zoneid != ALL_ZONES); 7942 } 7943 7944 ipha = (ipha_t *)mp->b_rptr; 7945 7946 /* All multicast lookups come through ip_newroute_ipif() */ 7947 if (CLASSD(dst)) { 7948 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7949 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7950 freemsg(first_mp); 7951 return; 7952 } 7953 7954 if (mctl_present && io->ipsec_out_ip_nexthop) { 7955 ip_nexthop = B_TRUE; 7956 nexthop_addr = io->ipsec_out_nexthop_addr; 7957 } 7958 /* 7959 * If this IRE is created for forwarding or it is not for 7960 * traffic for congestion controlled protocols, mark it as temporary. 7961 */ 7962 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7963 ire_marks |= IRE_MARK_TEMPORARY; 7964 7965 /* 7966 * Get what we can from ire_ftable_lookup which will follow an IRE 7967 * chain until it gets the most specific information available. 7968 * For example, we know that there is no IRE_CACHE for this dest, 7969 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7970 * ire_ftable_lookup will look up the gateway, etc. 7971 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7972 * to the destination, of equal netmask length in the forward table, 7973 * will be recursively explored. If no information is available 7974 * for the final gateway of that route, we force the returned ire 7975 * to be equal to sire using MATCH_IRE_PARENT. 7976 * At least, in this case we have a starting point (in the buckets) 7977 * to look for other routes to the destination in the forward table. 7978 * This is actually used only for multirouting, where a list 7979 * of routes has to be processed in sequence. 7980 * 7981 * In the process of coming up with the most specific information, 7982 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7983 * for the gateway (i.e., one for which the ire_nce->nce_state is 7984 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7985 * Two caveats when handling incomplete ire's in ip_newroute: 7986 * - we should be careful when accessing its ire_nce (specifically 7987 * the nce_res_mp) ast it might change underneath our feet, and, 7988 * - not all legacy code path callers are prepared to handle 7989 * incomplete ire's, so we should not create/add incomplete 7990 * ire_cache entries here. (See discussion about temporary solution 7991 * further below). 7992 * 7993 * In order to minimize packet dropping, and to preserve existing 7994 * behavior, we treat this case as if there were no IRE_CACHE for the 7995 * gateway, and instead use the IF_RESOLVER ire to send out 7996 * another request to ARP (this is achieved by passing the 7997 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7998 * arp response comes back in ip_wput_nondata, we will create 7999 * a per-dst ire_cache that has an ND_COMPLETE ire. 8000 * 8001 * Note that this is a temporary solution; the correct solution is 8002 * to create an incomplete per-dst ire_cache entry, and send the 8003 * packet out when the gw's nce is resolved. In order to achieve this, 8004 * all packet processing must have been completed prior to calling 8005 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 8006 * to be modified to accomodate this solution. 8007 */ 8008 if (ip_nexthop) { 8009 /* 8010 * The first time we come here, we look for an IRE_INTERFACE 8011 * entry for the specified nexthop, set the dst to be the 8012 * nexthop address and create an IRE_CACHE entry for the 8013 * nexthop. The next time around, we are able to find an 8014 * IRE_CACHE entry for the nexthop, set the gateway to be the 8015 * nexthop address and create an IRE_CACHE entry for the 8016 * destination address via the specified nexthop. 8017 */ 8018 ire = ire_cache_lookup(nexthop_addr, zoneid, 8019 msg_getlabel(mp), ipst); 8020 if (ire != NULL) { 8021 gw = nexthop_addr; 8022 ire_marks |= IRE_MARK_PRIVATE_ADDR; 8023 } else { 8024 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 8025 IRE_INTERFACE, NULL, NULL, zoneid, 0, 8026 msg_getlabel(mp), 8027 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 8028 ipst); 8029 if (ire != NULL) { 8030 dst = nexthop_addr; 8031 } 8032 } 8033 } else { 8034 ire = ire_ftable_lookup(dst, 0, 0, 0, 8035 NULL, &sire, zoneid, 0, msg_getlabel(mp), 8036 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 8037 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 8038 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 8039 ipst); 8040 } 8041 8042 ip3dbg(("ip_newroute: ire_ftable_lookup() " 8043 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 8044 8045 /* 8046 * This loop is run only once in most cases. 8047 * We loop to resolve further routes only when the destination 8048 * can be reached through multiple RTF_MULTIRT-flagged ires. 8049 */ 8050 do { 8051 /* Clear the previous iteration's values */ 8052 if (src_ipif != NULL) { 8053 ipif_refrele(src_ipif); 8054 src_ipif = NULL; 8055 } 8056 if (dst_ill != NULL) { 8057 ill_refrele(dst_ill); 8058 dst_ill = NULL; 8059 } 8060 8061 multirt_resolve_next = B_FALSE; 8062 /* 8063 * We check if packets have to be multirouted. 8064 * In this case, given the current <ire, sire> couple, 8065 * we look for the next suitable <ire, sire>. 8066 * This check is done in ire_multirt_lookup(), 8067 * which applies various criteria to find the next route 8068 * to resolve. ire_multirt_lookup() leaves <ire, sire> 8069 * unchanged if it detects it has not been tried yet. 8070 */ 8071 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8072 ip3dbg(("ip_newroute: starting next_resolution " 8073 "with first_mp %p, tag %d\n", 8074 (void *)first_mp, 8075 MULTIRT_DEBUG_TAGGED(first_mp))); 8076 8077 ASSERT(sire != NULL); 8078 multirt_is_resolvable = 8079 ire_multirt_lookup(&ire, &sire, multirt_flags, 8080 msg_getlabel(mp), ipst); 8081 8082 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8083 "ire %p, sire %p\n", 8084 multirt_is_resolvable, 8085 (void *)ire, (void *)sire)); 8086 8087 if (!multirt_is_resolvable) { 8088 /* 8089 * No more multirt route to resolve; give up 8090 * (all routes resolved or no more 8091 * resolvable routes). 8092 */ 8093 if (ire != NULL) { 8094 ire_refrele(ire); 8095 ire = NULL; 8096 } 8097 } else { 8098 ASSERT(sire != NULL); 8099 ASSERT(ire != NULL); 8100 /* 8101 * We simply use first_sire as a flag that 8102 * indicates if a resolvable multirt route 8103 * has already been found. 8104 * If it is not the case, we may have to send 8105 * an ICMP error to report that the 8106 * destination is unreachable. 8107 * We do not IRE_REFHOLD first_sire. 8108 */ 8109 if (first_sire == NULL) { 8110 first_sire = sire; 8111 } 8112 } 8113 } 8114 if (ire == NULL) { 8115 if (ip_debug > 3) { 8116 /* ip2dbg */ 8117 pr_addr_dbg("ip_newroute: " 8118 "can't resolve %s\n", AF_INET, &dst); 8119 } 8120 ip3dbg(("ip_newroute: " 8121 "ire %p, sire %p, first_sire %p\n", 8122 (void *)ire, (void *)sire, (void *)first_sire)); 8123 8124 if (sire != NULL) { 8125 ire_refrele(sire); 8126 sire = NULL; 8127 } 8128 8129 if (first_sire != NULL) { 8130 /* 8131 * At least one multirt route has been found 8132 * in the same call to ip_newroute(); 8133 * there is no need to report an ICMP error. 8134 * first_sire was not IRE_REFHOLDed. 8135 */ 8136 MULTIRT_DEBUG_UNTAG(first_mp); 8137 freemsg(first_mp); 8138 return; 8139 } 8140 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8141 RTA_DST, ipst); 8142 goto icmp_err_ret; 8143 } 8144 8145 /* 8146 * Verify that the returned IRE does not have either 8147 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8148 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8149 */ 8150 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8151 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8152 goto icmp_err_ret; 8153 } 8154 /* 8155 * Increment the ire_ob_pkt_count field for ire if it is an 8156 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8157 * increment the same for the parent IRE, sire, if it is some 8158 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8159 */ 8160 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8161 UPDATE_OB_PKT_COUNT(ire); 8162 ire->ire_last_used_time = lbolt; 8163 } 8164 8165 if (sire != NULL) { 8166 gw = sire->ire_gateway_addr; 8167 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8168 IRE_INTERFACE)) == 0); 8169 UPDATE_OB_PKT_COUNT(sire); 8170 sire->ire_last_used_time = lbolt; 8171 } 8172 /* 8173 * We have a route to reach the destination. Find the 8174 * appropriate ill, then get a source address using 8175 * ipif_select_source(). 8176 * 8177 * If we are here trying to create an IRE_CACHE for an offlink 8178 * destination and have an IRE_CACHE entry for VNI, then use 8179 * ire_stq instead since VNI's queue is a black hole. 8180 */ 8181 if ((ire->ire_type == IRE_CACHE) && 8182 IS_VNI(ire->ire_ipif->ipif_ill)) { 8183 dst_ill = ire->ire_stq->q_ptr; 8184 ill_refhold(dst_ill); 8185 } else { 8186 ill_t *ill = ire->ire_ipif->ipif_ill; 8187 8188 if (IS_IPMP(ill)) { 8189 dst_ill = 8190 ipmp_illgrp_hold_next_ill(ill->ill_grp); 8191 } else { 8192 dst_ill = ill; 8193 ill_refhold(dst_ill); 8194 } 8195 } 8196 8197 if (dst_ill == NULL) { 8198 if (ip_debug > 2) { 8199 pr_addr_dbg("ip_newroute: no dst " 8200 "ill for dst %s\n", AF_INET, &dst); 8201 } 8202 goto icmp_err_ret; 8203 } 8204 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8205 8206 /* 8207 * Pick the best source address from dst_ill. 8208 * 8209 * 1) Try to pick the source address from the destination 8210 * route. Clustering assumes that when we have multiple 8211 * prefixes hosted on an interface, the prefix of the 8212 * source address matches the prefix of the destination 8213 * route. We do this only if the address is not 8214 * DEPRECATED. 8215 * 8216 * 2) If the conn is in a different zone than the ire, we 8217 * need to pick a source address from the right zone. 8218 */ 8219 ASSERT(src_ipif == NULL); 8220 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8221 /* 8222 * The RTF_SETSRC flag is set in the parent ire (sire). 8223 * Check that the ipif matching the requested source 8224 * address still exists. 8225 */ 8226 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8227 zoneid, NULL, NULL, NULL, NULL, ipst); 8228 } 8229 8230 unspec_src = (connp != NULL && connp->conn_unspec_src); 8231 8232 if (src_ipif == NULL && 8233 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8234 ire_marks |= IRE_MARK_USESRC_CHECK; 8235 if (!IS_UNDER_IPMP(ire->ire_ipif->ipif_ill) && 8236 IS_IPMP(ire->ire_ipif->ipif_ill) || 8237 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8238 (connp != NULL && ire->ire_zoneid != zoneid && 8239 ire->ire_zoneid != ALL_ZONES) || 8240 (dst_ill->ill_usesrc_ifindex != 0)) { 8241 /* 8242 * If the destination is reachable via a 8243 * given gateway, the selected source address 8244 * should be in the same subnet as the gateway. 8245 * Otherwise, the destination is not reachable. 8246 * 8247 * If there are no interfaces on the same subnet 8248 * as the destination, ipif_select_source gives 8249 * first non-deprecated interface which might be 8250 * on a different subnet than the gateway. 8251 * This is not desirable. Hence pass the dst_ire 8252 * source address to ipif_select_source. 8253 * It is sure that the destination is reachable 8254 * with the dst_ire source address subnet. 8255 * So passing dst_ire source address to 8256 * ipif_select_source will make sure that the 8257 * selected source will be on the same subnet 8258 * as dst_ire source address. 8259 */ 8260 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8261 8262 src_ipif = ipif_select_source(dst_ill, saddr, 8263 zoneid); 8264 if (src_ipif == NULL) { 8265 if (ip_debug > 2) { 8266 pr_addr_dbg("ip_newroute: " 8267 "no src for dst %s ", 8268 AF_INET, &dst); 8269 printf("on interface %s\n", 8270 dst_ill->ill_name); 8271 } 8272 goto icmp_err_ret; 8273 } 8274 } else { 8275 src_ipif = ire->ire_ipif; 8276 ASSERT(src_ipif != NULL); 8277 /* hold src_ipif for uniformity */ 8278 ipif_refhold(src_ipif); 8279 } 8280 } 8281 8282 /* 8283 * Assign a source address while we have the conn. 8284 * We can't have ip_wput_ire pick a source address when the 8285 * packet returns from arp since we need to look at 8286 * conn_unspec_src and conn_zoneid, and we lose the conn when 8287 * going through arp. 8288 * 8289 * NOTE : ip_newroute_v6 does not have this piece of code as 8290 * it uses ip6i to store this information. 8291 */ 8292 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8293 ipha->ipha_src = src_ipif->ipif_src_addr; 8294 8295 if (ip_debug > 3) { 8296 /* ip2dbg */ 8297 pr_addr_dbg("ip_newroute: first hop %s\n", 8298 AF_INET, &gw); 8299 } 8300 ip2dbg(("\tire type %s (%d)\n", 8301 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8302 8303 /* 8304 * The TTL of multirouted packets is bounded by the 8305 * ip_multirt_ttl ndd variable. 8306 */ 8307 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8308 /* Force TTL of multirouted packets */ 8309 if ((ipst->ips_ip_multirt_ttl > 0) && 8310 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8311 ip2dbg(("ip_newroute: forcing multirt TTL " 8312 "to %d (was %d), dst 0x%08x\n", 8313 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8314 ntohl(sire->ire_addr))); 8315 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8316 } 8317 } 8318 /* 8319 * At this point in ip_newroute(), ire is either the 8320 * IRE_CACHE of the next-hop gateway for an off-subnet 8321 * destination or an IRE_INTERFACE type that should be used 8322 * to resolve an on-subnet destination or an on-subnet 8323 * next-hop gateway. 8324 * 8325 * In the IRE_CACHE case, we have the following : 8326 * 8327 * 1) src_ipif - used for getting a source address. 8328 * 8329 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8330 * means packets using this IRE_CACHE will go out on 8331 * dst_ill. 8332 * 8333 * 3) The IRE sire will point to the prefix that is the 8334 * longest matching route for the destination. These 8335 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8336 * 8337 * The newly created IRE_CACHE entry for the off-subnet 8338 * destination is tied to both the prefix route and the 8339 * interface route used to resolve the next-hop gateway 8340 * via the ire_phandle and ire_ihandle fields, 8341 * respectively. 8342 * 8343 * In the IRE_INTERFACE case, we have the following : 8344 * 8345 * 1) src_ipif - used for getting a source address. 8346 * 8347 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8348 * means packets using the IRE_CACHE that we will build 8349 * here will go out on dst_ill. 8350 * 8351 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8352 * to be created will only be tied to the IRE_INTERFACE 8353 * that was derived from the ire_ihandle field. 8354 * 8355 * If sire is non-NULL, it means the destination is 8356 * off-link and we will first create the IRE_CACHE for the 8357 * gateway. Next time through ip_newroute, we will create 8358 * the IRE_CACHE for the final destination as described 8359 * above. 8360 * 8361 * In both cases, after the current resolution has been 8362 * completed (or possibly initialised, in the IRE_INTERFACE 8363 * case), the loop may be re-entered to attempt the resolution 8364 * of another RTF_MULTIRT route. 8365 * 8366 * When an IRE_CACHE entry for the off-subnet destination is 8367 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8368 * for further processing in emission loops. 8369 */ 8370 save_ire = ire; 8371 switch (ire->ire_type) { 8372 case IRE_CACHE: { 8373 ire_t *ipif_ire; 8374 8375 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8376 if (gw == 0) 8377 gw = ire->ire_gateway_addr; 8378 /* 8379 * We need 3 ire's to create a new cache ire for an 8380 * off-link destination from the cache ire of the 8381 * gateway. 8382 * 8383 * 1. The prefix ire 'sire' (Note that this does 8384 * not apply to the conn_nexthop_set case) 8385 * 2. The cache ire of the gateway 'ire' 8386 * 3. The interface ire 'ipif_ire' 8387 * 8388 * We have (1) and (2). We lookup (3) below. 8389 * 8390 * If there is no interface route to the gateway, 8391 * it is a race condition, where we found the cache 8392 * but the interface route has been deleted. 8393 */ 8394 if (ip_nexthop) { 8395 ipif_ire = ire_ihandle_lookup_onlink(ire); 8396 } else { 8397 ipif_ire = 8398 ire_ihandle_lookup_offlink(ire, sire); 8399 } 8400 if (ipif_ire == NULL) { 8401 ip1dbg(("ip_newroute: " 8402 "ire_ihandle_lookup_offlink failed\n")); 8403 goto icmp_err_ret; 8404 } 8405 8406 /* 8407 * Check cached gateway IRE for any security 8408 * attributes; if found, associate the gateway 8409 * credentials group to the destination IRE. 8410 */ 8411 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8412 mutex_enter(&attrp->igsa_lock); 8413 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8414 GCGRP_REFHOLD(gcgrp); 8415 mutex_exit(&attrp->igsa_lock); 8416 } 8417 8418 /* 8419 * XXX For the source of the resolver mp, 8420 * we are using the same DL_UNITDATA_REQ 8421 * (from save_ire->ire_nce->nce_res_mp) 8422 * though the save_ire is not pointing at the same ill. 8423 * This is incorrect. We need to send it up to the 8424 * resolver to get the right res_mp. For ethernets 8425 * this may be okay (ill_type == DL_ETHER). 8426 */ 8427 8428 ire = ire_create( 8429 (uchar_t *)&dst, /* dest address */ 8430 (uchar_t *)&ip_g_all_ones, /* mask */ 8431 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8432 (uchar_t *)&gw, /* gateway address */ 8433 &save_ire->ire_max_frag, 8434 save_ire->ire_nce, /* src nce */ 8435 dst_ill->ill_rq, /* recv-from queue */ 8436 dst_ill->ill_wq, /* send-to queue */ 8437 IRE_CACHE, /* IRE type */ 8438 src_ipif, 8439 (sire != NULL) ? 8440 sire->ire_mask : 0, /* Parent mask */ 8441 (sire != NULL) ? 8442 sire->ire_phandle : 0, /* Parent handle */ 8443 ipif_ire->ire_ihandle, /* Interface handle */ 8444 (sire != NULL) ? (sire->ire_flags & 8445 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8446 (sire != NULL) ? 8447 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8448 NULL, 8449 gcgrp, 8450 ipst); 8451 8452 if (ire == NULL) { 8453 if (gcgrp != NULL) { 8454 GCGRP_REFRELE(gcgrp); 8455 gcgrp = NULL; 8456 } 8457 ire_refrele(ipif_ire); 8458 ire_refrele(save_ire); 8459 break; 8460 } 8461 8462 /* reference now held by IRE */ 8463 gcgrp = NULL; 8464 8465 ire->ire_marks |= ire_marks; 8466 8467 /* 8468 * Prevent sire and ipif_ire from getting deleted. 8469 * The newly created ire is tied to both of them via 8470 * the phandle and ihandle respectively. 8471 */ 8472 if (sire != NULL) { 8473 IRB_REFHOLD(sire->ire_bucket); 8474 /* Has it been removed already ? */ 8475 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8476 IRB_REFRELE(sire->ire_bucket); 8477 ire_refrele(ipif_ire); 8478 ire_refrele(save_ire); 8479 break; 8480 } 8481 } 8482 8483 IRB_REFHOLD(ipif_ire->ire_bucket); 8484 /* Has it been removed already ? */ 8485 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8486 IRB_REFRELE(ipif_ire->ire_bucket); 8487 if (sire != NULL) 8488 IRB_REFRELE(sire->ire_bucket); 8489 ire_refrele(ipif_ire); 8490 ire_refrele(save_ire); 8491 break; 8492 } 8493 8494 xmit_mp = first_mp; 8495 /* 8496 * In the case of multirouting, a copy 8497 * of the packet is done before its sending. 8498 * The copy is used to attempt another 8499 * route resolution, in a next loop. 8500 */ 8501 if (ire->ire_flags & RTF_MULTIRT) { 8502 copy_mp = copymsg(first_mp); 8503 if (copy_mp != NULL) { 8504 xmit_mp = copy_mp; 8505 MULTIRT_DEBUG_TAG(first_mp); 8506 } 8507 } 8508 8509 ire_add_then_send(q, ire, xmit_mp); 8510 ire_refrele(save_ire); 8511 8512 /* Assert that sire is not deleted yet. */ 8513 if (sire != NULL) { 8514 ASSERT(sire->ire_ptpn != NULL); 8515 IRB_REFRELE(sire->ire_bucket); 8516 } 8517 8518 /* Assert that ipif_ire is not deleted yet. */ 8519 ASSERT(ipif_ire->ire_ptpn != NULL); 8520 IRB_REFRELE(ipif_ire->ire_bucket); 8521 ire_refrele(ipif_ire); 8522 8523 /* 8524 * If copy_mp is not NULL, multirouting was 8525 * requested. We loop to initiate a next 8526 * route resolution attempt, starting from sire. 8527 */ 8528 if (copy_mp != NULL) { 8529 /* 8530 * Search for the next unresolved 8531 * multirt route. 8532 */ 8533 copy_mp = NULL; 8534 ipif_ire = NULL; 8535 ire = NULL; 8536 multirt_resolve_next = B_TRUE; 8537 continue; 8538 } 8539 if (sire != NULL) 8540 ire_refrele(sire); 8541 ipif_refrele(src_ipif); 8542 ill_refrele(dst_ill); 8543 return; 8544 } 8545 case IRE_IF_NORESOLVER: { 8546 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8547 dst_ill->ill_resolver_mp == NULL) { 8548 ip1dbg(("ip_newroute: dst_ill %p " 8549 "for IRE_IF_NORESOLVER ire %p has " 8550 "no ill_resolver_mp\n", 8551 (void *)dst_ill, (void *)ire)); 8552 break; 8553 } 8554 8555 /* 8556 * TSol note: We are creating the ire cache for the 8557 * destination 'dst'. If 'dst' is offlink, going 8558 * through the first hop 'gw', the security attributes 8559 * of 'dst' must be set to point to the gateway 8560 * credentials of gateway 'gw'. If 'dst' is onlink, it 8561 * is possible that 'dst' is a potential gateway that is 8562 * referenced by some route that has some security 8563 * attributes. Thus in the former case, we need to do a 8564 * gcgrp_lookup of 'gw' while in the latter case we 8565 * need to do gcgrp_lookup of 'dst' itself. 8566 */ 8567 ga.ga_af = AF_INET; 8568 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8569 &ga.ga_addr); 8570 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8571 8572 ire = ire_create( 8573 (uchar_t *)&dst, /* dest address */ 8574 (uchar_t *)&ip_g_all_ones, /* mask */ 8575 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8576 (uchar_t *)&gw, /* gateway address */ 8577 &save_ire->ire_max_frag, 8578 NULL, /* no src nce */ 8579 dst_ill->ill_rq, /* recv-from queue */ 8580 dst_ill->ill_wq, /* send-to queue */ 8581 IRE_CACHE, 8582 src_ipif, 8583 save_ire->ire_mask, /* Parent mask */ 8584 (sire != NULL) ? /* Parent handle */ 8585 sire->ire_phandle : 0, 8586 save_ire->ire_ihandle, /* Interface handle */ 8587 (sire != NULL) ? sire->ire_flags & 8588 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8589 &(save_ire->ire_uinfo), 8590 NULL, 8591 gcgrp, 8592 ipst); 8593 8594 if (ire == NULL) { 8595 if (gcgrp != NULL) { 8596 GCGRP_REFRELE(gcgrp); 8597 gcgrp = NULL; 8598 } 8599 ire_refrele(save_ire); 8600 break; 8601 } 8602 8603 /* reference now held by IRE */ 8604 gcgrp = NULL; 8605 8606 ire->ire_marks |= ire_marks; 8607 8608 /* Prevent save_ire from getting deleted */ 8609 IRB_REFHOLD(save_ire->ire_bucket); 8610 /* Has it been removed already ? */ 8611 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8612 IRB_REFRELE(save_ire->ire_bucket); 8613 ire_refrele(save_ire); 8614 break; 8615 } 8616 8617 /* 8618 * In the case of multirouting, a copy 8619 * of the packet is made before it is sent. 8620 * The copy is used in the next 8621 * loop to attempt another resolution. 8622 */ 8623 xmit_mp = first_mp; 8624 if ((sire != NULL) && 8625 (sire->ire_flags & RTF_MULTIRT)) { 8626 copy_mp = copymsg(first_mp); 8627 if (copy_mp != NULL) { 8628 xmit_mp = copy_mp; 8629 MULTIRT_DEBUG_TAG(first_mp); 8630 } 8631 } 8632 ire_add_then_send(q, ire, xmit_mp); 8633 8634 /* Assert that it is not deleted yet. */ 8635 ASSERT(save_ire->ire_ptpn != NULL); 8636 IRB_REFRELE(save_ire->ire_bucket); 8637 ire_refrele(save_ire); 8638 8639 if (copy_mp != NULL) { 8640 /* 8641 * If we found a (no)resolver, we ignore any 8642 * trailing top priority IRE_CACHE in further 8643 * loops. This ensures that we do not omit any 8644 * (no)resolver. 8645 * This IRE_CACHE, if any, will be processed 8646 * by another thread entering ip_newroute(). 8647 * IRE_CACHE entries, if any, will be processed 8648 * by another thread entering ip_newroute(), 8649 * (upon resolver response, for instance). 8650 * This aims to force parallel multirt 8651 * resolutions as soon as a packet must be sent. 8652 * In the best case, after the tx of only one 8653 * packet, all reachable routes are resolved. 8654 * Otherwise, the resolution of all RTF_MULTIRT 8655 * routes would require several emissions. 8656 */ 8657 multirt_flags &= ~MULTIRT_CACHEGW; 8658 8659 /* 8660 * Search for the next unresolved multirt 8661 * route. 8662 */ 8663 copy_mp = NULL; 8664 save_ire = NULL; 8665 ire = NULL; 8666 multirt_resolve_next = B_TRUE; 8667 continue; 8668 } 8669 8670 /* 8671 * Don't need sire anymore 8672 */ 8673 if (sire != NULL) 8674 ire_refrele(sire); 8675 8676 ipif_refrele(src_ipif); 8677 ill_refrele(dst_ill); 8678 return; 8679 } 8680 case IRE_IF_RESOLVER: 8681 /* 8682 * We can't build an IRE_CACHE yet, but at least we 8683 * found a resolver that can help. 8684 */ 8685 res_mp = dst_ill->ill_resolver_mp; 8686 if (!OK_RESOLVER_MP(res_mp)) 8687 break; 8688 8689 /* 8690 * To be at this point in the code with a non-zero gw 8691 * means that dst is reachable through a gateway that 8692 * we have never resolved. By changing dst to the gw 8693 * addr we resolve the gateway first. 8694 * When ire_add_then_send() tries to put the IP dg 8695 * to dst, it will reenter ip_newroute() at which 8696 * time we will find the IRE_CACHE for the gw and 8697 * create another IRE_CACHE in case IRE_CACHE above. 8698 */ 8699 if (gw != INADDR_ANY) { 8700 /* 8701 * The source ipif that was determined above was 8702 * relative to the destination address, not the 8703 * gateway's. If src_ipif was not taken out of 8704 * the IRE_IF_RESOLVER entry, we'll need to call 8705 * ipif_select_source() again. 8706 */ 8707 if (src_ipif != ire->ire_ipif) { 8708 ipif_refrele(src_ipif); 8709 src_ipif = ipif_select_source(dst_ill, 8710 gw, zoneid); 8711 if (src_ipif == NULL) { 8712 if (ip_debug > 2) { 8713 pr_addr_dbg( 8714 "ip_newroute: no " 8715 "src for gw %s ", 8716 AF_INET, &gw); 8717 printf("on " 8718 "interface %s\n", 8719 dst_ill->ill_name); 8720 } 8721 goto icmp_err_ret; 8722 } 8723 } 8724 save_dst = dst; 8725 dst = gw; 8726 gw = INADDR_ANY; 8727 } 8728 8729 /* 8730 * We obtain a partial IRE_CACHE which we will pass 8731 * along with the resolver query. When the response 8732 * comes back it will be there ready for us to add. 8733 * The ire_max_frag is atomically set under the 8734 * irebucket lock in ire_add_v[46]. 8735 */ 8736 8737 ire = ire_create_mp( 8738 (uchar_t *)&dst, /* dest address */ 8739 (uchar_t *)&ip_g_all_ones, /* mask */ 8740 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8741 (uchar_t *)&gw, /* gateway address */ 8742 NULL, /* ire_max_frag */ 8743 NULL, /* no src nce */ 8744 dst_ill->ill_rq, /* recv-from queue */ 8745 dst_ill->ill_wq, /* send-to queue */ 8746 IRE_CACHE, 8747 src_ipif, /* Interface ipif */ 8748 save_ire->ire_mask, /* Parent mask */ 8749 0, 8750 save_ire->ire_ihandle, /* Interface handle */ 8751 0, /* flags if any */ 8752 &(save_ire->ire_uinfo), 8753 NULL, 8754 NULL, 8755 ipst); 8756 8757 if (ire == NULL) { 8758 ire_refrele(save_ire); 8759 break; 8760 } 8761 8762 if ((sire != NULL) && 8763 (sire->ire_flags & RTF_MULTIRT)) { 8764 copy_mp = copymsg(first_mp); 8765 if (copy_mp != NULL) 8766 MULTIRT_DEBUG_TAG(copy_mp); 8767 } 8768 8769 ire->ire_marks |= ire_marks; 8770 8771 /* 8772 * Construct message chain for the resolver 8773 * of the form: 8774 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8775 * Packet could contain a IPSEC_OUT mp. 8776 * 8777 * NOTE : ire will be added later when the response 8778 * comes back from ARP. If the response does not 8779 * come back, ARP frees the packet. For this reason, 8780 * we can't REFHOLD the bucket of save_ire to prevent 8781 * deletions. We may not be able to REFRELE the bucket 8782 * if the response never comes back. Thus, before 8783 * adding the ire, ire_add_v4 will make sure that the 8784 * interface route does not get deleted. This is the 8785 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8786 * where we can always prevent deletions because of 8787 * the synchronous nature of adding IRES i.e 8788 * ire_add_then_send is called after creating the IRE. 8789 */ 8790 ASSERT(ire->ire_mp != NULL); 8791 ire->ire_mp->b_cont = first_mp; 8792 /* Have saved_mp handy, for cleanup if canput fails */ 8793 saved_mp = mp; 8794 mp = copyb(res_mp); 8795 if (mp == NULL) { 8796 /* Prepare for cleanup */ 8797 mp = saved_mp; /* pkt */ 8798 ire_delete(ire); /* ire_mp */ 8799 ire = NULL; 8800 ire_refrele(save_ire); 8801 if (copy_mp != NULL) { 8802 MULTIRT_DEBUG_UNTAG(copy_mp); 8803 freemsg(copy_mp); 8804 copy_mp = NULL; 8805 } 8806 break; 8807 } 8808 linkb(mp, ire->ire_mp); 8809 8810 /* 8811 * Fill in the source and dest addrs for the resolver. 8812 * NOTE: this depends on memory layouts imposed by 8813 * ill_init(). 8814 */ 8815 areq = (areq_t *)mp->b_rptr; 8816 addrp = (ipaddr_t *)((char *)areq + 8817 areq->areq_sender_addr_offset); 8818 *addrp = save_ire->ire_src_addr; 8819 8820 ire_refrele(save_ire); 8821 addrp = (ipaddr_t *)((char *)areq + 8822 areq->areq_target_addr_offset); 8823 *addrp = dst; 8824 /* Up to the resolver. */ 8825 if (canputnext(dst_ill->ill_rq) && 8826 !(dst_ill->ill_arp_closing)) { 8827 putnext(dst_ill->ill_rq, mp); 8828 ire = NULL; 8829 if (copy_mp != NULL) { 8830 /* 8831 * If we found a resolver, we ignore 8832 * any trailing top priority IRE_CACHE 8833 * in the further loops. This ensures 8834 * that we do not omit any resolver. 8835 * IRE_CACHE entries, if any, will be 8836 * processed next time we enter 8837 * ip_newroute(). 8838 */ 8839 multirt_flags &= ~MULTIRT_CACHEGW; 8840 /* 8841 * Search for the next unresolved 8842 * multirt route. 8843 */ 8844 first_mp = copy_mp; 8845 copy_mp = NULL; 8846 /* Prepare the next resolution loop. */ 8847 mp = first_mp; 8848 EXTRACT_PKT_MP(mp, first_mp, 8849 mctl_present); 8850 if (mctl_present) 8851 io = (ipsec_out_t *) 8852 first_mp->b_rptr; 8853 ipha = (ipha_t *)mp->b_rptr; 8854 8855 ASSERT(sire != NULL); 8856 8857 dst = save_dst; 8858 multirt_resolve_next = B_TRUE; 8859 continue; 8860 } 8861 8862 if (sire != NULL) 8863 ire_refrele(sire); 8864 8865 /* 8866 * The response will come back in ip_wput 8867 * with db_type IRE_DB_TYPE. 8868 */ 8869 ipif_refrele(src_ipif); 8870 ill_refrele(dst_ill); 8871 return; 8872 } else { 8873 /* Prepare for cleanup */ 8874 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8875 mp); 8876 mp->b_cont = NULL; 8877 freeb(mp); /* areq */ 8878 /* 8879 * this is an ire that is not added to the 8880 * cache. ire_freemblk will handle the release 8881 * of any resources associated with the ire. 8882 */ 8883 ire_delete(ire); /* ire_mp */ 8884 mp = saved_mp; /* pkt */ 8885 ire = NULL; 8886 if (copy_mp != NULL) { 8887 MULTIRT_DEBUG_UNTAG(copy_mp); 8888 freemsg(copy_mp); 8889 copy_mp = NULL; 8890 } 8891 break; 8892 } 8893 default: 8894 break; 8895 } 8896 } while (multirt_resolve_next); 8897 8898 ip1dbg(("ip_newroute: dropped\n")); 8899 /* Did this packet originate externally? */ 8900 if (mp->b_prev) { 8901 mp->b_next = NULL; 8902 mp->b_prev = NULL; 8903 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8904 } else { 8905 if (dst_ill != NULL) { 8906 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8907 } else { 8908 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8909 } 8910 } 8911 ASSERT(copy_mp == NULL); 8912 MULTIRT_DEBUG_UNTAG(first_mp); 8913 freemsg(first_mp); 8914 if (ire != NULL) 8915 ire_refrele(ire); 8916 if (sire != NULL) 8917 ire_refrele(sire); 8918 if (src_ipif != NULL) 8919 ipif_refrele(src_ipif); 8920 if (dst_ill != NULL) 8921 ill_refrele(dst_ill); 8922 return; 8923 8924 icmp_err_ret: 8925 ip1dbg(("ip_newroute: no route\n")); 8926 if (src_ipif != NULL) 8927 ipif_refrele(src_ipif); 8928 if (dst_ill != NULL) 8929 ill_refrele(dst_ill); 8930 if (sire != NULL) 8931 ire_refrele(sire); 8932 /* Did this packet originate externally? */ 8933 if (mp->b_prev) { 8934 mp->b_next = NULL; 8935 mp->b_prev = NULL; 8936 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8937 q = WR(q); 8938 } else { 8939 /* 8940 * There is no outgoing ill, so just increment the 8941 * system MIB. 8942 */ 8943 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8944 /* 8945 * Since ip_wput() isn't close to finished, we fill 8946 * in enough of the header for credible error reporting. 8947 */ 8948 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8949 /* Failed */ 8950 MULTIRT_DEBUG_UNTAG(first_mp); 8951 freemsg(first_mp); 8952 if (ire != NULL) 8953 ire_refrele(ire); 8954 return; 8955 } 8956 } 8957 8958 /* 8959 * At this point we will have ire only if RTF_BLACKHOLE 8960 * or RTF_REJECT flags are set on the IRE. It will not 8961 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8962 */ 8963 if (ire != NULL) { 8964 if (ire->ire_flags & RTF_BLACKHOLE) { 8965 ire_refrele(ire); 8966 MULTIRT_DEBUG_UNTAG(first_mp); 8967 freemsg(first_mp); 8968 return; 8969 } 8970 ire_refrele(ire); 8971 } 8972 if (ip_source_routed(ipha, ipst)) { 8973 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8974 zoneid, ipst); 8975 return; 8976 } 8977 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8978 } 8979 8980 ip_opt_info_t zero_info; 8981 8982 /* 8983 * IPv4 - 8984 * ip_newroute_ipif is called by ip_wput_multicast and 8985 * ip_rput_forward_multicast whenever we need to send 8986 * out a packet to a destination address for which we do not have specific 8987 * routing information. It is used when the packet will be sent out 8988 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8989 * socket option is set or icmp error message wants to go out on a particular 8990 * interface for a unicast packet. 8991 * 8992 * In most cases, the destination address is resolved thanks to the ipif 8993 * intrinsic resolver. However, there are some cases where the call to 8994 * ip_newroute_ipif must take into account the potential presence of 8995 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8996 * that uses the interface. This is specified through flags, 8997 * which can be a combination of: 8998 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8999 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9000 * and flags. Additionally, the packet source address has to be set to 9001 * the specified address. The caller is thus expected to set this flag 9002 * if the packet has no specific source address yet. 9003 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9004 * flag, the resulting ire will inherit the flag. All unresolved routes 9005 * to the destination must be explored in the same call to 9006 * ip_newroute_ipif(). 9007 */ 9008 static void 9009 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9010 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9011 { 9012 areq_t *areq; 9013 ire_t *ire = NULL; 9014 mblk_t *res_mp; 9015 ipaddr_t *addrp; 9016 mblk_t *first_mp; 9017 ire_t *save_ire = NULL; 9018 ipif_t *src_ipif = NULL; 9019 ushort_t ire_marks = 0; 9020 ill_t *dst_ill = NULL; 9021 ipha_t *ipha; 9022 mblk_t *saved_mp; 9023 ire_t *fire = NULL; 9024 mblk_t *copy_mp = NULL; 9025 boolean_t multirt_resolve_next; 9026 boolean_t unspec_src; 9027 ipaddr_t ipha_dst; 9028 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9029 9030 /* 9031 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9032 * here for uniformity 9033 */ 9034 ipif_refhold(ipif); 9035 9036 /* 9037 * This loop is run only once in most cases. 9038 * We loop to resolve further routes only when the destination 9039 * can be reached through multiple RTF_MULTIRT-flagged ires. 9040 */ 9041 do { 9042 if (dst_ill != NULL) { 9043 ill_refrele(dst_ill); 9044 dst_ill = NULL; 9045 } 9046 if (src_ipif != NULL) { 9047 ipif_refrele(src_ipif); 9048 src_ipif = NULL; 9049 } 9050 multirt_resolve_next = B_FALSE; 9051 9052 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9053 ipif->ipif_ill->ill_name)); 9054 9055 first_mp = mp; 9056 if (DB_TYPE(mp) == M_CTL) 9057 mp = mp->b_cont; 9058 ipha = (ipha_t *)mp->b_rptr; 9059 9060 /* 9061 * Save the packet destination address, we may need it after 9062 * the packet has been consumed. 9063 */ 9064 ipha_dst = ipha->ipha_dst; 9065 9066 /* 9067 * If the interface is a pt-pt interface we look for an 9068 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9069 * local_address and the pt-pt destination address. Otherwise 9070 * we just match the local address. 9071 * NOTE: dst could be different than ipha->ipha_dst in case 9072 * of sending igmp multicast packets over a point-to-point 9073 * connection. 9074 * Thus we must be careful enough to check ipha_dst to be a 9075 * multicast address, otherwise it will take xmit_if path for 9076 * multicast packets resulting into kernel stack overflow by 9077 * repeated calls to ip_newroute_ipif from ire_send(). 9078 */ 9079 if (CLASSD(ipha_dst) && 9080 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9081 goto err_ret; 9082 } 9083 9084 /* 9085 * We check if an IRE_OFFSUBNET for the addr that goes through 9086 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9087 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9088 * propagate its flags to the new ire. 9089 */ 9090 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9091 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9092 ip2dbg(("ip_newroute_ipif: " 9093 "ipif_lookup_multi_ire(" 9094 "ipif %p, dst %08x) = fire %p\n", 9095 (void *)ipif, ntohl(dst), (void *)fire)); 9096 } 9097 9098 /* 9099 * Note: While we pick a dst_ill we are really only 9100 * interested in the ill for load spreading. The source 9101 * ipif is determined by source address selection below. 9102 */ 9103 if (IS_IPMP(ipif->ipif_ill)) { 9104 ipmp_illgrp_t *illg = ipif->ipif_ill->ill_grp; 9105 9106 if (CLASSD(ipha_dst)) 9107 dst_ill = ipmp_illgrp_hold_cast_ill(illg); 9108 else 9109 dst_ill = ipmp_illgrp_hold_next_ill(illg); 9110 } else { 9111 dst_ill = ipif->ipif_ill; 9112 ill_refhold(dst_ill); 9113 } 9114 9115 if (dst_ill == NULL) { 9116 if (ip_debug > 2) { 9117 pr_addr_dbg("ip_newroute_ipif: no dst ill " 9118 "for dst %s\n", AF_INET, &dst); 9119 } 9120 goto err_ret; 9121 } 9122 9123 /* 9124 * Pick a source address preferring non-deprecated ones. 9125 * Unlike ip_newroute, we don't do any source address 9126 * selection here since for multicast it really does not help 9127 * in inbound load spreading as in the unicast case. 9128 */ 9129 if ((flags & RTF_SETSRC) && (fire != NULL) && 9130 (fire->ire_flags & RTF_SETSRC)) { 9131 /* 9132 * As requested by flags, an IRE_OFFSUBNET was looked up 9133 * on that interface. This ire has RTF_SETSRC flag, so 9134 * the source address of the packet must be changed. 9135 * Check that the ipif matching the requested source 9136 * address still exists. 9137 */ 9138 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9139 zoneid, NULL, NULL, NULL, NULL, ipst); 9140 } 9141 9142 unspec_src = (connp != NULL && connp->conn_unspec_src); 9143 9144 if (!IS_UNDER_IPMP(ipif->ipif_ill) && 9145 (IS_IPMP(ipif->ipif_ill) || 9146 (!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9147 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9148 (connp != NULL && ipif->ipif_zoneid != zoneid && 9149 ipif->ipif_zoneid != ALL_ZONES)) && 9150 (src_ipif == NULL) && 9151 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9152 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9153 if (src_ipif == NULL) { 9154 if (ip_debug > 2) { 9155 /* ip1dbg */ 9156 pr_addr_dbg("ip_newroute_ipif: " 9157 "no src for dst %s", 9158 AF_INET, &dst); 9159 } 9160 ip1dbg((" on interface %s\n", 9161 dst_ill->ill_name)); 9162 goto err_ret; 9163 } 9164 ipif_refrele(ipif); 9165 ipif = src_ipif; 9166 ipif_refhold(ipif); 9167 } 9168 if (src_ipif == NULL) { 9169 src_ipif = ipif; 9170 ipif_refhold(src_ipif); 9171 } 9172 9173 /* 9174 * Assign a source address while we have the conn. 9175 * We can't have ip_wput_ire pick a source address when the 9176 * packet returns from arp since conn_unspec_src might be set 9177 * and we lose the conn when going through arp. 9178 */ 9179 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9180 ipha->ipha_src = src_ipif->ipif_src_addr; 9181 9182 /* 9183 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9184 * that the outgoing interface does not have an interface ire. 9185 */ 9186 if (CLASSD(ipha_dst) && (connp == NULL || 9187 connp->conn_outgoing_ill == NULL) && 9188 infop->ip_opt_ill_index == 0) { 9189 /* ipif_to_ire returns an held ire */ 9190 ire = ipif_to_ire(ipif); 9191 if (ire == NULL) 9192 goto err_ret; 9193 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9194 goto err_ret; 9195 save_ire = ire; 9196 9197 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9198 "flags %04x\n", 9199 (void *)ire, (void *)ipif, flags)); 9200 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9201 (fire->ire_flags & RTF_MULTIRT)) { 9202 /* 9203 * As requested by flags, an IRE_OFFSUBNET was 9204 * looked up on that interface. This ire has 9205 * RTF_MULTIRT flag, so the resolution loop will 9206 * be re-entered to resolve additional routes on 9207 * other interfaces. For that purpose, a copy of 9208 * the packet is performed at this point. 9209 */ 9210 fire->ire_last_used_time = lbolt; 9211 copy_mp = copymsg(first_mp); 9212 if (copy_mp) { 9213 MULTIRT_DEBUG_TAG(copy_mp); 9214 } 9215 } 9216 if ((flags & RTF_SETSRC) && (fire != NULL) && 9217 (fire->ire_flags & RTF_SETSRC)) { 9218 /* 9219 * As requested by flags, an IRE_OFFSUBET was 9220 * looked up on that interface. This ire has 9221 * RTF_SETSRC flag, so the source address of the 9222 * packet must be changed. 9223 */ 9224 ipha->ipha_src = fire->ire_src_addr; 9225 } 9226 } else { 9227 /* 9228 * The only ways we can come here are: 9229 * 1) IP_BOUND_IF socket option is set 9230 * 2) SO_DONTROUTE socket option is set 9231 * 3) IP_PKTINFO option is passed in as ancillary data. 9232 * In all cases, the new ire will not be added 9233 * into cache table. 9234 */ 9235 ASSERT(connp == NULL || connp->conn_dontroute || 9236 connp->conn_outgoing_ill != NULL || 9237 infop->ip_opt_ill_index != 0); 9238 ire_marks |= IRE_MARK_NOADD; 9239 } 9240 9241 switch (ipif->ipif_net_type) { 9242 case IRE_IF_NORESOLVER: { 9243 /* We have what we need to build an IRE_CACHE. */ 9244 9245 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9246 (dst_ill->ill_resolver_mp == NULL)) { 9247 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9248 "for IRE_IF_NORESOLVER ire %p has " 9249 "no ill_resolver_mp\n", 9250 (void *)dst_ill, (void *)ire)); 9251 break; 9252 } 9253 9254 /* 9255 * The new ire inherits the IRE_OFFSUBNET flags 9256 * and source address, if this was requested. 9257 */ 9258 ire = ire_create( 9259 (uchar_t *)&dst, /* dest address */ 9260 (uchar_t *)&ip_g_all_ones, /* mask */ 9261 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9262 NULL, /* gateway address */ 9263 &ipif->ipif_mtu, 9264 NULL, /* no src nce */ 9265 dst_ill->ill_rq, /* recv-from queue */ 9266 dst_ill->ill_wq, /* send-to queue */ 9267 IRE_CACHE, 9268 src_ipif, 9269 (save_ire != NULL ? save_ire->ire_mask : 0), 9270 (fire != NULL) ? /* Parent handle */ 9271 fire->ire_phandle : 0, 9272 (save_ire != NULL) ? /* Interface handle */ 9273 save_ire->ire_ihandle : 0, 9274 (fire != NULL) ? 9275 (fire->ire_flags & 9276 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9277 (save_ire == NULL ? &ire_uinfo_null : 9278 &save_ire->ire_uinfo), 9279 NULL, 9280 NULL, 9281 ipst); 9282 9283 if (ire == NULL) { 9284 if (save_ire != NULL) 9285 ire_refrele(save_ire); 9286 break; 9287 } 9288 9289 ire->ire_marks |= ire_marks; 9290 9291 /* 9292 * If IRE_MARK_NOADD is set then we need to convert 9293 * the max_fragp to a useable value now. This is 9294 * normally done in ire_add_v[46]. We also need to 9295 * associate the ire with an nce (normally would be 9296 * done in ip_wput_nondata()). 9297 * 9298 * Note that IRE_MARK_NOADD packets created here 9299 * do not have a non-null ire_mp pointer. The null 9300 * value of ire_bucket indicates that they were 9301 * never added. 9302 */ 9303 if (ire->ire_marks & IRE_MARK_NOADD) { 9304 uint_t max_frag; 9305 9306 max_frag = *ire->ire_max_fragp; 9307 ire->ire_max_fragp = NULL; 9308 ire->ire_max_frag = max_frag; 9309 9310 if ((ire->ire_nce = ndp_lookup_v4( 9311 ire_to_ill(ire), 9312 (ire->ire_gateway_addr != INADDR_ANY ? 9313 &ire->ire_gateway_addr : &ire->ire_addr), 9314 B_FALSE)) == NULL) { 9315 if (save_ire != NULL) 9316 ire_refrele(save_ire); 9317 break; 9318 } 9319 ASSERT(ire->ire_nce->nce_state == 9320 ND_REACHABLE); 9321 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9322 } 9323 9324 /* Prevent save_ire from getting deleted */ 9325 if (save_ire != NULL) { 9326 IRB_REFHOLD(save_ire->ire_bucket); 9327 /* Has it been removed already ? */ 9328 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9329 IRB_REFRELE(save_ire->ire_bucket); 9330 ire_refrele(save_ire); 9331 break; 9332 } 9333 } 9334 9335 ire_add_then_send(q, ire, first_mp); 9336 9337 /* Assert that save_ire is not deleted yet. */ 9338 if (save_ire != NULL) { 9339 ASSERT(save_ire->ire_ptpn != NULL); 9340 IRB_REFRELE(save_ire->ire_bucket); 9341 ire_refrele(save_ire); 9342 save_ire = NULL; 9343 } 9344 if (fire != NULL) { 9345 ire_refrele(fire); 9346 fire = NULL; 9347 } 9348 9349 /* 9350 * the resolution loop is re-entered if this 9351 * was requested through flags and if we 9352 * actually are in a multirouting case. 9353 */ 9354 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9355 boolean_t need_resolve = 9356 ire_multirt_need_resolve(ipha_dst, 9357 msg_getlabel(copy_mp), ipst); 9358 if (!need_resolve) { 9359 MULTIRT_DEBUG_UNTAG(copy_mp); 9360 freemsg(copy_mp); 9361 copy_mp = NULL; 9362 } else { 9363 /* 9364 * ipif_lookup_group() calls 9365 * ire_lookup_multi() that uses 9366 * ire_ftable_lookup() to find 9367 * an IRE_INTERFACE for the group. 9368 * In the multirt case, 9369 * ire_lookup_multi() then invokes 9370 * ire_multirt_lookup() to find 9371 * the next resolvable ire. 9372 * As a result, we obtain an new 9373 * interface, derived from the 9374 * next ire. 9375 */ 9376 ipif_refrele(ipif); 9377 ipif = ipif_lookup_group(ipha_dst, 9378 zoneid, ipst); 9379 ip2dbg(("ip_newroute_ipif: " 9380 "multirt dst %08x, ipif %p\n", 9381 htonl(dst), (void *)ipif)); 9382 if (ipif != NULL) { 9383 mp = copy_mp; 9384 copy_mp = NULL; 9385 multirt_resolve_next = B_TRUE; 9386 continue; 9387 } else { 9388 freemsg(copy_mp); 9389 } 9390 } 9391 } 9392 if (ipif != NULL) 9393 ipif_refrele(ipif); 9394 ill_refrele(dst_ill); 9395 ipif_refrele(src_ipif); 9396 return; 9397 } 9398 case IRE_IF_RESOLVER: 9399 /* 9400 * We can't build an IRE_CACHE yet, but at least 9401 * we found a resolver that can help. 9402 */ 9403 res_mp = dst_ill->ill_resolver_mp; 9404 if (!OK_RESOLVER_MP(res_mp)) 9405 break; 9406 9407 /* 9408 * We obtain a partial IRE_CACHE which we will pass 9409 * along with the resolver query. When the response 9410 * comes back it will be there ready for us to add. 9411 * The new ire inherits the IRE_OFFSUBNET flags 9412 * and source address, if this was requested. 9413 * The ire_max_frag is atomically set under the 9414 * irebucket lock in ire_add_v[46]. Only in the 9415 * case of IRE_MARK_NOADD, we set it here itself. 9416 */ 9417 ire = ire_create_mp( 9418 (uchar_t *)&dst, /* dest address */ 9419 (uchar_t *)&ip_g_all_ones, /* mask */ 9420 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9421 NULL, /* gateway address */ 9422 (ire_marks & IRE_MARK_NOADD) ? 9423 ipif->ipif_mtu : 0, /* max_frag */ 9424 NULL, /* no src nce */ 9425 dst_ill->ill_rq, /* recv-from queue */ 9426 dst_ill->ill_wq, /* send-to queue */ 9427 IRE_CACHE, 9428 src_ipif, 9429 (save_ire != NULL ? save_ire->ire_mask : 0), 9430 (fire != NULL) ? /* Parent handle */ 9431 fire->ire_phandle : 0, 9432 (save_ire != NULL) ? /* Interface handle */ 9433 save_ire->ire_ihandle : 0, 9434 (fire != NULL) ? /* flags if any */ 9435 (fire->ire_flags & 9436 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9437 (save_ire == NULL ? &ire_uinfo_null : 9438 &save_ire->ire_uinfo), 9439 NULL, 9440 NULL, 9441 ipst); 9442 9443 if (save_ire != NULL) { 9444 ire_refrele(save_ire); 9445 save_ire = NULL; 9446 } 9447 if (ire == NULL) 9448 break; 9449 9450 ire->ire_marks |= ire_marks; 9451 /* 9452 * Construct message chain for the resolver of the 9453 * form: 9454 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9455 * 9456 * NOTE : ire will be added later when the response 9457 * comes back from ARP. If the response does not 9458 * come back, ARP frees the packet. For this reason, 9459 * we can't REFHOLD the bucket of save_ire to prevent 9460 * deletions. We may not be able to REFRELE the 9461 * bucket if the response never comes back. 9462 * Thus, before adding the ire, ire_add_v4 will make 9463 * sure that the interface route does not get deleted. 9464 * This is the only case unlike ip_newroute_v6, 9465 * ip_newroute_ipif_v6 where we can always prevent 9466 * deletions because ire_add_then_send is called after 9467 * creating the IRE. 9468 * If IRE_MARK_NOADD is set, then ire_add_then_send 9469 * does not add this IRE into the IRE CACHE. 9470 */ 9471 ASSERT(ire->ire_mp != NULL); 9472 ire->ire_mp->b_cont = first_mp; 9473 /* Have saved_mp handy, for cleanup if canput fails */ 9474 saved_mp = mp; 9475 mp = copyb(res_mp); 9476 if (mp == NULL) { 9477 /* Prepare for cleanup */ 9478 mp = saved_mp; /* pkt */ 9479 ire_delete(ire); /* ire_mp */ 9480 ire = NULL; 9481 if (copy_mp != NULL) { 9482 MULTIRT_DEBUG_UNTAG(copy_mp); 9483 freemsg(copy_mp); 9484 copy_mp = NULL; 9485 } 9486 break; 9487 } 9488 linkb(mp, ire->ire_mp); 9489 9490 /* 9491 * Fill in the source and dest addrs for the resolver. 9492 * NOTE: this depends on memory layouts imposed by 9493 * ill_init(). There are corner cases above where we 9494 * might've created the IRE with an INADDR_ANY source 9495 * address (e.g., if the zeroth ipif on an underlying 9496 * ill in an IPMP group is 0.0.0.0, but another ipif 9497 * on the ill has a usable test address). If so, tell 9498 * ARP to use ipha_src as its sender address. 9499 */ 9500 areq = (areq_t *)mp->b_rptr; 9501 addrp = (ipaddr_t *)((char *)areq + 9502 areq->areq_sender_addr_offset); 9503 if (ire->ire_src_addr != INADDR_ANY) 9504 *addrp = ire->ire_src_addr; 9505 else 9506 *addrp = ipha->ipha_src; 9507 addrp = (ipaddr_t *)((char *)areq + 9508 areq->areq_target_addr_offset); 9509 *addrp = dst; 9510 /* Up to the resolver. */ 9511 if (canputnext(dst_ill->ill_rq) && 9512 !(dst_ill->ill_arp_closing)) { 9513 putnext(dst_ill->ill_rq, mp); 9514 /* 9515 * The response will come back in ip_wput 9516 * with db_type IRE_DB_TYPE. 9517 */ 9518 } else { 9519 mp->b_cont = NULL; 9520 freeb(mp); /* areq */ 9521 ire_delete(ire); /* ire_mp */ 9522 saved_mp->b_next = NULL; 9523 saved_mp->b_prev = NULL; 9524 freemsg(first_mp); /* pkt */ 9525 ip2dbg(("ip_newroute_ipif: dropped\n")); 9526 } 9527 9528 if (fire != NULL) { 9529 ire_refrele(fire); 9530 fire = NULL; 9531 } 9532 9533 /* 9534 * The resolution loop is re-entered if this was 9535 * requested through flags and we actually are 9536 * in a multirouting case. 9537 */ 9538 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9539 boolean_t need_resolve = 9540 ire_multirt_need_resolve(ipha_dst, 9541 msg_getlabel(copy_mp), ipst); 9542 if (!need_resolve) { 9543 MULTIRT_DEBUG_UNTAG(copy_mp); 9544 freemsg(copy_mp); 9545 copy_mp = NULL; 9546 } else { 9547 /* 9548 * ipif_lookup_group() calls 9549 * ire_lookup_multi() that uses 9550 * ire_ftable_lookup() to find 9551 * an IRE_INTERFACE for the group. 9552 * In the multirt case, 9553 * ire_lookup_multi() then invokes 9554 * ire_multirt_lookup() to find 9555 * the next resolvable ire. 9556 * As a result, we obtain an new 9557 * interface, derived from the 9558 * next ire. 9559 */ 9560 ipif_refrele(ipif); 9561 ipif = ipif_lookup_group(ipha_dst, 9562 zoneid, ipst); 9563 if (ipif != NULL) { 9564 mp = copy_mp; 9565 copy_mp = NULL; 9566 multirt_resolve_next = B_TRUE; 9567 continue; 9568 } else { 9569 freemsg(copy_mp); 9570 } 9571 } 9572 } 9573 if (ipif != NULL) 9574 ipif_refrele(ipif); 9575 ill_refrele(dst_ill); 9576 ipif_refrele(src_ipif); 9577 return; 9578 default: 9579 break; 9580 } 9581 } while (multirt_resolve_next); 9582 9583 err_ret: 9584 ip2dbg(("ip_newroute_ipif: dropped\n")); 9585 if (fire != NULL) 9586 ire_refrele(fire); 9587 ipif_refrele(ipif); 9588 /* Did this packet originate externally? */ 9589 if (dst_ill != NULL) 9590 ill_refrele(dst_ill); 9591 if (src_ipif != NULL) 9592 ipif_refrele(src_ipif); 9593 if (mp->b_prev || mp->b_next) { 9594 mp->b_next = NULL; 9595 mp->b_prev = NULL; 9596 } else { 9597 /* 9598 * Since ip_wput() isn't close to finished, we fill 9599 * in enough of the header for credible error reporting. 9600 */ 9601 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9602 /* Failed */ 9603 freemsg(first_mp); 9604 if (ire != NULL) 9605 ire_refrele(ire); 9606 return; 9607 } 9608 } 9609 /* 9610 * At this point we will have ire only if RTF_BLACKHOLE 9611 * or RTF_REJECT flags are set on the IRE. It will not 9612 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9613 */ 9614 if (ire != NULL) { 9615 if (ire->ire_flags & RTF_BLACKHOLE) { 9616 ire_refrele(ire); 9617 freemsg(first_mp); 9618 return; 9619 } 9620 ire_refrele(ire); 9621 } 9622 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9623 } 9624 9625 /* Name/Value Table Lookup Routine */ 9626 char * 9627 ip_nv_lookup(nv_t *nv, int value) 9628 { 9629 if (!nv) 9630 return (NULL); 9631 for (; nv->nv_name; nv++) { 9632 if (nv->nv_value == value) 9633 return (nv->nv_name); 9634 } 9635 return ("unknown"); 9636 } 9637 9638 /* 9639 * This is a module open, i.e. this is a control stream for access 9640 * to a DLPI device. We allocate an ill_t as the instance data in 9641 * this case. 9642 */ 9643 int 9644 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9645 { 9646 ill_t *ill; 9647 int err; 9648 zoneid_t zoneid; 9649 netstack_t *ns; 9650 ip_stack_t *ipst; 9651 9652 /* 9653 * Prevent unprivileged processes from pushing IP so that 9654 * they can't send raw IP. 9655 */ 9656 if (secpolicy_net_rawaccess(credp) != 0) 9657 return (EPERM); 9658 9659 ns = netstack_find_by_cred(credp); 9660 ASSERT(ns != NULL); 9661 ipst = ns->netstack_ip; 9662 ASSERT(ipst != NULL); 9663 9664 /* 9665 * For exclusive stacks we set the zoneid to zero 9666 * to make IP operate as if in the global zone. 9667 */ 9668 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9669 zoneid = GLOBAL_ZONEID; 9670 else 9671 zoneid = crgetzoneid(credp); 9672 9673 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9674 q->q_ptr = WR(q)->q_ptr = ill; 9675 ill->ill_ipst = ipst; 9676 ill->ill_zoneid = zoneid; 9677 9678 /* 9679 * ill_init initializes the ill fields and then sends down 9680 * down a DL_INFO_REQ after calling qprocson. 9681 */ 9682 err = ill_init(q, ill); 9683 if (err != 0) { 9684 mi_free(ill); 9685 netstack_rele(ipst->ips_netstack); 9686 q->q_ptr = NULL; 9687 WR(q)->q_ptr = NULL; 9688 return (err); 9689 } 9690 9691 /* ill_init initializes the ipsq marking this thread as writer */ 9692 ipsq_exit(ill->ill_phyint->phyint_ipsq); 9693 /* Wait for the DL_INFO_ACK */ 9694 mutex_enter(&ill->ill_lock); 9695 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9696 /* 9697 * Return value of 0 indicates a pending signal. 9698 */ 9699 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9700 if (err == 0) { 9701 mutex_exit(&ill->ill_lock); 9702 (void) ip_close(q, 0); 9703 return (EINTR); 9704 } 9705 } 9706 mutex_exit(&ill->ill_lock); 9707 9708 /* 9709 * ip_rput_other could have set an error in ill_error on 9710 * receipt of M_ERROR. 9711 */ 9712 9713 err = ill->ill_error; 9714 if (err != 0) { 9715 (void) ip_close(q, 0); 9716 return (err); 9717 } 9718 9719 ill->ill_credp = credp; 9720 crhold(credp); 9721 9722 mutex_enter(&ipst->ips_ip_mi_lock); 9723 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9724 credp); 9725 mutex_exit(&ipst->ips_ip_mi_lock); 9726 if (err) { 9727 (void) ip_close(q, 0); 9728 return (err); 9729 } 9730 return (0); 9731 } 9732 9733 /* For /dev/ip aka AF_INET open */ 9734 int 9735 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9736 { 9737 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9738 } 9739 9740 /* For /dev/ip6 aka AF_INET6 open */ 9741 int 9742 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9743 { 9744 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9745 } 9746 9747 /* IP open routine. */ 9748 int 9749 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9750 boolean_t isv6) 9751 { 9752 conn_t *connp; 9753 major_t maj; 9754 zoneid_t zoneid; 9755 netstack_t *ns; 9756 ip_stack_t *ipst; 9757 9758 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9759 9760 /* Allow reopen. */ 9761 if (q->q_ptr != NULL) 9762 return (0); 9763 9764 if (sflag & MODOPEN) { 9765 /* This is a module open */ 9766 return (ip_modopen(q, devp, flag, sflag, credp)); 9767 } 9768 9769 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 9770 /* 9771 * Non streams based socket looking for a stream 9772 * to access IP 9773 */ 9774 return (ip_helper_stream_setup(q, devp, flag, sflag, 9775 credp, isv6)); 9776 } 9777 9778 ns = netstack_find_by_cred(credp); 9779 ASSERT(ns != NULL); 9780 ipst = ns->netstack_ip; 9781 ASSERT(ipst != NULL); 9782 9783 /* 9784 * For exclusive stacks we set the zoneid to zero 9785 * to make IP operate as if in the global zone. 9786 */ 9787 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9788 zoneid = GLOBAL_ZONEID; 9789 else 9790 zoneid = crgetzoneid(credp); 9791 9792 /* 9793 * We are opening as a device. This is an IP client stream, and we 9794 * allocate an conn_t as the instance data. 9795 */ 9796 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9797 9798 /* 9799 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9800 * done by netstack_find_by_cred() 9801 */ 9802 netstack_rele(ipst->ips_netstack); 9803 9804 connp->conn_zoneid = zoneid; 9805 connp->conn_sqp = NULL; 9806 connp->conn_initial_sqp = NULL; 9807 connp->conn_final_sqp = NULL; 9808 9809 connp->conn_upq = q; 9810 q->q_ptr = WR(q)->q_ptr = connp; 9811 9812 if (flag & SO_SOCKSTR) 9813 connp->conn_flags |= IPCL_SOCKET; 9814 9815 /* Minor tells us which /dev entry was opened */ 9816 if (isv6) { 9817 connp->conn_flags |= IPCL_ISV6; 9818 connp->conn_af_isv6 = B_TRUE; 9819 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9820 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9821 } else { 9822 connp->conn_af_isv6 = B_FALSE; 9823 connp->conn_pkt_isv6 = B_FALSE; 9824 } 9825 9826 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9827 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9828 connp->conn_minor_arena = ip_minor_arena_la; 9829 } else { 9830 /* 9831 * Either minor numbers in the large arena were exhausted 9832 * or a non socket application is doing the open. 9833 * Try to allocate from the small arena. 9834 */ 9835 if ((connp->conn_dev = 9836 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9837 /* CONN_DEC_REF takes care of netstack_rele() */ 9838 q->q_ptr = WR(q)->q_ptr = NULL; 9839 CONN_DEC_REF(connp); 9840 return (EBUSY); 9841 } 9842 connp->conn_minor_arena = ip_minor_arena_sa; 9843 } 9844 9845 maj = getemajor(*devp); 9846 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9847 9848 /* 9849 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9850 */ 9851 connp->conn_cred = credp; 9852 9853 /* 9854 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9855 */ 9856 connp->conn_recv = ip_conn_input; 9857 9858 crhold(connp->conn_cred); 9859 9860 /* 9861 * If the caller has the process-wide flag set, then default to MAC 9862 * exempt mode. This allows read-down to unlabeled hosts. 9863 */ 9864 if (getpflags(NET_MAC_AWARE, credp) != 0) 9865 connp->conn_mac_exempt = B_TRUE; 9866 9867 connp->conn_rq = q; 9868 connp->conn_wq = WR(q); 9869 9870 /* Non-zero default values */ 9871 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9872 9873 /* 9874 * Make the conn globally visible to walkers 9875 */ 9876 ASSERT(connp->conn_ref == 1); 9877 mutex_enter(&connp->conn_lock); 9878 connp->conn_state_flags &= ~CONN_INCIPIENT; 9879 mutex_exit(&connp->conn_lock); 9880 9881 qprocson(q); 9882 9883 return (0); 9884 } 9885 9886 /* 9887 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9888 * Note that there is no race since either ip_output function works - it 9889 * is just an optimization to enter the best ip_output routine directly. 9890 */ 9891 void 9892 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9893 ip_stack_t *ipst) 9894 { 9895 if (isv6) { 9896 if (bump_mib) { 9897 BUMP_MIB(&ipst->ips_ip6_mib, 9898 ipIfStatsOutSwitchIPVersion); 9899 } 9900 connp->conn_send = ip_output_v6; 9901 connp->conn_pkt_isv6 = B_TRUE; 9902 } else { 9903 if (bump_mib) { 9904 BUMP_MIB(&ipst->ips_ip_mib, 9905 ipIfStatsOutSwitchIPVersion); 9906 } 9907 connp->conn_send = ip_output; 9908 connp->conn_pkt_isv6 = B_FALSE; 9909 } 9910 9911 } 9912 9913 /* 9914 * See if IPsec needs loading because of the options in mp. 9915 */ 9916 static boolean_t 9917 ipsec_opt_present(mblk_t *mp) 9918 { 9919 uint8_t *optcp, *next_optcp, *opt_endcp; 9920 struct opthdr *opt; 9921 struct T_opthdr *topt; 9922 int opthdr_len; 9923 t_uscalar_t optname, optlevel; 9924 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9925 ipsec_req_t *ipsr; 9926 9927 /* 9928 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9929 * return TRUE. 9930 */ 9931 9932 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9933 opt_endcp = optcp + tor->OPT_length; 9934 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9935 opthdr_len = sizeof (struct T_opthdr); 9936 } else { /* O_OPTMGMT_REQ */ 9937 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9938 opthdr_len = sizeof (struct opthdr); 9939 } 9940 for (; optcp < opt_endcp; optcp = next_optcp) { 9941 if (optcp + opthdr_len > opt_endcp) 9942 return (B_FALSE); /* Not enough option header. */ 9943 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9944 topt = (struct T_opthdr *)optcp; 9945 optlevel = topt->level; 9946 optname = topt->name; 9947 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9948 } else { 9949 opt = (struct opthdr *)optcp; 9950 optlevel = opt->level; 9951 optname = opt->name; 9952 next_optcp = optcp + opthdr_len + 9953 _TPI_ALIGN_OPT(opt->len); 9954 } 9955 if ((next_optcp < optcp) || /* wraparound pointer space */ 9956 ((next_optcp >= opt_endcp) && /* last option bad len */ 9957 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9958 return (B_FALSE); /* bad option buffer */ 9959 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9960 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9961 /* 9962 * Check to see if it's an all-bypass or all-zeroes 9963 * IPsec request. Don't bother loading IPsec if 9964 * the socket doesn't want to use it. (A good example 9965 * is a bypass request.) 9966 * 9967 * Basically, if any of the non-NEVER bits are set, 9968 * load IPsec. 9969 */ 9970 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9971 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9972 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9973 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9974 != 0) 9975 return (B_TRUE); 9976 } 9977 } 9978 return (B_FALSE); 9979 } 9980 9981 /* 9982 * If conn is is waiting for ipsec to finish loading, kick it. 9983 */ 9984 /* ARGSUSED */ 9985 static void 9986 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9987 { 9988 t_scalar_t optreq_prim; 9989 mblk_t *mp; 9990 cred_t *cr; 9991 int err = 0; 9992 9993 /* 9994 * This function is called, after ipsec loading is complete. 9995 * Since IP checks exclusively and atomically (i.e it prevents 9996 * ipsec load from completing until ip_optcom_req completes) 9997 * whether ipsec load is complete, there cannot be a race with IP 9998 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9999 */ 10000 mutex_enter(&connp->conn_lock); 10001 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10002 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10003 mp = connp->conn_ipsec_opt_mp; 10004 connp->conn_ipsec_opt_mp = NULL; 10005 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10006 mutex_exit(&connp->conn_lock); 10007 10008 /* 10009 * All Solaris components should pass a db_credp 10010 * for this TPI message, hence we ASSERT. 10011 * But in case there is some other M_PROTO that looks 10012 * like a TPI message sent by some other kernel 10013 * component, we check and return an error. 10014 */ 10015 cr = msg_getcred(mp, NULL); 10016 ASSERT(cr != NULL); 10017 if (cr == NULL) { 10018 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 10019 if (mp != NULL) 10020 qreply(connp->conn_wq, mp); 10021 return; 10022 } 10023 10024 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10025 10026 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10027 if (optreq_prim == T_OPTMGMT_REQ) { 10028 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10029 &ip_opt_obj, B_FALSE); 10030 } else { 10031 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10032 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10033 &ip_opt_obj, B_FALSE); 10034 } 10035 if (err != EINPROGRESS) 10036 CONN_OPER_PENDING_DONE(connp); 10037 return; 10038 } 10039 mutex_exit(&connp->conn_lock); 10040 } 10041 10042 /* 10043 * Called from the ipsec_loader thread, outside any perimeter, to tell 10044 * ip qenable any of the queues waiting for the ipsec loader to 10045 * complete. 10046 */ 10047 void 10048 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10049 { 10050 netstack_t *ns = ipss->ipsec_netstack; 10051 10052 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10053 } 10054 10055 /* 10056 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10057 * determines the grp on which it has to become exclusive, queues the mp 10058 * and IPSQ draining restarts the optmgmt 10059 */ 10060 static boolean_t 10061 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10062 { 10063 conn_t *connp = Q_TO_CONN(q); 10064 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10065 10066 /* 10067 * Take IPsec requests and treat them special. 10068 */ 10069 if (ipsec_opt_present(mp)) { 10070 /* First check if IPsec is loaded. */ 10071 mutex_enter(&ipss->ipsec_loader_lock); 10072 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10073 mutex_exit(&ipss->ipsec_loader_lock); 10074 return (B_FALSE); 10075 } 10076 mutex_enter(&connp->conn_lock); 10077 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10078 10079 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10080 connp->conn_ipsec_opt_mp = mp; 10081 mutex_exit(&connp->conn_lock); 10082 mutex_exit(&ipss->ipsec_loader_lock); 10083 10084 ipsec_loader_loadnow(ipss); 10085 return (B_TRUE); 10086 } 10087 return (B_FALSE); 10088 } 10089 10090 /* 10091 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10092 * all of them are copied to the conn_t. If the req is "zero", the policy is 10093 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10094 * fields. 10095 * We keep only the latest setting of the policy and thus policy setting 10096 * is not incremental/cumulative. 10097 * 10098 * Requests to set policies with multiple alternative actions will 10099 * go through a different API. 10100 */ 10101 int 10102 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10103 { 10104 uint_t ah_req = 0; 10105 uint_t esp_req = 0; 10106 uint_t se_req = 0; 10107 ipsec_selkey_t sel; 10108 ipsec_act_t *actp = NULL; 10109 uint_t nact; 10110 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10111 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10112 ipsec_policy_root_t *pr; 10113 ipsec_policy_head_t *ph; 10114 int fam; 10115 boolean_t is_pol_reset; 10116 int error = 0; 10117 netstack_t *ns = connp->conn_netstack; 10118 ip_stack_t *ipst = ns->netstack_ip; 10119 ipsec_stack_t *ipss = ns->netstack_ipsec; 10120 10121 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10122 10123 /* 10124 * The IP_SEC_OPT option does not allow variable length parameters, 10125 * hence a request cannot be NULL. 10126 */ 10127 if (req == NULL) 10128 return (EINVAL); 10129 10130 ah_req = req->ipsr_ah_req; 10131 esp_req = req->ipsr_esp_req; 10132 se_req = req->ipsr_self_encap_req; 10133 10134 /* Don't allow setting self-encap without one or more of AH/ESP. */ 10135 if (se_req != 0 && esp_req == 0 && ah_req == 0) 10136 return (EINVAL); 10137 10138 /* 10139 * Are we dealing with a request to reset the policy (i.e. 10140 * zero requests). 10141 */ 10142 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10143 (esp_req & REQ_MASK) == 0 && 10144 (se_req & REQ_MASK) == 0); 10145 10146 if (!is_pol_reset) { 10147 /* 10148 * If we couldn't load IPsec, fail with "protocol 10149 * not supported". 10150 * IPsec may not have been loaded for a request with zero 10151 * policies, so we don't fail in this case. 10152 */ 10153 mutex_enter(&ipss->ipsec_loader_lock); 10154 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10155 mutex_exit(&ipss->ipsec_loader_lock); 10156 return (EPROTONOSUPPORT); 10157 } 10158 mutex_exit(&ipss->ipsec_loader_lock); 10159 10160 /* 10161 * Test for valid requests. Invalid algorithms 10162 * need to be tested by IPsec code because new 10163 * algorithms can be added dynamically. 10164 */ 10165 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10166 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10167 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10168 return (EINVAL); 10169 } 10170 10171 /* 10172 * Only privileged users can issue these 10173 * requests. 10174 */ 10175 if (((ah_req & IPSEC_PREF_NEVER) || 10176 (esp_req & IPSEC_PREF_NEVER) || 10177 (se_req & IPSEC_PREF_NEVER)) && 10178 secpolicy_ip_config(cr, B_FALSE) != 0) { 10179 return (EPERM); 10180 } 10181 10182 /* 10183 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10184 * are mutually exclusive. 10185 */ 10186 if (((ah_req & REQ_MASK) == REQ_MASK) || 10187 ((esp_req & REQ_MASK) == REQ_MASK) || 10188 ((se_req & REQ_MASK) == REQ_MASK)) { 10189 /* Both of them are set */ 10190 return (EINVAL); 10191 } 10192 } 10193 10194 mutex_enter(&connp->conn_lock); 10195 10196 /* 10197 * If we have already cached policies in ip_bind_connected*(), don't 10198 * let them change now. We cache policies for connections 10199 * whose src,dst [addr, port] is known. 10200 */ 10201 if (connp->conn_policy_cached) { 10202 mutex_exit(&connp->conn_lock); 10203 return (EINVAL); 10204 } 10205 10206 /* 10207 * We have a zero policies, reset the connection policy if already 10208 * set. This will cause the connection to inherit the 10209 * global policy, if any. 10210 */ 10211 if (is_pol_reset) { 10212 if (connp->conn_policy != NULL) { 10213 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10214 connp->conn_policy = NULL; 10215 } 10216 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10217 connp->conn_in_enforce_policy = B_FALSE; 10218 connp->conn_out_enforce_policy = B_FALSE; 10219 mutex_exit(&connp->conn_lock); 10220 return (0); 10221 } 10222 10223 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10224 ipst->ips_netstack); 10225 if (ph == NULL) 10226 goto enomem; 10227 10228 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10229 if (actp == NULL) 10230 goto enomem; 10231 10232 /* 10233 * Always allocate IPv4 policy entries, since they can also 10234 * apply to ipv6 sockets being used in ipv4-compat mode. 10235 */ 10236 bzero(&sel, sizeof (sel)); 10237 sel.ipsl_valid = IPSL_IPV4; 10238 10239 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10240 ipst->ips_netstack); 10241 if (pin4 == NULL) 10242 goto enomem; 10243 10244 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10245 ipst->ips_netstack); 10246 if (pout4 == NULL) 10247 goto enomem; 10248 10249 if (connp->conn_af_isv6) { 10250 /* 10251 * We're looking at a v6 socket, also allocate the 10252 * v6-specific entries... 10253 */ 10254 sel.ipsl_valid = IPSL_IPV6; 10255 pin6 = ipsec_policy_create(&sel, actp, nact, 10256 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10257 if (pin6 == NULL) 10258 goto enomem; 10259 10260 pout6 = ipsec_policy_create(&sel, actp, nact, 10261 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10262 if (pout6 == NULL) 10263 goto enomem; 10264 10265 /* 10266 * .. and file them away in the right place. 10267 */ 10268 fam = IPSEC_AF_V6; 10269 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10270 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10271 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10272 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10273 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10274 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10275 } 10276 10277 ipsec_actvec_free(actp, nact); 10278 10279 /* 10280 * File the v4 policies. 10281 */ 10282 fam = IPSEC_AF_V4; 10283 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10284 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10285 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10286 10287 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10288 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10289 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10290 10291 /* 10292 * If the requests need security, set enforce_policy. 10293 * If the requests are IPSEC_PREF_NEVER, one should 10294 * still set conn_out_enforce_policy so that an ipsec_out 10295 * gets attached in ip_wput. This is needed so that 10296 * for connections that we don't cache policy in ip_bind, 10297 * if global policy matches in ip_wput_attach_policy, we 10298 * don't wrongly inherit global policy. Similarly, we need 10299 * to set conn_in_enforce_policy also so that we don't verify 10300 * policy wrongly. 10301 */ 10302 if ((ah_req & REQ_MASK) != 0 || 10303 (esp_req & REQ_MASK) != 0 || 10304 (se_req & REQ_MASK) != 0) { 10305 connp->conn_in_enforce_policy = B_TRUE; 10306 connp->conn_out_enforce_policy = B_TRUE; 10307 connp->conn_flags |= IPCL_CHECK_POLICY; 10308 } 10309 10310 mutex_exit(&connp->conn_lock); 10311 return (error); 10312 #undef REQ_MASK 10313 10314 /* 10315 * Common memory-allocation-failure exit path. 10316 */ 10317 enomem: 10318 mutex_exit(&connp->conn_lock); 10319 if (actp != NULL) 10320 ipsec_actvec_free(actp, nact); 10321 if (pin4 != NULL) 10322 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10323 if (pout4 != NULL) 10324 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10325 if (pin6 != NULL) 10326 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10327 if (pout6 != NULL) 10328 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10329 return (ENOMEM); 10330 } 10331 10332 /* 10333 * Only for options that pass in an IP addr. Currently only V4 options 10334 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10335 * So this function assumes level is IPPROTO_IP 10336 */ 10337 int 10338 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10339 mblk_t *first_mp) 10340 { 10341 ipif_t *ipif = NULL; 10342 int error; 10343 ill_t *ill; 10344 int zoneid; 10345 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10346 10347 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10348 10349 if (addr != INADDR_ANY || checkonly) { 10350 ASSERT(connp != NULL); 10351 zoneid = IPCL_ZONEID(connp); 10352 if (option == IP_NEXTHOP) { 10353 ipif = ipif_lookup_onlink_addr(addr, 10354 connp->conn_zoneid, ipst); 10355 } else { 10356 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10357 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10358 &error, ipst); 10359 } 10360 if (ipif == NULL) { 10361 if (error == EINPROGRESS) 10362 return (error); 10363 if ((option == IP_MULTICAST_IF) || 10364 (option == IP_NEXTHOP)) 10365 return (EHOSTUNREACH); 10366 else 10367 return (EINVAL); 10368 } else if (checkonly) { 10369 if (option == IP_MULTICAST_IF) { 10370 ill = ipif->ipif_ill; 10371 /* not supported by the virtual network iface */ 10372 if (IS_VNI(ill)) { 10373 ipif_refrele(ipif); 10374 return (EINVAL); 10375 } 10376 } 10377 ipif_refrele(ipif); 10378 return (0); 10379 } 10380 ill = ipif->ipif_ill; 10381 mutex_enter(&connp->conn_lock); 10382 mutex_enter(&ill->ill_lock); 10383 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10384 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10385 mutex_exit(&ill->ill_lock); 10386 mutex_exit(&connp->conn_lock); 10387 ipif_refrele(ipif); 10388 return (option == IP_MULTICAST_IF ? 10389 EHOSTUNREACH : EINVAL); 10390 } 10391 } else { 10392 mutex_enter(&connp->conn_lock); 10393 } 10394 10395 /* None of the options below are supported on the VNI */ 10396 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10397 mutex_exit(&ill->ill_lock); 10398 mutex_exit(&connp->conn_lock); 10399 ipif_refrele(ipif); 10400 return (EINVAL); 10401 } 10402 10403 switch (option) { 10404 case IP_MULTICAST_IF: 10405 connp->conn_multicast_ipif = ipif; 10406 break; 10407 case IP_NEXTHOP: 10408 connp->conn_nexthop_v4 = addr; 10409 connp->conn_nexthop_set = B_TRUE; 10410 break; 10411 } 10412 10413 if (ipif != NULL) { 10414 mutex_exit(&ill->ill_lock); 10415 mutex_exit(&connp->conn_lock); 10416 ipif_refrele(ipif); 10417 return (0); 10418 } 10419 mutex_exit(&connp->conn_lock); 10420 /* We succeded in cleared the option */ 10421 return (0); 10422 } 10423 10424 /* 10425 * For options that pass in an ifindex specifying the ill. V6 options always 10426 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10427 */ 10428 int 10429 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10430 int level, int option, mblk_t *first_mp) 10431 { 10432 ill_t *ill = NULL; 10433 int error = 0; 10434 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10435 10436 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10437 if (ifindex != 0) { 10438 ASSERT(connp != NULL); 10439 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10440 first_mp, ip_restart_optmgmt, &error, ipst); 10441 if (ill != NULL) { 10442 if (checkonly) { 10443 /* not supported by the virtual network iface */ 10444 if (IS_VNI(ill)) { 10445 ill_refrele(ill); 10446 return (EINVAL); 10447 } 10448 ill_refrele(ill); 10449 return (0); 10450 } 10451 if (!ipif_lookup_zoneid(ill, connp->conn_zoneid, 10452 0, NULL)) { 10453 ill_refrele(ill); 10454 ill = NULL; 10455 mutex_enter(&connp->conn_lock); 10456 goto setit; 10457 } 10458 mutex_enter(&connp->conn_lock); 10459 mutex_enter(&ill->ill_lock); 10460 if (ill->ill_state_flags & ILL_CONDEMNED) { 10461 mutex_exit(&ill->ill_lock); 10462 mutex_exit(&connp->conn_lock); 10463 ill_refrele(ill); 10464 ill = NULL; 10465 mutex_enter(&connp->conn_lock); 10466 } 10467 goto setit; 10468 } else if (error == EINPROGRESS) { 10469 return (error); 10470 } else { 10471 error = 0; 10472 } 10473 } 10474 mutex_enter(&connp->conn_lock); 10475 setit: 10476 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10477 10478 /* 10479 * The options below assume that the ILL (if any) transmits and/or 10480 * receives traffic. Neither of which is true for the virtual network 10481 * interface, so fail setting these on a VNI. 10482 */ 10483 if (IS_VNI(ill)) { 10484 ASSERT(ill != NULL); 10485 mutex_exit(&ill->ill_lock); 10486 mutex_exit(&connp->conn_lock); 10487 ill_refrele(ill); 10488 return (EINVAL); 10489 } 10490 10491 if (level == IPPROTO_IP) { 10492 switch (option) { 10493 case IP_BOUND_IF: 10494 connp->conn_incoming_ill = ill; 10495 connp->conn_outgoing_ill = ill; 10496 break; 10497 10498 case IP_MULTICAST_IF: 10499 /* 10500 * This option is an internal special. The socket 10501 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10502 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10503 * specifies an ifindex and we try first on V6 ill's. 10504 * If we don't find one, we they try using on v4 ill's 10505 * intenally and we come here. 10506 */ 10507 if (!checkonly && ill != NULL) { 10508 ipif_t *ipif; 10509 ipif = ill->ill_ipif; 10510 10511 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10512 mutex_exit(&ill->ill_lock); 10513 mutex_exit(&connp->conn_lock); 10514 ill_refrele(ill); 10515 ill = NULL; 10516 mutex_enter(&connp->conn_lock); 10517 } else { 10518 connp->conn_multicast_ipif = ipif; 10519 } 10520 } 10521 break; 10522 10523 case IP_DHCPINIT_IF: 10524 if (connp->conn_dhcpinit_ill != NULL) { 10525 /* 10526 * We've locked the conn so conn_cleanup_ill() 10527 * cannot clear conn_dhcpinit_ill -- so it's 10528 * safe to access the ill. 10529 */ 10530 ill_t *oill = connp->conn_dhcpinit_ill; 10531 10532 ASSERT(oill->ill_dhcpinit != 0); 10533 atomic_dec_32(&oill->ill_dhcpinit); 10534 connp->conn_dhcpinit_ill = NULL; 10535 } 10536 10537 if (ill != NULL) { 10538 connp->conn_dhcpinit_ill = ill; 10539 atomic_inc_32(&ill->ill_dhcpinit); 10540 } 10541 break; 10542 } 10543 } else { 10544 switch (option) { 10545 case IPV6_BOUND_IF: 10546 connp->conn_incoming_ill = ill; 10547 connp->conn_outgoing_ill = ill; 10548 break; 10549 10550 case IPV6_MULTICAST_IF: 10551 /* 10552 * Set conn_multicast_ill to be the IPv6 ill. 10553 * Set conn_multicast_ipif to be an IPv4 ipif 10554 * for ifindex to make IPv4 mapped addresses 10555 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10556 * Even if no IPv6 ill exists for the ifindex 10557 * we need to check for an IPv4 ifindex in order 10558 * for this to work with mapped addresses. In that 10559 * case only set conn_multicast_ipif. 10560 */ 10561 if (!checkonly) { 10562 if (ifindex == 0) { 10563 connp->conn_multicast_ill = NULL; 10564 connp->conn_multicast_ipif = NULL; 10565 } else if (ill != NULL) { 10566 connp->conn_multicast_ill = ill; 10567 } 10568 } 10569 break; 10570 } 10571 } 10572 10573 if (ill != NULL) { 10574 mutex_exit(&ill->ill_lock); 10575 mutex_exit(&connp->conn_lock); 10576 ill_refrele(ill); 10577 return (0); 10578 } 10579 mutex_exit(&connp->conn_lock); 10580 /* 10581 * We succeeded in clearing the option (ifindex == 0) or failed to 10582 * locate the ill and could not set the option (ifindex != 0) 10583 */ 10584 return (ifindex == 0 ? 0 : EINVAL); 10585 } 10586 10587 /* This routine sets socket options. */ 10588 /* ARGSUSED */ 10589 int 10590 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10591 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10592 void *dummy, cred_t *cr, mblk_t *first_mp) 10593 { 10594 int *i1 = (int *)invalp; 10595 conn_t *connp = Q_TO_CONN(q); 10596 int error = 0; 10597 boolean_t checkonly; 10598 ire_t *ire; 10599 boolean_t found; 10600 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10601 10602 switch (optset_context) { 10603 10604 case SETFN_OPTCOM_CHECKONLY: 10605 checkonly = B_TRUE; 10606 /* 10607 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10608 * inlen != 0 implies value supplied and 10609 * we have to "pretend" to set it. 10610 * inlen == 0 implies that there is no 10611 * value part in T_CHECK request and just validation 10612 * done elsewhere should be enough, we just return here. 10613 */ 10614 if (inlen == 0) { 10615 *outlenp = 0; 10616 return (0); 10617 } 10618 break; 10619 case SETFN_OPTCOM_NEGOTIATE: 10620 case SETFN_UD_NEGOTIATE: 10621 case SETFN_CONN_NEGOTIATE: 10622 checkonly = B_FALSE; 10623 break; 10624 default: 10625 /* 10626 * We should never get here 10627 */ 10628 *outlenp = 0; 10629 return (EINVAL); 10630 } 10631 10632 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10633 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10634 10635 /* 10636 * For fixed length options, no sanity check 10637 * of passed in length is done. It is assumed *_optcom_req() 10638 * routines do the right thing. 10639 */ 10640 10641 switch (level) { 10642 case SOL_SOCKET: 10643 /* 10644 * conn_lock protects the bitfields, and is used to 10645 * set the fields atomically. 10646 */ 10647 switch (name) { 10648 case SO_BROADCAST: 10649 if (!checkonly) { 10650 /* TODO: use value someplace? */ 10651 mutex_enter(&connp->conn_lock); 10652 connp->conn_broadcast = *i1 ? 1 : 0; 10653 mutex_exit(&connp->conn_lock); 10654 } 10655 break; /* goto sizeof (int) option return */ 10656 case SO_USELOOPBACK: 10657 if (!checkonly) { 10658 /* TODO: use value someplace? */ 10659 mutex_enter(&connp->conn_lock); 10660 connp->conn_loopback = *i1 ? 1 : 0; 10661 mutex_exit(&connp->conn_lock); 10662 } 10663 break; /* goto sizeof (int) option return */ 10664 case SO_DONTROUTE: 10665 if (!checkonly) { 10666 mutex_enter(&connp->conn_lock); 10667 connp->conn_dontroute = *i1 ? 1 : 0; 10668 mutex_exit(&connp->conn_lock); 10669 } 10670 break; /* goto sizeof (int) option return */ 10671 case SO_REUSEADDR: 10672 if (!checkonly) { 10673 mutex_enter(&connp->conn_lock); 10674 connp->conn_reuseaddr = *i1 ? 1 : 0; 10675 mutex_exit(&connp->conn_lock); 10676 } 10677 break; /* goto sizeof (int) option return */ 10678 case SO_PROTOTYPE: 10679 if (!checkonly) { 10680 mutex_enter(&connp->conn_lock); 10681 connp->conn_proto = *i1; 10682 mutex_exit(&connp->conn_lock); 10683 } 10684 break; /* goto sizeof (int) option return */ 10685 case SO_ALLZONES: 10686 if (!checkonly) { 10687 mutex_enter(&connp->conn_lock); 10688 if (IPCL_IS_BOUND(connp)) { 10689 mutex_exit(&connp->conn_lock); 10690 return (EINVAL); 10691 } 10692 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10693 mutex_exit(&connp->conn_lock); 10694 } 10695 break; /* goto sizeof (int) option return */ 10696 case SO_ANON_MLP: 10697 if (!checkonly) { 10698 mutex_enter(&connp->conn_lock); 10699 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10700 mutex_exit(&connp->conn_lock); 10701 } 10702 break; /* goto sizeof (int) option return */ 10703 case SO_MAC_EXEMPT: 10704 if (secpolicy_net_mac_aware(cr) != 0 || 10705 IPCL_IS_BOUND(connp)) 10706 return (EACCES); 10707 if (!checkonly) { 10708 mutex_enter(&connp->conn_lock); 10709 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10710 mutex_exit(&connp->conn_lock); 10711 } 10712 break; /* goto sizeof (int) option return */ 10713 default: 10714 /* 10715 * "soft" error (negative) 10716 * option not handled at this level 10717 * Note: Do not modify *outlenp 10718 */ 10719 return (-EINVAL); 10720 } 10721 break; 10722 case IPPROTO_IP: 10723 switch (name) { 10724 case IP_NEXTHOP: 10725 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10726 return (EPERM); 10727 /* FALLTHRU */ 10728 case IP_MULTICAST_IF: { 10729 ipaddr_t addr = *i1; 10730 10731 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10732 first_mp); 10733 if (error != 0) 10734 return (error); 10735 break; /* goto sizeof (int) option return */ 10736 } 10737 10738 case IP_MULTICAST_TTL: 10739 /* Recorded in transport above IP */ 10740 *outvalp = *invalp; 10741 *outlenp = sizeof (uchar_t); 10742 return (0); 10743 case IP_MULTICAST_LOOP: 10744 if (!checkonly) { 10745 mutex_enter(&connp->conn_lock); 10746 connp->conn_multicast_loop = *invalp ? 1 : 0; 10747 mutex_exit(&connp->conn_lock); 10748 } 10749 *outvalp = *invalp; 10750 *outlenp = sizeof (uchar_t); 10751 return (0); 10752 case IP_ADD_MEMBERSHIP: 10753 case MCAST_JOIN_GROUP: 10754 case IP_DROP_MEMBERSHIP: 10755 case MCAST_LEAVE_GROUP: { 10756 struct ip_mreq *mreqp; 10757 struct group_req *greqp; 10758 ire_t *ire; 10759 boolean_t done = B_FALSE; 10760 ipaddr_t group, ifaddr; 10761 struct sockaddr_in *sin; 10762 uint32_t *ifindexp; 10763 boolean_t mcast_opt = B_TRUE; 10764 mcast_record_t fmode; 10765 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10766 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10767 10768 switch (name) { 10769 case IP_ADD_MEMBERSHIP: 10770 mcast_opt = B_FALSE; 10771 /* FALLTHRU */ 10772 case MCAST_JOIN_GROUP: 10773 fmode = MODE_IS_EXCLUDE; 10774 optfn = ip_opt_add_group; 10775 break; 10776 10777 case IP_DROP_MEMBERSHIP: 10778 mcast_opt = B_FALSE; 10779 /* FALLTHRU */ 10780 case MCAST_LEAVE_GROUP: 10781 fmode = MODE_IS_INCLUDE; 10782 optfn = ip_opt_delete_group; 10783 break; 10784 } 10785 10786 if (mcast_opt) { 10787 greqp = (struct group_req *)i1; 10788 sin = (struct sockaddr_in *)&greqp->gr_group; 10789 if (sin->sin_family != AF_INET) { 10790 *outlenp = 0; 10791 return (ENOPROTOOPT); 10792 } 10793 group = (ipaddr_t)sin->sin_addr.s_addr; 10794 ifaddr = INADDR_ANY; 10795 ifindexp = &greqp->gr_interface; 10796 } else { 10797 mreqp = (struct ip_mreq *)i1; 10798 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10799 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10800 ifindexp = NULL; 10801 } 10802 10803 /* 10804 * In the multirouting case, we need to replicate 10805 * the request on all interfaces that will take part 10806 * in replication. We do so because multirouting is 10807 * reflective, thus we will probably receive multi- 10808 * casts on those interfaces. 10809 * The ip_multirt_apply_membership() succeeds if the 10810 * operation succeeds on at least one interface. 10811 */ 10812 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10813 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10814 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10815 if (ire != NULL) { 10816 if (ire->ire_flags & RTF_MULTIRT) { 10817 error = ip_multirt_apply_membership( 10818 optfn, ire, connp, checkonly, group, 10819 fmode, INADDR_ANY, first_mp); 10820 done = B_TRUE; 10821 } 10822 ire_refrele(ire); 10823 } 10824 if (!done) { 10825 error = optfn(connp, checkonly, group, ifaddr, 10826 ifindexp, fmode, INADDR_ANY, first_mp); 10827 } 10828 if (error) { 10829 /* 10830 * EINPROGRESS is a soft error, needs retry 10831 * so don't make *outlenp zero. 10832 */ 10833 if (error != EINPROGRESS) 10834 *outlenp = 0; 10835 return (error); 10836 } 10837 /* OK return - copy input buffer into output buffer */ 10838 if (invalp != outvalp) { 10839 /* don't trust bcopy for identical src/dst */ 10840 bcopy(invalp, outvalp, inlen); 10841 } 10842 *outlenp = inlen; 10843 return (0); 10844 } 10845 case IP_BLOCK_SOURCE: 10846 case IP_UNBLOCK_SOURCE: 10847 case IP_ADD_SOURCE_MEMBERSHIP: 10848 case IP_DROP_SOURCE_MEMBERSHIP: 10849 case MCAST_BLOCK_SOURCE: 10850 case MCAST_UNBLOCK_SOURCE: 10851 case MCAST_JOIN_SOURCE_GROUP: 10852 case MCAST_LEAVE_SOURCE_GROUP: { 10853 struct ip_mreq_source *imreqp; 10854 struct group_source_req *gsreqp; 10855 in_addr_t grp, src, ifaddr = INADDR_ANY; 10856 uint32_t ifindex = 0; 10857 mcast_record_t fmode; 10858 struct sockaddr_in *sin; 10859 ire_t *ire; 10860 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10861 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10862 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10863 10864 switch (name) { 10865 case IP_BLOCK_SOURCE: 10866 mcast_opt = B_FALSE; 10867 /* FALLTHRU */ 10868 case MCAST_BLOCK_SOURCE: 10869 fmode = MODE_IS_EXCLUDE; 10870 optfn = ip_opt_add_group; 10871 break; 10872 10873 case IP_UNBLOCK_SOURCE: 10874 mcast_opt = B_FALSE; 10875 /* FALLTHRU */ 10876 case MCAST_UNBLOCK_SOURCE: 10877 fmode = MODE_IS_EXCLUDE; 10878 optfn = ip_opt_delete_group; 10879 break; 10880 10881 case IP_ADD_SOURCE_MEMBERSHIP: 10882 mcast_opt = B_FALSE; 10883 /* FALLTHRU */ 10884 case MCAST_JOIN_SOURCE_GROUP: 10885 fmode = MODE_IS_INCLUDE; 10886 optfn = ip_opt_add_group; 10887 break; 10888 10889 case IP_DROP_SOURCE_MEMBERSHIP: 10890 mcast_opt = B_FALSE; 10891 /* FALLTHRU */ 10892 case MCAST_LEAVE_SOURCE_GROUP: 10893 fmode = MODE_IS_INCLUDE; 10894 optfn = ip_opt_delete_group; 10895 break; 10896 } 10897 10898 if (mcast_opt) { 10899 gsreqp = (struct group_source_req *)i1; 10900 if (gsreqp->gsr_group.ss_family != AF_INET) { 10901 *outlenp = 0; 10902 return (ENOPROTOOPT); 10903 } 10904 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10905 grp = (ipaddr_t)sin->sin_addr.s_addr; 10906 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10907 src = (ipaddr_t)sin->sin_addr.s_addr; 10908 ifindex = gsreqp->gsr_interface; 10909 } else { 10910 imreqp = (struct ip_mreq_source *)i1; 10911 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10912 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10913 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10914 } 10915 10916 /* 10917 * In the multirouting case, we need to replicate 10918 * the request as noted in the mcast cases above. 10919 */ 10920 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10921 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10922 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10923 if (ire != NULL) { 10924 if (ire->ire_flags & RTF_MULTIRT) { 10925 error = ip_multirt_apply_membership( 10926 optfn, ire, connp, checkonly, grp, 10927 fmode, src, first_mp); 10928 done = B_TRUE; 10929 } 10930 ire_refrele(ire); 10931 } 10932 if (!done) { 10933 error = optfn(connp, checkonly, grp, ifaddr, 10934 &ifindex, fmode, src, first_mp); 10935 } 10936 if (error != 0) { 10937 /* 10938 * EINPROGRESS is a soft error, needs retry 10939 * so don't make *outlenp zero. 10940 */ 10941 if (error != EINPROGRESS) 10942 *outlenp = 0; 10943 return (error); 10944 } 10945 /* OK return - copy input buffer into output buffer */ 10946 if (invalp != outvalp) { 10947 bcopy(invalp, outvalp, inlen); 10948 } 10949 *outlenp = inlen; 10950 return (0); 10951 } 10952 case IP_SEC_OPT: 10953 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10954 if (error != 0) { 10955 *outlenp = 0; 10956 return (error); 10957 } 10958 break; 10959 case IP_HDRINCL: 10960 case IP_OPTIONS: 10961 case T_IP_OPTIONS: 10962 case IP_TOS: 10963 case T_IP_TOS: 10964 case IP_TTL: 10965 case IP_RECVDSTADDR: 10966 case IP_RECVOPTS: 10967 /* OK return - copy input buffer into output buffer */ 10968 if (invalp != outvalp) { 10969 /* don't trust bcopy for identical src/dst */ 10970 bcopy(invalp, outvalp, inlen); 10971 } 10972 *outlenp = inlen; 10973 return (0); 10974 case IP_RECVIF: 10975 /* Retrieve the inbound interface index */ 10976 if (!checkonly) { 10977 mutex_enter(&connp->conn_lock); 10978 connp->conn_recvif = *i1 ? 1 : 0; 10979 mutex_exit(&connp->conn_lock); 10980 } 10981 break; /* goto sizeof (int) option return */ 10982 case IP_RECVPKTINFO: 10983 if (!checkonly) { 10984 mutex_enter(&connp->conn_lock); 10985 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 10986 mutex_exit(&connp->conn_lock); 10987 } 10988 break; /* goto sizeof (int) option return */ 10989 case IP_RECVSLLA: 10990 /* Retrieve the source link layer address */ 10991 if (!checkonly) { 10992 mutex_enter(&connp->conn_lock); 10993 connp->conn_recvslla = *i1 ? 1 : 0; 10994 mutex_exit(&connp->conn_lock); 10995 } 10996 break; /* goto sizeof (int) option return */ 10997 case MRT_INIT: 10998 case MRT_DONE: 10999 case MRT_ADD_VIF: 11000 case MRT_DEL_VIF: 11001 case MRT_ADD_MFC: 11002 case MRT_DEL_MFC: 11003 case MRT_ASSERT: 11004 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11005 *outlenp = 0; 11006 return (error); 11007 } 11008 error = ip_mrouter_set((int)name, q, checkonly, 11009 (uchar_t *)invalp, inlen, first_mp); 11010 if (error) { 11011 *outlenp = 0; 11012 return (error); 11013 } 11014 /* OK return - copy input buffer into output buffer */ 11015 if (invalp != outvalp) { 11016 /* don't trust bcopy for identical src/dst */ 11017 bcopy(invalp, outvalp, inlen); 11018 } 11019 *outlenp = inlen; 11020 return (0); 11021 case IP_BOUND_IF: 11022 case IP_DHCPINIT_IF: 11023 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11024 level, name, first_mp); 11025 if (error != 0) 11026 return (error); 11027 break; /* goto sizeof (int) option return */ 11028 11029 case IP_UNSPEC_SRC: 11030 /* Allow sending with a zero source address */ 11031 if (!checkonly) { 11032 mutex_enter(&connp->conn_lock); 11033 connp->conn_unspec_src = *i1 ? 1 : 0; 11034 mutex_exit(&connp->conn_lock); 11035 } 11036 break; /* goto sizeof (int) option return */ 11037 default: 11038 /* 11039 * "soft" error (negative) 11040 * option not handled at this level 11041 * Note: Do not modify *outlenp 11042 */ 11043 return (-EINVAL); 11044 } 11045 break; 11046 case IPPROTO_IPV6: 11047 switch (name) { 11048 case IPV6_BOUND_IF: 11049 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11050 level, name, first_mp); 11051 if (error != 0) 11052 return (error); 11053 break; /* goto sizeof (int) option return */ 11054 11055 case IPV6_MULTICAST_IF: 11056 /* 11057 * The only possible errors are EINPROGRESS and 11058 * EINVAL. EINPROGRESS will be restarted and is not 11059 * a hard error. We call this option on both V4 and V6 11060 * If both return EINVAL, then this call returns 11061 * EINVAL. If at least one of them succeeds we 11062 * return success. 11063 */ 11064 found = B_FALSE; 11065 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11066 level, name, first_mp); 11067 if (error == EINPROGRESS) 11068 return (error); 11069 if (error == 0) 11070 found = B_TRUE; 11071 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11072 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11073 if (error == 0) 11074 found = B_TRUE; 11075 if (!found) 11076 return (error); 11077 break; /* goto sizeof (int) option return */ 11078 11079 case IPV6_MULTICAST_HOPS: 11080 /* Recorded in transport above IP */ 11081 break; /* goto sizeof (int) option return */ 11082 case IPV6_MULTICAST_LOOP: 11083 if (!checkonly) { 11084 mutex_enter(&connp->conn_lock); 11085 connp->conn_multicast_loop = *i1; 11086 mutex_exit(&connp->conn_lock); 11087 } 11088 break; /* goto sizeof (int) option return */ 11089 case IPV6_JOIN_GROUP: 11090 case MCAST_JOIN_GROUP: 11091 case IPV6_LEAVE_GROUP: 11092 case MCAST_LEAVE_GROUP: { 11093 struct ipv6_mreq *ip_mreqp; 11094 struct group_req *greqp; 11095 ire_t *ire; 11096 boolean_t done = B_FALSE; 11097 in6_addr_t groupv6; 11098 uint32_t ifindex; 11099 boolean_t mcast_opt = B_TRUE; 11100 mcast_record_t fmode; 11101 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11102 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11103 11104 switch (name) { 11105 case IPV6_JOIN_GROUP: 11106 mcast_opt = B_FALSE; 11107 /* FALLTHRU */ 11108 case MCAST_JOIN_GROUP: 11109 fmode = MODE_IS_EXCLUDE; 11110 optfn = ip_opt_add_group_v6; 11111 break; 11112 11113 case IPV6_LEAVE_GROUP: 11114 mcast_opt = B_FALSE; 11115 /* FALLTHRU */ 11116 case MCAST_LEAVE_GROUP: 11117 fmode = MODE_IS_INCLUDE; 11118 optfn = ip_opt_delete_group_v6; 11119 break; 11120 } 11121 11122 if (mcast_opt) { 11123 struct sockaddr_in *sin; 11124 struct sockaddr_in6 *sin6; 11125 greqp = (struct group_req *)i1; 11126 if (greqp->gr_group.ss_family == AF_INET) { 11127 sin = (struct sockaddr_in *) 11128 &(greqp->gr_group); 11129 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11130 &groupv6); 11131 } else { 11132 sin6 = (struct sockaddr_in6 *) 11133 &(greqp->gr_group); 11134 groupv6 = sin6->sin6_addr; 11135 } 11136 ifindex = greqp->gr_interface; 11137 } else { 11138 ip_mreqp = (struct ipv6_mreq *)i1; 11139 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11140 ifindex = ip_mreqp->ipv6mr_interface; 11141 } 11142 /* 11143 * In the multirouting case, we need to replicate 11144 * the request on all interfaces that will take part 11145 * in replication. We do so because multirouting is 11146 * reflective, thus we will probably receive multi- 11147 * casts on those interfaces. 11148 * The ip_multirt_apply_membership_v6() succeeds if 11149 * the operation succeeds on at least one interface. 11150 */ 11151 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11152 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11153 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11154 if (ire != NULL) { 11155 if (ire->ire_flags & RTF_MULTIRT) { 11156 error = ip_multirt_apply_membership_v6( 11157 optfn, ire, connp, checkonly, 11158 &groupv6, fmode, &ipv6_all_zeros, 11159 first_mp); 11160 done = B_TRUE; 11161 } 11162 ire_refrele(ire); 11163 } 11164 if (!done) { 11165 error = optfn(connp, checkonly, &groupv6, 11166 ifindex, fmode, &ipv6_all_zeros, first_mp); 11167 } 11168 if (error) { 11169 /* 11170 * EINPROGRESS is a soft error, needs retry 11171 * so don't make *outlenp zero. 11172 */ 11173 if (error != EINPROGRESS) 11174 *outlenp = 0; 11175 return (error); 11176 } 11177 /* OK return - copy input buffer into output buffer */ 11178 if (invalp != outvalp) { 11179 /* don't trust bcopy for identical src/dst */ 11180 bcopy(invalp, outvalp, inlen); 11181 } 11182 *outlenp = inlen; 11183 return (0); 11184 } 11185 case MCAST_BLOCK_SOURCE: 11186 case MCAST_UNBLOCK_SOURCE: 11187 case MCAST_JOIN_SOURCE_GROUP: 11188 case MCAST_LEAVE_SOURCE_GROUP: { 11189 struct group_source_req *gsreqp; 11190 in6_addr_t v6grp, v6src; 11191 uint32_t ifindex; 11192 mcast_record_t fmode; 11193 ire_t *ire; 11194 boolean_t done = B_FALSE; 11195 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11196 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11197 11198 switch (name) { 11199 case MCAST_BLOCK_SOURCE: 11200 fmode = MODE_IS_EXCLUDE; 11201 optfn = ip_opt_add_group_v6; 11202 break; 11203 case MCAST_UNBLOCK_SOURCE: 11204 fmode = MODE_IS_EXCLUDE; 11205 optfn = ip_opt_delete_group_v6; 11206 break; 11207 case MCAST_JOIN_SOURCE_GROUP: 11208 fmode = MODE_IS_INCLUDE; 11209 optfn = ip_opt_add_group_v6; 11210 break; 11211 case MCAST_LEAVE_SOURCE_GROUP: 11212 fmode = MODE_IS_INCLUDE; 11213 optfn = ip_opt_delete_group_v6; 11214 break; 11215 } 11216 11217 gsreqp = (struct group_source_req *)i1; 11218 ifindex = gsreqp->gsr_interface; 11219 if (gsreqp->gsr_group.ss_family == AF_INET) { 11220 struct sockaddr_in *s; 11221 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11222 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11223 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11224 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11225 } else { 11226 struct sockaddr_in6 *s6; 11227 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11228 v6grp = s6->sin6_addr; 11229 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11230 v6src = s6->sin6_addr; 11231 } 11232 11233 /* 11234 * In the multirouting case, we need to replicate 11235 * the request as noted in the mcast cases above. 11236 */ 11237 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11238 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11239 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11240 if (ire != NULL) { 11241 if (ire->ire_flags & RTF_MULTIRT) { 11242 error = ip_multirt_apply_membership_v6( 11243 optfn, ire, connp, checkonly, 11244 &v6grp, fmode, &v6src, first_mp); 11245 done = B_TRUE; 11246 } 11247 ire_refrele(ire); 11248 } 11249 if (!done) { 11250 error = optfn(connp, checkonly, &v6grp, 11251 ifindex, fmode, &v6src, first_mp); 11252 } 11253 if (error != 0) { 11254 /* 11255 * EINPROGRESS is a soft error, needs retry 11256 * so don't make *outlenp zero. 11257 */ 11258 if (error != EINPROGRESS) 11259 *outlenp = 0; 11260 return (error); 11261 } 11262 /* OK return - copy input buffer into output buffer */ 11263 if (invalp != outvalp) { 11264 bcopy(invalp, outvalp, inlen); 11265 } 11266 *outlenp = inlen; 11267 return (0); 11268 } 11269 case IPV6_UNICAST_HOPS: 11270 /* Recorded in transport above IP */ 11271 break; /* goto sizeof (int) option return */ 11272 case IPV6_UNSPEC_SRC: 11273 /* Allow sending with a zero source address */ 11274 if (!checkonly) { 11275 mutex_enter(&connp->conn_lock); 11276 connp->conn_unspec_src = *i1 ? 1 : 0; 11277 mutex_exit(&connp->conn_lock); 11278 } 11279 break; /* goto sizeof (int) option return */ 11280 case IPV6_RECVPKTINFO: 11281 if (!checkonly) { 11282 mutex_enter(&connp->conn_lock); 11283 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11284 mutex_exit(&connp->conn_lock); 11285 } 11286 break; /* goto sizeof (int) option return */ 11287 case IPV6_RECVTCLASS: 11288 if (!checkonly) { 11289 if (*i1 < 0 || *i1 > 1) { 11290 return (EINVAL); 11291 } 11292 mutex_enter(&connp->conn_lock); 11293 connp->conn_ipv6_recvtclass = *i1; 11294 mutex_exit(&connp->conn_lock); 11295 } 11296 break; 11297 case IPV6_RECVPATHMTU: 11298 if (!checkonly) { 11299 if (*i1 < 0 || *i1 > 1) { 11300 return (EINVAL); 11301 } 11302 mutex_enter(&connp->conn_lock); 11303 connp->conn_ipv6_recvpathmtu = *i1; 11304 mutex_exit(&connp->conn_lock); 11305 } 11306 break; 11307 case IPV6_RECVHOPLIMIT: 11308 if (!checkonly) { 11309 mutex_enter(&connp->conn_lock); 11310 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11311 mutex_exit(&connp->conn_lock); 11312 } 11313 break; /* goto sizeof (int) option return */ 11314 case IPV6_RECVHOPOPTS: 11315 if (!checkonly) { 11316 mutex_enter(&connp->conn_lock); 11317 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11318 mutex_exit(&connp->conn_lock); 11319 } 11320 break; /* goto sizeof (int) option return */ 11321 case IPV6_RECVDSTOPTS: 11322 if (!checkonly) { 11323 mutex_enter(&connp->conn_lock); 11324 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11325 mutex_exit(&connp->conn_lock); 11326 } 11327 break; /* goto sizeof (int) option return */ 11328 case IPV6_RECVRTHDR: 11329 if (!checkonly) { 11330 mutex_enter(&connp->conn_lock); 11331 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11332 mutex_exit(&connp->conn_lock); 11333 } 11334 break; /* goto sizeof (int) option return */ 11335 case IPV6_RECVRTHDRDSTOPTS: 11336 if (!checkonly) { 11337 mutex_enter(&connp->conn_lock); 11338 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11339 mutex_exit(&connp->conn_lock); 11340 } 11341 break; /* goto sizeof (int) option return */ 11342 case IPV6_PKTINFO: 11343 if (inlen == 0) 11344 return (-EINVAL); /* clearing option */ 11345 error = ip6_set_pktinfo(cr, connp, 11346 (struct in6_pktinfo *)invalp); 11347 if (error != 0) 11348 *outlenp = 0; 11349 else 11350 *outlenp = inlen; 11351 return (error); 11352 case IPV6_NEXTHOP: { 11353 struct sockaddr_in6 *sin6; 11354 11355 /* Verify that the nexthop is reachable */ 11356 if (inlen == 0) 11357 return (-EINVAL); /* clearing option */ 11358 11359 sin6 = (struct sockaddr_in6 *)invalp; 11360 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11361 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11362 NULL, MATCH_IRE_DEFAULT, ipst); 11363 11364 if (ire == NULL) { 11365 *outlenp = 0; 11366 return (EHOSTUNREACH); 11367 } 11368 ire_refrele(ire); 11369 return (-EINVAL); 11370 } 11371 case IPV6_SEC_OPT: 11372 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11373 if (error != 0) { 11374 *outlenp = 0; 11375 return (error); 11376 } 11377 break; 11378 case IPV6_SRC_PREFERENCES: { 11379 /* 11380 * This is implemented strictly in the ip module 11381 * (here and in tcp_opt_*() to accomodate tcp 11382 * sockets). Modules above ip pass this option 11383 * down here since ip is the only one that needs to 11384 * be aware of source address preferences. 11385 * 11386 * This socket option only affects connected 11387 * sockets that haven't already bound to a specific 11388 * IPv6 address. In other words, sockets that 11389 * don't call bind() with an address other than the 11390 * unspecified address and that call connect(). 11391 * ip_bind_connected_v6() passes these preferences 11392 * to the ipif_select_source_v6() function. 11393 */ 11394 if (inlen != sizeof (uint32_t)) 11395 return (EINVAL); 11396 error = ip6_set_src_preferences(connp, 11397 *(uint32_t *)invalp); 11398 if (error != 0) { 11399 *outlenp = 0; 11400 return (error); 11401 } else { 11402 *outlenp = sizeof (uint32_t); 11403 } 11404 break; 11405 } 11406 case IPV6_V6ONLY: 11407 if (*i1 < 0 || *i1 > 1) { 11408 return (EINVAL); 11409 } 11410 mutex_enter(&connp->conn_lock); 11411 connp->conn_ipv6_v6only = *i1; 11412 mutex_exit(&connp->conn_lock); 11413 break; 11414 default: 11415 return (-EINVAL); 11416 } 11417 break; 11418 default: 11419 /* 11420 * "soft" error (negative) 11421 * option not handled at this level 11422 * Note: Do not modify *outlenp 11423 */ 11424 return (-EINVAL); 11425 } 11426 /* 11427 * Common case of return from an option that is sizeof (int) 11428 */ 11429 *(int *)outvalp = *i1; 11430 *outlenp = sizeof (int); 11431 return (0); 11432 } 11433 11434 /* 11435 * This routine gets default values of certain options whose default 11436 * values are maintained by protocol specific code 11437 */ 11438 /* ARGSUSED */ 11439 int 11440 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11441 { 11442 int *i1 = (int *)ptr; 11443 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11444 11445 switch (level) { 11446 case IPPROTO_IP: 11447 switch (name) { 11448 case IP_MULTICAST_TTL: 11449 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11450 return (sizeof (uchar_t)); 11451 case IP_MULTICAST_LOOP: 11452 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11453 return (sizeof (uchar_t)); 11454 default: 11455 return (-1); 11456 } 11457 case IPPROTO_IPV6: 11458 switch (name) { 11459 case IPV6_UNICAST_HOPS: 11460 *i1 = ipst->ips_ipv6_def_hops; 11461 return (sizeof (int)); 11462 case IPV6_MULTICAST_HOPS: 11463 *i1 = IP_DEFAULT_MULTICAST_TTL; 11464 return (sizeof (int)); 11465 case IPV6_MULTICAST_LOOP: 11466 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11467 return (sizeof (int)); 11468 case IPV6_V6ONLY: 11469 *i1 = 1; 11470 return (sizeof (int)); 11471 default: 11472 return (-1); 11473 } 11474 default: 11475 return (-1); 11476 } 11477 /* NOTREACHED */ 11478 } 11479 11480 /* 11481 * Given a destination address and a pointer to where to put the information 11482 * this routine fills in the mtuinfo. 11483 */ 11484 int 11485 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11486 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11487 { 11488 ire_t *ire; 11489 ip_stack_t *ipst = ns->netstack_ip; 11490 11491 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11492 return (-1); 11493 11494 bzero(mtuinfo, sizeof (*mtuinfo)); 11495 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11496 mtuinfo->ip6m_addr.sin6_port = port; 11497 mtuinfo->ip6m_addr.sin6_addr = *in6; 11498 11499 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11500 if (ire != NULL) { 11501 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11502 ire_refrele(ire); 11503 } else { 11504 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11505 } 11506 return (sizeof (struct ip6_mtuinfo)); 11507 } 11508 11509 /* 11510 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11511 * checking of cred and that ip_g_mrouter is set should be done and 11512 * isn't. This doesn't matter as the error checking is done properly for the 11513 * other MRT options coming in through ip_opt_set. 11514 */ 11515 int 11516 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11517 { 11518 conn_t *connp = Q_TO_CONN(q); 11519 ipsec_req_t *req = (ipsec_req_t *)ptr; 11520 11521 switch (level) { 11522 case IPPROTO_IP: 11523 switch (name) { 11524 case MRT_VERSION: 11525 case MRT_ASSERT: 11526 (void) ip_mrouter_get(name, q, ptr); 11527 return (sizeof (int)); 11528 case IP_SEC_OPT: 11529 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11530 case IP_NEXTHOP: 11531 if (connp->conn_nexthop_set) { 11532 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11533 return (sizeof (ipaddr_t)); 11534 } else 11535 return (0); 11536 case IP_RECVPKTINFO: 11537 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11538 return (sizeof (int)); 11539 default: 11540 break; 11541 } 11542 break; 11543 case IPPROTO_IPV6: 11544 switch (name) { 11545 case IPV6_SEC_OPT: 11546 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11547 case IPV6_SRC_PREFERENCES: { 11548 return (ip6_get_src_preferences(connp, 11549 (uint32_t *)ptr)); 11550 } 11551 case IPV6_V6ONLY: 11552 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11553 return (sizeof (int)); 11554 case IPV6_PATHMTU: 11555 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11556 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11557 default: 11558 break; 11559 } 11560 break; 11561 default: 11562 break; 11563 } 11564 return (-1); 11565 } 11566 /* Named Dispatch routine to get a current value out of our parameter table. */ 11567 /* ARGSUSED */ 11568 static int 11569 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11570 { 11571 ipparam_t *ippa = (ipparam_t *)cp; 11572 11573 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11574 return (0); 11575 } 11576 11577 /* ARGSUSED */ 11578 static int 11579 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11580 { 11581 11582 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11583 return (0); 11584 } 11585 11586 /* 11587 * Set ip{,6}_forwarding values. This means walking through all of the 11588 * ill's and toggling their forwarding values. 11589 */ 11590 /* ARGSUSED */ 11591 static int 11592 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11593 { 11594 long new_value; 11595 int *forwarding_value = (int *)cp; 11596 ill_t *ill; 11597 boolean_t isv6; 11598 ill_walk_context_t ctx; 11599 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11600 11601 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11602 11603 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11604 new_value < 0 || new_value > 1) { 11605 return (EINVAL); 11606 } 11607 11608 *forwarding_value = new_value; 11609 11610 /* 11611 * Regardless of the current value of ip_forwarding, set all per-ill 11612 * values of ip_forwarding to the value being set. 11613 * 11614 * Bring all the ill's up to date with the new global value. 11615 */ 11616 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11617 11618 if (isv6) 11619 ill = ILL_START_WALK_V6(&ctx, ipst); 11620 else 11621 ill = ILL_START_WALK_V4(&ctx, ipst); 11622 11623 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11624 (void) ill_forward_set(ill, new_value != 0); 11625 11626 rw_exit(&ipst->ips_ill_g_lock); 11627 return (0); 11628 } 11629 11630 /* 11631 * Walk through the param array specified registering each element with the 11632 * Named Dispatch handler. This is called only during init. So it is ok 11633 * not to acquire any locks 11634 */ 11635 static boolean_t 11636 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11637 ipndp_t *ipnd, size_t ipnd_cnt) 11638 { 11639 for (; ippa_cnt-- > 0; ippa++) { 11640 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11641 if (!nd_load(ndp, ippa->ip_param_name, 11642 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11643 nd_free(ndp); 11644 return (B_FALSE); 11645 } 11646 } 11647 } 11648 11649 for (; ipnd_cnt-- > 0; ipnd++) { 11650 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11651 if (!nd_load(ndp, ipnd->ip_ndp_name, 11652 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11653 ipnd->ip_ndp_data)) { 11654 nd_free(ndp); 11655 return (B_FALSE); 11656 } 11657 } 11658 } 11659 11660 return (B_TRUE); 11661 } 11662 11663 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11664 /* ARGSUSED */ 11665 static int 11666 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11667 { 11668 long new_value; 11669 ipparam_t *ippa = (ipparam_t *)cp; 11670 11671 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11672 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11673 return (EINVAL); 11674 } 11675 ippa->ip_param_value = new_value; 11676 return (0); 11677 } 11678 11679 /* 11680 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11681 * When an ipf is passed here for the first time, if 11682 * we already have in-order fragments on the queue, we convert from the fast- 11683 * path reassembly scheme to the hard-case scheme. From then on, additional 11684 * fragments are reassembled here. We keep track of the start and end offsets 11685 * of each piece, and the number of holes in the chain. When the hole count 11686 * goes to zero, we are done! 11687 * 11688 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11689 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11690 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11691 * after the call to ip_reassemble(). 11692 */ 11693 int 11694 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11695 size_t msg_len) 11696 { 11697 uint_t end; 11698 mblk_t *next_mp; 11699 mblk_t *mp1; 11700 uint_t offset; 11701 boolean_t incr_dups = B_TRUE; 11702 boolean_t offset_zero_seen = B_FALSE; 11703 boolean_t pkt_boundary_checked = B_FALSE; 11704 11705 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11706 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11707 11708 /* Add in byte count */ 11709 ipf->ipf_count += msg_len; 11710 if (ipf->ipf_end) { 11711 /* 11712 * We were part way through in-order reassembly, but now there 11713 * is a hole. We walk through messages already queued, and 11714 * mark them for hard case reassembly. We know that up till 11715 * now they were in order starting from offset zero. 11716 */ 11717 offset = 0; 11718 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11719 IP_REASS_SET_START(mp1, offset); 11720 if (offset == 0) { 11721 ASSERT(ipf->ipf_nf_hdr_len != 0); 11722 offset = -ipf->ipf_nf_hdr_len; 11723 } 11724 offset += mp1->b_wptr - mp1->b_rptr; 11725 IP_REASS_SET_END(mp1, offset); 11726 } 11727 /* One hole at the end. */ 11728 ipf->ipf_hole_cnt = 1; 11729 /* Brand it as a hard case, forever. */ 11730 ipf->ipf_end = 0; 11731 } 11732 /* Walk through all the new pieces. */ 11733 do { 11734 end = start + (mp->b_wptr - mp->b_rptr); 11735 /* 11736 * If start is 0, decrease 'end' only for the first mblk of 11737 * the fragment. Otherwise 'end' can get wrong value in the 11738 * second pass of the loop if first mblk is exactly the 11739 * size of ipf_nf_hdr_len. 11740 */ 11741 if (start == 0 && !offset_zero_seen) { 11742 /* First segment */ 11743 ASSERT(ipf->ipf_nf_hdr_len != 0); 11744 end -= ipf->ipf_nf_hdr_len; 11745 offset_zero_seen = B_TRUE; 11746 } 11747 next_mp = mp->b_cont; 11748 /* 11749 * We are checking to see if there is any interesing data 11750 * to process. If there isn't and the mblk isn't the 11751 * one which carries the unfragmentable header then we 11752 * drop it. It's possible to have just the unfragmentable 11753 * header come through without any data. That needs to be 11754 * saved. 11755 * 11756 * If the assert at the top of this function holds then the 11757 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11758 * is infrequently traveled enough that the test is left in 11759 * to protect against future code changes which break that 11760 * invariant. 11761 */ 11762 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11763 /* Empty. Blast it. */ 11764 IP_REASS_SET_START(mp, 0); 11765 IP_REASS_SET_END(mp, 0); 11766 /* 11767 * If the ipf points to the mblk we are about to free, 11768 * update ipf to point to the next mblk (or NULL 11769 * if none). 11770 */ 11771 if (ipf->ipf_mp->b_cont == mp) 11772 ipf->ipf_mp->b_cont = next_mp; 11773 freeb(mp); 11774 continue; 11775 } 11776 mp->b_cont = NULL; 11777 IP_REASS_SET_START(mp, start); 11778 IP_REASS_SET_END(mp, end); 11779 if (!ipf->ipf_tail_mp) { 11780 ipf->ipf_tail_mp = mp; 11781 ipf->ipf_mp->b_cont = mp; 11782 if (start == 0 || !more) { 11783 ipf->ipf_hole_cnt = 1; 11784 /* 11785 * if the first fragment comes in more than one 11786 * mblk, this loop will be executed for each 11787 * mblk. Need to adjust hole count so exiting 11788 * this routine will leave hole count at 1. 11789 */ 11790 if (next_mp) 11791 ipf->ipf_hole_cnt++; 11792 } else 11793 ipf->ipf_hole_cnt = 2; 11794 continue; 11795 } else if (ipf->ipf_last_frag_seen && !more && 11796 !pkt_boundary_checked) { 11797 /* 11798 * We check datagram boundary only if this fragment 11799 * claims to be the last fragment and we have seen a 11800 * last fragment in the past too. We do this only 11801 * once for a given fragment. 11802 * 11803 * start cannot be 0 here as fragments with start=0 11804 * and MF=0 gets handled as a complete packet. These 11805 * fragments should not reach here. 11806 */ 11807 11808 if (start + msgdsize(mp) != 11809 IP_REASS_END(ipf->ipf_tail_mp)) { 11810 /* 11811 * We have two fragments both of which claim 11812 * to be the last fragment but gives conflicting 11813 * information about the whole datagram size. 11814 * Something fishy is going on. Drop the 11815 * fragment and free up the reassembly list. 11816 */ 11817 return (IP_REASS_FAILED); 11818 } 11819 11820 /* 11821 * We shouldn't come to this code block again for this 11822 * particular fragment. 11823 */ 11824 pkt_boundary_checked = B_TRUE; 11825 } 11826 11827 /* New stuff at or beyond tail? */ 11828 offset = IP_REASS_END(ipf->ipf_tail_mp); 11829 if (start >= offset) { 11830 if (ipf->ipf_last_frag_seen) { 11831 /* current fragment is beyond last fragment */ 11832 return (IP_REASS_FAILED); 11833 } 11834 /* Link it on end. */ 11835 ipf->ipf_tail_mp->b_cont = mp; 11836 ipf->ipf_tail_mp = mp; 11837 if (more) { 11838 if (start != offset) 11839 ipf->ipf_hole_cnt++; 11840 } else if (start == offset && next_mp == NULL) 11841 ipf->ipf_hole_cnt--; 11842 continue; 11843 } 11844 mp1 = ipf->ipf_mp->b_cont; 11845 offset = IP_REASS_START(mp1); 11846 /* New stuff at the front? */ 11847 if (start < offset) { 11848 if (start == 0) { 11849 if (end >= offset) { 11850 /* Nailed the hole at the begining. */ 11851 ipf->ipf_hole_cnt--; 11852 } 11853 } else if (end < offset) { 11854 /* 11855 * A hole, stuff, and a hole where there used 11856 * to be just a hole. 11857 */ 11858 ipf->ipf_hole_cnt++; 11859 } 11860 mp->b_cont = mp1; 11861 /* Check for overlap. */ 11862 while (end > offset) { 11863 if (end < IP_REASS_END(mp1)) { 11864 mp->b_wptr -= end - offset; 11865 IP_REASS_SET_END(mp, offset); 11866 BUMP_MIB(ill->ill_ip_mib, 11867 ipIfStatsReasmPartDups); 11868 break; 11869 } 11870 /* Did we cover another hole? */ 11871 if ((mp1->b_cont && 11872 IP_REASS_END(mp1) != 11873 IP_REASS_START(mp1->b_cont) && 11874 end >= IP_REASS_START(mp1->b_cont)) || 11875 (!ipf->ipf_last_frag_seen && !more)) { 11876 ipf->ipf_hole_cnt--; 11877 } 11878 /* Clip out mp1. */ 11879 if ((mp->b_cont = mp1->b_cont) == NULL) { 11880 /* 11881 * After clipping out mp1, this guy 11882 * is now hanging off the end. 11883 */ 11884 ipf->ipf_tail_mp = mp; 11885 } 11886 IP_REASS_SET_START(mp1, 0); 11887 IP_REASS_SET_END(mp1, 0); 11888 /* Subtract byte count */ 11889 ipf->ipf_count -= mp1->b_datap->db_lim - 11890 mp1->b_datap->db_base; 11891 freeb(mp1); 11892 BUMP_MIB(ill->ill_ip_mib, 11893 ipIfStatsReasmPartDups); 11894 mp1 = mp->b_cont; 11895 if (!mp1) 11896 break; 11897 offset = IP_REASS_START(mp1); 11898 } 11899 ipf->ipf_mp->b_cont = mp; 11900 continue; 11901 } 11902 /* 11903 * The new piece starts somewhere between the start of the head 11904 * and before the end of the tail. 11905 */ 11906 for (; mp1; mp1 = mp1->b_cont) { 11907 offset = IP_REASS_END(mp1); 11908 if (start < offset) { 11909 if (end <= offset) { 11910 /* Nothing new. */ 11911 IP_REASS_SET_START(mp, 0); 11912 IP_REASS_SET_END(mp, 0); 11913 /* Subtract byte count */ 11914 ipf->ipf_count -= mp->b_datap->db_lim - 11915 mp->b_datap->db_base; 11916 if (incr_dups) { 11917 ipf->ipf_num_dups++; 11918 incr_dups = B_FALSE; 11919 } 11920 freeb(mp); 11921 BUMP_MIB(ill->ill_ip_mib, 11922 ipIfStatsReasmDuplicates); 11923 break; 11924 } 11925 /* 11926 * Trim redundant stuff off beginning of new 11927 * piece. 11928 */ 11929 IP_REASS_SET_START(mp, offset); 11930 mp->b_rptr += offset - start; 11931 BUMP_MIB(ill->ill_ip_mib, 11932 ipIfStatsReasmPartDups); 11933 start = offset; 11934 if (!mp1->b_cont) { 11935 /* 11936 * After trimming, this guy is now 11937 * hanging off the end. 11938 */ 11939 mp1->b_cont = mp; 11940 ipf->ipf_tail_mp = mp; 11941 if (!more) { 11942 ipf->ipf_hole_cnt--; 11943 } 11944 break; 11945 } 11946 } 11947 if (start >= IP_REASS_START(mp1->b_cont)) 11948 continue; 11949 /* Fill a hole */ 11950 if (start > offset) 11951 ipf->ipf_hole_cnt++; 11952 mp->b_cont = mp1->b_cont; 11953 mp1->b_cont = mp; 11954 mp1 = mp->b_cont; 11955 offset = IP_REASS_START(mp1); 11956 if (end >= offset) { 11957 ipf->ipf_hole_cnt--; 11958 /* Check for overlap. */ 11959 while (end > offset) { 11960 if (end < IP_REASS_END(mp1)) { 11961 mp->b_wptr -= end - offset; 11962 IP_REASS_SET_END(mp, offset); 11963 /* 11964 * TODO we might bump 11965 * this up twice if there is 11966 * overlap at both ends. 11967 */ 11968 BUMP_MIB(ill->ill_ip_mib, 11969 ipIfStatsReasmPartDups); 11970 break; 11971 } 11972 /* Did we cover another hole? */ 11973 if ((mp1->b_cont && 11974 IP_REASS_END(mp1) 11975 != IP_REASS_START(mp1->b_cont) && 11976 end >= 11977 IP_REASS_START(mp1->b_cont)) || 11978 (!ipf->ipf_last_frag_seen && 11979 !more)) { 11980 ipf->ipf_hole_cnt--; 11981 } 11982 /* Clip out mp1. */ 11983 if ((mp->b_cont = mp1->b_cont) == 11984 NULL) { 11985 /* 11986 * After clipping out mp1, 11987 * this guy is now hanging 11988 * off the end. 11989 */ 11990 ipf->ipf_tail_mp = mp; 11991 } 11992 IP_REASS_SET_START(mp1, 0); 11993 IP_REASS_SET_END(mp1, 0); 11994 /* Subtract byte count */ 11995 ipf->ipf_count -= 11996 mp1->b_datap->db_lim - 11997 mp1->b_datap->db_base; 11998 freeb(mp1); 11999 BUMP_MIB(ill->ill_ip_mib, 12000 ipIfStatsReasmPartDups); 12001 mp1 = mp->b_cont; 12002 if (!mp1) 12003 break; 12004 offset = IP_REASS_START(mp1); 12005 } 12006 } 12007 break; 12008 } 12009 } while (start = end, mp = next_mp); 12010 12011 /* Fragment just processed could be the last one. Remember this fact */ 12012 if (!more) 12013 ipf->ipf_last_frag_seen = B_TRUE; 12014 12015 /* Still got holes? */ 12016 if (ipf->ipf_hole_cnt) 12017 return (IP_REASS_PARTIAL); 12018 /* Clean up overloaded fields to avoid upstream disasters. */ 12019 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12020 IP_REASS_SET_START(mp1, 0); 12021 IP_REASS_SET_END(mp1, 0); 12022 } 12023 return (IP_REASS_COMPLETE); 12024 } 12025 12026 /* 12027 * ipsec processing for the fast path, used for input UDP Packets 12028 * Returns true if ready for passup to UDP. 12029 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12030 * was an ESP-in-UDP packet, etc.). 12031 */ 12032 static boolean_t 12033 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12034 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12035 { 12036 uint32_t ill_index; 12037 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12038 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12039 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12040 udp_t *udp = connp->conn_udp; 12041 12042 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12043 /* The ill_index of the incoming ILL */ 12044 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12045 12046 /* pass packet up to the transport */ 12047 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12048 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12049 NULL, mctl_present); 12050 if (*first_mpp == NULL) { 12051 return (B_FALSE); 12052 } 12053 } 12054 12055 /* Initiate IPPF processing for fastpath UDP */ 12056 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12057 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12058 if (*mpp == NULL) { 12059 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12060 "deferred/dropped during IPPF processing\n")); 12061 return (B_FALSE); 12062 } 12063 } 12064 /* 12065 * Remove 0-spi if it's 0, or move everything behind 12066 * the UDP header over it and forward to ESP via 12067 * ip_proto_input(). 12068 */ 12069 if (udp->udp_nat_t_endpoint) { 12070 if (mctl_present) { 12071 /* mctl_present *shouldn't* happen. */ 12072 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12073 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12074 &ipss->ipsec_dropper); 12075 *first_mpp = NULL; 12076 return (B_FALSE); 12077 } 12078 12079 /* "ill" is "recv_ill" in actuality. */ 12080 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12081 return (B_FALSE); 12082 12083 /* Else continue like a normal UDP packet. */ 12084 } 12085 12086 /* 12087 * We make the checks as below since we are in the fast path 12088 * and want to minimize the number of checks if the IP_RECVIF and/or 12089 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12090 */ 12091 if (connp->conn_recvif || connp->conn_recvslla || 12092 connp->conn_ip_recvpktinfo) { 12093 if (connp->conn_recvif) { 12094 in_flags = IPF_RECVIF; 12095 } 12096 /* 12097 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12098 * so the flag passed to ip_add_info is based on IP version 12099 * of connp. 12100 */ 12101 if (connp->conn_ip_recvpktinfo) { 12102 if (connp->conn_af_isv6) { 12103 /* 12104 * V6 only needs index 12105 */ 12106 in_flags |= IPF_RECVIF; 12107 } else { 12108 /* 12109 * V4 needs index + matching address. 12110 */ 12111 in_flags |= IPF_RECVADDR; 12112 } 12113 } 12114 if (connp->conn_recvslla) { 12115 in_flags |= IPF_RECVSLLA; 12116 } 12117 /* 12118 * since in_flags are being set ill will be 12119 * referenced in ip_add_info, so it better not 12120 * be NULL. 12121 */ 12122 /* 12123 * the actual data will be contained in b_cont 12124 * upon successful return of the following call. 12125 * If the call fails then the original mblk is 12126 * returned. 12127 */ 12128 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12129 ipst); 12130 } 12131 12132 return (B_TRUE); 12133 } 12134 12135 /* 12136 * Fragmentation reassembly. Each ILL has a hash table for 12137 * queuing packets undergoing reassembly for all IPIFs 12138 * associated with the ILL. The hash is based on the packet 12139 * IP ident field. The ILL frag hash table was allocated 12140 * as a timer block at the time the ILL was created. Whenever 12141 * there is anything on the reassembly queue, the timer will 12142 * be running. Returns B_TRUE if successful else B_FALSE; 12143 * frees mp on failure. 12144 */ 12145 static boolean_t 12146 ip_rput_fragment(ill_t *ill, ill_t *recv_ill, mblk_t **mpp, ipha_t *ipha, 12147 uint32_t *cksum_val, uint16_t *cksum_flags) 12148 { 12149 uint32_t frag_offset_flags; 12150 mblk_t *mp = *mpp; 12151 mblk_t *t_mp; 12152 ipaddr_t dst; 12153 uint8_t proto = ipha->ipha_protocol; 12154 uint32_t sum_val; 12155 uint16_t sum_flags; 12156 ipf_t *ipf; 12157 ipf_t **ipfp; 12158 ipfb_t *ipfb; 12159 uint16_t ident; 12160 uint32_t offset; 12161 ipaddr_t src; 12162 uint_t hdr_length; 12163 uint32_t end; 12164 mblk_t *mp1; 12165 mblk_t *tail_mp; 12166 size_t count; 12167 size_t msg_len; 12168 uint8_t ecn_info = 0; 12169 uint32_t packet_size; 12170 boolean_t pruned = B_FALSE; 12171 ip_stack_t *ipst = ill->ill_ipst; 12172 12173 if (cksum_val != NULL) 12174 *cksum_val = 0; 12175 if (cksum_flags != NULL) 12176 *cksum_flags = 0; 12177 12178 /* 12179 * Drop the fragmented as early as possible, if 12180 * we don't have resource(s) to re-assemble. 12181 */ 12182 if (ipst->ips_ip_reass_queue_bytes == 0) { 12183 freemsg(mp); 12184 return (B_FALSE); 12185 } 12186 12187 /* Check for fragmentation offset; return if there's none */ 12188 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12189 (IPH_MF | IPH_OFFSET)) == 0) 12190 return (B_TRUE); 12191 12192 /* 12193 * We utilize hardware computed checksum info only for UDP since 12194 * IP fragmentation is a normal occurrence for the protocol. In 12195 * addition, checksum offload support for IP fragments carrying 12196 * UDP payload is commonly implemented across network adapters. 12197 */ 12198 ASSERT(recv_ill != NULL); 12199 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(recv_ill) && 12200 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12201 mblk_t *mp1 = mp->b_cont; 12202 int32_t len; 12203 12204 /* Record checksum information from the packet */ 12205 sum_val = (uint32_t)DB_CKSUM16(mp); 12206 sum_flags = DB_CKSUMFLAGS(mp); 12207 12208 /* IP payload offset from beginning of mblk */ 12209 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12210 12211 if ((sum_flags & HCK_PARTIALCKSUM) && 12212 (mp1 == NULL || mp1->b_cont == NULL) && 12213 offset >= DB_CKSUMSTART(mp) && 12214 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12215 uint32_t adj; 12216 /* 12217 * Partial checksum has been calculated by hardware 12218 * and attached to the packet; in addition, any 12219 * prepended extraneous data is even byte aligned. 12220 * If any such data exists, we adjust the checksum; 12221 * this would also handle any postpended data. 12222 */ 12223 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12224 mp, mp1, len, adj); 12225 12226 /* One's complement subtract extraneous checksum */ 12227 if (adj >= sum_val) 12228 sum_val = ~(adj - sum_val) & 0xFFFF; 12229 else 12230 sum_val -= adj; 12231 } 12232 } else { 12233 sum_val = 0; 12234 sum_flags = 0; 12235 } 12236 12237 /* Clear hardware checksumming flag */ 12238 DB_CKSUMFLAGS(mp) = 0; 12239 12240 ident = ipha->ipha_ident; 12241 offset = (frag_offset_flags << 3) & 0xFFFF; 12242 src = ipha->ipha_src; 12243 dst = ipha->ipha_dst; 12244 hdr_length = IPH_HDR_LENGTH(ipha); 12245 end = ntohs(ipha->ipha_length) - hdr_length; 12246 12247 /* If end == 0 then we have a packet with no data, so just free it */ 12248 if (end == 0) { 12249 freemsg(mp); 12250 return (B_FALSE); 12251 } 12252 12253 /* Record the ECN field info. */ 12254 ecn_info = (ipha->ipha_type_of_service & 0x3); 12255 if (offset != 0) { 12256 /* 12257 * If this isn't the first piece, strip the header, and 12258 * add the offset to the end value. 12259 */ 12260 mp->b_rptr += hdr_length; 12261 end += offset; 12262 } 12263 12264 msg_len = MBLKSIZE(mp); 12265 tail_mp = mp; 12266 while (tail_mp->b_cont != NULL) { 12267 tail_mp = tail_mp->b_cont; 12268 msg_len += MBLKSIZE(tail_mp); 12269 } 12270 12271 /* If the reassembly list for this ILL will get too big, prune it */ 12272 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12273 ipst->ips_ip_reass_queue_bytes) { 12274 ill_frag_prune(ill, 12275 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12276 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12277 pruned = B_TRUE; 12278 } 12279 12280 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12281 mutex_enter(&ipfb->ipfb_lock); 12282 12283 ipfp = &ipfb->ipfb_ipf; 12284 /* Try to find an existing fragment queue for this packet. */ 12285 for (;;) { 12286 ipf = ipfp[0]; 12287 if (ipf != NULL) { 12288 /* 12289 * It has to match on ident and src/dst address. 12290 */ 12291 if (ipf->ipf_ident == ident && 12292 ipf->ipf_src == src && 12293 ipf->ipf_dst == dst && 12294 ipf->ipf_protocol == proto) { 12295 /* 12296 * If we have received too many 12297 * duplicate fragments for this packet 12298 * free it. 12299 */ 12300 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12301 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12302 freemsg(mp); 12303 mutex_exit(&ipfb->ipfb_lock); 12304 return (B_FALSE); 12305 } 12306 /* Found it. */ 12307 break; 12308 } 12309 ipfp = &ipf->ipf_hash_next; 12310 continue; 12311 } 12312 12313 /* 12314 * If we pruned the list, do we want to store this new 12315 * fragment?. We apply an optimization here based on the 12316 * fact that most fragments will be received in order. 12317 * So if the offset of this incoming fragment is zero, 12318 * it is the first fragment of a new packet. We will 12319 * keep it. Otherwise drop the fragment, as we have 12320 * probably pruned the packet already (since the 12321 * packet cannot be found). 12322 */ 12323 if (pruned && offset != 0) { 12324 mutex_exit(&ipfb->ipfb_lock); 12325 freemsg(mp); 12326 return (B_FALSE); 12327 } 12328 12329 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12330 /* 12331 * Too many fragmented packets in this hash 12332 * bucket. Free the oldest. 12333 */ 12334 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12335 } 12336 12337 /* New guy. Allocate a frag message. */ 12338 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12339 if (mp1 == NULL) { 12340 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12341 freemsg(mp); 12342 reass_done: 12343 mutex_exit(&ipfb->ipfb_lock); 12344 return (B_FALSE); 12345 } 12346 12347 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12348 mp1->b_cont = mp; 12349 12350 /* Initialize the fragment header. */ 12351 ipf = (ipf_t *)mp1->b_rptr; 12352 ipf->ipf_mp = mp1; 12353 ipf->ipf_ptphn = ipfp; 12354 ipfp[0] = ipf; 12355 ipf->ipf_hash_next = NULL; 12356 ipf->ipf_ident = ident; 12357 ipf->ipf_protocol = proto; 12358 ipf->ipf_src = src; 12359 ipf->ipf_dst = dst; 12360 ipf->ipf_nf_hdr_len = 0; 12361 /* Record reassembly start time. */ 12362 ipf->ipf_timestamp = gethrestime_sec(); 12363 /* Record ipf generation and account for frag header */ 12364 ipf->ipf_gen = ill->ill_ipf_gen++; 12365 ipf->ipf_count = MBLKSIZE(mp1); 12366 ipf->ipf_last_frag_seen = B_FALSE; 12367 ipf->ipf_ecn = ecn_info; 12368 ipf->ipf_num_dups = 0; 12369 ipfb->ipfb_frag_pkts++; 12370 ipf->ipf_checksum = 0; 12371 ipf->ipf_checksum_flags = 0; 12372 12373 /* Store checksum value in fragment header */ 12374 if (sum_flags != 0) { 12375 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12376 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12377 ipf->ipf_checksum = sum_val; 12378 ipf->ipf_checksum_flags = sum_flags; 12379 } 12380 12381 /* 12382 * We handle reassembly two ways. In the easy case, 12383 * where all the fragments show up in order, we do 12384 * minimal bookkeeping, and just clip new pieces on 12385 * the end. If we ever see a hole, then we go off 12386 * to ip_reassemble which has to mark the pieces and 12387 * keep track of the number of holes, etc. Obviously, 12388 * the point of having both mechanisms is so we can 12389 * handle the easy case as efficiently as possible. 12390 */ 12391 if (offset == 0) { 12392 /* Easy case, in-order reassembly so far. */ 12393 ipf->ipf_count += msg_len; 12394 ipf->ipf_tail_mp = tail_mp; 12395 /* 12396 * Keep track of next expected offset in 12397 * ipf_end. 12398 */ 12399 ipf->ipf_end = end; 12400 ipf->ipf_nf_hdr_len = hdr_length; 12401 } else { 12402 /* Hard case, hole at the beginning. */ 12403 ipf->ipf_tail_mp = NULL; 12404 /* 12405 * ipf_end == 0 means that we have given up 12406 * on easy reassembly. 12407 */ 12408 ipf->ipf_end = 0; 12409 12410 /* Forget checksum offload from now on */ 12411 ipf->ipf_checksum_flags = 0; 12412 12413 /* 12414 * ipf_hole_cnt is set by ip_reassemble. 12415 * ipf_count is updated by ip_reassemble. 12416 * No need to check for return value here 12417 * as we don't expect reassembly to complete 12418 * or fail for the first fragment itself. 12419 */ 12420 (void) ip_reassemble(mp, ipf, 12421 (frag_offset_flags & IPH_OFFSET) << 3, 12422 (frag_offset_flags & IPH_MF), ill, msg_len); 12423 } 12424 /* Update per ipfb and ill byte counts */ 12425 ipfb->ipfb_count += ipf->ipf_count; 12426 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12427 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12428 /* If the frag timer wasn't already going, start it. */ 12429 mutex_enter(&ill->ill_lock); 12430 ill_frag_timer_start(ill); 12431 mutex_exit(&ill->ill_lock); 12432 goto reass_done; 12433 } 12434 12435 /* 12436 * If the packet's flag has changed (it could be coming up 12437 * from an interface different than the previous, therefore 12438 * possibly different checksum capability), then forget about 12439 * any stored checksum states. Otherwise add the value to 12440 * the existing one stored in the fragment header. 12441 */ 12442 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12443 sum_val += ipf->ipf_checksum; 12444 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12445 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12446 ipf->ipf_checksum = sum_val; 12447 } else if (ipf->ipf_checksum_flags != 0) { 12448 /* Forget checksum offload from now on */ 12449 ipf->ipf_checksum_flags = 0; 12450 } 12451 12452 /* 12453 * We have a new piece of a datagram which is already being 12454 * reassembled. Update the ECN info if all IP fragments 12455 * are ECN capable. If there is one which is not, clear 12456 * all the info. If there is at least one which has CE 12457 * code point, IP needs to report that up to transport. 12458 */ 12459 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12460 if (ecn_info == IPH_ECN_CE) 12461 ipf->ipf_ecn = IPH_ECN_CE; 12462 } else { 12463 ipf->ipf_ecn = IPH_ECN_NECT; 12464 } 12465 if (offset && ipf->ipf_end == offset) { 12466 /* The new fragment fits at the end */ 12467 ipf->ipf_tail_mp->b_cont = mp; 12468 /* Update the byte count */ 12469 ipf->ipf_count += msg_len; 12470 /* Update per ipfb and ill byte counts */ 12471 ipfb->ipfb_count += msg_len; 12472 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12473 atomic_add_32(&ill->ill_frag_count, msg_len); 12474 if (frag_offset_flags & IPH_MF) { 12475 /* More to come. */ 12476 ipf->ipf_end = end; 12477 ipf->ipf_tail_mp = tail_mp; 12478 goto reass_done; 12479 } 12480 } else { 12481 /* Go do the hard cases. */ 12482 int ret; 12483 12484 if (offset == 0) 12485 ipf->ipf_nf_hdr_len = hdr_length; 12486 12487 /* Save current byte count */ 12488 count = ipf->ipf_count; 12489 ret = ip_reassemble(mp, ipf, 12490 (frag_offset_flags & IPH_OFFSET) << 3, 12491 (frag_offset_flags & IPH_MF), ill, msg_len); 12492 /* Count of bytes added and subtracted (freeb()ed) */ 12493 count = ipf->ipf_count - count; 12494 if (count) { 12495 /* Update per ipfb and ill byte counts */ 12496 ipfb->ipfb_count += count; 12497 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12498 atomic_add_32(&ill->ill_frag_count, count); 12499 } 12500 if (ret == IP_REASS_PARTIAL) { 12501 goto reass_done; 12502 } else if (ret == IP_REASS_FAILED) { 12503 /* Reassembly failed. Free up all resources */ 12504 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12505 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12506 IP_REASS_SET_START(t_mp, 0); 12507 IP_REASS_SET_END(t_mp, 0); 12508 } 12509 freemsg(mp); 12510 goto reass_done; 12511 } 12512 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12513 } 12514 /* 12515 * We have completed reassembly. Unhook the frag header from 12516 * the reassembly list. 12517 * 12518 * Before we free the frag header, record the ECN info 12519 * to report back to the transport. 12520 */ 12521 ecn_info = ipf->ipf_ecn; 12522 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12523 ipfp = ipf->ipf_ptphn; 12524 12525 /* We need to supply these to caller */ 12526 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12527 sum_val = ipf->ipf_checksum; 12528 else 12529 sum_val = 0; 12530 12531 mp1 = ipf->ipf_mp; 12532 count = ipf->ipf_count; 12533 ipf = ipf->ipf_hash_next; 12534 if (ipf != NULL) 12535 ipf->ipf_ptphn = ipfp; 12536 ipfp[0] = ipf; 12537 atomic_add_32(&ill->ill_frag_count, -count); 12538 ASSERT(ipfb->ipfb_count >= count); 12539 ipfb->ipfb_count -= count; 12540 ipfb->ipfb_frag_pkts--; 12541 mutex_exit(&ipfb->ipfb_lock); 12542 /* Ditch the frag header. */ 12543 mp = mp1->b_cont; 12544 12545 freeb(mp1); 12546 12547 /* Restore original IP length in header. */ 12548 packet_size = (uint32_t)msgdsize(mp); 12549 if (packet_size > IP_MAXPACKET) { 12550 freemsg(mp); 12551 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12552 return (B_FALSE); 12553 } 12554 12555 if (DB_REF(mp) > 1) { 12556 mblk_t *mp2 = copymsg(mp); 12557 12558 freemsg(mp); 12559 if (mp2 == NULL) { 12560 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12561 return (B_FALSE); 12562 } 12563 mp = mp2; 12564 } 12565 ipha = (ipha_t *)mp->b_rptr; 12566 12567 ipha->ipha_length = htons((uint16_t)packet_size); 12568 /* We're now complete, zip the frag state */ 12569 ipha->ipha_fragment_offset_and_flags = 0; 12570 /* Record the ECN info. */ 12571 ipha->ipha_type_of_service &= 0xFC; 12572 ipha->ipha_type_of_service |= ecn_info; 12573 *mpp = mp; 12574 12575 /* Reassembly is successful; return checksum information if needed */ 12576 if (cksum_val != NULL) 12577 *cksum_val = sum_val; 12578 if (cksum_flags != NULL) 12579 *cksum_flags = sum_flags; 12580 12581 return (B_TRUE); 12582 } 12583 12584 /* 12585 * Perform ip header check sum update local options. 12586 * return B_TRUE if all is well, else return B_FALSE and release 12587 * the mp. caller is responsible for decrementing ire ref cnt. 12588 */ 12589 static boolean_t 12590 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12591 ip_stack_t *ipst) 12592 { 12593 mblk_t *first_mp; 12594 boolean_t mctl_present; 12595 uint16_t sum; 12596 12597 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12598 /* 12599 * Don't do the checksum if it has gone through AH/ESP 12600 * processing. 12601 */ 12602 if (!mctl_present) { 12603 sum = ip_csum_hdr(ipha); 12604 if (sum != 0) { 12605 if (ill != NULL) { 12606 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12607 } else { 12608 BUMP_MIB(&ipst->ips_ip_mib, 12609 ipIfStatsInCksumErrs); 12610 } 12611 freemsg(first_mp); 12612 return (B_FALSE); 12613 } 12614 } 12615 12616 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12617 if (mctl_present) 12618 freeb(first_mp); 12619 return (B_FALSE); 12620 } 12621 12622 return (B_TRUE); 12623 } 12624 12625 /* 12626 * All udp packet are delivered to the local host via this routine. 12627 */ 12628 void 12629 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12630 ill_t *recv_ill) 12631 { 12632 uint32_t sum; 12633 uint32_t u1; 12634 boolean_t mctl_present; 12635 conn_t *connp; 12636 mblk_t *first_mp; 12637 uint16_t *up; 12638 ill_t *ill = (ill_t *)q->q_ptr; 12639 uint16_t reass_hck_flags = 0; 12640 ip_stack_t *ipst; 12641 12642 ASSERT(recv_ill != NULL); 12643 ipst = recv_ill->ill_ipst; 12644 12645 #define rptr ((uchar_t *)ipha) 12646 12647 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12648 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12649 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12650 ASSERT(ill != NULL); 12651 12652 /* 12653 * FAST PATH for udp packets 12654 */ 12655 12656 /* u1 is # words of IP options */ 12657 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12658 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12659 12660 /* IP options present */ 12661 if (u1 != 0) 12662 goto ipoptions; 12663 12664 /* Check the IP header checksum. */ 12665 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12666 /* Clear the IP header h/w cksum flag */ 12667 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12668 } else if (!mctl_present) { 12669 /* 12670 * Don't verify header checksum if this packet is coming 12671 * back from AH/ESP as we already did it. 12672 */ 12673 #define uph ((uint16_t *)ipha) 12674 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12675 uph[6] + uph[7] + uph[8] + uph[9]; 12676 #undef uph 12677 /* finish doing IP checksum */ 12678 sum = (sum & 0xFFFF) + (sum >> 16); 12679 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12680 if (sum != 0 && sum != 0xFFFF) { 12681 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12682 freemsg(first_mp); 12683 return; 12684 } 12685 } 12686 12687 /* 12688 * Count for SNMP of inbound packets for ire. 12689 * if mctl is present this might be a secure packet and 12690 * has already been counted for in ip_proto_input(). 12691 */ 12692 if (!mctl_present) { 12693 UPDATE_IB_PKT_COUNT(ire); 12694 ire->ire_last_used_time = lbolt; 12695 } 12696 12697 /* packet part of fragmented IP packet? */ 12698 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12699 if (u1 & (IPH_MF | IPH_OFFSET)) { 12700 goto fragmented; 12701 } 12702 12703 /* u1 = IP header length (20 bytes) */ 12704 u1 = IP_SIMPLE_HDR_LENGTH; 12705 12706 /* packet does not contain complete IP & UDP headers */ 12707 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12708 goto udppullup; 12709 12710 /* up points to UDP header */ 12711 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12712 #define iphs ((uint16_t *)ipha) 12713 12714 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12715 if (up[3] != 0) { 12716 mblk_t *mp1 = mp->b_cont; 12717 boolean_t cksum_err; 12718 uint16_t hck_flags = 0; 12719 12720 /* Pseudo-header checksum */ 12721 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12722 iphs[9] + up[2]; 12723 12724 /* 12725 * Revert to software checksum calculation if the interface 12726 * isn't capable of checksum offload or if IPsec is present. 12727 */ 12728 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 12729 hck_flags = DB_CKSUMFLAGS(mp); 12730 12731 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12732 IP_STAT(ipst, ip_in_sw_cksum); 12733 12734 IP_CKSUM_RECV(hck_flags, u1, 12735 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12736 (int32_t)((uchar_t *)up - rptr), 12737 mp, mp1, cksum_err); 12738 12739 if (cksum_err) { 12740 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12741 if (hck_flags & HCK_FULLCKSUM) 12742 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12743 else if (hck_flags & HCK_PARTIALCKSUM) 12744 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12745 else 12746 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12747 12748 freemsg(first_mp); 12749 return; 12750 } 12751 } 12752 12753 /* Non-fragmented broadcast or multicast packet? */ 12754 if (ire->ire_type == IRE_BROADCAST) 12755 goto udpslowpath; 12756 12757 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12758 ire->ire_zoneid, ipst)) != NULL) { 12759 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 12760 IP_STAT(ipst, ip_udp_fast_path); 12761 12762 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 12763 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 12764 freemsg(mp); 12765 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12766 } else { 12767 if (!mctl_present) { 12768 BUMP_MIB(ill->ill_ip_mib, 12769 ipIfStatsHCInDelivers); 12770 } 12771 /* 12772 * mp and first_mp can change. 12773 */ 12774 if (ip_udp_check(q, connp, recv_ill, 12775 ipha, &mp, &first_mp, mctl_present, ire)) { 12776 /* Send it upstream */ 12777 (connp->conn_recv)(connp, mp, NULL); 12778 } 12779 } 12780 /* 12781 * freeb() cannot deal with null mblk being passed 12782 * in and first_mp can be set to null in the call 12783 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12784 */ 12785 if (mctl_present && first_mp != NULL) { 12786 freeb(first_mp); 12787 } 12788 CONN_DEC_REF(connp); 12789 return; 12790 } 12791 12792 /* 12793 * if we got here we know the packet is not fragmented and 12794 * has no options. The classifier could not find a conn_t and 12795 * most likely its an icmp packet so send it through slow path. 12796 */ 12797 12798 goto udpslowpath; 12799 12800 ipoptions: 12801 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12802 goto slow_done; 12803 } 12804 12805 UPDATE_IB_PKT_COUNT(ire); 12806 ire->ire_last_used_time = lbolt; 12807 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12808 if (u1 & (IPH_MF | IPH_OFFSET)) { 12809 fragmented: 12810 /* 12811 * "sum" and "reass_hck_flags" are non-zero if the 12812 * reassembled packet has a valid hardware computed 12813 * checksum information associated with it. 12814 */ 12815 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, &sum, 12816 &reass_hck_flags)) { 12817 goto slow_done; 12818 } 12819 12820 /* 12821 * Make sure that first_mp points back to mp as 12822 * the mp we came in with could have changed in 12823 * ip_rput_fragment(). 12824 */ 12825 ASSERT(!mctl_present); 12826 ipha = (ipha_t *)mp->b_rptr; 12827 first_mp = mp; 12828 } 12829 12830 /* Now we have a complete datagram, destined for this machine. */ 12831 u1 = IPH_HDR_LENGTH(ipha); 12832 /* Pull up the UDP header, if necessary. */ 12833 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12834 udppullup: 12835 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12836 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12837 freemsg(first_mp); 12838 goto slow_done; 12839 } 12840 ipha = (ipha_t *)mp->b_rptr; 12841 } 12842 12843 /* 12844 * Validate the checksum for the reassembled packet; for the 12845 * pullup case we calculate the payload checksum in software. 12846 */ 12847 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12848 if (up[3] != 0) { 12849 boolean_t cksum_err; 12850 12851 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12852 IP_STAT(ipst, ip_in_sw_cksum); 12853 12854 IP_CKSUM_RECV_REASS(reass_hck_flags, 12855 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12856 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12857 iphs[9] + up[2], sum, cksum_err); 12858 12859 if (cksum_err) { 12860 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12861 12862 if (reass_hck_flags & HCK_FULLCKSUM) 12863 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12864 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12865 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12866 else 12867 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12868 12869 freemsg(first_mp); 12870 goto slow_done; 12871 } 12872 } 12873 udpslowpath: 12874 12875 /* Clear hardware checksum flag to be safe */ 12876 DB_CKSUMFLAGS(mp) = 0; 12877 12878 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12879 (ire->ire_type == IRE_BROADCAST), 12880 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12881 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12882 12883 slow_done: 12884 IP_STAT(ipst, ip_udp_slow_path); 12885 return; 12886 12887 #undef iphs 12888 #undef rptr 12889 } 12890 12891 /* ARGSUSED */ 12892 static mblk_t * 12893 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12894 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12895 ill_rx_ring_t *ill_ring) 12896 { 12897 conn_t *connp; 12898 uint32_t sum; 12899 uint32_t u1; 12900 uint16_t *up; 12901 int offset; 12902 ssize_t len; 12903 mblk_t *mp1; 12904 boolean_t syn_present = B_FALSE; 12905 tcph_t *tcph; 12906 uint_t tcph_flags; 12907 uint_t ip_hdr_len; 12908 ill_t *ill = (ill_t *)q->q_ptr; 12909 zoneid_t zoneid = ire->ire_zoneid; 12910 boolean_t cksum_err; 12911 uint16_t hck_flags = 0; 12912 ip_stack_t *ipst = recv_ill->ill_ipst; 12913 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12914 12915 #define rptr ((uchar_t *)ipha) 12916 12917 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12918 ASSERT(ill != NULL); 12919 12920 /* 12921 * FAST PATH for tcp packets 12922 */ 12923 12924 /* u1 is # words of IP options */ 12925 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12926 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12927 12928 /* IP options present */ 12929 if (u1) { 12930 goto ipoptions; 12931 } else if (!mctl_present) { 12932 /* Check the IP header checksum. */ 12933 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12934 /* Clear the IP header h/w cksum flag */ 12935 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12936 } else if (!mctl_present) { 12937 /* 12938 * Don't verify header checksum if this packet 12939 * is coming back from AH/ESP as we already did it. 12940 */ 12941 #define uph ((uint16_t *)ipha) 12942 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12943 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12944 #undef uph 12945 /* finish doing IP checksum */ 12946 sum = (sum & 0xFFFF) + (sum >> 16); 12947 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12948 if (sum != 0 && sum != 0xFFFF) { 12949 BUMP_MIB(ill->ill_ip_mib, 12950 ipIfStatsInCksumErrs); 12951 goto error; 12952 } 12953 } 12954 } 12955 12956 if (!mctl_present) { 12957 UPDATE_IB_PKT_COUNT(ire); 12958 ire->ire_last_used_time = lbolt; 12959 } 12960 12961 /* packet part of fragmented IP packet? */ 12962 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12963 if (u1 & (IPH_MF | IPH_OFFSET)) { 12964 goto fragmented; 12965 } 12966 12967 /* u1 = IP header length (20 bytes) */ 12968 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12969 12970 /* does packet contain IP+TCP headers? */ 12971 len = mp->b_wptr - rptr; 12972 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12973 IP_STAT(ipst, ip_tcppullup); 12974 goto tcppullup; 12975 } 12976 12977 /* TCP options present? */ 12978 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12979 12980 /* 12981 * If options need to be pulled up, then goto tcpoptions. 12982 * otherwise we are still in the fast path 12983 */ 12984 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12985 IP_STAT(ipst, ip_tcpoptions); 12986 goto tcpoptions; 12987 } 12988 12989 /* multiple mblks of tcp data? */ 12990 if ((mp1 = mp->b_cont) != NULL) { 12991 IP_STAT(ipst, ip_multipkttcp); 12992 len += msgdsize(mp1); 12993 } 12994 12995 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 12996 12997 /* part of pseudo checksum */ 12998 12999 /* TCP datagram length */ 13000 u1 = len - IP_SIMPLE_HDR_LENGTH; 13001 13002 #define iphs ((uint16_t *)ipha) 13003 13004 #ifdef _BIG_ENDIAN 13005 u1 += IPPROTO_TCP; 13006 #else 13007 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13008 #endif 13009 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13010 13011 /* 13012 * Revert to software checksum calculation if the interface 13013 * isn't capable of checksum offload or if IPsec is present. 13014 */ 13015 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 13016 hck_flags = DB_CKSUMFLAGS(mp); 13017 13018 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13019 IP_STAT(ipst, ip_in_sw_cksum); 13020 13021 IP_CKSUM_RECV(hck_flags, u1, 13022 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13023 (int32_t)((uchar_t *)up - rptr), 13024 mp, mp1, cksum_err); 13025 13026 if (cksum_err) { 13027 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13028 13029 if (hck_flags & HCK_FULLCKSUM) 13030 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13031 else if (hck_flags & HCK_PARTIALCKSUM) 13032 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13033 else 13034 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13035 13036 goto error; 13037 } 13038 13039 try_again: 13040 13041 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13042 zoneid, ipst)) == NULL) { 13043 /* Send the TH_RST */ 13044 goto no_conn; 13045 } 13046 13047 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13048 tcph_flags = tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG); 13049 13050 /* 13051 * TCP FAST PATH for AF_INET socket. 13052 * 13053 * TCP fast path to avoid extra work. An AF_INET socket type 13054 * does not have facility to receive extra information via 13055 * ip_process or ip_add_info. Also, when the connection was 13056 * established, we made a check if this connection is impacted 13057 * by any global IPsec policy or per connection policy (a 13058 * policy that comes in effect later will not apply to this 13059 * connection). Since all this can be determined at the 13060 * connection establishment time, a quick check of flags 13061 * can avoid extra work. 13062 */ 13063 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13064 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13065 ASSERT(first_mp == mp); 13066 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13067 if (tcph_flags != (TH_SYN | TH_ACK)) { 13068 SET_SQUEUE(mp, tcp_rput_data, connp); 13069 return (mp); 13070 } 13071 mp->b_datap->db_struioflag |= STRUIO_CONNECT; 13072 DB_CKSUMSTART(mp) = (intptr_t)ip_squeue_get(ill_ring); 13073 SET_SQUEUE(mp, tcp_input, connp); 13074 return (mp); 13075 } 13076 13077 if (tcph_flags == TH_SYN) { 13078 if (IPCL_IS_TCP(connp)) { 13079 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13080 DB_CKSUMSTART(mp) = 13081 (intptr_t)ip_squeue_get(ill_ring); 13082 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13083 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13084 BUMP_MIB(ill->ill_ip_mib, 13085 ipIfStatsHCInDelivers); 13086 SET_SQUEUE(mp, connp->conn_recv, connp); 13087 return (mp); 13088 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13089 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13090 BUMP_MIB(ill->ill_ip_mib, 13091 ipIfStatsHCInDelivers); 13092 ip_squeue_enter_unbound++; 13093 SET_SQUEUE(mp, tcp_conn_request_unbound, 13094 connp); 13095 return (mp); 13096 } 13097 syn_present = B_TRUE; 13098 } 13099 } 13100 13101 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13102 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13103 13104 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13105 /* No need to send this packet to TCP */ 13106 if ((flags & TH_RST) || (flags & TH_URG)) { 13107 CONN_DEC_REF(connp); 13108 freemsg(first_mp); 13109 return (NULL); 13110 } 13111 if (flags & TH_ACK) { 13112 ip_xmit_reset_serialize(first_mp, ip_hdr_len, zoneid, 13113 ipst->ips_netstack->netstack_tcp, connp); 13114 CONN_DEC_REF(connp); 13115 return (NULL); 13116 } 13117 13118 CONN_DEC_REF(connp); 13119 freemsg(first_mp); 13120 return (NULL); 13121 } 13122 13123 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13124 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13125 ipha, NULL, mctl_present); 13126 if (first_mp == NULL) { 13127 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13128 CONN_DEC_REF(connp); 13129 return (NULL); 13130 } 13131 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13132 ASSERT(syn_present); 13133 if (mctl_present) { 13134 ASSERT(first_mp != mp); 13135 first_mp->b_datap->db_struioflag |= 13136 STRUIO_POLICY; 13137 } else { 13138 ASSERT(first_mp == mp); 13139 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13140 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13141 } 13142 } else { 13143 /* 13144 * Discard first_mp early since we're dealing with a 13145 * fully-connected conn_t and tcp doesn't do policy in 13146 * this case. 13147 */ 13148 if (mctl_present) { 13149 freeb(first_mp); 13150 mctl_present = B_FALSE; 13151 } 13152 first_mp = mp; 13153 } 13154 } 13155 13156 /* Initiate IPPF processing for fastpath */ 13157 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13158 uint32_t ill_index; 13159 13160 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13161 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13162 if (mp == NULL) { 13163 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13164 "deferred/dropped during IPPF processing\n")); 13165 CONN_DEC_REF(connp); 13166 if (mctl_present) 13167 freeb(first_mp); 13168 return (NULL); 13169 } else if (mctl_present) { 13170 /* 13171 * ip_process might return a new mp. 13172 */ 13173 ASSERT(first_mp != mp); 13174 first_mp->b_cont = mp; 13175 } else { 13176 first_mp = mp; 13177 } 13178 13179 } 13180 13181 if (!syn_present && connp->conn_ip_recvpktinfo) { 13182 /* 13183 * TCP does not support IP_RECVPKTINFO for v4 so lets 13184 * make sure IPF_RECVIF is passed to ip_add_info. 13185 */ 13186 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13187 IPCL_ZONEID(connp), ipst); 13188 if (mp == NULL) { 13189 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13190 CONN_DEC_REF(connp); 13191 if (mctl_present) 13192 freeb(first_mp); 13193 return (NULL); 13194 } else if (mctl_present) { 13195 /* 13196 * ip_add_info might return a new mp. 13197 */ 13198 ASSERT(first_mp != mp); 13199 first_mp->b_cont = mp; 13200 } else { 13201 first_mp = mp; 13202 } 13203 } 13204 13205 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13206 if (IPCL_IS_TCP(connp)) { 13207 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13208 return (first_mp); 13209 } else { 13210 /* SOCK_RAW, IPPROTO_TCP case */ 13211 (connp->conn_recv)(connp, first_mp, NULL); 13212 CONN_DEC_REF(connp); 13213 return (NULL); 13214 } 13215 13216 no_conn: 13217 /* Initiate IPPf processing, if needed. */ 13218 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13219 uint32_t ill_index; 13220 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13221 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13222 if (first_mp == NULL) { 13223 return (NULL); 13224 } 13225 } 13226 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13227 13228 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13229 ipst->ips_netstack->netstack_tcp, NULL); 13230 return (NULL); 13231 ipoptions: 13232 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13233 goto slow_done; 13234 } 13235 13236 UPDATE_IB_PKT_COUNT(ire); 13237 ire->ire_last_used_time = lbolt; 13238 13239 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13240 if (u1 & (IPH_MF | IPH_OFFSET)) { 13241 fragmented: 13242 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) { 13243 if (mctl_present) 13244 freeb(first_mp); 13245 goto slow_done; 13246 } 13247 /* 13248 * Make sure that first_mp points back to mp as 13249 * the mp we came in with could have changed in 13250 * ip_rput_fragment(). 13251 */ 13252 ASSERT(!mctl_present); 13253 ipha = (ipha_t *)mp->b_rptr; 13254 first_mp = mp; 13255 } 13256 13257 /* Now we have a complete datagram, destined for this machine. */ 13258 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13259 13260 len = mp->b_wptr - mp->b_rptr; 13261 /* Pull up a minimal TCP header, if necessary. */ 13262 if (len < (u1 + 20)) { 13263 tcppullup: 13264 if (!pullupmsg(mp, u1 + 20)) { 13265 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13266 goto error; 13267 } 13268 ipha = (ipha_t *)mp->b_rptr; 13269 len = mp->b_wptr - mp->b_rptr; 13270 } 13271 13272 /* 13273 * Extract the offset field from the TCP header. As usual, we 13274 * try to help the compiler more than the reader. 13275 */ 13276 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13277 if (offset != 5) { 13278 tcpoptions: 13279 if (offset < 5) { 13280 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13281 goto error; 13282 } 13283 /* 13284 * There must be TCP options. 13285 * Make sure we can grab them. 13286 */ 13287 offset <<= 2; 13288 offset += u1; 13289 if (len < offset) { 13290 if (!pullupmsg(mp, offset)) { 13291 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13292 goto error; 13293 } 13294 ipha = (ipha_t *)mp->b_rptr; 13295 len = mp->b_wptr - rptr; 13296 } 13297 } 13298 13299 /* Get the total packet length in len, including headers. */ 13300 if (mp->b_cont) 13301 len = msgdsize(mp); 13302 13303 /* 13304 * Check the TCP checksum by pulling together the pseudo- 13305 * header checksum, and passing it to ip_csum to be added in 13306 * with the TCP datagram. 13307 * 13308 * Since we are not using the hwcksum if available we must 13309 * clear the flag. We may come here via tcppullup or tcpoptions. 13310 * If either of these fails along the way the mblk is freed. 13311 * If this logic ever changes and mblk is reused to say send 13312 * ICMP's back, then this flag may need to be cleared in 13313 * other places as well. 13314 */ 13315 DB_CKSUMFLAGS(mp) = 0; 13316 13317 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13318 13319 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13320 #ifdef _BIG_ENDIAN 13321 u1 += IPPROTO_TCP; 13322 #else 13323 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13324 #endif 13325 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13326 /* 13327 * Not M_DATA mblk or its a dup, so do the checksum now. 13328 */ 13329 IP_STAT(ipst, ip_in_sw_cksum); 13330 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13331 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13332 goto error; 13333 } 13334 13335 IP_STAT(ipst, ip_tcp_slow_path); 13336 goto try_again; 13337 #undef iphs 13338 #undef rptr 13339 13340 error: 13341 freemsg(first_mp); 13342 slow_done: 13343 return (NULL); 13344 } 13345 13346 /* ARGSUSED */ 13347 static void 13348 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13349 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13350 { 13351 conn_t *connp; 13352 uint32_t sum; 13353 uint32_t u1; 13354 ssize_t len; 13355 sctp_hdr_t *sctph; 13356 zoneid_t zoneid = ire->ire_zoneid; 13357 uint32_t pktsum; 13358 uint32_t calcsum; 13359 uint32_t ports; 13360 in6_addr_t map_src, map_dst; 13361 ill_t *ill = (ill_t *)q->q_ptr; 13362 ip_stack_t *ipst; 13363 sctp_stack_t *sctps; 13364 boolean_t sctp_csum_err = B_FALSE; 13365 13366 ASSERT(recv_ill != NULL); 13367 ipst = recv_ill->ill_ipst; 13368 sctps = ipst->ips_netstack->netstack_sctp; 13369 13370 #define rptr ((uchar_t *)ipha) 13371 13372 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13373 ASSERT(ill != NULL); 13374 13375 /* u1 is # words of IP options */ 13376 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13377 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13378 13379 /* IP options present */ 13380 if (u1 > 0) { 13381 goto ipoptions; 13382 } else { 13383 /* Check the IP header checksum. */ 13384 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill) && 13385 !mctl_present) { 13386 #define uph ((uint16_t *)ipha) 13387 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13388 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13389 #undef uph 13390 /* finish doing IP checksum */ 13391 sum = (sum & 0xFFFF) + (sum >> 16); 13392 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13393 /* 13394 * Don't verify header checksum if this packet 13395 * is coming back from AH/ESP as we already did it. 13396 */ 13397 if (sum != 0 && sum != 0xFFFF) { 13398 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13399 goto error; 13400 } 13401 } 13402 /* 13403 * Since there is no SCTP h/w cksum support yet, just 13404 * clear the flag. 13405 */ 13406 DB_CKSUMFLAGS(mp) = 0; 13407 } 13408 13409 /* 13410 * Don't verify header checksum if this packet is coming 13411 * back from AH/ESP as we already did it. 13412 */ 13413 if (!mctl_present) { 13414 UPDATE_IB_PKT_COUNT(ire); 13415 ire->ire_last_used_time = lbolt; 13416 } 13417 13418 /* packet part of fragmented IP packet? */ 13419 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13420 if (u1 & (IPH_MF | IPH_OFFSET)) 13421 goto fragmented; 13422 13423 /* u1 = IP header length (20 bytes) */ 13424 u1 = IP_SIMPLE_HDR_LENGTH; 13425 13426 find_sctp_client: 13427 /* Pullup if we don't have the sctp common header. */ 13428 len = MBLKL(mp); 13429 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13430 if (mp->b_cont == NULL || 13431 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13432 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13433 goto error; 13434 } 13435 ipha = (ipha_t *)mp->b_rptr; 13436 len = MBLKL(mp); 13437 } 13438 13439 sctph = (sctp_hdr_t *)(rptr + u1); 13440 #ifdef DEBUG 13441 if (!skip_sctp_cksum) { 13442 #endif 13443 pktsum = sctph->sh_chksum; 13444 sctph->sh_chksum = 0; 13445 calcsum = sctp_cksum(mp, u1); 13446 sctph->sh_chksum = pktsum; 13447 if (calcsum != pktsum) 13448 sctp_csum_err = B_TRUE; 13449 #ifdef DEBUG /* skip_sctp_cksum */ 13450 } 13451 #endif 13452 /* get the ports */ 13453 ports = *(uint32_t *)&sctph->sh_sport; 13454 13455 IRE_REFRELE(ire); 13456 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13457 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13458 if (sctp_csum_err) { 13459 /* 13460 * No potential sctp checksum errors go to the Sun 13461 * sctp stack however they might be Adler-32 summed 13462 * packets a userland stack bound to a raw IP socket 13463 * could reasonably use. Note though that Adler-32 is 13464 * a long deprecated algorithm and customer sctp 13465 * networks should eventually migrate to CRC-32 at 13466 * which time this facility should be removed. 13467 */ 13468 flags |= IP_FF_SCTP_CSUM_ERR; 13469 goto no_conn; 13470 } 13471 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13472 sctps)) == NULL) { 13473 /* Check for raw socket or OOTB handling */ 13474 goto no_conn; 13475 } 13476 13477 /* Found a client; up it goes */ 13478 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13479 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13480 return; 13481 13482 no_conn: 13483 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13484 ports, mctl_present, flags, B_TRUE, zoneid); 13485 return; 13486 13487 ipoptions: 13488 DB_CKSUMFLAGS(mp) = 0; 13489 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13490 goto slow_done; 13491 13492 UPDATE_IB_PKT_COUNT(ire); 13493 ire->ire_last_used_time = lbolt; 13494 13495 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13496 if (u1 & (IPH_MF | IPH_OFFSET)) { 13497 fragmented: 13498 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 13499 goto slow_done; 13500 /* 13501 * Make sure that first_mp points back to mp as 13502 * the mp we came in with could have changed in 13503 * ip_rput_fragment(). 13504 */ 13505 ASSERT(!mctl_present); 13506 ipha = (ipha_t *)mp->b_rptr; 13507 first_mp = mp; 13508 } 13509 13510 /* Now we have a complete datagram, destined for this machine. */ 13511 u1 = IPH_HDR_LENGTH(ipha); 13512 goto find_sctp_client; 13513 #undef iphs 13514 #undef rptr 13515 13516 error: 13517 freemsg(first_mp); 13518 slow_done: 13519 IRE_REFRELE(ire); 13520 } 13521 13522 #define VER_BITS 0xF0 13523 #define VERSION_6 0x60 13524 13525 static boolean_t 13526 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13527 ipaddr_t *dstp, ip_stack_t *ipst) 13528 { 13529 uint_t opt_len; 13530 ipha_t *ipha; 13531 ssize_t len; 13532 uint_t pkt_len; 13533 13534 ASSERT(ill != NULL); 13535 IP_STAT(ipst, ip_ipoptions); 13536 ipha = *iphapp; 13537 13538 #define rptr ((uchar_t *)ipha) 13539 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13540 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13541 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13542 freemsg(mp); 13543 return (B_FALSE); 13544 } 13545 13546 /* multiple mblk or too short */ 13547 pkt_len = ntohs(ipha->ipha_length); 13548 13549 /* Get the number of words of IP options in the IP header. */ 13550 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13551 if (opt_len) { 13552 /* IP Options present! Validate and process. */ 13553 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13554 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13555 goto done; 13556 } 13557 /* 13558 * Recompute complete header length and make sure we 13559 * have access to all of it. 13560 */ 13561 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13562 if (len > (mp->b_wptr - rptr)) { 13563 if (len > pkt_len) { 13564 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13565 goto done; 13566 } 13567 if (!pullupmsg(mp, len)) { 13568 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13569 goto done; 13570 } 13571 ipha = (ipha_t *)mp->b_rptr; 13572 } 13573 /* 13574 * Go off to ip_rput_options which returns the next hop 13575 * destination address, which may have been affected 13576 * by source routing. 13577 */ 13578 IP_STAT(ipst, ip_opt); 13579 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13580 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13581 return (B_FALSE); 13582 } 13583 } 13584 *iphapp = ipha; 13585 return (B_TRUE); 13586 done: 13587 /* clear b_prev - used by ip_mroute_decap */ 13588 mp->b_prev = NULL; 13589 freemsg(mp); 13590 return (B_FALSE); 13591 #undef rptr 13592 } 13593 13594 /* 13595 * Deal with the fact that there is no ire for the destination. 13596 */ 13597 static ire_t * 13598 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13599 { 13600 ipha_t *ipha; 13601 ill_t *ill; 13602 ire_t *ire; 13603 ip_stack_t *ipst; 13604 enum ire_forward_action ret_action; 13605 13606 ipha = (ipha_t *)mp->b_rptr; 13607 ill = (ill_t *)q->q_ptr; 13608 13609 ASSERT(ill != NULL); 13610 ipst = ill->ill_ipst; 13611 13612 /* 13613 * No IRE for this destination, so it can't be for us. 13614 * Unless we are forwarding, drop the packet. 13615 * We have to let source routed packets through 13616 * since we don't yet know if they are 'ping -l' 13617 * packets i.e. if they will go out over the 13618 * same interface as they came in on. 13619 */ 13620 if (ll_multicast) { 13621 freemsg(mp); 13622 return (NULL); 13623 } 13624 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13625 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13626 freemsg(mp); 13627 return (NULL); 13628 } 13629 13630 /* 13631 * Mark this packet as having originated externally. 13632 * 13633 * For non-forwarding code path, ire_send later double 13634 * checks this interface to see if it is still exists 13635 * post-ARP resolution. 13636 * 13637 * Also, IPQOS uses this to differentiate between 13638 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13639 * QOS packet processing in ip_wput_attach_llhdr(). 13640 * The QoS module can mark the b_band for a fastpath message 13641 * or the dl_priority field in a unitdata_req header for 13642 * CoS marking. This info can only be found in 13643 * ip_wput_attach_llhdr(). 13644 */ 13645 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13646 /* 13647 * Clear the indication that this may have a hardware checksum 13648 * as we are not using it 13649 */ 13650 DB_CKSUMFLAGS(mp) = 0; 13651 13652 ire = ire_forward(dst, &ret_action, NULL, NULL, 13653 msg_getlabel(mp), ipst); 13654 13655 if (ire == NULL && ret_action == Forward_check_multirt) { 13656 /* Let ip_newroute handle CGTP */ 13657 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13658 return (NULL); 13659 } 13660 13661 if (ire != NULL) 13662 return (ire); 13663 13664 mp->b_prev = mp->b_next = 0; 13665 13666 if (ret_action == Forward_blackhole) { 13667 freemsg(mp); 13668 return (NULL); 13669 } 13670 /* send icmp unreachable */ 13671 q = WR(q); 13672 /* Sent by forwarding path, and router is global zone */ 13673 if (ip_source_routed(ipha, ipst)) { 13674 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13675 GLOBAL_ZONEID, ipst); 13676 } else { 13677 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13678 ipst); 13679 } 13680 13681 return (NULL); 13682 13683 } 13684 13685 /* 13686 * check ip header length and align it. 13687 */ 13688 static boolean_t 13689 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13690 { 13691 ssize_t len; 13692 ill_t *ill; 13693 ipha_t *ipha; 13694 13695 len = MBLKL(mp); 13696 13697 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13698 ill = (ill_t *)q->q_ptr; 13699 13700 if (!OK_32PTR(mp->b_rptr)) 13701 IP_STAT(ipst, ip_notaligned1); 13702 else 13703 IP_STAT(ipst, ip_notaligned2); 13704 /* Guard against bogus device drivers */ 13705 if (len < 0) { 13706 /* clear b_prev - used by ip_mroute_decap */ 13707 mp->b_prev = NULL; 13708 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13709 freemsg(mp); 13710 return (B_FALSE); 13711 } 13712 13713 if (ip_rput_pullups++ == 0) { 13714 ipha = (ipha_t *)mp->b_rptr; 13715 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13716 "ip_check_and_align_header: %s forced us to " 13717 " pullup pkt, hdr len %ld, hdr addr %p", 13718 ill->ill_name, len, (void *)ipha); 13719 } 13720 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13721 /* clear b_prev - used by ip_mroute_decap */ 13722 mp->b_prev = NULL; 13723 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13724 freemsg(mp); 13725 return (B_FALSE); 13726 } 13727 } 13728 return (B_TRUE); 13729 } 13730 13731 /* 13732 * Handle the situation where a packet came in on `ill' but matched an IRE 13733 * whose ire_rfq doesn't match `ill'. We return the IRE that should be used 13734 * for interface statistics. 13735 */ 13736 ire_t * 13737 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13738 { 13739 ire_t *new_ire; 13740 ill_t *ire_ill; 13741 uint_t ifindex; 13742 ip_stack_t *ipst = ill->ill_ipst; 13743 boolean_t strict_check = B_FALSE; 13744 13745 /* 13746 * IPMP common case: if IRE and ILL are in the same group, there's no 13747 * issue (e.g. packet received on an underlying interface matched an 13748 * IRE_LOCAL on its associated group interface). 13749 */ 13750 if (ire->ire_rfq != NULL && 13751 IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr)) { 13752 return (ire); 13753 } 13754 13755 /* 13756 * Do another ire lookup here, using the ingress ill, to see if the 13757 * interface is in a usesrc group. 13758 * As long as the ills belong to the same group, we don't consider 13759 * them to be arriving on the wrong interface. Thus, if the switch 13760 * is doing inbound load spreading, we won't drop packets when the 13761 * ip*_strict_dst_multihoming switch is on. 13762 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13763 * where the local address may not be unique. In this case we were 13764 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13765 * actually returned. The new lookup, which is more specific, should 13766 * only find the IRE_LOCAL associated with the ingress ill if one 13767 * exists. 13768 */ 13769 13770 if (ire->ire_ipversion == IPV4_VERSION) { 13771 if (ipst->ips_ip_strict_dst_multihoming) 13772 strict_check = B_TRUE; 13773 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13774 ill->ill_ipif, ALL_ZONES, NULL, 13775 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13776 } else { 13777 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13778 if (ipst->ips_ipv6_strict_dst_multihoming) 13779 strict_check = B_TRUE; 13780 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13781 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13782 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13783 } 13784 /* 13785 * If the same ire that was returned in ip_input() is found then this 13786 * is an indication that usesrc groups are in use. The packet 13787 * arrived on a different ill in the group than the one associated with 13788 * the destination address. If a different ire was found then the same 13789 * IP address must be hosted on multiple ills. This is possible with 13790 * unnumbered point2point interfaces. We switch to use this new ire in 13791 * order to have accurate interface statistics. 13792 */ 13793 if (new_ire != NULL) { 13794 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13795 ire_refrele(ire); 13796 ire = new_ire; 13797 } else { 13798 ire_refrele(new_ire); 13799 } 13800 return (ire); 13801 } else if ((ire->ire_rfq == NULL) && 13802 (ire->ire_ipversion == IPV4_VERSION)) { 13803 /* 13804 * The best match could have been the original ire which 13805 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13806 * the strict multihoming checks are irrelevant as we consider 13807 * local addresses hosted on lo0 to be interface agnostic. We 13808 * only expect a null ire_rfq on IREs which are associated with 13809 * lo0 hence we can return now. 13810 */ 13811 return (ire); 13812 } 13813 13814 /* 13815 * Chase pointers once and store locally. 13816 */ 13817 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13818 (ill_t *)(ire->ire_rfq->q_ptr); 13819 ifindex = ill->ill_usesrc_ifindex; 13820 13821 /* 13822 * Check if it's a legal address on the 'usesrc' interface. 13823 */ 13824 if ((ifindex != 0) && (ire_ill != NULL) && 13825 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13826 return (ire); 13827 } 13828 13829 /* 13830 * If the ip*_strict_dst_multihoming switch is on then we can 13831 * only accept this packet if the interface is marked as routing. 13832 */ 13833 if (!(strict_check)) 13834 return (ire); 13835 13836 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13837 ILLF_ROUTER) != 0) { 13838 return (ire); 13839 } 13840 13841 ire_refrele(ire); 13842 return (NULL); 13843 } 13844 13845 /* 13846 * 13847 * This is the fast forward path. If we are here, we dont need to 13848 * worry about RSVP, CGTP, or TSol. Furthermore the ftable lookup 13849 * needed to find the nexthop in this case is much simpler 13850 */ 13851 ire_t * 13852 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13853 { 13854 ipha_t *ipha; 13855 ire_t *src_ire; 13856 ill_t *stq_ill; 13857 uint_t hlen; 13858 uint_t pkt_len; 13859 uint32_t sum; 13860 queue_t *dev_q; 13861 ip_stack_t *ipst = ill->ill_ipst; 13862 mblk_t *fpmp; 13863 enum ire_forward_action ret_action; 13864 13865 ipha = (ipha_t *)mp->b_rptr; 13866 13867 if (ire != NULL && 13868 ire->ire_zoneid != GLOBAL_ZONEID && 13869 ire->ire_zoneid != ALL_ZONES) { 13870 /* 13871 * Should only use IREs that are visible to the global 13872 * zone for forwarding. 13873 */ 13874 ire_refrele(ire); 13875 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 13876 /* 13877 * ire_cache_lookup() can return ire of IRE_LOCAL in 13878 * transient cases. In such case, just drop the packet 13879 */ 13880 if (ire->ire_type != IRE_CACHE) 13881 goto drop; 13882 } 13883 13884 /* 13885 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13886 * The loopback address check for both src and dst has already 13887 * been checked in ip_input 13888 */ 13889 13890 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13891 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13892 goto drop; 13893 } 13894 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13895 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13896 13897 if (src_ire != NULL) { 13898 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13899 ire_refrele(src_ire); 13900 goto drop; 13901 } 13902 13903 /* No ire cache of nexthop. So first create one */ 13904 if (ire == NULL) { 13905 13906 ire = ire_forward_simple(dst, &ret_action, ipst); 13907 13908 /* 13909 * We only come to ip_fast_forward if ip_cgtp_filter 13910 * is not set. So ire_forward() should not return with 13911 * Forward_check_multirt as the next action. 13912 */ 13913 ASSERT(ret_action != Forward_check_multirt); 13914 if (ire == NULL) { 13915 /* An attempt was made to forward the packet */ 13916 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13917 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13918 mp->b_prev = mp->b_next = 0; 13919 /* send icmp unreachable */ 13920 /* Sent by forwarding path, and router is global zone */ 13921 if (ret_action == Forward_ret_icmp_err) { 13922 if (ip_source_routed(ipha, ipst)) { 13923 icmp_unreachable(ill->ill_wq, mp, 13924 ICMP_SOURCE_ROUTE_FAILED, 13925 GLOBAL_ZONEID, ipst); 13926 } else { 13927 icmp_unreachable(ill->ill_wq, mp, 13928 ICMP_HOST_UNREACHABLE, 13929 GLOBAL_ZONEID, ipst); 13930 } 13931 } else { 13932 freemsg(mp); 13933 } 13934 return (NULL); 13935 } 13936 } 13937 13938 /* 13939 * Forwarding fastpath exception case: 13940 * If any of the following are true, we take the slowpath: 13941 * o forwarding is not enabled 13942 * o incoming and outgoing interface are the same, or in the same 13943 * IPMP group. 13944 * o corresponding ire is in incomplete state 13945 * o packet needs fragmentation 13946 * o ARP cache is not resolved 13947 * 13948 * The codeflow from here on is thus: 13949 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13950 */ 13951 pkt_len = ntohs(ipha->ipha_length); 13952 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13953 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13954 (ill == stq_ill) || IS_IN_SAME_ILLGRP(ill, stq_ill) || 13955 (ire->ire_nce == NULL) || 13956 (pkt_len > ire->ire_max_frag) || 13957 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 13958 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 13959 ipha->ipha_ttl <= 1) { 13960 ip_rput_process_forward(ill->ill_rq, mp, ire, 13961 ipha, ill, B_FALSE, B_TRUE); 13962 return (ire); 13963 } 13964 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13965 13966 DTRACE_PROBE4(ip4__forwarding__start, 13967 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13968 13969 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13970 ipst->ips_ipv4firewall_forwarding, 13971 ill, stq_ill, ipha, mp, mp, 0, ipst); 13972 13973 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13974 13975 if (mp == NULL) 13976 goto drop; 13977 13978 mp->b_datap->db_struioun.cksum.flags = 0; 13979 /* Adjust the checksum to reflect the ttl decrement. */ 13980 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13981 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13982 ipha->ipha_ttl--; 13983 13984 /* 13985 * Write the link layer header. We can do this safely here, 13986 * because we have already tested to make sure that the IP 13987 * policy is not set, and that we have a fast path destination 13988 * header. 13989 */ 13990 mp->b_rptr -= hlen; 13991 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 13992 13993 UPDATE_IB_PKT_COUNT(ire); 13994 ire->ire_last_used_time = lbolt; 13995 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 13996 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 13997 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 13998 13999 if (!ILL_DIRECT_CAPABLE(stq_ill) || DB_TYPE(mp) != M_DATA) { 14000 dev_q = ire->ire_stq->q_next; 14001 if (DEV_Q_FLOW_BLOCKED(dev_q)) 14002 goto indiscard; 14003 } 14004 14005 DTRACE_PROBE4(ip4__physical__out__start, 14006 ill_t *, NULL, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14007 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14008 ipst->ips_ipv4firewall_physical_out, 14009 NULL, stq_ill, ipha, mp, mp, 0, ipst); 14010 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 14011 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, 14012 ipha, __dtrace_ipsr_ill_t *, stq_ill, ipha_t *, ipha, 14013 ip6_t *, NULL, int, 0); 14014 14015 if (mp != NULL) { 14016 if (ipst->ips_ipobs_enabled) { 14017 zoneid_t szone; 14018 14019 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 14020 ipst, ALL_ZONES); 14021 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 14022 ALL_ZONES, ill, IPV4_VERSION, hlen, ipst); 14023 } 14024 ILL_SEND_TX(stq_ill, ire, dst, mp, IP_DROP_ON_NO_DESC, NULL); 14025 } 14026 return (ire); 14027 14028 indiscard: 14029 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14030 drop: 14031 if (mp != NULL) 14032 freemsg(mp); 14033 return (ire); 14034 14035 } 14036 14037 /* 14038 * This function is called in the forwarding slowpath, when 14039 * either the ire lacks the link-layer address, or the packet needs 14040 * further processing(eg. fragmentation), before transmission. 14041 */ 14042 14043 static void 14044 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14045 ill_t *ill, boolean_t ll_multicast, boolean_t from_ip_fast_forward) 14046 { 14047 queue_t *dev_q; 14048 ire_t *src_ire; 14049 ip_stack_t *ipst = ill->ill_ipst; 14050 boolean_t same_illgrp = B_FALSE; 14051 14052 ASSERT(ire->ire_stq != NULL); 14053 14054 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14055 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14056 14057 /* 14058 * If the caller of this function is ip_fast_forward() skip the 14059 * next three checks as it does not apply. 14060 */ 14061 if (from_ip_fast_forward) 14062 goto skip; 14063 14064 if (ll_multicast != 0) { 14065 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14066 goto drop_pkt; 14067 } 14068 14069 /* 14070 * check if ipha_src is a broadcast address. Note that this 14071 * check is redundant when we get here from ip_fast_forward() 14072 * which has already done this check. However, since we can 14073 * also get here from ip_rput_process_broadcast() or, for 14074 * for the slow path through ip_fast_forward(), we perform 14075 * the check again for code-reusability 14076 */ 14077 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14078 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14079 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14080 if (src_ire != NULL) 14081 ire_refrele(src_ire); 14082 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14083 ip2dbg(("ip_rput_process_forward: Received packet with" 14084 " bad src/dst address on %s\n", ill->ill_name)); 14085 goto drop_pkt; 14086 } 14087 14088 /* 14089 * Check if we want to forward this one at this time. 14090 * We allow source routed packets on a host provided that 14091 * they go out the same ill or illgrp as they came in on. 14092 * 14093 * XXX To be quicker, we may wish to not chase pointers to 14094 * get the ILLF_ROUTER flag and instead store the 14095 * forwarding policy in the ire. An unfortunate 14096 * side-effect of that would be requiring an ire flush 14097 * whenever the ILLF_ROUTER flag changes. 14098 */ 14099 skip: 14100 same_illgrp = IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr); 14101 14102 if (((ill->ill_flags & 14103 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & ILLF_ROUTER) == 0) && 14104 !(ip_source_routed(ipha, ipst) && 14105 (ire->ire_rfq == q || same_illgrp))) { 14106 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14107 if (ip_source_routed(ipha, ipst)) { 14108 q = WR(q); 14109 /* 14110 * Clear the indication that this may have 14111 * hardware checksum as we are not using it. 14112 */ 14113 DB_CKSUMFLAGS(mp) = 0; 14114 /* Sent by forwarding path, and router is global zone */ 14115 icmp_unreachable(q, mp, 14116 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14117 return; 14118 } 14119 goto drop_pkt; 14120 } 14121 14122 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14123 14124 /* Packet is being forwarded. Turning off hwcksum flag. */ 14125 DB_CKSUMFLAGS(mp) = 0; 14126 if (ipst->ips_ip_g_send_redirects) { 14127 /* 14128 * Check whether the incoming interface and outgoing 14129 * interface is part of the same group. If so, 14130 * send redirects. 14131 * 14132 * Check the source address to see if it originated 14133 * on the same logical subnet it is going back out on. 14134 * If so, we should be able to send it a redirect. 14135 * Avoid sending a redirect if the destination 14136 * is directly connected (i.e., ipha_dst is the same 14137 * as ire_gateway_addr or the ire_addr of the 14138 * nexthop IRE_CACHE ), or if the packet was source 14139 * routed out this interface. 14140 */ 14141 ipaddr_t src, nhop; 14142 mblk_t *mp1; 14143 ire_t *nhop_ire = NULL; 14144 14145 /* 14146 * Check whether ire_rfq and q are from the same ill or illgrp. 14147 * If so, send redirects. 14148 */ 14149 if ((ire->ire_rfq == q || same_illgrp) && 14150 !ip_source_routed(ipha, ipst)) { 14151 14152 nhop = (ire->ire_gateway_addr != 0 ? 14153 ire->ire_gateway_addr : ire->ire_addr); 14154 14155 if (ipha->ipha_dst == nhop) { 14156 /* 14157 * We avoid sending a redirect if the 14158 * destination is directly connected 14159 * because it is possible that multiple 14160 * IP subnets may have been configured on 14161 * the link, and the source may not 14162 * be on the same subnet as ip destination, 14163 * even though they are on the same 14164 * physical link. 14165 */ 14166 goto sendit; 14167 } 14168 14169 src = ipha->ipha_src; 14170 14171 /* 14172 * We look up the interface ire for the nexthop, 14173 * to see if ipha_src is in the same subnet 14174 * as the nexthop. 14175 * 14176 * Note that, if, in the future, IRE_CACHE entries 14177 * are obsoleted, this lookup will not be needed, 14178 * as the ire passed to this function will be the 14179 * same as the nhop_ire computed below. 14180 */ 14181 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14182 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14183 0, NULL, MATCH_IRE_TYPE, ipst); 14184 14185 if (nhop_ire != NULL) { 14186 if ((src & nhop_ire->ire_mask) == 14187 (nhop & nhop_ire->ire_mask)) { 14188 /* 14189 * The source is directly connected. 14190 * Just copy the ip header (which is 14191 * in the first mblk) 14192 */ 14193 mp1 = copyb(mp); 14194 if (mp1 != NULL) { 14195 icmp_send_redirect(WR(q), mp1, 14196 nhop, ipst); 14197 } 14198 } 14199 ire_refrele(nhop_ire); 14200 } 14201 } 14202 } 14203 sendit: 14204 dev_q = ire->ire_stq->q_next; 14205 if (DEV_Q_FLOW_BLOCKED(dev_q)) { 14206 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14207 freemsg(mp); 14208 return; 14209 } 14210 14211 ip_rput_forward(ire, ipha, mp, ill); 14212 return; 14213 14214 drop_pkt: 14215 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14216 freemsg(mp); 14217 } 14218 14219 ire_t * 14220 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14221 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14222 { 14223 queue_t *q; 14224 uint16_t hcksumflags; 14225 ip_stack_t *ipst = ill->ill_ipst; 14226 14227 q = *qp; 14228 14229 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14230 14231 /* 14232 * Clear the indication that this may have hardware 14233 * checksum as we are not using it for forwarding. 14234 */ 14235 hcksumflags = DB_CKSUMFLAGS(mp); 14236 DB_CKSUMFLAGS(mp) = 0; 14237 14238 /* 14239 * Directed broadcast forwarding: if the packet came in over a 14240 * different interface then it is routed out over we can forward it. 14241 */ 14242 if (ipha->ipha_protocol == IPPROTO_TCP) { 14243 ire_refrele(ire); 14244 freemsg(mp); 14245 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14246 return (NULL); 14247 } 14248 /* 14249 * For multicast we have set dst to be INADDR_BROADCAST 14250 * for delivering to all STREAMS. 14251 */ 14252 if (!CLASSD(ipha->ipha_dst)) { 14253 ire_t *new_ire; 14254 ipif_t *ipif; 14255 14256 ipif = ipif_get_next_ipif(NULL, ill); 14257 if (ipif == NULL) { 14258 discard: ire_refrele(ire); 14259 freemsg(mp); 14260 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14261 return (NULL); 14262 } 14263 new_ire = ire_ctable_lookup(dst, 0, 0, 14264 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14265 ipif_refrele(ipif); 14266 14267 if (new_ire != NULL) { 14268 /* 14269 * If the matching IRE_BROADCAST is part of an IPMP 14270 * group, then drop the packet unless our ill has been 14271 * nominated to receive for the group. 14272 */ 14273 if (IS_IPMP(new_ire->ire_ipif->ipif_ill) && 14274 new_ire->ire_rfq != q) { 14275 ire_refrele(new_ire); 14276 goto discard; 14277 } 14278 14279 /* 14280 * In the special case of multirouted broadcast 14281 * packets, we unconditionally need to "gateway" 14282 * them to the appropriate interface here. 14283 * In the normal case, this cannot happen, because 14284 * there is no broadcast IRE tagged with the 14285 * RTF_MULTIRT flag. 14286 */ 14287 if (new_ire->ire_flags & RTF_MULTIRT) { 14288 ire_refrele(new_ire); 14289 if (ire->ire_rfq != NULL) { 14290 q = ire->ire_rfq; 14291 *qp = q; 14292 } 14293 } else { 14294 ire_refrele(ire); 14295 ire = new_ire; 14296 } 14297 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14298 if (!ipst->ips_ip_g_forward_directed_bcast) { 14299 /* 14300 * Free the message if 14301 * ip_g_forward_directed_bcast is turned 14302 * off for non-local broadcast. 14303 */ 14304 ire_refrele(ire); 14305 freemsg(mp); 14306 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14307 return (NULL); 14308 } 14309 } else { 14310 /* 14311 * This CGTP packet successfully passed the 14312 * CGTP filter, but the related CGTP 14313 * broadcast IRE has not been found, 14314 * meaning that the redundant ipif is 14315 * probably down. However, if we discarded 14316 * this packet, its duplicate would be 14317 * filtered out by the CGTP filter so none 14318 * of them would get through. So we keep 14319 * going with this one. 14320 */ 14321 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14322 if (ire->ire_rfq != NULL) { 14323 q = ire->ire_rfq; 14324 *qp = q; 14325 } 14326 } 14327 } 14328 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14329 /* 14330 * Verify that there are not more then one 14331 * IRE_BROADCAST with this broadcast address which 14332 * has ire_stq set. 14333 * TODO: simplify, loop over all IRE's 14334 */ 14335 ire_t *ire1; 14336 int num_stq = 0; 14337 mblk_t *mp1; 14338 14339 /* Find the first one with ire_stq set */ 14340 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14341 for (ire1 = ire; ire1 && 14342 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14343 ire1 = ire1->ire_next) 14344 ; 14345 if (ire1) { 14346 ire_refrele(ire); 14347 ire = ire1; 14348 IRE_REFHOLD(ire); 14349 } 14350 14351 /* Check if there are additional ones with stq set */ 14352 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14353 if (ire->ire_addr != ire1->ire_addr) 14354 break; 14355 if (ire1->ire_stq) { 14356 num_stq++; 14357 break; 14358 } 14359 } 14360 rw_exit(&ire->ire_bucket->irb_lock); 14361 if (num_stq == 1 && ire->ire_stq != NULL) { 14362 ip1dbg(("ip_rput_process_broadcast: directed " 14363 "broadcast to 0x%x\n", 14364 ntohl(ire->ire_addr))); 14365 mp1 = copymsg(mp); 14366 if (mp1) { 14367 switch (ipha->ipha_protocol) { 14368 case IPPROTO_UDP: 14369 ip_udp_input(q, mp1, ipha, ire, ill); 14370 break; 14371 default: 14372 ip_proto_input(q, mp1, ipha, ire, ill, 14373 0); 14374 break; 14375 } 14376 } 14377 /* 14378 * Adjust ttl to 2 (1+1 - the forward engine 14379 * will decrement it by one. 14380 */ 14381 if (ip_csum_hdr(ipha)) { 14382 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14383 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14384 freemsg(mp); 14385 ire_refrele(ire); 14386 return (NULL); 14387 } 14388 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14389 ipha->ipha_hdr_checksum = 0; 14390 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14391 ip_rput_process_forward(q, mp, ire, ipha, 14392 ill, ll_multicast, B_FALSE); 14393 ire_refrele(ire); 14394 return (NULL); 14395 } 14396 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14397 ntohl(ire->ire_addr))); 14398 } 14399 14400 /* Restore any hardware checksum flags */ 14401 DB_CKSUMFLAGS(mp) = hcksumflags; 14402 return (ire); 14403 } 14404 14405 /* ARGSUSED */ 14406 static boolean_t 14407 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14408 int *ll_multicast, ipaddr_t *dstp) 14409 { 14410 ip_stack_t *ipst = ill->ill_ipst; 14411 14412 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14413 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14414 ntohs(ipha->ipha_length)); 14415 14416 /* 14417 * So that we don't end up with dups, only one ill in an IPMP group is 14418 * nominated to receive multicast traffic. 14419 */ 14420 if (IS_UNDER_IPMP(ill) && !ill->ill_nom_cast) 14421 goto drop_pkt; 14422 14423 /* 14424 * Forward packets only if we have joined the allmulti 14425 * group on this interface. 14426 */ 14427 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14428 int retval; 14429 14430 /* 14431 * Clear the indication that this may have hardware 14432 * checksum as we are not using it. 14433 */ 14434 DB_CKSUMFLAGS(mp) = 0; 14435 retval = ip_mforward(ill, ipha, mp); 14436 /* ip_mforward updates mib variables if needed */ 14437 /* clear b_prev - used by ip_mroute_decap */ 14438 mp->b_prev = NULL; 14439 14440 switch (retval) { 14441 case 0: 14442 /* 14443 * pkt is okay and arrived on phyint. 14444 * 14445 * If we are running as a multicast router 14446 * we need to see all IGMP and/or PIM packets. 14447 */ 14448 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14449 (ipha->ipha_protocol == IPPROTO_PIM)) { 14450 goto done; 14451 } 14452 break; 14453 case -1: 14454 /* pkt is mal-formed, toss it */ 14455 goto drop_pkt; 14456 case 1: 14457 /* pkt is okay and arrived on a tunnel */ 14458 /* 14459 * If we are running a multicast router 14460 * we need to see all igmp packets. 14461 */ 14462 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14463 *dstp = INADDR_BROADCAST; 14464 *ll_multicast = 1; 14465 return (B_FALSE); 14466 } 14467 14468 goto drop_pkt; 14469 } 14470 } 14471 14472 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14473 /* 14474 * This might just be caused by the fact that 14475 * multiple IP Multicast addresses map to the same 14476 * link layer multicast - no need to increment counter! 14477 */ 14478 freemsg(mp); 14479 return (B_TRUE); 14480 } 14481 done: 14482 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14483 /* 14484 * This assumes the we deliver to all streams for multicast 14485 * and broadcast packets. 14486 */ 14487 *dstp = INADDR_BROADCAST; 14488 *ll_multicast = 1; 14489 return (B_FALSE); 14490 drop_pkt: 14491 ip2dbg(("ip_rput: drop pkt\n")); 14492 freemsg(mp); 14493 return (B_TRUE); 14494 } 14495 14496 /* 14497 * This function is used to both return an indication of whether or not 14498 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14499 * and in doing so, determine whether or not it is broadcast vs multicast. 14500 * For it to be a broadcast packet, we must have the appropriate mblk_t 14501 * hanging off the ill_t. If this is either not present or doesn't match 14502 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14503 * to be multicast. Thus NICs that have no broadcast address (or no 14504 * capability for one, such as point to point links) cannot return as 14505 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14506 * the return values simplifies the current use of the return value of this 14507 * function, which is to pass through the multicast/broadcast characteristic 14508 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14509 * changing the return value to some other symbol demands the appropriate 14510 * "translation" when hpe_flags is set prior to calling hook_run() for 14511 * packet events. 14512 */ 14513 int 14514 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14515 { 14516 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14517 mblk_t *bmp; 14518 14519 if (ind->dl_group_address) { 14520 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14521 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14522 MBLKL(mb) && 14523 (bmp = ill->ill_bcast_mp) != NULL) { 14524 dl_unitdata_req_t *dlur; 14525 uint8_t *bphys_addr; 14526 14527 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14528 if (ill->ill_sap_length < 0) 14529 bphys_addr = (uchar_t *)dlur + 14530 dlur->dl_dest_addr_offset; 14531 else 14532 bphys_addr = (uchar_t *)dlur + 14533 dlur->dl_dest_addr_offset + 14534 ill->ill_sap_length; 14535 14536 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14537 bphys_addr, ind->dl_dest_addr_length) == 0) { 14538 return (HPE_BROADCAST); 14539 } 14540 return (HPE_MULTICAST); 14541 } 14542 return (HPE_MULTICAST); 14543 } 14544 return (0); 14545 } 14546 14547 static boolean_t 14548 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14549 int *ll_multicast, mblk_t **mpp) 14550 { 14551 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14552 boolean_t must_copy = B_FALSE; 14553 struct iocblk *iocp; 14554 ipha_t *ipha; 14555 ip_stack_t *ipst = ill->ill_ipst; 14556 14557 #define rptr ((uchar_t *)ipha) 14558 14559 first_mp = *first_mpp; 14560 mp = *mpp; 14561 14562 ASSERT(first_mp == mp); 14563 14564 /* 14565 * if db_ref > 1 then copymsg and free original. Packet may be 14566 * changed and do not want other entity who has a reference to this 14567 * message to trip over the changes. This is a blind change because 14568 * trying to catch all places that might change packet is too 14569 * difficult (since it may be a module above this one) 14570 * 14571 * This corresponds to the non-fast path case. We walk down the full 14572 * chain in this case, and check the db_ref count of all the dblks, 14573 * and do a copymsg if required. It is possible that the db_ref counts 14574 * of the data blocks in the mblk chain can be different. 14575 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14576 * count of 1, followed by a M_DATA block with a ref count of 2, if 14577 * 'snoop' is running. 14578 */ 14579 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14580 if (mp1->b_datap->db_ref > 1) { 14581 must_copy = B_TRUE; 14582 break; 14583 } 14584 } 14585 14586 if (must_copy) { 14587 mp1 = copymsg(mp); 14588 if (mp1 == NULL) { 14589 for (mp1 = mp; mp1 != NULL; 14590 mp1 = mp1->b_cont) { 14591 mp1->b_next = NULL; 14592 mp1->b_prev = NULL; 14593 } 14594 freemsg(mp); 14595 if (ill != NULL) { 14596 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14597 } else { 14598 BUMP_MIB(&ipst->ips_ip_mib, 14599 ipIfStatsInDiscards); 14600 } 14601 return (B_TRUE); 14602 } 14603 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14604 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14605 /* Copy b_prev - used by ip_mroute_decap */ 14606 to_mp->b_prev = from_mp->b_prev; 14607 from_mp->b_prev = NULL; 14608 } 14609 *first_mpp = first_mp = mp1; 14610 freemsg(mp); 14611 mp = mp1; 14612 *mpp = mp1; 14613 } 14614 14615 ipha = (ipha_t *)mp->b_rptr; 14616 14617 /* 14618 * previous code has a case for M_DATA. 14619 * We want to check how that happens. 14620 */ 14621 ASSERT(first_mp->b_datap->db_type != M_DATA); 14622 switch (first_mp->b_datap->db_type) { 14623 case M_PROTO: 14624 case M_PCPROTO: 14625 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14626 DL_UNITDATA_IND) { 14627 /* Go handle anything other than data elsewhere. */ 14628 ip_rput_dlpi(q, mp); 14629 return (B_TRUE); 14630 } 14631 14632 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14633 /* Ditch the DLPI header. */ 14634 mp1 = mp->b_cont; 14635 ASSERT(first_mp == mp); 14636 *first_mpp = mp1; 14637 freeb(mp); 14638 *mpp = mp1; 14639 return (B_FALSE); 14640 case M_IOCACK: 14641 ip1dbg(("got iocack ")); 14642 iocp = (struct iocblk *)mp->b_rptr; 14643 switch (iocp->ioc_cmd) { 14644 case DL_IOC_HDR_INFO: 14645 ill = (ill_t *)q->q_ptr; 14646 ill_fastpath_ack(ill, mp); 14647 return (B_TRUE); 14648 case SIOCSTUNPARAM: 14649 case OSIOCSTUNPARAM: 14650 /* Go through qwriter_ip */ 14651 break; 14652 case SIOCGTUNPARAM: 14653 case OSIOCGTUNPARAM: 14654 ip_rput_other(NULL, q, mp, NULL); 14655 return (B_TRUE); 14656 default: 14657 putnext(q, mp); 14658 return (B_TRUE); 14659 } 14660 /* FALLTHRU */ 14661 case M_ERROR: 14662 case M_HANGUP: 14663 /* 14664 * Since this is on the ill stream we unconditionally 14665 * bump up the refcount 14666 */ 14667 ill_refhold(ill); 14668 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14669 return (B_TRUE); 14670 case M_CTL: 14671 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14672 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14673 IPHADA_M_CTL)) { 14674 /* 14675 * It's an IPsec accelerated packet. 14676 * Make sure that the ill from which we received the 14677 * packet has enabled IPsec hardware acceleration. 14678 */ 14679 if (!(ill->ill_capabilities & 14680 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14681 /* IPsec kstats: bean counter */ 14682 freemsg(mp); 14683 return (B_TRUE); 14684 } 14685 14686 /* 14687 * Make mp point to the mblk following the M_CTL, 14688 * then process according to type of mp. 14689 * After this processing, first_mp will point to 14690 * the data-attributes and mp to the pkt following 14691 * the M_CTL. 14692 */ 14693 mp = first_mp->b_cont; 14694 if (mp == NULL) { 14695 freemsg(first_mp); 14696 return (B_TRUE); 14697 } 14698 /* 14699 * A Hardware Accelerated packet can only be M_DATA 14700 * ESP or AH packet. 14701 */ 14702 if (mp->b_datap->db_type != M_DATA) { 14703 /* non-M_DATA IPsec accelerated packet */ 14704 IPSECHW_DEBUG(IPSECHW_PKT, 14705 ("non-M_DATA IPsec accelerated pkt\n")); 14706 freemsg(first_mp); 14707 return (B_TRUE); 14708 } 14709 ipha = (ipha_t *)mp->b_rptr; 14710 if (ipha->ipha_protocol != IPPROTO_AH && 14711 ipha->ipha_protocol != IPPROTO_ESP) { 14712 IPSECHW_DEBUG(IPSECHW_PKT, 14713 ("non-M_DATA IPsec accelerated pkt\n")); 14714 freemsg(first_mp); 14715 return (B_TRUE); 14716 } 14717 *mpp = mp; 14718 return (B_FALSE); 14719 } 14720 putnext(q, mp); 14721 return (B_TRUE); 14722 case M_IOCNAK: 14723 ip1dbg(("got iocnak ")); 14724 iocp = (struct iocblk *)mp->b_rptr; 14725 switch (iocp->ioc_cmd) { 14726 case SIOCSTUNPARAM: 14727 case OSIOCSTUNPARAM: 14728 /* 14729 * Since this is on the ill stream we unconditionally 14730 * bump up the refcount 14731 */ 14732 ill_refhold(ill); 14733 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14734 return (B_TRUE); 14735 case DL_IOC_HDR_INFO: 14736 case SIOCGTUNPARAM: 14737 case OSIOCGTUNPARAM: 14738 ip_rput_other(NULL, q, mp, NULL); 14739 return (B_TRUE); 14740 default: 14741 break; 14742 } 14743 /* FALLTHRU */ 14744 default: 14745 putnext(q, mp); 14746 return (B_TRUE); 14747 } 14748 } 14749 14750 /* Read side put procedure. Packets coming from the wire arrive here. */ 14751 void 14752 ip_rput(queue_t *q, mblk_t *mp) 14753 { 14754 ill_t *ill; 14755 union DL_primitives *dl; 14756 14757 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14758 14759 ill = (ill_t *)q->q_ptr; 14760 14761 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14762 /* 14763 * If things are opening or closing, only accept high-priority 14764 * DLPI messages. (On open ill->ill_ipif has not yet been 14765 * created; on close, things hanging off the ill may have been 14766 * freed already.) 14767 */ 14768 dl = (union DL_primitives *)mp->b_rptr; 14769 if (DB_TYPE(mp) != M_PCPROTO || 14770 dl->dl_primitive == DL_UNITDATA_IND) { 14771 /* 14772 * SIOC[GS]TUNPARAM ioctls can come here. 14773 */ 14774 inet_freemsg(mp); 14775 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14776 "ip_rput_end: q %p (%S)", q, "uninit"); 14777 return; 14778 } 14779 } 14780 14781 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14782 "ip_rput_end: q %p (%S)", q, "end"); 14783 14784 ip_input(ill, NULL, mp, NULL); 14785 } 14786 14787 static mblk_t * 14788 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14789 { 14790 mblk_t *mp1; 14791 boolean_t adjusted = B_FALSE; 14792 ip_stack_t *ipst = ill->ill_ipst; 14793 14794 IP_STAT(ipst, ip_db_ref); 14795 /* 14796 * The IP_RECVSLLA option depends on having the 14797 * link layer header. First check that: 14798 * a> the underlying device is of type ether, 14799 * since this option is currently supported only 14800 * over ethernet. 14801 * b> there is enough room to copy over the link 14802 * layer header. 14803 * 14804 * Once the checks are done, adjust rptr so that 14805 * the link layer header will be copied via 14806 * copymsg. Note that, IFT_ETHER may be returned 14807 * by some non-ethernet drivers but in this case 14808 * the second check will fail. 14809 */ 14810 if (ill->ill_type == IFT_ETHER && 14811 (mp->b_rptr - mp->b_datap->db_base) >= 14812 sizeof (struct ether_header)) { 14813 mp->b_rptr -= sizeof (struct ether_header); 14814 adjusted = B_TRUE; 14815 } 14816 mp1 = copymsg(mp); 14817 14818 if (mp1 == NULL) { 14819 mp->b_next = NULL; 14820 /* clear b_prev - used by ip_mroute_decap */ 14821 mp->b_prev = NULL; 14822 freemsg(mp); 14823 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14824 return (NULL); 14825 } 14826 14827 if (adjusted) { 14828 /* 14829 * Copy is done. Restore the pointer in 14830 * the _new_ mblk 14831 */ 14832 mp1->b_rptr += sizeof (struct ether_header); 14833 } 14834 14835 /* Copy b_prev - used by ip_mroute_decap */ 14836 mp1->b_prev = mp->b_prev; 14837 mp->b_prev = NULL; 14838 14839 /* preserve the hardware checksum flags and data, if present */ 14840 if (DB_CKSUMFLAGS(mp) != 0) { 14841 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14842 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14843 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14844 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14845 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14846 } 14847 14848 freemsg(mp); 14849 return (mp1); 14850 } 14851 14852 #define ADD_TO_CHAIN(head, tail, cnt, mp) { \ 14853 if (tail != NULL) \ 14854 tail->b_next = mp; \ 14855 else \ 14856 head = mp; \ 14857 tail = mp; \ 14858 cnt++; \ 14859 } 14860 14861 /* 14862 * Direct read side procedure capable of dealing with chains. GLDv3 based 14863 * drivers call this function directly with mblk chains while STREAMS 14864 * read side procedure ip_rput() calls this for single packet with ip_ring 14865 * set to NULL to process one packet at a time. 14866 * 14867 * The ill will always be valid if this function is called directly from 14868 * the driver. 14869 * 14870 * If ip_input() is called from GLDv3: 14871 * 14872 * - This must be a non-VLAN IP stream. 14873 * - 'mp' is either an untagged or a special priority-tagged packet. 14874 * - Any VLAN tag that was in the MAC header has been stripped. 14875 * 14876 * If the IP header in packet is not 32-bit aligned, every message in the 14877 * chain will be aligned before further operations. This is required on SPARC 14878 * platform. 14879 */ 14880 /* ARGSUSED */ 14881 void 14882 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14883 struct mac_header_info_s *mhip) 14884 { 14885 ipaddr_t dst = NULL; 14886 ipaddr_t prev_dst; 14887 ire_t *ire = NULL; 14888 ipha_t *ipha; 14889 uint_t pkt_len; 14890 ssize_t len; 14891 uint_t opt_len; 14892 int ll_multicast; 14893 int cgtp_flt_pkt; 14894 queue_t *q = ill->ill_rq; 14895 squeue_t *curr_sqp = NULL; 14896 mblk_t *head = NULL; 14897 mblk_t *tail = NULL; 14898 mblk_t *first_mp; 14899 int cnt = 0; 14900 ip_stack_t *ipst = ill->ill_ipst; 14901 mblk_t *mp; 14902 mblk_t *dmp; 14903 uint8_t tag; 14904 14905 ASSERT(mp_chain != NULL); 14906 ASSERT(ill != NULL); 14907 14908 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14909 14910 tag = (ip_ring != NULL) ? SQTAG_IP_INPUT_RX_RING : SQTAG_IP_INPUT; 14911 14912 #define rptr ((uchar_t *)ipha) 14913 14914 while (mp_chain != NULL) { 14915 mp = mp_chain; 14916 mp_chain = mp_chain->b_next; 14917 mp->b_next = NULL; 14918 ll_multicast = 0; 14919 14920 /* 14921 * We do ire caching from one iteration to 14922 * another. In the event the packet chain contains 14923 * all packets from the same dst, this caching saves 14924 * an ire_cache_lookup for each of the succeeding 14925 * packets in a packet chain. 14926 */ 14927 prev_dst = dst; 14928 14929 /* 14930 * if db_ref > 1 then copymsg and free original. Packet 14931 * may be changed and we do not want the other entity 14932 * who has a reference to this message to trip over the 14933 * changes. This is a blind change because trying to 14934 * catch all places that might change the packet is too 14935 * difficult. 14936 * 14937 * This corresponds to the fast path case, where we have 14938 * a chain of M_DATA mblks. We check the db_ref count 14939 * of only the 1st data block in the mblk chain. There 14940 * doesn't seem to be a reason why a device driver would 14941 * send up data with varying db_ref counts in the mblk 14942 * chain. In any case the Fast path is a private 14943 * interface, and our drivers don't do such a thing. 14944 * Given the above assumption, there is no need to walk 14945 * down the entire mblk chain (which could have a 14946 * potential performance problem) 14947 * 14948 * The "(DB_REF(mp) > 1)" check was moved from ip_rput() 14949 * to here because of exclusive ip stacks and vnics. 14950 * Packets transmitted from exclusive stack over vnic 14951 * can have db_ref > 1 and when it gets looped back to 14952 * another vnic in a different zone, you have ip_input() 14953 * getting dblks with db_ref > 1. So if someone 14954 * complains of TCP performance under this scenario, 14955 * take a serious look here on the impact of copymsg(). 14956 */ 14957 14958 if (DB_REF(mp) > 1) { 14959 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14960 continue; 14961 } 14962 14963 /* 14964 * Check and align the IP header. 14965 */ 14966 first_mp = mp; 14967 if (DB_TYPE(mp) == M_DATA) { 14968 dmp = mp; 14969 } else if (DB_TYPE(mp) == M_PROTO && 14970 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14971 dmp = mp->b_cont; 14972 } else { 14973 dmp = NULL; 14974 } 14975 if (dmp != NULL) { 14976 /* 14977 * IP header ptr not aligned? 14978 * OR IP header not complete in first mblk 14979 */ 14980 if (!OK_32PTR(dmp->b_rptr) || 14981 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14982 if (!ip_check_and_align_header(q, dmp, ipst)) 14983 continue; 14984 } 14985 } 14986 14987 /* 14988 * ip_input fast path 14989 */ 14990 14991 /* mblk type is not M_DATA */ 14992 if (DB_TYPE(mp) != M_DATA) { 14993 if (ip_rput_process_notdata(q, &first_mp, ill, 14994 &ll_multicast, &mp)) 14995 continue; 14996 14997 /* 14998 * The only way we can get here is if we had a 14999 * packet that was either a DL_UNITDATA_IND or 15000 * an M_CTL for an IPsec accelerated packet. 15001 * 15002 * In either case, the first_mp will point to 15003 * the leading M_PROTO or M_CTL. 15004 */ 15005 ASSERT(first_mp != NULL); 15006 } else if (mhip != NULL) { 15007 /* 15008 * ll_multicast is set here so that it is ready 15009 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 15010 * manipulates ll_multicast in the same fashion when 15011 * called from ip_rput_process_notdata. 15012 */ 15013 switch (mhip->mhi_dsttype) { 15014 case MAC_ADDRTYPE_MULTICAST : 15015 ll_multicast = HPE_MULTICAST; 15016 break; 15017 case MAC_ADDRTYPE_BROADCAST : 15018 ll_multicast = HPE_BROADCAST; 15019 break; 15020 default : 15021 break; 15022 } 15023 } 15024 15025 /* Only M_DATA can come here and it is always aligned */ 15026 ASSERT(DB_TYPE(mp) == M_DATA); 15027 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15028 15029 ipha = (ipha_t *)mp->b_rptr; 15030 len = mp->b_wptr - rptr; 15031 pkt_len = ntohs(ipha->ipha_length); 15032 15033 /* 15034 * We must count all incoming packets, even if they end 15035 * up being dropped later on. 15036 */ 15037 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15038 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15039 15040 /* multiple mblk or too short */ 15041 len -= pkt_len; 15042 if (len != 0) { 15043 /* 15044 * Make sure we have data length consistent 15045 * with the IP header. 15046 */ 15047 if (mp->b_cont == NULL) { 15048 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15049 BUMP_MIB(ill->ill_ip_mib, 15050 ipIfStatsInHdrErrors); 15051 ip2dbg(("ip_input: drop pkt\n")); 15052 freemsg(mp); 15053 continue; 15054 } 15055 mp->b_wptr = rptr + pkt_len; 15056 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15057 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15058 BUMP_MIB(ill->ill_ip_mib, 15059 ipIfStatsInHdrErrors); 15060 ip2dbg(("ip_input: drop pkt\n")); 15061 freemsg(mp); 15062 continue; 15063 } 15064 (void) adjmsg(mp, -len); 15065 IP_STAT(ipst, ip_multimblk3); 15066 } 15067 } 15068 15069 /* Obtain the dst of the current packet */ 15070 dst = ipha->ipha_dst; 15071 15072 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, 15073 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, 15074 ipha, ip6_t *, NULL, int, 0); 15075 15076 /* 15077 * The following test for loopback is faster than 15078 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15079 * operations. 15080 * Note that these addresses are always in network byte order 15081 */ 15082 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15083 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15084 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15085 freemsg(mp); 15086 continue; 15087 } 15088 15089 /* 15090 * The event for packets being received from a 'physical' 15091 * interface is placed after validation of the source and/or 15092 * destination address as being local so that packets can be 15093 * redirected to loopback addresses using ipnat. 15094 */ 15095 DTRACE_PROBE4(ip4__physical__in__start, 15096 ill_t *, ill, ill_t *, NULL, 15097 ipha_t *, ipha, mblk_t *, first_mp); 15098 15099 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15100 ipst->ips_ipv4firewall_physical_in, 15101 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15102 15103 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15104 15105 if (first_mp == NULL) { 15106 continue; 15107 } 15108 dst = ipha->ipha_dst; 15109 /* 15110 * Attach any necessary label information to 15111 * this packet 15112 */ 15113 if (is_system_labeled() && 15114 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15115 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15116 freemsg(mp); 15117 continue; 15118 } 15119 15120 if (ipst->ips_ipobs_enabled) { 15121 zoneid_t dzone; 15122 15123 /* 15124 * On the inbound path the src zone will be unknown as 15125 * this packet has come from the wire. 15126 */ 15127 dzone = ip_get_zoneid_v4(dst, mp, ipst, ALL_ZONES); 15128 ipobs_hook(mp, IPOBS_HOOK_INBOUND, ALL_ZONES, dzone, 15129 ill, IPV4_VERSION, 0, ipst); 15130 } 15131 15132 /* 15133 * Reuse the cached ire only if the ipha_dst of the previous 15134 * packet is the same as the current packet AND it is not 15135 * INADDR_ANY. 15136 */ 15137 if (!(dst == prev_dst && dst != INADDR_ANY) && 15138 (ire != NULL)) { 15139 ire_refrele(ire); 15140 ire = NULL; 15141 } 15142 15143 opt_len = ipha->ipha_version_and_hdr_length - 15144 IP_SIMPLE_HDR_VERSION; 15145 15146 /* 15147 * Check to see if we can take the fastpath. 15148 * That is possible if the following conditions are met 15149 * o Tsol disabled 15150 * o CGTP disabled 15151 * o ipp_action_count is 0 15152 * o no options in the packet 15153 * o not a RSVP packet 15154 * o not a multicast packet 15155 * o ill not in IP_DHCPINIT_IF mode 15156 */ 15157 if (!is_system_labeled() && 15158 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15159 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15160 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15161 if (ire == NULL) 15162 ire = ire_cache_lookup_simple(dst, ipst); 15163 /* 15164 * Unless forwarding is enabled, dont call 15165 * ip_fast_forward(). Incoming packet is for forwarding 15166 */ 15167 if ((ill->ill_flags & ILLF_ROUTER) && 15168 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15169 ire = ip_fast_forward(ire, dst, ill, mp); 15170 continue; 15171 } 15172 /* incoming packet is for local consumption */ 15173 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15174 goto local; 15175 } 15176 15177 /* 15178 * Disable ire caching for anything more complex 15179 * than the simple fast path case we checked for above. 15180 */ 15181 if (ire != NULL) { 15182 ire_refrele(ire); 15183 ire = NULL; 15184 } 15185 15186 /* 15187 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15188 * server to unicast DHCP packets to a DHCP client using the 15189 * IP address it is offering to the client. This can be 15190 * disabled through the "broadcast bit", but not all DHCP 15191 * servers honor that bit. Therefore, to interoperate with as 15192 * many DHCP servers as possible, the DHCP client allows the 15193 * server to unicast, but we treat those packets as broadcast 15194 * here. Note that we don't rewrite the packet itself since 15195 * (a) that would mess up the checksums and (b) the DHCP 15196 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15197 * hand it the packet regardless. 15198 */ 15199 if (ill->ill_dhcpinit != 0 && 15200 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15201 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15202 udpha_t *udpha; 15203 15204 /* 15205 * Reload ipha since pullupmsg() can change b_rptr. 15206 */ 15207 ipha = (ipha_t *)mp->b_rptr; 15208 udpha = (udpha_t *)&ipha[1]; 15209 15210 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15211 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15212 mblk_t *, mp); 15213 dst = INADDR_BROADCAST; 15214 } 15215 } 15216 15217 /* Full-blown slow path */ 15218 if (opt_len != 0) { 15219 if (len != 0) 15220 IP_STAT(ipst, ip_multimblk4); 15221 else 15222 IP_STAT(ipst, ip_ipoptions); 15223 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15224 &dst, ipst)) 15225 continue; 15226 } 15227 15228 /* 15229 * Invoke the CGTP (multirouting) filtering module to process 15230 * the incoming packet. Packets identified as duplicates 15231 * must be discarded. Filtering is active only if the 15232 * the ip_cgtp_filter ndd variable is non-zero. 15233 */ 15234 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15235 if (ipst->ips_ip_cgtp_filter && 15236 ipst->ips_ip_cgtp_filter_ops != NULL) { 15237 netstackid_t stackid; 15238 15239 stackid = ipst->ips_netstack->netstack_stackid; 15240 cgtp_flt_pkt = 15241 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15242 ill->ill_phyint->phyint_ifindex, mp); 15243 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15244 freemsg(first_mp); 15245 continue; 15246 } 15247 } 15248 15249 /* 15250 * If rsvpd is running, let RSVP daemon handle its processing 15251 * and forwarding of RSVP multicast/unicast packets. 15252 * If rsvpd is not running but mrouted is running, RSVP 15253 * multicast packets are forwarded as multicast traffic 15254 * and RSVP unicast packets are forwarded by unicast router. 15255 * If neither rsvpd nor mrouted is running, RSVP multicast 15256 * packets are not forwarded, but the unicast packets are 15257 * forwarded like unicast traffic. 15258 */ 15259 if (ipha->ipha_protocol == IPPROTO_RSVP && 15260 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15261 NULL) { 15262 /* RSVP packet and rsvpd running. Treat as ours */ 15263 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15264 /* 15265 * This assumes that we deliver to all streams for 15266 * multicast and broadcast packets. 15267 * We have to force ll_multicast to 1 to handle the 15268 * M_DATA messages passed in from ip_mroute_decap. 15269 */ 15270 dst = INADDR_BROADCAST; 15271 ll_multicast = 1; 15272 } else if (CLASSD(dst)) { 15273 /* packet is multicast */ 15274 mp->b_next = NULL; 15275 if (ip_rput_process_multicast(q, mp, ill, ipha, 15276 &ll_multicast, &dst)) 15277 continue; 15278 } 15279 15280 if (ire == NULL) { 15281 ire = ire_cache_lookup(dst, ALL_ZONES, 15282 msg_getlabel(mp), ipst); 15283 } 15284 15285 if (ire != NULL && ire->ire_stq != NULL && 15286 ire->ire_zoneid != GLOBAL_ZONEID && 15287 ire->ire_zoneid != ALL_ZONES) { 15288 /* 15289 * Should only use IREs that are visible from the 15290 * global zone for forwarding. 15291 */ 15292 ire_refrele(ire); 15293 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15294 msg_getlabel(mp), ipst); 15295 } 15296 15297 if (ire == NULL) { 15298 /* 15299 * No IRE for this destination, so it can't be for us. 15300 * Unless we are forwarding, drop the packet. 15301 * We have to let source routed packets through 15302 * since we don't yet know if they are 'ping -l' 15303 * packets i.e. if they will go out over the 15304 * same interface as they came in on. 15305 */ 15306 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15307 if (ire == NULL) 15308 continue; 15309 } 15310 15311 /* 15312 * Broadcast IRE may indicate either broadcast or 15313 * multicast packet 15314 */ 15315 if (ire->ire_type == IRE_BROADCAST) { 15316 /* 15317 * Skip broadcast checks if packet is UDP multicast; 15318 * we'd rather not enter ip_rput_process_broadcast() 15319 * unless the packet is broadcast for real, since 15320 * that routine is a no-op for multicast. 15321 */ 15322 if (ipha->ipha_protocol != IPPROTO_UDP || 15323 !CLASSD(ipha->ipha_dst)) { 15324 ire = ip_rput_process_broadcast(&q, mp, 15325 ire, ipha, ill, dst, cgtp_flt_pkt, 15326 ll_multicast); 15327 if (ire == NULL) 15328 continue; 15329 } 15330 } else if (ire->ire_stq != NULL) { 15331 /* fowarding? */ 15332 ip_rput_process_forward(q, mp, ire, ipha, ill, 15333 ll_multicast, B_FALSE); 15334 /* ip_rput_process_forward consumed the packet */ 15335 continue; 15336 } 15337 15338 local: 15339 /* 15340 * If the queue in the ire is different to the ingress queue 15341 * then we need to check to see if we can accept the packet. 15342 * Note that for multicast packets and broadcast packets sent 15343 * to a broadcast address which is shared between multiple 15344 * interfaces we should not do this since we just got a random 15345 * broadcast ire. 15346 */ 15347 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15348 ire = ip_check_multihome(&ipha->ipha_dst, ire, ill); 15349 if (ire == NULL) { 15350 /* Drop packet */ 15351 BUMP_MIB(ill->ill_ip_mib, 15352 ipIfStatsForwProhibits); 15353 freemsg(mp); 15354 continue; 15355 } 15356 if (ire->ire_rfq != NULL) 15357 q = ire->ire_rfq; 15358 } 15359 15360 switch (ipha->ipha_protocol) { 15361 case IPPROTO_TCP: 15362 ASSERT(first_mp == mp); 15363 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15364 mp, 0, q, ip_ring)) != NULL) { 15365 if (curr_sqp == NULL) { 15366 curr_sqp = GET_SQUEUE(mp); 15367 ASSERT(cnt == 0); 15368 cnt++; 15369 head = tail = mp; 15370 } else if (curr_sqp == GET_SQUEUE(mp)) { 15371 ASSERT(tail != NULL); 15372 cnt++; 15373 tail->b_next = mp; 15374 tail = mp; 15375 } else { 15376 /* 15377 * A different squeue. Send the 15378 * chain for the previous squeue on 15379 * its way. This shouldn't happen 15380 * often unless interrupt binding 15381 * changes. 15382 */ 15383 IP_STAT(ipst, ip_input_multi_squeue); 15384 SQUEUE_ENTER(curr_sqp, head, 15385 tail, cnt, SQ_PROCESS, tag); 15386 curr_sqp = GET_SQUEUE(mp); 15387 head = mp; 15388 tail = mp; 15389 cnt = 1; 15390 } 15391 } 15392 continue; 15393 case IPPROTO_UDP: 15394 ASSERT(first_mp == mp); 15395 ip_udp_input(q, mp, ipha, ire, ill); 15396 continue; 15397 case IPPROTO_SCTP: 15398 ASSERT(first_mp == mp); 15399 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15400 q, dst); 15401 /* ire has been released by ip_sctp_input */ 15402 ire = NULL; 15403 continue; 15404 default: 15405 ip_proto_input(q, first_mp, ipha, ire, ill, 0); 15406 continue; 15407 } 15408 } 15409 15410 if (ire != NULL) 15411 ire_refrele(ire); 15412 15413 if (head != NULL) 15414 SQUEUE_ENTER(curr_sqp, head, tail, cnt, SQ_PROCESS, tag); 15415 15416 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15417 "ip_input_end: q %p (%S)", q, "end"); 15418 #undef rptr 15419 } 15420 15421 /* 15422 * ip_accept_tcp() - This function is called by the squeue when it retrieves 15423 * a chain of packets in the poll mode. The packets have gone through the 15424 * data link processing but not IP processing. For performance and latency 15425 * reasons, the squeue wants to process the chain in line instead of feeding 15426 * it back via ip_input path. 15427 * 15428 * So this is a light weight function which checks to see if the packets 15429 * retrived are indeed TCP packets (TCP squeue always polls TCP soft ring 15430 * but we still do the paranoid check) meant for local machine and we don't 15431 * have labels etc enabled. Packets that meet the criterion are returned to 15432 * the squeue and processed inline while the rest go via ip_input path. 15433 */ 15434 /*ARGSUSED*/ 15435 mblk_t * 15436 ip_accept_tcp(ill_t *ill, ill_rx_ring_t *ip_ring, squeue_t *target_sqp, 15437 mblk_t *mp_chain, mblk_t **last, uint_t *cnt) 15438 { 15439 mblk_t *mp; 15440 ipaddr_t dst = NULL; 15441 ipaddr_t prev_dst; 15442 ire_t *ire = NULL; 15443 ipha_t *ipha; 15444 uint_t pkt_len; 15445 ssize_t len; 15446 uint_t opt_len; 15447 queue_t *q = ill->ill_rq; 15448 squeue_t *curr_sqp; 15449 mblk_t *ahead = NULL; /* Accepted head */ 15450 mblk_t *atail = NULL; /* Accepted tail */ 15451 uint_t acnt = 0; /* Accepted count */ 15452 mblk_t *utail = NULL; /* Unaccepted head */ 15453 mblk_t *uhead = NULL; /* Unaccepted tail */ 15454 uint_t ucnt = 0; /* Unaccepted cnt */ 15455 ip_stack_t *ipst = ill->ill_ipst; 15456 15457 *cnt = 0; 15458 15459 ASSERT(ill != NULL); 15460 ASSERT(ip_ring != NULL); 15461 15462 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_accept_tcp: q %p", q); 15463 15464 #define rptr ((uchar_t *)ipha) 15465 15466 while (mp_chain != NULL) { 15467 mp = mp_chain; 15468 mp_chain = mp_chain->b_next; 15469 mp->b_next = NULL; 15470 15471 /* 15472 * We do ire caching from one iteration to 15473 * another. In the event the packet chain contains 15474 * all packets from the same dst, this caching saves 15475 * an ire_cache_lookup for each of the succeeding 15476 * packets in a packet chain. 15477 */ 15478 prev_dst = dst; 15479 15480 ipha = (ipha_t *)mp->b_rptr; 15481 len = mp->b_wptr - rptr; 15482 15483 ASSERT(!MBLK_RX_FANOUT_SLOWPATH(mp, ipha)); 15484 15485 /* 15486 * If it is a non TCP packet, or doesn't have H/W cksum, 15487 * or doesn't have min len, reject. 15488 */ 15489 if ((ipha->ipha_protocol != IPPROTO_TCP) || (len < 15490 (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH))) { 15491 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15492 continue; 15493 } 15494 15495 pkt_len = ntohs(ipha->ipha_length); 15496 if (len != pkt_len) { 15497 if (len > pkt_len) { 15498 mp->b_wptr = rptr + pkt_len; 15499 } else { 15500 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15501 continue; 15502 } 15503 } 15504 15505 opt_len = ipha->ipha_version_and_hdr_length - 15506 IP_SIMPLE_HDR_VERSION; 15507 dst = ipha->ipha_dst; 15508 15509 /* IP version bad or there are IP options */ 15510 if (opt_len && (!ip_rput_multimblk_ipoptions(q, ill, 15511 mp, &ipha, &dst, ipst))) 15512 continue; 15513 15514 if (is_system_labeled() || (ill->ill_dhcpinit != 0) || 15515 (ipst->ips_ip_cgtp_filter && 15516 ipst->ips_ip_cgtp_filter_ops != NULL)) { 15517 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15518 continue; 15519 } 15520 15521 /* 15522 * Reuse the cached ire only if the ipha_dst of the previous 15523 * packet is the same as the current packet AND it is not 15524 * INADDR_ANY. 15525 */ 15526 if (!(dst == prev_dst && dst != INADDR_ANY) && 15527 (ire != NULL)) { 15528 ire_refrele(ire); 15529 ire = NULL; 15530 } 15531 15532 if (ire == NULL) 15533 ire = ire_cache_lookup_simple(dst, ipst); 15534 15535 /* 15536 * Unless forwarding is enabled, dont call 15537 * ip_fast_forward(). Incoming packet is for forwarding 15538 */ 15539 if ((ill->ill_flags & ILLF_ROUTER) && 15540 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15541 15542 DTRACE_PROBE4(ip4__physical__in__start, 15543 ill_t *, ill, ill_t *, NULL, 15544 ipha_t *, ipha, mblk_t *, mp); 15545 15546 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15547 ipst->ips_ipv4firewall_physical_in, 15548 ill, NULL, ipha, mp, mp, 0, ipst); 15549 15550 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15551 15552 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15553 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, 15554 pkt_len); 15555 15556 if (mp != NULL) 15557 ire = ip_fast_forward(ire, dst, ill, mp); 15558 continue; 15559 } 15560 15561 /* incoming packet is for local consumption */ 15562 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15563 goto local_accept; 15564 15565 /* 15566 * Disable ire caching for anything more complex 15567 * than the simple fast path case we checked for above. 15568 */ 15569 if (ire != NULL) { 15570 ire_refrele(ire); 15571 ire = NULL; 15572 } 15573 15574 ire = ire_cache_lookup(dst, ALL_ZONES, msg_getlabel(mp), 15575 ipst); 15576 if (ire == NULL || ire->ire_type == IRE_BROADCAST || 15577 ire->ire_stq != NULL) { 15578 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15579 if (ire != NULL) { 15580 ire_refrele(ire); 15581 ire = NULL; 15582 } 15583 continue; 15584 } 15585 15586 local_accept: 15587 15588 if (ire->ire_rfq != q) { 15589 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15590 if (ire != NULL) { 15591 ire_refrele(ire); 15592 ire = NULL; 15593 } 15594 continue; 15595 } 15596 15597 /* 15598 * The event for packets being received from a 'physical' 15599 * interface is placed after validation of the source and/or 15600 * destination address as being local so that packets can be 15601 * redirected to loopback addresses using ipnat. 15602 */ 15603 DTRACE_PROBE4(ip4__physical__in__start, 15604 ill_t *, ill, ill_t *, NULL, 15605 ipha_t *, ipha, mblk_t *, mp); 15606 15607 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15608 ipst->ips_ipv4firewall_physical_in, 15609 ill, NULL, ipha, mp, mp, 0, ipst); 15610 15611 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15612 15613 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15614 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15615 15616 if (mp != NULL && 15617 (mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, mp, 15618 0, q, ip_ring)) != NULL) { 15619 if ((curr_sqp = GET_SQUEUE(mp)) == target_sqp) { 15620 ADD_TO_CHAIN(ahead, atail, acnt, mp); 15621 } else { 15622 SQUEUE_ENTER(curr_sqp, mp, mp, 1, 15623 SQ_FILL, SQTAG_IP_INPUT); 15624 } 15625 } 15626 } 15627 15628 if (ire != NULL) 15629 ire_refrele(ire); 15630 15631 if (uhead != NULL) 15632 ip_input(ill, ip_ring, uhead, NULL); 15633 15634 if (ahead != NULL) { 15635 *last = atail; 15636 *cnt = acnt; 15637 return (ahead); 15638 } 15639 15640 return (NULL); 15641 #undef rptr 15642 } 15643 15644 static void 15645 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15646 t_uscalar_t err) 15647 { 15648 if (dl_err == DL_SYSERR) { 15649 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15650 "%s: %s failed: DL_SYSERR (errno %u)\n", 15651 ill->ill_name, dl_primstr(prim), err); 15652 return; 15653 } 15654 15655 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15656 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15657 dl_errstr(dl_err)); 15658 } 15659 15660 /* 15661 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15662 * than DL_UNITDATA_IND messages. If we need to process this message 15663 * exclusively, we call qwriter_ip, in which case we also need to call 15664 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15665 */ 15666 void 15667 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15668 { 15669 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15670 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15671 ill_t *ill = q->q_ptr; 15672 t_uscalar_t prim = dloa->dl_primitive; 15673 t_uscalar_t reqprim = DL_PRIM_INVAL; 15674 15675 ip1dbg(("ip_rput_dlpi")); 15676 15677 /* 15678 * If we received an ACK but didn't send a request for it, then it 15679 * can't be part of any pending operation; discard up-front. 15680 */ 15681 switch (prim) { 15682 case DL_ERROR_ACK: 15683 reqprim = dlea->dl_error_primitive; 15684 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 15685 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 15686 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 15687 dlea->dl_unix_errno)); 15688 break; 15689 case DL_OK_ACK: 15690 reqprim = dloa->dl_correct_primitive; 15691 break; 15692 case DL_INFO_ACK: 15693 reqprim = DL_INFO_REQ; 15694 break; 15695 case DL_BIND_ACK: 15696 reqprim = DL_BIND_REQ; 15697 break; 15698 case DL_PHYS_ADDR_ACK: 15699 reqprim = DL_PHYS_ADDR_REQ; 15700 break; 15701 case DL_NOTIFY_ACK: 15702 reqprim = DL_NOTIFY_REQ; 15703 break; 15704 case DL_CONTROL_ACK: 15705 reqprim = DL_CONTROL_REQ; 15706 break; 15707 case DL_CAPABILITY_ACK: 15708 reqprim = DL_CAPABILITY_REQ; 15709 break; 15710 } 15711 15712 if (prim != DL_NOTIFY_IND) { 15713 if (reqprim == DL_PRIM_INVAL || 15714 !ill_dlpi_pending(ill, reqprim)) { 15715 /* Not a DLPI message we support or expected */ 15716 freemsg(mp); 15717 return; 15718 } 15719 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 15720 dl_primstr(reqprim))); 15721 } 15722 15723 switch (reqprim) { 15724 case DL_UNBIND_REQ: 15725 /* 15726 * NOTE: we mark the unbind as complete even if we got a 15727 * DL_ERROR_ACK, since there's not much else we can do. 15728 */ 15729 mutex_enter(&ill->ill_lock); 15730 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15731 cv_signal(&ill->ill_cv); 15732 mutex_exit(&ill->ill_lock); 15733 break; 15734 15735 case DL_ENABMULTI_REQ: 15736 if (prim == DL_OK_ACK) { 15737 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15738 ill->ill_dlpi_multicast_state = IDS_OK; 15739 } 15740 break; 15741 } 15742 15743 /* 15744 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15745 * need to become writer to continue to process it. Because an 15746 * exclusive operation doesn't complete until replies to all queued 15747 * DLPI messages have been received, we know we're in the middle of an 15748 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15749 * 15750 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15751 * Since this is on the ill stream we unconditionally bump up the 15752 * refcount without doing ILL_CAN_LOOKUP(). 15753 */ 15754 ill_refhold(ill); 15755 if (prim == DL_NOTIFY_IND) 15756 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15757 else 15758 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15759 } 15760 15761 /* 15762 * Handling of DLPI messages that require exclusive access to the ipsq. 15763 * 15764 * Need to do ill_pending_mp_release on ioctl completion, which could 15765 * happen here. (along with mi_copy_done) 15766 */ 15767 /* ARGSUSED */ 15768 static void 15769 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15770 { 15771 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15772 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15773 int err = 0; 15774 ill_t *ill; 15775 ipif_t *ipif = NULL; 15776 mblk_t *mp1 = NULL; 15777 conn_t *connp = NULL; 15778 t_uscalar_t paddrreq; 15779 mblk_t *mp_hw; 15780 boolean_t success; 15781 boolean_t ioctl_aborted = B_FALSE; 15782 boolean_t log = B_TRUE; 15783 ip_stack_t *ipst; 15784 15785 ip1dbg(("ip_rput_dlpi_writer ..")); 15786 ill = (ill_t *)q->q_ptr; 15787 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 15788 ASSERT(IAM_WRITER_ILL(ill)); 15789 15790 ipst = ill->ill_ipst; 15791 15792 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 15793 /* 15794 * The current ioctl could have been aborted by the user and a new 15795 * ioctl to bring up another ill could have started. We could still 15796 * get a response from the driver later. 15797 */ 15798 if (ipif != NULL && ipif->ipif_ill != ill) 15799 ioctl_aborted = B_TRUE; 15800 15801 switch (dloa->dl_primitive) { 15802 case DL_ERROR_ACK: 15803 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15804 dl_primstr(dlea->dl_error_primitive))); 15805 15806 switch (dlea->dl_error_primitive) { 15807 case DL_DISABMULTI_REQ: 15808 ill_dlpi_done(ill, dlea->dl_error_primitive); 15809 break; 15810 case DL_PROMISCON_REQ: 15811 case DL_PROMISCOFF_REQ: 15812 case DL_UNBIND_REQ: 15813 case DL_ATTACH_REQ: 15814 case DL_INFO_REQ: 15815 ill_dlpi_done(ill, dlea->dl_error_primitive); 15816 break; 15817 case DL_NOTIFY_REQ: 15818 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15819 log = B_FALSE; 15820 break; 15821 case DL_PHYS_ADDR_REQ: 15822 /* 15823 * For IPv6 only, there are two additional 15824 * phys_addr_req's sent to the driver to get the 15825 * IPv6 token and lla. This allows IP to acquire 15826 * the hardware address format for a given interface 15827 * without having built in knowledge of the hardware 15828 * address. ill_phys_addr_pend keeps track of the last 15829 * DL_PAR sent so we know which response we are 15830 * dealing with. ill_dlpi_done will update 15831 * ill_phys_addr_pend when it sends the next req. 15832 * We don't complete the IOCTL until all three DL_PARs 15833 * have been attempted, so set *_len to 0 and break. 15834 */ 15835 paddrreq = ill->ill_phys_addr_pend; 15836 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15837 if (paddrreq == DL_IPV6_TOKEN) { 15838 ill->ill_token_length = 0; 15839 log = B_FALSE; 15840 break; 15841 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15842 ill->ill_nd_lla_len = 0; 15843 log = B_FALSE; 15844 break; 15845 } 15846 /* 15847 * Something went wrong with the DL_PHYS_ADDR_REQ. 15848 * We presumably have an IOCTL hanging out waiting 15849 * for completion. Find it and complete the IOCTL 15850 * with the error noted. 15851 * However, ill_dl_phys was called on an ill queue 15852 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15853 * set. But the ioctl is known to be pending on ill_wq. 15854 */ 15855 if (!ill->ill_ifname_pending) 15856 break; 15857 ill->ill_ifname_pending = 0; 15858 if (!ioctl_aborted) 15859 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15860 if (mp1 != NULL) { 15861 /* 15862 * This operation (SIOCSLIFNAME) must have 15863 * happened on the ill. Assert there is no conn 15864 */ 15865 ASSERT(connp == NULL); 15866 q = ill->ill_wq; 15867 } 15868 break; 15869 case DL_BIND_REQ: 15870 ill_dlpi_done(ill, DL_BIND_REQ); 15871 if (ill->ill_ifname_pending) 15872 break; 15873 /* 15874 * Something went wrong with the bind. We presumably 15875 * have an IOCTL hanging out waiting for completion. 15876 * Find it, take down the interface that was coming 15877 * up, and complete the IOCTL with the error noted. 15878 */ 15879 if (!ioctl_aborted) 15880 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15881 if (mp1 != NULL) { 15882 /* 15883 * This might be a result of a DL_NOTE_REPLUMB 15884 * notification. In that case, connp is NULL. 15885 */ 15886 if (connp != NULL) 15887 q = CONNP_TO_WQ(connp); 15888 15889 (void) ipif_down(ipif, NULL, NULL); 15890 /* error is set below the switch */ 15891 } 15892 break; 15893 case DL_ENABMULTI_REQ: 15894 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15895 15896 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15897 ill->ill_dlpi_multicast_state = IDS_FAILED; 15898 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15899 ipif_t *ipif; 15900 15901 printf("ip: joining multicasts failed (%d)" 15902 " on %s - will use link layer " 15903 "broadcasts for multicast\n", 15904 dlea->dl_errno, ill->ill_name); 15905 15906 /* 15907 * Set up the multicast mapping alone. 15908 * writer, so ok to access ill->ill_ipif 15909 * without any lock. 15910 */ 15911 ipif = ill->ill_ipif; 15912 mutex_enter(&ill->ill_phyint->phyint_lock); 15913 ill->ill_phyint->phyint_flags |= 15914 PHYI_MULTI_BCAST; 15915 mutex_exit(&ill->ill_phyint->phyint_lock); 15916 15917 if (!ill->ill_isv6) { 15918 (void) ipif_arp_setup_multicast(ipif, 15919 NULL); 15920 } else { 15921 (void) ipif_ndp_setup_multicast(ipif, 15922 NULL); 15923 } 15924 } 15925 freemsg(mp); /* Don't want to pass this up */ 15926 return; 15927 case DL_CONTROL_REQ: 15928 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15929 "DL_CONTROL_REQ\n")); 15930 ill_dlpi_done(ill, dlea->dl_error_primitive); 15931 freemsg(mp); 15932 return; 15933 case DL_CAPABILITY_REQ: 15934 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15935 "DL_CAPABILITY REQ\n")); 15936 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 15937 ill->ill_dlpi_capab_state = IDCS_FAILED; 15938 ill_capability_done(ill); 15939 freemsg(mp); 15940 return; 15941 } 15942 /* 15943 * Note the error for IOCTL completion (mp1 is set when 15944 * ready to complete ioctl). If ill_ifname_pending_err is 15945 * set, an error occured during plumbing (ill_ifname_pending), 15946 * so we want to report that error. 15947 * 15948 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15949 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15950 * expected to get errack'd if the driver doesn't support 15951 * these flags (e.g. ethernet). log will be set to B_FALSE 15952 * if these error conditions are encountered. 15953 */ 15954 if (mp1 != NULL) { 15955 if (ill->ill_ifname_pending_err != 0) { 15956 err = ill->ill_ifname_pending_err; 15957 ill->ill_ifname_pending_err = 0; 15958 } else { 15959 err = dlea->dl_unix_errno ? 15960 dlea->dl_unix_errno : ENXIO; 15961 } 15962 /* 15963 * If we're plumbing an interface and an error hasn't already 15964 * been saved, set ill_ifname_pending_err to the error passed 15965 * up. Ignore the error if log is B_FALSE (see comment above). 15966 */ 15967 } else if (log && ill->ill_ifname_pending && 15968 ill->ill_ifname_pending_err == 0) { 15969 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15970 dlea->dl_unix_errno : ENXIO; 15971 } 15972 15973 if (log) 15974 ip_dlpi_error(ill, dlea->dl_error_primitive, 15975 dlea->dl_errno, dlea->dl_unix_errno); 15976 break; 15977 case DL_CAPABILITY_ACK: 15978 ill_capability_ack(ill, mp); 15979 /* 15980 * The message has been handed off to ill_capability_ack 15981 * and must not be freed below 15982 */ 15983 mp = NULL; 15984 break; 15985 15986 case DL_CONTROL_ACK: 15987 /* We treat all of these as "fire and forget" */ 15988 ill_dlpi_done(ill, DL_CONTROL_REQ); 15989 break; 15990 case DL_INFO_ACK: 15991 /* Call a routine to handle this one. */ 15992 ill_dlpi_done(ill, DL_INFO_REQ); 15993 ip_ll_subnet_defaults(ill, mp); 15994 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15995 return; 15996 case DL_BIND_ACK: 15997 /* 15998 * We should have an IOCTL waiting on this unless 15999 * sent by ill_dl_phys, in which case just return 16000 */ 16001 ill_dlpi_done(ill, DL_BIND_REQ); 16002 if (ill->ill_ifname_pending) 16003 break; 16004 16005 if (!ioctl_aborted) 16006 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16007 if (mp1 == NULL) 16008 break; 16009 /* 16010 * mp1 was added by ill_dl_up(). if that is a result of 16011 * a DL_NOTE_REPLUMB notification, connp could be NULL. 16012 */ 16013 if (connp != NULL) 16014 q = CONNP_TO_WQ(connp); 16015 16016 /* 16017 * We are exclusive. So nothing can change even after 16018 * we get the pending mp. If need be we can put it back 16019 * and restart, as in calling ipif_arp_up() below. 16020 */ 16021 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 16022 16023 mutex_enter(&ill->ill_lock); 16024 ill->ill_dl_up = 1; 16025 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 16026 mutex_exit(&ill->ill_lock); 16027 16028 /* 16029 * Now bring up the resolver; when that is complete, we'll 16030 * create IREs. Note that we intentionally mirror what 16031 * ipif_up() would have done, because we got here by way of 16032 * ill_dl_up(), which stopped ipif_up()'s processing. 16033 */ 16034 if (ill->ill_isv6) { 16035 if (ill->ill_flags & ILLF_XRESOLV) { 16036 if (connp != NULL) 16037 mutex_enter(&connp->conn_lock); 16038 mutex_enter(&ill->ill_lock); 16039 success = ipsq_pending_mp_add(connp, ipif, q, 16040 mp1, 0); 16041 mutex_exit(&ill->ill_lock); 16042 if (connp != NULL) 16043 mutex_exit(&connp->conn_lock); 16044 if (success) { 16045 err = ipif_resolver_up(ipif, 16046 Res_act_initial); 16047 if (err == EINPROGRESS) { 16048 freemsg(mp); 16049 return; 16050 } 16051 ASSERT(err != 0); 16052 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16053 ASSERT(mp1 != NULL); 16054 } else { 16055 /* conn has started closing */ 16056 err = EINTR; 16057 } 16058 } else { /* Non XRESOLV interface */ 16059 (void) ipif_resolver_up(ipif, Res_act_initial); 16060 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 16061 err = ipif_up_done_v6(ipif); 16062 } 16063 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 16064 /* 16065 * ARP and other v4 external resolvers. 16066 * Leave the pending mblk intact so that 16067 * the ioctl completes in ip_rput(). 16068 */ 16069 if (connp != NULL) 16070 mutex_enter(&connp->conn_lock); 16071 mutex_enter(&ill->ill_lock); 16072 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 16073 mutex_exit(&ill->ill_lock); 16074 if (connp != NULL) 16075 mutex_exit(&connp->conn_lock); 16076 if (success) { 16077 err = ipif_resolver_up(ipif, Res_act_initial); 16078 if (err == EINPROGRESS) { 16079 freemsg(mp); 16080 return; 16081 } 16082 ASSERT(err != 0); 16083 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16084 } else { 16085 /* The conn has started closing */ 16086 err = EINTR; 16087 } 16088 } else { 16089 /* 16090 * This one is complete. Reply to pending ioctl. 16091 */ 16092 (void) ipif_resolver_up(ipif, Res_act_initial); 16093 err = ipif_up_done(ipif); 16094 } 16095 16096 if ((err == 0) && (ill->ill_up_ipifs)) { 16097 err = ill_up_ipifs(ill, q, mp1); 16098 if (err == EINPROGRESS) { 16099 freemsg(mp); 16100 return; 16101 } 16102 } 16103 16104 /* 16105 * If we have a moved ipif to bring up, and everything has 16106 * succeeded to this point, bring it up on the IPMP ill. 16107 * Otherwise, leave it down -- the admin can try to bring it 16108 * up by hand if need be. 16109 */ 16110 if (ill->ill_move_ipif != NULL) { 16111 if (err != 0) { 16112 ill->ill_move_ipif = NULL; 16113 } else { 16114 ipif = ill->ill_move_ipif; 16115 ill->ill_move_ipif = NULL; 16116 err = ipif_up(ipif, q, mp1); 16117 if (err == EINPROGRESS) { 16118 freemsg(mp); 16119 return; 16120 } 16121 } 16122 } 16123 break; 16124 16125 case DL_NOTIFY_IND: { 16126 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 16127 ire_t *ire; 16128 uint_t orig_mtu; 16129 boolean_t need_ire_walk_v4 = B_FALSE; 16130 boolean_t need_ire_walk_v6 = B_FALSE; 16131 16132 switch (notify->dl_notification) { 16133 case DL_NOTE_PHYS_ADDR: 16134 err = ill_set_phys_addr(ill, mp); 16135 break; 16136 16137 case DL_NOTE_REPLUMB: 16138 /* 16139 * Directly return after calling ill_replumb(). 16140 * Note that we should not free mp as it is reused 16141 * in the ill_replumb() function. 16142 */ 16143 err = ill_replumb(ill, mp); 16144 return; 16145 16146 case DL_NOTE_FASTPATH_FLUSH: 16147 ill_fastpath_flush(ill); 16148 break; 16149 16150 case DL_NOTE_SDU_SIZE: 16151 /* 16152 * Change the MTU size of the interface, of all 16153 * attached ipif's, and of all relevant ire's. The 16154 * new value's a uint32_t at notify->dl_data. 16155 * Mtu change Vs. new ire creation - protocol below. 16156 * 16157 * a Mark the ipif as IPIF_CHANGING. 16158 * b Set the new mtu in the ipif. 16159 * c Change the ire_max_frag on all affected ires 16160 * d Unmark the IPIF_CHANGING 16161 * 16162 * To see how the protocol works, assume an interface 16163 * route is also being added simultaneously by 16164 * ip_rt_add and let 'ipif' be the ipif referenced by 16165 * the ire. If the ire is created before step a, 16166 * it will be cleaned up by step c. If the ire is 16167 * created after step d, it will see the new value of 16168 * ipif_mtu. Any attempt to create the ire between 16169 * steps a to d will fail because of the IPIF_CHANGING 16170 * flag. Note that ire_create() is passed a pointer to 16171 * the ipif_mtu, and not the value. During ire_add 16172 * under the bucket lock, the ire_max_frag of the 16173 * new ire being created is set from the ipif/ire from 16174 * which it is being derived. 16175 */ 16176 mutex_enter(&ill->ill_lock); 16177 16178 orig_mtu = ill->ill_max_mtu; 16179 ill->ill_max_frag = (uint_t)notify->dl_data; 16180 ill->ill_max_mtu = (uint_t)notify->dl_data; 16181 16182 /* 16183 * If ill_user_mtu was set (via SIOCSLIFLNKINFO), 16184 * clamp ill_max_mtu at it. 16185 */ 16186 if (ill->ill_user_mtu != 0 && 16187 ill->ill_user_mtu < ill->ill_max_mtu) 16188 ill->ill_max_mtu = ill->ill_user_mtu; 16189 16190 /* 16191 * If the MTU is unchanged, we're done. 16192 */ 16193 if (orig_mtu == ill->ill_max_mtu) { 16194 mutex_exit(&ill->ill_lock); 16195 break; 16196 } 16197 16198 if (ill->ill_isv6) { 16199 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16200 ill->ill_max_mtu = IPV6_MIN_MTU; 16201 } else { 16202 if (ill->ill_max_mtu < IP_MIN_MTU) 16203 ill->ill_max_mtu = IP_MIN_MTU; 16204 } 16205 for (ipif = ill->ill_ipif; ipif != NULL; 16206 ipif = ipif->ipif_next) { 16207 /* 16208 * Don't override the mtu if the user 16209 * has explicitly set it. 16210 */ 16211 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16212 continue; 16213 ipif->ipif_mtu = (uint_t)notify->dl_data; 16214 if (ipif->ipif_isv6) 16215 ire = ipif_to_ire_v6(ipif); 16216 else 16217 ire = ipif_to_ire(ipif); 16218 if (ire != NULL) { 16219 ire->ire_max_frag = ipif->ipif_mtu; 16220 ire_refrele(ire); 16221 } 16222 if (ipif->ipif_flags & IPIF_UP) { 16223 if (ill->ill_isv6) 16224 need_ire_walk_v6 = B_TRUE; 16225 else 16226 need_ire_walk_v4 = B_TRUE; 16227 } 16228 } 16229 mutex_exit(&ill->ill_lock); 16230 if (need_ire_walk_v4) 16231 ire_walk_v4(ill_mtu_change, (char *)ill, 16232 ALL_ZONES, ipst); 16233 if (need_ire_walk_v6) 16234 ire_walk_v6(ill_mtu_change, (char *)ill, 16235 ALL_ZONES, ipst); 16236 16237 /* 16238 * Refresh IPMP meta-interface MTU if necessary. 16239 */ 16240 if (IS_UNDER_IPMP(ill)) 16241 ipmp_illgrp_refresh_mtu(ill->ill_grp); 16242 break; 16243 16244 case DL_NOTE_LINK_UP: 16245 case DL_NOTE_LINK_DOWN: { 16246 /* 16247 * We are writer. ill / phyint / ipsq assocs stable. 16248 * The RUNNING flag reflects the state of the link. 16249 */ 16250 phyint_t *phyint = ill->ill_phyint; 16251 uint64_t new_phyint_flags; 16252 boolean_t changed = B_FALSE; 16253 boolean_t went_up; 16254 16255 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16256 mutex_enter(&phyint->phyint_lock); 16257 16258 new_phyint_flags = went_up ? 16259 phyint->phyint_flags | PHYI_RUNNING : 16260 phyint->phyint_flags & ~PHYI_RUNNING; 16261 16262 if (IS_IPMP(ill)) { 16263 new_phyint_flags = went_up ? 16264 new_phyint_flags & ~PHYI_FAILED : 16265 new_phyint_flags | PHYI_FAILED; 16266 } 16267 16268 if (new_phyint_flags != phyint->phyint_flags) { 16269 phyint->phyint_flags = new_phyint_flags; 16270 changed = B_TRUE; 16271 } 16272 mutex_exit(&phyint->phyint_lock); 16273 /* 16274 * ill_restart_dad handles the DAD restart and routing 16275 * socket notification logic. 16276 */ 16277 if (changed) { 16278 ill_restart_dad(phyint->phyint_illv4, went_up); 16279 ill_restart_dad(phyint->phyint_illv6, went_up); 16280 } 16281 break; 16282 } 16283 case DL_NOTE_PROMISC_ON_PHYS: 16284 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16285 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16286 mutex_enter(&ill->ill_lock); 16287 ill->ill_promisc_on_phys = B_TRUE; 16288 mutex_exit(&ill->ill_lock); 16289 break; 16290 case DL_NOTE_PROMISC_OFF_PHYS: 16291 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16292 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16293 mutex_enter(&ill->ill_lock); 16294 ill->ill_promisc_on_phys = B_FALSE; 16295 mutex_exit(&ill->ill_lock); 16296 break; 16297 case DL_NOTE_CAPAB_RENEG: 16298 /* 16299 * Something changed on the driver side. 16300 * It wants us to renegotiate the capabilities 16301 * on this ill. One possible cause is the aggregation 16302 * interface under us where a port got added or 16303 * went away. 16304 * 16305 * If the capability negotiation is already done 16306 * or is in progress, reset the capabilities and 16307 * mark the ill's ill_capab_reneg to be B_TRUE, 16308 * so that when the ack comes back, we can start 16309 * the renegotiation process. 16310 * 16311 * Note that if ill_capab_reneg is already B_TRUE 16312 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16313 * the capability resetting request has been sent 16314 * and the renegotiation has not been started yet; 16315 * nothing needs to be done in this case. 16316 */ 16317 ipsq_current_start(ipsq, ill->ill_ipif, 0); 16318 ill_capability_reset(ill, B_TRUE); 16319 ipsq_current_finish(ipsq); 16320 break; 16321 default: 16322 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16323 "type 0x%x for DL_NOTIFY_IND\n", 16324 notify->dl_notification)); 16325 break; 16326 } 16327 16328 /* 16329 * As this is an asynchronous operation, we 16330 * should not call ill_dlpi_done 16331 */ 16332 break; 16333 } 16334 case DL_NOTIFY_ACK: { 16335 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16336 16337 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16338 ill->ill_note_link = 1; 16339 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16340 break; 16341 } 16342 case DL_PHYS_ADDR_ACK: { 16343 /* 16344 * As part of plumbing the interface via SIOCSLIFNAME, 16345 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16346 * whose answers we receive here. As each answer is received, 16347 * we call ill_dlpi_done() to dispatch the next request as 16348 * we're processing the current one. Once all answers have 16349 * been received, we use ipsq_pending_mp_get() to dequeue the 16350 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16351 * is invoked from an ill queue, conn_oper_pending_ill is not 16352 * available, but we know the ioctl is pending on ill_wq.) 16353 */ 16354 uint_t paddrlen, paddroff; 16355 16356 paddrreq = ill->ill_phys_addr_pend; 16357 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16358 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16359 16360 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16361 if (paddrreq == DL_IPV6_TOKEN) { 16362 /* 16363 * bcopy to low-order bits of ill_token 16364 * 16365 * XXX Temporary hack - currently, all known tokens 16366 * are 64 bits, so I'll cheat for the moment. 16367 */ 16368 bcopy(mp->b_rptr + paddroff, 16369 &ill->ill_token.s6_addr32[2], paddrlen); 16370 ill->ill_token_length = paddrlen; 16371 break; 16372 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16373 ASSERT(ill->ill_nd_lla_mp == NULL); 16374 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16375 mp = NULL; 16376 break; 16377 } 16378 16379 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16380 ASSERT(ill->ill_phys_addr_mp == NULL); 16381 if (!ill->ill_ifname_pending) 16382 break; 16383 ill->ill_ifname_pending = 0; 16384 if (!ioctl_aborted) 16385 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16386 if (mp1 != NULL) { 16387 ASSERT(connp == NULL); 16388 q = ill->ill_wq; 16389 } 16390 /* 16391 * If any error acks received during the plumbing sequence, 16392 * ill_ifname_pending_err will be set. Break out and send up 16393 * the error to the pending ioctl. 16394 */ 16395 if (ill->ill_ifname_pending_err != 0) { 16396 err = ill->ill_ifname_pending_err; 16397 ill->ill_ifname_pending_err = 0; 16398 break; 16399 } 16400 16401 ill->ill_phys_addr_mp = mp; 16402 ill->ill_phys_addr = mp->b_rptr + paddroff; 16403 mp = NULL; 16404 16405 /* 16406 * If paddrlen is zero, the DLPI provider doesn't support 16407 * physical addresses. The other two tests were historical 16408 * workarounds for bugs in our former PPP implementation, but 16409 * now other things have grown dependencies on them -- e.g., 16410 * the tun module specifies a dl_addr_length of zero in its 16411 * DL_BIND_ACK, but then specifies an incorrect value in its 16412 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16413 * but only after careful testing ensures that all dependent 16414 * broken DLPI providers have been fixed. 16415 */ 16416 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16417 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16418 ill->ill_phys_addr = NULL; 16419 } else if (paddrlen != ill->ill_phys_addr_length) { 16420 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16421 paddrlen, ill->ill_phys_addr_length)); 16422 err = EINVAL; 16423 break; 16424 } 16425 16426 if (ill->ill_nd_lla_mp == NULL) { 16427 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16428 err = ENOMEM; 16429 break; 16430 } 16431 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16432 } 16433 16434 /* 16435 * Set the interface token. If the zeroth interface address 16436 * is unspecified, then set it to the link local address. 16437 */ 16438 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16439 (void) ill_setdefaulttoken(ill); 16440 16441 ASSERT(ill->ill_ipif->ipif_id == 0); 16442 if (ipif != NULL && 16443 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16444 (void) ipif_setlinklocal(ipif); 16445 } 16446 break; 16447 } 16448 case DL_OK_ACK: 16449 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16450 dl_primstr((int)dloa->dl_correct_primitive), 16451 dloa->dl_correct_primitive)); 16452 switch (dloa->dl_correct_primitive) { 16453 case DL_ENABMULTI_REQ: 16454 case DL_DISABMULTI_REQ: 16455 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16456 break; 16457 case DL_PROMISCON_REQ: 16458 case DL_PROMISCOFF_REQ: 16459 case DL_UNBIND_REQ: 16460 case DL_ATTACH_REQ: 16461 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16462 break; 16463 } 16464 break; 16465 default: 16466 break; 16467 } 16468 16469 freemsg(mp); 16470 if (mp1 == NULL) 16471 return; 16472 16473 /* 16474 * The operation must complete without EINPROGRESS since 16475 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 16476 * the operation will be stuck forever inside the IPSQ. 16477 */ 16478 ASSERT(err != EINPROGRESS); 16479 16480 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 16481 case 0: 16482 ipsq_current_finish(ipsq); 16483 break; 16484 16485 case SIOCSLIFNAME: 16486 case IF_UNITSEL: { 16487 ill_t *ill_other = ILL_OTHER(ill); 16488 16489 /* 16490 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 16491 * ill has a peer which is in an IPMP group, then place ill 16492 * into the same group. One catch: although ifconfig plumbs 16493 * the appropriate IPMP meta-interface prior to plumbing this 16494 * ill, it is possible for multiple ifconfig applications to 16495 * race (or for another application to adjust plumbing), in 16496 * which case the IPMP meta-interface we need will be missing. 16497 * If so, kick the phyint out of the group. 16498 */ 16499 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 16500 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 16501 ipmp_illgrp_t *illg; 16502 16503 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 16504 if (illg == NULL) 16505 ipmp_phyint_leave_grp(ill->ill_phyint); 16506 else 16507 ipmp_ill_join_illgrp(ill, illg); 16508 } 16509 16510 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 16511 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16512 else 16513 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16514 break; 16515 } 16516 case SIOCLIFADDIF: 16517 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16518 break; 16519 16520 default: 16521 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16522 break; 16523 } 16524 } 16525 16526 /* 16527 * ip_rput_other is called by ip_rput to handle messages modifying the global 16528 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16529 */ 16530 /* ARGSUSED */ 16531 void 16532 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16533 { 16534 ill_t *ill = q->q_ptr; 16535 struct iocblk *iocp; 16536 mblk_t *mp1; 16537 conn_t *connp = NULL; 16538 16539 ip1dbg(("ip_rput_other ")); 16540 if (ipsq != NULL) { 16541 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16542 ASSERT(ipsq->ipsq_xop == 16543 ill->ill_phyint->phyint_ipsq->ipsq_xop); 16544 } 16545 16546 switch (mp->b_datap->db_type) { 16547 case M_ERROR: 16548 case M_HANGUP: 16549 /* 16550 * The device has a problem. We force the ILL down. It can 16551 * be brought up again manually using SIOCSIFFLAGS (via 16552 * ifconfig or equivalent). 16553 */ 16554 ASSERT(ipsq != NULL); 16555 if (mp->b_rptr < mp->b_wptr) 16556 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16557 if (ill->ill_error == 0) 16558 ill->ill_error = ENXIO; 16559 if (!ill_down_start(q, mp)) 16560 return; 16561 ipif_all_down_tail(ipsq, q, mp, NULL); 16562 break; 16563 case M_IOCACK: 16564 iocp = (struct iocblk *)mp->b_rptr; 16565 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16566 switch (iocp->ioc_cmd) { 16567 case SIOCSTUNPARAM: 16568 case OSIOCSTUNPARAM: 16569 ASSERT(ipsq != NULL); 16570 /* 16571 * Finish socket ioctl passed through to tun. 16572 * We should have an IOCTL waiting on this. 16573 */ 16574 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16575 if (ill->ill_isv6) { 16576 struct iftun_req *ta; 16577 16578 /* 16579 * if a source or destination is 16580 * being set, try and set the link 16581 * local address for the tunnel 16582 */ 16583 ta = (struct iftun_req *)mp->b_cont-> 16584 b_cont->b_rptr; 16585 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16586 ipif_set_tun_llink(ill, ta); 16587 } 16588 16589 } 16590 if (mp1 != NULL) { 16591 /* 16592 * Now copy back the b_next/b_prev used by 16593 * mi code for the mi_copy* functions. 16594 * See ip_sioctl_tunparam() for the reason. 16595 * Also protect against missing b_cont. 16596 */ 16597 if (mp->b_cont != NULL) { 16598 mp->b_cont->b_next = 16599 mp1->b_cont->b_next; 16600 mp->b_cont->b_prev = 16601 mp1->b_cont->b_prev; 16602 } 16603 inet_freemsg(mp1); 16604 ASSERT(connp != NULL); 16605 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16606 iocp->ioc_error, NO_COPYOUT, ipsq); 16607 } else { 16608 ASSERT(connp == NULL); 16609 putnext(q, mp); 16610 } 16611 break; 16612 case SIOCGTUNPARAM: 16613 case OSIOCGTUNPARAM: 16614 /* 16615 * This is really M_IOCDATA from the tunnel driver. 16616 * convert back and complete the ioctl. 16617 * We should have an IOCTL waiting on this. 16618 */ 16619 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16620 if (mp1) { 16621 /* 16622 * Now copy back the b_next/b_prev used by 16623 * mi code for the mi_copy* functions. 16624 * See ip_sioctl_tunparam() for the reason. 16625 * Also protect against missing b_cont. 16626 */ 16627 if (mp->b_cont != NULL) { 16628 mp->b_cont->b_next = 16629 mp1->b_cont->b_next; 16630 mp->b_cont->b_prev = 16631 mp1->b_cont->b_prev; 16632 } 16633 inet_freemsg(mp1); 16634 if (iocp->ioc_error == 0) 16635 mp->b_datap->db_type = M_IOCDATA; 16636 ASSERT(connp != NULL); 16637 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16638 iocp->ioc_error, COPYOUT, NULL); 16639 } else { 16640 ASSERT(connp == NULL); 16641 putnext(q, mp); 16642 } 16643 break; 16644 default: 16645 break; 16646 } 16647 break; 16648 case M_IOCNAK: 16649 iocp = (struct iocblk *)mp->b_rptr; 16650 16651 switch (iocp->ioc_cmd) { 16652 int mode; 16653 16654 case DL_IOC_HDR_INFO: 16655 /* 16656 * If this was the first attempt, turn off the 16657 * fastpath probing. 16658 */ 16659 mutex_enter(&ill->ill_lock); 16660 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16661 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16662 mutex_exit(&ill->ill_lock); 16663 ill_fastpath_nack(ill); 16664 ip1dbg(("ip_rput: DLPI fastpath off on " 16665 "interface %s\n", 16666 ill->ill_name)); 16667 } else { 16668 mutex_exit(&ill->ill_lock); 16669 } 16670 freemsg(mp); 16671 break; 16672 case SIOCSTUNPARAM: 16673 case OSIOCSTUNPARAM: 16674 ASSERT(ipsq != NULL); 16675 /* 16676 * Finish socket ioctl passed through to tun 16677 * We should have an IOCTL waiting on this. 16678 */ 16679 /* FALLTHRU */ 16680 case SIOCGTUNPARAM: 16681 case OSIOCGTUNPARAM: 16682 /* 16683 * This is really M_IOCDATA from the tunnel driver. 16684 * convert back and complete the ioctl. 16685 * We should have an IOCTL waiting on this. 16686 */ 16687 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16688 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16689 mp1 = ill_pending_mp_get(ill, &connp, 16690 iocp->ioc_id); 16691 mode = COPYOUT; 16692 ipsq = NULL; 16693 } else { 16694 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16695 mode = NO_COPYOUT; 16696 } 16697 if (mp1 != NULL) { 16698 /* 16699 * Now copy back the b_next/b_prev used by 16700 * mi code for the mi_copy* functions. 16701 * See ip_sioctl_tunparam() for the reason. 16702 * Also protect against missing b_cont. 16703 */ 16704 if (mp->b_cont != NULL) { 16705 mp->b_cont->b_next = 16706 mp1->b_cont->b_next; 16707 mp->b_cont->b_prev = 16708 mp1->b_cont->b_prev; 16709 } 16710 inet_freemsg(mp1); 16711 if (iocp->ioc_error == 0) 16712 iocp->ioc_error = EINVAL; 16713 ASSERT(connp != NULL); 16714 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16715 iocp->ioc_error, mode, ipsq); 16716 } else { 16717 ASSERT(connp == NULL); 16718 putnext(q, mp); 16719 } 16720 break; 16721 default: 16722 break; 16723 } 16724 default: 16725 break; 16726 } 16727 } 16728 16729 /* 16730 * NOTE : This function does not ire_refrele the ire argument passed in. 16731 * 16732 * IPQoS notes 16733 * IP policy is invoked twice for a forwarded packet, once on the read side 16734 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16735 * enabled. An additional parameter, in_ill, has been added for this purpose. 16736 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16737 * because ip_mroute drops this information. 16738 * 16739 */ 16740 void 16741 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16742 { 16743 uint32_t old_pkt_len; 16744 uint32_t pkt_len; 16745 queue_t *q; 16746 uint32_t sum; 16747 #define rptr ((uchar_t *)ipha) 16748 uint32_t max_frag; 16749 uint32_t ill_index; 16750 ill_t *out_ill; 16751 mib2_ipIfStatsEntry_t *mibptr; 16752 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16753 16754 /* Get the ill_index of the incoming ILL */ 16755 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16756 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16757 16758 /* Initiate Read side IPPF processing */ 16759 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16760 ip_process(IPP_FWD_IN, &mp, ill_index); 16761 if (mp == NULL) { 16762 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16763 "during IPPF processing\n")); 16764 return; 16765 } 16766 } 16767 16768 /* Adjust the checksum to reflect the ttl decrement. */ 16769 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16770 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16771 16772 if (ipha->ipha_ttl-- <= 1) { 16773 if (ip_csum_hdr(ipha)) { 16774 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16775 goto drop_pkt; 16776 } 16777 /* 16778 * Note: ire_stq this will be NULL for multicast 16779 * datagrams using the long path through arp (the IRE 16780 * is not an IRE_CACHE). This should not cause 16781 * problems since we don't generate ICMP errors for 16782 * multicast packets. 16783 */ 16784 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16785 q = ire->ire_stq; 16786 if (q != NULL) { 16787 /* Sent by forwarding path, and router is global zone */ 16788 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16789 GLOBAL_ZONEID, ipst); 16790 } else 16791 freemsg(mp); 16792 return; 16793 } 16794 16795 /* 16796 * Don't forward if the interface is down 16797 */ 16798 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16799 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16800 ip2dbg(("ip_rput_forward:interface is down\n")); 16801 goto drop_pkt; 16802 } 16803 16804 /* Get the ill_index of the outgoing ILL */ 16805 out_ill = ire_to_ill(ire); 16806 ill_index = out_ill->ill_phyint->phyint_ifindex; 16807 16808 DTRACE_PROBE4(ip4__forwarding__start, 16809 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16810 16811 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16812 ipst->ips_ipv4firewall_forwarding, 16813 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16814 16815 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16816 16817 if (mp == NULL) 16818 return; 16819 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16820 16821 if (is_system_labeled()) { 16822 mblk_t *mp1; 16823 16824 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16825 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16826 goto drop_pkt; 16827 } 16828 /* Size may have changed */ 16829 mp = mp1; 16830 ipha = (ipha_t *)mp->b_rptr; 16831 pkt_len = ntohs(ipha->ipha_length); 16832 } 16833 16834 /* Check if there are options to update */ 16835 if (!IS_SIMPLE_IPH(ipha)) { 16836 if (ip_csum_hdr(ipha)) { 16837 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16838 goto drop_pkt; 16839 } 16840 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16841 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16842 return; 16843 } 16844 16845 ipha->ipha_hdr_checksum = 0; 16846 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16847 } 16848 max_frag = ire->ire_max_frag; 16849 if (pkt_len > max_frag) { 16850 /* 16851 * It needs fragging on its way out. We haven't 16852 * verified the header checksum yet. Since we 16853 * are going to put a surely good checksum in the 16854 * outgoing header, we have to make sure that it 16855 * was good coming in. 16856 */ 16857 if (ip_csum_hdr(ipha)) { 16858 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16859 goto drop_pkt; 16860 } 16861 /* Initiate Write side IPPF processing */ 16862 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16863 ip_process(IPP_FWD_OUT, &mp, ill_index); 16864 if (mp == NULL) { 16865 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16866 " during IPPF processing\n")); 16867 return; 16868 } 16869 } 16870 /* 16871 * Handle labeled packet resizing. 16872 * 16873 * If we have added a label, inform ip_wput_frag() of its 16874 * effect on the MTU for ICMP messages. 16875 */ 16876 if (pkt_len > old_pkt_len) { 16877 uint32_t secopt_size; 16878 16879 secopt_size = pkt_len - old_pkt_len; 16880 if (secopt_size < max_frag) 16881 max_frag -= secopt_size; 16882 } 16883 16884 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, 16885 GLOBAL_ZONEID, ipst, NULL); 16886 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16887 return; 16888 } 16889 16890 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16891 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16892 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16893 ipst->ips_ipv4firewall_physical_out, 16894 NULL, out_ill, ipha, mp, mp, 0, ipst); 16895 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16896 if (mp == NULL) 16897 return; 16898 16899 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16900 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16901 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE, NULL); 16902 /* ip_xmit_v4 always consumes the packet */ 16903 return; 16904 16905 drop_pkt:; 16906 ip1dbg(("ip_rput_forward: drop pkt\n")); 16907 freemsg(mp); 16908 #undef rptr 16909 } 16910 16911 void 16912 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16913 { 16914 ire_t *ire; 16915 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16916 16917 ASSERT(!ipif->ipif_isv6); 16918 /* 16919 * Find an IRE which matches the destination and the outgoing 16920 * queue in the cache table. All we need is an IRE_CACHE which 16921 * is pointing at ipif->ipif_ill. 16922 */ 16923 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16924 dst = ipif->ipif_pp_dst_addr; 16925 16926 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, msg_getlabel(mp), 16927 MATCH_IRE_ILL | MATCH_IRE_SECATTR, ipst); 16928 if (ire == NULL) { 16929 /* 16930 * Mark this packet to make it be delivered to 16931 * ip_rput_forward after the new ire has been 16932 * created. 16933 */ 16934 mp->b_prev = NULL; 16935 mp->b_next = mp; 16936 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16937 NULL, 0, GLOBAL_ZONEID, &zero_info); 16938 } else { 16939 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16940 IRE_REFRELE(ire); 16941 } 16942 } 16943 16944 /* Update any source route, record route or timestamp options */ 16945 static int 16946 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16947 { 16948 ipoptp_t opts; 16949 uchar_t *opt; 16950 uint8_t optval; 16951 uint8_t optlen; 16952 ipaddr_t dst; 16953 uint32_t ts; 16954 ire_t *dst_ire = NULL; 16955 ire_t *tmp_ire = NULL; 16956 timestruc_t now; 16957 16958 ip2dbg(("ip_rput_forward_options\n")); 16959 dst = ipha->ipha_dst; 16960 for (optval = ipoptp_first(&opts, ipha); 16961 optval != IPOPT_EOL; 16962 optval = ipoptp_next(&opts)) { 16963 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16964 opt = opts.ipoptp_cur; 16965 optlen = opts.ipoptp_len; 16966 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16967 optval, opts.ipoptp_len)); 16968 switch (optval) { 16969 uint32_t off; 16970 case IPOPT_SSRR: 16971 case IPOPT_LSRR: 16972 /* Check if adminstratively disabled */ 16973 if (!ipst->ips_ip_forward_src_routed) { 16974 if (ire->ire_stq != NULL) { 16975 /* 16976 * Sent by forwarding path, and router 16977 * is global zone 16978 */ 16979 icmp_unreachable(ire->ire_stq, mp, 16980 ICMP_SOURCE_ROUTE_FAILED, 16981 GLOBAL_ZONEID, ipst); 16982 } else { 16983 ip0dbg(("ip_rput_forward_options: " 16984 "unable to send unreach\n")); 16985 freemsg(mp); 16986 } 16987 return (-1); 16988 } 16989 16990 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16991 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16992 if (dst_ire == NULL) { 16993 /* 16994 * Must be partial since ip_rput_options 16995 * checked for strict. 16996 */ 16997 break; 16998 } 16999 off = opt[IPOPT_OFFSET]; 17000 off--; 17001 redo_srr: 17002 if (optlen < IP_ADDR_LEN || 17003 off > optlen - IP_ADDR_LEN) { 17004 /* End of source route */ 17005 ip1dbg(( 17006 "ip_rput_forward_options: end of SR\n")); 17007 ire_refrele(dst_ire); 17008 break; 17009 } 17010 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17011 bcopy(&ire->ire_src_addr, (char *)opt + off, 17012 IP_ADDR_LEN); 17013 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 17014 ntohl(dst))); 17015 17016 /* 17017 * Check if our address is present more than 17018 * once as consecutive hops in source route. 17019 */ 17020 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17021 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17022 if (tmp_ire != NULL) { 17023 ire_refrele(tmp_ire); 17024 off += IP_ADDR_LEN; 17025 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17026 goto redo_srr; 17027 } 17028 ipha->ipha_dst = dst; 17029 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17030 ire_refrele(dst_ire); 17031 break; 17032 case IPOPT_RR: 17033 off = opt[IPOPT_OFFSET]; 17034 off--; 17035 if (optlen < IP_ADDR_LEN || 17036 off > optlen - IP_ADDR_LEN) { 17037 /* No more room - ignore */ 17038 ip1dbg(( 17039 "ip_rput_forward_options: end of RR\n")); 17040 break; 17041 } 17042 bcopy(&ire->ire_src_addr, (char *)opt + off, 17043 IP_ADDR_LEN); 17044 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17045 break; 17046 case IPOPT_TS: 17047 /* Insert timestamp if there is room */ 17048 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17049 case IPOPT_TS_TSONLY: 17050 off = IPOPT_TS_TIMELEN; 17051 break; 17052 case IPOPT_TS_PRESPEC: 17053 case IPOPT_TS_PRESPEC_RFC791: 17054 /* Verify that the address matched */ 17055 off = opt[IPOPT_OFFSET] - 1; 17056 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17057 dst_ire = ire_ctable_lookup(dst, 0, 17058 IRE_LOCAL, NULL, ALL_ZONES, NULL, 17059 MATCH_IRE_TYPE, ipst); 17060 if (dst_ire == NULL) { 17061 /* Not for us */ 17062 break; 17063 } 17064 ire_refrele(dst_ire); 17065 /* FALLTHRU */ 17066 case IPOPT_TS_TSANDADDR: 17067 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17068 break; 17069 default: 17070 /* 17071 * ip_*put_options should have already 17072 * dropped this packet. 17073 */ 17074 cmn_err(CE_PANIC, "ip_rput_forward_options: " 17075 "unknown IT - bug in ip_rput_options?\n"); 17076 return (0); /* Keep "lint" happy */ 17077 } 17078 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17079 /* Increase overflow counter */ 17080 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17081 opt[IPOPT_POS_OV_FLG] = 17082 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17083 (off << 4)); 17084 break; 17085 } 17086 off = opt[IPOPT_OFFSET] - 1; 17087 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17088 case IPOPT_TS_PRESPEC: 17089 case IPOPT_TS_PRESPEC_RFC791: 17090 case IPOPT_TS_TSANDADDR: 17091 bcopy(&ire->ire_src_addr, 17092 (char *)opt + off, IP_ADDR_LEN); 17093 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17094 /* FALLTHRU */ 17095 case IPOPT_TS_TSONLY: 17096 off = opt[IPOPT_OFFSET] - 1; 17097 /* Compute # of milliseconds since midnight */ 17098 gethrestime(&now); 17099 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17100 now.tv_nsec / (NANOSEC / MILLISEC); 17101 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17102 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17103 break; 17104 } 17105 break; 17106 } 17107 } 17108 return (0); 17109 } 17110 17111 /* 17112 * This is called after processing at least one of AH/ESP headers. 17113 * 17114 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 17115 * the actual, physical interface on which the packet was received, 17116 * but, when ip_strict_dst_multihoming is set to 1, could be the 17117 * interface which had the ipha_dst configured when the packet went 17118 * through ip_rput. The ill_index corresponding to the recv_ill 17119 * is saved in ipsec_in_rill_index 17120 * 17121 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 17122 * cannot assume "ire" points to valid data for any IPv6 cases. 17123 */ 17124 void 17125 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 17126 { 17127 mblk_t *mp; 17128 ipaddr_t dst; 17129 in6_addr_t *v6dstp; 17130 ipha_t *ipha; 17131 ip6_t *ip6h; 17132 ipsec_in_t *ii; 17133 boolean_t ill_need_rele = B_FALSE; 17134 boolean_t rill_need_rele = B_FALSE; 17135 boolean_t ire_need_rele = B_FALSE; 17136 netstack_t *ns; 17137 ip_stack_t *ipst; 17138 17139 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 17140 ASSERT(ii->ipsec_in_ill_index != 0); 17141 ns = ii->ipsec_in_ns; 17142 ASSERT(ii->ipsec_in_ns != NULL); 17143 ipst = ns->netstack_ip; 17144 17145 mp = ipsec_mp->b_cont; 17146 ASSERT(mp != NULL); 17147 17148 if (ill == NULL) { 17149 ASSERT(recv_ill == NULL); 17150 /* 17151 * We need to get the original queue on which ip_rput_local 17152 * or ip_rput_data_v6 was called. 17153 */ 17154 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 17155 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 17156 ill_need_rele = B_TRUE; 17157 17158 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 17159 recv_ill = ill_lookup_on_ifindex( 17160 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 17161 NULL, NULL, NULL, NULL, ipst); 17162 rill_need_rele = B_TRUE; 17163 } else { 17164 recv_ill = ill; 17165 } 17166 17167 if ((ill == NULL) || (recv_ill == NULL)) { 17168 ip0dbg(("ip_fanout_proto_again: interface " 17169 "disappeared\n")); 17170 if (ill != NULL) 17171 ill_refrele(ill); 17172 if (recv_ill != NULL) 17173 ill_refrele(recv_ill); 17174 freemsg(ipsec_mp); 17175 return; 17176 } 17177 } 17178 17179 ASSERT(ill != NULL && recv_ill != NULL); 17180 17181 if (mp->b_datap->db_type == M_CTL) { 17182 /* 17183 * AH/ESP is returning the ICMP message after 17184 * removing their headers. Fanout again till 17185 * it gets to the right protocol. 17186 */ 17187 if (ii->ipsec_in_v4) { 17188 icmph_t *icmph; 17189 int iph_hdr_length; 17190 int hdr_length; 17191 17192 ipha = (ipha_t *)mp->b_rptr; 17193 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17194 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17195 ipha = (ipha_t *)&icmph[1]; 17196 hdr_length = IPH_HDR_LENGTH(ipha); 17197 /* 17198 * icmp_inbound_error_fanout may need to do pullupmsg. 17199 * Reset the type to M_DATA. 17200 */ 17201 mp->b_datap->db_type = M_DATA; 17202 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17203 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17204 B_FALSE, ill, ii->ipsec_in_zoneid); 17205 } else { 17206 icmp6_t *icmp6; 17207 int hdr_length; 17208 17209 ip6h = (ip6_t *)mp->b_rptr; 17210 /* Don't call hdr_length_v6() unless you have to. */ 17211 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17212 hdr_length = ip_hdr_length_v6(mp, ip6h); 17213 else 17214 hdr_length = IPV6_HDR_LEN; 17215 17216 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17217 /* 17218 * icmp_inbound_error_fanout_v6 may need to do 17219 * pullupmsg. Reset the type to M_DATA. 17220 */ 17221 mp->b_datap->db_type = M_DATA; 17222 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17223 ip6h, icmp6, ill, recv_ill, B_TRUE, 17224 ii->ipsec_in_zoneid); 17225 } 17226 if (ill_need_rele) 17227 ill_refrele(ill); 17228 if (rill_need_rele) 17229 ill_refrele(recv_ill); 17230 return; 17231 } 17232 17233 if (ii->ipsec_in_v4) { 17234 ipha = (ipha_t *)mp->b_rptr; 17235 dst = ipha->ipha_dst; 17236 if (CLASSD(dst)) { 17237 /* 17238 * Multicast has to be delivered to all streams. 17239 */ 17240 dst = INADDR_BROADCAST; 17241 } 17242 17243 if (ire == NULL) { 17244 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17245 msg_getlabel(mp), ipst); 17246 if (ire == NULL) { 17247 if (ill_need_rele) 17248 ill_refrele(ill); 17249 if (rill_need_rele) 17250 ill_refrele(recv_ill); 17251 ip1dbg(("ip_fanout_proto_again: " 17252 "IRE not found")); 17253 freemsg(ipsec_mp); 17254 return; 17255 } 17256 ire_need_rele = B_TRUE; 17257 } 17258 17259 switch (ipha->ipha_protocol) { 17260 case IPPROTO_UDP: 17261 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17262 recv_ill); 17263 if (ire_need_rele) 17264 ire_refrele(ire); 17265 break; 17266 case IPPROTO_TCP: 17267 if (!ire_need_rele) 17268 IRE_REFHOLD(ire); 17269 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17270 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17271 IRE_REFRELE(ire); 17272 if (mp != NULL) { 17273 SQUEUE_ENTER(GET_SQUEUE(mp), mp, 17274 mp, 1, SQ_PROCESS, 17275 SQTAG_IP_PROTO_AGAIN); 17276 } 17277 break; 17278 case IPPROTO_SCTP: 17279 if (!ire_need_rele) 17280 IRE_REFHOLD(ire); 17281 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17282 ipsec_mp, 0, ill->ill_rq, dst); 17283 break; 17284 default: 17285 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17286 recv_ill, 0); 17287 if (ire_need_rele) 17288 ire_refrele(ire); 17289 break; 17290 } 17291 } else { 17292 uint32_t rput_flags = 0; 17293 17294 ip6h = (ip6_t *)mp->b_rptr; 17295 v6dstp = &ip6h->ip6_dst; 17296 /* 17297 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17298 * address. 17299 * 17300 * Currently, we don't store that state in the IPSEC_IN 17301 * message, and we may need to. 17302 */ 17303 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17304 IP6_IN_LLMCAST : 0); 17305 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17306 NULL, NULL); 17307 } 17308 if (ill_need_rele) 17309 ill_refrele(ill); 17310 if (rill_need_rele) 17311 ill_refrele(recv_ill); 17312 } 17313 17314 /* 17315 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17316 * returns 'true' if there are still fragments left on the queue, in 17317 * which case we restart the timer. 17318 */ 17319 void 17320 ill_frag_timer(void *arg) 17321 { 17322 ill_t *ill = (ill_t *)arg; 17323 boolean_t frag_pending; 17324 ip_stack_t *ipst = ill->ill_ipst; 17325 17326 mutex_enter(&ill->ill_lock); 17327 ASSERT(!ill->ill_fragtimer_executing); 17328 if (ill->ill_state_flags & ILL_CONDEMNED) { 17329 ill->ill_frag_timer_id = 0; 17330 mutex_exit(&ill->ill_lock); 17331 return; 17332 } 17333 ill->ill_fragtimer_executing = 1; 17334 mutex_exit(&ill->ill_lock); 17335 17336 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17337 17338 /* 17339 * Restart the timer, if we have fragments pending or if someone 17340 * wanted us to be scheduled again. 17341 */ 17342 mutex_enter(&ill->ill_lock); 17343 ill->ill_fragtimer_executing = 0; 17344 ill->ill_frag_timer_id = 0; 17345 if (frag_pending || ill->ill_fragtimer_needrestart) 17346 ill_frag_timer_start(ill); 17347 mutex_exit(&ill->ill_lock); 17348 } 17349 17350 void 17351 ill_frag_timer_start(ill_t *ill) 17352 { 17353 ip_stack_t *ipst = ill->ill_ipst; 17354 17355 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17356 17357 /* If the ill is closing or opening don't proceed */ 17358 if (ill->ill_state_flags & ILL_CONDEMNED) 17359 return; 17360 17361 if (ill->ill_fragtimer_executing) { 17362 /* 17363 * ill_frag_timer is currently executing. Just record the 17364 * the fact that we want the timer to be restarted. 17365 * ill_frag_timer will post a timeout before it returns, 17366 * ensuring it will be called again. 17367 */ 17368 ill->ill_fragtimer_needrestart = 1; 17369 return; 17370 } 17371 17372 if (ill->ill_frag_timer_id == 0) { 17373 /* 17374 * The timer is neither running nor is the timeout handler 17375 * executing. Post a timeout so that ill_frag_timer will be 17376 * called 17377 */ 17378 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17379 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17380 ill->ill_fragtimer_needrestart = 0; 17381 } 17382 } 17383 17384 /* 17385 * This routine is needed for loopback when forwarding multicasts. 17386 * 17387 * IPQoS Notes: 17388 * IPPF processing is done in fanout routines. 17389 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17390 * processing for IPsec packets is done when it comes back in clear. 17391 * NOTE : The callers of this function need to do the ire_refrele for the 17392 * ire that is being passed in. 17393 */ 17394 void 17395 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17396 ill_t *recv_ill, uint32_t esp_udp_ports) 17397 { 17398 boolean_t esp_in_udp_packet = (esp_udp_ports != 0); 17399 ill_t *ill = (ill_t *)q->q_ptr; 17400 uint32_t sum; 17401 uint32_t u1; 17402 uint32_t u2; 17403 int hdr_length; 17404 boolean_t mctl_present; 17405 mblk_t *first_mp = mp; 17406 mblk_t *hada_mp = NULL; 17407 ipha_t *inner_ipha; 17408 ip_stack_t *ipst; 17409 17410 ASSERT(recv_ill != NULL); 17411 ipst = recv_ill->ill_ipst; 17412 17413 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17414 "ip_rput_locl_start: q %p", q); 17415 17416 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17417 ASSERT(ill != NULL); 17418 17419 #define rptr ((uchar_t *)ipha) 17420 #define iphs ((uint16_t *)ipha) 17421 17422 /* 17423 * no UDP or TCP packet should come here anymore. 17424 */ 17425 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17426 ipha->ipha_protocol != IPPROTO_UDP); 17427 17428 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17429 if (mctl_present && 17430 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17431 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17432 17433 /* 17434 * It's an IPsec accelerated packet. 17435 * Keep a pointer to the data attributes around until 17436 * we allocate the ipsec_info_t. 17437 */ 17438 IPSECHW_DEBUG(IPSECHW_PKT, 17439 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17440 hada_mp = first_mp; 17441 hada_mp->b_cont = NULL; 17442 /* 17443 * Since it is accelerated, it comes directly from 17444 * the ill and the data attributes is followed by 17445 * the packet data. 17446 */ 17447 ASSERT(mp->b_datap->db_type != M_CTL); 17448 first_mp = mp; 17449 mctl_present = B_FALSE; 17450 } 17451 17452 /* 17453 * IF M_CTL is not present, then ipsec_in_is_secure 17454 * should return B_TRUE. There is a case where loopback 17455 * packets has an M_CTL in the front with all the 17456 * IPsec options set to IPSEC_PREF_NEVER - which means 17457 * ipsec_in_is_secure will return B_FALSE. As loopback 17458 * packets never comes here, it is safe to ASSERT the 17459 * following. 17460 */ 17461 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17462 17463 /* 17464 * Also, we should never have an mctl_present if this is an 17465 * ESP-in-UDP packet. 17466 */ 17467 ASSERT(!mctl_present || !esp_in_udp_packet); 17468 17469 /* u1 is # words of IP options */ 17470 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17471 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17472 17473 /* 17474 * Don't verify header checksum if we just removed UDP header or 17475 * packet is coming back from AH/ESP. 17476 */ 17477 if (!esp_in_udp_packet && !mctl_present) { 17478 if (u1) { 17479 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17480 if (hada_mp != NULL) 17481 freemsg(hada_mp); 17482 return; 17483 } 17484 } else { 17485 /* Check the IP header checksum. */ 17486 #define uph ((uint16_t *)ipha) 17487 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17488 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17489 #undef uph 17490 /* finish doing IP checksum */ 17491 sum = (sum & 0xFFFF) + (sum >> 16); 17492 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17493 if (sum && sum != 0xFFFF) { 17494 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17495 goto drop_pkt; 17496 } 17497 } 17498 } 17499 17500 /* 17501 * Count for SNMP of inbound packets for ire. As ip_proto_input 17502 * might be called more than once for secure packets, count only 17503 * the first time. 17504 */ 17505 if (!mctl_present) { 17506 UPDATE_IB_PKT_COUNT(ire); 17507 ire->ire_last_used_time = lbolt; 17508 } 17509 17510 /* Check for fragmentation offset. */ 17511 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17512 u1 = u2 & (IPH_MF | IPH_OFFSET); 17513 if (u1) { 17514 /* 17515 * We re-assemble fragments before we do the AH/ESP 17516 * processing. Thus, M_CTL should not be present 17517 * while we are re-assembling. 17518 */ 17519 ASSERT(!mctl_present); 17520 ASSERT(first_mp == mp); 17521 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 17522 return; 17523 17524 /* 17525 * Make sure that first_mp points back to mp as 17526 * the mp we came in with could have changed in 17527 * ip_rput_fragment(). 17528 */ 17529 ipha = (ipha_t *)mp->b_rptr; 17530 first_mp = mp; 17531 } 17532 17533 /* 17534 * Clear hardware checksumming flag as it is currently only 17535 * used by TCP and UDP. 17536 */ 17537 DB_CKSUMFLAGS(mp) = 0; 17538 17539 /* Now we have a complete datagram, destined for this machine. */ 17540 u1 = IPH_HDR_LENGTH(ipha); 17541 switch (ipha->ipha_protocol) { 17542 case IPPROTO_ICMP: { 17543 ire_t *ire_zone; 17544 ilm_t *ilm; 17545 mblk_t *mp1; 17546 zoneid_t last_zoneid; 17547 ilm_walker_t ilw; 17548 17549 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17550 ASSERT(ire->ire_type == IRE_BROADCAST); 17551 17552 /* 17553 * In the multicast case, applications may have joined 17554 * the group from different zones, so we need to deliver 17555 * the packet to each of them. Loop through the 17556 * multicast memberships structures (ilm) on the receive 17557 * ill and send a copy of the packet up each matching 17558 * one. However, we don't do this for multicasts sent on 17559 * the loopback interface (PHYI_LOOPBACK flag set) as 17560 * they must stay in the sender's zone. 17561 * 17562 * ilm_add_v6() ensures that ilms in the same zone are 17563 * contiguous in the ill_ilm list. We use this property 17564 * to avoid sending duplicates needed when two 17565 * applications in the same zone join the same group on 17566 * different logical interfaces: we ignore the ilm if 17567 * its zoneid is the same as the last matching one. 17568 * In addition, the sending of the packet for 17569 * ire_zoneid is delayed until all of the other ilms 17570 * have been exhausted. 17571 */ 17572 last_zoneid = -1; 17573 ilm = ilm_walker_start(&ilw, recv_ill); 17574 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 17575 if (ipha->ipha_dst != ilm->ilm_addr || 17576 ilm->ilm_zoneid == last_zoneid || 17577 ilm->ilm_zoneid == ire->ire_zoneid || 17578 ilm->ilm_zoneid == ALL_ZONES || 17579 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17580 continue; 17581 mp1 = ip_copymsg(first_mp); 17582 if (mp1 == NULL) 17583 continue; 17584 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 17585 0, sum, mctl_present, B_TRUE, 17586 recv_ill, ilm->ilm_zoneid); 17587 last_zoneid = ilm->ilm_zoneid; 17588 } 17589 ilm_walker_finish(&ilw); 17590 } else if (ire->ire_type == IRE_BROADCAST) { 17591 /* 17592 * In the broadcast case, there may be many zones 17593 * which need a copy of the packet delivered to them. 17594 * There is one IRE_BROADCAST per broadcast address 17595 * and per zone; we walk those using a helper function. 17596 * In addition, the sending of the packet for ire is 17597 * delayed until all of the other ires have been 17598 * processed. 17599 */ 17600 IRB_REFHOLD(ire->ire_bucket); 17601 ire_zone = NULL; 17602 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17603 ire)) != NULL) { 17604 mp1 = ip_copymsg(first_mp); 17605 if (mp1 == NULL) 17606 continue; 17607 17608 UPDATE_IB_PKT_COUNT(ire_zone); 17609 ire_zone->ire_last_used_time = lbolt; 17610 icmp_inbound(q, mp1, B_TRUE, ill, 17611 0, sum, mctl_present, B_TRUE, 17612 recv_ill, ire_zone->ire_zoneid); 17613 } 17614 IRB_REFRELE(ire->ire_bucket); 17615 } 17616 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17617 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17618 ire->ire_zoneid); 17619 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17620 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17621 return; 17622 } 17623 case IPPROTO_IGMP: 17624 /* 17625 * If we are not willing to accept IGMP packets in clear, 17626 * then check with global policy. 17627 */ 17628 if (ipst->ips_igmp_accept_clear_messages == 0) { 17629 first_mp = ipsec_check_global_policy(first_mp, NULL, 17630 ipha, NULL, mctl_present, ipst->ips_netstack); 17631 if (first_mp == NULL) 17632 return; 17633 } 17634 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17635 freemsg(first_mp); 17636 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17637 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17638 return; 17639 } 17640 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17641 /* Bad packet - discarded by igmp_input */ 17642 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17643 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17644 if (mctl_present) 17645 freeb(first_mp); 17646 return; 17647 } 17648 /* 17649 * igmp_input() may have returned the pulled up message. 17650 * So first_mp and ipha need to be reinitialized. 17651 */ 17652 ipha = (ipha_t *)mp->b_rptr; 17653 if (mctl_present) 17654 first_mp->b_cont = mp; 17655 else 17656 first_mp = mp; 17657 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17658 connf_head != NULL) { 17659 /* No user-level listener for IGMP packets */ 17660 goto drop_pkt; 17661 } 17662 /* deliver to local raw users */ 17663 break; 17664 case IPPROTO_PIM: 17665 /* 17666 * If we are not willing to accept PIM packets in clear, 17667 * then check with global policy. 17668 */ 17669 if (ipst->ips_pim_accept_clear_messages == 0) { 17670 first_mp = ipsec_check_global_policy(first_mp, NULL, 17671 ipha, NULL, mctl_present, ipst->ips_netstack); 17672 if (first_mp == NULL) 17673 return; 17674 } 17675 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17676 freemsg(first_mp); 17677 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17678 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17679 return; 17680 } 17681 if (pim_input(q, mp, ill) != 0) { 17682 /* Bad packet - discarded by pim_input */ 17683 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17684 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17685 if (mctl_present) 17686 freeb(first_mp); 17687 return; 17688 } 17689 17690 /* 17691 * pim_input() may have pulled up the message so ipha needs to 17692 * be reinitialized. 17693 */ 17694 ipha = (ipha_t *)mp->b_rptr; 17695 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17696 connf_head != NULL) { 17697 /* No user-level listener for PIM packets */ 17698 goto drop_pkt; 17699 } 17700 /* deliver to local raw users */ 17701 break; 17702 case IPPROTO_ENCAP: 17703 /* 17704 * Handle self-encapsulated packets (IP-in-IP where 17705 * the inner addresses == the outer addresses). 17706 */ 17707 hdr_length = IPH_HDR_LENGTH(ipha); 17708 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17709 mp->b_wptr) { 17710 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17711 sizeof (ipha_t) - mp->b_rptr)) { 17712 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17713 freemsg(first_mp); 17714 return; 17715 } 17716 ipha = (ipha_t *)mp->b_rptr; 17717 } 17718 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17719 /* 17720 * Check the sanity of the inner IP header. 17721 */ 17722 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17723 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17724 freemsg(first_mp); 17725 return; 17726 } 17727 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17728 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17729 freemsg(first_mp); 17730 return; 17731 } 17732 if (inner_ipha->ipha_src == ipha->ipha_src && 17733 inner_ipha->ipha_dst == ipha->ipha_dst) { 17734 ipsec_in_t *ii; 17735 17736 /* 17737 * Self-encapsulated tunnel packet. Remove 17738 * the outer IP header and fanout again. 17739 * We also need to make sure that the inner 17740 * header is pulled up until options. 17741 */ 17742 mp->b_rptr = (uchar_t *)inner_ipha; 17743 ipha = inner_ipha; 17744 hdr_length = IPH_HDR_LENGTH(ipha); 17745 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17746 if (!pullupmsg(mp, (uchar_t *)ipha + 17747 + hdr_length - mp->b_rptr)) { 17748 freemsg(first_mp); 17749 return; 17750 } 17751 ipha = (ipha_t *)mp->b_rptr; 17752 } 17753 if (hdr_length > sizeof (ipha_t)) { 17754 /* We got options on the inner packet. */ 17755 ipaddr_t dst = ipha->ipha_dst; 17756 17757 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17758 -1) { 17759 /* Bad options! */ 17760 return; 17761 } 17762 if (dst != ipha->ipha_dst) { 17763 /* 17764 * Someone put a source-route in 17765 * the inside header of a self- 17766 * encapsulated packet. Drop it 17767 * with extreme prejudice and let 17768 * the sender know. 17769 */ 17770 icmp_unreachable(q, first_mp, 17771 ICMP_SOURCE_ROUTE_FAILED, 17772 recv_ill->ill_zoneid, ipst); 17773 return; 17774 } 17775 } 17776 if (!mctl_present) { 17777 ASSERT(first_mp == mp); 17778 /* 17779 * This means that somebody is sending 17780 * Self-encapsualted packets without AH/ESP. 17781 * If AH/ESP was present, we would have already 17782 * allocated the first_mp. 17783 * 17784 * Send this packet to find a tunnel endpoint. 17785 * if I can't find one, an ICMP 17786 * PROTOCOL_UNREACHABLE will get sent. 17787 */ 17788 goto fanout; 17789 } 17790 /* 17791 * We generally store the ill_index if we need to 17792 * do IPsec processing as we lose the ill queue when 17793 * we come back. But in this case, we never should 17794 * have to store the ill_index here as it should have 17795 * been stored previously when we processed the 17796 * AH/ESP header in this routine or for non-ipsec 17797 * cases, we still have the queue. But for some bad 17798 * packets from the wire, we can get to IPsec after 17799 * this and we better store the index for that case. 17800 */ 17801 ill = (ill_t *)q->q_ptr; 17802 ii = (ipsec_in_t *)first_mp->b_rptr; 17803 ii->ipsec_in_ill_index = 17804 ill->ill_phyint->phyint_ifindex; 17805 ii->ipsec_in_rill_index = 17806 recv_ill->ill_phyint->phyint_ifindex; 17807 if (ii->ipsec_in_decaps) { 17808 /* 17809 * This packet is self-encapsulated multiple 17810 * times. We don't want to recurse infinitely. 17811 * To keep it simple, drop the packet. 17812 */ 17813 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17814 freemsg(first_mp); 17815 return; 17816 } 17817 ii->ipsec_in_decaps = B_TRUE; 17818 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17819 ire); 17820 return; 17821 } 17822 break; 17823 case IPPROTO_AH: 17824 case IPPROTO_ESP: { 17825 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17826 17827 /* 17828 * Fast path for AH/ESP. If this is the first time 17829 * we are sending a datagram to AH/ESP, allocate 17830 * a IPSEC_IN message and prepend it. Otherwise, 17831 * just fanout. 17832 */ 17833 17834 int ipsec_rc; 17835 ipsec_in_t *ii; 17836 netstack_t *ns = ipst->ips_netstack; 17837 17838 IP_STAT(ipst, ipsec_proto_ahesp); 17839 if (!mctl_present) { 17840 ASSERT(first_mp == mp); 17841 first_mp = ipsec_in_alloc(B_TRUE, ns); 17842 if (first_mp == NULL) { 17843 ip1dbg(("ip_proto_input: IPSEC_IN " 17844 "allocation failure.\n")); 17845 freemsg(hada_mp); /* okay ifnull */ 17846 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17847 freemsg(mp); 17848 return; 17849 } 17850 /* 17851 * Store the ill_index so that when we come back 17852 * from IPsec we ride on the same queue. 17853 */ 17854 ill = (ill_t *)q->q_ptr; 17855 ii = (ipsec_in_t *)first_mp->b_rptr; 17856 ii->ipsec_in_ill_index = 17857 ill->ill_phyint->phyint_ifindex; 17858 ii->ipsec_in_rill_index = 17859 recv_ill->ill_phyint->phyint_ifindex; 17860 first_mp->b_cont = mp; 17861 /* 17862 * Cache hardware acceleration info. 17863 */ 17864 if (hada_mp != NULL) { 17865 IPSECHW_DEBUG(IPSECHW_PKT, 17866 ("ip_rput_local: caching data attr.\n")); 17867 ii->ipsec_in_accelerated = B_TRUE; 17868 ii->ipsec_in_da = hada_mp; 17869 hada_mp = NULL; 17870 } 17871 } else { 17872 ii = (ipsec_in_t *)first_mp->b_rptr; 17873 } 17874 17875 ii->ipsec_in_esp_udp_ports = esp_udp_ports; 17876 17877 if (!ipsec_loaded(ipss)) { 17878 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17879 ire->ire_zoneid, ipst); 17880 return; 17881 } 17882 17883 ns = ipst->ips_netstack; 17884 /* select inbound SA and have IPsec process the pkt */ 17885 if (ipha->ipha_protocol == IPPROTO_ESP) { 17886 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17887 boolean_t esp_in_udp_sa; 17888 if (esph == NULL) 17889 return; 17890 ASSERT(ii->ipsec_in_esp_sa != NULL); 17891 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17892 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17893 IPSA_F_NATT) != 0); 17894 /* 17895 * The following is a fancy, but quick, way of saying: 17896 * ESP-in-UDP SA and Raw ESP packet --> drop 17897 * OR 17898 * ESP SA and ESP-in-UDP packet --> drop 17899 */ 17900 if (esp_in_udp_sa != esp_in_udp_packet) { 17901 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17902 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17903 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17904 &ns->netstack_ipsec->ipsec_dropper); 17905 return; 17906 } 17907 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17908 first_mp, esph); 17909 } else { 17910 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17911 if (ah == NULL) 17912 return; 17913 ASSERT(ii->ipsec_in_ah_sa != NULL); 17914 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17915 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17916 first_mp, ah); 17917 } 17918 17919 switch (ipsec_rc) { 17920 case IPSEC_STATUS_SUCCESS: 17921 break; 17922 case IPSEC_STATUS_FAILED: 17923 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17924 /* FALLTHRU */ 17925 case IPSEC_STATUS_PENDING: 17926 return; 17927 } 17928 /* we're done with IPsec processing, send it up */ 17929 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17930 return; 17931 } 17932 default: 17933 break; 17934 } 17935 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17936 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17937 ire->ire_zoneid)); 17938 goto drop_pkt; 17939 } 17940 /* 17941 * Handle protocols with which IP is less intimate. There 17942 * can be more than one stream bound to a particular 17943 * protocol. When this is the case, each one gets a copy 17944 * of any incoming packets. 17945 */ 17946 fanout: 17947 ip_fanout_proto(q, first_mp, ill, ipha, 17948 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17949 B_TRUE, recv_ill, ire->ire_zoneid); 17950 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17951 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17952 return; 17953 17954 drop_pkt: 17955 freemsg(first_mp); 17956 if (hada_mp != NULL) 17957 freeb(hada_mp); 17958 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17959 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17960 #undef rptr 17961 #undef iphs 17962 17963 } 17964 17965 /* 17966 * Update any source route, record route or timestamp options. 17967 * Check that we are at end of strict source route. 17968 * The options have already been checked for sanity in ip_rput_options(). 17969 */ 17970 static boolean_t 17971 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17972 ip_stack_t *ipst) 17973 { 17974 ipoptp_t opts; 17975 uchar_t *opt; 17976 uint8_t optval; 17977 uint8_t optlen; 17978 ipaddr_t dst; 17979 uint32_t ts; 17980 ire_t *dst_ire; 17981 timestruc_t now; 17982 zoneid_t zoneid; 17983 ill_t *ill; 17984 17985 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17986 17987 ip2dbg(("ip_rput_local_options\n")); 17988 17989 for (optval = ipoptp_first(&opts, ipha); 17990 optval != IPOPT_EOL; 17991 optval = ipoptp_next(&opts)) { 17992 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17993 opt = opts.ipoptp_cur; 17994 optlen = opts.ipoptp_len; 17995 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17996 optval, optlen)); 17997 switch (optval) { 17998 uint32_t off; 17999 case IPOPT_SSRR: 18000 case IPOPT_LSRR: 18001 off = opt[IPOPT_OFFSET]; 18002 off--; 18003 if (optlen < IP_ADDR_LEN || 18004 off > optlen - IP_ADDR_LEN) { 18005 /* End of source route */ 18006 ip1dbg(("ip_rput_local_options: end of SR\n")); 18007 break; 18008 } 18009 /* 18010 * This will only happen if two consecutive entries 18011 * in the source route contains our address or if 18012 * it is a packet with a loose source route which 18013 * reaches us before consuming the whole source route 18014 */ 18015 ip1dbg(("ip_rput_local_options: not end of SR\n")); 18016 if (optval == IPOPT_SSRR) { 18017 goto bad_src_route; 18018 } 18019 /* 18020 * Hack: instead of dropping the packet truncate the 18021 * source route to what has been used by filling the 18022 * rest with IPOPT_NOP. 18023 */ 18024 opt[IPOPT_OLEN] = (uint8_t)off; 18025 while (off < optlen) { 18026 opt[off++] = IPOPT_NOP; 18027 } 18028 break; 18029 case IPOPT_RR: 18030 off = opt[IPOPT_OFFSET]; 18031 off--; 18032 if (optlen < IP_ADDR_LEN || 18033 off > optlen - IP_ADDR_LEN) { 18034 /* No more room - ignore */ 18035 ip1dbg(( 18036 "ip_rput_local_options: end of RR\n")); 18037 break; 18038 } 18039 bcopy(&ire->ire_src_addr, (char *)opt + off, 18040 IP_ADDR_LEN); 18041 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 18042 break; 18043 case IPOPT_TS: 18044 /* Insert timestamp if there is romm */ 18045 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18046 case IPOPT_TS_TSONLY: 18047 off = IPOPT_TS_TIMELEN; 18048 break; 18049 case IPOPT_TS_PRESPEC: 18050 case IPOPT_TS_PRESPEC_RFC791: 18051 /* Verify that the address matched */ 18052 off = opt[IPOPT_OFFSET] - 1; 18053 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18054 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 18055 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 18056 ipst); 18057 if (dst_ire == NULL) { 18058 /* Not for us */ 18059 break; 18060 } 18061 ire_refrele(dst_ire); 18062 /* FALLTHRU */ 18063 case IPOPT_TS_TSANDADDR: 18064 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18065 break; 18066 default: 18067 /* 18068 * ip_*put_options should have already 18069 * dropped this packet. 18070 */ 18071 cmn_err(CE_PANIC, "ip_rput_local_options: " 18072 "unknown IT - bug in ip_rput_options?\n"); 18073 return (B_TRUE); /* Keep "lint" happy */ 18074 } 18075 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 18076 /* Increase overflow counter */ 18077 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 18078 opt[IPOPT_POS_OV_FLG] = 18079 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 18080 (off << 4)); 18081 break; 18082 } 18083 off = opt[IPOPT_OFFSET] - 1; 18084 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18085 case IPOPT_TS_PRESPEC: 18086 case IPOPT_TS_PRESPEC_RFC791: 18087 case IPOPT_TS_TSANDADDR: 18088 bcopy(&ire->ire_src_addr, (char *)opt + off, 18089 IP_ADDR_LEN); 18090 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 18091 /* FALLTHRU */ 18092 case IPOPT_TS_TSONLY: 18093 off = opt[IPOPT_OFFSET] - 1; 18094 /* Compute # of milliseconds since midnight */ 18095 gethrestime(&now); 18096 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 18097 now.tv_nsec / (NANOSEC / MILLISEC); 18098 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 18099 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 18100 break; 18101 } 18102 break; 18103 } 18104 } 18105 return (B_TRUE); 18106 18107 bad_src_route: 18108 q = WR(q); 18109 if (q->q_next != NULL) 18110 ill = q->q_ptr; 18111 else 18112 ill = NULL; 18113 18114 /* make sure we clear any indication of a hardware checksum */ 18115 DB_CKSUMFLAGS(mp) = 0; 18116 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 18117 if (zoneid == ALL_ZONES) 18118 freemsg(mp); 18119 else 18120 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18121 return (B_FALSE); 18122 18123 } 18124 18125 /* 18126 * Process IP options in an inbound packet. If an option affects the 18127 * effective destination address, return the next hop address via dstp. 18128 * Returns -1 if something fails in which case an ICMP error has been sent 18129 * and mp freed. 18130 */ 18131 static int 18132 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 18133 ip_stack_t *ipst) 18134 { 18135 ipoptp_t opts; 18136 uchar_t *opt; 18137 uint8_t optval; 18138 uint8_t optlen; 18139 ipaddr_t dst; 18140 intptr_t code = 0; 18141 ire_t *ire = NULL; 18142 zoneid_t zoneid; 18143 ill_t *ill; 18144 18145 ip2dbg(("ip_rput_options\n")); 18146 dst = ipha->ipha_dst; 18147 for (optval = ipoptp_first(&opts, ipha); 18148 optval != IPOPT_EOL; 18149 optval = ipoptp_next(&opts)) { 18150 opt = opts.ipoptp_cur; 18151 optlen = opts.ipoptp_len; 18152 ip2dbg(("ip_rput_options: opt %d, len %d\n", 18153 optval, optlen)); 18154 /* 18155 * Note: we need to verify the checksum before we 18156 * modify anything thus this routine only extracts the next 18157 * hop dst from any source route. 18158 */ 18159 switch (optval) { 18160 uint32_t off; 18161 case IPOPT_SSRR: 18162 case IPOPT_LSRR: 18163 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18164 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18165 if (ire == NULL) { 18166 if (optval == IPOPT_SSRR) { 18167 ip1dbg(("ip_rput_options: not next" 18168 " strict source route 0x%x\n", 18169 ntohl(dst))); 18170 code = (char *)&ipha->ipha_dst - 18171 (char *)ipha; 18172 goto param_prob; /* RouterReq's */ 18173 } 18174 ip2dbg(("ip_rput_options: " 18175 "not next source route 0x%x\n", 18176 ntohl(dst))); 18177 break; 18178 } 18179 ire_refrele(ire); 18180 18181 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18182 ip1dbg(( 18183 "ip_rput_options: bad option offset\n")); 18184 code = (char *)&opt[IPOPT_OLEN] - 18185 (char *)ipha; 18186 goto param_prob; 18187 } 18188 off = opt[IPOPT_OFFSET]; 18189 off--; 18190 redo_srr: 18191 if (optlen < IP_ADDR_LEN || 18192 off > optlen - IP_ADDR_LEN) { 18193 /* End of source route */ 18194 ip1dbg(("ip_rput_options: end of SR\n")); 18195 break; 18196 } 18197 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18198 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18199 ntohl(dst))); 18200 18201 /* 18202 * Check if our address is present more than 18203 * once as consecutive hops in source route. 18204 * XXX verify per-interface ip_forwarding 18205 * for source route? 18206 */ 18207 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18208 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18209 18210 if (ire != NULL) { 18211 ire_refrele(ire); 18212 off += IP_ADDR_LEN; 18213 goto redo_srr; 18214 } 18215 18216 if (dst == htonl(INADDR_LOOPBACK)) { 18217 ip1dbg(("ip_rput_options: loopback addr in " 18218 "source route!\n")); 18219 goto bad_src_route; 18220 } 18221 /* 18222 * For strict: verify that dst is directly 18223 * reachable. 18224 */ 18225 if (optval == IPOPT_SSRR) { 18226 ire = ire_ftable_lookup(dst, 0, 0, 18227 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18228 msg_getlabel(mp), 18229 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18230 if (ire == NULL) { 18231 ip1dbg(("ip_rput_options: SSRR not " 18232 "directly reachable: 0x%x\n", 18233 ntohl(dst))); 18234 goto bad_src_route; 18235 } 18236 ire_refrele(ire); 18237 } 18238 /* 18239 * Defer update of the offset and the record route 18240 * until the packet is forwarded. 18241 */ 18242 break; 18243 case IPOPT_RR: 18244 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18245 ip1dbg(( 18246 "ip_rput_options: bad option offset\n")); 18247 code = (char *)&opt[IPOPT_OLEN] - 18248 (char *)ipha; 18249 goto param_prob; 18250 } 18251 break; 18252 case IPOPT_TS: 18253 /* 18254 * Verify that length >= 5 and that there is either 18255 * room for another timestamp or that the overflow 18256 * counter is not maxed out. 18257 */ 18258 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18259 if (optlen < IPOPT_MINLEN_IT) { 18260 goto param_prob; 18261 } 18262 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18263 ip1dbg(( 18264 "ip_rput_options: bad option offset\n")); 18265 code = (char *)&opt[IPOPT_OFFSET] - 18266 (char *)ipha; 18267 goto param_prob; 18268 } 18269 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18270 case IPOPT_TS_TSONLY: 18271 off = IPOPT_TS_TIMELEN; 18272 break; 18273 case IPOPT_TS_TSANDADDR: 18274 case IPOPT_TS_PRESPEC: 18275 case IPOPT_TS_PRESPEC_RFC791: 18276 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18277 break; 18278 default: 18279 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18280 (char *)ipha; 18281 goto param_prob; 18282 } 18283 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18284 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18285 /* 18286 * No room and the overflow counter is 15 18287 * already. 18288 */ 18289 goto param_prob; 18290 } 18291 break; 18292 } 18293 } 18294 18295 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18296 *dstp = dst; 18297 return (0); 18298 } 18299 18300 ip1dbg(("ip_rput_options: error processing IP options.")); 18301 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18302 18303 param_prob: 18304 q = WR(q); 18305 if (q->q_next != NULL) 18306 ill = q->q_ptr; 18307 else 18308 ill = NULL; 18309 18310 /* make sure we clear any indication of a hardware checksum */ 18311 DB_CKSUMFLAGS(mp) = 0; 18312 /* Don't know whether this is for non-global or global/forwarding */ 18313 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18314 if (zoneid == ALL_ZONES) 18315 freemsg(mp); 18316 else 18317 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18318 return (-1); 18319 18320 bad_src_route: 18321 q = WR(q); 18322 if (q->q_next != NULL) 18323 ill = q->q_ptr; 18324 else 18325 ill = NULL; 18326 18327 /* make sure we clear any indication of a hardware checksum */ 18328 DB_CKSUMFLAGS(mp) = 0; 18329 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18330 if (zoneid == ALL_ZONES) 18331 freemsg(mp); 18332 else 18333 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18334 return (-1); 18335 } 18336 18337 /* 18338 * IP & ICMP info in >=14 msg's ... 18339 * - ip fixed part (mib2_ip_t) 18340 * - icmp fixed part (mib2_icmp_t) 18341 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18342 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18343 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18344 * - ipRouteAttributeTable (ip 102) labeled routes 18345 * - ip multicast membership (ip_member_t) 18346 * - ip multicast source filtering (ip_grpsrc_t) 18347 * - igmp fixed part (struct igmpstat) 18348 * - multicast routing stats (struct mrtstat) 18349 * - multicast routing vifs (array of struct vifctl) 18350 * - multicast routing routes (array of struct mfcctl) 18351 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18352 * One per ill plus one generic 18353 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18354 * One per ill plus one generic 18355 * - ipv6RouteEntry all IPv6 IREs 18356 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18357 * - ipv6NetToMediaEntry all Neighbor Cache entries 18358 * - ipv6AddrEntry all IPv6 ipifs 18359 * - ipv6 multicast membership (ipv6_member_t) 18360 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18361 * 18362 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18363 * 18364 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18365 * already filled in by the caller. 18366 * Return value of 0 indicates that no messages were sent and caller 18367 * should free mpctl. 18368 */ 18369 int 18370 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18371 { 18372 ip_stack_t *ipst; 18373 sctp_stack_t *sctps; 18374 18375 if (q->q_next != NULL) { 18376 ipst = ILLQ_TO_IPST(q); 18377 } else { 18378 ipst = CONNQ_TO_IPST(q); 18379 } 18380 ASSERT(ipst != NULL); 18381 sctps = ipst->ips_netstack->netstack_sctp; 18382 18383 if (mpctl == NULL || mpctl->b_cont == NULL) { 18384 return (0); 18385 } 18386 18387 /* 18388 * For the purposes of the (broken) packet shell use 18389 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18390 * to make TCP and UDP appear first in the list of mib items. 18391 * TBD: We could expand this and use it in netstat so that 18392 * the kernel doesn't have to produce large tables (connections, 18393 * routes, etc) when netstat only wants the statistics or a particular 18394 * table. 18395 */ 18396 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18397 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18398 return (1); 18399 } 18400 } 18401 18402 if (level != MIB2_TCP) { 18403 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18404 return (1); 18405 } 18406 } 18407 18408 if (level != MIB2_UDP) { 18409 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18410 return (1); 18411 } 18412 } 18413 18414 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18415 ipst)) == NULL) { 18416 return (1); 18417 } 18418 18419 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18420 return (1); 18421 } 18422 18423 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18424 return (1); 18425 } 18426 18427 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18428 return (1); 18429 } 18430 18431 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18432 return (1); 18433 } 18434 18435 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18436 return (1); 18437 } 18438 18439 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18440 return (1); 18441 } 18442 18443 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18444 return (1); 18445 } 18446 18447 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18448 return (1); 18449 } 18450 18451 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18452 return (1); 18453 } 18454 18455 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18456 return (1); 18457 } 18458 18459 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18460 return (1); 18461 } 18462 18463 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18464 return (1); 18465 } 18466 18467 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18468 return (1); 18469 } 18470 18471 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 18472 if (mpctl == NULL) 18473 return (1); 18474 18475 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 18476 if (mpctl == NULL) 18477 return (1); 18478 18479 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18480 return (1); 18481 } 18482 freemsg(mpctl); 18483 return (1); 18484 } 18485 18486 /* Get global (legacy) IPv4 statistics */ 18487 static mblk_t * 18488 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18489 ip_stack_t *ipst) 18490 { 18491 mib2_ip_t old_ip_mib; 18492 struct opthdr *optp; 18493 mblk_t *mp2ctl; 18494 18495 /* 18496 * make a copy of the original message 18497 */ 18498 mp2ctl = copymsg(mpctl); 18499 18500 /* fixed length IP structure... */ 18501 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18502 optp->level = MIB2_IP; 18503 optp->name = 0; 18504 SET_MIB(old_ip_mib.ipForwarding, 18505 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18506 SET_MIB(old_ip_mib.ipDefaultTTL, 18507 (uint32_t)ipst->ips_ip_def_ttl); 18508 SET_MIB(old_ip_mib.ipReasmTimeout, 18509 ipst->ips_ip_g_frag_timeout); 18510 SET_MIB(old_ip_mib.ipAddrEntrySize, 18511 sizeof (mib2_ipAddrEntry_t)); 18512 SET_MIB(old_ip_mib.ipRouteEntrySize, 18513 sizeof (mib2_ipRouteEntry_t)); 18514 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18515 sizeof (mib2_ipNetToMediaEntry_t)); 18516 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18517 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18518 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18519 sizeof (mib2_ipAttributeEntry_t)); 18520 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18521 18522 /* 18523 * Grab the statistics from the new IP MIB 18524 */ 18525 SET_MIB(old_ip_mib.ipInReceives, 18526 (uint32_t)ipmib->ipIfStatsHCInReceives); 18527 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18528 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18529 SET_MIB(old_ip_mib.ipForwDatagrams, 18530 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18531 SET_MIB(old_ip_mib.ipInUnknownProtos, 18532 ipmib->ipIfStatsInUnknownProtos); 18533 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18534 SET_MIB(old_ip_mib.ipInDelivers, 18535 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18536 SET_MIB(old_ip_mib.ipOutRequests, 18537 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18538 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18539 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18540 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18541 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18542 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18543 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18544 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18545 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18546 18547 /* ipRoutingDiscards is not being used */ 18548 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18549 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18550 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18551 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18552 SET_MIB(old_ip_mib.ipReasmDuplicates, 18553 ipmib->ipIfStatsReasmDuplicates); 18554 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18555 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18556 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18557 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18558 SET_MIB(old_ip_mib.rawipInOverflows, 18559 ipmib->rawipIfStatsInOverflows); 18560 18561 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18562 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18563 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18564 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18565 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18566 ipmib->ipIfStatsOutSwitchIPVersion); 18567 18568 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18569 (int)sizeof (old_ip_mib))) { 18570 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18571 (uint_t)sizeof (old_ip_mib))); 18572 } 18573 18574 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18575 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18576 (int)optp->level, (int)optp->name, (int)optp->len)); 18577 qreply(q, mpctl); 18578 return (mp2ctl); 18579 } 18580 18581 /* Per interface IPv4 statistics */ 18582 static mblk_t * 18583 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18584 { 18585 struct opthdr *optp; 18586 mblk_t *mp2ctl; 18587 ill_t *ill; 18588 ill_walk_context_t ctx; 18589 mblk_t *mp_tail = NULL; 18590 mib2_ipIfStatsEntry_t global_ip_mib; 18591 18592 /* 18593 * Make a copy of the original message 18594 */ 18595 mp2ctl = copymsg(mpctl); 18596 18597 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18598 optp->level = MIB2_IP; 18599 optp->name = MIB2_IP_TRAFFIC_STATS; 18600 /* Include "unknown interface" ip_mib */ 18601 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18602 ipst->ips_ip_mib.ipIfStatsIfIndex = 18603 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18604 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18605 (ipst->ips_ip_g_forward ? 1 : 2)); 18606 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18607 (uint32_t)ipst->ips_ip_def_ttl); 18608 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18609 sizeof (mib2_ipIfStatsEntry_t)); 18610 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18611 sizeof (mib2_ipAddrEntry_t)); 18612 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18613 sizeof (mib2_ipRouteEntry_t)); 18614 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18615 sizeof (mib2_ipNetToMediaEntry_t)); 18616 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18617 sizeof (ip_member_t)); 18618 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18619 sizeof (ip_grpsrc_t)); 18620 18621 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18622 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18623 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18624 "failed to allocate %u bytes\n", 18625 (uint_t)sizeof (ipst->ips_ip_mib))); 18626 } 18627 18628 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18629 18630 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18631 ill = ILL_START_WALK_V4(&ctx, ipst); 18632 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18633 ill->ill_ip_mib->ipIfStatsIfIndex = 18634 ill->ill_phyint->phyint_ifindex; 18635 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18636 (ipst->ips_ip_g_forward ? 1 : 2)); 18637 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18638 (uint32_t)ipst->ips_ip_def_ttl); 18639 18640 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18641 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18642 (char *)ill->ill_ip_mib, 18643 (int)sizeof (*ill->ill_ip_mib))) { 18644 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18645 "failed to allocate %u bytes\n", 18646 (uint_t)sizeof (*ill->ill_ip_mib))); 18647 } 18648 } 18649 rw_exit(&ipst->ips_ill_g_lock); 18650 18651 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18652 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18653 "level %d, name %d, len %d\n", 18654 (int)optp->level, (int)optp->name, (int)optp->len)); 18655 qreply(q, mpctl); 18656 18657 if (mp2ctl == NULL) 18658 return (NULL); 18659 18660 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18661 } 18662 18663 /* Global IPv4 ICMP statistics */ 18664 static mblk_t * 18665 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18666 { 18667 struct opthdr *optp; 18668 mblk_t *mp2ctl; 18669 18670 /* 18671 * Make a copy of the original message 18672 */ 18673 mp2ctl = copymsg(mpctl); 18674 18675 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18676 optp->level = MIB2_ICMP; 18677 optp->name = 0; 18678 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18679 (int)sizeof (ipst->ips_icmp_mib))) { 18680 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18681 (uint_t)sizeof (ipst->ips_icmp_mib))); 18682 } 18683 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18684 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18685 (int)optp->level, (int)optp->name, (int)optp->len)); 18686 qreply(q, mpctl); 18687 return (mp2ctl); 18688 } 18689 18690 /* Global IPv4 IGMP statistics */ 18691 static mblk_t * 18692 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18693 { 18694 struct opthdr *optp; 18695 mblk_t *mp2ctl; 18696 18697 /* 18698 * make a copy of the original message 18699 */ 18700 mp2ctl = copymsg(mpctl); 18701 18702 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18703 optp->level = EXPER_IGMP; 18704 optp->name = 0; 18705 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18706 (int)sizeof (ipst->ips_igmpstat))) { 18707 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18708 (uint_t)sizeof (ipst->ips_igmpstat))); 18709 } 18710 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18711 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18712 (int)optp->level, (int)optp->name, (int)optp->len)); 18713 qreply(q, mpctl); 18714 return (mp2ctl); 18715 } 18716 18717 /* Global IPv4 Multicast Routing statistics */ 18718 static mblk_t * 18719 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18720 { 18721 struct opthdr *optp; 18722 mblk_t *mp2ctl; 18723 18724 /* 18725 * make a copy of the original message 18726 */ 18727 mp2ctl = copymsg(mpctl); 18728 18729 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18730 optp->level = EXPER_DVMRP; 18731 optp->name = 0; 18732 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18733 ip0dbg(("ip_mroute_stats: failed\n")); 18734 } 18735 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18736 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18737 (int)optp->level, (int)optp->name, (int)optp->len)); 18738 qreply(q, mpctl); 18739 return (mp2ctl); 18740 } 18741 18742 /* IPv4 address information */ 18743 static mblk_t * 18744 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18745 { 18746 struct opthdr *optp; 18747 mblk_t *mp2ctl; 18748 mblk_t *mp_tail = NULL; 18749 ill_t *ill; 18750 ipif_t *ipif; 18751 uint_t bitval; 18752 mib2_ipAddrEntry_t mae; 18753 zoneid_t zoneid; 18754 ill_walk_context_t ctx; 18755 18756 /* 18757 * make a copy of the original message 18758 */ 18759 mp2ctl = copymsg(mpctl); 18760 18761 /* ipAddrEntryTable */ 18762 18763 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18764 optp->level = MIB2_IP; 18765 optp->name = MIB2_IP_ADDR; 18766 zoneid = Q_TO_CONN(q)->conn_zoneid; 18767 18768 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18769 ill = ILL_START_WALK_V4(&ctx, ipst); 18770 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18771 for (ipif = ill->ill_ipif; ipif != NULL; 18772 ipif = ipif->ipif_next) { 18773 if (ipif->ipif_zoneid != zoneid && 18774 ipif->ipif_zoneid != ALL_ZONES) 18775 continue; 18776 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18777 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18778 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18779 18780 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18781 OCTET_LENGTH); 18782 mae.ipAdEntIfIndex.o_length = 18783 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18784 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18785 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18786 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18787 mae.ipAdEntInfo.ae_subnet_len = 18788 ip_mask_to_plen(ipif->ipif_net_mask); 18789 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18790 for (bitval = 1; 18791 bitval && 18792 !(bitval & ipif->ipif_brd_addr); 18793 bitval <<= 1) 18794 noop; 18795 mae.ipAdEntBcastAddr = bitval; 18796 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18797 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18798 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18799 mae.ipAdEntInfo.ae_broadcast_addr = 18800 ipif->ipif_brd_addr; 18801 mae.ipAdEntInfo.ae_pp_dst_addr = 18802 ipif->ipif_pp_dst_addr; 18803 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18804 ill->ill_flags | ill->ill_phyint->phyint_flags; 18805 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18806 18807 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18808 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18809 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18810 "allocate %u bytes\n", 18811 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18812 } 18813 } 18814 } 18815 rw_exit(&ipst->ips_ill_g_lock); 18816 18817 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18818 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18819 (int)optp->level, (int)optp->name, (int)optp->len)); 18820 qreply(q, mpctl); 18821 return (mp2ctl); 18822 } 18823 18824 /* IPv6 address information */ 18825 static mblk_t * 18826 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18827 { 18828 struct opthdr *optp; 18829 mblk_t *mp2ctl; 18830 mblk_t *mp_tail = NULL; 18831 ill_t *ill; 18832 ipif_t *ipif; 18833 mib2_ipv6AddrEntry_t mae6; 18834 zoneid_t zoneid; 18835 ill_walk_context_t ctx; 18836 18837 /* 18838 * make a copy of the original message 18839 */ 18840 mp2ctl = copymsg(mpctl); 18841 18842 /* ipv6AddrEntryTable */ 18843 18844 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18845 optp->level = MIB2_IP6; 18846 optp->name = MIB2_IP6_ADDR; 18847 zoneid = Q_TO_CONN(q)->conn_zoneid; 18848 18849 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18850 ill = ILL_START_WALK_V6(&ctx, ipst); 18851 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18852 for (ipif = ill->ill_ipif; ipif != NULL; 18853 ipif = ipif->ipif_next) { 18854 if (ipif->ipif_zoneid != zoneid && 18855 ipif->ipif_zoneid != ALL_ZONES) 18856 continue; 18857 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18858 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18859 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18860 18861 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18862 OCTET_LENGTH); 18863 mae6.ipv6AddrIfIndex.o_length = 18864 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18865 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18866 mae6.ipv6AddrPfxLength = 18867 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18868 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18869 mae6.ipv6AddrInfo.ae_subnet_len = 18870 mae6.ipv6AddrPfxLength; 18871 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18872 18873 /* Type: stateless(1), stateful(2), unknown(3) */ 18874 if (ipif->ipif_flags & IPIF_ADDRCONF) 18875 mae6.ipv6AddrType = 1; 18876 else 18877 mae6.ipv6AddrType = 2; 18878 /* Anycast: true(1), false(2) */ 18879 if (ipif->ipif_flags & IPIF_ANYCAST) 18880 mae6.ipv6AddrAnycastFlag = 1; 18881 else 18882 mae6.ipv6AddrAnycastFlag = 2; 18883 18884 /* 18885 * Address status: preferred(1), deprecated(2), 18886 * invalid(3), inaccessible(4), unknown(5) 18887 */ 18888 if (ipif->ipif_flags & IPIF_NOLOCAL) 18889 mae6.ipv6AddrStatus = 3; 18890 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18891 mae6.ipv6AddrStatus = 2; 18892 else 18893 mae6.ipv6AddrStatus = 1; 18894 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18895 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18896 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18897 ipif->ipif_v6pp_dst_addr; 18898 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18899 ill->ill_flags | ill->ill_phyint->phyint_flags; 18900 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18901 mae6.ipv6AddrIdentifier = ill->ill_token; 18902 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18903 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18904 mae6.ipv6AddrRetransmitTime = 18905 ill->ill_reachable_retrans_time; 18906 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18907 (char *)&mae6, 18908 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18909 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18910 "allocate %u bytes\n", 18911 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18912 } 18913 } 18914 } 18915 rw_exit(&ipst->ips_ill_g_lock); 18916 18917 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18918 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18919 (int)optp->level, (int)optp->name, (int)optp->len)); 18920 qreply(q, mpctl); 18921 return (mp2ctl); 18922 } 18923 18924 /* IPv4 multicast group membership. */ 18925 static mblk_t * 18926 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18927 { 18928 struct opthdr *optp; 18929 mblk_t *mp2ctl; 18930 ill_t *ill; 18931 ipif_t *ipif; 18932 ilm_t *ilm; 18933 ip_member_t ipm; 18934 mblk_t *mp_tail = NULL; 18935 ill_walk_context_t ctx; 18936 zoneid_t zoneid; 18937 ilm_walker_t ilw; 18938 18939 /* 18940 * make a copy of the original message 18941 */ 18942 mp2ctl = copymsg(mpctl); 18943 zoneid = Q_TO_CONN(q)->conn_zoneid; 18944 18945 /* ipGroupMember table */ 18946 optp = (struct opthdr *)&mpctl->b_rptr[ 18947 sizeof (struct T_optmgmt_ack)]; 18948 optp->level = MIB2_IP; 18949 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18950 18951 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18952 ill = ILL_START_WALK_V4(&ctx, ipst); 18953 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18954 if (IS_UNDER_IPMP(ill)) 18955 continue; 18956 18957 ilm = ilm_walker_start(&ilw, ill); 18958 for (ipif = ill->ill_ipif; ipif != NULL; 18959 ipif = ipif->ipif_next) { 18960 if (ipif->ipif_zoneid != zoneid && 18961 ipif->ipif_zoneid != ALL_ZONES) 18962 continue; /* not this zone */ 18963 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18964 OCTET_LENGTH); 18965 ipm.ipGroupMemberIfIndex.o_length = 18966 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18967 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18968 ASSERT(ilm->ilm_ipif != NULL); 18969 ASSERT(ilm->ilm_ill == NULL); 18970 if (ilm->ilm_ipif != ipif) 18971 continue; 18972 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18973 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18974 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18975 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18976 (char *)&ipm, (int)sizeof (ipm))) { 18977 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18978 "failed to allocate %u bytes\n", 18979 (uint_t)sizeof (ipm))); 18980 } 18981 } 18982 } 18983 ilm_walker_finish(&ilw); 18984 } 18985 rw_exit(&ipst->ips_ill_g_lock); 18986 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18987 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18988 (int)optp->level, (int)optp->name, (int)optp->len)); 18989 qreply(q, mpctl); 18990 return (mp2ctl); 18991 } 18992 18993 /* IPv6 multicast group membership. */ 18994 static mblk_t * 18995 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18996 { 18997 struct opthdr *optp; 18998 mblk_t *mp2ctl; 18999 ill_t *ill; 19000 ilm_t *ilm; 19001 ipv6_member_t ipm6; 19002 mblk_t *mp_tail = NULL; 19003 ill_walk_context_t ctx; 19004 zoneid_t zoneid; 19005 ilm_walker_t ilw; 19006 19007 /* 19008 * make a copy of the original message 19009 */ 19010 mp2ctl = copymsg(mpctl); 19011 zoneid = Q_TO_CONN(q)->conn_zoneid; 19012 19013 /* ip6GroupMember table */ 19014 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19015 optp->level = MIB2_IP6; 19016 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 19017 19018 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19019 ill = ILL_START_WALK_V6(&ctx, ipst); 19020 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19021 if (IS_UNDER_IPMP(ill)) 19022 continue; 19023 19024 ilm = ilm_walker_start(&ilw, ill); 19025 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 19026 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19027 ASSERT(ilm->ilm_ipif == NULL); 19028 ASSERT(ilm->ilm_ill != NULL); 19029 if (ilm->ilm_zoneid != zoneid) 19030 continue; /* not this zone */ 19031 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 19032 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 19033 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 19034 if (!snmp_append_data2(mpctl->b_cont, 19035 &mp_tail, 19036 (char *)&ipm6, (int)sizeof (ipm6))) { 19037 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 19038 "failed to allocate %u bytes\n", 19039 (uint_t)sizeof (ipm6))); 19040 } 19041 } 19042 ilm_walker_finish(&ilw); 19043 } 19044 rw_exit(&ipst->ips_ill_g_lock); 19045 19046 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19047 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19048 (int)optp->level, (int)optp->name, (int)optp->len)); 19049 qreply(q, mpctl); 19050 return (mp2ctl); 19051 } 19052 19053 /* IP multicast filtered sources */ 19054 static mblk_t * 19055 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19056 { 19057 struct opthdr *optp; 19058 mblk_t *mp2ctl; 19059 ill_t *ill; 19060 ipif_t *ipif; 19061 ilm_t *ilm; 19062 ip_grpsrc_t ips; 19063 mblk_t *mp_tail = NULL; 19064 ill_walk_context_t ctx; 19065 zoneid_t zoneid; 19066 int i; 19067 slist_t *sl; 19068 ilm_walker_t ilw; 19069 19070 /* 19071 * make a copy of the original message 19072 */ 19073 mp2ctl = copymsg(mpctl); 19074 zoneid = Q_TO_CONN(q)->conn_zoneid; 19075 19076 /* ipGroupSource table */ 19077 optp = (struct opthdr *)&mpctl->b_rptr[ 19078 sizeof (struct T_optmgmt_ack)]; 19079 optp->level = MIB2_IP; 19080 optp->name = EXPER_IP_GROUP_SOURCES; 19081 19082 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19083 ill = ILL_START_WALK_V4(&ctx, ipst); 19084 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19085 if (IS_UNDER_IPMP(ill)) 19086 continue; 19087 19088 ilm = ilm_walker_start(&ilw, ill); 19089 for (ipif = ill->ill_ipif; ipif != NULL; 19090 ipif = ipif->ipif_next) { 19091 if (ipif->ipif_zoneid != zoneid) 19092 continue; /* not this zone */ 19093 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 19094 OCTET_LENGTH); 19095 ips.ipGroupSourceIfIndex.o_length = 19096 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 19097 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19098 ASSERT(ilm->ilm_ipif != NULL); 19099 ASSERT(ilm->ilm_ill == NULL); 19100 sl = ilm->ilm_filter; 19101 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 19102 continue; 19103 ips.ipGroupSourceGroup = ilm->ilm_addr; 19104 for (i = 0; i < sl->sl_numsrc; i++) { 19105 if (!IN6_IS_ADDR_V4MAPPED( 19106 &sl->sl_addr[i])) 19107 continue; 19108 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 19109 ips.ipGroupSourceAddress); 19110 if (snmp_append_data2(mpctl->b_cont, 19111 &mp_tail, (char *)&ips, 19112 (int)sizeof (ips)) == 0) { 19113 ip1dbg(("ip_snmp_get_mib2_" 19114 "ip_group_src: failed to " 19115 "allocate %u bytes\n", 19116 (uint_t)sizeof (ips))); 19117 } 19118 } 19119 } 19120 } 19121 ilm_walker_finish(&ilw); 19122 } 19123 rw_exit(&ipst->ips_ill_g_lock); 19124 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19125 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19126 (int)optp->level, (int)optp->name, (int)optp->len)); 19127 qreply(q, mpctl); 19128 return (mp2ctl); 19129 } 19130 19131 /* IPv6 multicast filtered sources. */ 19132 static mblk_t * 19133 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19134 { 19135 struct opthdr *optp; 19136 mblk_t *mp2ctl; 19137 ill_t *ill; 19138 ilm_t *ilm; 19139 ipv6_grpsrc_t ips6; 19140 mblk_t *mp_tail = NULL; 19141 ill_walk_context_t ctx; 19142 zoneid_t zoneid; 19143 int i; 19144 slist_t *sl; 19145 ilm_walker_t ilw; 19146 19147 /* 19148 * make a copy of the original message 19149 */ 19150 mp2ctl = copymsg(mpctl); 19151 zoneid = Q_TO_CONN(q)->conn_zoneid; 19152 19153 /* ip6GroupMember table */ 19154 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19155 optp->level = MIB2_IP6; 19156 optp->name = EXPER_IP6_GROUP_SOURCES; 19157 19158 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19159 ill = ILL_START_WALK_V6(&ctx, ipst); 19160 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19161 if (IS_UNDER_IPMP(ill)) 19162 continue; 19163 19164 ilm = ilm_walker_start(&ilw, ill); 19165 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 19166 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19167 ASSERT(ilm->ilm_ipif == NULL); 19168 ASSERT(ilm->ilm_ill != NULL); 19169 sl = ilm->ilm_filter; 19170 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 19171 continue; 19172 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 19173 for (i = 0; i < sl->sl_numsrc; i++) { 19174 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 19175 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19176 (char *)&ips6, (int)sizeof (ips6))) { 19177 ip1dbg(("ip_snmp_get_mib2_ip6_" 19178 "group_src: failed to allocate " 19179 "%u bytes\n", 19180 (uint_t)sizeof (ips6))); 19181 } 19182 } 19183 } 19184 ilm_walker_finish(&ilw); 19185 } 19186 rw_exit(&ipst->ips_ill_g_lock); 19187 19188 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19189 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19190 (int)optp->level, (int)optp->name, (int)optp->len)); 19191 qreply(q, mpctl); 19192 return (mp2ctl); 19193 } 19194 19195 /* Multicast routing virtual interface table. */ 19196 static mblk_t * 19197 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19198 { 19199 struct opthdr *optp; 19200 mblk_t *mp2ctl; 19201 19202 /* 19203 * make a copy of the original message 19204 */ 19205 mp2ctl = copymsg(mpctl); 19206 19207 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19208 optp->level = EXPER_DVMRP; 19209 optp->name = EXPER_DVMRP_VIF; 19210 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 19211 ip0dbg(("ip_mroute_vif: failed\n")); 19212 } 19213 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19214 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 19215 (int)optp->level, (int)optp->name, (int)optp->len)); 19216 qreply(q, mpctl); 19217 return (mp2ctl); 19218 } 19219 19220 /* Multicast routing table. */ 19221 static mblk_t * 19222 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19223 { 19224 struct opthdr *optp; 19225 mblk_t *mp2ctl; 19226 19227 /* 19228 * make a copy of the original message 19229 */ 19230 mp2ctl = copymsg(mpctl); 19231 19232 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19233 optp->level = EXPER_DVMRP; 19234 optp->name = EXPER_DVMRP_MRT; 19235 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19236 ip0dbg(("ip_mroute_mrt: failed\n")); 19237 } 19238 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19239 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19240 (int)optp->level, (int)optp->name, (int)optp->len)); 19241 qreply(q, mpctl); 19242 return (mp2ctl); 19243 } 19244 19245 /* 19246 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19247 * in one IRE walk. 19248 */ 19249 static mblk_t * 19250 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 19251 ip_stack_t *ipst) 19252 { 19253 struct opthdr *optp; 19254 mblk_t *mp2ctl; /* Returned */ 19255 mblk_t *mp3ctl; /* nettomedia */ 19256 mblk_t *mp4ctl; /* routeattrs */ 19257 iproutedata_t ird; 19258 zoneid_t zoneid; 19259 19260 /* 19261 * make copies of the original message 19262 * - mp2ctl is returned unchanged to the caller for his use 19263 * - mpctl is sent upstream as ipRouteEntryTable 19264 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19265 * - mp4ctl is sent upstream as ipRouteAttributeTable 19266 */ 19267 mp2ctl = copymsg(mpctl); 19268 mp3ctl = copymsg(mpctl); 19269 mp4ctl = copymsg(mpctl); 19270 if (mp3ctl == NULL || mp4ctl == NULL) { 19271 freemsg(mp4ctl); 19272 freemsg(mp3ctl); 19273 freemsg(mp2ctl); 19274 freemsg(mpctl); 19275 return (NULL); 19276 } 19277 19278 bzero(&ird, sizeof (ird)); 19279 19280 ird.ird_route.lp_head = mpctl->b_cont; 19281 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19282 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19283 /* 19284 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19285 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19286 * intended a temporary solution until a proper MIB API is provided 19287 * that provides complete filtering/caller-opt-in. 19288 */ 19289 if (level == EXPER_IP_AND_TESTHIDDEN) 19290 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19291 19292 zoneid = Q_TO_CONN(q)->conn_zoneid; 19293 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19294 19295 /* ipRouteEntryTable in mpctl */ 19296 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19297 optp->level = MIB2_IP; 19298 optp->name = MIB2_IP_ROUTE; 19299 optp->len = msgdsize(ird.ird_route.lp_head); 19300 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19301 (int)optp->level, (int)optp->name, (int)optp->len)); 19302 qreply(q, mpctl); 19303 19304 /* ipNetToMediaEntryTable in mp3ctl */ 19305 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19306 optp->level = MIB2_IP; 19307 optp->name = MIB2_IP_MEDIA; 19308 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19309 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19310 (int)optp->level, (int)optp->name, (int)optp->len)); 19311 qreply(q, mp3ctl); 19312 19313 /* ipRouteAttributeTable in mp4ctl */ 19314 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19315 optp->level = MIB2_IP; 19316 optp->name = EXPER_IP_RTATTR; 19317 optp->len = msgdsize(ird.ird_attrs.lp_head); 19318 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19319 (int)optp->level, (int)optp->name, (int)optp->len)); 19320 if (optp->len == 0) 19321 freemsg(mp4ctl); 19322 else 19323 qreply(q, mp4ctl); 19324 19325 return (mp2ctl); 19326 } 19327 19328 /* 19329 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19330 * ipv6NetToMediaEntryTable in an NDP walk. 19331 */ 19332 static mblk_t * 19333 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 19334 ip_stack_t *ipst) 19335 { 19336 struct opthdr *optp; 19337 mblk_t *mp2ctl; /* Returned */ 19338 mblk_t *mp3ctl; /* nettomedia */ 19339 mblk_t *mp4ctl; /* routeattrs */ 19340 iproutedata_t ird; 19341 zoneid_t zoneid; 19342 19343 /* 19344 * make copies of the original message 19345 * - mp2ctl is returned unchanged to the caller for his use 19346 * - mpctl is sent upstream as ipv6RouteEntryTable 19347 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19348 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19349 */ 19350 mp2ctl = copymsg(mpctl); 19351 mp3ctl = copymsg(mpctl); 19352 mp4ctl = copymsg(mpctl); 19353 if (mp3ctl == NULL || mp4ctl == NULL) { 19354 freemsg(mp4ctl); 19355 freemsg(mp3ctl); 19356 freemsg(mp2ctl); 19357 freemsg(mpctl); 19358 return (NULL); 19359 } 19360 19361 bzero(&ird, sizeof (ird)); 19362 19363 ird.ird_route.lp_head = mpctl->b_cont; 19364 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19365 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19366 /* 19367 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19368 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19369 * intended a temporary solution until a proper MIB API is provided 19370 * that provides complete filtering/caller-opt-in. 19371 */ 19372 if (level == EXPER_IP_AND_TESTHIDDEN) 19373 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19374 19375 zoneid = Q_TO_CONN(q)->conn_zoneid; 19376 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19377 19378 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19379 optp->level = MIB2_IP6; 19380 optp->name = MIB2_IP6_ROUTE; 19381 optp->len = msgdsize(ird.ird_route.lp_head); 19382 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19383 (int)optp->level, (int)optp->name, (int)optp->len)); 19384 qreply(q, mpctl); 19385 19386 /* ipv6NetToMediaEntryTable in mp3ctl */ 19387 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19388 19389 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19390 optp->level = MIB2_IP6; 19391 optp->name = MIB2_IP6_MEDIA; 19392 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19393 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19394 (int)optp->level, (int)optp->name, (int)optp->len)); 19395 qreply(q, mp3ctl); 19396 19397 /* ipv6RouteAttributeTable in mp4ctl */ 19398 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19399 optp->level = MIB2_IP6; 19400 optp->name = EXPER_IP_RTATTR; 19401 optp->len = msgdsize(ird.ird_attrs.lp_head); 19402 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19403 (int)optp->level, (int)optp->name, (int)optp->len)); 19404 if (optp->len == 0) 19405 freemsg(mp4ctl); 19406 else 19407 qreply(q, mp4ctl); 19408 19409 return (mp2ctl); 19410 } 19411 19412 /* 19413 * IPv6 mib: One per ill 19414 */ 19415 static mblk_t * 19416 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19417 { 19418 struct opthdr *optp; 19419 mblk_t *mp2ctl; 19420 ill_t *ill; 19421 ill_walk_context_t ctx; 19422 mblk_t *mp_tail = NULL; 19423 19424 /* 19425 * Make a copy of the original message 19426 */ 19427 mp2ctl = copymsg(mpctl); 19428 19429 /* fixed length IPv6 structure ... */ 19430 19431 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19432 optp->level = MIB2_IP6; 19433 optp->name = 0; 19434 /* Include "unknown interface" ip6_mib */ 19435 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19436 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19437 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19438 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19439 ipst->ips_ipv6_forward ? 1 : 2); 19440 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19441 ipst->ips_ipv6_def_hops); 19442 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19443 sizeof (mib2_ipIfStatsEntry_t)); 19444 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19445 sizeof (mib2_ipv6AddrEntry_t)); 19446 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19447 sizeof (mib2_ipv6RouteEntry_t)); 19448 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19449 sizeof (mib2_ipv6NetToMediaEntry_t)); 19450 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19451 sizeof (ipv6_member_t)); 19452 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19453 sizeof (ipv6_grpsrc_t)); 19454 19455 /* 19456 * Synchronize 64- and 32-bit counters 19457 */ 19458 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19459 ipIfStatsHCInReceives); 19460 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19461 ipIfStatsHCInDelivers); 19462 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19463 ipIfStatsHCOutRequests); 19464 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19465 ipIfStatsHCOutForwDatagrams); 19466 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19467 ipIfStatsHCOutMcastPkts); 19468 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19469 ipIfStatsHCInMcastPkts); 19470 19471 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19472 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19473 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19474 (uint_t)sizeof (ipst->ips_ip6_mib))); 19475 } 19476 19477 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19478 ill = ILL_START_WALK_V6(&ctx, ipst); 19479 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19480 ill->ill_ip_mib->ipIfStatsIfIndex = 19481 ill->ill_phyint->phyint_ifindex; 19482 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19483 ipst->ips_ipv6_forward ? 1 : 2); 19484 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19485 ill->ill_max_hops); 19486 19487 /* 19488 * Synchronize 64- and 32-bit counters 19489 */ 19490 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19491 ipIfStatsHCInReceives); 19492 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19493 ipIfStatsHCInDelivers); 19494 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19495 ipIfStatsHCOutRequests); 19496 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19497 ipIfStatsHCOutForwDatagrams); 19498 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19499 ipIfStatsHCOutMcastPkts); 19500 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19501 ipIfStatsHCInMcastPkts); 19502 19503 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19504 (char *)ill->ill_ip_mib, 19505 (int)sizeof (*ill->ill_ip_mib))) { 19506 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19507 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19508 } 19509 } 19510 rw_exit(&ipst->ips_ill_g_lock); 19511 19512 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19513 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19514 (int)optp->level, (int)optp->name, (int)optp->len)); 19515 qreply(q, mpctl); 19516 return (mp2ctl); 19517 } 19518 19519 /* 19520 * ICMPv6 mib: One per ill 19521 */ 19522 static mblk_t * 19523 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19524 { 19525 struct opthdr *optp; 19526 mblk_t *mp2ctl; 19527 ill_t *ill; 19528 ill_walk_context_t ctx; 19529 mblk_t *mp_tail = NULL; 19530 /* 19531 * Make a copy of the original message 19532 */ 19533 mp2ctl = copymsg(mpctl); 19534 19535 /* fixed length ICMPv6 structure ... */ 19536 19537 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19538 optp->level = MIB2_ICMP6; 19539 optp->name = 0; 19540 /* Include "unknown interface" icmp6_mib */ 19541 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19542 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19543 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19544 sizeof (mib2_ipv6IfIcmpEntry_t); 19545 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19546 (char *)&ipst->ips_icmp6_mib, 19547 (int)sizeof (ipst->ips_icmp6_mib))) { 19548 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19549 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19550 } 19551 19552 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19553 ill = ILL_START_WALK_V6(&ctx, ipst); 19554 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19555 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19556 ill->ill_phyint->phyint_ifindex; 19557 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19558 (char *)ill->ill_icmp6_mib, 19559 (int)sizeof (*ill->ill_icmp6_mib))) { 19560 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19561 "%u bytes\n", 19562 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19563 } 19564 } 19565 rw_exit(&ipst->ips_ill_g_lock); 19566 19567 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19568 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19569 (int)optp->level, (int)optp->name, (int)optp->len)); 19570 qreply(q, mpctl); 19571 return (mp2ctl); 19572 } 19573 19574 /* 19575 * ire_walk routine to create both ipRouteEntryTable and 19576 * ipRouteAttributeTable in one IRE walk 19577 */ 19578 static void 19579 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19580 { 19581 ill_t *ill; 19582 ipif_t *ipif; 19583 mib2_ipRouteEntry_t *re; 19584 mib2_ipAttributeEntry_t *iae, *iaeptr; 19585 ipaddr_t gw_addr; 19586 tsol_ire_gw_secattr_t *attrp; 19587 tsol_gc_t *gc = NULL; 19588 tsol_gcgrp_t *gcgrp = NULL; 19589 uint_t sacnt = 0; 19590 int i; 19591 19592 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19593 19594 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19595 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19596 return; 19597 } 19598 19599 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19600 return; 19601 19602 if ((attrp = ire->ire_gw_secattr) != NULL) { 19603 mutex_enter(&attrp->igsa_lock); 19604 if ((gc = attrp->igsa_gc) != NULL) { 19605 gcgrp = gc->gc_grp; 19606 ASSERT(gcgrp != NULL); 19607 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19608 sacnt = 1; 19609 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19610 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19611 gc = gcgrp->gcgrp_head; 19612 sacnt = gcgrp->gcgrp_count; 19613 } 19614 mutex_exit(&attrp->igsa_lock); 19615 19616 /* do nothing if there's no gc to report */ 19617 if (gc == NULL) { 19618 ASSERT(sacnt == 0); 19619 if (gcgrp != NULL) { 19620 /* we might as well drop the lock now */ 19621 rw_exit(&gcgrp->gcgrp_rwlock); 19622 gcgrp = NULL; 19623 } 19624 attrp = NULL; 19625 } 19626 19627 ASSERT(gc == NULL || (gcgrp != NULL && 19628 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19629 } 19630 ASSERT(sacnt == 0 || gc != NULL); 19631 19632 if (sacnt != 0 && 19633 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19634 kmem_free(re, sizeof (*re)); 19635 rw_exit(&gcgrp->gcgrp_rwlock); 19636 return; 19637 } 19638 19639 /* 19640 * Return all IRE types for route table... let caller pick and choose 19641 */ 19642 re->ipRouteDest = ire->ire_addr; 19643 ipif = ire->ire_ipif; 19644 re->ipRouteIfIndex.o_length = 0; 19645 if (ire->ire_type == IRE_CACHE) { 19646 ill = (ill_t *)ire->ire_stq->q_ptr; 19647 re->ipRouteIfIndex.o_length = 19648 ill->ill_name_length == 0 ? 0 : 19649 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19650 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19651 re->ipRouteIfIndex.o_length); 19652 } else if (ipif != NULL) { 19653 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19654 re->ipRouteIfIndex.o_length = 19655 mi_strlen(re->ipRouteIfIndex.o_bytes); 19656 } 19657 re->ipRouteMetric1 = -1; 19658 re->ipRouteMetric2 = -1; 19659 re->ipRouteMetric3 = -1; 19660 re->ipRouteMetric4 = -1; 19661 19662 gw_addr = ire->ire_gateway_addr; 19663 19664 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19665 re->ipRouteNextHop = ire->ire_src_addr; 19666 else 19667 re->ipRouteNextHop = gw_addr; 19668 /* indirect(4), direct(3), or invalid(2) */ 19669 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19670 re->ipRouteType = 2; 19671 else 19672 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19673 re->ipRouteProto = -1; 19674 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19675 re->ipRouteMask = ire->ire_mask; 19676 re->ipRouteMetric5 = -1; 19677 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19678 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19679 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19680 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19681 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19682 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19683 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19684 re->ipRouteInfo.re_flags = ire->ire_flags; 19685 19686 if (ire->ire_flags & RTF_DYNAMIC) { 19687 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19688 } else { 19689 re->ipRouteInfo.re_ire_type = ire->ire_type; 19690 } 19691 19692 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19693 (char *)re, (int)sizeof (*re))) { 19694 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19695 (uint_t)sizeof (*re))); 19696 } 19697 19698 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19699 iaeptr->iae_routeidx = ird->ird_idx; 19700 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19701 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19702 } 19703 19704 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19705 (char *)iae, sacnt * sizeof (*iae))) { 19706 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19707 (unsigned)(sacnt * sizeof (*iae)))); 19708 } 19709 19710 /* bump route index for next pass */ 19711 ird->ird_idx++; 19712 19713 kmem_free(re, sizeof (*re)); 19714 if (sacnt != 0) 19715 kmem_free(iae, sacnt * sizeof (*iae)); 19716 19717 if (gcgrp != NULL) 19718 rw_exit(&gcgrp->gcgrp_rwlock); 19719 } 19720 19721 /* 19722 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19723 */ 19724 static void 19725 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19726 { 19727 ill_t *ill; 19728 ipif_t *ipif; 19729 mib2_ipv6RouteEntry_t *re; 19730 mib2_ipAttributeEntry_t *iae, *iaeptr; 19731 in6_addr_t gw_addr_v6; 19732 tsol_ire_gw_secattr_t *attrp; 19733 tsol_gc_t *gc = NULL; 19734 tsol_gcgrp_t *gcgrp = NULL; 19735 uint_t sacnt = 0; 19736 int i; 19737 19738 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19739 19740 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19741 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19742 return; 19743 } 19744 19745 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19746 return; 19747 19748 if ((attrp = ire->ire_gw_secattr) != NULL) { 19749 mutex_enter(&attrp->igsa_lock); 19750 if ((gc = attrp->igsa_gc) != NULL) { 19751 gcgrp = gc->gc_grp; 19752 ASSERT(gcgrp != NULL); 19753 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19754 sacnt = 1; 19755 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19756 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19757 gc = gcgrp->gcgrp_head; 19758 sacnt = gcgrp->gcgrp_count; 19759 } 19760 mutex_exit(&attrp->igsa_lock); 19761 19762 /* do nothing if there's no gc to report */ 19763 if (gc == NULL) { 19764 ASSERT(sacnt == 0); 19765 if (gcgrp != NULL) { 19766 /* we might as well drop the lock now */ 19767 rw_exit(&gcgrp->gcgrp_rwlock); 19768 gcgrp = NULL; 19769 } 19770 attrp = NULL; 19771 } 19772 19773 ASSERT(gc == NULL || (gcgrp != NULL && 19774 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19775 } 19776 ASSERT(sacnt == 0 || gc != NULL); 19777 19778 if (sacnt != 0 && 19779 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19780 kmem_free(re, sizeof (*re)); 19781 rw_exit(&gcgrp->gcgrp_rwlock); 19782 return; 19783 } 19784 19785 /* 19786 * Return all IRE types for route table... let caller pick and choose 19787 */ 19788 re->ipv6RouteDest = ire->ire_addr_v6; 19789 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19790 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19791 re->ipv6RouteIfIndex.o_length = 0; 19792 ipif = ire->ire_ipif; 19793 if (ire->ire_type == IRE_CACHE) { 19794 ill = (ill_t *)ire->ire_stq->q_ptr; 19795 re->ipv6RouteIfIndex.o_length = 19796 ill->ill_name_length == 0 ? 0 : 19797 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19798 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19799 re->ipv6RouteIfIndex.o_length); 19800 } else if (ipif != NULL) { 19801 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19802 re->ipv6RouteIfIndex.o_length = 19803 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19804 } 19805 19806 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19807 19808 mutex_enter(&ire->ire_lock); 19809 gw_addr_v6 = ire->ire_gateway_addr_v6; 19810 mutex_exit(&ire->ire_lock); 19811 19812 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19813 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19814 else 19815 re->ipv6RouteNextHop = gw_addr_v6; 19816 19817 /* remote(4), local(3), or discard(2) */ 19818 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19819 re->ipv6RouteType = 2; 19820 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19821 re->ipv6RouteType = 3; 19822 else 19823 re->ipv6RouteType = 4; 19824 19825 re->ipv6RouteProtocol = -1; 19826 re->ipv6RoutePolicy = 0; 19827 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19828 re->ipv6RouteNextHopRDI = 0; 19829 re->ipv6RouteWeight = 0; 19830 re->ipv6RouteMetric = 0; 19831 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19832 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19833 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19834 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19835 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19836 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19837 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19838 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19839 19840 if (ire->ire_flags & RTF_DYNAMIC) { 19841 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19842 } else { 19843 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19844 } 19845 19846 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19847 (char *)re, (int)sizeof (*re))) { 19848 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19849 (uint_t)sizeof (*re))); 19850 } 19851 19852 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19853 iaeptr->iae_routeidx = ird->ird_idx; 19854 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19855 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19856 } 19857 19858 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19859 (char *)iae, sacnt * sizeof (*iae))) { 19860 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19861 (unsigned)(sacnt * sizeof (*iae)))); 19862 } 19863 19864 /* bump route index for next pass */ 19865 ird->ird_idx++; 19866 19867 kmem_free(re, sizeof (*re)); 19868 if (sacnt != 0) 19869 kmem_free(iae, sacnt * sizeof (*iae)); 19870 19871 if (gcgrp != NULL) 19872 rw_exit(&gcgrp->gcgrp_rwlock); 19873 } 19874 19875 /* 19876 * ndp_walk routine to create ipv6NetToMediaEntryTable 19877 */ 19878 static int 19879 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19880 { 19881 ill_t *ill; 19882 mib2_ipv6NetToMediaEntry_t ntme; 19883 dl_unitdata_req_t *dl; 19884 19885 ill = nce->nce_ill; 19886 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19887 return (0); 19888 19889 /* 19890 * Neighbor cache entry attached to IRE with on-link 19891 * destination. 19892 */ 19893 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19894 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19895 if ((ill->ill_flags & ILLF_XRESOLV) && 19896 (nce->nce_res_mp != NULL)) { 19897 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19898 ntme.ipv6NetToMediaPhysAddress.o_length = 19899 dl->dl_dest_addr_length; 19900 } else { 19901 ntme.ipv6NetToMediaPhysAddress.o_length = 19902 ill->ill_phys_addr_length; 19903 } 19904 if (nce->nce_res_mp != NULL) { 19905 bcopy((char *)nce->nce_res_mp->b_rptr + 19906 NCE_LL_ADDR_OFFSET(ill), 19907 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19908 ntme.ipv6NetToMediaPhysAddress.o_length); 19909 } else { 19910 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19911 ill->ill_phys_addr_length); 19912 } 19913 /* 19914 * Note: Returns ND_* states. Should be: 19915 * reachable(1), stale(2), delay(3), probe(4), 19916 * invalid(5), unknown(6) 19917 */ 19918 ntme.ipv6NetToMediaState = nce->nce_state; 19919 ntme.ipv6NetToMediaLastUpdated = 0; 19920 19921 /* other(1), dynamic(2), static(3), local(4) */ 19922 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19923 ntme.ipv6NetToMediaType = 4; 19924 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19925 ntme.ipv6NetToMediaType = 1; 19926 } else { 19927 ntme.ipv6NetToMediaType = 2; 19928 } 19929 19930 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19931 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19932 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19933 (uint_t)sizeof (ntme))); 19934 } 19935 return (0); 19936 } 19937 19938 /* 19939 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19940 */ 19941 /* ARGSUSED */ 19942 int 19943 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19944 { 19945 switch (level) { 19946 case MIB2_IP: 19947 case MIB2_ICMP: 19948 switch (name) { 19949 default: 19950 break; 19951 } 19952 return (1); 19953 default: 19954 return (1); 19955 } 19956 } 19957 19958 /* 19959 * When there exists both a 64- and 32-bit counter of a particular type 19960 * (i.e., InReceives), only the 64-bit counters are added. 19961 */ 19962 void 19963 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19964 { 19965 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19966 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19967 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19968 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19969 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19970 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19971 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19972 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19973 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19974 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19975 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19976 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19977 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19978 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19979 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19980 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19981 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19982 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19983 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19984 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19985 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19986 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19987 o2->ipIfStatsInWrongIPVersion); 19988 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19989 o2->ipIfStatsInWrongIPVersion); 19990 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19991 o2->ipIfStatsOutSwitchIPVersion); 19992 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19993 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19994 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19995 o2->ipIfStatsHCInForwDatagrams); 19996 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19997 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19998 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19999 o2->ipIfStatsHCOutForwDatagrams); 20000 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 20001 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 20002 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 20003 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 20004 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 20005 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 20006 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 20007 o2->ipIfStatsHCOutMcastOctets); 20008 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 20009 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 20010 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 20011 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 20012 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 20013 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 20014 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 20015 } 20016 20017 void 20018 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 20019 { 20020 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 20021 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 20022 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 20023 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 20024 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 20025 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 20026 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 20027 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 20028 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 20029 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 20030 o2->ipv6IfIcmpInRouterSolicits); 20031 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 20032 o2->ipv6IfIcmpInRouterAdvertisements); 20033 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 20034 o2->ipv6IfIcmpInNeighborSolicits); 20035 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 20036 o2->ipv6IfIcmpInNeighborAdvertisements); 20037 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 20038 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 20039 o2->ipv6IfIcmpInGroupMembQueries); 20040 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 20041 o2->ipv6IfIcmpInGroupMembResponses); 20042 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 20043 o2->ipv6IfIcmpInGroupMembReductions); 20044 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 20045 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 20046 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 20047 o2->ipv6IfIcmpOutDestUnreachs); 20048 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 20049 o2->ipv6IfIcmpOutAdminProhibs); 20050 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 20051 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 20052 o2->ipv6IfIcmpOutParmProblems); 20053 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 20054 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 20055 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 20056 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 20057 o2->ipv6IfIcmpOutRouterSolicits); 20058 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 20059 o2->ipv6IfIcmpOutRouterAdvertisements); 20060 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 20061 o2->ipv6IfIcmpOutNeighborSolicits); 20062 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 20063 o2->ipv6IfIcmpOutNeighborAdvertisements); 20064 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 20065 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 20066 o2->ipv6IfIcmpOutGroupMembQueries); 20067 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 20068 o2->ipv6IfIcmpOutGroupMembResponses); 20069 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 20070 o2->ipv6IfIcmpOutGroupMembReductions); 20071 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 20072 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 20073 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 20074 o2->ipv6IfIcmpInBadNeighborAdvertisements); 20075 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 20076 o2->ipv6IfIcmpInBadNeighborSolicitations); 20077 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 20078 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 20079 o2->ipv6IfIcmpInGroupMembTotal); 20080 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 20081 o2->ipv6IfIcmpInGroupMembBadQueries); 20082 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 20083 o2->ipv6IfIcmpInGroupMembBadReports); 20084 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 20085 o2->ipv6IfIcmpInGroupMembOurReports); 20086 } 20087 20088 /* 20089 * Called before the options are updated to check if this packet will 20090 * be source routed from here. 20091 * This routine assumes that the options are well formed i.e. that they 20092 * have already been checked. 20093 */ 20094 static boolean_t 20095 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 20096 { 20097 ipoptp_t opts; 20098 uchar_t *opt; 20099 uint8_t optval; 20100 uint8_t optlen; 20101 ipaddr_t dst; 20102 ire_t *ire; 20103 20104 if (IS_SIMPLE_IPH(ipha)) { 20105 ip2dbg(("not source routed\n")); 20106 return (B_FALSE); 20107 } 20108 dst = ipha->ipha_dst; 20109 for (optval = ipoptp_first(&opts, ipha); 20110 optval != IPOPT_EOL; 20111 optval = ipoptp_next(&opts)) { 20112 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 20113 opt = opts.ipoptp_cur; 20114 optlen = opts.ipoptp_len; 20115 ip2dbg(("ip_source_routed: opt %d, len %d\n", 20116 optval, optlen)); 20117 switch (optval) { 20118 uint32_t off; 20119 case IPOPT_SSRR: 20120 case IPOPT_LSRR: 20121 /* 20122 * If dst is one of our addresses and there are some 20123 * entries left in the source route return (true). 20124 */ 20125 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 20126 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 20127 if (ire == NULL) { 20128 ip2dbg(("ip_source_routed: not next" 20129 " source route 0x%x\n", 20130 ntohl(dst))); 20131 return (B_FALSE); 20132 } 20133 ire_refrele(ire); 20134 off = opt[IPOPT_OFFSET]; 20135 off--; 20136 if (optlen < IP_ADDR_LEN || 20137 off > optlen - IP_ADDR_LEN) { 20138 /* End of source route */ 20139 ip1dbg(("ip_source_routed: end of SR\n")); 20140 return (B_FALSE); 20141 } 20142 return (B_TRUE); 20143 } 20144 } 20145 ip2dbg(("not source routed\n")); 20146 return (B_FALSE); 20147 } 20148 20149 /* 20150 * Check if the packet contains any source route. 20151 */ 20152 static boolean_t 20153 ip_source_route_included(ipha_t *ipha) 20154 { 20155 ipoptp_t opts; 20156 uint8_t optval; 20157 20158 if (IS_SIMPLE_IPH(ipha)) 20159 return (B_FALSE); 20160 for (optval = ipoptp_first(&opts, ipha); 20161 optval != IPOPT_EOL; 20162 optval = ipoptp_next(&opts)) { 20163 switch (optval) { 20164 case IPOPT_SSRR: 20165 case IPOPT_LSRR: 20166 return (B_TRUE); 20167 } 20168 } 20169 return (B_FALSE); 20170 } 20171 20172 /* 20173 * Called when the IRE expiration timer fires. 20174 */ 20175 void 20176 ip_trash_timer_expire(void *args) 20177 { 20178 int flush_flag = 0; 20179 ire_expire_arg_t iea; 20180 ip_stack_t *ipst = (ip_stack_t *)args; 20181 20182 iea.iea_ipst = ipst; /* No netstack_hold */ 20183 20184 /* 20185 * ip_ire_expire_id is protected by ip_trash_timer_lock. 20186 * This lock makes sure that a new invocation of this function 20187 * that occurs due to an almost immediate timer firing will not 20188 * progress beyond this point until the current invocation is done 20189 */ 20190 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20191 ipst->ips_ip_ire_expire_id = 0; 20192 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20193 20194 /* Periodic timer */ 20195 if (ipst->ips_ip_ire_arp_time_elapsed >= 20196 ipst->ips_ip_ire_arp_interval) { 20197 /* 20198 * Remove all IRE_CACHE entries since they might 20199 * contain arp information. 20200 */ 20201 flush_flag |= FLUSH_ARP_TIME; 20202 ipst->ips_ip_ire_arp_time_elapsed = 0; 20203 IP_STAT(ipst, ip_ire_arp_timer_expired); 20204 } 20205 if (ipst->ips_ip_ire_rd_time_elapsed >= 20206 ipst->ips_ip_ire_redir_interval) { 20207 /* Remove all redirects */ 20208 flush_flag |= FLUSH_REDIRECT_TIME; 20209 ipst->ips_ip_ire_rd_time_elapsed = 0; 20210 IP_STAT(ipst, ip_ire_redirect_timer_expired); 20211 } 20212 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 20213 ipst->ips_ip_ire_pathmtu_interval) { 20214 /* Increase path mtu */ 20215 flush_flag |= FLUSH_MTU_TIME; 20216 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 20217 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 20218 } 20219 20220 /* 20221 * Optimize for the case when there are no redirects in the 20222 * ftable, that is, no need to walk the ftable in that case. 20223 */ 20224 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 20225 iea.iea_flush_flag = flush_flag; 20226 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 20227 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 20228 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 20229 NULL, ALL_ZONES, ipst); 20230 } 20231 if ((flush_flag & FLUSH_REDIRECT_TIME) && 20232 ipst->ips_ip_redirect_cnt > 0) { 20233 iea.iea_flush_flag = flush_flag; 20234 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 20235 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 20236 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 20237 } 20238 if (flush_flag & FLUSH_MTU_TIME) { 20239 /* 20240 * Walk all IPv6 IRE's and update them 20241 * Note that ARP and redirect timers are not 20242 * needed since NUD handles stale entries. 20243 */ 20244 flush_flag = FLUSH_MTU_TIME; 20245 iea.iea_flush_flag = flush_flag; 20246 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20247 ALL_ZONES, ipst); 20248 } 20249 20250 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20251 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20252 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20253 20254 /* 20255 * Hold the lock to serialize timeout calls and prevent 20256 * stale values in ip_ire_expire_id. Otherwise it is possible 20257 * for the timer to fire and a new invocation of this function 20258 * to start before the return value of timeout has been stored 20259 * in ip_ire_expire_id by the current invocation. 20260 */ 20261 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20262 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20263 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20264 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20265 } 20266 20267 /* 20268 * Called by the memory allocator subsystem directly, when the system 20269 * is running low on memory. 20270 */ 20271 /* ARGSUSED */ 20272 void 20273 ip_trash_ire_reclaim(void *args) 20274 { 20275 netstack_handle_t nh; 20276 netstack_t *ns; 20277 20278 netstack_next_init(&nh); 20279 while ((ns = netstack_next(&nh)) != NULL) { 20280 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20281 netstack_rele(ns); 20282 } 20283 netstack_next_fini(&nh); 20284 } 20285 20286 static void 20287 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20288 { 20289 ire_cache_count_t icc; 20290 ire_cache_reclaim_t icr; 20291 ncc_cache_count_t ncc; 20292 nce_cache_reclaim_t ncr; 20293 uint_t delete_cnt; 20294 /* 20295 * Memory reclaim call back. 20296 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20297 * Then, with a target of freeing 1/Nth of IRE_CACHE 20298 * entries, determine what fraction to free for 20299 * each category of IRE_CACHE entries giving absolute priority 20300 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20301 * entry will be freed unless all offlink entries are freed). 20302 */ 20303 icc.icc_total = 0; 20304 icc.icc_unused = 0; 20305 icc.icc_offlink = 0; 20306 icc.icc_pmtu = 0; 20307 icc.icc_onlink = 0; 20308 ire_walk(ire_cache_count, (char *)&icc, ipst); 20309 20310 /* 20311 * Free NCEs for IPv6 like the onlink ires. 20312 */ 20313 ncc.ncc_total = 0; 20314 ncc.ncc_host = 0; 20315 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20316 20317 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20318 icc.icc_pmtu + icc.icc_onlink); 20319 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20320 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20321 if (delete_cnt == 0) 20322 return; 20323 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20324 /* Always delete all unused offlink entries */ 20325 icr.icr_ipst = ipst; 20326 icr.icr_unused = 1; 20327 if (delete_cnt <= icc.icc_unused) { 20328 /* 20329 * Only need to free unused entries. In other words, 20330 * there are enough unused entries to free to meet our 20331 * target number of freed ire cache entries. 20332 */ 20333 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20334 ncr.ncr_host = 0; 20335 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20336 /* 20337 * Only need to free unused entries, plus a fraction of offlink 20338 * entries. It follows from the first if statement that 20339 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20340 */ 20341 delete_cnt -= icc.icc_unused; 20342 /* Round up # deleted by truncating fraction */ 20343 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20344 icr.icr_pmtu = icr.icr_onlink = 0; 20345 ncr.ncr_host = 0; 20346 } else if (delete_cnt <= 20347 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20348 /* 20349 * Free all unused and offlink entries, plus a fraction of 20350 * pmtu entries. It follows from the previous if statement 20351 * that icc_pmtu is non-zero, and that 20352 * delete_cnt != icc_unused + icc_offlink. 20353 */ 20354 icr.icr_offlink = 1; 20355 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20356 /* Round up # deleted by truncating fraction */ 20357 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20358 icr.icr_onlink = 0; 20359 ncr.ncr_host = 0; 20360 } else { 20361 /* 20362 * Free all unused, offlink, and pmtu entries, plus a fraction 20363 * of onlink entries. If we're here, then we know that 20364 * icc_onlink is non-zero, and that 20365 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20366 */ 20367 icr.icr_offlink = icr.icr_pmtu = 1; 20368 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20369 icc.icc_pmtu; 20370 /* Round up # deleted by truncating fraction */ 20371 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20372 /* Using the same delete fraction as for onlink IREs */ 20373 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20374 } 20375 #ifdef DEBUG 20376 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20377 "fractions %d/%d/%d/%d\n", 20378 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20379 icc.icc_unused, icc.icc_offlink, 20380 icc.icc_pmtu, icc.icc_onlink, 20381 icr.icr_unused, icr.icr_offlink, 20382 icr.icr_pmtu, icr.icr_onlink)); 20383 #endif 20384 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20385 if (ncr.ncr_host != 0) 20386 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20387 (uchar_t *)&ncr, ipst); 20388 #ifdef DEBUG 20389 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20390 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20391 ire_walk(ire_cache_count, (char *)&icc, ipst); 20392 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20393 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20394 icc.icc_pmtu, icc.icc_onlink)); 20395 #endif 20396 } 20397 20398 /* 20399 * ip_unbind is called when a copy of an unbind request is received from the 20400 * upper level protocol. We remove this conn from any fanout hash list it is 20401 * on, and zero out the bind information. No reply is expected up above. 20402 */ 20403 void 20404 ip_unbind(conn_t *connp) 20405 { 20406 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20407 20408 if (is_system_labeled() && connp->conn_anon_port) { 20409 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20410 connp->conn_mlp_type, connp->conn_ulp, 20411 ntohs(connp->conn_lport), B_FALSE); 20412 connp->conn_anon_port = 0; 20413 } 20414 connp->conn_mlp_type = mlptSingle; 20415 20416 ipcl_hash_remove(connp); 20417 20418 } 20419 20420 /* 20421 * Write side put procedure. Outbound data, IOCTLs, responses from 20422 * resolvers, etc, come down through here. 20423 * 20424 * arg2 is always a queue_t *. 20425 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20426 * the zoneid. 20427 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20428 */ 20429 void 20430 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20431 { 20432 ip_output_options(arg, mp, arg2, caller, &zero_info); 20433 } 20434 20435 void 20436 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20437 ip_opt_info_t *infop) 20438 { 20439 conn_t *connp = NULL; 20440 queue_t *q = (queue_t *)arg2; 20441 ipha_t *ipha; 20442 #define rptr ((uchar_t *)ipha) 20443 ire_t *ire = NULL; 20444 ire_t *sctp_ire = NULL; 20445 uint32_t v_hlen_tos_len; 20446 ipaddr_t dst; 20447 mblk_t *first_mp = NULL; 20448 boolean_t mctl_present; 20449 ipsec_out_t *io; 20450 int match_flags; 20451 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20452 ipif_t *dst_ipif; 20453 boolean_t multirt_need_resolve = B_FALSE; 20454 mblk_t *copy_mp = NULL; 20455 int err; 20456 zoneid_t zoneid; 20457 boolean_t need_decref = B_FALSE; 20458 boolean_t ignore_dontroute = B_FALSE; 20459 boolean_t ignore_nexthop = B_FALSE; 20460 boolean_t ip_nexthop = B_FALSE; 20461 ipaddr_t nexthop_addr; 20462 ip_stack_t *ipst; 20463 20464 #ifdef _BIG_ENDIAN 20465 #define V_HLEN (v_hlen_tos_len >> 24) 20466 #else 20467 #define V_HLEN (v_hlen_tos_len & 0xFF) 20468 #endif 20469 20470 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20471 "ip_wput_start: q %p", q); 20472 20473 /* 20474 * ip_wput fast path 20475 */ 20476 20477 /* is packet from ARP ? */ 20478 if (q->q_next != NULL) { 20479 zoneid = (zoneid_t)(uintptr_t)arg; 20480 goto qnext; 20481 } 20482 20483 connp = (conn_t *)arg; 20484 ASSERT(connp != NULL); 20485 zoneid = connp->conn_zoneid; 20486 ipst = connp->conn_netstack->netstack_ip; 20487 ASSERT(ipst != NULL); 20488 20489 /* is queue flow controlled? */ 20490 if ((q->q_first != NULL || connp->conn_draining) && 20491 (caller == IP_WPUT)) { 20492 ASSERT(!need_decref); 20493 ASSERT(!IP_FLOW_CONTROLLED_ULP(connp->conn_ulp)); 20494 (void) putq(q, mp); 20495 return; 20496 } 20497 20498 /* Multidata transmit? */ 20499 if (DB_TYPE(mp) == M_MULTIDATA) { 20500 /* 20501 * We should never get here, since all Multidata messages 20502 * originating from tcp should have been directed over to 20503 * tcp_multisend() in the first place. 20504 */ 20505 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20506 freemsg(mp); 20507 return; 20508 } else if (DB_TYPE(mp) != M_DATA) 20509 goto notdata; 20510 20511 if (mp->b_flag & MSGHASREF) { 20512 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20513 mp->b_flag &= ~MSGHASREF; 20514 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20515 need_decref = B_TRUE; 20516 } 20517 ipha = (ipha_t *)mp->b_rptr; 20518 20519 /* is IP header non-aligned or mblk smaller than basic IP header */ 20520 #ifndef SAFETY_BEFORE_SPEED 20521 if (!OK_32PTR(rptr) || 20522 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20523 goto hdrtoosmall; 20524 #endif 20525 20526 ASSERT(OK_32PTR(ipha)); 20527 20528 /* 20529 * This function assumes that mp points to an IPv4 packet. If it's the 20530 * wrong version, we'll catch it again in ip_output_v6. 20531 * 20532 * Note that this is *only* locally-generated output here, and never 20533 * forwarded data, and that we need to deal only with transports that 20534 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20535 * label.) 20536 */ 20537 if (is_system_labeled() && 20538 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20539 !connp->conn_ulp_labeled) { 20540 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20541 connp->conn_mac_exempt, ipst); 20542 ipha = (ipha_t *)mp->b_rptr; 20543 if (err != 0) { 20544 first_mp = mp; 20545 if (err == EINVAL) 20546 goto icmp_parameter_problem; 20547 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20548 goto discard_pkt; 20549 } 20550 } 20551 20552 ASSERT(infop != NULL); 20553 20554 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20555 /* 20556 * IP_PKTINFO ancillary option is present. 20557 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20558 * allows using address of any zone as the source address. 20559 */ 20560 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20561 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20562 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20563 if (ire == NULL) 20564 goto drop_pkt; 20565 ire_refrele(ire); 20566 ire = NULL; 20567 } 20568 20569 /* 20570 * IP_BOUND_IF has precedence over the ill index passed in IP_PKTINFO. 20571 */ 20572 if (infop->ip_opt_ill_index != 0 && connp->conn_outgoing_ill == NULL) { 20573 xmit_ill = ill_lookup_on_ifindex(infop->ip_opt_ill_index, 20574 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20575 20576 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20577 goto drop_pkt; 20578 /* 20579 * check that there is an ipif belonging 20580 * to our zone. IPCL_ZONEID is not used because 20581 * IP_ALLZONES option is valid only when the ill is 20582 * accessible from all zones i.e has a valid ipif in 20583 * all zones. 20584 */ 20585 if (!ipif_lookup_zoneid(xmit_ill, zoneid, 0, NULL)) { 20586 goto drop_pkt; 20587 } 20588 } 20589 20590 /* 20591 * If there is a policy, try to attach an ipsec_out in 20592 * the front. At the end, first_mp either points to a 20593 * M_DATA message or IPSEC_OUT message linked to a 20594 * M_DATA message. We have to do it now as we might 20595 * lose the "conn" if we go through ip_newroute. 20596 */ 20597 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20598 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20599 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20600 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20601 if (need_decref) 20602 CONN_DEC_REF(connp); 20603 return; 20604 } else { 20605 ASSERT(mp->b_datap->db_type == M_CTL); 20606 first_mp = mp; 20607 mp = mp->b_cont; 20608 mctl_present = B_TRUE; 20609 } 20610 } else { 20611 first_mp = mp; 20612 mctl_present = B_FALSE; 20613 } 20614 20615 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20616 20617 /* is wrong version or IP options present */ 20618 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20619 goto version_hdrlen_check; 20620 dst = ipha->ipha_dst; 20621 20622 /* If IP_BOUND_IF has been set, use that ill. */ 20623 if (connp->conn_outgoing_ill != NULL) { 20624 xmit_ill = conn_get_held_ill(connp, 20625 &connp->conn_outgoing_ill, &err); 20626 if (err == ILL_LOOKUP_FAILED) 20627 goto drop_pkt; 20628 20629 goto send_from_ill; 20630 } 20631 20632 /* is packet multicast? */ 20633 if (CLASSD(dst)) 20634 goto multicast; 20635 20636 /* 20637 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20638 * takes precedence over conn_dontroute and conn_nexthop_set 20639 */ 20640 if (xmit_ill != NULL) 20641 goto send_from_ill; 20642 20643 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20644 /* 20645 * If the destination is a broadcast, local, or loopback 20646 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20647 * standard path. 20648 */ 20649 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20650 if ((ire == NULL) || (ire->ire_type & 20651 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20652 if (ire != NULL) { 20653 ire_refrele(ire); 20654 /* No more access to ire */ 20655 ire = NULL; 20656 } 20657 /* 20658 * bypass routing checks and go directly to interface. 20659 */ 20660 if (connp->conn_dontroute) 20661 goto dontroute; 20662 20663 ASSERT(connp->conn_nexthop_set); 20664 ip_nexthop = B_TRUE; 20665 nexthop_addr = connp->conn_nexthop_v4; 20666 goto send_from_ill; 20667 } 20668 20669 /* Must be a broadcast, a loopback or a local ire */ 20670 ire_refrele(ire); 20671 /* No more access to ire */ 20672 ire = NULL; 20673 } 20674 20675 /* 20676 * We cache IRE_CACHEs to avoid lookups. We don't do 20677 * this for the tcp global queue and listen end point 20678 * as it does not really have a real destination to 20679 * talk to. This is also true for SCTP. 20680 */ 20681 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20682 !connp->conn_fully_bound) { 20683 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20684 if (ire == NULL) 20685 goto noirefound; 20686 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20687 "ip_wput_end: q %p (%S)", q, "end"); 20688 20689 /* 20690 * Check if the ire has the RTF_MULTIRT flag, inherited 20691 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20692 */ 20693 if (ire->ire_flags & RTF_MULTIRT) { 20694 20695 /* 20696 * Force the TTL of multirouted packets if required. 20697 * The TTL of such packets is bounded by the 20698 * ip_multirt_ttl ndd variable. 20699 */ 20700 if ((ipst->ips_ip_multirt_ttl > 0) && 20701 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20702 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20703 "(was %d), dst 0x%08x\n", 20704 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20705 ntohl(ire->ire_addr))); 20706 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20707 } 20708 /* 20709 * We look at this point if there are pending 20710 * unresolved routes. ire_multirt_resolvable() 20711 * checks in O(n) that all IRE_OFFSUBNET ire 20712 * entries for the packet's destination and 20713 * flagged RTF_MULTIRT are currently resolved. 20714 * If some remain unresolved, we make a copy 20715 * of the current message. It will be used 20716 * to initiate additional route resolutions. 20717 */ 20718 multirt_need_resolve = 20719 ire_multirt_need_resolve(ire->ire_addr, 20720 msg_getlabel(first_mp), ipst); 20721 ip2dbg(("ip_wput[TCP]: ire %p, " 20722 "multirt_need_resolve %d, first_mp %p\n", 20723 (void *)ire, multirt_need_resolve, 20724 (void *)first_mp)); 20725 if (multirt_need_resolve) { 20726 copy_mp = copymsg(first_mp); 20727 if (copy_mp != NULL) { 20728 MULTIRT_DEBUG_TAG(copy_mp); 20729 } 20730 } 20731 } 20732 20733 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20734 20735 /* 20736 * Try to resolve another multiroute if 20737 * ire_multirt_need_resolve() deemed it necessary. 20738 */ 20739 if (copy_mp != NULL) 20740 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20741 if (need_decref) 20742 CONN_DEC_REF(connp); 20743 return; 20744 } 20745 20746 /* 20747 * Access to conn_ire_cache. (protected by conn_lock) 20748 * 20749 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20750 * the ire bucket lock here to check for CONDEMNED as it is okay to 20751 * send a packet or two with the IRE_CACHE that is going away. 20752 * Access to the ire requires an ire refhold on the ire prior to 20753 * its use since an interface unplumb thread may delete the cached 20754 * ire and release the refhold at any time. 20755 * 20756 * Caching an ire in the conn_ire_cache 20757 * 20758 * o Caching an ire pointer in the conn requires a strict check for 20759 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20760 * ires before cleaning up the conns. So the caching of an ire pointer 20761 * in the conn is done after making sure under the bucket lock that the 20762 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20763 * caching an ire after the unplumb thread has cleaned up the conn. 20764 * If the conn does not send a packet subsequently the unplumb thread 20765 * will be hanging waiting for the ire count to drop to zero. 20766 * 20767 * o We also need to atomically test for a null conn_ire_cache and 20768 * set the conn_ire_cache under the the protection of the conn_lock 20769 * to avoid races among concurrent threads trying to simultaneously 20770 * cache an ire in the conn_ire_cache. 20771 */ 20772 mutex_enter(&connp->conn_lock); 20773 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20774 20775 if (ire != NULL && ire->ire_addr == dst && 20776 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20777 20778 IRE_REFHOLD(ire); 20779 mutex_exit(&connp->conn_lock); 20780 20781 } else { 20782 boolean_t cached = B_FALSE; 20783 connp->conn_ire_cache = NULL; 20784 mutex_exit(&connp->conn_lock); 20785 /* Release the old ire */ 20786 if (ire != NULL && sctp_ire == NULL) 20787 IRE_REFRELE_NOTR(ire); 20788 20789 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20790 if (ire == NULL) 20791 goto noirefound; 20792 IRE_REFHOLD_NOTR(ire); 20793 20794 mutex_enter(&connp->conn_lock); 20795 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20796 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20797 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20798 if (connp->conn_ulp == IPPROTO_TCP) 20799 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20800 connp->conn_ire_cache = ire; 20801 cached = B_TRUE; 20802 } 20803 rw_exit(&ire->ire_bucket->irb_lock); 20804 } 20805 mutex_exit(&connp->conn_lock); 20806 20807 /* 20808 * We can continue to use the ire but since it was 20809 * not cached, we should drop the extra reference. 20810 */ 20811 if (!cached) 20812 IRE_REFRELE_NOTR(ire); 20813 } 20814 20815 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20816 "ip_wput_end: q %p (%S)", q, "end"); 20817 20818 /* 20819 * Check if the ire has the RTF_MULTIRT flag, inherited 20820 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20821 */ 20822 if (ire->ire_flags & RTF_MULTIRT) { 20823 /* 20824 * Force the TTL of multirouted packets if required. 20825 * The TTL of such packets is bounded by the 20826 * ip_multirt_ttl ndd variable. 20827 */ 20828 if ((ipst->ips_ip_multirt_ttl > 0) && 20829 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20830 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20831 "(was %d), dst 0x%08x\n", 20832 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20833 ntohl(ire->ire_addr))); 20834 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20835 } 20836 20837 /* 20838 * At this point, we check to see if there are any pending 20839 * unresolved routes. ire_multirt_resolvable() 20840 * checks in O(n) that all IRE_OFFSUBNET ire 20841 * entries for the packet's destination and 20842 * flagged RTF_MULTIRT are currently resolved. 20843 * If some remain unresolved, we make a copy 20844 * of the current message. It will be used 20845 * to initiate additional route resolutions. 20846 */ 20847 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20848 msg_getlabel(first_mp), ipst); 20849 ip2dbg(("ip_wput[not TCP]: ire %p, " 20850 "multirt_need_resolve %d, first_mp %p\n", 20851 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20852 if (multirt_need_resolve) { 20853 copy_mp = copymsg(first_mp); 20854 if (copy_mp != NULL) { 20855 MULTIRT_DEBUG_TAG(copy_mp); 20856 } 20857 } 20858 } 20859 20860 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20861 20862 /* 20863 * Try to resolve another multiroute if 20864 * ire_multirt_resolvable() deemed it necessary 20865 */ 20866 if (copy_mp != NULL) 20867 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20868 if (need_decref) 20869 CONN_DEC_REF(connp); 20870 return; 20871 20872 qnext: 20873 /* 20874 * Upper Level Protocols pass down complete IP datagrams 20875 * as M_DATA messages. Everything else is a sideshow. 20876 * 20877 * 1) We could be re-entering ip_wput because of ip_neworute 20878 * in which case we could have a IPSEC_OUT message. We 20879 * need to pass through ip_wput like other datagrams and 20880 * hence cannot branch to ip_wput_nondata. 20881 * 20882 * 2) ARP, AH, ESP, and other clients who are on the module 20883 * instance of IP stream, give us something to deal with. 20884 * We will handle AH and ESP here and rest in ip_wput_nondata. 20885 * 20886 * 3) ICMP replies also could come here. 20887 */ 20888 ipst = ILLQ_TO_IPST(q); 20889 20890 if (DB_TYPE(mp) != M_DATA) { 20891 notdata: 20892 if (DB_TYPE(mp) == M_CTL) { 20893 /* 20894 * M_CTL messages are used by ARP, AH and ESP to 20895 * communicate with IP. We deal with IPSEC_IN and 20896 * IPSEC_OUT here. ip_wput_nondata handles other 20897 * cases. 20898 */ 20899 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20900 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20901 first_mp = mp->b_cont; 20902 first_mp->b_flag &= ~MSGHASREF; 20903 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20904 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20905 CONN_DEC_REF(connp); 20906 connp = NULL; 20907 } 20908 if (ii->ipsec_info_type == IPSEC_IN) { 20909 /* 20910 * Either this message goes back to 20911 * IPsec for further processing or to 20912 * ULP after policy checks. 20913 */ 20914 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20915 return; 20916 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20917 io = (ipsec_out_t *)ii; 20918 if (io->ipsec_out_proc_begin) { 20919 /* 20920 * IPsec processing has already started. 20921 * Complete it. 20922 * IPQoS notes: We don't care what is 20923 * in ipsec_out_ill_index since this 20924 * won't be processed for IPQoS policies 20925 * in ipsec_out_process. 20926 */ 20927 ipsec_out_process(q, mp, NULL, 20928 io->ipsec_out_ill_index); 20929 return; 20930 } else { 20931 connp = (q->q_next != NULL) ? 20932 NULL : Q_TO_CONN(q); 20933 first_mp = mp; 20934 mp = mp->b_cont; 20935 mctl_present = B_TRUE; 20936 } 20937 zoneid = io->ipsec_out_zoneid; 20938 ASSERT(zoneid != ALL_ZONES); 20939 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20940 /* 20941 * It's an IPsec control message requesting 20942 * an SADB update to be sent to the IPsec 20943 * hardware acceleration capable ills. 20944 */ 20945 ipsec_ctl_t *ipsec_ctl = 20946 (ipsec_ctl_t *)mp->b_rptr; 20947 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20948 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20949 mblk_t *cmp = mp->b_cont; 20950 20951 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20952 ASSERT(cmp != NULL); 20953 20954 freeb(mp); 20955 ill_ipsec_capab_send_all(satype, cmp, sa, 20956 ipst->ips_netstack); 20957 return; 20958 } else { 20959 /* 20960 * This must be ARP or special TSOL signaling. 20961 */ 20962 ip_wput_nondata(NULL, q, mp, NULL); 20963 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20964 "ip_wput_end: q %p (%S)", q, "nondata"); 20965 return; 20966 } 20967 } else { 20968 /* 20969 * This must be non-(ARP/AH/ESP) messages. 20970 */ 20971 ASSERT(!need_decref); 20972 ip_wput_nondata(NULL, q, mp, NULL); 20973 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20974 "ip_wput_end: q %p (%S)", q, "nondata"); 20975 return; 20976 } 20977 } else { 20978 first_mp = mp; 20979 mctl_present = B_FALSE; 20980 } 20981 20982 ASSERT(first_mp != NULL); 20983 20984 if (mctl_present) { 20985 io = (ipsec_out_t *)first_mp->b_rptr; 20986 if (io->ipsec_out_ip_nexthop) { 20987 /* 20988 * We may have lost the conn context if we are 20989 * coming here from ip_newroute(). Copy the 20990 * nexthop information. 20991 */ 20992 ip_nexthop = B_TRUE; 20993 nexthop_addr = io->ipsec_out_nexthop_addr; 20994 20995 ipha = (ipha_t *)mp->b_rptr; 20996 dst = ipha->ipha_dst; 20997 goto send_from_ill; 20998 } 20999 } 21000 21001 ASSERT(xmit_ill == NULL); 21002 21003 /* We have a complete IP datagram heading outbound. */ 21004 ipha = (ipha_t *)mp->b_rptr; 21005 21006 #ifndef SPEED_BEFORE_SAFETY 21007 /* 21008 * Make sure we have a full-word aligned message and that at least 21009 * a simple IP header is accessible in the first message. If not, 21010 * try a pullup. For labeled systems we need to always take this 21011 * path as M_CTLs are "notdata" but have trailing data to process. 21012 */ 21013 if (!OK_32PTR(rptr) || 21014 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 21015 hdrtoosmall: 21016 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 21017 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21018 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 21019 if (first_mp == NULL) 21020 first_mp = mp; 21021 goto discard_pkt; 21022 } 21023 21024 /* This function assumes that mp points to an IPv4 packet. */ 21025 if (is_system_labeled() && q->q_next == NULL && 21026 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 21027 !connp->conn_ulp_labeled) { 21028 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 21029 connp->conn_mac_exempt, ipst); 21030 ipha = (ipha_t *)mp->b_rptr; 21031 if (first_mp != NULL) 21032 first_mp->b_cont = mp; 21033 if (err != 0) { 21034 if (first_mp == NULL) 21035 first_mp = mp; 21036 if (err == EINVAL) 21037 goto icmp_parameter_problem; 21038 ip2dbg(("ip_wput: label check failed (%d)\n", 21039 err)); 21040 goto discard_pkt; 21041 } 21042 } 21043 21044 ipha = (ipha_t *)mp->b_rptr; 21045 if (first_mp == NULL) { 21046 ASSERT(xmit_ill == NULL); 21047 /* 21048 * If we got here because of "goto hdrtoosmall" 21049 * We need to attach a IPSEC_OUT. 21050 */ 21051 if (connp->conn_out_enforce_policy) { 21052 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 21053 NULL, ipha->ipha_protocol, 21054 ipst->ips_netstack)) == NULL)) { 21055 BUMP_MIB(&ipst->ips_ip_mib, 21056 ipIfStatsOutDiscards); 21057 if (need_decref) 21058 CONN_DEC_REF(connp); 21059 return; 21060 } else { 21061 ASSERT(mp->b_datap->db_type == M_CTL); 21062 first_mp = mp; 21063 mp = mp->b_cont; 21064 mctl_present = B_TRUE; 21065 } 21066 } else { 21067 first_mp = mp; 21068 mctl_present = B_FALSE; 21069 } 21070 } 21071 } 21072 #endif 21073 21074 /* Most of the code below is written for speed, not readability */ 21075 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21076 21077 /* 21078 * If ip_newroute() fails, we're going to need a full 21079 * header for the icmp wraparound. 21080 */ 21081 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 21082 uint_t v_hlen; 21083 version_hdrlen_check: 21084 ASSERT(first_mp != NULL); 21085 v_hlen = V_HLEN; 21086 /* 21087 * siphon off IPv6 packets coming down from transport 21088 * layer modules here. 21089 * Note: high-order bit carries NUD reachability confirmation 21090 */ 21091 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 21092 /* 21093 * FIXME: assume that callers of ip_output* call 21094 * the right version? 21095 */ 21096 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 21097 ASSERT(xmit_ill == NULL); 21098 if (need_decref) 21099 mp->b_flag |= MSGHASREF; 21100 (void) ip_output_v6(arg, first_mp, arg2, caller); 21101 return; 21102 } 21103 21104 if ((v_hlen >> 4) != IP_VERSION) { 21105 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21106 "ip_wput_end: q %p (%S)", q, "badvers"); 21107 goto discard_pkt; 21108 } 21109 /* 21110 * Is the header length at least 20 bytes? 21111 * 21112 * Are there enough bytes accessible in the header? If 21113 * not, try a pullup. 21114 */ 21115 v_hlen &= 0xF; 21116 v_hlen <<= 2; 21117 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 21118 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21119 "ip_wput_end: q %p (%S)", q, "badlen"); 21120 goto discard_pkt; 21121 } 21122 if (v_hlen > (mp->b_wptr - rptr)) { 21123 if (!pullupmsg(mp, v_hlen)) { 21124 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21125 "ip_wput_end: q %p (%S)", q, "badpullup2"); 21126 goto discard_pkt; 21127 } 21128 ipha = (ipha_t *)mp->b_rptr; 21129 } 21130 /* 21131 * Move first entry from any source route into ipha_dst and 21132 * verify the options 21133 */ 21134 if (ip_wput_options(q, first_mp, ipha, mctl_present, 21135 zoneid, ipst)) { 21136 ASSERT(xmit_ill == NULL); 21137 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21138 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21139 "ip_wput_end: q %p (%S)", q, "badopts"); 21140 if (need_decref) 21141 CONN_DEC_REF(connp); 21142 return; 21143 } 21144 } 21145 dst = ipha->ipha_dst; 21146 21147 /* 21148 * Try to get an IRE_CACHE for the destination address. If we can't, 21149 * we have to run the packet through ip_newroute which will take 21150 * the appropriate action to arrange for an IRE_CACHE, such as querying 21151 * a resolver, or assigning a default gateway, etc. 21152 */ 21153 if (CLASSD(dst)) { 21154 ipif_t *ipif; 21155 uint32_t setsrc = 0; 21156 21157 multicast: 21158 ASSERT(first_mp != NULL); 21159 ip2dbg(("ip_wput: CLASSD\n")); 21160 if (connp == NULL) { 21161 /* 21162 * Use the first good ipif on the ill. 21163 * XXX Should this ever happen? (Appears 21164 * to show up with just ppp and no ethernet due 21165 * to in.rdisc.) 21166 * However, ire_send should be able to 21167 * call ip_wput_ire directly. 21168 * 21169 * XXX Also, this can happen for ICMP and other packets 21170 * with multicast source addresses. Perhaps we should 21171 * fix things so that we drop the packet in question, 21172 * but for now, just run with it. 21173 */ 21174 ill_t *ill = (ill_t *)q->q_ptr; 21175 21176 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21177 if (ipif == NULL) { 21178 if (need_decref) 21179 CONN_DEC_REF(connp); 21180 freemsg(first_mp); 21181 return; 21182 } 21183 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21184 ntohl(dst), ill->ill_name)); 21185 } else { 21186 /* 21187 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 21188 * and IP_MULTICAST_IF. The block comment above this 21189 * function explains the locking mechanism used here. 21190 */ 21191 if (xmit_ill == NULL) { 21192 xmit_ill = conn_get_held_ill(connp, 21193 &connp->conn_outgoing_ill, &err); 21194 if (err == ILL_LOOKUP_FAILED) { 21195 ip1dbg(("ip_wput: No ill for " 21196 "IP_BOUND_IF\n")); 21197 BUMP_MIB(&ipst->ips_ip_mib, 21198 ipIfStatsOutNoRoutes); 21199 goto drop_pkt; 21200 } 21201 } 21202 21203 if (xmit_ill == NULL) { 21204 ipif = conn_get_held_ipif(connp, 21205 &connp->conn_multicast_ipif, &err); 21206 if (err == IPIF_LOOKUP_FAILED) { 21207 ip1dbg(("ip_wput: No ipif for " 21208 "multicast\n")); 21209 BUMP_MIB(&ipst->ips_ip_mib, 21210 ipIfStatsOutNoRoutes); 21211 goto drop_pkt; 21212 } 21213 } 21214 if (xmit_ill != NULL) { 21215 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21216 if (ipif == NULL) { 21217 ip1dbg(("ip_wput: No ipif for " 21218 "xmit_ill\n")); 21219 BUMP_MIB(&ipst->ips_ip_mib, 21220 ipIfStatsOutNoRoutes); 21221 goto drop_pkt; 21222 } 21223 } else if (ipif == NULL || ipif->ipif_isv6) { 21224 /* 21225 * We must do this ipif determination here 21226 * else we could pass through ip_newroute 21227 * and come back here without the conn context. 21228 * 21229 * Note: we do late binding i.e. we bind to 21230 * the interface when the first packet is sent. 21231 * For performance reasons we do not rebind on 21232 * each packet but keep the binding until the 21233 * next IP_MULTICAST_IF option. 21234 * 21235 * conn_multicast_{ipif,ill} are shared between 21236 * IPv4 and IPv6 and AF_INET6 sockets can 21237 * send both IPv4 and IPv6 packets. Hence 21238 * we have to check that "isv6" matches above. 21239 */ 21240 if (ipif != NULL) 21241 ipif_refrele(ipif); 21242 ipif = ipif_lookup_group(dst, zoneid, ipst); 21243 if (ipif == NULL) { 21244 ip1dbg(("ip_wput: No ipif for " 21245 "multicast\n")); 21246 BUMP_MIB(&ipst->ips_ip_mib, 21247 ipIfStatsOutNoRoutes); 21248 goto drop_pkt; 21249 } 21250 err = conn_set_held_ipif(connp, 21251 &connp->conn_multicast_ipif, ipif); 21252 if (err == IPIF_LOOKUP_FAILED) { 21253 ipif_refrele(ipif); 21254 ip1dbg(("ip_wput: No ipif for " 21255 "multicast\n")); 21256 BUMP_MIB(&ipst->ips_ip_mib, 21257 ipIfStatsOutNoRoutes); 21258 goto drop_pkt; 21259 } 21260 } 21261 } 21262 ASSERT(!ipif->ipif_isv6); 21263 /* 21264 * As we may lose the conn by the time we reach ip_wput_ire, 21265 * we copy conn_multicast_loop and conn_dontroute on to an 21266 * ipsec_out. In case if this datagram goes out secure, 21267 * we need the ill_index also. Copy that also into the 21268 * ipsec_out. 21269 */ 21270 if (mctl_present) { 21271 io = (ipsec_out_t *)first_mp->b_rptr; 21272 ASSERT(first_mp->b_datap->db_type == M_CTL); 21273 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21274 } else { 21275 ASSERT(mp == first_mp); 21276 if ((first_mp = allocb(sizeof (ipsec_info_t), 21277 BPRI_HI)) == NULL) { 21278 ipif_refrele(ipif); 21279 first_mp = mp; 21280 goto discard_pkt; 21281 } 21282 first_mp->b_datap->db_type = M_CTL; 21283 first_mp->b_wptr += sizeof (ipsec_info_t); 21284 /* ipsec_out_secure is B_FALSE now */ 21285 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21286 io = (ipsec_out_t *)first_mp->b_rptr; 21287 io->ipsec_out_type = IPSEC_OUT; 21288 io->ipsec_out_len = sizeof (ipsec_out_t); 21289 io->ipsec_out_use_global_policy = B_TRUE; 21290 io->ipsec_out_ns = ipst->ips_netstack; 21291 first_mp->b_cont = mp; 21292 mctl_present = B_TRUE; 21293 } 21294 21295 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21296 io->ipsec_out_ill_index = 21297 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21298 21299 if (connp != NULL) { 21300 io->ipsec_out_multicast_loop = 21301 connp->conn_multicast_loop; 21302 io->ipsec_out_dontroute = connp->conn_dontroute; 21303 io->ipsec_out_zoneid = connp->conn_zoneid; 21304 } 21305 /* 21306 * If the application uses IP_MULTICAST_IF with 21307 * different logical addresses of the same ILL, we 21308 * need to make sure that the soruce address of 21309 * the packet matches the logical IP address used 21310 * in the option. We do it by initializing ipha_src 21311 * here. This should keep IPsec also happy as 21312 * when we return from IPsec processing, we don't 21313 * have to worry about getting the right address on 21314 * the packet. Thus it is sufficient to look for 21315 * IRE_CACHE using MATCH_IRE_ILL rathen than 21316 * MATCH_IRE_IPIF. 21317 * 21318 * NOTE : We need to do it for non-secure case also as 21319 * this might go out secure if there is a global policy 21320 * match in ip_wput_ire. 21321 * 21322 * As we do not have the ire yet, it is possible that 21323 * we set the source address here and then later discover 21324 * that the ire implies the source address to be assigned 21325 * through the RTF_SETSRC flag. 21326 * In that case, the setsrc variable will remind us 21327 * that overwritting the source address by the one 21328 * of the RTF_SETSRC-flagged ire is allowed. 21329 */ 21330 if (ipha->ipha_src == INADDR_ANY && 21331 (connp == NULL || !connp->conn_unspec_src)) { 21332 ipha->ipha_src = ipif->ipif_src_addr; 21333 setsrc = RTF_SETSRC; 21334 } 21335 /* 21336 * Find an IRE which matches the destination and the outgoing 21337 * queue (i.e. the outgoing interface.) 21338 * For loopback use a unicast IP address for 21339 * the ire lookup. 21340 */ 21341 if (IS_LOOPBACK(ipif->ipif_ill)) 21342 dst = ipif->ipif_lcl_addr; 21343 21344 /* 21345 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21346 * We don't need to lookup ire in ctable as the packet 21347 * needs to be sent to the destination through the specified 21348 * ill irrespective of ires in the cache table. 21349 */ 21350 ire = NULL; 21351 if (xmit_ill == NULL) { 21352 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21353 zoneid, msg_getlabel(mp), match_flags, ipst); 21354 } 21355 21356 if (ire == NULL) { 21357 /* 21358 * Multicast loopback and multicast forwarding is 21359 * done in ip_wput_ire. 21360 * 21361 * Mark this packet to make it be delivered to 21362 * ip_wput_ire after the new ire has been 21363 * created. 21364 * 21365 * The call to ip_newroute_ipif takes into account 21366 * the setsrc reminder. In any case, we take care 21367 * of the RTF_MULTIRT flag. 21368 */ 21369 mp->b_prev = mp->b_next = NULL; 21370 if (xmit_ill == NULL || 21371 xmit_ill->ill_ipif_up_count > 0) { 21372 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21373 setsrc | RTF_MULTIRT, zoneid, infop); 21374 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21375 "ip_wput_end: q %p (%S)", q, "noire"); 21376 } else { 21377 freemsg(first_mp); 21378 } 21379 ipif_refrele(ipif); 21380 if (xmit_ill != NULL) 21381 ill_refrele(xmit_ill); 21382 if (need_decref) 21383 CONN_DEC_REF(connp); 21384 return; 21385 } 21386 21387 ipif_refrele(ipif); 21388 ipif = NULL; 21389 ASSERT(xmit_ill == NULL); 21390 21391 /* 21392 * Honor the RTF_SETSRC flag for multicast packets, 21393 * if allowed by the setsrc reminder. 21394 */ 21395 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21396 ipha->ipha_src = ire->ire_src_addr; 21397 } 21398 21399 /* 21400 * Unconditionally force the TTL to 1 for 21401 * multirouted multicast packets: 21402 * multirouted multicast should not cross 21403 * multicast routers. 21404 */ 21405 if (ire->ire_flags & RTF_MULTIRT) { 21406 if (ipha->ipha_ttl > 1) { 21407 ip2dbg(("ip_wput: forcing multicast " 21408 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21409 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21410 ipha->ipha_ttl = 1; 21411 } 21412 } 21413 } else { 21414 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 21415 if ((ire != NULL) && (ire->ire_type & 21416 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21417 ignore_dontroute = B_TRUE; 21418 ignore_nexthop = B_TRUE; 21419 } 21420 if (ire != NULL) { 21421 ire_refrele(ire); 21422 ire = NULL; 21423 } 21424 /* 21425 * Guard against coming in from arp in which case conn is NULL. 21426 * Also guard against non M_DATA with dontroute set but 21427 * destined to local, loopback or broadcast addresses. 21428 */ 21429 if (connp != NULL && connp->conn_dontroute && 21430 !ignore_dontroute) { 21431 dontroute: 21432 /* 21433 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21434 * routing protocols from seeing false direct 21435 * connectivity. 21436 */ 21437 ipha->ipha_ttl = 1; 21438 /* If suitable ipif not found, drop packet */ 21439 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21440 if (dst_ipif == NULL) { 21441 noroute: 21442 ip1dbg(("ip_wput: no route for dst using" 21443 " SO_DONTROUTE\n")); 21444 BUMP_MIB(&ipst->ips_ip_mib, 21445 ipIfStatsOutNoRoutes); 21446 mp->b_prev = mp->b_next = NULL; 21447 if (first_mp == NULL) 21448 first_mp = mp; 21449 goto drop_pkt; 21450 } else { 21451 /* 21452 * If suitable ipif has been found, set 21453 * xmit_ill to the corresponding 21454 * ipif_ill because we'll be using the 21455 * send_from_ill logic below. 21456 */ 21457 ASSERT(xmit_ill == NULL); 21458 xmit_ill = dst_ipif->ipif_ill; 21459 mutex_enter(&xmit_ill->ill_lock); 21460 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21461 mutex_exit(&xmit_ill->ill_lock); 21462 xmit_ill = NULL; 21463 ipif_refrele(dst_ipif); 21464 goto noroute; 21465 } 21466 ill_refhold_locked(xmit_ill); 21467 mutex_exit(&xmit_ill->ill_lock); 21468 ipif_refrele(dst_ipif); 21469 } 21470 } 21471 21472 send_from_ill: 21473 if (xmit_ill != NULL) { 21474 ipif_t *ipif; 21475 21476 /* 21477 * Mark this packet as originated locally 21478 */ 21479 mp->b_prev = mp->b_next = NULL; 21480 21481 /* 21482 * Could be SO_DONTROUTE case also. 21483 * Verify that at least one ipif is up on the ill. 21484 */ 21485 if (xmit_ill->ill_ipif_up_count == 0) { 21486 ip1dbg(("ip_output: xmit_ill %s is down\n", 21487 xmit_ill->ill_name)); 21488 goto drop_pkt; 21489 } 21490 21491 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21492 if (ipif == NULL) { 21493 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21494 xmit_ill->ill_name)); 21495 goto drop_pkt; 21496 } 21497 21498 match_flags = 0; 21499 if (IS_UNDER_IPMP(xmit_ill)) 21500 match_flags |= MATCH_IRE_MARK_TESTHIDDEN; 21501 21502 /* 21503 * Look for a ire that is part of the group, 21504 * if found use it else call ip_newroute_ipif. 21505 * IPCL_ZONEID is not used for matching because 21506 * IP_ALLZONES option is valid only when the 21507 * ill is accessible from all zones i.e has a 21508 * valid ipif in all zones. 21509 */ 21510 match_flags |= MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21511 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21512 msg_getlabel(mp), match_flags, ipst); 21513 /* 21514 * If an ire exists use it or else create 21515 * an ire but don't add it to the cache. 21516 * Adding an ire may cause issues with 21517 * asymmetric routing. 21518 * In case of multiroute always act as if 21519 * ire does not exist. 21520 */ 21521 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21522 if (ire != NULL) 21523 ire_refrele(ire); 21524 ip_newroute_ipif(q, first_mp, ipif, 21525 dst, connp, 0, zoneid, infop); 21526 ipif_refrele(ipif); 21527 ip1dbg(("ip_output: xmit_ill via %s\n", 21528 xmit_ill->ill_name)); 21529 ill_refrele(xmit_ill); 21530 if (need_decref) 21531 CONN_DEC_REF(connp); 21532 return; 21533 } 21534 ipif_refrele(ipif); 21535 } else if (ip_nexthop || (connp != NULL && 21536 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21537 if (!ip_nexthop) { 21538 ip_nexthop = B_TRUE; 21539 nexthop_addr = connp->conn_nexthop_v4; 21540 } 21541 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21542 MATCH_IRE_GW; 21543 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21544 NULL, zoneid, msg_getlabel(mp), match_flags, ipst); 21545 } else { 21546 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), 21547 ipst); 21548 } 21549 if (!ire) { 21550 if (ip_nexthop && !ignore_nexthop) { 21551 if (mctl_present) { 21552 io = (ipsec_out_t *)first_mp->b_rptr; 21553 ASSERT(first_mp->b_datap->db_type == 21554 M_CTL); 21555 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21556 } else { 21557 ASSERT(mp == first_mp); 21558 first_mp = allocb( 21559 sizeof (ipsec_info_t), BPRI_HI); 21560 if (first_mp == NULL) { 21561 first_mp = mp; 21562 goto discard_pkt; 21563 } 21564 first_mp->b_datap->db_type = M_CTL; 21565 first_mp->b_wptr += 21566 sizeof (ipsec_info_t); 21567 /* ipsec_out_secure is B_FALSE now */ 21568 bzero(first_mp->b_rptr, 21569 sizeof (ipsec_info_t)); 21570 io = (ipsec_out_t *)first_mp->b_rptr; 21571 io->ipsec_out_type = IPSEC_OUT; 21572 io->ipsec_out_len = 21573 sizeof (ipsec_out_t); 21574 io->ipsec_out_use_global_policy = 21575 B_TRUE; 21576 io->ipsec_out_ns = ipst->ips_netstack; 21577 first_mp->b_cont = mp; 21578 mctl_present = B_TRUE; 21579 } 21580 io->ipsec_out_ip_nexthop = ip_nexthop; 21581 io->ipsec_out_nexthop_addr = nexthop_addr; 21582 } 21583 noirefound: 21584 /* 21585 * Mark this packet as having originated on 21586 * this machine. This will be noted in 21587 * ire_add_then_send, which needs to know 21588 * whether to run it back through ip_wput or 21589 * ip_rput following successful resolution. 21590 */ 21591 mp->b_prev = NULL; 21592 mp->b_next = NULL; 21593 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21594 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21595 "ip_wput_end: q %p (%S)", q, "newroute"); 21596 if (xmit_ill != NULL) 21597 ill_refrele(xmit_ill); 21598 if (need_decref) 21599 CONN_DEC_REF(connp); 21600 return; 21601 } 21602 } 21603 21604 /* We now know where we are going with it. */ 21605 21606 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21607 "ip_wput_end: q %p (%S)", q, "end"); 21608 21609 /* 21610 * Check if the ire has the RTF_MULTIRT flag, inherited 21611 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21612 */ 21613 if (ire->ire_flags & RTF_MULTIRT) { 21614 /* 21615 * Force the TTL of multirouted packets if required. 21616 * The TTL of such packets is bounded by the 21617 * ip_multirt_ttl ndd variable. 21618 */ 21619 if ((ipst->ips_ip_multirt_ttl > 0) && 21620 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21621 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21622 "(was %d), dst 0x%08x\n", 21623 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21624 ntohl(ire->ire_addr))); 21625 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21626 } 21627 /* 21628 * At this point, we check to see if there are any pending 21629 * unresolved routes. ire_multirt_resolvable() 21630 * checks in O(n) that all IRE_OFFSUBNET ire 21631 * entries for the packet's destination and 21632 * flagged RTF_MULTIRT are currently resolved. 21633 * If some remain unresolved, we make a copy 21634 * of the current message. It will be used 21635 * to initiate additional route resolutions. 21636 */ 21637 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21638 msg_getlabel(first_mp), ipst); 21639 ip2dbg(("ip_wput[noirefound]: ire %p, " 21640 "multirt_need_resolve %d, first_mp %p\n", 21641 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21642 if (multirt_need_resolve) { 21643 copy_mp = copymsg(first_mp); 21644 if (copy_mp != NULL) { 21645 MULTIRT_DEBUG_TAG(copy_mp); 21646 } 21647 } 21648 } 21649 21650 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21651 /* 21652 * Try to resolve another multiroute if 21653 * ire_multirt_resolvable() deemed it necessary. 21654 * At this point, we need to distinguish 21655 * multicasts from other packets. For multicasts, 21656 * we call ip_newroute_ipif() and request that both 21657 * multirouting and setsrc flags are checked. 21658 */ 21659 if (copy_mp != NULL) { 21660 if (CLASSD(dst)) { 21661 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21662 if (ipif) { 21663 ASSERT(infop->ip_opt_ill_index == 0); 21664 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21665 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21666 ipif_refrele(ipif); 21667 } else { 21668 MULTIRT_DEBUG_UNTAG(copy_mp); 21669 freemsg(copy_mp); 21670 copy_mp = NULL; 21671 } 21672 } else { 21673 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21674 } 21675 } 21676 if (xmit_ill != NULL) 21677 ill_refrele(xmit_ill); 21678 if (need_decref) 21679 CONN_DEC_REF(connp); 21680 return; 21681 21682 icmp_parameter_problem: 21683 /* could not have originated externally */ 21684 ASSERT(mp->b_prev == NULL); 21685 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21686 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21687 /* it's the IP header length that's in trouble */ 21688 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21689 first_mp = NULL; 21690 } 21691 21692 discard_pkt: 21693 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21694 drop_pkt: 21695 ip1dbg(("ip_wput: dropped packet\n")); 21696 if (ire != NULL) 21697 ire_refrele(ire); 21698 if (need_decref) 21699 CONN_DEC_REF(connp); 21700 freemsg(first_mp); 21701 if (xmit_ill != NULL) 21702 ill_refrele(xmit_ill); 21703 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21704 "ip_wput_end: q %p (%S)", q, "droppkt"); 21705 } 21706 21707 /* 21708 * If this is a conn_t queue, then we pass in the conn. This includes the 21709 * zoneid. 21710 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21711 * in which case we use the global zoneid since those are all part of 21712 * the global zone. 21713 */ 21714 void 21715 ip_wput(queue_t *q, mblk_t *mp) 21716 { 21717 if (CONN_Q(q)) 21718 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21719 else 21720 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21721 } 21722 21723 /* 21724 * 21725 * The following rules must be observed when accessing any ipif or ill 21726 * that has been cached in the conn. Typically conn_outgoing_ill, 21727 * conn_multicast_ipif and conn_multicast_ill. 21728 * 21729 * Access: The ipif or ill pointed to from the conn can be accessed under 21730 * the protection of the conn_lock or after it has been refheld under the 21731 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21732 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21733 * The reason for this is that a concurrent unplumb could actually be 21734 * cleaning up these cached pointers by walking the conns and might have 21735 * finished cleaning up the conn in question. The macros check that an 21736 * unplumb has not yet started on the ipif or ill. 21737 * 21738 * Caching: An ipif or ill pointer may be cached in the conn only after 21739 * making sure that an unplumb has not started. So the caching is done 21740 * while holding both the conn_lock and the ill_lock and after using the 21741 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21742 * flag before starting the cleanup of conns. 21743 * 21744 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21745 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21746 * or a reference to the ipif or a reference to an ire that references the 21747 * ipif. An ipif only changes its ill when migrating from an underlying ill 21748 * to an IPMP ill in ipif_up(). 21749 */ 21750 ipif_t * 21751 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21752 { 21753 ipif_t *ipif; 21754 ill_t *ill; 21755 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21756 21757 *err = 0; 21758 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21759 mutex_enter(&connp->conn_lock); 21760 ipif = *ipifp; 21761 if (ipif != NULL) { 21762 ill = ipif->ipif_ill; 21763 mutex_enter(&ill->ill_lock); 21764 if (IPIF_CAN_LOOKUP(ipif)) { 21765 ipif_refhold_locked(ipif); 21766 mutex_exit(&ill->ill_lock); 21767 mutex_exit(&connp->conn_lock); 21768 rw_exit(&ipst->ips_ill_g_lock); 21769 return (ipif); 21770 } else { 21771 *err = IPIF_LOOKUP_FAILED; 21772 } 21773 mutex_exit(&ill->ill_lock); 21774 } 21775 mutex_exit(&connp->conn_lock); 21776 rw_exit(&ipst->ips_ill_g_lock); 21777 return (NULL); 21778 } 21779 21780 ill_t * 21781 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21782 { 21783 ill_t *ill; 21784 21785 *err = 0; 21786 mutex_enter(&connp->conn_lock); 21787 ill = *illp; 21788 if (ill != NULL) { 21789 mutex_enter(&ill->ill_lock); 21790 if (ILL_CAN_LOOKUP(ill)) { 21791 ill_refhold_locked(ill); 21792 mutex_exit(&ill->ill_lock); 21793 mutex_exit(&connp->conn_lock); 21794 return (ill); 21795 } else { 21796 *err = ILL_LOOKUP_FAILED; 21797 } 21798 mutex_exit(&ill->ill_lock); 21799 } 21800 mutex_exit(&connp->conn_lock); 21801 return (NULL); 21802 } 21803 21804 static int 21805 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21806 { 21807 ill_t *ill; 21808 21809 ill = ipif->ipif_ill; 21810 mutex_enter(&connp->conn_lock); 21811 mutex_enter(&ill->ill_lock); 21812 if (IPIF_CAN_LOOKUP(ipif)) { 21813 *ipifp = ipif; 21814 mutex_exit(&ill->ill_lock); 21815 mutex_exit(&connp->conn_lock); 21816 return (0); 21817 } 21818 mutex_exit(&ill->ill_lock); 21819 mutex_exit(&connp->conn_lock); 21820 return (IPIF_LOOKUP_FAILED); 21821 } 21822 21823 /* 21824 * This is called if the outbound datagram needs fragmentation. 21825 * 21826 * NOTE : This function does not ire_refrele the ire argument passed in. 21827 */ 21828 static void 21829 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21830 ip_stack_t *ipst, conn_t *connp) 21831 { 21832 ipha_t *ipha; 21833 mblk_t *mp; 21834 uint32_t v_hlen_tos_len; 21835 uint32_t max_frag; 21836 uint32_t frag_flag; 21837 boolean_t dont_use; 21838 21839 if (ipsec_mp->b_datap->db_type == M_CTL) { 21840 mp = ipsec_mp->b_cont; 21841 } else { 21842 mp = ipsec_mp; 21843 } 21844 21845 ipha = (ipha_t *)mp->b_rptr; 21846 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21847 21848 #ifdef _BIG_ENDIAN 21849 #define V_HLEN (v_hlen_tos_len >> 24) 21850 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21851 #else 21852 #define V_HLEN (v_hlen_tos_len & 0xFF) 21853 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21854 #endif 21855 21856 #ifndef SPEED_BEFORE_SAFETY 21857 /* 21858 * Check that ipha_length is consistent with 21859 * the mblk length 21860 */ 21861 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21862 ip0dbg(("Packet length mismatch: %d, %ld\n", 21863 LENGTH, msgdsize(mp))); 21864 freemsg(ipsec_mp); 21865 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21866 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21867 "packet length mismatch"); 21868 return; 21869 } 21870 #endif 21871 /* 21872 * Don't use frag_flag if pre-built packet or source 21873 * routed or if multicast (since multicast packets do not solicit 21874 * ICMP "packet too big" messages). Get the values of 21875 * max_frag and frag_flag atomically by acquiring the 21876 * ire_lock. 21877 */ 21878 mutex_enter(&ire->ire_lock); 21879 max_frag = ire->ire_max_frag; 21880 frag_flag = ire->ire_frag_flag; 21881 mutex_exit(&ire->ire_lock); 21882 21883 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21884 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21885 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21886 21887 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21888 (dont_use ? 0 : frag_flag), zoneid, ipst, connp); 21889 } 21890 21891 /* 21892 * Used for deciding the MSS size for the upper layer. Thus 21893 * we need to check the outbound policy values in the conn. 21894 */ 21895 int 21896 conn_ipsec_length(conn_t *connp) 21897 { 21898 ipsec_latch_t *ipl; 21899 21900 ipl = connp->conn_latch; 21901 if (ipl == NULL) 21902 return (0); 21903 21904 if (ipl->ipl_out_policy == NULL) 21905 return (0); 21906 21907 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21908 } 21909 21910 /* 21911 * Returns an estimate of the IPsec headers size. This is used if 21912 * we don't want to call into IPsec to get the exact size. 21913 */ 21914 int 21915 ipsec_out_extra_length(mblk_t *ipsec_mp) 21916 { 21917 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21918 ipsec_action_t *a; 21919 21920 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21921 if (!io->ipsec_out_secure) 21922 return (0); 21923 21924 a = io->ipsec_out_act; 21925 21926 if (a == NULL) { 21927 ASSERT(io->ipsec_out_policy != NULL); 21928 a = io->ipsec_out_policy->ipsp_act; 21929 } 21930 ASSERT(a != NULL); 21931 21932 return (a->ipa_ovhd); 21933 } 21934 21935 /* 21936 * Returns an estimate of the IPsec headers size. This is used if 21937 * we don't want to call into IPsec to get the exact size. 21938 */ 21939 int 21940 ipsec_in_extra_length(mblk_t *ipsec_mp) 21941 { 21942 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21943 ipsec_action_t *a; 21944 21945 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21946 21947 a = ii->ipsec_in_action; 21948 return (a == NULL ? 0 : a->ipa_ovhd); 21949 } 21950 21951 /* 21952 * If there are any source route options, return the true final 21953 * destination. Otherwise, return the destination. 21954 */ 21955 ipaddr_t 21956 ip_get_dst(ipha_t *ipha) 21957 { 21958 ipoptp_t opts; 21959 uchar_t *opt; 21960 uint8_t optval; 21961 uint8_t optlen; 21962 ipaddr_t dst; 21963 uint32_t off; 21964 21965 dst = ipha->ipha_dst; 21966 21967 if (IS_SIMPLE_IPH(ipha)) 21968 return (dst); 21969 21970 for (optval = ipoptp_first(&opts, ipha); 21971 optval != IPOPT_EOL; 21972 optval = ipoptp_next(&opts)) { 21973 opt = opts.ipoptp_cur; 21974 optlen = opts.ipoptp_len; 21975 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21976 switch (optval) { 21977 case IPOPT_SSRR: 21978 case IPOPT_LSRR: 21979 off = opt[IPOPT_OFFSET]; 21980 /* 21981 * If one of the conditions is true, it means 21982 * end of options and dst already has the right 21983 * value. 21984 */ 21985 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21986 off = optlen - IP_ADDR_LEN; 21987 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21988 } 21989 return (dst); 21990 default: 21991 break; 21992 } 21993 } 21994 21995 return (dst); 21996 } 21997 21998 mblk_t * 21999 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 22000 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 22001 { 22002 ipsec_out_t *io; 22003 mblk_t *first_mp; 22004 boolean_t policy_present; 22005 ip_stack_t *ipst; 22006 ipsec_stack_t *ipss; 22007 22008 ASSERT(ire != NULL); 22009 ipst = ire->ire_ipst; 22010 ipss = ipst->ips_netstack->netstack_ipsec; 22011 22012 first_mp = mp; 22013 if (mp->b_datap->db_type == M_CTL) { 22014 io = (ipsec_out_t *)first_mp->b_rptr; 22015 /* 22016 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 22017 * 22018 * 1) There is per-socket policy (including cached global 22019 * policy) or a policy on the IP-in-IP tunnel. 22020 * 2) There is no per-socket policy, but it is 22021 * a multicast packet that needs to go out 22022 * on a specific interface. This is the case 22023 * where (ip_wput and ip_wput_multicast) attaches 22024 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 22025 * 22026 * In case (2) we check with global policy to 22027 * see if there is a match and set the ill_index 22028 * appropriately so that we can lookup the ire 22029 * properly in ip_wput_ipsec_out. 22030 */ 22031 22032 /* 22033 * ipsec_out_use_global_policy is set to B_FALSE 22034 * in ipsec_in_to_out(). Refer to that function for 22035 * details. 22036 */ 22037 if ((io->ipsec_out_latch == NULL) && 22038 (io->ipsec_out_use_global_policy)) { 22039 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 22040 ire, connp, unspec_src, zoneid)); 22041 } 22042 if (!io->ipsec_out_secure) { 22043 /* 22044 * If this is not a secure packet, drop 22045 * the IPSEC_OUT mp and treat it as a clear 22046 * packet. This happens when we are sending 22047 * a ICMP reply back to a clear packet. See 22048 * ipsec_in_to_out() for details. 22049 */ 22050 mp = first_mp->b_cont; 22051 freeb(first_mp); 22052 } 22053 return (mp); 22054 } 22055 /* 22056 * See whether we need to attach a global policy here. We 22057 * don't depend on the conn (as it could be null) for deciding 22058 * what policy this datagram should go through because it 22059 * should have happened in ip_wput if there was some 22060 * policy. This normally happens for connections which are not 22061 * fully bound preventing us from caching policies in 22062 * ip_bind. Packets coming from the TCP listener/global queue 22063 * - which are non-hard_bound - could also be affected by 22064 * applying policy here. 22065 * 22066 * If this packet is coming from tcp global queue or listener, 22067 * we will be applying policy here. This may not be *right* 22068 * if these packets are coming from the detached connection as 22069 * it could have gone in clear before. This happens only if a 22070 * TCP connection started when there is no policy and somebody 22071 * added policy before it became detached. Thus packets of the 22072 * detached connection could go out secure and the other end 22073 * would drop it because it will be expecting in clear. The 22074 * converse is not true i.e if somebody starts a TCP 22075 * connection and deletes the policy, all the packets will 22076 * still go out with the policy that existed before deleting 22077 * because ip_unbind sends up policy information which is used 22078 * by TCP on subsequent ip_wputs. The right solution is to fix 22079 * TCP to attach a dummy IPSEC_OUT and set 22080 * ipsec_out_use_global_policy to B_FALSE. As this might 22081 * affect performance for normal cases, we are not doing it. 22082 * Thus, set policy before starting any TCP connections. 22083 * 22084 * NOTE - We might apply policy even for a hard bound connection 22085 * - for which we cached policy in ip_bind - if somebody added 22086 * global policy after we inherited the policy in ip_bind. 22087 * This means that the packets that were going out in clear 22088 * previously would start going secure and hence get dropped 22089 * on the other side. To fix this, TCP attaches a dummy 22090 * ipsec_out and make sure that we don't apply global policy. 22091 */ 22092 if (ipha != NULL) 22093 policy_present = ipss->ipsec_outbound_v4_policy_present; 22094 else 22095 policy_present = ipss->ipsec_outbound_v6_policy_present; 22096 if (!policy_present) 22097 return (mp); 22098 22099 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 22100 zoneid)); 22101 } 22102 22103 /* 22104 * This function does the ire_refrele of the ire passed in as the 22105 * argument. As this function looks up more ires i.e broadcast ires, 22106 * it needs to REFRELE them. Currently, for simplicity we don't 22107 * differentiate the one passed in and looked up here. We always 22108 * REFRELE. 22109 * IPQoS Notes: 22110 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22111 * IPsec packets are done in ipsec_out_process. 22112 */ 22113 void 22114 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22115 zoneid_t zoneid) 22116 { 22117 ipha_t *ipha; 22118 #define rptr ((uchar_t *)ipha) 22119 queue_t *stq; 22120 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22121 uint32_t v_hlen_tos_len; 22122 uint32_t ttl_protocol; 22123 ipaddr_t src; 22124 ipaddr_t dst; 22125 uint32_t cksum; 22126 ipaddr_t orig_src; 22127 ire_t *ire1; 22128 mblk_t *next_mp; 22129 uint_t hlen; 22130 uint16_t *up; 22131 uint32_t max_frag = ire->ire_max_frag; 22132 ill_t *ill = ire_to_ill(ire); 22133 int clusterwide; 22134 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22135 int ipsec_len; 22136 mblk_t *first_mp; 22137 ipsec_out_t *io; 22138 boolean_t conn_dontroute; /* conn value for multicast */ 22139 boolean_t conn_multicast_loop; /* conn value for multicast */ 22140 boolean_t multicast_forward; /* Should we forward ? */ 22141 boolean_t unspec_src; 22142 ill_t *conn_outgoing_ill = NULL; 22143 ill_t *ire_ill; 22144 ill_t *ire1_ill; 22145 ill_t *out_ill; 22146 uint32_t ill_index = 0; 22147 boolean_t multirt_send = B_FALSE; 22148 int err; 22149 ipxmit_state_t pktxmit_state; 22150 ip_stack_t *ipst = ire->ire_ipst; 22151 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22152 22153 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22154 "ip_wput_ire_start: q %p", q); 22155 22156 multicast_forward = B_FALSE; 22157 unspec_src = (connp != NULL && connp->conn_unspec_src); 22158 22159 if (ire->ire_flags & RTF_MULTIRT) { 22160 /* 22161 * Multirouting case. The bucket where ire is stored 22162 * probably holds other RTF_MULTIRT flagged ire 22163 * to the destination. In this call to ip_wput_ire, 22164 * we attempt to send the packet through all 22165 * those ires. Thus, we first ensure that ire is the 22166 * first RTF_MULTIRT ire in the bucket, 22167 * before walking the ire list. 22168 */ 22169 ire_t *first_ire; 22170 irb_t *irb = ire->ire_bucket; 22171 ASSERT(irb != NULL); 22172 22173 /* Make sure we do not omit any multiroute ire. */ 22174 IRB_REFHOLD(irb); 22175 for (first_ire = irb->irb_ire; 22176 first_ire != NULL; 22177 first_ire = first_ire->ire_next) { 22178 if ((first_ire->ire_flags & RTF_MULTIRT) && 22179 (first_ire->ire_addr == ire->ire_addr) && 22180 !(first_ire->ire_marks & 22181 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 22182 break; 22183 } 22184 22185 if ((first_ire != NULL) && (first_ire != ire)) { 22186 IRE_REFHOLD(first_ire); 22187 ire_refrele(ire); 22188 ire = first_ire; 22189 ill = ire_to_ill(ire); 22190 } 22191 IRB_REFRELE(irb); 22192 } 22193 22194 /* 22195 * conn_outgoing_ill variable is used only in the broadcast loop. 22196 * for performance we don't grab the mutexs in the fastpath 22197 */ 22198 if (ire->ire_type == IRE_BROADCAST && connp != NULL && 22199 connp->conn_outgoing_ill != NULL) { 22200 conn_outgoing_ill = conn_get_held_ill(connp, 22201 &connp->conn_outgoing_ill, &err); 22202 if (err == ILL_LOOKUP_FAILED) { 22203 ire_refrele(ire); 22204 freemsg(mp); 22205 return; 22206 } 22207 } 22208 22209 if (mp->b_datap->db_type != M_CTL) { 22210 ipha = (ipha_t *)mp->b_rptr; 22211 } else { 22212 io = (ipsec_out_t *)mp->b_rptr; 22213 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22214 ASSERT(zoneid == io->ipsec_out_zoneid); 22215 ASSERT(zoneid != ALL_ZONES); 22216 ipha = (ipha_t *)mp->b_cont->b_rptr; 22217 dst = ipha->ipha_dst; 22218 /* 22219 * For the multicast case, ipsec_out carries conn_dontroute and 22220 * conn_multicast_loop as conn may not be available here. We 22221 * need this for multicast loopback and forwarding which is done 22222 * later in the code. 22223 */ 22224 if (CLASSD(dst)) { 22225 conn_dontroute = io->ipsec_out_dontroute; 22226 conn_multicast_loop = io->ipsec_out_multicast_loop; 22227 /* 22228 * If conn_dontroute is not set or conn_multicast_loop 22229 * is set, we need to do forwarding/loopback. For 22230 * datagrams from ip_wput_multicast, conn_dontroute is 22231 * set to B_TRUE and conn_multicast_loop is set to 22232 * B_FALSE so that we neither do forwarding nor 22233 * loopback. 22234 */ 22235 if (!conn_dontroute || conn_multicast_loop) 22236 multicast_forward = B_TRUE; 22237 } 22238 } 22239 22240 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22241 ire->ire_zoneid != ALL_ZONES) { 22242 /* 22243 * When a zone sends a packet to another zone, we try to deliver 22244 * the packet under the same conditions as if the destination 22245 * was a real node on the network. To do so, we look for a 22246 * matching route in the forwarding table. 22247 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22248 * ip_newroute() does. 22249 * Note that IRE_LOCAL are special, since they are used 22250 * when the zoneid doesn't match in some cases. This means that 22251 * we need to handle ipha_src differently since ire_src_addr 22252 * belongs to the receiving zone instead of the sending zone. 22253 * When ip_restrict_interzone_loopback is set, then 22254 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22255 * for loopback between zones when the logical "Ethernet" would 22256 * have looped them back. 22257 */ 22258 ire_t *src_ire; 22259 22260 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22261 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22262 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22263 if (src_ire != NULL && 22264 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22265 (!ipst->ips_ip_restrict_interzone_loopback || 22266 ire_local_same_lan(ire, src_ire))) { 22267 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22268 ipha->ipha_src = src_ire->ire_src_addr; 22269 ire_refrele(src_ire); 22270 } else { 22271 ire_refrele(ire); 22272 if (conn_outgoing_ill != NULL) 22273 ill_refrele(conn_outgoing_ill); 22274 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22275 if (src_ire != NULL) { 22276 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22277 ire_refrele(src_ire); 22278 freemsg(mp); 22279 return; 22280 } 22281 ire_refrele(src_ire); 22282 } 22283 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22284 /* Failed */ 22285 freemsg(mp); 22286 return; 22287 } 22288 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22289 ipst); 22290 return; 22291 } 22292 } 22293 22294 if (mp->b_datap->db_type == M_CTL || 22295 ipss->ipsec_outbound_v4_policy_present) { 22296 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22297 unspec_src, zoneid); 22298 if (mp == NULL) { 22299 ire_refrele(ire); 22300 if (conn_outgoing_ill != NULL) 22301 ill_refrele(conn_outgoing_ill); 22302 return; 22303 } 22304 /* 22305 * Trusted Extensions supports all-zones interfaces, so 22306 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22307 * the global zone. 22308 */ 22309 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22310 io = (ipsec_out_t *)mp->b_rptr; 22311 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22312 zoneid = io->ipsec_out_zoneid; 22313 } 22314 } 22315 22316 first_mp = mp; 22317 ipsec_len = 0; 22318 22319 if (first_mp->b_datap->db_type == M_CTL) { 22320 io = (ipsec_out_t *)first_mp->b_rptr; 22321 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22322 mp = first_mp->b_cont; 22323 ipsec_len = ipsec_out_extra_length(first_mp); 22324 ASSERT(ipsec_len >= 0); 22325 /* We already picked up the zoneid from the M_CTL above */ 22326 ASSERT(zoneid == io->ipsec_out_zoneid); 22327 ASSERT(zoneid != ALL_ZONES); 22328 22329 /* 22330 * Drop M_CTL here if IPsec processing is not needed. 22331 * (Non-IPsec use of M_CTL extracted any information it 22332 * needed above). 22333 */ 22334 if (ipsec_len == 0) { 22335 freeb(first_mp); 22336 first_mp = mp; 22337 } 22338 } 22339 22340 /* 22341 * Fast path for ip_wput_ire 22342 */ 22343 22344 ipha = (ipha_t *)mp->b_rptr; 22345 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22346 dst = ipha->ipha_dst; 22347 22348 /* 22349 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22350 * if the socket is a SOCK_RAW type. The transport checksum should 22351 * be provided in the pre-built packet, so we don't need to compute it. 22352 * Also, other application set flags, like DF, should not be altered. 22353 * Other transport MUST pass down zero. 22354 */ 22355 ip_hdr_included = ipha->ipha_ident; 22356 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22357 22358 if (CLASSD(dst)) { 22359 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22360 ntohl(dst), 22361 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22362 ntohl(ire->ire_addr))); 22363 } 22364 22365 /* Macros to extract header fields from data already in registers */ 22366 #ifdef _BIG_ENDIAN 22367 #define V_HLEN (v_hlen_tos_len >> 24) 22368 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22369 #define PROTO (ttl_protocol & 0xFF) 22370 #else 22371 #define V_HLEN (v_hlen_tos_len & 0xFF) 22372 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22373 #define PROTO (ttl_protocol >> 8) 22374 #endif 22375 22376 orig_src = src = ipha->ipha_src; 22377 /* (The loop back to "another" is explained down below.) */ 22378 another:; 22379 /* 22380 * Assign an ident value for this packet. We assign idents on 22381 * a per destination basis out of the IRE. There could be 22382 * other threads targeting the same destination, so we have to 22383 * arrange for a atomic increment. Note that we use a 32-bit 22384 * atomic add because it has better performance than its 22385 * 16-bit sibling. 22386 * 22387 * If running in cluster mode and if the source address 22388 * belongs to a replicated service then vector through 22389 * cl_inet_ipident vector to allocate ip identifier 22390 * NOTE: This is a contract private interface with the 22391 * clustering group. 22392 */ 22393 clusterwide = 0; 22394 if (cl_inet_ipident) { 22395 ASSERT(cl_inet_isclusterwide); 22396 netstackid_t stack_id = ipst->ips_netstack->netstack_stackid; 22397 22398 if ((*cl_inet_isclusterwide)(stack_id, IPPROTO_IP, 22399 AF_INET, (uint8_t *)(uintptr_t)src, NULL)) { 22400 ipha->ipha_ident = (*cl_inet_ipident)(stack_id, 22401 IPPROTO_IP, AF_INET, (uint8_t *)(uintptr_t)src, 22402 (uint8_t *)(uintptr_t)dst, NULL); 22403 clusterwide = 1; 22404 } 22405 } 22406 if (!clusterwide) { 22407 ipha->ipha_ident = 22408 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22409 } 22410 22411 #ifndef _BIG_ENDIAN 22412 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22413 #endif 22414 22415 /* 22416 * Set source address unless sent on an ill or conn_unspec_src is set. 22417 * This is needed to obey conn_unspec_src when packets go through 22418 * ip_newroute + arp. 22419 * Assumes ip_newroute{,_multi} sets the source address as well. 22420 */ 22421 if (src == INADDR_ANY && !unspec_src) { 22422 /* 22423 * Assign the appropriate source address from the IRE if none 22424 * was specified. 22425 */ 22426 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22427 22428 src = ire->ire_src_addr; 22429 if (connp == NULL) { 22430 ip1dbg(("ip_wput_ire: no connp and no src " 22431 "address for dst 0x%x, using src 0x%x\n", 22432 ntohl(dst), 22433 ntohl(src))); 22434 } 22435 ipha->ipha_src = src; 22436 } 22437 stq = ire->ire_stq; 22438 22439 /* 22440 * We only allow ire chains for broadcasts since there will 22441 * be multiple IRE_CACHE entries for the same multicast 22442 * address (one per ipif). 22443 */ 22444 next_mp = NULL; 22445 22446 /* broadcast packet */ 22447 if (ire->ire_type == IRE_BROADCAST) 22448 goto broadcast; 22449 22450 /* loopback ? */ 22451 if (stq == NULL) 22452 goto nullstq; 22453 22454 /* The ill_index for outbound ILL */ 22455 ill_index = Q_TO_INDEX(stq); 22456 22457 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22458 ttl_protocol = ((uint16_t *)ipha)[4]; 22459 22460 /* pseudo checksum (do it in parts for IP header checksum) */ 22461 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22462 22463 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22464 queue_t *dev_q = stq->q_next; 22465 22466 /* 22467 * For DIRECT_CAPABLE, we do flow control at 22468 * the time of sending the packet. See 22469 * ILL_SEND_TX(). 22470 */ 22471 if (!ILL_DIRECT_CAPABLE((ill_t *)stq->q_ptr) && 22472 (DEV_Q_FLOW_BLOCKED(dev_q))) 22473 goto blocked; 22474 22475 if ((PROTO == IPPROTO_UDP) && 22476 (ip_hdr_included != IP_HDR_INCLUDED)) { 22477 hlen = (V_HLEN & 0xF) << 2; 22478 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22479 if (*up != 0) { 22480 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22481 hlen, LENGTH, max_frag, ipsec_len, cksum); 22482 /* Software checksum? */ 22483 if (DB_CKSUMFLAGS(mp) == 0) { 22484 IP_STAT(ipst, ip_out_sw_cksum); 22485 IP_STAT_UPDATE(ipst, 22486 ip_udp_out_sw_cksum_bytes, 22487 LENGTH - hlen); 22488 } 22489 } 22490 } 22491 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22492 hlen = (V_HLEN & 0xF) << 2; 22493 if (PROTO == IPPROTO_TCP) { 22494 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22495 /* 22496 * The packet header is processed once and for all, even 22497 * in the multirouting case. We disable hardware 22498 * checksum if the packet is multirouted, as it will be 22499 * replicated via several interfaces, and not all of 22500 * them may have this capability. 22501 */ 22502 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22503 LENGTH, max_frag, ipsec_len, cksum); 22504 /* Software checksum? */ 22505 if (DB_CKSUMFLAGS(mp) == 0) { 22506 IP_STAT(ipst, ip_out_sw_cksum); 22507 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22508 LENGTH - hlen); 22509 } 22510 } else { 22511 sctp_hdr_t *sctph; 22512 22513 ASSERT(PROTO == IPPROTO_SCTP); 22514 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22515 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22516 /* 22517 * Zero out the checksum field to ensure proper 22518 * checksum calculation. 22519 */ 22520 sctph->sh_chksum = 0; 22521 #ifdef DEBUG 22522 if (!skip_sctp_cksum) 22523 #endif 22524 sctph->sh_chksum = sctp_cksum(mp, hlen); 22525 } 22526 } 22527 22528 /* 22529 * If this is a multicast packet and originated from ip_wput 22530 * we need to do loopback and forwarding checks. If it comes 22531 * from ip_wput_multicast, we SHOULD not do this. 22532 */ 22533 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22534 22535 /* checksum */ 22536 cksum += ttl_protocol; 22537 22538 /* fragment the packet */ 22539 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22540 goto fragmentit; 22541 /* 22542 * Don't use frag_flag if packet is pre-built or source 22543 * routed or if multicast (since multicast packets do 22544 * not solicit ICMP "packet too big" messages). 22545 */ 22546 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22547 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22548 !ip_source_route_included(ipha)) && 22549 !CLASSD(ipha->ipha_dst)) 22550 ipha->ipha_fragment_offset_and_flags |= 22551 htons(ire->ire_frag_flag); 22552 22553 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22554 /* calculate IP header checksum */ 22555 cksum += ipha->ipha_ident; 22556 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22557 cksum += ipha->ipha_fragment_offset_and_flags; 22558 22559 /* IP options present */ 22560 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22561 if (hlen) 22562 goto checksumoptions; 22563 22564 /* calculate hdr checksum */ 22565 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22566 cksum = ~(cksum + (cksum >> 16)); 22567 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22568 } 22569 if (ipsec_len != 0) { 22570 /* 22571 * We will do the rest of the processing after 22572 * we come back from IPsec in ip_wput_ipsec_out(). 22573 */ 22574 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22575 22576 io = (ipsec_out_t *)first_mp->b_rptr; 22577 io->ipsec_out_ill_index = 22578 ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 22579 ipsec_out_process(q, first_mp, ire, 0); 22580 ire_refrele(ire); 22581 if (conn_outgoing_ill != NULL) 22582 ill_refrele(conn_outgoing_ill); 22583 return; 22584 } 22585 22586 /* 22587 * In most cases, the emission loop below is entered only 22588 * once. Only in the case where the ire holds the 22589 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22590 * flagged ires in the bucket, and send the packet 22591 * through all crossed RTF_MULTIRT routes. 22592 */ 22593 if (ire->ire_flags & RTF_MULTIRT) { 22594 multirt_send = B_TRUE; 22595 } 22596 do { 22597 if (multirt_send) { 22598 irb_t *irb; 22599 /* 22600 * We are in a multiple send case, need to get 22601 * the next ire and make a duplicate of the packet. 22602 * ire1 holds here the next ire to process in the 22603 * bucket. If multirouting is expected, 22604 * any non-RTF_MULTIRT ire that has the 22605 * right destination address is ignored. 22606 */ 22607 irb = ire->ire_bucket; 22608 ASSERT(irb != NULL); 22609 22610 IRB_REFHOLD(irb); 22611 for (ire1 = ire->ire_next; 22612 ire1 != NULL; 22613 ire1 = ire1->ire_next) { 22614 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22615 continue; 22616 if (ire1->ire_addr != ire->ire_addr) 22617 continue; 22618 if (ire1->ire_marks & 22619 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 22620 continue; 22621 22622 /* Got one */ 22623 IRE_REFHOLD(ire1); 22624 break; 22625 } 22626 IRB_REFRELE(irb); 22627 22628 if (ire1 != NULL) { 22629 next_mp = copyb(mp); 22630 if ((next_mp == NULL) || 22631 ((mp->b_cont != NULL) && 22632 ((next_mp->b_cont = 22633 dupmsg(mp->b_cont)) == NULL))) { 22634 freemsg(next_mp); 22635 next_mp = NULL; 22636 ire_refrele(ire1); 22637 ire1 = NULL; 22638 } 22639 } 22640 22641 /* Last multiroute ire; don't loop anymore. */ 22642 if (ire1 == NULL) { 22643 multirt_send = B_FALSE; 22644 } 22645 } 22646 22647 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22648 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22649 mblk_t *, mp); 22650 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22651 ipst->ips_ipv4firewall_physical_out, 22652 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22653 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22654 22655 if (mp == NULL) 22656 goto release_ire_and_ill; 22657 22658 if (ipst->ips_ipobs_enabled) { 22659 zoneid_t szone; 22660 22661 /* 22662 * On the outbound path the destination zone will be 22663 * unknown as we're sending this packet out on the 22664 * wire. 22665 */ 22666 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 22667 ALL_ZONES); 22668 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 22669 ire->ire_ipif->ipif_ill, IPV4_VERSION, 0, ipst); 22670 } 22671 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22672 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22673 22674 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE, connp); 22675 22676 if ((pktxmit_state == SEND_FAILED) || 22677 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22678 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22679 "- packet dropped\n")); 22680 release_ire_and_ill: 22681 ire_refrele(ire); 22682 if (next_mp != NULL) { 22683 freemsg(next_mp); 22684 ire_refrele(ire1); 22685 } 22686 if (conn_outgoing_ill != NULL) 22687 ill_refrele(conn_outgoing_ill); 22688 return; 22689 } 22690 22691 if (CLASSD(dst)) { 22692 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22693 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22694 LENGTH); 22695 } 22696 22697 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22698 "ip_wput_ire_end: q %p (%S)", 22699 q, "last copy out"); 22700 IRE_REFRELE(ire); 22701 22702 if (multirt_send) { 22703 ASSERT(ire1); 22704 /* 22705 * Proceed with the next RTF_MULTIRT ire, 22706 * Also set up the send-to queue accordingly. 22707 */ 22708 ire = ire1; 22709 ire1 = NULL; 22710 stq = ire->ire_stq; 22711 mp = next_mp; 22712 next_mp = NULL; 22713 ipha = (ipha_t *)mp->b_rptr; 22714 ill_index = Q_TO_INDEX(stq); 22715 ill = (ill_t *)stq->q_ptr; 22716 } 22717 } while (multirt_send); 22718 if (conn_outgoing_ill != NULL) 22719 ill_refrele(conn_outgoing_ill); 22720 return; 22721 22722 /* 22723 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22724 */ 22725 broadcast: 22726 { 22727 /* 22728 * To avoid broadcast storms, we usually set the TTL to 1 for 22729 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22730 * can be overridden stack-wide through the ip_broadcast_ttl 22731 * ndd tunable, or on a per-connection basis through the 22732 * IP_BROADCAST_TTL socket option. 22733 * 22734 * In the event that we are replying to incoming ICMP packets, 22735 * connp could be NULL. 22736 */ 22737 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22738 if (connp != NULL) { 22739 if (connp->conn_dontroute) 22740 ipha->ipha_ttl = 1; 22741 else if (connp->conn_broadcast_ttl != 0) 22742 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22743 } 22744 22745 /* 22746 * Note that we are not doing a IRB_REFHOLD here. 22747 * Actually we don't care if the list changes i.e 22748 * if somebody deletes an IRE from the list while 22749 * we drop the lock, the next time we come around 22750 * ire_next will be NULL and hence we won't send 22751 * out multiple copies which is fine. 22752 */ 22753 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22754 ire1 = ire->ire_next; 22755 if (conn_outgoing_ill != NULL) { 22756 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22757 ASSERT(ire1 == ire->ire_next); 22758 if (ire1 != NULL && ire1->ire_addr == dst) { 22759 ire_refrele(ire); 22760 ire = ire1; 22761 IRE_REFHOLD(ire); 22762 ire1 = ire->ire_next; 22763 continue; 22764 } 22765 rw_exit(&ire->ire_bucket->irb_lock); 22766 /* Did not find a matching ill */ 22767 ip1dbg(("ip_wput_ire: broadcast with no " 22768 "matching IP_BOUND_IF ill %s dst %x\n", 22769 conn_outgoing_ill->ill_name, dst)); 22770 freemsg(first_mp); 22771 if (ire != NULL) 22772 ire_refrele(ire); 22773 ill_refrele(conn_outgoing_ill); 22774 return; 22775 } 22776 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22777 /* 22778 * If the next IRE has the same address and is not one 22779 * of the two copies that we need to send, try to see 22780 * whether this copy should be sent at all. This 22781 * assumes that we insert loopbacks first and then 22782 * non-loopbacks. This is acheived by inserting the 22783 * loopback always before non-loopback. 22784 * This is used to send a single copy of a broadcast 22785 * packet out all physical interfaces that have an 22786 * matching IRE_BROADCAST while also looping 22787 * back one copy (to ip_wput_local) for each 22788 * matching physical interface. However, we avoid 22789 * sending packets out different logical that match by 22790 * having ipif_up/ipif_down supress duplicate 22791 * IRE_BROADCASTS. 22792 * 22793 * This feature is currently used to get broadcasts 22794 * sent to multiple interfaces, when the broadcast 22795 * address being used applies to multiple interfaces. 22796 * For example, a whole net broadcast will be 22797 * replicated on every connected subnet of 22798 * the target net. 22799 * 22800 * Each zone has its own set of IRE_BROADCASTs, so that 22801 * we're able to distribute inbound packets to multiple 22802 * zones who share a broadcast address. We avoid looping 22803 * back outbound packets in different zones but on the 22804 * same ill, as the application would see duplicates. 22805 * 22806 * This logic assumes that ire_add_v4() groups the 22807 * IRE_BROADCAST entries so that those with the same 22808 * ire_addr are kept together. 22809 */ 22810 ire_ill = ire->ire_ipif->ipif_ill; 22811 if (ire->ire_stq != NULL || ire1->ire_stq == NULL) { 22812 while (ire1 != NULL && ire1->ire_addr == dst) { 22813 ire1_ill = ire1->ire_ipif->ipif_ill; 22814 if (ire1_ill != ire_ill) 22815 break; 22816 ire1 = ire1->ire_next; 22817 } 22818 } 22819 } 22820 ASSERT(multirt_send == B_FALSE); 22821 if (ire1 != NULL && ire1->ire_addr == dst) { 22822 if ((ire->ire_flags & RTF_MULTIRT) && 22823 (ire1->ire_flags & RTF_MULTIRT)) { 22824 /* 22825 * We are in the multirouting case. 22826 * The message must be sent at least 22827 * on both ires. These ires have been 22828 * inserted AFTER the standard ones 22829 * in ip_rt_add(). There are thus no 22830 * other ire entries for the destination 22831 * address in the rest of the bucket 22832 * that do not have the RTF_MULTIRT 22833 * flag. We don't process a copy 22834 * of the message here. This will be 22835 * done in the final sending loop. 22836 */ 22837 multirt_send = B_TRUE; 22838 } else { 22839 next_mp = ip_copymsg(first_mp); 22840 if (next_mp != NULL) 22841 IRE_REFHOLD(ire1); 22842 } 22843 } 22844 rw_exit(&ire->ire_bucket->irb_lock); 22845 } 22846 22847 if (stq) { 22848 /* 22849 * A non-NULL send-to queue means this packet is going 22850 * out of this machine. 22851 */ 22852 out_ill = (ill_t *)stq->q_ptr; 22853 22854 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22855 ttl_protocol = ((uint16_t *)ipha)[4]; 22856 /* 22857 * We accumulate the pseudo header checksum in cksum. 22858 * This is pretty hairy code, so watch close. One 22859 * thing to keep in mind is that UDP and TCP have 22860 * stored their respective datagram lengths in their 22861 * checksum fields. This lines things up real nice. 22862 */ 22863 cksum = (dst >> 16) + (dst & 0xFFFF) + 22864 (src >> 16) + (src & 0xFFFF); 22865 /* 22866 * We assume the udp checksum field contains the 22867 * length, so to compute the pseudo header checksum, 22868 * all we need is the protocol number and src/dst. 22869 */ 22870 /* Provide the checksums for UDP and TCP. */ 22871 if ((PROTO == IPPROTO_TCP) && 22872 (ip_hdr_included != IP_HDR_INCLUDED)) { 22873 /* hlen gets the number of uchar_ts in the IP header */ 22874 hlen = (V_HLEN & 0xF) << 2; 22875 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22876 IP_STAT(ipst, ip_out_sw_cksum); 22877 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22878 LENGTH - hlen); 22879 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22880 } else if (PROTO == IPPROTO_SCTP && 22881 (ip_hdr_included != IP_HDR_INCLUDED)) { 22882 sctp_hdr_t *sctph; 22883 22884 hlen = (V_HLEN & 0xF) << 2; 22885 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22886 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22887 sctph->sh_chksum = 0; 22888 #ifdef DEBUG 22889 if (!skip_sctp_cksum) 22890 #endif 22891 sctph->sh_chksum = sctp_cksum(mp, hlen); 22892 } else { 22893 queue_t *dev_q = stq->q_next; 22894 22895 if (!ILL_DIRECT_CAPABLE((ill_t *)stq->q_ptr) && 22896 (DEV_Q_FLOW_BLOCKED(dev_q))) { 22897 blocked: 22898 ipha->ipha_ident = ip_hdr_included; 22899 /* 22900 * If we don't have a conn to apply 22901 * backpressure, free the message. 22902 * In the ire_send path, we don't know 22903 * the position to requeue the packet. Rather 22904 * than reorder packets, we just drop this 22905 * packet. 22906 */ 22907 if (ipst->ips_ip_output_queue && 22908 connp != NULL && 22909 caller != IRE_SEND) { 22910 if (caller == IP_WSRV) { 22911 idl_tx_list_t *idl_txl; 22912 22913 idl_txl = 22914 &ipst->ips_idl_tx_list[0]; 22915 connp->conn_did_putbq = 1; 22916 (void) putbq(connp->conn_wq, 22917 first_mp); 22918 conn_drain_insert(connp, 22919 idl_txl); 22920 /* 22921 * This is the service thread, 22922 * and the queue is already 22923 * noenabled. The check for 22924 * canput and the putbq is not 22925 * atomic. So we need to check 22926 * again. 22927 */ 22928 if (canput(stq->q_next)) 22929 connp->conn_did_putbq 22930 = 0; 22931 IP_STAT(ipst, ip_conn_flputbq); 22932 } else { 22933 /* 22934 * We are not the service proc. 22935 * ip_wsrv will be scheduled or 22936 * is already running. 22937 */ 22938 22939 (void) putq(connp->conn_wq, 22940 first_mp); 22941 } 22942 } else { 22943 out_ill = (ill_t *)stq->q_ptr; 22944 BUMP_MIB(out_ill->ill_ip_mib, 22945 ipIfStatsOutDiscards); 22946 freemsg(first_mp); 22947 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22948 "ip_wput_ire_end: q %p (%S)", 22949 q, "discard"); 22950 } 22951 ire_refrele(ire); 22952 if (next_mp) { 22953 ire_refrele(ire1); 22954 freemsg(next_mp); 22955 } 22956 if (conn_outgoing_ill != NULL) 22957 ill_refrele(conn_outgoing_ill); 22958 return; 22959 } 22960 if ((PROTO == IPPROTO_UDP) && 22961 (ip_hdr_included != IP_HDR_INCLUDED)) { 22962 /* 22963 * hlen gets the number of uchar_ts in the 22964 * IP header 22965 */ 22966 hlen = (V_HLEN & 0xF) << 2; 22967 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22968 max_frag = ire->ire_max_frag; 22969 if (*up != 0) { 22970 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22971 up, PROTO, hlen, LENGTH, max_frag, 22972 ipsec_len, cksum); 22973 /* Software checksum? */ 22974 if (DB_CKSUMFLAGS(mp) == 0) { 22975 IP_STAT(ipst, ip_out_sw_cksum); 22976 IP_STAT_UPDATE(ipst, 22977 ip_udp_out_sw_cksum_bytes, 22978 LENGTH - hlen); 22979 } 22980 } 22981 } 22982 } 22983 /* 22984 * Need to do this even when fragmenting. The local 22985 * loopback can be done without computing checksums 22986 * but forwarding out other interface must be done 22987 * after the IP checksum (and ULP checksums) have been 22988 * computed. 22989 * 22990 * NOTE : multicast_forward is set only if this packet 22991 * originated from ip_wput. For packets originating from 22992 * ip_wput_multicast, it is not set. 22993 */ 22994 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22995 multi_loopback: 22996 ip2dbg(("ip_wput: multicast, loop %d\n", 22997 conn_multicast_loop)); 22998 22999 /* Forget header checksum offload */ 23000 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23001 23002 /* 23003 * Local loopback of multicasts? Check the 23004 * ill. 23005 * 23006 * Note that the loopback function will not come 23007 * in through ip_rput - it will only do the 23008 * client fanout thus we need to do an mforward 23009 * as well. The is different from the BSD 23010 * logic. 23011 */ 23012 if (ill != NULL) { 23013 if (ilm_lookup_ill(ill, ipha->ipha_dst, 23014 ALL_ZONES) != NULL) { 23015 /* 23016 * Pass along the virtual output q. 23017 * ip_wput_local() will distribute the 23018 * packet to all the matching zones, 23019 * except the sending zone when 23020 * IP_MULTICAST_LOOP is false. 23021 */ 23022 ip_multicast_loopback(q, ill, first_mp, 23023 conn_multicast_loop ? 0 : 23024 IP_FF_NO_MCAST_LOOP, zoneid); 23025 } 23026 } 23027 if (ipha->ipha_ttl == 0) { 23028 /* 23029 * 0 => only to this host i.e. we are 23030 * done. We are also done if this was the 23031 * loopback interface since it is sufficient 23032 * to loopback one copy of a multicast packet. 23033 */ 23034 freemsg(first_mp); 23035 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23036 "ip_wput_ire_end: q %p (%S)", 23037 q, "loopback"); 23038 ire_refrele(ire); 23039 if (conn_outgoing_ill != NULL) 23040 ill_refrele(conn_outgoing_ill); 23041 return; 23042 } 23043 /* 23044 * ILLF_MULTICAST is checked in ip_newroute 23045 * i.e. we don't need to check it here since 23046 * all IRE_CACHEs come from ip_newroute. 23047 * For multicast traffic, SO_DONTROUTE is interpreted 23048 * to mean only send the packet out the interface 23049 * (optionally specified with IP_MULTICAST_IF) 23050 * and do not forward it out additional interfaces. 23051 * RSVP and the rsvp daemon is an example of a 23052 * protocol and user level process that 23053 * handles it's own routing. Hence, it uses the 23054 * SO_DONTROUTE option to accomplish this. 23055 */ 23056 23057 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23058 ill != NULL) { 23059 /* Unconditionally redo the checksum */ 23060 ipha->ipha_hdr_checksum = 0; 23061 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23062 23063 /* 23064 * If this needs to go out secure, we need 23065 * to wait till we finish the IPsec 23066 * processing. 23067 */ 23068 if (ipsec_len == 0 && 23069 ip_mforward(ill, ipha, mp)) { 23070 freemsg(first_mp); 23071 ip1dbg(("ip_wput: mforward failed\n")); 23072 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23073 "ip_wput_ire_end: q %p (%S)", 23074 q, "mforward failed"); 23075 ire_refrele(ire); 23076 if (conn_outgoing_ill != NULL) 23077 ill_refrele(conn_outgoing_ill); 23078 return; 23079 } 23080 } 23081 } 23082 max_frag = ire->ire_max_frag; 23083 cksum += ttl_protocol; 23084 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23085 /* No fragmentation required for this one. */ 23086 /* 23087 * Don't use frag_flag if packet is pre-built or source 23088 * routed or if multicast (since multicast packets do 23089 * not solicit ICMP "packet too big" messages). 23090 */ 23091 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23092 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23093 !ip_source_route_included(ipha)) && 23094 !CLASSD(ipha->ipha_dst)) 23095 ipha->ipha_fragment_offset_and_flags |= 23096 htons(ire->ire_frag_flag); 23097 23098 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23099 /* Complete the IP header checksum. */ 23100 cksum += ipha->ipha_ident; 23101 cksum += (v_hlen_tos_len >> 16)+ 23102 (v_hlen_tos_len & 0xFFFF); 23103 cksum += ipha->ipha_fragment_offset_and_flags; 23104 hlen = (V_HLEN & 0xF) - 23105 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23106 if (hlen) { 23107 checksumoptions: 23108 /* 23109 * Account for the IP Options in the IP 23110 * header checksum. 23111 */ 23112 up = (uint16_t *)(rptr+ 23113 IP_SIMPLE_HDR_LENGTH); 23114 do { 23115 cksum += up[0]; 23116 cksum += up[1]; 23117 up += 2; 23118 } while (--hlen); 23119 } 23120 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23121 cksum = ~(cksum + (cksum >> 16)); 23122 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23123 } 23124 if (ipsec_len != 0) { 23125 ipsec_out_process(q, first_mp, ire, ill_index); 23126 if (!next_mp) { 23127 ire_refrele(ire); 23128 if (conn_outgoing_ill != NULL) 23129 ill_refrele(conn_outgoing_ill); 23130 return; 23131 } 23132 goto next; 23133 } 23134 23135 /* 23136 * multirt_send has already been handled 23137 * for broadcast, but not yet for multicast 23138 * or IP options. 23139 */ 23140 if (next_mp == NULL) { 23141 if (ire->ire_flags & RTF_MULTIRT) { 23142 multirt_send = B_TRUE; 23143 } 23144 } 23145 23146 /* 23147 * In most cases, the emission loop below is 23148 * entered only once. Only in the case where 23149 * the ire holds the RTF_MULTIRT flag, do we loop 23150 * to process all RTF_MULTIRT ires in the bucket, 23151 * and send the packet through all crossed 23152 * RTF_MULTIRT routes. 23153 */ 23154 do { 23155 if (multirt_send) { 23156 irb_t *irb; 23157 23158 irb = ire->ire_bucket; 23159 ASSERT(irb != NULL); 23160 /* 23161 * We are in a multiple send case, 23162 * need to get the next IRE and make 23163 * a duplicate of the packet. 23164 */ 23165 IRB_REFHOLD(irb); 23166 for (ire1 = ire->ire_next; 23167 ire1 != NULL; 23168 ire1 = ire1->ire_next) { 23169 if (!(ire1->ire_flags & 23170 RTF_MULTIRT)) 23171 continue; 23172 23173 if (ire1->ire_addr != 23174 ire->ire_addr) 23175 continue; 23176 23177 if (ire1->ire_marks & 23178 (IRE_MARK_CONDEMNED | 23179 IRE_MARK_TESTHIDDEN)) 23180 continue; 23181 23182 /* Got one */ 23183 IRE_REFHOLD(ire1); 23184 break; 23185 } 23186 IRB_REFRELE(irb); 23187 23188 if (ire1 != NULL) { 23189 next_mp = copyb(mp); 23190 if ((next_mp == NULL) || 23191 ((mp->b_cont != NULL) && 23192 ((next_mp->b_cont = 23193 dupmsg(mp->b_cont)) 23194 == NULL))) { 23195 freemsg(next_mp); 23196 next_mp = NULL; 23197 ire_refrele(ire1); 23198 ire1 = NULL; 23199 } 23200 } 23201 23202 /* 23203 * Last multiroute ire; don't loop 23204 * anymore. The emission is over 23205 * and next_mp is NULL. 23206 */ 23207 if (ire1 == NULL) { 23208 multirt_send = B_FALSE; 23209 } 23210 } 23211 23212 out_ill = ire_to_ill(ire); 23213 DTRACE_PROBE4(ip4__physical__out__start, 23214 ill_t *, NULL, 23215 ill_t *, out_ill, 23216 ipha_t *, ipha, mblk_t *, mp); 23217 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23218 ipst->ips_ipv4firewall_physical_out, 23219 NULL, out_ill, ipha, mp, mp, 0, ipst); 23220 DTRACE_PROBE1(ip4__physical__out__end, 23221 mblk_t *, mp); 23222 if (mp == NULL) 23223 goto release_ire_and_ill_2; 23224 23225 ASSERT(ipsec_len == 0); 23226 mp->b_prev = 23227 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23228 DTRACE_PROBE2(ip__xmit__2, 23229 mblk_t *, mp, ire_t *, ire); 23230 pktxmit_state = ip_xmit_v4(mp, ire, 23231 NULL, B_TRUE, connp); 23232 if ((pktxmit_state == SEND_FAILED) || 23233 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23234 release_ire_and_ill_2: 23235 if (next_mp) { 23236 freemsg(next_mp); 23237 ire_refrele(ire1); 23238 } 23239 ire_refrele(ire); 23240 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23241 "ip_wput_ire_end: q %p (%S)", 23242 q, "discard MDATA"); 23243 if (conn_outgoing_ill != NULL) 23244 ill_refrele(conn_outgoing_ill); 23245 return; 23246 } 23247 23248 if (CLASSD(dst)) { 23249 BUMP_MIB(out_ill->ill_ip_mib, 23250 ipIfStatsHCOutMcastPkts); 23251 UPDATE_MIB(out_ill->ill_ip_mib, 23252 ipIfStatsHCOutMcastOctets, 23253 LENGTH); 23254 } else if (ire->ire_type == IRE_BROADCAST) { 23255 BUMP_MIB(out_ill->ill_ip_mib, 23256 ipIfStatsHCOutBcastPkts); 23257 } 23258 23259 if (multirt_send) { 23260 /* 23261 * We are in a multiple send case, 23262 * need to re-enter the sending loop 23263 * using the next ire. 23264 */ 23265 ire_refrele(ire); 23266 ire = ire1; 23267 stq = ire->ire_stq; 23268 mp = next_mp; 23269 next_mp = NULL; 23270 ipha = (ipha_t *)mp->b_rptr; 23271 ill_index = Q_TO_INDEX(stq); 23272 } 23273 } while (multirt_send); 23274 23275 if (!next_mp) { 23276 /* 23277 * Last copy going out (the ultra-common 23278 * case). Note that we intentionally replicate 23279 * the putnext rather than calling it before 23280 * the next_mp check in hopes of a little 23281 * tail-call action out of the compiler. 23282 */ 23283 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23284 "ip_wput_ire_end: q %p (%S)", 23285 q, "last copy out(1)"); 23286 ire_refrele(ire); 23287 if (conn_outgoing_ill != NULL) 23288 ill_refrele(conn_outgoing_ill); 23289 return; 23290 } 23291 /* More copies going out below. */ 23292 } else { 23293 int offset; 23294 fragmentit: 23295 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23296 /* 23297 * If this would generate a icmp_frag_needed message, 23298 * we need to handle it before we do the IPsec 23299 * processing. Otherwise, we need to strip the IPsec 23300 * headers before we send up the message to the ULPs 23301 * which becomes messy and difficult. 23302 */ 23303 if (ipsec_len != 0) { 23304 if ((max_frag < (unsigned int)(LENGTH + 23305 ipsec_len)) && (offset & IPH_DF)) { 23306 out_ill = (ill_t *)stq->q_ptr; 23307 BUMP_MIB(out_ill->ill_ip_mib, 23308 ipIfStatsOutFragFails); 23309 BUMP_MIB(out_ill->ill_ip_mib, 23310 ipIfStatsOutFragReqds); 23311 ipha->ipha_hdr_checksum = 0; 23312 ipha->ipha_hdr_checksum = 23313 (uint16_t)ip_csum_hdr(ipha); 23314 icmp_frag_needed(ire->ire_stq, first_mp, 23315 max_frag, zoneid, ipst); 23316 if (!next_mp) { 23317 ire_refrele(ire); 23318 if (conn_outgoing_ill != NULL) { 23319 ill_refrele( 23320 conn_outgoing_ill); 23321 } 23322 return; 23323 } 23324 } else { 23325 /* 23326 * This won't cause a icmp_frag_needed 23327 * message. to be generated. Send it on 23328 * the wire. Note that this could still 23329 * cause fragmentation and all we 23330 * do is the generation of the message 23331 * to the ULP if needed before IPsec. 23332 */ 23333 if (!next_mp) { 23334 ipsec_out_process(q, first_mp, 23335 ire, ill_index); 23336 TRACE_2(TR_FAC_IP, 23337 TR_IP_WPUT_IRE_END, 23338 "ip_wput_ire_end: q %p " 23339 "(%S)", q, 23340 "last ipsec_out_process"); 23341 ire_refrele(ire); 23342 if (conn_outgoing_ill != NULL) { 23343 ill_refrele( 23344 conn_outgoing_ill); 23345 } 23346 return; 23347 } 23348 ipsec_out_process(q, first_mp, 23349 ire, ill_index); 23350 } 23351 } else { 23352 /* 23353 * Initiate IPPF processing. For 23354 * fragmentable packets we finish 23355 * all QOS packet processing before 23356 * calling: 23357 * ip_wput_ire_fragmentit->ip_wput_frag 23358 */ 23359 23360 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23361 ip_process(IPP_LOCAL_OUT, &mp, 23362 ill_index); 23363 if (mp == NULL) { 23364 out_ill = (ill_t *)stq->q_ptr; 23365 BUMP_MIB(out_ill->ill_ip_mib, 23366 ipIfStatsOutDiscards); 23367 if (next_mp != NULL) { 23368 freemsg(next_mp); 23369 ire_refrele(ire1); 23370 } 23371 ire_refrele(ire); 23372 TRACE_2(TR_FAC_IP, 23373 TR_IP_WPUT_IRE_END, 23374 "ip_wput_ire: q %p (%S)", 23375 q, "discard MDATA"); 23376 if (conn_outgoing_ill != NULL) { 23377 ill_refrele( 23378 conn_outgoing_ill); 23379 } 23380 return; 23381 } 23382 } 23383 if (!next_mp) { 23384 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23385 "ip_wput_ire_end: q %p (%S)", 23386 q, "last fragmentation"); 23387 ip_wput_ire_fragmentit(mp, ire, 23388 zoneid, ipst, connp); 23389 ire_refrele(ire); 23390 if (conn_outgoing_ill != NULL) 23391 ill_refrele(conn_outgoing_ill); 23392 return; 23393 } 23394 ip_wput_ire_fragmentit(mp, ire, 23395 zoneid, ipst, connp); 23396 } 23397 } 23398 } else { 23399 nullstq: 23400 /* A NULL stq means the destination address is local. */ 23401 UPDATE_OB_PKT_COUNT(ire); 23402 ire->ire_last_used_time = lbolt; 23403 ASSERT(ire->ire_ipif != NULL); 23404 if (!next_mp) { 23405 /* 23406 * Is there an "in" and "out" for traffic local 23407 * to a host (loopback)? The code in Solaris doesn't 23408 * explicitly draw a line in its code for in vs out, 23409 * so we've had to draw a line in the sand: ip_wput_ire 23410 * is considered to be the "output" side and 23411 * ip_wput_local to be the "input" side. 23412 */ 23413 out_ill = ire_to_ill(ire); 23414 23415 /* 23416 * DTrace this as ip:::send. A blocked packet will 23417 * fire the send probe, but not the receive probe. 23418 */ 23419 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23420 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23421 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23422 23423 DTRACE_PROBE4(ip4__loopback__out__start, 23424 ill_t *, NULL, ill_t *, out_ill, 23425 ipha_t *, ipha, mblk_t *, first_mp); 23426 23427 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23428 ipst->ips_ipv4firewall_loopback_out, 23429 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23430 23431 DTRACE_PROBE1(ip4__loopback__out_end, 23432 mblk_t *, first_mp); 23433 23434 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23435 "ip_wput_ire_end: q %p (%S)", 23436 q, "local address"); 23437 23438 if (first_mp != NULL) 23439 ip_wput_local(q, out_ill, ipha, 23440 first_mp, ire, 0, ire->ire_zoneid); 23441 ire_refrele(ire); 23442 if (conn_outgoing_ill != NULL) 23443 ill_refrele(conn_outgoing_ill); 23444 return; 23445 } 23446 23447 out_ill = ire_to_ill(ire); 23448 23449 /* 23450 * DTrace this as ip:::send. A blocked packet will fire the 23451 * send probe, but not the receive probe. 23452 */ 23453 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23454 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23455 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23456 23457 DTRACE_PROBE4(ip4__loopback__out__start, 23458 ill_t *, NULL, ill_t *, out_ill, 23459 ipha_t *, ipha, mblk_t *, first_mp); 23460 23461 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23462 ipst->ips_ipv4firewall_loopback_out, 23463 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23464 23465 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23466 23467 if (first_mp != NULL) 23468 ip_wput_local(q, out_ill, ipha, 23469 first_mp, ire, 0, ire->ire_zoneid); 23470 } 23471 next: 23472 /* 23473 * More copies going out to additional interfaces. 23474 * ire1 has already been held. We don't need the 23475 * "ire" anymore. 23476 */ 23477 ire_refrele(ire); 23478 ire = ire1; 23479 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23480 mp = next_mp; 23481 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23482 ill = ire_to_ill(ire); 23483 first_mp = mp; 23484 if (ipsec_len != 0) { 23485 ASSERT(first_mp->b_datap->db_type == M_CTL); 23486 mp = mp->b_cont; 23487 } 23488 dst = ire->ire_addr; 23489 ipha = (ipha_t *)mp->b_rptr; 23490 /* 23491 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23492 * Restore ipha_ident "no checksum" flag. 23493 */ 23494 src = orig_src; 23495 ipha->ipha_ident = ip_hdr_included; 23496 goto another; 23497 23498 #undef rptr 23499 #undef Q_TO_INDEX 23500 } 23501 23502 /* 23503 * Routine to allocate a message that is used to notify the ULP about MDT. 23504 * The caller may provide a pointer to the link-layer MDT capabilities, 23505 * or NULL if MDT is to be disabled on the stream. 23506 */ 23507 mblk_t * 23508 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23509 { 23510 mblk_t *mp; 23511 ip_mdt_info_t *mdti; 23512 ill_mdt_capab_t *idst; 23513 23514 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23515 DB_TYPE(mp) = M_CTL; 23516 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23517 mdti = (ip_mdt_info_t *)mp->b_rptr; 23518 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23519 idst = &(mdti->mdt_capab); 23520 23521 /* 23522 * If the caller provides us with the capability, copy 23523 * it over into our notification message; otherwise 23524 * we zero out the capability portion. 23525 */ 23526 if (isrc != NULL) 23527 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23528 else 23529 bzero((caddr_t)idst, sizeof (*idst)); 23530 } 23531 return (mp); 23532 } 23533 23534 /* 23535 * Routine which determines whether MDT can be enabled on the destination 23536 * IRE and IPC combination, and if so, allocates and returns the MDT 23537 * notification mblk that may be used by ULP. We also check if we need to 23538 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23539 * MDT usage in the past have been lifted. This gets called during IP 23540 * and ULP binding. 23541 */ 23542 mblk_t * 23543 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23544 ill_mdt_capab_t *mdt_cap) 23545 { 23546 mblk_t *mp; 23547 boolean_t rc = B_FALSE; 23548 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23549 23550 ASSERT(dst_ire != NULL); 23551 ASSERT(connp != NULL); 23552 ASSERT(mdt_cap != NULL); 23553 23554 /* 23555 * Currently, we only support simple TCP/{IPv4,IPv6} with 23556 * Multidata, which is handled in tcp_multisend(). This 23557 * is the reason why we do all these checks here, to ensure 23558 * that we don't enable Multidata for the cases which we 23559 * can't handle at the moment. 23560 */ 23561 do { 23562 /* Only do TCP at the moment */ 23563 if (connp->conn_ulp != IPPROTO_TCP) 23564 break; 23565 23566 /* 23567 * IPsec outbound policy present? Note that we get here 23568 * after calling ipsec_conn_cache_policy() where the global 23569 * policy checking is performed. conn_latch will be 23570 * non-NULL as long as there's a policy defined, 23571 * i.e. conn_out_enforce_policy may be NULL in such case 23572 * when the connection is non-secure, and hence we check 23573 * further if the latch refers to an outbound policy. 23574 */ 23575 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23576 break; 23577 23578 /* CGTP (multiroute) is enabled? */ 23579 if (dst_ire->ire_flags & RTF_MULTIRT) 23580 break; 23581 23582 /* Outbound IPQoS enabled? */ 23583 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23584 /* 23585 * In this case, we disable MDT for this and all 23586 * future connections going over the interface. 23587 */ 23588 mdt_cap->ill_mdt_on = 0; 23589 break; 23590 } 23591 23592 /* socket option(s) present? */ 23593 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23594 break; 23595 23596 rc = B_TRUE; 23597 /* CONSTCOND */ 23598 } while (0); 23599 23600 /* Remember the result */ 23601 connp->conn_mdt_ok = rc; 23602 23603 if (!rc) 23604 return (NULL); 23605 else if (!mdt_cap->ill_mdt_on) { 23606 /* 23607 * If MDT has been previously turned off in the past, and we 23608 * currently can do MDT (due to IPQoS policy removal, etc.) 23609 * then enable it for this interface. 23610 */ 23611 mdt_cap->ill_mdt_on = 1; 23612 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23613 "interface %s\n", ill_name)); 23614 } 23615 23616 /* Allocate the MDT info mblk */ 23617 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23618 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23619 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23620 return (NULL); 23621 } 23622 return (mp); 23623 } 23624 23625 /* 23626 * Routine to allocate a message that is used to notify the ULP about LSO. 23627 * The caller may provide a pointer to the link-layer LSO capabilities, 23628 * or NULL if LSO is to be disabled on the stream. 23629 */ 23630 mblk_t * 23631 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23632 { 23633 mblk_t *mp; 23634 ip_lso_info_t *lsoi; 23635 ill_lso_capab_t *idst; 23636 23637 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23638 DB_TYPE(mp) = M_CTL; 23639 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23640 lsoi = (ip_lso_info_t *)mp->b_rptr; 23641 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23642 idst = &(lsoi->lso_capab); 23643 23644 /* 23645 * If the caller provides us with the capability, copy 23646 * it over into our notification message; otherwise 23647 * we zero out the capability portion. 23648 */ 23649 if (isrc != NULL) 23650 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23651 else 23652 bzero((caddr_t)idst, sizeof (*idst)); 23653 } 23654 return (mp); 23655 } 23656 23657 /* 23658 * Routine which determines whether LSO can be enabled on the destination 23659 * IRE and IPC combination, and if so, allocates and returns the LSO 23660 * notification mblk that may be used by ULP. We also check if we need to 23661 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23662 * LSO usage in the past have been lifted. This gets called during IP 23663 * and ULP binding. 23664 */ 23665 mblk_t * 23666 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23667 ill_lso_capab_t *lso_cap) 23668 { 23669 mblk_t *mp; 23670 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23671 23672 ASSERT(dst_ire != NULL); 23673 ASSERT(connp != NULL); 23674 ASSERT(lso_cap != NULL); 23675 23676 connp->conn_lso_ok = B_TRUE; 23677 23678 if ((connp->conn_ulp != IPPROTO_TCP) || 23679 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23680 (dst_ire->ire_flags & RTF_MULTIRT) || 23681 !CONN_IS_LSO_MD_FASTPATH(connp) || 23682 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23683 connp->conn_lso_ok = B_FALSE; 23684 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23685 /* 23686 * Disable LSO for this and all future connections going 23687 * over the interface. 23688 */ 23689 lso_cap->ill_lso_on = 0; 23690 } 23691 } 23692 23693 if (!connp->conn_lso_ok) 23694 return (NULL); 23695 else if (!lso_cap->ill_lso_on) { 23696 /* 23697 * If LSO has been previously turned off in the past, and we 23698 * currently can do LSO (due to IPQoS policy removal, etc.) 23699 * then enable it for this interface. 23700 */ 23701 lso_cap->ill_lso_on = 1; 23702 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23703 ill_name)); 23704 } 23705 23706 /* Allocate the LSO info mblk */ 23707 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23708 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23709 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23710 23711 return (mp); 23712 } 23713 23714 /* 23715 * Create destination address attribute, and fill it with the physical 23716 * destination address and SAP taken from the template DL_UNITDATA_REQ 23717 * message block. 23718 */ 23719 boolean_t 23720 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23721 { 23722 dl_unitdata_req_t *dlurp; 23723 pattr_t *pa; 23724 pattrinfo_t pa_info; 23725 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23726 uint_t das_len, das_off; 23727 23728 ASSERT(dlmp != NULL); 23729 23730 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23731 das_len = dlurp->dl_dest_addr_length; 23732 das_off = dlurp->dl_dest_addr_offset; 23733 23734 pa_info.type = PATTR_DSTADDRSAP; 23735 pa_info.len = sizeof (**das) + das_len - 1; 23736 23737 /* create and associate the attribute */ 23738 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23739 if (pa != NULL) { 23740 ASSERT(*das != NULL); 23741 (*das)->addr_is_group = 0; 23742 (*das)->addr_len = (uint8_t)das_len; 23743 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23744 } 23745 23746 return (pa != NULL); 23747 } 23748 23749 /* 23750 * Create hardware checksum attribute and fill it with the values passed. 23751 */ 23752 boolean_t 23753 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23754 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23755 { 23756 pattr_t *pa; 23757 pattrinfo_t pa_info; 23758 23759 ASSERT(mmd != NULL); 23760 23761 pa_info.type = PATTR_HCKSUM; 23762 pa_info.len = sizeof (pattr_hcksum_t); 23763 23764 /* create and associate the attribute */ 23765 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23766 if (pa != NULL) { 23767 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23768 23769 hck->hcksum_start_offset = start_offset; 23770 hck->hcksum_stuff_offset = stuff_offset; 23771 hck->hcksum_end_offset = end_offset; 23772 hck->hcksum_flags = flags; 23773 } 23774 return (pa != NULL); 23775 } 23776 23777 /* 23778 * Create zerocopy attribute and fill it with the specified flags 23779 */ 23780 boolean_t 23781 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23782 { 23783 pattr_t *pa; 23784 pattrinfo_t pa_info; 23785 23786 ASSERT(mmd != NULL); 23787 pa_info.type = PATTR_ZCOPY; 23788 pa_info.len = sizeof (pattr_zcopy_t); 23789 23790 /* create and associate the attribute */ 23791 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23792 if (pa != NULL) { 23793 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23794 23795 zcopy->zcopy_flags = flags; 23796 } 23797 return (pa != NULL); 23798 } 23799 23800 /* 23801 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23802 * block chain. We could rewrite to handle arbitrary message block chains but 23803 * that would make the code complicated and slow. Right now there three 23804 * restrictions: 23805 * 23806 * 1. The first message block must contain the complete IP header and 23807 * at least 1 byte of payload data. 23808 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23809 * so that we can use a single Multidata message. 23810 * 3. No frag must be distributed over two or more message blocks so 23811 * that we don't need more than two packet descriptors per frag. 23812 * 23813 * The above restrictions allow us to support userland applications (which 23814 * will send down a single message block) and NFS over UDP (which will 23815 * send down a chain of at most three message blocks). 23816 * 23817 * We also don't use MDT for payloads with less than or equal to 23818 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23819 */ 23820 boolean_t 23821 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23822 { 23823 int blocks; 23824 ssize_t total, missing, size; 23825 23826 ASSERT(mp != NULL); 23827 ASSERT(hdr_len > 0); 23828 23829 size = MBLKL(mp) - hdr_len; 23830 if (size <= 0) 23831 return (B_FALSE); 23832 23833 /* The first mblk contains the header and some payload. */ 23834 blocks = 1; 23835 total = size; 23836 size %= len; 23837 missing = (size == 0) ? 0 : (len - size); 23838 mp = mp->b_cont; 23839 23840 while (mp != NULL) { 23841 /* 23842 * Give up if we encounter a zero length message block. 23843 * In practice, this should rarely happen and therefore 23844 * not worth the trouble of freeing and re-linking the 23845 * mblk from the chain to handle such case. 23846 */ 23847 if ((size = MBLKL(mp)) == 0) 23848 return (B_FALSE); 23849 23850 /* Too many payload buffers for a single Multidata message? */ 23851 if (++blocks > MULTIDATA_MAX_PBUFS) 23852 return (B_FALSE); 23853 23854 total += size; 23855 /* Is a frag distributed over two or more message blocks? */ 23856 if (missing > size) 23857 return (B_FALSE); 23858 size -= missing; 23859 23860 size %= len; 23861 missing = (size == 0) ? 0 : (len - size); 23862 23863 mp = mp->b_cont; 23864 } 23865 23866 return (total > ip_wput_frag_mdt_min); 23867 } 23868 23869 /* 23870 * Outbound IPv4 fragmentation routine using MDT. 23871 */ 23872 static void 23873 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23874 uint32_t frag_flag, int offset) 23875 { 23876 ipha_t *ipha_orig; 23877 int i1, ip_data_end; 23878 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23879 mblk_t *hdr_mp, *md_mp = NULL; 23880 unsigned char *hdr_ptr, *pld_ptr; 23881 multidata_t *mmd; 23882 ip_pdescinfo_t pdi; 23883 ill_t *ill; 23884 ip_stack_t *ipst = ire->ire_ipst; 23885 23886 ASSERT(DB_TYPE(mp) == M_DATA); 23887 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23888 23889 ill = ire_to_ill(ire); 23890 ASSERT(ill != NULL); 23891 23892 ipha_orig = (ipha_t *)mp->b_rptr; 23893 mp->b_rptr += sizeof (ipha_t); 23894 23895 /* Calculate how many packets we will send out */ 23896 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23897 pkts = (i1 + len - 1) / len; 23898 ASSERT(pkts > 1); 23899 23900 /* Allocate a message block which will hold all the IP Headers. */ 23901 wroff = ipst->ips_ip_wroff_extra; 23902 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23903 23904 i1 = pkts * hdr_chunk_len; 23905 /* 23906 * Create the header buffer, Multidata and destination address 23907 * and SAP attribute that should be associated with it. 23908 */ 23909 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23910 ((hdr_mp->b_wptr += i1), 23911 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23912 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23913 freemsg(mp); 23914 if (md_mp == NULL) { 23915 freemsg(hdr_mp); 23916 } else { 23917 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23918 freemsg(md_mp); 23919 } 23920 IP_STAT(ipst, ip_frag_mdt_allocfail); 23921 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23922 return; 23923 } 23924 IP_STAT(ipst, ip_frag_mdt_allocd); 23925 23926 /* 23927 * Add a payload buffer to the Multidata; this operation must not 23928 * fail, or otherwise our logic in this routine is broken. There 23929 * is no memory allocation done by the routine, so any returned 23930 * failure simply tells us that we've done something wrong. 23931 * 23932 * A failure tells us that either we're adding the same payload 23933 * buffer more than once, or we're trying to add more buffers than 23934 * allowed. None of the above cases should happen, and we panic 23935 * because either there's horrible heap corruption, and/or 23936 * programming mistake. 23937 */ 23938 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23939 goto pbuf_panic; 23940 23941 hdr_ptr = hdr_mp->b_rptr; 23942 pld_ptr = mp->b_rptr; 23943 23944 /* Establish the ending byte offset, based on the starting offset. */ 23945 offset <<= 3; 23946 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23947 IP_SIMPLE_HDR_LENGTH; 23948 23949 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23950 23951 while (pld_ptr < mp->b_wptr) { 23952 ipha_t *ipha; 23953 uint16_t offset_and_flags; 23954 uint16_t ip_len; 23955 int error; 23956 23957 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23958 ipha = (ipha_t *)(hdr_ptr + wroff); 23959 ASSERT(OK_32PTR(ipha)); 23960 *ipha = *ipha_orig; 23961 23962 if (ip_data_end - offset > len) { 23963 offset_and_flags = IPH_MF; 23964 } else { 23965 /* 23966 * Last frag. Set len to the length of this last piece. 23967 */ 23968 len = ip_data_end - offset; 23969 /* A frag of a frag might have IPH_MF non-zero */ 23970 offset_and_flags = 23971 ntohs(ipha->ipha_fragment_offset_and_flags) & 23972 IPH_MF; 23973 } 23974 offset_and_flags |= (uint16_t)(offset >> 3); 23975 offset_and_flags |= (uint16_t)frag_flag; 23976 /* Store the offset and flags in the IP header. */ 23977 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23978 23979 /* Store the length in the IP header. */ 23980 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23981 ipha->ipha_length = htons(ip_len); 23982 23983 /* 23984 * Set the IP header checksum. Note that mp is just 23985 * the header, so this is easy to pass to ip_csum. 23986 */ 23987 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23988 23989 DTRACE_IP7(send, mblk_t *, md_mp, conn_t *, NULL, void_ip_t *, 23990 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, 23991 NULL, int, 0); 23992 23993 /* 23994 * Record offset and size of header and data of the next packet 23995 * in the multidata message. 23996 */ 23997 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23998 PDESC_PLD_INIT(&pdi); 23999 i1 = MIN(mp->b_wptr - pld_ptr, len); 24000 ASSERT(i1 > 0); 24001 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24002 if (i1 == len) { 24003 pld_ptr += len; 24004 } else { 24005 i1 = len - i1; 24006 mp = mp->b_cont; 24007 ASSERT(mp != NULL); 24008 ASSERT(MBLKL(mp) >= i1); 24009 /* 24010 * Attach the next payload message block to the 24011 * multidata message. 24012 */ 24013 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24014 goto pbuf_panic; 24015 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24016 pld_ptr = mp->b_rptr + i1; 24017 } 24018 24019 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24020 KM_NOSLEEP)) == NULL) { 24021 /* 24022 * Any failure other than ENOMEM indicates that we 24023 * have passed in invalid pdesc info or parameters 24024 * to mmd_addpdesc, which must not happen. 24025 * 24026 * EINVAL is a result of failure on boundary checks 24027 * against the pdesc info contents. It should not 24028 * happen, and we panic because either there's 24029 * horrible heap corruption, and/or programming 24030 * mistake. 24031 */ 24032 if (error != ENOMEM) { 24033 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24034 "pdesc logic error detected for " 24035 "mmd %p pinfo %p (%d)\n", 24036 (void *)mmd, (void *)&pdi, error); 24037 /* NOTREACHED */ 24038 } 24039 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24040 /* Free unattached payload message blocks as well */ 24041 md_mp->b_cont = mp->b_cont; 24042 goto free_mmd; 24043 } 24044 24045 /* Advance fragment offset. */ 24046 offset += len; 24047 24048 /* Advance to location for next header in the buffer. */ 24049 hdr_ptr += hdr_chunk_len; 24050 24051 /* Did we reach the next payload message block? */ 24052 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24053 mp = mp->b_cont; 24054 /* 24055 * Attach the next message block with payload 24056 * data to the multidata message. 24057 */ 24058 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24059 goto pbuf_panic; 24060 pld_ptr = mp->b_rptr; 24061 } 24062 } 24063 24064 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24065 ASSERT(mp->b_wptr == pld_ptr); 24066 24067 /* Update IP statistics */ 24068 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24069 24070 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24071 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24072 24073 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24074 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24075 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24076 24077 if (pkt_type == OB_PKT) { 24078 ire->ire_ob_pkt_count += pkts; 24079 if (ire->ire_ipif != NULL) 24080 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24081 } else { 24082 /* The type is IB_PKT in the forwarding path. */ 24083 ire->ire_ib_pkt_count += pkts; 24084 ASSERT(!IRE_IS_LOCAL(ire)); 24085 if (ire->ire_type & IRE_BROADCAST) { 24086 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24087 } else { 24088 UPDATE_MIB(ill->ill_ip_mib, 24089 ipIfStatsHCOutForwDatagrams, pkts); 24090 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24091 } 24092 } 24093 ire->ire_last_used_time = lbolt; 24094 /* Send it down */ 24095 putnext(ire->ire_stq, md_mp); 24096 return; 24097 24098 pbuf_panic: 24099 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24100 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24101 pbuf_idx); 24102 /* NOTREACHED */ 24103 } 24104 24105 /* 24106 * Outbound IP fragmentation routine. 24107 * 24108 * NOTE : This routine does not ire_refrele the ire that is passed in 24109 * as the argument. 24110 */ 24111 static void 24112 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24113 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst, conn_t *connp) 24114 { 24115 int i1; 24116 mblk_t *ll_hdr_mp; 24117 int ll_hdr_len; 24118 int hdr_len; 24119 mblk_t *hdr_mp; 24120 ipha_t *ipha; 24121 int ip_data_end; 24122 int len; 24123 mblk_t *mp = mp_orig, *mp1; 24124 int offset; 24125 queue_t *q; 24126 uint32_t v_hlen_tos_len; 24127 mblk_t *first_mp; 24128 boolean_t mctl_present; 24129 ill_t *ill; 24130 ill_t *out_ill; 24131 mblk_t *xmit_mp; 24132 mblk_t *carve_mp; 24133 ire_t *ire1 = NULL; 24134 ire_t *save_ire = NULL; 24135 mblk_t *next_mp = NULL; 24136 boolean_t last_frag = B_FALSE; 24137 boolean_t multirt_send = B_FALSE; 24138 ire_t *first_ire = NULL; 24139 irb_t *irb = NULL; 24140 mib2_ipIfStatsEntry_t *mibptr = NULL; 24141 24142 ill = ire_to_ill(ire); 24143 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24144 24145 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24146 24147 if (max_frag == 0) { 24148 ip1dbg(("ip_wput_frag: ire frag size is 0" 24149 " - dropping packet\n")); 24150 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24151 freemsg(mp); 24152 return; 24153 } 24154 24155 /* 24156 * IPsec does not allow hw accelerated packets to be fragmented 24157 * This check is made in ip_wput_ipsec_out prior to coming here 24158 * via ip_wput_ire_fragmentit. 24159 * 24160 * If at this point we have an ire whose ARP request has not 24161 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24162 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24163 * This packet and all fragmentable packets for this ire will 24164 * continue to get dropped while ire_nce->nce_state remains in 24165 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24166 * ND_REACHABLE, all subsquent large packets for this ire will 24167 * get fragemented and sent out by this function. 24168 */ 24169 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24170 /* If nce_state is ND_INITIAL, trigger ARP query */ 24171 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 24172 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24173 " - dropping packet\n")); 24174 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24175 freemsg(mp); 24176 return; 24177 } 24178 24179 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24180 "ip_wput_frag_start:"); 24181 24182 if (mp->b_datap->db_type == M_CTL) { 24183 first_mp = mp; 24184 mp_orig = mp = mp->b_cont; 24185 mctl_present = B_TRUE; 24186 } else { 24187 first_mp = mp; 24188 mctl_present = B_FALSE; 24189 } 24190 24191 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24192 ipha = (ipha_t *)mp->b_rptr; 24193 24194 /* 24195 * If the Don't Fragment flag is on, generate an ICMP destination 24196 * unreachable, fragmentation needed. 24197 */ 24198 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24199 if (offset & IPH_DF) { 24200 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24201 if (is_system_labeled()) { 24202 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24203 ire->ire_max_frag - max_frag, AF_INET); 24204 } 24205 /* 24206 * Need to compute hdr checksum if called from ip_wput_ire. 24207 * Note that ip_rput_forward verifies the checksum before 24208 * calling this routine so in that case this is a noop. 24209 */ 24210 ipha->ipha_hdr_checksum = 0; 24211 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24212 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24213 ipst); 24214 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24215 "ip_wput_frag_end:(%S)", 24216 "don't fragment"); 24217 return; 24218 } 24219 /* 24220 * Labeled systems adjust max_frag if they add a label 24221 * to send the correct path mtu. We need the real mtu since we 24222 * are fragmenting the packet after label adjustment. 24223 */ 24224 if (is_system_labeled()) 24225 max_frag = ire->ire_max_frag; 24226 if (mctl_present) 24227 freeb(first_mp); 24228 /* 24229 * Establish the starting offset. May not be zero if we are fragging 24230 * a fragment that is being forwarded. 24231 */ 24232 offset = offset & IPH_OFFSET; 24233 24234 /* TODO why is this test needed? */ 24235 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24236 if (((max_frag - LENGTH) & ~7) < 8) { 24237 /* TODO: notify ulp somehow */ 24238 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24239 freemsg(mp); 24240 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24241 "ip_wput_frag_end:(%S)", 24242 "len < 8"); 24243 return; 24244 } 24245 24246 hdr_len = (V_HLEN & 0xF) << 2; 24247 24248 ipha->ipha_hdr_checksum = 0; 24249 24250 /* 24251 * Establish the number of bytes maximum per frag, after putting 24252 * in the header. 24253 */ 24254 len = (max_frag - hdr_len) & ~7; 24255 24256 /* Check if we can use MDT to send out the frags. */ 24257 ASSERT(!IRE_IS_LOCAL(ire)); 24258 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24259 ipst->ips_ip_multidata_outbound && 24260 !(ire->ire_flags & RTF_MULTIRT) && 24261 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24262 ill != NULL && ILL_MDT_CAPABLE(ill) && 24263 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24264 ASSERT(ill->ill_mdt_capab != NULL); 24265 if (!ill->ill_mdt_capab->ill_mdt_on) { 24266 /* 24267 * If MDT has been previously turned off in the past, 24268 * and we currently can do MDT (due to IPQoS policy 24269 * removal, etc.) then enable it for this interface. 24270 */ 24271 ill->ill_mdt_capab->ill_mdt_on = 1; 24272 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24273 ill->ill_name)); 24274 } 24275 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24276 offset); 24277 return; 24278 } 24279 24280 /* Get a copy of the header for the trailing frags */ 24281 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 24282 mp); 24283 if (!hdr_mp) { 24284 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24285 freemsg(mp); 24286 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24287 "ip_wput_frag_end:(%S)", 24288 "couldn't copy hdr"); 24289 return; 24290 } 24291 24292 /* Store the starting offset, with the MoreFrags flag. */ 24293 i1 = offset | IPH_MF | frag_flag; 24294 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24295 24296 /* Establish the ending byte offset, based on the starting offset. */ 24297 offset <<= 3; 24298 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24299 24300 /* Store the length of the first fragment in the IP header. */ 24301 i1 = len + hdr_len; 24302 ASSERT(i1 <= IP_MAXPACKET); 24303 ipha->ipha_length = htons((uint16_t)i1); 24304 24305 /* 24306 * Compute the IP header checksum for the first frag. We have to 24307 * watch out that we stop at the end of the header. 24308 */ 24309 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24310 24311 /* 24312 * Now carve off the first frag. Note that this will include the 24313 * original IP header. 24314 */ 24315 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24316 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24317 freeb(hdr_mp); 24318 freemsg(mp_orig); 24319 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24320 "ip_wput_frag_end:(%S)", 24321 "couldn't carve first"); 24322 return; 24323 } 24324 24325 /* 24326 * Multirouting case. Each fragment is replicated 24327 * via all non-condemned RTF_MULTIRT routes 24328 * currently resolved. 24329 * We ensure that first_ire is the first RTF_MULTIRT 24330 * ire in the bucket. 24331 */ 24332 if (ire->ire_flags & RTF_MULTIRT) { 24333 irb = ire->ire_bucket; 24334 ASSERT(irb != NULL); 24335 24336 multirt_send = B_TRUE; 24337 24338 /* Make sure we do not omit any multiroute ire. */ 24339 IRB_REFHOLD(irb); 24340 for (first_ire = irb->irb_ire; 24341 first_ire != NULL; 24342 first_ire = first_ire->ire_next) { 24343 if ((first_ire->ire_flags & RTF_MULTIRT) && 24344 (first_ire->ire_addr == ire->ire_addr) && 24345 !(first_ire->ire_marks & 24346 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 24347 break; 24348 } 24349 24350 if (first_ire != NULL) { 24351 if (first_ire != ire) { 24352 IRE_REFHOLD(first_ire); 24353 /* 24354 * Do not release the ire passed in 24355 * as the argument. 24356 */ 24357 ire = first_ire; 24358 } else { 24359 first_ire = NULL; 24360 } 24361 } 24362 IRB_REFRELE(irb); 24363 24364 /* 24365 * Save the first ire; we will need to restore it 24366 * for the trailing frags. 24367 * We REFHOLD save_ire, as each iterated ire will be 24368 * REFRELEd. 24369 */ 24370 save_ire = ire; 24371 IRE_REFHOLD(save_ire); 24372 } 24373 24374 /* 24375 * First fragment emission loop. 24376 * In most cases, the emission loop below is entered only 24377 * once. Only in the case where the ire holds the RTF_MULTIRT 24378 * flag, do we loop to process all RTF_MULTIRT ires in the 24379 * bucket, and send the fragment through all crossed 24380 * RTF_MULTIRT routes. 24381 */ 24382 do { 24383 if (ire->ire_flags & RTF_MULTIRT) { 24384 /* 24385 * We are in a multiple send case, need to get 24386 * the next ire and make a copy of the packet. 24387 * ire1 holds here the next ire to process in the 24388 * bucket. If multirouting is expected, 24389 * any non-RTF_MULTIRT ire that has the 24390 * right destination address is ignored. 24391 * 24392 * We have to take into account the MTU of 24393 * each walked ire. max_frag is set by the 24394 * the caller and generally refers to 24395 * the primary ire entry. Here we ensure that 24396 * no route with a lower MTU will be used, as 24397 * fragments are carved once for all ires, 24398 * then replicated. 24399 */ 24400 ASSERT(irb != NULL); 24401 IRB_REFHOLD(irb); 24402 for (ire1 = ire->ire_next; 24403 ire1 != NULL; 24404 ire1 = ire1->ire_next) { 24405 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24406 continue; 24407 if (ire1->ire_addr != ire->ire_addr) 24408 continue; 24409 if (ire1->ire_marks & 24410 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 24411 continue; 24412 /* 24413 * Ensure we do not exceed the MTU 24414 * of the next route. 24415 */ 24416 if (ire1->ire_max_frag < max_frag) { 24417 ip_multirt_bad_mtu(ire1, max_frag); 24418 continue; 24419 } 24420 24421 /* Got one. */ 24422 IRE_REFHOLD(ire1); 24423 break; 24424 } 24425 IRB_REFRELE(irb); 24426 24427 if (ire1 != NULL) { 24428 next_mp = copyb(mp); 24429 if ((next_mp == NULL) || 24430 ((mp->b_cont != NULL) && 24431 ((next_mp->b_cont = 24432 dupmsg(mp->b_cont)) == NULL))) { 24433 freemsg(next_mp); 24434 next_mp = NULL; 24435 ire_refrele(ire1); 24436 ire1 = NULL; 24437 } 24438 } 24439 24440 /* Last multiroute ire; don't loop anymore. */ 24441 if (ire1 == NULL) { 24442 multirt_send = B_FALSE; 24443 } 24444 } 24445 24446 ll_hdr_len = 0; 24447 LOCK_IRE_FP_MP(ire); 24448 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24449 if (ll_hdr_mp != NULL) { 24450 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24451 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24452 } else { 24453 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24454 } 24455 24456 /* If there is a transmit header, get a copy for this frag. */ 24457 /* 24458 * TODO: should check db_ref before calling ip_carve_mp since 24459 * it might give us a dup. 24460 */ 24461 if (!ll_hdr_mp) { 24462 /* No xmit header. */ 24463 xmit_mp = mp; 24464 24465 /* We have a link-layer header that can fit in our mblk. */ 24466 } else if (mp->b_datap->db_ref == 1 && 24467 ll_hdr_len != 0 && 24468 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24469 /* M_DATA fastpath */ 24470 mp->b_rptr -= ll_hdr_len; 24471 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24472 xmit_mp = mp; 24473 24474 /* Corner case if copyb has failed */ 24475 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24476 UNLOCK_IRE_FP_MP(ire); 24477 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24478 freeb(hdr_mp); 24479 freemsg(mp); 24480 freemsg(mp_orig); 24481 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24482 "ip_wput_frag_end:(%S)", 24483 "discard"); 24484 24485 if (multirt_send) { 24486 ASSERT(ire1); 24487 ASSERT(next_mp); 24488 24489 freemsg(next_mp); 24490 ire_refrele(ire1); 24491 } 24492 if (save_ire != NULL) 24493 IRE_REFRELE(save_ire); 24494 24495 if (first_ire != NULL) 24496 ire_refrele(first_ire); 24497 return; 24498 24499 /* 24500 * Case of res_mp OR the fastpath mp can't fit 24501 * in the mblk 24502 */ 24503 } else { 24504 xmit_mp->b_cont = mp; 24505 24506 /* 24507 * Get priority marking, if any. 24508 * We propagate the CoS marking from the 24509 * original packet that went to QoS processing 24510 * in ip_wput_ire to the newly carved mp. 24511 */ 24512 if (DB_TYPE(xmit_mp) == M_DATA) 24513 xmit_mp->b_band = mp->b_band; 24514 } 24515 UNLOCK_IRE_FP_MP(ire); 24516 24517 q = ire->ire_stq; 24518 out_ill = (ill_t *)q->q_ptr; 24519 24520 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24521 24522 DTRACE_PROBE4(ip4__physical__out__start, 24523 ill_t *, NULL, ill_t *, out_ill, 24524 ipha_t *, ipha, mblk_t *, xmit_mp); 24525 24526 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24527 ipst->ips_ipv4firewall_physical_out, 24528 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24529 24530 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24531 24532 if (xmit_mp != NULL) { 24533 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, NULL, 24534 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 24535 ipha_t *, ipha, ip6_t *, NULL, int, 0); 24536 24537 ILL_SEND_TX(out_ill, ire, connp, xmit_mp, 0, connp); 24538 24539 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24540 UPDATE_MIB(out_ill->ill_ip_mib, 24541 ipIfStatsHCOutOctets, i1); 24542 24543 if (pkt_type != OB_PKT) { 24544 /* 24545 * Update the packet count and MIB stats 24546 * of trailing RTF_MULTIRT ires. 24547 */ 24548 UPDATE_OB_PKT_COUNT(ire); 24549 BUMP_MIB(out_ill->ill_ip_mib, 24550 ipIfStatsOutFragReqds); 24551 } 24552 } 24553 24554 if (multirt_send) { 24555 /* 24556 * We are in a multiple send case; look for 24557 * the next ire and re-enter the loop. 24558 */ 24559 ASSERT(ire1); 24560 ASSERT(next_mp); 24561 /* REFRELE the current ire before looping */ 24562 ire_refrele(ire); 24563 ire = ire1; 24564 ire1 = NULL; 24565 mp = next_mp; 24566 next_mp = NULL; 24567 } 24568 } while (multirt_send); 24569 24570 ASSERT(ire1 == NULL); 24571 24572 /* Restore the original ire; we need it for the trailing frags */ 24573 if (save_ire != NULL) { 24574 /* REFRELE the last iterated ire */ 24575 ire_refrele(ire); 24576 /* save_ire has been REFHOLDed */ 24577 ire = save_ire; 24578 save_ire = NULL; 24579 q = ire->ire_stq; 24580 } 24581 24582 if (pkt_type == OB_PKT) { 24583 UPDATE_OB_PKT_COUNT(ire); 24584 } else { 24585 out_ill = (ill_t *)q->q_ptr; 24586 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24587 UPDATE_IB_PKT_COUNT(ire); 24588 } 24589 24590 /* Advance the offset to the second frag starting point. */ 24591 offset += len; 24592 /* 24593 * Update hdr_len from the copied header - there might be less options 24594 * in the later fragments. 24595 */ 24596 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24597 /* Loop until done. */ 24598 for (;;) { 24599 uint16_t offset_and_flags; 24600 uint16_t ip_len; 24601 24602 if (ip_data_end - offset > len) { 24603 /* 24604 * Carve off the appropriate amount from the original 24605 * datagram. 24606 */ 24607 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24608 mp = NULL; 24609 break; 24610 } 24611 /* 24612 * More frags after this one. Get another copy 24613 * of the header. 24614 */ 24615 if (carve_mp->b_datap->db_ref == 1 && 24616 hdr_mp->b_wptr - hdr_mp->b_rptr < 24617 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24618 /* Inline IP header */ 24619 carve_mp->b_rptr -= hdr_mp->b_wptr - 24620 hdr_mp->b_rptr; 24621 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24622 hdr_mp->b_wptr - hdr_mp->b_rptr); 24623 mp = carve_mp; 24624 } else { 24625 if (!(mp = copyb(hdr_mp))) { 24626 freemsg(carve_mp); 24627 break; 24628 } 24629 /* Get priority marking, if any. */ 24630 mp->b_band = carve_mp->b_band; 24631 mp->b_cont = carve_mp; 24632 } 24633 ipha = (ipha_t *)mp->b_rptr; 24634 offset_and_flags = IPH_MF; 24635 } else { 24636 /* 24637 * Last frag. Consume the header. Set len to 24638 * the length of this last piece. 24639 */ 24640 len = ip_data_end - offset; 24641 24642 /* 24643 * Carve off the appropriate amount from the original 24644 * datagram. 24645 */ 24646 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24647 mp = NULL; 24648 break; 24649 } 24650 if (carve_mp->b_datap->db_ref == 1 && 24651 hdr_mp->b_wptr - hdr_mp->b_rptr < 24652 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24653 /* Inline IP header */ 24654 carve_mp->b_rptr -= hdr_mp->b_wptr - 24655 hdr_mp->b_rptr; 24656 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24657 hdr_mp->b_wptr - hdr_mp->b_rptr); 24658 mp = carve_mp; 24659 freeb(hdr_mp); 24660 hdr_mp = mp; 24661 } else { 24662 mp = hdr_mp; 24663 /* Get priority marking, if any. */ 24664 mp->b_band = carve_mp->b_band; 24665 mp->b_cont = carve_mp; 24666 } 24667 ipha = (ipha_t *)mp->b_rptr; 24668 /* A frag of a frag might have IPH_MF non-zero */ 24669 offset_and_flags = 24670 ntohs(ipha->ipha_fragment_offset_and_flags) & 24671 IPH_MF; 24672 } 24673 offset_and_flags |= (uint16_t)(offset >> 3); 24674 offset_and_flags |= (uint16_t)frag_flag; 24675 /* Store the offset and flags in the IP header. */ 24676 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24677 24678 /* Store the length in the IP header. */ 24679 ip_len = (uint16_t)(len + hdr_len); 24680 ipha->ipha_length = htons(ip_len); 24681 24682 /* 24683 * Set the IP header checksum. Note that mp is just 24684 * the header, so this is easy to pass to ip_csum. 24685 */ 24686 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24687 24688 /* Attach a transmit header, if any, and ship it. */ 24689 if (pkt_type == OB_PKT) { 24690 UPDATE_OB_PKT_COUNT(ire); 24691 } else { 24692 out_ill = (ill_t *)q->q_ptr; 24693 BUMP_MIB(out_ill->ill_ip_mib, 24694 ipIfStatsHCOutForwDatagrams); 24695 UPDATE_IB_PKT_COUNT(ire); 24696 } 24697 24698 if (ire->ire_flags & RTF_MULTIRT) { 24699 irb = ire->ire_bucket; 24700 ASSERT(irb != NULL); 24701 24702 multirt_send = B_TRUE; 24703 24704 /* 24705 * Save the original ire; we will need to restore it 24706 * for the tailing frags. 24707 */ 24708 save_ire = ire; 24709 IRE_REFHOLD(save_ire); 24710 } 24711 /* 24712 * Emission loop for this fragment, similar 24713 * to what is done for the first fragment. 24714 */ 24715 do { 24716 if (multirt_send) { 24717 /* 24718 * We are in a multiple send case, need to get 24719 * the next ire and make a copy of the packet. 24720 */ 24721 ASSERT(irb != NULL); 24722 IRB_REFHOLD(irb); 24723 for (ire1 = ire->ire_next; 24724 ire1 != NULL; 24725 ire1 = ire1->ire_next) { 24726 if (!(ire1->ire_flags & RTF_MULTIRT)) 24727 continue; 24728 if (ire1->ire_addr != ire->ire_addr) 24729 continue; 24730 if (ire1->ire_marks & 24731 (IRE_MARK_CONDEMNED | 24732 IRE_MARK_TESTHIDDEN)) 24733 continue; 24734 /* 24735 * Ensure we do not exceed the MTU 24736 * of the next route. 24737 */ 24738 if (ire1->ire_max_frag < max_frag) { 24739 ip_multirt_bad_mtu(ire1, 24740 max_frag); 24741 continue; 24742 } 24743 24744 /* Got one. */ 24745 IRE_REFHOLD(ire1); 24746 break; 24747 } 24748 IRB_REFRELE(irb); 24749 24750 if (ire1 != NULL) { 24751 next_mp = copyb(mp); 24752 if ((next_mp == NULL) || 24753 ((mp->b_cont != NULL) && 24754 ((next_mp->b_cont = 24755 dupmsg(mp->b_cont)) == NULL))) { 24756 freemsg(next_mp); 24757 next_mp = NULL; 24758 ire_refrele(ire1); 24759 ire1 = NULL; 24760 } 24761 } 24762 24763 /* Last multiroute ire; don't loop anymore. */ 24764 if (ire1 == NULL) { 24765 multirt_send = B_FALSE; 24766 } 24767 } 24768 24769 /* Update transmit header */ 24770 ll_hdr_len = 0; 24771 LOCK_IRE_FP_MP(ire); 24772 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24773 if (ll_hdr_mp != NULL) { 24774 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24775 ll_hdr_len = MBLKL(ll_hdr_mp); 24776 } else { 24777 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24778 } 24779 24780 if (!ll_hdr_mp) { 24781 xmit_mp = mp; 24782 24783 /* 24784 * We have link-layer header that can fit in 24785 * our mblk. 24786 */ 24787 } else if (mp->b_datap->db_ref == 1 && 24788 ll_hdr_len != 0 && 24789 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24790 /* M_DATA fastpath */ 24791 mp->b_rptr -= ll_hdr_len; 24792 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24793 ll_hdr_len); 24794 xmit_mp = mp; 24795 24796 /* 24797 * Case of res_mp OR the fastpath mp can't fit 24798 * in the mblk 24799 */ 24800 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24801 xmit_mp->b_cont = mp; 24802 /* Get priority marking, if any. */ 24803 if (DB_TYPE(xmit_mp) == M_DATA) 24804 xmit_mp->b_band = mp->b_band; 24805 24806 /* Corner case if copyb failed */ 24807 } else { 24808 /* 24809 * Exit both the replication and 24810 * fragmentation loops. 24811 */ 24812 UNLOCK_IRE_FP_MP(ire); 24813 goto drop_pkt; 24814 } 24815 UNLOCK_IRE_FP_MP(ire); 24816 24817 mp1 = mp; 24818 out_ill = (ill_t *)q->q_ptr; 24819 24820 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24821 24822 DTRACE_PROBE4(ip4__physical__out__start, 24823 ill_t *, NULL, ill_t *, out_ill, 24824 ipha_t *, ipha, mblk_t *, xmit_mp); 24825 24826 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24827 ipst->ips_ipv4firewall_physical_out, 24828 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24829 24830 DTRACE_PROBE1(ip4__physical__out__end, 24831 mblk_t *, xmit_mp); 24832 24833 if (mp != mp1 && hdr_mp == mp1) 24834 hdr_mp = mp; 24835 if (mp != mp1 && mp_orig == mp1) 24836 mp_orig = mp; 24837 24838 if (xmit_mp != NULL) { 24839 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, 24840 NULL, void_ip_t *, ipha, 24841 __dtrace_ipsr_ill_t *, out_ill, ipha_t *, 24842 ipha, ip6_t *, NULL, int, 0); 24843 24844 ILL_SEND_TX(out_ill, ire, connp, 24845 xmit_mp, 0, connp); 24846 24847 BUMP_MIB(out_ill->ill_ip_mib, 24848 ipIfStatsHCOutTransmits); 24849 UPDATE_MIB(out_ill->ill_ip_mib, 24850 ipIfStatsHCOutOctets, ip_len); 24851 24852 if (pkt_type != OB_PKT) { 24853 /* 24854 * Update the packet count of trailing 24855 * RTF_MULTIRT ires. 24856 */ 24857 UPDATE_OB_PKT_COUNT(ire); 24858 } 24859 } 24860 24861 /* All done if we just consumed the hdr_mp. */ 24862 if (mp == hdr_mp) { 24863 last_frag = B_TRUE; 24864 BUMP_MIB(out_ill->ill_ip_mib, 24865 ipIfStatsOutFragOKs); 24866 } 24867 24868 if (multirt_send) { 24869 /* 24870 * We are in a multiple send case; look for 24871 * the next ire and re-enter the loop. 24872 */ 24873 ASSERT(ire1); 24874 ASSERT(next_mp); 24875 /* REFRELE the current ire before looping */ 24876 ire_refrele(ire); 24877 ire = ire1; 24878 ire1 = NULL; 24879 q = ire->ire_stq; 24880 mp = next_mp; 24881 next_mp = NULL; 24882 } 24883 } while (multirt_send); 24884 /* 24885 * Restore the original ire; we need it for the 24886 * trailing frags 24887 */ 24888 if (save_ire != NULL) { 24889 ASSERT(ire1 == NULL); 24890 /* REFRELE the last iterated ire */ 24891 ire_refrele(ire); 24892 /* save_ire has been REFHOLDed */ 24893 ire = save_ire; 24894 q = ire->ire_stq; 24895 save_ire = NULL; 24896 } 24897 24898 if (last_frag) { 24899 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24900 "ip_wput_frag_end:(%S)", 24901 "consumed hdr_mp"); 24902 24903 if (first_ire != NULL) 24904 ire_refrele(first_ire); 24905 return; 24906 } 24907 /* Otherwise, advance and loop. */ 24908 offset += len; 24909 } 24910 24911 drop_pkt: 24912 /* Clean up following allocation failure. */ 24913 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24914 freemsg(mp); 24915 if (mp != hdr_mp) 24916 freeb(hdr_mp); 24917 if (mp != mp_orig) 24918 freemsg(mp_orig); 24919 24920 if (save_ire != NULL) 24921 IRE_REFRELE(save_ire); 24922 if (first_ire != NULL) 24923 ire_refrele(first_ire); 24924 24925 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24926 "ip_wput_frag_end:(%S)", 24927 "end--alloc failure"); 24928 } 24929 24930 /* 24931 * Copy the header plus those options which have the copy bit set 24932 * src is the template to make sure we preserve the cred for TX purposes. 24933 */ 24934 static mblk_t * 24935 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 24936 mblk_t *src) 24937 { 24938 mblk_t *mp; 24939 uchar_t *up; 24940 24941 /* 24942 * Quick check if we need to look for options without the copy bit 24943 * set 24944 */ 24945 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 24946 if (!mp) 24947 return (mp); 24948 mp->b_rptr += ipst->ips_ip_wroff_extra; 24949 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24950 bcopy(rptr, mp->b_rptr, hdr_len); 24951 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24952 return (mp); 24953 } 24954 up = mp->b_rptr; 24955 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24956 up += IP_SIMPLE_HDR_LENGTH; 24957 rptr += IP_SIMPLE_HDR_LENGTH; 24958 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24959 while (hdr_len > 0) { 24960 uint32_t optval; 24961 uint32_t optlen; 24962 24963 optval = *rptr; 24964 if (optval == IPOPT_EOL) 24965 break; 24966 if (optval == IPOPT_NOP) 24967 optlen = 1; 24968 else 24969 optlen = rptr[1]; 24970 if (optval & IPOPT_COPY) { 24971 bcopy(rptr, up, optlen); 24972 up += optlen; 24973 } 24974 rptr += optlen; 24975 hdr_len -= optlen; 24976 } 24977 /* 24978 * Make sure that we drop an even number of words by filling 24979 * with EOL to the next word boundary. 24980 */ 24981 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24982 hdr_len & 0x3; hdr_len++) 24983 *up++ = IPOPT_EOL; 24984 mp->b_wptr = up; 24985 /* Update header length */ 24986 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24987 return (mp); 24988 } 24989 24990 /* 24991 * Delivery to local recipients including fanout to multiple recipients. 24992 * Does not do checksumming of UDP/TCP. 24993 * Note: q should be the read side queue for either the ill or conn. 24994 * Note: rq should be the read side q for the lower (ill) stream. 24995 * We don't send packets to IPPF processing, thus the last argument 24996 * to all the fanout calls are B_FALSE. 24997 */ 24998 void 24999 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25000 int fanout_flags, zoneid_t zoneid) 25001 { 25002 uint32_t protocol; 25003 mblk_t *first_mp; 25004 boolean_t mctl_present; 25005 int ire_type; 25006 #define rptr ((uchar_t *)ipha) 25007 ip_stack_t *ipst = ill->ill_ipst; 25008 25009 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25010 "ip_wput_local_start: q %p", q); 25011 25012 if (ire != NULL) { 25013 ire_type = ire->ire_type; 25014 } else { 25015 /* 25016 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25017 * packet is not multicast, we can't tell the ire type. 25018 */ 25019 ASSERT(CLASSD(ipha->ipha_dst)); 25020 ire_type = IRE_BROADCAST; 25021 } 25022 25023 first_mp = mp; 25024 if (first_mp->b_datap->db_type == M_CTL) { 25025 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25026 if (!io->ipsec_out_secure) { 25027 /* 25028 * This ipsec_out_t was allocated in ip_wput 25029 * for multicast packets to store the ill_index. 25030 * As this is being delivered locally, we don't 25031 * need this anymore. 25032 */ 25033 mp = first_mp->b_cont; 25034 freeb(first_mp); 25035 first_mp = mp; 25036 mctl_present = B_FALSE; 25037 } else { 25038 /* 25039 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25040 * security properties for the looped-back packet. 25041 */ 25042 mctl_present = B_TRUE; 25043 mp = first_mp->b_cont; 25044 ASSERT(mp != NULL); 25045 ipsec_out_to_in(first_mp); 25046 } 25047 } else { 25048 mctl_present = B_FALSE; 25049 } 25050 25051 DTRACE_PROBE4(ip4__loopback__in__start, 25052 ill_t *, ill, ill_t *, NULL, 25053 ipha_t *, ipha, mblk_t *, first_mp); 25054 25055 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25056 ipst->ips_ipv4firewall_loopback_in, 25057 ill, NULL, ipha, first_mp, mp, 0, ipst); 25058 25059 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25060 25061 if (first_mp == NULL) 25062 return; 25063 25064 if (ipst->ips_ipobs_enabled) { 25065 zoneid_t szone, dzone, lookup_zoneid = ALL_ZONES; 25066 zoneid_t stackzoneid = netstackid_to_zoneid( 25067 ipst->ips_netstack->netstack_stackid); 25068 25069 dzone = (stackzoneid == GLOBAL_ZONEID) ? zoneid : stackzoneid; 25070 /* 25071 * 127.0.0.1 is special, as we cannot lookup its zoneid by 25072 * address. Restrict the lookup below to the destination zone. 25073 */ 25074 if (ipha->ipha_src == ntohl(INADDR_LOOPBACK)) 25075 lookup_zoneid = zoneid; 25076 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 25077 lookup_zoneid); 25078 ipobs_hook(mp, IPOBS_HOOK_LOCAL, szone, dzone, ill, 25079 IPV4_VERSION, 0, ipst); 25080 } 25081 25082 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, void_ip_t *, 25083 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL, 25084 int, 1); 25085 25086 ipst->ips_loopback_packets++; 25087 25088 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25089 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25090 if (!IS_SIMPLE_IPH(ipha)) { 25091 ip_wput_local_options(ipha, ipst); 25092 } 25093 25094 protocol = ipha->ipha_protocol; 25095 switch (protocol) { 25096 case IPPROTO_ICMP: { 25097 ire_t *ire_zone; 25098 ilm_t *ilm; 25099 mblk_t *mp1; 25100 zoneid_t last_zoneid; 25101 ilm_walker_t ilw; 25102 25103 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25104 ASSERT(ire_type == IRE_BROADCAST); 25105 /* 25106 * In the multicast case, applications may have joined 25107 * the group from different zones, so we need to deliver 25108 * the packet to each of them. Loop through the 25109 * multicast memberships structures (ilm) on the receive 25110 * ill and send a copy of the packet up each matching 25111 * one. However, we don't do this for multicasts sent on 25112 * the loopback interface (PHYI_LOOPBACK flag set) as 25113 * they must stay in the sender's zone. 25114 * 25115 * ilm_add_v6() ensures that ilms in the same zone are 25116 * contiguous in the ill_ilm list. We use this property 25117 * to avoid sending duplicates needed when two 25118 * applications in the same zone join the same group on 25119 * different logical interfaces: we ignore the ilm if 25120 * it's zoneid is the same as the last matching one. 25121 * In addition, the sending of the packet for 25122 * ire_zoneid is delayed until all of the other ilms 25123 * have been exhausted. 25124 */ 25125 last_zoneid = -1; 25126 ilm = ilm_walker_start(&ilw, ill); 25127 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 25128 if (ipha->ipha_dst != ilm->ilm_addr || 25129 ilm->ilm_zoneid == last_zoneid || 25130 ilm->ilm_zoneid == zoneid || 25131 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25132 continue; 25133 mp1 = ip_copymsg(first_mp); 25134 if (mp1 == NULL) 25135 continue; 25136 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 25137 0, 0, mctl_present, B_FALSE, ill, 25138 ilm->ilm_zoneid); 25139 last_zoneid = ilm->ilm_zoneid; 25140 } 25141 ilm_walker_finish(&ilw); 25142 /* 25143 * Loopback case: the sending endpoint has 25144 * IP_MULTICAST_LOOP disabled, therefore we don't 25145 * dispatch the multicast packet to the sending zone. 25146 */ 25147 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25148 freemsg(first_mp); 25149 return; 25150 } 25151 } else if (ire_type == IRE_BROADCAST) { 25152 /* 25153 * In the broadcast case, there may be many zones 25154 * which need a copy of the packet delivered to them. 25155 * There is one IRE_BROADCAST per broadcast address 25156 * and per zone; we walk those using a helper function. 25157 * In addition, the sending of the packet for zoneid is 25158 * delayed until all of the other ires have been 25159 * processed. 25160 */ 25161 IRB_REFHOLD(ire->ire_bucket); 25162 ire_zone = NULL; 25163 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25164 ire)) != NULL) { 25165 mp1 = ip_copymsg(first_mp); 25166 if (mp1 == NULL) 25167 continue; 25168 25169 UPDATE_IB_PKT_COUNT(ire_zone); 25170 ire_zone->ire_last_used_time = lbolt; 25171 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25172 mctl_present, B_FALSE, ill, 25173 ire_zone->ire_zoneid); 25174 } 25175 IRB_REFRELE(ire->ire_bucket); 25176 } 25177 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25178 0, mctl_present, B_FALSE, ill, zoneid); 25179 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25180 "ip_wput_local_end: q %p (%S)", 25181 q, "icmp"); 25182 return; 25183 } 25184 case IPPROTO_IGMP: 25185 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25186 /* Bad packet - discarded by igmp_input */ 25187 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25188 "ip_wput_local_end: q %p (%S)", 25189 q, "igmp_input--bad packet"); 25190 if (mctl_present) 25191 freeb(first_mp); 25192 return; 25193 } 25194 /* 25195 * igmp_input() may have returned the pulled up message. 25196 * So first_mp and ipha need to be reinitialized. 25197 */ 25198 ipha = (ipha_t *)mp->b_rptr; 25199 if (mctl_present) 25200 first_mp->b_cont = mp; 25201 else 25202 first_mp = mp; 25203 /* deliver to local raw users */ 25204 break; 25205 case IPPROTO_ENCAP: 25206 /* 25207 * This case is covered by either ip_fanout_proto, or by 25208 * the above security processing for self-tunneled packets. 25209 */ 25210 break; 25211 case IPPROTO_UDP: { 25212 uint16_t *up; 25213 uint32_t ports; 25214 25215 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25216 UDP_PORTS_OFFSET); 25217 /* Force a 'valid' checksum. */ 25218 up[3] = 0; 25219 25220 ports = *(uint32_t *)up; 25221 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25222 (ire_type == IRE_BROADCAST), 25223 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25224 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25225 ill, zoneid); 25226 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25227 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25228 return; 25229 } 25230 case IPPROTO_TCP: { 25231 25232 /* 25233 * For TCP, discard broadcast packets. 25234 */ 25235 if ((ushort_t)ire_type == IRE_BROADCAST) { 25236 freemsg(first_mp); 25237 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25238 ip2dbg(("ip_wput_local: discard broadcast\n")); 25239 return; 25240 } 25241 25242 if (mp->b_datap->db_type == M_DATA) { 25243 /* 25244 * M_DATA mblk, so init mblk (chain) for no struio(). 25245 */ 25246 mblk_t *mp1 = mp; 25247 25248 do { 25249 mp1->b_datap->db_struioflag = 0; 25250 } while ((mp1 = mp1->b_cont) != NULL); 25251 } 25252 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25253 <= mp->b_wptr); 25254 ip_fanout_tcp(q, first_mp, ill, ipha, 25255 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25256 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25257 mctl_present, B_FALSE, zoneid); 25258 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25259 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25260 return; 25261 } 25262 case IPPROTO_SCTP: 25263 { 25264 uint32_t ports; 25265 25266 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25267 ip_fanout_sctp(first_mp, ill, ipha, ports, 25268 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25269 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25270 return; 25271 } 25272 25273 default: 25274 break; 25275 } 25276 /* 25277 * Find a client for some other protocol. We give 25278 * copies to multiple clients, if more than one is 25279 * bound. 25280 */ 25281 ip_fanout_proto(q, first_mp, ill, ipha, 25282 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25283 mctl_present, B_FALSE, ill, zoneid); 25284 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25285 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25286 #undef rptr 25287 } 25288 25289 /* 25290 * Update any source route, record route, or timestamp options. 25291 * Check that we are at end of strict source route. 25292 * The options have been sanity checked by ip_wput_options(). 25293 */ 25294 static void 25295 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25296 { 25297 ipoptp_t opts; 25298 uchar_t *opt; 25299 uint8_t optval; 25300 uint8_t optlen; 25301 ipaddr_t dst; 25302 uint32_t ts; 25303 ire_t *ire; 25304 timestruc_t now; 25305 25306 ip2dbg(("ip_wput_local_options\n")); 25307 for (optval = ipoptp_first(&opts, ipha); 25308 optval != IPOPT_EOL; 25309 optval = ipoptp_next(&opts)) { 25310 opt = opts.ipoptp_cur; 25311 optlen = opts.ipoptp_len; 25312 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25313 switch (optval) { 25314 uint32_t off; 25315 case IPOPT_SSRR: 25316 case IPOPT_LSRR: 25317 off = opt[IPOPT_OFFSET]; 25318 off--; 25319 if (optlen < IP_ADDR_LEN || 25320 off > optlen - IP_ADDR_LEN) { 25321 /* End of source route */ 25322 break; 25323 } 25324 /* 25325 * This will only happen if two consecutive entries 25326 * in the source route contains our address or if 25327 * it is a packet with a loose source route which 25328 * reaches us before consuming the whole source route 25329 */ 25330 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25331 if (optval == IPOPT_SSRR) { 25332 return; 25333 } 25334 /* 25335 * Hack: instead of dropping the packet truncate the 25336 * source route to what has been used by filling the 25337 * rest with IPOPT_NOP. 25338 */ 25339 opt[IPOPT_OLEN] = (uint8_t)off; 25340 while (off < optlen) { 25341 opt[off++] = IPOPT_NOP; 25342 } 25343 break; 25344 case IPOPT_RR: 25345 off = opt[IPOPT_OFFSET]; 25346 off--; 25347 if (optlen < IP_ADDR_LEN || 25348 off > optlen - IP_ADDR_LEN) { 25349 /* No more room - ignore */ 25350 ip1dbg(( 25351 "ip_wput_forward_options: end of RR\n")); 25352 break; 25353 } 25354 dst = htonl(INADDR_LOOPBACK); 25355 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25356 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25357 break; 25358 case IPOPT_TS: 25359 /* Insert timestamp if there is romm */ 25360 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25361 case IPOPT_TS_TSONLY: 25362 off = IPOPT_TS_TIMELEN; 25363 break; 25364 case IPOPT_TS_PRESPEC: 25365 case IPOPT_TS_PRESPEC_RFC791: 25366 /* Verify that the address matched */ 25367 off = opt[IPOPT_OFFSET] - 1; 25368 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25369 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25370 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25371 ipst); 25372 if (ire == NULL) { 25373 /* Not for us */ 25374 break; 25375 } 25376 ire_refrele(ire); 25377 /* FALLTHRU */ 25378 case IPOPT_TS_TSANDADDR: 25379 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25380 break; 25381 default: 25382 /* 25383 * ip_*put_options should have already 25384 * dropped this packet. 25385 */ 25386 cmn_err(CE_PANIC, "ip_wput_local_options: " 25387 "unknown IT - bug in ip_wput_options?\n"); 25388 return; /* Keep "lint" happy */ 25389 } 25390 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25391 /* Increase overflow counter */ 25392 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25393 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25394 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25395 (off << 4); 25396 break; 25397 } 25398 off = opt[IPOPT_OFFSET] - 1; 25399 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25400 case IPOPT_TS_PRESPEC: 25401 case IPOPT_TS_PRESPEC_RFC791: 25402 case IPOPT_TS_TSANDADDR: 25403 dst = htonl(INADDR_LOOPBACK); 25404 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25405 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25406 /* FALLTHRU */ 25407 case IPOPT_TS_TSONLY: 25408 off = opt[IPOPT_OFFSET] - 1; 25409 /* Compute # of milliseconds since midnight */ 25410 gethrestime(&now); 25411 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25412 now.tv_nsec / (NANOSEC / MILLISEC); 25413 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25414 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25415 break; 25416 } 25417 break; 25418 } 25419 } 25420 } 25421 25422 /* 25423 * Send out a multicast packet on interface ipif. 25424 * The sender does not have an conn. 25425 * Caller verifies that this isn't a PHYI_LOOPBACK. 25426 */ 25427 void 25428 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25429 { 25430 ipha_t *ipha; 25431 ire_t *ire; 25432 ipaddr_t dst; 25433 mblk_t *first_mp; 25434 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25435 25436 /* igmp_sendpkt always allocates a ipsec_out_t */ 25437 ASSERT(mp->b_datap->db_type == M_CTL); 25438 ASSERT(!ipif->ipif_isv6); 25439 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25440 25441 first_mp = mp; 25442 mp = first_mp->b_cont; 25443 ASSERT(mp->b_datap->db_type == M_DATA); 25444 ipha = (ipha_t *)mp->b_rptr; 25445 25446 /* 25447 * Find an IRE which matches the destination and the outgoing 25448 * queue (i.e. the outgoing interface.) 25449 */ 25450 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25451 dst = ipif->ipif_pp_dst_addr; 25452 else 25453 dst = ipha->ipha_dst; 25454 /* 25455 * The source address has already been initialized by the 25456 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25457 * be sufficient rather than MATCH_IRE_IPIF. 25458 * 25459 * This function is used for sending IGMP packets. For IPMP, 25460 * we sidestep IGMP snooping issues by sending all multicast 25461 * traffic on a single interface in the IPMP group. 25462 */ 25463 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25464 MATCH_IRE_ILL, ipst); 25465 if (!ire) { 25466 /* 25467 * Mark this packet to make it be delivered to 25468 * ip_wput_ire after the new ire has been 25469 * created. 25470 */ 25471 mp->b_prev = NULL; 25472 mp->b_next = NULL; 25473 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25474 zoneid, &zero_info); 25475 return; 25476 } 25477 25478 /* 25479 * Honor the RTF_SETSRC flag; this is the only case 25480 * where we force this addr whatever the current src addr is, 25481 * because this address is set by igmp_sendpkt(), and 25482 * cannot be specified by any user. 25483 */ 25484 if (ire->ire_flags & RTF_SETSRC) { 25485 ipha->ipha_src = ire->ire_src_addr; 25486 } 25487 25488 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25489 } 25490 25491 /* 25492 * NOTE : This function does not ire_refrele the ire argument passed in. 25493 * 25494 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25495 * failure. The nce_fp_mp can vanish any time in the case of 25496 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25497 * the ire_lock to access the nce_fp_mp in this case. 25498 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25499 * prepending a fastpath message IPQoS processing must precede it, we also set 25500 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25501 * (IPQoS might have set the b_band for CoS marking). 25502 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25503 * must follow it so that IPQoS can mark the dl_priority field for CoS 25504 * marking, if needed. 25505 */ 25506 static mblk_t * 25507 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, 25508 uint32_t ill_index, ipha_t **iphap) 25509 { 25510 uint_t hlen; 25511 ipha_t *ipha; 25512 mblk_t *mp1; 25513 boolean_t qos_done = B_FALSE; 25514 uchar_t *ll_hdr; 25515 ip_stack_t *ipst = ire->ire_ipst; 25516 25517 #define rptr ((uchar_t *)ipha) 25518 25519 ipha = (ipha_t *)mp->b_rptr; 25520 hlen = 0; 25521 LOCK_IRE_FP_MP(ire); 25522 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25523 ASSERT(DB_TYPE(mp1) == M_DATA); 25524 /* Initiate IPPF processing */ 25525 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25526 UNLOCK_IRE_FP_MP(ire); 25527 ip_process(proc, &mp, ill_index); 25528 if (mp == NULL) 25529 return (NULL); 25530 25531 ipha = (ipha_t *)mp->b_rptr; 25532 LOCK_IRE_FP_MP(ire); 25533 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25534 qos_done = B_TRUE; 25535 goto no_fp_mp; 25536 } 25537 ASSERT(DB_TYPE(mp1) == M_DATA); 25538 } 25539 hlen = MBLKL(mp1); 25540 /* 25541 * Check if we have enough room to prepend fastpath 25542 * header 25543 */ 25544 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25545 ll_hdr = rptr - hlen; 25546 bcopy(mp1->b_rptr, ll_hdr, hlen); 25547 /* 25548 * Set the b_rptr to the start of the link layer 25549 * header 25550 */ 25551 mp->b_rptr = ll_hdr; 25552 mp1 = mp; 25553 } else { 25554 mp1 = copyb(mp1); 25555 if (mp1 == NULL) 25556 goto unlock_err; 25557 mp1->b_band = mp->b_band; 25558 mp1->b_cont = mp; 25559 /* 25560 * XXX disable ICK_VALID and compute checksum 25561 * here; can happen if nce_fp_mp changes and 25562 * it can't be copied now due to insufficient 25563 * space. (unlikely, fp mp can change, but it 25564 * does not increase in length) 25565 */ 25566 } 25567 UNLOCK_IRE_FP_MP(ire); 25568 } else { 25569 no_fp_mp: 25570 mp1 = copyb(ire->ire_nce->nce_res_mp); 25571 if (mp1 == NULL) { 25572 unlock_err: 25573 UNLOCK_IRE_FP_MP(ire); 25574 freemsg(mp); 25575 return (NULL); 25576 } 25577 UNLOCK_IRE_FP_MP(ire); 25578 mp1->b_cont = mp; 25579 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25580 ip_process(proc, &mp1, ill_index); 25581 if (mp1 == NULL) 25582 return (NULL); 25583 25584 if (mp1->b_cont == NULL) 25585 ipha = NULL; 25586 else 25587 ipha = (ipha_t *)mp1->b_cont->b_rptr; 25588 } 25589 } 25590 25591 *iphap = ipha; 25592 return (mp1); 25593 #undef rptr 25594 } 25595 25596 /* 25597 * Finish the outbound IPsec processing for an IPv6 packet. This function 25598 * is called from ipsec_out_process() if the IPsec packet was processed 25599 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25600 * asynchronously. 25601 */ 25602 void 25603 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25604 ire_t *ire_arg) 25605 { 25606 in6_addr_t *v6dstp; 25607 ire_t *ire; 25608 mblk_t *mp; 25609 ip6_t *ip6h1; 25610 uint_t ill_index; 25611 ipsec_out_t *io; 25612 boolean_t hwaccel; 25613 uint32_t flags = IP6_NO_IPPOLICY; 25614 int match_flags; 25615 zoneid_t zoneid; 25616 boolean_t ill_need_rele = B_FALSE; 25617 boolean_t ire_need_rele = B_FALSE; 25618 ip_stack_t *ipst; 25619 25620 mp = ipsec_mp->b_cont; 25621 ip6h1 = (ip6_t *)mp->b_rptr; 25622 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25623 ASSERT(io->ipsec_out_ns != NULL); 25624 ipst = io->ipsec_out_ns->netstack_ip; 25625 ill_index = io->ipsec_out_ill_index; 25626 if (io->ipsec_out_reachable) { 25627 flags |= IPV6_REACHABILITY_CONFIRMATION; 25628 } 25629 hwaccel = io->ipsec_out_accelerated; 25630 zoneid = io->ipsec_out_zoneid; 25631 ASSERT(zoneid != ALL_ZONES); 25632 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25633 /* Multicast addresses should have non-zero ill_index. */ 25634 v6dstp = &ip6h->ip6_dst; 25635 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25636 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25637 25638 if (ill == NULL && ill_index != 0) { 25639 ill = ip_grab_ill(ipsec_mp, ill_index, B_TRUE, ipst); 25640 /* Failure case frees things for us. */ 25641 if (ill == NULL) 25642 return; 25643 25644 ill_need_rele = B_TRUE; 25645 } 25646 ASSERT(mp != NULL); 25647 25648 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25649 boolean_t unspec_src; 25650 ipif_t *ipif; 25651 25652 /* 25653 * Use the ill_index to get the right ill. 25654 */ 25655 unspec_src = io->ipsec_out_unspec_src; 25656 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25657 if (ipif == NULL) { 25658 if (ill_need_rele) 25659 ill_refrele(ill); 25660 freemsg(ipsec_mp); 25661 return; 25662 } 25663 25664 if (ire_arg != NULL) { 25665 ire = ire_arg; 25666 } else { 25667 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25668 zoneid, msg_getlabel(mp), match_flags, ipst); 25669 ire_need_rele = B_TRUE; 25670 } 25671 if (ire != NULL) { 25672 ipif_refrele(ipif); 25673 /* 25674 * XXX Do the multicast forwarding now, as the IPsec 25675 * processing has been done. 25676 */ 25677 goto send; 25678 } 25679 25680 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25681 mp->b_prev = NULL; 25682 mp->b_next = NULL; 25683 25684 /* 25685 * If the IPsec packet was processed asynchronously, 25686 * drop it now. 25687 */ 25688 if (q == NULL) { 25689 if (ill_need_rele) 25690 ill_refrele(ill); 25691 freemsg(ipsec_mp); 25692 return; 25693 } 25694 25695 ip_newroute_ipif_v6(q, ipsec_mp, ipif, v6dstp, &ip6h->ip6_src, 25696 unspec_src, zoneid); 25697 ipif_refrele(ipif); 25698 } else { 25699 if (ire_arg != NULL) { 25700 ire = ire_arg; 25701 } else { 25702 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, ipst); 25703 ire_need_rele = B_TRUE; 25704 } 25705 if (ire != NULL) 25706 goto send; 25707 /* 25708 * ire disappeared underneath. 25709 * 25710 * What we need to do here is the ip_newroute 25711 * logic to get the ire without doing the IPsec 25712 * processing. Follow the same old path. But this 25713 * time, ip_wput or ire_add_then_send will call us 25714 * directly as all the IPsec operations are done. 25715 */ 25716 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25717 mp->b_prev = NULL; 25718 mp->b_next = NULL; 25719 25720 /* 25721 * If the IPsec packet was processed asynchronously, 25722 * drop it now. 25723 */ 25724 if (q == NULL) { 25725 if (ill_need_rele) 25726 ill_refrele(ill); 25727 freemsg(ipsec_mp); 25728 return; 25729 } 25730 25731 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25732 zoneid, ipst); 25733 } 25734 if (ill != NULL && ill_need_rele) 25735 ill_refrele(ill); 25736 return; 25737 send: 25738 if (ill != NULL && ill_need_rele) 25739 ill_refrele(ill); 25740 25741 /* Local delivery */ 25742 if (ire->ire_stq == NULL) { 25743 ill_t *out_ill; 25744 ASSERT(q != NULL); 25745 25746 /* PFHooks: LOOPBACK_OUT */ 25747 out_ill = ire_to_ill(ire); 25748 25749 /* 25750 * DTrace this as ip:::send. A blocked packet will fire the 25751 * send probe, but not the receive probe. 25752 */ 25753 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25754 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, out_ill, 25755 ipha_t *, NULL, ip6_t *, ip6h, int, 1); 25756 25757 DTRACE_PROBE4(ip6__loopback__out__start, 25758 ill_t *, NULL, ill_t *, out_ill, 25759 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25760 25761 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25762 ipst->ips_ipv6firewall_loopback_out, 25763 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25764 25765 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25766 25767 if (ipsec_mp != NULL) { 25768 ip_wput_local_v6(RD(q), out_ill, 25769 ip6h, ipsec_mp, ire, 0, zoneid); 25770 } 25771 if (ire_need_rele) 25772 ire_refrele(ire); 25773 return; 25774 } 25775 /* 25776 * Everything is done. Send it out on the wire. 25777 * We force the insertion of a fragment header using the 25778 * IPH_FRAG_HDR flag in two cases: 25779 * - after reception of an ICMPv6 "packet too big" message 25780 * with a MTU < 1280 (cf. RFC 2460 section 5) 25781 * - for multirouted IPv6 packets, so that the receiver can 25782 * discard duplicates according to their fragment identifier 25783 */ 25784 /* XXX fix flow control problems. */ 25785 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25786 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25787 if (hwaccel) { 25788 /* 25789 * hardware acceleration does not handle these 25790 * "slow path" cases. 25791 */ 25792 /* IPsec KSTATS: should bump bean counter here. */ 25793 if (ire_need_rele) 25794 ire_refrele(ire); 25795 freemsg(ipsec_mp); 25796 return; 25797 } 25798 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25799 (mp->b_cont ? msgdsize(mp) : 25800 mp->b_wptr - (uchar_t *)ip6h)) { 25801 /* IPsec KSTATS: should bump bean counter here. */ 25802 ip0dbg(("Packet length mismatch: %d, %ld\n", 25803 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25804 msgdsize(mp))); 25805 if (ire_need_rele) 25806 ire_refrele(ire); 25807 freemsg(ipsec_mp); 25808 return; 25809 } 25810 ASSERT(mp->b_prev == NULL); 25811 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25812 ntohs(ip6h->ip6_plen) + 25813 IPV6_HDR_LEN, ire->ire_max_frag)); 25814 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25815 ire->ire_max_frag); 25816 } else { 25817 UPDATE_OB_PKT_COUNT(ire); 25818 ire->ire_last_used_time = lbolt; 25819 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25820 } 25821 if (ire_need_rele) 25822 ire_refrele(ire); 25823 freeb(ipsec_mp); 25824 } 25825 25826 void 25827 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25828 { 25829 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25830 da_ipsec_t *hada; /* data attributes */ 25831 ill_t *ill = (ill_t *)q->q_ptr; 25832 25833 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25834 25835 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25836 /* IPsec KSTATS: Bump lose counter here! */ 25837 freemsg(mp); 25838 return; 25839 } 25840 25841 /* 25842 * It's an IPsec packet that must be 25843 * accelerated by the Provider, and the 25844 * outbound ill is IPsec acceleration capable. 25845 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25846 * to the ill. 25847 * IPsec KSTATS: should bump packet counter here. 25848 */ 25849 25850 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25851 if (hada_mp == NULL) { 25852 /* IPsec KSTATS: should bump packet counter here. */ 25853 freemsg(mp); 25854 return; 25855 } 25856 25857 hada_mp->b_datap->db_type = M_CTL; 25858 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25859 hada_mp->b_cont = mp; 25860 25861 hada = (da_ipsec_t *)hada_mp->b_rptr; 25862 bzero(hada, sizeof (da_ipsec_t)); 25863 hada->da_type = IPHADA_M_CTL; 25864 25865 putnext(q, hada_mp); 25866 } 25867 25868 /* 25869 * Finish the outbound IPsec processing. This function is called from 25870 * ipsec_out_process() if the IPsec packet was processed 25871 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25872 * asynchronously. 25873 */ 25874 void 25875 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25876 ire_t *ire_arg) 25877 { 25878 uint32_t v_hlen_tos_len; 25879 ipaddr_t dst; 25880 ipif_t *ipif = NULL; 25881 ire_t *ire; 25882 ire_t *ire1 = NULL; 25883 mblk_t *next_mp = NULL; 25884 uint32_t max_frag; 25885 boolean_t multirt_send = B_FALSE; 25886 mblk_t *mp; 25887 ipha_t *ipha1; 25888 uint_t ill_index; 25889 ipsec_out_t *io; 25890 int match_flags; 25891 irb_t *irb = NULL; 25892 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25893 zoneid_t zoneid; 25894 ipxmit_state_t pktxmit_state; 25895 ip_stack_t *ipst; 25896 25897 #ifdef _BIG_ENDIAN 25898 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25899 #else 25900 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25901 #endif 25902 25903 mp = ipsec_mp->b_cont; 25904 ipha1 = (ipha_t *)mp->b_rptr; 25905 ASSERT(mp != NULL); 25906 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25907 dst = ipha->ipha_dst; 25908 25909 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25910 ill_index = io->ipsec_out_ill_index; 25911 zoneid = io->ipsec_out_zoneid; 25912 ASSERT(zoneid != ALL_ZONES); 25913 ipst = io->ipsec_out_ns->netstack_ip; 25914 ASSERT(io->ipsec_out_ns != NULL); 25915 25916 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25917 if (ill == NULL && ill_index != 0) { 25918 ill = ip_grab_ill(ipsec_mp, ill_index, B_FALSE, ipst); 25919 /* Failure case frees things for us. */ 25920 if (ill == NULL) 25921 return; 25922 25923 ill_need_rele = B_TRUE; 25924 } 25925 25926 if (CLASSD(dst)) { 25927 boolean_t conn_dontroute; 25928 /* 25929 * Use the ill_index to get the right ipif. 25930 */ 25931 conn_dontroute = io->ipsec_out_dontroute; 25932 if (ill_index == 0) 25933 ipif = ipif_lookup_group(dst, zoneid, ipst); 25934 else 25935 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25936 if (ipif == NULL) { 25937 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25938 " multicast\n")); 25939 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25940 freemsg(ipsec_mp); 25941 goto done; 25942 } 25943 /* 25944 * ipha_src has already been intialized with the 25945 * value of the ipif in ip_wput. All we need now is 25946 * an ire to send this downstream. 25947 */ 25948 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25949 msg_getlabel(mp), match_flags, ipst); 25950 if (ire != NULL) { 25951 ill_t *ill1; 25952 /* 25953 * Do the multicast forwarding now, as the IPsec 25954 * processing has been done. 25955 */ 25956 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25957 (ill1 = ire_to_ill(ire))) { 25958 if (ip_mforward(ill1, ipha, mp)) { 25959 freemsg(ipsec_mp); 25960 ip1dbg(("ip_wput_ipsec_out: mforward " 25961 "failed\n")); 25962 ire_refrele(ire); 25963 goto done; 25964 } 25965 } 25966 goto send; 25967 } 25968 25969 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25970 mp->b_prev = NULL; 25971 mp->b_next = NULL; 25972 25973 /* 25974 * If the IPsec packet was processed asynchronously, 25975 * drop it now. 25976 */ 25977 if (q == NULL) { 25978 freemsg(ipsec_mp); 25979 goto done; 25980 } 25981 25982 /* 25983 * We may be using a wrong ipif to create the ire. 25984 * But it is okay as the source address is assigned 25985 * for the packet already. Next outbound packet would 25986 * create the IRE with the right IPIF in ip_wput. 25987 * 25988 * Also handle RTF_MULTIRT routes. 25989 */ 25990 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25991 zoneid, &zero_info); 25992 } else { 25993 if (ire_arg != NULL) { 25994 ire = ire_arg; 25995 ire_need_rele = B_FALSE; 25996 } else { 25997 ire = ire_cache_lookup(dst, zoneid, 25998 msg_getlabel(mp), ipst); 25999 } 26000 if (ire != NULL) { 26001 goto send; 26002 } 26003 26004 /* 26005 * ire disappeared underneath. 26006 * 26007 * What we need to do here is the ip_newroute 26008 * logic to get the ire without doing the IPsec 26009 * processing. Follow the same old path. But this 26010 * time, ip_wput or ire_add_then_put will call us 26011 * directly as all the IPsec operations are done. 26012 */ 26013 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26014 mp->b_prev = NULL; 26015 mp->b_next = NULL; 26016 26017 /* 26018 * If the IPsec packet was processed asynchronously, 26019 * drop it now. 26020 */ 26021 if (q == NULL) { 26022 freemsg(ipsec_mp); 26023 goto done; 26024 } 26025 26026 /* 26027 * Since we're going through ip_newroute() again, we 26028 * need to make sure we don't: 26029 * 26030 * 1.) Trigger the ASSERT() with the ipha_ident 26031 * overloading. 26032 * 2.) Redo transport-layer checksumming, since we've 26033 * already done all that to get this far. 26034 * 26035 * The easiest way not do either of the above is to set 26036 * the ipha_ident field to IP_HDR_INCLUDED. 26037 */ 26038 ipha->ipha_ident = IP_HDR_INCLUDED; 26039 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 26040 zoneid, ipst); 26041 } 26042 goto done; 26043 send: 26044 if (ire->ire_stq == NULL) { 26045 ill_t *out_ill; 26046 /* 26047 * Loopbacks go through ip_wput_local except for one case. 26048 * We come here if we generate a icmp_frag_needed message 26049 * after IPsec processing is over. When this function calls 26050 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26051 * icmp_frag_needed. The message generated comes back here 26052 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26053 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26054 * source address as it is usually set in ip_wput_ire. As 26055 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26056 * and we end up here. We can't enter ip_wput_ire once the 26057 * IPsec processing is over and hence we need to do it here. 26058 */ 26059 ASSERT(q != NULL); 26060 UPDATE_OB_PKT_COUNT(ire); 26061 ire->ire_last_used_time = lbolt; 26062 if (ipha->ipha_src == 0) 26063 ipha->ipha_src = ire->ire_src_addr; 26064 26065 /* PFHooks: LOOPBACK_OUT */ 26066 out_ill = ire_to_ill(ire); 26067 26068 /* 26069 * DTrace this as ip:::send. A blocked packet will fire the 26070 * send probe, but not the receive probe. 26071 */ 26072 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 26073 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 26074 ipha_t *, ipha, ip6_t *, NULL, int, 1); 26075 26076 DTRACE_PROBE4(ip4__loopback__out__start, 26077 ill_t *, NULL, ill_t *, out_ill, 26078 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26079 26080 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26081 ipst->ips_ipv4firewall_loopback_out, 26082 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 26083 26084 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26085 26086 if (ipsec_mp != NULL) 26087 ip_wput_local(RD(q), out_ill, 26088 ipha, ipsec_mp, ire, 0, zoneid); 26089 if (ire_need_rele) 26090 ire_refrele(ire); 26091 goto done; 26092 } 26093 26094 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26095 /* 26096 * We are through with IPsec processing. 26097 * Fragment this and send it on the wire. 26098 */ 26099 if (io->ipsec_out_accelerated) { 26100 /* 26101 * The packet has been accelerated but must 26102 * be fragmented. This should not happen 26103 * since AH and ESP must not accelerate 26104 * packets that need fragmentation, however 26105 * the configuration could have changed 26106 * since the AH or ESP processing. 26107 * Drop packet. 26108 * IPsec KSTATS: bump bean counter here. 26109 */ 26110 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26111 "fragmented accelerated packet!\n")); 26112 freemsg(ipsec_mp); 26113 } else { 26114 ip_wput_ire_fragmentit(ipsec_mp, ire, 26115 zoneid, ipst, NULL); 26116 } 26117 if (ire_need_rele) 26118 ire_refrele(ire); 26119 goto done; 26120 } 26121 26122 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26123 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26124 (void *)ire->ire_ipif, (void *)ipif)); 26125 26126 /* 26127 * Multiroute the secured packet. 26128 */ 26129 if (ire->ire_flags & RTF_MULTIRT) { 26130 ire_t *first_ire; 26131 irb = ire->ire_bucket; 26132 ASSERT(irb != NULL); 26133 /* 26134 * This ire has been looked up as the one that 26135 * goes through the given ipif; 26136 * make sure we do not omit any other multiroute ire 26137 * that may be present in the bucket before this one. 26138 */ 26139 IRB_REFHOLD(irb); 26140 for (first_ire = irb->irb_ire; 26141 first_ire != NULL; 26142 first_ire = first_ire->ire_next) { 26143 if ((first_ire->ire_flags & RTF_MULTIRT) && 26144 (first_ire->ire_addr == ire->ire_addr) && 26145 !(first_ire->ire_marks & 26146 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 26147 break; 26148 } 26149 26150 if ((first_ire != NULL) && (first_ire != ire)) { 26151 /* 26152 * Don't change the ire if the packet must 26153 * be fragmented if sent via this new one. 26154 */ 26155 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26156 IRE_REFHOLD(first_ire); 26157 if (ire_need_rele) 26158 ire_refrele(ire); 26159 else 26160 ire_need_rele = B_TRUE; 26161 ire = first_ire; 26162 } 26163 } 26164 IRB_REFRELE(irb); 26165 26166 multirt_send = B_TRUE; 26167 max_frag = ire->ire_max_frag; 26168 } 26169 26170 /* 26171 * In most cases, the emission loop below is entered only once. 26172 * Only in the case where the ire holds the RTF_MULTIRT 26173 * flag, we loop to process all RTF_MULTIRT ires in the 26174 * bucket, and send the packet through all crossed 26175 * RTF_MULTIRT routes. 26176 */ 26177 do { 26178 if (multirt_send) { 26179 /* 26180 * ire1 holds here the next ire to process in the 26181 * bucket. If multirouting is expected, 26182 * any non-RTF_MULTIRT ire that has the 26183 * right destination address is ignored. 26184 */ 26185 ASSERT(irb != NULL); 26186 IRB_REFHOLD(irb); 26187 for (ire1 = ire->ire_next; 26188 ire1 != NULL; 26189 ire1 = ire1->ire_next) { 26190 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26191 continue; 26192 if (ire1->ire_addr != ire->ire_addr) 26193 continue; 26194 if (ire1->ire_marks & 26195 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 26196 continue; 26197 /* No loopback here */ 26198 if (ire1->ire_stq == NULL) 26199 continue; 26200 /* 26201 * Ensure we do not exceed the MTU 26202 * of the next route. 26203 */ 26204 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26205 ip_multirt_bad_mtu(ire1, max_frag); 26206 continue; 26207 } 26208 26209 IRE_REFHOLD(ire1); 26210 break; 26211 } 26212 IRB_REFRELE(irb); 26213 if (ire1 != NULL) { 26214 /* 26215 * We are in a multiple send case, need to 26216 * make a copy of the packet. 26217 */ 26218 next_mp = copymsg(ipsec_mp); 26219 if (next_mp == NULL) { 26220 ire_refrele(ire1); 26221 ire1 = NULL; 26222 } 26223 } 26224 } 26225 /* 26226 * Everything is done. Send it out on the wire 26227 * 26228 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26229 * either send it on the wire or, in the case of 26230 * HW acceleration, call ipsec_hw_putnext. 26231 */ 26232 if (ire->ire_nce && 26233 ire->ire_nce->nce_state != ND_REACHABLE) { 26234 DTRACE_PROBE2(ip__wput__ipsec__bail, 26235 (ire_t *), ire, (mblk_t *), ipsec_mp); 26236 /* 26237 * If ire's link-layer is unresolved (this 26238 * would only happen if the incomplete ire 26239 * was added to cachetable via forwarding path) 26240 * don't bother going to ip_xmit_v4. Just drop the 26241 * packet. 26242 * There is a slight risk here, in that, if we 26243 * have the forwarding path create an incomplete 26244 * IRE, then until the IRE is completed, any 26245 * transmitted IPsec packets will be dropped 26246 * instead of being queued waiting for resolution. 26247 * 26248 * But the likelihood of a forwarding packet and a wput 26249 * packet sending to the same dst at the same time 26250 * and there not yet be an ARP entry for it is small. 26251 * Furthermore, if this actually happens, it might 26252 * be likely that wput would generate multiple 26253 * packets (and forwarding would also have a train 26254 * of packets) for that destination. If this is 26255 * the case, some of them would have been dropped 26256 * anyway, since ARP only queues a few packets while 26257 * waiting for resolution 26258 * 26259 * NOTE: We should really call ip_xmit_v4, 26260 * and let it queue the packet and send the 26261 * ARP query and have ARP come back thus: 26262 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26263 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26264 * hw accel work. But it's too complex to get 26265 * the IPsec hw acceleration approach to fit 26266 * well with ip_xmit_v4 doing ARP without 26267 * doing IPsec simplification. For now, we just 26268 * poke ip_xmit_v4 to trigger the arp resolve, so 26269 * that we can continue with the send on the next 26270 * attempt. 26271 * 26272 * XXX THis should be revisited, when 26273 * the IPsec/IP interaction is cleaned up 26274 */ 26275 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26276 " - dropping packet\n")); 26277 freemsg(ipsec_mp); 26278 /* 26279 * Call ip_xmit_v4() to trigger ARP query 26280 * in case the nce_state is ND_INITIAL 26281 */ 26282 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 26283 goto drop_pkt; 26284 } 26285 26286 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26287 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26288 mblk_t *, ipsec_mp); 26289 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26290 ipst->ips_ipv4firewall_physical_out, NULL, 26291 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26292 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26293 if (ipsec_mp == NULL) 26294 goto drop_pkt; 26295 26296 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26297 pktxmit_state = ip_xmit_v4(mp, ire, 26298 (io->ipsec_out_accelerated ? io : NULL), B_FALSE, NULL); 26299 26300 if ((pktxmit_state == SEND_FAILED) || 26301 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26302 26303 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26304 drop_pkt: 26305 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26306 ipIfStatsOutDiscards); 26307 if (ire_need_rele) 26308 ire_refrele(ire); 26309 if (ire1 != NULL) { 26310 ire_refrele(ire1); 26311 freemsg(next_mp); 26312 } 26313 goto done; 26314 } 26315 26316 freeb(ipsec_mp); 26317 if (ire_need_rele) 26318 ire_refrele(ire); 26319 26320 if (ire1 != NULL) { 26321 ire = ire1; 26322 ire_need_rele = B_TRUE; 26323 ASSERT(next_mp); 26324 ipsec_mp = next_mp; 26325 mp = ipsec_mp->b_cont; 26326 ire1 = NULL; 26327 next_mp = NULL; 26328 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26329 } else { 26330 multirt_send = B_FALSE; 26331 } 26332 } while (multirt_send); 26333 done: 26334 if (ill != NULL && ill_need_rele) 26335 ill_refrele(ill); 26336 if (ipif != NULL) 26337 ipif_refrele(ipif); 26338 } 26339 26340 /* 26341 * Get the ill corresponding to the specified ire, and compare its 26342 * capabilities with the protocol and algorithms specified by the 26343 * the SA obtained from ipsec_out. If they match, annotate the 26344 * ipsec_out structure to indicate that the packet needs acceleration. 26345 * 26346 * 26347 * A packet is eligible for outbound hardware acceleration if the 26348 * following conditions are satisfied: 26349 * 26350 * 1. the packet will not be fragmented 26351 * 2. the provider supports the algorithm 26352 * 3. there is no pending control message being exchanged 26353 * 4. snoop is not attached 26354 * 5. the destination address is not a broadcast or multicast address. 26355 * 26356 * Rationale: 26357 * - Hardware drivers do not support fragmentation with 26358 * the current interface. 26359 * - snoop, multicast, and broadcast may result in exposure of 26360 * a cleartext datagram. 26361 * We check all five of these conditions here. 26362 * 26363 * XXX would like to nuke "ire_t *" parameter here; problem is that 26364 * IRE is only way to figure out if a v4 address is a broadcast and 26365 * thus ineligible for acceleration... 26366 */ 26367 static void 26368 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26369 { 26370 ipsec_out_t *io; 26371 mblk_t *data_mp; 26372 uint_t plen, overhead; 26373 ip_stack_t *ipst; 26374 26375 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26376 return; 26377 26378 if (ill == NULL) 26379 return; 26380 ipst = ill->ill_ipst; 26381 /* 26382 * Destination address is a broadcast or multicast. Punt. 26383 */ 26384 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26385 IRE_LOCAL))) 26386 return; 26387 26388 data_mp = ipsec_mp->b_cont; 26389 26390 if (ill->ill_isv6) { 26391 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26392 26393 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26394 return; 26395 26396 plen = ip6h->ip6_plen; 26397 } else { 26398 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26399 26400 if (CLASSD(ipha->ipha_dst)) 26401 return; 26402 26403 plen = ipha->ipha_length; 26404 } 26405 /* 26406 * Is there a pending DLPI control message being exchanged 26407 * between IP/IPsec and the DLS Provider? If there is, it 26408 * could be a SADB update, and the state of the DLS Provider 26409 * SADB might not be in sync with the SADB maintained by 26410 * IPsec. To avoid dropping packets or using the wrong keying 26411 * material, we do not accelerate this packet. 26412 */ 26413 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26414 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26415 "ill_dlpi_pending! don't accelerate packet\n")); 26416 return; 26417 } 26418 26419 /* 26420 * Is the Provider in promiscous mode? If it does, we don't 26421 * accelerate the packet since it will bounce back up to the 26422 * listeners in the clear. 26423 */ 26424 if (ill->ill_promisc_on_phys) { 26425 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26426 "ill in promiscous mode, don't accelerate packet\n")); 26427 return; 26428 } 26429 26430 /* 26431 * Will the packet require fragmentation? 26432 */ 26433 26434 /* 26435 * IPsec ESP note: this is a pessimistic estimate, but the same 26436 * as is used elsewhere. 26437 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26438 * + 2-byte trailer 26439 */ 26440 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26441 IPSEC_BASE_ESP_HDR_SIZE(sa); 26442 26443 if ((plen + overhead) > ill->ill_max_mtu) 26444 return; 26445 26446 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26447 26448 /* 26449 * Can the ill accelerate this IPsec protocol and algorithm 26450 * specified by the SA? 26451 */ 26452 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26453 ill->ill_isv6, sa, ipst->ips_netstack)) { 26454 return; 26455 } 26456 26457 /* 26458 * Tell AH or ESP that the outbound ill is capable of 26459 * accelerating this packet. 26460 */ 26461 io->ipsec_out_is_capab_ill = B_TRUE; 26462 } 26463 26464 /* 26465 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26466 * 26467 * If this function returns B_TRUE, the requested SA's have been filled 26468 * into the ipsec_out_*_sa pointers. 26469 * 26470 * If the function returns B_FALSE, the packet has been "consumed", most 26471 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26472 * 26473 * The SA references created by the protocol-specific "select" 26474 * function will be released when the ipsec_mp is freed, thanks to the 26475 * ipsec_out_free destructor -- see spd.c. 26476 */ 26477 static boolean_t 26478 ipsec_out_select_sa(mblk_t *ipsec_mp) 26479 { 26480 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26481 ipsec_out_t *io; 26482 ipsec_policy_t *pp; 26483 ipsec_action_t *ap; 26484 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26485 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26486 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26487 26488 if (!io->ipsec_out_secure) { 26489 /* 26490 * We came here by mistake. 26491 * Don't bother with ipsec processing 26492 * We should "discourage" this path in the future. 26493 */ 26494 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26495 return (B_FALSE); 26496 } 26497 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26498 ASSERT((io->ipsec_out_policy != NULL) || 26499 (io->ipsec_out_act != NULL)); 26500 26501 ASSERT(io->ipsec_out_failed == B_FALSE); 26502 26503 /* 26504 * IPsec processing has started. 26505 */ 26506 io->ipsec_out_proc_begin = B_TRUE; 26507 ap = io->ipsec_out_act; 26508 if (ap == NULL) { 26509 pp = io->ipsec_out_policy; 26510 ASSERT(pp != NULL); 26511 ap = pp->ipsp_act; 26512 ASSERT(ap != NULL); 26513 } 26514 26515 /* 26516 * We have an action. now, let's select SA's. 26517 * (In the future, we can cache this in the conn_t..) 26518 */ 26519 if (ap->ipa_want_esp) { 26520 if (io->ipsec_out_esp_sa == NULL) { 26521 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26522 IPPROTO_ESP); 26523 } 26524 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26525 } 26526 26527 if (ap->ipa_want_ah) { 26528 if (io->ipsec_out_ah_sa == NULL) { 26529 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26530 IPPROTO_AH); 26531 } 26532 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26533 /* 26534 * The ESP and AH processing order needs to be preserved 26535 * when both protocols are required (ESP should be applied 26536 * before AH for an outbound packet). Force an ESP ACQUIRE 26537 * when both ESP and AH are required, and an AH ACQUIRE 26538 * is needed. 26539 */ 26540 if (ap->ipa_want_esp && need_ah_acquire) 26541 need_esp_acquire = B_TRUE; 26542 } 26543 26544 /* 26545 * Send an ACQUIRE (extended, regular, or both) if we need one. 26546 * Release SAs that got referenced, but will not be used until we 26547 * acquire _all_ of the SAs we need. 26548 */ 26549 if (need_ah_acquire || need_esp_acquire) { 26550 if (io->ipsec_out_ah_sa != NULL) { 26551 IPSA_REFRELE(io->ipsec_out_ah_sa); 26552 io->ipsec_out_ah_sa = NULL; 26553 } 26554 if (io->ipsec_out_esp_sa != NULL) { 26555 IPSA_REFRELE(io->ipsec_out_esp_sa); 26556 io->ipsec_out_esp_sa = NULL; 26557 } 26558 26559 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26560 return (B_FALSE); 26561 } 26562 26563 return (B_TRUE); 26564 } 26565 26566 /* 26567 * Process an IPSEC_OUT message and see what you can 26568 * do with it. 26569 * IPQoS Notes: 26570 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26571 * IPsec. 26572 * XXX would like to nuke ire_t. 26573 * XXX ill_index better be "real" 26574 */ 26575 void 26576 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26577 { 26578 ipsec_out_t *io; 26579 ipsec_policy_t *pp; 26580 ipsec_action_t *ap; 26581 ipha_t *ipha; 26582 ip6_t *ip6h; 26583 mblk_t *mp; 26584 ill_t *ill; 26585 zoneid_t zoneid; 26586 ipsec_status_t ipsec_rc; 26587 boolean_t ill_need_rele = B_FALSE; 26588 ip_stack_t *ipst; 26589 ipsec_stack_t *ipss; 26590 26591 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26592 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26593 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26594 ipst = io->ipsec_out_ns->netstack_ip; 26595 mp = ipsec_mp->b_cont; 26596 26597 /* 26598 * Initiate IPPF processing. We do it here to account for packets 26599 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26600 * We can check for ipsec_out_proc_begin even for such packets, as 26601 * they will always be false (asserted below). 26602 */ 26603 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26604 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26605 io->ipsec_out_ill_index : ill_index); 26606 if (mp == NULL) { 26607 ip2dbg(("ipsec_out_process: packet dropped "\ 26608 "during IPPF processing\n")); 26609 freeb(ipsec_mp); 26610 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26611 return; 26612 } 26613 } 26614 26615 if (!io->ipsec_out_secure) { 26616 /* 26617 * We came here by mistake. 26618 * Don't bother with ipsec processing 26619 * Should "discourage" this path in the future. 26620 */ 26621 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26622 goto done; 26623 } 26624 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26625 ASSERT((io->ipsec_out_policy != NULL) || 26626 (io->ipsec_out_act != NULL)); 26627 ASSERT(io->ipsec_out_failed == B_FALSE); 26628 26629 ipss = ipst->ips_netstack->netstack_ipsec; 26630 if (!ipsec_loaded(ipss)) { 26631 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26632 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26633 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26634 } else { 26635 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26636 } 26637 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26638 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26639 &ipss->ipsec_dropper); 26640 return; 26641 } 26642 26643 /* 26644 * IPsec processing has started. 26645 */ 26646 io->ipsec_out_proc_begin = B_TRUE; 26647 ap = io->ipsec_out_act; 26648 if (ap == NULL) { 26649 pp = io->ipsec_out_policy; 26650 ASSERT(pp != NULL); 26651 ap = pp->ipsp_act; 26652 ASSERT(ap != NULL); 26653 } 26654 26655 /* 26656 * Save the outbound ill index. When the packet comes back 26657 * from IPsec, we make sure the ill hasn't changed or disappeared 26658 * before sending it the accelerated packet. 26659 */ 26660 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26661 ill = ire_to_ill(ire); 26662 io->ipsec_out_capab_ill_index = ill->ill_phyint->phyint_ifindex; 26663 } 26664 26665 /* 26666 * The order of processing is first insert a IP header if needed. 26667 * Then insert the ESP header and then the AH header. 26668 */ 26669 if ((io->ipsec_out_se_done == B_FALSE) && 26670 (ap->ipa_want_se)) { 26671 /* 26672 * First get the outer IP header before sending 26673 * it to ESP. 26674 */ 26675 ipha_t *oipha, *iipha; 26676 mblk_t *outer_mp, *inner_mp; 26677 26678 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26679 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26680 "ipsec_out_process: " 26681 "Self-Encapsulation failed: Out of memory\n"); 26682 freemsg(ipsec_mp); 26683 if (ill != NULL) { 26684 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26685 } else { 26686 BUMP_MIB(&ipst->ips_ip_mib, 26687 ipIfStatsOutDiscards); 26688 } 26689 return; 26690 } 26691 inner_mp = ipsec_mp->b_cont; 26692 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26693 oipha = (ipha_t *)outer_mp->b_rptr; 26694 iipha = (ipha_t *)inner_mp->b_rptr; 26695 *oipha = *iipha; 26696 outer_mp->b_wptr += sizeof (ipha_t); 26697 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26698 sizeof (ipha_t)); 26699 oipha->ipha_protocol = IPPROTO_ENCAP; 26700 oipha->ipha_version_and_hdr_length = 26701 IP_SIMPLE_HDR_VERSION; 26702 oipha->ipha_hdr_checksum = 0; 26703 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26704 outer_mp->b_cont = inner_mp; 26705 ipsec_mp->b_cont = outer_mp; 26706 26707 io->ipsec_out_se_done = B_TRUE; 26708 io->ipsec_out_tunnel = B_TRUE; 26709 } 26710 26711 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26712 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26713 !ipsec_out_select_sa(ipsec_mp)) 26714 return; 26715 26716 /* 26717 * By now, we know what SA's to use. Toss over to ESP & AH 26718 * to do the heavy lifting. 26719 */ 26720 zoneid = io->ipsec_out_zoneid; 26721 ASSERT(zoneid != ALL_ZONES); 26722 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26723 ASSERT(io->ipsec_out_esp_sa != NULL); 26724 io->ipsec_out_esp_done = B_TRUE; 26725 /* 26726 * Note that since hw accel can only apply one transform, 26727 * not two, we skip hw accel for ESP if we also have AH 26728 * This is an design limitation of the interface 26729 * which should be revisited. 26730 */ 26731 ASSERT(ire != NULL); 26732 if (io->ipsec_out_ah_sa == NULL) { 26733 ill = (ill_t *)ire->ire_stq->q_ptr; 26734 ipsec_out_is_accelerated(ipsec_mp, 26735 io->ipsec_out_esp_sa, ill, ire); 26736 } 26737 26738 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26739 switch (ipsec_rc) { 26740 case IPSEC_STATUS_SUCCESS: 26741 break; 26742 case IPSEC_STATUS_FAILED: 26743 if (ill != NULL) { 26744 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26745 } else { 26746 BUMP_MIB(&ipst->ips_ip_mib, 26747 ipIfStatsOutDiscards); 26748 } 26749 /* FALLTHRU */ 26750 case IPSEC_STATUS_PENDING: 26751 return; 26752 } 26753 } 26754 26755 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26756 ASSERT(io->ipsec_out_ah_sa != NULL); 26757 io->ipsec_out_ah_done = B_TRUE; 26758 if (ire == NULL) { 26759 int idx = io->ipsec_out_capab_ill_index; 26760 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26761 NULL, NULL, NULL, NULL, ipst); 26762 ill_need_rele = B_TRUE; 26763 } else { 26764 ill = (ill_t *)ire->ire_stq->q_ptr; 26765 } 26766 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26767 ire); 26768 26769 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26770 switch (ipsec_rc) { 26771 case IPSEC_STATUS_SUCCESS: 26772 break; 26773 case IPSEC_STATUS_FAILED: 26774 if (ill != NULL) { 26775 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26776 } else { 26777 BUMP_MIB(&ipst->ips_ip_mib, 26778 ipIfStatsOutDiscards); 26779 } 26780 /* FALLTHRU */ 26781 case IPSEC_STATUS_PENDING: 26782 if (ill != NULL && ill_need_rele) 26783 ill_refrele(ill); 26784 return; 26785 } 26786 } 26787 /* 26788 * We are done with IPsec processing. Send it over the wire. 26789 */ 26790 done: 26791 mp = ipsec_mp->b_cont; 26792 ipha = (ipha_t *)mp->b_rptr; 26793 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26794 ip_wput_ipsec_out(q, ipsec_mp, ipha, ire->ire_ipif->ipif_ill, 26795 ire); 26796 } else { 26797 ip6h = (ip6_t *)ipha; 26798 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ire->ire_ipif->ipif_ill, 26799 ire); 26800 } 26801 if (ill != NULL && ill_need_rele) 26802 ill_refrele(ill); 26803 } 26804 26805 /* ARGSUSED */ 26806 void 26807 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26808 { 26809 opt_restart_t *or; 26810 int err; 26811 conn_t *connp; 26812 cred_t *cr; 26813 26814 ASSERT(CONN_Q(q)); 26815 connp = Q_TO_CONN(q); 26816 26817 ASSERT(first_mp->b_datap->db_type == M_CTL); 26818 or = (opt_restart_t *)first_mp->b_rptr; 26819 /* 26820 * We checked for a db_credp the first time svr4_optcom_req 26821 * was called (from ip_wput_nondata). So we can just ASSERT here. 26822 */ 26823 cr = msg_getcred(first_mp, NULL); 26824 ASSERT(cr != NULL); 26825 26826 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26827 err = svr4_optcom_req(q, first_mp, cr, 26828 &ip_opt_obj, B_FALSE); 26829 } else { 26830 ASSERT(or->or_type == T_OPTMGMT_REQ); 26831 err = tpi_optcom_req(q, first_mp, cr, 26832 &ip_opt_obj, B_FALSE); 26833 } 26834 if (err != EINPROGRESS) { 26835 /* operation is done */ 26836 CONN_OPER_PENDING_DONE(connp); 26837 } 26838 } 26839 26840 /* 26841 * ioctls that go through a down/up sequence may need to wait for the down 26842 * to complete. This involves waiting for the ire and ipif refcnts to go down 26843 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26844 */ 26845 /* ARGSUSED */ 26846 void 26847 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26848 { 26849 struct iocblk *iocp; 26850 mblk_t *mp1; 26851 ip_ioctl_cmd_t *ipip; 26852 int err; 26853 sin_t *sin; 26854 struct lifreq *lifr; 26855 struct ifreq *ifr; 26856 26857 iocp = (struct iocblk *)mp->b_rptr; 26858 ASSERT(ipsq != NULL); 26859 /* Existence of mp1 verified in ip_wput_nondata */ 26860 mp1 = mp->b_cont->b_cont; 26861 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26862 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26863 /* 26864 * Special case where ipx_current_ipif is not set: 26865 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26866 * We are here as were not able to complete the operation in 26867 * ipif_set_values because we could not become exclusive on 26868 * the new ipsq. 26869 */ 26870 ill_t *ill = q->q_ptr; 26871 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26872 } 26873 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 26874 26875 if (ipip->ipi_cmd_type == IF_CMD) { 26876 /* This a old style SIOC[GS]IF* command */ 26877 ifr = (struct ifreq *)mp1->b_rptr; 26878 sin = (sin_t *)&ifr->ifr_addr; 26879 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26880 /* This a new style SIOC[GS]LIF* command */ 26881 lifr = (struct lifreq *)mp1->b_rptr; 26882 sin = (sin_t *)&lifr->lifr_addr; 26883 } else { 26884 sin = NULL; 26885 } 26886 26887 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 26888 q, mp, ipip, mp1->b_rptr); 26889 26890 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26891 } 26892 26893 /* 26894 * ioctl processing 26895 * 26896 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26897 * the ioctl command in the ioctl tables, determines the copyin data size 26898 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26899 * 26900 * ioctl processing then continues when the M_IOCDATA makes its way down to 26901 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26902 * associated 'conn' is refheld till the end of the ioctl and the general 26903 * ioctl processing function ip_process_ioctl() is called to extract the 26904 * arguments and process the ioctl. To simplify extraction, ioctl commands 26905 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26906 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26907 * is used to extract the ioctl's arguments. 26908 * 26909 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26910 * so goes thru the serialization primitive ipsq_try_enter. Then the 26911 * appropriate function to handle the ioctl is called based on the entry in 26912 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26913 * which also refreleases the 'conn' that was refheld at the start of the 26914 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26915 * 26916 * Many exclusive ioctls go thru an internal down up sequence as part of 26917 * the operation. For example an attempt to change the IP address of an 26918 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26919 * does all the cleanup such as deleting all ires that use this address. 26920 * Then we need to wait till all references to the interface go away. 26921 */ 26922 void 26923 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26924 { 26925 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26926 ip_ioctl_cmd_t *ipip = arg; 26927 ip_extract_func_t *extract_funcp; 26928 cmd_info_t ci; 26929 int err; 26930 boolean_t entered_ipsq = B_FALSE; 26931 26932 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26933 26934 if (ipip == NULL) 26935 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26936 26937 /* 26938 * SIOCLIFADDIF needs to go thru a special path since the 26939 * ill may not exist yet. This happens in the case of lo0 26940 * which is created using this ioctl. 26941 */ 26942 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26943 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26944 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26945 return; 26946 } 26947 26948 ci.ci_ipif = NULL; 26949 if (ipip->ipi_cmd_type == MISC_CMD) { 26950 /* 26951 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 26952 */ 26953 if (ipip->ipi_cmd == IF_UNITSEL) { 26954 /* ioctl comes down the ill */ 26955 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26956 ipif_refhold(ci.ci_ipif); 26957 } 26958 err = 0; 26959 ci.ci_sin = NULL; 26960 ci.ci_sin6 = NULL; 26961 ci.ci_lifr = NULL; 26962 } else { 26963 switch (ipip->ipi_cmd_type) { 26964 case IF_CMD: 26965 case LIF_CMD: 26966 extract_funcp = ip_extract_lifreq; 26967 break; 26968 26969 case ARP_CMD: 26970 case XARP_CMD: 26971 extract_funcp = ip_extract_arpreq; 26972 break; 26973 26974 case TUN_CMD: 26975 extract_funcp = ip_extract_tunreq; 26976 break; 26977 26978 case MSFILT_CMD: 26979 extract_funcp = ip_extract_msfilter; 26980 break; 26981 26982 default: 26983 ASSERT(0); 26984 } 26985 26986 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 26987 if (err != 0) { 26988 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26989 return; 26990 } 26991 26992 /* 26993 * All of the extraction functions return a refheld ipif. 26994 */ 26995 ASSERT(ci.ci_ipif != NULL); 26996 } 26997 26998 if (!(ipip->ipi_flags & IPI_WR)) { 26999 /* 27000 * A return value of EINPROGRESS means the ioctl is 27001 * either queued and waiting for some reason or has 27002 * already completed. 27003 */ 27004 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27005 ci.ci_lifr); 27006 if (ci.ci_ipif != NULL) 27007 ipif_refrele(ci.ci_ipif); 27008 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27009 return; 27010 } 27011 27012 ASSERT(ci.ci_ipif != NULL); 27013 27014 /* 27015 * If ipsq is non-NULL, we are already being called exclusively. 27016 */ 27017 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27018 if (ipsq == NULL) { 27019 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 27020 NEW_OP, B_TRUE); 27021 if (ipsq == NULL) { 27022 ipif_refrele(ci.ci_ipif); 27023 return; 27024 } 27025 entered_ipsq = B_TRUE; 27026 } 27027 27028 /* 27029 * Release the ipif so that ipif_down and friends that wait for 27030 * references to go away are not misled about the current ipif_refcnt 27031 * values. We are writer so we can access the ipif even after releasing 27032 * the ipif. 27033 */ 27034 ipif_refrele(ci.ci_ipif); 27035 27036 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27037 27038 /* 27039 * A return value of EINPROGRESS means the ioctl is 27040 * either queued and waiting for some reason or has 27041 * already completed. 27042 */ 27043 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27044 27045 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27046 27047 if (entered_ipsq) 27048 ipsq_exit(ipsq); 27049 } 27050 27051 /* 27052 * Complete the ioctl. Typically ioctls use the mi package and need to 27053 * do mi_copyout/mi_copy_done. 27054 */ 27055 void 27056 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27057 { 27058 conn_t *connp = NULL; 27059 27060 if (err == EINPROGRESS) 27061 return; 27062 27063 if (CONN_Q(q)) { 27064 connp = Q_TO_CONN(q); 27065 ASSERT(connp->conn_ref >= 2); 27066 } 27067 27068 switch (mode) { 27069 case COPYOUT: 27070 if (err == 0) 27071 mi_copyout(q, mp); 27072 else 27073 mi_copy_done(q, mp, err); 27074 break; 27075 27076 case NO_COPYOUT: 27077 mi_copy_done(q, mp, err); 27078 break; 27079 27080 default: 27081 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27082 break; 27083 } 27084 27085 /* 27086 * The refhold placed at the start of the ioctl is released here. 27087 */ 27088 if (connp != NULL) 27089 CONN_OPER_PENDING_DONE(connp); 27090 27091 if (ipsq != NULL) 27092 ipsq_current_finish(ipsq); 27093 } 27094 27095 /* Called from ip_wput for all non data messages */ 27096 /* ARGSUSED */ 27097 void 27098 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27099 { 27100 mblk_t *mp1; 27101 ire_t *ire, *fake_ire; 27102 ill_t *ill; 27103 struct iocblk *iocp; 27104 ip_ioctl_cmd_t *ipip; 27105 cred_t *cr; 27106 conn_t *connp; 27107 int err; 27108 nce_t *nce; 27109 ipif_t *ipif; 27110 ip_stack_t *ipst; 27111 char *proto_str; 27112 27113 if (CONN_Q(q)) { 27114 connp = Q_TO_CONN(q); 27115 ipst = connp->conn_netstack->netstack_ip; 27116 } else { 27117 connp = NULL; 27118 ipst = ILLQ_TO_IPST(q); 27119 } 27120 27121 switch (DB_TYPE(mp)) { 27122 case M_IOCTL: 27123 /* 27124 * IOCTL processing begins in ip_sioctl_copyin_setup which 27125 * will arrange to copy in associated control structures. 27126 */ 27127 ip_sioctl_copyin_setup(q, mp); 27128 return; 27129 case M_IOCDATA: 27130 /* 27131 * Ensure that this is associated with one of our trans- 27132 * parent ioctls. If it's not ours, discard it if we're 27133 * running as a driver, or pass it on if we're a module. 27134 */ 27135 iocp = (struct iocblk *)mp->b_rptr; 27136 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27137 if (ipip == NULL) { 27138 if (q->q_next == NULL) { 27139 goto nak; 27140 } else { 27141 putnext(q, mp); 27142 } 27143 return; 27144 } 27145 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27146 /* 27147 * the ioctl is one we recognise, but is not 27148 * consumed by IP as a module, pass M_IOCDATA 27149 * for processing downstream, but only for 27150 * common Streams ioctls. 27151 */ 27152 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27153 putnext(q, mp); 27154 return; 27155 } else { 27156 goto nak; 27157 } 27158 } 27159 27160 /* IOCTL continuation following copyin or copyout. */ 27161 if (mi_copy_state(q, mp, NULL) == -1) { 27162 /* 27163 * The copy operation failed. mi_copy_state already 27164 * cleaned up, so we're out of here. 27165 */ 27166 return; 27167 } 27168 /* 27169 * If we just completed a copy in, we become writer and 27170 * continue processing in ip_sioctl_copyin_done. If it 27171 * was a copy out, we call mi_copyout again. If there is 27172 * nothing more to copy out, it will complete the IOCTL. 27173 */ 27174 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27175 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27176 mi_copy_done(q, mp, EPROTO); 27177 return; 27178 } 27179 /* 27180 * Check for cases that need more copying. A return 27181 * value of 0 means a second copyin has been started, 27182 * so we return; a return value of 1 means no more 27183 * copying is needed, so we continue. 27184 */ 27185 if (ipip->ipi_cmd_type == MSFILT_CMD && 27186 MI_COPY_COUNT(mp) == 1) { 27187 if (ip_copyin_msfilter(q, mp) == 0) 27188 return; 27189 } 27190 /* 27191 * Refhold the conn, till the ioctl completes. This is 27192 * needed in case the ioctl ends up in the pending mp 27193 * list. Every mp in the ill_pending_mp list and 27194 * the ipx_pending_mp must have a refhold on the conn 27195 * to resume processing. The refhold is released when 27196 * the ioctl completes. (normally or abnormally) 27197 * In all cases ip_ioctl_finish is called to finish 27198 * the ioctl. 27199 */ 27200 if (connp != NULL) { 27201 /* This is not a reentry */ 27202 ASSERT(ipsq == NULL); 27203 CONN_INC_REF(connp); 27204 } else { 27205 if (!(ipip->ipi_flags & IPI_MODOK)) { 27206 mi_copy_done(q, mp, EINVAL); 27207 return; 27208 } 27209 } 27210 27211 ip_process_ioctl(ipsq, q, mp, ipip); 27212 27213 } else { 27214 mi_copyout(q, mp); 27215 } 27216 return; 27217 nak: 27218 iocp->ioc_error = EINVAL; 27219 mp->b_datap->db_type = M_IOCNAK; 27220 iocp->ioc_count = 0; 27221 qreply(q, mp); 27222 return; 27223 27224 case M_IOCNAK: 27225 /* 27226 * The only way we could get here is if a resolver didn't like 27227 * an IOCTL we sent it. This shouldn't happen. 27228 */ 27229 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27230 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27231 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27232 freemsg(mp); 27233 return; 27234 case M_IOCACK: 27235 /* /dev/ip shouldn't see this */ 27236 if (CONN_Q(q)) 27237 goto nak; 27238 27239 /* 27240 * Finish socket ioctls passed through to ARP. We use the 27241 * ioc_cmd values we set in ip_sioctl_arp() to decide whether 27242 * we need to become writer before calling ip_sioctl_iocack(). 27243 * Note that qwriter_ip() will release the refhold, and that a 27244 * refhold is OK without ILL_CAN_LOOKUP() since we're on the 27245 * ill stream. 27246 */ 27247 iocp = (struct iocblk *)mp->b_rptr; 27248 if (iocp->ioc_cmd == AR_ENTRY_SQUERY) { 27249 ip_sioctl_iocack(NULL, q, mp, NULL); 27250 return; 27251 } 27252 27253 ASSERT(iocp->ioc_cmd == AR_ENTRY_DELETE || 27254 iocp->ioc_cmd == AR_ENTRY_ADD); 27255 ill = q->q_ptr; 27256 ill_refhold(ill); 27257 qwriter_ip(ill, q, mp, ip_sioctl_iocack, CUR_OP, B_FALSE); 27258 return; 27259 case M_FLUSH: 27260 if (*mp->b_rptr & FLUSHW) 27261 flushq(q, FLUSHALL); 27262 if (q->q_next) { 27263 putnext(q, mp); 27264 return; 27265 } 27266 if (*mp->b_rptr & FLUSHR) { 27267 *mp->b_rptr &= ~FLUSHW; 27268 qreply(q, mp); 27269 return; 27270 } 27271 freemsg(mp); 27272 return; 27273 case IRE_DB_REQ_TYPE: 27274 if (connp == NULL) { 27275 proto_str = "IRE_DB_REQ_TYPE"; 27276 goto protonak; 27277 } 27278 /* An Upper Level Protocol wants a copy of an IRE. */ 27279 ip_ire_req(q, mp); 27280 return; 27281 case M_CTL: 27282 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27283 break; 27284 27285 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27286 TUN_HELLO) { 27287 ASSERT(connp != NULL); 27288 connp->conn_flags |= IPCL_IPTUN; 27289 freeb(mp); 27290 return; 27291 } 27292 27293 /* M_CTL messages are used by ARP to tell us things. */ 27294 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27295 break; 27296 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27297 case AR_ENTRY_SQUERY: 27298 putnext(q, mp); 27299 return; 27300 case AR_CLIENT_NOTIFY: 27301 ip_arp_news(q, mp); 27302 return; 27303 case AR_DLPIOP_DONE: 27304 ASSERT(q->q_next != NULL); 27305 ill = (ill_t *)q->q_ptr; 27306 /* qwriter_ip releases the refhold */ 27307 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27308 ill_refhold(ill); 27309 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27310 return; 27311 case AR_ARP_CLOSING: 27312 /* 27313 * ARP (above us) is closing. If no ARP bringup is 27314 * currently pending, ack the message so that ARP 27315 * can complete its close. Also mark ill_arp_closing 27316 * so that new ARP bringups will fail. If any 27317 * ARP bringup is currently in progress, we will 27318 * ack this when the current ARP bringup completes. 27319 */ 27320 ASSERT(q->q_next != NULL); 27321 ill = (ill_t *)q->q_ptr; 27322 mutex_enter(&ill->ill_lock); 27323 ill->ill_arp_closing = 1; 27324 if (!ill->ill_arp_bringup_pending) { 27325 mutex_exit(&ill->ill_lock); 27326 qreply(q, mp); 27327 } else { 27328 mutex_exit(&ill->ill_lock); 27329 freemsg(mp); 27330 } 27331 return; 27332 case AR_ARP_EXTEND: 27333 /* 27334 * The ARP module above us is capable of duplicate 27335 * address detection. Old ATM drivers will not send 27336 * this message. 27337 */ 27338 ASSERT(q->q_next != NULL); 27339 ill = (ill_t *)q->q_ptr; 27340 ill->ill_arp_extend = B_TRUE; 27341 freemsg(mp); 27342 return; 27343 default: 27344 break; 27345 } 27346 break; 27347 case M_PROTO: 27348 case M_PCPROTO: 27349 /* 27350 * The only PROTO messages we expect are copies of option 27351 * negotiation acknowledgements, AH and ESP bind requests 27352 * are also expected. 27353 */ 27354 switch (((union T_primitives *)mp->b_rptr)->type) { 27355 case O_T_BIND_REQ: 27356 case T_BIND_REQ: { 27357 /* Request can get queued in bind */ 27358 if (connp == NULL) { 27359 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27360 goto protonak; 27361 } 27362 /* 27363 * The transports except SCTP call ip_bind_{v4,v6}() 27364 * directly instead of a a putnext. SCTP doesn't 27365 * generate any T_BIND_REQ since it has its own 27366 * fanout data structures. However, ESP and AH 27367 * come in for regular binds; all other cases are 27368 * bind retries. 27369 */ 27370 ASSERT(!IPCL_IS_SCTP(connp)); 27371 27372 /* Don't increment refcnt if this is a re-entry */ 27373 if (ipsq == NULL) 27374 CONN_INC_REF(connp); 27375 27376 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27377 connp, NULL) : ip_bind_v4(q, mp, connp); 27378 ASSERT(mp != NULL); 27379 27380 ASSERT(!IPCL_IS_TCP(connp)); 27381 ASSERT(!IPCL_IS_UDP(connp)); 27382 ASSERT(!IPCL_IS_RAWIP(connp)); 27383 27384 /* The case of AH and ESP */ 27385 qreply(q, mp); 27386 CONN_OPER_PENDING_DONE(connp); 27387 return; 27388 } 27389 case T_SVR4_OPTMGMT_REQ: 27390 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27391 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27392 27393 if (connp == NULL) { 27394 proto_str = "T_SVR4_OPTMGMT_REQ"; 27395 goto protonak; 27396 } 27397 27398 /* 27399 * All Solaris components should pass a db_credp 27400 * for this TPI message, hence we ASSERT. 27401 * But in case there is some other M_PROTO that looks 27402 * like a TPI message sent by some other kernel 27403 * component, we check and return an error. 27404 */ 27405 cr = msg_getcred(mp, NULL); 27406 ASSERT(cr != NULL); 27407 if (cr == NULL) { 27408 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27409 if (mp != NULL) 27410 qreply(q, mp); 27411 return; 27412 } 27413 27414 if (!snmpcom_req(q, mp, ip_snmp_set, 27415 ip_snmp_get, cr)) { 27416 /* 27417 * Call svr4_optcom_req so that it can 27418 * generate the ack. We don't come here 27419 * if this operation is being restarted. 27420 * ip_restart_optmgmt will drop the conn ref. 27421 * In the case of ipsec option after the ipsec 27422 * load is complete conn_restart_ipsec_waiter 27423 * drops the conn ref. 27424 */ 27425 ASSERT(ipsq == NULL); 27426 CONN_INC_REF(connp); 27427 if (ip_check_for_ipsec_opt(q, mp)) 27428 return; 27429 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27430 B_FALSE); 27431 if (err != EINPROGRESS) { 27432 /* Operation is done */ 27433 CONN_OPER_PENDING_DONE(connp); 27434 } 27435 } 27436 return; 27437 case T_OPTMGMT_REQ: 27438 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27439 /* 27440 * Note: No snmpcom_req support through new 27441 * T_OPTMGMT_REQ. 27442 * Call tpi_optcom_req so that it can 27443 * generate the ack. 27444 */ 27445 if (connp == NULL) { 27446 proto_str = "T_OPTMGMT_REQ"; 27447 goto protonak; 27448 } 27449 27450 /* 27451 * All Solaris components should pass a db_credp 27452 * for this TPI message, hence we ASSERT. 27453 * But in case there is some other M_PROTO that looks 27454 * like a TPI message sent by some other kernel 27455 * component, we check and return an error. 27456 */ 27457 cr = msg_getcred(mp, NULL); 27458 ASSERT(cr != NULL); 27459 if (cr == NULL) { 27460 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27461 if (mp != NULL) 27462 qreply(q, mp); 27463 return; 27464 } 27465 ASSERT(ipsq == NULL); 27466 /* 27467 * We don't come here for restart. ip_restart_optmgmt 27468 * will drop the conn ref. In the case of ipsec option 27469 * after the ipsec load is complete 27470 * conn_restart_ipsec_waiter drops the conn ref. 27471 */ 27472 CONN_INC_REF(connp); 27473 if (ip_check_for_ipsec_opt(q, mp)) 27474 return; 27475 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27476 if (err != EINPROGRESS) { 27477 /* Operation is done */ 27478 CONN_OPER_PENDING_DONE(connp); 27479 } 27480 return; 27481 case T_UNBIND_REQ: 27482 if (connp == NULL) { 27483 proto_str = "T_UNBIND_REQ"; 27484 goto protonak; 27485 } 27486 ip_unbind(Q_TO_CONN(q)); 27487 mp = mi_tpi_ok_ack_alloc(mp); 27488 qreply(q, mp); 27489 return; 27490 default: 27491 /* 27492 * Have to drop any DLPI messages coming down from 27493 * arp (such as an info_req which would cause ip 27494 * to receive an extra info_ack if it was passed 27495 * through. 27496 */ 27497 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27498 (int)*(uint_t *)mp->b_rptr)); 27499 freemsg(mp); 27500 return; 27501 } 27502 /* NOTREACHED */ 27503 case IRE_DB_TYPE: { 27504 nce_t *nce; 27505 ill_t *ill; 27506 in6_addr_t gw_addr_v6; 27507 27508 /* 27509 * This is a response back from a resolver. It 27510 * consists of a message chain containing: 27511 * IRE_MBLK-->LL_HDR_MBLK->pkt 27512 * The IRE_MBLK is the one we allocated in ip_newroute. 27513 * The LL_HDR_MBLK is the DLPI header to use to get 27514 * the attached packet, and subsequent ones for the 27515 * same destination, transmitted. 27516 */ 27517 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27518 break; 27519 /* 27520 * First, check to make sure the resolution succeeded. 27521 * If it failed, the second mblk will be empty. 27522 * If it is, free the chain, dropping the packet. 27523 * (We must ire_delete the ire; that frees the ire mblk) 27524 * We're doing this now to support PVCs for ATM; it's 27525 * a partial xresolv implementation. When we fully implement 27526 * xresolv interfaces, instead of freeing everything here 27527 * we'll initiate neighbor discovery. 27528 * 27529 * For v4 (ARP and other external resolvers) the resolver 27530 * frees the message, so no check is needed. This check 27531 * is required, though, for a full xresolve implementation. 27532 * Including this code here now both shows how external 27533 * resolvers can NACK a resolution request using an 27534 * existing design that has no specific provisions for NACKs, 27535 * and also takes into account that the current non-ARP 27536 * external resolver has been coded to use this method of 27537 * NACKing for all IPv6 (xresolv) cases, 27538 * whether our xresolv implementation is complete or not. 27539 * 27540 */ 27541 ire = (ire_t *)mp->b_rptr; 27542 ill = ire_to_ill(ire); 27543 mp1 = mp->b_cont; /* dl_unitdata_req */ 27544 if (mp1->b_rptr == mp1->b_wptr) { 27545 if (ire->ire_ipversion == IPV6_VERSION) { 27546 /* 27547 * XRESOLV interface. 27548 */ 27549 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27550 mutex_enter(&ire->ire_lock); 27551 gw_addr_v6 = ire->ire_gateway_addr_v6; 27552 mutex_exit(&ire->ire_lock); 27553 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27554 nce = ndp_lookup_v6(ill, B_FALSE, 27555 &ire->ire_addr_v6, B_FALSE); 27556 } else { 27557 nce = ndp_lookup_v6(ill, B_FALSE, 27558 &gw_addr_v6, B_FALSE); 27559 } 27560 if (nce != NULL) { 27561 nce_resolv_failed(nce); 27562 ndp_delete(nce); 27563 NCE_REFRELE(nce); 27564 } 27565 } 27566 mp->b_cont = NULL; 27567 freemsg(mp1); /* frees the pkt as well */ 27568 ASSERT(ire->ire_nce == NULL); 27569 ire_delete((ire_t *)mp->b_rptr); 27570 return; 27571 } 27572 27573 /* 27574 * Split them into IRE_MBLK and pkt and feed it into 27575 * ire_add_then_send. Then in ire_add_then_send 27576 * the IRE will be added, and then the packet will be 27577 * run back through ip_wput. This time it will make 27578 * it to the wire. 27579 */ 27580 mp->b_cont = NULL; 27581 mp = mp1->b_cont; /* now, mp points to pkt */ 27582 mp1->b_cont = NULL; 27583 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27584 if (ire->ire_ipversion == IPV6_VERSION) { 27585 /* 27586 * XRESOLV interface. Find the nce and put a copy 27587 * of the dl_unitdata_req in nce_res_mp 27588 */ 27589 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27590 mutex_enter(&ire->ire_lock); 27591 gw_addr_v6 = ire->ire_gateway_addr_v6; 27592 mutex_exit(&ire->ire_lock); 27593 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27594 nce = ndp_lookup_v6(ill, B_FALSE, 27595 &ire->ire_addr_v6, B_FALSE); 27596 } else { 27597 nce = ndp_lookup_v6(ill, B_FALSE, 27598 &gw_addr_v6, B_FALSE); 27599 } 27600 if (nce != NULL) { 27601 /* 27602 * We have to protect nce_res_mp here 27603 * from being accessed by other threads 27604 * while we change the mblk pointer. 27605 * Other functions will also lock the nce when 27606 * accessing nce_res_mp. 27607 * 27608 * The reason we change the mblk pointer 27609 * here rather than copying the resolved address 27610 * into the template is that, unlike with 27611 * ethernet, we have no guarantee that the 27612 * resolved address length will be 27613 * smaller than or equal to the lla length 27614 * with which the template was allocated, 27615 * (for ethernet, they're equal) 27616 * so we have to use the actual resolved 27617 * address mblk - which holds the real 27618 * dl_unitdata_req with the resolved address. 27619 * 27620 * Doing this is the same behavior as was 27621 * previously used in the v4 ARP case. 27622 */ 27623 mutex_enter(&nce->nce_lock); 27624 if (nce->nce_res_mp != NULL) 27625 freemsg(nce->nce_res_mp); 27626 nce->nce_res_mp = mp1; 27627 mutex_exit(&nce->nce_lock); 27628 /* 27629 * We do a fastpath probe here because 27630 * we have resolved the address without 27631 * using Neighbor Discovery. 27632 * In the non-XRESOLV v6 case, the fastpath 27633 * probe is done right after neighbor 27634 * discovery completes. 27635 */ 27636 if (nce->nce_res_mp != NULL) { 27637 int res; 27638 nce_fastpath_list_add(nce); 27639 res = ill_fastpath_probe(ill, 27640 nce->nce_res_mp); 27641 if (res != 0 && res != EAGAIN) 27642 nce_fastpath_list_delete(nce); 27643 } 27644 27645 ire_add_then_send(q, ire, mp); 27646 /* 27647 * Now we have to clean out any packets 27648 * that may have been queued on the nce 27649 * while it was waiting for address resolution 27650 * to complete. 27651 */ 27652 mutex_enter(&nce->nce_lock); 27653 mp1 = nce->nce_qd_mp; 27654 nce->nce_qd_mp = NULL; 27655 mutex_exit(&nce->nce_lock); 27656 while (mp1 != NULL) { 27657 mblk_t *nxt_mp; 27658 queue_t *fwdq = NULL; 27659 ill_t *inbound_ill; 27660 uint_t ifindex; 27661 27662 nxt_mp = mp1->b_next; 27663 mp1->b_next = NULL; 27664 /* 27665 * Retrieve ifindex stored in 27666 * ip_rput_data_v6() 27667 */ 27668 ifindex = 27669 (uint_t)(uintptr_t)mp1->b_prev; 27670 inbound_ill = 27671 ill_lookup_on_ifindex(ifindex, 27672 B_TRUE, NULL, NULL, NULL, 27673 NULL, ipst); 27674 mp1->b_prev = NULL; 27675 if (inbound_ill != NULL) 27676 fwdq = inbound_ill->ill_rq; 27677 27678 if (fwdq != NULL) { 27679 put(fwdq, mp1); 27680 ill_refrele(inbound_ill); 27681 } else 27682 put(WR(ill->ill_rq), mp1); 27683 mp1 = nxt_mp; 27684 } 27685 NCE_REFRELE(nce); 27686 } else { /* nce is NULL; clean up */ 27687 ire_delete(ire); 27688 freemsg(mp); 27689 freemsg(mp1); 27690 return; 27691 } 27692 } else { 27693 nce_t *arpce; 27694 /* 27695 * Link layer resolution succeeded. Recompute the 27696 * ire_nce. 27697 */ 27698 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27699 if ((arpce = ndp_lookup_v4(ill, 27700 (ire->ire_gateway_addr != INADDR_ANY ? 27701 &ire->ire_gateway_addr : &ire->ire_addr), 27702 B_FALSE)) == NULL) { 27703 freeb(ire->ire_mp); 27704 freeb(mp1); 27705 freemsg(mp); 27706 return; 27707 } 27708 mutex_enter(&arpce->nce_lock); 27709 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27710 if (arpce->nce_state == ND_REACHABLE) { 27711 /* 27712 * Someone resolved this before us; 27713 * cleanup the res_mp. Since ire has 27714 * not been added yet, the call to ire_add_v4 27715 * from ire_add_then_send (when a dup is 27716 * detected) will clean up the ire. 27717 */ 27718 freeb(mp1); 27719 } else { 27720 ASSERT(arpce->nce_res_mp == NULL); 27721 arpce->nce_res_mp = mp1; 27722 arpce->nce_state = ND_REACHABLE; 27723 } 27724 mutex_exit(&arpce->nce_lock); 27725 if (ire->ire_marks & IRE_MARK_NOADD) { 27726 /* 27727 * this ire will not be added to the ire 27728 * cache table, so we can set the ire_nce 27729 * here, as there are no atomicity constraints. 27730 */ 27731 ire->ire_nce = arpce; 27732 /* 27733 * We are associating this nce with the ire 27734 * so change the nce ref taken in 27735 * ndp_lookup_v4() from 27736 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27737 */ 27738 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27739 } else { 27740 NCE_REFRELE(arpce); 27741 } 27742 ire_add_then_send(q, ire, mp); 27743 } 27744 return; /* All is well, the packet has been sent. */ 27745 } 27746 case IRE_ARPRESOLVE_TYPE: { 27747 27748 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27749 break; 27750 mp1 = mp->b_cont; /* dl_unitdata_req */ 27751 mp->b_cont = NULL; 27752 /* 27753 * First, check to make sure the resolution succeeded. 27754 * If it failed, the second mblk will be empty. 27755 */ 27756 if (mp1->b_rptr == mp1->b_wptr) { 27757 /* cleanup the incomplete ire, free queued packets */ 27758 freemsg(mp); /* fake ire */ 27759 freeb(mp1); /* dl_unitdata response */ 27760 return; 27761 } 27762 27763 /* 27764 * Update any incomplete nce_t found. We search the ctable 27765 * and find the nce from the ire->ire_nce because we need 27766 * to pass the ire to ip_xmit_v4 later, and can find both 27767 * ire and nce in one lookup. 27768 */ 27769 fake_ire = (ire_t *)mp->b_rptr; 27770 27771 /* 27772 * By the time we come back here from ARP the logical outgoing 27773 * interface of the incomplete ire we added in ire_forward() 27774 * could have disappeared, causing the incomplete ire to also 27775 * disappear. So we need to retreive the proper ipif for the 27776 * ire before looking in ctable. In the case of IPMP, the 27777 * ipif may be on the IPMP ill, so look it up based on the 27778 * ire_ipif_ifindex we stashed back in ire_init_common(). 27779 * Then, we can verify that ire_ipif_seqid still exists. 27780 */ 27781 ill = ill_lookup_on_ifindex(fake_ire->ire_ipif_ifindex, B_FALSE, 27782 NULL, NULL, NULL, NULL, ipst); 27783 if (ill == NULL) { 27784 ip1dbg(("ill for incomplete ire vanished\n")); 27785 freemsg(mp); /* fake ire */ 27786 freeb(mp1); /* dl_unitdata response */ 27787 return; 27788 } 27789 27790 /* Get the outgoing ipif */ 27791 mutex_enter(&ill->ill_lock); 27792 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27793 if (ipif == NULL) { 27794 mutex_exit(&ill->ill_lock); 27795 ill_refrele(ill); 27796 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27797 freemsg(mp); /* fake_ire */ 27798 freeb(mp1); /* dl_unitdata response */ 27799 return; 27800 } 27801 27802 ipif_refhold_locked(ipif); 27803 mutex_exit(&ill->ill_lock); 27804 ill_refrele(ill); 27805 ire = ire_arpresolve_lookup(fake_ire->ire_addr, 27806 fake_ire->ire_gateway_addr, ipif, fake_ire->ire_zoneid, 27807 ipst, ((ill_t *)q->q_ptr)->ill_wq); 27808 ipif_refrele(ipif); 27809 if (ire == NULL) { 27810 /* 27811 * no ire was found; check if there is an nce 27812 * for this lookup; if it has no ire's pointing at it 27813 * cleanup. 27814 */ 27815 if ((nce = ndp_lookup_v4(q->q_ptr, 27816 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27817 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27818 B_FALSE)) != NULL) { 27819 /* 27820 * cleanup: 27821 * We check for refcnt 2 (one for the nce 27822 * hash list + 1 for the ref taken by 27823 * ndp_lookup_v4) to check that there are 27824 * no ire's pointing at the nce. 27825 */ 27826 if (nce->nce_refcnt == 2) 27827 ndp_delete(nce); 27828 NCE_REFRELE(nce); 27829 } 27830 freeb(mp1); /* dl_unitdata response */ 27831 freemsg(mp); /* fake ire */ 27832 return; 27833 } 27834 27835 nce = ire->ire_nce; 27836 DTRACE_PROBE2(ire__arpresolve__type, 27837 ire_t *, ire, nce_t *, nce); 27838 ASSERT(nce->nce_state != ND_INITIAL); 27839 mutex_enter(&nce->nce_lock); 27840 nce->nce_last = TICK_TO_MSEC(lbolt64); 27841 if (nce->nce_state == ND_REACHABLE) { 27842 /* 27843 * Someone resolved this before us; 27844 * our response is not needed any more. 27845 */ 27846 mutex_exit(&nce->nce_lock); 27847 freeb(mp1); /* dl_unitdata response */ 27848 } else { 27849 ASSERT(nce->nce_res_mp == NULL); 27850 nce->nce_res_mp = mp1; 27851 nce->nce_state = ND_REACHABLE; 27852 mutex_exit(&nce->nce_lock); 27853 nce_fastpath(nce); 27854 } 27855 /* 27856 * The cached nce_t has been updated to be reachable; 27857 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27858 */ 27859 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27860 freemsg(mp); 27861 /* 27862 * send out queued packets. 27863 */ 27864 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 27865 27866 IRE_REFRELE(ire); 27867 return; 27868 } 27869 default: 27870 break; 27871 } 27872 if (q->q_next) { 27873 putnext(q, mp); 27874 } else 27875 freemsg(mp); 27876 return; 27877 27878 protonak: 27879 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27880 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27881 qreply(q, mp); 27882 } 27883 27884 /* 27885 * Process IP options in an outbound packet. Modify the destination if there 27886 * is a source route option. 27887 * Returns non-zero if something fails in which case an ICMP error has been 27888 * sent and mp freed. 27889 */ 27890 static int 27891 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27892 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27893 { 27894 ipoptp_t opts; 27895 uchar_t *opt; 27896 uint8_t optval; 27897 uint8_t optlen; 27898 ipaddr_t dst; 27899 intptr_t code = 0; 27900 mblk_t *mp; 27901 ire_t *ire = NULL; 27902 27903 ip2dbg(("ip_wput_options\n")); 27904 mp = ipsec_mp; 27905 if (mctl_present) { 27906 mp = ipsec_mp->b_cont; 27907 } 27908 27909 dst = ipha->ipha_dst; 27910 for (optval = ipoptp_first(&opts, ipha); 27911 optval != IPOPT_EOL; 27912 optval = ipoptp_next(&opts)) { 27913 opt = opts.ipoptp_cur; 27914 optlen = opts.ipoptp_len; 27915 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27916 optval, optlen)); 27917 switch (optval) { 27918 uint32_t off; 27919 case IPOPT_SSRR: 27920 case IPOPT_LSRR: 27921 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27922 ip1dbg(( 27923 "ip_wput_options: bad option offset\n")); 27924 code = (char *)&opt[IPOPT_OLEN] - 27925 (char *)ipha; 27926 goto param_prob; 27927 } 27928 off = opt[IPOPT_OFFSET]; 27929 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27930 ntohl(dst))); 27931 /* 27932 * For strict: verify that dst is directly 27933 * reachable. 27934 */ 27935 if (optval == IPOPT_SSRR) { 27936 ire = ire_ftable_lookup(dst, 0, 0, 27937 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27938 msg_getlabel(mp), 27939 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27940 if (ire == NULL) { 27941 ip1dbg(("ip_wput_options: SSRR not" 27942 " directly reachable: 0x%x\n", 27943 ntohl(dst))); 27944 goto bad_src_route; 27945 } 27946 ire_refrele(ire); 27947 } 27948 break; 27949 case IPOPT_RR: 27950 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27951 ip1dbg(( 27952 "ip_wput_options: bad option offset\n")); 27953 code = (char *)&opt[IPOPT_OLEN] - 27954 (char *)ipha; 27955 goto param_prob; 27956 } 27957 break; 27958 case IPOPT_TS: 27959 /* 27960 * Verify that length >=5 and that there is either 27961 * room for another timestamp or that the overflow 27962 * counter is not maxed out. 27963 */ 27964 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27965 if (optlen < IPOPT_MINLEN_IT) { 27966 goto param_prob; 27967 } 27968 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27969 ip1dbg(( 27970 "ip_wput_options: bad option offset\n")); 27971 code = (char *)&opt[IPOPT_OFFSET] - 27972 (char *)ipha; 27973 goto param_prob; 27974 } 27975 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27976 case IPOPT_TS_TSONLY: 27977 off = IPOPT_TS_TIMELEN; 27978 break; 27979 case IPOPT_TS_TSANDADDR: 27980 case IPOPT_TS_PRESPEC: 27981 case IPOPT_TS_PRESPEC_RFC791: 27982 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27983 break; 27984 default: 27985 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27986 (char *)ipha; 27987 goto param_prob; 27988 } 27989 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27990 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27991 /* 27992 * No room and the overflow counter is 15 27993 * already. 27994 */ 27995 goto param_prob; 27996 } 27997 break; 27998 } 27999 } 28000 28001 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28002 return (0); 28003 28004 ip1dbg(("ip_wput_options: error processing IP options.")); 28005 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28006 28007 param_prob: 28008 /* 28009 * Since ip_wput() isn't close to finished, we fill 28010 * in enough of the header for credible error reporting. 28011 */ 28012 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28013 /* Failed */ 28014 freemsg(ipsec_mp); 28015 return (-1); 28016 } 28017 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28018 return (-1); 28019 28020 bad_src_route: 28021 /* 28022 * Since ip_wput() isn't close to finished, we fill 28023 * in enough of the header for credible error reporting. 28024 */ 28025 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28026 /* Failed */ 28027 freemsg(ipsec_mp); 28028 return (-1); 28029 } 28030 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28031 return (-1); 28032 } 28033 28034 /* 28035 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28036 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28037 * thru /etc/system. 28038 */ 28039 #define CONN_MAXDRAINCNT 64 28040 28041 static void 28042 conn_drain_init(ip_stack_t *ipst) 28043 { 28044 int i, j; 28045 idl_tx_list_t *itl_tx; 28046 28047 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28048 28049 if ((ipst->ips_conn_drain_list_cnt == 0) || 28050 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28051 /* 28052 * Default value of the number of drainers is the 28053 * number of cpus, subject to maximum of 8 drainers. 28054 */ 28055 if (boot_max_ncpus != -1) 28056 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28057 else 28058 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28059 } 28060 28061 ipst->ips_idl_tx_list = 28062 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 28063 for (i = 0; i < TX_FANOUT_SIZE; i++) { 28064 itl_tx = &ipst->ips_idl_tx_list[i]; 28065 itl_tx->txl_drain_list = 28066 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28067 sizeof (idl_t), KM_SLEEP); 28068 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 28069 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 28070 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 28071 MUTEX_DEFAULT, NULL); 28072 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 28073 } 28074 } 28075 } 28076 28077 static void 28078 conn_drain_fini(ip_stack_t *ipst) 28079 { 28080 int i; 28081 idl_tx_list_t *itl_tx; 28082 28083 for (i = 0; i < TX_FANOUT_SIZE; i++) { 28084 itl_tx = &ipst->ips_idl_tx_list[i]; 28085 kmem_free(itl_tx->txl_drain_list, 28086 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28087 } 28088 kmem_free(ipst->ips_idl_tx_list, 28089 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 28090 ipst->ips_idl_tx_list = NULL; 28091 } 28092 28093 /* 28094 * Note: For an overview of how flowcontrol is handled in IP please see the 28095 * IP Flowcontrol notes at the top of this file. 28096 * 28097 * Flow control has blocked us from proceeding. Insert the given conn in one 28098 * of the conn drain lists. These conn wq's will be qenabled later on when 28099 * STREAMS flow control does a backenable. conn_walk_drain will enable 28100 * the first conn in each of these drain lists. Each of these qenabled conns 28101 * in turn enables the next in the list, after it runs, or when it closes, 28102 * thus sustaining the drain process. 28103 */ 28104 void 28105 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 28106 { 28107 idl_t *idl = tx_list->txl_drain_list; 28108 uint_t index; 28109 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28110 28111 mutex_enter(&connp->conn_lock); 28112 if (connp->conn_state_flags & CONN_CLOSING) { 28113 /* 28114 * The conn is closing as a result of which CONN_CLOSING 28115 * is set. Return. 28116 */ 28117 mutex_exit(&connp->conn_lock); 28118 return; 28119 } else if (connp->conn_idl == NULL) { 28120 /* 28121 * Assign the next drain list round robin. We dont' use 28122 * a lock, and thus it may not be strictly round robin. 28123 * Atomicity of load/stores is enough to make sure that 28124 * conn_drain_list_index is always within bounds. 28125 */ 28126 index = tx_list->txl_drain_index; 28127 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28128 connp->conn_idl = &tx_list->txl_drain_list[index]; 28129 index++; 28130 if (index == ipst->ips_conn_drain_list_cnt) 28131 index = 0; 28132 tx_list->txl_drain_index = index; 28133 } 28134 mutex_exit(&connp->conn_lock); 28135 28136 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28137 if ((connp->conn_drain_prev != NULL) || 28138 (connp->conn_state_flags & CONN_CLOSING)) { 28139 /* 28140 * The conn is already in the drain list, OR 28141 * the conn is closing. We need to check again for 28142 * the closing case again since close can happen 28143 * after we drop the conn_lock, and before we 28144 * acquire the CONN_DRAIN_LIST_LOCK. 28145 */ 28146 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28147 return; 28148 } else { 28149 idl = connp->conn_idl; 28150 } 28151 28152 /* 28153 * The conn is not in the drain list. Insert it at the 28154 * tail of the drain list. The drain list is circular 28155 * and doubly linked. idl_conn points to the 1st element 28156 * in the list. 28157 */ 28158 if (idl->idl_conn == NULL) { 28159 idl->idl_conn = connp; 28160 connp->conn_drain_next = connp; 28161 connp->conn_drain_prev = connp; 28162 } else { 28163 conn_t *head = idl->idl_conn; 28164 28165 connp->conn_drain_next = head; 28166 connp->conn_drain_prev = head->conn_drain_prev; 28167 head->conn_drain_prev->conn_drain_next = connp; 28168 head->conn_drain_prev = connp; 28169 } 28170 /* 28171 * For non streams based sockets assert flow control. 28172 */ 28173 if (IPCL_IS_NONSTR(connp)) { 28174 DTRACE_PROBE1(su__txq__full, conn_t *, connp); 28175 (*connp->conn_upcalls->su_txq_full) 28176 (connp->conn_upper_handle, B_TRUE); 28177 } else { 28178 conn_setqfull(connp); 28179 noenable(connp->conn_wq); 28180 } 28181 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28182 } 28183 28184 /* 28185 * This conn is closing, and we are called from ip_close. OR 28186 * This conn has been serviced by ip_wsrv, and we need to do the tail 28187 * processing. 28188 * If this conn is part of the drain list, we may need to sustain the drain 28189 * process by qenabling the next conn in the drain list. We may also need to 28190 * remove this conn from the list, if it is done. 28191 */ 28192 static void 28193 conn_drain_tail(conn_t *connp, boolean_t closing) 28194 { 28195 idl_t *idl; 28196 28197 /* 28198 * connp->conn_idl is stable at this point, and no lock is needed 28199 * to check it. If we are called from ip_close, close has already 28200 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28201 * called us only because conn_idl is non-null. If we are called thru 28202 * service, conn_idl could be null, but it cannot change because 28203 * service is single-threaded per queue, and there cannot be another 28204 * instance of service trying to call conn_drain_insert on this conn 28205 * now. 28206 */ 28207 ASSERT(!closing || (connp->conn_idl != NULL)); 28208 28209 /* 28210 * If connp->conn_idl is null, the conn has not been inserted into any 28211 * drain list even once since creation of the conn. Just return. 28212 */ 28213 if (connp->conn_idl == NULL) 28214 return; 28215 28216 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28217 28218 if (connp->conn_drain_prev == NULL) { 28219 /* This conn is currently not in the drain list. */ 28220 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28221 return; 28222 } 28223 idl = connp->conn_idl; 28224 if (idl->idl_conn_draining == connp) { 28225 /* 28226 * This conn is the current drainer. If this is the last conn 28227 * in the drain list, we need to do more checks, in the 'if' 28228 * below. Otherwwise we need to just qenable the next conn, 28229 * to sustain the draining, and is handled in the 'else' 28230 * below. 28231 */ 28232 if (connp->conn_drain_next == idl->idl_conn) { 28233 /* 28234 * This conn is the last in this list. This round 28235 * of draining is complete. If idl_repeat is set, 28236 * it means another flow enabling has happened from 28237 * the driver/streams and we need to another round 28238 * of draining. 28239 * If there are more than 2 conns in the drain list, 28240 * do a left rotate by 1, so that all conns except the 28241 * conn at the head move towards the head by 1, and the 28242 * the conn at the head goes to the tail. This attempts 28243 * a more even share for all queues that are being 28244 * drained. 28245 */ 28246 if ((connp->conn_drain_next != connp) && 28247 (idl->idl_conn->conn_drain_next != connp)) { 28248 idl->idl_conn = idl->idl_conn->conn_drain_next; 28249 } 28250 if (idl->idl_repeat) { 28251 qenable(idl->idl_conn->conn_wq); 28252 idl->idl_conn_draining = idl->idl_conn; 28253 idl->idl_repeat = 0; 28254 } else { 28255 idl->idl_conn_draining = NULL; 28256 } 28257 } else { 28258 /* 28259 * If the next queue that we are now qenable'ing, 28260 * is closing, it will remove itself from this list 28261 * and qenable the subsequent queue in ip_close(). 28262 * Serialization is acheived thru idl_lock. 28263 */ 28264 qenable(connp->conn_drain_next->conn_wq); 28265 idl->idl_conn_draining = connp->conn_drain_next; 28266 } 28267 } 28268 if (!connp->conn_did_putbq || closing) { 28269 /* 28270 * Remove ourself from the drain list, if we did not do 28271 * a putbq, or if the conn is closing. 28272 * Note: It is possible that q->q_first is non-null. It means 28273 * that these messages landed after we did a enableok() in 28274 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28275 * service them. 28276 */ 28277 if (connp->conn_drain_next == connp) { 28278 /* Singleton in the list */ 28279 ASSERT(connp->conn_drain_prev == connp); 28280 idl->idl_conn = NULL; 28281 idl->idl_conn_draining = NULL; 28282 } else { 28283 connp->conn_drain_prev->conn_drain_next = 28284 connp->conn_drain_next; 28285 connp->conn_drain_next->conn_drain_prev = 28286 connp->conn_drain_prev; 28287 if (idl->idl_conn == connp) 28288 idl->idl_conn = connp->conn_drain_next; 28289 ASSERT(idl->idl_conn_draining != connp); 28290 28291 } 28292 connp->conn_drain_next = NULL; 28293 connp->conn_drain_prev = NULL; 28294 28295 /* 28296 * For non streams based sockets open up flow control. 28297 */ 28298 if (IPCL_IS_NONSTR(connp)) { 28299 (*connp->conn_upcalls->su_txq_full) 28300 (connp->conn_upper_handle, B_FALSE); 28301 } else { 28302 conn_clrqfull(connp); 28303 enableok(connp->conn_wq); 28304 } 28305 } 28306 28307 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28308 } 28309 28310 /* 28311 * Write service routine. Shared perimeter entry point. 28312 * ip_wsrv can be called in any of the following ways. 28313 * 1. The device queue's messages has fallen below the low water mark 28314 * and STREAMS has backenabled the ill_wq. We walk thru all the 28315 * the drain lists and backenable the first conn in each list. 28316 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28317 * qenabled non-tcp upper layers. We start dequeing messages and call 28318 * ip_wput for each message. 28319 */ 28320 28321 void 28322 ip_wsrv(queue_t *q) 28323 { 28324 conn_t *connp; 28325 ill_t *ill; 28326 mblk_t *mp; 28327 28328 if (q->q_next) { 28329 ill = (ill_t *)q->q_ptr; 28330 if (ill->ill_state_flags == 0) { 28331 ip_stack_t *ipst = ill->ill_ipst; 28332 28333 /* 28334 * The device flow control has opened up. 28335 * Walk through conn drain lists and qenable the 28336 * first conn in each list. This makes sense only 28337 * if the stream is fully plumbed and setup. 28338 * Hence the if check above. 28339 */ 28340 ip1dbg(("ip_wsrv: walking\n")); 28341 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 28342 } 28343 return; 28344 } 28345 28346 connp = Q_TO_CONN(q); 28347 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28348 28349 /* 28350 * 1. Set conn_draining flag to signal that service is active. 28351 * 28352 * 2. ip_output determines whether it has been called from service, 28353 * based on the last parameter. If it is IP_WSRV it concludes it 28354 * has been called from service. 28355 * 28356 * 3. Message ordering is preserved by the following logic. 28357 * i. A directly called ip_output (i.e. not thru service) will queue 28358 * the message at the tail, if conn_draining is set (i.e. service 28359 * is running) or if q->q_first is non-null. 28360 * 28361 * ii. If ip_output is called from service, and if ip_output cannot 28362 * putnext due to flow control, it does a putbq. 28363 * 28364 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28365 * (causing an infinite loop). 28366 */ 28367 ASSERT(!connp->conn_did_putbq); 28368 28369 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28370 connp->conn_draining = 1; 28371 noenable(q); 28372 while ((mp = getq(q)) != NULL) { 28373 ASSERT(CONN_Q(q)); 28374 28375 DTRACE_PROBE1(ip__wsrv__ip__output, conn_t *, connp); 28376 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28377 if (connp->conn_did_putbq) { 28378 /* ip_wput did a putbq */ 28379 break; 28380 } 28381 } 28382 /* 28383 * At this point, a thread coming down from top, calling 28384 * ip_wput, may end up queueing the message. We have not yet 28385 * enabled the queue, so ip_wsrv won't be called again. 28386 * To avoid this race, check q->q_first again (in the loop) 28387 * If the other thread queued the message before we call 28388 * enableok(), we will catch it in the q->q_first check. 28389 * If the other thread queues the message after we call 28390 * enableok(), ip_wsrv will be called again by STREAMS. 28391 */ 28392 connp->conn_draining = 0; 28393 enableok(q); 28394 } 28395 28396 /* Enable the next conn for draining */ 28397 conn_drain_tail(connp, B_FALSE); 28398 28399 /* 28400 * conn_direct_blocked is used to indicate blocked 28401 * condition for direct path (ILL_DIRECT_CAPABLE()). 28402 * This is the only place where it is set without 28403 * checking for ILL_DIRECT_CAPABLE() and setting it 28404 * to 0 is ok even if it is not ILL_DIRECT_CAPABLE(). 28405 */ 28406 if (!connp->conn_did_putbq && connp->conn_direct_blocked) { 28407 DTRACE_PROBE1(ip__wsrv__direct__blocked, conn_t *, connp); 28408 connp->conn_direct_blocked = B_FALSE; 28409 } 28410 28411 connp->conn_did_putbq = 0; 28412 } 28413 28414 /* 28415 * Callback to disable flow control in IP. 28416 * 28417 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 28418 * is enabled. 28419 * 28420 * When MAC_TX() is not able to send any more packets, dld sets its queue 28421 * to QFULL and enable the STREAMS flow control. Later, when the underlying 28422 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 28423 * function and wakes up corresponding mac worker threads, which in turn 28424 * calls this callback function, and disables flow control. 28425 */ 28426 void 28427 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 28428 { 28429 ill_t *ill = (ill_t *)arg; 28430 ip_stack_t *ipst = ill->ill_ipst; 28431 idl_tx_list_t *idl_txl; 28432 28433 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 28434 mutex_enter(&idl_txl->txl_lock); 28435 /* add code to to set a flag to indicate idl_txl is enabled */ 28436 conn_walk_drain(ipst, idl_txl); 28437 mutex_exit(&idl_txl->txl_lock); 28438 } 28439 28440 /* 28441 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28442 * of conns that need to be drained, check if drain is already in progress. 28443 * If so set the idl_repeat bit, indicating that the last conn in the list 28444 * needs to reinitiate the drain once again, for the list. If drain is not 28445 * in progress for the list, initiate the draining, by qenabling the 1st 28446 * conn in the list. The drain is self-sustaining, each qenabled conn will 28447 * in turn qenable the next conn, when it is done/blocked/closing. 28448 */ 28449 static void 28450 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 28451 { 28452 int i; 28453 idl_t *idl; 28454 28455 IP_STAT(ipst, ip_conn_walk_drain); 28456 28457 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28458 idl = &tx_list->txl_drain_list[i]; 28459 mutex_enter(&idl->idl_lock); 28460 if (idl->idl_conn == NULL) { 28461 mutex_exit(&idl->idl_lock); 28462 continue; 28463 } 28464 /* 28465 * If this list is not being drained currently by 28466 * an ip_wsrv thread, start the process. 28467 */ 28468 if (idl->idl_conn_draining == NULL) { 28469 ASSERT(idl->idl_repeat == 0); 28470 qenable(idl->idl_conn->conn_wq); 28471 idl->idl_conn_draining = idl->idl_conn; 28472 } else { 28473 idl->idl_repeat = 1; 28474 } 28475 mutex_exit(&idl->idl_lock); 28476 } 28477 } 28478 28479 /* 28480 * Determine if the ill and multicast aspects of that packets 28481 * "matches" the conn. 28482 */ 28483 boolean_t 28484 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28485 zoneid_t zoneid) 28486 { 28487 ill_t *bound_ill; 28488 boolean_t found; 28489 ipif_t *ipif; 28490 ire_t *ire; 28491 ipaddr_t dst, src; 28492 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28493 28494 dst = ipha->ipha_dst; 28495 src = ipha->ipha_src; 28496 28497 /* 28498 * conn_incoming_ill is set by IP_BOUND_IF which limits 28499 * unicast, broadcast and multicast reception to 28500 * conn_incoming_ill. conn_wantpacket itself is called 28501 * only for BROADCAST and multicast. 28502 */ 28503 bound_ill = connp->conn_incoming_ill; 28504 if (bound_ill != NULL) { 28505 if (IS_IPMP(bound_ill)) { 28506 if (bound_ill->ill_grp != ill->ill_grp) 28507 return (B_FALSE); 28508 } else { 28509 if (bound_ill != ill) 28510 return (B_FALSE); 28511 } 28512 } 28513 28514 if (!CLASSD(dst)) { 28515 if (IPCL_ZONE_MATCH(connp, zoneid)) 28516 return (B_TRUE); 28517 /* 28518 * The conn is in a different zone; we need to check that this 28519 * broadcast address is configured in the application's zone. 28520 */ 28521 ipif = ipif_get_next_ipif(NULL, ill); 28522 if (ipif == NULL) 28523 return (B_FALSE); 28524 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28525 connp->conn_zoneid, NULL, 28526 (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 28527 ipif_refrele(ipif); 28528 if (ire != NULL) { 28529 ire_refrele(ire); 28530 return (B_TRUE); 28531 } else { 28532 return (B_FALSE); 28533 } 28534 } 28535 28536 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28537 connp->conn_zoneid == zoneid) { 28538 /* 28539 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28540 * disabled, therefore we don't dispatch the multicast packet to 28541 * the sending zone. 28542 */ 28543 return (B_FALSE); 28544 } 28545 28546 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28547 /* 28548 * Multicast packet on the loopback interface: we only match 28549 * conns who joined the group in the specified zone. 28550 */ 28551 return (B_FALSE); 28552 } 28553 28554 if (connp->conn_multi_router) { 28555 /* multicast packet and multicast router socket: send up */ 28556 return (B_TRUE); 28557 } 28558 28559 mutex_enter(&connp->conn_lock); 28560 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28561 mutex_exit(&connp->conn_lock); 28562 return (found); 28563 } 28564 28565 static void 28566 conn_setqfull(conn_t *connp) 28567 { 28568 queue_t *q = connp->conn_wq; 28569 28570 if (!(q->q_flag & QFULL)) { 28571 mutex_enter(QLOCK(q)); 28572 if (!(q->q_flag & QFULL)) { 28573 /* still need to set QFULL */ 28574 q->q_flag |= QFULL; 28575 mutex_exit(QLOCK(q)); 28576 } else { 28577 mutex_exit(QLOCK(q)); 28578 } 28579 } 28580 } 28581 28582 static void 28583 conn_clrqfull(conn_t *connp) 28584 { 28585 queue_t *q = connp->conn_wq; 28586 28587 if (q->q_flag & QFULL) { 28588 mutex_enter(QLOCK(q)); 28589 if (q->q_flag & QFULL) { 28590 q->q_flag &= ~QFULL; 28591 mutex_exit(QLOCK(q)); 28592 if (q->q_flag & QWANTW) 28593 qbackenable(q, 0); 28594 } else { 28595 mutex_exit(QLOCK(q)); 28596 } 28597 } 28598 } 28599 28600 /* 28601 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28602 */ 28603 /* ARGSUSED */ 28604 static void 28605 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28606 { 28607 ill_t *ill = (ill_t *)q->q_ptr; 28608 mblk_t *mp1, *mp2; 28609 ipif_t *ipif; 28610 int err = 0; 28611 conn_t *connp = NULL; 28612 ipsq_t *ipsq; 28613 arc_t *arc; 28614 28615 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28616 28617 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28618 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28619 28620 ASSERT(IAM_WRITER_ILL(ill)); 28621 mp2 = mp->b_cont; 28622 mp->b_cont = NULL; 28623 28624 /* 28625 * We have now received the arp bringup completion message 28626 * from ARP. Mark the arp bringup as done. Also if the arp 28627 * stream has already started closing, send up the AR_ARP_CLOSING 28628 * ack now since ARP is waiting in close for this ack. 28629 */ 28630 mutex_enter(&ill->ill_lock); 28631 ill->ill_arp_bringup_pending = 0; 28632 if (ill->ill_arp_closing) { 28633 mutex_exit(&ill->ill_lock); 28634 /* Let's reuse the mp for sending the ack */ 28635 arc = (arc_t *)mp->b_rptr; 28636 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28637 arc->arc_cmd = AR_ARP_CLOSING; 28638 qreply(q, mp); 28639 } else { 28640 mutex_exit(&ill->ill_lock); 28641 freeb(mp); 28642 } 28643 28644 ipsq = ill->ill_phyint->phyint_ipsq; 28645 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 28646 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28647 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28648 if (mp1 == NULL) { 28649 /* bringup was aborted by the user */ 28650 freemsg(mp2); 28651 return; 28652 } 28653 28654 /* 28655 * If an IOCTL is waiting on this (ipx_current_ioctl != 0), then we 28656 * must have an associated conn_t. Otherwise, we're bringing this 28657 * interface back up as part of handling an asynchronous event (e.g., 28658 * physical address change). 28659 */ 28660 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 28661 ASSERT(connp != NULL); 28662 q = CONNP_TO_WQ(connp); 28663 } else { 28664 ASSERT(connp == NULL); 28665 q = ill->ill_rq; 28666 } 28667 28668 /* 28669 * If the DL_BIND_REQ fails, it is noted 28670 * in arc_name_offset. 28671 */ 28672 err = *((int *)mp2->b_rptr); 28673 if (err == 0) { 28674 if (ipif->ipif_isv6) { 28675 if ((err = ipif_up_done_v6(ipif)) != 0) 28676 ip0dbg(("ip_arp_done: init failed\n")); 28677 } else { 28678 if ((err = ipif_up_done(ipif)) != 0) 28679 ip0dbg(("ip_arp_done: init failed\n")); 28680 } 28681 } else { 28682 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28683 } 28684 28685 freemsg(mp2); 28686 28687 if ((err == 0) && (ill->ill_up_ipifs)) { 28688 err = ill_up_ipifs(ill, q, mp1); 28689 if (err == EINPROGRESS) 28690 return; 28691 } 28692 28693 /* 28694 * If we have a moved ipif to bring up, and everything has succeeded 28695 * to this point, bring it up on the IPMP ill. Otherwise, leave it 28696 * down -- the admin can try to bring it up by hand if need be. 28697 */ 28698 if (ill->ill_move_ipif != NULL) { 28699 ipif = ill->ill_move_ipif; 28700 ill->ill_move_ipif = NULL; 28701 if (err == 0) { 28702 err = ipif_up(ipif, q, mp1); 28703 if (err == EINPROGRESS) 28704 return; 28705 } 28706 } 28707 28708 /* 28709 * The operation must complete without EINPROGRESS since 28710 * ipsq_pending_mp_get() has removed the mblk. Otherwise, the 28711 * operation will be stuck forever in the ipsq. 28712 */ 28713 ASSERT(err != EINPROGRESS); 28714 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) 28715 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28716 else 28717 ipsq_current_finish(ipsq); 28718 } 28719 28720 /* Allocate the private structure */ 28721 static int 28722 ip_priv_alloc(void **bufp) 28723 { 28724 void *buf; 28725 28726 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28727 return (ENOMEM); 28728 28729 *bufp = buf; 28730 return (0); 28731 } 28732 28733 /* Function to delete the private structure */ 28734 void 28735 ip_priv_free(void *buf) 28736 { 28737 ASSERT(buf != NULL); 28738 kmem_free(buf, sizeof (ip_priv_t)); 28739 } 28740 28741 /* 28742 * The entry point for IPPF processing. 28743 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28744 * routine just returns. 28745 * 28746 * When called, ip_process generates an ipp_packet_t structure 28747 * which holds the state information for this packet and invokes the 28748 * the classifier (via ipp_packet_process). The classification, depending on 28749 * configured filters, results in a list of actions for this packet. Invoking 28750 * an action may cause the packet to be dropped, in which case the resulting 28751 * mblk (*mpp) is NULL. proc indicates the callout position for 28752 * this packet and ill_index is the interface this packet on or will leave 28753 * on (inbound and outbound resp.). 28754 */ 28755 void 28756 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28757 { 28758 mblk_t *mp; 28759 ip_priv_t *priv; 28760 ipp_action_id_t aid; 28761 int rc = 0; 28762 ipp_packet_t *pp; 28763 #define IP_CLASS "ip" 28764 28765 /* If the classifier is not loaded, return */ 28766 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28767 return; 28768 } 28769 28770 mp = *mpp; 28771 ASSERT(mp != NULL); 28772 28773 /* Allocate the packet structure */ 28774 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28775 if (rc != 0) { 28776 *mpp = NULL; 28777 freemsg(mp); 28778 return; 28779 } 28780 28781 /* Allocate the private structure */ 28782 rc = ip_priv_alloc((void **)&priv); 28783 if (rc != 0) { 28784 *mpp = NULL; 28785 freemsg(mp); 28786 ipp_packet_free(pp); 28787 return; 28788 } 28789 priv->proc = proc; 28790 priv->ill_index = ill_index; 28791 ipp_packet_set_private(pp, priv, ip_priv_free); 28792 ipp_packet_set_data(pp, mp); 28793 28794 /* Invoke the classifier */ 28795 rc = ipp_packet_process(&pp); 28796 if (pp != NULL) { 28797 mp = ipp_packet_get_data(pp); 28798 ipp_packet_free(pp); 28799 if (rc != 0) { 28800 freemsg(mp); 28801 *mpp = NULL; 28802 } 28803 } else { 28804 *mpp = NULL; 28805 } 28806 #undef IP_CLASS 28807 } 28808 28809 /* 28810 * Propagate a multicast group membership operation (add/drop) on 28811 * all the interfaces crossed by the related multirt routes. 28812 * The call is considered successful if the operation succeeds 28813 * on at least one interface. 28814 */ 28815 static int 28816 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28817 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28818 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28819 mblk_t *first_mp) 28820 { 28821 ire_t *ire_gw; 28822 irb_t *irb; 28823 int error = 0; 28824 opt_restart_t *or; 28825 ip_stack_t *ipst = ire->ire_ipst; 28826 28827 irb = ire->ire_bucket; 28828 ASSERT(irb != NULL); 28829 28830 ASSERT(DB_TYPE(first_mp) == M_CTL); 28831 28832 or = (opt_restart_t *)first_mp->b_rptr; 28833 IRB_REFHOLD(irb); 28834 for (; ire != NULL; ire = ire->ire_next) { 28835 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28836 continue; 28837 if (ire->ire_addr != group) 28838 continue; 28839 28840 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28841 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28842 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28843 /* No resolver exists for the gateway; skip this ire. */ 28844 if (ire_gw == NULL) 28845 continue; 28846 28847 /* 28848 * This function can return EINPROGRESS. If so the operation 28849 * will be restarted from ip_restart_optmgmt which will 28850 * call ip_opt_set and option processing will restart for 28851 * this option. So we may end up calling 'fn' more than once. 28852 * This requires that 'fn' is idempotent except for the 28853 * return value. The operation is considered a success if 28854 * it succeeds at least once on any one interface. 28855 */ 28856 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28857 NULL, fmode, src, first_mp); 28858 if (error == 0) 28859 or->or_private = CGTP_MCAST_SUCCESS; 28860 28861 if (ip_debug > 0) { 28862 ulong_t off; 28863 char *ksym; 28864 ksym = kobj_getsymname((uintptr_t)fn, &off); 28865 ip2dbg(("ip_multirt_apply_membership: " 28866 "called %s, multirt group 0x%08x via itf 0x%08x, " 28867 "error %d [success %u]\n", 28868 ksym ? ksym : "?", 28869 ntohl(group), ntohl(ire_gw->ire_src_addr), 28870 error, or->or_private)); 28871 } 28872 28873 ire_refrele(ire_gw); 28874 if (error == EINPROGRESS) { 28875 IRB_REFRELE(irb); 28876 return (error); 28877 } 28878 } 28879 IRB_REFRELE(irb); 28880 /* 28881 * Consider the call as successful if we succeeded on at least 28882 * one interface. Otherwise, return the last encountered error. 28883 */ 28884 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28885 } 28886 28887 /* 28888 * Issue a warning regarding a route crossing an interface with an 28889 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28890 * amount of time is logged. 28891 */ 28892 static void 28893 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28894 { 28895 hrtime_t current = gethrtime(); 28896 char buf[INET_ADDRSTRLEN]; 28897 ip_stack_t *ipst = ire->ire_ipst; 28898 28899 /* Convert interval in ms to hrtime in ns */ 28900 if (ipst->ips_multirt_bad_mtu_last_time + 28901 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28902 current) { 28903 cmn_err(CE_WARN, "ip: ignoring multiroute " 28904 "to %s, incorrect MTU %u (expected %u)\n", 28905 ip_dot_addr(ire->ire_addr, buf), 28906 ire->ire_max_frag, max_frag); 28907 28908 ipst->ips_multirt_bad_mtu_last_time = current; 28909 } 28910 } 28911 28912 /* 28913 * Get the CGTP (multirouting) filtering status. 28914 * If 0, the CGTP hooks are transparent. 28915 */ 28916 /* ARGSUSED */ 28917 static int 28918 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28919 { 28920 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28921 28922 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28923 return (0); 28924 } 28925 28926 /* 28927 * Set the CGTP (multirouting) filtering status. 28928 * If the status is changed from active to transparent 28929 * or from transparent to active, forward the new status 28930 * to the filtering module (if loaded). 28931 */ 28932 /* ARGSUSED */ 28933 static int 28934 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28935 cred_t *ioc_cr) 28936 { 28937 long new_value; 28938 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28939 ip_stack_t *ipst = CONNQ_TO_IPST(q); 28940 28941 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 28942 return (EPERM); 28943 28944 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28945 new_value < 0 || new_value > 1) { 28946 return (EINVAL); 28947 } 28948 28949 if ((!*ip_cgtp_filter_value) && new_value) { 28950 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28951 ipst->ips_ip_cgtp_filter_ops == NULL ? 28952 " (module not loaded)" : ""); 28953 } 28954 if (*ip_cgtp_filter_value && (!new_value)) { 28955 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28956 ipst->ips_ip_cgtp_filter_ops == NULL ? 28957 " (module not loaded)" : ""); 28958 } 28959 28960 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28961 int res; 28962 netstackid_t stackid; 28963 28964 stackid = ipst->ips_netstack->netstack_stackid; 28965 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 28966 new_value); 28967 if (res) 28968 return (res); 28969 } 28970 28971 *ip_cgtp_filter_value = (boolean_t)new_value; 28972 28973 return (0); 28974 } 28975 28976 /* 28977 * Return the expected CGTP hooks version number. 28978 */ 28979 int 28980 ip_cgtp_filter_supported(void) 28981 { 28982 return (ip_cgtp_filter_rev); 28983 } 28984 28985 /* 28986 * CGTP hooks can be registered by invoking this function. 28987 * Checks that the version number matches. 28988 */ 28989 int 28990 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 28991 { 28992 netstack_t *ns; 28993 ip_stack_t *ipst; 28994 28995 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 28996 return (ENOTSUP); 28997 28998 ns = netstack_find_by_stackid(stackid); 28999 if (ns == NULL) 29000 return (EINVAL); 29001 ipst = ns->netstack_ip; 29002 ASSERT(ipst != NULL); 29003 29004 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29005 netstack_rele(ns); 29006 return (EALREADY); 29007 } 29008 29009 ipst->ips_ip_cgtp_filter_ops = ops; 29010 netstack_rele(ns); 29011 return (0); 29012 } 29013 29014 /* 29015 * CGTP hooks can be unregistered by invoking this function. 29016 * Returns ENXIO if there was no registration. 29017 * Returns EBUSY if the ndd variable has not been turned off. 29018 */ 29019 int 29020 ip_cgtp_filter_unregister(netstackid_t stackid) 29021 { 29022 netstack_t *ns; 29023 ip_stack_t *ipst; 29024 29025 ns = netstack_find_by_stackid(stackid); 29026 if (ns == NULL) 29027 return (EINVAL); 29028 ipst = ns->netstack_ip; 29029 ASSERT(ipst != NULL); 29030 29031 if (ipst->ips_ip_cgtp_filter) { 29032 netstack_rele(ns); 29033 return (EBUSY); 29034 } 29035 29036 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 29037 netstack_rele(ns); 29038 return (ENXIO); 29039 } 29040 ipst->ips_ip_cgtp_filter_ops = NULL; 29041 netstack_rele(ns); 29042 return (0); 29043 } 29044 29045 /* 29046 * Check whether there is a CGTP filter registration. 29047 * Returns non-zero if there is a registration, otherwise returns zero. 29048 * Note: returns zero if bad stackid. 29049 */ 29050 int 29051 ip_cgtp_filter_is_registered(netstackid_t stackid) 29052 { 29053 netstack_t *ns; 29054 ip_stack_t *ipst; 29055 int ret; 29056 29057 ns = netstack_find_by_stackid(stackid); 29058 if (ns == NULL) 29059 return (0); 29060 ipst = ns->netstack_ip; 29061 ASSERT(ipst != NULL); 29062 29063 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29064 ret = 1; 29065 else 29066 ret = 0; 29067 29068 netstack_rele(ns); 29069 return (ret); 29070 } 29071 29072 static int 29073 ip_squeue_switch(int val) 29074 { 29075 int rval = SQ_FILL; 29076 29077 switch (val) { 29078 case IP_SQUEUE_ENTER_NODRAIN: 29079 rval = SQ_NODRAIN; 29080 break; 29081 case IP_SQUEUE_ENTER: 29082 rval = SQ_PROCESS; 29083 break; 29084 default: 29085 break; 29086 } 29087 return (rval); 29088 } 29089 29090 /* ARGSUSED */ 29091 static int 29092 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29093 caddr_t addr, cred_t *cr) 29094 { 29095 int *v = (int *)addr; 29096 long new_value; 29097 29098 if (secpolicy_net_config(cr, B_FALSE) != 0) 29099 return (EPERM); 29100 29101 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29102 return (EINVAL); 29103 29104 ip_squeue_flag = ip_squeue_switch(new_value); 29105 *v = new_value; 29106 return (0); 29107 } 29108 29109 /* 29110 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29111 * ip_debug. 29112 */ 29113 /* ARGSUSED */ 29114 static int 29115 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29116 caddr_t addr, cred_t *cr) 29117 { 29118 int *v = (int *)addr; 29119 long new_value; 29120 29121 if (secpolicy_net_config(cr, B_FALSE) != 0) 29122 return (EPERM); 29123 29124 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29125 return (EINVAL); 29126 29127 *v = new_value; 29128 return (0); 29129 } 29130 29131 static void * 29132 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29133 { 29134 kstat_t *ksp; 29135 29136 ip_stat_t template = { 29137 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29138 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29139 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29140 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29141 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29142 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29143 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29144 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29145 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29146 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29147 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29148 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29149 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29150 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29151 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29152 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29153 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29154 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29155 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29156 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29157 { "ip_opt", KSTAT_DATA_UINT64 }, 29158 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29159 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29160 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29161 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29162 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29163 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29164 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29165 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29166 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29167 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29168 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29169 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29170 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29171 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29172 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29173 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29174 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29175 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29176 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29177 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29178 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29179 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29180 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29181 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29182 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29183 }; 29184 29185 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29186 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29187 KSTAT_FLAG_VIRTUAL, stackid); 29188 29189 if (ksp == NULL) 29190 return (NULL); 29191 29192 bcopy(&template, ip_statisticsp, sizeof (template)); 29193 ksp->ks_data = (void *)ip_statisticsp; 29194 ksp->ks_private = (void *)(uintptr_t)stackid; 29195 29196 kstat_install(ksp); 29197 return (ksp); 29198 } 29199 29200 static void 29201 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29202 { 29203 if (ksp != NULL) { 29204 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29205 kstat_delete_netstack(ksp, stackid); 29206 } 29207 } 29208 29209 static void * 29210 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29211 { 29212 kstat_t *ksp; 29213 29214 ip_named_kstat_t template = { 29215 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29216 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29217 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29218 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29219 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29220 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29221 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29222 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29223 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29224 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29225 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29226 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29227 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29228 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29229 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29230 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29231 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29232 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29233 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29234 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29235 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29236 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29237 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29238 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29239 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29240 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29241 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29242 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29243 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29244 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29245 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29246 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29247 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29248 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29249 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29250 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29251 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29252 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29253 }; 29254 29255 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29256 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29257 if (ksp == NULL || ksp->ks_data == NULL) 29258 return (NULL); 29259 29260 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29261 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29262 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29263 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29264 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29265 29266 template.netToMediaEntrySize.value.i32 = 29267 sizeof (mib2_ipNetToMediaEntry_t); 29268 29269 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29270 29271 bcopy(&template, ksp->ks_data, sizeof (template)); 29272 ksp->ks_update = ip_kstat_update; 29273 ksp->ks_private = (void *)(uintptr_t)stackid; 29274 29275 kstat_install(ksp); 29276 return (ksp); 29277 } 29278 29279 static void 29280 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29281 { 29282 if (ksp != NULL) { 29283 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29284 kstat_delete_netstack(ksp, stackid); 29285 } 29286 } 29287 29288 static int 29289 ip_kstat_update(kstat_t *kp, int rw) 29290 { 29291 ip_named_kstat_t *ipkp; 29292 mib2_ipIfStatsEntry_t ipmib; 29293 ill_walk_context_t ctx; 29294 ill_t *ill; 29295 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29296 netstack_t *ns; 29297 ip_stack_t *ipst; 29298 29299 if (kp == NULL || kp->ks_data == NULL) 29300 return (EIO); 29301 29302 if (rw == KSTAT_WRITE) 29303 return (EACCES); 29304 29305 ns = netstack_find_by_stackid(stackid); 29306 if (ns == NULL) 29307 return (-1); 29308 ipst = ns->netstack_ip; 29309 if (ipst == NULL) { 29310 netstack_rele(ns); 29311 return (-1); 29312 } 29313 ipkp = (ip_named_kstat_t *)kp->ks_data; 29314 29315 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29316 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29317 ill = ILL_START_WALK_V4(&ctx, ipst); 29318 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29319 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29320 rw_exit(&ipst->ips_ill_g_lock); 29321 29322 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29323 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29324 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29325 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29326 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29327 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29328 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29329 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29330 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29331 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29332 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29333 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29334 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29335 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29336 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29337 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29338 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29339 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29340 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29341 29342 ipkp->routingDiscards.value.ui32 = 0; 29343 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29344 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29345 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29346 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29347 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29348 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29349 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29350 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29351 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29352 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29353 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29354 29355 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29356 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29357 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29358 29359 netstack_rele(ns); 29360 29361 return (0); 29362 } 29363 29364 static void * 29365 icmp_kstat_init(netstackid_t stackid) 29366 { 29367 kstat_t *ksp; 29368 29369 icmp_named_kstat_t template = { 29370 { "inMsgs", KSTAT_DATA_UINT32 }, 29371 { "inErrors", KSTAT_DATA_UINT32 }, 29372 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29373 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29374 { "inParmProbs", KSTAT_DATA_UINT32 }, 29375 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29376 { "inRedirects", KSTAT_DATA_UINT32 }, 29377 { "inEchos", KSTAT_DATA_UINT32 }, 29378 { "inEchoReps", KSTAT_DATA_UINT32 }, 29379 { "inTimestamps", KSTAT_DATA_UINT32 }, 29380 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29381 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29382 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29383 { "outMsgs", KSTAT_DATA_UINT32 }, 29384 { "outErrors", KSTAT_DATA_UINT32 }, 29385 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29386 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29387 { "outParmProbs", KSTAT_DATA_UINT32 }, 29388 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29389 { "outRedirects", KSTAT_DATA_UINT32 }, 29390 { "outEchos", KSTAT_DATA_UINT32 }, 29391 { "outEchoReps", KSTAT_DATA_UINT32 }, 29392 { "outTimestamps", KSTAT_DATA_UINT32 }, 29393 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29394 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29395 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29396 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29397 { "inUnknowns", KSTAT_DATA_UINT32 }, 29398 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29399 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29400 { "outDrops", KSTAT_DATA_UINT32 }, 29401 { "inOverFlows", KSTAT_DATA_UINT32 }, 29402 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29403 }; 29404 29405 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29406 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29407 if (ksp == NULL || ksp->ks_data == NULL) 29408 return (NULL); 29409 29410 bcopy(&template, ksp->ks_data, sizeof (template)); 29411 29412 ksp->ks_update = icmp_kstat_update; 29413 ksp->ks_private = (void *)(uintptr_t)stackid; 29414 29415 kstat_install(ksp); 29416 return (ksp); 29417 } 29418 29419 static void 29420 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29421 { 29422 if (ksp != NULL) { 29423 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29424 kstat_delete_netstack(ksp, stackid); 29425 } 29426 } 29427 29428 static int 29429 icmp_kstat_update(kstat_t *kp, int rw) 29430 { 29431 icmp_named_kstat_t *icmpkp; 29432 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29433 netstack_t *ns; 29434 ip_stack_t *ipst; 29435 29436 if ((kp == NULL) || (kp->ks_data == NULL)) 29437 return (EIO); 29438 29439 if (rw == KSTAT_WRITE) 29440 return (EACCES); 29441 29442 ns = netstack_find_by_stackid(stackid); 29443 if (ns == NULL) 29444 return (-1); 29445 ipst = ns->netstack_ip; 29446 if (ipst == NULL) { 29447 netstack_rele(ns); 29448 return (-1); 29449 } 29450 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29451 29452 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29453 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29454 icmpkp->inDestUnreachs.value.ui32 = 29455 ipst->ips_icmp_mib.icmpInDestUnreachs; 29456 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29457 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29458 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29459 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29460 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29461 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29462 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29463 icmpkp->inTimestampReps.value.ui32 = 29464 ipst->ips_icmp_mib.icmpInTimestampReps; 29465 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29466 icmpkp->inAddrMaskReps.value.ui32 = 29467 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29468 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29469 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29470 icmpkp->outDestUnreachs.value.ui32 = 29471 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29472 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29473 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29474 icmpkp->outSrcQuenchs.value.ui32 = 29475 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29476 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29477 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29478 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29479 icmpkp->outTimestamps.value.ui32 = 29480 ipst->ips_icmp_mib.icmpOutTimestamps; 29481 icmpkp->outTimestampReps.value.ui32 = 29482 ipst->ips_icmp_mib.icmpOutTimestampReps; 29483 icmpkp->outAddrMasks.value.ui32 = 29484 ipst->ips_icmp_mib.icmpOutAddrMasks; 29485 icmpkp->outAddrMaskReps.value.ui32 = 29486 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29487 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29488 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29489 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29490 icmpkp->outFragNeeded.value.ui32 = 29491 ipst->ips_icmp_mib.icmpOutFragNeeded; 29492 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29493 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29494 icmpkp->inBadRedirects.value.ui32 = 29495 ipst->ips_icmp_mib.icmpInBadRedirects; 29496 29497 netstack_rele(ns); 29498 return (0); 29499 } 29500 29501 /* 29502 * This is the fanout function for raw socket opened for SCTP. Note 29503 * that it is called after SCTP checks that there is no socket which 29504 * wants a packet. Then before SCTP handles this out of the blue packet, 29505 * this function is called to see if there is any raw socket for SCTP. 29506 * If there is and it is bound to the correct address, the packet will 29507 * be sent to that socket. Note that only one raw socket can be bound to 29508 * a port. This is assured in ipcl_sctp_hash_insert(); 29509 */ 29510 void 29511 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29512 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29513 zoneid_t zoneid) 29514 { 29515 conn_t *connp; 29516 queue_t *rq; 29517 mblk_t *first_mp; 29518 boolean_t secure; 29519 ip6_t *ip6h; 29520 ip_stack_t *ipst = recv_ill->ill_ipst; 29521 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29522 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29523 boolean_t sctp_csum_err = B_FALSE; 29524 29525 if (flags & IP_FF_SCTP_CSUM_ERR) { 29526 sctp_csum_err = B_TRUE; 29527 flags &= ~IP_FF_SCTP_CSUM_ERR; 29528 } 29529 29530 first_mp = mp; 29531 if (mctl_present) { 29532 mp = first_mp->b_cont; 29533 secure = ipsec_in_is_secure(first_mp); 29534 ASSERT(mp != NULL); 29535 } else { 29536 secure = B_FALSE; 29537 } 29538 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29539 29540 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29541 if (connp == NULL) { 29542 /* 29543 * Although raw sctp is not summed, OOB chunks must be. 29544 * Drop the packet here if the sctp checksum failed. 29545 */ 29546 if (sctp_csum_err) { 29547 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29548 freemsg(first_mp); 29549 return; 29550 } 29551 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29552 return; 29553 } 29554 rq = connp->conn_rq; 29555 if (!canputnext(rq)) { 29556 CONN_DEC_REF(connp); 29557 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29558 freemsg(first_mp); 29559 return; 29560 } 29561 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29562 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29563 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29564 (isv4 ? ipha : NULL), ip6h, mctl_present); 29565 if (first_mp == NULL) { 29566 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29567 CONN_DEC_REF(connp); 29568 return; 29569 } 29570 } 29571 /* 29572 * We probably should not send M_CTL message up to 29573 * raw socket. 29574 */ 29575 if (mctl_present) 29576 freeb(first_mp); 29577 29578 /* Initiate IPPF processing here if needed. */ 29579 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29580 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29581 ip_process(IPP_LOCAL_IN, &mp, 29582 recv_ill->ill_phyint->phyint_ifindex); 29583 if (mp == NULL) { 29584 CONN_DEC_REF(connp); 29585 return; 29586 } 29587 } 29588 29589 if (connp->conn_recvif || connp->conn_recvslla || 29590 ((connp->conn_ip_recvpktinfo || 29591 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29592 (flags & IP_FF_IPINFO))) { 29593 int in_flags = 0; 29594 29595 /* 29596 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29597 * IPF_RECVIF. 29598 */ 29599 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29600 in_flags = IPF_RECVIF; 29601 } 29602 if (connp->conn_recvslla) { 29603 in_flags |= IPF_RECVSLLA; 29604 } 29605 if (isv4) { 29606 mp = ip_add_info(mp, recv_ill, in_flags, 29607 IPCL_ZONEID(connp), ipst); 29608 } else { 29609 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29610 if (mp == NULL) { 29611 BUMP_MIB(recv_ill->ill_ip_mib, 29612 ipIfStatsInDiscards); 29613 CONN_DEC_REF(connp); 29614 return; 29615 } 29616 } 29617 } 29618 29619 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29620 /* 29621 * We are sending the IPSEC_IN message also up. Refer 29622 * to comments above this function. 29623 * This is the SOCK_RAW, IPPROTO_SCTP case. 29624 */ 29625 (connp->conn_recv)(connp, mp, NULL); 29626 CONN_DEC_REF(connp); 29627 } 29628 29629 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29630 { \ 29631 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29632 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29633 } 29634 /* 29635 * This function should be called only if all packet processing 29636 * including fragmentation is complete. Callers of this function 29637 * must set mp->b_prev to one of these values: 29638 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29639 * prior to handing over the mp as first argument to this function. 29640 * 29641 * If the ire passed by caller is incomplete, this function 29642 * queues the packet and if necessary, sends ARP request and bails. 29643 * If the ire passed is fully resolved, we simply prepend 29644 * the link-layer header to the packet, do ipsec hw acceleration 29645 * work if necessary, and send the packet out on the wire. 29646 * 29647 * NOTE: IPsec will only call this function with fully resolved 29648 * ires if hw acceleration is involved. 29649 * TODO list : 29650 * a Handle M_MULTIDATA so that 29651 * tcp_multisend->tcp_multisend_data can 29652 * call ip_xmit_v4 directly 29653 * b Handle post-ARP work for fragments so that 29654 * ip_wput_frag can call this function. 29655 */ 29656 ipxmit_state_t 29657 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, 29658 boolean_t flow_ctl_enabled, conn_t *connp) 29659 { 29660 nce_t *arpce; 29661 ipha_t *ipha; 29662 queue_t *q; 29663 int ill_index; 29664 mblk_t *nxt_mp, *first_mp; 29665 boolean_t xmit_drop = B_FALSE; 29666 ip_proc_t proc; 29667 ill_t *out_ill; 29668 int pkt_len; 29669 29670 arpce = ire->ire_nce; 29671 ASSERT(arpce != NULL); 29672 29673 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29674 29675 mutex_enter(&arpce->nce_lock); 29676 switch (arpce->nce_state) { 29677 case ND_REACHABLE: 29678 /* If there are other queued packets, queue this packet */ 29679 if (arpce->nce_qd_mp != NULL) { 29680 if (mp != NULL) 29681 nce_queue_mp_common(arpce, mp, B_FALSE); 29682 mp = arpce->nce_qd_mp; 29683 } 29684 arpce->nce_qd_mp = NULL; 29685 mutex_exit(&arpce->nce_lock); 29686 29687 /* 29688 * Flush the queue. In the common case, where the 29689 * ARP is already resolved, it will go through the 29690 * while loop only once. 29691 */ 29692 while (mp != NULL) { 29693 29694 nxt_mp = mp->b_next; 29695 mp->b_next = NULL; 29696 ASSERT(mp->b_datap->db_type != M_CTL); 29697 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29698 /* 29699 * This info is needed for IPQOS to do COS marking 29700 * in ip_wput_attach_llhdr->ip_process. 29701 */ 29702 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29703 mp->b_prev = NULL; 29704 29705 /* set up ill index for outbound qos processing */ 29706 out_ill = ire_to_ill(ire); 29707 ill_index = out_ill->ill_phyint->phyint_ifindex; 29708 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29709 ill_index, &ipha); 29710 if (first_mp == NULL) { 29711 xmit_drop = B_TRUE; 29712 BUMP_MIB(out_ill->ill_ip_mib, 29713 ipIfStatsOutDiscards); 29714 goto next_mp; 29715 } 29716 29717 /* non-ipsec hw accel case */ 29718 if (io == NULL || !io->ipsec_out_accelerated) { 29719 /* send it */ 29720 q = ire->ire_stq; 29721 if (proc == IPP_FWD_OUT) { 29722 UPDATE_IB_PKT_COUNT(ire); 29723 } else { 29724 UPDATE_OB_PKT_COUNT(ire); 29725 } 29726 ire->ire_last_used_time = lbolt; 29727 29728 if (flow_ctl_enabled || canputnext(q)) { 29729 if (proc == IPP_FWD_OUT) { 29730 29731 BUMP_MIB(out_ill->ill_ip_mib, 29732 ipIfStatsHCOutForwDatagrams); 29733 29734 } 29735 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29736 pkt_len); 29737 29738 DTRACE_IP7(send, mblk_t *, first_mp, 29739 conn_t *, NULL, void_ip_t *, ipha, 29740 __dtrace_ipsr_ill_t *, out_ill, 29741 ipha_t *, ipha, ip6_t *, NULL, int, 29742 0); 29743 29744 ILL_SEND_TX(out_ill, 29745 ire, connp, first_mp, 0, connp); 29746 } else { 29747 BUMP_MIB(out_ill->ill_ip_mib, 29748 ipIfStatsOutDiscards); 29749 xmit_drop = B_TRUE; 29750 freemsg(first_mp); 29751 } 29752 } else { 29753 /* 29754 * Safety Pup says: make sure this 29755 * is going to the right interface! 29756 */ 29757 ill_t *ill1 = 29758 (ill_t *)ire->ire_stq->q_ptr; 29759 int ifindex = 29760 ill1->ill_phyint->phyint_ifindex; 29761 if (ifindex != 29762 io->ipsec_out_capab_ill_index) { 29763 xmit_drop = B_TRUE; 29764 freemsg(mp); 29765 } else { 29766 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29767 pkt_len); 29768 29769 DTRACE_IP7(send, mblk_t *, first_mp, 29770 conn_t *, NULL, void_ip_t *, ipha, 29771 __dtrace_ipsr_ill_t *, ill1, 29772 ipha_t *, ipha, ip6_t *, NULL, 29773 int, 0); 29774 29775 ipsec_hw_putnext(ire->ire_stq, mp); 29776 } 29777 } 29778 next_mp: 29779 mp = nxt_mp; 29780 } /* while (mp != NULL) */ 29781 if (xmit_drop) 29782 return (SEND_FAILED); 29783 else 29784 return (SEND_PASSED); 29785 29786 case ND_INITIAL: 29787 case ND_INCOMPLETE: 29788 29789 /* 29790 * While we do send off packets to dests that 29791 * use fully-resolved CGTP routes, we do not 29792 * handle unresolved CGTP routes. 29793 */ 29794 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29795 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29796 29797 if (mp != NULL) { 29798 /* queue the packet */ 29799 nce_queue_mp_common(arpce, mp, B_FALSE); 29800 } 29801 29802 if (arpce->nce_state == ND_INCOMPLETE) { 29803 mutex_exit(&arpce->nce_lock); 29804 DTRACE_PROBE3(ip__xmit__incomplete, 29805 (ire_t *), ire, (mblk_t *), mp, 29806 (ipsec_out_t *), io); 29807 return (LOOKUP_IN_PROGRESS); 29808 } 29809 29810 arpce->nce_state = ND_INCOMPLETE; 29811 mutex_exit(&arpce->nce_lock); 29812 29813 /* 29814 * Note that ire_add() (called from ire_forward()) 29815 * holds a ref on the ire until ARP is completed. 29816 */ 29817 ire_arpresolve(ire); 29818 return (LOOKUP_IN_PROGRESS); 29819 default: 29820 ASSERT(0); 29821 mutex_exit(&arpce->nce_lock); 29822 return (LLHDR_RESLV_FAILED); 29823 } 29824 } 29825 29826 #undef UPDATE_IP_MIB_OB_COUNTERS 29827 29828 /* 29829 * Return B_TRUE if the buffers differ in length or content. 29830 * This is used for comparing extension header buffers. 29831 * Note that an extension header would be declared different 29832 * even if all that changed was the next header value in that header i.e. 29833 * what really changed is the next extension header. 29834 */ 29835 boolean_t 29836 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29837 uint_t blen) 29838 { 29839 if (!b_valid) 29840 blen = 0; 29841 29842 if (alen != blen) 29843 return (B_TRUE); 29844 if (alen == 0) 29845 return (B_FALSE); /* Both zero length */ 29846 return (bcmp(abuf, bbuf, alen)); 29847 } 29848 29849 /* 29850 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29851 * Return B_FALSE if memory allocation fails - don't change any state! 29852 */ 29853 boolean_t 29854 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29855 const void *src, uint_t srclen) 29856 { 29857 void *dst; 29858 29859 if (!src_valid) 29860 srclen = 0; 29861 29862 ASSERT(*dstlenp == 0); 29863 if (src != NULL && srclen != 0) { 29864 dst = mi_alloc(srclen, BPRI_MED); 29865 if (dst == NULL) 29866 return (B_FALSE); 29867 } else { 29868 dst = NULL; 29869 } 29870 if (*dstp != NULL) 29871 mi_free(*dstp); 29872 *dstp = dst; 29873 *dstlenp = dst == NULL ? 0 : srclen; 29874 return (B_TRUE); 29875 } 29876 29877 /* 29878 * Replace what is in *dst, *dstlen with the source. 29879 * Assumes ip_allocbuf has already been called. 29880 */ 29881 void 29882 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29883 const void *src, uint_t srclen) 29884 { 29885 if (!src_valid) 29886 srclen = 0; 29887 29888 ASSERT(*dstlenp == srclen); 29889 if (src != NULL && srclen != 0) 29890 bcopy(src, *dstp, srclen); 29891 } 29892 29893 /* 29894 * Free the storage pointed to by the members of an ip6_pkt_t. 29895 */ 29896 void 29897 ip6_pkt_free(ip6_pkt_t *ipp) 29898 { 29899 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 29900 29901 if (ipp->ipp_fields & IPPF_HOPOPTS) { 29902 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 29903 ipp->ipp_hopopts = NULL; 29904 ipp->ipp_hopoptslen = 0; 29905 } 29906 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 29907 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 29908 ipp->ipp_rtdstopts = NULL; 29909 ipp->ipp_rtdstoptslen = 0; 29910 } 29911 if (ipp->ipp_fields & IPPF_DSTOPTS) { 29912 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 29913 ipp->ipp_dstopts = NULL; 29914 ipp->ipp_dstoptslen = 0; 29915 } 29916 if (ipp->ipp_fields & IPPF_RTHDR) { 29917 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 29918 ipp->ipp_rthdr = NULL; 29919 ipp->ipp_rthdrlen = 0; 29920 } 29921 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 29922 IPPF_RTHDR); 29923 } 29924 29925 zoneid_t 29926 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_stack_t *ipst, 29927 zoneid_t lookup_zoneid) 29928 { 29929 ire_t *ire; 29930 int ire_flags = MATCH_IRE_TYPE; 29931 zoneid_t zoneid = ALL_ZONES; 29932 29933 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 29934 return (ALL_ZONES); 29935 29936 if (lookup_zoneid != ALL_ZONES) 29937 ire_flags |= MATCH_IRE_ZONEONLY; 29938 ire = ire_ctable_lookup(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, NULL, 29939 lookup_zoneid, NULL, ire_flags, ipst); 29940 if (ire != NULL) { 29941 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 29942 ire_refrele(ire); 29943 } 29944 return (zoneid); 29945 } 29946 29947 zoneid_t 29948 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 29949 ip_stack_t *ipst, zoneid_t lookup_zoneid) 29950 { 29951 ire_t *ire; 29952 int ire_flags = MATCH_IRE_TYPE; 29953 zoneid_t zoneid = ALL_ZONES; 29954 ipif_t *ipif_arg = NULL; 29955 29956 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 29957 return (ALL_ZONES); 29958 29959 if (IN6_IS_ADDR_LINKLOCAL(addr)) { 29960 ire_flags |= MATCH_IRE_ILL; 29961 ipif_arg = ill->ill_ipif; 29962 } 29963 if (lookup_zoneid != ALL_ZONES) 29964 ire_flags |= MATCH_IRE_ZONEONLY; 29965 ire = ire_ctable_lookup_v6(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, 29966 ipif_arg, lookup_zoneid, NULL, ire_flags, ipst); 29967 if (ire != NULL) { 29968 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 29969 ire_refrele(ire); 29970 } 29971 return (zoneid); 29972 } 29973 29974 /* 29975 * IP obserability hook support functions. 29976 */ 29977 29978 static void 29979 ipobs_init(ip_stack_t *ipst) 29980 { 29981 ipst->ips_ipobs_enabled = B_FALSE; 29982 list_create(&ipst->ips_ipobs_cb_list, sizeof (ipobs_cb_t), 29983 offsetof(ipobs_cb_t, ipobs_cbnext)); 29984 mutex_init(&ipst->ips_ipobs_cb_lock, NULL, MUTEX_DEFAULT, NULL); 29985 ipst->ips_ipobs_cb_nwalkers = 0; 29986 cv_init(&ipst->ips_ipobs_cb_cv, NULL, CV_DRIVER, NULL); 29987 } 29988 29989 static void 29990 ipobs_fini(ip_stack_t *ipst) 29991 { 29992 ipobs_cb_t *cb; 29993 29994 mutex_enter(&ipst->ips_ipobs_cb_lock); 29995 while (ipst->ips_ipobs_cb_nwalkers != 0) 29996 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 29997 29998 while ((cb = list_head(&ipst->ips_ipobs_cb_list)) != NULL) { 29999 list_remove(&ipst->ips_ipobs_cb_list, cb); 30000 kmem_free(cb, sizeof (*cb)); 30001 } 30002 list_destroy(&ipst->ips_ipobs_cb_list); 30003 mutex_exit(&ipst->ips_ipobs_cb_lock); 30004 mutex_destroy(&ipst->ips_ipobs_cb_lock); 30005 cv_destroy(&ipst->ips_ipobs_cb_cv); 30006 } 30007 30008 void 30009 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 30010 const ill_t *ill, int ipver, uint32_t hlen, ip_stack_t *ipst) 30011 { 30012 mblk_t *mp2; 30013 ipobs_cb_t *ipobs_cb; 30014 ipobs_hook_data_t *ihd; 30015 uint64_t grifindex = 0; 30016 30017 ASSERT(DB_TYPE(mp) == M_DATA); 30018 30019 if (IS_UNDER_IPMP(ill)) 30020 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 30021 30022 mutex_enter(&ipst->ips_ipobs_cb_lock); 30023 ipst->ips_ipobs_cb_nwalkers++; 30024 mutex_exit(&ipst->ips_ipobs_cb_lock); 30025 for (ipobs_cb = list_head(&ipst->ips_ipobs_cb_list); ipobs_cb != NULL; 30026 ipobs_cb = list_next(&ipst->ips_ipobs_cb_list, ipobs_cb)) { 30027 mp2 = allocb(sizeof (ipobs_hook_data_t), BPRI_HI); 30028 if (mp2 != NULL) { 30029 ihd = (ipobs_hook_data_t *)mp2->b_rptr; 30030 if (((ihd->ihd_mp = dupmsg(mp)) == NULL) && 30031 ((ihd->ihd_mp = copymsg(mp)) == NULL)) { 30032 freemsg(mp2); 30033 continue; 30034 } 30035 ihd->ihd_mp->b_rptr += hlen; 30036 ihd->ihd_htype = htype; 30037 ihd->ihd_ipver = ipver; 30038 ihd->ihd_zsrc = zsrc; 30039 ihd->ihd_zdst = zdst; 30040 ihd->ihd_ifindex = ill->ill_phyint->phyint_ifindex; 30041 ihd->ihd_grifindex = grifindex; 30042 ihd->ihd_stack = ipst->ips_netstack; 30043 mp2->b_wptr += sizeof (*ihd); 30044 ipobs_cb->ipobs_cbfunc(mp2); 30045 } 30046 } 30047 mutex_enter(&ipst->ips_ipobs_cb_lock); 30048 ipst->ips_ipobs_cb_nwalkers--; 30049 if (ipst->ips_ipobs_cb_nwalkers == 0) 30050 cv_broadcast(&ipst->ips_ipobs_cb_cv); 30051 mutex_exit(&ipst->ips_ipobs_cb_lock); 30052 } 30053 30054 void 30055 ipobs_register_hook(netstack_t *ns, pfv_t func) 30056 { 30057 ipobs_cb_t *cb; 30058 ip_stack_t *ipst = ns->netstack_ip; 30059 30060 cb = kmem_alloc(sizeof (*cb), KM_SLEEP); 30061 30062 mutex_enter(&ipst->ips_ipobs_cb_lock); 30063 while (ipst->ips_ipobs_cb_nwalkers != 0) 30064 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30065 ASSERT(ipst->ips_ipobs_cb_nwalkers == 0); 30066 30067 cb->ipobs_cbfunc = func; 30068 list_insert_head(&ipst->ips_ipobs_cb_list, cb); 30069 ipst->ips_ipobs_enabled = B_TRUE; 30070 mutex_exit(&ipst->ips_ipobs_cb_lock); 30071 } 30072 30073 void 30074 ipobs_unregister_hook(netstack_t *ns, pfv_t func) 30075 { 30076 ipobs_cb_t *curcb; 30077 ip_stack_t *ipst = ns->netstack_ip; 30078 30079 mutex_enter(&ipst->ips_ipobs_cb_lock); 30080 while (ipst->ips_ipobs_cb_nwalkers != 0) 30081 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30082 30083 for (curcb = list_head(&ipst->ips_ipobs_cb_list); curcb != NULL; 30084 curcb = list_next(&ipst->ips_ipobs_cb_list, curcb)) { 30085 if (func == curcb->ipobs_cbfunc) { 30086 list_remove(&ipst->ips_ipobs_cb_list, curcb); 30087 kmem_free(curcb, sizeof (*curcb)); 30088 break; 30089 } 30090 } 30091 if (list_is_empty(&ipst->ips_ipobs_cb_list)) 30092 ipst->ips_ipobs_enabled = B_FALSE; 30093 mutex_exit(&ipst->ips_ipobs_cb_lock); 30094 } 30095