1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/stream.h> 31 #include <sys/dlpi.h> 32 #include <sys/stropts.h> 33 #include <sys/sysmacros.h> 34 #include <sys/strsubr.h> 35 #include <sys/strlog.h> 36 #include <sys/strsun.h> 37 #include <sys/zone.h> 38 #define _SUN_TPI_VERSION 2 39 #include <sys/tihdr.h> 40 #include <sys/xti_inet.h> 41 #include <sys/ddi.h> 42 #include <sys/sunddi.h> 43 #include <sys/cmn_err.h> 44 #include <sys/debug.h> 45 #include <sys/kobj.h> 46 #include <sys/modctl.h> 47 #include <sys/atomic.h> 48 #include <sys/policy.h> 49 #include <sys/priv.h> 50 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/kmem.h> 54 #include <sys/sdt.h> 55 #include <sys/socket.h> 56 #include <sys/vtrace.h> 57 #include <sys/isa_defs.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/kstatcom.h> 72 73 #include <netinet/igmp_var.h> 74 #include <netinet/ip6.h> 75 #include <netinet/icmp6.h> 76 #include <netinet/sctp.h> 77 78 #include <inet/ip.h> 79 #include <inet/ip_impl.h> 80 #include <inet/ip6.h> 81 #include <inet/ip6_asp.h> 82 #include <inet/tcp.h> 83 #include <inet/tcp_impl.h> 84 #include <inet/ip_multi.h> 85 #include <inet/ip_if.h> 86 #include <inet/ip_ire.h> 87 #include <inet/ip_ftable.h> 88 #include <inet/ip_rts.h> 89 #include <inet/optcom.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/tun.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <sys/sunddi.h> 121 122 #include <sys/tsol/label.h> 123 #include <sys/tsol/tnet.h> 124 125 #include <rpc/pmap_prot.h> 126 127 /* 128 * Values for squeue switch: 129 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 130 * IP_SQUEUE_ENTER: squeue_enter 131 * IP_SQUEUE_FILL: squeue_fill 132 */ 133 int ip_squeue_enter = 2; 134 squeue_func_t ip_input_proc; 135 /* 136 * IP statistics. 137 */ 138 #define IP_STAT(x) (ip_statistics.x.value.ui64++) 139 #define IP_STAT_UPDATE(x, n) (ip_statistics.x.value.ui64 += (n)) 140 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 141 142 typedef struct ip_stat { 143 kstat_named_t ipsec_fanout_proto; 144 kstat_named_t ip_udp_fannorm; 145 kstat_named_t ip_udp_fanmb; 146 kstat_named_t ip_udp_fanothers; 147 kstat_named_t ip_udp_fast_path; 148 kstat_named_t ip_udp_slow_path; 149 kstat_named_t ip_udp_input_err; 150 kstat_named_t ip_tcppullup; 151 kstat_named_t ip_tcpoptions; 152 kstat_named_t ip_multipkttcp; 153 kstat_named_t ip_tcp_fast_path; 154 kstat_named_t ip_tcp_slow_path; 155 kstat_named_t ip_tcp_input_error; 156 kstat_named_t ip_db_ref; 157 kstat_named_t ip_notaligned1; 158 kstat_named_t ip_notaligned2; 159 kstat_named_t ip_multimblk3; 160 kstat_named_t ip_multimblk4; 161 kstat_named_t ip_ipoptions; 162 kstat_named_t ip_classify_fail; 163 kstat_named_t ip_opt; 164 kstat_named_t ip_udp_rput_local; 165 kstat_named_t ipsec_proto_ahesp; 166 kstat_named_t ip_conn_flputbq; 167 kstat_named_t ip_conn_walk_drain; 168 kstat_named_t ip_out_sw_cksum; 169 kstat_named_t ip_in_sw_cksum; 170 kstat_named_t ip_trash_ire_reclaim_calls; 171 kstat_named_t ip_trash_ire_reclaim_success; 172 kstat_named_t ip_ire_arp_timer_expired; 173 kstat_named_t ip_ire_redirect_timer_expired; 174 kstat_named_t ip_ire_pmtu_timer_expired; 175 kstat_named_t ip_input_multi_squeue; 176 kstat_named_t ip_tcp_in_full_hw_cksum_err; 177 kstat_named_t ip_tcp_in_part_hw_cksum_err; 178 kstat_named_t ip_tcp_in_sw_cksum_err; 179 kstat_named_t ip_tcp_out_sw_cksum_bytes; 180 kstat_named_t ip_udp_in_full_hw_cksum_err; 181 kstat_named_t ip_udp_in_part_hw_cksum_err; 182 kstat_named_t ip_udp_in_sw_cksum_err; 183 kstat_named_t ip_udp_out_sw_cksum_bytes; 184 kstat_named_t ip_frag_mdt_pkt_out; 185 kstat_named_t ip_frag_mdt_discarded; 186 kstat_named_t ip_frag_mdt_allocfail; 187 kstat_named_t ip_frag_mdt_addpdescfail; 188 kstat_named_t ip_frag_mdt_allocd; 189 } ip_stat_t; 190 191 static ip_stat_t ip_statistics = { 192 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 193 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 194 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 195 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 196 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 197 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 198 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 199 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 200 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 201 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 202 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 203 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 204 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 205 { "ip_db_ref", KSTAT_DATA_UINT64 }, 206 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 207 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 208 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 209 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 210 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 211 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 212 { "ip_opt", KSTAT_DATA_UINT64 }, 213 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 214 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 215 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 216 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 217 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 218 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 219 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 220 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 221 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 222 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 223 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 224 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 225 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 226 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 227 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 228 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 229 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 230 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 231 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 232 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 233 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 234 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 235 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 236 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 237 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 238 }; 239 240 static kstat_t *ip_kstat; 241 242 #define TCP6 "tcp6" 243 #define TCP "tcp" 244 #define SCTP "sctp" 245 #define SCTP6 "sctp6" 246 247 major_t TCP6_MAJ; 248 major_t TCP_MAJ; 249 major_t SCTP_MAJ; 250 major_t SCTP6_MAJ; 251 252 int ip_poll_normal_ms = 100; 253 int ip_poll_normal_ticks = 0; 254 int ip_modclose_ackwait_ms = 3000; 255 256 /* 257 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 258 */ 259 260 struct listptr_s { 261 mblk_t *lp_head; /* pointer to the head of the list */ 262 mblk_t *lp_tail; /* pointer to the tail of the list */ 263 }; 264 265 typedef struct listptr_s listptr_t; 266 267 /* 268 * This is used by ip_snmp_get_mib2_ip_route_media and 269 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 270 */ 271 typedef struct iproutedata_s { 272 uint_t ird_idx; 273 listptr_t ird_route; /* ipRouteEntryTable */ 274 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 275 listptr_t ird_attrs; /* ipRouteAttributeTable */ 276 } iproutedata_t; 277 278 /* 279 * Cluster specific hooks. These should be NULL when booted as a non-cluster 280 */ 281 282 /* 283 * Hook functions to enable cluster networking 284 * On non-clustered systems these vectors must always be NULL. 285 * 286 * Hook function to Check ip specified ip address is a shared ip address 287 * in the cluster 288 * 289 */ 290 int (*cl_inet_isclusterwide)(uint8_t protocol, 291 sa_family_t addr_family, uint8_t *laddrp) = NULL; 292 293 /* 294 * Hook function to generate cluster wide ip fragment identifier 295 */ 296 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 297 uint8_t *laddrp, uint8_t *faddrp) = NULL; 298 299 /* 300 * Synchronization notes: 301 * 302 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 303 * MT level protection given by STREAMS. IP uses a combination of its own 304 * internal serialization mechanism and standard Solaris locking techniques. 305 * The internal serialization is per phyint (no IPMP) or per IPMP group. 306 * This is used to serialize plumbing operations, IPMP operations, certain 307 * multicast operations, most set ioctls, igmp/mld timers etc. 308 * 309 * Plumbing is a long sequence of operations involving message 310 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 311 * involved in plumbing operations. A natural model is to serialize these 312 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 313 * parallel without any interference. But various set ioctls on hme0 are best 314 * serialized. However if the system uses IPMP, the operations are easier if 315 * they are serialized on a per IPMP group basis since IPMP operations 316 * happen across ill's of a group. Thus the lowest common denominator is to 317 * serialize most set ioctls, multicast join/leave operations, IPMP operations 318 * igmp/mld timer operations, and processing of DLPI control messages received 319 * from drivers on a per IPMP group basis. If the system does not employ 320 * IPMP the serialization is on a per phyint basis. This serialization is 321 * provided by the ipsq_t and primitives operating on this. Details can 322 * be found in ip_if.c above the core primitives operating on ipsq_t. 323 * 324 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 325 * Simiarly lookup of an ire by a thread also returns a refheld ire. 326 * In addition ipif's and ill's referenced by the ire are also indirectly 327 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 328 * the ipif's address or netmask change as long as an ipif is refheld 329 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 330 * address of an ipif has to go through the ipsq_t. This ensures that only 331 * 1 such exclusive operation proceeds at any time on the ipif. It then 332 * deletes all ires associated with this ipif, and waits for all refcnts 333 * associated with this ipif to come down to zero. The address is changed 334 * only after the ipif has been quiesced. Then the ipif is brought up again. 335 * More details are described above the comment in ip_sioctl_flags. 336 * 337 * Packet processing is based mostly on IREs and are fully multi-threaded 338 * using standard Solaris MT techniques. 339 * 340 * There are explicit locks in IP to handle: 341 * - The ip_g_head list maintained by mi_open_link() and friends. 342 * 343 * - The reassembly data structures (one lock per hash bucket) 344 * 345 * - conn_lock is meant to protect conn_t fields. The fields actually 346 * protected by conn_lock are documented in the conn_t definition. 347 * 348 * - ire_lock to protect some of the fields of the ire, IRE tables 349 * (one lock per hash bucket). Refer to ip_ire.c for details. 350 * 351 * - ndp_g_lock and nce_lock for protecting NCEs. 352 * 353 * - ill_lock protects fields of the ill and ipif. Details in ip.h 354 * 355 * - ill_g_lock: This is a global reader/writer lock. Protects the following 356 * * The AVL tree based global multi list of all ills. 357 * * The linked list of all ipifs of an ill 358 * * The <ill-ipsq> mapping 359 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 360 * * The illgroup list threaded by ill_group_next. 361 * * <ill-phyint> association 362 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 363 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 364 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 365 * will all have to hold the ill_g_lock as writer for the actual duration 366 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 367 * may be found in the IPMP section. 368 * 369 * - ill_lock: This is a per ill mutex. 370 * It protects some members of the ill and is documented below. 371 * It also protects the <ill-ipsq> mapping 372 * It also protects the illgroup list threaded by ill_group_next. 373 * It also protects the <ill-phyint> assoc. 374 * It also protects the list of ipifs hanging off the ill. 375 * 376 * - ipsq_lock: This is a per ipsq_t mutex lock. 377 * This protects all the other members of the ipsq struct except 378 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 379 * 380 * - illgrp_lock: This is a per ill_group mutex lock. 381 * The only thing it protects is the illgrp_ill_schednext member of ill_group 382 * which dictates which is the next ill in an ill_group that is to be chosen 383 * for sending outgoing packets, through creation of an IRE_CACHE that 384 * references this ill. 385 * 386 * - phyint_lock: This is a per phyint mutex lock. Protects just the 387 * phyint_flags 388 * 389 * - ip_g_nd_lock: This is a global reader/writer lock. 390 * Any call to nd_load to load a new parameter to the ND table must hold the 391 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 392 * as reader. 393 * 394 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 395 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 396 * uniqueness check also done atomically. 397 * 398 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 399 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 400 * as a writer when adding or deleting elements from these lists, and 401 * as a reader when walking these lists to send a SADB update to the 402 * IPsec capable ills. 403 * 404 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 405 * group list linked by ill_usesrc_grp_next. It also protects the 406 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 407 * group is being added or deleted. This lock is taken as a reader when 408 * walking the list/group(eg: to get the number of members in a usesrc group). 409 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 410 * field is changing state i.e from NULL to non-NULL or vice-versa. For 411 * example, it is not necessary to take this lock in the initial portion 412 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 413 * ip_sioctl_flags since the these operations are executed exclusively and 414 * that ensures that the "usesrc group state" cannot change. The "usesrc 415 * group state" change can happen only in the latter part of 416 * ip_sioctl_slifusesrc and in ill_delete. 417 * 418 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 419 * 420 * To change the <ill-phyint> association, the ill_g_lock must be held 421 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 422 * must be held. 423 * 424 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 425 * and the ill_lock of the ill in question must be held. 426 * 427 * To change the <ill-illgroup> association the ill_g_lock must be held as 428 * writer and the ill_lock of the ill in question must be held. 429 * 430 * To add or delete an ipif from the list of ipifs hanging off the ill, 431 * ill_g_lock (writer) and ill_lock must be held and the thread must be 432 * a writer on the associated ipsq,. 433 * 434 * To add or delete an ill to the system, the ill_g_lock must be held as 435 * writer and the thread must be a writer on the associated ipsq. 436 * 437 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 438 * must be a writer on the associated ipsq. 439 * 440 * Lock hierarchy 441 * 442 * Some lock hierarchy scenarios are listed below. 443 * 444 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 445 * ill_g_lock -> illgrp_lock -> ill_lock 446 * ill_g_lock -> ill_lock(s) -> phyint_lock 447 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 448 * ill_g_lock -> ip_addr_avail_lock 449 * conn_lock -> irb_lock -> ill_lock -> ire_lock 450 * ill_g_lock -> ip_g_nd_lock 451 * 452 * When more than 1 ill lock is needed to be held, all ill lock addresses 453 * are sorted on address and locked starting from highest addressed lock 454 * downward. 455 * 456 * Mobile-IP scenarios 457 * 458 * irb_lock -> ill_lock -> ire_mrtun_lock 459 * irb_lock -> ill_lock -> ire_srcif_table_lock 460 * 461 * IPsec scenarios 462 * 463 * ipsa_lock -> ill_g_lock -> ill_lock 464 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 465 * ipsec_capab_ills_lock -> ipsa_lock 466 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 467 * 468 * Trusted Solaris scenarios 469 * 470 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 471 * igsa_lock -> gcdb_lock 472 * gcgrp_rwlock -> ire_lock 473 * gcgrp_rwlock -> gcdb_lock 474 * 475 * 476 * Routing/forwarding table locking notes: 477 * 478 * Lock acquisition order: Radix tree lock, irb_lock. 479 * Requirements: 480 * i. Walker must not hold any locks during the walker callback. 481 * ii Walker must not see a truncated tree during the walk because of any node 482 * deletion. 483 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 484 * in many places in the code to walk the irb list. Thus even if all the 485 * ires in a bucket have been deleted, we still can't free the radix node 486 * until the ires have actually been inactive'd (freed). 487 * 488 * Tree traversal - Need to hold the global tree lock in read mode. 489 * Before dropping the global tree lock, need to either increment the ire_refcnt 490 * to ensure that the radix node can't be deleted. 491 * 492 * Tree add - Need to hold the global tree lock in write mode to add a 493 * radix node. To prevent the node from being deleted, increment the 494 * irb_refcnt, after the node is added to the tree. The ire itself is 495 * added later while holding the irb_lock, but not the tree lock. 496 * 497 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 498 * All associated ires must be inactive (i.e. freed), and irb_refcnt 499 * must be zero. 500 * 501 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 502 * global tree lock (read mode) for traversal. 503 * 504 * IPSEC notes : 505 * 506 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 507 * in front of the actual packet. For outbound datagrams, the M_CTL 508 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 509 * information used by the IPSEC code for applying the right level of 510 * protection. The information initialized by IP in the ipsec_out_t 511 * is determined by the per-socket policy or global policy in the system. 512 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 513 * ipsec_info.h) which starts out with nothing in it. It gets filled 514 * with the right information if it goes through the AH/ESP code, which 515 * happens if the incoming packet is secure. The information initialized 516 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 517 * the policy requirements needed by per-socket policy or global policy 518 * is met or not. 519 * 520 * If there is both per-socket policy (set using setsockopt) and there 521 * is also global policy match for the 5 tuples of the socket, 522 * ipsec_override_policy() makes the decision of which one to use. 523 * 524 * For fully connected sockets i.e dst, src [addr, port] is known, 525 * conn_policy_cached is set indicating that policy has been cached. 526 * conn_in_enforce_policy may or may not be set depending on whether 527 * there is a global policy match or per-socket policy match. 528 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 529 * Once the right policy is set on the conn_t, policy cannot change for 530 * this socket. This makes life simpler for TCP (UDP ?) where 531 * re-transmissions go out with the same policy. For symmetry, policy 532 * is cached for fully connected UDP sockets also. Thus if policy is cached, 533 * it also implies that policy is latched i.e policy cannot change 534 * on these sockets. As we have the right policy on the conn, we don't 535 * have to lookup global policy for every outbound and inbound datagram 536 * and thus serving as an optimization. Note that a global policy change 537 * does not affect fully connected sockets if they have policy. If fully 538 * connected sockets did not have any policy associated with it, global 539 * policy change may affect them. 540 * 541 * IP Flow control notes: 542 * 543 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 544 * cannot be sent down to the driver by IP, because of a canput failure, IP 545 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 546 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 547 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 548 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 549 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 550 * the queued messages, and removes the conn from the drain list, if all 551 * messages were drained. It also qenables the next conn in the drain list to 552 * continue the drain process. 553 * 554 * In reality the drain list is not a single list, but a configurable number 555 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 556 * list. If the ip_wsrv of the next qenabled conn does not run, because the 557 * stream closes, ip_close takes responsibility to qenable the next conn in 558 * the drain list. The directly called ip_wput path always does a putq, if 559 * it cannot putnext. Thus synchronization problems are handled between 560 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 561 * functions that manipulate this drain list. Furthermore conn_drain_insert 562 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 563 * running on a queue at any time. conn_drain_tail can be simultaneously called 564 * from both ip_wsrv and ip_close. 565 * 566 * IPQOS notes: 567 * 568 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 569 * and IPQoS modules. IPPF includes hooks in IP at different control points 570 * (callout positions) which direct packets to IPQoS modules for policy 571 * processing. Policies, if present, are global. 572 * 573 * The callout positions are located in the following paths: 574 * o local_in (packets destined for this host) 575 * o local_out (packets orginating from this host ) 576 * o fwd_in (packets forwarded by this m/c - inbound) 577 * o fwd_out (packets forwarded by this m/c - outbound) 578 * Hooks at these callout points can be enabled/disabled using the ndd variable 579 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 580 * By default all the callout positions are enabled. 581 * 582 * Outbound (local_out) 583 * Hooks are placed in ip_wput_ire and ipsec_out_process. 584 * 585 * Inbound (local_in) 586 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 587 * TCP and UDP fanout routines. 588 * 589 * Forwarding (in and out) 590 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 591 * 592 * IP Policy Framework processing (IPPF processing) 593 * Policy processing for a packet is initiated by ip_process, which ascertains 594 * that the classifier (ipgpc) is loaded and configured, failing which the 595 * packet resumes normal processing in IP. If the clasifier is present, the 596 * packet is acted upon by one or more IPQoS modules (action instances), per 597 * filters configured in ipgpc and resumes normal IP processing thereafter. 598 * An action instance can drop a packet in course of its processing. 599 * 600 * A boolean variable, ip_policy, is used in all the fanout routines that can 601 * invoke ip_process for a packet. This variable indicates if the packet should 602 * to be sent for policy processing. The variable is set to B_TRUE by default, 603 * i.e. when the routines are invoked in the normal ip procesing path for a 604 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 605 * ip_policy is set to B_FALSE for all the routines called in these two 606 * functions because, in the former case, we don't process loopback traffic 607 * currently while in the latter, the packets have already been processed in 608 * icmp_inbound. 609 * 610 * Zones notes: 611 * 612 * The partitioning rules for networking are as follows: 613 * 1) Packets coming from a zone must have a source address belonging to that 614 * zone. 615 * 2) Packets coming from a zone can only be sent on a physical interface on 616 * which the zone has an IP address. 617 * 3) Between two zones on the same machine, packet delivery is only allowed if 618 * there's a matching route for the destination and zone in the forwarding 619 * table. 620 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 621 * different zones can bind to the same port with the wildcard address 622 * (INADDR_ANY). 623 * 624 * The granularity of interface partitioning is at the logical interface level. 625 * Therefore, every zone has its own IP addresses, and incoming packets can be 626 * attributed to a zone unambiguously. A logical interface is placed into a zone 627 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 628 * structure. Rule (1) is implemented by modifying the source address selection 629 * algorithm so that the list of eligible addresses is filtered based on the 630 * sending process zone. 631 * 632 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 633 * across all zones, depending on their type. Here is the break-up: 634 * 635 * IRE type Shared/exclusive 636 * -------- ---------------- 637 * IRE_BROADCAST Exclusive 638 * IRE_DEFAULT (default routes) Shared (*) 639 * IRE_LOCAL Exclusive (x) 640 * IRE_LOOPBACK Exclusive 641 * IRE_PREFIX (net routes) Shared (*) 642 * IRE_CACHE Exclusive 643 * IRE_IF_NORESOLVER (interface routes) Exclusive 644 * IRE_IF_RESOLVER (interface routes) Exclusive 645 * IRE_HOST (host routes) Shared (*) 646 * 647 * (*) A zone can only use a default or off-subnet route if the gateway is 648 * directly reachable from the zone, that is, if the gateway's address matches 649 * one of the zone's logical interfaces. 650 * 651 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 652 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 653 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 654 * address of the zone itself (the destination). Since IRE_LOCAL is used 655 * for communication between zones, ip_wput_ire has special logic to set 656 * the right source address when sending using an IRE_LOCAL. 657 * 658 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 659 * ire_cache_lookup restricts loopback using an IRE_LOCAL 660 * between zone to the case when L2 would have conceptually looped the packet 661 * back, i.e. the loopback which is required since neither Ethernet drivers 662 * nor Ethernet hardware loops them back. This is the case when the normal 663 * routes (ignoring IREs with different zoneids) would send out the packet on 664 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 665 * associated. 666 * 667 * Multiple zones can share a common broadcast address; typically all zones 668 * share the 255.255.255.255 address. Incoming as well as locally originated 669 * broadcast packets must be dispatched to all the zones on the broadcast 670 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 671 * since some zones may not be on the 10.16.72/24 network. To handle this, each 672 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 673 * sent to every zone that has an IRE_BROADCAST entry for the destination 674 * address on the input ill, see conn_wantpacket(). 675 * 676 * Applications in different zones can join the same multicast group address. 677 * For IPv4, group memberships are per-logical interface, so they're already 678 * inherently part of a zone. For IPv6, group memberships are per-physical 679 * interface, so we distinguish IPv6 group memberships based on group address, 680 * interface and zoneid. In both cases, received multicast packets are sent to 681 * every zone for which a group membership entry exists. On IPv6 we need to 682 * check that the target zone still has an address on the receiving physical 683 * interface; it could have been removed since the application issued the 684 * IPV6_JOIN_GROUP. 685 */ 686 687 /* 688 * Squeue Fanout flags: 689 * 0: No fanout. 690 * 1: Fanout across all squeues 691 */ 692 boolean_t ip_squeue_fanout = 0; 693 694 /* 695 * Maximum dups allowed per packet. 696 */ 697 uint_t ip_max_frag_dups = 10; 698 699 #define IS_SIMPLE_IPH(ipha) \ 700 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 701 702 /* RFC1122 Conformance */ 703 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 704 705 #define ILL_MAX_NAMELEN LIFNAMSIZ 706 707 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 708 709 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 710 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 711 712 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t); 713 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 714 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 715 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 716 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 717 mblk_t *, int); 718 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 719 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 720 ill_t *, zoneid_t); 721 static void icmp_options_update(ipha_t *); 722 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t); 723 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 724 zoneid_t zoneid); 725 static mblk_t *icmp_pkt_err_ok(mblk_t *); 726 static void icmp_redirect(mblk_t *); 727 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t); 728 729 static void ip_arp_news(queue_t *, mblk_t *); 730 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *); 731 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 732 char *ip_dot_addr(ipaddr_t, char *); 733 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 734 int ip_close(queue_t *, int); 735 static char *ip_dot_saddr(uchar_t *, char *); 736 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 737 boolean_t, boolean_t, ill_t *, zoneid_t); 738 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 739 boolean_t, boolean_t, zoneid_t); 740 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 741 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 742 static void ip_lrput(queue_t *, mblk_t *); 743 ipaddr_t ip_massage_options(ipha_t *); 744 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 745 ipaddr_t ip_net_mask(ipaddr_t); 746 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *, 747 zoneid_t); 748 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 749 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 750 char *ip_nv_lookup(nv_t *, int); 751 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 752 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 753 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 754 static boolean_t ip_param_register(ipparam_t *, size_t, ipndp_t *, 755 size_t); 756 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 757 void ip_rput(queue_t *, mblk_t *); 758 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 759 void *dummy_arg); 760 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 761 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *); 762 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 763 ire_t *); 764 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 765 mblk_t *, ipha_t **, ipaddr_t *); 766 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *); 767 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 768 uint16_t *); 769 int ip_snmp_get(queue_t *, mblk_t *); 770 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 771 mib2_ipIfStatsEntry_t *); 772 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *); 773 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *); 774 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *); 775 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *); 776 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *); 777 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *); 778 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *); 779 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *); 780 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *); 781 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *); 782 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *); 783 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *); 784 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *); 785 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *); 786 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *); 787 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *); 788 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 789 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 790 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 791 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 792 static boolean_t ip_source_routed(ipha_t *); 793 static boolean_t ip_source_route_included(ipha_t *); 794 795 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 796 zoneid_t); 797 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int); 798 static void ip_wput_local_options(ipha_t *); 799 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 800 zoneid_t); 801 802 static void conn_drain_init(void); 803 static void conn_drain_fini(void); 804 static void conn_drain_tail(conn_t *connp, boolean_t closing); 805 806 static void conn_walk_drain(void); 807 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 808 zoneid_t); 809 810 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 811 zoneid_t); 812 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 813 void *dummy_arg); 814 815 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 816 817 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 818 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 819 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 820 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 821 822 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 823 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 824 caddr_t, cred_t *); 825 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 826 caddr_t cp, cred_t *cr); 827 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 828 cred_t *); 829 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 830 caddr_t cp, cred_t *cr); 831 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 832 cred_t *); 833 static squeue_func_t ip_squeue_switch(int); 834 835 static void ip_kstat_init(void); 836 static void ip_kstat_fini(void); 837 static int ip_kstat_update(kstat_t *kp, int rw); 838 static void icmp_kstat_init(void); 839 static void icmp_kstat_fini(void); 840 static int icmp_kstat_update(kstat_t *kp, int rw); 841 842 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 843 844 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 845 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 846 847 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 848 ipha_t *, ill_t *, boolean_t); 849 850 timeout_id_t ip_ire_expire_id; /* IRE expiration timer. */ 851 static clock_t ip_ire_arp_time_elapsed; /* Time since IRE cache last flushed */ 852 static clock_t ip_ire_rd_time_elapsed; /* ... redirect IREs last flushed */ 853 static clock_t ip_ire_pmtu_time_elapsed; /* Time since path mtu increase */ 854 855 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 856 clock_t icmp_pkt_err_last = 0; /* Time since last icmp_pkt_err */ 857 uint_t icmp_pkt_err_sent = 0; /* Number of packets sent in burst */ 858 859 /* How long, in seconds, we allow frags to hang around. */ 860 #define IP_FRAG_TIMEOUT 60 861 862 time_t ip_g_frag_timeout = IP_FRAG_TIMEOUT; 863 clock_t ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 864 865 /* 866 * Threshold which determines whether MDT should be used when 867 * generating IP fragments; payload size must be greater than 868 * this threshold for MDT to take place. 869 */ 870 #define IP_WPUT_FRAG_MDT_MIN 32768 871 872 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 873 874 /* Protected by ip_mi_lock */ 875 static void *ip_g_head; /* Instance Data List Head */ 876 kmutex_t ip_mi_lock; /* Lock for list of instances */ 877 878 /* Only modified during _init and _fini thus no locking is needed. */ 879 caddr_t ip_g_nd; /* Named Dispatch List Head */ 880 881 882 static long ip_rput_pullups; 883 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 884 885 vmem_t *ip_minor_arena; 886 887 /* 888 * MIB-2 stuff for SNMP (both IP and ICMP) 889 */ 890 mib2_ipIfStatsEntry_t ip_mib; 891 mib2_icmp_t icmp_mib; 892 893 #ifdef DEBUG 894 uint32_t ipsechw_debug = 0; 895 #endif 896 897 kstat_t *ip_mibkp; /* kstat exporting ip_mib data */ 898 kstat_t *icmp_mibkp; /* kstat exporting icmp_mib data */ 899 900 uint_t loopback_packets = 0; 901 902 /* 903 * Multirouting/CGTP stuff 904 */ 905 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 906 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 907 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 908 /* Interval (in ms) between consecutive 'bad MTU' warnings */ 909 hrtime_t ip_multirt_log_interval = 1000; 910 /* Time since last warning issued. */ 911 static hrtime_t multirt_bad_mtu_last_time = 0; 912 913 kmutex_t ip_trash_timer_lock; 914 krwlock_t ip_g_nd_lock; 915 916 /* 917 * XXX following really should only be in a header. Would need more 918 * header and .c clean up first. 919 */ 920 extern optdb_obj_t ip_opt_obj; 921 922 ulong_t ip_squeue_enter_unbound = 0; 923 924 /* 925 * Named Dispatch Parameter Table. 926 * All of these are alterable, within the min/max values given, at run time. 927 */ 928 static ipparam_t lcl_param_arr[] = { 929 /* min max value name */ 930 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 931 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 932 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 933 { 0, 1, 0, "ip_respond_to_timestamp"}, 934 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 935 { 0, 1, 1, "ip_send_redirects"}, 936 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 937 { 0, 10, 0, "ip_debug"}, 938 { 0, 10, 0, "ip_mrtdebug"}, 939 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 940 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 941 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 942 { 1, 255, 255, "ip_def_ttl" }, 943 { 0, 1, 0, "ip_forward_src_routed"}, 944 { 0, 256, 32, "ip_wroff_extra" }, 945 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 946 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 947 { 0, 1, 1, "ip_path_mtu_discovery" }, 948 { 0, 240, 30, "ip_ignore_delete_time" }, 949 { 0, 1, 0, "ip_ignore_redirect" }, 950 { 0, 1, 1, "ip_output_queue" }, 951 { 1, 254, 1, "ip_broadcast_ttl" }, 952 { 0, 99999, 100, "ip_icmp_err_interval" }, 953 { 1, 99999, 10, "ip_icmp_err_burst" }, 954 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 955 { 0, 1, 0, "ip_strict_dst_multihoming" }, 956 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 957 { 0, 1, 0, "ipsec_override_persocket_policy" }, 958 { 0, 1, 1, "icmp_accept_clear_messages" }, 959 { 0, 1, 1, "igmp_accept_clear_messages" }, 960 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 961 "ip_ndp_delay_first_probe_time"}, 962 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 963 "ip_ndp_max_unicast_solicit"}, 964 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 965 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 966 { 0, 1, 0, "ip6_forward_src_routed"}, 967 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 968 { 0, 1, 1, "ip6_send_redirects"}, 969 { 0, 1, 0, "ip6_ignore_redirect" }, 970 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 971 972 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 973 974 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 975 976 { 0, 1, 1, "pim_accept_clear_messages" }, 977 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 978 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 979 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 980 { 0, 15, 0, "ip_policy_mask" }, 981 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 982 { 0, 255, 1, "ip_multirt_ttl" }, 983 { 0, 1, 1, "ip_multidata_outbound" }, 984 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 985 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 986 { 0, 1000, 1, "ip_max_temp_defend" }, 987 { 0, 1000, 3, "ip_max_defend" }, 988 { 0, 999999, 30, "ip_defend_interval" }, 989 { 0, 3600000, 300000, "ip_dup_recovery" }, 990 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 991 { 0, 1, 1, "ip_lso_outbound" }, 992 #ifdef DEBUG 993 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 994 #endif 995 }; 996 997 ipparam_t *ip_param_arr = lcl_param_arr; 998 999 /* Extended NDP table */ 1000 static ipndp_t lcl_ndp_arr[] = { 1001 /* getf setf data name */ 1002 { ip_param_generic_get, ip_forward_set, (caddr_t)&ip_g_forward, 1003 "ip_forwarding" }, 1004 { ip_param_generic_get, ip_forward_set, (caddr_t)&ipv6_forward, 1005 "ip6_forwarding" }, 1006 { ip_ill_report, NULL, NULL, 1007 "ip_ill_status" }, 1008 { ip_ipif_report, NULL, NULL, 1009 "ip_ipif_status" }, 1010 { ip_ire_report, NULL, NULL, 1011 "ipv4_ire_status" }, 1012 { ip_ire_report_mrtun, NULL, NULL, 1013 "ipv4_mrtun_ire_status" }, 1014 { ip_ire_report_srcif, NULL, NULL, 1015 "ipv4_srcif_ire_status" }, 1016 { ip_ire_report_v6, NULL, NULL, 1017 "ipv6_ire_status" }, 1018 { ip_conn_report, NULL, NULL, 1019 "ip_conn_status" }, 1020 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 1021 "ip_rput_pullups" }, 1022 { ndp_report, NULL, NULL, 1023 "ip_ndp_cache_report" }, 1024 { ip_srcid_report, NULL, NULL, 1025 "ip_srcid_status" }, 1026 { ip_param_generic_get, ip_squeue_profile_set, 1027 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 1028 { ip_param_generic_get, ip_squeue_bind_set, 1029 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 1030 { ip_param_generic_get, ip_input_proc_set, 1031 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 1032 { ip_param_generic_get, ip_int_set, 1033 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 1034 { ip_cgtp_filter_get, ip_cgtp_filter_set, (caddr_t)&ip_cgtp_filter, 1035 "ip_cgtp_filter" }, 1036 { ip_param_generic_get, ip_int_set, 1037 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" } 1038 }; 1039 1040 /* 1041 * ip_g_forward controls IP forwarding. It takes two values: 1042 * 0: IP_FORWARD_NEVER Don't forward packets ever. 1043 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 1044 * 1045 * RFC1122 says there must be a configuration switch to control forwarding, 1046 * but that the default MUST be to not forward packets ever. Implicit 1047 * control based on configuration of multiple interfaces MUST NOT be 1048 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 1049 * and, in fact, it was the default. That capability is now provided in the 1050 * /etc/rc2.d/S69inet script. 1051 */ 1052 int ip_g_forward = IP_FORWARD_DEFAULT; 1053 1054 /* It also has an IPv6 counterpart. */ 1055 1056 int ipv6_forward = IP_FORWARD_DEFAULT; 1057 1058 /* 1059 * Table of IP ioctls encoding the various properties of the ioctl and 1060 * indexed based on the last byte of the ioctl command. Occasionally there 1061 * is a clash, and there is more than 1 ioctl with the same last byte. 1062 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1063 * ioctls are encoded in the misc table. An entry in the ndx table is 1064 * retrieved by indexing on the last byte of the ioctl command and comparing 1065 * the ioctl command with the value in the ndx table. In the event of a 1066 * mismatch the misc table is then searched sequentially for the desired 1067 * ioctl command. 1068 * 1069 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1070 */ 1071 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1072 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 1083 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1084 MISC_CMD, ip_siocaddrt, NULL }, 1085 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1086 MISC_CMD, ip_siocdelrt, NULL }, 1087 1088 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1089 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1090 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1091 IF_CMD, ip_sioctl_get_addr, NULL }, 1092 1093 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1094 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1095 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1096 IPI_GET_CMD | IPI_REPL, 1097 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1098 1099 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1100 IPI_PRIV | IPI_WR | IPI_REPL, 1101 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1102 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1103 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 1104 IF_CMD, ip_sioctl_get_flags, NULL }, 1105 1106 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 1109 /* copyin size cannot be coded for SIOCGIFCONF */ 1110 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1111 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1112 1113 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1114 IF_CMD, ip_sioctl_mtu, NULL }, 1115 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1116 IF_CMD, ip_sioctl_get_mtu, NULL }, 1117 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1118 IPI_GET_CMD | IPI_REPL, 1119 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1120 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1121 IF_CMD, ip_sioctl_brdaddr, NULL }, 1122 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1123 IPI_GET_CMD | IPI_REPL, 1124 IF_CMD, ip_sioctl_get_netmask, NULL }, 1125 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1126 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1127 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1128 IPI_GET_CMD | IPI_REPL, 1129 IF_CMD, ip_sioctl_get_metric, NULL }, 1130 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1131 IF_CMD, ip_sioctl_metric, NULL }, 1132 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1133 1134 /* See 166-168 below for extended SIOC*XARP ioctls */ 1135 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1136 MISC_CMD, ip_sioctl_arp, NULL }, 1137 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1138 MISC_CMD, ip_sioctl_arp, NULL }, 1139 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1140 MISC_CMD, ip_sioctl_arp, NULL }, 1141 1142 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1153 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1154 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1155 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1156 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1157 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1158 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1159 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1160 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1161 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1162 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1163 1164 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1165 MISC_CMD, if_unitsel, if_unitsel_restart }, 1166 1167 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1168 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1169 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1170 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1179 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1180 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1181 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1182 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1183 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1184 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 1186 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1187 IPI_PRIV | IPI_WR | IPI_MODOK, 1188 IF_CMD, ip_sioctl_sifname, NULL }, 1189 1190 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1191 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1192 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1193 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1194 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1195 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1196 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1197 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1198 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1199 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1200 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1201 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1202 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1203 1204 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1205 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1206 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1207 IF_CMD, ip_sioctl_get_muxid, NULL }, 1208 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1209 IPI_PRIV | IPI_WR | IPI_REPL, 1210 IF_CMD, ip_sioctl_muxid, NULL }, 1211 1212 /* Both if and lif variants share same func */ 1213 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1214 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1215 /* Both if and lif variants share same func */ 1216 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1217 IPI_PRIV | IPI_WR | IPI_REPL, 1218 IF_CMD, ip_sioctl_slifindex, NULL }, 1219 1220 /* copyin size cannot be coded for SIOCGIFCONF */ 1221 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1222 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1223 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1224 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1225 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1226 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1227 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1228 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1229 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1230 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1231 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1232 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1233 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1234 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1235 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1236 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1237 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1238 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1239 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1240 1241 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1242 IPI_PRIV | IPI_WR | IPI_REPL, 1243 LIF_CMD, ip_sioctl_removeif, 1244 ip_sioctl_removeif_restart }, 1245 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1246 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1247 LIF_CMD, ip_sioctl_addif, NULL }, 1248 #define SIOCLIFADDR_NDX 112 1249 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1250 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1251 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1252 IPI_GET_CMD | IPI_REPL, 1253 LIF_CMD, ip_sioctl_get_addr, NULL }, 1254 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1255 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1256 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1257 IPI_GET_CMD | IPI_REPL, 1258 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1259 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1260 IPI_PRIV | IPI_WR | IPI_REPL, 1261 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1262 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1263 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1264 LIF_CMD, ip_sioctl_get_flags, NULL }, 1265 1266 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1267 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1268 1269 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1270 ip_sioctl_get_lifconf, NULL }, 1271 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1272 LIF_CMD, ip_sioctl_mtu, NULL }, 1273 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1274 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1275 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1276 IPI_GET_CMD | IPI_REPL, 1277 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1278 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1279 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1280 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1281 IPI_GET_CMD | IPI_REPL, 1282 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1283 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1284 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1285 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1286 IPI_GET_CMD | IPI_REPL, 1287 LIF_CMD, ip_sioctl_get_metric, NULL }, 1288 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1289 LIF_CMD, ip_sioctl_metric, NULL }, 1290 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1291 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1292 LIF_CMD, ip_sioctl_slifname, 1293 ip_sioctl_slifname_restart }, 1294 1295 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1296 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1297 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1298 IPI_GET_CMD | IPI_REPL, 1299 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1300 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1301 IPI_PRIV | IPI_WR | IPI_REPL, 1302 LIF_CMD, ip_sioctl_muxid, NULL }, 1303 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1304 IPI_GET_CMD | IPI_REPL, 1305 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1306 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1307 IPI_PRIV | IPI_WR | IPI_REPL, 1308 LIF_CMD, ip_sioctl_slifindex, 0 }, 1309 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1310 LIF_CMD, ip_sioctl_token, NULL }, 1311 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1312 IPI_GET_CMD | IPI_REPL, 1313 LIF_CMD, ip_sioctl_get_token, NULL }, 1314 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1315 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1316 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1317 IPI_GET_CMD | IPI_REPL, 1318 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1319 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1320 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1321 1322 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1323 IPI_GET_CMD | IPI_REPL, 1324 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1325 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1326 LIF_CMD, ip_siocdelndp_v6, NULL }, 1327 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1328 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1329 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1330 LIF_CMD, ip_siocsetndp_v6, NULL }, 1331 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1332 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1333 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1334 MISC_CMD, ip_sioctl_tonlink, NULL }, 1335 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1336 MISC_CMD, ip_sioctl_tmysite, NULL }, 1337 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1338 TUN_CMD, ip_sioctl_tunparam, NULL }, 1339 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1340 IPI_PRIV | IPI_WR, 1341 TUN_CMD, ip_sioctl_tunparam, NULL }, 1342 1343 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1344 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1345 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1346 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1347 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1348 1349 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1350 IPI_PRIV | IPI_WR | IPI_REPL, 1351 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1352 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1353 IPI_PRIV | IPI_WR | IPI_REPL, 1354 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1355 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1356 IPI_PRIV | IPI_WR, 1357 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1358 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1359 IPI_GET_CMD | IPI_REPL, 1360 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1361 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1362 IPI_GET_CMD | IPI_REPL, 1363 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1364 1365 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1366 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1367 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1368 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1369 1370 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1371 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1372 1373 /* These are handled in ip_sioctl_copyin_setup itself */ 1374 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1375 MISC_CMD, NULL, NULL }, 1376 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1377 MISC_CMD, NULL, NULL }, 1378 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1379 1380 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1381 ip_sioctl_get_lifconf, NULL }, 1382 1383 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1384 MISC_CMD, ip_sioctl_xarp, NULL }, 1385 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1386 MISC_CMD, ip_sioctl_xarp, NULL }, 1387 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1388 MISC_CMD, ip_sioctl_xarp, NULL }, 1389 1390 /* SIOCPOPSOCKFS is not handled by IP */ 1391 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1392 1393 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1394 IPI_GET_CMD | IPI_REPL, 1395 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1396 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1397 IPI_PRIV | IPI_WR | IPI_REPL, 1398 LIF_CMD, ip_sioctl_slifzone, 1399 ip_sioctl_slifzone_restart }, 1400 /* 172-174 are SCTP ioctls and not handled by IP */ 1401 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1402 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1403 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1404 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1405 IPI_GET_CMD, LIF_CMD, 1406 ip_sioctl_get_lifusesrc, 0 }, 1407 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1408 IPI_PRIV | IPI_WR, 1409 LIF_CMD, ip_sioctl_slifusesrc, 1410 NULL }, 1411 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1412 ip_sioctl_get_lifsrcof, NULL }, 1413 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1414 MISC_CMD, ip_sioctl_msfilter, NULL }, 1415 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1416 MISC_CMD, ip_sioctl_msfilter, NULL }, 1417 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1418 MISC_CMD, ip_sioctl_msfilter, NULL }, 1419 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1420 MISC_CMD, ip_sioctl_msfilter, NULL }, 1421 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1422 ip_sioctl_set_ipmpfailback, NULL } 1423 }; 1424 1425 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1426 1427 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1428 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1429 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1430 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1431 TUN_CMD, ip_sioctl_tunparam, NULL }, 1432 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1433 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1434 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1435 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1436 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1437 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1438 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1439 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1440 MISC_CMD, mrt_ioctl}, 1441 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1442 MISC_CMD, mrt_ioctl}, 1443 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1444 MISC_CMD, mrt_ioctl} 1445 }; 1446 1447 int ip_misc_ioctl_count = 1448 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1449 1450 static idl_t *conn_drain_list; /* The array of conn drain lists */ 1451 static uint_t conn_drain_list_cnt; /* Total count of conn_drain_list */ 1452 static int conn_drain_list_index; /* Next drain_list to be used */ 1453 int conn_drain_nthreads; /* Number of drainers reqd. */ 1454 /* Settable in /etc/system */ 1455 uint_t ip_redirect_cnt; /* Num of redirect routes in ftable */ 1456 1457 /* Defined in ip_ire.c */ 1458 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1459 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1460 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1461 1462 static nv_t ire_nv_arr[] = { 1463 { IRE_BROADCAST, "BROADCAST" }, 1464 { IRE_LOCAL, "LOCAL" }, 1465 { IRE_LOOPBACK, "LOOPBACK" }, 1466 { IRE_CACHE, "CACHE" }, 1467 { IRE_DEFAULT, "DEFAULT" }, 1468 { IRE_PREFIX, "PREFIX" }, 1469 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1470 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1471 { IRE_HOST, "HOST" }, 1472 { 0 } 1473 }; 1474 1475 nv_t *ire_nv_tbl = ire_nv_arr; 1476 1477 /* Defined in ip_if.c, protect the list of IPsec capable ills */ 1478 extern krwlock_t ipsec_capab_ills_lock; 1479 1480 /* Defined in ip_netinfo.c */ 1481 extern ddi_taskq_t *eventq_queue_nic; 1482 1483 /* Packet dropper for IP IPsec processing failures */ 1484 ipdropper_t ip_dropper; 1485 1486 /* Simple ICMP IP Header Template */ 1487 static ipha_t icmp_ipha = { 1488 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1489 }; 1490 1491 struct module_info ip_mod_info = { 1492 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1493 }; 1494 1495 /* 1496 * Duplicate static symbols within a module confuses mdb; so we avoid the 1497 * problem by making the symbols here distinct from those in udp.c. 1498 */ 1499 1500 static struct qinit iprinit = { 1501 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1502 &ip_mod_info 1503 }; 1504 1505 static struct qinit ipwinit = { 1506 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1507 &ip_mod_info 1508 }; 1509 1510 static struct qinit iplrinit = { 1511 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1512 &ip_mod_info 1513 }; 1514 1515 static struct qinit iplwinit = { 1516 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1517 &ip_mod_info 1518 }; 1519 1520 struct streamtab ipinfo = { 1521 &iprinit, &ipwinit, &iplrinit, &iplwinit 1522 }; 1523 1524 #ifdef DEBUG 1525 static boolean_t skip_sctp_cksum = B_FALSE; 1526 #endif 1527 1528 /* 1529 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1530 * ip_rput_v6(), ip_output(), etc. If the message 1531 * block already has a M_CTL at the front of it, then simply set the zoneid 1532 * appropriately. 1533 */ 1534 mblk_t * 1535 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid) 1536 { 1537 mblk_t *first_mp; 1538 ipsec_out_t *io; 1539 1540 ASSERT(zoneid != ALL_ZONES); 1541 if (mp->b_datap->db_type == M_CTL) { 1542 io = (ipsec_out_t *)mp->b_rptr; 1543 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1544 io->ipsec_out_zoneid = zoneid; 1545 return (mp); 1546 } 1547 1548 first_mp = ipsec_alloc_ipsec_out(); 1549 if (first_mp == NULL) 1550 return (NULL); 1551 io = (ipsec_out_t *)first_mp->b_rptr; 1552 /* This is not a secure packet */ 1553 io->ipsec_out_secure = B_FALSE; 1554 io->ipsec_out_zoneid = zoneid; 1555 first_mp->b_cont = mp; 1556 return (first_mp); 1557 } 1558 1559 /* 1560 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1561 */ 1562 mblk_t * 1563 ip_copymsg(mblk_t *mp) 1564 { 1565 mblk_t *nmp; 1566 ipsec_info_t *in; 1567 1568 if (mp->b_datap->db_type != M_CTL) 1569 return (copymsg(mp)); 1570 1571 in = (ipsec_info_t *)mp->b_rptr; 1572 1573 /* 1574 * Note that M_CTL is also used for delivering ICMP error messages 1575 * upstream to transport layers. 1576 */ 1577 if (in->ipsec_info_type != IPSEC_OUT && 1578 in->ipsec_info_type != IPSEC_IN) 1579 return (copymsg(mp)); 1580 1581 nmp = copymsg(mp->b_cont); 1582 1583 if (in->ipsec_info_type == IPSEC_OUT) 1584 return (ipsec_out_tag(mp, nmp)); 1585 else 1586 return (ipsec_in_tag(mp, nmp)); 1587 } 1588 1589 /* Generate an ICMP fragmentation needed message. */ 1590 static void 1591 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid) 1592 { 1593 icmph_t icmph; 1594 mblk_t *first_mp; 1595 boolean_t mctl_present; 1596 1597 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1598 1599 if (!(mp = icmp_pkt_err_ok(mp))) { 1600 if (mctl_present) 1601 freeb(first_mp); 1602 return; 1603 } 1604 1605 bzero(&icmph, sizeof (icmph_t)); 1606 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1607 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1608 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1609 BUMP_MIB(&icmp_mib, icmpOutFragNeeded); 1610 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 1611 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 1612 } 1613 1614 /* 1615 * icmp_inbound deals with ICMP messages in the following ways. 1616 * 1617 * 1) It needs to send a reply back and possibly delivering it 1618 * to the "interested" upper clients. 1619 * 2) It needs to send it to the upper clients only. 1620 * 3) It needs to change some values in IP only. 1621 * 4) It needs to change some values in IP and upper layers e.g TCP. 1622 * 1623 * We need to accomodate icmp messages coming in clear until we get 1624 * everything secure from the wire. If icmp_accept_clear_messages 1625 * is zero we check with the global policy and act accordingly. If 1626 * it is non-zero, we accept the message without any checks. But 1627 * *this does not mean* that this will be delivered to the upper 1628 * clients. By accepting we might send replies back, change our MTU 1629 * value etc. but delivery to the ULP/clients depends on their policy 1630 * dispositions. 1631 * 1632 * We handle the above 4 cases in the context of IPSEC in the 1633 * following way : 1634 * 1635 * 1) Send the reply back in the same way as the request came in. 1636 * If it came in encrypted, it goes out encrypted. If it came in 1637 * clear, it goes out in clear. Thus, this will prevent chosen 1638 * plain text attack. 1639 * 2) The client may or may not expect things to come in secure. 1640 * If it comes in secure, the policy constraints are checked 1641 * before delivering it to the upper layers. If it comes in 1642 * clear, ipsec_inbound_accept_clear will decide whether to 1643 * accept this in clear or not. In both the cases, if the returned 1644 * message (IP header + 8 bytes) that caused the icmp message has 1645 * AH/ESP headers, it is sent up to AH/ESP for validation before 1646 * sending up. If there are only 8 bytes of returned message, then 1647 * upper client will not be notified. 1648 * 3) Check with global policy to see whether it matches the constaints. 1649 * But this will be done only if icmp_accept_messages_in_clear is 1650 * zero. 1651 * 4) If we need to change both in IP and ULP, then the decision taken 1652 * while affecting the values in IP and while delivering up to TCP 1653 * should be the same. 1654 * 1655 * There are two cases. 1656 * 1657 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1658 * failed), we will not deliver it to the ULP, even though they 1659 * are *willing* to accept in *clear*. This is fine as our global 1660 * disposition to icmp messages asks us reject the datagram. 1661 * 1662 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1663 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1664 * to deliver it to ULP (policy failed), it can lead to 1665 * consistency problems. The cases known at this time are 1666 * ICMP_DESTINATION_UNREACHABLE messages with following code 1667 * values : 1668 * 1669 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1670 * and Upper layer rejects. Then the communication will 1671 * come to a stop. This is solved by making similar decisions 1672 * at both levels. Currently, when we are unable to deliver 1673 * to the Upper Layer (due to policy failures) while IP has 1674 * adjusted ire_max_frag, the next outbound datagram would 1675 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1676 * will be with the right level of protection. Thus the right 1677 * value will be communicated even if we are not able to 1678 * communicate when we get from the wire initially. But this 1679 * assumes there would be at least one outbound datagram after 1680 * IP has adjusted its ire_max_frag value. To make things 1681 * simpler, we accept in clear after the validation of 1682 * AH/ESP headers. 1683 * 1684 * - Other ICMP ERRORS : We may not be able to deliver it to the 1685 * upper layer depending on the level of protection the upper 1686 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1687 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1688 * should be accepted in clear when the Upper layer expects secure. 1689 * Thus the communication may get aborted by some bad ICMP 1690 * packets. 1691 * 1692 * IPQoS Notes: 1693 * The only instance when a packet is sent for processing is when there 1694 * isn't an ICMP client and if we are interested in it. 1695 * If there is a client, IPPF processing will take place in the 1696 * ip_fanout_proto routine. 1697 * 1698 * Zones notes: 1699 * The packet is only processed in the context of the specified zone: typically 1700 * only this zone will reply to an echo request, and only interested clients in 1701 * this zone will receive a copy of the packet. This means that the caller must 1702 * call icmp_inbound() for each relevant zone. 1703 */ 1704 static void 1705 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1706 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1707 ill_t *recv_ill, zoneid_t zoneid) 1708 { 1709 icmph_t *icmph; 1710 ipha_t *ipha; 1711 int iph_hdr_length; 1712 int hdr_length; 1713 boolean_t interested; 1714 uint32_t ts; 1715 uchar_t *wptr; 1716 ipif_t *ipif; 1717 mblk_t *first_mp; 1718 ipsec_in_t *ii; 1719 ire_t *src_ire; 1720 boolean_t onlink; 1721 timestruc_t now; 1722 uint32_t ill_index; 1723 1724 ASSERT(ill != NULL); 1725 1726 first_mp = mp; 1727 if (mctl_present) { 1728 mp = first_mp->b_cont; 1729 ASSERT(mp != NULL); 1730 } 1731 1732 ipha = (ipha_t *)mp->b_rptr; 1733 if (icmp_accept_clear_messages == 0) { 1734 first_mp = ipsec_check_global_policy(first_mp, NULL, 1735 ipha, NULL, mctl_present); 1736 if (first_mp == NULL) 1737 return; 1738 } 1739 1740 /* 1741 * On a labeled system, we have to check whether the zone itself is 1742 * permitted to receive raw traffic. 1743 */ 1744 if (is_system_labeled()) { 1745 if (zoneid == ALL_ZONES) 1746 zoneid = tsol_packet_to_zoneid(mp); 1747 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1748 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1749 zoneid)); 1750 BUMP_MIB(&icmp_mib, icmpInErrors); 1751 freemsg(first_mp); 1752 return; 1753 } 1754 } 1755 1756 /* 1757 * We have accepted the ICMP message. It means that we will 1758 * respond to the packet if needed. It may not be delivered 1759 * to the upper client depending on the policy constraints 1760 * and the disposition in ipsec_inbound_accept_clear. 1761 */ 1762 1763 ASSERT(ill != NULL); 1764 1765 BUMP_MIB(&icmp_mib, icmpInMsgs); 1766 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1767 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1768 /* Last chance to get real. */ 1769 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1770 BUMP_MIB(&icmp_mib, icmpInErrors); 1771 freemsg(first_mp); 1772 return; 1773 } 1774 /* Refresh iph following the pullup. */ 1775 ipha = (ipha_t *)mp->b_rptr; 1776 } 1777 /* ICMP header checksum, including checksum field, should be zero. */ 1778 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1779 IP_CSUM(mp, iph_hdr_length, 0)) { 1780 BUMP_MIB(&icmp_mib, icmpInCksumErrs); 1781 freemsg(first_mp); 1782 return; 1783 } 1784 /* The IP header will always be a multiple of four bytes */ 1785 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1786 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1787 icmph->icmph_code)); 1788 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1789 /* We will set "interested" to "true" if we want a copy */ 1790 interested = B_FALSE; 1791 switch (icmph->icmph_type) { 1792 case ICMP_ECHO_REPLY: 1793 BUMP_MIB(&icmp_mib, icmpInEchoReps); 1794 break; 1795 case ICMP_DEST_UNREACHABLE: 1796 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1797 BUMP_MIB(&icmp_mib, icmpInFragNeeded); 1798 interested = B_TRUE; /* Pass up to transport */ 1799 BUMP_MIB(&icmp_mib, icmpInDestUnreachs); 1800 break; 1801 case ICMP_SOURCE_QUENCH: 1802 interested = B_TRUE; /* Pass up to transport */ 1803 BUMP_MIB(&icmp_mib, icmpInSrcQuenchs); 1804 break; 1805 case ICMP_REDIRECT: 1806 if (!ip_ignore_redirect) 1807 interested = B_TRUE; 1808 BUMP_MIB(&icmp_mib, icmpInRedirects); 1809 break; 1810 case ICMP_ECHO_REQUEST: 1811 /* 1812 * Whether to respond to echo requests that come in as IP 1813 * broadcasts or as IP multicast is subject to debate 1814 * (what isn't?). We aim to please, you pick it. 1815 * Default is do it. 1816 */ 1817 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1818 /* unicast: always respond */ 1819 interested = B_TRUE; 1820 } else if (CLASSD(ipha->ipha_dst)) { 1821 /* multicast: respond based on tunable */ 1822 interested = ip_g_resp_to_echo_mcast; 1823 } else if (broadcast) { 1824 /* broadcast: respond based on tunable */ 1825 interested = ip_g_resp_to_echo_bcast; 1826 } 1827 BUMP_MIB(&icmp_mib, icmpInEchos); 1828 break; 1829 case ICMP_ROUTER_ADVERTISEMENT: 1830 case ICMP_ROUTER_SOLICITATION: 1831 break; 1832 case ICMP_TIME_EXCEEDED: 1833 interested = B_TRUE; /* Pass up to transport */ 1834 BUMP_MIB(&icmp_mib, icmpInTimeExcds); 1835 break; 1836 case ICMP_PARAM_PROBLEM: 1837 interested = B_TRUE; /* Pass up to transport */ 1838 BUMP_MIB(&icmp_mib, icmpInParmProbs); 1839 break; 1840 case ICMP_TIME_STAMP_REQUEST: 1841 /* Response to Time Stamp Requests is local policy. */ 1842 if (ip_g_resp_to_timestamp && 1843 /* So is whether to respond if it was an IP broadcast. */ 1844 (!broadcast || ip_g_resp_to_timestamp_bcast)) { 1845 int tstamp_len = 3 * sizeof (uint32_t); 1846 1847 if (wptr + tstamp_len > mp->b_wptr) { 1848 if (!pullupmsg(mp, wptr + tstamp_len - 1849 mp->b_rptr)) { 1850 BUMP_MIB(ill->ill_ip_mib, 1851 ipIfStatsInDiscards); 1852 freemsg(first_mp); 1853 return; 1854 } 1855 /* Refresh ipha following the pullup. */ 1856 ipha = (ipha_t *)mp->b_rptr; 1857 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1858 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1859 } 1860 interested = B_TRUE; 1861 } 1862 BUMP_MIB(&icmp_mib, icmpInTimestamps); 1863 break; 1864 case ICMP_TIME_STAMP_REPLY: 1865 BUMP_MIB(&icmp_mib, icmpInTimestampReps); 1866 break; 1867 case ICMP_INFO_REQUEST: 1868 /* Per RFC 1122 3.2.2.7, ignore this. */ 1869 case ICMP_INFO_REPLY: 1870 break; 1871 case ICMP_ADDRESS_MASK_REQUEST: 1872 if ((ip_respond_to_address_mask_broadcast || !broadcast) && 1873 /* TODO m_pullup of complete header? */ 1874 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1875 interested = B_TRUE; 1876 BUMP_MIB(&icmp_mib, icmpInAddrMasks); 1877 break; 1878 case ICMP_ADDRESS_MASK_REPLY: 1879 BUMP_MIB(&icmp_mib, icmpInAddrMaskReps); 1880 break; 1881 default: 1882 interested = B_TRUE; /* Pass up to transport */ 1883 BUMP_MIB(&icmp_mib, icmpInUnknowns); 1884 break; 1885 } 1886 /* See if there is an ICMP client. */ 1887 if (ipcl_proto_search(IPPROTO_ICMP) != NULL) { 1888 /* If there is an ICMP client and we want one too, copy it. */ 1889 mblk_t *first_mp1; 1890 1891 if (!interested) { 1892 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1893 ip_policy, recv_ill, zoneid); 1894 return; 1895 } 1896 first_mp1 = ip_copymsg(first_mp); 1897 if (first_mp1 != NULL) { 1898 ip_fanout_proto(q, first_mp1, ill, ipha, 1899 0, mctl_present, ip_policy, recv_ill, zoneid); 1900 } 1901 } else if (!interested) { 1902 freemsg(first_mp); 1903 return; 1904 } else { 1905 /* 1906 * Initiate policy processing for this packet if ip_policy 1907 * is true. 1908 */ 1909 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 1910 ill_index = ill->ill_phyint->phyint_ifindex; 1911 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1912 if (mp == NULL) { 1913 if (mctl_present) { 1914 freeb(first_mp); 1915 } 1916 BUMP_MIB(&icmp_mib, icmpInErrors); 1917 return; 1918 } 1919 } 1920 } 1921 /* We want to do something with it. */ 1922 /* Check db_ref to make sure we can modify the packet. */ 1923 if (mp->b_datap->db_ref > 1) { 1924 mblk_t *first_mp1; 1925 1926 first_mp1 = ip_copymsg(first_mp); 1927 freemsg(first_mp); 1928 if (!first_mp1) { 1929 BUMP_MIB(&icmp_mib, icmpOutDrops); 1930 return; 1931 } 1932 first_mp = first_mp1; 1933 if (mctl_present) { 1934 mp = first_mp->b_cont; 1935 ASSERT(mp != NULL); 1936 } else { 1937 mp = first_mp; 1938 } 1939 ipha = (ipha_t *)mp->b_rptr; 1940 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1941 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1942 } 1943 switch (icmph->icmph_type) { 1944 case ICMP_ADDRESS_MASK_REQUEST: 1945 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1946 if (ipif == NULL) { 1947 freemsg(first_mp); 1948 return; 1949 } 1950 /* 1951 * outging interface must be IPv4 1952 */ 1953 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1954 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1955 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1956 ipif_refrele(ipif); 1957 BUMP_MIB(&icmp_mib, icmpOutAddrMaskReps); 1958 break; 1959 case ICMP_ECHO_REQUEST: 1960 icmph->icmph_type = ICMP_ECHO_REPLY; 1961 BUMP_MIB(&icmp_mib, icmpOutEchoReps); 1962 break; 1963 case ICMP_TIME_STAMP_REQUEST: { 1964 uint32_t *tsp; 1965 1966 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1967 tsp = (uint32_t *)wptr; 1968 tsp++; /* Skip past 'originate time' */ 1969 /* Compute # of milliseconds since midnight */ 1970 gethrestime(&now); 1971 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1972 now.tv_nsec / (NANOSEC / MILLISEC); 1973 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1974 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1975 BUMP_MIB(&icmp_mib, icmpOutTimestampReps); 1976 break; 1977 } 1978 default: 1979 ipha = (ipha_t *)&icmph[1]; 1980 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1981 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1982 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1983 freemsg(first_mp); 1984 return; 1985 } 1986 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1987 ipha = (ipha_t *)&icmph[1]; 1988 } 1989 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1990 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1991 freemsg(first_mp); 1992 return; 1993 } 1994 hdr_length = IPH_HDR_LENGTH(ipha); 1995 if (hdr_length < sizeof (ipha_t)) { 1996 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1997 freemsg(first_mp); 1998 return; 1999 } 2000 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 2001 if (!pullupmsg(mp, 2002 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 2003 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2004 freemsg(first_mp); 2005 return; 2006 } 2007 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2008 ipha = (ipha_t *)&icmph[1]; 2009 } 2010 switch (icmph->icmph_type) { 2011 case ICMP_REDIRECT: 2012 /* 2013 * As there is no upper client to deliver, we don't 2014 * need the first_mp any more. 2015 */ 2016 if (mctl_present) { 2017 freeb(first_mp); 2018 } 2019 icmp_redirect(mp); 2020 return; 2021 case ICMP_DEST_UNREACHABLE: 2022 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 2023 if (!icmp_inbound_too_big(icmph, ipha, ill, 2024 zoneid, mp, iph_hdr_length)) { 2025 freemsg(first_mp); 2026 return; 2027 } 2028 /* 2029 * icmp_inbound_too_big() may alter mp. 2030 * Resynch ipha and icmph accordingly. 2031 */ 2032 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2033 ipha = (ipha_t *)&icmph[1]; 2034 } 2035 /* FALLTHRU */ 2036 default : 2037 /* 2038 * IPQoS notes: Since we have already done IPQoS 2039 * processing we don't want to do it again in 2040 * the fanout routines called by 2041 * icmp_inbound_error_fanout, hence the last 2042 * argument, ip_policy, is B_FALSE. 2043 */ 2044 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 2045 ipha, iph_hdr_length, hdr_length, mctl_present, 2046 B_FALSE, recv_ill, zoneid); 2047 } 2048 return; 2049 } 2050 /* Send out an ICMP packet */ 2051 icmph->icmph_checksum = 0; 2052 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 2053 if (icmph->icmph_checksum == 0) 2054 icmph->icmph_checksum = 0xFFFF; 2055 if (broadcast || CLASSD(ipha->ipha_dst)) { 2056 ipif_t *ipif_chosen; 2057 /* 2058 * Make it look like it was directed to us, so we don't look 2059 * like a fool with a broadcast or multicast source address. 2060 */ 2061 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 2062 /* 2063 * Make sure that we haven't grabbed an interface that's DOWN. 2064 */ 2065 if (ipif != NULL) { 2066 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2067 ipha->ipha_src, zoneid); 2068 if (ipif_chosen != NULL) { 2069 ipif_refrele(ipif); 2070 ipif = ipif_chosen; 2071 } 2072 } 2073 if (ipif == NULL) { 2074 ip0dbg(("icmp_inbound: " 2075 "No source for broadcast/multicast:\n" 2076 "\tsrc 0x%x dst 0x%x ill %p " 2077 "ipif_lcl_addr 0x%x\n", 2078 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2079 (void *)ill, 2080 ill->ill_ipif->ipif_lcl_addr)); 2081 freemsg(first_mp); 2082 return; 2083 } 2084 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2085 ipha->ipha_dst = ipif->ipif_src_addr; 2086 ipif_refrele(ipif); 2087 } 2088 /* Reset time to live. */ 2089 ipha->ipha_ttl = ip_def_ttl; 2090 { 2091 /* Swap source and destination addresses */ 2092 ipaddr_t tmp; 2093 2094 tmp = ipha->ipha_src; 2095 ipha->ipha_src = ipha->ipha_dst; 2096 ipha->ipha_dst = tmp; 2097 } 2098 ipha->ipha_ident = 0; 2099 if (!IS_SIMPLE_IPH(ipha)) 2100 icmp_options_update(ipha); 2101 2102 /* 2103 * ICMP echo replies should go out on the same interface 2104 * the request came on as probes used by in.mpathd for detecting 2105 * NIC failures are ECHO packets. We turn-off load spreading 2106 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2107 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2108 * function. This is in turn handled by ip_wput and ip_newroute 2109 * to make sure that the packet goes out on the interface it came 2110 * in on. If we don't turnoff load spreading, the packets might get 2111 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2112 * to go out and in.mpathd would wrongly detect a failure or 2113 * mis-detect a NIC failure for link failure. As load spreading 2114 * can happen only if ill_group is not NULL, we do only for 2115 * that case and this does not affect the normal case. 2116 * 2117 * We turn off load spreading only on echo packets that came from 2118 * on-link hosts. If the interface route has been deleted, this will 2119 * not be enforced as we can't do much. For off-link hosts, as the 2120 * default routes in IPv4 does not typically have an ire_ipif 2121 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2122 * Moreover, expecting a default route through this interface may 2123 * not be correct. We use ipha_dst because of the swap above. 2124 */ 2125 onlink = B_FALSE; 2126 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2127 /* 2128 * First, we need to make sure that it is not one of our 2129 * local addresses. If we set onlink when it is one of 2130 * our local addresses, we will end up creating IRE_CACHES 2131 * for one of our local addresses. Then, we will never 2132 * accept packets for them afterwards. 2133 */ 2134 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2135 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2136 if (src_ire == NULL) { 2137 ipif = ipif_get_next_ipif(NULL, ill); 2138 if (ipif == NULL) { 2139 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2140 freemsg(mp); 2141 return; 2142 } 2143 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2144 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2145 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE); 2146 ipif_refrele(ipif); 2147 if (src_ire != NULL) { 2148 onlink = B_TRUE; 2149 ire_refrele(src_ire); 2150 } 2151 } else { 2152 ire_refrele(src_ire); 2153 } 2154 } 2155 if (!mctl_present) { 2156 /* 2157 * This packet should go out the same way as it 2158 * came in i.e in clear. To make sure that global 2159 * policy will not be applied to this in ip_wput_ire, 2160 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2161 */ 2162 ASSERT(first_mp == mp); 2163 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 2164 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2165 freemsg(mp); 2166 return; 2167 } 2168 ii = (ipsec_in_t *)first_mp->b_rptr; 2169 2170 /* This is not a secure packet */ 2171 ii->ipsec_in_secure = B_FALSE; 2172 if (onlink) { 2173 ii->ipsec_in_attach_if = B_TRUE; 2174 ii->ipsec_in_ill_index = 2175 ill->ill_phyint->phyint_ifindex; 2176 ii->ipsec_in_rill_index = 2177 recv_ill->ill_phyint->phyint_ifindex; 2178 } 2179 first_mp->b_cont = mp; 2180 } else if (onlink) { 2181 ii = (ipsec_in_t *)first_mp->b_rptr; 2182 ii->ipsec_in_attach_if = B_TRUE; 2183 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2184 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2185 } else { 2186 ii = (ipsec_in_t *)first_mp->b_rptr; 2187 } 2188 ii->ipsec_in_zoneid = zoneid; 2189 ASSERT(zoneid != ALL_ZONES); 2190 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2191 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2192 return; 2193 } 2194 BUMP_MIB(&icmp_mib, icmpOutMsgs); 2195 put(WR(q), first_mp); 2196 } 2197 2198 static ipaddr_t 2199 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2200 { 2201 conn_t *connp; 2202 connf_t *connfp; 2203 ipaddr_t nexthop_addr = INADDR_ANY; 2204 int hdr_length = IPH_HDR_LENGTH(ipha); 2205 uint16_t *up; 2206 uint32_t ports; 2207 2208 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2209 switch (ipha->ipha_protocol) { 2210 case IPPROTO_TCP: 2211 { 2212 tcph_t *tcph; 2213 2214 /* do a reverse lookup */ 2215 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2216 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2217 TCPS_LISTEN); 2218 break; 2219 } 2220 case IPPROTO_UDP: 2221 { 2222 uint32_t dstport, srcport; 2223 2224 ((uint16_t *)&ports)[0] = up[1]; 2225 ((uint16_t *)&ports)[1] = up[0]; 2226 2227 /* Extract ports in net byte order */ 2228 dstport = htons(ntohl(ports) & 0xFFFF); 2229 srcport = htons(ntohl(ports) >> 16); 2230 2231 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 2232 mutex_enter(&connfp->connf_lock); 2233 connp = connfp->connf_head; 2234 2235 /* do a reverse lookup */ 2236 while ((connp != NULL) && 2237 (!IPCL_UDP_MATCH(connp, dstport, 2238 ipha->ipha_src, srcport, ipha->ipha_dst) || 2239 !IPCL_ZONE_MATCH(connp, zoneid))) { 2240 connp = connp->conn_next; 2241 } 2242 if (connp != NULL) 2243 CONN_INC_REF(connp); 2244 mutex_exit(&connfp->connf_lock); 2245 break; 2246 } 2247 case IPPROTO_SCTP: 2248 { 2249 in6_addr_t map_src, map_dst; 2250 2251 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2252 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2253 ((uint16_t *)&ports)[0] = up[1]; 2254 ((uint16_t *)&ports)[1] = up[0]; 2255 2256 if ((connp = sctp_find_conn(&map_src, &map_dst, ports, 2257 0, zoneid)) == NULL) { 2258 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2259 zoneid, ports, ipha); 2260 } else { 2261 CONN_INC_REF(connp); 2262 SCTP_REFRELE(CONN2SCTP(connp)); 2263 } 2264 break; 2265 } 2266 default: 2267 { 2268 ipha_t ripha; 2269 2270 ripha.ipha_src = ipha->ipha_dst; 2271 ripha.ipha_dst = ipha->ipha_src; 2272 ripha.ipha_protocol = ipha->ipha_protocol; 2273 2274 connfp = &ipcl_proto_fanout[ipha->ipha_protocol]; 2275 mutex_enter(&connfp->connf_lock); 2276 connp = connfp->connf_head; 2277 for (connp = connfp->connf_head; connp != NULL; 2278 connp = connp->conn_next) { 2279 if (IPCL_PROTO_MATCH(connp, 2280 ipha->ipha_protocol, &ripha, ill, 2281 0, zoneid)) { 2282 CONN_INC_REF(connp); 2283 break; 2284 } 2285 } 2286 mutex_exit(&connfp->connf_lock); 2287 } 2288 } 2289 if (connp != NULL) { 2290 if (connp->conn_nexthop_set) 2291 nexthop_addr = connp->conn_nexthop_v4; 2292 CONN_DEC_REF(connp); 2293 } 2294 return (nexthop_addr); 2295 } 2296 2297 /* Table from RFC 1191 */ 2298 static int icmp_frag_size_table[] = 2299 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2300 2301 /* 2302 * Process received ICMP Packet too big. 2303 * After updating any IRE it does the fanout to any matching transport streams. 2304 * Assumes the message has been pulled up till the IP header that caused 2305 * the error. 2306 * 2307 * Returns B_FALSE on failure and B_TRUE on success. 2308 */ 2309 static boolean_t 2310 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2311 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length) 2312 { 2313 ire_t *ire, *first_ire; 2314 int mtu; 2315 int hdr_length; 2316 ipaddr_t nexthop_addr; 2317 2318 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2319 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2320 ASSERT(ill != NULL); 2321 2322 hdr_length = IPH_HDR_LENGTH(ipha); 2323 2324 /* Drop if the original packet contained a source route */ 2325 if (ip_source_route_included(ipha)) { 2326 return (B_FALSE); 2327 } 2328 /* 2329 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2330 * header. 2331 */ 2332 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2333 mp->b_wptr) { 2334 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2335 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2336 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2337 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2338 return (B_FALSE); 2339 } 2340 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2341 ipha = (ipha_t *)&icmph[1]; 2342 } 2343 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2344 if (nexthop_addr != INADDR_ANY) { 2345 /* nexthop set */ 2346 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2347 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2348 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW); 2349 } else { 2350 /* nexthop not set */ 2351 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2352 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2353 } 2354 2355 if (!first_ire) { 2356 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2357 ntohl(ipha->ipha_dst))); 2358 return (B_FALSE); 2359 } 2360 /* Check for MTU discovery advice as described in RFC 1191 */ 2361 mtu = ntohs(icmph->icmph_du_mtu); 2362 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2363 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2364 ire = ire->ire_next) { 2365 /* 2366 * Look for the connection to which this ICMP message is 2367 * directed. If it has the IP_NEXTHOP option set, then the 2368 * search is limited to IREs with the MATCH_IRE_PRIVATE 2369 * option. Else the search is limited to regular IREs. 2370 */ 2371 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2372 (nexthop_addr != ire->ire_gateway_addr)) || 2373 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2374 (nexthop_addr != INADDR_ANY))) 2375 continue; 2376 2377 mutex_enter(&ire->ire_lock); 2378 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2379 /* Reduce the IRE max frag value as advised. */ 2380 ip1dbg(("Received mtu from router: %d (was %d)\n", 2381 mtu, ire->ire_max_frag)); 2382 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2383 } else { 2384 uint32_t length; 2385 int i; 2386 2387 /* 2388 * Use the table from RFC 1191 to figure out 2389 * the next "plateau" based on the length in 2390 * the original IP packet. 2391 */ 2392 length = ntohs(ipha->ipha_length); 2393 if (ire->ire_max_frag <= length && 2394 ire->ire_max_frag >= length - hdr_length) { 2395 /* 2396 * Handle broken BSD 4.2 systems that 2397 * return the wrong iph_length in ICMP 2398 * errors. 2399 */ 2400 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2401 length, ire->ire_max_frag)); 2402 length -= hdr_length; 2403 } 2404 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2405 if (length > icmp_frag_size_table[i]) 2406 break; 2407 } 2408 if (i == A_CNT(icmp_frag_size_table)) { 2409 /* Smaller than 68! */ 2410 ip1dbg(("Too big for packet size %d\n", 2411 length)); 2412 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2413 ire->ire_frag_flag = 0; 2414 } else { 2415 mtu = icmp_frag_size_table[i]; 2416 ip1dbg(("Calculated mtu %d, packet size %d, " 2417 "before %d", mtu, length, 2418 ire->ire_max_frag)); 2419 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2420 ip1dbg((", after %d\n", ire->ire_max_frag)); 2421 } 2422 /* Record the new max frag size for the ULP. */ 2423 icmph->icmph_du_zero = 0; 2424 icmph->icmph_du_mtu = 2425 htons((uint16_t)ire->ire_max_frag); 2426 } 2427 mutex_exit(&ire->ire_lock); 2428 } 2429 rw_exit(&first_ire->ire_bucket->irb_lock); 2430 ire_refrele(first_ire); 2431 return (B_TRUE); 2432 } 2433 2434 /* 2435 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2436 * calls this function. 2437 */ 2438 static mblk_t * 2439 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2440 { 2441 ipha_t *ipha; 2442 icmph_t *icmph; 2443 ipha_t *in_ipha; 2444 int length; 2445 2446 ASSERT(mp->b_datap->db_type == M_DATA); 2447 2448 /* 2449 * For Self-encapsulated packets, we added an extra IP header 2450 * without the options. Inner IP header is the one from which 2451 * the outer IP header was formed. Thus, we need to remove the 2452 * outer IP header. To do this, we pullup the whole message 2453 * and overlay whatever follows the outer IP header over the 2454 * outer IP header. 2455 */ 2456 2457 if (!pullupmsg(mp, -1)) 2458 return (NULL); 2459 2460 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2461 ipha = (ipha_t *)&icmph[1]; 2462 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2463 2464 /* 2465 * The length that we want to overlay is following the inner 2466 * IP header. Subtracting the IP header + icmp header + outer 2467 * IP header's length should give us the length that we want to 2468 * overlay. 2469 */ 2470 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2471 hdr_length; 2472 /* 2473 * Overlay whatever follows the inner header over the 2474 * outer header. 2475 */ 2476 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2477 2478 /* Set the wptr to account for the outer header */ 2479 mp->b_wptr -= hdr_length; 2480 return (mp); 2481 } 2482 2483 /* 2484 * Try to pass the ICMP message upstream in case the ULP cares. 2485 * 2486 * If the packet that caused the ICMP error is secure, we send 2487 * it to AH/ESP to make sure that the attached packet has a 2488 * valid association. ipha in the code below points to the 2489 * IP header of the packet that caused the error. 2490 * 2491 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2492 * in the context of IPSEC. Normally we tell the upper layer 2493 * whenever we send the ire (including ip_bind), the IPSEC header 2494 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2495 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2496 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2497 * same thing. As TCP has the IPSEC options size that needs to be 2498 * adjusted, we just pass the MTU unchanged. 2499 * 2500 * IFN could have been generated locally or by some router. 2501 * 2502 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2503 * This happens because IP adjusted its value of MTU on an 2504 * earlier IFN message and could not tell the upper layer, 2505 * the new adjusted value of MTU e.g. Packet was encrypted 2506 * or there was not enough information to fanout to upper 2507 * layers. Thus on the next outbound datagram, ip_wput_ire 2508 * generates the IFN, where IPSEC processing has *not* been 2509 * done. 2510 * 2511 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2512 * could have generated this. This happens because ire_max_frag 2513 * value in IP was set to a new value, while the IPSEC processing 2514 * was being done and after we made the fragmentation check in 2515 * ip_wput_ire. Thus on return from IPSEC processing, 2516 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2517 * and generates the IFN. As IPSEC processing is over, we fanout 2518 * to AH/ESP to remove the header. 2519 * 2520 * In both these cases, ipsec_in_loopback will be set indicating 2521 * that IFN was generated locally. 2522 * 2523 * ROUTER : IFN could be secure or non-secure. 2524 * 2525 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2526 * packet in error has AH/ESP headers to validate the AH/ESP 2527 * headers. AH/ESP will verify whether there is a valid SA or 2528 * not and send it back. We will fanout again if we have more 2529 * data in the packet. 2530 * 2531 * If the packet in error does not have AH/ESP, we handle it 2532 * like any other case. 2533 * 2534 * * NON_SECURE : If the packet in error has AH/ESP headers, 2535 * we attach a dummy ipsec_in and send it up to AH/ESP 2536 * for validation. AH/ESP will verify whether there is a 2537 * valid SA or not and send it back. We will fanout again if 2538 * we have more data in the packet. 2539 * 2540 * If the packet in error does not have AH/ESP, we handle it 2541 * like any other case. 2542 */ 2543 static void 2544 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2545 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2546 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2547 zoneid_t zoneid) 2548 { 2549 uint16_t *up; /* Pointer to ports in ULP header */ 2550 uint32_t ports; /* reversed ports for fanout */ 2551 ipha_t ripha; /* With reversed addresses */ 2552 mblk_t *first_mp; 2553 ipsec_in_t *ii; 2554 tcph_t *tcph; 2555 conn_t *connp; 2556 2557 ASSERT(ill != NULL); 2558 2559 first_mp = mp; 2560 if (mctl_present) { 2561 mp = first_mp->b_cont; 2562 ASSERT(mp != NULL); 2563 2564 ii = (ipsec_in_t *)first_mp->b_rptr; 2565 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2566 } else { 2567 ii = NULL; 2568 } 2569 2570 switch (ipha->ipha_protocol) { 2571 case IPPROTO_UDP: 2572 /* 2573 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2574 * transport header. 2575 */ 2576 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2577 mp->b_wptr) { 2578 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2579 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2580 goto discard_pkt; 2581 } 2582 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2583 ipha = (ipha_t *)&icmph[1]; 2584 } 2585 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2586 2587 /* 2588 * Attempt to find a client stream based on port. 2589 * Note that we do a reverse lookup since the header is 2590 * in the form we sent it out. 2591 * The ripha header is only used for the IP_UDP_MATCH and we 2592 * only set the src and dst addresses and protocol. 2593 */ 2594 ripha.ipha_src = ipha->ipha_dst; 2595 ripha.ipha_dst = ipha->ipha_src; 2596 ripha.ipha_protocol = ipha->ipha_protocol; 2597 ((uint16_t *)&ports)[0] = up[1]; 2598 ((uint16_t *)&ports)[1] = up[0]; 2599 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2600 ntohl(ipha->ipha_src), ntohs(up[0]), 2601 ntohl(ipha->ipha_dst), ntohs(up[1]), 2602 icmph->icmph_type, icmph->icmph_code)); 2603 2604 /* Have to change db_type after any pullupmsg */ 2605 DB_TYPE(mp) = M_CTL; 2606 2607 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2608 mctl_present, ip_policy, recv_ill, zoneid); 2609 return; 2610 2611 case IPPROTO_TCP: 2612 /* 2613 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2614 * transport header. 2615 */ 2616 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2617 mp->b_wptr) { 2618 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2619 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2620 goto discard_pkt; 2621 } 2622 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2623 ipha = (ipha_t *)&icmph[1]; 2624 } 2625 /* 2626 * Find a TCP client stream for this packet. 2627 * Note that we do a reverse lookup since the header is 2628 * in the form we sent it out. 2629 */ 2630 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2631 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN); 2632 if (connp == NULL) 2633 goto discard_pkt; 2634 2635 /* Have to change db_type after any pullupmsg */ 2636 DB_TYPE(mp) = M_CTL; 2637 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2638 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2639 return; 2640 2641 case IPPROTO_SCTP: 2642 /* 2643 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2644 * transport header. 2645 */ 2646 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2647 mp->b_wptr) { 2648 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2649 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2650 goto discard_pkt; 2651 } 2652 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2653 ipha = (ipha_t *)&icmph[1]; 2654 } 2655 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2656 /* 2657 * Find a SCTP client stream for this packet. 2658 * Note that we do a reverse lookup since the header is 2659 * in the form we sent it out. 2660 * The ripha header is only used for the matching and we 2661 * only set the src and dst addresses, protocol, and version. 2662 */ 2663 ripha.ipha_src = ipha->ipha_dst; 2664 ripha.ipha_dst = ipha->ipha_src; 2665 ripha.ipha_protocol = ipha->ipha_protocol; 2666 ripha.ipha_version_and_hdr_length = 2667 ipha->ipha_version_and_hdr_length; 2668 ((uint16_t *)&ports)[0] = up[1]; 2669 ((uint16_t *)&ports)[1] = up[0]; 2670 2671 /* Have to change db_type after any pullupmsg */ 2672 DB_TYPE(mp) = M_CTL; 2673 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2674 mctl_present, ip_policy, 0, zoneid); 2675 return; 2676 2677 case IPPROTO_ESP: 2678 case IPPROTO_AH: { 2679 int ipsec_rc; 2680 2681 /* 2682 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2683 * We will re-use the IPSEC_IN if it is already present as 2684 * AH/ESP will not affect any fields in the IPSEC_IN for 2685 * ICMP errors. If there is no IPSEC_IN, allocate a new 2686 * one and attach it in the front. 2687 */ 2688 if (ii != NULL) { 2689 /* 2690 * ip_fanout_proto_again converts the ICMP errors 2691 * that come back from AH/ESP to M_DATA so that 2692 * if it is non-AH/ESP and we do a pullupmsg in 2693 * this function, it would work. Convert it back 2694 * to M_CTL before we send up as this is a ICMP 2695 * error. This could have been generated locally or 2696 * by some router. Validate the inner IPSEC 2697 * headers. 2698 * 2699 * NOTE : ill_index is used by ip_fanout_proto_again 2700 * to locate the ill. 2701 */ 2702 ASSERT(ill != NULL); 2703 ii->ipsec_in_ill_index = 2704 ill->ill_phyint->phyint_ifindex; 2705 ii->ipsec_in_rill_index = 2706 recv_ill->ill_phyint->phyint_ifindex; 2707 DB_TYPE(first_mp->b_cont) = M_CTL; 2708 } else { 2709 /* 2710 * IPSEC_IN is not present. We attach a ipsec_in 2711 * message and send up to IPSEC for validating 2712 * and removing the IPSEC headers. Clear 2713 * ipsec_in_secure so that when we return 2714 * from IPSEC, we don't mistakenly think that this 2715 * is a secure packet came from the network. 2716 * 2717 * NOTE : ill_index is used by ip_fanout_proto_again 2718 * to locate the ill. 2719 */ 2720 ASSERT(first_mp == mp); 2721 first_mp = ipsec_in_alloc(B_TRUE); 2722 if (first_mp == NULL) { 2723 freemsg(mp); 2724 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2725 return; 2726 } 2727 ii = (ipsec_in_t *)first_mp->b_rptr; 2728 2729 /* This is not a secure packet */ 2730 ii->ipsec_in_secure = B_FALSE; 2731 first_mp->b_cont = mp; 2732 DB_TYPE(mp) = M_CTL; 2733 ASSERT(ill != NULL); 2734 ii->ipsec_in_ill_index = 2735 ill->ill_phyint->phyint_ifindex; 2736 ii->ipsec_in_rill_index = 2737 recv_ill->ill_phyint->phyint_ifindex; 2738 } 2739 ip2dbg(("icmp_inbound_error: ipsec\n")); 2740 2741 if (!ipsec_loaded()) { 2742 ip_proto_not_sup(q, first_mp, 0, zoneid); 2743 return; 2744 } 2745 2746 if (ipha->ipha_protocol == IPPROTO_ESP) 2747 ipsec_rc = ipsecesp_icmp_error(first_mp); 2748 else 2749 ipsec_rc = ipsecah_icmp_error(first_mp); 2750 if (ipsec_rc == IPSEC_STATUS_FAILED) 2751 return; 2752 2753 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2754 return; 2755 } 2756 default: 2757 /* 2758 * The ripha header is only used for the lookup and we 2759 * only set the src and dst addresses and protocol. 2760 */ 2761 ripha.ipha_src = ipha->ipha_dst; 2762 ripha.ipha_dst = ipha->ipha_src; 2763 ripha.ipha_protocol = ipha->ipha_protocol; 2764 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2765 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2766 ntohl(ipha->ipha_dst), 2767 icmph->icmph_type, icmph->icmph_code)); 2768 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2769 ipha_t *in_ipha; 2770 2771 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2772 mp->b_wptr) { 2773 if (!pullupmsg(mp, (uchar_t *)ipha + 2774 hdr_length + sizeof (ipha_t) - 2775 mp->b_rptr)) { 2776 goto discard_pkt; 2777 } 2778 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2779 ipha = (ipha_t *)&icmph[1]; 2780 } 2781 /* 2782 * Caller has verified that length has to be 2783 * at least the size of IP header. 2784 */ 2785 ASSERT(hdr_length >= sizeof (ipha_t)); 2786 /* 2787 * Check the sanity of the inner IP header like 2788 * we did for the outer header. 2789 */ 2790 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2791 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2792 goto discard_pkt; 2793 } 2794 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2795 goto discard_pkt; 2796 } 2797 /* Check for Self-encapsulated tunnels */ 2798 if (in_ipha->ipha_src == ipha->ipha_src && 2799 in_ipha->ipha_dst == ipha->ipha_dst) { 2800 2801 mp = icmp_inbound_self_encap_error(mp, 2802 iph_hdr_length, hdr_length); 2803 if (mp == NULL) 2804 goto discard_pkt; 2805 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2806 ipha = (ipha_t *)&icmph[1]; 2807 hdr_length = IPH_HDR_LENGTH(ipha); 2808 /* 2809 * The packet in error is self-encapsualted. 2810 * And we are finding it further encapsulated 2811 * which we could not have possibly generated. 2812 */ 2813 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2814 goto discard_pkt; 2815 } 2816 icmp_inbound_error_fanout(q, ill, first_mp, 2817 icmph, ipha, iph_hdr_length, hdr_length, 2818 mctl_present, ip_policy, recv_ill, zoneid); 2819 return; 2820 } 2821 } 2822 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2823 ipha->ipha_protocol == IPPROTO_IPV6) && 2824 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2825 ii != NULL && 2826 ii->ipsec_in_loopback && 2827 ii->ipsec_in_secure) { 2828 /* 2829 * For IP tunnels that get a looped-back 2830 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2831 * reported new MTU to take into account the IPsec 2832 * headers protecting this configured tunnel. 2833 * 2834 * This allows the tunnel module (tun.c) to blindly 2835 * accept the MTU reported in an ICMP "too big" 2836 * message. 2837 * 2838 * Non-looped back ICMP messages will just be 2839 * handled by the security protocols (if needed), 2840 * and the first subsequent packet will hit this 2841 * path. 2842 */ 2843 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2844 ipsec_in_extra_length(first_mp)); 2845 } 2846 /* Have to change db_type after any pullupmsg */ 2847 DB_TYPE(mp) = M_CTL; 2848 2849 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2850 ip_policy, recv_ill, zoneid); 2851 return; 2852 } 2853 /* NOTREACHED */ 2854 discard_pkt: 2855 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2856 drop_pkt:; 2857 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2858 freemsg(first_mp); 2859 } 2860 2861 /* 2862 * Common IP options parser. 2863 * 2864 * Setup routine: fill in *optp with options-parsing state, then 2865 * tail-call ipoptp_next to return the first option. 2866 */ 2867 uint8_t 2868 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2869 { 2870 uint32_t totallen; /* total length of all options */ 2871 2872 totallen = ipha->ipha_version_and_hdr_length - 2873 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2874 totallen <<= 2; 2875 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2876 optp->ipoptp_end = optp->ipoptp_next + totallen; 2877 optp->ipoptp_flags = 0; 2878 return (ipoptp_next(optp)); 2879 } 2880 2881 /* 2882 * Common IP options parser: extract next option. 2883 */ 2884 uint8_t 2885 ipoptp_next(ipoptp_t *optp) 2886 { 2887 uint8_t *end = optp->ipoptp_end; 2888 uint8_t *cur = optp->ipoptp_next; 2889 uint8_t opt, len, pointer; 2890 2891 /* 2892 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2893 * has been corrupted. 2894 */ 2895 ASSERT(cur <= end); 2896 2897 if (cur == end) 2898 return (IPOPT_EOL); 2899 2900 opt = cur[IPOPT_OPTVAL]; 2901 2902 /* 2903 * Skip any NOP options. 2904 */ 2905 while (opt == IPOPT_NOP) { 2906 cur++; 2907 if (cur == end) 2908 return (IPOPT_EOL); 2909 opt = cur[IPOPT_OPTVAL]; 2910 } 2911 2912 if (opt == IPOPT_EOL) 2913 return (IPOPT_EOL); 2914 2915 /* 2916 * Option requiring a length. 2917 */ 2918 if ((cur + 1) >= end) { 2919 optp->ipoptp_flags |= IPOPTP_ERROR; 2920 return (IPOPT_EOL); 2921 } 2922 len = cur[IPOPT_OLEN]; 2923 if (len < 2) { 2924 optp->ipoptp_flags |= IPOPTP_ERROR; 2925 return (IPOPT_EOL); 2926 } 2927 optp->ipoptp_cur = cur; 2928 optp->ipoptp_len = len; 2929 optp->ipoptp_next = cur + len; 2930 if (cur + len > end) { 2931 optp->ipoptp_flags |= IPOPTP_ERROR; 2932 return (IPOPT_EOL); 2933 } 2934 2935 /* 2936 * For the options which require a pointer field, make sure 2937 * its there, and make sure it points to either something 2938 * inside this option, or the end of the option. 2939 */ 2940 switch (opt) { 2941 case IPOPT_RR: 2942 case IPOPT_TS: 2943 case IPOPT_LSRR: 2944 case IPOPT_SSRR: 2945 if (len <= IPOPT_OFFSET) { 2946 optp->ipoptp_flags |= IPOPTP_ERROR; 2947 return (opt); 2948 } 2949 pointer = cur[IPOPT_OFFSET]; 2950 if (pointer - 1 > len) { 2951 optp->ipoptp_flags |= IPOPTP_ERROR; 2952 return (opt); 2953 } 2954 break; 2955 } 2956 2957 /* 2958 * Sanity check the pointer field based on the type of the 2959 * option. 2960 */ 2961 switch (opt) { 2962 case IPOPT_RR: 2963 case IPOPT_SSRR: 2964 case IPOPT_LSRR: 2965 if (pointer < IPOPT_MINOFF_SR) 2966 optp->ipoptp_flags |= IPOPTP_ERROR; 2967 break; 2968 case IPOPT_TS: 2969 if (pointer < IPOPT_MINOFF_IT) 2970 optp->ipoptp_flags |= IPOPTP_ERROR; 2971 /* 2972 * Note that the Internet Timestamp option also 2973 * contains two four bit fields (the Overflow field, 2974 * and the Flag field), which follow the pointer 2975 * field. We don't need to check that these fields 2976 * fall within the length of the option because this 2977 * was implicitely done above. We've checked that the 2978 * pointer value is at least IPOPT_MINOFF_IT, and that 2979 * it falls within the option. Since IPOPT_MINOFF_IT > 2980 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2981 */ 2982 ASSERT(len > IPOPT_POS_OV_FLG); 2983 break; 2984 } 2985 2986 return (opt); 2987 } 2988 2989 /* 2990 * Use the outgoing IP header to create an IP_OPTIONS option the way 2991 * it was passed down from the application. 2992 */ 2993 int 2994 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2995 { 2996 ipoptp_t opts; 2997 const uchar_t *opt; 2998 uint8_t optval; 2999 uint8_t optlen; 3000 uint32_t len = 0; 3001 uchar_t *buf1 = buf; 3002 3003 buf += IP_ADDR_LEN; /* Leave room for final destination */ 3004 len += IP_ADDR_LEN; 3005 bzero(buf1, IP_ADDR_LEN); 3006 3007 /* 3008 * OK to cast away const here, as we don't store through the returned 3009 * opts.ipoptp_cur pointer. 3010 */ 3011 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 3012 optval != IPOPT_EOL; 3013 optval = ipoptp_next(&opts)) { 3014 int off; 3015 3016 opt = opts.ipoptp_cur; 3017 optlen = opts.ipoptp_len; 3018 switch (optval) { 3019 case IPOPT_SSRR: 3020 case IPOPT_LSRR: 3021 3022 /* 3023 * Insert ipha_dst as the first entry in the source 3024 * route and move down the entries on step. 3025 * The last entry gets placed at buf1. 3026 */ 3027 buf[IPOPT_OPTVAL] = optval; 3028 buf[IPOPT_OLEN] = optlen; 3029 buf[IPOPT_OFFSET] = optlen; 3030 3031 off = optlen - IP_ADDR_LEN; 3032 if (off < 0) { 3033 /* No entries in source route */ 3034 break; 3035 } 3036 /* Last entry in source route */ 3037 bcopy(opt + off, buf1, IP_ADDR_LEN); 3038 off -= IP_ADDR_LEN; 3039 3040 while (off > 0) { 3041 bcopy(opt + off, 3042 buf + off + IP_ADDR_LEN, 3043 IP_ADDR_LEN); 3044 off -= IP_ADDR_LEN; 3045 } 3046 /* ipha_dst into first slot */ 3047 bcopy(&ipha->ipha_dst, 3048 buf + off + IP_ADDR_LEN, 3049 IP_ADDR_LEN); 3050 buf += optlen; 3051 len += optlen; 3052 break; 3053 3054 case IPOPT_COMSEC: 3055 case IPOPT_SECURITY: 3056 /* if passing up a label is not ok, then remove */ 3057 if (is_system_labeled()) 3058 break; 3059 /* FALLTHROUGH */ 3060 default: 3061 bcopy(opt, buf, optlen); 3062 buf += optlen; 3063 len += optlen; 3064 break; 3065 } 3066 } 3067 done: 3068 /* Pad the resulting options */ 3069 while (len & 0x3) { 3070 *buf++ = IPOPT_EOL; 3071 len++; 3072 } 3073 return (len); 3074 } 3075 3076 /* 3077 * Update any record route or timestamp options to include this host. 3078 * Reverse any source route option. 3079 * This routine assumes that the options are well formed i.e. that they 3080 * have already been checked. 3081 */ 3082 static void 3083 icmp_options_update(ipha_t *ipha) 3084 { 3085 ipoptp_t opts; 3086 uchar_t *opt; 3087 uint8_t optval; 3088 ipaddr_t src; /* Our local address */ 3089 ipaddr_t dst; 3090 3091 ip2dbg(("icmp_options_update\n")); 3092 src = ipha->ipha_src; 3093 dst = ipha->ipha_dst; 3094 3095 for (optval = ipoptp_first(&opts, ipha); 3096 optval != IPOPT_EOL; 3097 optval = ipoptp_next(&opts)) { 3098 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3099 opt = opts.ipoptp_cur; 3100 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3101 optval, opts.ipoptp_len)); 3102 switch (optval) { 3103 int off1, off2; 3104 case IPOPT_SSRR: 3105 case IPOPT_LSRR: 3106 /* 3107 * Reverse the source route. The first entry 3108 * should be the next to last one in the current 3109 * source route (the last entry is our address). 3110 * The last entry should be the final destination. 3111 */ 3112 off1 = IPOPT_MINOFF_SR - 1; 3113 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3114 if (off2 < 0) { 3115 /* No entries in source route */ 3116 ip1dbg(( 3117 "icmp_options_update: bad src route\n")); 3118 break; 3119 } 3120 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3121 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3122 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3123 off2 -= IP_ADDR_LEN; 3124 3125 while (off1 < off2) { 3126 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3127 bcopy((char *)opt + off2, (char *)opt + off1, 3128 IP_ADDR_LEN); 3129 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3130 off1 += IP_ADDR_LEN; 3131 off2 -= IP_ADDR_LEN; 3132 } 3133 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3134 break; 3135 } 3136 } 3137 } 3138 3139 /* 3140 * Process received ICMP Redirect messages. 3141 */ 3142 /* ARGSUSED */ 3143 static void 3144 icmp_redirect(mblk_t *mp) 3145 { 3146 ipha_t *ipha; 3147 int iph_hdr_length; 3148 icmph_t *icmph; 3149 ipha_t *ipha_err; 3150 ire_t *ire; 3151 ire_t *prev_ire; 3152 ire_t *save_ire; 3153 ipaddr_t src, dst, gateway; 3154 iulp_t ulp_info = { 0 }; 3155 int error; 3156 3157 ipha = (ipha_t *)mp->b_rptr; 3158 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3159 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3160 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3161 BUMP_MIB(&icmp_mib, icmpInErrors); 3162 freemsg(mp); 3163 return; 3164 } 3165 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3166 ipha_err = (ipha_t *)&icmph[1]; 3167 src = ipha->ipha_src; 3168 dst = ipha_err->ipha_dst; 3169 gateway = icmph->icmph_rd_gateway; 3170 /* Make sure the new gateway is reachable somehow. */ 3171 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3172 ALL_ZONES, NULL, MATCH_IRE_TYPE); 3173 /* 3174 * Make sure we had a route for the dest in question and that 3175 * that route was pointing to the old gateway (the source of the 3176 * redirect packet.) 3177 */ 3178 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3179 NULL, MATCH_IRE_GW); 3180 /* 3181 * Check that 3182 * the redirect was not from ourselves 3183 * the new gateway and the old gateway are directly reachable 3184 */ 3185 if (!prev_ire || 3186 !ire || 3187 ire->ire_type == IRE_LOCAL) { 3188 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3189 freemsg(mp); 3190 if (ire != NULL) 3191 ire_refrele(ire); 3192 if (prev_ire != NULL) 3193 ire_refrele(prev_ire); 3194 return; 3195 } 3196 3197 /* 3198 * Should we use the old ULP info to create the new gateway? From 3199 * a user's perspective, we should inherit the info so that it 3200 * is a "smooth" transition. If we do not do that, then new 3201 * connections going thru the new gateway will have no route metrics, 3202 * which is counter-intuitive to user. From a network point of 3203 * view, this may or may not make sense even though the new gateway 3204 * is still directly connected to us so the route metrics should not 3205 * change much. 3206 * 3207 * But if the old ire_uinfo is not initialized, we do another 3208 * recursive lookup on the dest using the new gateway. There may 3209 * be a route to that. If so, use it to initialize the redirect 3210 * route. 3211 */ 3212 if (prev_ire->ire_uinfo.iulp_set) { 3213 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3214 } else { 3215 ire_t *tmp_ire; 3216 ire_t *sire; 3217 3218 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3219 ALL_ZONES, 0, NULL, 3220 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT)); 3221 if (sire != NULL) { 3222 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3223 /* 3224 * If sire != NULL, ire_ftable_lookup() should not 3225 * return a NULL value. 3226 */ 3227 ASSERT(tmp_ire != NULL); 3228 ire_refrele(tmp_ire); 3229 ire_refrele(sire); 3230 } else if (tmp_ire != NULL) { 3231 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3232 sizeof (iulp_t)); 3233 ire_refrele(tmp_ire); 3234 } 3235 } 3236 if (prev_ire->ire_type == IRE_CACHE) 3237 ire_delete(prev_ire); 3238 ire_refrele(prev_ire); 3239 /* 3240 * TODO: more precise handling for cases 0, 2, 3, the latter two 3241 * require TOS routing 3242 */ 3243 switch (icmph->icmph_code) { 3244 case 0: 3245 case 1: 3246 /* TODO: TOS specificity for cases 2 and 3 */ 3247 case 2: 3248 case 3: 3249 break; 3250 default: 3251 freemsg(mp); 3252 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3253 ire_refrele(ire); 3254 return; 3255 } 3256 /* 3257 * Create a Route Association. This will allow us to remember that 3258 * someone we believe told us to use the particular gateway. 3259 */ 3260 save_ire = ire; 3261 ire = ire_create( 3262 (uchar_t *)&dst, /* dest addr */ 3263 (uchar_t *)&ip_g_all_ones, /* mask */ 3264 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3265 (uchar_t *)&gateway, /* gateway addr */ 3266 NULL, /* no in_srcaddr */ 3267 &save_ire->ire_max_frag, /* max frag */ 3268 NULL, /* Fast Path header */ 3269 NULL, /* no rfq */ 3270 NULL, /* no stq */ 3271 IRE_HOST, 3272 NULL, 3273 NULL, 3274 NULL, 3275 0, 3276 0, 3277 0, 3278 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3279 &ulp_info, 3280 NULL, 3281 NULL); 3282 3283 if (ire == NULL) { 3284 freemsg(mp); 3285 ire_refrele(save_ire); 3286 return; 3287 } 3288 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3289 ire_refrele(save_ire); 3290 atomic_inc_32(&ip_redirect_cnt); 3291 3292 if (error == 0) { 3293 ire_refrele(ire); /* Held in ire_add_v4 */ 3294 /* tell routing sockets that we received a redirect */ 3295 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3296 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3297 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR)); 3298 } 3299 3300 /* 3301 * Delete any existing IRE_HOST type redirect ires for this destination. 3302 * This together with the added IRE has the effect of 3303 * modifying an existing redirect. 3304 */ 3305 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3306 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE)); 3307 if (prev_ire != NULL) { 3308 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3309 ire_delete(prev_ire); 3310 ire_refrele(prev_ire); 3311 } 3312 3313 freemsg(mp); 3314 } 3315 3316 /* 3317 * Generate an ICMP parameter problem message. 3318 */ 3319 static void 3320 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid) 3321 { 3322 icmph_t icmph; 3323 boolean_t mctl_present; 3324 mblk_t *first_mp; 3325 3326 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3327 3328 if (!(mp = icmp_pkt_err_ok(mp))) { 3329 if (mctl_present) 3330 freeb(first_mp); 3331 return; 3332 } 3333 3334 bzero(&icmph, sizeof (icmph_t)); 3335 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3336 icmph.icmph_pp_ptr = ptr; 3337 BUMP_MIB(&icmp_mib, icmpOutParmProbs); 3338 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 3339 } 3340 3341 /* 3342 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3343 * the ICMP header pointed to by "stuff". (May be called as writer.) 3344 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3345 * an icmp error packet can be sent. 3346 * Assigns an appropriate source address to the packet. If ipha_dst is 3347 * one of our addresses use it for source. Otherwise pick a source based 3348 * on a route lookup back to ipha_src. 3349 * Note that ipha_src must be set here since the 3350 * packet is likely to arrive on an ill queue in ip_wput() which will 3351 * not set a source address. 3352 */ 3353 static void 3354 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3355 boolean_t mctl_present, zoneid_t zoneid) 3356 { 3357 ipaddr_t dst; 3358 icmph_t *icmph; 3359 ipha_t *ipha; 3360 uint_t len_needed; 3361 size_t msg_len; 3362 mblk_t *mp1; 3363 ipaddr_t src; 3364 ire_t *ire; 3365 mblk_t *ipsec_mp; 3366 ipsec_out_t *io = NULL; 3367 boolean_t xmit_if_on = B_FALSE; 3368 3369 if (mctl_present) { 3370 /* 3371 * If it is : 3372 * 3373 * 1) a IPSEC_OUT, then this is caused by outbound 3374 * datagram originating on this host. IPSEC processing 3375 * may or may not have been done. Refer to comments above 3376 * icmp_inbound_error_fanout for details. 3377 * 3378 * 2) a IPSEC_IN if we are generating a icmp_message 3379 * for an incoming datagram destined for us i.e called 3380 * from ip_fanout_send_icmp. 3381 */ 3382 ipsec_info_t *in; 3383 ipsec_mp = mp; 3384 mp = ipsec_mp->b_cont; 3385 3386 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3387 ipha = (ipha_t *)mp->b_rptr; 3388 3389 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3390 in->ipsec_info_type == IPSEC_IN); 3391 3392 if (in->ipsec_info_type == IPSEC_IN) { 3393 /* 3394 * Convert the IPSEC_IN to IPSEC_OUT. 3395 */ 3396 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3397 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 3398 return; 3399 } 3400 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3401 } else { 3402 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3403 io = (ipsec_out_t *)in; 3404 if (io->ipsec_out_xmit_if) 3405 xmit_if_on = B_TRUE; 3406 /* 3407 * Clear out ipsec_out_proc_begin, so we do a fresh 3408 * ire lookup. 3409 */ 3410 io->ipsec_out_proc_begin = B_FALSE; 3411 } 3412 ASSERT(zoneid == io->ipsec_out_zoneid); 3413 ASSERT(zoneid != ALL_ZONES); 3414 } else { 3415 /* 3416 * This is in clear. The icmp message we are building 3417 * here should go out in clear. 3418 * 3419 * Pardon the convolution of it all, but it's easier to 3420 * allocate a "use cleartext" IPSEC_IN message and convert 3421 * it than it is to allocate a new one. 3422 */ 3423 ipsec_in_t *ii; 3424 ASSERT(DB_TYPE(mp) == M_DATA); 3425 if ((ipsec_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 3426 freemsg(mp); 3427 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 3428 return; 3429 } 3430 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3431 3432 /* This is not a secure packet */ 3433 ii->ipsec_in_secure = B_FALSE; 3434 /* 3435 * For trusted extensions using a shared IP address we can 3436 * send using any zoneid. 3437 */ 3438 if (zoneid == ALL_ZONES) 3439 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3440 else 3441 ii->ipsec_in_zoneid = zoneid; 3442 ipsec_mp->b_cont = mp; 3443 ipha = (ipha_t *)mp->b_rptr; 3444 /* 3445 * Convert the IPSEC_IN to IPSEC_OUT. 3446 */ 3447 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3448 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 3449 return; 3450 } 3451 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3452 } 3453 3454 /* Remember our eventual destination */ 3455 dst = ipha->ipha_src; 3456 3457 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3458 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE); 3459 if (ire != NULL && 3460 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3461 src = ipha->ipha_dst; 3462 } else if (!xmit_if_on) { 3463 if (ire != NULL) 3464 ire_refrele(ire); 3465 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3466 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY)); 3467 if (ire == NULL) { 3468 BUMP_MIB(&ip_mib, ipIfStatsOutNoRoutes); 3469 freemsg(ipsec_mp); 3470 return; 3471 } 3472 src = ire->ire_src_addr; 3473 } else { 3474 ipif_t *ipif = NULL; 3475 ill_t *ill; 3476 /* 3477 * This must be an ICMP error coming from 3478 * ip_mrtun_forward(). The src addr should 3479 * be equal to the IP-addr of the outgoing 3480 * interface. 3481 */ 3482 if (io == NULL) { 3483 /* This is not a IPSEC_OUT type control msg */ 3484 BUMP_MIB(&ip_mib, ipIfStatsOutNoRoutes); 3485 freemsg(ipsec_mp); 3486 return; 3487 } 3488 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3489 NULL, NULL, NULL, NULL); 3490 if (ill != NULL) { 3491 ipif = ipif_get_next_ipif(NULL, ill); 3492 ill_refrele(ill); 3493 } 3494 if (ipif == NULL) { 3495 BUMP_MIB(&ip_mib, ipIfStatsOutNoRoutes); 3496 freemsg(ipsec_mp); 3497 return; 3498 } 3499 src = ipif->ipif_src_addr; 3500 ipif_refrele(ipif); 3501 } 3502 3503 if (ire != NULL) 3504 ire_refrele(ire); 3505 3506 /* 3507 * Check if we can send back more then 8 bytes in addition 3508 * to the IP header. We will include as much as 64 bytes. 3509 */ 3510 len_needed = IPH_HDR_LENGTH(ipha); 3511 if (ipha->ipha_protocol == IPPROTO_ENCAP && 3512 (uchar_t *)ipha + len_needed + 1 <= mp->b_wptr) { 3513 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + len_needed)); 3514 } 3515 len_needed += ip_icmp_return; 3516 msg_len = msgdsize(mp); 3517 if (msg_len > len_needed) { 3518 (void) adjmsg(mp, len_needed - msg_len); 3519 msg_len = len_needed; 3520 } 3521 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3522 if (mp1 == NULL) { 3523 BUMP_MIB(&icmp_mib, icmpOutErrors); 3524 freemsg(ipsec_mp); 3525 return; 3526 } 3527 /* 3528 * On an unlabeled system, dblks don't necessarily have creds. 3529 */ 3530 ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL); 3531 if (DB_CRED(mp) != NULL) 3532 mblk_setcred(mp1, DB_CRED(mp)); 3533 mp1->b_cont = mp; 3534 mp = mp1; 3535 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3536 ipsec_mp->b_rptr == (uint8_t *)io && 3537 io->ipsec_out_type == IPSEC_OUT); 3538 ipsec_mp->b_cont = mp; 3539 3540 /* 3541 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3542 * node generates be accepted in peace by all on-host destinations. 3543 * If we do NOT assume that all on-host destinations trust 3544 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3545 * (Look for ipsec_out_icmp_loopback). 3546 */ 3547 io->ipsec_out_icmp_loopback = B_TRUE; 3548 3549 ipha = (ipha_t *)mp->b_rptr; 3550 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3551 *ipha = icmp_ipha; 3552 ipha->ipha_src = src; 3553 ipha->ipha_dst = dst; 3554 ipha->ipha_ttl = ip_def_ttl; 3555 msg_len += sizeof (icmp_ipha) + len; 3556 if (msg_len > IP_MAXPACKET) { 3557 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3558 msg_len = IP_MAXPACKET; 3559 } 3560 ipha->ipha_length = htons((uint16_t)msg_len); 3561 icmph = (icmph_t *)&ipha[1]; 3562 bcopy(stuff, icmph, len); 3563 icmph->icmph_checksum = 0; 3564 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3565 if (icmph->icmph_checksum == 0) 3566 icmph->icmph_checksum = 0xFFFF; 3567 BUMP_MIB(&icmp_mib, icmpOutMsgs); 3568 put(q, ipsec_mp); 3569 } 3570 3571 /* 3572 * Determine if an ICMP error packet can be sent given the rate limit. 3573 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3574 * in milliseconds) and a burst size. Burst size number of packets can 3575 * be sent arbitrarely closely spaced. 3576 * The state is tracked using two variables to implement an approximate 3577 * token bucket filter: 3578 * icmp_pkt_err_last - lbolt value when the last burst started 3579 * icmp_pkt_err_sent - number of packets sent in current burst 3580 */ 3581 boolean_t 3582 icmp_err_rate_limit(void) 3583 { 3584 clock_t now = TICK_TO_MSEC(lbolt); 3585 uint_t refilled; /* Number of packets refilled in tbf since last */ 3586 uint_t err_interval = ip_icmp_err_interval; /* Guard against changes */ 3587 3588 if (err_interval == 0) 3589 return (B_FALSE); 3590 3591 if (icmp_pkt_err_last > now) { 3592 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3593 icmp_pkt_err_last = 0; 3594 icmp_pkt_err_sent = 0; 3595 } 3596 /* 3597 * If we are in a burst update the token bucket filter. 3598 * Update the "last" time to be close to "now" but make sure 3599 * we don't loose precision. 3600 */ 3601 if (icmp_pkt_err_sent != 0) { 3602 refilled = (now - icmp_pkt_err_last)/err_interval; 3603 if (refilled > icmp_pkt_err_sent) { 3604 icmp_pkt_err_sent = 0; 3605 } else { 3606 icmp_pkt_err_sent -= refilled; 3607 icmp_pkt_err_last += refilled * err_interval; 3608 } 3609 } 3610 if (icmp_pkt_err_sent == 0) { 3611 /* Start of new burst */ 3612 icmp_pkt_err_last = now; 3613 } 3614 if (icmp_pkt_err_sent < ip_icmp_err_burst) { 3615 icmp_pkt_err_sent++; 3616 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3617 icmp_pkt_err_sent)); 3618 return (B_FALSE); 3619 } 3620 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3621 return (B_TRUE); 3622 } 3623 3624 /* 3625 * Check if it is ok to send an IPv4 ICMP error packet in 3626 * response to the IPv4 packet in mp. 3627 * Free the message and return null if no 3628 * ICMP error packet should be sent. 3629 */ 3630 static mblk_t * 3631 icmp_pkt_err_ok(mblk_t *mp) 3632 { 3633 icmph_t *icmph; 3634 ipha_t *ipha; 3635 uint_t len_needed; 3636 ire_t *src_ire; 3637 ire_t *dst_ire; 3638 3639 if (!mp) 3640 return (NULL); 3641 ipha = (ipha_t *)mp->b_rptr; 3642 if (ip_csum_hdr(ipha)) { 3643 BUMP_MIB(&ip_mib, ipIfStatsInCksumErrs); 3644 freemsg(mp); 3645 return (NULL); 3646 } 3647 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3648 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3649 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3650 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3651 if (src_ire != NULL || dst_ire != NULL || 3652 CLASSD(ipha->ipha_dst) || 3653 CLASSD(ipha->ipha_src) || 3654 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3655 /* Note: only errors to the fragment with offset 0 */ 3656 BUMP_MIB(&icmp_mib, icmpOutDrops); 3657 freemsg(mp); 3658 if (src_ire != NULL) 3659 ire_refrele(src_ire); 3660 if (dst_ire != NULL) 3661 ire_refrele(dst_ire); 3662 return (NULL); 3663 } 3664 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3665 /* 3666 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3667 * errors in response to any ICMP errors. 3668 */ 3669 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3670 if (mp->b_wptr - mp->b_rptr < len_needed) { 3671 if (!pullupmsg(mp, len_needed)) { 3672 BUMP_MIB(&icmp_mib, icmpInErrors); 3673 freemsg(mp); 3674 return (NULL); 3675 } 3676 ipha = (ipha_t *)mp->b_rptr; 3677 } 3678 icmph = (icmph_t *) 3679 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3680 switch (icmph->icmph_type) { 3681 case ICMP_DEST_UNREACHABLE: 3682 case ICMP_SOURCE_QUENCH: 3683 case ICMP_TIME_EXCEEDED: 3684 case ICMP_PARAM_PROBLEM: 3685 case ICMP_REDIRECT: 3686 BUMP_MIB(&icmp_mib, icmpOutDrops); 3687 freemsg(mp); 3688 return (NULL); 3689 default: 3690 break; 3691 } 3692 } 3693 /* 3694 * If this is a labeled system, then check to see if we're allowed to 3695 * send a response to this particular sender. If not, then just drop. 3696 */ 3697 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3698 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3699 BUMP_MIB(&icmp_mib, icmpOutDrops); 3700 freemsg(mp); 3701 return (NULL); 3702 } 3703 if (icmp_err_rate_limit()) { 3704 /* 3705 * Only send ICMP error packets every so often. 3706 * This should be done on a per port/source basis, 3707 * but for now this will suffice. 3708 */ 3709 freemsg(mp); 3710 return (NULL); 3711 } 3712 return (mp); 3713 } 3714 3715 /* 3716 * Generate an ICMP redirect message. 3717 */ 3718 static void 3719 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway) 3720 { 3721 icmph_t icmph; 3722 3723 /* 3724 * We are called from ip_rput where we could 3725 * not have attached an IPSEC_IN. 3726 */ 3727 ASSERT(mp->b_datap->db_type == M_DATA); 3728 3729 if (!(mp = icmp_pkt_err_ok(mp))) { 3730 return; 3731 } 3732 3733 bzero(&icmph, sizeof (icmph_t)); 3734 icmph.icmph_type = ICMP_REDIRECT; 3735 icmph.icmph_code = 1; 3736 icmph.icmph_rd_gateway = gateway; 3737 BUMP_MIB(&icmp_mib, icmpOutRedirects); 3738 /* Redirects sent by router, and router is global zone */ 3739 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID); 3740 } 3741 3742 /* 3743 * Generate an ICMP time exceeded message. 3744 */ 3745 void 3746 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid) 3747 { 3748 icmph_t icmph; 3749 boolean_t mctl_present; 3750 mblk_t *first_mp; 3751 3752 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3753 3754 if (!(mp = icmp_pkt_err_ok(mp))) { 3755 if (mctl_present) 3756 freeb(first_mp); 3757 return; 3758 } 3759 3760 bzero(&icmph, sizeof (icmph_t)); 3761 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3762 icmph.icmph_code = code; 3763 BUMP_MIB(&icmp_mib, icmpOutTimeExcds); 3764 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 3765 } 3766 3767 /* 3768 * Generate an ICMP unreachable message. 3769 */ 3770 void 3771 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid) 3772 { 3773 icmph_t icmph; 3774 mblk_t *first_mp; 3775 boolean_t mctl_present; 3776 3777 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3778 3779 if (!(mp = icmp_pkt_err_ok(mp))) { 3780 if (mctl_present) 3781 freeb(first_mp); 3782 return; 3783 } 3784 3785 bzero(&icmph, sizeof (icmph_t)); 3786 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3787 icmph.icmph_code = code; 3788 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 3789 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3790 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3791 zoneid); 3792 } 3793 3794 /* 3795 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3796 * duplicate. As long as someone else holds the address, the interface will 3797 * stay down. When that conflict goes away, the interface is brought back up. 3798 * This is done so that accidental shutdowns of addresses aren't made 3799 * permanent. Your server will recover from a failure. 3800 * 3801 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3802 * user space process (dhcpagent). 3803 * 3804 * Recovery completes if ARP reports that the address is now ours (via 3805 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3806 * 3807 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3808 */ 3809 static void 3810 ipif_dup_recovery(void *arg) 3811 { 3812 ipif_t *ipif = arg; 3813 ill_t *ill = ipif->ipif_ill; 3814 mblk_t *arp_add_mp; 3815 mblk_t *arp_del_mp; 3816 area_t *area; 3817 3818 ipif->ipif_recovery_id = 0; 3819 3820 /* 3821 * No lock needed for moving or condemned check, as this is just an 3822 * optimization. 3823 */ 3824 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3825 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3826 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3827 /* No reason to try to bring this address back. */ 3828 return; 3829 } 3830 3831 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3832 goto alloc_fail; 3833 3834 if (ipif->ipif_arp_del_mp == NULL) { 3835 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3836 goto alloc_fail; 3837 ipif->ipif_arp_del_mp = arp_del_mp; 3838 } 3839 3840 /* Setting the 'unverified' flag restarts DAD */ 3841 area = (area_t *)arp_add_mp->b_rptr; 3842 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3843 ACE_F_UNVERIFIED; 3844 putnext(ill->ill_rq, arp_add_mp); 3845 return; 3846 3847 alloc_fail: 3848 /* 3849 * On allocation failure, just restart the timer. Note that the ipif 3850 * is down here, so no other thread could be trying to start a recovery 3851 * timer. The ill_lock protects the condemned flag and the recovery 3852 * timer ID. 3853 */ 3854 freemsg(arp_add_mp); 3855 mutex_enter(&ill->ill_lock); 3856 if (ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3857 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3858 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3859 MSEC_TO_TICK(ip_dup_recovery)); 3860 } 3861 mutex_exit(&ill->ill_lock); 3862 } 3863 3864 /* 3865 * This is for exclusive changes due to ARP. Either tear down an interface due 3866 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3867 */ 3868 /* ARGSUSED */ 3869 static void 3870 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3871 { 3872 ill_t *ill = rq->q_ptr; 3873 arh_t *arh; 3874 ipaddr_t src; 3875 ipif_t *ipif; 3876 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3877 char hbuf[MAC_STR_LEN]; 3878 char sbuf[INET_ADDRSTRLEN]; 3879 const char *failtype; 3880 boolean_t bring_up; 3881 3882 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3883 case AR_CN_READY: 3884 failtype = NULL; 3885 bring_up = B_TRUE; 3886 break; 3887 case AR_CN_FAILED: 3888 failtype = "in use"; 3889 bring_up = B_FALSE; 3890 break; 3891 default: 3892 failtype = "claimed"; 3893 bring_up = B_FALSE; 3894 break; 3895 } 3896 3897 arh = (arh_t *)mp->b_cont->b_rptr; 3898 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3899 3900 /* Handle failures due to probes */ 3901 if (src == 0) { 3902 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3903 IP_ADDR_LEN); 3904 } 3905 3906 (void) strlcpy(ibuf, ill->ill_name, sizeof (ibuf)); 3907 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3908 sizeof (hbuf)); 3909 (void) ip_dot_addr(src, sbuf); 3910 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3911 3912 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3913 ipif->ipif_lcl_addr != src) { 3914 continue; 3915 } 3916 3917 /* 3918 * If we failed on a recovery probe, then restart the timer to 3919 * try again later. 3920 */ 3921 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3922 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3923 ill->ill_net_type == IRE_IF_RESOLVER && 3924 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3925 ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0) { 3926 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3927 ipif, MSEC_TO_TICK(ip_dup_recovery)); 3928 continue; 3929 } 3930 3931 /* 3932 * If what we're trying to do has already been done, then do 3933 * nothing. 3934 */ 3935 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3936 continue; 3937 3938 if (ipif->ipif_id != 0) { 3939 (void) snprintf(ibuf + ill->ill_name_length - 1, 3940 sizeof (ibuf) - ill->ill_name_length + 1, ":%d", 3941 ipif->ipif_id); 3942 } 3943 if (failtype == NULL) { 3944 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3945 ibuf); 3946 } else { 3947 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3948 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3949 } 3950 3951 if (bring_up) { 3952 ASSERT(ill->ill_dl_up); 3953 /* 3954 * Free up the ARP delete message so we can allocate 3955 * a fresh one through the normal path. 3956 */ 3957 freemsg(ipif->ipif_arp_del_mp); 3958 ipif->ipif_arp_del_mp = NULL; 3959 if (ipif_resolver_up(ipif, Res_act_initial) != 3960 EINPROGRESS) { 3961 ipif->ipif_addr_ready = 1; 3962 (void) ipif_up_done(ipif); 3963 } 3964 continue; 3965 } 3966 3967 mutex_enter(&ill->ill_lock); 3968 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3969 ipif->ipif_flags |= IPIF_DUPLICATE; 3970 ill->ill_ipif_dup_count++; 3971 mutex_exit(&ill->ill_lock); 3972 /* 3973 * Already exclusive on the ill; no need to handle deferred 3974 * processing here. 3975 */ 3976 (void) ipif_down(ipif, NULL, NULL); 3977 ipif_down_tail(ipif); 3978 mutex_enter(&ill->ill_lock); 3979 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3980 ill->ill_net_type == IRE_IF_RESOLVER && 3981 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3982 ip_dup_recovery > 0) { 3983 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3984 ipif, MSEC_TO_TICK(ip_dup_recovery)); 3985 } 3986 mutex_exit(&ill->ill_lock); 3987 } 3988 freemsg(mp); 3989 } 3990 3991 /* ARGSUSED */ 3992 static void 3993 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3994 { 3995 ill_t *ill = rq->q_ptr; 3996 arh_t *arh; 3997 ipaddr_t src; 3998 ipif_t *ipif; 3999 4000 arh = (arh_t *)mp->b_cont->b_rptr; 4001 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 4002 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4003 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 4004 (void) ipif_resolver_up(ipif, Res_act_defend); 4005 } 4006 freemsg(mp); 4007 } 4008 4009 /* 4010 * News from ARP. ARP sends notification of interesting events down 4011 * to its clients using M_CTL messages with the interesting ARP packet 4012 * attached via b_cont. 4013 * The interesting event from a device comes up the corresponding ARP-IP-DEV 4014 * queue as opposed to ARP sending the message to all the clients, i.e. all 4015 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 4016 * table if a cache IRE is found to delete all the entries for the address in 4017 * the packet. 4018 */ 4019 static void 4020 ip_arp_news(queue_t *q, mblk_t *mp) 4021 { 4022 arcn_t *arcn; 4023 arh_t *arh; 4024 ire_t *ire = NULL; 4025 char hbuf[MAC_STR_LEN]; 4026 char sbuf[INET_ADDRSTRLEN]; 4027 ipaddr_t src; 4028 in6_addr_t v6src; 4029 boolean_t isv6 = B_FALSE; 4030 ipif_t *ipif; 4031 ill_t *ill; 4032 4033 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 4034 if (q->q_next) { 4035 putnext(q, mp); 4036 } else 4037 freemsg(mp); 4038 return; 4039 } 4040 arh = (arh_t *)mp->b_cont->b_rptr; 4041 /* Is it one we are interested in? */ 4042 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 4043 isv6 = B_TRUE; 4044 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 4045 IPV6_ADDR_LEN); 4046 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 4047 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 4048 IP_ADDR_LEN); 4049 } else { 4050 freemsg(mp); 4051 return; 4052 } 4053 4054 ill = q->q_ptr; 4055 4056 arcn = (arcn_t *)mp->b_rptr; 4057 switch (arcn->arcn_code) { 4058 case AR_CN_BOGON: 4059 /* 4060 * Someone is sending ARP packets with a source protocol 4061 * address that we have published and for which we believe our 4062 * entry is authoritative and (when ill_arp_extend is set) 4063 * verified to be unique on the network. 4064 * 4065 * The ARP module internally handles the cases where the sender 4066 * is just probing (for DAD) and where the hardware address of 4067 * a non-authoritative entry has changed. Thus, these are the 4068 * real conflicts, and we have to do resolution. 4069 * 4070 * We back away quickly from the address if it's from DHCP or 4071 * otherwise temporary and hasn't been used recently (or at 4072 * all). We'd like to include "deprecated" addresses here as 4073 * well (as there's no real reason to defend something we're 4074 * discarding), but IPMP "reuses" this flag to mean something 4075 * other than the standard meaning. 4076 * 4077 * If the ARP module above is not extended (meaning that it 4078 * doesn't know how to defend the address), then we just log 4079 * the problem as we always did and continue on. It's not 4080 * right, but there's little else we can do, and those old ATM 4081 * users are going away anyway. 4082 */ 4083 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 4084 hbuf, sizeof (hbuf)); 4085 (void) ip_dot_addr(src, sbuf); 4086 if (isv6) 4087 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL); 4088 else 4089 ire = ire_cache_lookup(src, ALL_ZONES, NULL); 4090 4091 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4092 uint32_t now; 4093 uint32_t maxage; 4094 clock_t lused; 4095 uint_t maxdefense; 4096 uint_t defs; 4097 4098 /* 4099 * First, figure out if this address hasn't been used 4100 * in a while. If it hasn't, then it's a better 4101 * candidate for abandoning. 4102 */ 4103 ipif = ire->ire_ipif; 4104 ASSERT(ipif != NULL); 4105 now = gethrestime_sec(); 4106 maxage = now - ire->ire_create_time; 4107 if (maxage > ip_max_temp_idle) 4108 maxage = ip_max_temp_idle; 4109 lused = drv_hztousec(ddi_get_lbolt() - 4110 ire->ire_last_used_time) / MICROSEC + 1; 4111 if (lused >= maxage && (ipif->ipif_flags & 4112 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4113 maxdefense = ip_max_temp_defend; 4114 else 4115 maxdefense = ip_max_defend; 4116 4117 /* 4118 * Now figure out how many times we've defended 4119 * ourselves. Ignore defenses that happened long in 4120 * the past. 4121 */ 4122 mutex_enter(&ire->ire_lock); 4123 if ((defs = ire->ire_defense_count) > 0 && 4124 now - ire->ire_defense_time > ip_defend_interval) { 4125 ire->ire_defense_count = defs = 0; 4126 } 4127 ire->ire_defense_count++; 4128 ire->ire_defense_time = now; 4129 mutex_exit(&ire->ire_lock); 4130 ill_refhold(ill); 4131 ire_refrele(ire); 4132 4133 /* 4134 * If we've defended ourselves too many times already, 4135 * then give up and tear down the interface(s) using 4136 * this address. Otherwise, defend by sending out a 4137 * gratuitous ARP. 4138 */ 4139 if (defs >= maxdefense && ill->ill_arp_extend) { 4140 (void) qwriter_ip(NULL, ill, q, mp, 4141 ip_arp_excl, CUR_OP, B_FALSE); 4142 } else { 4143 cmn_err(CE_WARN, 4144 "node %s is using our IP address %s on %s", 4145 hbuf, sbuf, ill->ill_name); 4146 /* 4147 * If this is an old (ATM) ARP module, then 4148 * don't try to defend the address. Remain 4149 * compatible with the old behavior. Defend 4150 * only with new ARP. 4151 */ 4152 if (ill->ill_arp_extend) { 4153 (void) qwriter_ip(NULL, ill, q, mp, 4154 ip_arp_defend, CUR_OP, B_FALSE); 4155 } else { 4156 ill_refrele(ill); 4157 } 4158 } 4159 return; 4160 } 4161 cmn_err(CE_WARN, 4162 "proxy ARP problem? Node '%s' is using %s on %s", 4163 hbuf, sbuf, ill->ill_name); 4164 if (ire != NULL) 4165 ire_refrele(ire); 4166 break; 4167 case AR_CN_ANNOUNCE: 4168 if (isv6) { 4169 /* 4170 * For XRESOLV interfaces. 4171 * Delete the IRE cache entry and NCE for this 4172 * v6 address 4173 */ 4174 ip_ire_clookup_and_delete_v6(&v6src); 4175 /* 4176 * If v6src is a non-zero, it's a router address 4177 * as below. Do the same sort of thing to clean 4178 * out off-net IRE_CACHE entries that go through 4179 * the router. 4180 */ 4181 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4182 ire_walk_v6(ire_delete_cache_gw_v6, 4183 (char *)&v6src, ALL_ZONES); 4184 } 4185 } else { 4186 nce_hw_map_t hwm; 4187 4188 /* 4189 * ARP gives us a copy of any packet where it thinks 4190 * the address has changed, so that we can update our 4191 * caches. We're responsible for caching known answers 4192 * in the current design. We check whether the 4193 * hardware address really has changed in all of our 4194 * entries that have cached this mapping, and if so, we 4195 * blow them away. This way we will immediately pick 4196 * up the rare case of a host changing hardware 4197 * address. 4198 */ 4199 if (src == 0) 4200 break; 4201 hwm.hwm_addr = src; 4202 hwm.hwm_hwlen = arh->arh_hlen; 4203 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4204 ndp_walk_common(&ndp4, NULL, 4205 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4206 } 4207 break; 4208 case AR_CN_READY: 4209 /* No external v6 resolver has a contract to use this */ 4210 if (isv6) 4211 break; 4212 /* If the link is down, we'll retry this later */ 4213 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4214 break; 4215 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4216 NULL, NULL); 4217 if (ipif != NULL) { 4218 /* 4219 * If this is a duplicate recovery, then we now need to 4220 * go exclusive to bring this thing back up. 4221 */ 4222 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4223 IPIF_DUPLICATE) { 4224 ipif_refrele(ipif); 4225 ill_refhold(ill); 4226 (void) qwriter_ip(NULL, ill, q, mp, 4227 ip_arp_excl, CUR_OP, B_FALSE); 4228 return; 4229 } 4230 /* 4231 * If this is the first notice that this address is 4232 * ready, then let the user know now. 4233 */ 4234 if ((ipif->ipif_flags & IPIF_UP) && 4235 !ipif->ipif_addr_ready) { 4236 ipif_mask_reply(ipif); 4237 ip_rts_ifmsg(ipif); 4238 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4239 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4240 } 4241 ipif->ipif_addr_ready = 1; 4242 ipif_refrele(ipif); 4243 } 4244 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp)); 4245 if (ire != NULL) { 4246 ire->ire_defense_count = 0; 4247 ire_refrele(ire); 4248 } 4249 break; 4250 case AR_CN_FAILED: 4251 /* No external v6 resolver has a contract to use this */ 4252 if (isv6) 4253 break; 4254 ill_refhold(ill); 4255 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_excl, CUR_OP, 4256 B_FALSE); 4257 return; 4258 } 4259 freemsg(mp); 4260 } 4261 4262 /* 4263 * Create a mblk suitable for carrying the interface index and/or source link 4264 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4265 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4266 * application. 4267 */ 4268 mblk_t * 4269 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid) 4270 { 4271 mblk_t *mp; 4272 ip_pktinfo_t *pinfo; 4273 ipha_t *ipha; 4274 struct ether_header *pether; 4275 4276 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4277 if (mp == NULL) { 4278 ip1dbg(("ip_add_info: allocation failure.\n")); 4279 return (data_mp); 4280 } 4281 4282 ipha = (ipha_t *)data_mp->b_rptr; 4283 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4284 bzero(pinfo, sizeof (ip_pktinfo_t)); 4285 pinfo->ip_pkt_flags = (uchar_t)flags; 4286 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4287 4288 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4289 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4290 if (flags & IPF_RECVADDR) { 4291 ipif_t *ipif; 4292 ire_t *ire; 4293 4294 /* 4295 * Only valid for V4 4296 */ 4297 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4298 (IPV4_VERSION << 4)); 4299 4300 ipif = ipif_get_next_ipif(NULL, ill); 4301 if (ipif != NULL) { 4302 /* 4303 * Since a decision has already been made to deliver the 4304 * packet, there is no need to test for SECATTR and 4305 * ZONEONLY. 4306 */ 4307 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 0, ipif, 4308 zoneid, NULL, MATCH_IRE_ILL_GROUP); 4309 if (ire == NULL) { 4310 /* 4311 * packet must have come on a different 4312 * interface. 4313 * Since a decision has already been made to 4314 * deliver the packet, there is no need to test 4315 * for SECATTR and ZONEONLY. 4316 */ 4317 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 0, 4318 ipif, zoneid, NULL, NULL); 4319 } 4320 4321 if (ire == NULL) { 4322 /* 4323 * This is either a multicast packet or 4324 * the address has been removed since 4325 * the packet was received. 4326 * Return INADDR_ANY so that normal source 4327 * selection occurs for the response. 4328 */ 4329 4330 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4331 } else { 4332 ASSERT(ire->ire_type != IRE_CACHE); 4333 pinfo->ip_pkt_match_addr.s_addr = 4334 ire->ire_src_addr; 4335 ire_refrele(ire); 4336 } 4337 ipif_refrele(ipif); 4338 } else { 4339 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4340 } 4341 } 4342 4343 pether = (struct ether_header *)((char *)ipha 4344 - sizeof (struct ether_header)); 4345 /* 4346 * Make sure the interface is an ethernet type, since this option 4347 * is currently supported only on this type of interface. Also make 4348 * sure we are pointing correctly above db_base. 4349 */ 4350 4351 if ((flags & IPF_RECVSLLA) && 4352 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4353 (ill->ill_type == IFT_ETHER) && 4354 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4355 4356 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4357 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4358 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4359 } else { 4360 /* 4361 * Clear the bit. Indicate to upper layer that IP is not 4362 * sending this ancillary info. 4363 */ 4364 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4365 } 4366 4367 mp->b_datap->db_type = M_CTL; 4368 mp->b_wptr += sizeof (ip_pktinfo_t); 4369 mp->b_cont = data_mp; 4370 4371 return (mp); 4372 } 4373 4374 /* 4375 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4376 * part of the bind request. 4377 */ 4378 4379 boolean_t 4380 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4381 { 4382 ipsec_in_t *ii; 4383 4384 ASSERT(policy_mp != NULL); 4385 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4386 4387 ii = (ipsec_in_t *)policy_mp->b_rptr; 4388 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4389 4390 connp->conn_policy = ii->ipsec_in_policy; 4391 ii->ipsec_in_policy = NULL; 4392 4393 if (ii->ipsec_in_action != NULL) { 4394 if (connp->conn_latch == NULL) { 4395 connp->conn_latch = iplatch_create(); 4396 if (connp->conn_latch == NULL) 4397 return (B_FALSE); 4398 } 4399 ipsec_latch_inbound(connp->conn_latch, ii); 4400 } 4401 return (B_TRUE); 4402 } 4403 4404 /* 4405 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4406 * and to arrange for power-fanout assist. The ULP is identified by 4407 * adding a single byte at the end of the original bind message. 4408 * A ULP other than UDP or TCP that wishes to be recognized passes 4409 * down a bind with a zero length address. 4410 * 4411 * The binding works as follows: 4412 * - A zero byte address means just bind to the protocol. 4413 * - A four byte address is treated as a request to validate 4414 * that the address is a valid local address, appropriate for 4415 * an application to bind to. This does not affect any fanout 4416 * information in IP. 4417 * - A sizeof sin_t byte address is used to bind to only the local address 4418 * and port. 4419 * - A sizeof ipa_conn_t byte address contains complete fanout information 4420 * consisting of local and remote addresses and ports. In 4421 * this case, the addresses are both validated as appropriate 4422 * for this operation, and, if so, the information is retained 4423 * for use in the inbound fanout. 4424 * 4425 * The ULP (except in the zero-length bind) can append an 4426 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4427 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4428 * a copy of the source or destination IRE (source for local bind; 4429 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4430 * policy information contained should be copied on to the conn. 4431 * 4432 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4433 */ 4434 mblk_t * 4435 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4436 { 4437 ssize_t len; 4438 struct T_bind_req *tbr; 4439 sin_t *sin; 4440 ipa_conn_t *ac; 4441 uchar_t *ucp; 4442 mblk_t *mp1; 4443 boolean_t ire_requested; 4444 boolean_t ipsec_policy_set = B_FALSE; 4445 int error = 0; 4446 int protocol; 4447 ipa_conn_x_t *acx; 4448 4449 ASSERT(!connp->conn_af_isv6); 4450 connp->conn_pkt_isv6 = B_FALSE; 4451 4452 len = MBLKL(mp); 4453 if (len < (sizeof (*tbr) + 1)) { 4454 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4455 "ip_bind: bogus msg, len %ld", len); 4456 /* XXX: Need to return something better */ 4457 goto bad_addr; 4458 } 4459 /* Back up and extract the protocol identifier. */ 4460 mp->b_wptr--; 4461 protocol = *mp->b_wptr & 0xFF; 4462 tbr = (struct T_bind_req *)mp->b_rptr; 4463 /* Reset the message type in preparation for shipping it back. */ 4464 DB_TYPE(mp) = M_PCPROTO; 4465 4466 connp->conn_ulp = (uint8_t)protocol; 4467 4468 /* 4469 * Check for a zero length address. This is from a protocol that 4470 * wants to register to receive all packets of its type. 4471 */ 4472 if (tbr->ADDR_length == 0) { 4473 /* 4474 * These protocols are now intercepted in ip_bind_v6(). 4475 * Reject protocol-level binds here for now. 4476 * 4477 * For SCTP raw socket, ICMP sends down a bind with sin_t 4478 * so that the protocol type cannot be SCTP. 4479 */ 4480 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4481 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4482 goto bad_addr; 4483 } 4484 4485 /* 4486 * 4487 * The udp module never sends down a zero-length address, 4488 * and allowing this on a labeled system will break MLP 4489 * functionality. 4490 */ 4491 if (is_system_labeled() && protocol == IPPROTO_UDP) 4492 goto bad_addr; 4493 4494 if (connp->conn_mac_exempt) 4495 goto bad_addr; 4496 4497 /* No hash here really. The table is big enough. */ 4498 connp->conn_srcv6 = ipv6_all_zeros; 4499 4500 ipcl_proto_insert(connp, protocol); 4501 4502 tbr->PRIM_type = T_BIND_ACK; 4503 return (mp); 4504 } 4505 4506 /* Extract the address pointer from the message. */ 4507 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4508 tbr->ADDR_length); 4509 if (ucp == NULL) { 4510 ip1dbg(("ip_bind: no address\n")); 4511 goto bad_addr; 4512 } 4513 if (!OK_32PTR(ucp)) { 4514 ip1dbg(("ip_bind: unaligned address\n")); 4515 goto bad_addr; 4516 } 4517 /* 4518 * Check for trailing mps. 4519 */ 4520 4521 mp1 = mp->b_cont; 4522 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4523 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4524 4525 switch (tbr->ADDR_length) { 4526 default: 4527 ip1dbg(("ip_bind: bad address length %d\n", 4528 (int)tbr->ADDR_length)); 4529 goto bad_addr; 4530 4531 case IP_ADDR_LEN: 4532 /* Verification of local address only */ 4533 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4534 ire_requested, ipsec_policy_set, B_FALSE); 4535 break; 4536 4537 case sizeof (sin_t): 4538 sin = (sin_t *)ucp; 4539 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4540 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4541 break; 4542 4543 case sizeof (ipa_conn_t): 4544 ac = (ipa_conn_t *)ucp; 4545 /* For raw socket, the local port is not set. */ 4546 if (ac->ac_lport == 0) 4547 ac->ac_lport = connp->conn_lport; 4548 /* Always verify destination reachability. */ 4549 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4550 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4551 ipsec_policy_set, B_TRUE, B_TRUE); 4552 break; 4553 4554 case sizeof (ipa_conn_x_t): 4555 acx = (ipa_conn_x_t *)ucp; 4556 /* 4557 * Whether or not to verify destination reachability depends 4558 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4559 */ 4560 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4561 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4562 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4563 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4564 break; 4565 } 4566 if (error == EINPROGRESS) 4567 return (NULL); 4568 else if (error != 0) 4569 goto bad_addr; 4570 /* 4571 * Pass the IPSEC headers size in ire_ipsec_overhead. 4572 * We can't do this in ip_bind_insert_ire because the policy 4573 * may not have been inherited at that point in time and hence 4574 * conn_out_enforce_policy may not be set. 4575 */ 4576 mp1 = mp->b_cont; 4577 if (ire_requested && connp->conn_out_enforce_policy && 4578 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4579 ire_t *ire = (ire_t *)mp1->b_rptr; 4580 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4581 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4582 } 4583 4584 /* Send it home. */ 4585 mp->b_datap->db_type = M_PCPROTO; 4586 tbr->PRIM_type = T_BIND_ACK; 4587 return (mp); 4588 4589 bad_addr: 4590 /* 4591 * If error = -1 then we generate a TBADADDR - otherwise error is 4592 * a unix errno. 4593 */ 4594 if (error > 0) 4595 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4596 else 4597 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4598 return (mp); 4599 } 4600 4601 /* 4602 * Here address is verified to be a valid local address. 4603 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4604 * address is also considered a valid local address. 4605 * In the case of a broadcast/multicast address, however, the 4606 * upper protocol is expected to reset the src address 4607 * to 0 if it sees a IRE_BROADCAST type returned so that 4608 * no packets are emitted with broadcast/multicast address as 4609 * source address (that violates hosts requirements RFC1122) 4610 * The addresses valid for bind are: 4611 * (1) - INADDR_ANY (0) 4612 * (2) - IP address of an UP interface 4613 * (3) - IP address of a DOWN interface 4614 * (4) - valid local IP broadcast addresses. In this case 4615 * the conn will only receive packets destined to 4616 * the specified broadcast address. 4617 * (5) - a multicast address. In this case 4618 * the conn will only receive packets destined to 4619 * the specified multicast address. Note: the 4620 * application still has to issue an 4621 * IP_ADD_MEMBERSHIP socket option. 4622 * 4623 * On error, return -1 for TBADADDR otherwise pass the 4624 * errno with TSYSERR reply. 4625 * 4626 * In all the above cases, the bound address must be valid in the current zone. 4627 * When the address is loopback, multicast or broadcast, there might be many 4628 * matching IREs so bind has to look up based on the zone. 4629 * 4630 * Note: lport is in network byte order. 4631 */ 4632 int 4633 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4634 boolean_t ire_requested, boolean_t ipsec_policy_set, 4635 boolean_t fanout_insert) 4636 { 4637 int error = 0; 4638 ire_t *src_ire; 4639 mblk_t *policy_mp; 4640 ipif_t *ipif; 4641 zoneid_t zoneid; 4642 4643 if (ipsec_policy_set) { 4644 policy_mp = mp->b_cont; 4645 } 4646 4647 /* 4648 * If it was previously connected, conn_fully_bound would have 4649 * been set. 4650 */ 4651 connp->conn_fully_bound = B_FALSE; 4652 4653 src_ire = NULL; 4654 ipif = NULL; 4655 4656 zoneid = IPCL_ZONEID(connp); 4657 4658 if (src_addr) { 4659 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4660 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 4661 /* 4662 * If an address other than 0.0.0.0 is requested, 4663 * we verify that it is a valid address for bind 4664 * Note: Following code is in if-else-if form for 4665 * readability compared to a condition check. 4666 */ 4667 /* LINTED - statement has no consequent */ 4668 if (IRE_IS_LOCAL(src_ire)) { 4669 /* 4670 * (2) Bind to address of local UP interface 4671 */ 4672 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4673 /* 4674 * (4) Bind to broadcast address 4675 * Note: permitted only from transports that 4676 * request IRE 4677 */ 4678 if (!ire_requested) 4679 error = EADDRNOTAVAIL; 4680 } else { 4681 /* 4682 * (3) Bind to address of local DOWN interface 4683 * (ipif_lookup_addr() looks up all interfaces 4684 * but we do not get here for UP interfaces 4685 * - case (2) above) 4686 * We put the protocol byte back into the mblk 4687 * since we may come back via ip_wput_nondata() 4688 * later with this mblk if ipif_lookup_addr chooses 4689 * to defer processing. 4690 */ 4691 *mp->b_wptr++ = (char)connp->conn_ulp; 4692 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4693 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4694 &error)) != NULL) { 4695 ipif_refrele(ipif); 4696 } else if (error == EINPROGRESS) { 4697 if (src_ire != NULL) 4698 ire_refrele(src_ire); 4699 return (EINPROGRESS); 4700 } else if (CLASSD(src_addr)) { 4701 error = 0; 4702 if (src_ire != NULL) 4703 ire_refrele(src_ire); 4704 /* 4705 * (5) bind to multicast address. 4706 * Fake out the IRE returned to upper 4707 * layer to be a broadcast IRE. 4708 */ 4709 src_ire = ire_ctable_lookup( 4710 INADDR_BROADCAST, INADDR_ANY, 4711 IRE_BROADCAST, NULL, zoneid, NULL, 4712 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY)); 4713 if (src_ire == NULL || !ire_requested) 4714 error = EADDRNOTAVAIL; 4715 } else { 4716 /* 4717 * Not a valid address for bind 4718 */ 4719 error = EADDRNOTAVAIL; 4720 } 4721 /* 4722 * Just to keep it consistent with the processing in 4723 * ip_bind_v4() 4724 */ 4725 mp->b_wptr--; 4726 } 4727 if (error) { 4728 /* Red Alert! Attempting to be a bogon! */ 4729 ip1dbg(("ip_bind: bad src address 0x%x\n", 4730 ntohl(src_addr))); 4731 goto bad_addr; 4732 } 4733 } 4734 4735 /* 4736 * Allow setting new policies. For example, disconnects come 4737 * down as ipa_t bind. As we would have set conn_policy_cached 4738 * to B_TRUE before, we should set it to B_FALSE, so that policy 4739 * can change after the disconnect. 4740 */ 4741 connp->conn_policy_cached = B_FALSE; 4742 4743 /* 4744 * If not fanout_insert this was just an address verification 4745 */ 4746 if (fanout_insert) { 4747 /* 4748 * The addresses have been verified. Time to insert in 4749 * the correct fanout list. 4750 */ 4751 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4752 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4753 connp->conn_lport = lport; 4754 connp->conn_fport = 0; 4755 /* 4756 * Do we need to add a check to reject Multicast packets 4757 * 4758 * We need to make sure that the conn_recv is set to a non-null 4759 * value before we insert the conn into the classifier table. 4760 * This is to avoid a race with an incoming packet which does an 4761 * ipcl_classify(). 4762 */ 4763 if (*mp->b_wptr == IPPROTO_TCP) 4764 connp->conn_recv = tcp_conn_request; 4765 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4766 } 4767 4768 if (error == 0) { 4769 if (ire_requested) { 4770 if (!ip_bind_insert_ire(mp, src_ire, NULL)) { 4771 error = -1; 4772 /* Falls through to bad_addr */ 4773 } 4774 } else if (ipsec_policy_set) { 4775 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4776 error = -1; 4777 /* Falls through to bad_addr */ 4778 } 4779 } 4780 } else if (connp->conn_ulp == IPPROTO_TCP) { 4781 connp->conn_recv = tcp_input; 4782 } 4783 bad_addr: 4784 if (error != 0) { 4785 if (connp->conn_anon_port) { 4786 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4787 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4788 B_FALSE); 4789 } 4790 connp->conn_mlp_type = mlptSingle; 4791 } 4792 if (src_ire != NULL) 4793 IRE_REFRELE(src_ire); 4794 if (ipsec_policy_set) { 4795 ASSERT(policy_mp == mp->b_cont); 4796 ASSERT(policy_mp != NULL); 4797 freeb(policy_mp); 4798 /* 4799 * As of now assume that nothing else accompanies 4800 * IPSEC_POLICY_SET. 4801 */ 4802 mp->b_cont = NULL; 4803 } 4804 return (error); 4805 } 4806 4807 /* 4808 * Verify that both the source and destination addresses 4809 * are valid. If verify_dst is false, then the destination address may be 4810 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4811 * destination reachability, while tunnels do not. 4812 * Note that we allow connect to broadcast and multicast 4813 * addresses when ire_requested is set. Thus the ULP 4814 * has to check for IRE_BROADCAST and multicast. 4815 * 4816 * Returns zero if ok. 4817 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4818 * (for use with TSYSERR reply). 4819 * 4820 * Note: lport and fport are in network byte order. 4821 */ 4822 int 4823 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4824 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4825 boolean_t ire_requested, boolean_t ipsec_policy_set, 4826 boolean_t fanout_insert, boolean_t verify_dst) 4827 { 4828 ire_t *src_ire; 4829 ire_t *dst_ire; 4830 int error = 0; 4831 int protocol; 4832 mblk_t *policy_mp; 4833 ire_t *sire = NULL; 4834 ire_t *md_dst_ire = NULL; 4835 ire_t *lso_dst_ire = NULL; 4836 ill_t *ill = NULL; 4837 zoneid_t zoneid; 4838 ipaddr_t src_addr = *src_addrp; 4839 4840 src_ire = dst_ire = NULL; 4841 protocol = *mp->b_wptr & 0xFF; 4842 4843 /* 4844 * If we never got a disconnect before, clear it now. 4845 */ 4846 connp->conn_fully_bound = B_FALSE; 4847 4848 if (ipsec_policy_set) { 4849 policy_mp = mp->b_cont; 4850 } 4851 4852 zoneid = IPCL_ZONEID(connp); 4853 4854 if (CLASSD(dst_addr)) { 4855 /* Pick up an IRE_BROADCAST */ 4856 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4857 NULL, zoneid, MBLK_GETLABEL(mp), 4858 (MATCH_IRE_RECURSIVE | 4859 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4860 MATCH_IRE_SECATTR)); 4861 } else { 4862 /* 4863 * If conn_dontroute is set or if conn_nexthop_set is set, 4864 * and onlink ipif is not found set ENETUNREACH error. 4865 */ 4866 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4867 ipif_t *ipif; 4868 4869 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4870 dst_addr : connp->conn_nexthop_v4, 4871 connp->conn_zoneid); 4872 if (ipif == NULL) { 4873 error = ENETUNREACH; 4874 goto bad_addr; 4875 } 4876 ipif_refrele(ipif); 4877 } 4878 4879 if (connp->conn_nexthop_set) { 4880 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4881 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4882 MATCH_IRE_SECATTR); 4883 } else { 4884 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4885 &sire, zoneid, MBLK_GETLABEL(mp), 4886 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4887 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4888 MATCH_IRE_SECATTR)); 4889 } 4890 } 4891 /* 4892 * dst_ire can't be a broadcast when not ire_requested. 4893 * We also prevent ire's with src address INADDR_ANY to 4894 * be used, which are created temporarily for 4895 * sending out packets from endpoints that have 4896 * conn_unspec_src set. If verify_dst is true, the destination must be 4897 * reachable. If verify_dst is false, the destination needn't be 4898 * reachable. 4899 * 4900 * If we match on a reject or black hole, then we've got a 4901 * local failure. May as well fail out the connect() attempt, 4902 * since it's never going to succeed. 4903 */ 4904 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4905 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4906 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4907 /* 4908 * If we're verifying destination reachability, we always want 4909 * to complain here. 4910 * 4911 * If we're not verifying destination reachability but the 4912 * destination has a route, we still want to fail on the 4913 * temporary address and broadcast address tests. 4914 */ 4915 if (verify_dst || (dst_ire != NULL)) { 4916 if (ip_debug > 2) { 4917 pr_addr_dbg("ip_bind_connected: bad connected " 4918 "dst %s\n", AF_INET, &dst_addr); 4919 } 4920 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4921 error = ENETUNREACH; 4922 else 4923 error = EHOSTUNREACH; 4924 goto bad_addr; 4925 } 4926 } 4927 4928 /* 4929 * We now know that routing will allow us to reach the destination. 4930 * Check whether Trusted Solaris policy allows communication with this 4931 * host, and pretend that the destination is unreachable if not. 4932 * 4933 * This is never a problem for TCP, since that transport is known to 4934 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4935 * handling. If the remote is unreachable, it will be detected at that 4936 * point, so there's no reason to check it here. 4937 * 4938 * Note that for sendto (and other datagram-oriented friends), this 4939 * check is done as part of the data path label computation instead. 4940 * The check here is just to make non-TCP connect() report the right 4941 * error. 4942 */ 4943 if (dst_ire != NULL && is_system_labeled() && 4944 !IPCL_IS_TCP(connp) && 4945 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4946 connp->conn_mac_exempt) != 0) { 4947 error = EHOSTUNREACH; 4948 if (ip_debug > 2) { 4949 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4950 AF_INET, &dst_addr); 4951 } 4952 goto bad_addr; 4953 } 4954 4955 /* 4956 * If the app does a connect(), it means that it will most likely 4957 * send more than 1 packet to the destination. It makes sense 4958 * to clear the temporary flag. 4959 */ 4960 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4961 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4962 irb_t *irb = dst_ire->ire_bucket; 4963 4964 rw_enter(&irb->irb_lock, RW_WRITER); 4965 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4966 irb->irb_tmp_ire_cnt--; 4967 rw_exit(&irb->irb_lock); 4968 } 4969 4970 /* 4971 * See if we should notify ULP about LSO/MDT; we do this whether or not 4972 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4973 * eligibility tests for passive connects are handled separately 4974 * through tcp_adapt_ire(). We do this before the source address 4975 * selection, because dst_ire may change after a call to 4976 * ipif_select_source(). This is a best-effort check, as the 4977 * packet for this connection may not actually go through 4978 * dst_ire->ire_stq, and the exact IRE can only be known after 4979 * calling ip_newroute(). This is why we further check on the 4980 * IRE during LSO/Multidata packet transmission in 4981 * tcp_lsosend()/tcp_multisend(). 4982 */ 4983 if (!ipsec_policy_set && dst_ire != NULL && 4984 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4985 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4986 if (ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4987 lso_dst_ire = dst_ire; 4988 IRE_REFHOLD(lso_dst_ire); 4989 } else if (ip_multidata_outbound && ILL_MDT_CAPABLE(ill)) { 4990 md_dst_ire = dst_ire; 4991 IRE_REFHOLD(md_dst_ire); 4992 } 4993 } 4994 4995 if (dst_ire != NULL && 4996 dst_ire->ire_type == IRE_LOCAL && 4997 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4998 /* 4999 * If the IRE belongs to a different zone, look for a matching 5000 * route in the forwarding table and use the source address from 5001 * that route. 5002 */ 5003 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 5004 zoneid, 0, NULL, 5005 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 5006 MATCH_IRE_RJ_BHOLE); 5007 if (src_ire == NULL) { 5008 error = EHOSTUNREACH; 5009 goto bad_addr; 5010 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 5011 if (!(src_ire->ire_type & IRE_HOST)) 5012 error = ENETUNREACH; 5013 else 5014 error = EHOSTUNREACH; 5015 goto bad_addr; 5016 } 5017 if (src_addr == INADDR_ANY) 5018 src_addr = src_ire->ire_src_addr; 5019 ire_refrele(src_ire); 5020 src_ire = NULL; 5021 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 5022 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 5023 src_addr = sire->ire_src_addr; 5024 ire_refrele(dst_ire); 5025 dst_ire = sire; 5026 sire = NULL; 5027 } else { 5028 /* 5029 * Pick a source address so that a proper inbound 5030 * load spreading would happen. 5031 */ 5032 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 5033 ipif_t *src_ipif = NULL; 5034 ire_t *ipif_ire; 5035 5036 /* 5037 * Supply a local source address such that inbound 5038 * load spreading happens. 5039 * 5040 * Determine the best source address on this ill for 5041 * the destination. 5042 * 5043 * 1) For broadcast, we should return a broadcast ire 5044 * found above so that upper layers know that the 5045 * destination address is a broadcast address. 5046 * 5047 * 2) If this is part of a group, select a better 5048 * source address so that better inbound load 5049 * balancing happens. Do the same if the ipif 5050 * is DEPRECATED. 5051 * 5052 * 3) If the outgoing interface is part of a usesrc 5053 * group, then try selecting a source address from 5054 * the usesrc ILL. 5055 */ 5056 if ((dst_ire->ire_zoneid != zoneid && 5057 dst_ire->ire_zoneid != ALL_ZONES) || 5058 (!(dst_ire->ire_type & IRE_BROADCAST) && 5059 ((dst_ill->ill_group != NULL) || 5060 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 5061 (dst_ill->ill_usesrc_ifindex != 0)))) { 5062 /* 5063 * If the destination is reachable via a 5064 * given gateway, the selected source address 5065 * should be in the same subnet as the gateway. 5066 * Otherwise, the destination is not reachable. 5067 * 5068 * If there are no interfaces on the same subnet 5069 * as the destination, ipif_select_source gives 5070 * first non-deprecated interface which might be 5071 * on a different subnet than the gateway. 5072 * This is not desirable. Hence pass the dst_ire 5073 * source address to ipif_select_source. 5074 * It is sure that the destination is reachable 5075 * with the dst_ire source address subnet. 5076 * So passing dst_ire source address to 5077 * ipif_select_source will make sure that the 5078 * selected source will be on the same subnet 5079 * as dst_ire source address. 5080 */ 5081 ipaddr_t saddr = 5082 dst_ire->ire_ipif->ipif_src_addr; 5083 src_ipif = ipif_select_source(dst_ill, 5084 saddr, zoneid); 5085 if (src_ipif != NULL) { 5086 if (IS_VNI(src_ipif->ipif_ill)) { 5087 /* 5088 * For VNI there is no 5089 * interface route 5090 */ 5091 src_addr = 5092 src_ipif->ipif_src_addr; 5093 } else { 5094 ipif_ire = 5095 ipif_to_ire(src_ipif); 5096 if (ipif_ire != NULL) { 5097 IRE_REFRELE(dst_ire); 5098 dst_ire = ipif_ire; 5099 } 5100 src_addr = 5101 dst_ire->ire_src_addr; 5102 } 5103 ipif_refrele(src_ipif); 5104 } else { 5105 src_addr = dst_ire->ire_src_addr; 5106 } 5107 } else { 5108 src_addr = dst_ire->ire_src_addr; 5109 } 5110 } 5111 } 5112 5113 /* 5114 * We do ire_route_lookup() here (and not 5115 * interface lookup as we assert that 5116 * src_addr should only come from an 5117 * UP interface for hard binding. 5118 */ 5119 ASSERT(src_ire == NULL); 5120 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5121 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 5122 /* src_ire must be a local|loopback */ 5123 if (!IRE_IS_LOCAL(src_ire)) { 5124 if (ip_debug > 2) { 5125 pr_addr_dbg("ip_bind_connected: bad connected " 5126 "src %s\n", AF_INET, &src_addr); 5127 } 5128 error = EADDRNOTAVAIL; 5129 goto bad_addr; 5130 } 5131 5132 /* 5133 * If the source address is a loopback address, the 5134 * destination had best be local or multicast. 5135 * The transports that can't handle multicast will reject 5136 * those addresses. 5137 */ 5138 if (src_ire->ire_type == IRE_LOOPBACK && 5139 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5140 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5141 error = -1; 5142 goto bad_addr; 5143 } 5144 5145 /* 5146 * Allow setting new policies. For example, disconnects come 5147 * down as ipa_t bind. As we would have set conn_policy_cached 5148 * to B_TRUE before, we should set it to B_FALSE, so that policy 5149 * can change after the disconnect. 5150 */ 5151 connp->conn_policy_cached = B_FALSE; 5152 5153 /* 5154 * Set the conn addresses/ports immediately, so the IPsec policy calls 5155 * can handle their passed-in conn's. 5156 */ 5157 5158 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5159 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5160 connp->conn_lport = lport; 5161 connp->conn_fport = fport; 5162 *src_addrp = src_addr; 5163 5164 ASSERT(!(ipsec_policy_set && ire_requested)); 5165 if (ire_requested) { 5166 iulp_t *ulp_info = NULL; 5167 5168 /* 5169 * Note that sire will not be NULL if this is an off-link 5170 * connection and there is not cache for that dest yet. 5171 * 5172 * XXX Because of an existing bug, if there are multiple 5173 * default routes, the IRE returned now may not be the actual 5174 * default route used (default routes are chosen in a 5175 * round robin fashion). So if the metrics for different 5176 * default routes are different, we may return the wrong 5177 * metrics. This will not be a problem if the existing 5178 * bug is fixed. 5179 */ 5180 if (sire != NULL) { 5181 ulp_info = &(sire->ire_uinfo); 5182 } 5183 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info)) { 5184 error = -1; 5185 goto bad_addr; 5186 } 5187 } else if (ipsec_policy_set) { 5188 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5189 error = -1; 5190 goto bad_addr; 5191 } 5192 } 5193 5194 /* 5195 * Cache IPsec policy in this conn. If we have per-socket policy, 5196 * we'll cache that. If we don't, we'll inherit global policy. 5197 * 5198 * We can't insert until the conn reflects the policy. Note that 5199 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5200 * connections where we don't have a policy. This is to prevent 5201 * global policy lookups in the inbound path. 5202 * 5203 * If we insert before we set conn_policy_cached, 5204 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5205 * because global policy cound be non-empty. We normally call 5206 * ipsec_check_policy() for conn_policy_cached connections only if 5207 * ipc_in_enforce_policy is set. But in this case, 5208 * conn_policy_cached can get set anytime since we made the 5209 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5210 * called, which will make the above assumption false. Thus, we 5211 * need to insert after we set conn_policy_cached. 5212 */ 5213 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5214 goto bad_addr; 5215 5216 if (fanout_insert) { 5217 /* 5218 * The addresses have been verified. Time to insert in 5219 * the correct fanout list. 5220 * We need to make sure that the conn_recv is set to a non-null 5221 * value before we insert into the classifier table to avoid a 5222 * race with an incoming packet which does an ipcl_classify(). 5223 */ 5224 if (protocol == IPPROTO_TCP) 5225 connp->conn_recv = tcp_input; 5226 error = ipcl_conn_insert(connp, protocol, src_addr, 5227 dst_addr, connp->conn_ports); 5228 } 5229 5230 if (error == 0) { 5231 connp->conn_fully_bound = B_TRUE; 5232 /* 5233 * Our initial checks for LSO/MDT have passed; the IRE is not 5234 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5235 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5236 * ip_xxinfo_return(), which performs further checks 5237 * against them and upon success, returns the LSO/MDT info 5238 * mblk which we will attach to the bind acknowledgment. 5239 */ 5240 if (lso_dst_ire != NULL) { 5241 mblk_t *lsoinfo_mp; 5242 5243 ASSERT(ill->ill_lso_capab != NULL); 5244 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5245 ill->ill_name, ill->ill_lso_capab)) != NULL) 5246 linkb(mp, lsoinfo_mp); 5247 } else if (md_dst_ire != NULL) { 5248 mblk_t *mdinfo_mp; 5249 5250 ASSERT(ill->ill_mdt_capab != NULL); 5251 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5252 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5253 linkb(mp, mdinfo_mp); 5254 } 5255 } 5256 bad_addr: 5257 if (ipsec_policy_set) { 5258 ASSERT(policy_mp == mp->b_cont); 5259 ASSERT(policy_mp != NULL); 5260 freeb(policy_mp); 5261 /* 5262 * As of now assume that nothing else accompanies 5263 * IPSEC_POLICY_SET. 5264 */ 5265 mp->b_cont = NULL; 5266 } 5267 if (src_ire != NULL) 5268 IRE_REFRELE(src_ire); 5269 if (dst_ire != NULL) 5270 IRE_REFRELE(dst_ire); 5271 if (sire != NULL) 5272 IRE_REFRELE(sire); 5273 if (md_dst_ire != NULL) 5274 IRE_REFRELE(md_dst_ire); 5275 if (lso_dst_ire != NULL) 5276 IRE_REFRELE(lso_dst_ire); 5277 return (error); 5278 } 5279 5280 /* 5281 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5282 * Prefers dst_ire over src_ire. 5283 */ 5284 static boolean_t 5285 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info) 5286 { 5287 mblk_t *mp1; 5288 ire_t *ret_ire = NULL; 5289 5290 mp1 = mp->b_cont; 5291 ASSERT(mp1 != NULL); 5292 5293 if (ire != NULL) { 5294 /* 5295 * mp1 initialized above to IRE_DB_REQ_TYPE 5296 * appended mblk. Its <upper protocol>'s 5297 * job to make sure there is room. 5298 */ 5299 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5300 return (0); 5301 5302 mp1->b_datap->db_type = IRE_DB_TYPE; 5303 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5304 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5305 ret_ire = (ire_t *)mp1->b_rptr; 5306 /* 5307 * Pass the latest setting of the ip_path_mtu_discovery and 5308 * copy the ulp info if any. 5309 */ 5310 ret_ire->ire_frag_flag |= (ip_path_mtu_discovery) ? 5311 IPH_DF : 0; 5312 if (ulp_info != NULL) { 5313 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5314 sizeof (iulp_t)); 5315 } 5316 ret_ire->ire_mp = mp1; 5317 } else { 5318 /* 5319 * No IRE was found. Remove IRE mblk. 5320 */ 5321 mp->b_cont = mp1->b_cont; 5322 freeb(mp1); 5323 } 5324 5325 return (1); 5326 } 5327 5328 /* 5329 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5330 * the final piece where we don't. Return a pointer to the first mblk in the 5331 * result, and update the pointer to the next mblk to chew on. If anything 5332 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5333 * NULL pointer. 5334 */ 5335 mblk_t * 5336 ip_carve_mp(mblk_t **mpp, ssize_t len) 5337 { 5338 mblk_t *mp0; 5339 mblk_t *mp1; 5340 mblk_t *mp2; 5341 5342 if (!len || !mpp || !(mp0 = *mpp)) 5343 return (NULL); 5344 /* If we aren't going to consume the first mblk, we need a dup. */ 5345 if (mp0->b_wptr - mp0->b_rptr > len) { 5346 mp1 = dupb(mp0); 5347 if (mp1) { 5348 /* Partition the data between the two mblks. */ 5349 mp1->b_wptr = mp1->b_rptr + len; 5350 mp0->b_rptr = mp1->b_wptr; 5351 /* 5352 * after adjustments if mblk not consumed is now 5353 * unaligned, try to align it. If this fails free 5354 * all messages and let upper layer recover. 5355 */ 5356 if (!OK_32PTR(mp0->b_rptr)) { 5357 if (!pullupmsg(mp0, -1)) { 5358 freemsg(mp0); 5359 freemsg(mp1); 5360 *mpp = NULL; 5361 return (NULL); 5362 } 5363 } 5364 } 5365 return (mp1); 5366 } 5367 /* Eat through as many mblks as we need to get len bytes. */ 5368 len -= mp0->b_wptr - mp0->b_rptr; 5369 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5370 if (mp2->b_wptr - mp2->b_rptr > len) { 5371 /* 5372 * We won't consume the entire last mblk. Like 5373 * above, dup and partition it. 5374 */ 5375 mp1->b_cont = dupb(mp2); 5376 mp1 = mp1->b_cont; 5377 if (!mp1) { 5378 /* 5379 * Trouble. Rather than go to a lot of 5380 * trouble to clean up, we free the messages. 5381 * This won't be any worse than losing it on 5382 * the wire. 5383 */ 5384 freemsg(mp0); 5385 freemsg(mp2); 5386 *mpp = NULL; 5387 return (NULL); 5388 } 5389 mp1->b_wptr = mp1->b_rptr + len; 5390 mp2->b_rptr = mp1->b_wptr; 5391 /* 5392 * after adjustments if mblk not consumed is now 5393 * unaligned, try to align it. If this fails free 5394 * all messages and let upper layer recover. 5395 */ 5396 if (!OK_32PTR(mp2->b_rptr)) { 5397 if (!pullupmsg(mp2, -1)) { 5398 freemsg(mp0); 5399 freemsg(mp2); 5400 *mpp = NULL; 5401 return (NULL); 5402 } 5403 } 5404 *mpp = mp2; 5405 return (mp0); 5406 } 5407 /* Decrement len by the amount we just got. */ 5408 len -= mp2->b_wptr - mp2->b_rptr; 5409 } 5410 /* 5411 * len should be reduced to zero now. If not our caller has 5412 * screwed up. 5413 */ 5414 if (len) { 5415 /* Shouldn't happen! */ 5416 freemsg(mp0); 5417 *mpp = NULL; 5418 return (NULL); 5419 } 5420 /* 5421 * We consumed up to exactly the end of an mblk. Detach the part 5422 * we are returning from the rest of the chain. 5423 */ 5424 mp1->b_cont = NULL; 5425 *mpp = mp2; 5426 return (mp0); 5427 } 5428 5429 /* The ill stream is being unplumbed. Called from ip_close */ 5430 int 5431 ip_modclose(ill_t *ill) 5432 { 5433 5434 boolean_t success; 5435 ipsq_t *ipsq; 5436 ipif_t *ipif; 5437 queue_t *q = ill->ill_rq; 5438 hook_nic_event_t *info; 5439 clock_t timeout; 5440 5441 /* 5442 * Wait for the ACKs of all deferred control messages to be processed. 5443 * In particular, we wait for a potential capability reset initiated 5444 * in ip_sioctl_plink() to complete before proceeding. 5445 * 5446 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5447 * in case the driver never replies. 5448 */ 5449 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5450 mutex_enter(&ill->ill_lock); 5451 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5452 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5453 /* Timeout */ 5454 break; 5455 } 5456 } 5457 mutex_exit(&ill->ill_lock); 5458 5459 /* 5460 * Forcibly enter the ipsq after some delay. This is to take 5461 * care of the case when some ioctl does not complete because 5462 * we sent a control message to the driver and it did not 5463 * send us a reply. We want to be able to at least unplumb 5464 * and replumb rather than force the user to reboot the system. 5465 */ 5466 success = ipsq_enter(ill, B_FALSE); 5467 5468 /* 5469 * Open/close/push/pop is guaranteed to be single threaded 5470 * per stream by STREAMS. FS guarantees that all references 5471 * from top are gone before close is called. So there can't 5472 * be another close thread that has set CONDEMNED on this ill. 5473 * and cause ipsq_enter to return failure. 5474 */ 5475 ASSERT(success); 5476 ipsq = ill->ill_phyint->phyint_ipsq; 5477 5478 /* 5479 * Mark it condemned. No new reference will be made to this ill. 5480 * Lookup functions will return an error. Threads that try to 5481 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5482 * that the refcnt will drop down to zero. 5483 */ 5484 mutex_enter(&ill->ill_lock); 5485 ill->ill_state_flags |= ILL_CONDEMNED; 5486 for (ipif = ill->ill_ipif; ipif != NULL; 5487 ipif = ipif->ipif_next) { 5488 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5489 } 5490 /* 5491 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5492 * returns error if ILL_CONDEMNED is set 5493 */ 5494 cv_broadcast(&ill->ill_cv); 5495 mutex_exit(&ill->ill_lock); 5496 5497 /* 5498 * Send all the deferred control messages downstream which came in 5499 * during the small window right before ipsq_enter(). We do this 5500 * without waiting for the ACKs because all the ACKs for M_PROTO 5501 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5502 */ 5503 ill_send_all_deferred_mp(ill); 5504 5505 /* 5506 * Shut down fragmentation reassembly. 5507 * ill_frag_timer won't start a timer again. 5508 * Now cancel any existing timer 5509 */ 5510 (void) untimeout(ill->ill_frag_timer_id); 5511 (void) ill_frag_timeout(ill, 0); 5512 5513 /* 5514 * If MOVE was in progress, clear the 5515 * move_in_progress fields also. 5516 */ 5517 if (ill->ill_move_in_progress) { 5518 ILL_CLEAR_MOVE(ill); 5519 } 5520 5521 /* 5522 * Call ill_delete to bring down the ipifs, ilms and ill on 5523 * this ill. Then wait for the refcnts to drop to zero. 5524 * ill_is_quiescent checks whether the ill is really quiescent. 5525 * Then make sure that threads that are waiting to enter the 5526 * ipsq have seen the error returned by ipsq_enter and have 5527 * gone away. Then we call ill_delete_tail which does the 5528 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff. 5529 */ 5530 ill_delete(ill); 5531 mutex_enter(&ill->ill_lock); 5532 while (!ill_is_quiescent(ill)) 5533 cv_wait(&ill->ill_cv, &ill->ill_lock); 5534 while (ill->ill_waiters) 5535 cv_wait(&ill->ill_cv, &ill->ill_lock); 5536 5537 mutex_exit(&ill->ill_lock); 5538 5539 /* qprocsoff is called in ill_delete_tail */ 5540 ill_delete_tail(ill); 5541 5542 /* 5543 * Walk through all upper (conn) streams and qenable 5544 * those that have queued data. 5545 * close synchronization needs this to 5546 * be done to ensure that all upper layers blocked 5547 * due to flow control to the closing device 5548 * get unblocked. 5549 */ 5550 ip1dbg(("ip_wsrv: walking\n")); 5551 conn_walk_drain(); 5552 5553 mutex_enter(&ip_mi_lock); 5554 mi_close_unlink(&ip_g_head, (IDP)ill); 5555 mutex_exit(&ip_mi_lock); 5556 5557 /* 5558 * credp could be null if the open didn't succeed and ip_modopen 5559 * itself calls ip_close. 5560 */ 5561 if (ill->ill_credp != NULL) 5562 crfree(ill->ill_credp); 5563 5564 /* 5565 * Unhook the nic event message from the ill and enqueue it into the nic 5566 * event taskq. 5567 */ 5568 if ((info = ill->ill_nic_event_info) != NULL) { 5569 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, 5570 (void *)info, DDI_SLEEP) == DDI_FAILURE) { 5571 ip2dbg(("ip_ioctl_finish:ddi_taskq_dispatch failed\n")); 5572 if (info->hne_data != NULL) 5573 kmem_free(info->hne_data, info->hne_datalen); 5574 kmem_free(info, sizeof (hook_nic_event_t)); 5575 } 5576 ill->ill_nic_event_info = NULL; 5577 } 5578 5579 mi_close_free((IDP)ill); 5580 q->q_ptr = WR(q)->q_ptr = NULL; 5581 5582 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5583 5584 return (0); 5585 } 5586 5587 /* 5588 * This is called as part of close() for both IP and UDP 5589 * in order to quiesce the conn. 5590 */ 5591 void 5592 ip_quiesce_conn(conn_t *connp) 5593 { 5594 boolean_t drain_cleanup_reqd = B_FALSE; 5595 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5596 boolean_t ilg_cleanup_reqd = B_FALSE; 5597 5598 ASSERT(!IPCL_IS_TCP(connp)); 5599 5600 /* 5601 * Mark the conn as closing, and this conn must not be 5602 * inserted in future into any list. Eg. conn_drain_insert(), 5603 * won't insert this conn into the conn_drain_list. 5604 * Similarly ill_pending_mp_add() will not add any mp to 5605 * the pending mp list, after this conn has started closing. 5606 * 5607 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5608 * cannot get set henceforth. 5609 */ 5610 mutex_enter(&connp->conn_lock); 5611 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5612 connp->conn_state_flags |= CONN_CLOSING; 5613 if (connp->conn_idl != NULL) 5614 drain_cleanup_reqd = B_TRUE; 5615 if (connp->conn_oper_pending_ill != NULL) 5616 conn_ioctl_cleanup_reqd = B_TRUE; 5617 if (connp->conn_ilg_inuse != 0) 5618 ilg_cleanup_reqd = B_TRUE; 5619 mutex_exit(&connp->conn_lock); 5620 5621 if (IPCL_IS_UDP(connp)) 5622 udp_quiesce_conn(connp); 5623 5624 if (conn_ioctl_cleanup_reqd) 5625 conn_ioctl_cleanup(connp); 5626 5627 if (is_system_labeled() && connp->conn_anon_port) { 5628 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5629 connp->conn_mlp_type, connp->conn_ulp, 5630 ntohs(connp->conn_lport), B_FALSE); 5631 connp->conn_anon_port = 0; 5632 } 5633 connp->conn_mlp_type = mlptSingle; 5634 5635 /* 5636 * Remove this conn from any fanout list it is on. 5637 * and then wait for any threads currently operating 5638 * on this endpoint to finish 5639 */ 5640 ipcl_hash_remove(connp); 5641 5642 /* 5643 * Remove this conn from the drain list, and do 5644 * any other cleanup that may be required. 5645 * (Only non-tcp streams may have a non-null conn_idl. 5646 * TCP streams are never flow controlled, and 5647 * conn_idl will be null) 5648 */ 5649 if (drain_cleanup_reqd) 5650 conn_drain_tail(connp, B_TRUE); 5651 5652 if (connp->conn_rq == ip_g_mrouter || connp->conn_wq == ip_g_mrouter) 5653 (void) ip_mrouter_done(NULL); 5654 5655 if (ilg_cleanup_reqd) 5656 ilg_delete_all(connp); 5657 5658 conn_delete_ire(connp, NULL); 5659 5660 /* 5661 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5662 * callers from write side can't be there now because close 5663 * is in progress. The only other caller is ipcl_walk 5664 * which checks for the condemned flag. 5665 */ 5666 mutex_enter(&connp->conn_lock); 5667 connp->conn_state_flags |= CONN_CONDEMNED; 5668 while (connp->conn_ref != 1) 5669 cv_wait(&connp->conn_cv, &connp->conn_lock); 5670 connp->conn_state_flags |= CONN_QUIESCED; 5671 mutex_exit(&connp->conn_lock); 5672 } 5673 5674 /* ARGSUSED */ 5675 int 5676 ip_close(queue_t *q, int flags) 5677 { 5678 conn_t *connp; 5679 5680 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5681 5682 /* 5683 * Call the appropriate delete routine depending on whether this is 5684 * a module or device. 5685 */ 5686 if (WR(q)->q_next != NULL) { 5687 /* This is a module close */ 5688 return (ip_modclose((ill_t *)q->q_ptr)); 5689 } 5690 5691 connp = q->q_ptr; 5692 ip_quiesce_conn(connp); 5693 5694 qprocsoff(q); 5695 5696 /* 5697 * Now we are truly single threaded on this stream, and can 5698 * delete the things hanging off the connp, and finally the connp. 5699 * We removed this connp from the fanout list, it cannot be 5700 * accessed thru the fanouts, and we already waited for the 5701 * conn_ref to drop to 0. We are already in close, so 5702 * there cannot be any other thread from the top. qprocsoff 5703 * has completed, and service has completed or won't run in 5704 * future. 5705 */ 5706 ASSERT(connp->conn_ref == 1); 5707 5708 /* 5709 * A conn which was previously marked as IPCL_UDP cannot 5710 * retain the flag because it would have been cleared by 5711 * udp_close(). 5712 */ 5713 ASSERT(!IPCL_IS_UDP(connp)); 5714 5715 if (connp->conn_latch != NULL) { 5716 IPLATCH_REFRELE(connp->conn_latch); 5717 connp->conn_latch = NULL; 5718 } 5719 if (connp->conn_policy != NULL) { 5720 IPPH_REFRELE(connp->conn_policy); 5721 connp->conn_policy = NULL; 5722 } 5723 if (connp->conn_ipsec_opt_mp != NULL) { 5724 freemsg(connp->conn_ipsec_opt_mp); 5725 connp->conn_ipsec_opt_mp = NULL; 5726 } 5727 5728 inet_minor_free(ip_minor_arena, connp->conn_dev); 5729 5730 connp->conn_ref--; 5731 ipcl_conn_destroy(connp); 5732 5733 q->q_ptr = WR(q)->q_ptr = NULL; 5734 return (0); 5735 } 5736 5737 int 5738 ip_snmpmod_close(queue_t *q) 5739 { 5740 conn_t *connp = Q_TO_CONN(q); 5741 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5742 5743 qprocsoff(q); 5744 5745 if (connp->conn_flags & IPCL_UDPMOD) 5746 udp_close_free(connp); 5747 5748 if (connp->conn_cred != NULL) { 5749 crfree(connp->conn_cred); 5750 connp->conn_cred = NULL; 5751 } 5752 CONN_DEC_REF(connp); 5753 q->q_ptr = WR(q)->q_ptr = NULL; 5754 return (0); 5755 } 5756 5757 /* 5758 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5759 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5760 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5761 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5762 * queues as we never enqueue messages there and we don't handle any ioctls. 5763 * Everything else is freed. 5764 */ 5765 void 5766 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5767 { 5768 conn_t *connp = q->q_ptr; 5769 pfi_t setfn; 5770 pfi_t getfn; 5771 5772 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5773 5774 switch (DB_TYPE(mp)) { 5775 case M_PROTO: 5776 case M_PCPROTO: 5777 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5778 ((((union T_primitives *)mp->b_rptr)->type == 5779 T_SVR4_OPTMGMT_REQ) || 5780 (((union T_primitives *)mp->b_rptr)->type == 5781 T_OPTMGMT_REQ))) { 5782 /* 5783 * This is the only TPI primitive supported. Its 5784 * handling does not require tcp_t, but it does require 5785 * conn_t to check permissions. 5786 */ 5787 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5788 5789 if (connp->conn_flags & IPCL_TCPMOD) { 5790 setfn = tcp_snmp_set; 5791 getfn = tcp_snmp_get; 5792 } else { 5793 setfn = udp_snmp_set; 5794 getfn = udp_snmp_get; 5795 } 5796 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5797 freemsg(mp); 5798 return; 5799 } 5800 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5801 != NULL) 5802 qreply(q, mp); 5803 break; 5804 case M_FLUSH: 5805 case M_IOCTL: 5806 putnext(q, mp); 5807 break; 5808 default: 5809 freemsg(mp); 5810 break; 5811 } 5812 } 5813 5814 /* Return the IP checksum for the IP header at "iph". */ 5815 uint16_t 5816 ip_csum_hdr(ipha_t *ipha) 5817 { 5818 uint16_t *uph; 5819 uint32_t sum; 5820 int opt_len; 5821 5822 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5823 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5824 uph = (uint16_t *)ipha; 5825 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5826 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5827 if (opt_len > 0) { 5828 do { 5829 sum += uph[10]; 5830 sum += uph[11]; 5831 uph += 2; 5832 } while (--opt_len); 5833 } 5834 sum = (sum & 0xFFFF) + (sum >> 16); 5835 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5836 if (sum == 0xffff) 5837 sum = 0; 5838 return ((uint16_t)sum); 5839 } 5840 5841 void 5842 ip_ddi_destroy(void) 5843 { 5844 ipv4_hook_destroy(); 5845 ipv6_hook_destroy(); 5846 ip_net_destroy(); 5847 5848 tnet_fini(); 5849 tcp_ddi_destroy(); 5850 sctp_ddi_destroy(); 5851 ipsec_loader_destroy(); 5852 ipsec_policy_destroy(); 5853 ipsec_kstat_destroy(); 5854 nd_free(&ip_g_nd); 5855 mutex_destroy(&igmp_timer_lock); 5856 mutex_destroy(&mld_timer_lock); 5857 mutex_destroy(&igmp_slowtimeout_lock); 5858 mutex_destroy(&mld_slowtimeout_lock); 5859 mutex_destroy(&ip_mi_lock); 5860 mutex_destroy(&rts_clients.connf_lock); 5861 ip_ire_fini(); 5862 ip6_asp_free(); 5863 conn_drain_fini(); 5864 ipcl_destroy(); 5865 inet_minor_destroy(ip_minor_arena); 5866 icmp_kstat_fini(); 5867 ip_kstat_fini(); 5868 rw_destroy(&ipsec_capab_ills_lock); 5869 rw_destroy(&ill_g_usesrc_lock); 5870 ip_drop_unregister(&ip_dropper); 5871 } 5872 5873 5874 void 5875 ip_ddi_init(void) 5876 { 5877 TCP6_MAJ = ddi_name_to_major(TCP6); 5878 TCP_MAJ = ddi_name_to_major(TCP); 5879 SCTP_MAJ = ddi_name_to_major(SCTP); 5880 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5881 5882 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5883 5884 /* IP's IPsec code calls the packet dropper */ 5885 ip_drop_register(&ip_dropper, "IP IPsec processing"); 5886 5887 if (!ip_g_nd) { 5888 if (!ip_param_register(lcl_param_arr, A_CNT(lcl_param_arr), 5889 lcl_ndp_arr, A_CNT(lcl_ndp_arr))) { 5890 nd_free(&ip_g_nd); 5891 } 5892 } 5893 5894 ipsec_loader_init(); 5895 ipsec_policy_init(); 5896 ipsec_kstat_init(); 5897 rw_init(&ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5898 mutex_init(&igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5899 mutex_init(&mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5900 mutex_init(&igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5901 mutex_init(&mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5902 mutex_init(&ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5903 mutex_init(&ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5904 rw_init(&ill_g_lock, NULL, RW_DEFAULT, NULL); 5905 rw_init(&ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5906 rw_init(&ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5907 5908 /* 5909 * For IP and TCP the minor numbers should start from 2 since we have 4 5910 * initial devices: ip, ip6, tcp, tcp6. 5911 */ 5912 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5913 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5914 cmn_err(CE_PANIC, 5915 "ip_ddi_init: ip_minor_arena creation failed\n"); 5916 } 5917 5918 ipcl_init(); 5919 mutex_init(&rts_clients.connf_lock, NULL, MUTEX_DEFAULT, NULL); 5920 ip_ire_init(); 5921 ip6_asp_init(); 5922 ipif_init(); 5923 conn_drain_init(); 5924 tcp_ddi_init(); 5925 sctp_ddi_init(); 5926 5927 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5928 5929 if ((ip_kstat = kstat_create("ip", 0, "ipstat", 5930 "net", KSTAT_TYPE_NAMED, 5931 sizeof (ip_statistics) / sizeof (kstat_named_t), 5932 KSTAT_FLAG_VIRTUAL)) != NULL) { 5933 ip_kstat->ks_data = &ip_statistics; 5934 kstat_install(ip_kstat); 5935 } 5936 ip_kstat_init(); 5937 ip6_kstat_init(); 5938 icmp_kstat_init(); 5939 ipsec_loader_start(); 5940 tnet_init(); 5941 5942 ip_net_init(); 5943 ipv4_hook_init(); 5944 ipv6_hook_init(); 5945 } 5946 5947 /* 5948 * Allocate and initialize a DLPI template of the specified length. (May be 5949 * called as writer.) 5950 */ 5951 mblk_t * 5952 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 5953 { 5954 mblk_t *mp; 5955 5956 mp = allocb(len, BPRI_MED); 5957 if (!mp) 5958 return (NULL); 5959 5960 /* 5961 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 5962 * of which we don't seem to use) are sent with M_PCPROTO, and 5963 * that other DLPI are M_PROTO. 5964 */ 5965 if (prim == DL_INFO_REQ) { 5966 mp->b_datap->db_type = M_PCPROTO; 5967 } else { 5968 mp->b_datap->db_type = M_PROTO; 5969 } 5970 5971 mp->b_wptr = mp->b_rptr + len; 5972 bzero(mp->b_rptr, len); 5973 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 5974 return (mp); 5975 } 5976 5977 const char * 5978 dlpi_prim_str(int prim) 5979 { 5980 switch (prim) { 5981 case DL_INFO_REQ: return ("DL_INFO_REQ"); 5982 case DL_INFO_ACK: return ("DL_INFO_ACK"); 5983 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 5984 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 5985 case DL_BIND_REQ: return ("DL_BIND_REQ"); 5986 case DL_BIND_ACK: return ("DL_BIND_ACK"); 5987 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 5988 case DL_OK_ACK: return ("DL_OK_ACK"); 5989 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 5990 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 5991 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 5992 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 5993 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 5994 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 5995 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 5996 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 5997 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 5998 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 5999 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 6000 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 6001 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 6002 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 6003 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 6004 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 6005 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 6006 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 6007 default: return ("<unknown primitive>"); 6008 } 6009 } 6010 6011 const char * 6012 dlpi_err_str(int err) 6013 { 6014 switch (err) { 6015 case DL_ACCESS: return ("DL_ACCESS"); 6016 case DL_BADADDR: return ("DL_BADADDR"); 6017 case DL_BADCORR: return ("DL_BADCORR"); 6018 case DL_BADDATA: return ("DL_BADDATA"); 6019 case DL_BADPPA: return ("DL_BADPPA"); 6020 case DL_BADPRIM: return ("DL_BADPRIM"); 6021 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 6022 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 6023 case DL_BADSAP: return ("DL_BADSAP"); 6024 case DL_BADTOKEN: return ("DL_BADTOKEN"); 6025 case DL_BOUND: return ("DL_BOUND"); 6026 case DL_INITFAILED: return ("DL_INITFAILED"); 6027 case DL_NOADDR: return ("DL_NOADDR"); 6028 case DL_NOTINIT: return ("DL_NOTINIT"); 6029 case DL_OUTSTATE: return ("DL_OUTSTATE"); 6030 case DL_SYSERR: return ("DL_SYSERR"); 6031 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 6032 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 6033 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 6034 case DL_TOOMANY: return ("DL_TOOMANY"); 6035 case DL_NOTENAB: return ("DL_NOTENAB"); 6036 case DL_BUSY: return ("DL_BUSY"); 6037 case DL_NOAUTO: return ("DL_NOAUTO"); 6038 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 6039 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 6040 case DL_XIDAUTO: return ("DL_XIDAUTO"); 6041 case DL_TESTAUTO: return ("DL_TESTAUTO"); 6042 case DL_PENDING: return ("DL_PENDING"); 6043 default: return ("<unknown error>"); 6044 } 6045 } 6046 6047 /* 6048 * Debug formatting routine. Returns a character string representation of the 6049 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6050 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6051 * 6052 * Once the ndd table-printing interfaces are removed, this can be changed to 6053 * standard dotted-decimal form. 6054 */ 6055 char * 6056 ip_dot_addr(ipaddr_t addr, char *buf) 6057 { 6058 uint8_t *ap = (uint8_t *)&addr; 6059 6060 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6061 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6062 return (buf); 6063 } 6064 6065 /* 6066 * Write the given MAC address as a printable string in the usual colon- 6067 * separated format. 6068 */ 6069 const char * 6070 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6071 { 6072 char *bp; 6073 6074 if (alen == 0 || buflen < 4) 6075 return ("?"); 6076 bp = buf; 6077 for (;;) { 6078 /* 6079 * If there are more MAC address bytes available, but we won't 6080 * have any room to print them, then add "..." to the string 6081 * instead. See below for the 'magic number' explanation. 6082 */ 6083 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6084 (void) strcpy(bp, "..."); 6085 break; 6086 } 6087 (void) sprintf(bp, "%02x", *addr++); 6088 bp += 2; 6089 if (--alen == 0) 6090 break; 6091 *bp++ = ':'; 6092 buflen -= 3; 6093 /* 6094 * At this point, based on the first 'if' statement above, 6095 * either alen == 1 and buflen >= 3, or alen > 1 and 6096 * buflen >= 4. The first case leaves room for the final "xx" 6097 * number and trailing NUL byte. The second leaves room for at 6098 * least "...". Thus the apparently 'magic' numbers chosen for 6099 * that statement. 6100 */ 6101 } 6102 return (buf); 6103 } 6104 6105 /* 6106 * Send an ICMP error after patching up the packet appropriately. Returns 6107 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6108 */ 6109 static boolean_t 6110 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6111 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, zoneid_t zoneid) 6112 { 6113 ipha_t *ipha; 6114 mblk_t *first_mp; 6115 boolean_t secure; 6116 unsigned char db_type; 6117 6118 first_mp = mp; 6119 if (mctl_present) { 6120 mp = mp->b_cont; 6121 secure = ipsec_in_is_secure(first_mp); 6122 ASSERT(mp != NULL); 6123 } else { 6124 /* 6125 * If this is an ICMP error being reported - which goes 6126 * up as M_CTLs, we need to convert them to M_DATA till 6127 * we finish checking with global policy because 6128 * ipsec_check_global_policy() assumes M_DATA as clear 6129 * and M_CTL as secure. 6130 */ 6131 db_type = DB_TYPE(mp); 6132 DB_TYPE(mp) = M_DATA; 6133 secure = B_FALSE; 6134 } 6135 /* 6136 * We are generating an icmp error for some inbound packet. 6137 * Called from all ip_fanout_(udp, tcp, proto) functions. 6138 * Before we generate an error, check with global policy 6139 * to see whether this is allowed to enter the system. As 6140 * there is no "conn", we are checking with global policy. 6141 */ 6142 ipha = (ipha_t *)mp->b_rptr; 6143 if (secure || ipsec_inbound_v4_policy_present) { 6144 first_mp = ipsec_check_global_policy(first_mp, NULL, 6145 ipha, NULL, mctl_present); 6146 if (first_mp == NULL) 6147 return (B_FALSE); 6148 } 6149 6150 if (!mctl_present) 6151 DB_TYPE(mp) = db_type; 6152 6153 if (flags & IP_FF_SEND_ICMP) { 6154 if (flags & IP_FF_HDR_COMPLETE) { 6155 if (ip_hdr_complete(ipha, zoneid)) { 6156 freemsg(first_mp); 6157 return (B_TRUE); 6158 } 6159 } 6160 if (flags & IP_FF_CKSUM) { 6161 /* 6162 * Have to correct checksum since 6163 * the packet might have been 6164 * fragmented and the reassembly code in ip_rput 6165 * does not restore the IP checksum. 6166 */ 6167 ipha->ipha_hdr_checksum = 0; 6168 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6169 } 6170 switch (icmp_type) { 6171 case ICMP_DEST_UNREACHABLE: 6172 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid); 6173 break; 6174 default: 6175 freemsg(first_mp); 6176 break; 6177 } 6178 } else { 6179 freemsg(first_mp); 6180 return (B_FALSE); 6181 } 6182 6183 return (B_TRUE); 6184 } 6185 6186 /* 6187 * Used to send an ICMP error message when a packet is received for 6188 * a protocol that is not supported. The mblk passed as argument 6189 * is consumed by this function. 6190 */ 6191 void 6192 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid) 6193 { 6194 mblk_t *mp; 6195 ipha_t *ipha; 6196 ill_t *ill; 6197 ipsec_in_t *ii; 6198 6199 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6200 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6201 6202 mp = ipsec_mp->b_cont; 6203 ipsec_mp->b_cont = NULL; 6204 ipha = (ipha_t *)mp->b_rptr; 6205 /* Get ill from index in ipsec_in_t. */ 6206 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6207 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL); 6208 if (ill != NULL) { 6209 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6210 if (ip_fanout_send_icmp(q, mp, flags, 6211 ICMP_DEST_UNREACHABLE, 6212 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid)) { 6213 BUMP_MIB(ill->ill_ip_mib, 6214 ipIfStatsInUnknownProtos); 6215 } 6216 } else { 6217 if (ip_fanout_send_icmp_v6(q, mp, flags, 6218 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6219 0, B_FALSE, zoneid)) { 6220 BUMP_MIB(ill->ill_ip_mib, 6221 ipIfStatsInUnknownProtos); 6222 } 6223 } 6224 ill_refrele(ill); 6225 } else { /* re-link for the freemsg() below. */ 6226 ipsec_mp->b_cont = mp; 6227 } 6228 6229 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6230 freemsg(ipsec_mp); 6231 } 6232 6233 /* 6234 * See if the inbound datagram has had IPsec processing applied to it. 6235 */ 6236 boolean_t 6237 ipsec_in_is_secure(mblk_t *ipsec_mp) 6238 { 6239 ipsec_in_t *ii; 6240 6241 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6242 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6243 6244 if (ii->ipsec_in_loopback) { 6245 return (ii->ipsec_in_secure); 6246 } else { 6247 return (ii->ipsec_in_ah_sa != NULL || 6248 ii->ipsec_in_esp_sa != NULL || 6249 ii->ipsec_in_decaps); 6250 } 6251 } 6252 6253 /* 6254 * Handle protocols with which IP is less intimate. There 6255 * can be more than one stream bound to a particular 6256 * protocol. When this is the case, normally each one gets a copy 6257 * of any incoming packets. 6258 * 6259 * IPSEC NOTE : 6260 * 6261 * Don't allow a secure packet going up a non-secure connection. 6262 * We don't allow this because 6263 * 6264 * 1) Reply might go out in clear which will be dropped at 6265 * the sending side. 6266 * 2) If the reply goes out in clear it will give the 6267 * adversary enough information for getting the key in 6268 * most of the cases. 6269 * 6270 * Moreover getting a secure packet when we expect clear 6271 * implies that SA's were added without checking for 6272 * policy on both ends. This should not happen once ISAKMP 6273 * is used to negotiate SAs as SAs will be added only after 6274 * verifying the policy. 6275 * 6276 * NOTE : If the packet was tunneled and not multicast we only send 6277 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6278 * back to delivering packets to AF_INET6 raw sockets. 6279 * 6280 * IPQoS Notes: 6281 * Once we have determined the client, invoke IPPF processing. 6282 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6283 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6284 * ip_policy will be false. 6285 * 6286 * Zones notes: 6287 * Currently only applications in the global zone can create raw sockets for 6288 * protocols other than ICMP. So unlike the broadcast / multicast case of 6289 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6290 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6291 */ 6292 static void 6293 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6294 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6295 zoneid_t zoneid) 6296 { 6297 queue_t *rq; 6298 mblk_t *mp1, *first_mp1; 6299 uint_t protocol = ipha->ipha_protocol; 6300 ipaddr_t dst; 6301 boolean_t one_only; 6302 mblk_t *first_mp = mp; 6303 boolean_t secure; 6304 uint32_t ill_index; 6305 conn_t *connp, *first_connp, *next_connp; 6306 connf_t *connfp; 6307 boolean_t shared_addr; 6308 mib2_ipIfStatsEntry_t *mibptr; 6309 6310 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ip_mib; 6311 if (mctl_present) { 6312 mp = first_mp->b_cont; 6313 secure = ipsec_in_is_secure(first_mp); 6314 ASSERT(mp != NULL); 6315 } else { 6316 secure = B_FALSE; 6317 } 6318 dst = ipha->ipha_dst; 6319 /* 6320 * If the packet was tunneled and not multicast we only send to it 6321 * the first match. 6322 */ 6323 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6324 !CLASSD(dst)); 6325 6326 shared_addr = (zoneid == ALL_ZONES); 6327 if (shared_addr) { 6328 /* 6329 * We don't allow multilevel ports for raw IP, so no need to 6330 * check for that here. 6331 */ 6332 zoneid = tsol_packet_to_zoneid(mp); 6333 } 6334 6335 connfp = &ipcl_proto_fanout[protocol]; 6336 mutex_enter(&connfp->connf_lock); 6337 connp = connfp->connf_head; 6338 for (connp = connfp->connf_head; connp != NULL; 6339 connp = connp->conn_next) { 6340 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6341 zoneid) && 6342 (!is_system_labeled() || 6343 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6344 connp))) 6345 break; 6346 } 6347 6348 if (connp == NULL || connp->conn_upq == NULL) { 6349 /* 6350 * No one bound to these addresses. Is 6351 * there a client that wants all 6352 * unclaimed datagrams? 6353 */ 6354 mutex_exit(&connfp->connf_lock); 6355 /* 6356 * Check for IPPROTO_ENCAP... 6357 */ 6358 if (protocol == IPPROTO_ENCAP && ip_g_mrouter) { 6359 /* 6360 * If an IPsec mblk is here on a multicast 6361 * tunnel (using ip_mroute stuff), check policy here, 6362 * THEN ship off to ip_mroute_decap(). 6363 * 6364 * BTW, If I match a configured IP-in-IP 6365 * tunnel, this path will not be reached, and 6366 * ip_mroute_decap will never be called. 6367 */ 6368 first_mp = ipsec_check_global_policy(first_mp, connp, 6369 ipha, NULL, mctl_present); 6370 if (first_mp != NULL) { 6371 if (mctl_present) 6372 freeb(first_mp); 6373 ip_mroute_decap(q, mp); 6374 } /* Else we already freed everything! */ 6375 } else { 6376 /* 6377 * Otherwise send an ICMP protocol unreachable. 6378 */ 6379 if (ip_fanout_send_icmp(q, first_mp, flags, 6380 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6381 mctl_present, zoneid)) { 6382 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6383 } 6384 } 6385 return; 6386 } 6387 CONN_INC_REF(connp); 6388 first_connp = connp; 6389 6390 /* 6391 * Only send message to one tunnel driver by immediately 6392 * terminating the loop. 6393 */ 6394 connp = one_only ? NULL : connp->conn_next; 6395 6396 for (;;) { 6397 while (connp != NULL) { 6398 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6399 flags, zoneid) && 6400 (!is_system_labeled() || 6401 tsol_receive_local(mp, &dst, IPV4_VERSION, 6402 shared_addr, connp))) 6403 break; 6404 connp = connp->conn_next; 6405 } 6406 6407 /* 6408 * Copy the packet. 6409 */ 6410 if (connp == NULL || connp->conn_upq == NULL || 6411 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6412 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6413 /* 6414 * No more interested clients or memory 6415 * allocation failed 6416 */ 6417 connp = first_connp; 6418 break; 6419 } 6420 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6421 CONN_INC_REF(connp); 6422 mutex_exit(&connfp->connf_lock); 6423 rq = connp->conn_rq; 6424 if (!canputnext(rq)) { 6425 if (flags & IP_FF_RAWIP) { 6426 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6427 } else { 6428 BUMP_MIB(&icmp_mib, icmpInOverflows); 6429 } 6430 6431 freemsg(first_mp1); 6432 } else { 6433 /* 6434 * Don't enforce here if we're an actual tunnel - 6435 * let "tun" do it instead. 6436 */ 6437 if (!IPCL_IS_IPTUN(connp) && 6438 (CONN_INBOUND_POLICY_PRESENT(connp) || secure)) { 6439 first_mp1 = ipsec_check_inbound_policy 6440 (first_mp1, connp, ipha, NULL, 6441 mctl_present); 6442 } 6443 if (first_mp1 != NULL) { 6444 int in_flags = 0; 6445 /* 6446 * ip_fanout_proto also gets called from 6447 * icmp_inbound_error_fanout, in which case 6448 * the msg type is M_CTL. Don't add info 6449 * in this case for the time being. In future 6450 * when there is a need for knowing the 6451 * inbound iface index for ICMP error msgs, 6452 * then this can be changed. 6453 */ 6454 if (connp->conn_recvif) 6455 in_flags = IPF_RECVIF; 6456 /* 6457 * The ULP may support IP_RECVPKTINFO for both 6458 * IP v4 and v6 so pass the appropriate argument 6459 * based on conn IP version. 6460 */ 6461 if (connp->conn_ip_recvpktinfo) { 6462 if (connp->conn_af_isv6) { 6463 /* 6464 * V6 only needs index 6465 */ 6466 in_flags |= IPF_RECVIF; 6467 } else { 6468 /* 6469 * V4 needs index + 6470 * matching address. 6471 */ 6472 in_flags |= IPF_RECVADDR; 6473 } 6474 } 6475 if ((in_flags != 0) && 6476 (mp->b_datap->db_type != M_CTL)) { 6477 /* 6478 * the actual data will be 6479 * contained in b_cont upon 6480 * successful return of the 6481 * following call else 6482 * original mblk is returned 6483 */ 6484 ASSERT(recv_ill != NULL); 6485 mp1 = ip_add_info(mp1, recv_ill, 6486 in_flags, IPCL_ZONEID(connp)); 6487 } 6488 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6489 if (mctl_present) 6490 freeb(first_mp1); 6491 putnext(rq, mp1); 6492 } 6493 } 6494 mutex_enter(&connfp->connf_lock); 6495 /* Follow the next pointer before releasing the conn. */ 6496 next_connp = connp->conn_next; 6497 CONN_DEC_REF(connp); 6498 connp = next_connp; 6499 } 6500 6501 /* Last one. Send it upstream. */ 6502 mutex_exit(&connfp->connf_lock); 6503 6504 /* 6505 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6506 * will be set to false. 6507 */ 6508 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6509 ill_index = ill->ill_phyint->phyint_ifindex; 6510 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6511 if (mp == NULL) { 6512 CONN_DEC_REF(connp); 6513 if (mctl_present) { 6514 freeb(first_mp); 6515 } 6516 return; 6517 } 6518 } 6519 6520 rq = connp->conn_rq; 6521 if (!canputnext(rq)) { 6522 if (flags & IP_FF_RAWIP) { 6523 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6524 } else { 6525 BUMP_MIB(&icmp_mib, icmpInOverflows); 6526 } 6527 6528 freemsg(first_mp); 6529 } else { 6530 if (IPCL_IS_IPTUN(connp)) { 6531 /* 6532 * Tunneled packet. We enforce policy in the tunnel 6533 * module itself. 6534 * 6535 * Send the WHOLE packet up (incl. IPSEC_IN) without 6536 * a policy check. 6537 */ 6538 putnext(rq, first_mp); 6539 CONN_DEC_REF(connp); 6540 return; 6541 } 6542 6543 if ((CONN_INBOUND_POLICY_PRESENT(connp) || secure)) { 6544 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6545 ipha, NULL, mctl_present); 6546 } 6547 6548 if (first_mp != NULL) { 6549 int in_flags = 0; 6550 6551 /* 6552 * ip_fanout_proto also gets called 6553 * from icmp_inbound_error_fanout, in 6554 * which case the msg type is M_CTL. 6555 * Don't add info in this case for time 6556 * being. In future when there is a 6557 * need for knowing the inbound iface 6558 * index for ICMP error msgs, then this 6559 * can be changed 6560 */ 6561 if (connp->conn_recvif) 6562 in_flags = IPF_RECVIF; 6563 if (connp->conn_ip_recvpktinfo) { 6564 if (connp->conn_af_isv6) { 6565 /* 6566 * V6 only needs index 6567 */ 6568 in_flags |= IPF_RECVIF; 6569 } else { 6570 /* 6571 * V4 needs index + 6572 * matching address. 6573 */ 6574 in_flags |= IPF_RECVADDR; 6575 } 6576 } 6577 if ((in_flags != 0) && 6578 (mp->b_datap->db_type != M_CTL)) { 6579 6580 /* 6581 * the actual data will be contained in 6582 * b_cont upon successful return 6583 * of the following call else original 6584 * mblk is returned 6585 */ 6586 ASSERT(recv_ill != NULL); 6587 mp = ip_add_info(mp, recv_ill, 6588 in_flags, IPCL_ZONEID(connp)); 6589 } 6590 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6591 putnext(rq, mp); 6592 if (mctl_present) 6593 freeb(first_mp); 6594 } 6595 } 6596 CONN_DEC_REF(connp); 6597 } 6598 6599 /* 6600 * Fanout for TCP packets 6601 * The caller puts <fport, lport> in the ports parameter. 6602 * 6603 * IPQoS Notes 6604 * Before sending it to the client, invoke IPPF processing. 6605 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6606 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6607 * ip_policy is false. 6608 */ 6609 static void 6610 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6611 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6612 { 6613 mblk_t *first_mp; 6614 boolean_t secure; 6615 uint32_t ill_index; 6616 int ip_hdr_len; 6617 tcph_t *tcph; 6618 boolean_t syn_present = B_FALSE; 6619 conn_t *connp; 6620 6621 ASSERT(recv_ill != NULL); 6622 6623 first_mp = mp; 6624 if (mctl_present) { 6625 ASSERT(first_mp->b_datap->db_type == M_CTL); 6626 mp = first_mp->b_cont; 6627 secure = ipsec_in_is_secure(first_mp); 6628 ASSERT(mp != NULL); 6629 } else { 6630 secure = B_FALSE; 6631 } 6632 6633 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6634 6635 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 6636 NULL) { 6637 /* 6638 * No connected connection or listener. Send a 6639 * TH_RST via tcp_xmit_listeners_reset. 6640 */ 6641 6642 /* Initiate IPPf processing, if needed. */ 6643 if (IPP_ENABLED(IPP_LOCAL_IN)) { 6644 uint32_t ill_index; 6645 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6646 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6647 if (first_mp == NULL) 6648 return; 6649 } 6650 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6651 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6652 zoneid)); 6653 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 6654 return; 6655 } 6656 6657 /* 6658 * Allocate the SYN for the TCP connection here itself 6659 */ 6660 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6661 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6662 if (IPCL_IS_TCP(connp)) { 6663 squeue_t *sqp; 6664 6665 /* 6666 * For fused tcp loopback, assign the eager's 6667 * squeue to be that of the active connect's. 6668 * Note that we don't check for IP_FF_LOOPBACK 6669 * here since this routine gets called only 6670 * for loopback (unlike the IPv6 counterpart). 6671 */ 6672 ASSERT(Q_TO_CONN(q) != NULL); 6673 if (do_tcp_fusion && 6674 !CONN_INBOUND_POLICY_PRESENT(connp) && !secure && 6675 !IPP_ENABLED(IPP_LOCAL_IN) && !ip_policy && 6676 IPCL_IS_TCP(Q_TO_CONN(q))) { 6677 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6678 sqp = Q_TO_CONN(q)->conn_sqp; 6679 } else { 6680 sqp = IP_SQUEUE_GET(lbolt); 6681 } 6682 6683 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6684 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6685 syn_present = B_TRUE; 6686 } 6687 } 6688 6689 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6690 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6691 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6692 if ((flags & TH_RST) || (flags & TH_URG)) { 6693 CONN_DEC_REF(connp); 6694 freemsg(first_mp); 6695 return; 6696 } 6697 if (flags & TH_ACK) { 6698 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 6699 CONN_DEC_REF(connp); 6700 return; 6701 } 6702 6703 CONN_DEC_REF(connp); 6704 freemsg(first_mp); 6705 return; 6706 } 6707 6708 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6709 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6710 NULL, mctl_present); 6711 if (first_mp == NULL) { 6712 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6713 CONN_DEC_REF(connp); 6714 return; 6715 } 6716 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6717 ASSERT(syn_present); 6718 if (mctl_present) { 6719 ASSERT(first_mp != mp); 6720 first_mp->b_datap->db_struioflag |= 6721 STRUIO_POLICY; 6722 } else { 6723 ASSERT(first_mp == mp); 6724 mp->b_datap->db_struioflag &= 6725 ~STRUIO_EAGER; 6726 mp->b_datap->db_struioflag |= 6727 STRUIO_POLICY; 6728 } 6729 } else { 6730 /* 6731 * Discard first_mp early since we're dealing with a 6732 * fully-connected conn_t and tcp doesn't do policy in 6733 * this case. 6734 */ 6735 if (mctl_present) { 6736 freeb(first_mp); 6737 mctl_present = B_FALSE; 6738 } 6739 first_mp = mp; 6740 } 6741 } 6742 6743 /* 6744 * Initiate policy processing here if needed. If we get here from 6745 * icmp_inbound_error_fanout, ip_policy is false. 6746 */ 6747 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6748 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6749 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6750 if (mp == NULL) { 6751 CONN_DEC_REF(connp); 6752 if (mctl_present) 6753 freeb(first_mp); 6754 return; 6755 } else if (mctl_present) { 6756 ASSERT(first_mp != mp); 6757 first_mp->b_cont = mp; 6758 } else { 6759 first_mp = mp; 6760 } 6761 } 6762 6763 6764 6765 /* Handle socket options. */ 6766 if (!syn_present && 6767 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6768 /* Add header */ 6769 ASSERT(recv_ill != NULL); 6770 /* 6771 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6772 * IPF_RECVIF. 6773 */ 6774 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp)); 6775 if (mp == NULL) { 6776 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6777 CONN_DEC_REF(connp); 6778 if (mctl_present) 6779 freeb(first_mp); 6780 return; 6781 } else if (mctl_present) { 6782 /* 6783 * ip_add_info might return a new mp. 6784 */ 6785 ASSERT(first_mp != mp); 6786 first_mp->b_cont = mp; 6787 } else { 6788 first_mp = mp; 6789 } 6790 } 6791 6792 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6793 if (IPCL_IS_TCP(connp)) { 6794 (*ip_input_proc)(connp->conn_sqp, first_mp, 6795 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6796 } else { 6797 putnext(connp->conn_rq, first_mp); 6798 CONN_DEC_REF(connp); 6799 } 6800 } 6801 6802 /* 6803 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6804 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6805 * Caller is responsible for dropping references to the conn, and freeing 6806 * first_mp. 6807 * 6808 * IPQoS Notes 6809 * Before sending it to the client, invoke IPPF processing. Policy processing 6810 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6811 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6812 * ip_wput_local, ip_policy is false. 6813 */ 6814 static void 6815 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6816 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6817 boolean_t ip_policy) 6818 { 6819 boolean_t mctl_present = (first_mp != NULL); 6820 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6821 uint32_t ill_index; 6822 6823 ASSERT(ill != NULL); 6824 6825 if (mctl_present) 6826 first_mp->b_cont = mp; 6827 else 6828 first_mp = mp; 6829 6830 if (CONN_UDP_FLOWCTLD(connp)) { 6831 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 6832 freemsg(first_mp); 6833 return; 6834 } 6835 6836 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6837 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6838 NULL, mctl_present); 6839 if (first_mp == NULL) { 6840 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 6841 return; /* Freed by ipsec_check_inbound_policy(). */ 6842 } 6843 } 6844 if (mctl_present) 6845 freeb(first_mp); 6846 6847 /* Handle options. */ 6848 if (connp->conn_recvif) 6849 in_flags = IPF_RECVIF; 6850 /* 6851 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 6852 * passed to ip_add_info is based on IP version of connp. 6853 */ 6854 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6855 if (connp->conn_af_isv6) { 6856 /* 6857 * V6 only needs index 6858 */ 6859 in_flags |= IPF_RECVIF; 6860 } else { 6861 /* 6862 * V4 needs index + matching address. 6863 */ 6864 in_flags |= IPF_RECVADDR; 6865 } 6866 } 6867 6868 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 6869 in_flags |= IPF_RECVSLLA; 6870 6871 /* 6872 * Initiate IPPF processing here, if needed. Note first_mp won't be 6873 * freed if the packet is dropped. The caller will do so. 6874 */ 6875 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6876 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6877 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6878 if (mp == NULL) { 6879 return; 6880 } 6881 } 6882 if ((in_flags != 0) && 6883 (mp->b_datap->db_type != M_CTL)) { 6884 /* 6885 * The actual data will be contained in b_cont 6886 * upon successful return of the following call 6887 * else original mblk is returned 6888 */ 6889 ASSERT(recv_ill != NULL); 6890 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp)); 6891 } 6892 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 6893 /* Send it upstream */ 6894 CONN_UDP_RECV(connp, mp); 6895 } 6896 6897 /* 6898 * Fanout for UDP packets. 6899 * The caller puts <fport, lport> in the ports parameter. 6900 * 6901 * If SO_REUSEADDR is set all multicast and broadcast packets 6902 * will be delivered to all streams bound to the same port. 6903 * 6904 * Zones notes: 6905 * Multicast and broadcast packets will be distributed to streams in all zones. 6906 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 6907 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 6908 * packets. To maintain this behavior with multiple zones, the conns are grouped 6909 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 6910 * each zone. If unset, all the following conns in the same zone are skipped. 6911 */ 6912 static void 6913 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 6914 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 6915 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 6916 { 6917 uint32_t dstport, srcport; 6918 ipaddr_t dst; 6919 mblk_t *first_mp; 6920 boolean_t secure; 6921 in6_addr_t v6src; 6922 conn_t *connp; 6923 connf_t *connfp; 6924 conn_t *first_connp; 6925 conn_t *next_connp; 6926 mblk_t *mp1, *first_mp1; 6927 ipaddr_t src; 6928 zoneid_t last_zoneid; 6929 boolean_t reuseaddr; 6930 boolean_t shared_addr; 6931 6932 first_mp = mp; 6933 if (mctl_present) { 6934 mp = first_mp->b_cont; 6935 first_mp->b_cont = NULL; 6936 secure = ipsec_in_is_secure(first_mp); 6937 ASSERT(mp != NULL); 6938 } else { 6939 first_mp = NULL; 6940 secure = B_FALSE; 6941 } 6942 6943 /* Extract ports in net byte order */ 6944 dstport = htons(ntohl(ports) & 0xFFFF); 6945 srcport = htons(ntohl(ports) >> 16); 6946 dst = ipha->ipha_dst; 6947 src = ipha->ipha_src; 6948 6949 shared_addr = (zoneid == ALL_ZONES); 6950 if (shared_addr) { 6951 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 6952 if (zoneid == ALL_ZONES) 6953 zoneid = tsol_packet_to_zoneid(mp); 6954 } 6955 6956 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6957 mutex_enter(&connfp->connf_lock); 6958 connp = connfp->connf_head; 6959 if (!broadcast && !CLASSD(dst)) { 6960 /* 6961 * Not broadcast or multicast. Send to the one (first) 6962 * client we find. No need to check conn_wantpacket() 6963 * since IP_BOUND_IF/conn_incoming_ill does not apply to 6964 * IPv4 unicast packets. 6965 */ 6966 while ((connp != NULL) && 6967 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 6968 !IPCL_ZONE_MATCH(connp, zoneid))) { 6969 connp = connp->conn_next; 6970 } 6971 6972 if (connp == NULL || connp->conn_upq == NULL) 6973 goto notfound; 6974 6975 if (is_system_labeled() && 6976 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6977 connp)) 6978 goto notfound; 6979 6980 CONN_INC_REF(connp); 6981 mutex_exit(&connfp->connf_lock); 6982 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 6983 flags, recv_ill, ip_policy); 6984 IP_STAT(ip_udp_fannorm); 6985 CONN_DEC_REF(connp); 6986 return; 6987 } 6988 6989 /* 6990 * Broadcast and multicast case 6991 * 6992 * Need to check conn_wantpacket(). 6993 * If SO_REUSEADDR has been set on the first we send the 6994 * packet to all clients that have joined the group and 6995 * match the port. 6996 */ 6997 6998 while (connp != NULL) { 6999 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7000 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7001 (!is_system_labeled() || 7002 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7003 connp))) 7004 break; 7005 connp = connp->conn_next; 7006 } 7007 7008 if (connp == NULL || connp->conn_upq == NULL) 7009 goto notfound; 7010 7011 first_connp = connp; 7012 /* 7013 * When SO_REUSEADDR is not set, send the packet only to the first 7014 * matching connection in its zone by keeping track of the zoneid. 7015 */ 7016 reuseaddr = first_connp->conn_reuseaddr; 7017 last_zoneid = first_connp->conn_zoneid; 7018 7019 CONN_INC_REF(connp); 7020 connp = connp->conn_next; 7021 for (;;) { 7022 while (connp != NULL) { 7023 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7024 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7025 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7026 (!is_system_labeled() || 7027 tsol_receive_local(mp, &dst, IPV4_VERSION, 7028 shared_addr, connp))) 7029 break; 7030 connp = connp->conn_next; 7031 } 7032 /* 7033 * Just copy the data part alone. The mctl part is 7034 * needed just for verifying policy and it is never 7035 * sent up. 7036 */ 7037 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7038 ((mp1 = copymsg(mp)) == NULL))) { 7039 /* 7040 * No more interested clients or memory 7041 * allocation failed 7042 */ 7043 connp = first_connp; 7044 break; 7045 } 7046 if (connp->conn_zoneid != last_zoneid) { 7047 /* 7048 * Update the zoneid so that the packet isn't sent to 7049 * any more conns in the same zone unless SO_REUSEADDR 7050 * is set. 7051 */ 7052 reuseaddr = connp->conn_reuseaddr; 7053 last_zoneid = connp->conn_zoneid; 7054 } 7055 if (first_mp != NULL) { 7056 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7057 ipsec_info_type == IPSEC_IN); 7058 first_mp1 = ipsec_in_tag(first_mp, NULL); 7059 if (first_mp1 == NULL) { 7060 freemsg(mp1); 7061 connp = first_connp; 7062 break; 7063 } 7064 } else { 7065 first_mp1 = NULL; 7066 } 7067 CONN_INC_REF(connp); 7068 mutex_exit(&connfp->connf_lock); 7069 /* 7070 * IPQoS notes: We don't send the packet for policy 7071 * processing here, will do it for the last one (below). 7072 * i.e. we do it per-packet now, but if we do policy 7073 * processing per-conn, then we would need to do it 7074 * here too. 7075 */ 7076 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7077 ipha, flags, recv_ill, B_FALSE); 7078 mutex_enter(&connfp->connf_lock); 7079 /* Follow the next pointer before releasing the conn. */ 7080 next_connp = connp->conn_next; 7081 IP_STAT(ip_udp_fanmb); 7082 CONN_DEC_REF(connp); 7083 connp = next_connp; 7084 } 7085 7086 /* Last one. Send it upstream. */ 7087 mutex_exit(&connfp->connf_lock); 7088 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7089 recv_ill, ip_policy); 7090 IP_STAT(ip_udp_fanmb); 7091 CONN_DEC_REF(connp); 7092 return; 7093 7094 notfound: 7095 7096 mutex_exit(&connfp->connf_lock); 7097 IP_STAT(ip_udp_fanothers); 7098 /* 7099 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7100 * have already been matched above, since they live in the IPv4 7101 * fanout tables. This implies we only need to 7102 * check for IPv6 in6addr_any endpoints here. 7103 * Thus we compare using ipv6_all_zeros instead of the destination 7104 * address, except for the multicast group membership lookup which 7105 * uses the IPv4 destination. 7106 */ 7107 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7108 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 7109 mutex_enter(&connfp->connf_lock); 7110 connp = connfp->connf_head; 7111 if (!broadcast && !CLASSD(dst)) { 7112 while (connp != NULL) { 7113 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7114 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7115 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7116 !connp->conn_ipv6_v6only) 7117 break; 7118 connp = connp->conn_next; 7119 } 7120 7121 if (connp != NULL && is_system_labeled() && 7122 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7123 connp)) 7124 connp = NULL; 7125 7126 if (connp == NULL || connp->conn_upq == NULL) { 7127 /* 7128 * No one bound to this port. Is 7129 * there a client that wants all 7130 * unclaimed datagrams? 7131 */ 7132 mutex_exit(&connfp->connf_lock); 7133 7134 if (mctl_present) 7135 first_mp->b_cont = mp; 7136 else 7137 first_mp = mp; 7138 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 7139 ip_fanout_proto(q, first_mp, ill, ipha, 7140 flags | IP_FF_RAWIP, mctl_present, 7141 ip_policy, recv_ill, zoneid); 7142 } else { 7143 if (ip_fanout_send_icmp(q, first_mp, flags, 7144 ICMP_DEST_UNREACHABLE, 7145 ICMP_PORT_UNREACHABLE, 7146 mctl_present, zoneid)) { 7147 BUMP_MIB(ill->ill_ip_mib, 7148 udpIfStatsNoPorts); 7149 } 7150 } 7151 return; 7152 } 7153 7154 CONN_INC_REF(connp); 7155 mutex_exit(&connfp->connf_lock); 7156 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7157 flags, recv_ill, ip_policy); 7158 CONN_DEC_REF(connp); 7159 return; 7160 } 7161 /* 7162 * IPv4 multicast packet being delivered to an AF_INET6 7163 * in6addr_any endpoint. 7164 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7165 * and not conn_wantpacket_v6() since any multicast membership is 7166 * for an IPv4-mapped multicast address. 7167 * The packet is sent to all clients in all zones that have joined the 7168 * group and match the port. 7169 */ 7170 while (connp != NULL) { 7171 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7172 srcport, v6src) && 7173 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7174 (!is_system_labeled() || 7175 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7176 connp))) 7177 break; 7178 connp = connp->conn_next; 7179 } 7180 7181 if (connp == NULL || connp->conn_upq == NULL) { 7182 /* 7183 * No one bound to this port. Is 7184 * there a client that wants all 7185 * unclaimed datagrams? 7186 */ 7187 mutex_exit(&connfp->connf_lock); 7188 7189 if (mctl_present) 7190 first_mp->b_cont = mp; 7191 else 7192 first_mp = mp; 7193 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 7194 ip_fanout_proto(q, first_mp, ill, ipha, 7195 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7196 recv_ill, zoneid); 7197 } else { 7198 /* 7199 * We used to attempt to send an icmp error here, but 7200 * since this is known to be a multicast packet 7201 * and we don't send icmp errors in response to 7202 * multicast, just drop the packet and give up sooner. 7203 */ 7204 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7205 freemsg(first_mp); 7206 } 7207 return; 7208 } 7209 7210 first_connp = connp; 7211 7212 CONN_INC_REF(connp); 7213 connp = connp->conn_next; 7214 for (;;) { 7215 while (connp != NULL) { 7216 if (IPCL_UDP_MATCH_V6(connp, dstport, 7217 ipv6_all_zeros, srcport, v6src) && 7218 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7219 (!is_system_labeled() || 7220 tsol_receive_local(mp, &dst, IPV4_VERSION, 7221 shared_addr, connp))) 7222 break; 7223 connp = connp->conn_next; 7224 } 7225 /* 7226 * Just copy the data part alone. The mctl part is 7227 * needed just for verifying policy and it is never 7228 * sent up. 7229 */ 7230 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7231 ((mp1 = copymsg(mp)) == NULL))) { 7232 /* 7233 * No more intested clients or memory 7234 * allocation failed 7235 */ 7236 connp = first_connp; 7237 break; 7238 } 7239 if (first_mp != NULL) { 7240 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7241 ipsec_info_type == IPSEC_IN); 7242 first_mp1 = ipsec_in_tag(first_mp, NULL); 7243 if (first_mp1 == NULL) { 7244 freemsg(mp1); 7245 connp = first_connp; 7246 break; 7247 } 7248 } else { 7249 first_mp1 = NULL; 7250 } 7251 CONN_INC_REF(connp); 7252 mutex_exit(&connfp->connf_lock); 7253 /* 7254 * IPQoS notes: We don't send the packet for policy 7255 * processing here, will do it for the last one (below). 7256 * i.e. we do it per-packet now, but if we do policy 7257 * processing per-conn, then we would need to do it 7258 * here too. 7259 */ 7260 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7261 ipha, flags, recv_ill, B_FALSE); 7262 mutex_enter(&connfp->connf_lock); 7263 /* Follow the next pointer before releasing the conn. */ 7264 next_connp = connp->conn_next; 7265 CONN_DEC_REF(connp); 7266 connp = next_connp; 7267 } 7268 7269 /* Last one. Send it upstream. */ 7270 mutex_exit(&connfp->connf_lock); 7271 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7272 recv_ill, ip_policy); 7273 CONN_DEC_REF(connp); 7274 } 7275 7276 /* 7277 * Complete the ip_wput header so that it 7278 * is possible to generate ICMP 7279 * errors. 7280 */ 7281 int 7282 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid) 7283 { 7284 ire_t *ire; 7285 7286 if (ipha->ipha_src == INADDR_ANY) { 7287 ire = ire_lookup_local(zoneid); 7288 if (ire == NULL) { 7289 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7290 return (1); 7291 } 7292 ipha->ipha_src = ire->ire_addr; 7293 ire_refrele(ire); 7294 } 7295 ipha->ipha_ttl = ip_def_ttl; 7296 ipha->ipha_hdr_checksum = 0; 7297 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7298 return (0); 7299 } 7300 7301 /* 7302 * Nobody should be sending 7303 * packets up this stream 7304 */ 7305 static void 7306 ip_lrput(queue_t *q, mblk_t *mp) 7307 { 7308 mblk_t *mp1; 7309 7310 switch (mp->b_datap->db_type) { 7311 case M_FLUSH: 7312 /* Turn around */ 7313 if (*mp->b_rptr & FLUSHW) { 7314 *mp->b_rptr &= ~FLUSHR; 7315 qreply(q, mp); 7316 return; 7317 } 7318 break; 7319 } 7320 /* Could receive messages that passed through ar_rput */ 7321 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7322 mp1->b_prev = mp1->b_next = NULL; 7323 freemsg(mp); 7324 } 7325 7326 /* Nobody should be sending packets down this stream */ 7327 /* ARGSUSED */ 7328 void 7329 ip_lwput(queue_t *q, mblk_t *mp) 7330 { 7331 freemsg(mp); 7332 } 7333 7334 /* 7335 * Move the first hop in any source route to ipha_dst and remove that part of 7336 * the source route. Called by other protocols. Errors in option formatting 7337 * are ignored - will be handled by ip_wput_options Return the final 7338 * destination (either ipha_dst or the last entry in a source route.) 7339 */ 7340 ipaddr_t 7341 ip_massage_options(ipha_t *ipha) 7342 { 7343 ipoptp_t opts; 7344 uchar_t *opt; 7345 uint8_t optval; 7346 uint8_t optlen; 7347 ipaddr_t dst; 7348 int i; 7349 ire_t *ire; 7350 7351 ip2dbg(("ip_massage_options\n")); 7352 dst = ipha->ipha_dst; 7353 for (optval = ipoptp_first(&opts, ipha); 7354 optval != IPOPT_EOL; 7355 optval = ipoptp_next(&opts)) { 7356 opt = opts.ipoptp_cur; 7357 switch (optval) { 7358 uint8_t off; 7359 case IPOPT_SSRR: 7360 case IPOPT_LSRR: 7361 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7362 ip1dbg(("ip_massage_options: bad src route\n")); 7363 break; 7364 } 7365 optlen = opts.ipoptp_len; 7366 off = opt[IPOPT_OFFSET]; 7367 off--; 7368 redo_srr: 7369 if (optlen < IP_ADDR_LEN || 7370 off > optlen - IP_ADDR_LEN) { 7371 /* End of source route */ 7372 ip1dbg(("ip_massage_options: end of SR\n")); 7373 break; 7374 } 7375 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7376 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7377 ntohl(dst))); 7378 /* 7379 * Check if our address is present more than 7380 * once as consecutive hops in source route. 7381 * XXX verify per-interface ip_forwarding 7382 * for source route? 7383 */ 7384 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7385 ALL_ZONES, NULL, MATCH_IRE_TYPE); 7386 if (ire != NULL) { 7387 ire_refrele(ire); 7388 off += IP_ADDR_LEN; 7389 goto redo_srr; 7390 } 7391 if (dst == htonl(INADDR_LOOPBACK)) { 7392 ip1dbg(("ip_massage_options: loopback addr in " 7393 "source route!\n")); 7394 break; 7395 } 7396 /* 7397 * Update ipha_dst to be the first hop and remove the 7398 * first hop from the source route (by overwriting 7399 * part of the option with NOP options). 7400 */ 7401 ipha->ipha_dst = dst; 7402 /* Put the last entry in dst */ 7403 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7404 3; 7405 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7406 7407 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7408 ntohl(dst))); 7409 /* Move down and overwrite */ 7410 opt[IP_ADDR_LEN] = opt[0]; 7411 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7412 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7413 for (i = 0; i < IP_ADDR_LEN; i++) 7414 opt[i] = IPOPT_NOP; 7415 break; 7416 } 7417 } 7418 return (dst); 7419 } 7420 7421 /* 7422 * This function's job is to forward data to the reverse tunnel (FA->HA) 7423 * after doing a few checks. It is assumed that the incoming interface 7424 * of the packet is always different than the outgoing interface and the 7425 * ire_type of the found ire has to be a non-resolver type. 7426 * 7427 * IPQoS notes 7428 * IP policy is invoked twice for a forwarded packet, once on the read side 7429 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 7430 * enabled. 7431 */ 7432 static void 7433 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 7434 { 7435 ipha_t *ipha; 7436 queue_t *q; 7437 uint32_t pkt_len; 7438 #define rptr ((uchar_t *)ipha) 7439 uint32_t sum; 7440 uint32_t max_frag; 7441 mblk_t *first_mp; 7442 uint32_t ill_index; 7443 ipxmit_state_t pktxmit_state; 7444 ill_t *out_ill; 7445 7446 ASSERT(ire != NULL); 7447 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 7448 ASSERT(ire->ire_stq != NULL); 7449 7450 /* Initiate read side IPPF processing */ 7451 if (IPP_ENABLED(IPP_FWD_IN)) { 7452 ill_index = in_ill->ill_phyint->phyint_ifindex; 7453 ip_process(IPP_FWD_IN, &mp, ill_index); 7454 if (mp == NULL) { 7455 ip2dbg(("ip_mrtun_forward: inbound pkt " 7456 "dropped during IPPF processing\n")); 7457 return; 7458 } 7459 } 7460 7461 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 7462 ILLF_ROUTER) == 0) || 7463 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 7464 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsForwProhibits); 7465 ip0dbg(("ip_mrtun_forward: Can't forward :" 7466 "forwarding is not turned on\n")); 7467 goto drop_pkt; 7468 } 7469 7470 /* 7471 * Don't forward if the interface is down 7472 */ 7473 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 7474 goto discard_pkt; 7475 } 7476 7477 ipha = (ipha_t *)mp->b_rptr; 7478 pkt_len = ntohs(ipha->ipha_length); 7479 /* Adjust the checksum to reflect the ttl decrement. */ 7480 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 7481 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 7482 if (ipha->ipha_ttl-- <= 1) { 7483 if (ip_csum_hdr(ipha)) { 7484 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInCksumErrs); 7485 goto drop_pkt; 7486 } 7487 q = ire->ire_stq; 7488 if ((first_mp = allocb(sizeof (ipsec_info_t), 7489 BPRI_HI)) == NULL) { 7490 goto discard_pkt; 7491 } 7492 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsForwProhibits); 7493 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7494 /* Sent by forwarding path, and router is global zone */ 7495 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED, 7496 GLOBAL_ZONEID); 7497 return; 7498 } 7499 7500 /* Get the ill_index of the ILL */ 7501 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 7502 7503 /* 7504 * This location is chosen for the placement of the forwarding hook 7505 * because at this point we know that we have a path out for the 7506 * packet but haven't yet applied any logic (such as fragmenting) 7507 * that happen as part of transmitting the packet out. 7508 */ 7509 out_ill = ire->ire_ipif->ipif_ill; 7510 7511 DTRACE_PROBE4(ip4__forwarding__start, 7512 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7513 7514 FW_HOOKS(ip4_forwarding_event, ipv4firewall_forwarding, 7515 in_ill, out_ill, ipha, mp, mp); 7516 7517 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 7518 7519 if (mp == NULL) 7520 return; 7521 pkt_len = ntohs(ipha->ipha_length); 7522 7523 /* 7524 * ip_mrtun_forward is only used by foreign agent to reverse 7525 * tunnel the incoming packet. So it does not do any option 7526 * processing for source routing. 7527 */ 7528 max_frag = ire->ire_max_frag; 7529 if (pkt_len > max_frag) { 7530 /* 7531 * It needs fragging on its way out. We haven't 7532 * verified the header checksum yet. Since we 7533 * are going to put a surely good checksum in the 7534 * outgoing header, we have to make sure that it 7535 * was good coming in. 7536 */ 7537 if (ip_csum_hdr(ipha)) { 7538 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInCksumErrs); 7539 goto drop_pkt; 7540 } 7541 7542 /* Initiate write side IPPF processing */ 7543 if (IPP_ENABLED(IPP_FWD_OUT)) { 7544 ip_process(IPP_FWD_OUT, &mp, ill_index); 7545 if (mp == NULL) { 7546 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 7547 "dropped/deferred during ip policy "\ 7548 "processing\n")); 7549 return; 7550 } 7551 } 7552 if ((first_mp = allocb(sizeof (ipsec_info_t), 7553 BPRI_HI)) == NULL) { 7554 goto discard_pkt; 7555 } 7556 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7557 mp = first_mp; 7558 7559 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID); 7560 return; 7561 } 7562 7563 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 7564 7565 ASSERT(ire->ire_ipif != NULL); 7566 7567 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 7568 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7569 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 7570 NULL, out_ill, ipha, mp, mp); 7571 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 7572 if (mp == NULL) 7573 return; 7574 7575 /* Now send the packet to the tunnel interface */ 7576 mp->b_prev = SET_BPREV_FLAG(IPP_FWD_OUT); 7577 q = ire->ire_stq; 7578 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_FALSE); 7579 if ((pktxmit_state == SEND_FAILED) || 7580 (pktxmit_state == LLHDR_RESLV_FAILED)) { 7581 ip2dbg(("ip_mrtun_forward: failed to send packet to ill %p\n", 7582 q->q_ptr)); 7583 } 7584 7585 return; 7586 discard_pkt: 7587 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInDiscards); 7588 drop_pkt:; 7589 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 7590 freemsg(mp); 7591 #undef rptr 7592 } 7593 7594 /* 7595 * Fills the ipsec_out_t data structure with appropriate fields and 7596 * prepends it to mp which contains the IP hdr + data that was meant 7597 * to be forwarded. Please note that ipsec_out_info data structure 7598 * is used here to communicate the outgoing ill path at ip_wput() 7599 * for the ICMP error packet. This has nothing to do with ipsec IP 7600 * security. ipsec_out_t is really used to pass the info to the module 7601 * IP where this information cannot be extracted from conn. 7602 * This functions is called by ip_mrtun_forward(). 7603 */ 7604 void 7605 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 7606 { 7607 ipsec_out_t *io; 7608 7609 ASSERT(xmit_ill != NULL); 7610 first_mp->b_datap->db_type = M_CTL; 7611 first_mp->b_wptr += sizeof (ipsec_info_t); 7612 /* 7613 * This is to pass info to ip_wput in absence of conn. 7614 * ipsec_out_secure will be B_FALSE because of this. 7615 * Thus ipsec_out_secure being B_FALSE indicates that 7616 * this is not IPSEC security related information. 7617 */ 7618 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 7619 io = (ipsec_out_t *)first_mp->b_rptr; 7620 io->ipsec_out_type = IPSEC_OUT; 7621 io->ipsec_out_len = sizeof (ipsec_out_t); 7622 first_mp->b_cont = mp; 7623 io->ipsec_out_ill_index = 7624 xmit_ill->ill_phyint->phyint_ifindex; 7625 io->ipsec_out_xmit_if = B_TRUE; 7626 } 7627 7628 /* 7629 * Return the network mask 7630 * associated with the specified address. 7631 */ 7632 ipaddr_t 7633 ip_net_mask(ipaddr_t addr) 7634 { 7635 uchar_t *up = (uchar_t *)&addr; 7636 ipaddr_t mask = 0; 7637 uchar_t *maskp = (uchar_t *)&mask; 7638 7639 #if defined(__i386) || defined(__amd64) 7640 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7641 #endif 7642 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7643 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7644 #endif 7645 if (CLASSD(addr)) { 7646 maskp[0] = 0xF0; 7647 return (mask); 7648 } 7649 if (addr == 0) 7650 return (0); 7651 maskp[0] = 0xFF; 7652 if ((up[0] & 0x80) == 0) 7653 return (mask); 7654 7655 maskp[1] = 0xFF; 7656 if ((up[0] & 0xC0) == 0x80) 7657 return (mask); 7658 7659 maskp[2] = 0xFF; 7660 if ((up[0] & 0xE0) == 0xC0) 7661 return (mask); 7662 7663 /* Must be experimental or multicast, indicate as much */ 7664 return ((ipaddr_t)0); 7665 } 7666 7667 /* 7668 * Select an ill for the packet by considering load spreading across 7669 * a different ill in the group if dst_ill is part of some group. 7670 */ 7671 ill_t * 7672 ip_newroute_get_dst_ill(ill_t *dst_ill) 7673 { 7674 ill_t *ill; 7675 7676 /* 7677 * We schedule irrespective of whether the source address is 7678 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7679 */ 7680 ill = illgrp_scheduler(dst_ill); 7681 if (ill == NULL) 7682 return (NULL); 7683 7684 /* 7685 * For groups with names ip_sioctl_groupname ensures that all 7686 * ills are of same type. For groups without names, ifgrp_insert 7687 * ensures this. 7688 */ 7689 ASSERT(dst_ill->ill_type == ill->ill_type); 7690 7691 return (ill); 7692 } 7693 7694 /* 7695 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7696 */ 7697 ill_t * 7698 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6) 7699 { 7700 ill_t *ret_ill; 7701 7702 ASSERT(ifindex != 0); 7703 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 7704 if (ret_ill == NULL || 7705 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7706 if (isv6) { 7707 if (ill != NULL) { 7708 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7709 } else { 7710 BUMP_MIB(&ip6_mib, ipIfStatsOutDiscards); 7711 } 7712 ip1dbg(("ip_grab_attach_ill (IPv6): " 7713 "bad ifindex %d.\n", ifindex)); 7714 } else { 7715 if (ill != NULL) { 7716 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7717 } else { 7718 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 7719 } 7720 ip1dbg(("ip_grab_attach_ill (IPv4): " 7721 "bad ifindex %d.\n", ifindex)); 7722 } 7723 if (ret_ill != NULL) 7724 ill_refrele(ret_ill); 7725 freemsg(first_mp); 7726 return (NULL); 7727 } 7728 7729 return (ret_ill); 7730 } 7731 7732 /* 7733 * IPv4 - 7734 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7735 * out a packet to a destination address for which we do not have specific 7736 * (or sufficient) routing information. 7737 * 7738 * NOTE : These are the scopes of some of the variables that point at IRE, 7739 * which needs to be followed while making any future modifications 7740 * to avoid memory leaks. 7741 * 7742 * - ire and sire are the entries looked up initially by 7743 * ire_ftable_lookup. 7744 * - ipif_ire is used to hold the interface ire associated with 7745 * the new cache ire. But it's scope is limited, so we always REFRELE 7746 * it before branching out to error paths. 7747 * - save_ire is initialized before ire_create, so that ire returned 7748 * by ire_create will not over-write the ire. We REFRELE save_ire 7749 * before breaking out of the switch. 7750 * 7751 * Thus on failures, we have to REFRELE only ire and sire, if they 7752 * are not NULL. 7753 */ 7754 void 7755 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp, 7756 zoneid_t zoneid) 7757 { 7758 areq_t *areq; 7759 ipaddr_t gw = 0; 7760 ire_t *ire = NULL; 7761 mblk_t *res_mp; 7762 ipaddr_t *addrp; 7763 ipaddr_t nexthop_addr; 7764 ipif_t *src_ipif = NULL; 7765 ill_t *dst_ill = NULL; 7766 ipha_t *ipha; 7767 ire_t *sire = NULL; 7768 mblk_t *first_mp; 7769 ire_t *save_ire; 7770 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7771 ushort_t ire_marks = 0; 7772 boolean_t mctl_present; 7773 ipsec_out_t *io; 7774 mblk_t *saved_mp; 7775 ire_t *first_sire = NULL; 7776 mblk_t *copy_mp = NULL; 7777 mblk_t *xmit_mp = NULL; 7778 ipaddr_t save_dst; 7779 uint32_t multirt_flags = 7780 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7781 boolean_t multirt_is_resolvable; 7782 boolean_t multirt_resolve_next; 7783 boolean_t do_attach_ill = B_FALSE; 7784 boolean_t ip_nexthop = B_FALSE; 7785 tsol_ire_gw_secattr_t *attrp = NULL; 7786 tsol_gcgrp_t *gcgrp = NULL; 7787 tsol_gcgrp_addr_t ga; 7788 7789 if (ip_debug > 2) { 7790 /* ip1dbg */ 7791 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7792 } 7793 7794 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7795 if (mctl_present) { 7796 io = (ipsec_out_t *)first_mp->b_rptr; 7797 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7798 ASSERT(zoneid == io->ipsec_out_zoneid); 7799 ASSERT(zoneid != ALL_ZONES); 7800 } 7801 7802 ipha = (ipha_t *)mp->b_rptr; 7803 7804 /* All multicast lookups come through ip_newroute_ipif() */ 7805 if (CLASSD(dst)) { 7806 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7807 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7808 freemsg(first_mp); 7809 return; 7810 } 7811 7812 if (mctl_present && io->ipsec_out_attach_if) { 7813 /* ip_grab_attach_ill returns a held ill */ 7814 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7815 io->ipsec_out_ill_index, B_FALSE); 7816 7817 /* Failure case frees things for us. */ 7818 if (attach_ill == NULL) 7819 return; 7820 7821 /* 7822 * Check if we need an ire that will not be 7823 * looked up by anybody else i.e. HIDDEN. 7824 */ 7825 if (ill_is_probeonly(attach_ill)) 7826 ire_marks = IRE_MARK_HIDDEN; 7827 } 7828 if (mctl_present && io->ipsec_out_ip_nexthop) { 7829 ip_nexthop = B_TRUE; 7830 nexthop_addr = io->ipsec_out_nexthop_addr; 7831 } 7832 /* 7833 * If this IRE is created for forwarding or it is not for 7834 * traffic for congestion controlled protocols, mark it as temporary. 7835 */ 7836 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7837 ire_marks |= IRE_MARK_TEMPORARY; 7838 7839 /* 7840 * Get what we can from ire_ftable_lookup which will follow an IRE 7841 * chain until it gets the most specific information available. 7842 * For example, we know that there is no IRE_CACHE for this dest, 7843 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7844 * ire_ftable_lookup will look up the gateway, etc. 7845 * Check if in_ill != NULL. If it is true, the packet must be 7846 * from an incoming interface where RTA_SRCIFP is set. 7847 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7848 * to the destination, of equal netmask length in the forward table, 7849 * will be recursively explored. If no information is available 7850 * for the final gateway of that route, we force the returned ire 7851 * to be equal to sire using MATCH_IRE_PARENT. 7852 * At least, in this case we have a starting point (in the buckets) 7853 * to look for other routes to the destination in the forward table. 7854 * This is actually used only for multirouting, where a list 7855 * of routes has to be processed in sequence. 7856 * 7857 * In the process of coming up with the most specific information, 7858 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7859 * for the gateway (i.e., one for which the ire_nce->nce_state is 7860 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7861 * Two caveats when handling incomplete ire's in ip_newroute: 7862 * - we should be careful when accessing its ire_nce (specifically 7863 * the nce_res_mp) ast it might change underneath our feet, and, 7864 * - not all legacy code path callers are prepared to handle 7865 * incomplete ire's, so we should not create/add incomplete 7866 * ire_cache entries here. (See discussion about temporary solution 7867 * further below). 7868 * 7869 * In order to minimize packet dropping, and to preserve existing 7870 * behavior, we treat this case as if there were no IRE_CACHE for the 7871 * gateway, and instead use the IF_RESOLVER ire to send out 7872 * another request to ARP (this is achieved by passing the 7873 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7874 * arp response comes back in ip_wput_nondata, we will create 7875 * a per-dst ire_cache that has an ND_COMPLETE ire. 7876 * 7877 * Note that this is a temporary solution; the correct solution is 7878 * to create an incomplete per-dst ire_cache entry, and send the 7879 * packet out when the gw's nce is resolved. In order to achieve this, 7880 * all packet processing must have been completed prior to calling 7881 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7882 * to be modified to accomodate this solution. 7883 */ 7884 if (in_ill != NULL) { 7885 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 7886 in_ill, MATCH_IRE_TYPE); 7887 } else if (ip_nexthop) { 7888 /* 7889 * The first time we come here, we look for an IRE_INTERFACE 7890 * entry for the specified nexthop, set the dst to be the 7891 * nexthop address and create an IRE_CACHE entry for the 7892 * nexthop. The next time around, we are able to find an 7893 * IRE_CACHE entry for the nexthop, set the gateway to be the 7894 * nexthop address and create an IRE_CACHE entry for the 7895 * destination address via the specified nexthop. 7896 */ 7897 ire = ire_cache_lookup(nexthop_addr, zoneid, 7898 MBLK_GETLABEL(mp)); 7899 if (ire != NULL) { 7900 gw = nexthop_addr; 7901 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7902 } else { 7903 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7904 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7905 MBLK_GETLABEL(mp), 7906 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 7907 if (ire != NULL) { 7908 dst = nexthop_addr; 7909 } 7910 } 7911 } else if (attach_ill == NULL) { 7912 ire = ire_ftable_lookup(dst, 0, 0, 0, 7913 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7914 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7915 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7916 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE); 7917 } else { 7918 /* 7919 * attach_ill is set only for communicating with 7920 * on-link hosts. So, don't look for DEFAULT. 7921 */ 7922 ipif_t *attach_ipif; 7923 7924 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7925 if (attach_ipif == NULL) { 7926 ill_refrele(attach_ill); 7927 goto icmp_err_ret; 7928 } 7929 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7930 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7931 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7932 MATCH_IRE_SECATTR); 7933 ipif_refrele(attach_ipif); 7934 } 7935 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7936 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7937 7938 /* 7939 * This loop is run only once in most cases. 7940 * We loop to resolve further routes only when the destination 7941 * can be reached through multiple RTF_MULTIRT-flagged ires. 7942 */ 7943 do { 7944 /* Clear the previous iteration's values */ 7945 if (src_ipif != NULL) { 7946 ipif_refrele(src_ipif); 7947 src_ipif = NULL; 7948 } 7949 if (dst_ill != NULL) { 7950 ill_refrele(dst_ill); 7951 dst_ill = NULL; 7952 } 7953 7954 multirt_resolve_next = B_FALSE; 7955 /* 7956 * We check if packets have to be multirouted. 7957 * In this case, given the current <ire, sire> couple, 7958 * we look for the next suitable <ire, sire>. 7959 * This check is done in ire_multirt_lookup(), 7960 * which applies various criteria to find the next route 7961 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7962 * unchanged if it detects it has not been tried yet. 7963 */ 7964 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7965 ip3dbg(("ip_newroute: starting next_resolution " 7966 "with first_mp %p, tag %d\n", 7967 (void *)first_mp, 7968 MULTIRT_DEBUG_TAGGED(first_mp))); 7969 7970 ASSERT(sire != NULL); 7971 multirt_is_resolvable = 7972 ire_multirt_lookup(&ire, &sire, multirt_flags, 7973 MBLK_GETLABEL(mp)); 7974 7975 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7976 "ire %p, sire %p\n", 7977 multirt_is_resolvable, 7978 (void *)ire, (void *)sire)); 7979 7980 if (!multirt_is_resolvable) { 7981 /* 7982 * No more multirt route to resolve; give up 7983 * (all routes resolved or no more 7984 * resolvable routes). 7985 */ 7986 if (ire != NULL) { 7987 ire_refrele(ire); 7988 ire = NULL; 7989 } 7990 } else { 7991 ASSERT(sire != NULL); 7992 ASSERT(ire != NULL); 7993 /* 7994 * We simply use first_sire as a flag that 7995 * indicates if a resolvable multirt route 7996 * has already been found. 7997 * If it is not the case, we may have to send 7998 * an ICMP error to report that the 7999 * destination is unreachable. 8000 * We do not IRE_REFHOLD first_sire. 8001 */ 8002 if (first_sire == NULL) { 8003 first_sire = sire; 8004 } 8005 } 8006 } 8007 if (ire == NULL) { 8008 if (ip_debug > 3) { 8009 /* ip2dbg */ 8010 pr_addr_dbg("ip_newroute: " 8011 "can't resolve %s\n", AF_INET, &dst); 8012 } 8013 ip3dbg(("ip_newroute: " 8014 "ire %p, sire %p, first_sire %p\n", 8015 (void *)ire, (void *)sire, (void *)first_sire)); 8016 8017 if (sire != NULL) { 8018 ire_refrele(sire); 8019 sire = NULL; 8020 } 8021 8022 if (first_sire != NULL) { 8023 /* 8024 * At least one multirt route has been found 8025 * in the same call to ip_newroute(); 8026 * there is no need to report an ICMP error. 8027 * first_sire was not IRE_REFHOLDed. 8028 */ 8029 MULTIRT_DEBUG_UNTAG(first_mp); 8030 freemsg(first_mp); 8031 return; 8032 } 8033 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8034 RTA_DST); 8035 if (attach_ill != NULL) 8036 ill_refrele(attach_ill); 8037 goto icmp_err_ret; 8038 } 8039 8040 /* 8041 * When RTA_SRCIFP is used to add a route, then an interface 8042 * route is added in the source interface's routing table. 8043 * If the outgoing interface of this route is of type 8044 * IRE_IF_RESOLVER, then upon creation of the ire, 8045 * ire_nce->nce_res_mp is set to NULL. 8046 * Later, when this route is first used for forwarding 8047 * a packet, ip_newroute() is called 8048 * to resolve the hardware address of the outgoing ipif. 8049 * We do not come here for IRE_IF_NORESOLVER entries in the 8050 * source interface based table. We only come here if the 8051 * outgoing interface is a resolver interface and we don't 8052 * have the ire_nce->nce_res_mp information yet. 8053 * If in_ill is not null that means it is called from 8054 * ip_rput. 8055 */ 8056 8057 ASSERT(ire->ire_in_ill == NULL || 8058 (ire->ire_type == IRE_IF_RESOLVER && 8059 ire->ire_nce != NULL && ire->ire_nce->nce_res_mp == NULL)); 8060 8061 /* 8062 * Verify that the returned IRE does not have either 8063 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8064 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8065 */ 8066 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8067 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8068 if (attach_ill != NULL) 8069 ill_refrele(attach_ill); 8070 goto icmp_err_ret; 8071 } 8072 /* 8073 * Increment the ire_ob_pkt_count field for ire if it is an 8074 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8075 * increment the same for the parent IRE, sire, if it is some 8076 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST 8077 * and HOST_REDIRECT). 8078 */ 8079 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8080 UPDATE_OB_PKT_COUNT(ire); 8081 ire->ire_last_used_time = lbolt; 8082 } 8083 8084 if (sire != NULL) { 8085 gw = sire->ire_gateway_addr; 8086 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8087 IRE_INTERFACE)) == 0); 8088 UPDATE_OB_PKT_COUNT(sire); 8089 sire->ire_last_used_time = lbolt; 8090 } 8091 /* 8092 * We have a route to reach the destination. 8093 * 8094 * 1) If the interface is part of ill group, try to get a new 8095 * ill taking load spreading into account. 8096 * 8097 * 2) After selecting the ill, get a source address that 8098 * might create good inbound load spreading. 8099 * ipif_select_source does this for us. 8100 * 8101 * If the application specified the ill (ifindex), we still 8102 * load spread. Only if the packets needs to go out 8103 * specifically on a given ill e.g. binding to 8104 * IPIF_NOFAILOVER address, then we don't try to use a 8105 * different ill for load spreading. 8106 */ 8107 if (attach_ill == NULL) { 8108 /* 8109 * Don't perform outbound load spreading in the 8110 * case of an RTF_MULTIRT route, as we actually 8111 * typically want to replicate outgoing packets 8112 * through particular interfaces. 8113 */ 8114 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8115 dst_ill = ire->ire_ipif->ipif_ill; 8116 /* for uniformity */ 8117 ill_refhold(dst_ill); 8118 } else { 8119 /* 8120 * If we are here trying to create an IRE_CACHE 8121 * for an offlink destination and have the 8122 * IRE_CACHE for the next hop and the latter is 8123 * using virtual IP source address selection i.e 8124 * it's ire->ire_ipif is pointing to a virtual 8125 * network interface (vni) then 8126 * ip_newroute_get_dst_ll() will return the vni 8127 * interface as the dst_ill. Since the vni is 8128 * virtual i.e not associated with any physical 8129 * interface, it cannot be the dst_ill, hence 8130 * in such a case call ip_newroute_get_dst_ll() 8131 * with the stq_ill instead of the ire_ipif ILL. 8132 * The function returns a refheld ill. 8133 */ 8134 if ((ire->ire_type == IRE_CACHE) && 8135 IS_VNI(ire->ire_ipif->ipif_ill)) 8136 dst_ill = ip_newroute_get_dst_ill( 8137 ire->ire_stq->q_ptr); 8138 else 8139 dst_ill = ip_newroute_get_dst_ill( 8140 ire->ire_ipif->ipif_ill); 8141 } 8142 if (dst_ill == NULL) { 8143 if (ip_debug > 2) { 8144 pr_addr_dbg("ip_newroute: " 8145 "no dst ill for dst" 8146 " %s\n", AF_INET, &dst); 8147 } 8148 goto icmp_err_ret; 8149 } 8150 } else { 8151 dst_ill = ire->ire_ipif->ipif_ill; 8152 /* for uniformity */ 8153 ill_refhold(dst_ill); 8154 /* 8155 * We should have found a route matching ill as we 8156 * called ire_ftable_lookup with MATCH_IRE_ILL. 8157 * Rather than asserting, when there is a mismatch, 8158 * we just drop the packet. 8159 */ 8160 if (dst_ill != attach_ill) { 8161 ip0dbg(("ip_newroute: Packet dropped as " 8162 "IPIF_NOFAILOVER ill is %s, " 8163 "ire->ire_ipif->ipif_ill is %s\n", 8164 attach_ill->ill_name, 8165 dst_ill->ill_name)); 8166 ill_refrele(attach_ill); 8167 goto icmp_err_ret; 8168 } 8169 } 8170 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8171 if (attach_ill != NULL) { 8172 ill_refrele(attach_ill); 8173 attach_ill = NULL; 8174 do_attach_ill = B_TRUE; 8175 } 8176 ASSERT(dst_ill != NULL); 8177 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8178 8179 /* 8180 * Pick the best source address from dst_ill. 8181 * 8182 * 1) If it is part of a multipathing group, we would 8183 * like to spread the inbound packets across different 8184 * interfaces. ipif_select_source picks a random source 8185 * across the different ills in the group. 8186 * 8187 * 2) If it is not part of a multipathing group, we try 8188 * to pick the source address from the destination 8189 * route. Clustering assumes that when we have multiple 8190 * prefixes hosted on an interface, the prefix of the 8191 * source address matches the prefix of the destination 8192 * route. We do this only if the address is not 8193 * DEPRECATED. 8194 * 8195 * 3) If the conn is in a different zone than the ire, we 8196 * need to pick a source address from the right zone. 8197 * 8198 * NOTE : If we hit case (1) above, the prefix of the source 8199 * address picked may not match the prefix of the 8200 * destination routes prefix as ipif_select_source 8201 * does not look at "dst" while picking a source 8202 * address. 8203 * If we want the same behavior as (2), we will need 8204 * to change the behavior of ipif_select_source. 8205 */ 8206 ASSERT(src_ipif == NULL); 8207 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8208 /* 8209 * The RTF_SETSRC flag is set in the parent ire (sire). 8210 * Check that the ipif matching the requested source 8211 * address still exists. 8212 */ 8213 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8214 zoneid, NULL, NULL, NULL, NULL); 8215 } 8216 if (src_ipif == NULL) { 8217 ire_marks |= IRE_MARK_USESRC_CHECK; 8218 if ((dst_ill->ill_group != NULL) || 8219 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8220 (connp != NULL && ire->ire_zoneid != zoneid && 8221 ire->ire_zoneid != ALL_ZONES) || 8222 (dst_ill->ill_usesrc_ifindex != 0)) { 8223 /* 8224 * If the destination is reachable via a 8225 * given gateway, the selected source address 8226 * should be in the same subnet as the gateway. 8227 * Otherwise, the destination is not reachable. 8228 * 8229 * If there are no interfaces on the same subnet 8230 * as the destination, ipif_select_source gives 8231 * first non-deprecated interface which might be 8232 * on a different subnet than the gateway. 8233 * This is not desirable. Hence pass the dst_ire 8234 * source address to ipif_select_source. 8235 * It is sure that the destination is reachable 8236 * with the dst_ire source address subnet. 8237 * So passing dst_ire source address to 8238 * ipif_select_source will make sure that the 8239 * selected source will be on the same subnet 8240 * as dst_ire source address. 8241 */ 8242 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8243 src_ipif = ipif_select_source(dst_ill, saddr, 8244 zoneid); 8245 if (src_ipif == NULL) { 8246 if (ip_debug > 2) { 8247 pr_addr_dbg("ip_newroute: " 8248 "no src for dst %s ", 8249 AF_INET, &dst); 8250 printf("through interface %s\n", 8251 dst_ill->ill_name); 8252 } 8253 goto icmp_err_ret; 8254 } 8255 } else { 8256 src_ipif = ire->ire_ipif; 8257 ASSERT(src_ipif != NULL); 8258 /* hold src_ipif for uniformity */ 8259 ipif_refhold(src_ipif); 8260 } 8261 } 8262 8263 /* 8264 * Assign a source address while we have the conn. 8265 * We can't have ip_wput_ire pick a source address when the 8266 * packet returns from arp since we need to look at 8267 * conn_unspec_src and conn_zoneid, and we lose the conn when 8268 * going through arp. 8269 * 8270 * NOTE : ip_newroute_v6 does not have this piece of code as 8271 * it uses ip6i to store this information. 8272 */ 8273 if (ipha->ipha_src == INADDR_ANY && 8274 (connp == NULL || !connp->conn_unspec_src)) { 8275 ipha->ipha_src = src_ipif->ipif_src_addr; 8276 } 8277 if (ip_debug > 3) { 8278 /* ip2dbg */ 8279 pr_addr_dbg("ip_newroute: first hop %s\n", 8280 AF_INET, &gw); 8281 } 8282 ip2dbg(("\tire type %s (%d)\n", 8283 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8284 8285 /* 8286 * The TTL of multirouted packets is bounded by the 8287 * ip_multirt_ttl ndd variable. 8288 */ 8289 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8290 /* Force TTL of multirouted packets */ 8291 if ((ip_multirt_ttl > 0) && 8292 (ipha->ipha_ttl > ip_multirt_ttl)) { 8293 ip2dbg(("ip_newroute: forcing multirt TTL " 8294 "to %d (was %d), dst 0x%08x\n", 8295 ip_multirt_ttl, ipha->ipha_ttl, 8296 ntohl(sire->ire_addr))); 8297 ipha->ipha_ttl = ip_multirt_ttl; 8298 } 8299 } 8300 /* 8301 * At this point in ip_newroute(), ire is either the 8302 * IRE_CACHE of the next-hop gateway for an off-subnet 8303 * destination or an IRE_INTERFACE type that should be used 8304 * to resolve an on-subnet destination or an on-subnet 8305 * next-hop gateway. 8306 * 8307 * In the IRE_CACHE case, we have the following : 8308 * 8309 * 1) src_ipif - used for getting a source address. 8310 * 8311 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8312 * means packets using this IRE_CACHE will go out on 8313 * dst_ill. 8314 * 8315 * 3) The IRE sire will point to the prefix that is the 8316 * longest matching route for the destination. These 8317 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8318 * 8319 * The newly created IRE_CACHE entry for the off-subnet 8320 * destination is tied to both the prefix route and the 8321 * interface route used to resolve the next-hop gateway 8322 * via the ire_phandle and ire_ihandle fields, 8323 * respectively. 8324 * 8325 * In the IRE_INTERFACE case, we have the following : 8326 * 8327 * 1) src_ipif - used for getting a source address. 8328 * 8329 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8330 * means packets using the IRE_CACHE that we will build 8331 * here will go out on dst_ill. 8332 * 8333 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8334 * to be created will only be tied to the IRE_INTERFACE 8335 * that was derived from the ire_ihandle field. 8336 * 8337 * If sire is non-NULL, it means the destination is 8338 * off-link and we will first create the IRE_CACHE for the 8339 * gateway. Next time through ip_newroute, we will create 8340 * the IRE_CACHE for the final destination as described 8341 * above. 8342 * 8343 * In both cases, after the current resolution has been 8344 * completed (or possibly initialised, in the IRE_INTERFACE 8345 * case), the loop may be re-entered to attempt the resolution 8346 * of another RTF_MULTIRT route. 8347 * 8348 * When an IRE_CACHE entry for the off-subnet destination is 8349 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8350 * for further processing in emission loops. 8351 */ 8352 save_ire = ire; 8353 switch (ire->ire_type) { 8354 case IRE_CACHE: { 8355 ire_t *ipif_ire; 8356 mblk_t *ire_fp_mp; 8357 8358 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8359 if (gw == 0) 8360 gw = ire->ire_gateway_addr; 8361 /* 8362 * We need 3 ire's to create a new cache ire for an 8363 * off-link destination from the cache ire of the 8364 * gateway. 8365 * 8366 * 1. The prefix ire 'sire' (Note that this does 8367 * not apply to the conn_nexthop_set case) 8368 * 2. The cache ire of the gateway 'ire' 8369 * 3. The interface ire 'ipif_ire' 8370 * 8371 * We have (1) and (2). We lookup (3) below. 8372 * 8373 * If there is no interface route to the gateway, 8374 * it is a race condition, where we found the cache 8375 * but the interface route has been deleted. 8376 */ 8377 if (ip_nexthop) { 8378 ipif_ire = ire_ihandle_lookup_onlink(ire); 8379 } else { 8380 ipif_ire = 8381 ire_ihandle_lookup_offlink(ire, sire); 8382 } 8383 if (ipif_ire == NULL) { 8384 ip1dbg(("ip_newroute: " 8385 "ire_ihandle_lookup_offlink failed\n")); 8386 goto icmp_err_ret; 8387 } 8388 /* 8389 * XXX We are using the same res_mp 8390 * (DL_UNITDATA_REQ) though the save_ire is not 8391 * pointing at the same ill. 8392 * This is incorrect. We need to send it up to the 8393 * resolver to get the right res_mp. For ethernets 8394 * this may be okay (ill_type == DL_ETHER). 8395 */ 8396 res_mp = save_ire->ire_nce->nce_res_mp; 8397 ire_fp_mp = NULL; 8398 /* 8399 * save_ire's nce_fp_mp can't change since it is 8400 * not an IRE_MIPRTUN or IRE_BROADCAST 8401 * LOCK_IRE_FP_MP does not do any useful work in 8402 * the case of IRE_CACHE. So we don't use it below. 8403 */ 8404 if (save_ire->ire_stq == dst_ill->ill_wq) 8405 ire_fp_mp = save_ire->ire_nce->nce_fp_mp; 8406 8407 /* 8408 * Check cached gateway IRE for any security 8409 * attributes; if found, associate the gateway 8410 * credentials group to the destination IRE. 8411 */ 8412 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8413 mutex_enter(&attrp->igsa_lock); 8414 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8415 GCGRP_REFHOLD(gcgrp); 8416 mutex_exit(&attrp->igsa_lock); 8417 } 8418 8419 ire = ire_create( 8420 (uchar_t *)&dst, /* dest address */ 8421 (uchar_t *)&ip_g_all_ones, /* mask */ 8422 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8423 (uchar_t *)&gw, /* gateway address */ 8424 NULL, 8425 &save_ire->ire_max_frag, 8426 ire_fp_mp, /* Fast Path header */ 8427 dst_ill->ill_rq, /* recv-from queue */ 8428 dst_ill->ill_wq, /* send-to queue */ 8429 IRE_CACHE, /* IRE type */ 8430 res_mp, 8431 src_ipif, 8432 in_ill, /* incoming ill */ 8433 (sire != NULL) ? 8434 sire->ire_mask : 0, /* Parent mask */ 8435 (sire != NULL) ? 8436 sire->ire_phandle : 0, /* Parent handle */ 8437 ipif_ire->ire_ihandle, /* Interface handle */ 8438 (sire != NULL) ? (sire->ire_flags & 8439 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8440 (sire != NULL) ? 8441 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8442 NULL, 8443 gcgrp); 8444 8445 if (ire == NULL) { 8446 if (gcgrp != NULL) { 8447 GCGRP_REFRELE(gcgrp); 8448 gcgrp = NULL; 8449 } 8450 ire_refrele(ipif_ire); 8451 ire_refrele(save_ire); 8452 break; 8453 } 8454 8455 /* reference now held by IRE */ 8456 gcgrp = NULL; 8457 8458 ire->ire_marks |= ire_marks; 8459 8460 /* 8461 * Prevent sire and ipif_ire from getting deleted. 8462 * The newly created ire is tied to both of them via 8463 * the phandle and ihandle respectively. 8464 */ 8465 if (sire != NULL) { 8466 IRB_REFHOLD(sire->ire_bucket); 8467 /* Has it been removed already ? */ 8468 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8469 IRB_REFRELE(sire->ire_bucket); 8470 ire_refrele(ipif_ire); 8471 ire_refrele(save_ire); 8472 break; 8473 } 8474 } 8475 8476 IRB_REFHOLD(ipif_ire->ire_bucket); 8477 /* Has it been removed already ? */ 8478 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8479 IRB_REFRELE(ipif_ire->ire_bucket); 8480 if (sire != NULL) 8481 IRB_REFRELE(sire->ire_bucket); 8482 ire_refrele(ipif_ire); 8483 ire_refrele(save_ire); 8484 break; 8485 } 8486 8487 xmit_mp = first_mp; 8488 /* 8489 * In the case of multirouting, a copy 8490 * of the packet is done before its sending. 8491 * The copy is used to attempt another 8492 * route resolution, in a next loop. 8493 */ 8494 if (ire->ire_flags & RTF_MULTIRT) { 8495 copy_mp = copymsg(first_mp); 8496 if (copy_mp != NULL) { 8497 xmit_mp = copy_mp; 8498 MULTIRT_DEBUG_TAG(first_mp); 8499 } 8500 } 8501 ire_add_then_send(q, ire, xmit_mp); 8502 ire_refrele(save_ire); 8503 8504 /* Assert that sire is not deleted yet. */ 8505 if (sire != NULL) { 8506 ASSERT(sire->ire_ptpn != NULL); 8507 IRB_REFRELE(sire->ire_bucket); 8508 } 8509 8510 /* Assert that ipif_ire is not deleted yet. */ 8511 ASSERT(ipif_ire->ire_ptpn != NULL); 8512 IRB_REFRELE(ipif_ire->ire_bucket); 8513 ire_refrele(ipif_ire); 8514 8515 /* 8516 * If copy_mp is not NULL, multirouting was 8517 * requested. We loop to initiate a next 8518 * route resolution attempt, starting from sire. 8519 */ 8520 if (copy_mp != NULL) { 8521 /* 8522 * Search for the next unresolved 8523 * multirt route. 8524 */ 8525 copy_mp = NULL; 8526 ipif_ire = NULL; 8527 ire = NULL; 8528 multirt_resolve_next = B_TRUE; 8529 continue; 8530 } 8531 if (sire != NULL) 8532 ire_refrele(sire); 8533 ipif_refrele(src_ipif); 8534 ill_refrele(dst_ill); 8535 return; 8536 } 8537 case IRE_IF_NORESOLVER: { 8538 /* 8539 * We have what we need to build an IRE_CACHE. 8540 * 8541 * Create a new res_mp with the IP gateway address 8542 * in destination address in the DLPI hdr if the 8543 * physical length is exactly 4 bytes. 8544 */ 8545 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8546 uchar_t *addr; 8547 8548 if (gw) 8549 addr = (uchar_t *)&gw; 8550 else 8551 addr = (uchar_t *)&dst; 8552 8553 res_mp = ill_dlur_gen(addr, 8554 dst_ill->ill_phys_addr_length, 8555 dst_ill->ill_sap, 8556 dst_ill->ill_sap_length); 8557 8558 if (res_mp == NULL) { 8559 ip1dbg(("ip_newroute: res_mp NULL\n")); 8560 break; 8561 } 8562 } else if (dst_ill->ill_resolver_mp == NULL) { 8563 ip1dbg(("ip_newroute: dst_ill %p " 8564 "for IF_NORESOLV ire %p has " 8565 "no ill_resolver_mp\n", 8566 (void *)dst_ill, (void *)ire)); 8567 break; 8568 } else { 8569 res_mp = NULL; 8570 } 8571 8572 /* 8573 * TSol note: We are creating the ire cache for the 8574 * destination 'dst'. If 'dst' is offlink, going 8575 * through the first hop 'gw', the security attributes 8576 * of 'dst' must be set to point to the gateway 8577 * credentials of gateway 'gw'. If 'dst' is onlink, it 8578 * is possible that 'dst' is a potential gateway that is 8579 * referenced by some route that has some security 8580 * attributes. Thus in the former case, we need to do a 8581 * gcgrp_lookup of 'gw' while in the latter case we 8582 * need to do gcgrp_lookup of 'dst' itself. 8583 */ 8584 ga.ga_af = AF_INET; 8585 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8586 &ga.ga_addr); 8587 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8588 8589 ire = ire_create( 8590 (uchar_t *)&dst, /* dest address */ 8591 (uchar_t *)&ip_g_all_ones, /* mask */ 8592 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8593 (uchar_t *)&gw, /* gateway address */ 8594 NULL, 8595 &save_ire->ire_max_frag, 8596 NULL, /* Fast Path header */ 8597 dst_ill->ill_rq, /* recv-from queue */ 8598 dst_ill->ill_wq, /* send-to queue */ 8599 IRE_CACHE, 8600 res_mp, 8601 src_ipif, 8602 in_ill, /* Incoming ill */ 8603 save_ire->ire_mask, /* Parent mask */ 8604 (sire != NULL) ? /* Parent handle */ 8605 sire->ire_phandle : 0, 8606 save_ire->ire_ihandle, /* Interface handle */ 8607 (sire != NULL) ? sire->ire_flags & 8608 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8609 &(save_ire->ire_uinfo), 8610 NULL, 8611 gcgrp); 8612 8613 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 8614 freeb(res_mp); 8615 8616 if (ire == NULL) { 8617 if (gcgrp != NULL) { 8618 GCGRP_REFRELE(gcgrp); 8619 gcgrp = NULL; 8620 } 8621 ire_refrele(save_ire); 8622 break; 8623 } 8624 8625 /* reference now held by IRE */ 8626 gcgrp = NULL; 8627 8628 ire->ire_marks |= ire_marks; 8629 8630 /* Prevent save_ire from getting deleted */ 8631 IRB_REFHOLD(save_ire->ire_bucket); 8632 /* Has it been removed already ? */ 8633 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8634 IRB_REFRELE(save_ire->ire_bucket); 8635 ire_refrele(save_ire); 8636 break; 8637 } 8638 8639 /* 8640 * In the case of multirouting, a copy 8641 * of the packet is made before it is sent. 8642 * The copy is used in the next 8643 * loop to attempt another resolution. 8644 */ 8645 xmit_mp = first_mp; 8646 if ((sire != NULL) && 8647 (sire->ire_flags & RTF_MULTIRT)) { 8648 copy_mp = copymsg(first_mp); 8649 if (copy_mp != NULL) { 8650 xmit_mp = copy_mp; 8651 MULTIRT_DEBUG_TAG(first_mp); 8652 } 8653 } 8654 ire_add_then_send(q, ire, xmit_mp); 8655 8656 /* Assert that it is not deleted yet. */ 8657 ASSERT(save_ire->ire_ptpn != NULL); 8658 IRB_REFRELE(save_ire->ire_bucket); 8659 ire_refrele(save_ire); 8660 8661 if (copy_mp != NULL) { 8662 /* 8663 * If we found a (no)resolver, we ignore any 8664 * trailing top priority IRE_CACHE in further 8665 * loops. This ensures that we do not omit any 8666 * (no)resolver. 8667 * This IRE_CACHE, if any, will be processed 8668 * by another thread entering ip_newroute(). 8669 * IRE_CACHE entries, if any, will be processed 8670 * by another thread entering ip_newroute(), 8671 * (upon resolver response, for instance). 8672 * This aims to force parallel multirt 8673 * resolutions as soon as a packet must be sent. 8674 * In the best case, after the tx of only one 8675 * packet, all reachable routes are resolved. 8676 * Otherwise, the resolution of all RTF_MULTIRT 8677 * routes would require several emissions. 8678 */ 8679 multirt_flags &= ~MULTIRT_CACHEGW; 8680 8681 /* 8682 * Search for the next unresolved multirt 8683 * route. 8684 */ 8685 copy_mp = NULL; 8686 save_ire = NULL; 8687 ire = NULL; 8688 multirt_resolve_next = B_TRUE; 8689 continue; 8690 } 8691 8692 /* 8693 * Don't need sire anymore 8694 */ 8695 if (sire != NULL) 8696 ire_refrele(sire); 8697 8698 ipif_refrele(src_ipif); 8699 ill_refrele(dst_ill); 8700 return; 8701 } 8702 case IRE_IF_RESOLVER: 8703 /* 8704 * We can't build an IRE_CACHE yet, but at least we 8705 * found a resolver that can help. 8706 */ 8707 res_mp = dst_ill->ill_resolver_mp; 8708 if (!OK_RESOLVER_MP(res_mp)) 8709 break; 8710 8711 /* 8712 * To be at this point in the code with a non-zero gw 8713 * means that dst is reachable through a gateway that 8714 * we have never resolved. By changing dst to the gw 8715 * addr we resolve the gateway first. 8716 * When ire_add_then_send() tries to put the IP dg 8717 * to dst, it will reenter ip_newroute() at which 8718 * time we will find the IRE_CACHE for the gw and 8719 * create another IRE_CACHE in case IRE_CACHE above. 8720 */ 8721 if (gw != INADDR_ANY) { 8722 /* 8723 * The source ipif that was determined above was 8724 * relative to the destination address, not the 8725 * gateway's. If src_ipif was not taken out of 8726 * the IRE_IF_RESOLVER entry, we'll need to call 8727 * ipif_select_source() again. 8728 */ 8729 if (src_ipif != ire->ire_ipif) { 8730 ipif_refrele(src_ipif); 8731 src_ipif = ipif_select_source(dst_ill, 8732 gw, zoneid); 8733 if (src_ipif == NULL) { 8734 if (ip_debug > 2) { 8735 pr_addr_dbg( 8736 "ip_newroute: no " 8737 "src for gw %s ", 8738 AF_INET, &gw); 8739 printf("through " 8740 "interface %s\n", 8741 dst_ill->ill_name); 8742 } 8743 goto icmp_err_ret; 8744 } 8745 } 8746 save_dst = dst; 8747 dst = gw; 8748 gw = INADDR_ANY; 8749 } 8750 8751 /* 8752 * We obtain a partial IRE_CACHE which we will pass 8753 * along with the resolver query. When the response 8754 * comes back it will be there ready for us to add. 8755 * The ire_max_frag is atomically set under the 8756 * irebucket lock in ire_add_v[46]. 8757 */ 8758 8759 ire = ire_create_mp( 8760 (uchar_t *)&dst, /* dest address */ 8761 (uchar_t *)&ip_g_all_ones, /* mask */ 8762 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8763 (uchar_t *)&gw, /* gateway address */ 8764 NULL, /* no in_src_addr */ 8765 NULL, /* ire_max_frag */ 8766 NULL, /* Fast Path header */ 8767 dst_ill->ill_rq, /* recv-from queue */ 8768 dst_ill->ill_wq, /* send-to queue */ 8769 IRE_CACHE, 8770 NULL, 8771 src_ipif, /* Interface ipif */ 8772 in_ill, /* Incoming ILL */ 8773 save_ire->ire_mask, /* Parent mask */ 8774 0, 8775 save_ire->ire_ihandle, /* Interface handle */ 8776 0, /* flags if any */ 8777 &(save_ire->ire_uinfo), 8778 NULL, 8779 NULL); 8780 8781 if (ire == NULL) { 8782 ire_refrele(save_ire); 8783 break; 8784 } 8785 8786 if ((sire != NULL) && 8787 (sire->ire_flags & RTF_MULTIRT)) { 8788 copy_mp = copymsg(first_mp); 8789 if (copy_mp != NULL) 8790 MULTIRT_DEBUG_TAG(copy_mp); 8791 } 8792 8793 ire->ire_marks |= ire_marks; 8794 8795 /* 8796 * Construct message chain for the resolver 8797 * of the form: 8798 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8799 * Packet could contain a IPSEC_OUT mp. 8800 * 8801 * NOTE : ire will be added later when the response 8802 * comes back from ARP. If the response does not 8803 * come back, ARP frees the packet. For this reason, 8804 * we can't REFHOLD the bucket of save_ire to prevent 8805 * deletions. We may not be able to REFRELE the bucket 8806 * if the response never comes back. Thus, before 8807 * adding the ire, ire_add_v4 will make sure that the 8808 * interface route does not get deleted. This is the 8809 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8810 * where we can always prevent deletions because of 8811 * the synchronous nature of adding IRES i.e 8812 * ire_add_then_send is called after creating the IRE. 8813 */ 8814 ASSERT(ire->ire_mp != NULL); 8815 ire->ire_mp->b_cont = first_mp; 8816 /* Have saved_mp handy, for cleanup if canput fails */ 8817 saved_mp = mp; 8818 mp = copyb(res_mp); 8819 if (mp == NULL) { 8820 /* Prepare for cleanup */ 8821 mp = saved_mp; /* pkt */ 8822 ire_delete(ire); /* ire_mp */ 8823 ire = NULL; 8824 ire_refrele(save_ire); 8825 if (copy_mp != NULL) { 8826 MULTIRT_DEBUG_UNTAG(copy_mp); 8827 freemsg(copy_mp); 8828 copy_mp = NULL; 8829 } 8830 break; 8831 } 8832 linkb(mp, ire->ire_mp); 8833 8834 /* 8835 * Fill in the source and dest addrs for the resolver. 8836 * NOTE: this depends on memory layouts imposed by 8837 * ill_init(). 8838 */ 8839 areq = (areq_t *)mp->b_rptr; 8840 addrp = (ipaddr_t *)((char *)areq + 8841 areq->areq_sender_addr_offset); 8842 if (do_attach_ill) { 8843 /* 8844 * This is bind to no failover case. 8845 * arp packet also must go out on attach_ill. 8846 */ 8847 ASSERT(ipha->ipha_src != NULL); 8848 *addrp = ipha->ipha_src; 8849 } else { 8850 *addrp = save_ire->ire_src_addr; 8851 } 8852 8853 ire_refrele(save_ire); 8854 addrp = (ipaddr_t *)((char *)areq + 8855 areq->areq_target_addr_offset); 8856 *addrp = dst; 8857 /* Up to the resolver. */ 8858 if (canputnext(dst_ill->ill_rq) && 8859 !(dst_ill->ill_arp_closing)) { 8860 putnext(dst_ill->ill_rq, mp); 8861 ire = NULL; 8862 if (copy_mp != NULL) { 8863 /* 8864 * If we found a resolver, we ignore 8865 * any trailing top priority IRE_CACHE 8866 * in the further loops. This ensures 8867 * that we do not omit any resolver. 8868 * IRE_CACHE entries, if any, will be 8869 * processed next time we enter 8870 * ip_newroute(). 8871 */ 8872 multirt_flags &= ~MULTIRT_CACHEGW; 8873 /* 8874 * Search for the next unresolved 8875 * multirt route. 8876 */ 8877 first_mp = copy_mp; 8878 copy_mp = NULL; 8879 /* Prepare the next resolution loop. */ 8880 mp = first_mp; 8881 EXTRACT_PKT_MP(mp, first_mp, 8882 mctl_present); 8883 if (mctl_present) 8884 io = (ipsec_out_t *) 8885 first_mp->b_rptr; 8886 ipha = (ipha_t *)mp->b_rptr; 8887 8888 ASSERT(sire != NULL); 8889 8890 dst = save_dst; 8891 multirt_resolve_next = B_TRUE; 8892 continue; 8893 } 8894 8895 if (sire != NULL) 8896 ire_refrele(sire); 8897 8898 /* 8899 * The response will come back in ip_wput 8900 * with db_type IRE_DB_TYPE. 8901 */ 8902 ipif_refrele(src_ipif); 8903 ill_refrele(dst_ill); 8904 return; 8905 } else { 8906 /* Prepare for cleanup */ 8907 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8908 mp); 8909 mp->b_cont = NULL; 8910 freeb(mp); /* areq */ 8911 /* 8912 * this is an ire that is not added to the 8913 * cache. ire_freemblk will handle the release 8914 * of any resources associated with the ire. 8915 */ 8916 ire_delete(ire); /* ire_mp */ 8917 mp = saved_mp; /* pkt */ 8918 ire = NULL; 8919 if (copy_mp != NULL) { 8920 MULTIRT_DEBUG_UNTAG(copy_mp); 8921 freemsg(copy_mp); 8922 copy_mp = NULL; 8923 } 8924 break; 8925 } 8926 default: 8927 break; 8928 } 8929 } while (multirt_resolve_next); 8930 8931 ip1dbg(("ip_newroute: dropped\n")); 8932 /* Did this packet originate externally? */ 8933 if (mp->b_prev) { 8934 mp->b_next = NULL; 8935 mp->b_prev = NULL; 8936 if (in_ill != NULL) { 8937 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInDiscards); 8938 } else { 8939 BUMP_MIB(&ip_mib, ipIfStatsInDiscards); 8940 } 8941 } else { 8942 if (dst_ill != NULL) { 8943 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8944 } else { 8945 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 8946 } 8947 } 8948 ASSERT(copy_mp == NULL); 8949 MULTIRT_DEBUG_UNTAG(first_mp); 8950 freemsg(first_mp); 8951 if (ire != NULL) 8952 ire_refrele(ire); 8953 if (sire != NULL) 8954 ire_refrele(sire); 8955 if (src_ipif != NULL) 8956 ipif_refrele(src_ipif); 8957 if (dst_ill != NULL) 8958 ill_refrele(dst_ill); 8959 return; 8960 8961 icmp_err_ret: 8962 ip1dbg(("ip_newroute: no route\n")); 8963 if (src_ipif != NULL) 8964 ipif_refrele(src_ipif); 8965 if (dst_ill != NULL) 8966 ill_refrele(dst_ill); 8967 if (sire != NULL) 8968 ire_refrele(sire); 8969 /* Did this packet originate externally? */ 8970 if (mp->b_prev) { 8971 mp->b_next = NULL; 8972 mp->b_prev = NULL; 8973 if (in_ill != NULL) { 8974 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInNoRoutes); 8975 } else { 8976 BUMP_MIB(&ip_mib, ipIfStatsInNoRoutes); 8977 } 8978 q = WR(q); 8979 } else { 8980 /* 8981 * There is no outgoing ill, so just increment the 8982 * system MIB. 8983 */ 8984 BUMP_MIB(&ip_mib, ipIfStatsOutNoRoutes); 8985 /* 8986 * Since ip_wput() isn't close to finished, we fill 8987 * in enough of the header for credible error reporting. 8988 */ 8989 if (ip_hdr_complete(ipha, zoneid)) { 8990 /* Failed */ 8991 MULTIRT_DEBUG_UNTAG(first_mp); 8992 freemsg(first_mp); 8993 if (ire != NULL) 8994 ire_refrele(ire); 8995 return; 8996 } 8997 } 8998 8999 /* 9000 * At this point we will have ire only if RTF_BLACKHOLE 9001 * or RTF_REJECT flags are set on the IRE. It will not 9002 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9003 */ 9004 if (ire != NULL) { 9005 if (ire->ire_flags & RTF_BLACKHOLE) { 9006 ire_refrele(ire); 9007 MULTIRT_DEBUG_UNTAG(first_mp); 9008 freemsg(first_mp); 9009 return; 9010 } 9011 ire_refrele(ire); 9012 } 9013 if (ip_source_routed(ipha)) { 9014 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 9015 zoneid); 9016 return; 9017 } 9018 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid); 9019 } 9020 9021 ip_opt_info_t zero_info; 9022 9023 /* 9024 * IPv4 - 9025 * ip_newroute_ipif is called by ip_wput_multicast and 9026 * ip_rput_forward_multicast whenever we need to send 9027 * out a packet to a destination address for which we do not have specific 9028 * routing information. It is used when the packet will be sent out 9029 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 9030 * socket option is set or icmp error message wants to go out on a particular 9031 * interface for a unicast packet. 9032 * 9033 * In most cases, the destination address is resolved thanks to the ipif 9034 * intrinsic resolver. However, there are some cases where the call to 9035 * ip_newroute_ipif must take into account the potential presence of 9036 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 9037 * that uses the interface. This is specified through flags, 9038 * which can be a combination of: 9039 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 9040 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9041 * and flags. Additionally, the packet source address has to be set to 9042 * the specified address. The caller is thus expected to set this flag 9043 * if the packet has no specific source address yet. 9044 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9045 * flag, the resulting ire will inherit the flag. All unresolved routes 9046 * to the destination must be explored in the same call to 9047 * ip_newroute_ipif(). 9048 */ 9049 static void 9050 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9051 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9052 { 9053 areq_t *areq; 9054 ire_t *ire = NULL; 9055 mblk_t *res_mp; 9056 ipaddr_t *addrp; 9057 mblk_t *first_mp; 9058 ire_t *save_ire = NULL; 9059 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 9060 ipif_t *src_ipif = NULL; 9061 ushort_t ire_marks = 0; 9062 ill_t *dst_ill = NULL; 9063 boolean_t mctl_present; 9064 ipsec_out_t *io; 9065 ipha_t *ipha; 9066 int ihandle = 0; 9067 mblk_t *saved_mp; 9068 ire_t *fire = NULL; 9069 mblk_t *copy_mp = NULL; 9070 boolean_t multirt_resolve_next; 9071 ipaddr_t ipha_dst; 9072 9073 /* 9074 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9075 * here for uniformity 9076 */ 9077 ipif_refhold(ipif); 9078 9079 /* 9080 * This loop is run only once in most cases. 9081 * We loop to resolve further routes only when the destination 9082 * can be reached through multiple RTF_MULTIRT-flagged ires. 9083 */ 9084 do { 9085 if (dst_ill != NULL) { 9086 ill_refrele(dst_ill); 9087 dst_ill = NULL; 9088 } 9089 if (src_ipif != NULL) { 9090 ipif_refrele(src_ipif); 9091 src_ipif = NULL; 9092 } 9093 multirt_resolve_next = B_FALSE; 9094 9095 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9096 ipif->ipif_ill->ill_name)); 9097 9098 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9099 if (mctl_present) 9100 io = (ipsec_out_t *)first_mp->b_rptr; 9101 9102 ipha = (ipha_t *)mp->b_rptr; 9103 9104 /* 9105 * Save the packet destination address, we may need it after 9106 * the packet has been consumed. 9107 */ 9108 ipha_dst = ipha->ipha_dst; 9109 9110 /* 9111 * If the interface is a pt-pt interface we look for an 9112 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9113 * local_address and the pt-pt destination address. Otherwise 9114 * we just match the local address. 9115 * NOTE: dst could be different than ipha->ipha_dst in case 9116 * of sending igmp multicast packets over a point-to-point 9117 * connection. 9118 * Thus we must be careful enough to check ipha_dst to be a 9119 * multicast address, otherwise it will take xmit_if path for 9120 * multicast packets resulting into kernel stack overflow by 9121 * repeated calls to ip_newroute_ipif from ire_send(). 9122 */ 9123 if (CLASSD(ipha_dst) && 9124 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9125 goto err_ret; 9126 } 9127 9128 /* 9129 * We check if an IRE_OFFSUBNET for the addr that goes through 9130 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9131 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9132 * propagate its flags to the new ire. 9133 */ 9134 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9135 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9136 ip2dbg(("ip_newroute_ipif: " 9137 "ipif_lookup_multi_ire(" 9138 "ipif %p, dst %08x) = fire %p\n", 9139 (void *)ipif, ntohl(dst), (void *)fire)); 9140 } 9141 9142 if (mctl_present && io->ipsec_out_attach_if) { 9143 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9144 io->ipsec_out_ill_index, B_FALSE); 9145 9146 /* Failure case frees things for us. */ 9147 if (attach_ill == NULL) { 9148 ipif_refrele(ipif); 9149 if (fire != NULL) 9150 ire_refrele(fire); 9151 return; 9152 } 9153 9154 /* 9155 * Check if we need an ire that will not be 9156 * looked up by anybody else i.e. HIDDEN. 9157 */ 9158 if (ill_is_probeonly(attach_ill)) { 9159 ire_marks = IRE_MARK_HIDDEN; 9160 } 9161 /* 9162 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9163 * case. 9164 */ 9165 dst_ill = ipif->ipif_ill; 9166 /* attach_ill has been refheld by ip_grab_attach_ill */ 9167 ASSERT(dst_ill == attach_ill); 9168 } else { 9169 /* 9170 * If this is set by IP_XMIT_IF, then make sure that 9171 * ipif is pointing to the same ill as the IP_XMIT_IF 9172 * specified ill. 9173 */ 9174 ASSERT((connp == NULL) || 9175 (connp->conn_xmit_if_ill == NULL) || 9176 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 9177 /* 9178 * If the interface belongs to an interface group, 9179 * make sure the next possible interface in the group 9180 * is used. This encourages load spreading among 9181 * peers in an interface group. 9182 * Note: load spreading is disabled for RTF_MULTIRT 9183 * routes. 9184 */ 9185 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9186 (fire->ire_flags & RTF_MULTIRT)) { 9187 /* 9188 * Don't perform outbound load spreading 9189 * in the case of an RTF_MULTIRT issued route, 9190 * we actually typically want to replicate 9191 * outgoing packets through particular 9192 * interfaces. 9193 */ 9194 dst_ill = ipif->ipif_ill; 9195 ill_refhold(dst_ill); 9196 } else { 9197 dst_ill = ip_newroute_get_dst_ill( 9198 ipif->ipif_ill); 9199 } 9200 if (dst_ill == NULL) { 9201 if (ip_debug > 2) { 9202 pr_addr_dbg("ip_newroute_ipif: " 9203 "no dst ill for dst %s\n", 9204 AF_INET, &dst); 9205 } 9206 goto err_ret; 9207 } 9208 } 9209 9210 /* 9211 * Pick a source address preferring non-deprecated ones. 9212 * Unlike ip_newroute, we don't do any source address 9213 * selection here since for multicast it really does not help 9214 * in inbound load spreading as in the unicast case. 9215 */ 9216 if ((flags & RTF_SETSRC) && (fire != NULL) && 9217 (fire->ire_flags & RTF_SETSRC)) { 9218 /* 9219 * As requested by flags, an IRE_OFFSUBNET was looked up 9220 * on that interface. This ire has RTF_SETSRC flag, so 9221 * the source address of the packet must be changed. 9222 * Check that the ipif matching the requested source 9223 * address still exists. 9224 */ 9225 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9226 zoneid, NULL, NULL, NULL, NULL); 9227 } 9228 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 9229 (connp != NULL && ipif->ipif_zoneid != zoneid && 9230 ipif->ipif_zoneid != ALL_ZONES)) && 9231 (src_ipif == NULL)) { 9232 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9233 if (src_ipif == NULL) { 9234 if (ip_debug > 2) { 9235 /* ip1dbg */ 9236 pr_addr_dbg("ip_newroute_ipif: " 9237 "no src for dst %s", 9238 AF_INET, &dst); 9239 } 9240 ip1dbg((" through interface %s\n", 9241 dst_ill->ill_name)); 9242 goto err_ret; 9243 } 9244 ipif_refrele(ipif); 9245 ipif = src_ipif; 9246 ipif_refhold(ipif); 9247 } 9248 if (src_ipif == NULL) { 9249 src_ipif = ipif; 9250 ipif_refhold(src_ipif); 9251 } 9252 9253 /* 9254 * Assign a source address while we have the conn. 9255 * We can't have ip_wput_ire pick a source address when the 9256 * packet returns from arp since conn_unspec_src might be set 9257 * and we loose the conn when going through arp. 9258 */ 9259 if (ipha->ipha_src == INADDR_ANY && 9260 (connp == NULL || !connp->conn_unspec_src)) { 9261 ipha->ipha_src = src_ipif->ipif_src_addr; 9262 } 9263 9264 /* 9265 * In case of IP_XMIT_IF, it is possible that the outgoing 9266 * interface does not have an interface ire. 9267 * Example: Thousands of mobileip PPP interfaces to mobile 9268 * nodes. We don't want to create interface ires because 9269 * packets from other mobile nodes must not take the route 9270 * via interface ires to the visiting mobile node without 9271 * going through the home agent, in absence of mobileip 9272 * route optimization. 9273 */ 9274 if (CLASSD(ipha_dst) && (connp == NULL || 9275 connp->conn_xmit_if_ill == NULL) && 9276 infop->ip_opt_ill_index == 0) { 9277 /* ipif_to_ire returns an held ire */ 9278 ire = ipif_to_ire(ipif); 9279 if (ire == NULL) 9280 goto err_ret; 9281 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9282 goto err_ret; 9283 /* 9284 * ihandle is needed when the ire is added to 9285 * cache table. 9286 */ 9287 save_ire = ire; 9288 ihandle = save_ire->ire_ihandle; 9289 9290 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9291 "flags %04x\n", 9292 (void *)ire, (void *)ipif, flags)); 9293 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9294 (fire->ire_flags & RTF_MULTIRT)) { 9295 /* 9296 * As requested by flags, an IRE_OFFSUBNET was 9297 * looked up on that interface. This ire has 9298 * RTF_MULTIRT flag, so the resolution loop will 9299 * be re-entered to resolve additional routes on 9300 * other interfaces. For that purpose, a copy of 9301 * the packet is performed at this point. 9302 */ 9303 fire->ire_last_used_time = lbolt; 9304 copy_mp = copymsg(first_mp); 9305 if (copy_mp) { 9306 MULTIRT_DEBUG_TAG(copy_mp); 9307 } 9308 } 9309 if ((flags & RTF_SETSRC) && (fire != NULL) && 9310 (fire->ire_flags & RTF_SETSRC)) { 9311 /* 9312 * As requested by flags, an IRE_OFFSUBET was 9313 * looked up on that interface. This ire has 9314 * RTF_SETSRC flag, so the source address of the 9315 * packet must be changed. 9316 */ 9317 ipha->ipha_src = fire->ire_src_addr; 9318 } 9319 } else { 9320 ASSERT((connp == NULL) || 9321 (connp->conn_xmit_if_ill != NULL) || 9322 (connp->conn_dontroute) || 9323 infop->ip_opt_ill_index != 0); 9324 /* 9325 * The only ways we can come here are: 9326 * 1) IP_XMIT_IF socket option is set 9327 * 2) ICMP error message generated from 9328 * ip_mrtun_forward() routine and it needs 9329 * to go through the specified ill. 9330 * 3) SO_DONTROUTE socket option is set 9331 * 4) IP_PKTINFO option is passed in as ancillary data. 9332 * In all cases, the new ire will not be added 9333 * into cache table. 9334 */ 9335 ire_marks |= IRE_MARK_NOADD; 9336 } 9337 9338 switch (ipif->ipif_net_type) { 9339 case IRE_IF_NORESOLVER: { 9340 /* We have what we need to build an IRE_CACHE. */ 9341 mblk_t *res_mp; 9342 9343 /* 9344 * Create a new res_mp with the 9345 * IP gateway address as destination address in the 9346 * DLPI hdr if the physical length is exactly 4 bytes. 9347 */ 9348 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 9349 res_mp = ill_dlur_gen((uchar_t *)&dst, 9350 dst_ill->ill_phys_addr_length, 9351 dst_ill->ill_sap, 9352 dst_ill->ill_sap_length); 9353 } else if (dst_ill->ill_resolver_mp == NULL) { 9354 ip1dbg(("ip_newroute: dst_ill %p " 9355 "for IF_NORESOLV ire %p has " 9356 "no ill_resolver_mp\n", 9357 (void *)dst_ill, (void *)ire)); 9358 break; 9359 } else { 9360 /* use the value set in ip_ll_subnet_defaults */ 9361 res_mp = ill_dlur_gen(NULL, 9362 dst_ill->ill_phys_addr_length, 9363 dst_ill->ill_sap, 9364 dst_ill->ill_sap_length); 9365 } 9366 9367 if (res_mp == NULL) 9368 break; 9369 /* 9370 * The new ire inherits the IRE_OFFSUBNET flags 9371 * and source address, if this was requested. 9372 */ 9373 ire = ire_create( 9374 (uchar_t *)&dst, /* dest address */ 9375 (uchar_t *)&ip_g_all_ones, /* mask */ 9376 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9377 NULL, /* gateway address */ 9378 NULL, 9379 &ipif->ipif_mtu, 9380 NULL, /* Fast Path header */ 9381 dst_ill->ill_rq, /* recv-from queue */ 9382 dst_ill->ill_wq, /* send-to queue */ 9383 IRE_CACHE, 9384 res_mp, 9385 src_ipif, 9386 NULL, 9387 (save_ire != NULL ? save_ire->ire_mask : 0), 9388 (fire != NULL) ? /* Parent handle */ 9389 fire->ire_phandle : 0, 9390 ihandle, /* Interface handle */ 9391 (fire != NULL) ? 9392 (fire->ire_flags & 9393 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9394 (save_ire == NULL ? &ire_uinfo_null : 9395 &save_ire->ire_uinfo), 9396 NULL, 9397 NULL); 9398 9399 freeb(res_mp); 9400 9401 if (ire == NULL) { 9402 if (save_ire != NULL) 9403 ire_refrele(save_ire); 9404 break; 9405 } 9406 9407 ire->ire_marks |= ire_marks; 9408 9409 /* 9410 * If IRE_MARK_NOADD is set then we need to convert 9411 * the max_fragp to a useable value now. This is 9412 * normally done in ire_add_v[46]. We also need to 9413 * associate the ire with an nce (normally would be 9414 * done in ip_wput_nondata()). 9415 * 9416 * Note that IRE_MARK_NOADD packets created here 9417 * do not have a non-null ire_mp pointer. The null 9418 * value of ire_bucket indicates that they were 9419 * never added. 9420 */ 9421 if (ire->ire_marks & IRE_MARK_NOADD) { 9422 uint_t max_frag; 9423 9424 max_frag = *ire->ire_max_fragp; 9425 ire->ire_max_fragp = NULL; 9426 ire->ire_max_frag = max_frag; 9427 9428 if ((ire->ire_nce = ndp_lookup_v4( 9429 ire_to_ill(ire), 9430 (ire->ire_gateway_addr != INADDR_ANY ? 9431 &ire->ire_gateway_addr : &ire->ire_addr), 9432 B_FALSE)) == NULL) { 9433 if (save_ire != NULL) 9434 ire_refrele(save_ire); 9435 break; 9436 } 9437 ASSERT(ire->ire_nce->nce_state == 9438 ND_REACHABLE); 9439 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9440 } 9441 9442 /* Prevent save_ire from getting deleted */ 9443 if (save_ire != NULL) { 9444 IRB_REFHOLD(save_ire->ire_bucket); 9445 /* Has it been removed already ? */ 9446 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9447 IRB_REFRELE(save_ire->ire_bucket); 9448 ire_refrele(save_ire); 9449 break; 9450 } 9451 } 9452 9453 ire_add_then_send(q, ire, first_mp); 9454 9455 /* Assert that save_ire is not deleted yet. */ 9456 if (save_ire != NULL) { 9457 ASSERT(save_ire->ire_ptpn != NULL); 9458 IRB_REFRELE(save_ire->ire_bucket); 9459 ire_refrele(save_ire); 9460 save_ire = NULL; 9461 } 9462 if (fire != NULL) { 9463 ire_refrele(fire); 9464 fire = NULL; 9465 } 9466 9467 /* 9468 * the resolution loop is re-entered if this 9469 * was requested through flags and if we 9470 * actually are in a multirouting case. 9471 */ 9472 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9473 boolean_t need_resolve = 9474 ire_multirt_need_resolve(ipha_dst, 9475 MBLK_GETLABEL(copy_mp)); 9476 if (!need_resolve) { 9477 MULTIRT_DEBUG_UNTAG(copy_mp); 9478 freemsg(copy_mp); 9479 copy_mp = NULL; 9480 } else { 9481 /* 9482 * ipif_lookup_group() calls 9483 * ire_lookup_multi() that uses 9484 * ire_ftable_lookup() to find 9485 * an IRE_INTERFACE for the group. 9486 * In the multirt case, 9487 * ire_lookup_multi() then invokes 9488 * ire_multirt_lookup() to find 9489 * the next resolvable ire. 9490 * As a result, we obtain an new 9491 * interface, derived from the 9492 * next ire. 9493 */ 9494 ipif_refrele(ipif); 9495 ipif = ipif_lookup_group(ipha_dst, 9496 zoneid); 9497 ip2dbg(("ip_newroute_ipif: " 9498 "multirt dst %08x, ipif %p\n", 9499 htonl(dst), (void *)ipif)); 9500 if (ipif != NULL) { 9501 mp = copy_mp; 9502 copy_mp = NULL; 9503 multirt_resolve_next = B_TRUE; 9504 continue; 9505 } else { 9506 freemsg(copy_mp); 9507 } 9508 } 9509 } 9510 if (ipif != NULL) 9511 ipif_refrele(ipif); 9512 ill_refrele(dst_ill); 9513 ipif_refrele(src_ipif); 9514 return; 9515 } 9516 case IRE_IF_RESOLVER: 9517 /* 9518 * We can't build an IRE_CACHE yet, but at least 9519 * we found a resolver that can help. 9520 */ 9521 res_mp = dst_ill->ill_resolver_mp; 9522 if (!OK_RESOLVER_MP(res_mp)) 9523 break; 9524 9525 /* 9526 * We obtain a partial IRE_CACHE which we will pass 9527 * along with the resolver query. When the response 9528 * comes back it will be there ready for us to add. 9529 * The new ire inherits the IRE_OFFSUBNET flags 9530 * and source address, if this was requested. 9531 * The ire_max_frag is atomically set under the 9532 * irebucket lock in ire_add_v[46]. Only in the 9533 * case of IRE_MARK_NOADD, we set it here itself. 9534 */ 9535 ire = ire_create_mp( 9536 (uchar_t *)&dst, /* dest address */ 9537 (uchar_t *)&ip_g_all_ones, /* mask */ 9538 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9539 NULL, /* gateway address */ 9540 NULL, /* no in_src_addr */ 9541 (ire_marks & IRE_MARK_NOADD) ? 9542 ipif->ipif_mtu : 0, /* max_frag */ 9543 NULL, /* Fast path header */ 9544 dst_ill->ill_rq, /* recv-from queue */ 9545 dst_ill->ill_wq, /* send-to queue */ 9546 IRE_CACHE, 9547 NULL, /* let ire_nce_init figure res_mp out */ 9548 src_ipif, 9549 NULL, 9550 (save_ire != NULL ? save_ire->ire_mask : 0), 9551 (fire != NULL) ? /* Parent handle */ 9552 fire->ire_phandle : 0, 9553 ihandle, /* Interface handle */ 9554 (fire != NULL) ? /* flags if any */ 9555 (fire->ire_flags & 9556 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9557 (save_ire == NULL ? &ire_uinfo_null : 9558 &save_ire->ire_uinfo), 9559 NULL, 9560 NULL); 9561 9562 if (save_ire != NULL) { 9563 ire_refrele(save_ire); 9564 save_ire = NULL; 9565 } 9566 if (ire == NULL) 9567 break; 9568 9569 ire->ire_marks |= ire_marks; 9570 /* 9571 * Construct message chain for the resolver of the 9572 * form: 9573 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9574 * 9575 * NOTE : ire will be added later when the response 9576 * comes back from ARP. If the response does not 9577 * come back, ARP frees the packet. For this reason, 9578 * we can't REFHOLD the bucket of save_ire to prevent 9579 * deletions. We may not be able to REFRELE the 9580 * bucket if the response never comes back. 9581 * Thus, before adding the ire, ire_add_v4 will make 9582 * sure that the interface route does not get deleted. 9583 * This is the only case unlike ip_newroute_v6, 9584 * ip_newroute_ipif_v6 where we can always prevent 9585 * deletions because ire_add_then_send is called after 9586 * creating the IRE. 9587 * If IRE_MARK_NOADD is set, then ire_add_then_send 9588 * does not add this IRE into the IRE CACHE. 9589 */ 9590 ASSERT(ire->ire_mp != NULL); 9591 ire->ire_mp->b_cont = first_mp; 9592 /* Have saved_mp handy, for cleanup if canput fails */ 9593 saved_mp = mp; 9594 mp = copyb(res_mp); 9595 if (mp == NULL) { 9596 /* Prepare for cleanup */ 9597 mp = saved_mp; /* pkt */ 9598 ire_delete(ire); /* ire_mp */ 9599 ire = NULL; 9600 if (copy_mp != NULL) { 9601 MULTIRT_DEBUG_UNTAG(copy_mp); 9602 freemsg(copy_mp); 9603 copy_mp = NULL; 9604 } 9605 break; 9606 } 9607 linkb(mp, ire->ire_mp); 9608 9609 /* 9610 * Fill in the source and dest addrs for the resolver. 9611 * NOTE: this depends on memory layouts imposed by 9612 * ill_init(). 9613 */ 9614 areq = (areq_t *)mp->b_rptr; 9615 addrp = (ipaddr_t *)((char *)areq + 9616 areq->areq_sender_addr_offset); 9617 *addrp = ire->ire_src_addr; 9618 addrp = (ipaddr_t *)((char *)areq + 9619 areq->areq_target_addr_offset); 9620 *addrp = dst; 9621 /* Up to the resolver. */ 9622 if (canputnext(dst_ill->ill_rq) && 9623 !(dst_ill->ill_arp_closing)) { 9624 putnext(dst_ill->ill_rq, mp); 9625 /* 9626 * The response will come back in ip_wput 9627 * with db_type IRE_DB_TYPE. 9628 */ 9629 } else { 9630 mp->b_cont = NULL; 9631 freeb(mp); /* areq */ 9632 ire_delete(ire); /* ire_mp */ 9633 saved_mp->b_next = NULL; 9634 saved_mp->b_prev = NULL; 9635 freemsg(first_mp); /* pkt */ 9636 ip2dbg(("ip_newroute_ipif: dropped\n")); 9637 } 9638 9639 if (fire != NULL) { 9640 ire_refrele(fire); 9641 fire = NULL; 9642 } 9643 9644 9645 /* 9646 * The resolution loop is re-entered if this was 9647 * requested through flags and we actually are 9648 * in a multirouting case. 9649 */ 9650 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9651 boolean_t need_resolve = 9652 ire_multirt_need_resolve(ipha_dst, 9653 MBLK_GETLABEL(copy_mp)); 9654 if (!need_resolve) { 9655 MULTIRT_DEBUG_UNTAG(copy_mp); 9656 freemsg(copy_mp); 9657 copy_mp = NULL; 9658 } else { 9659 /* 9660 * ipif_lookup_group() calls 9661 * ire_lookup_multi() that uses 9662 * ire_ftable_lookup() to find 9663 * an IRE_INTERFACE for the group. 9664 * In the multirt case, 9665 * ire_lookup_multi() then invokes 9666 * ire_multirt_lookup() to find 9667 * the next resolvable ire. 9668 * As a result, we obtain an new 9669 * interface, derived from the 9670 * next ire. 9671 */ 9672 ipif_refrele(ipif); 9673 ipif = ipif_lookup_group(ipha_dst, 9674 zoneid); 9675 if (ipif != NULL) { 9676 mp = copy_mp; 9677 copy_mp = NULL; 9678 multirt_resolve_next = B_TRUE; 9679 continue; 9680 } else { 9681 freemsg(copy_mp); 9682 } 9683 } 9684 } 9685 if (ipif != NULL) 9686 ipif_refrele(ipif); 9687 ill_refrele(dst_ill); 9688 ipif_refrele(src_ipif); 9689 return; 9690 default: 9691 break; 9692 } 9693 } while (multirt_resolve_next); 9694 9695 err_ret: 9696 ip2dbg(("ip_newroute_ipif: dropped\n")); 9697 if (fire != NULL) 9698 ire_refrele(fire); 9699 ipif_refrele(ipif); 9700 /* Did this packet originate externally? */ 9701 if (dst_ill != NULL) 9702 ill_refrele(dst_ill); 9703 if (src_ipif != NULL) 9704 ipif_refrele(src_ipif); 9705 if (mp->b_prev || mp->b_next) { 9706 mp->b_next = NULL; 9707 mp->b_prev = NULL; 9708 } else { 9709 /* 9710 * Since ip_wput() isn't close to finished, we fill 9711 * in enough of the header for credible error reporting. 9712 */ 9713 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 9714 /* Failed */ 9715 freemsg(first_mp); 9716 if (ire != NULL) 9717 ire_refrele(ire); 9718 return; 9719 } 9720 } 9721 /* 9722 * At this point we will have ire only if RTF_BLACKHOLE 9723 * or RTF_REJECT flags are set on the IRE. It will not 9724 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9725 */ 9726 if (ire != NULL) { 9727 if (ire->ire_flags & RTF_BLACKHOLE) { 9728 ire_refrele(ire); 9729 freemsg(first_mp); 9730 return; 9731 } 9732 ire_refrele(ire); 9733 } 9734 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid); 9735 } 9736 9737 /* Name/Value Table Lookup Routine */ 9738 char * 9739 ip_nv_lookup(nv_t *nv, int value) 9740 { 9741 if (!nv) 9742 return (NULL); 9743 for (; nv->nv_name; nv++) { 9744 if (nv->nv_value == value) 9745 return (nv->nv_name); 9746 } 9747 return ("unknown"); 9748 } 9749 9750 /* 9751 * one day it can be patched to 1 from /etc/system for machines that have few 9752 * fast network interfaces feeding multiple cpus. 9753 */ 9754 int ill_stream_putlocks = 0; 9755 9756 /* 9757 * This is a module open, i.e. this is a control stream for access 9758 * to a DLPI device. We allocate an ill_t as the instance data in 9759 * this case. 9760 */ 9761 int 9762 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9763 { 9764 uint32_t mem_cnt; 9765 uint32_t cpu_cnt; 9766 uint32_t min_cnt; 9767 pgcnt_t mem_avail; 9768 ill_t *ill; 9769 int err; 9770 9771 /* 9772 * Prevent unprivileged processes from pushing IP so that 9773 * they can't send raw IP. 9774 */ 9775 if (secpolicy_net_rawaccess(credp) != 0) 9776 return (EPERM); 9777 9778 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9779 q->q_ptr = WR(q)->q_ptr = ill; 9780 9781 /* 9782 * ill_init initializes the ill fields and then sends down 9783 * down a DL_INFO_REQ after calling qprocson. 9784 */ 9785 err = ill_init(q, ill); 9786 if (err != 0) { 9787 mi_free(ill); 9788 q->q_ptr = NULL; 9789 WR(q)->q_ptr = NULL; 9790 return (err); 9791 } 9792 9793 /* ill_init initializes the ipsq marking this thread as writer */ 9794 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9795 /* Wait for the DL_INFO_ACK */ 9796 mutex_enter(&ill->ill_lock); 9797 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9798 /* 9799 * Return value of 0 indicates a pending signal. 9800 */ 9801 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9802 if (err == 0) { 9803 mutex_exit(&ill->ill_lock); 9804 (void) ip_close(q, 0); 9805 return (EINTR); 9806 } 9807 } 9808 mutex_exit(&ill->ill_lock); 9809 9810 /* 9811 * ip_rput_other could have set an error in ill_error on 9812 * receipt of M_ERROR. 9813 */ 9814 9815 err = ill->ill_error; 9816 if (err != 0) { 9817 (void) ip_close(q, 0); 9818 return (err); 9819 } 9820 9821 /* 9822 * ip_ire_max_bucket_cnt is sized below based on the memory 9823 * size and the cpu speed of the machine. This is upper 9824 * bounded by the compile time value of ip_ire_max_bucket_cnt 9825 * and is lower bounded by the compile time value of 9826 * ip_ire_min_bucket_cnt. Similar logic applies to 9827 * ip6_ire_max_bucket_cnt. 9828 */ 9829 mem_avail = kmem_avail(); 9830 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9831 ip_cache_table_size / sizeof (ire_t); 9832 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 9833 9834 min_cnt = MIN(cpu_cnt, mem_cnt); 9835 if (min_cnt < ip_ire_min_bucket_cnt) 9836 min_cnt = ip_ire_min_bucket_cnt; 9837 if (ip_ire_max_bucket_cnt > min_cnt) { 9838 ip_ire_max_bucket_cnt = min_cnt; 9839 } 9840 9841 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9842 ip6_cache_table_size / sizeof (ire_t); 9843 min_cnt = MIN(cpu_cnt, mem_cnt); 9844 if (min_cnt < ip6_ire_min_bucket_cnt) 9845 min_cnt = ip6_ire_min_bucket_cnt; 9846 if (ip6_ire_max_bucket_cnt > min_cnt) { 9847 ip6_ire_max_bucket_cnt = min_cnt; 9848 } 9849 9850 ill->ill_credp = credp; 9851 crhold(credp); 9852 9853 mutex_enter(&ip_mi_lock); 9854 err = mi_open_link(&ip_g_head, (IDP)ill, devp, flag, sflag, credp); 9855 mutex_exit(&ip_mi_lock); 9856 if (err) { 9857 (void) ip_close(q, 0); 9858 return (err); 9859 } 9860 return (0); 9861 } 9862 9863 /* IP open routine. */ 9864 int 9865 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9866 { 9867 conn_t *connp; 9868 major_t maj; 9869 9870 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9871 9872 /* Allow reopen. */ 9873 if (q->q_ptr != NULL) 9874 return (0); 9875 9876 if (sflag & MODOPEN) { 9877 /* This is a module open */ 9878 return (ip_modopen(q, devp, flag, sflag, credp)); 9879 } 9880 9881 /* 9882 * We are opening as a device. This is an IP client stream, and we 9883 * allocate an conn_t as the instance data. 9884 */ 9885 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP); 9886 connp->conn_upq = q; 9887 q->q_ptr = WR(q)->q_ptr = connp; 9888 9889 if (flag & SO_SOCKSTR) 9890 connp->conn_flags |= IPCL_SOCKET; 9891 9892 /* Minor tells us which /dev entry was opened */ 9893 if (geteminor(*devp) == IPV6_MINOR) { 9894 connp->conn_flags |= IPCL_ISV6; 9895 connp->conn_af_isv6 = B_TRUE; 9896 ip_setqinfo(q, geteminor(*devp), B_FALSE); 9897 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9898 } else { 9899 connp->conn_af_isv6 = B_FALSE; 9900 connp->conn_pkt_isv6 = B_FALSE; 9901 } 9902 9903 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9904 q->q_ptr = WR(q)->q_ptr = NULL; 9905 CONN_DEC_REF(connp); 9906 return (EBUSY); 9907 } 9908 9909 maj = getemajor(*devp); 9910 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9911 9912 /* 9913 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9914 */ 9915 connp->conn_cred = credp; 9916 crhold(connp->conn_cred); 9917 9918 /* 9919 * If the caller has the process-wide flag set, then default to MAC 9920 * exempt mode. This allows read-down to unlabeled hosts. 9921 */ 9922 if (getpflags(NET_MAC_AWARE, credp) != 0) 9923 connp->conn_mac_exempt = B_TRUE; 9924 9925 connp->conn_zoneid = getzoneid(); 9926 9927 /* 9928 * This should only happen for ndd, netstat, raw socket or other SCTP 9929 * administrative ops. In these cases, we just need a normal conn_t 9930 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 9931 * an error will be returned. 9932 */ 9933 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 9934 connp->conn_rq = q; 9935 connp->conn_wq = WR(q); 9936 } else { 9937 connp->conn_ulp = IPPROTO_SCTP; 9938 connp->conn_rq = connp->conn_wq = NULL; 9939 } 9940 /* Non-zero default values */ 9941 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9942 9943 /* 9944 * Make the conn globally visible to walkers 9945 */ 9946 mutex_enter(&connp->conn_lock); 9947 connp->conn_state_flags &= ~CONN_INCIPIENT; 9948 mutex_exit(&connp->conn_lock); 9949 ASSERT(connp->conn_ref == 1); 9950 9951 qprocson(q); 9952 9953 return (0); 9954 } 9955 9956 /* 9957 * Change q_qinfo based on the value of isv6. 9958 * This can not called on an ill queue. 9959 * Note that there is no race since either q_qinfo works for conn queues - it 9960 * is just an optimization to enter the best wput routine directly. 9961 */ 9962 void 9963 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib) 9964 { 9965 ASSERT(q->q_flag & QREADR); 9966 ASSERT(WR(q)->q_next == NULL); 9967 ASSERT(q->q_ptr != NULL); 9968 9969 if (minor == IPV6_MINOR) { 9970 if (bump_mib) 9971 BUMP_MIB(&ip6_mib, ipIfStatsOutSwitchIPVersion); 9972 q->q_qinfo = &rinit_ipv6; 9973 WR(q)->q_qinfo = &winit_ipv6; 9974 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 9975 } else { 9976 if (bump_mib) 9977 BUMP_MIB(&ip_mib, ipIfStatsOutSwitchIPVersion); 9978 q->q_qinfo = &iprinit; 9979 WR(q)->q_qinfo = &ipwinit; 9980 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 9981 } 9982 9983 } 9984 9985 /* 9986 * See if IPsec needs loading because of the options in mp. 9987 */ 9988 static boolean_t 9989 ipsec_opt_present(mblk_t *mp) 9990 { 9991 uint8_t *optcp, *next_optcp, *opt_endcp; 9992 struct opthdr *opt; 9993 struct T_opthdr *topt; 9994 int opthdr_len; 9995 t_uscalar_t optname, optlevel; 9996 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9997 ipsec_req_t *ipsr; 9998 9999 /* 10000 * Walk through the mess, and find IP_SEC_OPT. If it's there, 10001 * return TRUE. 10002 */ 10003 10004 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 10005 opt_endcp = optcp + tor->OPT_length; 10006 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10007 opthdr_len = sizeof (struct T_opthdr); 10008 } else { /* O_OPTMGMT_REQ */ 10009 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 10010 opthdr_len = sizeof (struct opthdr); 10011 } 10012 for (; optcp < opt_endcp; optcp = next_optcp) { 10013 if (optcp + opthdr_len > opt_endcp) 10014 return (B_FALSE); /* Not enough option header. */ 10015 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10016 topt = (struct T_opthdr *)optcp; 10017 optlevel = topt->level; 10018 optname = topt->name; 10019 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 10020 } else { 10021 opt = (struct opthdr *)optcp; 10022 optlevel = opt->level; 10023 optname = opt->name; 10024 next_optcp = optcp + opthdr_len + 10025 _TPI_ALIGN_OPT(opt->len); 10026 } 10027 if ((next_optcp < optcp) || /* wraparound pointer space */ 10028 ((next_optcp >= opt_endcp) && /* last option bad len */ 10029 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 10030 return (B_FALSE); /* bad option buffer */ 10031 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 10032 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 10033 /* 10034 * Check to see if it's an all-bypass or all-zeroes 10035 * IPsec request. Don't bother loading IPsec if 10036 * the socket doesn't want to use it. (A good example 10037 * is a bypass request.) 10038 * 10039 * Basically, if any of the non-NEVER bits are set, 10040 * load IPsec. 10041 */ 10042 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 10043 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 10044 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 10045 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 10046 != 0) 10047 return (B_TRUE); 10048 } 10049 } 10050 return (B_FALSE); 10051 } 10052 10053 /* 10054 * If conn is is waiting for ipsec to finish loading, kick it. 10055 */ 10056 /* ARGSUSED */ 10057 static void 10058 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 10059 { 10060 t_scalar_t optreq_prim; 10061 mblk_t *mp; 10062 cred_t *cr; 10063 int err = 0; 10064 10065 /* 10066 * This function is called, after ipsec loading is complete. 10067 * Since IP checks exclusively and atomically (i.e it prevents 10068 * ipsec load from completing until ip_optcom_req completes) 10069 * whether ipsec load is complete, there cannot be a race with IP 10070 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10071 */ 10072 mutex_enter(&connp->conn_lock); 10073 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10074 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10075 mp = connp->conn_ipsec_opt_mp; 10076 connp->conn_ipsec_opt_mp = NULL; 10077 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10078 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10079 mutex_exit(&connp->conn_lock); 10080 10081 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10082 10083 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10084 if (optreq_prim == T_OPTMGMT_REQ) { 10085 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10086 &ip_opt_obj); 10087 } else { 10088 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10089 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10090 &ip_opt_obj); 10091 } 10092 if (err != EINPROGRESS) 10093 CONN_OPER_PENDING_DONE(connp); 10094 return; 10095 } 10096 mutex_exit(&connp->conn_lock); 10097 } 10098 10099 /* 10100 * Called from the ipsec_loader thread, outside any perimeter, to tell 10101 * ip qenable any of the queues waiting for the ipsec loader to 10102 * complete. 10103 * 10104 * Use ip_mi_lock to be safe here: all modifications of the mi lists 10105 * are done with this lock held, so it's guaranteed that none of the 10106 * links will change along the way. 10107 */ 10108 void 10109 ip_ipsec_load_complete() 10110 { 10111 ipcl_walk(conn_restart_ipsec_waiter, NULL); 10112 } 10113 10114 /* 10115 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10116 * determines the grp on which it has to become exclusive, queues the mp 10117 * and sq draining restarts the optmgmt 10118 */ 10119 static boolean_t 10120 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10121 { 10122 conn_t *connp; 10123 10124 /* 10125 * Take IPsec requests and treat them special. 10126 */ 10127 if (ipsec_opt_present(mp)) { 10128 /* First check if IPsec is loaded. */ 10129 mutex_enter(&ipsec_loader_lock); 10130 if (ipsec_loader_state != IPSEC_LOADER_WAIT) { 10131 mutex_exit(&ipsec_loader_lock); 10132 return (B_FALSE); 10133 } 10134 connp = Q_TO_CONN(q); 10135 mutex_enter(&connp->conn_lock); 10136 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10137 10138 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10139 connp->conn_ipsec_opt_mp = mp; 10140 mutex_exit(&connp->conn_lock); 10141 mutex_exit(&ipsec_loader_lock); 10142 10143 ipsec_loader_loadnow(); 10144 return (B_TRUE); 10145 } 10146 return (B_FALSE); 10147 } 10148 10149 /* 10150 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10151 * all of them are copied to the conn_t. If the req is "zero", the policy is 10152 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10153 * fields. 10154 * We keep only the latest setting of the policy and thus policy setting 10155 * is not incremental/cumulative. 10156 * 10157 * Requests to set policies with multiple alternative actions will 10158 * go through a different API. 10159 */ 10160 int 10161 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10162 { 10163 uint_t ah_req = 0; 10164 uint_t esp_req = 0; 10165 uint_t se_req = 0; 10166 ipsec_selkey_t sel; 10167 ipsec_act_t *actp = NULL; 10168 uint_t nact; 10169 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10170 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10171 ipsec_policy_root_t *pr; 10172 ipsec_policy_head_t *ph; 10173 int fam; 10174 boolean_t is_pol_reset; 10175 int error = 0; 10176 10177 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10178 10179 /* 10180 * The IP_SEC_OPT option does not allow variable length parameters, 10181 * hence a request cannot be NULL. 10182 */ 10183 if (req == NULL) 10184 return (EINVAL); 10185 10186 ah_req = req->ipsr_ah_req; 10187 esp_req = req->ipsr_esp_req; 10188 se_req = req->ipsr_self_encap_req; 10189 10190 /* 10191 * Are we dealing with a request to reset the policy (i.e. 10192 * zero requests). 10193 */ 10194 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10195 (esp_req & REQ_MASK) == 0 && 10196 (se_req & REQ_MASK) == 0); 10197 10198 if (!is_pol_reset) { 10199 /* 10200 * If we couldn't load IPsec, fail with "protocol 10201 * not supported". 10202 * IPsec may not have been loaded for a request with zero 10203 * policies, so we don't fail in this case. 10204 */ 10205 mutex_enter(&ipsec_loader_lock); 10206 if (ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10207 mutex_exit(&ipsec_loader_lock); 10208 return (EPROTONOSUPPORT); 10209 } 10210 mutex_exit(&ipsec_loader_lock); 10211 10212 /* 10213 * Test for valid requests. Invalid algorithms 10214 * need to be tested by IPSEC code because new 10215 * algorithms can be added dynamically. 10216 */ 10217 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10218 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10219 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10220 return (EINVAL); 10221 } 10222 10223 /* 10224 * Only privileged users can issue these 10225 * requests. 10226 */ 10227 if (((ah_req & IPSEC_PREF_NEVER) || 10228 (esp_req & IPSEC_PREF_NEVER) || 10229 (se_req & IPSEC_PREF_NEVER)) && 10230 secpolicy_net_config(cr, B_FALSE) != 0) { 10231 return (EPERM); 10232 } 10233 10234 /* 10235 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10236 * are mutually exclusive. 10237 */ 10238 if (((ah_req & REQ_MASK) == REQ_MASK) || 10239 ((esp_req & REQ_MASK) == REQ_MASK) || 10240 ((se_req & REQ_MASK) == REQ_MASK)) { 10241 /* Both of them are set */ 10242 return (EINVAL); 10243 } 10244 } 10245 10246 mutex_enter(&connp->conn_lock); 10247 10248 /* 10249 * If we have already cached policies in ip_bind_connected*(), don't 10250 * let them change now. We cache policies for connections 10251 * whose src,dst [addr, port] is known. 10252 */ 10253 if (connp->conn_policy_cached) { 10254 mutex_exit(&connp->conn_lock); 10255 return (EINVAL); 10256 } 10257 10258 /* 10259 * We have a zero policies, reset the connection policy if already 10260 * set. This will cause the connection to inherit the 10261 * global policy, if any. 10262 */ 10263 if (is_pol_reset) { 10264 if (connp->conn_policy != NULL) { 10265 IPPH_REFRELE(connp->conn_policy); 10266 connp->conn_policy = NULL; 10267 } 10268 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10269 connp->conn_in_enforce_policy = B_FALSE; 10270 connp->conn_out_enforce_policy = B_FALSE; 10271 mutex_exit(&connp->conn_lock); 10272 return (0); 10273 } 10274 10275 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy); 10276 if (ph == NULL) 10277 goto enomem; 10278 10279 ipsec_actvec_from_req(req, &actp, &nact); 10280 if (actp == NULL) 10281 goto enomem; 10282 10283 /* 10284 * Always allocate IPv4 policy entries, since they can also 10285 * apply to ipv6 sockets being used in ipv4-compat mode. 10286 */ 10287 bzero(&sel, sizeof (sel)); 10288 sel.ipsl_valid = IPSL_IPV4; 10289 10290 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL); 10291 if (pin4 == NULL) 10292 goto enomem; 10293 10294 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL); 10295 if (pout4 == NULL) 10296 goto enomem; 10297 10298 if (connp->conn_pkt_isv6) { 10299 /* 10300 * We're looking at a v6 socket, also allocate the 10301 * v6-specific entries... 10302 */ 10303 sel.ipsl_valid = IPSL_IPV6; 10304 pin6 = ipsec_policy_create(&sel, actp, nact, 10305 IPSEC_PRIO_SOCKET, NULL); 10306 if (pin6 == NULL) 10307 goto enomem; 10308 10309 pout6 = ipsec_policy_create(&sel, actp, nact, 10310 IPSEC_PRIO_SOCKET, NULL); 10311 if (pout6 == NULL) 10312 goto enomem; 10313 10314 /* 10315 * .. and file them away in the right place. 10316 */ 10317 fam = IPSEC_AF_V6; 10318 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10319 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10320 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10321 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10322 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10323 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10324 } 10325 10326 ipsec_actvec_free(actp, nact); 10327 10328 /* 10329 * File the v4 policies. 10330 */ 10331 fam = IPSEC_AF_V4; 10332 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10333 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10334 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10335 10336 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10337 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10338 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10339 10340 /* 10341 * If the requests need security, set enforce_policy. 10342 * If the requests are IPSEC_PREF_NEVER, one should 10343 * still set conn_out_enforce_policy so that an ipsec_out 10344 * gets attached in ip_wput. This is needed so that 10345 * for connections that we don't cache policy in ip_bind, 10346 * if global policy matches in ip_wput_attach_policy, we 10347 * don't wrongly inherit global policy. Similarly, we need 10348 * to set conn_in_enforce_policy also so that we don't verify 10349 * policy wrongly. 10350 */ 10351 if ((ah_req & REQ_MASK) != 0 || 10352 (esp_req & REQ_MASK) != 0 || 10353 (se_req & REQ_MASK) != 0) { 10354 connp->conn_in_enforce_policy = B_TRUE; 10355 connp->conn_out_enforce_policy = B_TRUE; 10356 connp->conn_flags |= IPCL_CHECK_POLICY; 10357 } 10358 10359 mutex_exit(&connp->conn_lock); 10360 return (error); 10361 #undef REQ_MASK 10362 10363 /* 10364 * Common memory-allocation-failure exit path. 10365 */ 10366 enomem: 10367 mutex_exit(&connp->conn_lock); 10368 if (actp != NULL) 10369 ipsec_actvec_free(actp, nact); 10370 if (pin4 != NULL) 10371 IPPOL_REFRELE(pin4); 10372 if (pout4 != NULL) 10373 IPPOL_REFRELE(pout4); 10374 if (pin6 != NULL) 10375 IPPOL_REFRELE(pin6); 10376 if (pout6 != NULL) 10377 IPPOL_REFRELE(pout6); 10378 return (ENOMEM); 10379 } 10380 10381 /* 10382 * Only for options that pass in an IP addr. Currently only V4 options 10383 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10384 * So this function assumes level is IPPROTO_IP 10385 */ 10386 int 10387 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10388 mblk_t *first_mp) 10389 { 10390 ipif_t *ipif = NULL; 10391 int error; 10392 ill_t *ill; 10393 int zoneid; 10394 10395 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10396 10397 if (addr != INADDR_ANY || checkonly) { 10398 ASSERT(connp != NULL); 10399 zoneid = IPCL_ZONEID(connp); 10400 if (option == IP_NEXTHOP) { 10401 ipif = ipif_lookup_onlink_addr(addr, 10402 connp->conn_zoneid); 10403 } else { 10404 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10405 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10406 &error); 10407 } 10408 if (ipif == NULL) { 10409 if (error == EINPROGRESS) 10410 return (error); 10411 else if ((option == IP_MULTICAST_IF) || 10412 (option == IP_NEXTHOP)) 10413 return (EHOSTUNREACH); 10414 else 10415 return (EINVAL); 10416 } else if (checkonly) { 10417 if (option == IP_MULTICAST_IF) { 10418 ill = ipif->ipif_ill; 10419 /* not supported by the virtual network iface */ 10420 if (IS_VNI(ill)) { 10421 ipif_refrele(ipif); 10422 return (EINVAL); 10423 } 10424 } 10425 ipif_refrele(ipif); 10426 return (0); 10427 } 10428 ill = ipif->ipif_ill; 10429 mutex_enter(&connp->conn_lock); 10430 mutex_enter(&ill->ill_lock); 10431 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10432 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10433 mutex_exit(&ill->ill_lock); 10434 mutex_exit(&connp->conn_lock); 10435 ipif_refrele(ipif); 10436 return (option == IP_MULTICAST_IF ? 10437 EHOSTUNREACH : EINVAL); 10438 } 10439 } else { 10440 mutex_enter(&connp->conn_lock); 10441 } 10442 10443 /* None of the options below are supported on the VNI */ 10444 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10445 mutex_exit(&ill->ill_lock); 10446 mutex_exit(&connp->conn_lock); 10447 ipif_refrele(ipif); 10448 return (EINVAL); 10449 } 10450 10451 switch (option) { 10452 case IP_DONTFAILOVER_IF: 10453 /* 10454 * This option is used by in.mpathd to ensure 10455 * that IPMP probe packets only go out on the 10456 * test interfaces. in.mpathd sets this option 10457 * on the non-failover interfaces. 10458 * For backward compatibility, this option 10459 * implicitly sets IP_MULTICAST_IF, as used 10460 * be done in bind(), so that ip_wput gets 10461 * this ipif to send mcast packets. 10462 */ 10463 if (ipif != NULL) { 10464 ASSERT(addr != INADDR_ANY); 10465 connp->conn_nofailover_ill = ipif->ipif_ill; 10466 connp->conn_multicast_ipif = ipif; 10467 } else { 10468 ASSERT(addr == INADDR_ANY); 10469 connp->conn_nofailover_ill = NULL; 10470 connp->conn_multicast_ipif = NULL; 10471 } 10472 break; 10473 10474 case IP_MULTICAST_IF: 10475 connp->conn_multicast_ipif = ipif; 10476 break; 10477 case IP_NEXTHOP: 10478 connp->conn_nexthop_v4 = addr; 10479 connp->conn_nexthop_set = B_TRUE; 10480 break; 10481 } 10482 10483 if (ipif != NULL) { 10484 mutex_exit(&ill->ill_lock); 10485 mutex_exit(&connp->conn_lock); 10486 ipif_refrele(ipif); 10487 return (0); 10488 } 10489 mutex_exit(&connp->conn_lock); 10490 /* We succeded in cleared the option */ 10491 return (0); 10492 } 10493 10494 /* 10495 * For options that pass in an ifindex specifying the ill. V6 options always 10496 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10497 */ 10498 int 10499 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10500 int level, int option, mblk_t *first_mp) 10501 { 10502 ill_t *ill = NULL; 10503 int error = 0; 10504 10505 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10506 if (ifindex != 0) { 10507 ASSERT(connp != NULL); 10508 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10509 first_mp, ip_restart_optmgmt, &error); 10510 if (ill != NULL) { 10511 if (checkonly) { 10512 /* not supported by the virtual network iface */ 10513 if (IS_VNI(ill)) { 10514 ill_refrele(ill); 10515 return (EINVAL); 10516 } 10517 ill_refrele(ill); 10518 return (0); 10519 } 10520 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10521 0, NULL)) { 10522 ill_refrele(ill); 10523 ill = NULL; 10524 mutex_enter(&connp->conn_lock); 10525 goto setit; 10526 } 10527 mutex_enter(&connp->conn_lock); 10528 mutex_enter(&ill->ill_lock); 10529 if (ill->ill_state_flags & ILL_CONDEMNED) { 10530 mutex_exit(&ill->ill_lock); 10531 mutex_exit(&connp->conn_lock); 10532 ill_refrele(ill); 10533 ill = NULL; 10534 mutex_enter(&connp->conn_lock); 10535 } 10536 goto setit; 10537 } else if (error == EINPROGRESS) { 10538 return (error); 10539 } else { 10540 error = 0; 10541 } 10542 } 10543 mutex_enter(&connp->conn_lock); 10544 setit: 10545 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10546 10547 /* 10548 * The options below assume that the ILL (if any) transmits and/or 10549 * receives traffic. Neither of which is true for the virtual network 10550 * interface, so fail setting these on a VNI. 10551 */ 10552 if (IS_VNI(ill)) { 10553 ASSERT(ill != NULL); 10554 mutex_exit(&ill->ill_lock); 10555 mutex_exit(&connp->conn_lock); 10556 ill_refrele(ill); 10557 return (EINVAL); 10558 } 10559 10560 if (level == IPPROTO_IP) { 10561 switch (option) { 10562 case IP_BOUND_IF: 10563 connp->conn_incoming_ill = ill; 10564 connp->conn_outgoing_ill = ill; 10565 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10566 0 : ifindex; 10567 break; 10568 10569 case IP_XMIT_IF: 10570 /* 10571 * Similar to IP_BOUND_IF, but this only 10572 * determines the outgoing interface for 10573 * unicast packets. Also no IRE_CACHE entry 10574 * is added for the destination of the 10575 * outgoing packets. This feature is needed 10576 * for mobile IP. 10577 */ 10578 connp->conn_xmit_if_ill = ill; 10579 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 10580 0 : ifindex; 10581 break; 10582 10583 case IP_MULTICAST_IF: 10584 /* 10585 * This option is an internal special. The socket 10586 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10587 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10588 * specifies an ifindex and we try first on V6 ill's. 10589 * If we don't find one, we they try using on v4 ill's 10590 * intenally and we come here. 10591 */ 10592 if (!checkonly && ill != NULL) { 10593 ipif_t *ipif; 10594 ipif = ill->ill_ipif; 10595 10596 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10597 mutex_exit(&ill->ill_lock); 10598 mutex_exit(&connp->conn_lock); 10599 ill_refrele(ill); 10600 ill = NULL; 10601 mutex_enter(&connp->conn_lock); 10602 } else { 10603 connp->conn_multicast_ipif = ipif; 10604 } 10605 } 10606 break; 10607 } 10608 } else { 10609 switch (option) { 10610 case IPV6_BOUND_IF: 10611 connp->conn_incoming_ill = ill; 10612 connp->conn_outgoing_ill = ill; 10613 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10614 0 : ifindex; 10615 break; 10616 10617 case IPV6_BOUND_PIF: 10618 /* 10619 * Limit all transmit to this ill. 10620 * Unlike IPV6_BOUND_IF, using this option 10621 * prevents load spreading and failover from 10622 * happening when the interface is part of the 10623 * group. That's why we don't need to remember 10624 * the ifindex in orig_bound_ifindex as in 10625 * IPV6_BOUND_IF. 10626 */ 10627 connp->conn_outgoing_pill = ill; 10628 break; 10629 10630 case IPV6_DONTFAILOVER_IF: 10631 /* 10632 * This option is used by in.mpathd to ensure 10633 * that IPMP probe packets only go out on the 10634 * test interfaces. in.mpathd sets this option 10635 * on the non-failover interfaces. 10636 */ 10637 connp->conn_nofailover_ill = ill; 10638 /* 10639 * For backward compatibility, this option 10640 * implicitly sets ip_multicast_ill as used in 10641 * IP_MULTICAST_IF so that ip_wput gets 10642 * this ipif to send mcast packets. 10643 */ 10644 connp->conn_multicast_ill = ill; 10645 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10646 0 : ifindex; 10647 break; 10648 10649 case IPV6_MULTICAST_IF: 10650 /* 10651 * Set conn_multicast_ill to be the IPv6 ill. 10652 * Set conn_multicast_ipif to be an IPv4 ipif 10653 * for ifindex to make IPv4 mapped addresses 10654 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10655 * Even if no IPv6 ill exists for the ifindex 10656 * we need to check for an IPv4 ifindex in order 10657 * for this to work with mapped addresses. In that 10658 * case only set conn_multicast_ipif. 10659 */ 10660 if (!checkonly) { 10661 if (ifindex == 0) { 10662 connp->conn_multicast_ill = NULL; 10663 connp->conn_orig_multicast_ifindex = 0; 10664 connp->conn_multicast_ipif = NULL; 10665 } else if (ill != NULL) { 10666 connp->conn_multicast_ill = ill; 10667 connp->conn_orig_multicast_ifindex = 10668 ifindex; 10669 } 10670 } 10671 break; 10672 } 10673 } 10674 10675 if (ill != NULL) { 10676 mutex_exit(&ill->ill_lock); 10677 mutex_exit(&connp->conn_lock); 10678 ill_refrele(ill); 10679 return (0); 10680 } 10681 mutex_exit(&connp->conn_lock); 10682 /* 10683 * We succeeded in clearing the option (ifindex == 0) or failed to 10684 * locate the ill and could not set the option (ifindex != 0) 10685 */ 10686 return (ifindex == 0 ? 0 : EINVAL); 10687 } 10688 10689 /* This routine sets socket options. */ 10690 /* ARGSUSED */ 10691 int 10692 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10693 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10694 void *dummy, cred_t *cr, mblk_t *first_mp) 10695 { 10696 int *i1 = (int *)invalp; 10697 conn_t *connp = Q_TO_CONN(q); 10698 int error = 0; 10699 boolean_t checkonly; 10700 ire_t *ire; 10701 boolean_t found; 10702 10703 switch (optset_context) { 10704 10705 case SETFN_OPTCOM_CHECKONLY: 10706 checkonly = B_TRUE; 10707 /* 10708 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10709 * inlen != 0 implies value supplied and 10710 * we have to "pretend" to set it. 10711 * inlen == 0 implies that there is no 10712 * value part in T_CHECK request and just validation 10713 * done elsewhere should be enough, we just return here. 10714 */ 10715 if (inlen == 0) { 10716 *outlenp = 0; 10717 return (0); 10718 } 10719 break; 10720 case SETFN_OPTCOM_NEGOTIATE: 10721 case SETFN_UD_NEGOTIATE: 10722 case SETFN_CONN_NEGOTIATE: 10723 checkonly = B_FALSE; 10724 break; 10725 default: 10726 /* 10727 * We should never get here 10728 */ 10729 *outlenp = 0; 10730 return (EINVAL); 10731 } 10732 10733 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10734 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10735 10736 /* 10737 * For fixed length options, no sanity check 10738 * of passed in length is done. It is assumed *_optcom_req() 10739 * routines do the right thing. 10740 */ 10741 10742 switch (level) { 10743 case SOL_SOCKET: 10744 /* 10745 * conn_lock protects the bitfields, and is used to 10746 * set the fields atomically. 10747 */ 10748 switch (name) { 10749 case SO_BROADCAST: 10750 if (!checkonly) { 10751 /* TODO: use value someplace? */ 10752 mutex_enter(&connp->conn_lock); 10753 connp->conn_broadcast = *i1 ? 1 : 0; 10754 mutex_exit(&connp->conn_lock); 10755 } 10756 break; /* goto sizeof (int) option return */ 10757 case SO_USELOOPBACK: 10758 if (!checkonly) { 10759 /* TODO: use value someplace? */ 10760 mutex_enter(&connp->conn_lock); 10761 connp->conn_loopback = *i1 ? 1 : 0; 10762 mutex_exit(&connp->conn_lock); 10763 } 10764 break; /* goto sizeof (int) option return */ 10765 case SO_DONTROUTE: 10766 if (!checkonly) { 10767 mutex_enter(&connp->conn_lock); 10768 connp->conn_dontroute = *i1 ? 1 : 0; 10769 mutex_exit(&connp->conn_lock); 10770 } 10771 break; /* goto sizeof (int) option return */ 10772 case SO_REUSEADDR: 10773 if (!checkonly) { 10774 mutex_enter(&connp->conn_lock); 10775 connp->conn_reuseaddr = *i1 ? 1 : 0; 10776 mutex_exit(&connp->conn_lock); 10777 } 10778 break; /* goto sizeof (int) option return */ 10779 case SO_PROTOTYPE: 10780 if (!checkonly) { 10781 mutex_enter(&connp->conn_lock); 10782 connp->conn_proto = *i1; 10783 mutex_exit(&connp->conn_lock); 10784 } 10785 break; /* goto sizeof (int) option return */ 10786 case SO_ALLZONES: 10787 if (!checkonly) { 10788 mutex_enter(&connp->conn_lock); 10789 if (IPCL_IS_BOUND(connp)) { 10790 mutex_exit(&connp->conn_lock); 10791 return (EINVAL); 10792 } 10793 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10794 mutex_exit(&connp->conn_lock); 10795 } 10796 break; /* goto sizeof (int) option return */ 10797 case SO_ANON_MLP: 10798 if (!checkonly) { 10799 mutex_enter(&connp->conn_lock); 10800 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10801 mutex_exit(&connp->conn_lock); 10802 } 10803 break; /* goto sizeof (int) option return */ 10804 case SO_MAC_EXEMPT: 10805 if (secpolicy_net_mac_aware(cr) != 0 || 10806 IPCL_IS_BOUND(connp)) 10807 return (EACCES); 10808 if (!checkonly) { 10809 mutex_enter(&connp->conn_lock); 10810 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10811 mutex_exit(&connp->conn_lock); 10812 } 10813 break; /* goto sizeof (int) option return */ 10814 default: 10815 /* 10816 * "soft" error (negative) 10817 * option not handled at this level 10818 * Note: Do not modify *outlenp 10819 */ 10820 return (-EINVAL); 10821 } 10822 break; 10823 case IPPROTO_IP: 10824 switch (name) { 10825 case IP_NEXTHOP: 10826 if (secpolicy_net_config(cr, B_FALSE) != 0) 10827 return (EPERM); 10828 /* FALLTHRU */ 10829 case IP_MULTICAST_IF: 10830 case IP_DONTFAILOVER_IF: { 10831 ipaddr_t addr = *i1; 10832 10833 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10834 first_mp); 10835 if (error != 0) 10836 return (error); 10837 break; /* goto sizeof (int) option return */ 10838 } 10839 10840 case IP_MULTICAST_TTL: 10841 /* Recorded in transport above IP */ 10842 *outvalp = *invalp; 10843 *outlenp = sizeof (uchar_t); 10844 return (0); 10845 case IP_MULTICAST_LOOP: 10846 if (!checkonly) { 10847 mutex_enter(&connp->conn_lock); 10848 connp->conn_multicast_loop = *invalp ? 1 : 0; 10849 mutex_exit(&connp->conn_lock); 10850 } 10851 *outvalp = *invalp; 10852 *outlenp = sizeof (uchar_t); 10853 return (0); 10854 case IP_ADD_MEMBERSHIP: 10855 case MCAST_JOIN_GROUP: 10856 case IP_DROP_MEMBERSHIP: 10857 case MCAST_LEAVE_GROUP: { 10858 struct ip_mreq *mreqp; 10859 struct group_req *greqp; 10860 ire_t *ire; 10861 boolean_t done = B_FALSE; 10862 ipaddr_t group, ifaddr; 10863 struct sockaddr_in *sin; 10864 uint32_t *ifindexp; 10865 boolean_t mcast_opt = B_TRUE; 10866 mcast_record_t fmode; 10867 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10868 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10869 10870 switch (name) { 10871 case IP_ADD_MEMBERSHIP: 10872 mcast_opt = B_FALSE; 10873 /* FALLTHRU */ 10874 case MCAST_JOIN_GROUP: 10875 fmode = MODE_IS_EXCLUDE; 10876 optfn = ip_opt_add_group; 10877 break; 10878 10879 case IP_DROP_MEMBERSHIP: 10880 mcast_opt = B_FALSE; 10881 /* FALLTHRU */ 10882 case MCAST_LEAVE_GROUP: 10883 fmode = MODE_IS_INCLUDE; 10884 optfn = ip_opt_delete_group; 10885 break; 10886 } 10887 10888 if (mcast_opt) { 10889 greqp = (struct group_req *)i1; 10890 sin = (struct sockaddr_in *)&greqp->gr_group; 10891 if (sin->sin_family != AF_INET) { 10892 *outlenp = 0; 10893 return (ENOPROTOOPT); 10894 } 10895 group = (ipaddr_t)sin->sin_addr.s_addr; 10896 ifaddr = INADDR_ANY; 10897 ifindexp = &greqp->gr_interface; 10898 } else { 10899 mreqp = (struct ip_mreq *)i1; 10900 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10901 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10902 ifindexp = NULL; 10903 } 10904 10905 /* 10906 * In the multirouting case, we need to replicate 10907 * the request on all interfaces that will take part 10908 * in replication. We do so because multirouting is 10909 * reflective, thus we will probably receive multi- 10910 * casts on those interfaces. 10911 * The ip_multirt_apply_membership() succeeds if the 10912 * operation succeeds on at least one interface. 10913 */ 10914 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10915 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10916 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10917 if (ire != NULL) { 10918 if (ire->ire_flags & RTF_MULTIRT) { 10919 error = ip_multirt_apply_membership( 10920 optfn, ire, connp, checkonly, group, 10921 fmode, INADDR_ANY, first_mp); 10922 done = B_TRUE; 10923 } 10924 ire_refrele(ire); 10925 } 10926 if (!done) { 10927 error = optfn(connp, checkonly, group, ifaddr, 10928 ifindexp, fmode, INADDR_ANY, first_mp); 10929 } 10930 if (error) { 10931 /* 10932 * EINPROGRESS is a soft error, needs retry 10933 * so don't make *outlenp zero. 10934 */ 10935 if (error != EINPROGRESS) 10936 *outlenp = 0; 10937 return (error); 10938 } 10939 /* OK return - copy input buffer into output buffer */ 10940 if (invalp != outvalp) { 10941 /* don't trust bcopy for identical src/dst */ 10942 bcopy(invalp, outvalp, inlen); 10943 } 10944 *outlenp = inlen; 10945 return (0); 10946 } 10947 case IP_BLOCK_SOURCE: 10948 case IP_UNBLOCK_SOURCE: 10949 case IP_ADD_SOURCE_MEMBERSHIP: 10950 case IP_DROP_SOURCE_MEMBERSHIP: 10951 case MCAST_BLOCK_SOURCE: 10952 case MCAST_UNBLOCK_SOURCE: 10953 case MCAST_JOIN_SOURCE_GROUP: 10954 case MCAST_LEAVE_SOURCE_GROUP: { 10955 struct ip_mreq_source *imreqp; 10956 struct group_source_req *gsreqp; 10957 in_addr_t grp, src, ifaddr = INADDR_ANY; 10958 uint32_t ifindex = 0; 10959 mcast_record_t fmode; 10960 struct sockaddr_in *sin; 10961 ire_t *ire; 10962 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10963 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10964 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10965 10966 switch (name) { 10967 case IP_BLOCK_SOURCE: 10968 mcast_opt = B_FALSE; 10969 /* FALLTHRU */ 10970 case MCAST_BLOCK_SOURCE: 10971 fmode = MODE_IS_EXCLUDE; 10972 optfn = ip_opt_add_group; 10973 break; 10974 10975 case IP_UNBLOCK_SOURCE: 10976 mcast_opt = B_FALSE; 10977 /* FALLTHRU */ 10978 case MCAST_UNBLOCK_SOURCE: 10979 fmode = MODE_IS_EXCLUDE; 10980 optfn = ip_opt_delete_group; 10981 break; 10982 10983 case IP_ADD_SOURCE_MEMBERSHIP: 10984 mcast_opt = B_FALSE; 10985 /* FALLTHRU */ 10986 case MCAST_JOIN_SOURCE_GROUP: 10987 fmode = MODE_IS_INCLUDE; 10988 optfn = ip_opt_add_group; 10989 break; 10990 10991 case IP_DROP_SOURCE_MEMBERSHIP: 10992 mcast_opt = B_FALSE; 10993 /* FALLTHRU */ 10994 case MCAST_LEAVE_SOURCE_GROUP: 10995 fmode = MODE_IS_INCLUDE; 10996 optfn = ip_opt_delete_group; 10997 break; 10998 } 10999 11000 if (mcast_opt) { 11001 gsreqp = (struct group_source_req *)i1; 11002 if (gsreqp->gsr_group.ss_family != AF_INET) { 11003 *outlenp = 0; 11004 return (ENOPROTOOPT); 11005 } 11006 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 11007 grp = (ipaddr_t)sin->sin_addr.s_addr; 11008 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 11009 src = (ipaddr_t)sin->sin_addr.s_addr; 11010 ifindex = gsreqp->gsr_interface; 11011 } else { 11012 imreqp = (struct ip_mreq_source *)i1; 11013 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 11014 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 11015 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 11016 } 11017 11018 /* 11019 * In the multirouting case, we need to replicate 11020 * the request as noted in the mcast cases above. 11021 */ 11022 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 11023 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11024 MATCH_IRE_MASK | MATCH_IRE_TYPE); 11025 if (ire != NULL) { 11026 if (ire->ire_flags & RTF_MULTIRT) { 11027 error = ip_multirt_apply_membership( 11028 optfn, ire, connp, checkonly, grp, 11029 fmode, src, first_mp); 11030 done = B_TRUE; 11031 } 11032 ire_refrele(ire); 11033 } 11034 if (!done) { 11035 error = optfn(connp, checkonly, grp, ifaddr, 11036 &ifindex, fmode, src, first_mp); 11037 } 11038 if (error != 0) { 11039 /* 11040 * EINPROGRESS is a soft error, needs retry 11041 * so don't make *outlenp zero. 11042 */ 11043 if (error != EINPROGRESS) 11044 *outlenp = 0; 11045 return (error); 11046 } 11047 /* OK return - copy input buffer into output buffer */ 11048 if (invalp != outvalp) { 11049 bcopy(invalp, outvalp, inlen); 11050 } 11051 *outlenp = inlen; 11052 return (0); 11053 } 11054 case IP_SEC_OPT: 11055 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11056 if (error != 0) { 11057 *outlenp = 0; 11058 return (error); 11059 } 11060 break; 11061 case IP_HDRINCL: 11062 case IP_OPTIONS: 11063 case T_IP_OPTIONS: 11064 case IP_TOS: 11065 case T_IP_TOS: 11066 case IP_TTL: 11067 case IP_RECVDSTADDR: 11068 case IP_RECVOPTS: 11069 /* OK return - copy input buffer into output buffer */ 11070 if (invalp != outvalp) { 11071 /* don't trust bcopy for identical src/dst */ 11072 bcopy(invalp, outvalp, inlen); 11073 } 11074 *outlenp = inlen; 11075 return (0); 11076 case IP_RECVIF: 11077 /* Retrieve the inbound interface index */ 11078 if (!checkonly) { 11079 mutex_enter(&connp->conn_lock); 11080 connp->conn_recvif = *i1 ? 1 : 0; 11081 mutex_exit(&connp->conn_lock); 11082 } 11083 break; /* goto sizeof (int) option return */ 11084 case IP_RECVPKTINFO: 11085 if (!checkonly) { 11086 mutex_enter(&connp->conn_lock); 11087 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11088 mutex_exit(&connp->conn_lock); 11089 } 11090 break; /* goto sizeof (int) option return */ 11091 case IP_RECVSLLA: 11092 /* Retrieve the source link layer address */ 11093 if (!checkonly) { 11094 mutex_enter(&connp->conn_lock); 11095 connp->conn_recvslla = *i1 ? 1 : 0; 11096 mutex_exit(&connp->conn_lock); 11097 } 11098 break; /* goto sizeof (int) option return */ 11099 case MRT_INIT: 11100 case MRT_DONE: 11101 case MRT_ADD_VIF: 11102 case MRT_DEL_VIF: 11103 case MRT_ADD_MFC: 11104 case MRT_DEL_MFC: 11105 case MRT_ASSERT: 11106 if ((error = secpolicy_net_config(cr, B_FALSE)) != 0) { 11107 *outlenp = 0; 11108 return (error); 11109 } 11110 error = ip_mrouter_set((int)name, q, checkonly, 11111 (uchar_t *)invalp, inlen, first_mp); 11112 if (error) { 11113 *outlenp = 0; 11114 return (error); 11115 } 11116 /* OK return - copy input buffer into output buffer */ 11117 if (invalp != outvalp) { 11118 /* don't trust bcopy for identical src/dst */ 11119 bcopy(invalp, outvalp, inlen); 11120 } 11121 *outlenp = inlen; 11122 return (0); 11123 case IP_BOUND_IF: 11124 case IP_XMIT_IF: 11125 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11126 level, name, first_mp); 11127 if (error != 0) 11128 return (error); 11129 break; /* goto sizeof (int) option return */ 11130 11131 case IP_UNSPEC_SRC: 11132 /* Allow sending with a zero source address */ 11133 if (!checkonly) { 11134 mutex_enter(&connp->conn_lock); 11135 connp->conn_unspec_src = *i1 ? 1 : 0; 11136 mutex_exit(&connp->conn_lock); 11137 } 11138 break; /* goto sizeof (int) option return */ 11139 default: 11140 /* 11141 * "soft" error (negative) 11142 * option not handled at this level 11143 * Note: Do not modify *outlenp 11144 */ 11145 return (-EINVAL); 11146 } 11147 break; 11148 case IPPROTO_IPV6: 11149 switch (name) { 11150 case IPV6_BOUND_IF: 11151 case IPV6_BOUND_PIF: 11152 case IPV6_DONTFAILOVER_IF: 11153 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11154 level, name, first_mp); 11155 if (error != 0) 11156 return (error); 11157 break; /* goto sizeof (int) option return */ 11158 11159 case IPV6_MULTICAST_IF: 11160 /* 11161 * The only possible errors are EINPROGRESS and 11162 * EINVAL. EINPROGRESS will be restarted and is not 11163 * a hard error. We call this option on both V4 and V6 11164 * If both return EINVAL, then this call returns 11165 * EINVAL. If at least one of them succeeds we 11166 * return success. 11167 */ 11168 found = B_FALSE; 11169 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11170 level, name, first_mp); 11171 if (error == EINPROGRESS) 11172 return (error); 11173 if (error == 0) 11174 found = B_TRUE; 11175 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11176 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11177 if (error == 0) 11178 found = B_TRUE; 11179 if (!found) 11180 return (error); 11181 break; /* goto sizeof (int) option return */ 11182 11183 case IPV6_MULTICAST_HOPS: 11184 /* Recorded in transport above IP */ 11185 break; /* goto sizeof (int) option return */ 11186 case IPV6_MULTICAST_LOOP: 11187 if (!checkonly) { 11188 mutex_enter(&connp->conn_lock); 11189 connp->conn_multicast_loop = *i1; 11190 mutex_exit(&connp->conn_lock); 11191 } 11192 break; /* goto sizeof (int) option return */ 11193 case IPV6_JOIN_GROUP: 11194 case MCAST_JOIN_GROUP: 11195 case IPV6_LEAVE_GROUP: 11196 case MCAST_LEAVE_GROUP: { 11197 struct ipv6_mreq *ip_mreqp; 11198 struct group_req *greqp; 11199 ire_t *ire; 11200 boolean_t done = B_FALSE; 11201 in6_addr_t groupv6; 11202 uint32_t ifindex; 11203 boolean_t mcast_opt = B_TRUE; 11204 mcast_record_t fmode; 11205 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11206 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11207 11208 switch (name) { 11209 case IPV6_JOIN_GROUP: 11210 mcast_opt = B_FALSE; 11211 /* FALLTHRU */ 11212 case MCAST_JOIN_GROUP: 11213 fmode = MODE_IS_EXCLUDE; 11214 optfn = ip_opt_add_group_v6; 11215 break; 11216 11217 case IPV6_LEAVE_GROUP: 11218 mcast_opt = B_FALSE; 11219 /* FALLTHRU */ 11220 case MCAST_LEAVE_GROUP: 11221 fmode = MODE_IS_INCLUDE; 11222 optfn = ip_opt_delete_group_v6; 11223 break; 11224 } 11225 11226 if (mcast_opt) { 11227 struct sockaddr_in *sin; 11228 struct sockaddr_in6 *sin6; 11229 greqp = (struct group_req *)i1; 11230 if (greqp->gr_group.ss_family == AF_INET) { 11231 sin = (struct sockaddr_in *) 11232 &(greqp->gr_group); 11233 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11234 &groupv6); 11235 } else { 11236 sin6 = (struct sockaddr_in6 *) 11237 &(greqp->gr_group); 11238 groupv6 = sin6->sin6_addr; 11239 } 11240 ifindex = greqp->gr_interface; 11241 } else { 11242 ip_mreqp = (struct ipv6_mreq *)i1; 11243 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11244 ifindex = ip_mreqp->ipv6mr_interface; 11245 } 11246 /* 11247 * In the multirouting case, we need to replicate 11248 * the request on all interfaces that will take part 11249 * in replication. We do so because multirouting is 11250 * reflective, thus we will probably receive multi- 11251 * casts on those interfaces. 11252 * The ip_multirt_apply_membership_v6() succeeds if 11253 * the operation succeeds on at least one interface. 11254 */ 11255 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11256 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11257 MATCH_IRE_MASK | MATCH_IRE_TYPE); 11258 if (ire != NULL) { 11259 if (ire->ire_flags & RTF_MULTIRT) { 11260 error = ip_multirt_apply_membership_v6( 11261 optfn, ire, connp, checkonly, 11262 &groupv6, fmode, &ipv6_all_zeros, 11263 first_mp); 11264 done = B_TRUE; 11265 } 11266 ire_refrele(ire); 11267 } 11268 if (!done) { 11269 error = optfn(connp, checkonly, &groupv6, 11270 ifindex, fmode, &ipv6_all_zeros, first_mp); 11271 } 11272 if (error) { 11273 /* 11274 * EINPROGRESS is a soft error, needs retry 11275 * so don't make *outlenp zero. 11276 */ 11277 if (error != EINPROGRESS) 11278 *outlenp = 0; 11279 return (error); 11280 } 11281 /* OK return - copy input buffer into output buffer */ 11282 if (invalp != outvalp) { 11283 /* don't trust bcopy for identical src/dst */ 11284 bcopy(invalp, outvalp, inlen); 11285 } 11286 *outlenp = inlen; 11287 return (0); 11288 } 11289 case MCAST_BLOCK_SOURCE: 11290 case MCAST_UNBLOCK_SOURCE: 11291 case MCAST_JOIN_SOURCE_GROUP: 11292 case MCAST_LEAVE_SOURCE_GROUP: { 11293 struct group_source_req *gsreqp; 11294 in6_addr_t v6grp, v6src; 11295 uint32_t ifindex; 11296 mcast_record_t fmode; 11297 ire_t *ire; 11298 boolean_t done = B_FALSE; 11299 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11300 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11301 11302 switch (name) { 11303 case MCAST_BLOCK_SOURCE: 11304 fmode = MODE_IS_EXCLUDE; 11305 optfn = ip_opt_add_group_v6; 11306 break; 11307 case MCAST_UNBLOCK_SOURCE: 11308 fmode = MODE_IS_EXCLUDE; 11309 optfn = ip_opt_delete_group_v6; 11310 break; 11311 case MCAST_JOIN_SOURCE_GROUP: 11312 fmode = MODE_IS_INCLUDE; 11313 optfn = ip_opt_add_group_v6; 11314 break; 11315 case MCAST_LEAVE_SOURCE_GROUP: 11316 fmode = MODE_IS_INCLUDE; 11317 optfn = ip_opt_delete_group_v6; 11318 break; 11319 } 11320 11321 gsreqp = (struct group_source_req *)i1; 11322 ifindex = gsreqp->gsr_interface; 11323 if (gsreqp->gsr_group.ss_family == AF_INET) { 11324 struct sockaddr_in *s; 11325 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11326 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11327 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11328 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11329 } else { 11330 struct sockaddr_in6 *s6; 11331 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11332 v6grp = s6->sin6_addr; 11333 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11334 v6src = s6->sin6_addr; 11335 } 11336 11337 /* 11338 * In the multirouting case, we need to replicate 11339 * the request as noted in the mcast cases above. 11340 */ 11341 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11342 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11343 MATCH_IRE_MASK | MATCH_IRE_TYPE); 11344 if (ire != NULL) { 11345 if (ire->ire_flags & RTF_MULTIRT) { 11346 error = ip_multirt_apply_membership_v6( 11347 optfn, ire, connp, checkonly, 11348 &v6grp, fmode, &v6src, first_mp); 11349 done = B_TRUE; 11350 } 11351 ire_refrele(ire); 11352 } 11353 if (!done) { 11354 error = optfn(connp, checkonly, &v6grp, 11355 ifindex, fmode, &v6src, first_mp); 11356 } 11357 if (error != 0) { 11358 /* 11359 * EINPROGRESS is a soft error, needs retry 11360 * so don't make *outlenp zero. 11361 */ 11362 if (error != EINPROGRESS) 11363 *outlenp = 0; 11364 return (error); 11365 } 11366 /* OK return - copy input buffer into output buffer */ 11367 if (invalp != outvalp) { 11368 bcopy(invalp, outvalp, inlen); 11369 } 11370 *outlenp = inlen; 11371 return (0); 11372 } 11373 case IPV6_UNICAST_HOPS: 11374 /* Recorded in transport above IP */ 11375 break; /* goto sizeof (int) option return */ 11376 case IPV6_UNSPEC_SRC: 11377 /* Allow sending with a zero source address */ 11378 if (!checkonly) { 11379 mutex_enter(&connp->conn_lock); 11380 connp->conn_unspec_src = *i1 ? 1 : 0; 11381 mutex_exit(&connp->conn_lock); 11382 } 11383 break; /* goto sizeof (int) option return */ 11384 case IPV6_RECVPKTINFO: 11385 if (!checkonly) { 11386 mutex_enter(&connp->conn_lock); 11387 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11388 mutex_exit(&connp->conn_lock); 11389 } 11390 break; /* goto sizeof (int) option return */ 11391 case IPV6_RECVTCLASS: 11392 if (!checkonly) { 11393 if (*i1 < 0 || *i1 > 1) { 11394 return (EINVAL); 11395 } 11396 mutex_enter(&connp->conn_lock); 11397 connp->conn_ipv6_recvtclass = *i1; 11398 mutex_exit(&connp->conn_lock); 11399 } 11400 break; 11401 case IPV6_RECVPATHMTU: 11402 if (!checkonly) { 11403 if (*i1 < 0 || *i1 > 1) { 11404 return (EINVAL); 11405 } 11406 mutex_enter(&connp->conn_lock); 11407 connp->conn_ipv6_recvpathmtu = *i1; 11408 mutex_exit(&connp->conn_lock); 11409 } 11410 break; 11411 case IPV6_RECVHOPLIMIT: 11412 if (!checkonly) { 11413 mutex_enter(&connp->conn_lock); 11414 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11415 mutex_exit(&connp->conn_lock); 11416 } 11417 break; /* goto sizeof (int) option return */ 11418 case IPV6_RECVHOPOPTS: 11419 if (!checkonly) { 11420 mutex_enter(&connp->conn_lock); 11421 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11422 mutex_exit(&connp->conn_lock); 11423 } 11424 break; /* goto sizeof (int) option return */ 11425 case IPV6_RECVDSTOPTS: 11426 if (!checkonly) { 11427 mutex_enter(&connp->conn_lock); 11428 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11429 mutex_exit(&connp->conn_lock); 11430 } 11431 break; /* goto sizeof (int) option return */ 11432 case IPV6_RECVRTHDR: 11433 if (!checkonly) { 11434 mutex_enter(&connp->conn_lock); 11435 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11436 mutex_exit(&connp->conn_lock); 11437 } 11438 break; /* goto sizeof (int) option return */ 11439 case IPV6_RECVRTHDRDSTOPTS: 11440 if (!checkonly) { 11441 mutex_enter(&connp->conn_lock); 11442 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11443 mutex_exit(&connp->conn_lock); 11444 } 11445 break; /* goto sizeof (int) option return */ 11446 case IPV6_PKTINFO: 11447 if (inlen == 0) 11448 return (-EINVAL); /* clearing option */ 11449 error = ip6_set_pktinfo(cr, connp, 11450 (struct in6_pktinfo *)invalp, first_mp); 11451 if (error != 0) 11452 *outlenp = 0; 11453 else 11454 *outlenp = inlen; 11455 return (error); 11456 case IPV6_NEXTHOP: { 11457 struct sockaddr_in6 *sin6; 11458 11459 /* Verify that the nexthop is reachable */ 11460 if (inlen == 0) 11461 return (-EINVAL); /* clearing option */ 11462 11463 sin6 = (struct sockaddr_in6 *)invalp; 11464 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11465 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11466 NULL, MATCH_IRE_DEFAULT); 11467 11468 if (ire == NULL) { 11469 *outlenp = 0; 11470 return (EHOSTUNREACH); 11471 } 11472 ire_refrele(ire); 11473 return (-EINVAL); 11474 } 11475 case IPV6_SEC_OPT: 11476 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11477 if (error != 0) { 11478 *outlenp = 0; 11479 return (error); 11480 } 11481 break; 11482 case IPV6_SRC_PREFERENCES: { 11483 /* 11484 * This is implemented strictly in the ip module 11485 * (here and in tcp_opt_*() to accomodate tcp 11486 * sockets). Modules above ip pass this option 11487 * down here since ip is the only one that needs to 11488 * be aware of source address preferences. 11489 * 11490 * This socket option only affects connected 11491 * sockets that haven't already bound to a specific 11492 * IPv6 address. In other words, sockets that 11493 * don't call bind() with an address other than the 11494 * unspecified address and that call connect(). 11495 * ip_bind_connected_v6() passes these preferences 11496 * to the ipif_select_source_v6() function. 11497 */ 11498 if (inlen != sizeof (uint32_t)) 11499 return (EINVAL); 11500 error = ip6_set_src_preferences(connp, 11501 *(uint32_t *)invalp); 11502 if (error != 0) { 11503 *outlenp = 0; 11504 return (error); 11505 } else { 11506 *outlenp = sizeof (uint32_t); 11507 } 11508 break; 11509 } 11510 case IPV6_V6ONLY: 11511 if (*i1 < 0 || *i1 > 1) { 11512 return (EINVAL); 11513 } 11514 mutex_enter(&connp->conn_lock); 11515 connp->conn_ipv6_v6only = *i1; 11516 mutex_exit(&connp->conn_lock); 11517 break; 11518 default: 11519 return (-EINVAL); 11520 } 11521 break; 11522 default: 11523 /* 11524 * "soft" error (negative) 11525 * option not handled at this level 11526 * Note: Do not modify *outlenp 11527 */ 11528 return (-EINVAL); 11529 } 11530 /* 11531 * Common case of return from an option that is sizeof (int) 11532 */ 11533 *(int *)outvalp = *i1; 11534 *outlenp = sizeof (int); 11535 return (0); 11536 } 11537 11538 /* 11539 * This routine gets default values of certain options whose default 11540 * values are maintained by protocol specific code 11541 */ 11542 /* ARGSUSED */ 11543 int 11544 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11545 { 11546 int *i1 = (int *)ptr; 11547 11548 switch (level) { 11549 case IPPROTO_IP: 11550 switch (name) { 11551 case IP_MULTICAST_TTL: 11552 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11553 return (sizeof (uchar_t)); 11554 case IP_MULTICAST_LOOP: 11555 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11556 return (sizeof (uchar_t)); 11557 default: 11558 return (-1); 11559 } 11560 case IPPROTO_IPV6: 11561 switch (name) { 11562 case IPV6_UNICAST_HOPS: 11563 *i1 = ipv6_def_hops; 11564 return (sizeof (int)); 11565 case IPV6_MULTICAST_HOPS: 11566 *i1 = IP_DEFAULT_MULTICAST_TTL; 11567 return (sizeof (int)); 11568 case IPV6_MULTICAST_LOOP: 11569 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11570 return (sizeof (int)); 11571 case IPV6_V6ONLY: 11572 *i1 = 1; 11573 return (sizeof (int)); 11574 default: 11575 return (-1); 11576 } 11577 default: 11578 return (-1); 11579 } 11580 /* NOTREACHED */ 11581 } 11582 11583 /* 11584 * Given a destination address and a pointer to where to put the information 11585 * this routine fills in the mtuinfo. 11586 */ 11587 int 11588 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11589 struct ip6_mtuinfo *mtuinfo) 11590 { 11591 ire_t *ire; 11592 11593 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11594 return (-1); 11595 11596 bzero(mtuinfo, sizeof (*mtuinfo)); 11597 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11598 mtuinfo->ip6m_addr.sin6_port = port; 11599 mtuinfo->ip6m_addr.sin6_addr = *in6; 11600 11601 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL); 11602 if (ire != NULL) { 11603 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11604 ire_refrele(ire); 11605 } else { 11606 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11607 } 11608 return (sizeof (struct ip6_mtuinfo)); 11609 } 11610 11611 /* 11612 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11613 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11614 * isn't. This doesn't matter as the error checking is done properly for the 11615 * other MRT options coming in through ip_opt_set. 11616 */ 11617 int 11618 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11619 { 11620 conn_t *connp = Q_TO_CONN(q); 11621 ipsec_req_t *req = (ipsec_req_t *)ptr; 11622 11623 switch (level) { 11624 case IPPROTO_IP: 11625 switch (name) { 11626 case MRT_VERSION: 11627 case MRT_ASSERT: 11628 (void) ip_mrouter_get(name, q, ptr); 11629 return (sizeof (int)); 11630 case IP_SEC_OPT: 11631 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11632 case IP_NEXTHOP: 11633 if (connp->conn_nexthop_set) { 11634 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11635 return (sizeof (ipaddr_t)); 11636 } else 11637 return (0); 11638 case IP_RECVPKTINFO: 11639 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11640 return (sizeof (int)); 11641 default: 11642 break; 11643 } 11644 break; 11645 case IPPROTO_IPV6: 11646 switch (name) { 11647 case IPV6_SEC_OPT: 11648 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11649 case IPV6_SRC_PREFERENCES: { 11650 return (ip6_get_src_preferences(connp, 11651 (uint32_t *)ptr)); 11652 } 11653 case IPV6_V6ONLY: 11654 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11655 return (sizeof (int)); 11656 case IPV6_PATHMTU: 11657 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11658 (struct ip6_mtuinfo *)ptr)); 11659 default: 11660 break; 11661 } 11662 break; 11663 default: 11664 break; 11665 } 11666 return (-1); 11667 } 11668 11669 /* Named Dispatch routine to get a current value out of our parameter table. */ 11670 /* ARGSUSED */ 11671 static int 11672 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11673 { 11674 ipparam_t *ippa = (ipparam_t *)cp; 11675 11676 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11677 return (0); 11678 } 11679 11680 /* ARGSUSED */ 11681 static int 11682 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11683 { 11684 11685 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11686 return (0); 11687 } 11688 11689 /* 11690 * Set ip{,6}_forwarding values. This means walking through all of the 11691 * ill's and toggling their forwarding values. 11692 */ 11693 /* ARGSUSED */ 11694 static int 11695 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11696 { 11697 long new_value; 11698 int *forwarding_value = (int *)cp; 11699 ill_t *walker; 11700 boolean_t isv6 = (forwarding_value == &ipv6_forward); 11701 ill_walk_context_t ctx; 11702 11703 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11704 new_value < 0 || new_value > 1) { 11705 return (EINVAL); 11706 } 11707 11708 *forwarding_value = new_value; 11709 11710 /* 11711 * Regardless of the current value of ip_forwarding, set all per-ill 11712 * values of ip_forwarding to the value being set. 11713 * 11714 * Bring all the ill's up to date with the new global value. 11715 */ 11716 rw_enter(&ill_g_lock, RW_READER); 11717 11718 if (isv6) 11719 walker = ILL_START_WALK_V6(&ctx); 11720 else 11721 walker = ILL_START_WALK_V4(&ctx); 11722 for (; walker != NULL; walker = ill_next(&ctx, walker)) { 11723 (void) ill_forward_set(q, mp, (new_value != 0), 11724 (caddr_t)walker); 11725 } 11726 rw_exit(&ill_g_lock); 11727 11728 return (0); 11729 } 11730 11731 /* 11732 * Walk through the param array specified registering each element with the 11733 * Named Dispatch handler. This is called only during init. So it is ok 11734 * not to acquire any locks 11735 */ 11736 static boolean_t 11737 ip_param_register(ipparam_t *ippa, size_t ippa_cnt, 11738 ipndp_t *ipnd, size_t ipnd_cnt) 11739 { 11740 for (; ippa_cnt-- > 0; ippa++) { 11741 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11742 if (!nd_load(&ip_g_nd, ippa->ip_param_name, 11743 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11744 nd_free(&ip_g_nd); 11745 return (B_FALSE); 11746 } 11747 } 11748 } 11749 11750 for (; ipnd_cnt-- > 0; ipnd++) { 11751 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11752 if (!nd_load(&ip_g_nd, ipnd->ip_ndp_name, 11753 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11754 ipnd->ip_ndp_data)) { 11755 nd_free(&ip_g_nd); 11756 return (B_FALSE); 11757 } 11758 } 11759 } 11760 11761 return (B_TRUE); 11762 } 11763 11764 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11765 /* ARGSUSED */ 11766 static int 11767 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11768 { 11769 long new_value; 11770 ipparam_t *ippa = (ipparam_t *)cp; 11771 11772 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11773 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11774 return (EINVAL); 11775 } 11776 ippa->ip_param_value = new_value; 11777 return (0); 11778 } 11779 11780 /* 11781 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11782 * When an ipf is passed here for the first time, if 11783 * we already have in-order fragments on the queue, we convert from the fast- 11784 * path reassembly scheme to the hard-case scheme. From then on, additional 11785 * fragments are reassembled here. We keep track of the start and end offsets 11786 * of each piece, and the number of holes in the chain. When the hole count 11787 * goes to zero, we are done! 11788 * 11789 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11790 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11791 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11792 * after the call to ip_reassemble(). 11793 */ 11794 int 11795 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11796 size_t msg_len) 11797 { 11798 uint_t end; 11799 mblk_t *next_mp; 11800 mblk_t *mp1; 11801 uint_t offset; 11802 boolean_t incr_dups = B_TRUE; 11803 boolean_t offset_zero_seen = B_FALSE; 11804 boolean_t pkt_boundary_checked = B_FALSE; 11805 11806 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11807 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11808 11809 /* Add in byte count */ 11810 ipf->ipf_count += msg_len; 11811 if (ipf->ipf_end) { 11812 /* 11813 * We were part way through in-order reassembly, but now there 11814 * is a hole. We walk through messages already queued, and 11815 * mark them for hard case reassembly. We know that up till 11816 * now they were in order starting from offset zero. 11817 */ 11818 offset = 0; 11819 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11820 IP_REASS_SET_START(mp1, offset); 11821 if (offset == 0) { 11822 ASSERT(ipf->ipf_nf_hdr_len != 0); 11823 offset = -ipf->ipf_nf_hdr_len; 11824 } 11825 offset += mp1->b_wptr - mp1->b_rptr; 11826 IP_REASS_SET_END(mp1, offset); 11827 } 11828 /* One hole at the end. */ 11829 ipf->ipf_hole_cnt = 1; 11830 /* Brand it as a hard case, forever. */ 11831 ipf->ipf_end = 0; 11832 } 11833 /* Walk through all the new pieces. */ 11834 do { 11835 end = start + (mp->b_wptr - mp->b_rptr); 11836 /* 11837 * If start is 0, decrease 'end' only for the first mblk of 11838 * the fragment. Otherwise 'end' can get wrong value in the 11839 * second pass of the loop if first mblk is exactly the 11840 * size of ipf_nf_hdr_len. 11841 */ 11842 if (start == 0 && !offset_zero_seen) { 11843 /* First segment */ 11844 ASSERT(ipf->ipf_nf_hdr_len != 0); 11845 end -= ipf->ipf_nf_hdr_len; 11846 offset_zero_seen = B_TRUE; 11847 } 11848 next_mp = mp->b_cont; 11849 /* 11850 * We are checking to see if there is any interesing data 11851 * to process. If there isn't and the mblk isn't the 11852 * one which carries the unfragmentable header then we 11853 * drop it. It's possible to have just the unfragmentable 11854 * header come through without any data. That needs to be 11855 * saved. 11856 * 11857 * If the assert at the top of this function holds then the 11858 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11859 * is infrequently traveled enough that the test is left in 11860 * to protect against future code changes which break that 11861 * invariant. 11862 */ 11863 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11864 /* Empty. Blast it. */ 11865 IP_REASS_SET_START(mp, 0); 11866 IP_REASS_SET_END(mp, 0); 11867 /* 11868 * If the ipf points to the mblk we are about to free, 11869 * update ipf to point to the next mblk (or NULL 11870 * if none). 11871 */ 11872 if (ipf->ipf_mp->b_cont == mp) 11873 ipf->ipf_mp->b_cont = next_mp; 11874 freeb(mp); 11875 continue; 11876 } 11877 mp->b_cont = NULL; 11878 IP_REASS_SET_START(mp, start); 11879 IP_REASS_SET_END(mp, end); 11880 if (!ipf->ipf_tail_mp) { 11881 ipf->ipf_tail_mp = mp; 11882 ipf->ipf_mp->b_cont = mp; 11883 if (start == 0 || !more) { 11884 ipf->ipf_hole_cnt = 1; 11885 /* 11886 * if the first fragment comes in more than one 11887 * mblk, this loop will be executed for each 11888 * mblk. Need to adjust hole count so exiting 11889 * this routine will leave hole count at 1. 11890 */ 11891 if (next_mp) 11892 ipf->ipf_hole_cnt++; 11893 } else 11894 ipf->ipf_hole_cnt = 2; 11895 continue; 11896 } else if (ipf->ipf_last_frag_seen && !more && 11897 !pkt_boundary_checked) { 11898 /* 11899 * We check datagram boundary only if this fragment 11900 * claims to be the last fragment and we have seen a 11901 * last fragment in the past too. We do this only 11902 * once for a given fragment. 11903 * 11904 * start cannot be 0 here as fragments with start=0 11905 * and MF=0 gets handled as a complete packet. These 11906 * fragments should not reach here. 11907 */ 11908 11909 if (start + msgdsize(mp) != 11910 IP_REASS_END(ipf->ipf_tail_mp)) { 11911 /* 11912 * We have two fragments both of which claim 11913 * to be the last fragment but gives conflicting 11914 * information about the whole datagram size. 11915 * Something fishy is going on. Drop the 11916 * fragment and free up the reassembly list. 11917 */ 11918 return (IP_REASS_FAILED); 11919 } 11920 11921 /* 11922 * We shouldn't come to this code block again for this 11923 * particular fragment. 11924 */ 11925 pkt_boundary_checked = B_TRUE; 11926 } 11927 11928 /* New stuff at or beyond tail? */ 11929 offset = IP_REASS_END(ipf->ipf_tail_mp); 11930 if (start >= offset) { 11931 if (ipf->ipf_last_frag_seen) { 11932 /* current fragment is beyond last fragment */ 11933 return (IP_REASS_FAILED); 11934 } 11935 /* Link it on end. */ 11936 ipf->ipf_tail_mp->b_cont = mp; 11937 ipf->ipf_tail_mp = mp; 11938 if (more) { 11939 if (start != offset) 11940 ipf->ipf_hole_cnt++; 11941 } else if (start == offset && next_mp == NULL) 11942 ipf->ipf_hole_cnt--; 11943 continue; 11944 } 11945 mp1 = ipf->ipf_mp->b_cont; 11946 offset = IP_REASS_START(mp1); 11947 /* New stuff at the front? */ 11948 if (start < offset) { 11949 if (start == 0) { 11950 if (end >= offset) { 11951 /* Nailed the hole at the begining. */ 11952 ipf->ipf_hole_cnt--; 11953 } 11954 } else if (end < offset) { 11955 /* 11956 * A hole, stuff, and a hole where there used 11957 * to be just a hole. 11958 */ 11959 ipf->ipf_hole_cnt++; 11960 } 11961 mp->b_cont = mp1; 11962 /* Check for overlap. */ 11963 while (end > offset) { 11964 if (end < IP_REASS_END(mp1)) { 11965 mp->b_wptr -= end - offset; 11966 IP_REASS_SET_END(mp, offset); 11967 BUMP_MIB(ill->ill_ip_mib, 11968 ipIfStatsReasmPartDups); 11969 break; 11970 } 11971 /* Did we cover another hole? */ 11972 if ((mp1->b_cont && 11973 IP_REASS_END(mp1) != 11974 IP_REASS_START(mp1->b_cont) && 11975 end >= IP_REASS_START(mp1->b_cont)) || 11976 (!ipf->ipf_last_frag_seen && !more)) { 11977 ipf->ipf_hole_cnt--; 11978 } 11979 /* Clip out mp1. */ 11980 if ((mp->b_cont = mp1->b_cont) == NULL) { 11981 /* 11982 * After clipping out mp1, this guy 11983 * is now hanging off the end. 11984 */ 11985 ipf->ipf_tail_mp = mp; 11986 } 11987 IP_REASS_SET_START(mp1, 0); 11988 IP_REASS_SET_END(mp1, 0); 11989 /* Subtract byte count */ 11990 ipf->ipf_count -= mp1->b_datap->db_lim - 11991 mp1->b_datap->db_base; 11992 freeb(mp1); 11993 BUMP_MIB(ill->ill_ip_mib, 11994 ipIfStatsReasmPartDups); 11995 mp1 = mp->b_cont; 11996 if (!mp1) 11997 break; 11998 offset = IP_REASS_START(mp1); 11999 } 12000 ipf->ipf_mp->b_cont = mp; 12001 continue; 12002 } 12003 /* 12004 * The new piece starts somewhere between the start of the head 12005 * and before the end of the tail. 12006 */ 12007 for (; mp1; mp1 = mp1->b_cont) { 12008 offset = IP_REASS_END(mp1); 12009 if (start < offset) { 12010 if (end <= offset) { 12011 /* Nothing new. */ 12012 IP_REASS_SET_START(mp, 0); 12013 IP_REASS_SET_END(mp, 0); 12014 /* Subtract byte count */ 12015 ipf->ipf_count -= mp->b_datap->db_lim - 12016 mp->b_datap->db_base; 12017 if (incr_dups) { 12018 ipf->ipf_num_dups++; 12019 incr_dups = B_FALSE; 12020 } 12021 freeb(mp); 12022 BUMP_MIB(ill->ill_ip_mib, 12023 ipIfStatsReasmDuplicates); 12024 break; 12025 } 12026 /* 12027 * Trim redundant stuff off beginning of new 12028 * piece. 12029 */ 12030 IP_REASS_SET_START(mp, offset); 12031 mp->b_rptr += offset - start; 12032 BUMP_MIB(ill->ill_ip_mib, 12033 ipIfStatsReasmPartDups); 12034 start = offset; 12035 if (!mp1->b_cont) { 12036 /* 12037 * After trimming, this guy is now 12038 * hanging off the end. 12039 */ 12040 mp1->b_cont = mp; 12041 ipf->ipf_tail_mp = mp; 12042 if (!more) { 12043 ipf->ipf_hole_cnt--; 12044 } 12045 break; 12046 } 12047 } 12048 if (start >= IP_REASS_START(mp1->b_cont)) 12049 continue; 12050 /* Fill a hole */ 12051 if (start > offset) 12052 ipf->ipf_hole_cnt++; 12053 mp->b_cont = mp1->b_cont; 12054 mp1->b_cont = mp; 12055 mp1 = mp->b_cont; 12056 offset = IP_REASS_START(mp1); 12057 if (end >= offset) { 12058 ipf->ipf_hole_cnt--; 12059 /* Check for overlap. */ 12060 while (end > offset) { 12061 if (end < IP_REASS_END(mp1)) { 12062 mp->b_wptr -= end - offset; 12063 IP_REASS_SET_END(mp, offset); 12064 /* 12065 * TODO we might bump 12066 * this up twice if there is 12067 * overlap at both ends. 12068 */ 12069 BUMP_MIB(ill->ill_ip_mib, 12070 ipIfStatsReasmPartDups); 12071 break; 12072 } 12073 /* Did we cover another hole? */ 12074 if ((mp1->b_cont && 12075 IP_REASS_END(mp1) 12076 != IP_REASS_START(mp1->b_cont) && 12077 end >= 12078 IP_REASS_START(mp1->b_cont)) || 12079 (!ipf->ipf_last_frag_seen && 12080 !more)) { 12081 ipf->ipf_hole_cnt--; 12082 } 12083 /* Clip out mp1. */ 12084 if ((mp->b_cont = mp1->b_cont) == 12085 NULL) { 12086 /* 12087 * After clipping out mp1, 12088 * this guy is now hanging 12089 * off the end. 12090 */ 12091 ipf->ipf_tail_mp = mp; 12092 } 12093 IP_REASS_SET_START(mp1, 0); 12094 IP_REASS_SET_END(mp1, 0); 12095 /* Subtract byte count */ 12096 ipf->ipf_count -= 12097 mp1->b_datap->db_lim - 12098 mp1->b_datap->db_base; 12099 freeb(mp1); 12100 BUMP_MIB(ill->ill_ip_mib, 12101 ipIfStatsReasmPartDups); 12102 mp1 = mp->b_cont; 12103 if (!mp1) 12104 break; 12105 offset = IP_REASS_START(mp1); 12106 } 12107 } 12108 break; 12109 } 12110 } while (start = end, mp = next_mp); 12111 12112 /* Fragment just processed could be the last one. Remember this fact */ 12113 if (!more) 12114 ipf->ipf_last_frag_seen = B_TRUE; 12115 12116 /* Still got holes? */ 12117 if (ipf->ipf_hole_cnt) 12118 return (IP_REASS_PARTIAL); 12119 /* Clean up overloaded fields to avoid upstream disasters. */ 12120 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12121 IP_REASS_SET_START(mp1, 0); 12122 IP_REASS_SET_END(mp1, 0); 12123 } 12124 return (IP_REASS_COMPLETE); 12125 } 12126 12127 /* 12128 * ipsec processing for the fast path, used for input UDP Packets 12129 */ 12130 static boolean_t 12131 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12132 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 12133 { 12134 uint32_t ill_index; 12135 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12136 12137 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12138 /* The ill_index of the incoming ILL */ 12139 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12140 12141 /* pass packet up to the transport */ 12142 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 12143 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12144 NULL, mctl_present); 12145 if (*first_mpp == NULL) { 12146 return (B_FALSE); 12147 } 12148 } 12149 12150 /* Initiate IPPF processing for fastpath UDP */ 12151 if (IPP_ENABLED(IPP_LOCAL_IN)) { 12152 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12153 if (*mpp == NULL) { 12154 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12155 "deferred/dropped during IPPF processing\n")); 12156 return (B_FALSE); 12157 } 12158 } 12159 /* 12160 * We make the checks as below since we are in the fast path 12161 * and want to minimize the number of checks if the IP_RECVIF and/or 12162 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12163 */ 12164 if (connp->conn_recvif || connp->conn_recvslla || 12165 connp->conn_ip_recvpktinfo) { 12166 if (connp->conn_recvif) { 12167 in_flags = IPF_RECVIF; 12168 } 12169 /* 12170 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12171 * so the flag passed to ip_add_info is based on IP version 12172 * of connp. 12173 */ 12174 if (connp->conn_ip_recvpktinfo) { 12175 if (connp->conn_af_isv6) { 12176 /* 12177 * V6 only needs index 12178 */ 12179 in_flags |= IPF_RECVIF; 12180 } else { 12181 /* 12182 * V4 needs index + matching address. 12183 */ 12184 in_flags |= IPF_RECVADDR; 12185 } 12186 } 12187 if (connp->conn_recvslla) { 12188 in_flags |= IPF_RECVSLLA; 12189 } 12190 /* 12191 * since in_flags are being set ill will be 12192 * referenced in ip_add_info, so it better not 12193 * be NULL. 12194 */ 12195 /* 12196 * the actual data will be contained in b_cont 12197 * upon successful return of the following call. 12198 * If the call fails then the original mblk is 12199 * returned. 12200 */ 12201 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp)); 12202 } 12203 12204 return (B_TRUE); 12205 } 12206 12207 /* 12208 * Fragmentation reassembly. Each ILL has a hash table for 12209 * queuing packets undergoing reassembly for all IPIFs 12210 * associated with the ILL. The hash is based on the packet 12211 * IP ident field. The ILL frag hash table was allocated 12212 * as a timer block at the time the ILL was created. Whenever 12213 * there is anything on the reassembly queue, the timer will 12214 * be running. Returns B_TRUE if successful else B_FALSE; 12215 * frees mp on failure. 12216 */ 12217 static boolean_t 12218 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12219 uint32_t *cksum_val, uint16_t *cksum_flags) 12220 { 12221 uint32_t frag_offset_flags; 12222 ill_t *ill = (ill_t *)q->q_ptr; 12223 mblk_t *mp = *mpp; 12224 mblk_t *t_mp; 12225 ipaddr_t dst; 12226 uint8_t proto = ipha->ipha_protocol; 12227 uint32_t sum_val; 12228 uint16_t sum_flags; 12229 ipf_t *ipf; 12230 ipf_t **ipfp; 12231 ipfb_t *ipfb; 12232 uint16_t ident; 12233 uint32_t offset; 12234 ipaddr_t src; 12235 uint_t hdr_length; 12236 uint32_t end; 12237 mblk_t *mp1; 12238 mblk_t *tail_mp; 12239 size_t count; 12240 size_t msg_len; 12241 uint8_t ecn_info = 0; 12242 uint32_t packet_size; 12243 boolean_t pruned = B_FALSE; 12244 12245 if (cksum_val != NULL) 12246 *cksum_val = 0; 12247 if (cksum_flags != NULL) 12248 *cksum_flags = 0; 12249 12250 /* 12251 * Drop the fragmented as early as possible, if 12252 * we don't have resource(s) to re-assemble. 12253 */ 12254 if (ip_reass_queue_bytes == 0) { 12255 freemsg(mp); 12256 return (B_FALSE); 12257 } 12258 12259 /* Check for fragmentation offset; return if there's none */ 12260 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12261 (IPH_MF | IPH_OFFSET)) == 0) 12262 return (B_TRUE); 12263 12264 /* 12265 * We utilize hardware computed checksum info only for UDP since 12266 * IP fragmentation is a normal occurence for the protocol. In 12267 * addition, checksum offload support for IP fragments carrying 12268 * UDP payload is commonly implemented across network adapters. 12269 */ 12270 ASSERT(ill != NULL); 12271 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12272 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12273 mblk_t *mp1 = mp->b_cont; 12274 int32_t len; 12275 12276 /* Record checksum information from the packet */ 12277 sum_val = (uint32_t)DB_CKSUM16(mp); 12278 sum_flags = DB_CKSUMFLAGS(mp); 12279 12280 /* IP payload offset from beginning of mblk */ 12281 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12282 12283 if ((sum_flags & HCK_PARTIALCKSUM) && 12284 (mp1 == NULL || mp1->b_cont == NULL) && 12285 offset >= DB_CKSUMSTART(mp) && 12286 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12287 uint32_t adj; 12288 /* 12289 * Partial checksum has been calculated by hardware 12290 * and attached to the packet; in addition, any 12291 * prepended extraneous data is even byte aligned. 12292 * If any such data exists, we adjust the checksum; 12293 * this would also handle any postpended data. 12294 */ 12295 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12296 mp, mp1, len, adj); 12297 12298 /* One's complement subtract extraneous checksum */ 12299 if (adj >= sum_val) 12300 sum_val = ~(adj - sum_val) & 0xFFFF; 12301 else 12302 sum_val -= adj; 12303 } 12304 } else { 12305 sum_val = 0; 12306 sum_flags = 0; 12307 } 12308 12309 /* Clear hardware checksumming flag */ 12310 DB_CKSUMFLAGS(mp) = 0; 12311 12312 ident = ipha->ipha_ident; 12313 offset = (frag_offset_flags << 3) & 0xFFFF; 12314 src = ipha->ipha_src; 12315 dst = ipha->ipha_dst; 12316 hdr_length = IPH_HDR_LENGTH(ipha); 12317 end = ntohs(ipha->ipha_length) - hdr_length; 12318 12319 /* If end == 0 then we have a packet with no data, so just free it */ 12320 if (end == 0) { 12321 freemsg(mp); 12322 return (B_FALSE); 12323 } 12324 12325 /* Record the ECN field info. */ 12326 ecn_info = (ipha->ipha_type_of_service & 0x3); 12327 if (offset != 0) { 12328 /* 12329 * If this isn't the first piece, strip the header, and 12330 * add the offset to the end value. 12331 */ 12332 mp->b_rptr += hdr_length; 12333 end += offset; 12334 } 12335 12336 msg_len = MBLKSIZE(mp); 12337 tail_mp = mp; 12338 while (tail_mp->b_cont != NULL) { 12339 tail_mp = tail_mp->b_cont; 12340 msg_len += MBLKSIZE(tail_mp); 12341 } 12342 12343 /* If the reassembly list for this ILL will get too big, prune it */ 12344 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12345 ip_reass_queue_bytes) { 12346 ill_frag_prune(ill, 12347 (ip_reass_queue_bytes < msg_len) ? 0 : 12348 (ip_reass_queue_bytes - msg_len)); 12349 pruned = B_TRUE; 12350 } 12351 12352 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12353 mutex_enter(&ipfb->ipfb_lock); 12354 12355 ipfp = &ipfb->ipfb_ipf; 12356 /* Try to find an existing fragment queue for this packet. */ 12357 for (;;) { 12358 ipf = ipfp[0]; 12359 if (ipf != NULL) { 12360 /* 12361 * It has to match on ident and src/dst address. 12362 */ 12363 if (ipf->ipf_ident == ident && 12364 ipf->ipf_src == src && 12365 ipf->ipf_dst == dst && 12366 ipf->ipf_protocol == proto) { 12367 /* 12368 * If we have received too many 12369 * duplicate fragments for this packet 12370 * free it. 12371 */ 12372 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12373 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12374 freemsg(mp); 12375 mutex_exit(&ipfb->ipfb_lock); 12376 return (B_FALSE); 12377 } 12378 /* Found it. */ 12379 break; 12380 } 12381 ipfp = &ipf->ipf_hash_next; 12382 continue; 12383 } 12384 12385 /* 12386 * If we pruned the list, do we want to store this new 12387 * fragment?. We apply an optimization here based on the 12388 * fact that most fragments will be received in order. 12389 * So if the offset of this incoming fragment is zero, 12390 * it is the first fragment of a new packet. We will 12391 * keep it. Otherwise drop the fragment, as we have 12392 * probably pruned the packet already (since the 12393 * packet cannot be found). 12394 */ 12395 if (pruned && offset != 0) { 12396 mutex_exit(&ipfb->ipfb_lock); 12397 freemsg(mp); 12398 return (B_FALSE); 12399 } 12400 12401 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS) { 12402 /* 12403 * Too many fragmented packets in this hash 12404 * bucket. Free the oldest. 12405 */ 12406 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12407 } 12408 12409 /* New guy. Allocate a frag message. */ 12410 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12411 if (mp1 == NULL) { 12412 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12413 freemsg(mp); 12414 reass_done: 12415 mutex_exit(&ipfb->ipfb_lock); 12416 return (B_FALSE); 12417 } 12418 12419 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12420 mp1->b_cont = mp; 12421 12422 /* Initialize the fragment header. */ 12423 ipf = (ipf_t *)mp1->b_rptr; 12424 ipf->ipf_mp = mp1; 12425 ipf->ipf_ptphn = ipfp; 12426 ipfp[0] = ipf; 12427 ipf->ipf_hash_next = NULL; 12428 ipf->ipf_ident = ident; 12429 ipf->ipf_protocol = proto; 12430 ipf->ipf_src = src; 12431 ipf->ipf_dst = dst; 12432 ipf->ipf_nf_hdr_len = 0; 12433 /* Record reassembly start time. */ 12434 ipf->ipf_timestamp = gethrestime_sec(); 12435 /* Record ipf generation and account for frag header */ 12436 ipf->ipf_gen = ill->ill_ipf_gen++; 12437 ipf->ipf_count = MBLKSIZE(mp1); 12438 ipf->ipf_last_frag_seen = B_FALSE; 12439 ipf->ipf_ecn = ecn_info; 12440 ipf->ipf_num_dups = 0; 12441 ipfb->ipfb_frag_pkts++; 12442 ipf->ipf_checksum = 0; 12443 ipf->ipf_checksum_flags = 0; 12444 12445 /* Store checksum value in fragment header */ 12446 if (sum_flags != 0) { 12447 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12448 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12449 ipf->ipf_checksum = sum_val; 12450 ipf->ipf_checksum_flags = sum_flags; 12451 } 12452 12453 /* 12454 * We handle reassembly two ways. In the easy case, 12455 * where all the fragments show up in order, we do 12456 * minimal bookkeeping, and just clip new pieces on 12457 * the end. If we ever see a hole, then we go off 12458 * to ip_reassemble which has to mark the pieces and 12459 * keep track of the number of holes, etc. Obviously, 12460 * the point of having both mechanisms is so we can 12461 * handle the easy case as efficiently as possible. 12462 */ 12463 if (offset == 0) { 12464 /* Easy case, in-order reassembly so far. */ 12465 ipf->ipf_count += msg_len; 12466 ipf->ipf_tail_mp = tail_mp; 12467 /* 12468 * Keep track of next expected offset in 12469 * ipf_end. 12470 */ 12471 ipf->ipf_end = end; 12472 ipf->ipf_nf_hdr_len = hdr_length; 12473 } else { 12474 /* Hard case, hole at the beginning. */ 12475 ipf->ipf_tail_mp = NULL; 12476 /* 12477 * ipf_end == 0 means that we have given up 12478 * on easy reassembly. 12479 */ 12480 ipf->ipf_end = 0; 12481 12482 /* Forget checksum offload from now on */ 12483 ipf->ipf_checksum_flags = 0; 12484 12485 /* 12486 * ipf_hole_cnt is set by ip_reassemble. 12487 * ipf_count is updated by ip_reassemble. 12488 * No need to check for return value here 12489 * as we don't expect reassembly to complete 12490 * or fail for the first fragment itself. 12491 */ 12492 (void) ip_reassemble(mp, ipf, 12493 (frag_offset_flags & IPH_OFFSET) << 3, 12494 (frag_offset_flags & IPH_MF), ill, msg_len); 12495 } 12496 /* Update per ipfb and ill byte counts */ 12497 ipfb->ipfb_count += ipf->ipf_count; 12498 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12499 ill->ill_frag_count += ipf->ipf_count; 12500 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 12501 /* If the frag timer wasn't already going, start it. */ 12502 mutex_enter(&ill->ill_lock); 12503 ill_frag_timer_start(ill); 12504 mutex_exit(&ill->ill_lock); 12505 goto reass_done; 12506 } 12507 12508 /* 12509 * If the packet's flag has changed (it could be coming up 12510 * from an interface different than the previous, therefore 12511 * possibly different checksum capability), then forget about 12512 * any stored checksum states. Otherwise add the value to 12513 * the existing one stored in the fragment header. 12514 */ 12515 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12516 sum_val += ipf->ipf_checksum; 12517 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12518 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12519 ipf->ipf_checksum = sum_val; 12520 } else if (ipf->ipf_checksum_flags != 0) { 12521 /* Forget checksum offload from now on */ 12522 ipf->ipf_checksum_flags = 0; 12523 } 12524 12525 /* 12526 * We have a new piece of a datagram which is already being 12527 * reassembled. Update the ECN info if all IP fragments 12528 * are ECN capable. If there is one which is not, clear 12529 * all the info. If there is at least one which has CE 12530 * code point, IP needs to report that up to transport. 12531 */ 12532 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12533 if (ecn_info == IPH_ECN_CE) 12534 ipf->ipf_ecn = IPH_ECN_CE; 12535 } else { 12536 ipf->ipf_ecn = IPH_ECN_NECT; 12537 } 12538 if (offset && ipf->ipf_end == offset) { 12539 /* The new fragment fits at the end */ 12540 ipf->ipf_tail_mp->b_cont = mp; 12541 /* Update the byte count */ 12542 ipf->ipf_count += msg_len; 12543 /* Update per ipfb and ill byte counts */ 12544 ipfb->ipfb_count += msg_len; 12545 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12546 ill->ill_frag_count += msg_len; 12547 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 12548 if (frag_offset_flags & IPH_MF) { 12549 /* More to come. */ 12550 ipf->ipf_end = end; 12551 ipf->ipf_tail_mp = tail_mp; 12552 goto reass_done; 12553 } 12554 } else { 12555 /* Go do the hard cases. */ 12556 int ret; 12557 12558 if (offset == 0) 12559 ipf->ipf_nf_hdr_len = hdr_length; 12560 12561 /* Save current byte count */ 12562 count = ipf->ipf_count; 12563 ret = ip_reassemble(mp, ipf, 12564 (frag_offset_flags & IPH_OFFSET) << 3, 12565 (frag_offset_flags & IPH_MF), ill, msg_len); 12566 /* Count of bytes added and subtracted (freeb()ed) */ 12567 count = ipf->ipf_count - count; 12568 if (count) { 12569 /* Update per ipfb and ill byte counts */ 12570 ipfb->ipfb_count += count; 12571 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12572 ill->ill_frag_count += count; 12573 ASSERT(ill->ill_frag_count > 0); 12574 } 12575 if (ret == IP_REASS_PARTIAL) { 12576 goto reass_done; 12577 } else if (ret == IP_REASS_FAILED) { 12578 /* Reassembly failed. Free up all resources */ 12579 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12580 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12581 IP_REASS_SET_START(t_mp, 0); 12582 IP_REASS_SET_END(t_mp, 0); 12583 } 12584 freemsg(mp); 12585 goto reass_done; 12586 } 12587 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12588 } 12589 /* 12590 * We have completed reassembly. Unhook the frag header from 12591 * the reassembly list. 12592 * 12593 * Before we free the frag header, record the ECN info 12594 * to report back to the transport. 12595 */ 12596 ecn_info = ipf->ipf_ecn; 12597 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12598 ipfp = ipf->ipf_ptphn; 12599 12600 /* We need to supply these to caller */ 12601 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12602 sum_val = ipf->ipf_checksum; 12603 else 12604 sum_val = 0; 12605 12606 mp1 = ipf->ipf_mp; 12607 count = ipf->ipf_count; 12608 ipf = ipf->ipf_hash_next; 12609 if (ipf != NULL) 12610 ipf->ipf_ptphn = ipfp; 12611 ipfp[0] = ipf; 12612 ill->ill_frag_count -= count; 12613 ASSERT(ipfb->ipfb_count >= count); 12614 ipfb->ipfb_count -= count; 12615 ipfb->ipfb_frag_pkts--; 12616 mutex_exit(&ipfb->ipfb_lock); 12617 /* Ditch the frag header. */ 12618 mp = mp1->b_cont; 12619 12620 freeb(mp1); 12621 12622 /* Restore original IP length in header. */ 12623 packet_size = (uint32_t)msgdsize(mp); 12624 if (packet_size > IP_MAXPACKET) { 12625 freemsg(mp); 12626 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12627 return (B_FALSE); 12628 } 12629 12630 if (DB_REF(mp) > 1) { 12631 mblk_t *mp2 = copymsg(mp); 12632 12633 freemsg(mp); 12634 if (mp2 == NULL) { 12635 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12636 return (B_FALSE); 12637 } 12638 mp = mp2; 12639 } 12640 ipha = (ipha_t *)mp->b_rptr; 12641 12642 ipha->ipha_length = htons((uint16_t)packet_size); 12643 /* We're now complete, zip the frag state */ 12644 ipha->ipha_fragment_offset_and_flags = 0; 12645 /* Record the ECN info. */ 12646 ipha->ipha_type_of_service &= 0xFC; 12647 ipha->ipha_type_of_service |= ecn_info; 12648 *mpp = mp; 12649 12650 /* Reassembly is successful; return checksum information if needed */ 12651 if (cksum_val != NULL) 12652 *cksum_val = sum_val; 12653 if (cksum_flags != NULL) 12654 *cksum_flags = sum_flags; 12655 12656 return (B_TRUE); 12657 } 12658 12659 /* 12660 * Perform ip header check sum update local options. 12661 * return B_TRUE if all is well, else return B_FALSE and release 12662 * the mp. caller is responsible for decrementing ire ref cnt. 12663 */ 12664 static boolean_t 12665 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire) 12666 { 12667 mblk_t *first_mp; 12668 boolean_t mctl_present; 12669 uint16_t sum; 12670 12671 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12672 /* 12673 * Don't do the checksum if it has gone through AH/ESP 12674 * processing. 12675 */ 12676 if (!mctl_present) { 12677 sum = ip_csum_hdr(ipha); 12678 if (sum != 0) { 12679 if (ill != NULL) { 12680 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12681 } else { 12682 BUMP_MIB(&ip_mib, ipIfStatsInCksumErrs); 12683 } 12684 freemsg(first_mp); 12685 return (B_FALSE); 12686 } 12687 } 12688 12689 if (!ip_rput_local_options(q, mp, ipha, ire)) { 12690 if (mctl_present) 12691 freeb(first_mp); 12692 return (B_FALSE); 12693 } 12694 12695 return (B_TRUE); 12696 } 12697 12698 /* 12699 * All udp packet are delivered to the local host via this routine. 12700 */ 12701 void 12702 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12703 ill_t *recv_ill) 12704 { 12705 uint32_t sum; 12706 uint32_t u1; 12707 boolean_t mctl_present; 12708 conn_t *connp; 12709 mblk_t *first_mp; 12710 uint16_t *up; 12711 ill_t *ill = (ill_t *)q->q_ptr; 12712 uint16_t reass_hck_flags = 0; 12713 12714 #define rptr ((uchar_t *)ipha) 12715 12716 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12717 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12718 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12719 ASSERT(ill != NULL); 12720 12721 /* 12722 * FAST PATH for udp packets 12723 */ 12724 12725 /* u1 is # words of IP options */ 12726 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12727 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12728 12729 /* IP options present */ 12730 if (u1 != 0) 12731 goto ipoptions; 12732 12733 /* Check the IP header checksum. */ 12734 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12735 /* Clear the IP header h/w cksum flag */ 12736 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12737 } else { 12738 #define uph ((uint16_t *)ipha) 12739 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12740 uph[6] + uph[7] + uph[8] + uph[9]; 12741 #undef uph 12742 /* finish doing IP checksum */ 12743 sum = (sum & 0xFFFF) + (sum >> 16); 12744 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12745 /* 12746 * Don't verify header checksum if this packet is coming 12747 * back from AH/ESP as we already did it. 12748 */ 12749 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 12750 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12751 freemsg(first_mp); 12752 return; 12753 } 12754 } 12755 12756 /* 12757 * Count for SNMP of inbound packets for ire. 12758 * if mctl is present this might be a secure packet and 12759 * has already been counted for in ip_proto_input(). 12760 */ 12761 if (!mctl_present) { 12762 UPDATE_IB_PKT_COUNT(ire); 12763 ire->ire_last_used_time = lbolt; 12764 } 12765 12766 /* packet part of fragmented IP packet? */ 12767 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12768 if (u1 & (IPH_MF | IPH_OFFSET)) { 12769 goto fragmented; 12770 } 12771 12772 /* u1 = IP header length (20 bytes) */ 12773 u1 = IP_SIMPLE_HDR_LENGTH; 12774 12775 /* packet does not contain complete IP & UDP headers */ 12776 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12777 goto udppullup; 12778 12779 /* up points to UDP header */ 12780 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12781 #define iphs ((uint16_t *)ipha) 12782 12783 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12784 if (up[3] != 0) { 12785 mblk_t *mp1 = mp->b_cont; 12786 boolean_t cksum_err; 12787 uint16_t hck_flags = 0; 12788 12789 /* Pseudo-header checksum */ 12790 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12791 iphs[9] + up[2]; 12792 12793 /* 12794 * Revert to software checksum calculation if the interface 12795 * isn't capable of checksum offload or if IPsec is present. 12796 */ 12797 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12798 hck_flags = DB_CKSUMFLAGS(mp); 12799 12800 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12801 IP_STAT(ip_in_sw_cksum); 12802 12803 IP_CKSUM_RECV(hck_flags, u1, 12804 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12805 (int32_t)((uchar_t *)up - rptr), 12806 mp, mp1, cksum_err); 12807 12808 if (cksum_err) { 12809 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12810 if (hck_flags & HCK_FULLCKSUM) 12811 IP_STAT(ip_udp_in_full_hw_cksum_err); 12812 else if (hck_flags & HCK_PARTIALCKSUM) 12813 IP_STAT(ip_udp_in_part_hw_cksum_err); 12814 else 12815 IP_STAT(ip_udp_in_sw_cksum_err); 12816 12817 freemsg(first_mp); 12818 return; 12819 } 12820 } 12821 12822 /* Non-fragmented broadcast or multicast packet? */ 12823 if (ire->ire_type == IRE_BROADCAST) 12824 goto udpslowpath; 12825 12826 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12827 ire->ire_zoneid)) != NULL) { 12828 ASSERT(connp->conn_upq != NULL); 12829 IP_STAT(ip_udp_fast_path); 12830 12831 if (CONN_UDP_FLOWCTLD(connp)) { 12832 freemsg(mp); 12833 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12834 } else { 12835 if (!mctl_present) { 12836 BUMP_MIB(ill->ill_ip_mib, 12837 ipIfStatsHCInDelivers); 12838 } 12839 /* 12840 * mp and first_mp can change. 12841 */ 12842 if (ip_udp_check(q, connp, recv_ill, 12843 ipha, &mp, &first_mp, mctl_present)) { 12844 /* Send it upstream */ 12845 CONN_UDP_RECV(connp, mp); 12846 } 12847 } 12848 /* 12849 * freeb() cannot deal with null mblk being passed 12850 * in and first_mp can be set to null in the call 12851 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12852 */ 12853 if (mctl_present && first_mp != NULL) { 12854 freeb(first_mp); 12855 } 12856 CONN_DEC_REF(connp); 12857 return; 12858 } 12859 12860 /* 12861 * if we got here we know the packet is not fragmented and 12862 * has no options. The classifier could not find a conn_t and 12863 * most likely its an icmp packet so send it through slow path. 12864 */ 12865 12866 goto udpslowpath; 12867 12868 ipoptions: 12869 if (!ip_options_cksum(q, ill, mp, ipha, ire)) { 12870 goto slow_done; 12871 } 12872 12873 UPDATE_IB_PKT_COUNT(ire); 12874 ire->ire_last_used_time = lbolt; 12875 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12876 if (u1 & (IPH_MF | IPH_OFFSET)) { 12877 fragmented: 12878 /* 12879 * "sum" and "reass_hck_flags" are non-zero if the 12880 * reassembled packet has a valid hardware computed 12881 * checksum information associated with it. 12882 */ 12883 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12884 goto slow_done; 12885 /* 12886 * Make sure that first_mp points back to mp as 12887 * the mp we came in with could have changed in 12888 * ip_rput_fragment(). 12889 */ 12890 ASSERT(!mctl_present); 12891 ipha = (ipha_t *)mp->b_rptr; 12892 first_mp = mp; 12893 } 12894 12895 /* Now we have a complete datagram, destined for this machine. */ 12896 u1 = IPH_HDR_LENGTH(ipha); 12897 /* Pull up the UDP header, if necessary. */ 12898 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12899 udppullup: 12900 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12901 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12902 freemsg(first_mp); 12903 goto slow_done; 12904 } 12905 ipha = (ipha_t *)mp->b_rptr; 12906 } 12907 12908 /* 12909 * Validate the checksum for the reassembled packet; for the 12910 * pullup case we calculate the payload checksum in software. 12911 */ 12912 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12913 if (up[3] != 0) { 12914 boolean_t cksum_err; 12915 12916 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12917 IP_STAT(ip_in_sw_cksum); 12918 12919 IP_CKSUM_RECV_REASS(reass_hck_flags, 12920 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12921 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12922 iphs[9] + up[2], sum, cksum_err); 12923 12924 if (cksum_err) { 12925 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12926 12927 if (reass_hck_flags & HCK_FULLCKSUM) 12928 IP_STAT(ip_udp_in_full_hw_cksum_err); 12929 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12930 IP_STAT(ip_udp_in_part_hw_cksum_err); 12931 else 12932 IP_STAT(ip_udp_in_sw_cksum_err); 12933 12934 freemsg(first_mp); 12935 goto slow_done; 12936 } 12937 } 12938 udpslowpath: 12939 12940 /* Clear hardware checksum flag to be safe */ 12941 DB_CKSUMFLAGS(mp) = 0; 12942 12943 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12944 (ire->ire_type == IRE_BROADCAST), 12945 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12946 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12947 12948 slow_done: 12949 IP_STAT(ip_udp_slow_path); 12950 return; 12951 12952 #undef iphs 12953 #undef rptr 12954 } 12955 12956 /* ARGSUSED */ 12957 static mblk_t * 12958 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12959 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12960 ill_rx_ring_t *ill_ring) 12961 { 12962 conn_t *connp; 12963 uint32_t sum; 12964 uint32_t u1; 12965 uint16_t *up; 12966 int offset; 12967 ssize_t len; 12968 mblk_t *mp1; 12969 boolean_t syn_present = B_FALSE; 12970 tcph_t *tcph; 12971 uint_t ip_hdr_len; 12972 ill_t *ill = (ill_t *)q->q_ptr; 12973 zoneid_t zoneid = ire->ire_zoneid; 12974 boolean_t cksum_err; 12975 uint16_t hck_flags = 0; 12976 12977 #define rptr ((uchar_t *)ipha) 12978 12979 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12980 ASSERT(ill != NULL); 12981 12982 /* 12983 * FAST PATH for tcp packets 12984 */ 12985 12986 /* u1 is # words of IP options */ 12987 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12988 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12989 12990 /* IP options present */ 12991 if (u1) { 12992 goto ipoptions; 12993 } else { 12994 /* Check the IP header checksum. */ 12995 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12996 /* Clear the IP header h/w cksum flag */ 12997 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12998 } else { 12999 #define uph ((uint16_t *)ipha) 13000 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13001 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13002 #undef uph 13003 /* finish doing IP checksum */ 13004 sum = (sum & 0xFFFF) + (sum >> 16); 13005 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13006 /* 13007 * Don't verify header checksum if this packet 13008 * is coming back from AH/ESP as we already did it. 13009 */ 13010 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13011 BUMP_MIB(ill->ill_ip_mib, 13012 ipIfStatsInCksumErrs); 13013 goto error; 13014 } 13015 } 13016 } 13017 13018 if (!mctl_present) { 13019 UPDATE_IB_PKT_COUNT(ire); 13020 ire->ire_last_used_time = lbolt; 13021 } 13022 13023 /* packet part of fragmented IP packet? */ 13024 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13025 if (u1 & (IPH_MF | IPH_OFFSET)) { 13026 goto fragmented; 13027 } 13028 13029 /* u1 = IP header length (20 bytes) */ 13030 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13031 13032 /* does packet contain IP+TCP headers? */ 13033 len = mp->b_wptr - rptr; 13034 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13035 IP_STAT(ip_tcppullup); 13036 goto tcppullup; 13037 } 13038 13039 /* TCP options present? */ 13040 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13041 13042 /* 13043 * If options need to be pulled up, then goto tcpoptions. 13044 * otherwise we are still in the fast path 13045 */ 13046 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13047 IP_STAT(ip_tcpoptions); 13048 goto tcpoptions; 13049 } 13050 13051 /* multiple mblks of tcp data? */ 13052 if ((mp1 = mp->b_cont) != NULL) { 13053 /* more then two? */ 13054 if (mp1->b_cont != NULL) { 13055 IP_STAT(ip_multipkttcp); 13056 goto multipkttcp; 13057 } 13058 len += mp1->b_wptr - mp1->b_rptr; 13059 } 13060 13061 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13062 13063 /* part of pseudo checksum */ 13064 13065 /* TCP datagram length */ 13066 u1 = len - IP_SIMPLE_HDR_LENGTH; 13067 13068 #define iphs ((uint16_t *)ipha) 13069 13070 #ifdef _BIG_ENDIAN 13071 u1 += IPPROTO_TCP; 13072 #else 13073 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13074 #endif 13075 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13076 13077 /* 13078 * Revert to software checksum calculation if the interface 13079 * isn't capable of checksum offload or if IPsec is present. 13080 */ 13081 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13082 hck_flags = DB_CKSUMFLAGS(mp); 13083 13084 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13085 IP_STAT(ip_in_sw_cksum); 13086 13087 IP_CKSUM_RECV(hck_flags, u1, 13088 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13089 (int32_t)((uchar_t *)up - rptr), 13090 mp, mp1, cksum_err); 13091 13092 if (cksum_err) { 13093 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13094 13095 if (hck_flags & HCK_FULLCKSUM) 13096 IP_STAT(ip_tcp_in_full_hw_cksum_err); 13097 else if (hck_flags & HCK_PARTIALCKSUM) 13098 IP_STAT(ip_tcp_in_part_hw_cksum_err); 13099 else 13100 IP_STAT(ip_tcp_in_sw_cksum_err); 13101 13102 goto error; 13103 } 13104 13105 try_again: 13106 13107 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 13108 NULL) { 13109 /* Send the TH_RST */ 13110 goto no_conn; 13111 } 13112 13113 /* 13114 * TCP FAST PATH for AF_INET socket. 13115 * 13116 * TCP fast path to avoid extra work. An AF_INET socket type 13117 * does not have facility to receive extra information via 13118 * ip_process or ip_add_info. Also, when the connection was 13119 * established, we made a check if this connection is impacted 13120 * by any global IPSec policy or per connection policy (a 13121 * policy that comes in effect later will not apply to this 13122 * connection). Since all this can be determined at the 13123 * connection establishment time, a quick check of flags 13124 * can avoid extra work. 13125 */ 13126 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13127 !IPP_ENABLED(IPP_LOCAL_IN)) { 13128 ASSERT(first_mp == mp); 13129 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13130 SET_SQUEUE(mp, tcp_rput_data, connp); 13131 return (mp); 13132 } 13133 13134 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13135 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13136 if (IPCL_IS_TCP(connp)) { 13137 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13138 DB_CKSUMSTART(mp) = 13139 (intptr_t)ip_squeue_get(ill_ring); 13140 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13141 !CONN_INBOUND_POLICY_PRESENT(connp)) { 13142 BUMP_MIB(ill->ill_ip_mib, 13143 ipIfStatsHCInDelivers); 13144 SET_SQUEUE(mp, connp->conn_recv, connp); 13145 return (mp); 13146 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13147 !CONN_INBOUND_POLICY_PRESENT(connp)) { 13148 BUMP_MIB(ill->ill_ip_mib, 13149 ipIfStatsHCInDelivers); 13150 ip_squeue_enter_unbound++; 13151 SET_SQUEUE(mp, tcp_conn_request_unbound, 13152 connp); 13153 return (mp); 13154 } 13155 syn_present = B_TRUE; 13156 } 13157 13158 } 13159 13160 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13161 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13162 13163 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13164 /* No need to send this packet to TCP */ 13165 if ((flags & TH_RST) || (flags & TH_URG)) { 13166 CONN_DEC_REF(connp); 13167 freemsg(first_mp); 13168 return (NULL); 13169 } 13170 if (flags & TH_ACK) { 13171 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 13172 CONN_DEC_REF(connp); 13173 return (NULL); 13174 } 13175 13176 CONN_DEC_REF(connp); 13177 freemsg(first_mp); 13178 return (NULL); 13179 } 13180 13181 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 13182 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13183 ipha, NULL, mctl_present); 13184 if (first_mp == NULL) { 13185 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13186 CONN_DEC_REF(connp); 13187 return (NULL); 13188 } 13189 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13190 ASSERT(syn_present); 13191 if (mctl_present) { 13192 ASSERT(first_mp != mp); 13193 first_mp->b_datap->db_struioflag |= 13194 STRUIO_POLICY; 13195 } else { 13196 ASSERT(first_mp == mp); 13197 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13198 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13199 } 13200 } else { 13201 /* 13202 * Discard first_mp early since we're dealing with a 13203 * fully-connected conn_t and tcp doesn't do policy in 13204 * this case. 13205 */ 13206 if (mctl_present) { 13207 freeb(first_mp); 13208 mctl_present = B_FALSE; 13209 } 13210 first_mp = mp; 13211 } 13212 } 13213 13214 /* Initiate IPPF processing for fastpath */ 13215 if (IPP_ENABLED(IPP_LOCAL_IN)) { 13216 uint32_t ill_index; 13217 13218 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13219 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13220 if (mp == NULL) { 13221 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13222 "deferred/dropped during IPPF processing\n")); 13223 CONN_DEC_REF(connp); 13224 if (mctl_present) 13225 freeb(first_mp); 13226 return (NULL); 13227 } else if (mctl_present) { 13228 /* 13229 * ip_process might return a new mp. 13230 */ 13231 ASSERT(first_mp != mp); 13232 first_mp->b_cont = mp; 13233 } else { 13234 first_mp = mp; 13235 } 13236 13237 } 13238 13239 if (!syn_present && connp->conn_ip_recvpktinfo) { 13240 /* 13241 * TCP does not support IP_RECVPKTINFO for v4 so lets 13242 * make sure IPF_RECVIF is passed to ip_add_info. 13243 */ 13244 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13245 IPCL_ZONEID(connp)); 13246 if (mp == NULL) { 13247 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13248 CONN_DEC_REF(connp); 13249 if (mctl_present) 13250 freeb(first_mp); 13251 return (NULL); 13252 } else if (mctl_present) { 13253 /* 13254 * ip_add_info might return a new mp. 13255 */ 13256 ASSERT(first_mp != mp); 13257 first_mp->b_cont = mp; 13258 } else { 13259 first_mp = mp; 13260 } 13261 } 13262 13263 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13264 if (IPCL_IS_TCP(connp)) { 13265 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13266 return (first_mp); 13267 } else { 13268 putnext(connp->conn_rq, first_mp); 13269 CONN_DEC_REF(connp); 13270 return (NULL); 13271 } 13272 13273 no_conn: 13274 /* Initiate IPPf processing, if needed. */ 13275 if (IPP_ENABLED(IPP_LOCAL_IN)) { 13276 uint32_t ill_index; 13277 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13278 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13279 if (first_mp == NULL) { 13280 return (NULL); 13281 } 13282 } 13283 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13284 13285 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid); 13286 return (NULL); 13287 ipoptions: 13288 if (!ip_options_cksum(q, ill, first_mp, ipha, ire)) { 13289 goto slow_done; 13290 } 13291 13292 UPDATE_IB_PKT_COUNT(ire); 13293 ire->ire_last_used_time = lbolt; 13294 13295 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13296 if (u1 & (IPH_MF | IPH_OFFSET)) { 13297 fragmented: 13298 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13299 if (mctl_present) 13300 freeb(first_mp); 13301 goto slow_done; 13302 } 13303 /* 13304 * Make sure that first_mp points back to mp as 13305 * the mp we came in with could have changed in 13306 * ip_rput_fragment(). 13307 */ 13308 ASSERT(!mctl_present); 13309 ipha = (ipha_t *)mp->b_rptr; 13310 first_mp = mp; 13311 } 13312 13313 /* Now we have a complete datagram, destined for this machine. */ 13314 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13315 13316 len = mp->b_wptr - mp->b_rptr; 13317 /* Pull up a minimal TCP header, if necessary. */ 13318 if (len < (u1 + 20)) { 13319 tcppullup: 13320 if (!pullupmsg(mp, u1 + 20)) { 13321 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13322 goto error; 13323 } 13324 ipha = (ipha_t *)mp->b_rptr; 13325 len = mp->b_wptr - mp->b_rptr; 13326 } 13327 13328 /* 13329 * Extract the offset field from the TCP header. As usual, we 13330 * try to help the compiler more than the reader. 13331 */ 13332 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13333 if (offset != 5) { 13334 tcpoptions: 13335 if (offset < 5) { 13336 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13337 goto error; 13338 } 13339 /* 13340 * There must be TCP options. 13341 * Make sure we can grab them. 13342 */ 13343 offset <<= 2; 13344 offset += u1; 13345 if (len < offset) { 13346 if (!pullupmsg(mp, offset)) { 13347 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13348 goto error; 13349 } 13350 ipha = (ipha_t *)mp->b_rptr; 13351 len = mp->b_wptr - rptr; 13352 } 13353 } 13354 13355 /* Get the total packet length in len, including headers. */ 13356 if (mp->b_cont) { 13357 multipkttcp: 13358 len = msgdsize(mp); 13359 } 13360 13361 /* 13362 * Check the TCP checksum by pulling together the pseudo- 13363 * header checksum, and passing it to ip_csum to be added in 13364 * with the TCP datagram. 13365 * 13366 * Since we are not using the hwcksum if available we must 13367 * clear the flag. We may come here via tcppullup or tcpoptions. 13368 * If either of these fails along the way the mblk is freed. 13369 * If this logic ever changes and mblk is reused to say send 13370 * ICMP's back, then this flag may need to be cleared in 13371 * other places as well. 13372 */ 13373 DB_CKSUMFLAGS(mp) = 0; 13374 13375 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13376 13377 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13378 #ifdef _BIG_ENDIAN 13379 u1 += IPPROTO_TCP; 13380 #else 13381 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13382 #endif 13383 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13384 /* 13385 * Not M_DATA mblk or its a dup, so do the checksum now. 13386 */ 13387 IP_STAT(ip_in_sw_cksum); 13388 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13389 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13390 goto error; 13391 } 13392 13393 IP_STAT(ip_tcp_slow_path); 13394 goto try_again; 13395 #undef iphs 13396 #undef rptr 13397 13398 error: 13399 freemsg(first_mp); 13400 slow_done: 13401 return (NULL); 13402 } 13403 13404 /* ARGSUSED */ 13405 static void 13406 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13407 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13408 { 13409 conn_t *connp; 13410 uint32_t sum; 13411 uint32_t u1; 13412 ssize_t len; 13413 sctp_hdr_t *sctph; 13414 zoneid_t zoneid = ire->ire_zoneid; 13415 uint32_t pktsum; 13416 uint32_t calcsum; 13417 uint32_t ports; 13418 uint_t ipif_seqid; 13419 in6_addr_t map_src, map_dst; 13420 ill_t *ill = (ill_t *)q->q_ptr; 13421 13422 #define rptr ((uchar_t *)ipha) 13423 13424 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13425 ASSERT(ill != NULL); 13426 13427 /* u1 is # words of IP options */ 13428 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13429 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13430 13431 /* IP options present */ 13432 if (u1 > 0) { 13433 goto ipoptions; 13434 } else { 13435 /* Check the IP header checksum. */ 13436 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13437 #define uph ((uint16_t *)ipha) 13438 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13439 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13440 #undef uph 13441 /* finish doing IP checksum */ 13442 sum = (sum & 0xFFFF) + (sum >> 16); 13443 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13444 /* 13445 * Don't verify header checksum if this packet 13446 * is coming back from AH/ESP as we already did it. 13447 */ 13448 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13449 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13450 goto error; 13451 } 13452 } 13453 /* 13454 * Since there is no SCTP h/w cksum support yet, just 13455 * clear the flag. 13456 */ 13457 DB_CKSUMFLAGS(mp) = 0; 13458 } 13459 13460 /* 13461 * Don't verify header checksum if this packet is coming 13462 * back from AH/ESP as we already did it. 13463 */ 13464 if (!mctl_present) { 13465 UPDATE_IB_PKT_COUNT(ire); 13466 ire->ire_last_used_time = lbolt; 13467 } 13468 13469 /* packet part of fragmented IP packet? */ 13470 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13471 if (u1 & (IPH_MF | IPH_OFFSET)) 13472 goto fragmented; 13473 13474 /* u1 = IP header length (20 bytes) */ 13475 u1 = IP_SIMPLE_HDR_LENGTH; 13476 13477 find_sctp_client: 13478 /* Pullup if we don't have the sctp common header. */ 13479 len = MBLKL(mp); 13480 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13481 if (mp->b_cont == NULL || 13482 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13483 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13484 goto error; 13485 } 13486 ipha = (ipha_t *)mp->b_rptr; 13487 len = MBLKL(mp); 13488 } 13489 13490 sctph = (sctp_hdr_t *)(rptr + u1); 13491 #ifdef DEBUG 13492 if (!skip_sctp_cksum) { 13493 #endif 13494 pktsum = sctph->sh_chksum; 13495 sctph->sh_chksum = 0; 13496 calcsum = sctp_cksum(mp, u1); 13497 if (calcsum != pktsum) { 13498 BUMP_MIB(&sctp_mib, sctpChecksumError); 13499 goto error; 13500 } 13501 sctph->sh_chksum = pktsum; 13502 #ifdef DEBUG /* skip_sctp_cksum */ 13503 } 13504 #endif 13505 /* get the ports */ 13506 ports = *(uint32_t *)&sctph->sh_sport; 13507 13508 ipif_seqid = ire->ire_ipif->ipif_seqid; 13509 IRE_REFRELE(ire); 13510 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13511 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13512 if ((connp = sctp_fanout(&map_src, &map_dst, ports, ipif_seqid, zoneid, 13513 mp)) == NULL) { 13514 /* Check for raw socket or OOTB handling */ 13515 goto no_conn; 13516 } 13517 13518 /* Found a client; up it goes */ 13519 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13520 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13521 return; 13522 13523 no_conn: 13524 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13525 ports, mctl_present, flags, B_TRUE, ipif_seqid, zoneid); 13526 return; 13527 13528 ipoptions: 13529 DB_CKSUMFLAGS(mp) = 0; 13530 if (!ip_options_cksum(q, ill, first_mp, ipha, ire)) 13531 goto slow_done; 13532 13533 UPDATE_IB_PKT_COUNT(ire); 13534 ire->ire_last_used_time = lbolt; 13535 13536 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13537 if (u1 & (IPH_MF | IPH_OFFSET)) { 13538 fragmented: 13539 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13540 goto slow_done; 13541 /* 13542 * Make sure that first_mp points back to mp as 13543 * the mp we came in with could have changed in 13544 * ip_rput_fragment(). 13545 */ 13546 ASSERT(!mctl_present); 13547 ipha = (ipha_t *)mp->b_rptr; 13548 first_mp = mp; 13549 } 13550 13551 /* Now we have a complete datagram, destined for this machine. */ 13552 u1 = IPH_HDR_LENGTH(ipha); 13553 goto find_sctp_client; 13554 #undef iphs 13555 #undef rptr 13556 13557 error: 13558 freemsg(first_mp); 13559 slow_done: 13560 IRE_REFRELE(ire); 13561 } 13562 13563 #define VER_BITS 0xF0 13564 #define VERSION_6 0x60 13565 13566 static boolean_t 13567 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13568 ipaddr_t *dstp) 13569 { 13570 uint_t opt_len; 13571 ipha_t *ipha; 13572 ssize_t len; 13573 uint_t pkt_len; 13574 13575 ASSERT(ill != NULL); 13576 IP_STAT(ip_ipoptions); 13577 ipha = *iphapp; 13578 13579 #define rptr ((uchar_t *)ipha) 13580 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13581 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13582 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13583 freemsg(mp); 13584 return (B_FALSE); 13585 } 13586 13587 /* multiple mblk or too short */ 13588 pkt_len = ntohs(ipha->ipha_length); 13589 13590 /* Get the number of words of IP options in the IP header. */ 13591 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13592 if (opt_len) { 13593 /* IP Options present! Validate and process. */ 13594 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13595 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13596 goto done; 13597 } 13598 /* 13599 * Recompute complete header length and make sure we 13600 * have access to all of it. 13601 */ 13602 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13603 if (len > (mp->b_wptr - rptr)) { 13604 if (len > pkt_len) { 13605 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13606 goto done; 13607 } 13608 if (!pullupmsg(mp, len)) { 13609 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13610 goto done; 13611 } 13612 ipha = (ipha_t *)mp->b_rptr; 13613 } 13614 /* 13615 * Go off to ip_rput_options which returns the next hop 13616 * destination address, which may have been affected 13617 * by source routing. 13618 */ 13619 IP_STAT(ip_opt); 13620 if (ip_rput_options(q, mp, ipha, dstp) == -1) { 13621 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13622 return (B_FALSE); 13623 } 13624 } 13625 *iphapp = ipha; 13626 return (B_TRUE); 13627 done: 13628 /* clear b_prev - used by ip_mroute_decap */ 13629 mp->b_prev = NULL; 13630 freemsg(mp); 13631 return (B_FALSE); 13632 #undef rptr 13633 } 13634 13635 /* 13636 * Deal with the fact that there is no ire for the destination. 13637 * The incoming ill (in_ill) is passed in to ip_newroute only 13638 * in the case of packets coming from mobile ip forward tunnel. 13639 * It must be null otherwise. 13640 */ 13641 static ire_t * 13642 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 13643 ipaddr_t dst) 13644 { 13645 ipha_t *ipha; 13646 ill_t *ill; 13647 ire_t *ire; 13648 boolean_t check_multirt = B_FALSE; 13649 13650 ipha = (ipha_t *)mp->b_rptr; 13651 ill = (ill_t *)q->q_ptr; 13652 13653 ASSERT(ill != NULL); 13654 /* 13655 * No IRE for this destination, so it can't be for us. 13656 * Unless we are forwarding, drop the packet. 13657 * We have to let source routed packets through 13658 * since we don't yet know if they are 'ping -l' 13659 * packets i.e. if they will go out over the 13660 * same interface as they came in on. 13661 */ 13662 if (ll_multicast) { 13663 freemsg(mp); 13664 return (NULL); 13665 } 13666 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha)) { 13667 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13668 freemsg(mp); 13669 return (NULL); 13670 } 13671 13672 /* 13673 * Mark this packet as having originated externally. 13674 * 13675 * For non-forwarding code path, ire_send later double 13676 * checks this interface to see if it is still exists 13677 * post-ARP resolution. 13678 * 13679 * Also, IPQOS uses this to differentiate between 13680 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13681 * QOS packet processing in ip_wput_attach_llhdr(). 13682 * The QoS module can mark the b_band for a fastpath message 13683 * or the dl_priority field in a unitdata_req header for 13684 * CoS marking. This info can only be found in 13685 * ip_wput_attach_llhdr(). 13686 */ 13687 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13688 /* 13689 * Clear the indication that this may have a hardware checksum 13690 * as we are not using it 13691 */ 13692 DB_CKSUMFLAGS(mp) = 0; 13693 13694 if (in_ill != NULL) { 13695 /* 13696 * Now hand the packet to ip_newroute. 13697 */ 13698 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID); 13699 return (NULL); 13700 } 13701 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13702 MBLK_GETLABEL(mp)); 13703 13704 if (ire == NULL && check_multirt) { 13705 /* Let ip_newroute handle CGTP */ 13706 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID); 13707 return (NULL); 13708 } 13709 13710 if (ire != NULL) 13711 return (ire); 13712 13713 mp->b_prev = mp->b_next = 0; 13714 /* send icmp unreachable */ 13715 q = WR(q); 13716 /* Sent by forwarding path, and router is global zone */ 13717 if (ip_source_routed(ipha)) { 13718 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13719 GLOBAL_ZONEID); 13720 } else { 13721 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID); 13722 } 13723 13724 return (NULL); 13725 13726 } 13727 13728 /* 13729 * check ip header length and align it. 13730 */ 13731 static boolean_t 13732 ip_check_and_align_header(queue_t *q, mblk_t *mp) 13733 { 13734 ssize_t len; 13735 ill_t *ill; 13736 ipha_t *ipha; 13737 13738 len = MBLKL(mp); 13739 13740 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13741 ill = (ill_t *)q->q_ptr; 13742 13743 if (!OK_32PTR(mp->b_rptr)) 13744 IP_STAT(ip_notaligned1); 13745 else 13746 IP_STAT(ip_notaligned2); 13747 /* Guard against bogus device drivers */ 13748 if (len < 0) { 13749 /* clear b_prev - used by ip_mroute_decap */ 13750 mp->b_prev = NULL; 13751 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13752 freemsg(mp); 13753 return (B_FALSE); 13754 } 13755 13756 if (ip_rput_pullups++ == 0) { 13757 ipha = (ipha_t *)mp->b_rptr; 13758 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13759 "ip_check_and_align_header: %s forced us to " 13760 " pullup pkt, hdr len %ld, hdr addr %p", 13761 ill->ill_name, len, ipha); 13762 } 13763 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13764 /* clear b_prev - used by ip_mroute_decap */ 13765 mp->b_prev = NULL; 13766 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13767 freemsg(mp); 13768 return (B_FALSE); 13769 } 13770 } 13771 return (B_TRUE); 13772 } 13773 13774 static boolean_t 13775 ip_rput_notforus(queue_t **qp, mblk_t *mp, ire_t *ire, ill_t *ill) 13776 { 13777 ill_group_t *ill_group; 13778 ill_group_t *ire_group; 13779 queue_t *q; 13780 ill_t *ire_ill; 13781 uint_t ill_ifindex; 13782 13783 q = *qp; 13784 /* 13785 * We need to check to make sure the packet came in 13786 * on the queue associated with the destination IRE. 13787 * Note that for multicast packets and broadcast packets sent to 13788 * a broadcast address which is shared between multiple interfaces 13789 * we should not do this since we just got a random broadcast ire. 13790 */ 13791 if (ire->ire_rfq && ire->ire_type != IRE_BROADCAST) { 13792 boolean_t check_multi = B_TRUE; 13793 13794 /* 13795 * This packet came in on an interface other than the 13796 * one associated with the destination address. 13797 * "Gateway" it to the appropriate interface here. 13798 * As long as the ills belong to the same group, 13799 * we don't consider them to arriving on the wrong 13800 * interface. Thus, when the switch is doing inbound 13801 * load spreading, we won't drop packets when we 13802 * are doing strict multihoming checks. Note, the 13803 * same holds true for 'usesrc groups' where the 13804 * destination address may belong to another interface 13805 * to allow multipathing to happen 13806 */ 13807 ill_group = ill->ill_group; 13808 ire_ill = (ill_t *)(ire->ire_rfq)->q_ptr; 13809 ill_ifindex = ill->ill_usesrc_ifindex; 13810 ire_group = ire_ill->ill_group; 13811 13812 /* 13813 * If it's part of the same IPMP group, or if it's a legal 13814 * address on the 'usesrc' interface, then bypass strict 13815 * checks. 13816 */ 13817 if (ill_group != NULL && ill_group == ire_group) { 13818 check_multi = B_FALSE; 13819 } else if (ill_ifindex != 0 && 13820 ill_ifindex == ire_ill->ill_phyint->phyint_ifindex) { 13821 check_multi = B_FALSE; 13822 } 13823 13824 if (check_multi && 13825 ip_strict_dst_multihoming && 13826 ((ill->ill_flags & 13827 ire->ire_ipif->ipif_ill->ill_flags & 13828 ILLF_ROUTER) == 0)) { 13829 /* Drop packet */ 13830 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13831 freemsg(mp); 13832 return (B_TRUE); 13833 } 13834 13835 /* 13836 * Change the queue (for non-virtual destination network 13837 * interfaces) and ip_rput_local will be called with the right 13838 * queue 13839 */ 13840 q = ire->ire_rfq; 13841 } 13842 /* Must be broadcast. We'll take it. */ 13843 *qp = q; 13844 return (B_FALSE); 13845 } 13846 13847 ire_t * 13848 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13849 { 13850 ipha_t *ipha; 13851 ipaddr_t ip_dst, ip_src; 13852 ire_t *src_ire = NULL; 13853 ill_t *stq_ill; 13854 uint_t hlen; 13855 uint_t pkt_len; 13856 uint32_t sum; 13857 queue_t *dev_q; 13858 boolean_t check_multirt = B_FALSE; 13859 13860 13861 ipha = (ipha_t *)mp->b_rptr; 13862 13863 /* 13864 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13865 * The loopback address check for both src and dst has already 13866 * been checked in ip_input 13867 */ 13868 ip_dst = ntohl(dst); 13869 ip_src = ntohl(ipha->ipha_src); 13870 13871 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 13872 IN_CLASSD(ip_src)) { 13873 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13874 goto drop; 13875 } 13876 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13877 ALL_ZONES, NULL, MATCH_IRE_TYPE); 13878 13879 if (src_ire != NULL) { 13880 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13881 goto drop; 13882 } 13883 13884 13885 /* No ire cache of nexthop. So first create one */ 13886 if (ire == NULL) { 13887 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL); 13888 /* 13889 * We only come to ip_fast_forward if ip_cgtp_filter is 13890 * is not set. So upon return from ire_forward 13891 * check_multirt should remain as false. 13892 */ 13893 ASSERT(!check_multirt); 13894 if (ire == NULL) { 13895 /* An attempt was made to forward the packet */ 13896 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13897 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13898 mp->b_prev = mp->b_next = 0; 13899 /* send icmp unreachable */ 13900 /* Sent by forwarding path, and router is global zone */ 13901 if (ip_source_routed(ipha)) { 13902 icmp_unreachable(ill->ill_wq, mp, 13903 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID); 13904 } else { 13905 icmp_unreachable(ill->ill_wq, mp, 13906 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID); 13907 } 13908 return (ire); 13909 } 13910 } 13911 13912 /* 13913 * Forwarding fastpath exception case: 13914 * If either of the follwoing case is true, we take 13915 * the slowpath 13916 * o forwarding is not enabled 13917 * o incoming and outgoing interface are the same, or the same 13918 * IPMP group 13919 * o corresponding ire is in incomplete state 13920 * o packet needs fragmentation 13921 * 13922 * The codeflow from here on is thus: 13923 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13924 */ 13925 pkt_len = ntohs(ipha->ipha_length); 13926 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13927 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13928 !(ill->ill_flags & ILLF_ROUTER) || 13929 (ill == stq_ill) || 13930 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 13931 (ire->ire_nce == NULL) || 13932 (ire->ire_nce->nce_state != ND_REACHABLE) || 13933 (pkt_len > ire->ire_max_frag) || 13934 ipha->ipha_ttl <= 1) { 13935 ip_rput_process_forward(ill->ill_rq, mp, ire, 13936 ipha, ill, B_FALSE); 13937 return (ire); 13938 } 13939 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13940 13941 DTRACE_PROBE4(ip4__forwarding__start, 13942 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13943 13944 FW_HOOKS(ip4_forwarding_event, ipv4firewall_forwarding, 13945 ill, stq_ill, ipha, mp, mp); 13946 13947 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13948 13949 if (mp == NULL) 13950 goto drop; 13951 13952 mp->b_datap->db_struioun.cksum.flags = 0; 13953 /* Adjust the checksum to reflect the ttl decrement. */ 13954 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13955 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13956 ipha->ipha_ttl--; 13957 13958 dev_q = ire->ire_stq->q_next; 13959 if ((dev_q->q_next != NULL || 13960 dev_q->q_first != NULL) && !canput(dev_q)) { 13961 goto indiscard; 13962 } 13963 13964 hlen = ire->ire_nce->nce_fp_mp != NULL ? 13965 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 13966 13967 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 13968 mblk_t *mpip = mp; 13969 13970 mp = ip_wput_attach_llhdr(mpip, ire, 0, 0); 13971 if (mp != NULL) { 13972 DTRACE_PROBE4(ip4__physical__out__start, 13973 ill_t *, NULL, ill_t *, stq_ill, 13974 ipha_t *, ipha, mblk_t *, mp); 13975 FW_HOOKS(ip4_physical_out_event, 13976 ipv4firewall_physical_out, 13977 NULL, stq_ill, ipha, mp, mpip); 13978 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, 13979 mp); 13980 if (mp == NULL) 13981 goto drop; 13982 13983 UPDATE_IB_PKT_COUNT(ire); 13984 ire->ire_last_used_time = lbolt; 13985 BUMP_MIB(stq_ill->ill_ip_mib, 13986 ipIfStatsHCOutForwDatagrams); 13987 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 13988 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, 13989 pkt_len); 13990 putnext(ire->ire_stq, mp); 13991 return (ire); 13992 } 13993 } 13994 13995 indiscard: 13996 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13997 drop: 13998 if (mp != NULL) 13999 freemsg(mp); 14000 if (src_ire != NULL) 14001 ire_refrele(src_ire); 14002 return (ire); 14003 14004 } 14005 14006 /* 14007 * This function is called in the forwarding slowpath, when 14008 * either the ire lacks the link-layer address, or the packet needs 14009 * further processing(eg. fragmentation), before transmission. 14010 */ 14011 14012 static void 14013 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14014 ill_t *ill, boolean_t ll_multicast) 14015 { 14016 ill_group_t *ill_group; 14017 ill_group_t *ire_group; 14018 queue_t *dev_q; 14019 ire_t *src_ire; 14020 14021 ASSERT(ire->ire_stq != NULL); 14022 14023 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14024 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14025 14026 if (ll_multicast != 0) { 14027 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14028 goto drop_pkt; 14029 } 14030 14031 /* 14032 * check if ipha_src is a broadcast address. Note that this 14033 * check is redundant when we get here from ip_fast_forward() 14034 * which has already done this check. However, since we can 14035 * also get here from ip_rput_process_broadcast() or, for 14036 * for the slow path through ip_fast_forward(), we perform 14037 * the check again for code-reusability 14038 */ 14039 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14040 ALL_ZONES, NULL, MATCH_IRE_TYPE); 14041 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 14042 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 14043 if (src_ire != NULL) 14044 ire_refrele(src_ire); 14045 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14046 ip2dbg(("ip_rput_process_forward: Received packet with" 14047 " bad src/dst address on %s\n", ill->ill_name)); 14048 goto drop_pkt; 14049 } 14050 14051 ill_group = ill->ill_group; 14052 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14053 /* 14054 * Check if we want to forward this one at this time. 14055 * We allow source routed packets on a host provided that 14056 * they go out the same interface or same interface group 14057 * as they came in on. 14058 * 14059 * XXX To be quicker, we may wish to not chase pointers to 14060 * get the ILLF_ROUTER flag and instead store the 14061 * forwarding policy in the ire. An unfortunate 14062 * side-effect of that would be requiring an ire flush 14063 * whenever the ILLF_ROUTER flag changes. 14064 */ 14065 if (((ill->ill_flags & 14066 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14067 ILLF_ROUTER) == 0) && 14068 !(ip_source_routed(ipha) && (ire->ire_rfq == q || 14069 (ill_group != NULL && ill_group == ire_group)))) { 14070 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14071 if (ip_source_routed(ipha)) { 14072 q = WR(q); 14073 /* 14074 * Clear the indication that this may have 14075 * hardware checksum as we are not using it. 14076 */ 14077 DB_CKSUMFLAGS(mp) = 0; 14078 /* Sent by forwarding path, and router is global zone */ 14079 icmp_unreachable(q, mp, 14080 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID); 14081 return; 14082 } 14083 goto drop_pkt; 14084 } 14085 14086 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14087 14088 /* Packet is being forwarded. Turning off hwcksum flag. */ 14089 DB_CKSUMFLAGS(mp) = 0; 14090 if (ip_g_send_redirects) { 14091 /* 14092 * Check whether the incoming interface and outgoing 14093 * interface is part of the same group. If so, 14094 * send redirects. 14095 * 14096 * Check the source address to see if it originated 14097 * on the same logical subnet it is going back out on. 14098 * If so, we should be able to send it a redirect. 14099 * Avoid sending a redirect if the destination 14100 * is directly connected (i.e., ipha_dst is the same 14101 * as ire_gateway_addr or the ire_addr of the 14102 * nexthop IRE_CACHE ), or if the packet was source 14103 * routed out this interface. 14104 */ 14105 ipaddr_t src, nhop; 14106 mblk_t *mp1; 14107 ire_t *nhop_ire = NULL; 14108 14109 /* 14110 * Check whether ire_rfq and q are from the same ill 14111 * or if they are not same, they at least belong 14112 * to the same group. If so, send redirects. 14113 */ 14114 if ((ire->ire_rfq == q || 14115 (ill_group != NULL && ill_group == ire_group)) && 14116 !ip_source_routed(ipha)) { 14117 14118 nhop = (ire->ire_gateway_addr != 0 ? 14119 ire->ire_gateway_addr : ire->ire_addr); 14120 14121 if (ipha->ipha_dst == nhop) { 14122 /* 14123 * We avoid sending a redirect if the 14124 * destination is directly connected 14125 * because it is possible that multiple 14126 * IP subnets may have been configured on 14127 * the link, and the source may not 14128 * be on the same subnet as ip destination, 14129 * even though they are on the same 14130 * physical link. 14131 */ 14132 goto sendit; 14133 } 14134 14135 src = ipha->ipha_src; 14136 14137 /* 14138 * We look up the interface ire for the nexthop, 14139 * to see if ipha_src is in the same subnet 14140 * as the nexthop. 14141 * 14142 * Note that, if, in the future, IRE_CACHE entries 14143 * are obsoleted, this lookup will not be needed, 14144 * as the ire passed to this function will be the 14145 * same as the nhop_ire computed below. 14146 */ 14147 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14148 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14149 0, NULL, MATCH_IRE_TYPE); 14150 14151 if (nhop_ire != NULL) { 14152 if ((src & nhop_ire->ire_mask) == 14153 (nhop & nhop_ire->ire_mask)) { 14154 /* 14155 * The source is directly connected. 14156 * Just copy the ip header (which is 14157 * in the first mblk) 14158 */ 14159 mp1 = copyb(mp); 14160 if (mp1 != NULL) { 14161 icmp_send_redirect(WR(q), mp1, 14162 nhop); 14163 } 14164 } 14165 ire_refrele(nhop_ire); 14166 } 14167 } 14168 } 14169 sendit: 14170 dev_q = ire->ire_stq->q_next; 14171 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14172 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14173 freemsg(mp); 14174 return; 14175 } 14176 14177 ip_rput_forward(ire, ipha, mp, ill); 14178 return; 14179 14180 drop_pkt: 14181 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14182 freemsg(mp); 14183 } 14184 14185 ire_t * 14186 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14187 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14188 { 14189 queue_t *q; 14190 uint16_t hcksumflags; 14191 14192 q = *qp; 14193 14194 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14195 14196 /* 14197 * Clear the indication that this may have hardware 14198 * checksum as we are not using it for forwarding. 14199 */ 14200 hcksumflags = DB_CKSUMFLAGS(mp); 14201 DB_CKSUMFLAGS(mp) = 0; 14202 14203 /* 14204 * Directed broadcast forwarding: if the packet came in over a 14205 * different interface then it is routed out over we can forward it. 14206 */ 14207 if (ipha->ipha_protocol == IPPROTO_TCP) { 14208 ire_refrele(ire); 14209 freemsg(mp); 14210 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14211 return (NULL); 14212 } 14213 /* 14214 * For multicast we have set dst to be INADDR_BROADCAST 14215 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14216 * only for broadcast packets. 14217 */ 14218 if (!CLASSD(ipha->ipha_dst)) { 14219 ire_t *new_ire; 14220 ipif_t *ipif; 14221 /* 14222 * For ill groups, as the switch duplicates broadcasts 14223 * across all the ports, we need to filter out and 14224 * send up only one copy. There is one copy for every 14225 * broadcast address on each ill. Thus, we look for a 14226 * specific IRE on this ill and look at IRE_MARK_NORECV 14227 * later to see whether this ill is eligible to receive 14228 * them or not. ill_nominate_bcast_rcv() nominates only 14229 * one set of IREs for receiving. 14230 */ 14231 14232 ipif = ipif_get_next_ipif(NULL, ill); 14233 if (ipif == NULL) { 14234 ire_refrele(ire); 14235 freemsg(mp); 14236 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14237 return (NULL); 14238 } 14239 new_ire = ire_ctable_lookup(dst, 0, 0, 14240 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL); 14241 ipif_refrele(ipif); 14242 14243 if (new_ire != NULL) { 14244 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14245 ire_refrele(ire); 14246 ire_refrele(new_ire); 14247 freemsg(mp); 14248 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14249 return (NULL); 14250 } 14251 /* 14252 * In the special case of multirouted broadcast 14253 * packets, we unconditionally need to "gateway" 14254 * them to the appropriate interface here. 14255 * In the normal case, this cannot happen, because 14256 * there is no broadcast IRE tagged with the 14257 * RTF_MULTIRT flag. 14258 */ 14259 if (new_ire->ire_flags & RTF_MULTIRT) { 14260 ire_refrele(new_ire); 14261 if (ire->ire_rfq != NULL) { 14262 q = ire->ire_rfq; 14263 *qp = q; 14264 } 14265 } else { 14266 ire_refrele(ire); 14267 ire = new_ire; 14268 } 14269 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14270 if (!ip_g_forward_directed_bcast) { 14271 /* 14272 * Free the message if 14273 * ip_g_forward_directed_bcast is turned 14274 * off for non-local broadcast. 14275 */ 14276 ire_refrele(ire); 14277 freemsg(mp); 14278 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14279 return (NULL); 14280 } 14281 } else { 14282 /* 14283 * This CGTP packet successfully passed the 14284 * CGTP filter, but the related CGTP 14285 * broadcast IRE has not been found, 14286 * meaning that the redundant ipif is 14287 * probably down. However, if we discarded 14288 * this packet, its duplicate would be 14289 * filtered out by the CGTP filter so none 14290 * of them would get through. So we keep 14291 * going with this one. 14292 */ 14293 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14294 if (ire->ire_rfq != NULL) { 14295 q = ire->ire_rfq; 14296 *qp = q; 14297 } 14298 } 14299 } 14300 if (ip_g_forward_directed_bcast && ll_multicast == 0) { 14301 /* 14302 * Verify that there are not more then one 14303 * IRE_BROADCAST with this broadcast address which 14304 * has ire_stq set. 14305 * TODO: simplify, loop over all IRE's 14306 */ 14307 ire_t *ire1; 14308 int num_stq = 0; 14309 mblk_t *mp1; 14310 14311 /* Find the first one with ire_stq set */ 14312 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14313 for (ire1 = ire; ire1 && 14314 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14315 ire1 = ire1->ire_next) 14316 ; 14317 if (ire1) { 14318 ire_refrele(ire); 14319 ire = ire1; 14320 IRE_REFHOLD(ire); 14321 } 14322 14323 /* Check if there are additional ones with stq set */ 14324 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14325 if (ire->ire_addr != ire1->ire_addr) 14326 break; 14327 if (ire1->ire_stq) { 14328 num_stq++; 14329 break; 14330 } 14331 } 14332 rw_exit(&ire->ire_bucket->irb_lock); 14333 if (num_stq == 1 && ire->ire_stq != NULL) { 14334 ip1dbg(("ip_rput_process_broadcast: directed " 14335 "broadcast to 0x%x\n", 14336 ntohl(ire->ire_addr))); 14337 mp1 = copymsg(mp); 14338 if (mp1) { 14339 switch (ipha->ipha_protocol) { 14340 case IPPROTO_UDP: 14341 ip_udp_input(q, mp1, ipha, ire, ill); 14342 break; 14343 default: 14344 ip_proto_input(q, mp1, ipha, ire, ill); 14345 break; 14346 } 14347 } 14348 /* 14349 * Adjust ttl to 2 (1+1 - the forward engine 14350 * will decrement it by one. 14351 */ 14352 if (ip_csum_hdr(ipha)) { 14353 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14354 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14355 freemsg(mp); 14356 ire_refrele(ire); 14357 return (NULL); 14358 } 14359 ipha->ipha_ttl = ip_broadcast_ttl + 1; 14360 ipha->ipha_hdr_checksum = 0; 14361 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14362 ip_rput_process_forward(q, mp, ire, ipha, 14363 ill, ll_multicast); 14364 ire_refrele(ire); 14365 return (NULL); 14366 } 14367 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14368 ntohl(ire->ire_addr))); 14369 } 14370 14371 14372 /* Restore any hardware checksum flags */ 14373 DB_CKSUMFLAGS(mp) = hcksumflags; 14374 return (ire); 14375 } 14376 14377 /* ARGSUSED */ 14378 static boolean_t 14379 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14380 int *ll_multicast, ipaddr_t *dstp) 14381 { 14382 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14383 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14384 ntohs(ipha->ipha_length)); 14385 14386 /* 14387 * Forward packets only if we have joined the allmulti 14388 * group on this interface. 14389 */ 14390 if (ip_g_mrouter && ill->ill_join_allmulti) { 14391 int retval; 14392 14393 /* 14394 * Clear the indication that this may have hardware 14395 * checksum as we are not using it. 14396 */ 14397 DB_CKSUMFLAGS(mp) = 0; 14398 retval = ip_mforward(ill, ipha, mp); 14399 /* ip_mforward updates mib variables if needed */ 14400 /* clear b_prev - used by ip_mroute_decap */ 14401 mp->b_prev = NULL; 14402 14403 switch (retval) { 14404 case 0: 14405 /* 14406 * pkt is okay and arrived on phyint. 14407 * 14408 * If we are running as a multicast router 14409 * we need to see all IGMP and/or PIM packets. 14410 */ 14411 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14412 (ipha->ipha_protocol == IPPROTO_PIM)) { 14413 goto done; 14414 } 14415 break; 14416 case -1: 14417 /* pkt is mal-formed, toss it */ 14418 goto drop_pkt; 14419 case 1: 14420 /* pkt is okay and arrived on a tunnel */ 14421 /* 14422 * If we are running a multicast router 14423 * we need to see all igmp packets. 14424 */ 14425 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14426 *dstp = INADDR_BROADCAST; 14427 *ll_multicast = 1; 14428 return (B_FALSE); 14429 } 14430 14431 goto drop_pkt; 14432 } 14433 } 14434 14435 ILM_WALKER_HOLD(ill); 14436 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14437 /* 14438 * This might just be caused by the fact that 14439 * multiple IP Multicast addresses map to the same 14440 * link layer multicast - no need to increment counter! 14441 */ 14442 ILM_WALKER_RELE(ill); 14443 freemsg(mp); 14444 return (B_TRUE); 14445 } 14446 ILM_WALKER_RELE(ill); 14447 done: 14448 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14449 /* 14450 * This assumes the we deliver to all streams for multicast 14451 * and broadcast packets. 14452 */ 14453 *dstp = INADDR_BROADCAST; 14454 *ll_multicast = 1; 14455 return (B_FALSE); 14456 drop_pkt: 14457 ip2dbg(("ip_rput: drop pkt\n")); 14458 freemsg(mp); 14459 return (B_TRUE); 14460 } 14461 14462 static boolean_t 14463 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14464 int *ll_multicast, mblk_t **mpp) 14465 { 14466 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14467 boolean_t must_copy = B_FALSE; 14468 struct iocblk *iocp; 14469 ipha_t *ipha; 14470 14471 #define rptr ((uchar_t *)ipha) 14472 14473 first_mp = *first_mpp; 14474 mp = *mpp; 14475 14476 ASSERT(first_mp == mp); 14477 14478 /* 14479 * if db_ref > 1 then copymsg and free original. Packet may be 14480 * changed and do not want other entity who has a reference to this 14481 * message to trip over the changes. This is a blind change because 14482 * trying to catch all places that might change packet is too 14483 * difficult (since it may be a module above this one) 14484 * 14485 * This corresponds to the non-fast path case. We walk down the full 14486 * chain in this case, and check the db_ref count of all the dblks, 14487 * and do a copymsg if required. It is possible that the db_ref counts 14488 * of the data blocks in the mblk chain can be different. 14489 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14490 * count of 1, followed by a M_DATA block with a ref count of 2, if 14491 * 'snoop' is running. 14492 */ 14493 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14494 if (mp1->b_datap->db_ref > 1) { 14495 must_copy = B_TRUE; 14496 break; 14497 } 14498 } 14499 14500 if (must_copy) { 14501 mp1 = copymsg(mp); 14502 if (mp1 == NULL) { 14503 for (mp1 = mp; mp1 != NULL; 14504 mp1 = mp1->b_cont) { 14505 mp1->b_next = NULL; 14506 mp1->b_prev = NULL; 14507 } 14508 freemsg(mp); 14509 if (ill != NULL) { 14510 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14511 } else { 14512 BUMP_MIB(&ip_mib, ipIfStatsInDiscards); 14513 } 14514 return (B_TRUE); 14515 } 14516 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14517 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14518 /* Copy b_prev - used by ip_mroute_decap */ 14519 to_mp->b_prev = from_mp->b_prev; 14520 from_mp->b_prev = NULL; 14521 } 14522 *first_mpp = first_mp = mp1; 14523 freemsg(mp); 14524 mp = mp1; 14525 *mpp = mp1; 14526 } 14527 14528 ipha = (ipha_t *)mp->b_rptr; 14529 14530 /* 14531 * previous code has a case for M_DATA. 14532 * We want to check how that happens. 14533 */ 14534 ASSERT(first_mp->b_datap->db_type != M_DATA); 14535 switch (first_mp->b_datap->db_type) { 14536 case M_PROTO: 14537 case M_PCPROTO: 14538 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14539 DL_UNITDATA_IND) { 14540 /* Go handle anything other than data elsewhere. */ 14541 ip_rput_dlpi(q, mp); 14542 return (B_TRUE); 14543 } 14544 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14545 /* Ditch the DLPI header. */ 14546 mp1 = mp->b_cont; 14547 ASSERT(first_mp == mp); 14548 *first_mpp = mp1; 14549 freeb(mp); 14550 *mpp = mp1; 14551 return (B_FALSE); 14552 case M_IOCACK: 14553 ip1dbg(("got iocack ")); 14554 iocp = (struct iocblk *)mp->b_rptr; 14555 switch (iocp->ioc_cmd) { 14556 case DL_IOC_HDR_INFO: 14557 ill = (ill_t *)q->q_ptr; 14558 ill_fastpath_ack(ill, mp); 14559 return (B_TRUE); 14560 case SIOCSTUNPARAM: 14561 case OSIOCSTUNPARAM: 14562 /* Go through qwriter_ip */ 14563 break; 14564 case SIOCGTUNPARAM: 14565 case OSIOCGTUNPARAM: 14566 ip_rput_other(NULL, q, mp, NULL); 14567 return (B_TRUE); 14568 default: 14569 putnext(q, mp); 14570 return (B_TRUE); 14571 } 14572 /* FALLTHRU */ 14573 case M_ERROR: 14574 case M_HANGUP: 14575 /* 14576 * Since this is on the ill stream we unconditionally 14577 * bump up the refcount 14578 */ 14579 ill_refhold(ill); 14580 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP, 14581 B_FALSE); 14582 return (B_TRUE); 14583 case M_CTL: 14584 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14585 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14586 IPHADA_M_CTL)) { 14587 /* 14588 * It's an IPsec accelerated packet. 14589 * Make sure that the ill from which we received the 14590 * packet has enabled IPsec hardware acceleration. 14591 */ 14592 if (!(ill->ill_capabilities & 14593 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14594 /* IPsec kstats: bean counter */ 14595 freemsg(mp); 14596 return (B_TRUE); 14597 } 14598 14599 /* 14600 * Make mp point to the mblk following the M_CTL, 14601 * then process according to type of mp. 14602 * After this processing, first_mp will point to 14603 * the data-attributes and mp to the pkt following 14604 * the M_CTL. 14605 */ 14606 mp = first_mp->b_cont; 14607 if (mp == NULL) { 14608 freemsg(first_mp); 14609 return (B_TRUE); 14610 } 14611 /* 14612 * A Hardware Accelerated packet can only be M_DATA 14613 * ESP or AH packet. 14614 */ 14615 if (mp->b_datap->db_type != M_DATA) { 14616 /* non-M_DATA IPsec accelerated packet */ 14617 IPSECHW_DEBUG(IPSECHW_PKT, 14618 ("non-M_DATA IPsec accelerated pkt\n")); 14619 freemsg(first_mp); 14620 return (B_TRUE); 14621 } 14622 ipha = (ipha_t *)mp->b_rptr; 14623 if (ipha->ipha_protocol != IPPROTO_AH && 14624 ipha->ipha_protocol != IPPROTO_ESP) { 14625 IPSECHW_DEBUG(IPSECHW_PKT, 14626 ("non-M_DATA IPsec accelerated pkt\n")); 14627 freemsg(first_mp); 14628 return (B_TRUE); 14629 } 14630 *mpp = mp; 14631 return (B_FALSE); 14632 } 14633 putnext(q, mp); 14634 return (B_TRUE); 14635 case M_FLUSH: 14636 if (*mp->b_rptr & FLUSHW) { 14637 *mp->b_rptr &= ~FLUSHR; 14638 qreply(q, mp); 14639 return (B_TRUE); 14640 } 14641 freemsg(mp); 14642 return (B_TRUE); 14643 case M_IOCNAK: 14644 ip1dbg(("got iocnak ")); 14645 iocp = (struct iocblk *)mp->b_rptr; 14646 switch (iocp->ioc_cmd) { 14647 case DL_IOC_HDR_INFO: 14648 case SIOCSTUNPARAM: 14649 case OSIOCSTUNPARAM: 14650 /* 14651 * Since this is on the ill stream we unconditionally 14652 * bump up the refcount 14653 */ 14654 ill_refhold(ill); 14655 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, 14656 CUR_OP, B_FALSE); 14657 return (B_TRUE); 14658 case SIOCGTUNPARAM: 14659 case OSIOCGTUNPARAM: 14660 ip_rput_other(NULL, q, mp, NULL); 14661 return (B_TRUE); 14662 default: 14663 break; 14664 } 14665 /* FALLTHRU */ 14666 default: 14667 putnext(q, mp); 14668 return (B_TRUE); 14669 } 14670 } 14671 14672 /* Read side put procedure. Packets coming from the wire arrive here. */ 14673 void 14674 ip_rput(queue_t *q, mblk_t *mp) 14675 { 14676 ill_t *ill; 14677 mblk_t *dmp = NULL; 14678 14679 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14680 14681 ill = (ill_t *)q->q_ptr; 14682 14683 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14684 union DL_primitives *dl; 14685 14686 /* 14687 * Things are opening or closing. Only accept DLPI control 14688 * messages. In the open case, the ill->ill_ipif has not yet 14689 * been created. In the close case, things hanging off the 14690 * ill could have been freed already. In either case it 14691 * may not be safe to proceed further. 14692 */ 14693 14694 dl = (union DL_primitives *)mp->b_rptr; 14695 if ((mp->b_datap->db_type != M_PCPROTO) || 14696 (dl->dl_primitive == DL_UNITDATA_IND)) { 14697 /* 14698 * Also SIOC[GS]TUN* ioctls can come here. 14699 */ 14700 inet_freemsg(mp); 14701 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14702 "ip_input_end: q %p (%S)", q, "uninit"); 14703 return; 14704 } 14705 } 14706 14707 /* 14708 * if db_ref > 1 then copymsg and free original. Packet may be 14709 * changed and we do not want the other entity who has a reference to 14710 * this message to trip over the changes. This is a blind change because 14711 * trying to catch all places that might change the packet is too 14712 * difficult. 14713 * 14714 * This corresponds to the fast path case, where we have a chain of 14715 * M_DATA mblks. We check the db_ref count of only the 1st data block 14716 * in the mblk chain. There doesn't seem to be a reason why a device 14717 * driver would send up data with varying db_ref counts in the mblk 14718 * chain. In any case the Fast path is a private interface, and our 14719 * drivers don't do such a thing. Given the above assumption, there is 14720 * no need to walk down the entire mblk chain (which could have a 14721 * potential performance problem) 14722 */ 14723 if (mp->b_datap->db_ref > 1) { 14724 mblk_t *mp1; 14725 boolean_t adjusted = B_FALSE; 14726 IP_STAT(ip_db_ref); 14727 14728 /* 14729 * The IP_RECVSLLA option depends on having the link layer 14730 * header. First check that: 14731 * a> the underlying device is of type ether, since this 14732 * option is currently supported only over ethernet. 14733 * b> there is enough room to copy over the link layer header. 14734 * 14735 * Once the checks are done, adjust rptr so that the link layer 14736 * header will be copied via copymsg. Note that, IFT_ETHER may 14737 * be returned by some non-ethernet drivers but in this case the 14738 * second check will fail. 14739 */ 14740 if (ill->ill_type == IFT_ETHER && 14741 (mp->b_rptr - mp->b_datap->db_base) >= 14742 sizeof (struct ether_header)) { 14743 mp->b_rptr -= sizeof (struct ether_header); 14744 adjusted = B_TRUE; 14745 } 14746 mp1 = copymsg(mp); 14747 if (mp1 == NULL) { 14748 mp->b_next = NULL; 14749 /* clear b_prev - used by ip_mroute_decap */ 14750 mp->b_prev = NULL; 14751 freemsg(mp); 14752 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14753 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14754 "ip_rput_end: q %p (%S)", q, "copymsg"); 14755 return; 14756 } 14757 if (adjusted) { 14758 /* 14759 * Copy is done. Restore the pointer in the _new_ mblk 14760 */ 14761 mp1->b_rptr += sizeof (struct ether_header); 14762 } 14763 /* Copy b_prev - used by ip_mroute_decap */ 14764 mp1->b_prev = mp->b_prev; 14765 mp->b_prev = NULL; 14766 freemsg(mp); 14767 mp = mp1; 14768 } 14769 if (DB_TYPE(mp) == M_DATA) { 14770 dmp = mp; 14771 } else if (DB_TYPE(mp) == M_PROTO && 14772 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14773 dmp = mp->b_cont; 14774 } 14775 if (dmp != NULL) { 14776 /* 14777 * IP header ptr not aligned? 14778 * OR IP header not complete in first mblk 14779 */ 14780 if (!OK_32PTR(dmp->b_rptr) || 14781 (dmp->b_wptr - dmp->b_rptr) < IP_SIMPLE_HDR_LENGTH) { 14782 if (!ip_check_and_align_header(q, dmp)) 14783 return; 14784 } 14785 } 14786 14787 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14788 "ip_rput_end: q %p (%S)", q, "end"); 14789 14790 ip_input(ill, NULL, mp, NULL); 14791 } 14792 14793 /* 14794 * Direct read side procedure capable of dealing with chains. GLDv3 based 14795 * drivers call this function directly with mblk chains while STREAMS 14796 * read side procedure ip_rput() calls this for single packet with ip_ring 14797 * set to NULL to process one packet at a time. 14798 * 14799 * The ill will always be valid if this function is called directly from 14800 * the driver. 14801 * 14802 * If ip_input() is called from GLDv3: 14803 * 14804 * - This must be a non-VLAN IP stream. 14805 * - 'mp' is either an untagged or a special priority-tagged packet. 14806 * - Any VLAN tag that was in the MAC header has been stripped. 14807 * 14808 * Thus, there is no need to adjust b_rptr in this function. 14809 */ 14810 /* ARGSUSED */ 14811 void 14812 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14813 struct mac_header_info_s *mhip) 14814 { 14815 ipaddr_t dst = NULL; 14816 ipaddr_t prev_dst; 14817 ire_t *ire = NULL; 14818 ipha_t *ipha; 14819 uint_t pkt_len; 14820 ssize_t len; 14821 uint_t opt_len; 14822 int ll_multicast; 14823 int cgtp_flt_pkt; 14824 queue_t *q = ill->ill_rq; 14825 squeue_t *curr_sqp = NULL; 14826 mblk_t *head = NULL; 14827 mblk_t *tail = NULL; 14828 mblk_t *first_mp; 14829 mblk_t *mp; 14830 int cnt = 0; 14831 14832 ASSERT(mp_chain != NULL); 14833 ASSERT(ill != NULL); 14834 14835 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14836 14837 #define rptr ((uchar_t *)ipha) 14838 14839 while (mp_chain != NULL) { 14840 first_mp = mp = mp_chain; 14841 mp_chain = mp_chain->b_next; 14842 mp->b_next = NULL; 14843 ll_multicast = 0; 14844 14845 /* 14846 * We do ire caching from one iteration to 14847 * another. In the event the packet chain contains 14848 * all packets from the same dst, this caching saves 14849 * an ire_cache_lookup for each of the succeeding 14850 * packets in a packet chain. 14851 */ 14852 prev_dst = dst; 14853 14854 /* 14855 * ip_input fast path 14856 */ 14857 14858 /* mblk type is not M_DATA */ 14859 if (mp->b_datap->db_type != M_DATA) { 14860 if (ip_rput_process_notdata(q, &first_mp, ill, 14861 &ll_multicast, &mp)) 14862 continue; 14863 } 14864 14865 /* Make sure its an M_DATA and that its aligned */ 14866 ASSERT(mp->b_datap->db_type == M_DATA); 14867 ASSERT(mp->b_datap->db_ref == 1 && OK_32PTR(mp->b_rptr)); 14868 14869 ipha = (ipha_t *)mp->b_rptr; 14870 len = mp->b_wptr - rptr; 14871 pkt_len = ntohs(ipha->ipha_length); 14872 14873 /* 14874 * We must count all incoming packets, even if they end 14875 * up being dropped later on. 14876 */ 14877 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 14878 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 14879 14880 /* multiple mblk or too short */ 14881 len -= pkt_len; 14882 if (len != 0) { 14883 /* 14884 * Make sure we have data length consistent 14885 * with the IP header. 14886 */ 14887 if (mp->b_cont == NULL) { 14888 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14889 BUMP_MIB(ill->ill_ip_mib, 14890 ipIfStatsInHdrErrors); 14891 ip2dbg(("ip_input: drop pkt\n")); 14892 freemsg(mp); 14893 continue; 14894 } 14895 mp->b_wptr = rptr + pkt_len; 14896 } else if ((len += msgdsize(mp->b_cont)) != 0) { 14897 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14898 BUMP_MIB(ill->ill_ip_mib, 14899 ipIfStatsInHdrErrors); 14900 ip2dbg(("ip_input: drop pkt\n")); 14901 freemsg(mp); 14902 continue; 14903 } 14904 (void) adjmsg(mp, -len); 14905 IP_STAT(ip_multimblk3); 14906 } 14907 } 14908 14909 /* Obtain the dst of the current packet */ 14910 dst = ipha->ipha_dst; 14911 14912 if (IP_LOOPBACK_ADDR(dst) || 14913 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 14914 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 14915 cmn_err(CE_CONT, "dst %X src %X\n", 14916 dst, ipha->ipha_src); 14917 freemsg(mp); 14918 continue; 14919 } 14920 14921 /* 14922 * The event for packets being received from a 'physical' 14923 * interface is placed after validation of the source and/or 14924 * destination address as being local so that packets can be 14925 * redirected to loopback addresses using ipnat. 14926 */ 14927 DTRACE_PROBE4(ip4__physical__in__start, 14928 ill_t *, ill, ill_t *, NULL, 14929 ipha_t *, ipha, mblk_t *, first_mp); 14930 14931 FW_HOOKS(ip4_physical_in_event, ipv4firewall_physical_in, 14932 ill, NULL, ipha, first_mp, mp); 14933 14934 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 14935 14936 if (first_mp == NULL) { 14937 continue; 14938 } 14939 dst = ipha->ipha_dst; 14940 14941 /* 14942 * Attach any necessary label information to 14943 * this packet 14944 */ 14945 if (is_system_labeled() && 14946 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 14947 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14948 freemsg(mp); 14949 continue; 14950 } 14951 14952 /* 14953 * Reuse the cached ire only if the ipha_dst of the previous 14954 * packet is the same as the current packet AND it is not 14955 * INADDR_ANY. 14956 */ 14957 if (!(dst == prev_dst && dst != INADDR_ANY) && 14958 (ire != NULL)) { 14959 ire_refrele(ire); 14960 ire = NULL; 14961 } 14962 opt_len = ipha->ipha_version_and_hdr_length - 14963 IP_SIMPLE_HDR_VERSION; 14964 14965 /* 14966 * Check to see if we can take the fastpath. 14967 * That is possible if the following conditions are met 14968 * o Tsol disabled 14969 * o CGTP disabled 14970 * o ipp_action_count is 0 14971 * o Mobile IP not running 14972 * o no options in the packet 14973 * o not a RSVP packet 14974 * o not a multicast packet 14975 */ 14976 if (!is_system_labeled() && 14977 !ip_cgtp_filter && ipp_action_count == 0 && 14978 ill->ill_mrtun_refcnt == 0 && ill->ill_srcif_refcnt == 0 && 14979 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 14980 !ll_multicast && !CLASSD(dst)) { 14981 if (ire == NULL) 14982 ire = ire_cache_lookup(dst, ALL_ZONES, NULL); 14983 14984 /* incoming packet is for forwarding */ 14985 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 14986 ire = ip_fast_forward(ire, dst, ill, mp); 14987 continue; 14988 } 14989 /* incoming packet is for local consumption */ 14990 if (ire->ire_type & IRE_LOCAL) 14991 goto local; 14992 } 14993 14994 /* 14995 * Disable ire caching for anything more complex 14996 * than the simple fast path case we checked for above. 14997 */ 14998 if (ire != NULL) { 14999 ire_refrele(ire); 15000 ire = NULL; 15001 } 15002 15003 /* Full-blown slow path */ 15004 if (opt_len != 0) { 15005 if (len != 0) 15006 IP_STAT(ip_multimblk4); 15007 else 15008 IP_STAT(ip_ipoptions); 15009 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15010 &dst)) 15011 continue; 15012 } 15013 15014 /* 15015 * Invoke the CGTP (multirouting) filtering module to process 15016 * the incoming packet. Packets identified as duplicates 15017 * must be discarded. Filtering is active only if the 15018 * the ip_cgtp_filter ndd variable is non-zero. 15019 */ 15020 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15021 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL)) { 15022 cgtp_flt_pkt = 15023 ip_cgtp_filter_ops->cfo_filter(q, mp); 15024 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15025 freemsg(first_mp); 15026 continue; 15027 } 15028 } 15029 15030 /* 15031 * If rsvpd is running, let RSVP daemon handle its processing 15032 * and forwarding of RSVP multicast/unicast packets. 15033 * If rsvpd is not running but mrouted is running, RSVP 15034 * multicast packets are forwarded as multicast traffic 15035 * and RSVP unicast packets are forwarded by unicast router. 15036 * If neither rsvpd nor mrouted is running, RSVP multicast 15037 * packets are not forwarded, but the unicast packets are 15038 * forwarded like unicast traffic. 15039 */ 15040 if (ipha->ipha_protocol == IPPROTO_RSVP && 15041 ipcl_proto_search(IPPROTO_RSVP) != NULL) { 15042 /* RSVP packet and rsvpd running. Treat as ours */ 15043 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15044 /* 15045 * This assumes that we deliver to all streams for 15046 * multicast and broadcast packets. 15047 * We have to force ll_multicast to 1 to handle the 15048 * M_DATA messages passed in from ip_mroute_decap. 15049 */ 15050 dst = INADDR_BROADCAST; 15051 ll_multicast = 1; 15052 } else if (CLASSD(dst)) { 15053 /* packet is multicast */ 15054 mp->b_next = NULL; 15055 if (ip_rput_process_multicast(q, mp, ill, ipha, 15056 &ll_multicast, &dst)) 15057 continue; 15058 } 15059 15060 15061 /* 15062 * Check if the packet is coming from the Mobile IP 15063 * forward tunnel interface 15064 */ 15065 if (ill->ill_srcif_refcnt > 0) { 15066 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 15067 NULL, ill, MATCH_IRE_TYPE); 15068 if (ire != NULL && ire->ire_nce->nce_res_mp == NULL && 15069 ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER) { 15070 15071 /* We need to resolve the link layer info */ 15072 ire_refrele(ire); 15073 ire = NULL; 15074 (void) ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 15075 ll_multicast, dst); 15076 continue; 15077 } 15078 } 15079 15080 if (ire == NULL) { 15081 ire = ire_cache_lookup(dst, ALL_ZONES, 15082 MBLK_GETLABEL(mp)); 15083 } 15084 15085 /* 15086 * If mipagent is running and reverse tunnel is created as per 15087 * mobile node request, then any packet coming through the 15088 * incoming interface from the mobile-node, should be reverse 15089 * tunneled to it's home agent except those that are destined 15090 * to foreign agent only. 15091 * This needs source address based ire lookup. The routing 15092 * entries for source address based lookup are only created by 15093 * mipagent program only when a reverse tunnel is created. 15094 * Reference : RFC2002, RFC2344 15095 */ 15096 if (ill->ill_mrtun_refcnt > 0) { 15097 ipaddr_t srcaddr; 15098 ire_t *tmp_ire; 15099 15100 tmp_ire = ire; /* Save, we might need it later */ 15101 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 15102 ire->ire_type != IRE_BROADCAST)) { 15103 srcaddr = ipha->ipha_src; 15104 ire = ire_mrtun_lookup(srcaddr, ill); 15105 if (ire != NULL) { 15106 /* 15107 * Should not be getting iphada packet 15108 * here. we should only get those for 15109 * IRE_LOCAL traffic, excluded above. 15110 * Fail-safe (drop packet) in the event 15111 * hardware is misbehaving. 15112 */ 15113 if (first_mp != mp) { 15114 /* IPsec KSTATS: beancount me */ 15115 freemsg(first_mp); 15116 } else { 15117 /* 15118 * This packet must be forwarded 15119 * to Reverse Tunnel 15120 */ 15121 ip_mrtun_forward(ire, ill, mp); 15122 } 15123 ire_refrele(ire); 15124 ire = NULL; 15125 if (tmp_ire != NULL) { 15126 ire_refrele(tmp_ire); 15127 tmp_ire = NULL; 15128 } 15129 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15130 "ip_input_end: q %p (%S)", 15131 q, "uninit"); 15132 continue; 15133 } 15134 } 15135 /* 15136 * If this packet is from a non-mobilenode or a 15137 * mobile-node which does not request reverse 15138 * tunnel service 15139 */ 15140 ire = tmp_ire; 15141 } 15142 15143 15144 /* 15145 * If we reach here that means the incoming packet satisfies 15146 * one of the following conditions: 15147 * - packet is from a mobile node which does not request 15148 * reverse tunnel 15149 * - packet is from a non-mobile node, which is the most 15150 * common case 15151 * - packet is from a reverse tunnel enabled mobile node 15152 * and destined to foreign agent only 15153 */ 15154 15155 if (ire == NULL) { 15156 /* 15157 * No IRE for this destination, so it can't be for us. 15158 * Unless we are forwarding, drop the packet. 15159 * We have to let source routed packets through 15160 * since we don't yet know if they are 'ping -l' 15161 * packets i.e. if they will go out over the 15162 * same interface as they came in on. 15163 */ 15164 ire = ip_rput_noire(q, NULL, mp, ll_multicast, dst); 15165 if (ire == NULL) 15166 continue; 15167 } 15168 15169 /* 15170 * Broadcast IRE may indicate either broadcast or 15171 * multicast packet 15172 */ 15173 if (ire->ire_type == IRE_BROADCAST) { 15174 /* 15175 * Skip broadcast checks if packet is UDP multicast; 15176 * we'd rather not enter ip_rput_process_broadcast() 15177 * unless the packet is broadcast for real, since 15178 * that routine is a no-op for multicast. 15179 */ 15180 if (ipha->ipha_protocol != IPPROTO_UDP || 15181 !CLASSD(ipha->ipha_dst)) { 15182 ire = ip_rput_process_broadcast(&q, mp, 15183 ire, ipha, ill, dst, cgtp_flt_pkt, 15184 ll_multicast); 15185 if (ire == NULL) 15186 continue; 15187 } 15188 } else if (ire->ire_stq != NULL) { 15189 /* fowarding? */ 15190 ip_rput_process_forward(q, mp, ire, ipha, ill, 15191 ll_multicast); 15192 /* ip_rput_process_forward consumed the packet */ 15193 continue; 15194 } 15195 15196 local: 15197 /* packet not for us */ 15198 if (ire->ire_rfq != q) { 15199 if (ip_rput_notforus(&q, mp, ire, ill)) 15200 continue; 15201 } 15202 15203 switch (ipha->ipha_protocol) { 15204 case IPPROTO_TCP: 15205 ASSERT(first_mp == mp); 15206 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15207 mp, 0, q, ip_ring)) != NULL) { 15208 if (curr_sqp == NULL) { 15209 curr_sqp = GET_SQUEUE(mp); 15210 ASSERT(cnt == 0); 15211 cnt++; 15212 head = tail = mp; 15213 } else if (curr_sqp == GET_SQUEUE(mp)) { 15214 ASSERT(tail != NULL); 15215 cnt++; 15216 tail->b_next = mp; 15217 tail = mp; 15218 } else { 15219 /* 15220 * A different squeue. Send the 15221 * chain for the previous squeue on 15222 * its way. This shouldn't happen 15223 * often unless interrupt binding 15224 * changes. 15225 */ 15226 IP_STAT(ip_input_multi_squeue); 15227 squeue_enter_chain(curr_sqp, head, 15228 tail, cnt, SQTAG_IP_INPUT); 15229 curr_sqp = GET_SQUEUE(mp); 15230 head = mp; 15231 tail = mp; 15232 cnt = 1; 15233 } 15234 } 15235 continue; 15236 case IPPROTO_UDP: 15237 ASSERT(first_mp == mp); 15238 ip_udp_input(q, mp, ipha, ire, ill); 15239 continue; 15240 case IPPROTO_SCTP: 15241 ASSERT(first_mp == mp); 15242 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15243 q, dst); 15244 /* ire has been released by ip_sctp_input */ 15245 ire = NULL; 15246 continue; 15247 default: 15248 ip_proto_input(q, first_mp, ipha, ire, ill); 15249 continue; 15250 } 15251 } 15252 15253 if (ire != NULL) 15254 ire_refrele(ire); 15255 15256 if (head != NULL) 15257 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15258 15259 /* 15260 * This code is there just to make netperf/ttcp look good. 15261 * 15262 * Its possible that after being in polling mode (and having cleared 15263 * the backlog), squeues have turned the interrupt frequency higher 15264 * to improve latency at the expense of more CPU utilization (less 15265 * packets per interrupts or more number of interrupts). Workloads 15266 * like ttcp/netperf do manage to tickle polling once in a while 15267 * but for the remaining time, stay in higher interrupt mode since 15268 * their packet arrival rate is pretty uniform and this shows up 15269 * as higher CPU utilization. Since people care about CPU utilization 15270 * while running netperf/ttcp, turn the interrupt frequency back to 15271 * normal/default if polling has not been used in ip_poll_normal_ticks. 15272 */ 15273 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15274 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15275 ip_ring->rr_poll_state &= ~ILL_POLLING; 15276 ip_ring->rr_blank(ip_ring->rr_handle, 15277 ip_ring->rr_normal_blank_time, 15278 ip_ring->rr_normal_pkt_cnt); 15279 } 15280 } 15281 15282 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15283 "ip_input_end: q %p (%S)", q, "end"); 15284 #undef rptr 15285 } 15286 15287 static void 15288 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15289 t_uscalar_t err) 15290 { 15291 if (dl_err == DL_SYSERR) { 15292 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15293 "%s: %s failed: DL_SYSERR (errno %u)\n", 15294 ill->ill_name, dlpi_prim_str(prim), err); 15295 return; 15296 } 15297 15298 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15299 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15300 dlpi_err_str(dl_err)); 15301 } 15302 15303 /* 15304 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15305 * than DL_UNITDATA_IND messages. If we need to process this message 15306 * exclusively, we call qwriter_ip, in which case we also need to call 15307 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15308 */ 15309 void 15310 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15311 { 15312 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15313 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15314 ill_t *ill; 15315 15316 ip1dbg(("ip_rput_dlpi")); 15317 ill = (ill_t *)q->q_ptr; 15318 switch (dloa->dl_primitive) { 15319 case DL_ERROR_ACK: 15320 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15321 "%s (0x%x), unix %u\n", ill->ill_name, 15322 dlpi_prim_str(dlea->dl_error_primitive), 15323 dlea->dl_error_primitive, 15324 dlpi_err_str(dlea->dl_errno), 15325 dlea->dl_errno, 15326 dlea->dl_unix_errno)); 15327 switch (dlea->dl_error_primitive) { 15328 case DL_UNBIND_REQ: 15329 mutex_enter(&ill->ill_lock); 15330 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15331 cv_signal(&ill->ill_cv); 15332 mutex_exit(&ill->ill_lock); 15333 /* FALLTHRU */ 15334 case DL_NOTIFY_REQ: 15335 case DL_ATTACH_REQ: 15336 case DL_DETACH_REQ: 15337 case DL_INFO_REQ: 15338 case DL_BIND_REQ: 15339 case DL_ENABMULTI_REQ: 15340 case DL_PHYS_ADDR_REQ: 15341 case DL_CAPABILITY_REQ: 15342 case DL_CONTROL_REQ: 15343 /* 15344 * Refhold the ill to match qwriter_ip which does a 15345 * refrele. Since this is on the ill stream we 15346 * unconditionally bump up the refcount without 15347 * checking for ILL_CAN_LOOKUP 15348 */ 15349 ill_refhold(ill); 15350 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15351 CUR_OP, B_FALSE); 15352 return; 15353 case DL_DISABMULTI_REQ: 15354 freemsg(mp); /* Don't want to pass this up */ 15355 return; 15356 default: 15357 break; 15358 } 15359 ip_dlpi_error(ill, dlea->dl_error_primitive, 15360 dlea->dl_errno, dlea->dl_unix_errno); 15361 freemsg(mp); 15362 return; 15363 case DL_INFO_ACK: 15364 case DL_BIND_ACK: 15365 case DL_PHYS_ADDR_ACK: 15366 case DL_NOTIFY_ACK: 15367 case DL_CAPABILITY_ACK: 15368 case DL_CONTROL_ACK: 15369 /* 15370 * Refhold the ill to match qwriter_ip which does a refrele 15371 * Since this is on the ill stream we unconditionally 15372 * bump up the refcount without doing ILL_CAN_LOOKUP. 15373 */ 15374 ill_refhold(ill); 15375 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15376 CUR_OP, B_FALSE); 15377 return; 15378 case DL_NOTIFY_IND: 15379 ill_refhold(ill); 15380 /* 15381 * The DL_NOTIFY_IND is an asynchronous message that has no 15382 * relation to the current ioctl in progress (if any). Hence we 15383 * pass in NEW_OP in this case. 15384 */ 15385 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15386 NEW_OP, B_FALSE); 15387 return; 15388 case DL_OK_ACK: 15389 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15390 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15391 switch (dloa->dl_correct_primitive) { 15392 case DL_UNBIND_REQ: 15393 mutex_enter(&ill->ill_lock); 15394 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15395 cv_signal(&ill->ill_cv); 15396 mutex_exit(&ill->ill_lock); 15397 /* FALLTHRU */ 15398 case DL_ATTACH_REQ: 15399 case DL_DETACH_REQ: 15400 /* 15401 * Refhold the ill to match qwriter_ip which does a 15402 * refrele. Since this is on the ill stream we 15403 * unconditionally bump up the refcount 15404 */ 15405 ill_refhold(ill); 15406 qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15407 CUR_OP, B_FALSE); 15408 return; 15409 case DL_ENABMULTI_REQ: 15410 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15411 ill->ill_dlpi_multicast_state = IDS_OK; 15412 break; 15413 15414 } 15415 break; 15416 default: 15417 break; 15418 } 15419 freemsg(mp); 15420 } 15421 15422 /* 15423 * Handling of DLPI messages that require exclusive access to the ipsq. 15424 * 15425 * Need to do ill_pending_mp_release on ioctl completion, which could 15426 * happen here. (along with mi_copy_done) 15427 */ 15428 /* ARGSUSED */ 15429 static void 15430 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15431 { 15432 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15433 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15434 int err = 0; 15435 ill_t *ill; 15436 ipif_t *ipif = NULL; 15437 mblk_t *mp1 = NULL; 15438 conn_t *connp = NULL; 15439 t_uscalar_t paddrreq; 15440 mblk_t *mp_hw; 15441 boolean_t success; 15442 boolean_t ioctl_aborted = B_FALSE; 15443 boolean_t log = B_TRUE; 15444 hook_nic_event_t *info; 15445 15446 ip1dbg(("ip_rput_dlpi_writer ..")); 15447 ill = (ill_t *)q->q_ptr; 15448 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15449 15450 ASSERT(IAM_WRITER_ILL(ill)); 15451 15452 /* 15453 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15454 * both are null or non-null. However we can assert that only 15455 * after grabbing the ipsq_lock. So we don't make any assertion 15456 * here and in other places in the code. 15457 */ 15458 ipif = ipsq->ipsq_pending_ipif; 15459 /* 15460 * The current ioctl could have been aborted by the user and a new 15461 * ioctl to bring up another ill could have started. We could still 15462 * get a response from the driver later. 15463 */ 15464 if (ipif != NULL && ipif->ipif_ill != ill) 15465 ioctl_aborted = B_TRUE; 15466 15467 switch (dloa->dl_primitive) { 15468 case DL_ERROR_ACK: 15469 switch (dlea->dl_error_primitive) { 15470 case DL_UNBIND_REQ: 15471 case DL_ATTACH_REQ: 15472 case DL_DETACH_REQ: 15473 case DL_INFO_REQ: 15474 ill_dlpi_done(ill, dlea->dl_error_primitive); 15475 break; 15476 case DL_NOTIFY_REQ: 15477 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15478 log = B_FALSE; 15479 break; 15480 case DL_PHYS_ADDR_REQ: 15481 /* 15482 * For IPv6 only, there are two additional 15483 * phys_addr_req's sent to the driver to get the 15484 * IPv6 token and lla. This allows IP to acquire 15485 * the hardware address format for a given interface 15486 * without having built in knowledge of the hardware 15487 * address. ill_phys_addr_pend keeps track of the last 15488 * DL_PAR sent so we know which response we are 15489 * dealing with. ill_dlpi_done will update 15490 * ill_phys_addr_pend when it sends the next req. 15491 * We don't complete the IOCTL until all three DL_PARs 15492 * have been attempted, so set *_len to 0 and break. 15493 */ 15494 paddrreq = ill->ill_phys_addr_pend; 15495 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15496 if (paddrreq == DL_IPV6_TOKEN) { 15497 ill->ill_token_length = 0; 15498 log = B_FALSE; 15499 break; 15500 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15501 ill->ill_nd_lla_len = 0; 15502 log = B_FALSE; 15503 break; 15504 } 15505 /* 15506 * Something went wrong with the DL_PHYS_ADDR_REQ. 15507 * We presumably have an IOCTL hanging out waiting 15508 * for completion. Find it and complete the IOCTL 15509 * with the error noted. 15510 * However, ill_dl_phys was called on an ill queue 15511 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15512 * set. But the ioctl is known to be pending on ill_wq. 15513 */ 15514 if (!ill->ill_ifname_pending) 15515 break; 15516 ill->ill_ifname_pending = 0; 15517 if (!ioctl_aborted) 15518 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15519 if (mp1 != NULL) { 15520 /* 15521 * This operation (SIOCSLIFNAME) must have 15522 * happened on the ill. Assert there is no conn 15523 */ 15524 ASSERT(connp == NULL); 15525 q = ill->ill_wq; 15526 } 15527 break; 15528 case DL_BIND_REQ: 15529 ill_dlpi_done(ill, DL_BIND_REQ); 15530 if (ill->ill_ifname_pending) 15531 break; 15532 /* 15533 * Something went wrong with the bind. We presumably 15534 * have an IOCTL hanging out waiting for completion. 15535 * Find it, take down the interface that was coming 15536 * up, and complete the IOCTL with the error noted. 15537 */ 15538 if (!ioctl_aborted) 15539 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15540 if (mp1 != NULL) { 15541 /* 15542 * This operation (SIOCSLIFFLAGS) must have 15543 * happened from a conn. 15544 */ 15545 ASSERT(connp != NULL); 15546 q = CONNP_TO_WQ(connp); 15547 if (ill->ill_move_in_progress) { 15548 ILL_CLEAR_MOVE(ill); 15549 } 15550 (void) ipif_down(ipif, NULL, NULL); 15551 /* error is set below the switch */ 15552 } 15553 break; 15554 case DL_ENABMULTI_REQ: 15555 ip1dbg(("DL_ERROR_ACK to enabmulti\n")); 15556 15557 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15558 ill->ill_dlpi_multicast_state = IDS_FAILED; 15559 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15560 ipif_t *ipif; 15561 15562 log = B_FALSE; 15563 printf("ip: joining multicasts failed (%d)" 15564 " on %s - will use link layer " 15565 "broadcasts for multicast\n", 15566 dlea->dl_errno, ill->ill_name); 15567 15568 /* 15569 * Set up the multicast mapping alone. 15570 * writer, so ok to access ill->ill_ipif 15571 * without any lock. 15572 */ 15573 ipif = ill->ill_ipif; 15574 mutex_enter(&ill->ill_phyint->phyint_lock); 15575 ill->ill_phyint->phyint_flags |= 15576 PHYI_MULTI_BCAST; 15577 mutex_exit(&ill->ill_phyint->phyint_lock); 15578 15579 if (!ill->ill_isv6) { 15580 (void) ipif_arp_setup_multicast(ipif, 15581 NULL); 15582 } else { 15583 (void) ipif_ndp_setup_multicast(ipif, 15584 NULL); 15585 } 15586 } 15587 freemsg(mp); /* Don't want to pass this up */ 15588 return; 15589 case DL_CAPABILITY_REQ: 15590 case DL_CONTROL_REQ: 15591 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15592 "DL_CAPABILITY/CONTROL REQ\n")); 15593 ill_dlpi_done(ill, dlea->dl_error_primitive); 15594 ill->ill_dlpi_capab_state = IDS_FAILED; 15595 freemsg(mp); 15596 return; 15597 } 15598 /* 15599 * Note the error for IOCTL completion (mp1 is set when 15600 * ready to complete ioctl). If ill_ifname_pending_err is 15601 * set, an error occured during plumbing (ill_ifname_pending), 15602 * so we want to report that error. 15603 * 15604 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15605 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15606 * expected to get errack'd if the driver doesn't support 15607 * these flags (e.g. ethernet). log will be set to B_FALSE 15608 * if these error conditions are encountered. 15609 */ 15610 if (mp1 != NULL) { 15611 if (ill->ill_ifname_pending_err != 0) { 15612 err = ill->ill_ifname_pending_err; 15613 ill->ill_ifname_pending_err = 0; 15614 } else { 15615 err = dlea->dl_unix_errno ? 15616 dlea->dl_unix_errno : ENXIO; 15617 } 15618 /* 15619 * If we're plumbing an interface and an error hasn't already 15620 * been saved, set ill_ifname_pending_err to the error passed 15621 * up. Ignore the error if log is B_FALSE (see comment above). 15622 */ 15623 } else if (log && ill->ill_ifname_pending && 15624 ill->ill_ifname_pending_err == 0) { 15625 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15626 dlea->dl_unix_errno : ENXIO; 15627 } 15628 15629 if (log) 15630 ip_dlpi_error(ill, dlea->dl_error_primitive, 15631 dlea->dl_errno, dlea->dl_unix_errno); 15632 break; 15633 case DL_CAPABILITY_ACK: { 15634 boolean_t reneg_flag = B_FALSE; 15635 /* Call a routine to handle this one. */ 15636 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15637 /* 15638 * Check if the ACK is due to renegotiation case since we 15639 * will need to send a new CAPABILITY_REQ later. 15640 */ 15641 if (ill->ill_dlpi_capab_state == IDS_RENEG) { 15642 /* This is the ack for a renogiation case */ 15643 reneg_flag = B_TRUE; 15644 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 15645 } 15646 ill_capability_ack(ill, mp); 15647 if (reneg_flag) 15648 ill_capability_probe(ill); 15649 break; 15650 } 15651 case DL_CONTROL_ACK: 15652 /* We treat all of these as "fire and forget" */ 15653 ill_dlpi_done(ill, DL_CONTROL_REQ); 15654 break; 15655 case DL_INFO_ACK: 15656 /* Call a routine to handle this one. */ 15657 ill_dlpi_done(ill, DL_INFO_REQ); 15658 ip_ll_subnet_defaults(ill, mp); 15659 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15660 return; 15661 case DL_BIND_ACK: 15662 /* 15663 * We should have an IOCTL waiting on this unless 15664 * sent by ill_dl_phys, in which case just return 15665 */ 15666 ill_dlpi_done(ill, DL_BIND_REQ); 15667 if (ill->ill_ifname_pending) 15668 break; 15669 15670 if (!ioctl_aborted) 15671 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15672 if (mp1 == NULL) 15673 break; 15674 /* 15675 * Because mp1 was added by ill_dl_up(), and it always 15676 * passes a valid connp, connp must be valid here. 15677 */ 15678 ASSERT(connp != NULL); 15679 q = CONNP_TO_WQ(connp); 15680 15681 /* 15682 * We are exclusive. So nothing can change even after 15683 * we get the pending mp. If need be we can put it back 15684 * and restart, as in calling ipif_arp_up() below. 15685 */ 15686 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15687 15688 mutex_enter(&ill->ill_lock); 15689 15690 ill->ill_dl_up = 1; 15691 15692 if ((info = ill->ill_nic_event_info) != NULL) { 15693 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15694 "attached for %s\n", info->hne_event, 15695 ill->ill_name)); 15696 if (info->hne_data != NULL) 15697 kmem_free(info->hne_data, info->hne_datalen); 15698 kmem_free(info, sizeof (hook_nic_event_t)); 15699 } 15700 15701 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15702 if (info != NULL) { 15703 info->hne_nic = ill->ill_phyint->phyint_ifindex; 15704 info->hne_lif = 0; 15705 info->hne_event = NE_UP; 15706 info->hne_data = NULL; 15707 info->hne_datalen = 0; 15708 info->hne_family = ill->ill_isv6 ? ipv6 : ipv4; 15709 } else 15710 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15711 "event information for %s (ENOMEM)\n", 15712 ill->ill_name)); 15713 15714 ill->ill_nic_event_info = info; 15715 15716 mutex_exit(&ill->ill_lock); 15717 15718 /* 15719 * Now bring up the resolver; when that is complete, we'll 15720 * create IREs. Note that we intentionally mirror what 15721 * ipif_up() would have done, because we got here by way of 15722 * ill_dl_up(), which stopped ipif_up()'s processing. 15723 */ 15724 if (ill->ill_isv6) { 15725 /* 15726 * v6 interfaces. 15727 * Unlike ARP which has to do another bind 15728 * and attach, once we get here we are 15729 * done with NDP. Except in the case of 15730 * ILLF_XRESOLV, in which case we send an 15731 * AR_INTERFACE_UP to the external resolver. 15732 * If all goes well, the ioctl will complete 15733 * in ip_rput(). If there's an error, we 15734 * complete it here. 15735 */ 15736 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr); 15737 if (err == 0) { 15738 if (ill->ill_flags & ILLF_XRESOLV) { 15739 mutex_enter(&connp->conn_lock); 15740 mutex_enter(&ill->ill_lock); 15741 success = ipsq_pending_mp_add( 15742 connp, ipif, q, mp1, 0); 15743 mutex_exit(&ill->ill_lock); 15744 mutex_exit(&connp->conn_lock); 15745 if (success) { 15746 err = ipif_resolver_up(ipif, 15747 Res_act_initial); 15748 if (err == EINPROGRESS) { 15749 freemsg(mp); 15750 return; 15751 } 15752 ASSERT(err != 0); 15753 mp1 = ipsq_pending_mp_get(ipsq, 15754 &connp); 15755 ASSERT(mp1 != NULL); 15756 } else { 15757 /* conn has started closing */ 15758 err = EINTR; 15759 } 15760 } else { /* Non XRESOLV interface */ 15761 (void) ipif_resolver_up(ipif, 15762 Res_act_initial); 15763 err = ipif_up_done_v6(ipif); 15764 } 15765 } 15766 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15767 /* 15768 * ARP and other v4 external resolvers. 15769 * Leave the pending mblk intact so that 15770 * the ioctl completes in ip_rput(). 15771 */ 15772 mutex_enter(&connp->conn_lock); 15773 mutex_enter(&ill->ill_lock); 15774 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15775 mutex_exit(&ill->ill_lock); 15776 mutex_exit(&connp->conn_lock); 15777 if (success) { 15778 err = ipif_resolver_up(ipif, Res_act_initial); 15779 if (err == EINPROGRESS) { 15780 freemsg(mp); 15781 return; 15782 } 15783 ASSERT(err != 0); 15784 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15785 } else { 15786 /* The conn has started closing */ 15787 err = EINTR; 15788 } 15789 } else { 15790 /* 15791 * This one is complete. Reply to pending ioctl. 15792 */ 15793 (void) ipif_resolver_up(ipif, Res_act_initial); 15794 err = ipif_up_done(ipif); 15795 } 15796 15797 if ((err == 0) && (ill->ill_up_ipifs)) { 15798 err = ill_up_ipifs(ill, q, mp1); 15799 if (err == EINPROGRESS) { 15800 freemsg(mp); 15801 return; 15802 } 15803 } 15804 15805 if (ill->ill_up_ipifs) { 15806 ill_group_cleanup(ill); 15807 } 15808 15809 break; 15810 case DL_NOTIFY_IND: { 15811 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15812 ire_t *ire; 15813 boolean_t need_ire_walk_v4 = B_FALSE; 15814 boolean_t need_ire_walk_v6 = B_FALSE; 15815 15816 switch (notify->dl_notification) { 15817 case DL_NOTE_PHYS_ADDR: 15818 err = ill_set_phys_addr(ill, mp); 15819 break; 15820 15821 case DL_NOTE_FASTPATH_FLUSH: 15822 ill_fastpath_flush(ill); 15823 break; 15824 15825 case DL_NOTE_SDU_SIZE: 15826 /* 15827 * Change the MTU size of the interface, of all 15828 * attached ipif's, and of all relevant ire's. The 15829 * new value's a uint32_t at notify->dl_data. 15830 * Mtu change Vs. new ire creation - protocol below. 15831 * 15832 * a Mark the ipif as IPIF_CHANGING. 15833 * b Set the new mtu in the ipif. 15834 * c Change the ire_max_frag on all affected ires 15835 * d Unmark the IPIF_CHANGING 15836 * 15837 * To see how the protocol works, assume an interface 15838 * route is also being added simultaneously by 15839 * ip_rt_add and let 'ipif' be the ipif referenced by 15840 * the ire. If the ire is created before step a, 15841 * it will be cleaned up by step c. If the ire is 15842 * created after step d, it will see the new value of 15843 * ipif_mtu. Any attempt to create the ire between 15844 * steps a to d will fail because of the IPIF_CHANGING 15845 * flag. Note that ire_create() is passed a pointer to 15846 * the ipif_mtu, and not the value. During ire_add 15847 * under the bucket lock, the ire_max_frag of the 15848 * new ire being created is set from the ipif/ire from 15849 * which it is being derived. 15850 */ 15851 mutex_enter(&ill->ill_lock); 15852 ill->ill_max_frag = (uint_t)notify->dl_data; 15853 15854 /* 15855 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15856 * leave it alone 15857 */ 15858 if (ill->ill_mtu_userspecified) { 15859 mutex_exit(&ill->ill_lock); 15860 break; 15861 } 15862 ill->ill_max_mtu = ill->ill_max_frag; 15863 if (ill->ill_isv6) { 15864 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15865 ill->ill_max_mtu = IPV6_MIN_MTU; 15866 } else { 15867 if (ill->ill_max_mtu < IP_MIN_MTU) 15868 ill->ill_max_mtu = IP_MIN_MTU; 15869 } 15870 for (ipif = ill->ill_ipif; ipif != NULL; 15871 ipif = ipif->ipif_next) { 15872 /* 15873 * Don't override the mtu if the user 15874 * has explicitly set it. 15875 */ 15876 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15877 continue; 15878 ipif->ipif_mtu = (uint_t)notify->dl_data; 15879 if (ipif->ipif_isv6) 15880 ire = ipif_to_ire_v6(ipif); 15881 else 15882 ire = ipif_to_ire(ipif); 15883 if (ire != NULL) { 15884 ire->ire_max_frag = ipif->ipif_mtu; 15885 ire_refrele(ire); 15886 } 15887 if (ipif->ipif_flags & IPIF_UP) { 15888 if (ill->ill_isv6) 15889 need_ire_walk_v6 = B_TRUE; 15890 else 15891 need_ire_walk_v4 = B_TRUE; 15892 } 15893 } 15894 mutex_exit(&ill->ill_lock); 15895 if (need_ire_walk_v4) 15896 ire_walk_v4(ill_mtu_change, (char *)ill, 15897 ALL_ZONES); 15898 if (need_ire_walk_v6) 15899 ire_walk_v6(ill_mtu_change, (char *)ill, 15900 ALL_ZONES); 15901 break; 15902 case DL_NOTE_LINK_UP: 15903 case DL_NOTE_LINK_DOWN: { 15904 /* 15905 * We are writer. ill / phyint / ipsq assocs stable. 15906 * The RUNNING flag reflects the state of the link. 15907 */ 15908 phyint_t *phyint = ill->ill_phyint; 15909 uint64_t new_phyint_flags; 15910 boolean_t changed = B_FALSE; 15911 boolean_t went_up; 15912 15913 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 15914 mutex_enter(&phyint->phyint_lock); 15915 new_phyint_flags = went_up ? 15916 phyint->phyint_flags | PHYI_RUNNING : 15917 phyint->phyint_flags & ~PHYI_RUNNING; 15918 if (new_phyint_flags != phyint->phyint_flags) { 15919 phyint->phyint_flags = new_phyint_flags; 15920 changed = B_TRUE; 15921 } 15922 mutex_exit(&phyint->phyint_lock); 15923 /* 15924 * ill_restart_dad handles the DAD restart and routing 15925 * socket notification logic. 15926 */ 15927 if (changed) { 15928 ill_restart_dad(phyint->phyint_illv4, went_up); 15929 ill_restart_dad(phyint->phyint_illv6, went_up); 15930 } 15931 break; 15932 } 15933 case DL_NOTE_PROMISC_ON_PHYS: 15934 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15935 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 15936 mutex_enter(&ill->ill_lock); 15937 ill->ill_promisc_on_phys = B_TRUE; 15938 mutex_exit(&ill->ill_lock); 15939 break; 15940 case DL_NOTE_PROMISC_OFF_PHYS: 15941 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15942 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 15943 mutex_enter(&ill->ill_lock); 15944 ill->ill_promisc_on_phys = B_FALSE; 15945 mutex_exit(&ill->ill_lock); 15946 break; 15947 case DL_NOTE_CAPAB_RENEG: 15948 /* 15949 * Something changed on the driver side. 15950 * It wants us to renegotiate the capabilities 15951 * on this ill. The most likely cause is the 15952 * aggregation interface under us where a 15953 * port got added or went away. 15954 * 15955 * We reset the capabilities and set the 15956 * state to IDS_RENG so that when the ack 15957 * comes back, we can start the 15958 * renegotiation process. 15959 */ 15960 ill_capability_reset(ill); 15961 ill->ill_dlpi_capab_state = IDS_RENEG; 15962 break; 15963 default: 15964 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 15965 "type 0x%x for DL_NOTIFY_IND\n", 15966 notify->dl_notification)); 15967 break; 15968 } 15969 15970 /* 15971 * As this is an asynchronous operation, we 15972 * should not call ill_dlpi_done 15973 */ 15974 break; 15975 } 15976 case DL_NOTIFY_ACK: { 15977 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 15978 15979 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 15980 ill->ill_note_link = 1; 15981 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15982 break; 15983 } 15984 case DL_PHYS_ADDR_ACK: { 15985 /* 15986 * As part of plumbing the interface via SIOCSLIFNAME, 15987 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 15988 * whose answers we receive here. As each answer is received, 15989 * we call ill_dlpi_done() to dispatch the next request as 15990 * we're processing the current one. Once all answers have 15991 * been received, we use ipsq_pending_mp_get() to dequeue the 15992 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 15993 * is invoked from an ill queue, conn_oper_pending_ill is not 15994 * available, but we know the ioctl is pending on ill_wq.) 15995 */ 15996 uint_t paddrlen, paddroff; 15997 15998 paddrreq = ill->ill_phys_addr_pend; 15999 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16000 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16001 16002 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16003 if (paddrreq == DL_IPV6_TOKEN) { 16004 /* 16005 * bcopy to low-order bits of ill_token 16006 * 16007 * XXX Temporary hack - currently, all known tokens 16008 * are 64 bits, so I'll cheat for the moment. 16009 */ 16010 bcopy(mp->b_rptr + paddroff, 16011 &ill->ill_token.s6_addr32[2], paddrlen); 16012 ill->ill_token_length = paddrlen; 16013 break; 16014 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16015 ASSERT(ill->ill_nd_lla_mp == NULL); 16016 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16017 mp = NULL; 16018 break; 16019 } 16020 16021 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16022 ASSERT(ill->ill_phys_addr_mp == NULL); 16023 if (!ill->ill_ifname_pending) 16024 break; 16025 ill->ill_ifname_pending = 0; 16026 if (!ioctl_aborted) 16027 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16028 if (mp1 != NULL) { 16029 ASSERT(connp == NULL); 16030 q = ill->ill_wq; 16031 } 16032 /* 16033 * If any error acks received during the plumbing sequence, 16034 * ill_ifname_pending_err will be set. Break out and send up 16035 * the error to the pending ioctl. 16036 */ 16037 if (ill->ill_ifname_pending_err != 0) { 16038 err = ill->ill_ifname_pending_err; 16039 ill->ill_ifname_pending_err = 0; 16040 break; 16041 } 16042 16043 ill->ill_phys_addr_mp = mp; 16044 ill->ill_phys_addr = mp->b_rptr + paddroff; 16045 mp = NULL; 16046 16047 /* 16048 * If paddrlen is zero, the DLPI provider doesn't support 16049 * physical addresses. The other two tests were historical 16050 * workarounds for bugs in our former PPP implementation, but 16051 * now other things have grown dependencies on them -- e.g., 16052 * the tun module specifies a dl_addr_length of zero in its 16053 * DL_BIND_ACK, but then specifies an incorrect value in its 16054 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16055 * but only after careful testing ensures that all dependent 16056 * broken DLPI providers have been fixed. 16057 */ 16058 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16059 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16060 ill->ill_phys_addr = NULL; 16061 } else if (paddrlen != ill->ill_phys_addr_length) { 16062 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16063 paddrlen, ill->ill_phys_addr_length)); 16064 err = EINVAL; 16065 break; 16066 } 16067 16068 if (ill->ill_nd_lla_mp == NULL) { 16069 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16070 err = ENOMEM; 16071 break; 16072 } 16073 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16074 } 16075 16076 /* 16077 * Set the interface token. If the zeroth interface address 16078 * is unspecified, then set it to the link local address. 16079 */ 16080 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16081 (void) ill_setdefaulttoken(ill); 16082 16083 ASSERT(ill->ill_ipif->ipif_id == 0); 16084 if (ipif != NULL && 16085 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 16086 (void) ipif_setlinklocal(ipif); 16087 break; 16088 } 16089 case DL_OK_ACK: 16090 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16091 dlpi_prim_str((int)dloa->dl_correct_primitive), 16092 dloa->dl_correct_primitive)); 16093 switch (dloa->dl_correct_primitive) { 16094 case DL_UNBIND_REQ: 16095 case DL_ATTACH_REQ: 16096 case DL_DETACH_REQ: 16097 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16098 break; 16099 } 16100 break; 16101 default: 16102 break; 16103 } 16104 16105 freemsg(mp); 16106 if (mp1 != NULL) { 16107 /* 16108 * The operation must complete without EINPROGRESS 16109 * since ipsq_pending_mp_get() has removed the mblk 16110 * from ipsq_pending_mp. Otherwise, the operation 16111 * will be stuck forever in the ipsq. 16112 */ 16113 ASSERT(err != EINPROGRESS); 16114 16115 switch (ipsq->ipsq_current_ioctl) { 16116 case 0: 16117 ipsq_current_finish(ipsq); 16118 break; 16119 16120 case SIOCLIFADDIF: 16121 case SIOCSLIFNAME: 16122 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16123 break; 16124 16125 default: 16126 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16127 break; 16128 } 16129 } 16130 } 16131 16132 /* 16133 * ip_rput_other is called by ip_rput to handle messages modifying the global 16134 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16135 */ 16136 /* ARGSUSED */ 16137 void 16138 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16139 { 16140 ill_t *ill; 16141 struct iocblk *iocp; 16142 mblk_t *mp1; 16143 conn_t *connp = NULL; 16144 16145 ip1dbg(("ip_rput_other ")); 16146 ill = (ill_t *)q->q_ptr; 16147 /* 16148 * This routine is not a writer in the case of SIOCGTUNPARAM 16149 * in which case ipsq is NULL. 16150 */ 16151 if (ipsq != NULL) { 16152 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16153 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16154 } 16155 16156 switch (mp->b_datap->db_type) { 16157 case M_ERROR: 16158 case M_HANGUP: 16159 /* 16160 * The device has a problem. We force the ILL down. It can 16161 * be brought up again manually using SIOCSIFFLAGS (via 16162 * ifconfig or equivalent). 16163 */ 16164 ASSERT(ipsq != NULL); 16165 if (mp->b_rptr < mp->b_wptr) 16166 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16167 if (ill->ill_error == 0) 16168 ill->ill_error = ENXIO; 16169 if (!ill_down_start(q, mp)) 16170 return; 16171 ipif_all_down_tail(ipsq, q, mp, NULL); 16172 break; 16173 case M_IOCACK: 16174 iocp = (struct iocblk *)mp->b_rptr; 16175 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16176 switch (iocp->ioc_cmd) { 16177 case SIOCSTUNPARAM: 16178 case OSIOCSTUNPARAM: 16179 ASSERT(ipsq != NULL); 16180 /* 16181 * Finish socket ioctl passed through to tun. 16182 * We should have an IOCTL waiting on this. 16183 */ 16184 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16185 if (ill->ill_isv6) { 16186 struct iftun_req *ta; 16187 16188 /* 16189 * if a source or destination is 16190 * being set, try and set the link 16191 * local address for the tunnel 16192 */ 16193 ta = (struct iftun_req *)mp->b_cont-> 16194 b_cont->b_rptr; 16195 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16196 ipif_set_tun_llink(ill, ta); 16197 } 16198 } 16199 if (mp1 != NULL) { 16200 /* 16201 * Now copy back the b_next/b_prev used by 16202 * mi code for the mi_copy* functions. 16203 * See ip_sioctl_tunparam() for the reason. 16204 * Also protect against missing b_cont. 16205 */ 16206 if (mp->b_cont != NULL) { 16207 mp->b_cont->b_next = 16208 mp1->b_cont->b_next; 16209 mp->b_cont->b_prev = 16210 mp1->b_cont->b_prev; 16211 } 16212 inet_freemsg(mp1); 16213 ASSERT(connp != NULL); 16214 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16215 iocp->ioc_error, NO_COPYOUT, ipsq); 16216 } else { 16217 ASSERT(connp == NULL); 16218 putnext(q, mp); 16219 } 16220 break; 16221 case SIOCGTUNPARAM: 16222 case OSIOCGTUNPARAM: 16223 /* 16224 * This is really M_IOCDATA from the tunnel driver. 16225 * convert back and complete the ioctl. 16226 * We should have an IOCTL waiting on this. 16227 */ 16228 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16229 if (mp1) { 16230 /* 16231 * Now copy back the b_next/b_prev used by 16232 * mi code for the mi_copy* functions. 16233 * See ip_sioctl_tunparam() for the reason. 16234 * Also protect against missing b_cont. 16235 */ 16236 if (mp->b_cont != NULL) { 16237 mp->b_cont->b_next = 16238 mp1->b_cont->b_next; 16239 mp->b_cont->b_prev = 16240 mp1->b_cont->b_prev; 16241 } 16242 inet_freemsg(mp1); 16243 if (iocp->ioc_error == 0) 16244 mp->b_datap->db_type = M_IOCDATA; 16245 ASSERT(connp != NULL); 16246 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16247 iocp->ioc_error, COPYOUT, NULL); 16248 } else { 16249 ASSERT(connp == NULL); 16250 putnext(q, mp); 16251 } 16252 break; 16253 default: 16254 break; 16255 } 16256 break; 16257 case M_IOCNAK: 16258 iocp = (struct iocblk *)mp->b_rptr; 16259 16260 switch (iocp->ioc_cmd) { 16261 int mode; 16262 16263 case DL_IOC_HDR_INFO: 16264 /* 16265 * If this was the first attempt turn of the 16266 * fastpath probing. 16267 */ 16268 mutex_enter(&ill->ill_lock); 16269 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16270 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16271 mutex_exit(&ill->ill_lock); 16272 ill_fastpath_nack(ill); 16273 ip1dbg(("ip_rput: DLPI fastpath off on " 16274 "interface %s\n", 16275 ill->ill_name)); 16276 } else { 16277 mutex_exit(&ill->ill_lock); 16278 } 16279 freemsg(mp); 16280 break; 16281 case SIOCSTUNPARAM: 16282 case OSIOCSTUNPARAM: 16283 ASSERT(ipsq != NULL); 16284 /* 16285 * Finish socket ioctl passed through to tun 16286 * We should have an IOCTL waiting on this. 16287 */ 16288 /* FALLTHRU */ 16289 case SIOCGTUNPARAM: 16290 case OSIOCGTUNPARAM: 16291 /* 16292 * This is really M_IOCDATA from the tunnel driver. 16293 * convert back and complete the ioctl. 16294 * We should have an IOCTL waiting on this. 16295 */ 16296 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16297 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16298 mp1 = ill_pending_mp_get(ill, &connp, 16299 iocp->ioc_id); 16300 mode = COPYOUT; 16301 ipsq = NULL; 16302 } else { 16303 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16304 mode = NO_COPYOUT; 16305 } 16306 if (mp1 != NULL) { 16307 /* 16308 * Now copy back the b_next/b_prev used by 16309 * mi code for the mi_copy* functions. 16310 * See ip_sioctl_tunparam() for the reason. 16311 * Also protect against missing b_cont. 16312 */ 16313 if (mp->b_cont != NULL) { 16314 mp->b_cont->b_next = 16315 mp1->b_cont->b_next; 16316 mp->b_cont->b_prev = 16317 mp1->b_cont->b_prev; 16318 } 16319 inet_freemsg(mp1); 16320 if (iocp->ioc_error == 0) 16321 iocp->ioc_error = EINVAL; 16322 ASSERT(connp != NULL); 16323 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16324 iocp->ioc_error, mode, ipsq); 16325 } else { 16326 ASSERT(connp == NULL); 16327 putnext(q, mp); 16328 } 16329 break; 16330 default: 16331 break; 16332 } 16333 default: 16334 break; 16335 } 16336 } 16337 16338 /* 16339 * NOTE : This function does not ire_refrele the ire argument passed in. 16340 * 16341 * IPQoS notes 16342 * IP policy is invoked twice for a forwarded packet, once on the read side 16343 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16344 * enabled. An additional parameter, in_ill, has been added for this purpose. 16345 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16346 * because ip_mroute drops this information. 16347 * 16348 */ 16349 void 16350 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16351 { 16352 uint32_t pkt_len; 16353 queue_t *q; 16354 uint32_t sum; 16355 #define rptr ((uchar_t *)ipha) 16356 uint32_t max_frag; 16357 uint32_t ill_index; 16358 ill_t *out_ill; 16359 mib2_ipIfStatsEntry_t *mibptr; 16360 16361 /* Get the ill_index of the incoming ILL */ 16362 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16363 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ip_mib; 16364 16365 /* Initiate Read side IPPF processing */ 16366 if (IPP_ENABLED(IPP_FWD_IN)) { 16367 ip_process(IPP_FWD_IN, &mp, ill_index); 16368 if (mp == NULL) { 16369 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16370 "during IPPF processing\n")); 16371 return; 16372 } 16373 } 16374 16375 pkt_len = ntohs(ipha->ipha_length); 16376 16377 /* Adjust the checksum to reflect the ttl decrement. */ 16378 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16379 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16380 16381 if (ipha->ipha_ttl-- <= 1) { 16382 if (ip_csum_hdr(ipha)) { 16383 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16384 goto drop_pkt; 16385 } 16386 /* 16387 * Note: ire_stq this will be NULL for multicast 16388 * datagrams using the long path through arp (the IRE 16389 * is not an IRE_CACHE). This should not cause 16390 * problems since we don't generate ICMP errors for 16391 * multicast packets. 16392 */ 16393 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16394 q = ire->ire_stq; 16395 if (q != NULL) { 16396 /* Sent by forwarding path, and router is global zone */ 16397 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16398 GLOBAL_ZONEID); 16399 } else 16400 freemsg(mp); 16401 return; 16402 } 16403 16404 /* 16405 * Don't forward if the interface is down 16406 */ 16407 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16408 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16409 ip2dbg(("ip_rput_forward:interface is down\n")); 16410 goto drop_pkt; 16411 } 16412 16413 /* Get the ill_index of the outgoing ILL */ 16414 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 16415 16416 out_ill = ire->ire_ipif->ipif_ill; 16417 16418 DTRACE_PROBE4(ip4__forwarding__start, 16419 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16420 16421 FW_HOOKS(ip4_forwarding_event, ipv4firewall_forwarding, 16422 in_ill, out_ill, ipha, mp, mp); 16423 16424 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16425 16426 if (mp == NULL) 16427 return; 16428 pkt_len = ntohs(ipha->ipha_length); 16429 16430 if (is_system_labeled()) { 16431 mblk_t *mp1; 16432 16433 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16434 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16435 goto drop_pkt; 16436 } 16437 /* Size may have changed */ 16438 mp = mp1; 16439 ipha = (ipha_t *)mp->b_rptr; 16440 pkt_len = ntohs(ipha->ipha_length); 16441 } 16442 16443 /* Check if there are options to update */ 16444 if (!IS_SIMPLE_IPH(ipha)) { 16445 if (ip_csum_hdr(ipha)) { 16446 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16447 goto drop_pkt; 16448 } 16449 if (ip_rput_forward_options(mp, ipha, ire)) { 16450 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16451 return; 16452 } 16453 16454 ipha->ipha_hdr_checksum = 0; 16455 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16456 } 16457 max_frag = ire->ire_max_frag; 16458 if (pkt_len > max_frag) { 16459 /* 16460 * It needs fragging on its way out. We haven't 16461 * verified the header checksum yet. Since we 16462 * are going to put a surely good checksum in the 16463 * outgoing header, we have to make sure that it 16464 * was good coming in. 16465 */ 16466 if (ip_csum_hdr(ipha)) { 16467 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16468 goto drop_pkt; 16469 } 16470 /* Initiate Write side IPPF processing */ 16471 if (IPP_ENABLED(IPP_FWD_OUT)) { 16472 ip_process(IPP_FWD_OUT, &mp, ill_index); 16473 if (mp == NULL) { 16474 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16475 " during IPPF processing\n")); 16476 return; 16477 } 16478 } 16479 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID); 16480 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16481 return; 16482 } 16483 16484 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16485 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16486 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 16487 NULL, out_ill, ipha, mp, mp); 16488 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16489 if (mp == NULL) 16490 return; 16491 16492 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16493 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16494 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16495 /* ip_xmit_v4 always consumes the packet */ 16496 return; 16497 16498 drop_pkt:; 16499 ip1dbg(("ip_rput_forward: drop pkt\n")); 16500 freemsg(mp); 16501 #undef rptr 16502 } 16503 16504 void 16505 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16506 { 16507 ire_t *ire; 16508 16509 ASSERT(!ipif->ipif_isv6); 16510 /* 16511 * Find an IRE which matches the destination and the outgoing 16512 * queue in the cache table. All we need is an IRE_CACHE which 16513 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16514 * then it is enough to have some IRE_CACHE in the group. 16515 */ 16516 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16517 dst = ipif->ipif_pp_dst_addr; 16518 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16519 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR); 16520 if (ire == NULL) { 16521 /* 16522 * Mark this packet to make it be delivered to 16523 * ip_rput_forward after the new ire has been 16524 * created. 16525 */ 16526 mp->b_prev = NULL; 16527 mp->b_next = mp; 16528 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16529 NULL, 0, GLOBAL_ZONEID, &zero_info); 16530 } else { 16531 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16532 IRE_REFRELE(ire); 16533 } 16534 } 16535 16536 /* Update any source route, record route or timestamp options */ 16537 static int 16538 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire) 16539 { 16540 ipoptp_t opts; 16541 uchar_t *opt; 16542 uint8_t optval; 16543 uint8_t optlen; 16544 ipaddr_t dst; 16545 uint32_t ts; 16546 ire_t *dst_ire = NULL; 16547 ire_t *tmp_ire = NULL; 16548 timestruc_t now; 16549 16550 ip2dbg(("ip_rput_forward_options\n")); 16551 dst = ipha->ipha_dst; 16552 for (optval = ipoptp_first(&opts, ipha); 16553 optval != IPOPT_EOL; 16554 optval = ipoptp_next(&opts)) { 16555 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16556 opt = opts.ipoptp_cur; 16557 optlen = opts.ipoptp_len; 16558 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16559 optval, opts.ipoptp_len)); 16560 switch (optval) { 16561 uint32_t off; 16562 case IPOPT_SSRR: 16563 case IPOPT_LSRR: 16564 /* Check if adminstratively disabled */ 16565 if (!ip_forward_src_routed) { 16566 if (ire->ire_stq != NULL) { 16567 /* 16568 * Sent by forwarding path, and router 16569 * is global zone 16570 */ 16571 icmp_unreachable(ire->ire_stq, mp, 16572 ICMP_SOURCE_ROUTE_FAILED, 16573 GLOBAL_ZONEID); 16574 } else { 16575 ip0dbg(("ip_rput_forward_options: " 16576 "unable to send unreach\n")); 16577 freemsg(mp); 16578 } 16579 return (-1); 16580 } 16581 16582 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16583 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 16584 if (dst_ire == NULL) { 16585 /* 16586 * Must be partial since ip_rput_options 16587 * checked for strict. 16588 */ 16589 break; 16590 } 16591 off = opt[IPOPT_OFFSET]; 16592 off--; 16593 redo_srr: 16594 if (optlen < IP_ADDR_LEN || 16595 off > optlen - IP_ADDR_LEN) { 16596 /* End of source route */ 16597 ip1dbg(( 16598 "ip_rput_forward_options: end of SR\n")); 16599 ire_refrele(dst_ire); 16600 break; 16601 } 16602 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16603 bcopy(&ire->ire_src_addr, (char *)opt + off, 16604 IP_ADDR_LEN); 16605 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16606 ntohl(dst))); 16607 16608 /* 16609 * Check if our address is present more than 16610 * once as consecutive hops in source route. 16611 */ 16612 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16613 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 16614 if (tmp_ire != NULL) { 16615 ire_refrele(tmp_ire); 16616 off += IP_ADDR_LEN; 16617 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16618 goto redo_srr; 16619 } 16620 ipha->ipha_dst = dst; 16621 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16622 ire_refrele(dst_ire); 16623 break; 16624 case IPOPT_RR: 16625 off = opt[IPOPT_OFFSET]; 16626 off--; 16627 if (optlen < IP_ADDR_LEN || 16628 off > optlen - IP_ADDR_LEN) { 16629 /* No more room - ignore */ 16630 ip1dbg(( 16631 "ip_rput_forward_options: end of RR\n")); 16632 break; 16633 } 16634 bcopy(&ire->ire_src_addr, (char *)opt + off, 16635 IP_ADDR_LEN); 16636 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16637 break; 16638 case IPOPT_TS: 16639 /* Insert timestamp if there is room */ 16640 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16641 case IPOPT_TS_TSONLY: 16642 off = IPOPT_TS_TIMELEN; 16643 break; 16644 case IPOPT_TS_PRESPEC: 16645 case IPOPT_TS_PRESPEC_RFC791: 16646 /* Verify that the address matched */ 16647 off = opt[IPOPT_OFFSET] - 1; 16648 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16649 dst_ire = ire_ctable_lookup(dst, 0, 16650 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16651 MATCH_IRE_TYPE); 16652 16653 if (dst_ire == NULL) { 16654 /* Not for us */ 16655 break; 16656 } 16657 ire_refrele(dst_ire); 16658 /* FALLTHRU */ 16659 case IPOPT_TS_TSANDADDR: 16660 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16661 break; 16662 default: 16663 /* 16664 * ip_*put_options should have already 16665 * dropped this packet. 16666 */ 16667 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16668 "unknown IT - bug in ip_rput_options?\n"); 16669 return (0); /* Keep "lint" happy */ 16670 } 16671 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16672 /* Increase overflow counter */ 16673 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16674 opt[IPOPT_POS_OV_FLG] = 16675 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16676 (off << 4)); 16677 break; 16678 } 16679 off = opt[IPOPT_OFFSET] - 1; 16680 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16681 case IPOPT_TS_PRESPEC: 16682 case IPOPT_TS_PRESPEC_RFC791: 16683 case IPOPT_TS_TSANDADDR: 16684 bcopy(&ire->ire_src_addr, 16685 (char *)opt + off, IP_ADDR_LEN); 16686 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16687 /* FALLTHRU */ 16688 case IPOPT_TS_TSONLY: 16689 off = opt[IPOPT_OFFSET] - 1; 16690 /* Compute # of milliseconds since midnight */ 16691 gethrestime(&now); 16692 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16693 now.tv_nsec / (NANOSEC / MILLISEC); 16694 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16695 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16696 break; 16697 } 16698 break; 16699 } 16700 } 16701 return (0); 16702 } 16703 16704 /* 16705 * This is called after processing at least one of AH/ESP headers. 16706 * 16707 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16708 * the actual, physical interface on which the packet was received, 16709 * but, when ip_strict_dst_multihoming is set to 1, could be the 16710 * interface which had the ipha_dst configured when the packet went 16711 * through ip_rput. The ill_index corresponding to the recv_ill 16712 * is saved in ipsec_in_rill_index 16713 */ 16714 void 16715 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16716 { 16717 mblk_t *mp; 16718 ipaddr_t dst; 16719 in6_addr_t *v6dstp; 16720 ipha_t *ipha; 16721 ip6_t *ip6h; 16722 ipsec_in_t *ii; 16723 boolean_t ill_need_rele = B_FALSE; 16724 boolean_t rill_need_rele = B_FALSE; 16725 boolean_t ire_need_rele = B_FALSE; 16726 16727 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16728 ASSERT(ii->ipsec_in_ill_index != 0); 16729 16730 mp = ipsec_mp->b_cont; 16731 ASSERT(mp != NULL); 16732 16733 16734 if (ill == NULL) { 16735 ASSERT(recv_ill == NULL); 16736 /* 16737 * We need to get the original queue on which ip_rput_local 16738 * or ip_rput_data_v6 was called. 16739 */ 16740 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16741 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL); 16742 ill_need_rele = B_TRUE; 16743 16744 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16745 recv_ill = ill_lookup_on_ifindex( 16746 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16747 NULL, NULL, NULL, NULL); 16748 rill_need_rele = B_TRUE; 16749 } else { 16750 recv_ill = ill; 16751 } 16752 16753 if ((ill == NULL) || (recv_ill == NULL)) { 16754 ip0dbg(("ip_fanout_proto_again: interface " 16755 "disappeared\n")); 16756 if (ill != NULL) 16757 ill_refrele(ill); 16758 if (recv_ill != NULL) 16759 ill_refrele(recv_ill); 16760 freemsg(ipsec_mp); 16761 return; 16762 } 16763 } 16764 16765 ASSERT(ill != NULL && recv_ill != NULL); 16766 16767 if (mp->b_datap->db_type == M_CTL) { 16768 /* 16769 * AH/ESP is returning the ICMP message after 16770 * removing their headers. Fanout again till 16771 * it gets to the right protocol. 16772 */ 16773 if (ii->ipsec_in_v4) { 16774 icmph_t *icmph; 16775 int iph_hdr_length; 16776 int hdr_length; 16777 16778 ipha = (ipha_t *)mp->b_rptr; 16779 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16780 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16781 ipha = (ipha_t *)&icmph[1]; 16782 hdr_length = IPH_HDR_LENGTH(ipha); 16783 /* 16784 * icmp_inbound_error_fanout may need to do pullupmsg. 16785 * Reset the type to M_DATA. 16786 */ 16787 mp->b_datap->db_type = M_DATA; 16788 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16789 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16790 B_FALSE, ill, ii->ipsec_in_zoneid); 16791 } else { 16792 icmp6_t *icmp6; 16793 int hdr_length; 16794 16795 ip6h = (ip6_t *)mp->b_rptr; 16796 /* Don't call hdr_length_v6() unless you have to. */ 16797 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16798 hdr_length = ip_hdr_length_v6(mp, ip6h); 16799 else 16800 hdr_length = IPV6_HDR_LEN; 16801 16802 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16803 /* 16804 * icmp_inbound_error_fanout_v6 may need to do 16805 * pullupmsg. Reset the type to M_DATA. 16806 */ 16807 mp->b_datap->db_type = M_DATA; 16808 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16809 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16810 } 16811 if (ill_need_rele) 16812 ill_refrele(ill); 16813 if (rill_need_rele) 16814 ill_refrele(recv_ill); 16815 return; 16816 } 16817 16818 if (ii->ipsec_in_v4) { 16819 ipha = (ipha_t *)mp->b_rptr; 16820 dst = ipha->ipha_dst; 16821 if (CLASSD(dst)) { 16822 /* 16823 * Multicast has to be delivered to all streams. 16824 */ 16825 dst = INADDR_BROADCAST; 16826 } 16827 16828 if (ire == NULL) { 16829 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16830 MBLK_GETLABEL(mp)); 16831 if (ire == NULL) { 16832 if (ill_need_rele) 16833 ill_refrele(ill); 16834 if (rill_need_rele) 16835 ill_refrele(recv_ill); 16836 ip1dbg(("ip_fanout_proto_again: " 16837 "IRE not found")); 16838 freemsg(ipsec_mp); 16839 return; 16840 } 16841 ire_need_rele = B_TRUE; 16842 } 16843 16844 switch (ipha->ipha_protocol) { 16845 case IPPROTO_UDP: 16846 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16847 recv_ill); 16848 if (ire_need_rele) 16849 ire_refrele(ire); 16850 break; 16851 case IPPROTO_TCP: 16852 if (!ire_need_rele) 16853 IRE_REFHOLD(ire); 16854 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 16855 ire, ipsec_mp, 0, ill->ill_rq, NULL); 16856 IRE_REFRELE(ire); 16857 if (mp != NULL) 16858 squeue_enter_chain(GET_SQUEUE(mp), mp, 16859 mp, 1, SQTAG_IP_PROTO_AGAIN); 16860 break; 16861 case IPPROTO_SCTP: 16862 if (!ire_need_rele) 16863 IRE_REFHOLD(ire); 16864 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 16865 ipsec_mp, 0, ill->ill_rq, dst); 16866 break; 16867 default: 16868 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 16869 recv_ill); 16870 if (ire_need_rele) 16871 ire_refrele(ire); 16872 break; 16873 } 16874 } else { 16875 uint32_t rput_flags = 0; 16876 16877 ip6h = (ip6_t *)mp->b_rptr; 16878 v6dstp = &ip6h->ip6_dst; 16879 /* 16880 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 16881 * address. 16882 * 16883 * Currently, we don't store that state in the IPSEC_IN 16884 * message, and we may need to. 16885 */ 16886 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 16887 IP6_IN_LLMCAST : 0); 16888 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 16889 NULL, NULL); 16890 } 16891 if (ill_need_rele) 16892 ill_refrele(ill); 16893 if (rill_need_rele) 16894 ill_refrele(recv_ill); 16895 } 16896 16897 /* 16898 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 16899 * returns 'true' if there are still fragments left on the queue, in 16900 * which case we restart the timer. 16901 */ 16902 void 16903 ill_frag_timer(void *arg) 16904 { 16905 ill_t *ill = (ill_t *)arg; 16906 boolean_t frag_pending; 16907 16908 mutex_enter(&ill->ill_lock); 16909 ASSERT(!ill->ill_fragtimer_executing); 16910 if (ill->ill_state_flags & ILL_CONDEMNED) { 16911 ill->ill_frag_timer_id = 0; 16912 mutex_exit(&ill->ill_lock); 16913 return; 16914 } 16915 ill->ill_fragtimer_executing = 1; 16916 mutex_exit(&ill->ill_lock); 16917 16918 frag_pending = ill_frag_timeout(ill, ip_g_frag_timeout); 16919 16920 /* 16921 * Restart the timer, if we have fragments pending or if someone 16922 * wanted us to be scheduled again. 16923 */ 16924 mutex_enter(&ill->ill_lock); 16925 ill->ill_fragtimer_executing = 0; 16926 ill->ill_frag_timer_id = 0; 16927 if (frag_pending || ill->ill_fragtimer_needrestart) 16928 ill_frag_timer_start(ill); 16929 mutex_exit(&ill->ill_lock); 16930 } 16931 16932 void 16933 ill_frag_timer_start(ill_t *ill) 16934 { 16935 ASSERT(MUTEX_HELD(&ill->ill_lock)); 16936 16937 /* If the ill is closing or opening don't proceed */ 16938 if (ill->ill_state_flags & ILL_CONDEMNED) 16939 return; 16940 16941 if (ill->ill_fragtimer_executing) { 16942 /* 16943 * ill_frag_timer is currently executing. Just record the 16944 * the fact that we want the timer to be restarted. 16945 * ill_frag_timer will post a timeout before it returns, 16946 * ensuring it will be called again. 16947 */ 16948 ill->ill_fragtimer_needrestart = 1; 16949 return; 16950 } 16951 16952 if (ill->ill_frag_timer_id == 0) { 16953 /* 16954 * The timer is neither running nor is the timeout handler 16955 * executing. Post a timeout so that ill_frag_timer will be 16956 * called 16957 */ 16958 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 16959 MSEC_TO_TICK(ip_g_frag_timo_ms >> 1)); 16960 ill->ill_fragtimer_needrestart = 0; 16961 } 16962 } 16963 16964 /* 16965 * This routine is needed for loopback when forwarding multicasts. 16966 * 16967 * IPQoS Notes: 16968 * IPPF processing is done in fanout routines. 16969 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 16970 * processing for IPSec packets is done when it comes back in clear. 16971 * NOTE : The callers of this function need to do the ire_refrele for the 16972 * ire that is being passed in. 16973 */ 16974 void 16975 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 16976 ill_t *recv_ill) 16977 { 16978 ill_t *ill = (ill_t *)q->q_ptr; 16979 uint32_t sum; 16980 uint32_t u1; 16981 uint32_t u2; 16982 int hdr_length; 16983 boolean_t mctl_present; 16984 mblk_t *first_mp = mp; 16985 mblk_t *hada_mp = NULL; 16986 ipha_t *inner_ipha; 16987 16988 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 16989 "ip_rput_locl_start: q %p", q); 16990 16991 ASSERT(ire->ire_ipversion == IPV4_VERSION); 16992 ASSERT(ill != NULL); 16993 16994 16995 #define rptr ((uchar_t *)ipha) 16996 #define iphs ((uint16_t *)ipha) 16997 16998 /* 16999 * no UDP or TCP packet should come here anymore. 17000 */ 17001 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 17002 (ipha->ipha_protocol != IPPROTO_UDP)); 17003 17004 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17005 if (mctl_present && 17006 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17007 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17008 17009 /* 17010 * It's an IPsec accelerated packet. 17011 * Keep a pointer to the data attributes around until 17012 * we allocate the ipsec_info_t. 17013 */ 17014 IPSECHW_DEBUG(IPSECHW_PKT, 17015 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17016 hada_mp = first_mp; 17017 hada_mp->b_cont = NULL; 17018 /* 17019 * Since it is accelerated, it comes directly from 17020 * the ill and the data attributes is followed by 17021 * the packet data. 17022 */ 17023 ASSERT(mp->b_datap->db_type != M_CTL); 17024 first_mp = mp; 17025 mctl_present = B_FALSE; 17026 } 17027 17028 /* 17029 * IF M_CTL is not present, then ipsec_in_is_secure 17030 * should return B_TRUE. There is a case where loopback 17031 * packets has an M_CTL in the front with all the 17032 * IPSEC options set to IPSEC_PREF_NEVER - which means 17033 * ipsec_in_is_secure will return B_FALSE. As loopback 17034 * packets never comes here, it is safe to ASSERT the 17035 * following. 17036 */ 17037 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17038 17039 17040 /* u1 is # words of IP options */ 17041 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 17042 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17043 17044 if (u1) { 17045 if (!ip_options_cksum(q, ill, mp, ipha, ire)) { 17046 if (hada_mp != NULL) 17047 freemsg(hada_mp); 17048 return; 17049 } 17050 } else { 17051 /* Check the IP header checksum. */ 17052 #define uph ((uint16_t *)ipha) 17053 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 17054 uph[6] + uph[7] + uph[8] + uph[9]; 17055 #undef uph 17056 /* finish doing IP checksum */ 17057 sum = (sum & 0xFFFF) + (sum >> 16); 17058 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17059 /* 17060 * Don't verify header checksum if this packet is coming 17061 * back from AH/ESP as we already did it. 17062 */ 17063 if (!mctl_present && (sum && sum != 0xFFFF)) { 17064 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17065 goto drop_pkt; 17066 } 17067 } 17068 17069 /* 17070 * Count for SNMP of inbound packets for ire. As ip_proto_input 17071 * might be called more than once for secure packets, count only 17072 * the first time. 17073 */ 17074 if (!mctl_present) { 17075 UPDATE_IB_PKT_COUNT(ire); 17076 ire->ire_last_used_time = lbolt; 17077 } 17078 17079 /* Check for fragmentation offset. */ 17080 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17081 u1 = u2 & (IPH_MF | IPH_OFFSET); 17082 if (u1) { 17083 /* 17084 * We re-assemble fragments before we do the AH/ESP 17085 * processing. Thus, M_CTL should not be present 17086 * while we are re-assembling. 17087 */ 17088 ASSERT(!mctl_present); 17089 ASSERT(first_mp == mp); 17090 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17091 return; 17092 } 17093 /* 17094 * Make sure that first_mp points back to mp as 17095 * the mp we came in with could have changed in 17096 * ip_rput_fragment(). 17097 */ 17098 ipha = (ipha_t *)mp->b_rptr; 17099 first_mp = mp; 17100 } 17101 17102 /* 17103 * Clear hardware checksumming flag as it is currently only 17104 * used by TCP and UDP. 17105 */ 17106 DB_CKSUMFLAGS(mp) = 0; 17107 17108 /* Now we have a complete datagram, destined for this machine. */ 17109 u1 = IPH_HDR_LENGTH(ipha); 17110 switch (ipha->ipha_protocol) { 17111 case IPPROTO_ICMP: { 17112 ire_t *ire_zone; 17113 ilm_t *ilm; 17114 mblk_t *mp1; 17115 zoneid_t last_zoneid; 17116 17117 if (CLASSD(ipha->ipha_dst) && 17118 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 17119 ASSERT(ire->ire_type == IRE_BROADCAST); 17120 /* 17121 * In the multicast case, applications may have joined 17122 * the group from different zones, so we need to deliver 17123 * the packet to each of them. Loop through the 17124 * multicast memberships structures (ilm) on the receive 17125 * ill and send a copy of the packet up each matching 17126 * one. However, we don't do this for multicasts sent on 17127 * the loopback interface (PHYI_LOOPBACK flag set) as 17128 * they must stay in the sender's zone. 17129 * 17130 * ilm_add_v6() ensures that ilms in the same zone are 17131 * contiguous in the ill_ilm list. We use this property 17132 * to avoid sending duplicates needed when two 17133 * applications in the same zone join the same group on 17134 * different logical interfaces: we ignore the ilm if 17135 * its zoneid is the same as the last matching one. 17136 * In addition, the sending of the packet for 17137 * ire_zoneid is delayed until all of the other ilms 17138 * have been exhausted. 17139 */ 17140 last_zoneid = -1; 17141 ILM_WALKER_HOLD(recv_ill); 17142 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17143 ilm = ilm->ilm_next) { 17144 if ((ilm->ilm_flags & ILM_DELETED) || 17145 ipha->ipha_dst != ilm->ilm_addr || 17146 ilm->ilm_zoneid == last_zoneid || 17147 ilm->ilm_zoneid == ire->ire_zoneid || 17148 ilm->ilm_zoneid == ALL_ZONES || 17149 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17150 continue; 17151 mp1 = ip_copymsg(first_mp); 17152 if (mp1 == NULL) 17153 continue; 17154 icmp_inbound(q, mp1, B_TRUE, ill, 17155 0, sum, mctl_present, B_TRUE, 17156 recv_ill, ilm->ilm_zoneid); 17157 last_zoneid = ilm->ilm_zoneid; 17158 } 17159 ILM_WALKER_RELE(recv_ill); 17160 } else if (ire->ire_type == IRE_BROADCAST) { 17161 /* 17162 * In the broadcast case, there may be many zones 17163 * which need a copy of the packet delivered to them. 17164 * There is one IRE_BROADCAST per broadcast address 17165 * and per zone; we walk those using a helper function. 17166 * In addition, the sending of the packet for ire is 17167 * delayed until all of the other ires have been 17168 * processed. 17169 */ 17170 IRB_REFHOLD(ire->ire_bucket); 17171 ire_zone = NULL; 17172 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17173 ire)) != NULL) { 17174 mp1 = ip_copymsg(first_mp); 17175 if (mp1 == NULL) 17176 continue; 17177 17178 UPDATE_IB_PKT_COUNT(ire_zone); 17179 ire_zone->ire_last_used_time = lbolt; 17180 icmp_inbound(q, mp1, B_TRUE, ill, 17181 0, sum, mctl_present, B_TRUE, 17182 recv_ill, ire_zone->ire_zoneid); 17183 } 17184 IRB_REFRELE(ire->ire_bucket); 17185 } 17186 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17187 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17188 ire->ire_zoneid); 17189 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17190 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17191 return; 17192 } 17193 case IPPROTO_IGMP: 17194 /* 17195 * If we are not willing to accept IGMP packets in clear, 17196 * then check with global policy. 17197 */ 17198 if (igmp_accept_clear_messages == 0) { 17199 first_mp = ipsec_check_global_policy(first_mp, NULL, 17200 ipha, NULL, mctl_present); 17201 if (first_mp == NULL) 17202 return; 17203 } 17204 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17205 freemsg(first_mp); 17206 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17207 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17208 return; 17209 } 17210 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17211 /* Bad packet - discarded by igmp_input */ 17212 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17213 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17214 if (mctl_present) 17215 freeb(first_mp); 17216 return; 17217 } 17218 /* 17219 * igmp_input() may have returned the pulled up message. 17220 * So first_mp and ipha need to be reinitialized. 17221 */ 17222 ipha = (ipha_t *)mp->b_rptr; 17223 if (mctl_present) 17224 first_mp->b_cont = mp; 17225 else 17226 first_mp = mp; 17227 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 17228 /* No user-level listener for IGMP packets */ 17229 goto drop_pkt; 17230 } 17231 /* deliver to local raw users */ 17232 break; 17233 case IPPROTO_PIM: 17234 /* 17235 * If we are not willing to accept PIM packets in clear, 17236 * then check with global policy. 17237 */ 17238 if (pim_accept_clear_messages == 0) { 17239 first_mp = ipsec_check_global_policy(first_mp, NULL, 17240 ipha, NULL, mctl_present); 17241 if (first_mp == NULL) 17242 return; 17243 } 17244 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17245 freemsg(first_mp); 17246 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17247 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17248 return; 17249 } 17250 if (pim_input(q, mp) != 0) { 17251 /* Bad packet - discarded by pim_input */ 17252 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17253 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17254 if (mctl_present) 17255 freeb(first_mp); 17256 return; 17257 } 17258 17259 /* 17260 * pim_input() may have pulled up the message so ipha needs to 17261 * be reinitialized. 17262 */ 17263 ipha = (ipha_t *)mp->b_rptr; 17264 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 17265 /* No user-level listener for PIM packets */ 17266 goto drop_pkt; 17267 } 17268 /* deliver to local raw users */ 17269 break; 17270 case IPPROTO_ENCAP: 17271 /* 17272 * Handle self-encapsulated packets (IP-in-IP where 17273 * the inner addresses == the outer addresses). 17274 */ 17275 hdr_length = IPH_HDR_LENGTH(ipha); 17276 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17277 mp->b_wptr) { 17278 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17279 sizeof (ipha_t) - mp->b_rptr)) { 17280 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17281 freemsg(first_mp); 17282 return; 17283 } 17284 ipha = (ipha_t *)mp->b_rptr; 17285 } 17286 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17287 /* 17288 * Check the sanity of the inner IP header. 17289 */ 17290 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17291 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17292 freemsg(first_mp); 17293 return; 17294 } 17295 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17296 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17297 freemsg(first_mp); 17298 return; 17299 } 17300 if (inner_ipha->ipha_src == ipha->ipha_src && 17301 inner_ipha->ipha_dst == ipha->ipha_dst) { 17302 ipsec_in_t *ii; 17303 17304 /* 17305 * Self-encapsulated tunnel packet. Remove 17306 * the outer IP header and fanout again. 17307 * We also need to make sure that the inner 17308 * header is pulled up until options. 17309 */ 17310 mp->b_rptr = (uchar_t *)inner_ipha; 17311 ipha = inner_ipha; 17312 hdr_length = IPH_HDR_LENGTH(ipha); 17313 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17314 if (!pullupmsg(mp, (uchar_t *)ipha + 17315 + hdr_length - mp->b_rptr)) { 17316 freemsg(first_mp); 17317 return; 17318 } 17319 ipha = (ipha_t *)mp->b_rptr; 17320 } 17321 if (!mctl_present) { 17322 ASSERT(first_mp == mp); 17323 /* 17324 * This means that somebody is sending 17325 * Self-encapsualted packets without AH/ESP. 17326 * If AH/ESP was present, we would have already 17327 * allocated the first_mp. 17328 */ 17329 if ((first_mp = ipsec_in_alloc(B_TRUE)) == 17330 NULL) { 17331 ip1dbg(("ip_proto_input: IPSEC_IN " 17332 "allocation failure.\n")); 17333 BUMP_MIB(ill->ill_ip_mib, 17334 ipIfStatsInDiscards); 17335 freemsg(mp); 17336 return; 17337 } 17338 first_mp->b_cont = mp; 17339 } 17340 /* 17341 * We generally store the ill_index if we need to 17342 * do IPSEC processing as we lose the ill queue when 17343 * we come back. But in this case, we never should 17344 * have to store the ill_index here as it should have 17345 * been stored previously when we processed the 17346 * AH/ESP header in this routine or for non-ipsec 17347 * cases, we still have the queue. But for some bad 17348 * packets from the wire, we can get to IPSEC after 17349 * this and we better store the index for that case. 17350 */ 17351 ill = (ill_t *)q->q_ptr; 17352 ii = (ipsec_in_t *)first_mp->b_rptr; 17353 ii->ipsec_in_ill_index = 17354 ill->ill_phyint->phyint_ifindex; 17355 ii->ipsec_in_rill_index = 17356 recv_ill->ill_phyint->phyint_ifindex; 17357 if (ii->ipsec_in_decaps) { 17358 /* 17359 * This packet is self-encapsulated multiple 17360 * times. We don't want to recurse infinitely. 17361 * To keep it simple, drop the packet. 17362 */ 17363 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17364 freemsg(first_mp); 17365 return; 17366 } 17367 ii->ipsec_in_decaps = B_TRUE; 17368 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17369 ire); 17370 return; 17371 } 17372 break; 17373 case IPPROTO_AH: 17374 case IPPROTO_ESP: { 17375 /* 17376 * Fast path for AH/ESP. If this is the first time 17377 * we are sending a datagram to AH/ESP, allocate 17378 * a IPSEC_IN message and prepend it. Otherwise, 17379 * just fanout. 17380 */ 17381 17382 int ipsec_rc; 17383 ipsec_in_t *ii; 17384 17385 IP_STAT(ipsec_proto_ahesp); 17386 if (!mctl_present) { 17387 ASSERT(first_mp == mp); 17388 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 17389 ip1dbg(("ip_proto_input: IPSEC_IN " 17390 "allocation failure.\n")); 17391 freemsg(hada_mp); /* okay ifnull */ 17392 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17393 freemsg(mp); 17394 return; 17395 } 17396 /* 17397 * Store the ill_index so that when we come back 17398 * from IPSEC we ride on the same queue. 17399 */ 17400 ill = (ill_t *)q->q_ptr; 17401 ii = (ipsec_in_t *)first_mp->b_rptr; 17402 ii->ipsec_in_ill_index = 17403 ill->ill_phyint->phyint_ifindex; 17404 ii->ipsec_in_rill_index = 17405 recv_ill->ill_phyint->phyint_ifindex; 17406 first_mp->b_cont = mp; 17407 /* 17408 * Cache hardware acceleration info. 17409 */ 17410 if (hada_mp != NULL) { 17411 IPSECHW_DEBUG(IPSECHW_PKT, 17412 ("ip_rput_local: caching data attr.\n")); 17413 ii->ipsec_in_accelerated = B_TRUE; 17414 ii->ipsec_in_da = hada_mp; 17415 hada_mp = NULL; 17416 } 17417 } else { 17418 ii = (ipsec_in_t *)first_mp->b_rptr; 17419 } 17420 17421 if (!ipsec_loaded()) { 17422 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17423 ire->ire_zoneid); 17424 return; 17425 } 17426 17427 /* select inbound SA and have IPsec process the pkt */ 17428 if (ipha->ipha_protocol == IPPROTO_ESP) { 17429 esph_t *esph = ipsec_inbound_esp_sa(first_mp); 17430 if (esph == NULL) 17431 return; 17432 ASSERT(ii->ipsec_in_esp_sa != NULL); 17433 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17434 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17435 first_mp, esph); 17436 } else { 17437 ah_t *ah = ipsec_inbound_ah_sa(first_mp); 17438 if (ah == NULL) 17439 return; 17440 ASSERT(ii->ipsec_in_ah_sa != NULL); 17441 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17442 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17443 first_mp, ah); 17444 } 17445 17446 switch (ipsec_rc) { 17447 case IPSEC_STATUS_SUCCESS: 17448 break; 17449 case IPSEC_STATUS_FAILED: 17450 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17451 /* FALLTHRU */ 17452 case IPSEC_STATUS_PENDING: 17453 return; 17454 } 17455 /* we're done with IPsec processing, send it up */ 17456 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17457 return; 17458 } 17459 default: 17460 break; 17461 } 17462 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17463 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17464 ire->ire_zoneid)); 17465 goto drop_pkt; 17466 } 17467 /* 17468 * Handle protocols with which IP is less intimate. There 17469 * can be more than one stream bound to a particular 17470 * protocol. When this is the case, each one gets a copy 17471 * of any incoming packets. 17472 */ 17473 ip_fanout_proto(q, first_mp, ill, ipha, 17474 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17475 B_TRUE, recv_ill, ire->ire_zoneid); 17476 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17477 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17478 return; 17479 17480 drop_pkt: 17481 freemsg(first_mp); 17482 if (hada_mp != NULL) 17483 freeb(hada_mp); 17484 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17485 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17486 #undef rptr 17487 #undef iphs 17488 17489 } 17490 17491 /* 17492 * Update any source route, record route or timestamp options. 17493 * Check that we are at end of strict source route. 17494 * The options have already been checked for sanity in ip_rput_options(). 17495 */ 17496 static boolean_t 17497 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 17498 { 17499 ipoptp_t opts; 17500 uchar_t *opt; 17501 uint8_t optval; 17502 uint8_t optlen; 17503 ipaddr_t dst; 17504 uint32_t ts; 17505 ire_t *dst_ire; 17506 timestruc_t now; 17507 zoneid_t zoneid; 17508 ill_t *ill; 17509 17510 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17511 17512 ip2dbg(("ip_rput_local_options\n")); 17513 17514 for (optval = ipoptp_first(&opts, ipha); 17515 optval != IPOPT_EOL; 17516 optval = ipoptp_next(&opts)) { 17517 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17518 opt = opts.ipoptp_cur; 17519 optlen = opts.ipoptp_len; 17520 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17521 optval, optlen)); 17522 switch (optval) { 17523 uint32_t off; 17524 case IPOPT_SSRR: 17525 case IPOPT_LSRR: 17526 off = opt[IPOPT_OFFSET]; 17527 off--; 17528 if (optlen < IP_ADDR_LEN || 17529 off > optlen - IP_ADDR_LEN) { 17530 /* End of source route */ 17531 ip1dbg(("ip_rput_local_options: end of SR\n")); 17532 break; 17533 } 17534 /* 17535 * This will only happen if two consecutive entries 17536 * in the source route contains our address or if 17537 * it is a packet with a loose source route which 17538 * reaches us before consuming the whole source route 17539 */ 17540 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17541 if (optval == IPOPT_SSRR) { 17542 goto bad_src_route; 17543 } 17544 /* 17545 * Hack: instead of dropping the packet truncate the 17546 * source route to what has been used by filling the 17547 * rest with IPOPT_NOP. 17548 */ 17549 opt[IPOPT_OLEN] = (uint8_t)off; 17550 while (off < optlen) { 17551 opt[off++] = IPOPT_NOP; 17552 } 17553 break; 17554 case IPOPT_RR: 17555 off = opt[IPOPT_OFFSET]; 17556 off--; 17557 if (optlen < IP_ADDR_LEN || 17558 off > optlen - IP_ADDR_LEN) { 17559 /* No more room - ignore */ 17560 ip1dbg(( 17561 "ip_rput_local_options: end of RR\n")); 17562 break; 17563 } 17564 bcopy(&ire->ire_src_addr, (char *)opt + off, 17565 IP_ADDR_LEN); 17566 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17567 break; 17568 case IPOPT_TS: 17569 /* Insert timestamp if there is romm */ 17570 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17571 case IPOPT_TS_TSONLY: 17572 off = IPOPT_TS_TIMELEN; 17573 break; 17574 case IPOPT_TS_PRESPEC: 17575 case IPOPT_TS_PRESPEC_RFC791: 17576 /* Verify that the address matched */ 17577 off = opt[IPOPT_OFFSET] - 1; 17578 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17579 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17580 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 17581 if (dst_ire == NULL) { 17582 /* Not for us */ 17583 break; 17584 } 17585 ire_refrele(dst_ire); 17586 /* FALLTHRU */ 17587 case IPOPT_TS_TSANDADDR: 17588 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17589 break; 17590 default: 17591 /* 17592 * ip_*put_options should have already 17593 * dropped this packet. 17594 */ 17595 cmn_err(CE_PANIC, "ip_rput_local_options: " 17596 "unknown IT - bug in ip_rput_options?\n"); 17597 return (B_TRUE); /* Keep "lint" happy */ 17598 } 17599 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17600 /* Increase overflow counter */ 17601 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17602 opt[IPOPT_POS_OV_FLG] = 17603 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17604 (off << 4)); 17605 break; 17606 } 17607 off = opt[IPOPT_OFFSET] - 1; 17608 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17609 case IPOPT_TS_PRESPEC: 17610 case IPOPT_TS_PRESPEC_RFC791: 17611 case IPOPT_TS_TSANDADDR: 17612 bcopy(&ire->ire_src_addr, (char *)opt + off, 17613 IP_ADDR_LEN); 17614 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17615 /* FALLTHRU */ 17616 case IPOPT_TS_TSONLY: 17617 off = opt[IPOPT_OFFSET] - 1; 17618 /* Compute # of milliseconds since midnight */ 17619 gethrestime(&now); 17620 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17621 now.tv_nsec / (NANOSEC / MILLISEC); 17622 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17623 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17624 break; 17625 } 17626 break; 17627 } 17628 } 17629 return (B_TRUE); 17630 17631 bad_src_route: 17632 q = WR(q); 17633 if (q->q_next != NULL) 17634 ill = q->q_ptr; 17635 else 17636 ill = NULL; 17637 17638 /* make sure we clear any indication of a hardware checksum */ 17639 DB_CKSUMFLAGS(mp) = 0; 17640 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill); 17641 if (zoneid == ALL_ZONES) 17642 freemsg(mp); 17643 else 17644 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 17645 return (B_FALSE); 17646 17647 } 17648 17649 /* 17650 * Process IP options in an inbound packet. If an option affects the 17651 * effective destination address, return the next hop address via dstp. 17652 * Returns -1 if something fails in which case an ICMP error has been sent 17653 * and mp freed. 17654 */ 17655 static int 17656 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp) 17657 { 17658 ipoptp_t opts; 17659 uchar_t *opt; 17660 uint8_t optval; 17661 uint8_t optlen; 17662 ipaddr_t dst; 17663 intptr_t code = 0; 17664 ire_t *ire = NULL; 17665 zoneid_t zoneid; 17666 ill_t *ill; 17667 17668 ip2dbg(("ip_rput_options\n")); 17669 dst = ipha->ipha_dst; 17670 for (optval = ipoptp_first(&opts, ipha); 17671 optval != IPOPT_EOL; 17672 optval = ipoptp_next(&opts)) { 17673 opt = opts.ipoptp_cur; 17674 optlen = opts.ipoptp_len; 17675 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17676 optval, optlen)); 17677 /* 17678 * Note: we need to verify the checksum before we 17679 * modify anything thus this routine only extracts the next 17680 * hop dst from any source route. 17681 */ 17682 switch (optval) { 17683 uint32_t off; 17684 case IPOPT_SSRR: 17685 case IPOPT_LSRR: 17686 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17687 ALL_ZONES, NULL, MATCH_IRE_TYPE); 17688 if (ire == NULL) { 17689 if (optval == IPOPT_SSRR) { 17690 ip1dbg(("ip_rput_options: not next" 17691 " strict source route 0x%x\n", 17692 ntohl(dst))); 17693 code = (char *)&ipha->ipha_dst - 17694 (char *)ipha; 17695 goto param_prob; /* RouterReq's */ 17696 } 17697 ip2dbg(("ip_rput_options: " 17698 "not next source route 0x%x\n", 17699 ntohl(dst))); 17700 break; 17701 } 17702 ire_refrele(ire); 17703 17704 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17705 ip1dbg(( 17706 "ip_rput_options: bad option offset\n")); 17707 code = (char *)&opt[IPOPT_OLEN] - 17708 (char *)ipha; 17709 goto param_prob; 17710 } 17711 off = opt[IPOPT_OFFSET]; 17712 off--; 17713 redo_srr: 17714 if (optlen < IP_ADDR_LEN || 17715 off > optlen - IP_ADDR_LEN) { 17716 /* End of source route */ 17717 ip1dbg(("ip_rput_options: end of SR\n")); 17718 break; 17719 } 17720 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17721 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17722 ntohl(dst))); 17723 17724 /* 17725 * Check if our address is present more than 17726 * once as consecutive hops in source route. 17727 * XXX verify per-interface ip_forwarding 17728 * for source route? 17729 */ 17730 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17731 ALL_ZONES, NULL, MATCH_IRE_TYPE); 17732 17733 if (ire != NULL) { 17734 ire_refrele(ire); 17735 off += IP_ADDR_LEN; 17736 goto redo_srr; 17737 } 17738 17739 if (dst == htonl(INADDR_LOOPBACK)) { 17740 ip1dbg(("ip_rput_options: loopback addr in " 17741 "source route!\n")); 17742 goto bad_src_route; 17743 } 17744 /* 17745 * For strict: verify that dst is directly 17746 * reachable. 17747 */ 17748 if (optval == IPOPT_SSRR) { 17749 ire = ire_ftable_lookup(dst, 0, 0, 17750 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17751 MBLK_GETLABEL(mp), 17752 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 17753 if (ire == NULL) { 17754 ip1dbg(("ip_rput_options: SSRR not " 17755 "directly reachable: 0x%x\n", 17756 ntohl(dst))); 17757 goto bad_src_route; 17758 } 17759 ire_refrele(ire); 17760 } 17761 /* 17762 * Defer update of the offset and the record route 17763 * until the packet is forwarded. 17764 */ 17765 break; 17766 case IPOPT_RR: 17767 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17768 ip1dbg(( 17769 "ip_rput_options: bad option offset\n")); 17770 code = (char *)&opt[IPOPT_OLEN] - 17771 (char *)ipha; 17772 goto param_prob; 17773 } 17774 break; 17775 case IPOPT_TS: 17776 /* 17777 * Verify that length >= 5 and that there is either 17778 * room for another timestamp or that the overflow 17779 * counter is not maxed out. 17780 */ 17781 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17782 if (optlen < IPOPT_MINLEN_IT) { 17783 goto param_prob; 17784 } 17785 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17786 ip1dbg(( 17787 "ip_rput_options: bad option offset\n")); 17788 code = (char *)&opt[IPOPT_OFFSET] - 17789 (char *)ipha; 17790 goto param_prob; 17791 } 17792 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17793 case IPOPT_TS_TSONLY: 17794 off = IPOPT_TS_TIMELEN; 17795 break; 17796 case IPOPT_TS_TSANDADDR: 17797 case IPOPT_TS_PRESPEC: 17798 case IPOPT_TS_PRESPEC_RFC791: 17799 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17800 break; 17801 default: 17802 code = (char *)&opt[IPOPT_POS_OV_FLG] - 17803 (char *)ipha; 17804 goto param_prob; 17805 } 17806 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 17807 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 17808 /* 17809 * No room and the overflow counter is 15 17810 * already. 17811 */ 17812 goto param_prob; 17813 } 17814 break; 17815 } 17816 } 17817 17818 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 17819 *dstp = dst; 17820 return (0); 17821 } 17822 17823 ip1dbg(("ip_rput_options: error processing IP options.")); 17824 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 17825 17826 param_prob: 17827 q = WR(q); 17828 if (q->q_next != NULL) 17829 ill = q->q_ptr; 17830 else 17831 ill = NULL; 17832 17833 /* make sure we clear any indication of a hardware checksum */ 17834 DB_CKSUMFLAGS(mp) = 0; 17835 /* Don't know whether this is for non-global or global/forwarding */ 17836 zoneid = ipif_lookup_addr_zoneid(dst, ill); 17837 if (zoneid == ALL_ZONES) 17838 freemsg(mp); 17839 else 17840 icmp_param_problem(q, mp, (uint8_t)code, zoneid); 17841 return (-1); 17842 17843 bad_src_route: 17844 q = WR(q); 17845 if (q->q_next != NULL) 17846 ill = q->q_ptr; 17847 else 17848 ill = NULL; 17849 17850 /* make sure we clear any indication of a hardware checksum */ 17851 DB_CKSUMFLAGS(mp) = 0; 17852 zoneid = ipif_lookup_addr_zoneid(dst, ill); 17853 if (zoneid == ALL_ZONES) 17854 freemsg(mp); 17855 else 17856 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 17857 return (-1); 17858 } 17859 17860 /* 17861 * IP & ICMP info in >=14 msg's ... 17862 * - ip fixed part (mib2_ip_t) 17863 * - icmp fixed part (mib2_icmp_t) 17864 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 17865 * - ipRouteEntryTable (ip 21) all IPv4 IREs 17866 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 17867 * - ipRouteAttributeTable (ip 102) labeled routes 17868 * - ip multicast membership (ip_member_t) 17869 * - ip multicast source filtering (ip_grpsrc_t) 17870 * - igmp fixed part (struct igmpstat) 17871 * - multicast routing stats (struct mrtstat) 17872 * - multicast routing vifs (array of struct vifctl) 17873 * - multicast routing routes (array of struct mfcctl) 17874 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 17875 * One per ill plus one generic 17876 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 17877 * One per ill plus one generic 17878 * - ipv6RouteEntry all IPv6 IREs 17879 * - ipv6RouteAttributeTable (ip6 102) labeled routes 17880 * - ipv6NetToMediaEntry all Neighbor Cache entries 17881 * - ipv6AddrEntry all IPv6 ipifs 17882 * - ipv6 multicast membership (ipv6_member_t) 17883 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 17884 * 17885 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 17886 * 17887 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 17888 * already filled in by the caller. 17889 * Return value of 0 indicates that no messages were sent and caller 17890 * should free mpctl. 17891 */ 17892 int 17893 ip_snmp_get(queue_t *q, mblk_t *mpctl) 17894 { 17895 if (mpctl == NULL || mpctl->b_cont == NULL) { 17896 return (0); 17897 } 17898 17899 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl)) == NULL) { 17900 return (1); 17901 } 17902 17903 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl)) == NULL) { 17904 return (1); 17905 } 17906 17907 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl)) == NULL) { 17908 return (1); 17909 } 17910 17911 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl)) == NULL) { 17912 return (1); 17913 } 17914 17915 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl)) == NULL) { 17916 return (1); 17917 } 17918 17919 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl)) == NULL) { 17920 return (1); 17921 } 17922 17923 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl)) == NULL) { 17924 return (1); 17925 } 17926 17927 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl)) == NULL) { 17928 return (1); 17929 } 17930 17931 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl)) == NULL) { 17932 return (1); 17933 } 17934 17935 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl)) == NULL) { 17936 return (1); 17937 } 17938 17939 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl)) == NULL) { 17940 return (1); 17941 } 17942 17943 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl)) == NULL) { 17944 return (1); 17945 } 17946 17947 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl)) == NULL) { 17948 return (1); 17949 } 17950 17951 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl)) == NULL) { 17952 return (1); 17953 } 17954 17955 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl)) == NULL) { 17956 return (1); 17957 } 17958 17959 if ((mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl)) == NULL) { 17960 return (1); 17961 } 17962 17963 if ((mpctl = sctp_snmp_get_mib2(q, mpctl)) == NULL) { 17964 return (1); 17965 } 17966 freemsg(mpctl); 17967 return (1); 17968 } 17969 17970 17971 /* Get global (legacy) IPv4 statistics */ 17972 static mblk_t * 17973 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib) 17974 { 17975 mib2_ip_t old_ip_mib; 17976 struct opthdr *optp; 17977 mblk_t *mp2ctl; 17978 17979 /* 17980 * make a copy of the original message 17981 */ 17982 mp2ctl = copymsg(mpctl); 17983 17984 /* fixed length IP structure... */ 17985 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17986 optp->level = MIB2_IP; 17987 optp->name = 0; 17988 SET_MIB(old_ip_mib.ipForwarding, 17989 (WE_ARE_FORWARDING ? 1 : 2)); 17990 SET_MIB(old_ip_mib.ipDefaultTTL, 17991 (uint32_t)ip_def_ttl); 17992 SET_MIB(old_ip_mib.ipReasmTimeout, 17993 ip_g_frag_timeout); 17994 SET_MIB(old_ip_mib.ipAddrEntrySize, 17995 sizeof (mib2_ipAddrEntry_t)); 17996 SET_MIB(old_ip_mib.ipRouteEntrySize, 17997 sizeof (mib2_ipRouteEntry_t)); 17998 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 17999 sizeof (mib2_ipNetToMediaEntry_t)); 18000 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18001 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18002 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18003 sizeof (mib2_ipAttributeEntry_t)); 18004 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18005 18006 /* 18007 * Grab the statistics from the new IP MIB 18008 */ 18009 SET_MIB(old_ip_mib.ipInReceives, 18010 (uint32_t)ipmib->ipIfStatsHCInReceives); 18011 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18012 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18013 SET_MIB(old_ip_mib.ipForwDatagrams, 18014 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18015 SET_MIB(old_ip_mib.ipInUnknownProtos, 18016 ipmib->ipIfStatsInUnknownProtos); 18017 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18018 SET_MIB(old_ip_mib.ipInDelivers, 18019 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18020 SET_MIB(old_ip_mib.ipOutRequests, 18021 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18022 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18023 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18024 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18025 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18026 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18027 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18028 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18029 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18030 18031 /* ipRoutingDiscards is not being used */ 18032 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18033 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18034 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18035 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18036 SET_MIB(old_ip_mib.ipReasmDuplicates, 18037 ipmib->ipIfStatsReasmDuplicates); 18038 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18039 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18040 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18041 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18042 SET_MIB(old_ip_mib.rawipInOverflows, 18043 ipmib->rawipIfStatsInOverflows); 18044 18045 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18046 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18047 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18048 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18049 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18050 ipmib->ipIfStatsOutSwitchIPVersion); 18051 18052 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18053 (int)sizeof (old_ip_mib))) { 18054 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18055 (uint_t)sizeof (old_ip_mib))); 18056 } 18057 18058 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18059 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18060 (int)optp->level, (int)optp->name, (int)optp->len)); 18061 qreply(q, mpctl); 18062 return (mp2ctl); 18063 } 18064 18065 /* Per interface IPv4 statistics */ 18066 static mblk_t * 18067 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl) 18068 { 18069 struct opthdr *optp; 18070 mblk_t *mp2ctl; 18071 ill_t *ill; 18072 ill_walk_context_t ctx; 18073 mblk_t *mp_tail = NULL; 18074 mib2_ipIfStatsEntry_t global_ip_mib; 18075 18076 /* 18077 * Make a copy of the original message 18078 */ 18079 mp2ctl = copymsg(mpctl); 18080 18081 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18082 optp->level = MIB2_IP; 18083 optp->name = MIB2_IP_TRAFFIC_STATS; 18084 /* Include "unknown interface" ip_mib */ 18085 ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18086 ip_mib.ipIfStatsIfIndex = MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18087 SET_MIB(ip_mib.ipIfStatsForwarding, (WE_ARE_FORWARDING ? 1 : 2)); 18088 SET_MIB(ip_mib.ipIfStatsDefaultTTL, (uint32_t)ip_def_ttl); 18089 SET_MIB(ip_mib.ipIfStatsEntrySize, sizeof (mib2_ipIfStatsEntry_t)); 18090 SET_MIB(ip_mib.ipIfStatsAddrEntrySize, sizeof (mib2_ipAddrEntry_t)); 18091 SET_MIB(ip_mib.ipIfStatsRouteEntrySize, sizeof (mib2_ipRouteEntry_t)); 18092 SET_MIB(ip_mib.ipIfStatsNetToMediaEntrySize, 18093 sizeof (mib2_ipNetToMediaEntry_t)); 18094 SET_MIB(ip_mib.ipIfStatsMemberEntrySize, sizeof (ip_member_t)); 18095 SET_MIB(ip_mib.ipIfStatsGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18096 18097 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&ip_mib, 18098 (int)sizeof (ip_mib))) { 18099 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18100 "failed to allocate %u bytes\n", 18101 (uint_t)sizeof (ip_mib))); 18102 } 18103 18104 bcopy(&ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18105 18106 rw_enter(&ill_g_lock, RW_READER); 18107 ill = ILL_START_WALK_V4(&ctx); 18108 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18109 ill->ill_ip_mib->ipIfStatsIfIndex = 18110 ill->ill_phyint->phyint_ifindex; 18111 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18112 (WE_ARE_FORWARDING ? 1 : 2)); 18113 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18114 (uint32_t)ip_def_ttl); 18115 18116 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18117 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18118 (char *)ill->ill_ip_mib, 18119 (int)sizeof (*ill->ill_ip_mib))) { 18120 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18121 "failed to allocate %u bytes\n", 18122 (uint_t)sizeof (*ill->ill_ip_mib))); 18123 } 18124 } 18125 rw_exit(&ill_g_lock); 18126 18127 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18128 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18129 "level %d, name %d, len %d\n", 18130 (int)optp->level, (int)optp->name, (int)optp->len)); 18131 qreply(q, mpctl); 18132 18133 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib)); 18134 } 18135 18136 /* Global IPv4 ICMP statistics */ 18137 static mblk_t * 18138 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl) 18139 { 18140 struct opthdr *optp; 18141 mblk_t *mp2ctl; 18142 18143 /* 18144 * Make a copy of the original message 18145 */ 18146 mp2ctl = copymsg(mpctl); 18147 18148 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18149 optp->level = MIB2_ICMP; 18150 optp->name = 0; 18151 if (!snmp_append_data(mpctl->b_cont, (char *)&icmp_mib, 18152 (int)sizeof (icmp_mib))) { 18153 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18154 (uint_t)sizeof (icmp_mib))); 18155 } 18156 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18157 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18158 (int)optp->level, (int)optp->name, (int)optp->len)); 18159 qreply(q, mpctl); 18160 return (mp2ctl); 18161 } 18162 18163 /* Global IPv4 IGMP statistics */ 18164 static mblk_t * 18165 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl) 18166 { 18167 struct opthdr *optp; 18168 mblk_t *mp2ctl; 18169 18170 /* 18171 * make a copy of the original message 18172 */ 18173 mp2ctl = copymsg(mpctl); 18174 18175 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18176 optp->level = EXPER_IGMP; 18177 optp->name = 0; 18178 if (!snmp_append_data(mpctl->b_cont, (char *)&igmpstat, 18179 (int)sizeof (igmpstat))) { 18180 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18181 (uint_t)sizeof (igmpstat))); 18182 } 18183 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18184 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18185 (int)optp->level, (int)optp->name, (int)optp->len)); 18186 qreply(q, mpctl); 18187 return (mp2ctl); 18188 } 18189 18190 /* Global IPv4 Multicast Routing statistics */ 18191 static mblk_t * 18192 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl) 18193 { 18194 struct opthdr *optp; 18195 mblk_t *mp2ctl; 18196 18197 /* 18198 * make a copy of the original message 18199 */ 18200 mp2ctl = copymsg(mpctl); 18201 18202 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18203 optp->level = EXPER_DVMRP; 18204 optp->name = 0; 18205 if (!ip_mroute_stats(mpctl->b_cont)) { 18206 ip0dbg(("ip_mroute_stats: failed\n")); 18207 } 18208 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18209 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18210 (int)optp->level, (int)optp->name, (int)optp->len)); 18211 qreply(q, mpctl); 18212 return (mp2ctl); 18213 } 18214 18215 /* IPv4 address information */ 18216 static mblk_t * 18217 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl) 18218 { 18219 struct opthdr *optp; 18220 mblk_t *mp2ctl; 18221 mblk_t *mp_tail = NULL; 18222 ill_t *ill; 18223 ipif_t *ipif; 18224 uint_t bitval; 18225 mib2_ipAddrEntry_t mae; 18226 zoneid_t zoneid; 18227 ill_walk_context_t ctx; 18228 18229 /* 18230 * make a copy of the original message 18231 */ 18232 mp2ctl = copymsg(mpctl); 18233 18234 /* ipAddrEntryTable */ 18235 18236 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18237 optp->level = MIB2_IP; 18238 optp->name = MIB2_IP_ADDR; 18239 zoneid = Q_TO_CONN(q)->conn_zoneid; 18240 18241 rw_enter(&ill_g_lock, RW_READER); 18242 ill = ILL_START_WALK_V4(&ctx); 18243 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18244 for (ipif = ill->ill_ipif; ipif != NULL; 18245 ipif = ipif->ipif_next) { 18246 if (ipif->ipif_zoneid != zoneid && 18247 ipif->ipif_zoneid != ALL_ZONES) 18248 continue; 18249 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18250 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18251 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18252 18253 (void) ipif_get_name(ipif, 18254 mae.ipAdEntIfIndex.o_bytes, 18255 OCTET_LENGTH); 18256 mae.ipAdEntIfIndex.o_length = 18257 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18258 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18259 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18260 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18261 mae.ipAdEntInfo.ae_subnet_len = 18262 ip_mask_to_plen(ipif->ipif_net_mask); 18263 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18264 for (bitval = 1; 18265 bitval && 18266 !(bitval & ipif->ipif_brd_addr); 18267 bitval <<= 1) 18268 noop; 18269 mae.ipAdEntBcastAddr = bitval; 18270 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18271 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18272 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18273 mae.ipAdEntInfo.ae_broadcast_addr = 18274 ipif->ipif_brd_addr; 18275 mae.ipAdEntInfo.ae_pp_dst_addr = 18276 ipif->ipif_pp_dst_addr; 18277 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18278 ill->ill_flags | ill->ill_phyint->phyint_flags; 18279 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18280 18281 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18282 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18283 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18284 "allocate %u bytes\n", 18285 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18286 } 18287 } 18288 } 18289 rw_exit(&ill_g_lock); 18290 18291 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18292 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18293 (int)optp->level, (int)optp->name, (int)optp->len)); 18294 qreply(q, mpctl); 18295 return (mp2ctl); 18296 } 18297 18298 /* IPv6 address information */ 18299 static mblk_t * 18300 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl) 18301 { 18302 struct opthdr *optp; 18303 mblk_t *mp2ctl; 18304 mblk_t *mp_tail = NULL; 18305 ill_t *ill; 18306 ipif_t *ipif; 18307 mib2_ipv6AddrEntry_t mae6; 18308 zoneid_t zoneid; 18309 ill_walk_context_t ctx; 18310 18311 /* 18312 * make a copy of the original message 18313 */ 18314 mp2ctl = copymsg(mpctl); 18315 18316 /* ipv6AddrEntryTable */ 18317 18318 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18319 optp->level = MIB2_IP6; 18320 optp->name = MIB2_IP6_ADDR; 18321 zoneid = Q_TO_CONN(q)->conn_zoneid; 18322 18323 rw_enter(&ill_g_lock, RW_READER); 18324 ill = ILL_START_WALK_V6(&ctx); 18325 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18326 for (ipif = ill->ill_ipif; ipif != NULL; 18327 ipif = ipif->ipif_next) { 18328 if (ipif->ipif_zoneid != zoneid && 18329 ipif->ipif_zoneid != ALL_ZONES) 18330 continue; 18331 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18332 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18333 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18334 18335 (void) ipif_get_name(ipif, 18336 mae6.ipv6AddrIfIndex.o_bytes, 18337 OCTET_LENGTH); 18338 mae6.ipv6AddrIfIndex.o_length = 18339 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18340 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18341 mae6.ipv6AddrPfxLength = 18342 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18343 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18344 mae6.ipv6AddrInfo.ae_subnet_len = 18345 mae6.ipv6AddrPfxLength; 18346 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18347 18348 /* Type: stateless(1), stateful(2), unknown(3) */ 18349 if (ipif->ipif_flags & IPIF_ADDRCONF) 18350 mae6.ipv6AddrType = 1; 18351 else 18352 mae6.ipv6AddrType = 2; 18353 /* Anycast: true(1), false(2) */ 18354 if (ipif->ipif_flags & IPIF_ANYCAST) 18355 mae6.ipv6AddrAnycastFlag = 1; 18356 else 18357 mae6.ipv6AddrAnycastFlag = 2; 18358 18359 /* 18360 * Address status: preferred(1), deprecated(2), 18361 * invalid(3), inaccessible(4), unknown(5) 18362 */ 18363 if (ipif->ipif_flags & IPIF_NOLOCAL) 18364 mae6.ipv6AddrStatus = 3; 18365 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18366 mae6.ipv6AddrStatus = 2; 18367 else 18368 mae6.ipv6AddrStatus = 1; 18369 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18370 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18371 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18372 ipif->ipif_v6pp_dst_addr; 18373 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18374 ill->ill_flags | ill->ill_phyint->phyint_flags; 18375 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18376 mae6.ipv6AddrIdentifier = ill->ill_token; 18377 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18378 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18379 mae6.ipv6AddrRetransmitTime = 18380 ill->ill_reachable_retrans_time; 18381 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18382 (char *)&mae6, 18383 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18384 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18385 "allocate %u bytes\n", 18386 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18387 } 18388 } 18389 } 18390 rw_exit(&ill_g_lock); 18391 18392 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18393 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18394 (int)optp->level, (int)optp->name, (int)optp->len)); 18395 qreply(q, mpctl); 18396 return (mp2ctl); 18397 } 18398 18399 /* IPv4 multicast group membership. */ 18400 static mblk_t * 18401 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl) 18402 { 18403 struct opthdr *optp; 18404 mblk_t *mp2ctl; 18405 ill_t *ill; 18406 ipif_t *ipif; 18407 ilm_t *ilm; 18408 ip_member_t ipm; 18409 mblk_t *mp_tail = NULL; 18410 ill_walk_context_t ctx; 18411 zoneid_t zoneid; 18412 18413 /* 18414 * make a copy of the original message 18415 */ 18416 mp2ctl = copymsg(mpctl); 18417 zoneid = Q_TO_CONN(q)->conn_zoneid; 18418 18419 /* ipGroupMember table */ 18420 optp = (struct opthdr *)&mpctl->b_rptr[ 18421 sizeof (struct T_optmgmt_ack)]; 18422 optp->level = MIB2_IP; 18423 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18424 18425 rw_enter(&ill_g_lock, RW_READER); 18426 ill = ILL_START_WALK_V4(&ctx); 18427 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18428 ILM_WALKER_HOLD(ill); 18429 for (ipif = ill->ill_ipif; ipif != NULL; 18430 ipif = ipif->ipif_next) { 18431 if (ipif->ipif_zoneid != zoneid && 18432 ipif->ipif_zoneid != ALL_ZONES) 18433 continue; /* not this zone */ 18434 (void) ipif_get_name(ipif, 18435 ipm.ipGroupMemberIfIndex.o_bytes, 18436 OCTET_LENGTH); 18437 ipm.ipGroupMemberIfIndex.o_length = 18438 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18439 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18440 ASSERT(ilm->ilm_ipif != NULL); 18441 ASSERT(ilm->ilm_ill == NULL); 18442 if (ilm->ilm_ipif != ipif) 18443 continue; 18444 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18445 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18446 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18447 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18448 (char *)&ipm, (int)sizeof (ipm))) { 18449 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18450 "failed to allocate %u bytes\n", 18451 (uint_t)sizeof (ipm))); 18452 } 18453 } 18454 } 18455 ILM_WALKER_RELE(ill); 18456 } 18457 rw_exit(&ill_g_lock); 18458 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18459 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18460 (int)optp->level, (int)optp->name, (int)optp->len)); 18461 qreply(q, mpctl); 18462 return (mp2ctl); 18463 } 18464 18465 /* IPv6 multicast group membership. */ 18466 static mblk_t * 18467 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl) 18468 { 18469 struct opthdr *optp; 18470 mblk_t *mp2ctl; 18471 ill_t *ill; 18472 ilm_t *ilm; 18473 ipv6_member_t ipm6; 18474 mblk_t *mp_tail = NULL; 18475 ill_walk_context_t ctx; 18476 zoneid_t zoneid; 18477 18478 /* 18479 * make a copy of the original message 18480 */ 18481 mp2ctl = copymsg(mpctl); 18482 zoneid = Q_TO_CONN(q)->conn_zoneid; 18483 18484 /* ip6GroupMember table */ 18485 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18486 optp->level = MIB2_IP6; 18487 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18488 18489 rw_enter(&ill_g_lock, RW_READER); 18490 ill = ILL_START_WALK_V6(&ctx); 18491 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18492 ILM_WALKER_HOLD(ill); 18493 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18494 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18495 ASSERT(ilm->ilm_ipif == NULL); 18496 ASSERT(ilm->ilm_ill != NULL); 18497 if (ilm->ilm_zoneid != zoneid) 18498 continue; /* not this zone */ 18499 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18500 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18501 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18502 if (!snmp_append_data2(mpctl->b_cont, 18503 &mp_tail, 18504 (char *)&ipm6, (int)sizeof (ipm6))) { 18505 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18506 "failed to allocate %u bytes\n", 18507 (uint_t)sizeof (ipm6))); 18508 } 18509 } 18510 ILM_WALKER_RELE(ill); 18511 } 18512 rw_exit(&ill_g_lock); 18513 18514 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18515 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18516 (int)optp->level, (int)optp->name, (int)optp->len)); 18517 qreply(q, mpctl); 18518 return (mp2ctl); 18519 } 18520 18521 /* IP multicast filtered sources */ 18522 static mblk_t * 18523 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl) 18524 { 18525 struct opthdr *optp; 18526 mblk_t *mp2ctl; 18527 ill_t *ill; 18528 ipif_t *ipif; 18529 ilm_t *ilm; 18530 ip_grpsrc_t ips; 18531 mblk_t *mp_tail = NULL; 18532 ill_walk_context_t ctx; 18533 zoneid_t zoneid; 18534 int i; 18535 slist_t *sl; 18536 18537 /* 18538 * make a copy of the original message 18539 */ 18540 mp2ctl = copymsg(mpctl); 18541 zoneid = Q_TO_CONN(q)->conn_zoneid; 18542 18543 /* ipGroupSource table */ 18544 optp = (struct opthdr *)&mpctl->b_rptr[ 18545 sizeof (struct T_optmgmt_ack)]; 18546 optp->level = MIB2_IP; 18547 optp->name = EXPER_IP_GROUP_SOURCES; 18548 18549 rw_enter(&ill_g_lock, RW_READER); 18550 ill = ILL_START_WALK_V4(&ctx); 18551 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18552 ILM_WALKER_HOLD(ill); 18553 for (ipif = ill->ill_ipif; ipif != NULL; 18554 ipif = ipif->ipif_next) { 18555 if (ipif->ipif_zoneid != zoneid) 18556 continue; /* not this zone */ 18557 (void) ipif_get_name(ipif, 18558 ips.ipGroupSourceIfIndex.o_bytes, 18559 OCTET_LENGTH); 18560 ips.ipGroupSourceIfIndex.o_length = 18561 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18562 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18563 ASSERT(ilm->ilm_ipif != NULL); 18564 ASSERT(ilm->ilm_ill == NULL); 18565 sl = ilm->ilm_filter; 18566 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18567 continue; 18568 ips.ipGroupSourceGroup = ilm->ilm_addr; 18569 for (i = 0; i < sl->sl_numsrc; i++) { 18570 if (!IN6_IS_ADDR_V4MAPPED( 18571 &sl->sl_addr[i])) 18572 continue; 18573 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18574 ips.ipGroupSourceAddress); 18575 if (snmp_append_data2(mpctl->b_cont, 18576 &mp_tail, (char *)&ips, 18577 (int)sizeof (ips)) == 0) { 18578 ip1dbg(("ip_snmp_get_mib2_" 18579 "ip_group_src: failed to " 18580 "allocate %u bytes\n", 18581 (uint_t)sizeof (ips))); 18582 } 18583 } 18584 } 18585 } 18586 ILM_WALKER_RELE(ill); 18587 } 18588 rw_exit(&ill_g_lock); 18589 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18590 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18591 (int)optp->level, (int)optp->name, (int)optp->len)); 18592 qreply(q, mpctl); 18593 return (mp2ctl); 18594 } 18595 18596 /* IPv6 multicast filtered sources. */ 18597 static mblk_t * 18598 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl) 18599 { 18600 struct opthdr *optp; 18601 mblk_t *mp2ctl; 18602 ill_t *ill; 18603 ilm_t *ilm; 18604 ipv6_grpsrc_t ips6; 18605 mblk_t *mp_tail = NULL; 18606 ill_walk_context_t ctx; 18607 zoneid_t zoneid; 18608 int i; 18609 slist_t *sl; 18610 18611 /* 18612 * make a copy of the original message 18613 */ 18614 mp2ctl = copymsg(mpctl); 18615 zoneid = Q_TO_CONN(q)->conn_zoneid; 18616 18617 /* ip6GroupMember table */ 18618 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18619 optp->level = MIB2_IP6; 18620 optp->name = EXPER_IP6_GROUP_SOURCES; 18621 18622 rw_enter(&ill_g_lock, RW_READER); 18623 ill = ILL_START_WALK_V6(&ctx); 18624 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18625 ILM_WALKER_HOLD(ill); 18626 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18627 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18628 ASSERT(ilm->ilm_ipif == NULL); 18629 ASSERT(ilm->ilm_ill != NULL); 18630 sl = ilm->ilm_filter; 18631 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18632 continue; 18633 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18634 for (i = 0; i < sl->sl_numsrc; i++) { 18635 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18636 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18637 (char *)&ips6, (int)sizeof (ips6))) { 18638 ip1dbg(("ip_snmp_get_mib2_ip6_" 18639 "group_src: failed to allocate " 18640 "%u bytes\n", 18641 (uint_t)sizeof (ips6))); 18642 } 18643 } 18644 } 18645 ILM_WALKER_RELE(ill); 18646 } 18647 rw_exit(&ill_g_lock); 18648 18649 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18650 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18651 (int)optp->level, (int)optp->name, (int)optp->len)); 18652 qreply(q, mpctl); 18653 return (mp2ctl); 18654 } 18655 18656 /* Multicast routing virtual interface table. */ 18657 static mblk_t * 18658 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl) 18659 { 18660 struct opthdr *optp; 18661 mblk_t *mp2ctl; 18662 18663 /* 18664 * make a copy of the original message 18665 */ 18666 mp2ctl = copymsg(mpctl); 18667 18668 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18669 optp->level = EXPER_DVMRP; 18670 optp->name = EXPER_DVMRP_VIF; 18671 if (!ip_mroute_vif(mpctl->b_cont)) { 18672 ip0dbg(("ip_mroute_vif: failed\n")); 18673 } 18674 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18675 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18676 (int)optp->level, (int)optp->name, (int)optp->len)); 18677 qreply(q, mpctl); 18678 return (mp2ctl); 18679 } 18680 18681 /* Multicast routing table. */ 18682 static mblk_t * 18683 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl) 18684 { 18685 struct opthdr *optp; 18686 mblk_t *mp2ctl; 18687 18688 /* 18689 * make a copy of the original message 18690 */ 18691 mp2ctl = copymsg(mpctl); 18692 18693 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18694 optp->level = EXPER_DVMRP; 18695 optp->name = EXPER_DVMRP_MRT; 18696 if (!ip_mroute_mrt(mpctl->b_cont)) { 18697 ip0dbg(("ip_mroute_mrt: failed\n")); 18698 } 18699 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18700 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18701 (int)optp->level, (int)optp->name, (int)optp->len)); 18702 qreply(q, mpctl); 18703 return (mp2ctl); 18704 } 18705 18706 /* 18707 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18708 * in one IRE walk. 18709 */ 18710 static mblk_t * 18711 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl) 18712 { 18713 struct opthdr *optp; 18714 mblk_t *mp2ctl; /* Returned */ 18715 mblk_t *mp3ctl; /* nettomedia */ 18716 mblk_t *mp4ctl; /* routeattrs */ 18717 iproutedata_t ird; 18718 zoneid_t zoneid; 18719 18720 /* 18721 * make copies of the original message 18722 * - mp2ctl is returned unchanged to the caller for his use 18723 * - mpctl is sent upstream as ipRouteEntryTable 18724 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18725 * - mp4ctl is sent upstream as ipRouteAttributeTable 18726 */ 18727 mp2ctl = copymsg(mpctl); 18728 mp3ctl = copymsg(mpctl); 18729 mp4ctl = copymsg(mpctl); 18730 if (mp3ctl == NULL || mp4ctl == NULL) { 18731 freemsg(mp4ctl); 18732 freemsg(mp3ctl); 18733 freemsg(mp2ctl); 18734 freemsg(mpctl); 18735 return (NULL); 18736 } 18737 18738 bzero(&ird, sizeof (ird)); 18739 18740 ird.ird_route.lp_head = mpctl->b_cont; 18741 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18742 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18743 18744 zoneid = Q_TO_CONN(q)->conn_zoneid; 18745 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid); 18746 if (zoneid == GLOBAL_ZONEID) { 18747 /* 18748 * Those IREs are used by Mobile-IP; since mipagent(1M) requires 18749 * the sys_net_config privilege, it can only run in the global 18750 * zone, so we don't display these IREs in the other zones. 18751 */ 18752 ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird); 18753 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL); 18754 } 18755 18756 /* ipRouteEntryTable in mpctl */ 18757 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18758 optp->level = MIB2_IP; 18759 optp->name = MIB2_IP_ROUTE; 18760 optp->len = msgdsize(ird.ird_route.lp_head); 18761 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18762 (int)optp->level, (int)optp->name, (int)optp->len)); 18763 qreply(q, mpctl); 18764 18765 /* ipNetToMediaEntryTable in mp3ctl */ 18766 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18767 optp->level = MIB2_IP; 18768 optp->name = MIB2_IP_MEDIA; 18769 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18770 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18771 (int)optp->level, (int)optp->name, (int)optp->len)); 18772 qreply(q, mp3ctl); 18773 18774 /* ipRouteAttributeTable in mp4ctl */ 18775 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18776 optp->level = MIB2_IP; 18777 optp->name = EXPER_IP_RTATTR; 18778 optp->len = msgdsize(ird.ird_attrs.lp_head); 18779 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18780 (int)optp->level, (int)optp->name, (int)optp->len)); 18781 if (optp->len == 0) 18782 freemsg(mp4ctl); 18783 else 18784 qreply(q, mp4ctl); 18785 18786 return (mp2ctl); 18787 } 18788 18789 /* 18790 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 18791 * ipv6NetToMediaEntryTable in an NDP walk. 18792 */ 18793 static mblk_t * 18794 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl) 18795 { 18796 struct opthdr *optp; 18797 mblk_t *mp2ctl; /* Returned */ 18798 mblk_t *mp3ctl; /* nettomedia */ 18799 mblk_t *mp4ctl; /* routeattrs */ 18800 iproutedata_t ird; 18801 zoneid_t zoneid; 18802 18803 /* 18804 * make copies of the original message 18805 * - mp2ctl is returned unchanged to the caller for his use 18806 * - mpctl is sent upstream as ipv6RouteEntryTable 18807 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 18808 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 18809 */ 18810 mp2ctl = copymsg(mpctl); 18811 mp3ctl = copymsg(mpctl); 18812 mp4ctl = copymsg(mpctl); 18813 if (mp3ctl == NULL || mp4ctl == NULL) { 18814 freemsg(mp4ctl); 18815 freemsg(mp3ctl); 18816 freemsg(mp2ctl); 18817 freemsg(mpctl); 18818 return (NULL); 18819 } 18820 18821 bzero(&ird, sizeof (ird)); 18822 18823 ird.ird_route.lp_head = mpctl->b_cont; 18824 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18825 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18826 18827 zoneid = Q_TO_CONN(q)->conn_zoneid; 18828 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid); 18829 18830 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18831 optp->level = MIB2_IP6; 18832 optp->name = MIB2_IP6_ROUTE; 18833 optp->len = msgdsize(ird.ird_route.lp_head); 18834 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18835 (int)optp->level, (int)optp->name, (int)optp->len)); 18836 qreply(q, mpctl); 18837 18838 /* ipv6NetToMediaEntryTable in mp3ctl */ 18839 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird); 18840 18841 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18842 optp->level = MIB2_IP6; 18843 optp->name = MIB2_IP6_MEDIA; 18844 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18845 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18846 (int)optp->level, (int)optp->name, (int)optp->len)); 18847 qreply(q, mp3ctl); 18848 18849 /* ipv6RouteAttributeTable in mp4ctl */ 18850 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18851 optp->level = MIB2_IP6; 18852 optp->name = EXPER_IP_RTATTR; 18853 optp->len = msgdsize(ird.ird_attrs.lp_head); 18854 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18855 (int)optp->level, (int)optp->name, (int)optp->len)); 18856 if (optp->len == 0) 18857 freemsg(mp4ctl); 18858 else 18859 qreply(q, mp4ctl); 18860 18861 return (mp2ctl); 18862 } 18863 18864 /* 18865 * IPv6 mib: One per ill 18866 */ 18867 static mblk_t * 18868 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl) 18869 { 18870 struct opthdr *optp; 18871 mblk_t *mp2ctl; 18872 ill_t *ill; 18873 ill_walk_context_t ctx; 18874 mblk_t *mp_tail = NULL; 18875 18876 /* 18877 * Make a copy of the original message 18878 */ 18879 mp2ctl = copymsg(mpctl); 18880 18881 /* fixed length IPv6 structure ... */ 18882 18883 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18884 optp->level = MIB2_IP6; 18885 optp->name = 0; 18886 /* Include "unknown interface" ip6_mib */ 18887 ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 18888 ip6_mib.ipIfStatsIfIndex = MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18889 SET_MIB(ip6_mib.ipIfStatsForwarding, ipv6_forward ? 1 : 2); 18890 SET_MIB(ip6_mib.ipIfStatsDefaultHopLimit, ipv6_def_hops); 18891 SET_MIB(ip6_mib.ipIfStatsEntrySize, 18892 sizeof (mib2_ipIfStatsEntry_t)); 18893 SET_MIB(ip6_mib.ipIfStatsAddrEntrySize, sizeof (mib2_ipv6AddrEntry_t)); 18894 SET_MIB(ip6_mib.ipIfStatsRouteEntrySize, 18895 sizeof (mib2_ipv6RouteEntry_t)); 18896 SET_MIB(ip6_mib.ipIfStatsNetToMediaEntrySize, 18897 sizeof (mib2_ipv6NetToMediaEntry_t)); 18898 SET_MIB(ip6_mib.ipIfStatsMemberEntrySize, sizeof (ipv6_member_t)); 18899 SET_MIB(ip6_mib.ipIfStatsGroupSourceEntrySize, sizeof (ipv6_grpsrc_t)); 18900 18901 /* 18902 * Synchronize 64- and 32-bit counters 18903 */ 18904 SYNC32_MIB(&ip6_mib, ipIfStatsInReceives, ipIfStatsHCInReceives); 18905 SYNC32_MIB(&ip6_mib, ipIfStatsInDelivers, ipIfStatsHCInDelivers); 18906 SYNC32_MIB(&ip6_mib, ipIfStatsOutRequests, ipIfStatsHCOutRequests); 18907 SYNC32_MIB(&ip6_mib, ipIfStatsOutForwDatagrams, 18908 ipIfStatsHCOutForwDatagrams); 18909 SYNC32_MIB(&ip6_mib, ipIfStatsOutMcastPkts, ipIfStatsHCOutMcastPkts); 18910 SYNC32_MIB(&ip6_mib, ipIfStatsInMcastPkts, ipIfStatsHCInMcastPkts); 18911 18912 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&ip6_mib, 18913 (int)sizeof (ip6_mib))) { 18914 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 18915 (uint_t)sizeof (ip6_mib))); 18916 } 18917 18918 rw_enter(&ill_g_lock, RW_READER); 18919 ill = ILL_START_WALK_V6(&ctx); 18920 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18921 ill->ill_ip_mib->ipIfStatsIfIndex = 18922 ill->ill_phyint->phyint_ifindex; 18923 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18924 ipv6_forward ? 1 : 2); 18925 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 18926 ill->ill_max_hops); 18927 18928 /* 18929 * Synchronize 64- and 32-bit counters 18930 */ 18931 SYNC32_MIB(&ip6_mib, ipIfStatsInReceives, 18932 ipIfStatsHCInReceives); 18933 SYNC32_MIB(&ip6_mib, ipIfStatsInDelivers, 18934 ipIfStatsHCInDelivers); 18935 SYNC32_MIB(&ip6_mib, ipIfStatsOutRequests, 18936 ipIfStatsHCOutRequests); 18937 SYNC32_MIB(&ip6_mib, ipIfStatsOutForwDatagrams, 18938 ipIfStatsHCOutForwDatagrams); 18939 SYNC32_MIB(&ip6_mib, ipIfStatsOutMcastPkts, 18940 ipIfStatsHCOutMcastPkts); 18941 SYNC32_MIB(&ip6_mib, ipIfStatsInMcastPkts, 18942 ipIfStatsHCInMcastPkts); 18943 18944 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18945 (char *)ill->ill_ip_mib, 18946 (int)sizeof (*ill->ill_ip_mib))) { 18947 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 18948 "%u bytes\n", 18949 (uint_t)sizeof (*ill->ill_ip_mib))); 18950 } 18951 } 18952 rw_exit(&ill_g_lock); 18953 18954 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18955 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 18956 (int)optp->level, (int)optp->name, (int)optp->len)); 18957 qreply(q, mpctl); 18958 return (mp2ctl); 18959 } 18960 18961 /* 18962 * ICMPv6 mib: One per ill 18963 */ 18964 static mblk_t * 18965 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl) 18966 { 18967 struct opthdr *optp; 18968 mblk_t *mp2ctl; 18969 ill_t *ill; 18970 ill_walk_context_t ctx; 18971 mblk_t *mp_tail = NULL; 18972 /* 18973 * Make a copy of the original message 18974 */ 18975 mp2ctl = copymsg(mpctl); 18976 18977 /* fixed length ICMPv6 structure ... */ 18978 18979 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18980 optp->level = MIB2_ICMP6; 18981 optp->name = 0; 18982 /* Include "unknown interface" icmp6_mib */ 18983 icmp6_mib.ipv6IfIcmpIfIndex = MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 18984 icmp6_mib.ipv6IfIcmpEntrySize = sizeof (mib2_ipv6IfIcmpEntry_t); 18985 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&icmp6_mib, 18986 (int)sizeof (icmp6_mib))) { 18987 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 18988 (uint_t)sizeof (icmp6_mib))); 18989 } 18990 18991 rw_enter(&ill_g_lock, RW_READER); 18992 ill = ILL_START_WALK_V6(&ctx); 18993 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18994 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 18995 ill->ill_phyint->phyint_ifindex; 18996 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18997 (char *)ill->ill_icmp6_mib, 18998 (int)sizeof (*ill->ill_icmp6_mib))) { 18999 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19000 "%u bytes\n", 19001 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19002 } 19003 } 19004 rw_exit(&ill_g_lock); 19005 19006 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19007 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19008 (int)optp->level, (int)optp->name, (int)optp->len)); 19009 qreply(q, mpctl); 19010 return (mp2ctl); 19011 } 19012 19013 /* 19014 * ire_walk routine to create both ipRouteEntryTable and 19015 * ipRouteAttributeTable in one IRE walk 19016 */ 19017 static void 19018 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19019 { 19020 ill_t *ill; 19021 ipif_t *ipif; 19022 mib2_ipRouteEntry_t *re; 19023 mib2_ipAttributeEntry_t *iae, *iaeptr; 19024 ipaddr_t gw_addr; 19025 tsol_ire_gw_secattr_t *attrp; 19026 tsol_gc_t *gc = NULL; 19027 tsol_gcgrp_t *gcgrp = NULL; 19028 uint_t sacnt = 0; 19029 int i; 19030 19031 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19032 19033 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19034 return; 19035 19036 if ((attrp = ire->ire_gw_secattr) != NULL) { 19037 mutex_enter(&attrp->igsa_lock); 19038 if ((gc = attrp->igsa_gc) != NULL) { 19039 gcgrp = gc->gc_grp; 19040 ASSERT(gcgrp != NULL); 19041 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19042 sacnt = 1; 19043 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19044 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19045 gc = gcgrp->gcgrp_head; 19046 sacnt = gcgrp->gcgrp_count; 19047 } 19048 mutex_exit(&attrp->igsa_lock); 19049 19050 /* do nothing if there's no gc to report */ 19051 if (gc == NULL) { 19052 ASSERT(sacnt == 0); 19053 if (gcgrp != NULL) { 19054 /* we might as well drop the lock now */ 19055 rw_exit(&gcgrp->gcgrp_rwlock); 19056 gcgrp = NULL; 19057 } 19058 attrp = NULL; 19059 } 19060 19061 ASSERT(gc == NULL || (gcgrp != NULL && 19062 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19063 } 19064 ASSERT(sacnt == 0 || gc != NULL); 19065 19066 if (sacnt != 0 && 19067 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19068 kmem_free(re, sizeof (*re)); 19069 rw_exit(&gcgrp->gcgrp_rwlock); 19070 return; 19071 } 19072 19073 /* 19074 * Return all IRE types for route table... let caller pick and choose 19075 */ 19076 re->ipRouteDest = ire->ire_addr; 19077 ipif = ire->ire_ipif; 19078 re->ipRouteIfIndex.o_length = 0; 19079 if (ire->ire_type == IRE_CACHE) { 19080 ill = (ill_t *)ire->ire_stq->q_ptr; 19081 re->ipRouteIfIndex.o_length = 19082 ill->ill_name_length == 0 ? 0 : 19083 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19084 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19085 re->ipRouteIfIndex.o_length); 19086 } else if (ipif != NULL) { 19087 (void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, 19088 OCTET_LENGTH); 19089 re->ipRouteIfIndex.o_length = 19090 mi_strlen(re->ipRouteIfIndex.o_bytes); 19091 } 19092 re->ipRouteMetric1 = -1; 19093 re->ipRouteMetric2 = -1; 19094 re->ipRouteMetric3 = -1; 19095 re->ipRouteMetric4 = -1; 19096 19097 gw_addr = ire->ire_gateway_addr; 19098 19099 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19100 re->ipRouteNextHop = ire->ire_src_addr; 19101 else 19102 re->ipRouteNextHop = gw_addr; 19103 /* indirect(4), direct(3), or invalid(2) */ 19104 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19105 re->ipRouteType = 2; 19106 else 19107 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19108 re->ipRouteProto = -1; 19109 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19110 re->ipRouteMask = ire->ire_mask; 19111 re->ipRouteMetric5 = -1; 19112 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19113 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19114 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19115 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19116 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19117 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19118 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19119 re->ipRouteInfo.re_flags = ire->ire_flags; 19120 re->ipRouteInfo.re_in_ill.o_length = 0; 19121 19122 if (ire->ire_flags & RTF_DYNAMIC) { 19123 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19124 } else { 19125 re->ipRouteInfo.re_ire_type = ire->ire_type; 19126 } 19127 19128 if (ire->ire_in_ill != NULL) { 19129 re->ipRouteInfo.re_in_ill.o_length = 19130 ire->ire_in_ill->ill_name_length == 0 ? 0 : 19131 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 19132 bcopy(ire->ire_in_ill->ill_name, 19133 re->ipRouteInfo.re_in_ill.o_bytes, 19134 re->ipRouteInfo.re_in_ill.o_length); 19135 } 19136 re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 19137 19138 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19139 (char *)re, (int)sizeof (*re))) { 19140 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19141 (uint_t)sizeof (*re))); 19142 } 19143 19144 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19145 iaeptr->iae_routeidx = ird->ird_idx; 19146 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19147 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19148 } 19149 19150 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19151 (char *)iae, sacnt * sizeof (*iae))) { 19152 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19153 (unsigned)(sacnt * sizeof (*iae)))); 19154 } 19155 19156 /* bump route index for next pass */ 19157 ird->ird_idx++; 19158 19159 kmem_free(re, sizeof (*re)); 19160 if (sacnt != 0) 19161 kmem_free(iae, sacnt * sizeof (*iae)); 19162 19163 if (gcgrp != NULL) 19164 rw_exit(&gcgrp->gcgrp_rwlock); 19165 } 19166 19167 /* 19168 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19169 */ 19170 static void 19171 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19172 { 19173 ill_t *ill; 19174 ipif_t *ipif; 19175 mib2_ipv6RouteEntry_t *re; 19176 mib2_ipAttributeEntry_t *iae, *iaeptr; 19177 in6_addr_t gw_addr_v6; 19178 tsol_ire_gw_secattr_t *attrp; 19179 tsol_gc_t *gc = NULL; 19180 tsol_gcgrp_t *gcgrp = NULL; 19181 uint_t sacnt = 0; 19182 int i; 19183 19184 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19185 19186 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19187 return; 19188 19189 if ((attrp = ire->ire_gw_secattr) != NULL) { 19190 mutex_enter(&attrp->igsa_lock); 19191 if ((gc = attrp->igsa_gc) != NULL) { 19192 gcgrp = gc->gc_grp; 19193 ASSERT(gcgrp != NULL); 19194 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19195 sacnt = 1; 19196 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19197 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19198 gc = gcgrp->gcgrp_head; 19199 sacnt = gcgrp->gcgrp_count; 19200 } 19201 mutex_exit(&attrp->igsa_lock); 19202 19203 /* do nothing if there's no gc to report */ 19204 if (gc == NULL) { 19205 ASSERT(sacnt == 0); 19206 if (gcgrp != NULL) { 19207 /* we might as well drop the lock now */ 19208 rw_exit(&gcgrp->gcgrp_rwlock); 19209 gcgrp = NULL; 19210 } 19211 attrp = NULL; 19212 } 19213 19214 ASSERT(gc == NULL || (gcgrp != NULL && 19215 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19216 } 19217 ASSERT(sacnt == 0 || gc != NULL); 19218 19219 if (sacnt != 0 && 19220 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19221 kmem_free(re, sizeof (*re)); 19222 rw_exit(&gcgrp->gcgrp_rwlock); 19223 return; 19224 } 19225 19226 /* 19227 * Return all IRE types for route table... let caller pick and choose 19228 */ 19229 re->ipv6RouteDest = ire->ire_addr_v6; 19230 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19231 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19232 re->ipv6RouteIfIndex.o_length = 0; 19233 ipif = ire->ire_ipif; 19234 if (ire->ire_type == IRE_CACHE) { 19235 ill = (ill_t *)ire->ire_stq->q_ptr; 19236 re->ipv6RouteIfIndex.o_length = 19237 ill->ill_name_length == 0 ? 0 : 19238 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19239 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19240 re->ipv6RouteIfIndex.o_length); 19241 } else if (ipif != NULL) { 19242 (void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, 19243 OCTET_LENGTH); 19244 re->ipv6RouteIfIndex.o_length = 19245 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19246 } 19247 19248 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19249 19250 mutex_enter(&ire->ire_lock); 19251 gw_addr_v6 = ire->ire_gateway_addr_v6; 19252 mutex_exit(&ire->ire_lock); 19253 19254 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19255 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19256 else 19257 re->ipv6RouteNextHop = gw_addr_v6; 19258 19259 /* remote(4), local(3), or discard(2) */ 19260 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19261 re->ipv6RouteType = 2; 19262 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19263 re->ipv6RouteType = 3; 19264 else 19265 re->ipv6RouteType = 4; 19266 19267 re->ipv6RouteProtocol = -1; 19268 re->ipv6RoutePolicy = 0; 19269 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19270 re->ipv6RouteNextHopRDI = 0; 19271 re->ipv6RouteWeight = 0; 19272 re->ipv6RouteMetric = 0; 19273 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19274 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19275 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19276 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19277 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19278 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19279 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19280 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19281 19282 if (ire->ire_flags & RTF_DYNAMIC) { 19283 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19284 } else { 19285 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19286 } 19287 19288 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19289 (char *)re, (int)sizeof (*re))) { 19290 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19291 (uint_t)sizeof (*re))); 19292 } 19293 19294 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19295 iaeptr->iae_routeidx = ird->ird_idx; 19296 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19297 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19298 } 19299 19300 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19301 (char *)iae, sacnt * sizeof (*iae))) { 19302 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19303 (unsigned)(sacnt * sizeof (*iae)))); 19304 } 19305 19306 /* bump route index for next pass */ 19307 ird->ird_idx++; 19308 19309 kmem_free(re, sizeof (*re)); 19310 if (sacnt != 0) 19311 kmem_free(iae, sacnt * sizeof (*iae)); 19312 19313 if (gcgrp != NULL) 19314 rw_exit(&gcgrp->gcgrp_rwlock); 19315 } 19316 19317 /* 19318 * ndp_walk routine to create ipv6NetToMediaEntryTable 19319 */ 19320 static int 19321 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19322 { 19323 ill_t *ill; 19324 mib2_ipv6NetToMediaEntry_t ntme; 19325 dl_unitdata_req_t *dl; 19326 19327 ill = nce->nce_ill; 19328 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19329 return (0); 19330 19331 /* 19332 * Neighbor cache entry attached to IRE with on-link 19333 * destination. 19334 */ 19335 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19336 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19337 if ((ill->ill_flags & ILLF_XRESOLV) && 19338 (nce->nce_res_mp != NULL)) { 19339 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19340 ntme.ipv6NetToMediaPhysAddress.o_length = 19341 dl->dl_dest_addr_length; 19342 } else { 19343 ntme.ipv6NetToMediaPhysAddress.o_length = 19344 ill->ill_phys_addr_length; 19345 } 19346 if (nce->nce_res_mp != NULL) { 19347 bcopy((char *)nce->nce_res_mp->b_rptr + 19348 NCE_LL_ADDR_OFFSET(ill), 19349 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19350 ntme.ipv6NetToMediaPhysAddress.o_length); 19351 } else { 19352 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19353 ill->ill_phys_addr_length); 19354 } 19355 /* 19356 * Note: Returns ND_* states. Should be: 19357 * reachable(1), stale(2), delay(3), probe(4), 19358 * invalid(5), unknown(6) 19359 */ 19360 ntme.ipv6NetToMediaState = nce->nce_state; 19361 ntme.ipv6NetToMediaLastUpdated = 0; 19362 19363 /* other(1), dynamic(2), static(3), local(4) */ 19364 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19365 ntme.ipv6NetToMediaType = 4; 19366 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19367 ntme.ipv6NetToMediaType = 1; 19368 } else { 19369 ntme.ipv6NetToMediaType = 2; 19370 } 19371 19372 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19373 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19374 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19375 (uint_t)sizeof (ntme))); 19376 } 19377 return (0); 19378 } 19379 19380 /* 19381 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19382 */ 19383 /* ARGSUSED */ 19384 int 19385 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19386 { 19387 switch (level) { 19388 case MIB2_IP: 19389 case MIB2_ICMP: 19390 switch (name) { 19391 default: 19392 break; 19393 } 19394 return (1); 19395 default: 19396 return (1); 19397 } 19398 } 19399 19400 /* 19401 * When there exists both a 64- and 32-bit counter of a particular type 19402 * (i.e., InReceives), only the 64-bit counters are added. 19403 */ 19404 void 19405 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19406 { 19407 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19408 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19409 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19410 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19411 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19412 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19413 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19414 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19415 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19416 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19417 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19418 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19419 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19420 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19421 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19422 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19423 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19424 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19425 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19426 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19427 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19428 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19429 o2->ipIfStatsInWrongIPVersion); 19430 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19431 o2->ipIfStatsInWrongIPVersion); 19432 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19433 o2->ipIfStatsOutSwitchIPVersion); 19434 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19435 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19436 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19437 o2->ipIfStatsHCInForwDatagrams); 19438 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19439 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19440 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19441 o2->ipIfStatsHCOutForwDatagrams); 19442 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19443 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19444 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19445 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19446 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19447 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19448 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19449 o2->ipIfStatsHCOutMcastOctets); 19450 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19451 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19452 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19453 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19454 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19455 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19456 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19457 } 19458 19459 void 19460 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19461 { 19462 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19463 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19464 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19465 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19466 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19467 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19468 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19469 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19470 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19471 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19472 o2->ipv6IfIcmpInRouterSolicits); 19473 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19474 o2->ipv6IfIcmpInRouterAdvertisements); 19475 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19476 o2->ipv6IfIcmpInNeighborSolicits); 19477 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19478 o2->ipv6IfIcmpInNeighborAdvertisements); 19479 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19480 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19481 o2->ipv6IfIcmpInGroupMembQueries); 19482 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19483 o2->ipv6IfIcmpInGroupMembResponses); 19484 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19485 o2->ipv6IfIcmpInGroupMembReductions); 19486 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19487 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19488 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19489 o2->ipv6IfIcmpOutDestUnreachs); 19490 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19491 o2->ipv6IfIcmpOutAdminProhibs); 19492 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19493 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19494 o2->ipv6IfIcmpOutParmProblems); 19495 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19496 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19497 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19498 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19499 o2->ipv6IfIcmpOutRouterSolicits); 19500 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19501 o2->ipv6IfIcmpOutRouterAdvertisements); 19502 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19503 o2->ipv6IfIcmpOutNeighborSolicits); 19504 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19505 o2->ipv6IfIcmpOutNeighborAdvertisements); 19506 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19507 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19508 o2->ipv6IfIcmpOutGroupMembQueries); 19509 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19510 o2->ipv6IfIcmpOutGroupMembResponses); 19511 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19512 o2->ipv6IfIcmpOutGroupMembReductions); 19513 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19514 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19515 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19516 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19517 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19518 o2->ipv6IfIcmpInBadNeighborSolicitations); 19519 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19520 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19521 o2->ipv6IfIcmpInGroupMembTotal); 19522 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19523 o2->ipv6IfIcmpInGroupMembBadQueries); 19524 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19525 o2->ipv6IfIcmpInGroupMembBadReports); 19526 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19527 o2->ipv6IfIcmpInGroupMembOurReports); 19528 } 19529 19530 /* 19531 * Called before the options are updated to check if this packet will 19532 * be source routed from here. 19533 * This routine assumes that the options are well formed i.e. that they 19534 * have already been checked. 19535 */ 19536 static boolean_t 19537 ip_source_routed(ipha_t *ipha) 19538 { 19539 ipoptp_t opts; 19540 uchar_t *opt; 19541 uint8_t optval; 19542 uint8_t optlen; 19543 ipaddr_t dst; 19544 ire_t *ire; 19545 19546 if (IS_SIMPLE_IPH(ipha)) { 19547 ip2dbg(("not source routed\n")); 19548 return (B_FALSE); 19549 } 19550 dst = ipha->ipha_dst; 19551 for (optval = ipoptp_first(&opts, ipha); 19552 optval != IPOPT_EOL; 19553 optval = ipoptp_next(&opts)) { 19554 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19555 opt = opts.ipoptp_cur; 19556 optlen = opts.ipoptp_len; 19557 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19558 optval, optlen)); 19559 switch (optval) { 19560 uint32_t off; 19561 case IPOPT_SSRR: 19562 case IPOPT_LSRR: 19563 /* 19564 * If dst is one of our addresses and there are some 19565 * entries left in the source route return (true). 19566 */ 19567 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19568 ALL_ZONES, NULL, MATCH_IRE_TYPE); 19569 if (ire == NULL) { 19570 ip2dbg(("ip_source_routed: not next" 19571 " source route 0x%x\n", 19572 ntohl(dst))); 19573 return (B_FALSE); 19574 } 19575 ire_refrele(ire); 19576 off = opt[IPOPT_OFFSET]; 19577 off--; 19578 if (optlen < IP_ADDR_LEN || 19579 off > optlen - IP_ADDR_LEN) { 19580 /* End of source route */ 19581 ip1dbg(("ip_source_routed: end of SR\n")); 19582 return (B_FALSE); 19583 } 19584 return (B_TRUE); 19585 } 19586 } 19587 ip2dbg(("not source routed\n")); 19588 return (B_FALSE); 19589 } 19590 19591 /* 19592 * Check if the packet contains any source route. 19593 */ 19594 static boolean_t 19595 ip_source_route_included(ipha_t *ipha) 19596 { 19597 ipoptp_t opts; 19598 uint8_t optval; 19599 19600 if (IS_SIMPLE_IPH(ipha)) 19601 return (B_FALSE); 19602 for (optval = ipoptp_first(&opts, ipha); 19603 optval != IPOPT_EOL; 19604 optval = ipoptp_next(&opts)) { 19605 switch (optval) { 19606 case IPOPT_SSRR: 19607 case IPOPT_LSRR: 19608 return (B_TRUE); 19609 } 19610 } 19611 return (B_FALSE); 19612 } 19613 19614 /* 19615 * Called when the IRE expiration timer fires. 19616 */ 19617 /* ARGSUSED */ 19618 void 19619 ip_trash_timer_expire(void *args) 19620 { 19621 int flush_flag = 0; 19622 19623 /* 19624 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19625 * This lock makes sure that a new invocation of this function 19626 * that occurs due to an almost immediate timer firing will not 19627 * progress beyond this point until the current invocation is done 19628 */ 19629 mutex_enter(&ip_trash_timer_lock); 19630 ip_ire_expire_id = 0; 19631 mutex_exit(&ip_trash_timer_lock); 19632 19633 /* Periodic timer */ 19634 if (ip_ire_arp_time_elapsed >= ip_ire_arp_interval) { 19635 /* 19636 * Remove all IRE_CACHE entries since they might 19637 * contain arp information. 19638 */ 19639 flush_flag |= FLUSH_ARP_TIME; 19640 ip_ire_arp_time_elapsed = 0; 19641 IP_STAT(ip_ire_arp_timer_expired); 19642 } 19643 if (ip_ire_rd_time_elapsed >= ip_ire_redir_interval) { 19644 /* Remove all redirects */ 19645 flush_flag |= FLUSH_REDIRECT_TIME; 19646 ip_ire_rd_time_elapsed = 0; 19647 IP_STAT(ip_ire_redirect_timer_expired); 19648 } 19649 if (ip_ire_pmtu_time_elapsed >= ip_ire_pathmtu_interval) { 19650 /* Increase path mtu */ 19651 flush_flag |= FLUSH_MTU_TIME; 19652 ip_ire_pmtu_time_elapsed = 0; 19653 IP_STAT(ip_ire_pmtu_timer_expired); 19654 } 19655 19656 /* 19657 * Optimize for the case when there are no redirects in the 19658 * ftable, that is, no need to walk the ftable in that case. 19659 */ 19660 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19661 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19662 (char *)(uintptr_t)flush_flag, IP_MASK_TABLE_SIZE, 0, NULL, 19663 ip_cache_table_size, ip_cache_table, NULL, ALL_ZONES); 19664 } 19665 if ((flush_flag & FLUSH_REDIRECT_TIME) && ip_redirect_cnt > 0) { 19666 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19667 ire_expire, (char *)(uintptr_t)flush_flag, 19668 IP_MASK_TABLE_SIZE, 0, NULL, 0, NULL, NULL, ALL_ZONES); 19669 } 19670 if (flush_flag & FLUSH_MTU_TIME) { 19671 /* 19672 * Walk all IPv6 IRE's and update them 19673 * Note that ARP and redirect timers are not 19674 * needed since NUD handles stale entries. 19675 */ 19676 flush_flag = FLUSH_MTU_TIME; 19677 ire_walk_v6(ire_expire, (char *)(uintptr_t)flush_flag, 19678 ALL_ZONES); 19679 } 19680 19681 ip_ire_arp_time_elapsed += ip_timer_interval; 19682 ip_ire_rd_time_elapsed += ip_timer_interval; 19683 ip_ire_pmtu_time_elapsed += ip_timer_interval; 19684 19685 /* 19686 * Hold the lock to serialize timeout calls and prevent 19687 * stale values in ip_ire_expire_id. Otherwise it is possible 19688 * for the timer to fire and a new invocation of this function 19689 * to start before the return value of timeout has been stored 19690 * in ip_ire_expire_id by the current invocation. 19691 */ 19692 mutex_enter(&ip_trash_timer_lock); 19693 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 19694 MSEC_TO_TICK(ip_timer_interval)); 19695 mutex_exit(&ip_trash_timer_lock); 19696 } 19697 19698 /* 19699 * Called by the memory allocator subsystem directly, when the system 19700 * is running low on memory. 19701 */ 19702 /* ARGSUSED */ 19703 void 19704 ip_trash_ire_reclaim(void *args) 19705 { 19706 ire_cache_count_t icc; 19707 ire_cache_reclaim_t icr; 19708 ncc_cache_count_t ncc; 19709 nce_cache_reclaim_t ncr; 19710 uint_t delete_cnt; 19711 /* 19712 * Memory reclaim call back. 19713 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19714 * Then, with a target of freeing 1/Nth of IRE_CACHE 19715 * entries, determine what fraction to free for 19716 * each category of IRE_CACHE entries giving absolute priority 19717 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19718 * entry will be freed unless all offlink entries are freed). 19719 */ 19720 icc.icc_total = 0; 19721 icc.icc_unused = 0; 19722 icc.icc_offlink = 0; 19723 icc.icc_pmtu = 0; 19724 icc.icc_onlink = 0; 19725 ire_walk(ire_cache_count, (char *)&icc); 19726 19727 /* 19728 * Free NCEs for IPv6 like the onlink ires. 19729 */ 19730 ncc.ncc_total = 0; 19731 ncc.ncc_host = 0; 19732 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc); 19733 19734 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 19735 icc.icc_pmtu + icc.icc_onlink); 19736 delete_cnt = icc.icc_total/ip_ire_reclaim_fraction; 19737 IP_STAT(ip_trash_ire_reclaim_calls); 19738 if (delete_cnt == 0) 19739 return; 19740 IP_STAT(ip_trash_ire_reclaim_success); 19741 /* Always delete all unused offlink entries */ 19742 icr.icr_unused = 1; 19743 if (delete_cnt <= icc.icc_unused) { 19744 /* 19745 * Only need to free unused entries. In other words, 19746 * there are enough unused entries to free to meet our 19747 * target number of freed ire cache entries. 19748 */ 19749 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 19750 ncr.ncr_host = 0; 19751 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 19752 /* 19753 * Only need to free unused entries, plus a fraction of offlink 19754 * entries. It follows from the first if statement that 19755 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 19756 */ 19757 delete_cnt -= icc.icc_unused; 19758 /* Round up # deleted by truncating fraction */ 19759 icr.icr_offlink = icc.icc_offlink / delete_cnt; 19760 icr.icr_pmtu = icr.icr_onlink = 0; 19761 ncr.ncr_host = 0; 19762 } else if (delete_cnt <= 19763 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 19764 /* 19765 * Free all unused and offlink entries, plus a fraction of 19766 * pmtu entries. It follows from the previous if statement 19767 * that icc_pmtu is non-zero, and that 19768 * delete_cnt != icc_unused + icc_offlink. 19769 */ 19770 icr.icr_offlink = 1; 19771 delete_cnt -= icc.icc_unused + icc.icc_offlink; 19772 /* Round up # deleted by truncating fraction */ 19773 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 19774 icr.icr_onlink = 0; 19775 ncr.ncr_host = 0; 19776 } else { 19777 /* 19778 * Free all unused, offlink, and pmtu entries, plus a fraction 19779 * of onlink entries. If we're here, then we know that 19780 * icc_onlink is non-zero, and that 19781 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 19782 */ 19783 icr.icr_offlink = icr.icr_pmtu = 1; 19784 delete_cnt -= icc.icc_unused + icc.icc_offlink + 19785 icc.icc_pmtu; 19786 /* Round up # deleted by truncating fraction */ 19787 icr.icr_onlink = icc.icc_onlink / delete_cnt; 19788 /* Using the same delete fraction as for onlink IREs */ 19789 ncr.ncr_host = ncc.ncc_host / delete_cnt; 19790 } 19791 #ifdef DEBUG 19792 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 19793 "fractions %d/%d/%d/%d\n", 19794 icc.icc_total/ip_ire_reclaim_fraction, icc.icc_total, 19795 icc.icc_unused, icc.icc_offlink, 19796 icc.icc_pmtu, icc.icc_onlink, 19797 icr.icr_unused, icr.icr_offlink, 19798 icr.icr_pmtu, icr.icr_onlink)); 19799 #endif 19800 ire_walk(ire_cache_reclaim, (char *)&icr); 19801 if (ncr.ncr_host != 0) 19802 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 19803 (uchar_t *)&ncr); 19804 #ifdef DEBUG 19805 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 19806 icc.icc_pmtu = 0; icc.icc_onlink = 0; 19807 ire_walk(ire_cache_count, (char *)&icc); 19808 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 19809 icc.icc_total, icc.icc_unused, icc.icc_offlink, 19810 icc.icc_pmtu, icc.icc_onlink)); 19811 #endif 19812 } 19813 19814 /* 19815 * ip_unbind is called when a copy of an unbind request is received from the 19816 * upper level protocol. We remove this conn from any fanout hash list it is 19817 * on, and zero out the bind information. No reply is expected up above. 19818 */ 19819 mblk_t * 19820 ip_unbind(queue_t *q, mblk_t *mp) 19821 { 19822 conn_t *connp = Q_TO_CONN(q); 19823 19824 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 19825 19826 if (is_system_labeled() && connp->conn_anon_port) { 19827 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 19828 connp->conn_mlp_type, connp->conn_ulp, 19829 ntohs(connp->conn_lport), B_FALSE); 19830 connp->conn_anon_port = 0; 19831 } 19832 connp->conn_mlp_type = mlptSingle; 19833 19834 ipcl_hash_remove(connp); 19835 19836 ASSERT(mp->b_cont == NULL); 19837 /* 19838 * Convert mp into a T_OK_ACK 19839 */ 19840 mp = mi_tpi_ok_ack_alloc(mp); 19841 19842 /* 19843 * should not happen in practice... T_OK_ACK is smaller than the 19844 * original message. 19845 */ 19846 if (mp == NULL) 19847 return (NULL); 19848 19849 /* 19850 * Don't bzero the ports if its TCP since TCP still needs the 19851 * lport to remove it from its own bind hash. TCP will do the 19852 * cleanup. 19853 */ 19854 if (!IPCL_IS_TCP(connp)) 19855 bzero(&connp->u_port, sizeof (connp->u_port)); 19856 19857 return (mp); 19858 } 19859 19860 /* 19861 * Write side put procedure. Outbound data, IOCTLs, responses from 19862 * resolvers, etc, come down through here. 19863 * 19864 * arg2 is always a queue_t *. 19865 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 19866 * the zoneid. 19867 * When that queue is not an ill_t, then arg must be a conn_t pointer. 19868 */ 19869 void 19870 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 19871 { 19872 ip_output_options(arg, mp, arg2, caller, &zero_info); 19873 } 19874 19875 void 19876 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 19877 ip_opt_info_t *infop) 19878 { 19879 conn_t *connp = NULL; 19880 queue_t *q = (queue_t *)arg2; 19881 ipha_t *ipha; 19882 #define rptr ((uchar_t *)ipha) 19883 ire_t *ire = NULL; 19884 ire_t *sctp_ire = NULL; 19885 uint32_t v_hlen_tos_len; 19886 ipaddr_t dst; 19887 mblk_t *first_mp = NULL; 19888 boolean_t mctl_present; 19889 ipsec_out_t *io; 19890 int match_flags; 19891 ill_t *attach_ill = NULL; 19892 /* Bind to IPIF_NOFAILOVER ill etc. */ 19893 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 19894 ipif_t *dst_ipif; 19895 boolean_t multirt_need_resolve = B_FALSE; 19896 mblk_t *copy_mp = NULL; 19897 int err; 19898 zoneid_t zoneid; 19899 int adjust; 19900 uint16_t iplen; 19901 boolean_t need_decref = B_FALSE; 19902 boolean_t ignore_dontroute = B_FALSE; 19903 boolean_t ignore_nexthop = B_FALSE; 19904 boolean_t ip_nexthop = B_FALSE; 19905 ipaddr_t nexthop_addr; 19906 19907 #ifdef _BIG_ENDIAN 19908 #define V_HLEN (v_hlen_tos_len >> 24) 19909 #else 19910 #define V_HLEN (v_hlen_tos_len & 0xFF) 19911 #endif 19912 19913 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 19914 "ip_wput_start: q %p", q); 19915 19916 /* 19917 * ip_wput fast path 19918 */ 19919 19920 /* is packet from ARP ? */ 19921 if (q->q_next != NULL) { 19922 zoneid = (zoneid_t)(uintptr_t)arg; 19923 goto qnext; 19924 } 19925 19926 connp = (conn_t *)arg; 19927 ASSERT(connp != NULL); 19928 zoneid = connp->conn_zoneid; 19929 19930 /* is queue flow controlled? */ 19931 if ((q->q_first != NULL || connp->conn_draining) && 19932 (caller == IP_WPUT)) { 19933 ASSERT(!need_decref); 19934 (void) putq(q, mp); 19935 return; 19936 } 19937 19938 /* Multidata transmit? */ 19939 if (DB_TYPE(mp) == M_MULTIDATA) { 19940 /* 19941 * We should never get here, since all Multidata messages 19942 * originating from tcp should have been directed over to 19943 * tcp_multisend() in the first place. 19944 */ 19945 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 19946 freemsg(mp); 19947 return; 19948 } else if (DB_TYPE(mp) != M_DATA) 19949 goto notdata; 19950 19951 if (mp->b_flag & MSGHASREF) { 19952 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 19953 mp->b_flag &= ~MSGHASREF; 19954 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 19955 need_decref = B_TRUE; 19956 } 19957 ipha = (ipha_t *)mp->b_rptr; 19958 19959 /* is IP header non-aligned or mblk smaller than basic IP header */ 19960 #ifndef SAFETY_BEFORE_SPEED 19961 if (!OK_32PTR(rptr) || 19962 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 19963 goto hdrtoosmall; 19964 #endif 19965 19966 ASSERT(OK_32PTR(ipha)); 19967 19968 /* 19969 * This function assumes that mp points to an IPv4 packet. If it's the 19970 * wrong version, we'll catch it again in ip_output_v6. 19971 * 19972 * Note that this is *only* locally-generated output here, and never 19973 * forwarded data, and that we need to deal only with transports that 19974 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 19975 * label.) 19976 */ 19977 if (is_system_labeled() && 19978 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 19979 !connp->conn_ulp_labeled) { 19980 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 19981 connp->conn_mac_exempt); 19982 ipha = (ipha_t *)mp->b_rptr; 19983 if (err != 0) { 19984 first_mp = mp; 19985 if (err == EINVAL) 19986 goto icmp_parameter_problem; 19987 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 19988 goto discard_pkt; 19989 } 19990 iplen = ntohs(ipha->ipha_length) + adjust; 19991 ipha->ipha_length = htons(iplen); 19992 } 19993 19994 ASSERT(infop != NULL); 19995 19996 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 19997 /* 19998 * IP_PKTINFO ancillary option is present. 19999 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20000 * allows using address of any zone as the source address. 20001 */ 20002 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20003 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20004 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 20005 if (ire == NULL) 20006 goto drop_pkt; 20007 ire_refrele(ire); 20008 ire = NULL; 20009 } 20010 20011 /* 20012 * IP_DONTFAILOVER_IF and IP_XMIT_IF have precedence over 20013 * ill index passed in IP_PKTINFO. 20014 */ 20015 if (infop->ip_opt_ill_index != 0 && 20016 connp->conn_xmit_if_ill == NULL && 20017 connp->conn_nofailover_ill == NULL) { 20018 20019 xmit_ill = ill_lookup_on_ifindex( 20020 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL); 20021 20022 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20023 goto drop_pkt; 20024 /* 20025 * check that there is an ipif belonging 20026 * to our zone. IPCL_ZONEID is not used because 20027 * IP_ALLZONES option is valid only when the ill is 20028 * accessible from all zones i.e has a valid ipif in 20029 * all zones. 20030 */ 20031 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20032 goto drop_pkt; 20033 } 20034 } 20035 20036 /* 20037 * If there is a policy, try to attach an ipsec_out in 20038 * the front. At the end, first_mp either points to a 20039 * M_DATA message or IPSEC_OUT message linked to a 20040 * M_DATA message. We have to do it now as we might 20041 * lose the "conn" if we go through ip_newroute. 20042 */ 20043 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20044 if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL, 20045 ipha->ipha_protocol)) == NULL)) { 20046 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 20047 if (need_decref) 20048 CONN_DEC_REF(connp); 20049 return; 20050 } else { 20051 ASSERT(mp->b_datap->db_type == M_CTL); 20052 first_mp = mp; 20053 mp = mp->b_cont; 20054 mctl_present = B_TRUE; 20055 } 20056 } else { 20057 first_mp = mp; 20058 mctl_present = B_FALSE; 20059 } 20060 20061 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20062 20063 /* is wrong version or IP options present */ 20064 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20065 goto version_hdrlen_check; 20066 dst = ipha->ipha_dst; 20067 20068 if (connp->conn_nofailover_ill != NULL) { 20069 attach_ill = conn_get_held_ill(connp, 20070 &connp->conn_nofailover_ill, &err); 20071 if (err == ILL_LOOKUP_FAILED) { 20072 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 20073 if (need_decref) 20074 CONN_DEC_REF(connp); 20075 freemsg(first_mp); 20076 return; 20077 } 20078 } 20079 20080 20081 /* is packet multicast? */ 20082 if (CLASSD(dst)) 20083 goto multicast; 20084 20085 /* 20086 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20087 * takes precedence over conn_dontroute and conn_nexthop_set 20088 */ 20089 if (xmit_ill != NULL) { 20090 goto send_from_ill; 20091 } 20092 20093 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 20094 (connp->conn_nexthop_set)) { 20095 /* 20096 * If the destination is a broadcast or a loopback 20097 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 20098 * through the standard path. But in the case of local 20099 * destination only SO_DONTROUTE and IP_NEXTHOP go through 20100 * the standard path not IP_XMIT_IF. 20101 */ 20102 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 20103 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 20104 (ire->ire_type != IRE_LOOPBACK))) { 20105 if ((connp->conn_dontroute || 20106 connp->conn_nexthop_set) && (ire != NULL) && 20107 (ire->ire_type == IRE_LOCAL)) 20108 goto standard_path; 20109 20110 if (ire != NULL) { 20111 ire_refrele(ire); 20112 /* No more access to ire */ 20113 ire = NULL; 20114 } 20115 /* 20116 * bypass routing checks and go directly to 20117 * interface. 20118 */ 20119 if (connp->conn_dontroute) { 20120 goto dontroute; 20121 } else if (connp->conn_nexthop_set) { 20122 ip_nexthop = B_TRUE; 20123 nexthop_addr = connp->conn_nexthop_v4; 20124 goto send_from_ill; 20125 } 20126 20127 /* 20128 * If IP_XMIT_IF socket option is set, 20129 * then we allow unicast and multicast 20130 * packets to go through the ill. It is 20131 * quite possible that the destination 20132 * is not in the ire cache table and we 20133 * do not want to go to ip_newroute() 20134 * instead we call ip_newroute_ipif. 20135 */ 20136 xmit_ill = conn_get_held_ill(connp, 20137 &connp->conn_xmit_if_ill, &err); 20138 if (err == ILL_LOOKUP_FAILED) { 20139 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 20140 if (attach_ill != NULL) 20141 ill_refrele(attach_ill); 20142 if (need_decref) 20143 CONN_DEC_REF(connp); 20144 freemsg(first_mp); 20145 return; 20146 } 20147 goto send_from_ill; 20148 } 20149 standard_path: 20150 /* Must be a broadcast, a loopback or a local ire */ 20151 if (ire != NULL) { 20152 ire_refrele(ire); 20153 /* No more access to ire */ 20154 ire = NULL; 20155 } 20156 } 20157 20158 if (attach_ill != NULL) 20159 goto send_from_ill; 20160 20161 /* 20162 * We cache IRE_CACHEs to avoid lookups. We don't do 20163 * this for the tcp global queue and listen end point 20164 * as it does not really have a real destination to 20165 * talk to. This is also true for SCTP. 20166 */ 20167 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20168 !connp->conn_fully_bound) { 20169 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 20170 if (ire == NULL) 20171 goto noirefound; 20172 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20173 "ip_wput_end: q %p (%S)", q, "end"); 20174 20175 /* 20176 * Check if the ire has the RTF_MULTIRT flag, inherited 20177 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20178 */ 20179 if (ire->ire_flags & RTF_MULTIRT) { 20180 20181 /* 20182 * Force the TTL of multirouted packets if required. 20183 * The TTL of such packets is bounded by the 20184 * ip_multirt_ttl ndd variable. 20185 */ 20186 if ((ip_multirt_ttl > 0) && 20187 (ipha->ipha_ttl > ip_multirt_ttl)) { 20188 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20189 "(was %d), dst 0x%08x\n", 20190 ip_multirt_ttl, ipha->ipha_ttl, 20191 ntohl(ire->ire_addr))); 20192 ipha->ipha_ttl = ip_multirt_ttl; 20193 } 20194 /* 20195 * We look at this point if there are pending 20196 * unresolved routes. ire_multirt_resolvable() 20197 * checks in O(n) that all IRE_OFFSUBNET ire 20198 * entries for the packet's destination and 20199 * flagged RTF_MULTIRT are currently resolved. 20200 * If some remain unresolved, we make a copy 20201 * of the current message. It will be used 20202 * to initiate additional route resolutions. 20203 */ 20204 multirt_need_resolve = 20205 ire_multirt_need_resolve(ire->ire_addr, 20206 MBLK_GETLABEL(first_mp)); 20207 ip2dbg(("ip_wput[TCP]: ire %p, " 20208 "multirt_need_resolve %d, first_mp %p\n", 20209 (void *)ire, multirt_need_resolve, 20210 (void *)first_mp)); 20211 if (multirt_need_resolve) { 20212 copy_mp = copymsg(first_mp); 20213 if (copy_mp != NULL) { 20214 MULTIRT_DEBUG_TAG(copy_mp); 20215 } 20216 } 20217 } 20218 20219 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20220 20221 /* 20222 * Try to resolve another multiroute if 20223 * ire_multirt_need_resolve() deemed it necessary. 20224 */ 20225 if (copy_mp != NULL) { 20226 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 20227 } 20228 if (need_decref) 20229 CONN_DEC_REF(connp); 20230 return; 20231 } 20232 20233 /* 20234 * Access to conn_ire_cache. (protected by conn_lock) 20235 * 20236 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20237 * the ire bucket lock here to check for CONDEMNED as it is okay to 20238 * send a packet or two with the IRE_CACHE that is going away. 20239 * Access to the ire requires an ire refhold on the ire prior to 20240 * its use since an interface unplumb thread may delete the cached 20241 * ire and release the refhold at any time. 20242 * 20243 * Caching an ire in the conn_ire_cache 20244 * 20245 * o Caching an ire pointer in the conn requires a strict check for 20246 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20247 * ires before cleaning up the conns. So the caching of an ire pointer 20248 * in the conn is done after making sure under the bucket lock that the 20249 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20250 * caching an ire after the unplumb thread has cleaned up the conn. 20251 * If the conn does not send a packet subsequently the unplumb thread 20252 * will be hanging waiting for the ire count to drop to zero. 20253 * 20254 * o We also need to atomically test for a null conn_ire_cache and 20255 * set the conn_ire_cache under the the protection of the conn_lock 20256 * to avoid races among concurrent threads trying to simultaneously 20257 * cache an ire in the conn_ire_cache. 20258 */ 20259 mutex_enter(&connp->conn_lock); 20260 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20261 20262 if (ire != NULL && ire->ire_addr == dst && 20263 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20264 20265 IRE_REFHOLD(ire); 20266 mutex_exit(&connp->conn_lock); 20267 20268 } else { 20269 boolean_t cached = B_FALSE; 20270 connp->conn_ire_cache = NULL; 20271 mutex_exit(&connp->conn_lock); 20272 /* Release the old ire */ 20273 if (ire != NULL && sctp_ire == NULL) 20274 IRE_REFRELE_NOTR(ire); 20275 20276 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 20277 if (ire == NULL) 20278 goto noirefound; 20279 IRE_REFHOLD_NOTR(ire); 20280 20281 mutex_enter(&connp->conn_lock); 20282 if (!(connp->conn_state_flags & CONN_CLOSING) && 20283 connp->conn_ire_cache == NULL) { 20284 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20285 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20286 connp->conn_ire_cache = ire; 20287 cached = B_TRUE; 20288 } 20289 rw_exit(&ire->ire_bucket->irb_lock); 20290 } 20291 mutex_exit(&connp->conn_lock); 20292 20293 /* 20294 * We can continue to use the ire but since it was 20295 * not cached, we should drop the extra reference. 20296 */ 20297 if (!cached) 20298 IRE_REFRELE_NOTR(ire); 20299 } 20300 20301 20302 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20303 "ip_wput_end: q %p (%S)", q, "end"); 20304 20305 /* 20306 * Check if the ire has the RTF_MULTIRT flag, inherited 20307 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20308 */ 20309 if (ire->ire_flags & RTF_MULTIRT) { 20310 20311 /* 20312 * Force the TTL of multirouted packets if required. 20313 * The TTL of such packets is bounded by the 20314 * ip_multirt_ttl ndd variable. 20315 */ 20316 if ((ip_multirt_ttl > 0) && 20317 (ipha->ipha_ttl > ip_multirt_ttl)) { 20318 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20319 "(was %d), dst 0x%08x\n", 20320 ip_multirt_ttl, ipha->ipha_ttl, 20321 ntohl(ire->ire_addr))); 20322 ipha->ipha_ttl = ip_multirt_ttl; 20323 } 20324 20325 /* 20326 * At this point, we check to see if there are any pending 20327 * unresolved routes. ire_multirt_resolvable() 20328 * checks in O(n) that all IRE_OFFSUBNET ire 20329 * entries for the packet's destination and 20330 * flagged RTF_MULTIRT are currently resolved. 20331 * If some remain unresolved, we make a copy 20332 * of the current message. It will be used 20333 * to initiate additional route resolutions. 20334 */ 20335 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20336 MBLK_GETLABEL(first_mp)); 20337 ip2dbg(("ip_wput[not TCP]: ire %p, " 20338 "multirt_need_resolve %d, first_mp %p\n", 20339 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20340 if (multirt_need_resolve) { 20341 copy_mp = copymsg(first_mp); 20342 if (copy_mp != NULL) { 20343 MULTIRT_DEBUG_TAG(copy_mp); 20344 } 20345 } 20346 } 20347 20348 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20349 20350 /* 20351 * Try to resolve another multiroute if 20352 * ire_multirt_resolvable() deemed it necessary 20353 */ 20354 if (copy_mp != NULL) { 20355 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 20356 } 20357 if (need_decref) 20358 CONN_DEC_REF(connp); 20359 return; 20360 20361 qnext: 20362 /* 20363 * Upper Level Protocols pass down complete IP datagrams 20364 * as M_DATA messages. Everything else is a sideshow. 20365 * 20366 * 1) We could be re-entering ip_wput because of ip_neworute 20367 * in which case we could have a IPSEC_OUT message. We 20368 * need to pass through ip_wput like other datagrams and 20369 * hence cannot branch to ip_wput_nondata. 20370 * 20371 * 2) ARP, AH, ESP, and other clients who are on the module 20372 * instance of IP stream, give us something to deal with. 20373 * We will handle AH and ESP here and rest in ip_wput_nondata. 20374 * 20375 * 3) ICMP replies also could come here. 20376 */ 20377 if (DB_TYPE(mp) != M_DATA) { 20378 notdata: 20379 if (DB_TYPE(mp) == M_CTL) { 20380 /* 20381 * M_CTL messages are used by ARP, AH and ESP to 20382 * communicate with IP. We deal with IPSEC_IN and 20383 * IPSEC_OUT here. ip_wput_nondata handles other 20384 * cases. 20385 */ 20386 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20387 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20388 first_mp = mp->b_cont; 20389 first_mp->b_flag &= ~MSGHASREF; 20390 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20391 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20392 CONN_DEC_REF(connp); 20393 connp = NULL; 20394 } 20395 if (ii->ipsec_info_type == IPSEC_IN) { 20396 /* 20397 * Either this message goes back to 20398 * IPSEC for further processing or to 20399 * ULP after policy checks. 20400 */ 20401 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20402 return; 20403 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20404 io = (ipsec_out_t *)ii; 20405 if (io->ipsec_out_proc_begin) { 20406 /* 20407 * IPSEC processing has already started. 20408 * Complete it. 20409 * IPQoS notes: We don't care what is 20410 * in ipsec_out_ill_index since this 20411 * won't be processed for IPQoS policies 20412 * in ipsec_out_process. 20413 */ 20414 ipsec_out_process(q, mp, NULL, 20415 io->ipsec_out_ill_index); 20416 return; 20417 } else { 20418 connp = (q->q_next != NULL) ? 20419 NULL : Q_TO_CONN(q); 20420 first_mp = mp; 20421 mp = mp->b_cont; 20422 mctl_present = B_TRUE; 20423 } 20424 zoneid = io->ipsec_out_zoneid; 20425 ASSERT(zoneid != ALL_ZONES); 20426 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20427 /* 20428 * It's an IPsec control message requesting 20429 * an SADB update to be sent to the IPsec 20430 * hardware acceleration capable ills. 20431 */ 20432 ipsec_ctl_t *ipsec_ctl = 20433 (ipsec_ctl_t *)mp->b_rptr; 20434 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20435 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20436 mblk_t *cmp = mp->b_cont; 20437 20438 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20439 ASSERT(cmp != NULL); 20440 20441 freeb(mp); 20442 ill_ipsec_capab_send_all(satype, cmp, sa); 20443 return; 20444 } else { 20445 /* 20446 * This must be ARP or special TSOL signaling. 20447 */ 20448 ip_wput_nondata(NULL, q, mp, NULL); 20449 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20450 "ip_wput_end: q %p (%S)", q, "nondata"); 20451 return; 20452 } 20453 } else { 20454 /* 20455 * This must be non-(ARP/AH/ESP) messages. 20456 */ 20457 ASSERT(!need_decref); 20458 ip_wput_nondata(NULL, q, mp, NULL); 20459 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20460 "ip_wput_end: q %p (%S)", q, "nondata"); 20461 return; 20462 } 20463 } else { 20464 first_mp = mp; 20465 mctl_present = B_FALSE; 20466 } 20467 20468 ASSERT(first_mp != NULL); 20469 /* 20470 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20471 * to make sure that this packet goes out on the same interface it 20472 * came in. We handle that here. 20473 */ 20474 if (mctl_present) { 20475 uint_t ifindex; 20476 20477 io = (ipsec_out_t *)first_mp->b_rptr; 20478 if (io->ipsec_out_attach_if || 20479 io->ipsec_out_xmit_if || 20480 io->ipsec_out_ip_nexthop) { 20481 ill_t *ill; 20482 20483 /* 20484 * We may have lost the conn context if we are 20485 * coming here from ip_newroute(). Copy the 20486 * nexthop information. 20487 */ 20488 if (io->ipsec_out_ip_nexthop) { 20489 ip_nexthop = B_TRUE; 20490 nexthop_addr = io->ipsec_out_nexthop_addr; 20491 20492 ipha = (ipha_t *)mp->b_rptr; 20493 dst = ipha->ipha_dst; 20494 goto send_from_ill; 20495 } else { 20496 ASSERT(io->ipsec_out_ill_index != 0); 20497 ifindex = io->ipsec_out_ill_index; 20498 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 20499 NULL, NULL, NULL, NULL); 20500 /* 20501 * ipsec_out_xmit_if bit is used to tell 20502 * ip_wput to use the ill to send outgoing data 20503 * as we have no conn when data comes from ICMP 20504 * error msg routines. Currently this feature is 20505 * only used by ip_mrtun_forward routine. 20506 */ 20507 if (io->ipsec_out_xmit_if) { 20508 xmit_ill = ill; 20509 if (xmit_ill == NULL) { 20510 ip1dbg(("ip_output:bad ifindex " 20511 "for xmit_ill %d\n", 20512 ifindex)); 20513 freemsg(first_mp); 20514 BUMP_MIB(&ip_mib, 20515 ipIfStatsOutDiscards); 20516 ASSERT(!need_decref); 20517 return; 20518 } 20519 /* Free up the ipsec_out_t mblk */ 20520 ASSERT(first_mp->b_cont == mp); 20521 first_mp->b_cont = NULL; 20522 freeb(first_mp); 20523 /* Just send the IP header+ICMP+data */ 20524 first_mp = mp; 20525 ipha = (ipha_t *)mp->b_rptr; 20526 dst = ipha->ipha_dst; 20527 goto send_from_ill; 20528 } else { 20529 attach_ill = ill; 20530 } 20531 20532 if (attach_ill == NULL) { 20533 ASSERT(xmit_ill == NULL); 20534 ip1dbg(("ip_output: bad ifindex for " 20535 "(BIND TO IPIF_NOFAILOVER) %d\n", 20536 ifindex)); 20537 freemsg(first_mp); 20538 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 20539 ASSERT(!need_decref); 20540 return; 20541 } 20542 } 20543 } 20544 } 20545 20546 ASSERT(xmit_ill == NULL); 20547 20548 /* We have a complete IP datagram heading outbound. */ 20549 ipha = (ipha_t *)mp->b_rptr; 20550 20551 #ifndef SPEED_BEFORE_SAFETY 20552 /* 20553 * Make sure we have a full-word aligned message and that at least 20554 * a simple IP header is accessible in the first message. If not, 20555 * try a pullup. 20556 */ 20557 if (!OK_32PTR(rptr) || 20558 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20559 hdrtoosmall: 20560 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20561 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20562 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20563 if (first_mp == NULL) 20564 first_mp = mp; 20565 goto discard_pkt; 20566 } 20567 20568 /* This function assumes that mp points to an IPv4 packet. */ 20569 if (is_system_labeled() && q->q_next == NULL && 20570 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20571 !connp->conn_ulp_labeled) { 20572 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20573 &adjust, connp->conn_mac_exempt); 20574 ipha = (ipha_t *)mp->b_rptr; 20575 if (first_mp != NULL) 20576 first_mp->b_cont = mp; 20577 if (err != 0) { 20578 if (first_mp == NULL) 20579 first_mp = mp; 20580 if (err == EINVAL) 20581 goto icmp_parameter_problem; 20582 ip2dbg(("ip_wput: label check failed (%d)\n", 20583 err)); 20584 goto discard_pkt; 20585 } 20586 iplen = ntohs(ipha->ipha_length) + adjust; 20587 ipha->ipha_length = htons(iplen); 20588 } 20589 20590 ipha = (ipha_t *)mp->b_rptr; 20591 if (first_mp == NULL) { 20592 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20593 /* 20594 * If we got here because of "goto hdrtoosmall" 20595 * We need to attach a IPSEC_OUT. 20596 */ 20597 if (connp->conn_out_enforce_policy) { 20598 if (((mp = ipsec_attach_ipsec_out(mp, connp, 20599 NULL, ipha->ipha_protocol)) == NULL)) { 20600 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 20601 if (need_decref) 20602 CONN_DEC_REF(connp); 20603 return; 20604 } else { 20605 ASSERT(mp->b_datap->db_type == M_CTL); 20606 first_mp = mp; 20607 mp = mp->b_cont; 20608 mctl_present = B_TRUE; 20609 } 20610 } else { 20611 first_mp = mp; 20612 mctl_present = B_FALSE; 20613 } 20614 } 20615 } 20616 #endif 20617 20618 /* Most of the code below is written for speed, not readability */ 20619 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20620 20621 /* 20622 * If ip_newroute() fails, we're going to need a full 20623 * header for the icmp wraparound. 20624 */ 20625 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20626 uint_t v_hlen; 20627 version_hdrlen_check: 20628 ASSERT(first_mp != NULL); 20629 v_hlen = V_HLEN; 20630 /* 20631 * siphon off IPv6 packets coming down from transport 20632 * layer modules here. 20633 * Note: high-order bit carries NUD reachability confirmation 20634 */ 20635 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20636 /* 20637 * XXX implement a IPv4 and IPv6 packet counter per 20638 * conn and switch when ratio exceeds e.g. 10:1 20639 */ 20640 #ifdef notyet 20641 if (q->q_next == NULL) /* Avoid ill queue */ 20642 ip_setqinfo(RD(q), B_TRUE, B_TRUE); 20643 #endif 20644 BUMP_MIB(&ip_mib, ipIfStatsOutWrongIPVersion); 20645 ASSERT(xmit_ill == NULL); 20646 if (attach_ill != NULL) 20647 ill_refrele(attach_ill); 20648 if (need_decref) 20649 mp->b_flag |= MSGHASREF; 20650 (void) ip_output_v6(arg, first_mp, arg2, caller); 20651 return; 20652 } 20653 20654 if ((v_hlen >> 4) != IP_VERSION) { 20655 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20656 "ip_wput_end: q %p (%S)", q, "badvers"); 20657 goto discard_pkt; 20658 } 20659 /* 20660 * Is the header length at least 20 bytes? 20661 * 20662 * Are there enough bytes accessible in the header? If 20663 * not, try a pullup. 20664 */ 20665 v_hlen &= 0xF; 20666 v_hlen <<= 2; 20667 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20668 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20669 "ip_wput_end: q %p (%S)", q, "badlen"); 20670 goto discard_pkt; 20671 } 20672 if (v_hlen > (mp->b_wptr - rptr)) { 20673 if (!pullupmsg(mp, v_hlen)) { 20674 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20675 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20676 goto discard_pkt; 20677 } 20678 ipha = (ipha_t *)mp->b_rptr; 20679 } 20680 /* 20681 * Move first entry from any source route into ipha_dst and 20682 * verify the options 20683 */ 20684 if (ip_wput_options(q, first_mp, ipha, mctl_present, zoneid)) { 20685 ASSERT(xmit_ill == NULL); 20686 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 20687 if (attach_ill != NULL) 20688 ill_refrele(attach_ill); 20689 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20690 "ip_wput_end: q %p (%S)", q, "badopts"); 20691 if (need_decref) 20692 CONN_DEC_REF(connp); 20693 return; 20694 } 20695 } 20696 dst = ipha->ipha_dst; 20697 20698 /* 20699 * Try to get an IRE_CACHE for the destination address. If we can't, 20700 * we have to run the packet through ip_newroute which will take 20701 * the appropriate action to arrange for an IRE_CACHE, such as querying 20702 * a resolver, or assigning a default gateway, etc. 20703 */ 20704 if (CLASSD(dst)) { 20705 ipif_t *ipif; 20706 uint32_t setsrc = 0; 20707 20708 multicast: 20709 ASSERT(first_mp != NULL); 20710 ip2dbg(("ip_wput: CLASSD\n")); 20711 if (connp == NULL) { 20712 /* 20713 * Use the first good ipif on the ill. 20714 * XXX Should this ever happen? (Appears 20715 * to show up with just ppp and no ethernet due 20716 * to in.rdisc.) 20717 * However, ire_send should be able to 20718 * call ip_wput_ire directly. 20719 * 20720 * XXX Also, this can happen for ICMP and other packets 20721 * with multicast source addresses. Perhaps we should 20722 * fix things so that we drop the packet in question, 20723 * but for now, just run with it. 20724 */ 20725 ill_t *ill = (ill_t *)q->q_ptr; 20726 20727 /* 20728 * Don't honor attach_if for this case. If ill 20729 * is part of the group, ipif could belong to 20730 * any ill and we cannot maintain attach_ill 20731 * and ipif_ill same anymore and the assert 20732 * below would fail. 20733 */ 20734 if (mctl_present && io->ipsec_out_attach_if) { 20735 io->ipsec_out_ill_index = 0; 20736 io->ipsec_out_attach_if = B_FALSE; 20737 ASSERT(attach_ill != NULL); 20738 ill_refrele(attach_ill); 20739 attach_ill = NULL; 20740 } 20741 20742 ASSERT(attach_ill == NULL); 20743 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20744 if (ipif == NULL) { 20745 if (need_decref) 20746 CONN_DEC_REF(connp); 20747 freemsg(first_mp); 20748 return; 20749 } 20750 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20751 ntohl(dst), ill->ill_name)); 20752 } else { 20753 /* 20754 * The order of precedence is IP_XMIT_IF, IP_PKTINFO 20755 * and IP_MULTICAST_IF. 20756 * Block comment above this function explains the 20757 * locking mechanism used here 20758 */ 20759 if (xmit_ill == NULL) { 20760 xmit_ill = conn_get_held_ill(connp, 20761 &connp->conn_xmit_if_ill, &err); 20762 if (err == ILL_LOOKUP_FAILED) { 20763 ip1dbg(("ip_wput: No ill for " 20764 "IP_XMIT_IF\n")); 20765 BUMP_MIB(&ip_mib, ipIfStatsOutNoRoutes); 20766 goto drop_pkt; 20767 } 20768 } 20769 20770 if (xmit_ill == NULL) { 20771 ipif = conn_get_held_ipif(connp, 20772 &connp->conn_multicast_ipif, &err); 20773 if (err == IPIF_LOOKUP_FAILED) { 20774 ip1dbg(("ip_wput: No ipif for " 20775 "multicast\n")); 20776 BUMP_MIB(&ip_mib, ipIfStatsOutNoRoutes); 20777 goto drop_pkt; 20778 } 20779 } 20780 if (xmit_ill != NULL) { 20781 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20782 if (ipif == NULL) { 20783 ip1dbg(("ip_wput: No ipif for " 20784 "IP_XMIT_IF\n")); 20785 BUMP_MIB(&ip_mib, ipIfStatsOutNoRoutes); 20786 goto drop_pkt; 20787 } 20788 } else if (ipif == NULL || ipif->ipif_isv6) { 20789 /* 20790 * We must do this ipif determination here 20791 * else we could pass through ip_newroute 20792 * and come back here without the conn context. 20793 * 20794 * Note: we do late binding i.e. we bind to 20795 * the interface when the first packet is sent. 20796 * For performance reasons we do not rebind on 20797 * each packet but keep the binding until the 20798 * next IP_MULTICAST_IF option. 20799 * 20800 * conn_multicast_{ipif,ill} are shared between 20801 * IPv4 and IPv6 and AF_INET6 sockets can 20802 * send both IPv4 and IPv6 packets. Hence 20803 * we have to check that "isv6" matches above. 20804 */ 20805 if (ipif != NULL) 20806 ipif_refrele(ipif); 20807 ipif = ipif_lookup_group(dst, zoneid); 20808 if (ipif == NULL) { 20809 ip1dbg(("ip_wput: No ipif for " 20810 "multicast\n")); 20811 BUMP_MIB(&ip_mib, ipIfStatsOutNoRoutes); 20812 goto drop_pkt; 20813 } 20814 err = conn_set_held_ipif(connp, 20815 &connp->conn_multicast_ipif, ipif); 20816 if (err == IPIF_LOOKUP_FAILED) { 20817 ipif_refrele(ipif); 20818 ip1dbg(("ip_wput: No ipif for " 20819 "multicast\n")); 20820 BUMP_MIB(&ip_mib, ipIfStatsOutNoRoutes); 20821 goto drop_pkt; 20822 } 20823 } 20824 } 20825 ASSERT(!ipif->ipif_isv6); 20826 /* 20827 * As we may lose the conn by the time we reach ip_wput_ire, 20828 * we copy conn_multicast_loop and conn_dontroute on to an 20829 * ipsec_out. In case if this datagram goes out secure, 20830 * we need the ill_index also. Copy that also into the 20831 * ipsec_out. 20832 */ 20833 if (mctl_present) { 20834 io = (ipsec_out_t *)first_mp->b_rptr; 20835 ASSERT(first_mp->b_datap->db_type == M_CTL); 20836 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20837 } else { 20838 ASSERT(mp == first_mp); 20839 if ((first_mp = allocb(sizeof (ipsec_info_t), 20840 BPRI_HI)) == NULL) { 20841 ipif_refrele(ipif); 20842 first_mp = mp; 20843 goto discard_pkt; 20844 } 20845 first_mp->b_datap->db_type = M_CTL; 20846 first_mp->b_wptr += sizeof (ipsec_info_t); 20847 /* ipsec_out_secure is B_FALSE now */ 20848 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 20849 io = (ipsec_out_t *)first_mp->b_rptr; 20850 io->ipsec_out_type = IPSEC_OUT; 20851 io->ipsec_out_len = sizeof (ipsec_out_t); 20852 io->ipsec_out_use_global_policy = B_TRUE; 20853 first_mp->b_cont = mp; 20854 mctl_present = B_TRUE; 20855 } 20856 if (attach_ill != NULL) { 20857 ASSERT(attach_ill == ipif->ipif_ill); 20858 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20859 20860 /* 20861 * Check if we need an ire that will not be 20862 * looked up by anybody else i.e. HIDDEN. 20863 */ 20864 if (ill_is_probeonly(attach_ill)) { 20865 match_flags |= MATCH_IRE_MARK_HIDDEN; 20866 } 20867 io->ipsec_out_ill_index = 20868 attach_ill->ill_phyint->phyint_ifindex; 20869 io->ipsec_out_attach_if = B_TRUE; 20870 } else { 20871 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 20872 io->ipsec_out_ill_index = 20873 ipif->ipif_ill->ill_phyint->phyint_ifindex; 20874 } 20875 if (connp != NULL) { 20876 io->ipsec_out_multicast_loop = 20877 connp->conn_multicast_loop; 20878 io->ipsec_out_dontroute = connp->conn_dontroute; 20879 io->ipsec_out_zoneid = connp->conn_zoneid; 20880 } 20881 /* 20882 * If the application uses IP_MULTICAST_IF with 20883 * different logical addresses of the same ILL, we 20884 * need to make sure that the soruce address of 20885 * the packet matches the logical IP address used 20886 * in the option. We do it by initializing ipha_src 20887 * here. This should keep IPSEC also happy as 20888 * when we return from IPSEC processing, we don't 20889 * have to worry about getting the right address on 20890 * the packet. Thus it is sufficient to look for 20891 * IRE_CACHE using MATCH_IRE_ILL rathen than 20892 * MATCH_IRE_IPIF. 20893 * 20894 * NOTE : We need to do it for non-secure case also as 20895 * this might go out secure if there is a global policy 20896 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 20897 * address, the source should be initialized already and 20898 * hence we won't be initializing here. 20899 * 20900 * As we do not have the ire yet, it is possible that 20901 * we set the source address here and then later discover 20902 * that the ire implies the source address to be assigned 20903 * through the RTF_SETSRC flag. 20904 * In that case, the setsrc variable will remind us 20905 * that overwritting the source address by the one 20906 * of the RTF_SETSRC-flagged ire is allowed. 20907 */ 20908 if (ipha->ipha_src == INADDR_ANY && 20909 (connp == NULL || !connp->conn_unspec_src)) { 20910 ipha->ipha_src = ipif->ipif_src_addr; 20911 setsrc = RTF_SETSRC; 20912 } 20913 /* 20914 * Find an IRE which matches the destination and the outgoing 20915 * queue (i.e. the outgoing interface.) 20916 * For loopback use a unicast IP address for 20917 * the ire lookup. 20918 */ 20919 if (ipif->ipif_ill->ill_phyint->phyint_flags & 20920 PHYI_LOOPBACK) { 20921 dst = ipif->ipif_lcl_addr; 20922 } 20923 /* 20924 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 20925 * We don't need to lookup ire in ctable as the packet 20926 * needs to be sent to the destination through the specified 20927 * ill irrespective of ires in the cache table. 20928 */ 20929 ire = NULL; 20930 if (xmit_ill == NULL) { 20931 ire = ire_ctable_lookup(dst, 0, 0, ipif, 20932 zoneid, MBLK_GETLABEL(mp), match_flags); 20933 } 20934 20935 /* 20936 * refrele attach_ill as its not needed anymore. 20937 */ 20938 if (attach_ill != NULL) { 20939 ill_refrele(attach_ill); 20940 attach_ill = NULL; 20941 } 20942 20943 if (ire == NULL) { 20944 /* 20945 * Multicast loopback and multicast forwarding is 20946 * done in ip_wput_ire. 20947 * 20948 * Mark this packet to make it be delivered to 20949 * ip_wput_ire after the new ire has been 20950 * created. 20951 * 20952 * The call to ip_newroute_ipif takes into account 20953 * the setsrc reminder. In any case, we take care 20954 * of the RTF_MULTIRT flag. 20955 */ 20956 mp->b_prev = mp->b_next = NULL; 20957 if (xmit_ill == NULL || 20958 xmit_ill->ill_ipif_up_count > 0) { 20959 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 20960 setsrc | RTF_MULTIRT, zoneid, infop); 20961 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20962 "ip_wput_end: q %p (%S)", q, "noire"); 20963 } else { 20964 freemsg(first_mp); 20965 } 20966 ipif_refrele(ipif); 20967 if (xmit_ill != NULL) 20968 ill_refrele(xmit_ill); 20969 if (need_decref) 20970 CONN_DEC_REF(connp); 20971 return; 20972 } 20973 20974 ipif_refrele(ipif); 20975 ipif = NULL; 20976 ASSERT(xmit_ill == NULL); 20977 20978 /* 20979 * Honor the RTF_SETSRC flag for multicast packets, 20980 * if allowed by the setsrc reminder. 20981 */ 20982 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 20983 ipha->ipha_src = ire->ire_src_addr; 20984 } 20985 20986 /* 20987 * Unconditionally force the TTL to 1 for 20988 * multirouted multicast packets: 20989 * multirouted multicast should not cross 20990 * multicast routers. 20991 */ 20992 if (ire->ire_flags & RTF_MULTIRT) { 20993 if (ipha->ipha_ttl > 1) { 20994 ip2dbg(("ip_wput: forcing multicast " 20995 "multirt TTL to 1 (was %d), dst 0x%08x\n", 20996 ipha->ipha_ttl, ntohl(ire->ire_addr))); 20997 ipha->ipha_ttl = 1; 20998 } 20999 } 21000 } else { 21001 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 21002 if ((ire != NULL) && (ire->ire_type & 21003 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21004 ignore_dontroute = B_TRUE; 21005 ignore_nexthop = B_TRUE; 21006 } 21007 if (ire != NULL) { 21008 ire_refrele(ire); 21009 ire = NULL; 21010 } 21011 /* 21012 * Guard against coming in from arp in which case conn is NULL. 21013 * Also guard against non M_DATA with dontroute set but 21014 * destined to local, loopback or broadcast addresses. 21015 */ 21016 if (connp != NULL && connp->conn_dontroute && 21017 !ignore_dontroute) { 21018 dontroute: 21019 /* 21020 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21021 * routing protocols from seeing false direct 21022 * connectivity. 21023 */ 21024 ipha->ipha_ttl = 1; 21025 /* 21026 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 21027 * along with SO_DONTROUTE, higher precedence is 21028 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 21029 */ 21030 if (connp->conn_xmit_if_ill == NULL) { 21031 /* If suitable ipif not found, drop packet */ 21032 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid); 21033 if (dst_ipif == NULL) { 21034 ip1dbg(("ip_wput: no route for " 21035 "dst using SO_DONTROUTE\n")); 21036 BUMP_MIB(&ip_mib, ipIfStatsOutNoRoutes); 21037 mp->b_prev = mp->b_next = NULL; 21038 if (first_mp == NULL) 21039 first_mp = mp; 21040 goto drop_pkt; 21041 } else { 21042 /* 21043 * If suitable ipif has been found, set 21044 * xmit_ill to the corresponding 21045 * ipif_ill because we'll be following 21046 * the IP_XMIT_IF logic. 21047 */ 21048 ASSERT(xmit_ill == NULL); 21049 xmit_ill = dst_ipif->ipif_ill; 21050 mutex_enter(&xmit_ill->ill_lock); 21051 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21052 mutex_exit(&xmit_ill->ill_lock); 21053 xmit_ill = NULL; 21054 ipif_refrele(dst_ipif); 21055 ip1dbg(("ip_wput: no route for" 21056 " dst using" 21057 " SO_DONTROUTE\n")); 21058 BUMP_MIB(&ip_mib, 21059 ipIfStatsOutNoRoutes); 21060 mp->b_prev = mp->b_next = NULL; 21061 if (first_mp == NULL) 21062 first_mp = mp; 21063 goto drop_pkt; 21064 } 21065 ill_refhold_locked(xmit_ill); 21066 mutex_exit(&xmit_ill->ill_lock); 21067 ipif_refrele(dst_ipif); 21068 } 21069 } 21070 21071 } 21072 /* 21073 * If we are bound to IPIF_NOFAILOVER address, look for 21074 * an IRE_CACHE matching the ill. 21075 */ 21076 send_from_ill: 21077 if (attach_ill != NULL) { 21078 ipif_t *attach_ipif; 21079 21080 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21081 21082 /* 21083 * Check if we need an ire that will not be 21084 * looked up by anybody else i.e. HIDDEN. 21085 */ 21086 if (ill_is_probeonly(attach_ill)) { 21087 match_flags |= MATCH_IRE_MARK_HIDDEN; 21088 } 21089 21090 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21091 if (attach_ipif == NULL) { 21092 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21093 goto discard_pkt; 21094 } 21095 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21096 zoneid, MBLK_GETLABEL(mp), match_flags); 21097 ipif_refrele(attach_ipif); 21098 } else if (xmit_ill != NULL || (connp != NULL && 21099 connp->conn_xmit_if_ill != NULL)) { 21100 /* 21101 * Mark this packet as originated locally 21102 */ 21103 mp->b_prev = mp->b_next = NULL; 21104 /* 21105 * xmit_ill could be NULL if SO_DONTROUTE 21106 * is also set. 21107 */ 21108 if (xmit_ill == NULL) { 21109 xmit_ill = conn_get_held_ill(connp, 21110 &connp->conn_xmit_if_ill, &err); 21111 if (err == ILL_LOOKUP_FAILED) { 21112 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 21113 if (need_decref) 21114 CONN_DEC_REF(connp); 21115 freemsg(first_mp); 21116 return; 21117 } 21118 if (xmit_ill == NULL) { 21119 if (connp->conn_dontroute) 21120 goto dontroute; 21121 goto send_from_ill; 21122 } 21123 } 21124 /* 21125 * Could be SO_DONTROUTE case also. 21126 * check at least one interface is UP as 21127 * specified by this ILL 21128 */ 21129 if (xmit_ill->ill_ipif_up_count > 0) { 21130 ipif_t *ipif; 21131 21132 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21133 if (ipif == NULL) { 21134 ip1dbg(("ip_output: " 21135 "xmit_ill NULL ipif\n")); 21136 goto drop_pkt; 21137 } 21138 /* 21139 * Look for a ire that is part of the group, 21140 * if found use it else call ip_newroute_ipif. 21141 * IPCL_ZONEID is not used for matching because 21142 * IP_ALLZONES option is valid only when the 21143 * ill is accessible from all zones i.e has a 21144 * valid ipif in all zones. 21145 */ 21146 match_flags = MATCH_IRE_ILL_GROUP | 21147 MATCH_IRE_SECATTR; 21148 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21149 MBLK_GETLABEL(mp), match_flags); 21150 /* 21151 * If an ire exists use it or else create 21152 * an ire but don't add it to the cache. 21153 * Adding an ire may cause issues with 21154 * asymmetric routing. 21155 * In case of multiroute always act as if 21156 * ire does not exist. 21157 */ 21158 if (ire == NULL || 21159 ire->ire_flags & RTF_MULTIRT) { 21160 if (ire != NULL) 21161 ire_refrele(ire); 21162 ip_newroute_ipif(q, first_mp, ipif, 21163 dst, connp, 0, zoneid, infop); 21164 ipif_refrele(ipif); 21165 ip1dbg(("ip_wput: ip_unicast_if\n")); 21166 ill_refrele(xmit_ill); 21167 if (need_decref) 21168 CONN_DEC_REF(connp); 21169 return; 21170 } 21171 ipif_refrele(ipif); 21172 } else { 21173 goto drop_pkt; 21174 } 21175 } else if (ip_nexthop || (connp != NULL && 21176 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21177 if (!ip_nexthop) { 21178 ip_nexthop = B_TRUE; 21179 nexthop_addr = connp->conn_nexthop_v4; 21180 } 21181 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21182 MATCH_IRE_GW; 21183 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21184 NULL, zoneid, MBLK_GETLABEL(mp), match_flags); 21185 } else { 21186 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 21187 } 21188 if (!ire) { 21189 /* 21190 * Make sure we don't load spread if this 21191 * is IPIF_NOFAILOVER case. 21192 */ 21193 if ((attach_ill != NULL) || 21194 (ip_nexthop && !ignore_nexthop)) { 21195 if (mctl_present) { 21196 io = (ipsec_out_t *)first_mp->b_rptr; 21197 ASSERT(first_mp->b_datap->db_type == 21198 M_CTL); 21199 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21200 } else { 21201 ASSERT(mp == first_mp); 21202 first_mp = allocb( 21203 sizeof (ipsec_info_t), BPRI_HI); 21204 if (first_mp == NULL) { 21205 first_mp = mp; 21206 goto discard_pkt; 21207 } 21208 first_mp->b_datap->db_type = M_CTL; 21209 first_mp->b_wptr += 21210 sizeof (ipsec_info_t); 21211 /* ipsec_out_secure is B_FALSE now */ 21212 bzero(first_mp->b_rptr, 21213 sizeof (ipsec_info_t)); 21214 io = (ipsec_out_t *)first_mp->b_rptr; 21215 io->ipsec_out_type = IPSEC_OUT; 21216 io->ipsec_out_len = 21217 sizeof (ipsec_out_t); 21218 io->ipsec_out_use_global_policy = 21219 B_TRUE; 21220 first_mp->b_cont = mp; 21221 mctl_present = B_TRUE; 21222 } 21223 if (attach_ill != NULL) { 21224 io->ipsec_out_ill_index = attach_ill-> 21225 ill_phyint->phyint_ifindex; 21226 io->ipsec_out_attach_if = B_TRUE; 21227 } else { 21228 io->ipsec_out_ip_nexthop = ip_nexthop; 21229 io->ipsec_out_nexthop_addr = 21230 nexthop_addr; 21231 } 21232 } 21233 noirefound: 21234 /* 21235 * Mark this packet as having originated on 21236 * this machine. This will be noted in 21237 * ire_add_then_send, which needs to know 21238 * whether to run it back through ip_wput or 21239 * ip_rput following successful resolution. 21240 */ 21241 mp->b_prev = NULL; 21242 mp->b_next = NULL; 21243 ip_newroute(q, first_mp, dst, NULL, connp, zoneid); 21244 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21245 "ip_wput_end: q %p (%S)", q, "newroute"); 21246 if (attach_ill != NULL) 21247 ill_refrele(attach_ill); 21248 if (xmit_ill != NULL) 21249 ill_refrele(xmit_ill); 21250 if (need_decref) 21251 CONN_DEC_REF(connp); 21252 return; 21253 } 21254 } 21255 21256 /* We now know where we are going with it. */ 21257 21258 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21259 "ip_wput_end: q %p (%S)", q, "end"); 21260 21261 /* 21262 * Check if the ire has the RTF_MULTIRT flag, inherited 21263 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21264 */ 21265 if (ire->ire_flags & RTF_MULTIRT) { 21266 /* 21267 * Force the TTL of multirouted packets if required. 21268 * The TTL of such packets is bounded by the 21269 * ip_multirt_ttl ndd variable. 21270 */ 21271 if ((ip_multirt_ttl > 0) && 21272 (ipha->ipha_ttl > ip_multirt_ttl)) { 21273 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21274 "(was %d), dst 0x%08x\n", 21275 ip_multirt_ttl, ipha->ipha_ttl, 21276 ntohl(ire->ire_addr))); 21277 ipha->ipha_ttl = ip_multirt_ttl; 21278 } 21279 /* 21280 * At this point, we check to see if there are any pending 21281 * unresolved routes. ire_multirt_resolvable() 21282 * checks in O(n) that all IRE_OFFSUBNET ire 21283 * entries for the packet's destination and 21284 * flagged RTF_MULTIRT are currently resolved. 21285 * If some remain unresolved, we make a copy 21286 * of the current message. It will be used 21287 * to initiate additional route resolutions. 21288 */ 21289 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21290 MBLK_GETLABEL(first_mp)); 21291 ip2dbg(("ip_wput[noirefound]: ire %p, " 21292 "multirt_need_resolve %d, first_mp %p\n", 21293 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21294 if (multirt_need_resolve) { 21295 copy_mp = copymsg(first_mp); 21296 if (copy_mp != NULL) { 21297 MULTIRT_DEBUG_TAG(copy_mp); 21298 } 21299 } 21300 } 21301 21302 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21303 /* 21304 * Try to resolve another multiroute if 21305 * ire_multirt_resolvable() deemed it necessary. 21306 * At this point, we need to distinguish 21307 * multicasts from other packets. For multicasts, 21308 * we call ip_newroute_ipif() and request that both 21309 * multirouting and setsrc flags are checked. 21310 */ 21311 if (copy_mp != NULL) { 21312 if (CLASSD(dst)) { 21313 ipif_t *ipif = ipif_lookup_group(dst, zoneid); 21314 if (ipif) { 21315 ASSERT(infop->ip_opt_ill_index == 0); 21316 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21317 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21318 ipif_refrele(ipif); 21319 } else { 21320 MULTIRT_DEBUG_UNTAG(copy_mp); 21321 freemsg(copy_mp); 21322 copy_mp = NULL; 21323 } 21324 } else { 21325 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 21326 } 21327 } 21328 if (attach_ill != NULL) 21329 ill_refrele(attach_ill); 21330 if (xmit_ill != NULL) 21331 ill_refrele(xmit_ill); 21332 if (need_decref) 21333 CONN_DEC_REF(connp); 21334 return; 21335 21336 icmp_parameter_problem: 21337 /* could not have originated externally */ 21338 ASSERT(mp->b_prev == NULL); 21339 if (ip_hdr_complete(ipha, zoneid) == 0) { 21340 BUMP_MIB(&ip_mib, ipIfStatsOutNoRoutes); 21341 /* it's the IP header length that's in trouble */ 21342 icmp_param_problem(q, first_mp, 0, zoneid); 21343 first_mp = NULL; 21344 } 21345 21346 discard_pkt: 21347 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 21348 drop_pkt: 21349 ip1dbg(("ip_wput: dropped packet\n")); 21350 if (ire != NULL) 21351 ire_refrele(ire); 21352 if (need_decref) 21353 CONN_DEC_REF(connp); 21354 freemsg(first_mp); 21355 if (attach_ill != NULL) 21356 ill_refrele(attach_ill); 21357 if (xmit_ill != NULL) 21358 ill_refrele(xmit_ill); 21359 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21360 "ip_wput_end: q %p (%S)", q, "droppkt"); 21361 } 21362 21363 /* 21364 * If this is a conn_t queue, then we pass in the conn. This includes the 21365 * zoneid. 21366 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21367 * in which case we use the global zoneid since those are all part of 21368 * the global zone. 21369 */ 21370 void 21371 ip_wput(queue_t *q, mblk_t *mp) 21372 { 21373 if (CONN_Q(q)) 21374 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21375 else 21376 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21377 } 21378 21379 /* 21380 * 21381 * The following rules must be observed when accessing any ipif or ill 21382 * that has been cached in the conn. Typically conn_nofailover_ill, 21383 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 21384 * 21385 * Access: The ipif or ill pointed to from the conn can be accessed under 21386 * the protection of the conn_lock or after it has been refheld under the 21387 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21388 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21389 * The reason for this is that a concurrent unplumb could actually be 21390 * cleaning up these cached pointers by walking the conns and might have 21391 * finished cleaning up the conn in question. The macros check that an 21392 * unplumb has not yet started on the ipif or ill. 21393 * 21394 * Caching: An ipif or ill pointer may be cached in the conn only after 21395 * making sure that an unplumb has not started. So the caching is done 21396 * while holding both the conn_lock and the ill_lock and after using the 21397 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21398 * flag before starting the cleanup of conns. 21399 * 21400 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21401 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21402 * or a reference to the ipif or a reference to an ire that references the 21403 * ipif. An ipif does not change its ill except for failover/failback. Since 21404 * failover/failback happens only after bringing down the ipif and making sure 21405 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21406 * the above holds. 21407 */ 21408 ipif_t * 21409 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21410 { 21411 ipif_t *ipif; 21412 ill_t *ill; 21413 21414 *err = 0; 21415 rw_enter(&ill_g_lock, RW_READER); 21416 mutex_enter(&connp->conn_lock); 21417 ipif = *ipifp; 21418 if (ipif != NULL) { 21419 ill = ipif->ipif_ill; 21420 mutex_enter(&ill->ill_lock); 21421 if (IPIF_CAN_LOOKUP(ipif)) { 21422 ipif_refhold_locked(ipif); 21423 mutex_exit(&ill->ill_lock); 21424 mutex_exit(&connp->conn_lock); 21425 rw_exit(&ill_g_lock); 21426 return (ipif); 21427 } else { 21428 *err = IPIF_LOOKUP_FAILED; 21429 } 21430 mutex_exit(&ill->ill_lock); 21431 } 21432 mutex_exit(&connp->conn_lock); 21433 rw_exit(&ill_g_lock); 21434 return (NULL); 21435 } 21436 21437 ill_t * 21438 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21439 { 21440 ill_t *ill; 21441 21442 *err = 0; 21443 mutex_enter(&connp->conn_lock); 21444 ill = *illp; 21445 if (ill != NULL) { 21446 mutex_enter(&ill->ill_lock); 21447 if (ILL_CAN_LOOKUP(ill)) { 21448 ill_refhold_locked(ill); 21449 mutex_exit(&ill->ill_lock); 21450 mutex_exit(&connp->conn_lock); 21451 return (ill); 21452 } else { 21453 *err = ILL_LOOKUP_FAILED; 21454 } 21455 mutex_exit(&ill->ill_lock); 21456 } 21457 mutex_exit(&connp->conn_lock); 21458 return (NULL); 21459 } 21460 21461 static int 21462 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21463 { 21464 ill_t *ill; 21465 21466 ill = ipif->ipif_ill; 21467 mutex_enter(&connp->conn_lock); 21468 mutex_enter(&ill->ill_lock); 21469 if (IPIF_CAN_LOOKUP(ipif)) { 21470 *ipifp = ipif; 21471 mutex_exit(&ill->ill_lock); 21472 mutex_exit(&connp->conn_lock); 21473 return (0); 21474 } 21475 mutex_exit(&ill->ill_lock); 21476 mutex_exit(&connp->conn_lock); 21477 return (IPIF_LOOKUP_FAILED); 21478 } 21479 21480 /* 21481 * This is called if the outbound datagram needs fragmentation. 21482 * 21483 * NOTE : This function does not ire_refrele the ire argument passed in. 21484 */ 21485 static void 21486 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid) 21487 { 21488 ipha_t *ipha; 21489 mblk_t *mp; 21490 uint32_t v_hlen_tos_len; 21491 uint32_t max_frag; 21492 uint32_t frag_flag; 21493 boolean_t dont_use; 21494 21495 if (ipsec_mp->b_datap->db_type == M_CTL) { 21496 mp = ipsec_mp->b_cont; 21497 } else { 21498 mp = ipsec_mp; 21499 } 21500 21501 ipha = (ipha_t *)mp->b_rptr; 21502 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21503 21504 #ifdef _BIG_ENDIAN 21505 #define V_HLEN (v_hlen_tos_len >> 24) 21506 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21507 #else 21508 #define V_HLEN (v_hlen_tos_len & 0xFF) 21509 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21510 #endif 21511 21512 #ifndef SPEED_BEFORE_SAFETY 21513 /* 21514 * Check that ipha_length is consistent with 21515 * the mblk length 21516 */ 21517 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21518 ip0dbg(("Packet length mismatch: %d, %ld\n", 21519 LENGTH, msgdsize(mp))); 21520 freemsg(ipsec_mp); 21521 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21522 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21523 "packet length mismatch"); 21524 return; 21525 } 21526 #endif 21527 /* 21528 * Don't use frag_flag if pre-built packet or source 21529 * routed or if multicast (since multicast packets do not solicit 21530 * ICMP "packet too big" messages). Get the values of 21531 * max_frag and frag_flag atomically by acquiring the 21532 * ire_lock. 21533 */ 21534 mutex_enter(&ire->ire_lock); 21535 max_frag = ire->ire_max_frag; 21536 frag_flag = ire->ire_frag_flag; 21537 mutex_exit(&ire->ire_lock); 21538 21539 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21540 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21541 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21542 21543 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21544 (dont_use ? 0 : frag_flag), zoneid); 21545 } 21546 21547 /* 21548 * Used for deciding the MSS size for the upper layer. Thus 21549 * we need to check the outbound policy values in the conn. 21550 */ 21551 int 21552 conn_ipsec_length(conn_t *connp) 21553 { 21554 ipsec_latch_t *ipl; 21555 21556 ipl = connp->conn_latch; 21557 if (ipl == NULL) 21558 return (0); 21559 21560 if (ipl->ipl_out_policy == NULL) 21561 return (0); 21562 21563 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21564 } 21565 21566 /* 21567 * Returns an estimate of the IPSEC headers size. This is used if 21568 * we don't want to call into IPSEC to get the exact size. 21569 */ 21570 int 21571 ipsec_out_extra_length(mblk_t *ipsec_mp) 21572 { 21573 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21574 ipsec_action_t *a; 21575 21576 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21577 if (!io->ipsec_out_secure) 21578 return (0); 21579 21580 a = io->ipsec_out_act; 21581 21582 if (a == NULL) { 21583 ASSERT(io->ipsec_out_policy != NULL); 21584 a = io->ipsec_out_policy->ipsp_act; 21585 } 21586 ASSERT(a != NULL); 21587 21588 return (a->ipa_ovhd); 21589 } 21590 21591 /* 21592 * Returns an estimate of the IPSEC headers size. This is used if 21593 * we don't want to call into IPSEC to get the exact size. 21594 */ 21595 int 21596 ipsec_in_extra_length(mblk_t *ipsec_mp) 21597 { 21598 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21599 ipsec_action_t *a; 21600 21601 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21602 21603 a = ii->ipsec_in_action; 21604 return (a == NULL ? 0 : a->ipa_ovhd); 21605 } 21606 21607 /* 21608 * If there are any source route options, return the true final 21609 * destination. Otherwise, return the destination. 21610 */ 21611 ipaddr_t 21612 ip_get_dst(ipha_t *ipha) 21613 { 21614 ipoptp_t opts; 21615 uchar_t *opt; 21616 uint8_t optval; 21617 uint8_t optlen; 21618 ipaddr_t dst; 21619 uint32_t off; 21620 21621 dst = ipha->ipha_dst; 21622 21623 if (IS_SIMPLE_IPH(ipha)) 21624 return (dst); 21625 21626 for (optval = ipoptp_first(&opts, ipha); 21627 optval != IPOPT_EOL; 21628 optval = ipoptp_next(&opts)) { 21629 opt = opts.ipoptp_cur; 21630 optlen = opts.ipoptp_len; 21631 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21632 switch (optval) { 21633 case IPOPT_SSRR: 21634 case IPOPT_LSRR: 21635 off = opt[IPOPT_OFFSET]; 21636 /* 21637 * If one of the conditions is true, it means 21638 * end of options and dst already has the right 21639 * value. 21640 */ 21641 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21642 off = optlen - IP_ADDR_LEN; 21643 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21644 } 21645 return (dst); 21646 default: 21647 break; 21648 } 21649 } 21650 21651 return (dst); 21652 } 21653 21654 mblk_t * 21655 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21656 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21657 { 21658 ipsec_out_t *io; 21659 mblk_t *first_mp; 21660 boolean_t policy_present; 21661 21662 first_mp = mp; 21663 if (mp->b_datap->db_type == M_CTL) { 21664 io = (ipsec_out_t *)first_mp->b_rptr; 21665 /* 21666 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21667 * 21668 * 1) There is per-socket policy (including cached global 21669 * policy) or a policy on the IP-in-IP tunnel. 21670 * 2) There is no per-socket policy, but it is 21671 * a multicast packet that needs to go out 21672 * on a specific interface. This is the case 21673 * where (ip_wput and ip_wput_multicast) attaches 21674 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21675 * 21676 * In case (2) we check with global policy to 21677 * see if there is a match and set the ill_index 21678 * appropriately so that we can lookup the ire 21679 * properly in ip_wput_ipsec_out. 21680 */ 21681 21682 /* 21683 * ipsec_out_use_global_policy is set to B_FALSE 21684 * in ipsec_in_to_out(). Refer to that function for 21685 * details. 21686 */ 21687 if ((io->ipsec_out_latch == NULL) && 21688 (io->ipsec_out_use_global_policy)) { 21689 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21690 ire, connp, unspec_src, zoneid)); 21691 } 21692 if (!io->ipsec_out_secure) { 21693 /* 21694 * If this is not a secure packet, drop 21695 * the IPSEC_OUT mp and treat it as a clear 21696 * packet. This happens when we are sending 21697 * a ICMP reply back to a clear packet. See 21698 * ipsec_in_to_out() for details. 21699 */ 21700 mp = first_mp->b_cont; 21701 freeb(first_mp); 21702 } 21703 return (mp); 21704 } 21705 /* 21706 * See whether we need to attach a global policy here. We 21707 * don't depend on the conn (as it could be null) for deciding 21708 * what policy this datagram should go through because it 21709 * should have happened in ip_wput if there was some 21710 * policy. This normally happens for connections which are not 21711 * fully bound preventing us from caching policies in 21712 * ip_bind. Packets coming from the TCP listener/global queue 21713 * - which are non-hard_bound - could also be affected by 21714 * applying policy here. 21715 * 21716 * If this packet is coming from tcp global queue or listener, 21717 * we will be applying policy here. This may not be *right* 21718 * if these packets are coming from the detached connection as 21719 * it could have gone in clear before. This happens only if a 21720 * TCP connection started when there is no policy and somebody 21721 * added policy before it became detached. Thus packets of the 21722 * detached connection could go out secure and the other end 21723 * would drop it because it will be expecting in clear. The 21724 * converse is not true i.e if somebody starts a TCP 21725 * connection and deletes the policy, all the packets will 21726 * still go out with the policy that existed before deleting 21727 * because ip_unbind sends up policy information which is used 21728 * by TCP on subsequent ip_wputs. The right solution is to fix 21729 * TCP to attach a dummy IPSEC_OUT and set 21730 * ipsec_out_use_global_policy to B_FALSE. As this might 21731 * affect performance for normal cases, we are not doing it. 21732 * Thus, set policy before starting any TCP connections. 21733 * 21734 * NOTE - We might apply policy even for a hard bound connection 21735 * - for which we cached policy in ip_bind - if somebody added 21736 * global policy after we inherited the policy in ip_bind. 21737 * This means that the packets that were going out in clear 21738 * previously would start going secure and hence get dropped 21739 * on the other side. To fix this, TCP attaches a dummy 21740 * ipsec_out and make sure that we don't apply global policy. 21741 */ 21742 if (ipha != NULL) 21743 policy_present = ipsec_outbound_v4_policy_present; 21744 else 21745 policy_present = ipsec_outbound_v6_policy_present; 21746 if (!policy_present) 21747 return (mp); 21748 21749 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21750 zoneid)); 21751 } 21752 21753 ire_t * 21754 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21755 { 21756 ipaddr_t addr; 21757 ire_t *save_ire; 21758 irb_t *irb; 21759 ill_group_t *illgrp; 21760 int err; 21761 21762 save_ire = ire; 21763 addr = ire->ire_addr; 21764 21765 ASSERT(ire->ire_type == IRE_BROADCAST); 21766 21767 illgrp = connp->conn_outgoing_ill->ill_group; 21768 if (illgrp == NULL) { 21769 *conn_outgoing_ill = conn_get_held_ill(connp, 21770 &connp->conn_outgoing_ill, &err); 21771 if (err == ILL_LOOKUP_FAILED) { 21772 ire_refrele(save_ire); 21773 return (NULL); 21774 } 21775 return (save_ire); 21776 } 21777 /* 21778 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21779 * If it is part of the group, we need to send on the ire 21780 * that has been cleared of IRE_MARK_NORECV and that belongs 21781 * to this group. This is okay as IP_BOUND_IF really means 21782 * any ill in the group. We depend on the fact that the 21783 * first ire in the group is always cleared of IRE_MARK_NORECV 21784 * if such an ire exists. This is possible only if you have 21785 * at least one ill in the group that has not failed. 21786 * 21787 * First get to the ire that matches the address and group. 21788 * 21789 * We don't look for an ire with a matching zoneid because a given zone 21790 * won't always have broadcast ires on all ills in the group. 21791 */ 21792 irb = ire->ire_bucket; 21793 rw_enter(&irb->irb_lock, RW_READER); 21794 if (ire->ire_marks & IRE_MARK_NORECV) { 21795 /* 21796 * If the current zone only has an ire broadcast for this 21797 * address marked NORECV, the ire we want is ahead in the 21798 * bucket, so we look it up deliberately ignoring the zoneid. 21799 */ 21800 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21801 if (ire->ire_addr != addr) 21802 continue; 21803 /* skip over deleted ires */ 21804 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21805 continue; 21806 } 21807 } 21808 while (ire != NULL) { 21809 /* 21810 * If a new interface is coming up, we could end up 21811 * seeing the loopback ire and the non-loopback ire 21812 * may not have been added yet. So check for ire_stq 21813 */ 21814 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 21815 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 21816 break; 21817 } 21818 ire = ire->ire_next; 21819 } 21820 if (ire != NULL && ire->ire_addr == addr && 21821 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 21822 IRE_REFHOLD(ire); 21823 rw_exit(&irb->irb_lock); 21824 ire_refrele(save_ire); 21825 *conn_outgoing_ill = ire_to_ill(ire); 21826 /* 21827 * Refhold the ill to make the conn_outgoing_ill 21828 * independent of the ire. ip_wput_ire goes in a loop 21829 * and may refrele the ire. Since we have an ire at this 21830 * point we don't need to use ILL_CAN_LOOKUP on the ill. 21831 */ 21832 ill_refhold(*conn_outgoing_ill); 21833 return (ire); 21834 } 21835 rw_exit(&irb->irb_lock); 21836 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 21837 /* 21838 * If we can't find a suitable ire, return the original ire. 21839 */ 21840 return (save_ire); 21841 } 21842 21843 /* 21844 * This function does the ire_refrele of the ire passed in as the 21845 * argument. As this function looks up more ires i.e broadcast ires, 21846 * it needs to REFRELE them. Currently, for simplicity we don't 21847 * differentiate the one passed in and looked up here. We always 21848 * REFRELE. 21849 * IPQoS Notes: 21850 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21851 * IPSec packets are done in ipsec_out_process. 21852 * 21853 */ 21854 void 21855 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 21856 zoneid_t zoneid) 21857 { 21858 ipha_t *ipha; 21859 #define rptr ((uchar_t *)ipha) 21860 queue_t *stq; 21861 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21862 uint32_t v_hlen_tos_len; 21863 uint32_t ttl_protocol; 21864 ipaddr_t src; 21865 ipaddr_t dst; 21866 uint32_t cksum; 21867 ipaddr_t orig_src; 21868 ire_t *ire1; 21869 mblk_t *next_mp; 21870 uint_t hlen; 21871 uint16_t *up; 21872 uint32_t max_frag = ire->ire_max_frag; 21873 ill_t *ill = ire_to_ill(ire); 21874 int clusterwide; 21875 uint16_t ip_hdr_included; /* IP header included by ULP? */ 21876 int ipsec_len; 21877 mblk_t *first_mp; 21878 ipsec_out_t *io; 21879 boolean_t conn_dontroute; /* conn value for multicast */ 21880 boolean_t conn_multicast_loop; /* conn value for multicast */ 21881 boolean_t multicast_forward; /* Should we forward ? */ 21882 boolean_t unspec_src; 21883 ill_t *conn_outgoing_ill = NULL; 21884 ill_t *ire_ill; 21885 ill_t *ire1_ill; 21886 ill_t *out_ill; 21887 uint32_t ill_index = 0; 21888 boolean_t multirt_send = B_FALSE; 21889 int err; 21890 ipxmit_state_t pktxmit_state; 21891 21892 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 21893 "ip_wput_ire_start: q %p", q); 21894 21895 multicast_forward = B_FALSE; 21896 unspec_src = (connp != NULL && connp->conn_unspec_src); 21897 21898 if (ire->ire_flags & RTF_MULTIRT) { 21899 /* 21900 * Multirouting case. The bucket where ire is stored 21901 * probably holds other RTF_MULTIRT flagged ire 21902 * to the destination. In this call to ip_wput_ire, 21903 * we attempt to send the packet through all 21904 * those ires. Thus, we first ensure that ire is the 21905 * first RTF_MULTIRT ire in the bucket, 21906 * before walking the ire list. 21907 */ 21908 ire_t *first_ire; 21909 irb_t *irb = ire->ire_bucket; 21910 ASSERT(irb != NULL); 21911 21912 /* Make sure we do not omit any multiroute ire. */ 21913 IRB_REFHOLD(irb); 21914 for (first_ire = irb->irb_ire; 21915 first_ire != NULL; 21916 first_ire = first_ire->ire_next) { 21917 if ((first_ire->ire_flags & RTF_MULTIRT) && 21918 (first_ire->ire_addr == ire->ire_addr) && 21919 !(first_ire->ire_marks & 21920 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 21921 break; 21922 } 21923 21924 if ((first_ire != NULL) && (first_ire != ire)) { 21925 IRE_REFHOLD(first_ire); 21926 ire_refrele(ire); 21927 ire = first_ire; 21928 ill = ire_to_ill(ire); 21929 } 21930 IRB_REFRELE(irb); 21931 } 21932 21933 /* 21934 * conn_outgoing_ill is used only in the broadcast loop. 21935 * for performance we don't grab the mutexs in the fastpath 21936 */ 21937 if ((connp != NULL) && 21938 (connp->conn_xmit_if_ill == NULL) && 21939 (ire->ire_type == IRE_BROADCAST) && 21940 ((connp->conn_nofailover_ill != NULL) || 21941 (connp->conn_outgoing_ill != NULL))) { 21942 /* 21943 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 21944 * option. So, see if this endpoint is bound to a 21945 * IPIF_NOFAILOVER address. If so, honor it. This implies 21946 * that if the interface is failed, we will still send 21947 * the packet on the same ill which is what we want. 21948 */ 21949 conn_outgoing_ill = conn_get_held_ill(connp, 21950 &connp->conn_nofailover_ill, &err); 21951 if (err == ILL_LOOKUP_FAILED) { 21952 ire_refrele(ire); 21953 freemsg(mp); 21954 return; 21955 } 21956 if (conn_outgoing_ill == NULL) { 21957 /* 21958 * Choose a good ill in the group to send the 21959 * packets on. 21960 */ 21961 ire = conn_set_outgoing_ill(connp, ire, 21962 &conn_outgoing_ill); 21963 if (ire == NULL) { 21964 freemsg(mp); 21965 return; 21966 } 21967 } 21968 } 21969 21970 if (mp->b_datap->db_type != M_CTL) { 21971 ipha = (ipha_t *)mp->b_rptr; 21972 } else { 21973 io = (ipsec_out_t *)mp->b_rptr; 21974 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21975 ASSERT(zoneid == io->ipsec_out_zoneid); 21976 ASSERT(zoneid != ALL_ZONES); 21977 ipha = (ipha_t *)mp->b_cont->b_rptr; 21978 dst = ipha->ipha_dst; 21979 /* 21980 * For the multicast case, ipsec_out carries conn_dontroute and 21981 * conn_multicast_loop as conn may not be available here. We 21982 * need this for multicast loopback and forwarding which is done 21983 * later in the code. 21984 */ 21985 if (CLASSD(dst)) { 21986 conn_dontroute = io->ipsec_out_dontroute; 21987 conn_multicast_loop = io->ipsec_out_multicast_loop; 21988 /* 21989 * If conn_dontroute is not set or conn_multicast_loop 21990 * is set, we need to do forwarding/loopback. For 21991 * datagrams from ip_wput_multicast, conn_dontroute is 21992 * set to B_TRUE and conn_multicast_loop is set to 21993 * B_FALSE so that we neither do forwarding nor 21994 * loopback. 21995 */ 21996 if (!conn_dontroute || conn_multicast_loop) 21997 multicast_forward = B_TRUE; 21998 } 21999 } 22000 22001 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22002 ire->ire_zoneid != ALL_ZONES) { 22003 /* 22004 * When a zone sends a packet to another zone, we try to deliver 22005 * the packet under the same conditions as if the destination 22006 * was a real node on the network. To do so, we look for a 22007 * matching route in the forwarding table. 22008 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22009 * ip_newroute() does. 22010 * Note that IRE_LOCAL are special, since they are used 22011 * when the zoneid doesn't match in some cases. This means that 22012 * we need to handle ipha_src differently since ire_src_addr 22013 * belongs to the receiving zone instead of the sending zone. 22014 * When ip_restrict_interzone_loopback is set, then 22015 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22016 * for loopback between zones when the logical "Ethernet" would 22017 * have looped them back. 22018 */ 22019 ire_t *src_ire; 22020 22021 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22022 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22023 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE)); 22024 if (src_ire != NULL && 22025 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22026 (!ip_restrict_interzone_loopback || 22027 ire_local_same_ill_group(ire, src_ire))) { 22028 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22029 ipha->ipha_src = src_ire->ire_src_addr; 22030 ire_refrele(src_ire); 22031 } else { 22032 ire_refrele(ire); 22033 if (conn_outgoing_ill != NULL) 22034 ill_refrele(conn_outgoing_ill); 22035 BUMP_MIB(&ip_mib, ipIfStatsOutNoRoutes); 22036 if (src_ire != NULL) { 22037 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22038 ire_refrele(src_ire); 22039 freemsg(mp); 22040 return; 22041 } 22042 ire_refrele(src_ire); 22043 } 22044 if (ip_hdr_complete(ipha, zoneid)) { 22045 /* Failed */ 22046 freemsg(mp); 22047 return; 22048 } 22049 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid); 22050 return; 22051 } 22052 } 22053 22054 if (mp->b_datap->db_type == M_CTL || 22055 ipsec_outbound_v4_policy_present) { 22056 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22057 unspec_src, zoneid); 22058 if (mp == NULL) { 22059 ire_refrele(ire); 22060 if (conn_outgoing_ill != NULL) 22061 ill_refrele(conn_outgoing_ill); 22062 return; 22063 } 22064 } 22065 22066 first_mp = mp; 22067 ipsec_len = 0; 22068 22069 if (first_mp->b_datap->db_type == M_CTL) { 22070 io = (ipsec_out_t *)first_mp->b_rptr; 22071 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22072 mp = first_mp->b_cont; 22073 ipsec_len = ipsec_out_extra_length(first_mp); 22074 ASSERT(ipsec_len >= 0); 22075 /* We already picked up the zoneid from the M_CTL above */ 22076 ASSERT(zoneid == io->ipsec_out_zoneid); 22077 ASSERT(zoneid != ALL_ZONES); 22078 22079 /* 22080 * Drop M_CTL here if IPsec processing is not needed. 22081 * (Non-IPsec use of M_CTL extracted any information it 22082 * needed above). 22083 */ 22084 if (ipsec_len == 0) { 22085 freeb(first_mp); 22086 first_mp = mp; 22087 } 22088 } 22089 22090 /* 22091 * Fast path for ip_wput_ire 22092 */ 22093 22094 ipha = (ipha_t *)mp->b_rptr; 22095 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22096 dst = ipha->ipha_dst; 22097 22098 /* 22099 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22100 * if the socket is a SOCK_RAW type. The transport checksum should 22101 * be provided in the pre-built packet, so we don't need to compute it. 22102 * Also, other application set flags, like DF, should not be altered. 22103 * Other transport MUST pass down zero. 22104 */ 22105 ip_hdr_included = ipha->ipha_ident; 22106 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22107 22108 if (CLASSD(dst)) { 22109 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22110 ntohl(dst), 22111 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22112 ntohl(ire->ire_addr))); 22113 } 22114 22115 /* Macros to extract header fields from data already in registers */ 22116 #ifdef _BIG_ENDIAN 22117 #define V_HLEN (v_hlen_tos_len >> 24) 22118 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22119 #define PROTO (ttl_protocol & 0xFF) 22120 #else 22121 #define V_HLEN (v_hlen_tos_len & 0xFF) 22122 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22123 #define PROTO (ttl_protocol >> 8) 22124 #endif 22125 22126 22127 orig_src = src = ipha->ipha_src; 22128 /* (The loop back to "another" is explained down below.) */ 22129 another:; 22130 /* 22131 * Assign an ident value for this packet. We assign idents on 22132 * a per destination basis out of the IRE. There could be 22133 * other threads targeting the same destination, so we have to 22134 * arrange for a atomic increment. Note that we use a 32-bit 22135 * atomic add because it has better performance than its 22136 * 16-bit sibling. 22137 * 22138 * If running in cluster mode and if the source address 22139 * belongs to a replicated service then vector through 22140 * cl_inet_ipident vector to allocate ip identifier 22141 * NOTE: This is a contract private interface with the 22142 * clustering group. 22143 */ 22144 clusterwide = 0; 22145 if (cl_inet_ipident) { 22146 ASSERT(cl_inet_isclusterwide); 22147 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22148 AF_INET, (uint8_t *)(uintptr_t)src)) { 22149 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22150 AF_INET, (uint8_t *)(uintptr_t)src, 22151 (uint8_t *)(uintptr_t)dst); 22152 clusterwide = 1; 22153 } 22154 } 22155 if (!clusterwide) { 22156 ipha->ipha_ident = 22157 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22158 } 22159 22160 #ifndef _BIG_ENDIAN 22161 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22162 #endif 22163 22164 /* 22165 * Set source address unless sent on an ill or conn_unspec_src is set. 22166 * This is needed to obey conn_unspec_src when packets go through 22167 * ip_newroute + arp. 22168 * Assumes ip_newroute{,_multi} sets the source address as well. 22169 */ 22170 if (src == INADDR_ANY && !unspec_src) { 22171 /* 22172 * Assign the appropriate source address from the IRE if none 22173 * was specified. 22174 */ 22175 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22176 22177 /* 22178 * With IP multipathing, broadcast packets are sent on the ire 22179 * that has been cleared of IRE_MARK_NORECV and that belongs to 22180 * the group. However, this ire might not be in the same zone so 22181 * we can't always use its source address. We look for a 22182 * broadcast ire in the same group and in the right zone. 22183 */ 22184 if (ire->ire_type == IRE_BROADCAST && 22185 ire->ire_zoneid != zoneid) { 22186 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22187 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22188 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 22189 if (src_ire != NULL) { 22190 src = src_ire->ire_src_addr; 22191 ire_refrele(src_ire); 22192 } else { 22193 ire_refrele(ire); 22194 if (conn_outgoing_ill != NULL) 22195 ill_refrele(conn_outgoing_ill); 22196 freemsg(first_mp); 22197 if (ill != NULL) { 22198 BUMP_MIB(ill->ill_ip_mib, 22199 ipIfStatsOutDiscards); 22200 } else { 22201 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 22202 } 22203 return; 22204 } 22205 } else { 22206 src = ire->ire_src_addr; 22207 } 22208 22209 if (connp == NULL) { 22210 ip1dbg(("ip_wput_ire: no connp and no src " 22211 "address for dst 0x%x, using src 0x%x\n", 22212 ntohl(dst), 22213 ntohl(src))); 22214 } 22215 ipha->ipha_src = src; 22216 } 22217 stq = ire->ire_stq; 22218 22219 /* 22220 * We only allow ire chains for broadcasts since there will 22221 * be multiple IRE_CACHE entries for the same multicast 22222 * address (one per ipif). 22223 */ 22224 next_mp = NULL; 22225 22226 /* broadcast packet */ 22227 if (ire->ire_type == IRE_BROADCAST) 22228 goto broadcast; 22229 22230 /* loopback ? */ 22231 if (stq == NULL) 22232 goto nullstq; 22233 22234 /* The ill_index for outbound ILL */ 22235 ill_index = Q_TO_INDEX(stq); 22236 22237 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22238 ttl_protocol = ((uint16_t *)ipha)[4]; 22239 22240 /* pseudo checksum (do it in parts for IP header checksum) */ 22241 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22242 22243 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22244 queue_t *dev_q = stq->q_next; 22245 22246 /* flow controlled */ 22247 if ((dev_q->q_next || dev_q->q_first) && 22248 !canput(dev_q)) 22249 goto blocked; 22250 if ((PROTO == IPPROTO_UDP) && 22251 (ip_hdr_included != IP_HDR_INCLUDED)) { 22252 hlen = (V_HLEN & 0xF) << 2; 22253 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22254 if (*up != 0) { 22255 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22256 hlen, LENGTH, max_frag, ipsec_len, cksum); 22257 /* Software checksum? */ 22258 if (DB_CKSUMFLAGS(mp) == 0) { 22259 IP_STAT(ip_out_sw_cksum); 22260 IP_STAT_UPDATE( 22261 ip_udp_out_sw_cksum_bytes, 22262 LENGTH - hlen); 22263 } 22264 } 22265 } 22266 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22267 hlen = (V_HLEN & 0xF) << 2; 22268 if (PROTO == IPPROTO_TCP) { 22269 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22270 /* 22271 * The packet header is processed once and for all, even 22272 * in the multirouting case. We disable hardware 22273 * checksum if the packet is multirouted, as it will be 22274 * replicated via several interfaces, and not all of 22275 * them may have this capability. 22276 */ 22277 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22278 LENGTH, max_frag, ipsec_len, cksum); 22279 /* Software checksum? */ 22280 if (DB_CKSUMFLAGS(mp) == 0) { 22281 IP_STAT(ip_out_sw_cksum); 22282 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 22283 LENGTH - hlen); 22284 } 22285 } else { 22286 sctp_hdr_t *sctph; 22287 22288 ASSERT(PROTO == IPPROTO_SCTP); 22289 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22290 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22291 /* 22292 * Zero out the checksum field to ensure proper 22293 * checksum calculation. 22294 */ 22295 sctph->sh_chksum = 0; 22296 #ifdef DEBUG 22297 if (!skip_sctp_cksum) 22298 #endif 22299 sctph->sh_chksum = sctp_cksum(mp, hlen); 22300 } 22301 } 22302 22303 /* 22304 * If this is a multicast packet and originated from ip_wput 22305 * we need to do loopback and forwarding checks. If it comes 22306 * from ip_wput_multicast, we SHOULD not do this. 22307 */ 22308 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22309 22310 /* checksum */ 22311 cksum += ttl_protocol; 22312 22313 /* fragment the packet */ 22314 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22315 goto fragmentit; 22316 /* 22317 * Don't use frag_flag if packet is pre-built or source 22318 * routed or if multicast (since multicast packets do 22319 * not solicit ICMP "packet too big" messages). 22320 */ 22321 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22322 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22323 !ip_source_route_included(ipha)) && 22324 !CLASSD(ipha->ipha_dst)) 22325 ipha->ipha_fragment_offset_and_flags |= 22326 htons(ire->ire_frag_flag); 22327 22328 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22329 /* calculate IP header checksum */ 22330 cksum += ipha->ipha_ident; 22331 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22332 cksum += ipha->ipha_fragment_offset_and_flags; 22333 22334 /* IP options present */ 22335 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22336 if (hlen) 22337 goto checksumoptions; 22338 22339 /* calculate hdr checksum */ 22340 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22341 cksum = ~(cksum + (cksum >> 16)); 22342 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22343 } 22344 if (ipsec_len != 0) { 22345 /* 22346 * We will do the rest of the processing after 22347 * we come back from IPSEC in ip_wput_ipsec_out(). 22348 */ 22349 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22350 22351 io = (ipsec_out_t *)first_mp->b_rptr; 22352 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22353 ill_phyint->phyint_ifindex; 22354 22355 ipsec_out_process(q, first_mp, ire, ill_index); 22356 ire_refrele(ire); 22357 if (conn_outgoing_ill != NULL) 22358 ill_refrele(conn_outgoing_ill); 22359 return; 22360 } 22361 22362 /* 22363 * In most cases, the emission loop below is entered only 22364 * once. Only in the case where the ire holds the 22365 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22366 * flagged ires in the bucket, and send the packet 22367 * through all crossed RTF_MULTIRT routes. 22368 */ 22369 if (ire->ire_flags & RTF_MULTIRT) { 22370 multirt_send = B_TRUE; 22371 } 22372 do { 22373 if (multirt_send) { 22374 irb_t *irb; 22375 /* 22376 * We are in a multiple send case, need to get 22377 * the next ire and make a duplicate of the packet. 22378 * ire1 holds here the next ire to process in the 22379 * bucket. If multirouting is expected, 22380 * any non-RTF_MULTIRT ire that has the 22381 * right destination address is ignored. 22382 */ 22383 irb = ire->ire_bucket; 22384 ASSERT(irb != NULL); 22385 22386 IRB_REFHOLD(irb); 22387 for (ire1 = ire->ire_next; 22388 ire1 != NULL; 22389 ire1 = ire1->ire_next) { 22390 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22391 continue; 22392 if (ire1->ire_addr != ire->ire_addr) 22393 continue; 22394 if (ire1->ire_marks & 22395 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22396 continue; 22397 22398 /* Got one */ 22399 IRE_REFHOLD(ire1); 22400 break; 22401 } 22402 IRB_REFRELE(irb); 22403 22404 if (ire1 != NULL) { 22405 next_mp = copyb(mp); 22406 if ((next_mp == NULL) || 22407 ((mp->b_cont != NULL) && 22408 ((next_mp->b_cont = 22409 dupmsg(mp->b_cont)) == NULL))) { 22410 freemsg(next_mp); 22411 next_mp = NULL; 22412 ire_refrele(ire1); 22413 ire1 = NULL; 22414 } 22415 } 22416 22417 /* Last multiroute ire; don't loop anymore. */ 22418 if (ire1 == NULL) { 22419 multirt_send = B_FALSE; 22420 } 22421 } 22422 22423 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22424 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22425 mblk_t *, mp); 22426 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 22427 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp); 22428 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22429 if (mp == NULL) 22430 goto release_ire_and_ill; 22431 22432 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22433 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22434 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22435 if ((pktxmit_state == SEND_FAILED) || 22436 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22437 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22438 "- packet dropped\n")); 22439 release_ire_and_ill: 22440 ire_refrele(ire); 22441 if (next_mp != NULL) { 22442 freemsg(next_mp); 22443 ire_refrele(ire1); 22444 } 22445 if (conn_outgoing_ill != NULL) 22446 ill_refrele(conn_outgoing_ill); 22447 return; 22448 } 22449 22450 if (CLASSD(dst)) { 22451 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22452 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22453 ntohs(ipha->ipha_length)); 22454 } 22455 22456 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22457 "ip_wput_ire_end: q %p (%S)", 22458 q, "last copy out"); 22459 IRE_REFRELE(ire); 22460 22461 if (multirt_send) { 22462 ASSERT(ire1); 22463 /* 22464 * Proceed with the next RTF_MULTIRT ire, 22465 * Also set up the send-to queue accordingly. 22466 */ 22467 ire = ire1; 22468 ire1 = NULL; 22469 stq = ire->ire_stq; 22470 mp = next_mp; 22471 next_mp = NULL; 22472 ipha = (ipha_t *)mp->b_rptr; 22473 ill_index = Q_TO_INDEX(stq); 22474 ill = (ill_t *)stq->q_ptr; 22475 } 22476 } while (multirt_send); 22477 if (conn_outgoing_ill != NULL) 22478 ill_refrele(conn_outgoing_ill); 22479 return; 22480 22481 /* 22482 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22483 */ 22484 broadcast: 22485 { 22486 /* 22487 * Avoid broadcast storms by setting the ttl to 1 22488 * for broadcasts. This parameter can be set 22489 * via ndd, so make sure that for the SO_DONTROUTE 22490 * case that ipha_ttl is always set to 1. 22491 * In the event that we are replying to incoming 22492 * ICMP packets, conn could be NULL. 22493 */ 22494 if ((connp != NULL) && connp->conn_dontroute) 22495 ipha->ipha_ttl = 1; 22496 else 22497 ipha->ipha_ttl = ip_broadcast_ttl; 22498 22499 /* 22500 * Note that we are not doing a IRB_REFHOLD here. 22501 * Actually we don't care if the list changes i.e 22502 * if somebody deletes an IRE from the list while 22503 * we drop the lock, the next time we come around 22504 * ire_next will be NULL and hence we won't send 22505 * out multiple copies which is fine. 22506 */ 22507 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22508 ire1 = ire->ire_next; 22509 if (conn_outgoing_ill != NULL) { 22510 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22511 ASSERT(ire1 == ire->ire_next); 22512 if (ire1 != NULL && ire1->ire_addr == dst) { 22513 ire_refrele(ire); 22514 ire = ire1; 22515 IRE_REFHOLD(ire); 22516 ire1 = ire->ire_next; 22517 continue; 22518 } 22519 rw_exit(&ire->ire_bucket->irb_lock); 22520 /* Did not find a matching ill */ 22521 ip1dbg(("ip_wput_ire: broadcast with no " 22522 "matching IP_BOUND_IF ill %s\n", 22523 conn_outgoing_ill->ill_name)); 22524 freemsg(first_mp); 22525 if (ire != NULL) 22526 ire_refrele(ire); 22527 ill_refrele(conn_outgoing_ill); 22528 return; 22529 } 22530 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22531 /* 22532 * If the next IRE has the same address and is not one 22533 * of the two copies that we need to send, try to see 22534 * whether this copy should be sent at all. This 22535 * assumes that we insert loopbacks first and then 22536 * non-loopbacks. This is acheived by inserting the 22537 * loopback always before non-loopback. 22538 * This is used to send a single copy of a broadcast 22539 * packet out all physical interfaces that have an 22540 * matching IRE_BROADCAST while also looping 22541 * back one copy (to ip_wput_local) for each 22542 * matching physical interface. However, we avoid 22543 * sending packets out different logical that match by 22544 * having ipif_up/ipif_down supress duplicate 22545 * IRE_BROADCASTS. 22546 * 22547 * This feature is currently used to get broadcasts 22548 * sent to multiple interfaces, when the broadcast 22549 * address being used applies to multiple interfaces. 22550 * For example, a whole net broadcast will be 22551 * replicated on every connected subnet of 22552 * the target net. 22553 * 22554 * Each zone has its own set of IRE_BROADCASTs, so that 22555 * we're able to distribute inbound packets to multiple 22556 * zones who share a broadcast address. We avoid looping 22557 * back outbound packets in different zones but on the 22558 * same ill, as the application would see duplicates. 22559 * 22560 * If the interfaces are part of the same group, 22561 * we would want to send only one copy out for 22562 * whole group. 22563 * 22564 * This logic assumes that ire_add_v4() groups the 22565 * IRE_BROADCAST entries so that those with the same 22566 * ire_addr and ill_group are kept together. 22567 */ 22568 ire_ill = ire->ire_ipif->ipif_ill; 22569 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22570 if (ire_ill->ill_group != NULL && 22571 (ire->ire_marks & IRE_MARK_NORECV)) { 22572 /* 22573 * If the current zone only has an ire 22574 * broadcast for this address marked 22575 * NORECV, the ire we want is ahead in 22576 * the bucket, so we look it up 22577 * deliberately ignoring the zoneid. 22578 */ 22579 for (ire1 = ire->ire_bucket->irb_ire; 22580 ire1 != NULL; 22581 ire1 = ire1->ire_next) { 22582 ire1_ill = 22583 ire1->ire_ipif->ipif_ill; 22584 if (ire1->ire_addr != dst) 22585 continue; 22586 /* skip over the current ire */ 22587 if (ire1 == ire) 22588 continue; 22589 /* skip over deleted ires */ 22590 if (ire1->ire_marks & 22591 IRE_MARK_CONDEMNED) 22592 continue; 22593 /* 22594 * non-loopback ire in our 22595 * group: use it for the next 22596 * pass in the loop 22597 */ 22598 if (ire1->ire_stq != NULL && 22599 ire1_ill->ill_group == 22600 ire_ill->ill_group) 22601 break; 22602 } 22603 } 22604 } else { 22605 while (ire1 != NULL && ire1->ire_addr == dst) { 22606 ire1_ill = ire1->ire_ipif->ipif_ill; 22607 /* 22608 * We can have two broadcast ires on the 22609 * same ill in different zones; here 22610 * we'll send a copy of the packet on 22611 * each ill and the fanout code will 22612 * call conn_wantpacket() to check that 22613 * the zone has the broadcast address 22614 * configured on the ill. If the two 22615 * ires are in the same group we only 22616 * send one copy up. 22617 */ 22618 if (ire1_ill != ire_ill && 22619 (ire1_ill->ill_group == NULL || 22620 ire_ill->ill_group == NULL || 22621 ire1_ill->ill_group != 22622 ire_ill->ill_group)) { 22623 break; 22624 } 22625 ire1 = ire1->ire_next; 22626 } 22627 } 22628 } 22629 ASSERT(multirt_send == B_FALSE); 22630 if (ire1 != NULL && ire1->ire_addr == dst) { 22631 if ((ire->ire_flags & RTF_MULTIRT) && 22632 (ire1->ire_flags & RTF_MULTIRT)) { 22633 /* 22634 * We are in the multirouting case. 22635 * The message must be sent at least 22636 * on both ires. These ires have been 22637 * inserted AFTER the standard ones 22638 * in ip_rt_add(). There are thus no 22639 * other ire entries for the destination 22640 * address in the rest of the bucket 22641 * that do not have the RTF_MULTIRT 22642 * flag. We don't process a copy 22643 * of the message here. This will be 22644 * done in the final sending loop. 22645 */ 22646 multirt_send = B_TRUE; 22647 } else { 22648 next_mp = ip_copymsg(first_mp); 22649 if (next_mp != NULL) 22650 IRE_REFHOLD(ire1); 22651 } 22652 } 22653 rw_exit(&ire->ire_bucket->irb_lock); 22654 } 22655 22656 if (stq) { 22657 /* 22658 * A non-NULL send-to queue means this packet is going 22659 * out of this machine. 22660 */ 22661 out_ill = (ill_t *)stq->q_ptr; 22662 22663 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22664 ttl_protocol = ((uint16_t *)ipha)[4]; 22665 /* 22666 * We accumulate the pseudo header checksum in cksum. 22667 * This is pretty hairy code, so watch close. One 22668 * thing to keep in mind is that UDP and TCP have 22669 * stored their respective datagram lengths in their 22670 * checksum fields. This lines things up real nice. 22671 */ 22672 cksum = (dst >> 16) + (dst & 0xFFFF) + 22673 (src >> 16) + (src & 0xFFFF); 22674 /* 22675 * We assume the udp checksum field contains the 22676 * length, so to compute the pseudo header checksum, 22677 * all we need is the protocol number and src/dst. 22678 */ 22679 /* Provide the checksums for UDP and TCP. */ 22680 if ((PROTO == IPPROTO_TCP) && 22681 (ip_hdr_included != IP_HDR_INCLUDED)) { 22682 /* hlen gets the number of uchar_ts in the IP header */ 22683 hlen = (V_HLEN & 0xF) << 2; 22684 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22685 IP_STAT(ip_out_sw_cksum); 22686 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 22687 LENGTH - hlen); 22688 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22689 if (*up == 0) 22690 *up = 0xFFFF; 22691 } else if (PROTO == IPPROTO_SCTP && 22692 (ip_hdr_included != IP_HDR_INCLUDED)) { 22693 sctp_hdr_t *sctph; 22694 22695 hlen = (V_HLEN & 0xF) << 2; 22696 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22697 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22698 sctph->sh_chksum = 0; 22699 #ifdef DEBUG 22700 if (!skip_sctp_cksum) 22701 #endif 22702 sctph->sh_chksum = sctp_cksum(mp, hlen); 22703 } else { 22704 queue_t *dev_q = stq->q_next; 22705 22706 if ((dev_q->q_next || dev_q->q_first) && 22707 !canput(dev_q)) { 22708 blocked: 22709 ipha->ipha_ident = ip_hdr_included; 22710 /* 22711 * If we don't have a conn to apply 22712 * backpressure, free the message. 22713 * In the ire_send path, we don't know 22714 * the position to requeue the packet. Rather 22715 * than reorder packets, we just drop this 22716 * packet. 22717 */ 22718 if (ip_output_queue && connp != NULL && 22719 caller != IRE_SEND) { 22720 if (caller == IP_WSRV) { 22721 connp->conn_did_putbq = 1; 22722 (void) putbq(connp->conn_wq, 22723 first_mp); 22724 conn_drain_insert(connp); 22725 /* 22726 * This is the service thread, 22727 * and the queue is already 22728 * noenabled. The check for 22729 * canput and the putbq is not 22730 * atomic. So we need to check 22731 * again. 22732 */ 22733 if (canput(stq->q_next)) 22734 connp->conn_did_putbq 22735 = 0; 22736 IP_STAT(ip_conn_flputbq); 22737 } else { 22738 /* 22739 * We are not the service proc. 22740 * ip_wsrv will be scheduled or 22741 * is already running. 22742 */ 22743 (void) putq(connp->conn_wq, 22744 first_mp); 22745 } 22746 } else { 22747 out_ill = (ill_t *)stq->q_ptr; 22748 BUMP_MIB(out_ill->ill_ip_mib, 22749 ipIfStatsOutDiscards); 22750 freemsg(first_mp); 22751 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22752 "ip_wput_ire_end: q %p (%S)", 22753 q, "discard"); 22754 } 22755 ire_refrele(ire); 22756 if (next_mp) { 22757 ire_refrele(ire1); 22758 freemsg(next_mp); 22759 } 22760 if (conn_outgoing_ill != NULL) 22761 ill_refrele(conn_outgoing_ill); 22762 return; 22763 } 22764 if ((PROTO == IPPROTO_UDP) && 22765 (ip_hdr_included != IP_HDR_INCLUDED)) { 22766 /* 22767 * hlen gets the number of uchar_ts in the 22768 * IP header 22769 */ 22770 hlen = (V_HLEN & 0xF) << 2; 22771 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22772 max_frag = ire->ire_max_frag; 22773 if (*up != 0) { 22774 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 22775 up, PROTO, hlen, LENGTH, max_frag, 22776 ipsec_len, cksum); 22777 /* Software checksum? */ 22778 if (DB_CKSUMFLAGS(mp) == 0) { 22779 IP_STAT(ip_out_sw_cksum); 22780 IP_STAT_UPDATE( 22781 ip_udp_out_sw_cksum_bytes, 22782 LENGTH - hlen); 22783 } 22784 } 22785 } 22786 } 22787 /* 22788 * Need to do this even when fragmenting. The local 22789 * loopback can be done without computing checksums 22790 * but forwarding out other interface must be done 22791 * after the IP checksum (and ULP checksums) have been 22792 * computed. 22793 * 22794 * NOTE : multicast_forward is set only if this packet 22795 * originated from ip_wput. For packets originating from 22796 * ip_wput_multicast, it is not set. 22797 */ 22798 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22799 multi_loopback: 22800 ip2dbg(("ip_wput: multicast, loop %d\n", 22801 conn_multicast_loop)); 22802 22803 /* Forget header checksum offload */ 22804 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22805 22806 /* 22807 * Local loopback of multicasts? Check the 22808 * ill. 22809 * 22810 * Note that the loopback function will not come 22811 * in through ip_rput - it will only do the 22812 * client fanout thus we need to do an mforward 22813 * as well. The is different from the BSD 22814 * logic. 22815 */ 22816 if (ill != NULL) { 22817 ilm_t *ilm; 22818 22819 ILM_WALKER_HOLD(ill); 22820 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 22821 ALL_ZONES); 22822 ILM_WALKER_RELE(ill); 22823 if (ilm != NULL) { 22824 /* 22825 * Pass along the virtual output q. 22826 * ip_wput_local() will distribute the 22827 * packet to all the matching zones, 22828 * except the sending zone when 22829 * IP_MULTICAST_LOOP is false. 22830 */ 22831 ip_multicast_loopback(q, ill, first_mp, 22832 conn_multicast_loop ? 0 : 22833 IP_FF_NO_MCAST_LOOP, zoneid); 22834 } 22835 } 22836 if (ipha->ipha_ttl == 0) { 22837 /* 22838 * 0 => only to this host i.e. we are 22839 * done. We are also done if this was the 22840 * loopback interface since it is sufficient 22841 * to loopback one copy of a multicast packet. 22842 */ 22843 freemsg(first_mp); 22844 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22845 "ip_wput_ire_end: q %p (%S)", 22846 q, "loopback"); 22847 ire_refrele(ire); 22848 if (conn_outgoing_ill != NULL) 22849 ill_refrele(conn_outgoing_ill); 22850 return; 22851 } 22852 /* 22853 * ILLF_MULTICAST is checked in ip_newroute 22854 * i.e. we don't need to check it here since 22855 * all IRE_CACHEs come from ip_newroute. 22856 * For multicast traffic, SO_DONTROUTE is interpreted 22857 * to mean only send the packet out the interface 22858 * (optionally specified with IP_MULTICAST_IF) 22859 * and do not forward it out additional interfaces. 22860 * RSVP and the rsvp daemon is an example of a 22861 * protocol and user level process that 22862 * handles it's own routing. Hence, it uses the 22863 * SO_DONTROUTE option to accomplish this. 22864 */ 22865 22866 if (ip_g_mrouter && !conn_dontroute && ill != NULL) { 22867 /* Unconditionally redo the checksum */ 22868 ipha->ipha_hdr_checksum = 0; 22869 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22870 22871 /* 22872 * If this needs to go out secure, we need 22873 * to wait till we finish the IPSEC 22874 * processing. 22875 */ 22876 if (ipsec_len == 0 && 22877 ip_mforward(ill, ipha, mp)) { 22878 freemsg(first_mp); 22879 ip1dbg(("ip_wput: mforward failed\n")); 22880 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22881 "ip_wput_ire_end: q %p (%S)", 22882 q, "mforward failed"); 22883 ire_refrele(ire); 22884 if (conn_outgoing_ill != NULL) 22885 ill_refrele(conn_outgoing_ill); 22886 return; 22887 } 22888 } 22889 } 22890 max_frag = ire->ire_max_frag; 22891 cksum += ttl_protocol; 22892 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 22893 /* No fragmentation required for this one. */ 22894 /* 22895 * Don't use frag_flag if packet is pre-built or source 22896 * routed or if multicast (since multicast packets do 22897 * not solicit ICMP "packet too big" messages). 22898 */ 22899 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22900 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22901 !ip_source_route_included(ipha)) && 22902 !CLASSD(ipha->ipha_dst)) 22903 ipha->ipha_fragment_offset_and_flags |= 22904 htons(ire->ire_frag_flag); 22905 22906 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22907 /* Complete the IP header checksum. */ 22908 cksum += ipha->ipha_ident; 22909 cksum += (v_hlen_tos_len >> 16)+ 22910 (v_hlen_tos_len & 0xFFFF); 22911 cksum += ipha->ipha_fragment_offset_and_flags; 22912 hlen = (V_HLEN & 0xF) - 22913 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22914 if (hlen) { 22915 checksumoptions: 22916 /* 22917 * Account for the IP Options in the IP 22918 * header checksum. 22919 */ 22920 up = (uint16_t *)(rptr+ 22921 IP_SIMPLE_HDR_LENGTH); 22922 do { 22923 cksum += up[0]; 22924 cksum += up[1]; 22925 up += 2; 22926 } while (--hlen); 22927 } 22928 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22929 cksum = ~(cksum + (cksum >> 16)); 22930 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22931 } 22932 if (ipsec_len != 0) { 22933 ipsec_out_process(q, first_mp, ire, ill_index); 22934 if (!next_mp) { 22935 ire_refrele(ire); 22936 if (conn_outgoing_ill != NULL) 22937 ill_refrele(conn_outgoing_ill); 22938 return; 22939 } 22940 goto next; 22941 } 22942 22943 /* 22944 * multirt_send has already been handled 22945 * for broadcast, but not yet for multicast 22946 * or IP options. 22947 */ 22948 if (next_mp == NULL) { 22949 if (ire->ire_flags & RTF_MULTIRT) { 22950 multirt_send = B_TRUE; 22951 } 22952 } 22953 22954 /* 22955 * In most cases, the emission loop below is 22956 * entered only once. Only in the case where 22957 * the ire holds the RTF_MULTIRT flag, do we loop 22958 * to process all RTF_MULTIRT ires in the bucket, 22959 * and send the packet through all crossed 22960 * RTF_MULTIRT routes. 22961 */ 22962 do { 22963 if (multirt_send) { 22964 irb_t *irb; 22965 22966 irb = ire->ire_bucket; 22967 ASSERT(irb != NULL); 22968 /* 22969 * We are in a multiple send case, 22970 * need to get the next IRE and make 22971 * a duplicate of the packet. 22972 */ 22973 IRB_REFHOLD(irb); 22974 for (ire1 = ire->ire_next; 22975 ire1 != NULL; 22976 ire1 = ire1->ire_next) { 22977 if (!(ire1->ire_flags & 22978 RTF_MULTIRT)) 22979 continue; 22980 if (ire1->ire_addr != 22981 ire->ire_addr) 22982 continue; 22983 if (ire1->ire_marks & 22984 (IRE_MARK_CONDEMNED| 22985 IRE_MARK_HIDDEN)) 22986 continue; 22987 22988 /* Got one */ 22989 IRE_REFHOLD(ire1); 22990 break; 22991 } 22992 IRB_REFRELE(irb); 22993 22994 if (ire1 != NULL) { 22995 next_mp = copyb(mp); 22996 if ((next_mp == NULL) || 22997 ((mp->b_cont != NULL) && 22998 ((next_mp->b_cont = 22999 dupmsg(mp->b_cont)) 23000 == NULL))) { 23001 freemsg(next_mp); 23002 next_mp = NULL; 23003 ire_refrele(ire1); 23004 ire1 = NULL; 23005 } 23006 } 23007 23008 /* 23009 * Last multiroute ire; don't loop 23010 * anymore. The emission is over 23011 * and next_mp is NULL. 23012 */ 23013 if (ire1 == NULL) { 23014 multirt_send = B_FALSE; 23015 } 23016 } 23017 23018 out_ill = ire->ire_ipif->ipif_ill; 23019 DTRACE_PROBE4(ip4__physical__out__start, 23020 ill_t *, NULL, 23021 ill_t *, out_ill, 23022 ipha_t *, ipha, mblk_t *, mp); 23023 FW_HOOKS(ip4_physical_out_event, 23024 ipv4firewall_physical_out, 23025 NULL, out_ill, ipha, mp, mp); 23026 DTRACE_PROBE1(ip4__physical__out__end, 23027 mblk_t *, mp); 23028 if (mp == NULL) 23029 goto release_ire_and_ill_2; 23030 23031 ASSERT(ipsec_len == 0); 23032 mp->b_prev = 23033 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23034 DTRACE_PROBE2(ip__xmit__2, 23035 mblk_t *, mp, ire_t *, ire); 23036 pktxmit_state = ip_xmit_v4(mp, ire, 23037 NULL, B_TRUE); 23038 if ((pktxmit_state == SEND_FAILED) || 23039 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23040 release_ire_and_ill_2: 23041 if (next_mp) { 23042 freemsg(next_mp); 23043 ire_refrele(ire1); 23044 } 23045 ire_refrele(ire); 23046 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23047 "ip_wput_ire_end: q %p (%S)", 23048 q, "discard MDATA"); 23049 if (conn_outgoing_ill != NULL) 23050 ill_refrele(conn_outgoing_ill); 23051 return; 23052 } 23053 23054 if (CLASSD(dst)) { 23055 BUMP_MIB(out_ill->ill_ip_mib, 23056 ipIfStatsHCOutMcastPkts); 23057 UPDATE_MIB(out_ill->ill_ip_mib, 23058 ipIfStatsHCOutMcastOctets, 23059 ntohs(ipha->ipha_length)); 23060 } else if (ire->ire_type == IRE_BROADCAST) { 23061 BUMP_MIB(out_ill->ill_ip_mib, 23062 ipIfStatsHCOutBcastPkts); 23063 } 23064 23065 if (multirt_send) { 23066 /* 23067 * We are in a multiple send case, 23068 * need to re-enter the sending loop 23069 * using the next ire. 23070 */ 23071 ire_refrele(ire); 23072 ire = ire1; 23073 stq = ire->ire_stq; 23074 mp = next_mp; 23075 next_mp = NULL; 23076 ipha = (ipha_t *)mp->b_rptr; 23077 ill_index = Q_TO_INDEX(stq); 23078 } 23079 } while (multirt_send); 23080 23081 if (!next_mp) { 23082 /* 23083 * Last copy going out (the ultra-common 23084 * case). Note that we intentionally replicate 23085 * the putnext rather than calling it before 23086 * the next_mp check in hopes of a little 23087 * tail-call action out of the compiler. 23088 */ 23089 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23090 "ip_wput_ire_end: q %p (%S)", 23091 q, "last copy out(1)"); 23092 ire_refrele(ire); 23093 if (conn_outgoing_ill != NULL) 23094 ill_refrele(conn_outgoing_ill); 23095 return; 23096 } 23097 /* More copies going out below. */ 23098 } else { 23099 int offset; 23100 fragmentit: 23101 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23102 /* 23103 * If this would generate a icmp_frag_needed message, 23104 * we need to handle it before we do the IPSEC 23105 * processing. Otherwise, we need to strip the IPSEC 23106 * headers before we send up the message to the ULPs 23107 * which becomes messy and difficult. 23108 */ 23109 if (ipsec_len != 0) { 23110 if ((max_frag < (unsigned int)(LENGTH + 23111 ipsec_len)) && (offset & IPH_DF)) { 23112 out_ill = (ill_t *)stq->q_ptr; 23113 BUMP_MIB(out_ill->ill_ip_mib, 23114 ipIfStatsOutFragFails); 23115 BUMP_MIB(out_ill->ill_ip_mib, 23116 ipIfStatsOutFragReqds); 23117 ipha->ipha_hdr_checksum = 0; 23118 ipha->ipha_hdr_checksum = 23119 (uint16_t)ip_csum_hdr(ipha); 23120 icmp_frag_needed(ire->ire_stq, first_mp, 23121 max_frag, zoneid); 23122 if (!next_mp) { 23123 ire_refrele(ire); 23124 if (conn_outgoing_ill != NULL) { 23125 ill_refrele( 23126 conn_outgoing_ill); 23127 } 23128 return; 23129 } 23130 } else { 23131 /* 23132 * This won't cause a icmp_frag_needed 23133 * message. to be generated. Send it on 23134 * the wire. Note that this could still 23135 * cause fragmentation and all we 23136 * do is the generation of the message 23137 * to the ULP if needed before IPSEC. 23138 */ 23139 if (!next_mp) { 23140 ipsec_out_process(q, first_mp, 23141 ire, ill_index); 23142 TRACE_2(TR_FAC_IP, 23143 TR_IP_WPUT_IRE_END, 23144 "ip_wput_ire_end: q %p " 23145 "(%S)", q, 23146 "last ipsec_out_process"); 23147 ire_refrele(ire); 23148 if (conn_outgoing_ill != NULL) { 23149 ill_refrele( 23150 conn_outgoing_ill); 23151 } 23152 return; 23153 } 23154 ipsec_out_process(q, first_mp, 23155 ire, ill_index); 23156 } 23157 } else { 23158 /* 23159 * Initiate IPPF processing. For 23160 * fragmentable packets we finish 23161 * all QOS packet processing before 23162 * calling: 23163 * ip_wput_ire_fragmentit->ip_wput_frag 23164 */ 23165 23166 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 23167 ip_process(IPP_LOCAL_OUT, &mp, 23168 ill_index); 23169 if (mp == NULL) { 23170 out_ill = (ill_t *)stq->q_ptr; 23171 BUMP_MIB(out_ill->ill_ip_mib, 23172 ipIfStatsOutDiscards); 23173 if (next_mp != NULL) { 23174 freemsg(next_mp); 23175 ire_refrele(ire1); 23176 } 23177 ire_refrele(ire); 23178 TRACE_2(TR_FAC_IP, 23179 TR_IP_WPUT_IRE_END, 23180 "ip_wput_ire: q %p (%S)", 23181 q, "discard MDATA"); 23182 if (conn_outgoing_ill != NULL) { 23183 ill_refrele( 23184 conn_outgoing_ill); 23185 } 23186 return; 23187 } 23188 } 23189 if (!next_mp) { 23190 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23191 "ip_wput_ire_end: q %p (%S)", 23192 q, "last fragmentation"); 23193 ip_wput_ire_fragmentit(mp, ire, 23194 zoneid); 23195 ire_refrele(ire); 23196 if (conn_outgoing_ill != NULL) 23197 ill_refrele(conn_outgoing_ill); 23198 return; 23199 } 23200 ip_wput_ire_fragmentit(mp, ire, zoneid); 23201 } 23202 } 23203 } else { 23204 nullstq: 23205 /* A NULL stq means the destination address is local. */ 23206 UPDATE_OB_PKT_COUNT(ire); 23207 ire->ire_last_used_time = lbolt; 23208 ASSERT(ire->ire_ipif != NULL); 23209 if (!next_mp) { 23210 /* 23211 * Is there an "in" and "out" for traffic local 23212 * to a host (loopback)? The code in Solaris doesn't 23213 * explicitly draw a line in its code for in vs out, 23214 * so we've had to draw a line in the sand: ip_wput_ire 23215 * is considered to be the "output" side and 23216 * ip_wput_local to be the "input" side. 23217 */ 23218 out_ill = ire->ire_ipif->ipif_ill; 23219 23220 DTRACE_PROBE4(ip4__loopback__out__start, 23221 ill_t *, NULL, ill_t *, out_ill, 23222 ipha_t *, ipha, mblk_t *, first_mp); 23223 23224 FW_HOOKS(ip4_loopback_out_event, 23225 ipv4firewall_loopback_out, 23226 NULL, out_ill, ipha, first_mp, mp); 23227 23228 DTRACE_PROBE1(ip4__loopback__out_end, 23229 mblk_t *, first_mp); 23230 23231 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23232 "ip_wput_ire_end: q %p (%S)", 23233 q, "local address"); 23234 23235 if (first_mp != NULL) 23236 ip_wput_local(q, out_ill, ipha, 23237 first_mp, ire, 0, ire->ire_zoneid); 23238 ire_refrele(ire); 23239 if (conn_outgoing_ill != NULL) 23240 ill_refrele(conn_outgoing_ill); 23241 return; 23242 } 23243 23244 out_ill = ire->ire_ipif->ipif_ill; 23245 23246 DTRACE_PROBE4(ip4__loopback__out__start, 23247 ill_t *, NULL, ill_t *, out_ill, 23248 ipha_t *, ipha, mblk_t *, first_mp); 23249 23250 FW_HOOKS(ip4_loopback_out_event, ipv4firewall_loopback_out, 23251 NULL, out_ill, ipha, first_mp, mp); 23252 23253 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23254 23255 if (first_mp != NULL) 23256 ip_wput_local(q, out_ill, ipha, 23257 first_mp, ire, 0, ire->ire_zoneid); 23258 } 23259 next: 23260 /* 23261 * More copies going out to additional interfaces. 23262 * ire1 has already been held. We don't need the 23263 * "ire" anymore. 23264 */ 23265 ire_refrele(ire); 23266 ire = ire1; 23267 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23268 mp = next_mp; 23269 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23270 ill = ire_to_ill(ire); 23271 first_mp = mp; 23272 if (ipsec_len != 0) { 23273 ASSERT(first_mp->b_datap->db_type == M_CTL); 23274 mp = mp->b_cont; 23275 } 23276 dst = ire->ire_addr; 23277 ipha = (ipha_t *)mp->b_rptr; 23278 /* 23279 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23280 * Restore ipha_ident "no checksum" flag. 23281 */ 23282 src = orig_src; 23283 ipha->ipha_ident = ip_hdr_included; 23284 goto another; 23285 23286 #undef rptr 23287 #undef Q_TO_INDEX 23288 } 23289 23290 /* 23291 * Routine to allocate a message that is used to notify the ULP about MDT. 23292 * The caller may provide a pointer to the link-layer MDT capabilities, 23293 * or NULL if MDT is to be disabled on the stream. 23294 */ 23295 mblk_t * 23296 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23297 { 23298 mblk_t *mp; 23299 ip_mdt_info_t *mdti; 23300 ill_mdt_capab_t *idst; 23301 23302 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23303 DB_TYPE(mp) = M_CTL; 23304 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23305 mdti = (ip_mdt_info_t *)mp->b_rptr; 23306 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23307 idst = &(mdti->mdt_capab); 23308 23309 /* 23310 * If the caller provides us with the capability, copy 23311 * it over into our notification message; otherwise 23312 * we zero out the capability portion. 23313 */ 23314 if (isrc != NULL) 23315 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23316 else 23317 bzero((caddr_t)idst, sizeof (*idst)); 23318 } 23319 return (mp); 23320 } 23321 23322 /* 23323 * Routine which determines whether MDT can be enabled on the destination 23324 * IRE and IPC combination, and if so, allocates and returns the MDT 23325 * notification mblk that may be used by ULP. We also check if we need to 23326 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23327 * MDT usage in the past have been lifted. This gets called during IP 23328 * and ULP binding. 23329 */ 23330 mblk_t * 23331 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23332 ill_mdt_capab_t *mdt_cap) 23333 { 23334 mblk_t *mp; 23335 boolean_t rc = B_FALSE; 23336 23337 ASSERT(dst_ire != NULL); 23338 ASSERT(connp != NULL); 23339 ASSERT(mdt_cap != NULL); 23340 23341 /* 23342 * Currently, we only support simple TCP/{IPv4,IPv6} with 23343 * Multidata, which is handled in tcp_multisend(). This 23344 * is the reason why we do all these checks here, to ensure 23345 * that we don't enable Multidata for the cases which we 23346 * can't handle at the moment. 23347 */ 23348 do { 23349 /* Only do TCP at the moment */ 23350 if (connp->conn_ulp != IPPROTO_TCP) 23351 break; 23352 23353 /* 23354 * IPSEC outbound policy present? Note that we get here 23355 * after calling ipsec_conn_cache_policy() where the global 23356 * policy checking is performed. conn_latch will be 23357 * non-NULL as long as there's a policy defined, 23358 * i.e. conn_out_enforce_policy may be NULL in such case 23359 * when the connection is non-secure, and hence we check 23360 * further if the latch refers to an outbound policy. 23361 */ 23362 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23363 break; 23364 23365 /* CGTP (multiroute) is enabled? */ 23366 if (dst_ire->ire_flags & RTF_MULTIRT) 23367 break; 23368 23369 /* Outbound IPQoS enabled? */ 23370 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 23371 /* 23372 * In this case, we disable MDT for this and all 23373 * future connections going over the interface. 23374 */ 23375 mdt_cap->ill_mdt_on = 0; 23376 break; 23377 } 23378 23379 /* socket option(s) present? */ 23380 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23381 break; 23382 23383 rc = B_TRUE; 23384 /* CONSTCOND */ 23385 } while (0); 23386 23387 /* Remember the result */ 23388 connp->conn_mdt_ok = rc; 23389 23390 if (!rc) 23391 return (NULL); 23392 else if (!mdt_cap->ill_mdt_on) { 23393 /* 23394 * If MDT has been previously turned off in the past, and we 23395 * currently can do MDT (due to IPQoS policy removal, etc.) 23396 * then enable it for this interface. 23397 */ 23398 mdt_cap->ill_mdt_on = 1; 23399 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23400 "interface %s\n", ill_name)); 23401 } 23402 23403 /* Allocate the MDT info mblk */ 23404 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23405 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23406 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23407 return (NULL); 23408 } 23409 return (mp); 23410 } 23411 23412 /* 23413 * Routine to allocate a message that is used to notify the ULP about LSO. 23414 * The caller may provide a pointer to the link-layer LSO capabilities, 23415 * or NULL if LSO is to be disabled on the stream. 23416 */ 23417 mblk_t * 23418 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23419 { 23420 mblk_t *mp; 23421 ip_lso_info_t *lsoi; 23422 ill_lso_capab_t *idst; 23423 23424 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23425 DB_TYPE(mp) = M_CTL; 23426 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23427 lsoi = (ip_lso_info_t *)mp->b_rptr; 23428 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23429 idst = &(lsoi->lso_capab); 23430 23431 /* 23432 * If the caller provides us with the capability, copy 23433 * it over into our notification message; otherwise 23434 * we zero out the capability portion. 23435 */ 23436 if (isrc != NULL) 23437 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23438 else 23439 bzero((caddr_t)idst, sizeof (*idst)); 23440 } 23441 return (mp); 23442 } 23443 23444 /* 23445 * Routine which determines whether LSO can be enabled on the destination 23446 * IRE and IPC combination, and if so, allocates and returns the LSO 23447 * notification mblk that may be used by ULP. We also check if we need to 23448 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23449 * LSO usage in the past have been lifted. This gets called during IP 23450 * and ULP binding. 23451 */ 23452 mblk_t * 23453 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23454 ill_lso_capab_t *lso_cap) 23455 { 23456 mblk_t *mp; 23457 23458 ASSERT(dst_ire != NULL); 23459 ASSERT(connp != NULL); 23460 ASSERT(lso_cap != NULL); 23461 23462 connp->conn_lso_ok = B_TRUE; 23463 23464 if ((connp->conn_ulp != IPPROTO_TCP) || 23465 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23466 (dst_ire->ire_flags & RTF_MULTIRT) || 23467 !CONN_IS_LSO_MD_FASTPATH(connp) || 23468 (IPP_ENABLED(IPP_LOCAL_OUT))) { 23469 connp->conn_lso_ok = B_FALSE; 23470 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 23471 /* 23472 * Disable LSO for this and all future connections going 23473 * over the interface. 23474 */ 23475 lso_cap->ill_lso_on = 0; 23476 } 23477 } 23478 23479 if (!connp->conn_lso_ok) 23480 return (NULL); 23481 else if (!lso_cap->ill_lso_on) { 23482 /* 23483 * If LSO has been previously turned off in the past, and we 23484 * currently can do LSO (due to IPQoS policy removal, etc.) 23485 * then enable it for this interface. 23486 */ 23487 lso_cap->ill_lso_on = 1; 23488 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23489 ill_name)); 23490 } 23491 23492 /* Allocate the LSO info mblk */ 23493 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23494 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23495 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23496 23497 return (mp); 23498 } 23499 23500 /* 23501 * Create destination address attribute, and fill it with the physical 23502 * destination address and SAP taken from the template DL_UNITDATA_REQ 23503 * message block. 23504 */ 23505 boolean_t 23506 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23507 { 23508 dl_unitdata_req_t *dlurp; 23509 pattr_t *pa; 23510 pattrinfo_t pa_info; 23511 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23512 uint_t das_len, das_off; 23513 23514 ASSERT(dlmp != NULL); 23515 23516 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23517 das_len = dlurp->dl_dest_addr_length; 23518 das_off = dlurp->dl_dest_addr_offset; 23519 23520 pa_info.type = PATTR_DSTADDRSAP; 23521 pa_info.len = sizeof (**das) + das_len - 1; 23522 23523 /* create and associate the attribute */ 23524 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23525 if (pa != NULL) { 23526 ASSERT(*das != NULL); 23527 (*das)->addr_is_group = 0; 23528 (*das)->addr_len = (uint8_t)das_len; 23529 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23530 } 23531 23532 return (pa != NULL); 23533 } 23534 23535 /* 23536 * Create hardware checksum attribute and fill it with the values passed. 23537 */ 23538 boolean_t 23539 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23540 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23541 { 23542 pattr_t *pa; 23543 pattrinfo_t pa_info; 23544 23545 ASSERT(mmd != NULL); 23546 23547 pa_info.type = PATTR_HCKSUM; 23548 pa_info.len = sizeof (pattr_hcksum_t); 23549 23550 /* create and associate the attribute */ 23551 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23552 if (pa != NULL) { 23553 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23554 23555 hck->hcksum_start_offset = start_offset; 23556 hck->hcksum_stuff_offset = stuff_offset; 23557 hck->hcksum_end_offset = end_offset; 23558 hck->hcksum_flags = flags; 23559 } 23560 return (pa != NULL); 23561 } 23562 23563 /* 23564 * Create zerocopy attribute and fill it with the specified flags 23565 */ 23566 boolean_t 23567 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23568 { 23569 pattr_t *pa; 23570 pattrinfo_t pa_info; 23571 23572 ASSERT(mmd != NULL); 23573 pa_info.type = PATTR_ZCOPY; 23574 pa_info.len = sizeof (pattr_zcopy_t); 23575 23576 /* create and associate the attribute */ 23577 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23578 if (pa != NULL) { 23579 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23580 23581 zcopy->zcopy_flags = flags; 23582 } 23583 return (pa != NULL); 23584 } 23585 23586 /* 23587 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23588 * block chain. We could rewrite to handle arbitrary message block chains but 23589 * that would make the code complicated and slow. Right now there three 23590 * restrictions: 23591 * 23592 * 1. The first message block must contain the complete IP header and 23593 * at least 1 byte of payload data. 23594 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23595 * so that we can use a single Multidata message. 23596 * 3. No frag must be distributed over two or more message blocks so 23597 * that we don't need more than two packet descriptors per frag. 23598 * 23599 * The above restrictions allow us to support userland applications (which 23600 * will send down a single message block) and NFS over UDP (which will 23601 * send down a chain of at most three message blocks). 23602 * 23603 * We also don't use MDT for payloads with less than or equal to 23604 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23605 */ 23606 boolean_t 23607 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23608 { 23609 int blocks; 23610 ssize_t total, missing, size; 23611 23612 ASSERT(mp != NULL); 23613 ASSERT(hdr_len > 0); 23614 23615 size = MBLKL(mp) - hdr_len; 23616 if (size <= 0) 23617 return (B_FALSE); 23618 23619 /* The first mblk contains the header and some payload. */ 23620 blocks = 1; 23621 total = size; 23622 size %= len; 23623 missing = (size == 0) ? 0 : (len - size); 23624 mp = mp->b_cont; 23625 23626 while (mp != NULL) { 23627 /* 23628 * Give up if we encounter a zero length message block. 23629 * In practice, this should rarely happen and therefore 23630 * not worth the trouble of freeing and re-linking the 23631 * mblk from the chain to handle such case. 23632 */ 23633 if ((size = MBLKL(mp)) == 0) 23634 return (B_FALSE); 23635 23636 /* Too many payload buffers for a single Multidata message? */ 23637 if (++blocks > MULTIDATA_MAX_PBUFS) 23638 return (B_FALSE); 23639 23640 total += size; 23641 /* Is a frag distributed over two or more message blocks? */ 23642 if (missing > size) 23643 return (B_FALSE); 23644 size -= missing; 23645 23646 size %= len; 23647 missing = (size == 0) ? 0 : (len - size); 23648 23649 mp = mp->b_cont; 23650 } 23651 23652 return (total > ip_wput_frag_mdt_min); 23653 } 23654 23655 /* 23656 * Outbound IPv4 fragmentation routine using MDT. 23657 */ 23658 static void 23659 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23660 uint32_t frag_flag, int offset) 23661 { 23662 ipha_t *ipha_orig; 23663 int i1, ip_data_end; 23664 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23665 mblk_t *hdr_mp, *md_mp = NULL; 23666 unsigned char *hdr_ptr, *pld_ptr; 23667 multidata_t *mmd; 23668 ip_pdescinfo_t pdi; 23669 ill_t *ill; 23670 23671 ASSERT(DB_TYPE(mp) == M_DATA); 23672 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23673 23674 ill = ire_to_ill(ire); 23675 ASSERT(ill != NULL); 23676 23677 ipha_orig = (ipha_t *)mp->b_rptr; 23678 mp->b_rptr += sizeof (ipha_t); 23679 23680 /* Calculate how many packets we will send out */ 23681 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23682 pkts = (i1 + len - 1) / len; 23683 ASSERT(pkts > 1); 23684 23685 /* Allocate a message block which will hold all the IP Headers. */ 23686 wroff = ip_wroff_extra; 23687 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23688 23689 i1 = pkts * hdr_chunk_len; 23690 /* 23691 * Create the header buffer, Multidata and destination address 23692 * and SAP attribute that should be associated with it. 23693 */ 23694 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23695 ((hdr_mp->b_wptr += i1), 23696 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23697 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23698 freemsg(mp); 23699 if (md_mp == NULL) { 23700 freemsg(hdr_mp); 23701 } else { 23702 free_mmd: IP_STAT(ip_frag_mdt_discarded); 23703 freemsg(md_mp); 23704 } 23705 IP_STAT(ip_frag_mdt_allocfail); 23706 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23707 return; 23708 } 23709 IP_STAT(ip_frag_mdt_allocd); 23710 23711 /* 23712 * Add a payload buffer to the Multidata; this operation must not 23713 * fail, or otherwise our logic in this routine is broken. There 23714 * is no memory allocation done by the routine, so any returned 23715 * failure simply tells us that we've done something wrong. 23716 * 23717 * A failure tells us that either we're adding the same payload 23718 * buffer more than once, or we're trying to add more buffers than 23719 * allowed. None of the above cases should happen, and we panic 23720 * because either there's horrible heap corruption, and/or 23721 * programming mistake. 23722 */ 23723 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23724 goto pbuf_panic; 23725 23726 hdr_ptr = hdr_mp->b_rptr; 23727 pld_ptr = mp->b_rptr; 23728 23729 /* Establish the ending byte offset, based on the starting offset. */ 23730 offset <<= 3; 23731 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23732 IP_SIMPLE_HDR_LENGTH; 23733 23734 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23735 23736 while (pld_ptr < mp->b_wptr) { 23737 ipha_t *ipha; 23738 uint16_t offset_and_flags; 23739 uint16_t ip_len; 23740 int error; 23741 23742 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23743 ipha = (ipha_t *)(hdr_ptr + wroff); 23744 ASSERT(OK_32PTR(ipha)); 23745 *ipha = *ipha_orig; 23746 23747 if (ip_data_end - offset > len) { 23748 offset_and_flags = IPH_MF; 23749 } else { 23750 /* 23751 * Last frag. Set len to the length of this last piece. 23752 */ 23753 len = ip_data_end - offset; 23754 /* A frag of a frag might have IPH_MF non-zero */ 23755 offset_and_flags = 23756 ntohs(ipha->ipha_fragment_offset_and_flags) & 23757 IPH_MF; 23758 } 23759 offset_and_flags |= (uint16_t)(offset >> 3); 23760 offset_and_flags |= (uint16_t)frag_flag; 23761 /* Store the offset and flags in the IP header. */ 23762 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23763 23764 /* Store the length in the IP header. */ 23765 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23766 ipha->ipha_length = htons(ip_len); 23767 23768 /* 23769 * Set the IP header checksum. Note that mp is just 23770 * the header, so this is easy to pass to ip_csum. 23771 */ 23772 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23773 23774 /* 23775 * Record offset and size of header and data of the next packet 23776 * in the multidata message. 23777 */ 23778 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23779 PDESC_PLD_INIT(&pdi); 23780 i1 = MIN(mp->b_wptr - pld_ptr, len); 23781 ASSERT(i1 > 0); 23782 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23783 if (i1 == len) { 23784 pld_ptr += len; 23785 } else { 23786 i1 = len - i1; 23787 mp = mp->b_cont; 23788 ASSERT(mp != NULL); 23789 ASSERT(MBLKL(mp) >= i1); 23790 /* 23791 * Attach the next payload message block to the 23792 * multidata message. 23793 */ 23794 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23795 goto pbuf_panic; 23796 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23797 pld_ptr = mp->b_rptr + i1; 23798 } 23799 23800 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23801 KM_NOSLEEP)) == NULL) { 23802 /* 23803 * Any failure other than ENOMEM indicates that we 23804 * have passed in invalid pdesc info or parameters 23805 * to mmd_addpdesc, which must not happen. 23806 * 23807 * EINVAL is a result of failure on boundary checks 23808 * against the pdesc info contents. It should not 23809 * happen, and we panic because either there's 23810 * horrible heap corruption, and/or programming 23811 * mistake. 23812 */ 23813 if (error != ENOMEM) { 23814 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23815 "pdesc logic error detected for " 23816 "mmd %p pinfo %p (%d)\n", 23817 (void *)mmd, (void *)&pdi, error); 23818 /* NOTREACHED */ 23819 } 23820 IP_STAT(ip_frag_mdt_addpdescfail); 23821 /* Free unattached payload message blocks as well */ 23822 md_mp->b_cont = mp->b_cont; 23823 goto free_mmd; 23824 } 23825 23826 /* Advance fragment offset. */ 23827 offset += len; 23828 23829 /* Advance to location for next header in the buffer. */ 23830 hdr_ptr += hdr_chunk_len; 23831 23832 /* Did we reach the next payload message block? */ 23833 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23834 mp = mp->b_cont; 23835 /* 23836 * Attach the next message block with payload 23837 * data to the multidata message. 23838 */ 23839 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23840 goto pbuf_panic; 23841 pld_ptr = mp->b_rptr; 23842 } 23843 } 23844 23845 ASSERT(hdr_mp->b_wptr == hdr_ptr); 23846 ASSERT(mp->b_wptr == pld_ptr); 23847 23848 /* Update IP statistics */ 23849 IP_STAT_UPDATE(ip_frag_mdt_pkt_out, pkts); 23850 23851 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 23852 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 23853 23854 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 23855 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 23856 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 23857 23858 if (pkt_type == OB_PKT) { 23859 ire->ire_ob_pkt_count += pkts; 23860 if (ire->ire_ipif != NULL) 23861 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 23862 } else { 23863 /* 23864 * The type is IB_PKT in the forwarding path and in 23865 * the mobile IP case when the packet is being reverse- 23866 * tunneled to the home agent. 23867 */ 23868 ire->ire_ib_pkt_count += pkts; 23869 ASSERT(!IRE_IS_LOCAL(ire)); 23870 if (ire->ire_type & IRE_BROADCAST) { 23871 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 23872 } else { 23873 UPDATE_MIB(ill->ill_ip_mib, 23874 ipIfStatsHCOutForwDatagrams, pkts); 23875 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 23876 } 23877 } 23878 ire->ire_last_used_time = lbolt; 23879 /* Send it down */ 23880 putnext(ire->ire_stq, md_mp); 23881 return; 23882 23883 pbuf_panic: 23884 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 23885 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 23886 pbuf_idx); 23887 /* NOTREACHED */ 23888 } 23889 23890 /* 23891 * Outbound IP fragmentation routine. 23892 * 23893 * NOTE : This routine does not ire_refrele the ire that is passed in 23894 * as the argument. 23895 */ 23896 static void 23897 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 23898 uint32_t frag_flag, zoneid_t zoneid) 23899 { 23900 int i1; 23901 mblk_t *ll_hdr_mp; 23902 int ll_hdr_len; 23903 int hdr_len; 23904 mblk_t *hdr_mp; 23905 ipha_t *ipha; 23906 int ip_data_end; 23907 int len; 23908 mblk_t *mp = mp_orig, *mp1; 23909 int offset; 23910 queue_t *q; 23911 uint32_t v_hlen_tos_len; 23912 mblk_t *first_mp; 23913 boolean_t mctl_present; 23914 ill_t *ill; 23915 ill_t *out_ill; 23916 mblk_t *xmit_mp; 23917 mblk_t *carve_mp; 23918 ire_t *ire1 = NULL; 23919 ire_t *save_ire = NULL; 23920 mblk_t *next_mp = NULL; 23921 boolean_t last_frag = B_FALSE; 23922 boolean_t multirt_send = B_FALSE; 23923 ire_t *first_ire = NULL; 23924 irb_t *irb = NULL; 23925 mib2_ipIfStatsEntry_t *mibptr = NULL; 23926 23927 ill = ire_to_ill(ire); 23928 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ip_mib; 23929 23930 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 23931 23932 /* 23933 * IPSEC does not allow hw accelerated packets to be fragmented 23934 * This check is made in ip_wput_ipsec_out prior to coming here 23935 * via ip_wput_ire_fragmentit. 23936 * 23937 * If at this point we have an ire whose ARP request has not 23938 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 23939 * sending of ARP query and change ire's state to ND_INCOMPLETE. 23940 * This packet and all fragmentable packets for this ire will 23941 * continue to get dropped while ire_nce->nce_state remains in 23942 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 23943 * ND_REACHABLE, all subsquent large packets for this ire will 23944 * get fragemented and sent out by this function. 23945 */ 23946 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 23947 /* If nce_state is ND_INITIAL, trigger ARP query */ 23948 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 23949 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 23950 " - dropping packet\n")); 23951 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 23952 freemsg(mp); 23953 return; 23954 } 23955 23956 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 23957 "ip_wput_frag_start:"); 23958 23959 if (mp->b_datap->db_type == M_CTL) { 23960 first_mp = mp; 23961 mp_orig = mp = mp->b_cont; 23962 mctl_present = B_TRUE; 23963 } else { 23964 first_mp = mp; 23965 mctl_present = B_FALSE; 23966 } 23967 23968 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 23969 ipha = (ipha_t *)mp->b_rptr; 23970 23971 /* 23972 * If the Don't Fragment flag is on, generate an ICMP destination 23973 * unreachable, fragmentation needed. 23974 */ 23975 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23976 if (offset & IPH_DF) { 23977 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 23978 /* 23979 * Need to compute hdr checksum if called from ip_wput_ire. 23980 * Note that ip_rput_forward verifies the checksum before 23981 * calling this routine so in that case this is a noop. 23982 */ 23983 ipha->ipha_hdr_checksum = 0; 23984 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23985 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid); 23986 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23987 "ip_wput_frag_end:(%S)", 23988 "don't fragment"); 23989 return; 23990 } 23991 if (mctl_present) 23992 freeb(first_mp); 23993 /* 23994 * Establish the starting offset. May not be zero if we are fragging 23995 * a fragment that is being forwarded. 23996 */ 23997 offset = offset & IPH_OFFSET; 23998 23999 /* TODO why is this test needed? */ 24000 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24001 if (((max_frag - LENGTH) & ~7) < 8) { 24002 /* TODO: notify ulp somehow */ 24003 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24004 freemsg(mp); 24005 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24006 "ip_wput_frag_end:(%S)", 24007 "len < 8"); 24008 return; 24009 } 24010 24011 hdr_len = (V_HLEN & 0xF) << 2; 24012 24013 ipha->ipha_hdr_checksum = 0; 24014 24015 /* 24016 * Establish the number of bytes maximum per frag, after putting 24017 * in the header. 24018 */ 24019 len = (max_frag - hdr_len) & ~7; 24020 24021 /* Check if we can use MDT to send out the frags. */ 24022 ASSERT(!IRE_IS_LOCAL(ire)); 24023 if (hdr_len == IP_SIMPLE_HDR_LENGTH && ip_multidata_outbound && 24024 !(ire->ire_flags & RTF_MULTIRT) && !IPP_ENABLED(IPP_LOCAL_OUT) && 24025 ill != NULL && ILL_MDT_CAPABLE(ill) && 24026 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24027 ASSERT(ill->ill_mdt_capab != NULL); 24028 if (!ill->ill_mdt_capab->ill_mdt_on) { 24029 /* 24030 * If MDT has been previously turned off in the past, 24031 * and we currently can do MDT (due to IPQoS policy 24032 * removal, etc.) then enable it for this interface. 24033 */ 24034 ill->ill_mdt_capab->ill_mdt_on = 1; 24035 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24036 ill->ill_name)); 24037 } 24038 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24039 offset); 24040 return; 24041 } 24042 24043 /* Get a copy of the header for the trailing frags */ 24044 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset); 24045 if (!hdr_mp) { 24046 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24047 freemsg(mp); 24048 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24049 "ip_wput_frag_end:(%S)", 24050 "couldn't copy hdr"); 24051 return; 24052 } 24053 if (DB_CRED(mp) != NULL) 24054 mblk_setcred(hdr_mp, DB_CRED(mp)); 24055 24056 /* Store the starting offset, with the MoreFrags flag. */ 24057 i1 = offset | IPH_MF | frag_flag; 24058 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24059 24060 /* Establish the ending byte offset, based on the starting offset. */ 24061 offset <<= 3; 24062 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24063 24064 /* Store the length of the first fragment in the IP header. */ 24065 i1 = len + hdr_len; 24066 ASSERT(i1 <= IP_MAXPACKET); 24067 ipha->ipha_length = htons((uint16_t)i1); 24068 24069 /* 24070 * Compute the IP header checksum for the first frag. We have to 24071 * watch out that we stop at the end of the header. 24072 */ 24073 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24074 24075 /* 24076 * Now carve off the first frag. Note that this will include the 24077 * original IP header. 24078 */ 24079 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24080 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24081 freeb(hdr_mp); 24082 freemsg(mp_orig); 24083 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24084 "ip_wput_frag_end:(%S)", 24085 "couldn't carve first"); 24086 return; 24087 } 24088 24089 /* 24090 * Multirouting case. Each fragment is replicated 24091 * via all non-condemned RTF_MULTIRT routes 24092 * currently resolved. 24093 * We ensure that first_ire is the first RTF_MULTIRT 24094 * ire in the bucket. 24095 */ 24096 if (ire->ire_flags & RTF_MULTIRT) { 24097 irb = ire->ire_bucket; 24098 ASSERT(irb != NULL); 24099 24100 multirt_send = B_TRUE; 24101 24102 /* Make sure we do not omit any multiroute ire. */ 24103 IRB_REFHOLD(irb); 24104 for (first_ire = irb->irb_ire; 24105 first_ire != NULL; 24106 first_ire = first_ire->ire_next) { 24107 if ((first_ire->ire_flags & RTF_MULTIRT) && 24108 (first_ire->ire_addr == ire->ire_addr) && 24109 !(first_ire->ire_marks & 24110 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 24111 break; 24112 } 24113 24114 if (first_ire != NULL) { 24115 if (first_ire != ire) { 24116 IRE_REFHOLD(first_ire); 24117 /* 24118 * Do not release the ire passed in 24119 * as the argument. 24120 */ 24121 ire = first_ire; 24122 } else { 24123 first_ire = NULL; 24124 } 24125 } 24126 IRB_REFRELE(irb); 24127 24128 /* 24129 * Save the first ire; we will need to restore it 24130 * for the trailing frags. 24131 * We REFHOLD save_ire, as each iterated ire will be 24132 * REFRELEd. 24133 */ 24134 save_ire = ire; 24135 IRE_REFHOLD(save_ire); 24136 } 24137 24138 /* 24139 * First fragment emission loop. 24140 * In most cases, the emission loop below is entered only 24141 * once. Only in the case where the ire holds the RTF_MULTIRT 24142 * flag, do we loop to process all RTF_MULTIRT ires in the 24143 * bucket, and send the fragment through all crossed 24144 * RTF_MULTIRT routes. 24145 */ 24146 do { 24147 if (ire->ire_flags & RTF_MULTIRT) { 24148 /* 24149 * We are in a multiple send case, need to get 24150 * the next ire and make a copy of the packet. 24151 * ire1 holds here the next ire to process in the 24152 * bucket. If multirouting is expected, 24153 * any non-RTF_MULTIRT ire that has the 24154 * right destination address is ignored. 24155 * 24156 * We have to take into account the MTU of 24157 * each walked ire. max_frag is set by the 24158 * the caller and generally refers to 24159 * the primary ire entry. Here we ensure that 24160 * no route with a lower MTU will be used, as 24161 * fragments are carved once for all ires, 24162 * then replicated. 24163 */ 24164 ASSERT(irb != NULL); 24165 IRB_REFHOLD(irb); 24166 for (ire1 = ire->ire_next; 24167 ire1 != NULL; 24168 ire1 = ire1->ire_next) { 24169 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24170 continue; 24171 if (ire1->ire_addr != ire->ire_addr) 24172 continue; 24173 if (ire1->ire_marks & 24174 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24175 continue; 24176 /* 24177 * Ensure we do not exceed the MTU 24178 * of the next route. 24179 */ 24180 if (ire1->ire_max_frag < max_frag) { 24181 ip_multirt_bad_mtu(ire1, max_frag); 24182 continue; 24183 } 24184 24185 /* Got one. */ 24186 IRE_REFHOLD(ire1); 24187 break; 24188 } 24189 IRB_REFRELE(irb); 24190 24191 if (ire1 != NULL) { 24192 next_mp = copyb(mp); 24193 if ((next_mp == NULL) || 24194 ((mp->b_cont != NULL) && 24195 ((next_mp->b_cont = 24196 dupmsg(mp->b_cont)) == NULL))) { 24197 freemsg(next_mp); 24198 next_mp = NULL; 24199 ire_refrele(ire1); 24200 ire1 = NULL; 24201 } 24202 } 24203 24204 /* Last multiroute ire; don't loop anymore. */ 24205 if (ire1 == NULL) { 24206 multirt_send = B_FALSE; 24207 } 24208 } 24209 24210 ll_hdr_len = 0; 24211 LOCK_IRE_FP_MP(ire); 24212 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24213 if (ll_hdr_mp != NULL) { 24214 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24215 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24216 } else { 24217 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24218 } 24219 24220 /* If there is a transmit header, get a copy for this frag. */ 24221 /* 24222 * TODO: should check db_ref before calling ip_carve_mp since 24223 * it might give us a dup. 24224 */ 24225 if (!ll_hdr_mp) { 24226 /* No xmit header. */ 24227 xmit_mp = mp; 24228 24229 /* We have a link-layer header that can fit in our mblk. */ 24230 } else if (mp->b_datap->db_ref == 1 && 24231 ll_hdr_len != 0 && 24232 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24233 /* M_DATA fastpath */ 24234 mp->b_rptr -= ll_hdr_len; 24235 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24236 xmit_mp = mp; 24237 24238 /* Corner case if copyb has failed */ 24239 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24240 UNLOCK_IRE_FP_MP(ire); 24241 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24242 freeb(hdr_mp); 24243 freemsg(mp); 24244 freemsg(mp_orig); 24245 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24246 "ip_wput_frag_end:(%S)", 24247 "discard"); 24248 24249 if (multirt_send) { 24250 ASSERT(ire1); 24251 ASSERT(next_mp); 24252 24253 freemsg(next_mp); 24254 ire_refrele(ire1); 24255 } 24256 if (save_ire != NULL) 24257 IRE_REFRELE(save_ire); 24258 24259 if (first_ire != NULL) 24260 ire_refrele(first_ire); 24261 return; 24262 24263 /* 24264 * Case of res_mp OR the fastpath mp can't fit 24265 * in the mblk 24266 */ 24267 } else { 24268 xmit_mp->b_cont = mp; 24269 if (DB_CRED(mp) != NULL) 24270 mblk_setcred(xmit_mp, DB_CRED(mp)); 24271 /* 24272 * Get priority marking, if any. 24273 * We propagate the CoS marking from the 24274 * original packet that went to QoS processing 24275 * in ip_wput_ire to the newly carved mp. 24276 */ 24277 if (DB_TYPE(xmit_mp) == M_DATA) 24278 xmit_mp->b_band = mp->b_band; 24279 } 24280 UNLOCK_IRE_FP_MP(ire); 24281 24282 q = ire->ire_stq; 24283 out_ill = (ill_t *)q->q_ptr; 24284 24285 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24286 24287 DTRACE_PROBE4(ip4__physical__out__start, 24288 ill_t *, NULL, ill_t *, out_ill, 24289 ipha_t *, ipha, mblk_t *, xmit_mp); 24290 24291 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 24292 NULL, out_ill, ipha, xmit_mp, mp); 24293 24294 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24295 24296 if (xmit_mp != NULL) { 24297 putnext(q, xmit_mp); 24298 24299 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24300 UPDATE_MIB(out_ill->ill_ip_mib, 24301 ipIfStatsHCOutOctets, i1); 24302 24303 if (pkt_type != OB_PKT) { 24304 /* 24305 * Update the packet count and MIB stats 24306 * of trailing RTF_MULTIRT ires. 24307 */ 24308 UPDATE_OB_PKT_COUNT(ire); 24309 BUMP_MIB(out_ill->ill_ip_mib, 24310 ipIfStatsOutFragReqds); 24311 } 24312 } 24313 24314 if (multirt_send) { 24315 /* 24316 * We are in a multiple send case; look for 24317 * the next ire and re-enter the loop. 24318 */ 24319 ASSERT(ire1); 24320 ASSERT(next_mp); 24321 /* REFRELE the current ire before looping */ 24322 ire_refrele(ire); 24323 ire = ire1; 24324 ire1 = NULL; 24325 mp = next_mp; 24326 next_mp = NULL; 24327 } 24328 } while (multirt_send); 24329 24330 ASSERT(ire1 == NULL); 24331 24332 /* Restore the original ire; we need it for the trailing frags */ 24333 if (save_ire != NULL) { 24334 /* REFRELE the last iterated ire */ 24335 ire_refrele(ire); 24336 /* save_ire has been REFHOLDed */ 24337 ire = save_ire; 24338 save_ire = NULL; 24339 q = ire->ire_stq; 24340 } 24341 24342 if (pkt_type == OB_PKT) { 24343 UPDATE_OB_PKT_COUNT(ire); 24344 } else { 24345 out_ill = (ill_t *)q->q_ptr; 24346 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24347 UPDATE_IB_PKT_COUNT(ire); 24348 } 24349 24350 /* Advance the offset to the second frag starting point. */ 24351 offset += len; 24352 /* 24353 * Update hdr_len from the copied header - there might be less options 24354 * in the later fragments. 24355 */ 24356 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24357 /* Loop until done. */ 24358 for (;;) { 24359 uint16_t offset_and_flags; 24360 uint16_t ip_len; 24361 24362 if (ip_data_end - offset > len) { 24363 /* 24364 * Carve off the appropriate amount from the original 24365 * datagram. 24366 */ 24367 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24368 mp = NULL; 24369 break; 24370 } 24371 /* 24372 * More frags after this one. Get another copy 24373 * of the header. 24374 */ 24375 if (carve_mp->b_datap->db_ref == 1 && 24376 hdr_mp->b_wptr - hdr_mp->b_rptr < 24377 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24378 /* Inline IP header */ 24379 carve_mp->b_rptr -= hdr_mp->b_wptr - 24380 hdr_mp->b_rptr; 24381 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24382 hdr_mp->b_wptr - hdr_mp->b_rptr); 24383 mp = carve_mp; 24384 } else { 24385 if (!(mp = copyb(hdr_mp))) { 24386 freemsg(carve_mp); 24387 break; 24388 } 24389 /* Get priority marking, if any. */ 24390 mp->b_band = carve_mp->b_band; 24391 mp->b_cont = carve_mp; 24392 } 24393 ipha = (ipha_t *)mp->b_rptr; 24394 offset_and_flags = IPH_MF; 24395 } else { 24396 /* 24397 * Last frag. Consume the header. Set len to 24398 * the length of this last piece. 24399 */ 24400 len = ip_data_end - offset; 24401 24402 /* 24403 * Carve off the appropriate amount from the original 24404 * datagram. 24405 */ 24406 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24407 mp = NULL; 24408 break; 24409 } 24410 if (carve_mp->b_datap->db_ref == 1 && 24411 hdr_mp->b_wptr - hdr_mp->b_rptr < 24412 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24413 /* Inline IP header */ 24414 carve_mp->b_rptr -= hdr_mp->b_wptr - 24415 hdr_mp->b_rptr; 24416 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24417 hdr_mp->b_wptr - hdr_mp->b_rptr); 24418 mp = carve_mp; 24419 freeb(hdr_mp); 24420 hdr_mp = mp; 24421 } else { 24422 mp = hdr_mp; 24423 /* Get priority marking, if any. */ 24424 mp->b_band = carve_mp->b_band; 24425 mp->b_cont = carve_mp; 24426 } 24427 ipha = (ipha_t *)mp->b_rptr; 24428 /* A frag of a frag might have IPH_MF non-zero */ 24429 offset_and_flags = 24430 ntohs(ipha->ipha_fragment_offset_and_flags) & 24431 IPH_MF; 24432 } 24433 offset_and_flags |= (uint16_t)(offset >> 3); 24434 offset_and_flags |= (uint16_t)frag_flag; 24435 /* Store the offset and flags in the IP header. */ 24436 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24437 24438 /* Store the length in the IP header. */ 24439 ip_len = (uint16_t)(len + hdr_len); 24440 ipha->ipha_length = htons(ip_len); 24441 24442 /* 24443 * Set the IP header checksum. Note that mp is just 24444 * the header, so this is easy to pass to ip_csum. 24445 */ 24446 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24447 24448 /* Attach a transmit header, if any, and ship it. */ 24449 if (pkt_type == OB_PKT) { 24450 UPDATE_OB_PKT_COUNT(ire); 24451 } else { 24452 out_ill = (ill_t *)q->q_ptr; 24453 BUMP_MIB(out_ill->ill_ip_mib, 24454 ipIfStatsHCOutForwDatagrams); 24455 UPDATE_IB_PKT_COUNT(ire); 24456 } 24457 24458 if (ire->ire_flags & RTF_MULTIRT) { 24459 irb = ire->ire_bucket; 24460 ASSERT(irb != NULL); 24461 24462 multirt_send = B_TRUE; 24463 24464 /* 24465 * Save the original ire; we will need to restore it 24466 * for the tailing frags. 24467 */ 24468 save_ire = ire; 24469 IRE_REFHOLD(save_ire); 24470 } 24471 /* 24472 * Emission loop for this fragment, similar 24473 * to what is done for the first fragment. 24474 */ 24475 do { 24476 if (multirt_send) { 24477 /* 24478 * We are in a multiple send case, need to get 24479 * the next ire and make a copy of the packet. 24480 */ 24481 ASSERT(irb != NULL); 24482 IRB_REFHOLD(irb); 24483 for (ire1 = ire->ire_next; 24484 ire1 != NULL; 24485 ire1 = ire1->ire_next) { 24486 if (!(ire1->ire_flags & RTF_MULTIRT)) 24487 continue; 24488 if (ire1->ire_addr != ire->ire_addr) 24489 continue; 24490 if (ire1->ire_marks & 24491 (IRE_MARK_CONDEMNED| 24492 IRE_MARK_HIDDEN)) 24493 continue; 24494 /* 24495 * Ensure we do not exceed the MTU 24496 * of the next route. 24497 */ 24498 if (ire1->ire_max_frag < max_frag) { 24499 ip_multirt_bad_mtu(ire1, 24500 max_frag); 24501 continue; 24502 } 24503 24504 /* Got one. */ 24505 IRE_REFHOLD(ire1); 24506 break; 24507 } 24508 IRB_REFRELE(irb); 24509 24510 if (ire1 != NULL) { 24511 next_mp = copyb(mp); 24512 if ((next_mp == NULL) || 24513 ((mp->b_cont != NULL) && 24514 ((next_mp->b_cont = 24515 dupmsg(mp->b_cont)) == NULL))) { 24516 freemsg(next_mp); 24517 next_mp = NULL; 24518 ire_refrele(ire1); 24519 ire1 = NULL; 24520 } 24521 } 24522 24523 /* Last multiroute ire; don't loop anymore. */ 24524 if (ire1 == NULL) { 24525 multirt_send = B_FALSE; 24526 } 24527 } 24528 24529 /* Update transmit header */ 24530 ll_hdr_len = 0; 24531 LOCK_IRE_FP_MP(ire); 24532 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24533 if (ll_hdr_mp != NULL) { 24534 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24535 ll_hdr_len = MBLKL(ll_hdr_mp); 24536 } else { 24537 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24538 } 24539 24540 if (!ll_hdr_mp) { 24541 xmit_mp = mp; 24542 24543 /* 24544 * We have link-layer header that can fit in 24545 * our mblk. 24546 */ 24547 } else if (mp->b_datap->db_ref == 1 && 24548 ll_hdr_len != 0 && 24549 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24550 /* M_DATA fastpath */ 24551 mp->b_rptr -= ll_hdr_len; 24552 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24553 ll_hdr_len); 24554 xmit_mp = mp; 24555 24556 /* 24557 * Case of res_mp OR the fastpath mp can't fit 24558 * in the mblk 24559 */ 24560 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24561 xmit_mp->b_cont = mp; 24562 if (DB_CRED(mp) != NULL) 24563 mblk_setcred(xmit_mp, DB_CRED(mp)); 24564 /* Get priority marking, if any. */ 24565 if (DB_TYPE(xmit_mp) == M_DATA) 24566 xmit_mp->b_band = mp->b_band; 24567 24568 /* Corner case if copyb failed */ 24569 } else { 24570 /* 24571 * Exit both the replication and 24572 * fragmentation loops. 24573 */ 24574 UNLOCK_IRE_FP_MP(ire); 24575 goto drop_pkt; 24576 } 24577 UNLOCK_IRE_FP_MP(ire); 24578 24579 mp1 = mp; 24580 out_ill = (ill_t *)q->q_ptr; 24581 24582 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24583 24584 DTRACE_PROBE4(ip4__physical__out__start, 24585 ill_t *, NULL, ill_t *, out_ill, 24586 ipha_t *, ipha, mblk_t *, xmit_mp); 24587 24588 FW_HOOKS(ip4_physical_out_event, 24589 ipv4firewall_physical_out, 24590 NULL, out_ill, ipha, xmit_mp, mp); 24591 24592 DTRACE_PROBE1(ip4__physical__out__end, 24593 mblk_t *, xmit_mp); 24594 24595 if (mp != mp1 && hdr_mp == mp1) 24596 hdr_mp = mp; 24597 if (mp != mp1 && mp_orig == mp1) 24598 mp_orig = mp; 24599 24600 if (xmit_mp != NULL) { 24601 putnext(q, xmit_mp); 24602 24603 BUMP_MIB(out_ill->ill_ip_mib, 24604 ipIfStatsHCOutTransmits); 24605 UPDATE_MIB(out_ill->ill_ip_mib, 24606 ipIfStatsHCOutOctets, ip_len); 24607 24608 if (pkt_type != OB_PKT) { 24609 /* 24610 * Update the packet count of trailing 24611 * RTF_MULTIRT ires. 24612 */ 24613 UPDATE_OB_PKT_COUNT(ire); 24614 } 24615 } 24616 24617 /* All done if we just consumed the hdr_mp. */ 24618 if (mp == hdr_mp) { 24619 last_frag = B_TRUE; 24620 BUMP_MIB(out_ill->ill_ip_mib, 24621 ipIfStatsOutFragOKs); 24622 } 24623 24624 if (multirt_send) { 24625 /* 24626 * We are in a multiple send case; look for 24627 * the next ire and re-enter the loop. 24628 */ 24629 ASSERT(ire1); 24630 ASSERT(next_mp); 24631 /* REFRELE the current ire before looping */ 24632 ire_refrele(ire); 24633 ire = ire1; 24634 ire1 = NULL; 24635 q = ire->ire_stq; 24636 mp = next_mp; 24637 next_mp = NULL; 24638 } 24639 } while (multirt_send); 24640 /* 24641 * Restore the original ire; we need it for the 24642 * trailing frags 24643 */ 24644 if (save_ire != NULL) { 24645 ASSERT(ire1 == NULL); 24646 /* REFRELE the last iterated ire */ 24647 ire_refrele(ire); 24648 /* save_ire has been REFHOLDed */ 24649 ire = save_ire; 24650 q = ire->ire_stq; 24651 save_ire = NULL; 24652 } 24653 24654 if (last_frag) { 24655 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24656 "ip_wput_frag_end:(%S)", 24657 "consumed hdr_mp"); 24658 24659 if (first_ire != NULL) 24660 ire_refrele(first_ire); 24661 return; 24662 } 24663 /* Otherwise, advance and loop. */ 24664 offset += len; 24665 } 24666 24667 drop_pkt: 24668 /* Clean up following allocation failure. */ 24669 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24670 freemsg(mp); 24671 if (mp != hdr_mp) 24672 freeb(hdr_mp); 24673 if (mp != mp_orig) 24674 freemsg(mp_orig); 24675 24676 if (save_ire != NULL) 24677 IRE_REFRELE(save_ire); 24678 if (first_ire != NULL) 24679 ire_refrele(first_ire); 24680 24681 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24682 "ip_wput_frag_end:(%S)", 24683 "end--alloc failure"); 24684 } 24685 24686 /* 24687 * Copy the header plus those options which have the copy bit set 24688 */ 24689 static mblk_t * 24690 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset) 24691 { 24692 mblk_t *mp; 24693 uchar_t *up; 24694 24695 /* 24696 * Quick check if we need to look for options without the copy bit 24697 * set 24698 */ 24699 mp = allocb(ip_wroff_extra + hdr_len, BPRI_HI); 24700 if (!mp) 24701 return (mp); 24702 mp->b_rptr += ip_wroff_extra; 24703 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24704 bcopy(rptr, mp->b_rptr, hdr_len); 24705 mp->b_wptr += hdr_len + ip_wroff_extra; 24706 return (mp); 24707 } 24708 up = mp->b_rptr; 24709 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24710 up += IP_SIMPLE_HDR_LENGTH; 24711 rptr += IP_SIMPLE_HDR_LENGTH; 24712 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24713 while (hdr_len > 0) { 24714 uint32_t optval; 24715 uint32_t optlen; 24716 24717 optval = *rptr; 24718 if (optval == IPOPT_EOL) 24719 break; 24720 if (optval == IPOPT_NOP) 24721 optlen = 1; 24722 else 24723 optlen = rptr[1]; 24724 if (optval & IPOPT_COPY) { 24725 bcopy(rptr, up, optlen); 24726 up += optlen; 24727 } 24728 rptr += optlen; 24729 hdr_len -= optlen; 24730 } 24731 /* 24732 * Make sure that we drop an even number of words by filling 24733 * with EOL to the next word boundary. 24734 */ 24735 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24736 hdr_len & 0x3; hdr_len++) 24737 *up++ = IPOPT_EOL; 24738 mp->b_wptr = up; 24739 /* Update header length */ 24740 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24741 return (mp); 24742 } 24743 24744 /* 24745 * Delivery to local recipients including fanout to multiple recipients. 24746 * Does not do checksumming of UDP/TCP. 24747 * Note: q should be the read side queue for either the ill or conn. 24748 * Note: rq should be the read side q for the lower (ill) stream. 24749 * We don't send packets to IPPF processing, thus the last argument 24750 * to all the fanout calls are B_FALSE. 24751 */ 24752 void 24753 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24754 int fanout_flags, zoneid_t zoneid) 24755 { 24756 uint32_t protocol; 24757 mblk_t *first_mp; 24758 boolean_t mctl_present; 24759 int ire_type; 24760 #define rptr ((uchar_t *)ipha) 24761 24762 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24763 "ip_wput_local_start: q %p", q); 24764 24765 if (ire != NULL) { 24766 ire_type = ire->ire_type; 24767 } else { 24768 /* 24769 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24770 * packet is not multicast, we can't tell the ire type. 24771 */ 24772 ASSERT(CLASSD(ipha->ipha_dst)); 24773 ire_type = IRE_BROADCAST; 24774 } 24775 24776 first_mp = mp; 24777 if (first_mp->b_datap->db_type == M_CTL) { 24778 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24779 if (!io->ipsec_out_secure) { 24780 /* 24781 * This ipsec_out_t was allocated in ip_wput 24782 * for multicast packets to store the ill_index. 24783 * As this is being delivered locally, we don't 24784 * need this anymore. 24785 */ 24786 mp = first_mp->b_cont; 24787 freeb(first_mp); 24788 first_mp = mp; 24789 mctl_present = B_FALSE; 24790 } else { 24791 /* 24792 * Convert IPSEC_OUT to IPSEC_IN, preserving all 24793 * security properties for the looped-back packet. 24794 */ 24795 mctl_present = B_TRUE; 24796 mp = first_mp->b_cont; 24797 ASSERT(mp != NULL); 24798 ipsec_out_to_in(first_mp); 24799 } 24800 } else { 24801 mctl_present = B_FALSE; 24802 } 24803 24804 DTRACE_PROBE4(ip4__loopback__in__start, 24805 ill_t *, ill, ill_t *, NULL, 24806 ipha_t *, ipha, mblk_t *, first_mp); 24807 24808 FW_HOOKS(ip4_loopback_in_event, ipv4firewall_loopback_in, 24809 ill, NULL, ipha, first_mp, mp); 24810 24811 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 24812 24813 if (first_mp == NULL) 24814 return; 24815 24816 loopback_packets++; 24817 24818 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 24819 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 24820 if (!IS_SIMPLE_IPH(ipha)) { 24821 ip_wput_local_options(ipha); 24822 } 24823 24824 protocol = ipha->ipha_protocol; 24825 switch (protocol) { 24826 case IPPROTO_ICMP: { 24827 ire_t *ire_zone; 24828 ilm_t *ilm; 24829 mblk_t *mp1; 24830 zoneid_t last_zoneid; 24831 24832 if (CLASSD(ipha->ipha_dst) && 24833 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 24834 ASSERT(ire_type == IRE_BROADCAST); 24835 /* 24836 * In the multicast case, applications may have joined 24837 * the group from different zones, so we need to deliver 24838 * the packet to each of them. Loop through the 24839 * multicast memberships structures (ilm) on the receive 24840 * ill and send a copy of the packet up each matching 24841 * one. However, we don't do this for multicasts sent on 24842 * the loopback interface (PHYI_LOOPBACK flag set) as 24843 * they must stay in the sender's zone. 24844 * 24845 * ilm_add_v6() ensures that ilms in the same zone are 24846 * contiguous in the ill_ilm list. We use this property 24847 * to avoid sending duplicates needed when two 24848 * applications in the same zone join the same group on 24849 * different logical interfaces: we ignore the ilm if 24850 * it's zoneid is the same as the last matching one. 24851 * In addition, the sending of the packet for 24852 * ire_zoneid is delayed until all of the other ilms 24853 * have been exhausted. 24854 */ 24855 last_zoneid = -1; 24856 ILM_WALKER_HOLD(ill); 24857 for (ilm = ill->ill_ilm; ilm != NULL; 24858 ilm = ilm->ilm_next) { 24859 if ((ilm->ilm_flags & ILM_DELETED) || 24860 ipha->ipha_dst != ilm->ilm_addr || 24861 ilm->ilm_zoneid == last_zoneid || 24862 ilm->ilm_zoneid == zoneid || 24863 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 24864 continue; 24865 mp1 = ip_copymsg(first_mp); 24866 if (mp1 == NULL) 24867 continue; 24868 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 24869 mctl_present, B_FALSE, ill, 24870 ilm->ilm_zoneid); 24871 last_zoneid = ilm->ilm_zoneid; 24872 } 24873 ILM_WALKER_RELE(ill); 24874 /* 24875 * Loopback case: the sending endpoint has 24876 * IP_MULTICAST_LOOP disabled, therefore we don't 24877 * dispatch the multicast packet to the sending zone. 24878 */ 24879 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 24880 freemsg(first_mp); 24881 return; 24882 } 24883 } else if (ire_type == IRE_BROADCAST) { 24884 /* 24885 * In the broadcast case, there may be many zones 24886 * which need a copy of the packet delivered to them. 24887 * There is one IRE_BROADCAST per broadcast address 24888 * and per zone; we walk those using a helper function. 24889 * In addition, the sending of the packet for zoneid is 24890 * delayed until all of the other ires have been 24891 * processed. 24892 */ 24893 IRB_REFHOLD(ire->ire_bucket); 24894 ire_zone = NULL; 24895 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 24896 ire)) != NULL) { 24897 mp1 = ip_copymsg(first_mp); 24898 if (mp1 == NULL) 24899 continue; 24900 24901 UPDATE_IB_PKT_COUNT(ire_zone); 24902 ire_zone->ire_last_used_time = lbolt; 24903 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 24904 mctl_present, B_FALSE, ill, 24905 ire_zone->ire_zoneid); 24906 } 24907 IRB_REFRELE(ire->ire_bucket); 24908 } 24909 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 24910 0, mctl_present, B_FALSE, ill, zoneid); 24911 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24912 "ip_wput_local_end: q %p (%S)", 24913 q, "icmp"); 24914 return; 24915 } 24916 case IPPROTO_IGMP: 24917 if ((mp = igmp_input(q, mp, ill)) == NULL) { 24918 /* Bad packet - discarded by igmp_input */ 24919 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24920 "ip_wput_local_end: q %p (%S)", 24921 q, "igmp_input--bad packet"); 24922 if (mctl_present) 24923 freeb(first_mp); 24924 return; 24925 } 24926 /* 24927 * igmp_input() may have returned the pulled up message. 24928 * So first_mp and ipha need to be reinitialized. 24929 */ 24930 ipha = (ipha_t *)mp->b_rptr; 24931 if (mctl_present) 24932 first_mp->b_cont = mp; 24933 else 24934 first_mp = mp; 24935 /* deliver to local raw users */ 24936 break; 24937 case IPPROTO_ENCAP: 24938 /* 24939 * This case is covered by either ip_fanout_proto, or by 24940 * the above security processing for self-tunneled packets. 24941 */ 24942 break; 24943 case IPPROTO_UDP: { 24944 uint16_t *up; 24945 uint32_t ports; 24946 24947 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 24948 UDP_PORTS_OFFSET); 24949 /* Force a 'valid' checksum. */ 24950 up[3] = 0; 24951 24952 ports = *(uint32_t *)up; 24953 ip_fanout_udp(q, first_mp, ill, ipha, ports, 24954 (ire_type == IRE_BROADCAST), 24955 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24956 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 24957 ill, zoneid); 24958 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24959 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 24960 return; 24961 } 24962 case IPPROTO_TCP: { 24963 24964 /* 24965 * For TCP, discard broadcast packets. 24966 */ 24967 if ((ushort_t)ire_type == IRE_BROADCAST) { 24968 freemsg(first_mp); 24969 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 24970 ip2dbg(("ip_wput_local: discard broadcast\n")); 24971 return; 24972 } 24973 24974 if (mp->b_datap->db_type == M_DATA) { 24975 /* 24976 * M_DATA mblk, so init mblk (chain) for no struio(). 24977 */ 24978 mblk_t *mp1 = mp; 24979 24980 do 24981 mp1->b_datap->db_struioflag = 0; 24982 while ((mp1 = mp1->b_cont) != NULL); 24983 } 24984 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 24985 <= mp->b_wptr); 24986 ip_fanout_tcp(q, first_mp, ill, ipha, 24987 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24988 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 24989 mctl_present, B_FALSE, zoneid); 24990 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24991 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 24992 return; 24993 } 24994 case IPPROTO_SCTP: 24995 { 24996 uint32_t ports; 24997 24998 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 24999 ip_fanout_sctp(first_mp, ill, ipha, ports, 25000 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25001 IP_FF_IPINFO, 25002 mctl_present, B_FALSE, 0, zoneid); 25003 return; 25004 } 25005 25006 default: 25007 break; 25008 } 25009 /* 25010 * Find a client for some other protocol. We give 25011 * copies to multiple clients, if more than one is 25012 * bound. 25013 */ 25014 ip_fanout_proto(q, first_mp, ill, ipha, 25015 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25016 mctl_present, B_FALSE, ill, zoneid); 25017 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25018 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25019 #undef rptr 25020 } 25021 25022 /* 25023 * Update any source route, record route, or timestamp options. 25024 * Check that we are at end of strict source route. 25025 * The options have been sanity checked by ip_wput_options(). 25026 */ 25027 static void 25028 ip_wput_local_options(ipha_t *ipha) 25029 { 25030 ipoptp_t opts; 25031 uchar_t *opt; 25032 uint8_t optval; 25033 uint8_t optlen; 25034 ipaddr_t dst; 25035 uint32_t ts; 25036 ire_t *ire; 25037 timestruc_t now; 25038 25039 ip2dbg(("ip_wput_local_options\n")); 25040 for (optval = ipoptp_first(&opts, ipha); 25041 optval != IPOPT_EOL; 25042 optval = ipoptp_next(&opts)) { 25043 opt = opts.ipoptp_cur; 25044 optlen = opts.ipoptp_len; 25045 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25046 switch (optval) { 25047 uint32_t off; 25048 case IPOPT_SSRR: 25049 case IPOPT_LSRR: 25050 off = opt[IPOPT_OFFSET]; 25051 off--; 25052 if (optlen < IP_ADDR_LEN || 25053 off > optlen - IP_ADDR_LEN) { 25054 /* End of source route */ 25055 break; 25056 } 25057 /* 25058 * This will only happen if two consecutive entries 25059 * in the source route contains our address or if 25060 * it is a packet with a loose source route which 25061 * reaches us before consuming the whole source route 25062 */ 25063 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25064 if (optval == IPOPT_SSRR) { 25065 return; 25066 } 25067 /* 25068 * Hack: instead of dropping the packet truncate the 25069 * source route to what has been used by filling the 25070 * rest with IPOPT_NOP. 25071 */ 25072 opt[IPOPT_OLEN] = (uint8_t)off; 25073 while (off < optlen) { 25074 opt[off++] = IPOPT_NOP; 25075 } 25076 break; 25077 case IPOPT_RR: 25078 off = opt[IPOPT_OFFSET]; 25079 off--; 25080 if (optlen < IP_ADDR_LEN || 25081 off > optlen - IP_ADDR_LEN) { 25082 /* No more room - ignore */ 25083 ip1dbg(( 25084 "ip_wput_forward_options: end of RR\n")); 25085 break; 25086 } 25087 dst = htonl(INADDR_LOOPBACK); 25088 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25089 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25090 break; 25091 case IPOPT_TS: 25092 /* Insert timestamp if there is romm */ 25093 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25094 case IPOPT_TS_TSONLY: 25095 off = IPOPT_TS_TIMELEN; 25096 break; 25097 case IPOPT_TS_PRESPEC: 25098 case IPOPT_TS_PRESPEC_RFC791: 25099 /* Verify that the address matched */ 25100 off = opt[IPOPT_OFFSET] - 1; 25101 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25102 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25103 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 25104 if (ire == NULL) { 25105 /* Not for us */ 25106 break; 25107 } 25108 ire_refrele(ire); 25109 /* FALLTHRU */ 25110 case IPOPT_TS_TSANDADDR: 25111 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25112 break; 25113 default: 25114 /* 25115 * ip_*put_options should have already 25116 * dropped this packet. 25117 */ 25118 cmn_err(CE_PANIC, "ip_wput_local_options: " 25119 "unknown IT - bug in ip_wput_options?\n"); 25120 return; /* Keep "lint" happy */ 25121 } 25122 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25123 /* Increase overflow counter */ 25124 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25125 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25126 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25127 (off << 4); 25128 break; 25129 } 25130 off = opt[IPOPT_OFFSET] - 1; 25131 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25132 case IPOPT_TS_PRESPEC: 25133 case IPOPT_TS_PRESPEC_RFC791: 25134 case IPOPT_TS_TSANDADDR: 25135 dst = htonl(INADDR_LOOPBACK); 25136 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25137 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25138 /* FALLTHRU */ 25139 case IPOPT_TS_TSONLY: 25140 off = opt[IPOPT_OFFSET] - 1; 25141 /* Compute # of milliseconds since midnight */ 25142 gethrestime(&now); 25143 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25144 now.tv_nsec / (NANOSEC / MILLISEC); 25145 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25146 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25147 break; 25148 } 25149 break; 25150 } 25151 } 25152 } 25153 25154 /* 25155 * Send out a multicast packet on interface ipif. 25156 * The sender does not have an conn. 25157 * Caller verifies that this isn't a PHYI_LOOPBACK. 25158 */ 25159 void 25160 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25161 { 25162 ipha_t *ipha; 25163 ire_t *ire; 25164 ipaddr_t dst; 25165 mblk_t *first_mp; 25166 25167 /* igmp_sendpkt always allocates a ipsec_out_t */ 25168 ASSERT(mp->b_datap->db_type == M_CTL); 25169 ASSERT(!ipif->ipif_isv6); 25170 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 25171 25172 first_mp = mp; 25173 mp = first_mp->b_cont; 25174 ASSERT(mp->b_datap->db_type == M_DATA); 25175 ipha = (ipha_t *)mp->b_rptr; 25176 25177 /* 25178 * Find an IRE which matches the destination and the outgoing 25179 * queue (i.e. the outgoing interface.) 25180 */ 25181 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25182 dst = ipif->ipif_pp_dst_addr; 25183 else 25184 dst = ipha->ipha_dst; 25185 /* 25186 * The source address has already been initialized by the 25187 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25188 * be sufficient rather than MATCH_IRE_IPIF. 25189 * 25190 * This function is used for sending IGMP packets. We need 25191 * to make sure that we send the packet out of the interface 25192 * (ipif->ipif_ill) where we joined the group. This is to 25193 * prevent from switches doing IGMP snooping to send us multicast 25194 * packets for a given group on the interface we have joined. 25195 * If we can't find an ire, igmp_sendpkt has already initialized 25196 * ipsec_out_attach_if so that this will not be load spread in 25197 * ip_newroute_ipif. 25198 */ 25199 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25200 MATCH_IRE_ILL); 25201 if (!ire) { 25202 /* 25203 * Mark this packet to make it be delivered to 25204 * ip_wput_ire after the new ire has been 25205 * created. 25206 */ 25207 mp->b_prev = NULL; 25208 mp->b_next = NULL; 25209 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25210 zoneid, &zero_info); 25211 return; 25212 } 25213 25214 /* 25215 * Honor the RTF_SETSRC flag; this is the only case 25216 * where we force this addr whatever the current src addr is, 25217 * because this address is set by igmp_sendpkt(), and 25218 * cannot be specified by any user. 25219 */ 25220 if (ire->ire_flags & RTF_SETSRC) { 25221 ipha->ipha_src = ire->ire_src_addr; 25222 } 25223 25224 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25225 } 25226 25227 /* 25228 * NOTE : This function does not ire_refrele the ire argument passed in. 25229 * 25230 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25231 * failure. The nce_fp_mp can vanish any time in the case of IRE_MIPRTUN 25232 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25233 * the ire_lock to access the nce_fp_mp in this case. 25234 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25235 * prepending a fastpath message IPQoS processing must precede it, we also set 25236 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25237 * (IPQoS might have set the b_band for CoS marking). 25238 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25239 * must follow it so that IPQoS can mark the dl_priority field for CoS 25240 * marking, if needed. 25241 */ 25242 static mblk_t * 25243 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 25244 { 25245 uint_t hlen; 25246 ipha_t *ipha; 25247 mblk_t *mp1; 25248 boolean_t qos_done = B_FALSE; 25249 uchar_t *ll_hdr; 25250 25251 #define rptr ((uchar_t *)ipha) 25252 25253 ipha = (ipha_t *)mp->b_rptr; 25254 hlen = 0; 25255 LOCK_IRE_FP_MP(ire); 25256 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25257 ASSERT(DB_TYPE(mp1) == M_DATA); 25258 /* Initiate IPPF processing */ 25259 if ((proc != 0) && IPP_ENABLED(proc)) { 25260 UNLOCK_IRE_FP_MP(ire); 25261 ip_process(proc, &mp, ill_index); 25262 if (mp == NULL) 25263 return (NULL); 25264 25265 ipha = (ipha_t *)mp->b_rptr; 25266 LOCK_IRE_FP_MP(ire); 25267 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25268 qos_done = B_TRUE; 25269 goto no_fp_mp; 25270 } 25271 ASSERT(DB_TYPE(mp1) == M_DATA); 25272 } 25273 hlen = MBLKL(mp1); 25274 /* 25275 * Check if we have enough room to prepend fastpath 25276 * header 25277 */ 25278 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25279 ll_hdr = rptr - hlen; 25280 bcopy(mp1->b_rptr, ll_hdr, hlen); 25281 /* 25282 * Set the b_rptr to the start of the link layer 25283 * header 25284 */ 25285 mp->b_rptr = ll_hdr; 25286 mp1 = mp; 25287 } else { 25288 mp1 = copyb(mp1); 25289 if (mp1 == NULL) 25290 goto unlock_err; 25291 mp1->b_band = mp->b_band; 25292 mp1->b_cont = mp; 25293 /* 25294 * certain system generated traffic may not 25295 * have cred/label in ip header block. This 25296 * is true even for a labeled system. But for 25297 * labeled traffic, inherit the label in the 25298 * new header. 25299 */ 25300 if (DB_CRED(mp) != NULL) 25301 mblk_setcred(mp1, DB_CRED(mp)); 25302 /* 25303 * XXX disable ICK_VALID and compute checksum 25304 * here; can happen if nce_fp_mp changes and 25305 * it can't be copied now due to insufficient 25306 * space. (unlikely, fp mp can change, but it 25307 * does not increase in length) 25308 */ 25309 } 25310 UNLOCK_IRE_FP_MP(ire); 25311 } else { 25312 no_fp_mp: 25313 mp1 = copyb(ire->ire_nce->nce_res_mp); 25314 if (mp1 == NULL) { 25315 unlock_err: 25316 UNLOCK_IRE_FP_MP(ire); 25317 freemsg(mp); 25318 return (NULL); 25319 } 25320 UNLOCK_IRE_FP_MP(ire); 25321 mp1->b_cont = mp; 25322 /* 25323 * certain system generated traffic may not 25324 * have cred/label in ip header block. This 25325 * is true even for a labeled system. But for 25326 * labeled traffic, inherit the label in the 25327 * new header. 25328 */ 25329 if (DB_CRED(mp) != NULL) 25330 mblk_setcred(mp1, DB_CRED(mp)); 25331 if (!qos_done && (proc != 0) && IPP_ENABLED(proc)) { 25332 ip_process(proc, &mp1, ill_index); 25333 if (mp1 == NULL) 25334 return (NULL); 25335 } 25336 } 25337 return (mp1); 25338 #undef rptr 25339 } 25340 25341 /* 25342 * Finish the outbound IPsec processing for an IPv6 packet. This function 25343 * is called from ipsec_out_process() if the IPsec packet was processed 25344 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25345 * asynchronously. 25346 */ 25347 void 25348 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25349 ire_t *ire_arg) 25350 { 25351 in6_addr_t *v6dstp; 25352 ire_t *ire; 25353 mblk_t *mp; 25354 ip6_t *ip6h1; 25355 uint_t ill_index; 25356 ipsec_out_t *io; 25357 boolean_t attach_if, hwaccel; 25358 uint32_t flags = IP6_NO_IPPOLICY; 25359 int match_flags; 25360 zoneid_t zoneid; 25361 boolean_t ill_need_rele = B_FALSE; 25362 boolean_t ire_need_rele = B_FALSE; 25363 25364 mp = ipsec_mp->b_cont; 25365 ip6h1 = (ip6_t *)mp->b_rptr; 25366 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25367 ill_index = io->ipsec_out_ill_index; 25368 if (io->ipsec_out_reachable) { 25369 flags |= IPV6_REACHABILITY_CONFIRMATION; 25370 } 25371 attach_if = io->ipsec_out_attach_if; 25372 hwaccel = io->ipsec_out_accelerated; 25373 zoneid = io->ipsec_out_zoneid; 25374 ASSERT(zoneid != ALL_ZONES); 25375 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25376 /* Multicast addresses should have non-zero ill_index. */ 25377 v6dstp = &ip6h->ip6_dst; 25378 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25379 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25380 ASSERT(!attach_if || ill_index != 0); 25381 if (ill_index != 0) { 25382 if (ill == NULL) { 25383 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25384 B_TRUE); 25385 25386 /* Failure case frees things for us. */ 25387 if (ill == NULL) 25388 return; 25389 25390 ill_need_rele = B_TRUE; 25391 } 25392 /* 25393 * If this packet needs to go out on a particular interface 25394 * honor it. 25395 */ 25396 if (attach_if) { 25397 match_flags = MATCH_IRE_ILL; 25398 25399 /* 25400 * Check if we need an ire that will not be 25401 * looked up by anybody else i.e. HIDDEN. 25402 */ 25403 if (ill_is_probeonly(ill)) { 25404 match_flags |= MATCH_IRE_MARK_HIDDEN; 25405 } 25406 } 25407 } 25408 ASSERT(mp != NULL); 25409 25410 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25411 boolean_t unspec_src; 25412 ipif_t *ipif; 25413 25414 /* 25415 * Use the ill_index to get the right ill. 25416 */ 25417 unspec_src = io->ipsec_out_unspec_src; 25418 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25419 if (ipif == NULL) { 25420 if (ill_need_rele) 25421 ill_refrele(ill); 25422 freemsg(ipsec_mp); 25423 return; 25424 } 25425 25426 if (ire_arg != NULL) { 25427 ire = ire_arg; 25428 } else { 25429 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25430 zoneid, MBLK_GETLABEL(mp), match_flags); 25431 ire_need_rele = B_TRUE; 25432 } 25433 if (ire != NULL) { 25434 ipif_refrele(ipif); 25435 /* 25436 * XXX Do the multicast forwarding now, as the IPSEC 25437 * processing has been done. 25438 */ 25439 goto send; 25440 } 25441 25442 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25443 mp->b_prev = NULL; 25444 mp->b_next = NULL; 25445 25446 /* 25447 * If the IPsec packet was processed asynchronously, 25448 * drop it now. 25449 */ 25450 if (q == NULL) { 25451 if (ill_need_rele) 25452 ill_refrele(ill); 25453 freemsg(ipsec_mp); 25454 return; 25455 } 25456 25457 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25458 unspec_src, zoneid); 25459 ipif_refrele(ipif); 25460 } else { 25461 if (attach_if) { 25462 ipif_t *ipif; 25463 25464 ipif = ipif_get_next_ipif(NULL, ill); 25465 if (ipif == NULL) { 25466 if (ill_need_rele) 25467 ill_refrele(ill); 25468 freemsg(ipsec_mp); 25469 return; 25470 } 25471 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25472 zoneid, MBLK_GETLABEL(mp), match_flags); 25473 ire_need_rele = B_TRUE; 25474 ipif_refrele(ipif); 25475 } else { 25476 if (ire_arg != NULL) { 25477 ire = ire_arg; 25478 } else { 25479 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL); 25480 ire_need_rele = B_TRUE; 25481 } 25482 } 25483 if (ire != NULL) 25484 goto send; 25485 /* 25486 * ire disappeared underneath. 25487 * 25488 * What we need to do here is the ip_newroute 25489 * logic to get the ire without doing the IPSEC 25490 * processing. Follow the same old path. But this 25491 * time, ip_wput or ire_add_then_send will call us 25492 * directly as all the IPSEC operations are done. 25493 */ 25494 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25495 mp->b_prev = NULL; 25496 mp->b_next = NULL; 25497 25498 /* 25499 * If the IPsec packet was processed asynchronously, 25500 * drop it now. 25501 */ 25502 if (q == NULL) { 25503 if (ill_need_rele) 25504 ill_refrele(ill); 25505 freemsg(ipsec_mp); 25506 return; 25507 } 25508 25509 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25510 zoneid); 25511 } 25512 if (ill != NULL && ill_need_rele) 25513 ill_refrele(ill); 25514 return; 25515 send: 25516 if (ill != NULL && ill_need_rele) 25517 ill_refrele(ill); 25518 25519 /* Local delivery */ 25520 if (ire->ire_stq == NULL) { 25521 ill_t *out_ill; 25522 ASSERT(q != NULL); 25523 25524 /* PFHooks: LOOPBACK_OUT */ 25525 out_ill = ire->ire_ipif->ipif_ill; 25526 25527 DTRACE_PROBE4(ip6__loopback__out__start, 25528 ill_t *, NULL, ill_t *, out_ill, 25529 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25530 25531 FW_HOOKS6(ip6_loopback_out_event, ipv6firewall_loopback_out, 25532 NULL, out_ill, ip6h1, ipsec_mp, mp); 25533 25534 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25535 25536 if (ipsec_mp != NULL) 25537 ip_wput_local_v6(RD(q), out_ill, 25538 ip6h, ipsec_mp, ire, 0); 25539 if (ire_need_rele) 25540 ire_refrele(ire); 25541 return; 25542 } 25543 /* 25544 * Everything is done. Send it out on the wire. 25545 * We force the insertion of a fragment header using the 25546 * IPH_FRAG_HDR flag in two cases: 25547 * - after reception of an ICMPv6 "packet too big" message 25548 * with a MTU < 1280 (cf. RFC 2460 section 5) 25549 * - for multirouted IPv6 packets, so that the receiver can 25550 * discard duplicates according to their fragment identifier 25551 */ 25552 /* XXX fix flow control problems. */ 25553 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25554 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25555 if (hwaccel) { 25556 /* 25557 * hardware acceleration does not handle these 25558 * "slow path" cases. 25559 */ 25560 /* IPsec KSTATS: should bump bean counter here. */ 25561 if (ire_need_rele) 25562 ire_refrele(ire); 25563 freemsg(ipsec_mp); 25564 return; 25565 } 25566 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25567 (mp->b_cont ? msgdsize(mp) : 25568 mp->b_wptr - (uchar_t *)ip6h)) { 25569 /* IPsec KSTATS: should bump bean counter here. */ 25570 ip0dbg(("Packet length mismatch: %d, %ld\n", 25571 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25572 msgdsize(mp))); 25573 if (ire_need_rele) 25574 ire_refrele(ire); 25575 freemsg(ipsec_mp); 25576 return; 25577 } 25578 ASSERT(mp->b_prev == NULL); 25579 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25580 ntohs(ip6h->ip6_plen) + 25581 IPV6_HDR_LEN, ire->ire_max_frag)); 25582 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25583 ire->ire_max_frag); 25584 } else { 25585 UPDATE_OB_PKT_COUNT(ire); 25586 ire->ire_last_used_time = lbolt; 25587 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25588 } 25589 if (ire_need_rele) 25590 ire_refrele(ire); 25591 freeb(ipsec_mp); 25592 } 25593 25594 void 25595 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25596 { 25597 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25598 da_ipsec_t *hada; /* data attributes */ 25599 ill_t *ill = (ill_t *)q->q_ptr; 25600 25601 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25602 25603 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25604 /* IPsec KSTATS: Bump lose counter here! */ 25605 freemsg(mp); 25606 return; 25607 } 25608 25609 /* 25610 * It's an IPsec packet that must be 25611 * accelerated by the Provider, and the 25612 * outbound ill is IPsec acceleration capable. 25613 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25614 * to the ill. 25615 * IPsec KSTATS: should bump packet counter here. 25616 */ 25617 25618 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25619 if (hada_mp == NULL) { 25620 /* IPsec KSTATS: should bump packet counter here. */ 25621 freemsg(mp); 25622 return; 25623 } 25624 25625 hada_mp->b_datap->db_type = M_CTL; 25626 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25627 hada_mp->b_cont = mp; 25628 25629 hada = (da_ipsec_t *)hada_mp->b_rptr; 25630 bzero(hada, sizeof (da_ipsec_t)); 25631 hada->da_type = IPHADA_M_CTL; 25632 25633 putnext(q, hada_mp); 25634 } 25635 25636 /* 25637 * Finish the outbound IPsec processing. This function is called from 25638 * ipsec_out_process() if the IPsec packet was processed 25639 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25640 * asynchronously. 25641 */ 25642 void 25643 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25644 ire_t *ire_arg) 25645 { 25646 uint32_t v_hlen_tos_len; 25647 ipaddr_t dst; 25648 ipif_t *ipif = NULL; 25649 ire_t *ire; 25650 ire_t *ire1 = NULL; 25651 mblk_t *next_mp = NULL; 25652 uint32_t max_frag; 25653 boolean_t multirt_send = B_FALSE; 25654 mblk_t *mp; 25655 mblk_t *mp1; 25656 ipha_t *ipha1; 25657 uint_t ill_index; 25658 ipsec_out_t *io; 25659 boolean_t attach_if; 25660 int match_flags, offset; 25661 irb_t *irb = NULL; 25662 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25663 zoneid_t zoneid; 25664 uint32_t cksum; 25665 uint16_t *up; 25666 ipxmit_state_t pktxmit_state; 25667 #ifdef _BIG_ENDIAN 25668 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25669 #else 25670 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25671 #endif 25672 25673 mp = ipsec_mp->b_cont; 25674 ipha1 = (ipha_t *)mp->b_rptr; 25675 ASSERT(mp != NULL); 25676 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25677 dst = ipha->ipha_dst; 25678 25679 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25680 ill_index = io->ipsec_out_ill_index; 25681 attach_if = io->ipsec_out_attach_if; 25682 zoneid = io->ipsec_out_zoneid; 25683 ASSERT(zoneid != ALL_ZONES); 25684 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25685 if (ill_index != 0) { 25686 if (ill == NULL) { 25687 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25688 ill_index, B_FALSE); 25689 25690 /* Failure case frees things for us. */ 25691 if (ill == NULL) 25692 return; 25693 25694 ill_need_rele = B_TRUE; 25695 } 25696 /* 25697 * If this packet needs to go out on a particular interface 25698 * honor it. 25699 */ 25700 if (attach_if) { 25701 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25702 25703 /* 25704 * Check if we need an ire that will not be 25705 * looked up by anybody else i.e. HIDDEN. 25706 */ 25707 if (ill_is_probeonly(ill)) { 25708 match_flags |= MATCH_IRE_MARK_HIDDEN; 25709 } 25710 } 25711 } 25712 25713 if (CLASSD(dst)) { 25714 boolean_t conn_dontroute; 25715 /* 25716 * Use the ill_index to get the right ipif. 25717 */ 25718 conn_dontroute = io->ipsec_out_dontroute; 25719 if (ill_index == 0) 25720 ipif = ipif_lookup_group(dst, zoneid); 25721 else 25722 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25723 if (ipif == NULL) { 25724 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25725 " multicast\n")); 25726 BUMP_MIB(&ip_mib, ipIfStatsOutNoRoutes); 25727 freemsg(ipsec_mp); 25728 goto done; 25729 } 25730 /* 25731 * ipha_src has already been intialized with the 25732 * value of the ipif in ip_wput. All we need now is 25733 * an ire to send this downstream. 25734 */ 25735 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25736 MBLK_GETLABEL(mp), match_flags); 25737 if (ire != NULL) { 25738 ill_t *ill1; 25739 /* 25740 * Do the multicast forwarding now, as the IPSEC 25741 * processing has been done. 25742 */ 25743 if (ip_g_mrouter && !conn_dontroute && 25744 (ill1 = ire_to_ill(ire))) { 25745 if (ip_mforward(ill1, ipha, mp)) { 25746 freemsg(ipsec_mp); 25747 ip1dbg(("ip_wput_ipsec_out: mforward " 25748 "failed\n")); 25749 ire_refrele(ire); 25750 goto done; 25751 } 25752 } 25753 goto send; 25754 } 25755 25756 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25757 mp->b_prev = NULL; 25758 mp->b_next = NULL; 25759 25760 /* 25761 * If the IPsec packet was processed asynchronously, 25762 * drop it now. 25763 */ 25764 if (q == NULL) { 25765 freemsg(ipsec_mp); 25766 goto done; 25767 } 25768 25769 /* 25770 * We may be using a wrong ipif to create the ire. 25771 * But it is okay as the source address is assigned 25772 * for the packet already. Next outbound packet would 25773 * create the IRE with the right IPIF in ip_wput. 25774 * 25775 * Also handle RTF_MULTIRT routes. 25776 */ 25777 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25778 zoneid, &zero_info); 25779 } else { 25780 if (attach_if) { 25781 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 25782 zoneid, MBLK_GETLABEL(mp), match_flags); 25783 } else { 25784 if (ire_arg != NULL) { 25785 ire = ire_arg; 25786 ire_need_rele = B_FALSE; 25787 } else { 25788 ire = ire_cache_lookup(dst, zoneid, 25789 MBLK_GETLABEL(mp)); 25790 } 25791 } 25792 if (ire != NULL) { 25793 goto send; 25794 } 25795 25796 /* 25797 * ire disappeared underneath. 25798 * 25799 * What we need to do here is the ip_newroute 25800 * logic to get the ire without doing the IPSEC 25801 * processing. Follow the same old path. But this 25802 * time, ip_wput or ire_add_then_put will call us 25803 * directly as all the IPSEC operations are done. 25804 */ 25805 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25806 mp->b_prev = NULL; 25807 mp->b_next = NULL; 25808 25809 /* 25810 * If the IPsec packet was processed asynchronously, 25811 * drop it now. 25812 */ 25813 if (q == NULL) { 25814 freemsg(ipsec_mp); 25815 goto done; 25816 } 25817 25818 /* 25819 * Since we're going through ip_newroute() again, we 25820 * need to make sure we don't: 25821 * 25822 * 1.) Trigger the ASSERT() with the ipha_ident 25823 * overloading. 25824 * 2.) Redo transport-layer checksumming, since we've 25825 * already done all that to get this far. 25826 * 25827 * The easiest way not do either of the above is to set 25828 * the ipha_ident field to IP_HDR_INCLUDED. 25829 */ 25830 ipha->ipha_ident = IP_HDR_INCLUDED; 25831 ip_newroute(q, ipsec_mp, dst, NULL, 25832 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), zoneid); 25833 } 25834 goto done; 25835 send: 25836 if (ipha->ipha_protocol == IPPROTO_UDP && udp_compute_checksum()) { 25837 /* 25838 * ESP NAT-Traversal packet. 25839 * 25840 * Just do software checksum for now. 25841 */ 25842 25843 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 25844 IP_STAT(ip_out_sw_cksum); 25845 IP_STAT_UPDATE(ip_udp_out_sw_cksum_bytes, 25846 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 25847 #define iphs ((uint16_t *)ipha) 25848 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 25849 iphs[9] + ntohs(htons(ipha->ipha_length) - 25850 IP_SIMPLE_HDR_LENGTH); 25851 #undef iphs 25852 if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0) 25853 cksum = 0xFFFF; 25854 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 25855 if (mp1->b_wptr - mp1->b_rptr >= 25856 offset + sizeof (uint16_t)) { 25857 up = (uint16_t *)(mp1->b_rptr + offset); 25858 *up = cksum; 25859 break; /* out of for loop */ 25860 } else { 25861 offset -= (mp->b_wptr - mp->b_rptr); 25862 } 25863 } /* Otherwise, just keep the all-zero checksum. */ 25864 25865 if (ire->ire_stq == NULL) { 25866 ill_t *out_ill; 25867 /* 25868 * Loopbacks go through ip_wput_local except for one case. 25869 * We come here if we generate a icmp_frag_needed message 25870 * after IPSEC processing is over. When this function calls 25871 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 25872 * icmp_frag_needed. The message generated comes back here 25873 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 25874 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 25875 * source address as it is usually set in ip_wput_ire. As 25876 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 25877 * and we end up here. We can't enter ip_wput_ire once the 25878 * IPSEC processing is over and hence we need to do it here. 25879 */ 25880 ASSERT(q != NULL); 25881 UPDATE_OB_PKT_COUNT(ire); 25882 ire->ire_last_used_time = lbolt; 25883 if (ipha->ipha_src == 0) 25884 ipha->ipha_src = ire->ire_src_addr; 25885 25886 /* PFHooks: LOOPBACK_OUT */ 25887 out_ill = ire->ire_ipif->ipif_ill; 25888 25889 DTRACE_PROBE4(ip4__loopback__out__start, 25890 ill_t *, NULL, ill_t *, out_ill, 25891 ipha_t *, ipha1, mblk_t *, ipsec_mp); 25892 25893 FW_HOOKS(ip4_loopback_out_event, ipv4firewall_loopback_out, 25894 NULL, out_ill, ipha1, ipsec_mp, mp); 25895 25896 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 25897 25898 if (ipsec_mp != NULL) 25899 ip_wput_local(RD(q), out_ill, 25900 ipha, ipsec_mp, ire, 0, zoneid); 25901 if (ire_need_rele) 25902 ire_refrele(ire); 25903 goto done; 25904 } 25905 25906 if (ire->ire_max_frag < (unsigned int)LENGTH) { 25907 /* 25908 * We are through with IPSEC processing. 25909 * Fragment this and send it on the wire. 25910 */ 25911 if (io->ipsec_out_accelerated) { 25912 /* 25913 * The packet has been accelerated but must 25914 * be fragmented. This should not happen 25915 * since AH and ESP must not accelerate 25916 * packets that need fragmentation, however 25917 * the configuration could have changed 25918 * since the AH or ESP processing. 25919 * Drop packet. 25920 * IPsec KSTATS: bump bean counter here. 25921 */ 25922 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 25923 "fragmented accelerated packet!\n")); 25924 freemsg(ipsec_mp); 25925 } else { 25926 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid); 25927 } 25928 if (ire_need_rele) 25929 ire_refrele(ire); 25930 goto done; 25931 } 25932 25933 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 25934 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 25935 (void *)ire->ire_ipif, (void *)ipif)); 25936 25937 /* 25938 * Multiroute the secured packet, unless IPsec really 25939 * requires the packet to go out only through a particular 25940 * interface. 25941 */ 25942 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 25943 ire_t *first_ire; 25944 irb = ire->ire_bucket; 25945 ASSERT(irb != NULL); 25946 /* 25947 * This ire has been looked up as the one that 25948 * goes through the given ipif; 25949 * make sure we do not omit any other multiroute ire 25950 * that may be present in the bucket before this one. 25951 */ 25952 IRB_REFHOLD(irb); 25953 for (first_ire = irb->irb_ire; 25954 first_ire != NULL; 25955 first_ire = first_ire->ire_next) { 25956 if ((first_ire->ire_flags & RTF_MULTIRT) && 25957 (first_ire->ire_addr == ire->ire_addr) && 25958 !(first_ire->ire_marks & 25959 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 25960 break; 25961 } 25962 25963 if ((first_ire != NULL) && (first_ire != ire)) { 25964 /* 25965 * Don't change the ire if the packet must 25966 * be fragmented if sent via this new one. 25967 */ 25968 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 25969 IRE_REFHOLD(first_ire); 25970 if (ire_need_rele) 25971 ire_refrele(ire); 25972 else 25973 ire_need_rele = B_TRUE; 25974 ire = first_ire; 25975 } 25976 } 25977 IRB_REFRELE(irb); 25978 25979 multirt_send = B_TRUE; 25980 max_frag = ire->ire_max_frag; 25981 } else { 25982 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 25983 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 25984 "flag, attach_if %d\n", attach_if)); 25985 } 25986 } 25987 25988 /* 25989 * In most cases, the emission loop below is entered only once. 25990 * Only in the case where the ire holds the RTF_MULTIRT 25991 * flag, we loop to process all RTF_MULTIRT ires in the 25992 * bucket, and send the packet through all crossed 25993 * RTF_MULTIRT routes. 25994 */ 25995 do { 25996 if (multirt_send) { 25997 /* 25998 * ire1 holds here the next ire to process in the 25999 * bucket. If multirouting is expected, 26000 * any non-RTF_MULTIRT ire that has the 26001 * right destination address is ignored. 26002 */ 26003 ASSERT(irb != NULL); 26004 IRB_REFHOLD(irb); 26005 for (ire1 = ire->ire_next; 26006 ire1 != NULL; 26007 ire1 = ire1->ire_next) { 26008 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26009 continue; 26010 if (ire1->ire_addr != ire->ire_addr) 26011 continue; 26012 if (ire1->ire_marks & 26013 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26014 continue; 26015 /* No loopback here */ 26016 if (ire1->ire_stq == NULL) 26017 continue; 26018 /* 26019 * Ensure we do not exceed the MTU 26020 * of the next route. 26021 */ 26022 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26023 ip_multirt_bad_mtu(ire1, max_frag); 26024 continue; 26025 } 26026 26027 IRE_REFHOLD(ire1); 26028 break; 26029 } 26030 IRB_REFRELE(irb); 26031 if (ire1 != NULL) { 26032 /* 26033 * We are in a multiple send case, need to 26034 * make a copy of the packet. 26035 */ 26036 next_mp = copymsg(ipsec_mp); 26037 if (next_mp == NULL) { 26038 ire_refrele(ire1); 26039 ire1 = NULL; 26040 } 26041 } 26042 } 26043 /* 26044 * Everything is done. Send it out on the wire 26045 * 26046 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26047 * either send it on the wire or, in the case of 26048 * HW acceleration, call ipsec_hw_putnext. 26049 */ 26050 if (ire->ire_nce && 26051 ire->ire_nce->nce_state != ND_REACHABLE) { 26052 DTRACE_PROBE2(ip__wput__ipsec__bail, 26053 (ire_t *), ire, (mblk_t *), ipsec_mp); 26054 /* 26055 * If ire's link-layer is unresolved (this 26056 * would only happen if the incomplete ire 26057 * was added to cachetable via forwarding path) 26058 * don't bother going to ip_xmit_v4. Just drop the 26059 * packet. 26060 * There is a slight risk here, in that, if we 26061 * have the forwarding path create an incomplete 26062 * IRE, then until the IRE is completed, any 26063 * transmitted IPSEC packets will be dropped 26064 * instead of being queued waiting for resolution. 26065 * 26066 * But the likelihood of a forwarding packet and a wput 26067 * packet sending to the same dst at the same time 26068 * and there not yet be an ARP entry for it is small. 26069 * Furthermore, if this actually happens, it might 26070 * be likely that wput would generate multiple 26071 * packets (and forwarding would also have a train 26072 * of packets) for that destination. If this is 26073 * the case, some of them would have been dropped 26074 * anyway, since ARP only queues a few packets while 26075 * waiting for resolution 26076 * 26077 * NOTE: We should really call ip_xmit_v4, 26078 * and let it queue the packet and send the 26079 * ARP query and have ARP come back thus: 26080 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26081 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26082 * hw accel work. But it's too complex to get 26083 * the IPsec hw acceleration approach to fit 26084 * well with ip_xmit_v4 doing ARP without 26085 * doing IPSEC simplification. For now, we just 26086 * poke ip_xmit_v4 to trigger the arp resolve, so 26087 * that we can continue with the send on the next 26088 * attempt. 26089 * 26090 * XXX THis should be revisited, when 26091 * the IPsec/IP interaction is cleaned up 26092 */ 26093 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26094 " - dropping packet\n")); 26095 freemsg(ipsec_mp); 26096 /* 26097 * Call ip_xmit_v4() to trigger ARP query 26098 * in case the nce_state is ND_INITIAL 26099 */ 26100 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26101 goto drop_pkt; 26102 } 26103 26104 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26105 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26106 mblk_t *, mp); 26107 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 26108 NULL, ire->ire_ipif->ipif_ill, ipha1, mp, mp); 26109 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 26110 if (mp == NULL) 26111 goto drop_pkt; 26112 26113 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26114 pktxmit_state = ip_xmit_v4(mp, ire, 26115 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26116 26117 if ((pktxmit_state == SEND_FAILED) || 26118 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26119 26120 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26121 drop_pkt: 26122 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26123 ipIfStatsOutDiscards); 26124 if (ire_need_rele) 26125 ire_refrele(ire); 26126 if (ire1 != NULL) { 26127 ire_refrele(ire1); 26128 freemsg(next_mp); 26129 } 26130 goto done; 26131 } 26132 26133 freeb(ipsec_mp); 26134 if (ire_need_rele) 26135 ire_refrele(ire); 26136 26137 if (ire1 != NULL) { 26138 ire = ire1; 26139 ire_need_rele = B_TRUE; 26140 ASSERT(next_mp); 26141 ipsec_mp = next_mp; 26142 mp = ipsec_mp->b_cont; 26143 ire1 = NULL; 26144 next_mp = NULL; 26145 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26146 } else { 26147 multirt_send = B_FALSE; 26148 } 26149 } while (multirt_send); 26150 done: 26151 if (ill != NULL && ill_need_rele) 26152 ill_refrele(ill); 26153 if (ipif != NULL) 26154 ipif_refrele(ipif); 26155 } 26156 26157 /* 26158 * Get the ill corresponding to the specified ire, and compare its 26159 * capabilities with the protocol and algorithms specified by the 26160 * the SA obtained from ipsec_out. If they match, annotate the 26161 * ipsec_out structure to indicate that the packet needs acceleration. 26162 * 26163 * 26164 * A packet is eligible for outbound hardware acceleration if the 26165 * following conditions are satisfied: 26166 * 26167 * 1. the packet will not be fragmented 26168 * 2. the provider supports the algorithm 26169 * 3. there is no pending control message being exchanged 26170 * 4. snoop is not attached 26171 * 5. the destination address is not a broadcast or multicast address. 26172 * 26173 * Rationale: 26174 * - Hardware drivers do not support fragmentation with 26175 * the current interface. 26176 * - snoop, multicast, and broadcast may result in exposure of 26177 * a cleartext datagram. 26178 * We check all five of these conditions here. 26179 * 26180 * XXX would like to nuke "ire_t *" parameter here; problem is that 26181 * IRE is only way to figure out if a v4 address is a broadcast and 26182 * thus ineligible for acceleration... 26183 */ 26184 static void 26185 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26186 { 26187 ipsec_out_t *io; 26188 mblk_t *data_mp; 26189 uint_t plen, overhead; 26190 26191 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26192 return; 26193 26194 if (ill == NULL) 26195 return; 26196 26197 /* 26198 * Destination address is a broadcast or multicast. Punt. 26199 */ 26200 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26201 IRE_LOCAL))) 26202 return; 26203 26204 data_mp = ipsec_mp->b_cont; 26205 26206 if (ill->ill_isv6) { 26207 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26208 26209 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26210 return; 26211 26212 plen = ip6h->ip6_plen; 26213 } else { 26214 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26215 26216 if (CLASSD(ipha->ipha_dst)) 26217 return; 26218 26219 plen = ipha->ipha_length; 26220 } 26221 /* 26222 * Is there a pending DLPI control message being exchanged 26223 * between IP/IPsec and the DLS Provider? If there is, it 26224 * could be a SADB update, and the state of the DLS Provider 26225 * SADB might not be in sync with the SADB maintained by 26226 * IPsec. To avoid dropping packets or using the wrong keying 26227 * material, we do not accelerate this packet. 26228 */ 26229 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26230 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26231 "ill_dlpi_pending! don't accelerate packet\n")); 26232 return; 26233 } 26234 26235 /* 26236 * Is the Provider in promiscous mode? If it does, we don't 26237 * accelerate the packet since it will bounce back up to the 26238 * listeners in the clear. 26239 */ 26240 if (ill->ill_promisc_on_phys) { 26241 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26242 "ill in promiscous mode, don't accelerate packet\n")); 26243 return; 26244 } 26245 26246 /* 26247 * Will the packet require fragmentation? 26248 */ 26249 26250 /* 26251 * IPsec ESP note: this is a pessimistic estimate, but the same 26252 * as is used elsewhere. 26253 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26254 * + 2-byte trailer 26255 */ 26256 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26257 IPSEC_BASE_ESP_HDR_SIZE(sa); 26258 26259 if ((plen + overhead) > ill->ill_max_mtu) 26260 return; 26261 26262 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26263 26264 /* 26265 * Can the ill accelerate this IPsec protocol and algorithm 26266 * specified by the SA? 26267 */ 26268 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26269 ill->ill_isv6, sa)) { 26270 return; 26271 } 26272 26273 /* 26274 * Tell AH or ESP that the outbound ill is capable of 26275 * accelerating this packet. 26276 */ 26277 io->ipsec_out_is_capab_ill = B_TRUE; 26278 } 26279 26280 /* 26281 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26282 * 26283 * If this function returns B_TRUE, the requested SA's have been filled 26284 * into the ipsec_out_*_sa pointers. 26285 * 26286 * If the function returns B_FALSE, the packet has been "consumed", most 26287 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26288 * 26289 * The SA references created by the protocol-specific "select" 26290 * function will be released when the ipsec_mp is freed, thanks to the 26291 * ipsec_out_free destructor -- see spd.c. 26292 */ 26293 static boolean_t 26294 ipsec_out_select_sa(mblk_t *ipsec_mp) 26295 { 26296 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26297 ipsec_out_t *io; 26298 ipsec_policy_t *pp; 26299 ipsec_action_t *ap; 26300 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26301 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26302 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26303 26304 if (!io->ipsec_out_secure) { 26305 /* 26306 * We came here by mistake. 26307 * Don't bother with ipsec processing 26308 * We should "discourage" this path in the future. 26309 */ 26310 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26311 return (B_FALSE); 26312 } 26313 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26314 ASSERT((io->ipsec_out_policy != NULL) || 26315 (io->ipsec_out_act != NULL)); 26316 26317 ASSERT(io->ipsec_out_failed == B_FALSE); 26318 26319 /* 26320 * IPSEC processing has started. 26321 */ 26322 io->ipsec_out_proc_begin = B_TRUE; 26323 ap = io->ipsec_out_act; 26324 if (ap == NULL) { 26325 pp = io->ipsec_out_policy; 26326 ASSERT(pp != NULL); 26327 ap = pp->ipsp_act; 26328 ASSERT(ap != NULL); 26329 } 26330 26331 /* 26332 * We have an action. now, let's select SA's. 26333 * (In the future, we can cache this in the conn_t..) 26334 */ 26335 if (ap->ipa_want_esp) { 26336 if (io->ipsec_out_esp_sa == NULL) { 26337 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26338 IPPROTO_ESP); 26339 } 26340 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26341 } 26342 26343 if (ap->ipa_want_ah) { 26344 if (io->ipsec_out_ah_sa == NULL) { 26345 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26346 IPPROTO_AH); 26347 } 26348 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26349 /* 26350 * The ESP and AH processing order needs to be preserved 26351 * when both protocols are required (ESP should be applied 26352 * before AH for an outbound packet). Force an ESP ACQUIRE 26353 * when both ESP and AH are required, and an AH ACQUIRE 26354 * is needed. 26355 */ 26356 if (ap->ipa_want_esp && need_ah_acquire) 26357 need_esp_acquire = B_TRUE; 26358 } 26359 26360 /* 26361 * Send an ACQUIRE (extended, regular, or both) if we need one. 26362 * Release SAs that got referenced, but will not be used until we 26363 * acquire _all_ of the SAs we need. 26364 */ 26365 if (need_ah_acquire || need_esp_acquire) { 26366 if (io->ipsec_out_ah_sa != NULL) { 26367 IPSA_REFRELE(io->ipsec_out_ah_sa); 26368 io->ipsec_out_ah_sa = NULL; 26369 } 26370 if (io->ipsec_out_esp_sa != NULL) { 26371 IPSA_REFRELE(io->ipsec_out_esp_sa); 26372 io->ipsec_out_esp_sa = NULL; 26373 } 26374 26375 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26376 return (B_FALSE); 26377 } 26378 26379 return (B_TRUE); 26380 } 26381 26382 /* 26383 * Process an IPSEC_OUT message and see what you can 26384 * do with it. 26385 * IPQoS Notes: 26386 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26387 * IPSec. 26388 * XXX would like to nuke ire_t. 26389 * XXX ill_index better be "real" 26390 */ 26391 void 26392 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26393 { 26394 ipsec_out_t *io; 26395 ipsec_policy_t *pp; 26396 ipsec_action_t *ap; 26397 ipha_t *ipha; 26398 ip6_t *ip6h; 26399 mblk_t *mp; 26400 ill_t *ill; 26401 zoneid_t zoneid; 26402 ipsec_status_t ipsec_rc; 26403 boolean_t ill_need_rele = B_FALSE; 26404 26405 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26406 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26407 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26408 mp = ipsec_mp->b_cont; 26409 26410 /* 26411 * Initiate IPPF processing. We do it here to account for packets 26412 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26413 * We can check for ipsec_out_proc_begin even for such packets, as 26414 * they will always be false (asserted below). 26415 */ 26416 if (IPP_ENABLED(IPP_LOCAL_OUT) && !io->ipsec_out_proc_begin) { 26417 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26418 io->ipsec_out_ill_index : ill_index); 26419 if (mp == NULL) { 26420 ip2dbg(("ipsec_out_process: packet dropped "\ 26421 "during IPPF processing\n")); 26422 freeb(ipsec_mp); 26423 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 26424 return; 26425 } 26426 } 26427 26428 if (!io->ipsec_out_secure) { 26429 /* 26430 * We came here by mistake. 26431 * Don't bother with ipsec processing 26432 * Should "discourage" this path in the future. 26433 */ 26434 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26435 goto done; 26436 } 26437 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26438 ASSERT((io->ipsec_out_policy != NULL) || 26439 (io->ipsec_out_act != NULL)); 26440 ASSERT(io->ipsec_out_failed == B_FALSE); 26441 26442 if (!ipsec_loaded()) { 26443 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26444 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26445 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 26446 } else { 26447 BUMP_MIB(&ip6_mib, ipIfStatsOutDiscards); 26448 } 26449 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26450 &ipdrops_ip_ipsec_not_loaded, &ip_dropper); 26451 return; 26452 } 26453 26454 /* 26455 * IPSEC processing has started. 26456 */ 26457 io->ipsec_out_proc_begin = B_TRUE; 26458 ap = io->ipsec_out_act; 26459 if (ap == NULL) { 26460 pp = io->ipsec_out_policy; 26461 ASSERT(pp != NULL); 26462 ap = pp->ipsp_act; 26463 ASSERT(ap != NULL); 26464 } 26465 26466 /* 26467 * Save the outbound ill index. When the packet comes back 26468 * from IPsec, we make sure the ill hasn't changed or disappeared 26469 * before sending it the accelerated packet. 26470 */ 26471 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26472 int ifindex; 26473 ill = ire_to_ill(ire); 26474 ifindex = ill->ill_phyint->phyint_ifindex; 26475 io->ipsec_out_capab_ill_index = ifindex; 26476 } 26477 26478 /* 26479 * The order of processing is first insert a IP header if needed. 26480 * Then insert the ESP header and then the AH header. 26481 */ 26482 if ((io->ipsec_out_se_done == B_FALSE) && 26483 (ap->ipa_want_se)) { 26484 /* 26485 * First get the outer IP header before sending 26486 * it to ESP. 26487 */ 26488 ipha_t *oipha, *iipha; 26489 mblk_t *outer_mp, *inner_mp; 26490 26491 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26492 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26493 "ipsec_out_process: " 26494 "Self-Encapsulation failed: Out of memory\n"); 26495 freemsg(ipsec_mp); 26496 if (ill != NULL) { 26497 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26498 } else { 26499 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 26500 } 26501 return; 26502 } 26503 inner_mp = ipsec_mp->b_cont; 26504 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26505 oipha = (ipha_t *)outer_mp->b_rptr; 26506 iipha = (ipha_t *)inner_mp->b_rptr; 26507 *oipha = *iipha; 26508 outer_mp->b_wptr += sizeof (ipha_t); 26509 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26510 sizeof (ipha_t)); 26511 oipha->ipha_protocol = IPPROTO_ENCAP; 26512 oipha->ipha_version_and_hdr_length = 26513 IP_SIMPLE_HDR_VERSION; 26514 oipha->ipha_hdr_checksum = 0; 26515 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26516 outer_mp->b_cont = inner_mp; 26517 ipsec_mp->b_cont = outer_mp; 26518 26519 io->ipsec_out_se_done = B_TRUE; 26520 io->ipsec_out_tunnel = B_TRUE; 26521 } 26522 26523 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26524 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26525 !ipsec_out_select_sa(ipsec_mp)) 26526 return; 26527 26528 /* 26529 * By now, we know what SA's to use. Toss over to ESP & AH 26530 * to do the heavy lifting. 26531 */ 26532 zoneid = io->ipsec_out_zoneid; 26533 ASSERT(zoneid != ALL_ZONES); 26534 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26535 ASSERT(io->ipsec_out_esp_sa != NULL); 26536 io->ipsec_out_esp_done = B_TRUE; 26537 /* 26538 * Note that since hw accel can only apply one transform, 26539 * not two, we skip hw accel for ESP if we also have AH 26540 * This is an design limitation of the interface 26541 * which should be revisited. 26542 */ 26543 ASSERT(ire != NULL); 26544 if (io->ipsec_out_ah_sa == NULL) { 26545 ill = (ill_t *)ire->ire_stq->q_ptr; 26546 ipsec_out_is_accelerated(ipsec_mp, 26547 io->ipsec_out_esp_sa, ill, ire); 26548 } 26549 26550 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26551 switch (ipsec_rc) { 26552 case IPSEC_STATUS_SUCCESS: 26553 break; 26554 case IPSEC_STATUS_FAILED: 26555 if (ill != NULL) { 26556 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26557 } else { 26558 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 26559 } 26560 /* FALLTHRU */ 26561 case IPSEC_STATUS_PENDING: 26562 return; 26563 } 26564 } 26565 26566 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26567 ASSERT(io->ipsec_out_ah_sa != NULL); 26568 io->ipsec_out_ah_done = B_TRUE; 26569 if (ire == NULL) { 26570 int idx = io->ipsec_out_capab_ill_index; 26571 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26572 NULL, NULL, NULL, NULL); 26573 ill_need_rele = B_TRUE; 26574 } else { 26575 ill = (ill_t *)ire->ire_stq->q_ptr; 26576 } 26577 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26578 ire); 26579 26580 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26581 switch (ipsec_rc) { 26582 case IPSEC_STATUS_SUCCESS: 26583 break; 26584 case IPSEC_STATUS_FAILED: 26585 if (ill != NULL) { 26586 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26587 } else { 26588 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 26589 } 26590 /* FALLTHRU */ 26591 case IPSEC_STATUS_PENDING: 26592 if (ill != NULL && ill_need_rele) 26593 ill_refrele(ill); 26594 return; 26595 } 26596 } 26597 /* 26598 * We are done with IPSEC processing. Send it over 26599 * the wire. 26600 */ 26601 done: 26602 mp = ipsec_mp->b_cont; 26603 ipha = (ipha_t *)mp->b_rptr; 26604 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26605 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26606 } else { 26607 ip6h = (ip6_t *)ipha; 26608 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26609 } 26610 if (ill != NULL && ill_need_rele) 26611 ill_refrele(ill); 26612 } 26613 26614 /* ARGSUSED */ 26615 void 26616 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26617 { 26618 opt_restart_t *or; 26619 int err; 26620 conn_t *connp; 26621 26622 ASSERT(CONN_Q(q)); 26623 connp = Q_TO_CONN(q); 26624 26625 ASSERT(first_mp->b_datap->db_type == M_CTL); 26626 or = (opt_restart_t *)first_mp->b_rptr; 26627 /* 26628 * We don't need to pass any credentials here since this is just 26629 * a restart. The credentials are passed in when svr4_optcom_req 26630 * is called the first time (from ip_wput_nondata). 26631 */ 26632 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26633 err = svr4_optcom_req(q, first_mp, NULL, 26634 &ip_opt_obj); 26635 } else { 26636 ASSERT(or->or_type == T_OPTMGMT_REQ); 26637 err = tpi_optcom_req(q, first_mp, NULL, 26638 &ip_opt_obj); 26639 } 26640 if (err != EINPROGRESS) { 26641 /* operation is done */ 26642 CONN_OPER_PENDING_DONE(connp); 26643 } 26644 } 26645 26646 /* 26647 * ioctls that go through a down/up sequence may need to wait for the down 26648 * to complete. This involves waiting for the ire and ipif refcnts to go down 26649 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26650 */ 26651 /* ARGSUSED */ 26652 void 26653 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26654 { 26655 struct iocblk *iocp; 26656 mblk_t *mp1; 26657 ip_ioctl_cmd_t *ipip; 26658 int err; 26659 sin_t *sin; 26660 struct lifreq *lifr; 26661 struct ifreq *ifr; 26662 26663 iocp = (struct iocblk *)mp->b_rptr; 26664 ASSERT(ipsq != NULL); 26665 /* Existence of mp1 verified in ip_wput_nondata */ 26666 mp1 = mp->b_cont->b_cont; 26667 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26668 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26669 /* 26670 * Special case where ipsq_current_ipif is not set: 26671 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26672 * ill could also have become part of a ipmp group in the 26673 * process, we are here as were not able to complete the 26674 * operation in ipif_set_values because we could not become 26675 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26676 * will not be set so we need to set it. 26677 */ 26678 ill_t *ill = q->q_ptr; 26679 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26680 } 26681 ASSERT(ipsq->ipsq_current_ipif != NULL); 26682 26683 if (ipip->ipi_cmd_type == IF_CMD) { 26684 /* This a old style SIOC[GS]IF* command */ 26685 ifr = (struct ifreq *)mp1->b_rptr; 26686 sin = (sin_t *)&ifr->ifr_addr; 26687 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26688 /* This a new style SIOC[GS]LIF* command */ 26689 lifr = (struct lifreq *)mp1->b_rptr; 26690 sin = (sin_t *)&lifr->lifr_addr; 26691 } else { 26692 sin = NULL; 26693 } 26694 26695 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 26696 ipip, mp1->b_rptr); 26697 26698 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26699 } 26700 26701 /* 26702 * ioctl processing 26703 * 26704 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 26705 * the ioctl command in the ioctl tables and determines the copyin data size 26706 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 26707 * size. 26708 * 26709 * ioctl processing then continues when the M_IOCDATA makes its way down. 26710 * Now the ioctl is looked up again in the ioctl table, and its properties are 26711 * extracted. The associated 'conn' is then refheld till the end of the ioctl 26712 * and the general ioctl processing function ip_process_ioctl is called. 26713 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26714 * so goes thru the serialization primitive ipsq_try_enter. Then the 26715 * appropriate function to handle the ioctl is called based on the entry in 26716 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26717 * which also refreleases the 'conn' that was refheld at the start of the 26718 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26719 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 26720 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 26721 * 26722 * Many exclusive ioctls go thru an internal down up sequence as part of 26723 * the operation. For example an attempt to change the IP address of an 26724 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26725 * does all the cleanup such as deleting all ires that use this address. 26726 * Then we need to wait till all references to the interface go away. 26727 */ 26728 void 26729 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26730 { 26731 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26732 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 26733 cmd_info_t ci; 26734 int err; 26735 boolean_t entered_ipsq = B_FALSE; 26736 26737 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26738 26739 if (ipip == NULL) 26740 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26741 26742 /* 26743 * SIOCLIFADDIF needs to go thru a special path since the 26744 * ill may not exist yet. This happens in the case of lo0 26745 * which is created using this ioctl. 26746 */ 26747 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26748 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26749 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26750 return; 26751 } 26752 26753 ci.ci_ipif = NULL; 26754 switch (ipip->ipi_cmd_type) { 26755 case IF_CMD: 26756 case LIF_CMD: 26757 /* 26758 * ioctls that pass in a [l]ifreq appear here. 26759 * ip_extract_lifreq_cmn returns a refheld ipif in 26760 * ci.ci_ipif 26761 */ 26762 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 26763 ipip->ipi_flags, &ci, ip_process_ioctl); 26764 if (err != 0) { 26765 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26766 return; 26767 } 26768 ASSERT(ci.ci_ipif != NULL); 26769 break; 26770 26771 case TUN_CMD: 26772 /* 26773 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 26774 * a refheld ipif in ci.ci_ipif 26775 */ 26776 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 26777 if (err != 0) { 26778 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26779 return; 26780 } 26781 ASSERT(ci.ci_ipif != NULL); 26782 break; 26783 26784 case MISC_CMD: 26785 /* 26786 * ioctls that neither pass in [l]ifreq or iftun_req come here 26787 * For eg. SIOCGLIFCONF will appear here. 26788 */ 26789 switch (ipip->ipi_cmd) { 26790 case IF_UNITSEL: 26791 /* ioctl comes down the ill */ 26792 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26793 ipif_refhold(ci.ci_ipif); 26794 break; 26795 case SIOCGMSFILTER: 26796 case SIOCSMSFILTER: 26797 case SIOCGIPMSFILTER: 26798 case SIOCSIPMSFILTER: 26799 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 26800 ip_process_ioctl); 26801 if (err != 0) { 26802 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), 26803 NULL); 26804 } 26805 break; 26806 } 26807 err = 0; 26808 ci.ci_sin = NULL; 26809 ci.ci_sin6 = NULL; 26810 ci.ci_lifr = NULL; 26811 break; 26812 } 26813 26814 /* 26815 * If ipsq is non-null, we are already being called exclusively 26816 */ 26817 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26818 if (!(ipip->ipi_flags & IPI_WR)) { 26819 /* 26820 * A return value of EINPROGRESS means the ioctl is 26821 * either queued and waiting for some reason or has 26822 * already completed. 26823 */ 26824 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26825 ci.ci_lifr); 26826 if (ci.ci_ipif != NULL) 26827 ipif_refrele(ci.ci_ipif); 26828 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26829 return; 26830 } 26831 26832 ASSERT(ci.ci_ipif != NULL); 26833 26834 if (ipsq == NULL) { 26835 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 26836 ip_process_ioctl, NEW_OP, B_TRUE); 26837 entered_ipsq = B_TRUE; 26838 } 26839 /* 26840 * Release the ipif so that ipif_down and friends that wait for 26841 * references to go away are not misled about the current ipif_refcnt 26842 * values. We are writer so we can access the ipif even after releasing 26843 * the ipif. 26844 */ 26845 ipif_refrele(ci.ci_ipif); 26846 if (ipsq == NULL) 26847 return; 26848 26849 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 26850 26851 /* 26852 * For most set ioctls that come here, this serves as a single point 26853 * where we set the IPIF_CHANGING flag. This ensures that there won't 26854 * be any new references to the ipif. This helps functions that go 26855 * through this path and end up trying to wait for the refcnts 26856 * associated with the ipif to go down to zero. Some exceptions are 26857 * Failover, Failback, and Groupname commands that operate on more than 26858 * just the ci.ci_ipif. These commands internally determine the 26859 * set of ipif's they operate on and set and clear the IPIF_CHANGING 26860 * flags on that set. Another exception is the Removeif command that 26861 * sets the IPIF_CONDEMNED flag internally after identifying the right 26862 * ipif to operate on. 26863 */ 26864 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 26865 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 26866 ipip->ipi_cmd != SIOCLIFFAILOVER && 26867 ipip->ipi_cmd != SIOCLIFFAILBACK && 26868 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 26869 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 26870 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 26871 26872 /* 26873 * A return value of EINPROGRESS means the ioctl is 26874 * either queued and waiting for some reason or has 26875 * already completed. 26876 */ 26877 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 26878 26879 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26880 26881 if (entered_ipsq) 26882 ipsq_exit(ipsq, B_TRUE, B_TRUE); 26883 } 26884 26885 /* 26886 * Complete the ioctl. Typically ioctls use the mi package and need to 26887 * do mi_copyout/mi_copy_done. 26888 */ 26889 void 26890 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 26891 { 26892 conn_t *connp = NULL; 26893 26894 if (err == EINPROGRESS) 26895 return; 26896 26897 if (CONN_Q(q)) { 26898 connp = Q_TO_CONN(q); 26899 ASSERT(connp->conn_ref >= 2); 26900 } 26901 26902 switch (mode) { 26903 case COPYOUT: 26904 if (err == 0) 26905 mi_copyout(q, mp); 26906 else 26907 mi_copy_done(q, mp, err); 26908 break; 26909 26910 case NO_COPYOUT: 26911 mi_copy_done(q, mp, err); 26912 break; 26913 26914 default: 26915 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 26916 break; 26917 } 26918 26919 /* 26920 * The refhold placed at the start of the ioctl is released here. 26921 */ 26922 if (connp != NULL) 26923 CONN_OPER_PENDING_DONE(connp); 26924 26925 if (ipsq != NULL) 26926 ipsq_current_finish(ipsq); 26927 } 26928 26929 /* 26930 * This is called from ip_wput_nondata to resume a deferred TCP bind. 26931 */ 26932 /* ARGSUSED */ 26933 void 26934 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 26935 { 26936 conn_t *connp = arg; 26937 tcp_t *tcp; 26938 26939 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 26940 tcp = connp->conn_tcp; 26941 26942 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 26943 freemsg(mp); 26944 else 26945 tcp_rput_other(tcp, mp); 26946 CONN_OPER_PENDING_DONE(connp); 26947 } 26948 26949 /* Called from ip_wput for all non data messages */ 26950 /* ARGSUSED */ 26951 void 26952 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26953 { 26954 mblk_t *mp1; 26955 ire_t *ire, *fake_ire; 26956 ill_t *ill; 26957 struct iocblk *iocp; 26958 ip_ioctl_cmd_t *ipip; 26959 cred_t *cr; 26960 conn_t *connp = NULL; 26961 int cmd, err; 26962 nce_t *nce; 26963 ipif_t *ipif; 26964 26965 if (CONN_Q(q)) 26966 connp = Q_TO_CONN(q); 26967 26968 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 26969 26970 /* Check if it is a queue to /dev/sctp. */ 26971 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 26972 connp->conn_rq == NULL) { 26973 sctp_wput(q, mp); 26974 return; 26975 } 26976 26977 switch (DB_TYPE(mp)) { 26978 case M_IOCTL: 26979 /* 26980 * IOCTL processing begins in ip_sioctl_copyin_setup which 26981 * will arrange to copy in associated control structures. 26982 */ 26983 ip_sioctl_copyin_setup(q, mp); 26984 return; 26985 case M_IOCDATA: 26986 /* 26987 * Ensure that this is associated with one of our trans- 26988 * parent ioctls. If it's not ours, discard it if we're 26989 * running as a driver, or pass it on if we're a module. 26990 */ 26991 iocp = (struct iocblk *)mp->b_rptr; 26992 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26993 if (ipip == NULL) { 26994 if (q->q_next == NULL) { 26995 goto nak; 26996 } else { 26997 putnext(q, mp); 26998 } 26999 return; 27000 } else if ((q->q_next != NULL) && 27001 !(ipip->ipi_flags & IPI_MODOK)) { 27002 /* 27003 * the ioctl is one we recognise, but is not 27004 * consumed by IP as a module, pass M_IOCDATA 27005 * for processing downstream, but only for 27006 * common Streams ioctls. 27007 */ 27008 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27009 putnext(q, mp); 27010 return; 27011 } else { 27012 goto nak; 27013 } 27014 } 27015 27016 /* IOCTL continuation following copyin or copyout. */ 27017 if (mi_copy_state(q, mp, NULL) == -1) { 27018 /* 27019 * The copy operation failed. mi_copy_state already 27020 * cleaned up, so we're out of here. 27021 */ 27022 return; 27023 } 27024 /* 27025 * If we just completed a copy in, we become writer and 27026 * continue processing in ip_sioctl_copyin_done. If it 27027 * was a copy out, we call mi_copyout again. If there is 27028 * nothing more to copy out, it will complete the IOCTL. 27029 */ 27030 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27031 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27032 mi_copy_done(q, mp, EPROTO); 27033 return; 27034 } 27035 /* 27036 * Check for cases that need more copying. A return 27037 * value of 0 means a second copyin has been started, 27038 * so we return; a return value of 1 means no more 27039 * copying is needed, so we continue. 27040 */ 27041 cmd = iocp->ioc_cmd; 27042 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 27043 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 27044 MI_COPY_COUNT(mp) == 1) { 27045 if (ip_copyin_msfilter(q, mp) == 0) 27046 return; 27047 } 27048 /* 27049 * Refhold the conn, till the ioctl completes. This is 27050 * needed in case the ioctl ends up in the pending mp 27051 * list. Every mp in the ill_pending_mp list and 27052 * the ipsq_pending_mp must have a refhold on the conn 27053 * to resume processing. The refhold is released when 27054 * the ioctl completes. (normally or abnormally) 27055 * In all cases ip_ioctl_finish is called to finish 27056 * the ioctl. 27057 */ 27058 if (connp != NULL) { 27059 /* This is not a reentry */ 27060 ASSERT(ipsq == NULL); 27061 CONN_INC_REF(connp); 27062 } else { 27063 if (!(ipip->ipi_flags & IPI_MODOK)) { 27064 mi_copy_done(q, mp, EINVAL); 27065 return; 27066 } 27067 } 27068 27069 ip_process_ioctl(ipsq, q, mp, ipip); 27070 27071 } else { 27072 mi_copyout(q, mp); 27073 } 27074 return; 27075 nak: 27076 iocp->ioc_error = EINVAL; 27077 mp->b_datap->db_type = M_IOCNAK; 27078 iocp->ioc_count = 0; 27079 qreply(q, mp); 27080 return; 27081 27082 case M_IOCNAK: 27083 /* 27084 * The only way we could get here is if a resolver didn't like 27085 * an IOCTL we sent it. This shouldn't happen. 27086 */ 27087 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27088 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27089 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27090 freemsg(mp); 27091 return; 27092 case M_IOCACK: 27093 /* Finish socket ioctls passed through to ARP. */ 27094 ip_sioctl_iocack(q, mp); 27095 return; 27096 case M_FLUSH: 27097 if (*mp->b_rptr & FLUSHW) 27098 flushq(q, FLUSHALL); 27099 if (q->q_next) { 27100 /* 27101 * M_FLUSH is sent up to IP by some drivers during 27102 * unbind. ip_rput has already replied to it. We are 27103 * here for the M_FLUSH that we originated in IP 27104 * before sending the unbind request to the driver. 27105 * Just free it as we don't queue packets in IP 27106 * on the write side of the device instance. 27107 */ 27108 freemsg(mp); 27109 return; 27110 } 27111 if (*mp->b_rptr & FLUSHR) { 27112 *mp->b_rptr &= ~FLUSHW; 27113 qreply(q, mp); 27114 return; 27115 } 27116 freemsg(mp); 27117 return; 27118 case IRE_DB_REQ_TYPE: 27119 /* An Upper Level Protocol wants a copy of an IRE. */ 27120 ip_ire_req(q, mp); 27121 return; 27122 case M_CTL: 27123 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27124 break; 27125 27126 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27127 TUN_HELLO) { 27128 ASSERT(connp != NULL); 27129 connp->conn_flags |= IPCL_IPTUN; 27130 freeb(mp); 27131 return; 27132 } 27133 27134 if (connp != NULL && *(uint32_t *)mp->b_rptr == 27135 IP_ULP_OUT_LABELED) { 27136 out_labeled_t *olp; 27137 27138 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 27139 break; 27140 olp = (out_labeled_t *)mp->b_rptr; 27141 connp->conn_ulp_labeled = olp->out_qnext == q; 27142 freemsg(mp); 27143 return; 27144 } 27145 27146 /* M_CTL messages are used by ARP to tell us things. */ 27147 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27148 break; 27149 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27150 case AR_ENTRY_SQUERY: 27151 ip_wput_ctl(q, mp); 27152 return; 27153 case AR_CLIENT_NOTIFY: 27154 ip_arp_news(q, mp); 27155 return; 27156 case AR_DLPIOP_DONE: 27157 ASSERT(q->q_next != NULL); 27158 ill = (ill_t *)q->q_ptr; 27159 /* qwriter_ip releases the refhold */ 27160 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27161 ill_refhold(ill); 27162 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_done, 27163 CUR_OP, B_FALSE); 27164 return; 27165 case AR_ARP_CLOSING: 27166 /* 27167 * ARP (above us) is closing. If no ARP bringup is 27168 * currently pending, ack the message so that ARP 27169 * can complete its close. Also mark ill_arp_closing 27170 * so that new ARP bringups will fail. If any 27171 * ARP bringup is currently in progress, we will 27172 * ack this when the current ARP bringup completes. 27173 */ 27174 ASSERT(q->q_next != NULL); 27175 ill = (ill_t *)q->q_ptr; 27176 mutex_enter(&ill->ill_lock); 27177 ill->ill_arp_closing = 1; 27178 if (!ill->ill_arp_bringup_pending) { 27179 mutex_exit(&ill->ill_lock); 27180 qreply(q, mp); 27181 } else { 27182 mutex_exit(&ill->ill_lock); 27183 freemsg(mp); 27184 } 27185 return; 27186 case AR_ARP_EXTEND: 27187 /* 27188 * The ARP module above us is capable of duplicate 27189 * address detection. Old ATM drivers will not send 27190 * this message. 27191 */ 27192 ASSERT(q->q_next != NULL); 27193 ill = (ill_t *)q->q_ptr; 27194 ill->ill_arp_extend = B_TRUE; 27195 freemsg(mp); 27196 return; 27197 default: 27198 break; 27199 } 27200 break; 27201 case M_PROTO: 27202 case M_PCPROTO: 27203 /* 27204 * The only PROTO messages we expect are ULP binds and 27205 * copies of option negotiation acknowledgements. 27206 */ 27207 switch (((union T_primitives *)mp->b_rptr)->type) { 27208 case O_T_BIND_REQ: 27209 case T_BIND_REQ: { 27210 /* Request can get queued in bind */ 27211 ASSERT(connp != NULL); 27212 /* 27213 * Both TCP and UDP call ip_bind_{v4,v6}() directly 27214 * instead of going through this path. We only get 27215 * here in the following cases: 27216 * 27217 * a. Bind retries, where ipsq is non-NULL. 27218 * b. T_BIND_REQ is issued from non TCP/UDP 27219 * transport, e.g. icmp for raw socket, 27220 * in which case ipsq will be NULL. 27221 */ 27222 ASSERT(ipsq != NULL || 27223 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 27224 27225 /* Don't increment refcnt if this is a re-entry */ 27226 if (ipsq == NULL) 27227 CONN_INC_REF(connp); 27228 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27229 connp, NULL) : ip_bind_v4(q, mp, connp); 27230 if (mp == NULL) 27231 return; 27232 if (IPCL_IS_TCP(connp)) { 27233 /* 27234 * In the case of TCP endpoint we 27235 * come here only for bind retries 27236 */ 27237 ASSERT(ipsq != NULL); 27238 CONN_INC_REF(connp); 27239 squeue_fill(connp->conn_sqp, mp, 27240 ip_resume_tcp_bind, connp, 27241 SQTAG_BIND_RETRY); 27242 return; 27243 } else if (IPCL_IS_UDP(connp)) { 27244 /* 27245 * In the case of UDP endpoint we 27246 * come here only for bind retries 27247 */ 27248 ASSERT(ipsq != NULL); 27249 udp_resume_bind(connp, mp); 27250 return; 27251 } 27252 qreply(q, mp); 27253 CONN_OPER_PENDING_DONE(connp); 27254 return; 27255 } 27256 case T_SVR4_OPTMGMT_REQ: 27257 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27258 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27259 27260 ASSERT(connp != NULL); 27261 if (!snmpcom_req(q, mp, ip_snmp_set, 27262 ip_snmp_get, cr)) { 27263 /* 27264 * Call svr4_optcom_req so that it can 27265 * generate the ack. We don't come here 27266 * if this operation is being restarted. 27267 * ip_restart_optmgmt will drop the conn ref. 27268 * In the case of ipsec option after the ipsec 27269 * load is complete conn_restart_ipsec_waiter 27270 * drops the conn ref. 27271 */ 27272 ASSERT(ipsq == NULL); 27273 CONN_INC_REF(connp); 27274 if (ip_check_for_ipsec_opt(q, mp)) 27275 return; 27276 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 27277 if (err != EINPROGRESS) { 27278 /* Operation is done */ 27279 CONN_OPER_PENDING_DONE(connp); 27280 } 27281 } 27282 return; 27283 case T_OPTMGMT_REQ: 27284 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27285 /* 27286 * Note: No snmpcom_req support through new 27287 * T_OPTMGMT_REQ. 27288 * Call tpi_optcom_req so that it can 27289 * generate the ack. 27290 */ 27291 ASSERT(connp != NULL); 27292 ASSERT(ipsq == NULL); 27293 /* 27294 * We don't come here for restart. ip_restart_optmgmt 27295 * will drop the conn ref. In the case of ipsec option 27296 * after the ipsec load is complete 27297 * conn_restart_ipsec_waiter drops the conn ref. 27298 */ 27299 CONN_INC_REF(connp); 27300 if (ip_check_for_ipsec_opt(q, mp)) 27301 return; 27302 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 27303 if (err != EINPROGRESS) { 27304 /* Operation is done */ 27305 CONN_OPER_PENDING_DONE(connp); 27306 } 27307 return; 27308 case T_UNBIND_REQ: 27309 mp = ip_unbind(q, mp); 27310 qreply(q, mp); 27311 return; 27312 default: 27313 /* 27314 * Have to drop any DLPI messages coming down from 27315 * arp (such as an info_req which would cause ip 27316 * to receive an extra info_ack if it was passed 27317 * through. 27318 */ 27319 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27320 (int)*(uint_t *)mp->b_rptr)); 27321 freemsg(mp); 27322 return; 27323 } 27324 /* NOTREACHED */ 27325 case IRE_DB_TYPE: { 27326 nce_t *nce; 27327 ill_t *ill; 27328 in6_addr_t gw_addr_v6; 27329 27330 27331 /* 27332 * This is a response back from a resolver. It 27333 * consists of a message chain containing: 27334 * IRE_MBLK-->LL_HDR_MBLK->pkt 27335 * The IRE_MBLK is the one we allocated in ip_newroute. 27336 * The LL_HDR_MBLK is the DLPI header to use to get 27337 * the attached packet, and subsequent ones for the 27338 * same destination, transmitted. 27339 */ 27340 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27341 break; 27342 /* 27343 * First, check to make sure the resolution succeeded. 27344 * If it failed, the second mblk will be empty. 27345 * If it is, free the chain, dropping the packet. 27346 * (We must ire_delete the ire; that frees the ire mblk) 27347 * We're doing this now to support PVCs for ATM; it's 27348 * a partial xresolv implementation. When we fully implement 27349 * xresolv interfaces, instead of freeing everything here 27350 * we'll initiate neighbor discovery. 27351 * 27352 * For v4 (ARP and other external resolvers) the resolver 27353 * frees the message, so no check is needed. This check 27354 * is required, though, for a full xresolve implementation. 27355 * Including this code here now both shows how external 27356 * resolvers can NACK a resolution request using an 27357 * existing design that has no specific provisions for NACKs, 27358 * and also takes into account that the current non-ARP 27359 * external resolver has been coded to use this method of 27360 * NACKing for all IPv6 (xresolv) cases, 27361 * whether our xresolv implementation is complete or not. 27362 * 27363 */ 27364 ire = (ire_t *)mp->b_rptr; 27365 ill = ire_to_ill(ire); 27366 mp1 = mp->b_cont; /* dl_unitdata_req */ 27367 if (mp1->b_rptr == mp1->b_wptr) { 27368 if (ire->ire_ipversion == IPV6_VERSION) { 27369 /* 27370 * XRESOLV interface. 27371 */ 27372 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27373 mutex_enter(&ire->ire_lock); 27374 gw_addr_v6 = ire->ire_gateway_addr_v6; 27375 mutex_exit(&ire->ire_lock); 27376 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27377 nce = ndp_lookup_v6(ill, 27378 &ire->ire_addr_v6, B_FALSE); 27379 } else { 27380 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27381 B_FALSE); 27382 } 27383 if (nce != NULL) { 27384 nce_resolv_failed(nce); 27385 ndp_delete(nce); 27386 NCE_REFRELE(nce); 27387 } 27388 } 27389 mp->b_cont = NULL; 27390 freemsg(mp1); /* frees the pkt as well */ 27391 ASSERT(ire->ire_nce == NULL); 27392 ire_delete((ire_t *)mp->b_rptr); 27393 return; 27394 } 27395 27396 /* 27397 * Split them into IRE_MBLK and pkt and feed it into 27398 * ire_add_then_send. Then in ire_add_then_send 27399 * the IRE will be added, and then the packet will be 27400 * run back through ip_wput. This time it will make 27401 * it to the wire. 27402 */ 27403 mp->b_cont = NULL; 27404 mp = mp1->b_cont; /* now, mp points to pkt */ 27405 mp1->b_cont = NULL; 27406 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27407 if (ire->ire_ipversion == IPV6_VERSION) { 27408 /* 27409 * XRESOLV interface. Find the nce and put a copy 27410 * of the dl_unitdata_req in nce_res_mp 27411 */ 27412 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27413 mutex_enter(&ire->ire_lock); 27414 gw_addr_v6 = ire->ire_gateway_addr_v6; 27415 mutex_exit(&ire->ire_lock); 27416 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27417 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27418 B_FALSE); 27419 } else { 27420 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27421 } 27422 if (nce != NULL) { 27423 /* 27424 * We have to protect nce_res_mp here 27425 * from being accessed by other threads 27426 * while we change the mblk pointer. 27427 * Other functions will also lock the nce when 27428 * accessing nce_res_mp. 27429 * 27430 * The reason we change the mblk pointer 27431 * here rather than copying the resolved address 27432 * into the template is that, unlike with 27433 * ethernet, we have no guarantee that the 27434 * resolved address length will be 27435 * smaller than or equal to the lla length 27436 * with which the template was allocated, 27437 * (for ethernet, they're equal) 27438 * so we have to use the actual resolved 27439 * address mblk - which holds the real 27440 * dl_unitdata_req with the resolved address. 27441 * 27442 * Doing this is the same behavior as was 27443 * previously used in the v4 ARP case. 27444 */ 27445 mutex_enter(&nce->nce_lock); 27446 if (nce->nce_res_mp != NULL) 27447 freemsg(nce->nce_res_mp); 27448 nce->nce_res_mp = mp1; 27449 mutex_exit(&nce->nce_lock); 27450 /* 27451 * We do a fastpath probe here because 27452 * we have resolved the address without 27453 * using Neighbor Discovery. 27454 * In the non-XRESOLV v6 case, the fastpath 27455 * probe is done right after neighbor 27456 * discovery completes. 27457 */ 27458 if (nce->nce_res_mp != NULL) { 27459 int res; 27460 nce_fastpath_list_add(nce); 27461 res = ill_fastpath_probe(ill, 27462 nce->nce_res_mp); 27463 if (res != 0 && res != EAGAIN) 27464 nce_fastpath_list_delete(nce); 27465 } 27466 27467 ire_add_then_send(q, ire, mp); 27468 /* 27469 * Now we have to clean out any packets 27470 * that may have been queued on the nce 27471 * while it was waiting for address resolution 27472 * to complete. 27473 */ 27474 mutex_enter(&nce->nce_lock); 27475 mp1 = nce->nce_qd_mp; 27476 nce->nce_qd_mp = NULL; 27477 mutex_exit(&nce->nce_lock); 27478 while (mp1 != NULL) { 27479 mblk_t *nxt_mp; 27480 queue_t *fwdq = NULL; 27481 ill_t *inbound_ill; 27482 uint_t ifindex; 27483 27484 nxt_mp = mp1->b_next; 27485 mp1->b_next = NULL; 27486 /* 27487 * Retrieve ifindex stored in 27488 * ip_rput_data_v6() 27489 */ 27490 ifindex = 27491 (uint_t)(uintptr_t)mp1->b_prev; 27492 inbound_ill = 27493 ill_lookup_on_ifindex(ifindex, 27494 B_TRUE, NULL, NULL, NULL, 27495 NULL); 27496 mp1->b_prev = NULL; 27497 if (inbound_ill != NULL) 27498 fwdq = inbound_ill->ill_rq; 27499 27500 if (fwdq != NULL) { 27501 put(fwdq, mp1); 27502 ill_refrele(inbound_ill); 27503 } else 27504 put(WR(ill->ill_rq), mp1); 27505 mp1 = nxt_mp; 27506 } 27507 NCE_REFRELE(nce); 27508 } else { /* nce is NULL; clean up */ 27509 ire_delete(ire); 27510 freemsg(mp); 27511 freemsg(mp1); 27512 return; 27513 } 27514 } else { 27515 nce_t *arpce; 27516 /* 27517 * Link layer resolution succeeded. Recompute the 27518 * ire_nce. 27519 */ 27520 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27521 if ((arpce = ndp_lookup_v4(ill, 27522 (ire->ire_gateway_addr != INADDR_ANY ? 27523 &ire->ire_gateway_addr : &ire->ire_addr), 27524 B_FALSE)) == NULL) { 27525 freeb(ire->ire_mp); 27526 freeb(mp1); 27527 freemsg(mp); 27528 return; 27529 } 27530 mutex_enter(&arpce->nce_lock); 27531 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27532 if (arpce->nce_state == ND_REACHABLE) { 27533 /* 27534 * Someone resolved this before us; 27535 * cleanup the res_mp. Since ire has 27536 * not been added yet, the call to ire_add_v4 27537 * from ire_add_then_send (when a dup is 27538 * detected) will clean up the ire. 27539 */ 27540 freeb(mp1); 27541 } else { 27542 if (arpce->nce_res_mp != NULL) 27543 freemsg(arpce->nce_res_mp); 27544 arpce->nce_res_mp = mp1; 27545 arpce->nce_state = ND_REACHABLE; 27546 } 27547 mutex_exit(&arpce->nce_lock); 27548 if (ire->ire_marks & IRE_MARK_NOADD) { 27549 /* 27550 * this ire will not be added to the ire 27551 * cache table, so we can set the ire_nce 27552 * here, as there are no atomicity constraints. 27553 */ 27554 ire->ire_nce = arpce; 27555 /* 27556 * We are associating this nce with the ire 27557 * so change the nce ref taken in 27558 * ndp_lookup_v4() from 27559 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27560 */ 27561 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27562 } else { 27563 NCE_REFRELE(arpce); 27564 } 27565 ire_add_then_send(q, ire, mp); 27566 } 27567 return; /* All is well, the packet has been sent. */ 27568 } 27569 case IRE_ARPRESOLVE_TYPE: { 27570 27571 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27572 break; 27573 mp1 = mp->b_cont; /* dl_unitdata_req */ 27574 mp->b_cont = NULL; 27575 /* 27576 * First, check to make sure the resolution succeeded. 27577 * If it failed, the second mblk will be empty. 27578 */ 27579 if (mp1->b_rptr == mp1->b_wptr) { 27580 /* cleanup the incomplete ire, free queued packets */ 27581 freemsg(mp); /* fake ire */ 27582 freeb(mp1); /* dl_unitdata response */ 27583 return; 27584 } 27585 27586 /* 27587 * update any incomplete nce_t found. we lookup the ctable 27588 * and find the nce from the ire->ire_nce because we need 27589 * to pass the ire to ip_xmit_v4 later, and can find both 27590 * ire and nce in one lookup from the ctable. 27591 */ 27592 fake_ire = (ire_t *)mp->b_rptr; 27593 /* 27594 * By the time we come back here from ARP 27595 * the logical outgoing interface of the incomplete ire 27596 * we added in ire_forward could have disappeared, 27597 * causing the incomplete ire to also have 27598 * dissapeared. So we need to retreive the 27599 * proper ipif for the ire before looking 27600 * in ctable; do the ctablelookup based on ire_ipif_seqid 27601 */ 27602 ill = q->q_ptr; 27603 27604 /* Get the outgoing ipif */ 27605 mutex_enter(&ill->ill_lock); 27606 if (ill->ill_state_flags & ILL_CONDEMNED) { 27607 mutex_exit(&ill->ill_lock); 27608 freemsg(mp); /* fake ire */ 27609 freeb(mp1); /* dl_unitdata response */ 27610 return; 27611 } 27612 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27613 27614 if (ipif == NULL) { 27615 mutex_exit(&ill->ill_lock); 27616 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27617 freemsg(mp); 27618 freeb(mp1); 27619 return; 27620 } 27621 ipif_refhold_locked(ipif); 27622 mutex_exit(&ill->ill_lock); 27623 ire = ire_ctable_lookup(fake_ire->ire_addr, 27624 fake_ire->ire_gateway_addr, IRE_CACHE, 27625 ipif, fake_ire->ire_zoneid, NULL, 27626 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY)); 27627 ipif_refrele(ipif); 27628 if (ire == NULL) { 27629 /* 27630 * no ire was found; check if there is an nce 27631 * for this lookup; if it has no ire's pointing at it 27632 * cleanup. 27633 */ 27634 if ((nce = ndp_lookup_v4(ill, 27635 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27636 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27637 B_FALSE)) != NULL) { 27638 /* 27639 * cleanup: just reset nce. 27640 * We check for refcnt 2 (one for the nce 27641 * hash list + 1 for the ref taken by 27642 * ndp_lookup_v4) to ensure that there are 27643 * no ire's pointing at the nce. 27644 */ 27645 if (nce->nce_refcnt == 2) { 27646 nce = nce_reinit(nce); 27647 } 27648 if (nce != NULL) 27649 NCE_REFRELE(nce); 27650 } 27651 freeb(mp1); /* dl_unitdata response */ 27652 freemsg(mp); /* fake ire */ 27653 return; 27654 } 27655 nce = ire->ire_nce; 27656 DTRACE_PROBE2(ire__arpresolve__type, 27657 ire_t *, ire, nce_t *, nce); 27658 ASSERT(nce->nce_state != ND_INITIAL); 27659 mutex_enter(&nce->nce_lock); 27660 nce->nce_last = TICK_TO_MSEC(lbolt64); 27661 if (nce->nce_state == ND_REACHABLE) { 27662 /* 27663 * Someone resolved this before us; 27664 * our response is not needed any more. 27665 */ 27666 mutex_exit(&nce->nce_lock); 27667 freeb(mp1); /* dl_unitdata response */ 27668 } else { 27669 if (nce->nce_res_mp != NULL) { 27670 freemsg(nce->nce_res_mp); 27671 /* existing dl_unitdata template */ 27672 } 27673 nce->nce_res_mp = mp1; 27674 nce->nce_state = ND_REACHABLE; 27675 mutex_exit(&nce->nce_lock); 27676 ire_fastpath(ire); 27677 } 27678 /* 27679 * The cached nce_t has been updated to be reachable; 27680 * Set the IRE_MARK_UNCACHED flag and free the fake_ire. 27681 */ 27682 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27683 freemsg(mp); 27684 /* 27685 * send out queued packets. 27686 */ 27687 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27688 27689 IRE_REFRELE(ire); 27690 return; 27691 } 27692 default: 27693 break; 27694 } 27695 if (q->q_next) { 27696 putnext(q, mp); 27697 } else 27698 freemsg(mp); 27699 } 27700 27701 /* 27702 * Process IP options in an outbound packet. Modify the destination if there 27703 * is a source route option. 27704 * Returns non-zero if something fails in which case an ICMP error has been 27705 * sent and mp freed. 27706 */ 27707 static int 27708 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27709 boolean_t mctl_present, zoneid_t zoneid) 27710 { 27711 ipoptp_t opts; 27712 uchar_t *opt; 27713 uint8_t optval; 27714 uint8_t optlen; 27715 ipaddr_t dst; 27716 intptr_t code = 0; 27717 mblk_t *mp; 27718 ire_t *ire = NULL; 27719 27720 ip2dbg(("ip_wput_options\n")); 27721 mp = ipsec_mp; 27722 if (mctl_present) { 27723 mp = ipsec_mp->b_cont; 27724 } 27725 27726 dst = ipha->ipha_dst; 27727 for (optval = ipoptp_first(&opts, ipha); 27728 optval != IPOPT_EOL; 27729 optval = ipoptp_next(&opts)) { 27730 opt = opts.ipoptp_cur; 27731 optlen = opts.ipoptp_len; 27732 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27733 optval, optlen)); 27734 switch (optval) { 27735 uint32_t off; 27736 case IPOPT_SSRR: 27737 case IPOPT_LSRR: 27738 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27739 ip1dbg(( 27740 "ip_wput_options: bad option offset\n")); 27741 code = (char *)&opt[IPOPT_OLEN] - 27742 (char *)ipha; 27743 goto param_prob; 27744 } 27745 off = opt[IPOPT_OFFSET]; 27746 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27747 ntohl(dst))); 27748 /* 27749 * For strict: verify that dst is directly 27750 * reachable. 27751 */ 27752 if (optval == IPOPT_SSRR) { 27753 ire = ire_ftable_lookup(dst, 0, 0, 27754 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27755 MBLK_GETLABEL(mp), 27756 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 27757 if (ire == NULL) { 27758 ip1dbg(("ip_wput_options: SSRR not" 27759 " directly reachable: 0x%x\n", 27760 ntohl(dst))); 27761 goto bad_src_route; 27762 } 27763 ire_refrele(ire); 27764 } 27765 break; 27766 case IPOPT_RR: 27767 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27768 ip1dbg(( 27769 "ip_wput_options: bad option offset\n")); 27770 code = (char *)&opt[IPOPT_OLEN] - 27771 (char *)ipha; 27772 goto param_prob; 27773 } 27774 break; 27775 case IPOPT_TS: 27776 /* 27777 * Verify that length >=5 and that there is either 27778 * room for another timestamp or that the overflow 27779 * counter is not maxed out. 27780 */ 27781 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27782 if (optlen < IPOPT_MINLEN_IT) { 27783 goto param_prob; 27784 } 27785 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27786 ip1dbg(( 27787 "ip_wput_options: bad option offset\n")); 27788 code = (char *)&opt[IPOPT_OFFSET] - 27789 (char *)ipha; 27790 goto param_prob; 27791 } 27792 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27793 case IPOPT_TS_TSONLY: 27794 off = IPOPT_TS_TIMELEN; 27795 break; 27796 case IPOPT_TS_TSANDADDR: 27797 case IPOPT_TS_PRESPEC: 27798 case IPOPT_TS_PRESPEC_RFC791: 27799 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27800 break; 27801 default: 27802 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27803 (char *)ipha; 27804 goto param_prob; 27805 } 27806 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27807 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27808 /* 27809 * No room and the overflow counter is 15 27810 * already. 27811 */ 27812 goto param_prob; 27813 } 27814 break; 27815 } 27816 } 27817 27818 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 27819 return (0); 27820 27821 ip1dbg(("ip_wput_options: error processing IP options.")); 27822 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 27823 27824 param_prob: 27825 /* 27826 * Since ip_wput() isn't close to finished, we fill 27827 * in enough of the header for credible error reporting. 27828 */ 27829 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 27830 /* Failed */ 27831 freemsg(ipsec_mp); 27832 return (-1); 27833 } 27834 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid); 27835 return (-1); 27836 27837 bad_src_route: 27838 /* 27839 * Since ip_wput() isn't close to finished, we fill 27840 * in enough of the header for credible error reporting. 27841 */ 27842 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 27843 /* Failed */ 27844 freemsg(ipsec_mp); 27845 return (-1); 27846 } 27847 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 27848 return (-1); 27849 } 27850 27851 /* 27852 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 27853 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 27854 * thru /etc/system. 27855 */ 27856 #define CONN_MAXDRAINCNT 64 27857 27858 static void 27859 conn_drain_init(void) 27860 { 27861 int i; 27862 27863 conn_drain_list_cnt = conn_drain_nthreads; 27864 27865 if ((conn_drain_list_cnt == 0) || 27866 (conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 27867 /* 27868 * Default value of the number of drainers is the 27869 * number of cpus, subject to maximum of 8 drainers. 27870 */ 27871 if (boot_max_ncpus != -1) 27872 conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 27873 else 27874 conn_drain_list_cnt = MIN(max_ncpus, 8); 27875 } 27876 27877 conn_drain_list = kmem_zalloc(conn_drain_list_cnt * sizeof (idl_t), 27878 KM_SLEEP); 27879 27880 for (i = 0; i < conn_drain_list_cnt; i++) { 27881 mutex_init(&conn_drain_list[i].idl_lock, NULL, 27882 MUTEX_DEFAULT, NULL); 27883 } 27884 } 27885 27886 static void 27887 conn_drain_fini(void) 27888 { 27889 int i; 27890 27891 for (i = 0; i < conn_drain_list_cnt; i++) 27892 mutex_destroy(&conn_drain_list[i].idl_lock); 27893 kmem_free(conn_drain_list, conn_drain_list_cnt * sizeof (idl_t)); 27894 conn_drain_list = NULL; 27895 } 27896 27897 /* 27898 * Note: For an overview of how flowcontrol is handled in IP please see the 27899 * IP Flowcontrol notes at the top of this file. 27900 * 27901 * Flow control has blocked us from proceeding. Insert the given conn in one 27902 * of the conn drain lists. These conn wq's will be qenabled later on when 27903 * STREAMS flow control does a backenable. conn_walk_drain will enable 27904 * the first conn in each of these drain lists. Each of these qenabled conns 27905 * in turn enables the next in the list, after it runs, or when it closes, 27906 * thus sustaining the drain process. 27907 * 27908 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 27909 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 27910 * running at any time, on a given conn, since there can be only 1 service proc 27911 * running on a queue at any time. 27912 */ 27913 void 27914 conn_drain_insert(conn_t *connp) 27915 { 27916 idl_t *idl; 27917 uint_t index; 27918 27919 mutex_enter(&connp->conn_lock); 27920 if (connp->conn_state_flags & CONN_CLOSING) { 27921 /* 27922 * The conn is closing as a result of which CONN_CLOSING 27923 * is set. Return. 27924 */ 27925 mutex_exit(&connp->conn_lock); 27926 return; 27927 } else if (connp->conn_idl == NULL) { 27928 /* 27929 * Assign the next drain list round robin. We dont' use 27930 * a lock, and thus it may not be strictly round robin. 27931 * Atomicity of load/stores is enough to make sure that 27932 * conn_drain_list_index is always within bounds. 27933 */ 27934 index = conn_drain_list_index; 27935 ASSERT(index < conn_drain_list_cnt); 27936 connp->conn_idl = &conn_drain_list[index]; 27937 index++; 27938 if (index == conn_drain_list_cnt) 27939 index = 0; 27940 conn_drain_list_index = index; 27941 } 27942 mutex_exit(&connp->conn_lock); 27943 27944 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 27945 if ((connp->conn_drain_prev != NULL) || 27946 (connp->conn_state_flags & CONN_CLOSING)) { 27947 /* 27948 * The conn is already in the drain list, OR 27949 * the conn is closing. We need to check again for 27950 * the closing case again since close can happen 27951 * after we drop the conn_lock, and before we 27952 * acquire the CONN_DRAIN_LIST_LOCK. 27953 */ 27954 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27955 return; 27956 } else { 27957 idl = connp->conn_idl; 27958 } 27959 27960 /* 27961 * The conn is not in the drain list. Insert it at the 27962 * tail of the drain list. The drain list is circular 27963 * and doubly linked. idl_conn points to the 1st element 27964 * in the list. 27965 */ 27966 if (idl->idl_conn == NULL) { 27967 idl->idl_conn = connp; 27968 connp->conn_drain_next = connp; 27969 connp->conn_drain_prev = connp; 27970 } else { 27971 conn_t *head = idl->idl_conn; 27972 27973 connp->conn_drain_next = head; 27974 connp->conn_drain_prev = head->conn_drain_prev; 27975 head->conn_drain_prev->conn_drain_next = connp; 27976 head->conn_drain_prev = connp; 27977 } 27978 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27979 } 27980 27981 /* 27982 * This conn is closing, and we are called from ip_close. OR 27983 * This conn has been serviced by ip_wsrv, and we need to do the tail 27984 * processing. 27985 * If this conn is part of the drain list, we may need to sustain the drain 27986 * process by qenabling the next conn in the drain list. We may also need to 27987 * remove this conn from the list, if it is done. 27988 */ 27989 static void 27990 conn_drain_tail(conn_t *connp, boolean_t closing) 27991 { 27992 idl_t *idl; 27993 27994 /* 27995 * connp->conn_idl is stable at this point, and no lock is needed 27996 * to check it. If we are called from ip_close, close has already 27997 * set CONN_CLOSING, thus freezing the value of conn_idl, and 27998 * called us only because conn_idl is non-null. If we are called thru 27999 * service, conn_idl could be null, but it cannot change because 28000 * service is single-threaded per queue, and there cannot be another 28001 * instance of service trying to call conn_drain_insert on this conn 28002 * now. 28003 */ 28004 ASSERT(!closing || (connp->conn_idl != NULL)); 28005 28006 /* 28007 * If connp->conn_idl is null, the conn has not been inserted into any 28008 * drain list even once since creation of the conn. Just return. 28009 */ 28010 if (connp->conn_idl == NULL) 28011 return; 28012 28013 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28014 28015 if (connp->conn_drain_prev == NULL) { 28016 /* This conn is currently not in the drain list. */ 28017 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28018 return; 28019 } 28020 idl = connp->conn_idl; 28021 if (idl->idl_conn_draining == connp) { 28022 /* 28023 * This conn is the current drainer. If this is the last conn 28024 * in the drain list, we need to do more checks, in the 'if' 28025 * below. Otherwwise we need to just qenable the next conn, 28026 * to sustain the draining, and is handled in the 'else' 28027 * below. 28028 */ 28029 if (connp->conn_drain_next == idl->idl_conn) { 28030 /* 28031 * This conn is the last in this list. This round 28032 * of draining is complete. If idl_repeat is set, 28033 * it means another flow enabling has happened from 28034 * the driver/streams and we need to another round 28035 * of draining. 28036 * If there are more than 2 conns in the drain list, 28037 * do a left rotate by 1, so that all conns except the 28038 * conn at the head move towards the head by 1, and the 28039 * the conn at the head goes to the tail. This attempts 28040 * a more even share for all queues that are being 28041 * drained. 28042 */ 28043 if ((connp->conn_drain_next != connp) && 28044 (idl->idl_conn->conn_drain_next != connp)) { 28045 idl->idl_conn = idl->idl_conn->conn_drain_next; 28046 } 28047 if (idl->idl_repeat) { 28048 qenable(idl->idl_conn->conn_wq); 28049 idl->idl_conn_draining = idl->idl_conn; 28050 idl->idl_repeat = 0; 28051 } else { 28052 idl->idl_conn_draining = NULL; 28053 } 28054 } else { 28055 /* 28056 * If the next queue that we are now qenable'ing, 28057 * is closing, it will remove itself from this list 28058 * and qenable the subsequent queue in ip_close(). 28059 * Serialization is acheived thru idl_lock. 28060 */ 28061 qenable(connp->conn_drain_next->conn_wq); 28062 idl->idl_conn_draining = connp->conn_drain_next; 28063 } 28064 } 28065 if (!connp->conn_did_putbq || closing) { 28066 /* 28067 * Remove ourself from the drain list, if we did not do 28068 * a putbq, or if the conn is closing. 28069 * Note: It is possible that q->q_first is non-null. It means 28070 * that these messages landed after we did a enableok() in 28071 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28072 * service them. 28073 */ 28074 if (connp->conn_drain_next == connp) { 28075 /* Singleton in the list */ 28076 ASSERT(connp->conn_drain_prev == connp); 28077 idl->idl_conn = NULL; 28078 idl->idl_conn_draining = NULL; 28079 } else { 28080 connp->conn_drain_prev->conn_drain_next = 28081 connp->conn_drain_next; 28082 connp->conn_drain_next->conn_drain_prev = 28083 connp->conn_drain_prev; 28084 if (idl->idl_conn == connp) 28085 idl->idl_conn = connp->conn_drain_next; 28086 ASSERT(idl->idl_conn_draining != connp); 28087 28088 } 28089 connp->conn_drain_next = NULL; 28090 connp->conn_drain_prev = NULL; 28091 } 28092 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28093 } 28094 28095 /* 28096 * Write service routine. Shared perimeter entry point. 28097 * ip_wsrv can be called in any of the following ways. 28098 * 1. The device queue's messages has fallen below the low water mark 28099 * and STREAMS has backenabled the ill_wq. We walk thru all the 28100 * the drain lists and backenable the first conn in each list. 28101 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28102 * qenabled non-tcp upper layers. We start dequeing messages and call 28103 * ip_wput for each message. 28104 */ 28105 28106 void 28107 ip_wsrv(queue_t *q) 28108 { 28109 conn_t *connp; 28110 ill_t *ill; 28111 mblk_t *mp; 28112 28113 if (q->q_next) { 28114 ill = (ill_t *)q->q_ptr; 28115 if (ill->ill_state_flags == 0) { 28116 /* 28117 * The device flow control has opened up. 28118 * Walk through conn drain lists and qenable the 28119 * first conn in each list. This makes sense only 28120 * if the stream is fully plumbed and setup. 28121 * Hence the if check above. 28122 */ 28123 ip1dbg(("ip_wsrv: walking\n")); 28124 conn_walk_drain(); 28125 } 28126 return; 28127 } 28128 28129 connp = Q_TO_CONN(q); 28130 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28131 28132 /* 28133 * 1. Set conn_draining flag to signal that service is active. 28134 * 28135 * 2. ip_output determines whether it has been called from service, 28136 * based on the last parameter. If it is IP_WSRV it concludes it 28137 * has been called from service. 28138 * 28139 * 3. Message ordering is preserved by the following logic. 28140 * i. A directly called ip_output (i.e. not thru service) will queue 28141 * the message at the tail, if conn_draining is set (i.e. service 28142 * is running) or if q->q_first is non-null. 28143 * 28144 * ii. If ip_output is called from service, and if ip_output cannot 28145 * putnext due to flow control, it does a putbq. 28146 * 28147 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28148 * (causing an infinite loop). 28149 */ 28150 ASSERT(!connp->conn_did_putbq); 28151 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28152 connp->conn_draining = 1; 28153 noenable(q); 28154 while ((mp = getq(q)) != NULL) { 28155 ASSERT(CONN_Q(q)); 28156 28157 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28158 if (connp->conn_did_putbq) { 28159 /* ip_wput did a putbq */ 28160 break; 28161 } 28162 } 28163 /* 28164 * At this point, a thread coming down from top, calling 28165 * ip_wput, may end up queueing the message. We have not yet 28166 * enabled the queue, so ip_wsrv won't be called again. 28167 * To avoid this race, check q->q_first again (in the loop) 28168 * If the other thread queued the message before we call 28169 * enableok(), we will catch it in the q->q_first check. 28170 * If the other thread queues the message after we call 28171 * enableok(), ip_wsrv will be called again by STREAMS. 28172 */ 28173 connp->conn_draining = 0; 28174 enableok(q); 28175 } 28176 28177 /* Enable the next conn for draining */ 28178 conn_drain_tail(connp, B_FALSE); 28179 28180 connp->conn_did_putbq = 0; 28181 } 28182 28183 /* 28184 * Walk the list of all conn's calling the function provided with the 28185 * specified argument for each. Note that this only walks conn's that 28186 * have been bound. 28187 * Applies to both IPv4 and IPv6. 28188 */ 28189 static void 28190 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid) 28191 { 28192 conn_walk_fanout_table(ipcl_udp_fanout, ipcl_udp_fanout_size, 28193 func, arg, zoneid); 28194 conn_walk_fanout_table(ipcl_conn_fanout, ipcl_conn_fanout_size, 28195 func, arg, zoneid); 28196 conn_walk_fanout_table(ipcl_bind_fanout, ipcl_bind_fanout_size, 28197 func, arg, zoneid); 28198 conn_walk_fanout_table(ipcl_proto_fanout, 28199 A_CNT(ipcl_proto_fanout), func, arg, zoneid); 28200 conn_walk_fanout_table(ipcl_proto_fanout_v6, 28201 A_CNT(ipcl_proto_fanout_v6), func, arg, zoneid); 28202 } 28203 28204 /* 28205 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28206 * of conns that need to be drained, check if drain is already in progress. 28207 * If so set the idl_repeat bit, indicating that the last conn in the list 28208 * needs to reinitiate the drain once again, for the list. If drain is not 28209 * in progress for the list, initiate the draining, by qenabling the 1st 28210 * conn in the list. The drain is self-sustaining, each qenabled conn will 28211 * in turn qenable the next conn, when it is done/blocked/closing. 28212 */ 28213 static void 28214 conn_walk_drain(void) 28215 { 28216 int i; 28217 idl_t *idl; 28218 28219 IP_STAT(ip_conn_walk_drain); 28220 28221 for (i = 0; i < conn_drain_list_cnt; i++) { 28222 idl = &conn_drain_list[i]; 28223 mutex_enter(&idl->idl_lock); 28224 if (idl->idl_conn == NULL) { 28225 mutex_exit(&idl->idl_lock); 28226 continue; 28227 } 28228 /* 28229 * If this list is not being drained currently by 28230 * an ip_wsrv thread, start the process. 28231 */ 28232 if (idl->idl_conn_draining == NULL) { 28233 ASSERT(idl->idl_repeat == 0); 28234 qenable(idl->idl_conn->conn_wq); 28235 idl->idl_conn_draining = idl->idl_conn; 28236 } else { 28237 idl->idl_repeat = 1; 28238 } 28239 mutex_exit(&idl->idl_lock); 28240 } 28241 } 28242 28243 /* 28244 * Walk an conn hash table of `count' buckets, calling func for each entry. 28245 */ 28246 static void 28247 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28248 zoneid_t zoneid) 28249 { 28250 conn_t *connp; 28251 28252 while (count-- > 0) { 28253 mutex_enter(&connfp->connf_lock); 28254 for (connp = connfp->connf_head; connp != NULL; 28255 connp = connp->conn_next) { 28256 if (zoneid == GLOBAL_ZONEID || 28257 zoneid == connp->conn_zoneid) { 28258 CONN_INC_REF(connp); 28259 mutex_exit(&connfp->connf_lock); 28260 (*func)(connp, arg); 28261 mutex_enter(&connfp->connf_lock); 28262 CONN_DEC_REF(connp); 28263 } 28264 } 28265 mutex_exit(&connfp->connf_lock); 28266 connfp++; 28267 } 28268 } 28269 28270 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 28271 static void 28272 conn_report1(conn_t *connp, void *mp) 28273 { 28274 char buf1[INET6_ADDRSTRLEN]; 28275 char buf2[INET6_ADDRSTRLEN]; 28276 uint_t print_len, buf_len; 28277 28278 ASSERT(connp != NULL); 28279 28280 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28281 if (buf_len <= 0) 28282 return; 28283 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 28284 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 28285 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28286 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28287 "%5d %s/%05d %s/%05d\n", 28288 (void *)connp, (void *)CONNP_TO_RQ(connp), 28289 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28290 buf1, connp->conn_lport, 28291 buf2, connp->conn_fport); 28292 if (print_len < buf_len) { 28293 ((mblk_t *)mp)->b_wptr += print_len; 28294 } else { 28295 ((mblk_t *)mp)->b_wptr += buf_len; 28296 } 28297 } 28298 28299 /* 28300 * Named Dispatch routine to produce a formatted report on all conns 28301 * that are listed in one of the fanout tables. 28302 * This report is accessed by using the ndd utility to "get" ND variable 28303 * "ip_conn_status". 28304 */ 28305 /* ARGSUSED */ 28306 static int 28307 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28308 { 28309 (void) mi_mpprintf(mp, 28310 "CONN " MI_COL_HDRPAD_STR 28311 "rfq " MI_COL_HDRPAD_STR 28312 "stq " MI_COL_HDRPAD_STR 28313 " zone local remote"); 28314 28315 /* 28316 * Because of the ndd constraint, at most we can have 64K buffer 28317 * to put in all conn info. So to be more efficient, just 28318 * allocate a 64K buffer here, assuming we need that large buffer. 28319 * This should be OK as only privileged processes can do ndd /dev/ip. 28320 */ 28321 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28322 /* The following may work even if we cannot get a large buf. */ 28323 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28324 return (0); 28325 } 28326 28327 conn_walk_fanout(conn_report1, mp->b_cont, Q_TO_CONN(q)->conn_zoneid); 28328 return (0); 28329 } 28330 28331 /* 28332 * Determine if the ill and multicast aspects of that packets 28333 * "matches" the conn. 28334 */ 28335 boolean_t 28336 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28337 zoneid_t zoneid) 28338 { 28339 ill_t *in_ill; 28340 boolean_t found; 28341 ipif_t *ipif; 28342 ire_t *ire; 28343 ipaddr_t dst, src; 28344 28345 dst = ipha->ipha_dst; 28346 src = ipha->ipha_src; 28347 28348 /* 28349 * conn_incoming_ill is set by IP_BOUND_IF which limits 28350 * unicast, broadcast and multicast reception to 28351 * conn_incoming_ill. conn_wantpacket itself is called 28352 * only for BROADCAST and multicast. 28353 * 28354 * 1) ip_rput supresses duplicate broadcasts if the ill 28355 * is part of a group. Hence, we should be receiving 28356 * just one copy of broadcast for the whole group. 28357 * Thus, if it is part of the group the packet could 28358 * come on any ill of the group and hence we need a 28359 * match on the group. Otherwise, match on ill should 28360 * be sufficient. 28361 * 28362 * 2) ip_rput does not suppress duplicate multicast packets. 28363 * If there are two interfaces in a ill group and we have 28364 * 2 applications (conns) joined a multicast group G on 28365 * both the interfaces, ilm_lookup_ill filter in ip_rput 28366 * will give us two packets because we join G on both the 28367 * interfaces rather than nominating just one interface 28368 * for receiving multicast like broadcast above. So, 28369 * we have to call ilg_lookup_ill to filter out duplicate 28370 * copies, if ill is part of a group. 28371 */ 28372 in_ill = connp->conn_incoming_ill; 28373 if (in_ill != NULL) { 28374 if (in_ill->ill_group == NULL) { 28375 if (in_ill != ill) 28376 return (B_FALSE); 28377 } else if (in_ill->ill_group != ill->ill_group) { 28378 return (B_FALSE); 28379 } 28380 } 28381 28382 if (!CLASSD(dst)) { 28383 if (IPCL_ZONE_MATCH(connp, zoneid)) 28384 return (B_TRUE); 28385 /* 28386 * The conn is in a different zone; we need to check that this 28387 * broadcast address is configured in the application's zone and 28388 * on one ill in the group. 28389 */ 28390 ipif = ipif_get_next_ipif(NULL, ill); 28391 if (ipif == NULL) 28392 return (B_FALSE); 28393 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28394 connp->conn_zoneid, NULL, 28395 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 28396 ipif_refrele(ipif); 28397 if (ire != NULL) { 28398 ire_refrele(ire); 28399 return (B_TRUE); 28400 } else { 28401 return (B_FALSE); 28402 } 28403 } 28404 28405 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28406 connp->conn_zoneid == zoneid) { 28407 /* 28408 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28409 * disabled, therefore we don't dispatch the multicast packet to 28410 * the sending zone. 28411 */ 28412 return (B_FALSE); 28413 } 28414 28415 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 28416 connp->conn_zoneid != zoneid) { 28417 /* 28418 * Multicast packet on the loopback interface: we only match 28419 * conns who joined the group in the specified zone. 28420 */ 28421 return (B_FALSE); 28422 } 28423 28424 if (connp->conn_multi_router) { 28425 /* multicast packet and multicast router socket: send up */ 28426 return (B_TRUE); 28427 } 28428 28429 mutex_enter(&connp->conn_lock); 28430 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28431 mutex_exit(&connp->conn_lock); 28432 return (found); 28433 } 28434 28435 /* 28436 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28437 */ 28438 /* ARGSUSED */ 28439 static void 28440 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28441 { 28442 ill_t *ill = (ill_t *)q->q_ptr; 28443 mblk_t *mp1, *mp2; 28444 ipif_t *ipif; 28445 int err = 0; 28446 conn_t *connp = NULL; 28447 ipsq_t *ipsq; 28448 arc_t *arc; 28449 28450 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28451 28452 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28453 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28454 28455 ASSERT(IAM_WRITER_ILL(ill)); 28456 mp2 = mp->b_cont; 28457 mp->b_cont = NULL; 28458 28459 /* 28460 * We have now received the arp bringup completion message 28461 * from ARP. Mark the arp bringup as done. Also if the arp 28462 * stream has already started closing, send up the AR_ARP_CLOSING 28463 * ack now since ARP is waiting in close for this ack. 28464 */ 28465 mutex_enter(&ill->ill_lock); 28466 ill->ill_arp_bringup_pending = 0; 28467 if (ill->ill_arp_closing) { 28468 mutex_exit(&ill->ill_lock); 28469 /* Let's reuse the mp for sending the ack */ 28470 arc = (arc_t *)mp->b_rptr; 28471 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28472 arc->arc_cmd = AR_ARP_CLOSING; 28473 qreply(q, mp); 28474 } else { 28475 mutex_exit(&ill->ill_lock); 28476 freeb(mp); 28477 } 28478 28479 ipsq = ill->ill_phyint->phyint_ipsq; 28480 ipif = ipsq->ipsq_pending_ipif; 28481 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28482 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28483 if (mp1 == NULL) { 28484 /* bringup was aborted by the user */ 28485 freemsg(mp2); 28486 return; 28487 } 28488 28489 /* 28490 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28491 * must have an associated conn_t. Otherwise, we're bringing this 28492 * interface back up as part of handling an asynchronous event (e.g., 28493 * physical address change). 28494 */ 28495 if (ipsq->ipsq_current_ioctl != 0) { 28496 ASSERT(connp != NULL); 28497 q = CONNP_TO_WQ(connp); 28498 } else { 28499 ASSERT(connp == NULL); 28500 q = ill->ill_rq; 28501 } 28502 28503 /* 28504 * If the DL_BIND_REQ fails, it is noted 28505 * in arc_name_offset. 28506 */ 28507 err = *((int *)mp2->b_rptr); 28508 if (err == 0) { 28509 if (ipif->ipif_isv6) { 28510 if ((err = ipif_up_done_v6(ipif)) != 0) 28511 ip0dbg(("ip_arp_done: init failed\n")); 28512 } else { 28513 if ((err = ipif_up_done(ipif)) != 0) 28514 ip0dbg(("ip_arp_done: init failed\n")); 28515 } 28516 } else { 28517 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28518 } 28519 28520 freemsg(mp2); 28521 28522 if ((err == 0) && (ill->ill_up_ipifs)) { 28523 err = ill_up_ipifs(ill, q, mp1); 28524 if (err == EINPROGRESS) 28525 return; 28526 } 28527 28528 if (ill->ill_up_ipifs) 28529 ill_group_cleanup(ill); 28530 28531 /* 28532 * The operation must complete without EINPROGRESS since 28533 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 28534 * Otherwise, the operation will be stuck forever in the ipsq. 28535 */ 28536 ASSERT(err != EINPROGRESS); 28537 if (ipsq->ipsq_current_ioctl != 0) 28538 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28539 else 28540 ipsq_current_finish(ipsq); 28541 } 28542 28543 /* Allocate the private structure */ 28544 static int 28545 ip_priv_alloc(void **bufp) 28546 { 28547 void *buf; 28548 28549 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28550 return (ENOMEM); 28551 28552 *bufp = buf; 28553 return (0); 28554 } 28555 28556 /* Function to delete the private structure */ 28557 void 28558 ip_priv_free(void *buf) 28559 { 28560 ASSERT(buf != NULL); 28561 kmem_free(buf, sizeof (ip_priv_t)); 28562 } 28563 28564 /* 28565 * The entry point for IPPF processing. 28566 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28567 * routine just returns. 28568 * 28569 * When called, ip_process generates an ipp_packet_t structure 28570 * which holds the state information for this packet and invokes the 28571 * the classifier (via ipp_packet_process). The classification, depending on 28572 * configured filters, results in a list of actions for this packet. Invoking 28573 * an action may cause the packet to be dropped, in which case the resulting 28574 * mblk (*mpp) is NULL. proc indicates the callout position for 28575 * this packet and ill_index is the interface this packet on or will leave 28576 * on (inbound and outbound resp.). 28577 */ 28578 void 28579 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28580 { 28581 mblk_t *mp; 28582 ip_priv_t *priv; 28583 ipp_action_id_t aid; 28584 int rc = 0; 28585 ipp_packet_t *pp; 28586 #define IP_CLASS "ip" 28587 28588 /* If the classifier is not loaded, return */ 28589 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28590 return; 28591 } 28592 28593 mp = *mpp; 28594 ASSERT(mp != NULL); 28595 28596 /* Allocate the packet structure */ 28597 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28598 if (rc != 0) { 28599 *mpp = NULL; 28600 freemsg(mp); 28601 return; 28602 } 28603 28604 /* Allocate the private structure */ 28605 rc = ip_priv_alloc((void **)&priv); 28606 if (rc != 0) { 28607 *mpp = NULL; 28608 freemsg(mp); 28609 ipp_packet_free(pp); 28610 return; 28611 } 28612 priv->proc = proc; 28613 priv->ill_index = ill_index; 28614 ipp_packet_set_private(pp, priv, ip_priv_free); 28615 ipp_packet_set_data(pp, mp); 28616 28617 /* Invoke the classifier */ 28618 rc = ipp_packet_process(&pp); 28619 if (pp != NULL) { 28620 mp = ipp_packet_get_data(pp); 28621 ipp_packet_free(pp); 28622 if (rc != 0) { 28623 freemsg(mp); 28624 *mpp = NULL; 28625 } 28626 } else { 28627 *mpp = NULL; 28628 } 28629 #undef IP_CLASS 28630 } 28631 28632 /* 28633 * Propagate a multicast group membership operation (add/drop) on 28634 * all the interfaces crossed by the related multirt routes. 28635 * The call is considered successful if the operation succeeds 28636 * on at least one interface. 28637 */ 28638 static int 28639 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28640 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28641 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28642 mblk_t *first_mp) 28643 { 28644 ire_t *ire_gw; 28645 irb_t *irb; 28646 int error = 0; 28647 opt_restart_t *or; 28648 28649 irb = ire->ire_bucket; 28650 ASSERT(irb != NULL); 28651 28652 ASSERT(DB_TYPE(first_mp) == M_CTL); 28653 28654 or = (opt_restart_t *)first_mp->b_rptr; 28655 IRB_REFHOLD(irb); 28656 for (; ire != NULL; ire = ire->ire_next) { 28657 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28658 continue; 28659 if (ire->ire_addr != group) 28660 continue; 28661 28662 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28663 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28664 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE); 28665 /* No resolver exists for the gateway; skip this ire. */ 28666 if (ire_gw == NULL) 28667 continue; 28668 28669 /* 28670 * This function can return EINPROGRESS. If so the operation 28671 * will be restarted from ip_restart_optmgmt which will 28672 * call ip_opt_set and option processing will restart for 28673 * this option. So we may end up calling 'fn' more than once. 28674 * This requires that 'fn' is idempotent except for the 28675 * return value. The operation is considered a success if 28676 * it succeeds at least once on any one interface. 28677 */ 28678 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28679 NULL, fmode, src, first_mp); 28680 if (error == 0) 28681 or->or_private = CGTP_MCAST_SUCCESS; 28682 28683 if (ip_debug > 0) { 28684 ulong_t off; 28685 char *ksym; 28686 ksym = kobj_getsymname((uintptr_t)fn, &off); 28687 ip2dbg(("ip_multirt_apply_membership: " 28688 "called %s, multirt group 0x%08x via itf 0x%08x, " 28689 "error %d [success %u]\n", 28690 ksym ? ksym : "?", 28691 ntohl(group), ntohl(ire_gw->ire_src_addr), 28692 error, or->or_private)); 28693 } 28694 28695 ire_refrele(ire_gw); 28696 if (error == EINPROGRESS) { 28697 IRB_REFRELE(irb); 28698 return (error); 28699 } 28700 } 28701 IRB_REFRELE(irb); 28702 /* 28703 * Consider the call as successful if we succeeded on at least 28704 * one interface. Otherwise, return the last encountered error. 28705 */ 28706 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28707 } 28708 28709 28710 /* 28711 * Issue a warning regarding a route crossing an interface with an 28712 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28713 * amount of time is logged. 28714 */ 28715 static void 28716 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28717 { 28718 hrtime_t current = gethrtime(); 28719 char buf[INET_ADDRSTRLEN]; 28720 28721 /* Convert interval in ms to hrtime in ns */ 28722 if (multirt_bad_mtu_last_time + 28723 ((hrtime_t)ip_multirt_log_interval * (hrtime_t)1000000) <= 28724 current) { 28725 cmn_err(CE_WARN, "ip: ignoring multiroute " 28726 "to %s, incorrect MTU %u (expected %u)\n", 28727 ip_dot_addr(ire->ire_addr, buf), 28728 ire->ire_max_frag, max_frag); 28729 28730 multirt_bad_mtu_last_time = current; 28731 } 28732 } 28733 28734 28735 /* 28736 * Get the CGTP (multirouting) filtering status. 28737 * If 0, the CGTP hooks are transparent. 28738 */ 28739 /* ARGSUSED */ 28740 static int 28741 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28742 { 28743 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28744 28745 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28746 return (0); 28747 } 28748 28749 28750 /* 28751 * Set the CGTP (multirouting) filtering status. 28752 * If the status is changed from active to transparent 28753 * or from transparent to active, forward the new status 28754 * to the filtering module (if loaded). 28755 */ 28756 /* ARGSUSED */ 28757 static int 28758 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28759 cred_t *ioc_cr) 28760 { 28761 long new_value; 28762 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28763 28764 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28765 new_value < 0 || new_value > 1) { 28766 return (EINVAL); 28767 } 28768 28769 /* 28770 * Do not enable CGTP filtering - thus preventing the hooks 28771 * from being invoked - if the version number of the 28772 * filtering module hooks does not match. 28773 */ 28774 if ((ip_cgtp_filter_ops != NULL) && 28775 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 28776 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 28777 "(module hooks version %d, expecting %d)\n", 28778 ip_cgtp_filter_ops->cfo_filter_rev, CGTP_FILTER_REV); 28779 return (ENOTSUP); 28780 } 28781 28782 if ((!*ip_cgtp_filter_value) && new_value) { 28783 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28784 ip_cgtp_filter_ops == NULL ? 28785 " (module not loaded)" : ""); 28786 } 28787 if (*ip_cgtp_filter_value && (!new_value)) { 28788 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28789 ip_cgtp_filter_ops == NULL ? 28790 " (module not loaded)" : ""); 28791 } 28792 28793 if (ip_cgtp_filter_ops != NULL) { 28794 int res; 28795 if ((res = ip_cgtp_filter_ops->cfo_change_state(new_value))) { 28796 return (res); 28797 } 28798 } 28799 28800 *ip_cgtp_filter_value = (boolean_t)new_value; 28801 28802 return (0); 28803 } 28804 28805 28806 /* 28807 * Return the expected CGTP hooks version number. 28808 */ 28809 int 28810 ip_cgtp_filter_supported(void) 28811 { 28812 return (ip_cgtp_filter_rev); 28813 } 28814 28815 28816 /* 28817 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 28818 * or by invoking this function. In the first case, the version number 28819 * of the registered structure is checked at hooks activation time 28820 * in ip_cgtp_filter_set(). 28821 */ 28822 int 28823 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 28824 { 28825 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 28826 return (ENOTSUP); 28827 28828 ip_cgtp_filter_ops = ops; 28829 return (0); 28830 } 28831 28832 static squeue_func_t 28833 ip_squeue_switch(int val) 28834 { 28835 squeue_func_t rval = squeue_fill; 28836 28837 switch (val) { 28838 case IP_SQUEUE_ENTER_NODRAIN: 28839 rval = squeue_enter_nodrain; 28840 break; 28841 case IP_SQUEUE_ENTER: 28842 rval = squeue_enter; 28843 break; 28844 default: 28845 break; 28846 } 28847 return (rval); 28848 } 28849 28850 /* ARGSUSED */ 28851 static int 28852 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 28853 caddr_t addr, cred_t *cr) 28854 { 28855 int *v = (int *)addr; 28856 long new_value; 28857 28858 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28859 return (EINVAL); 28860 28861 ip_input_proc = ip_squeue_switch(new_value); 28862 *v = new_value; 28863 return (0); 28864 } 28865 28866 /* ARGSUSED */ 28867 static int 28868 ip_int_set(queue_t *q, mblk_t *mp, char *value, 28869 caddr_t addr, cred_t *cr) 28870 { 28871 int *v = (int *)addr; 28872 long new_value; 28873 28874 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28875 return (EINVAL); 28876 28877 *v = new_value; 28878 return (0); 28879 } 28880 28881 static void 28882 ip_kstat_init(void) 28883 { 28884 ip_named_kstat_t template = { 28885 { "forwarding", KSTAT_DATA_UINT32, 0 }, 28886 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 28887 { "inReceives", KSTAT_DATA_UINT64, 0 }, 28888 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 28889 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 28890 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 28891 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 28892 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 28893 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 28894 { "outRequests", KSTAT_DATA_UINT64, 0 }, 28895 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 28896 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 28897 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 28898 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 28899 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 28900 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 28901 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 28902 { "fragFails", KSTAT_DATA_UINT32, 0 }, 28903 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 28904 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 28905 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 28906 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 28907 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 28908 { "inErrs", KSTAT_DATA_UINT32, 0 }, 28909 { "noPorts", KSTAT_DATA_UINT32, 0 }, 28910 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 28911 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 28912 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 28913 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 28914 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 28915 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 28916 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 28917 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 28918 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 28919 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 28920 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 28921 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 28922 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 28923 }; 28924 28925 ip_mibkp = kstat_create("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 28926 NUM_OF_FIELDS(ip_named_kstat_t), 28927 0); 28928 if (!ip_mibkp) 28929 return; 28930 28931 template.forwarding.value.ui32 = WE_ARE_FORWARDING ? 1:2; 28932 template.defaultTTL.value.ui32 = (uint32_t)ip_def_ttl; 28933 template.reasmTimeout.value.ui32 = ip_g_frag_timeout; 28934 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 28935 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 28936 28937 template.netToMediaEntrySize.value.i32 = 28938 sizeof (mib2_ipNetToMediaEntry_t); 28939 28940 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 28941 28942 bcopy(&template, ip_mibkp->ks_data, sizeof (template)); 28943 28944 ip_mibkp->ks_update = ip_kstat_update; 28945 28946 kstat_install(ip_mibkp); 28947 } 28948 28949 static void 28950 ip_kstat_fini(void) 28951 { 28952 28953 if (ip_mibkp != NULL) { 28954 kstat_delete(ip_mibkp); 28955 ip_mibkp = NULL; 28956 } 28957 } 28958 28959 static int 28960 ip_kstat_update(kstat_t *kp, int rw) 28961 { 28962 ip_named_kstat_t *ipkp; 28963 mib2_ipIfStatsEntry_t ipmib; 28964 ill_walk_context_t ctx; 28965 ill_t *ill; 28966 28967 if (!kp || !kp->ks_data) 28968 return (EIO); 28969 28970 if (rw == KSTAT_WRITE) 28971 return (EACCES); 28972 28973 ipkp = (ip_named_kstat_t *)kp->ks_data; 28974 28975 bcopy(&ip_mib, &ipmib, sizeof (ipmib)); 28976 rw_enter(&ill_g_lock, RW_READER); 28977 ill = ILL_START_WALK_V4(&ctx); 28978 for (; ill != NULL; ill = ill_next(&ctx, ill)) 28979 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 28980 rw_exit(&ill_g_lock); 28981 28982 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 28983 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 28984 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 28985 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 28986 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 28987 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 28988 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 28989 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 28990 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 28991 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 28992 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 28993 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 28994 ipkp->reasmTimeout.value.ui32 = ip_g_frag_timeout; 28995 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 28996 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 28997 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 28998 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 28999 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29000 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29001 29002 ipkp->routingDiscards.value.ui32 = 0; 29003 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29004 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29005 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29006 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29007 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29008 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29009 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29010 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29011 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29012 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29013 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29014 29015 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29016 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29017 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29018 29019 return (0); 29020 } 29021 29022 static void 29023 icmp_kstat_init(void) 29024 { 29025 icmp_named_kstat_t template = { 29026 { "inMsgs", KSTAT_DATA_UINT32 }, 29027 { "inErrors", KSTAT_DATA_UINT32 }, 29028 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29029 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29030 { "inParmProbs", KSTAT_DATA_UINT32 }, 29031 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29032 { "inRedirects", KSTAT_DATA_UINT32 }, 29033 { "inEchos", KSTAT_DATA_UINT32 }, 29034 { "inEchoReps", KSTAT_DATA_UINT32 }, 29035 { "inTimestamps", KSTAT_DATA_UINT32 }, 29036 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29037 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29038 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29039 { "outMsgs", KSTAT_DATA_UINT32 }, 29040 { "outErrors", KSTAT_DATA_UINT32 }, 29041 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29042 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29043 { "outParmProbs", KSTAT_DATA_UINT32 }, 29044 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29045 { "outRedirects", KSTAT_DATA_UINT32 }, 29046 { "outEchos", KSTAT_DATA_UINT32 }, 29047 { "outEchoReps", KSTAT_DATA_UINT32 }, 29048 { "outTimestamps", KSTAT_DATA_UINT32 }, 29049 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29050 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29051 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29052 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29053 { "inUnknowns", KSTAT_DATA_UINT32 }, 29054 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29055 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29056 { "outDrops", KSTAT_DATA_UINT32 }, 29057 { "inOverFlows", KSTAT_DATA_UINT32 }, 29058 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29059 }; 29060 29061 icmp_mibkp = kstat_create("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29062 NUM_OF_FIELDS(icmp_named_kstat_t), 29063 0); 29064 if (icmp_mibkp == NULL) 29065 return; 29066 29067 bcopy(&template, icmp_mibkp->ks_data, sizeof (template)); 29068 29069 icmp_mibkp->ks_update = icmp_kstat_update; 29070 29071 kstat_install(icmp_mibkp); 29072 } 29073 29074 static void 29075 icmp_kstat_fini(void) 29076 { 29077 29078 if (icmp_mibkp != NULL) { 29079 kstat_delete(icmp_mibkp); 29080 icmp_mibkp = NULL; 29081 } 29082 } 29083 29084 static int 29085 icmp_kstat_update(kstat_t *kp, int rw) 29086 { 29087 icmp_named_kstat_t *icmpkp; 29088 29089 if ((kp == NULL) || (kp->ks_data == NULL)) 29090 return (EIO); 29091 29092 if (rw == KSTAT_WRITE) 29093 return (EACCES); 29094 29095 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29096 29097 icmpkp->inMsgs.value.ui32 = icmp_mib.icmpInMsgs; 29098 icmpkp->inErrors.value.ui32 = icmp_mib.icmpInErrors; 29099 icmpkp->inDestUnreachs.value.ui32 = icmp_mib.icmpInDestUnreachs; 29100 icmpkp->inTimeExcds.value.ui32 = icmp_mib.icmpInTimeExcds; 29101 icmpkp->inParmProbs.value.ui32 = icmp_mib.icmpInParmProbs; 29102 icmpkp->inSrcQuenchs.value.ui32 = icmp_mib.icmpInSrcQuenchs; 29103 icmpkp->inRedirects.value.ui32 = icmp_mib.icmpInRedirects; 29104 icmpkp->inEchos.value.ui32 = icmp_mib.icmpInEchos; 29105 icmpkp->inEchoReps.value.ui32 = icmp_mib.icmpInEchoReps; 29106 icmpkp->inTimestamps.value.ui32 = icmp_mib.icmpInTimestamps; 29107 icmpkp->inTimestampReps.value.ui32 = icmp_mib.icmpInTimestampReps; 29108 icmpkp->inAddrMasks.value.ui32 = icmp_mib.icmpInAddrMasks; 29109 icmpkp->inAddrMaskReps.value.ui32 = icmp_mib.icmpInAddrMaskReps; 29110 icmpkp->outMsgs.value.ui32 = icmp_mib.icmpOutMsgs; 29111 icmpkp->outErrors.value.ui32 = icmp_mib.icmpOutErrors; 29112 icmpkp->outDestUnreachs.value.ui32 = icmp_mib.icmpOutDestUnreachs; 29113 icmpkp->outTimeExcds.value.ui32 = icmp_mib.icmpOutTimeExcds; 29114 icmpkp->outParmProbs.value.ui32 = icmp_mib.icmpOutParmProbs; 29115 icmpkp->outSrcQuenchs.value.ui32 = icmp_mib.icmpOutSrcQuenchs; 29116 icmpkp->outRedirects.value.ui32 = icmp_mib.icmpOutRedirects; 29117 icmpkp->outEchos.value.ui32 = icmp_mib.icmpOutEchos; 29118 icmpkp->outEchoReps.value.ui32 = icmp_mib.icmpOutEchoReps; 29119 icmpkp->outTimestamps.value.ui32 = icmp_mib.icmpOutTimestamps; 29120 icmpkp->outTimestampReps.value.ui32 = icmp_mib.icmpOutTimestampReps; 29121 icmpkp->outAddrMasks.value.ui32 = icmp_mib.icmpOutAddrMasks; 29122 icmpkp->outAddrMaskReps.value.ui32 = icmp_mib.icmpOutAddrMaskReps; 29123 icmpkp->inCksumErrs.value.ui32 = icmp_mib.icmpInCksumErrs; 29124 icmpkp->inUnknowns.value.ui32 = icmp_mib.icmpInUnknowns; 29125 icmpkp->inFragNeeded.value.ui32 = icmp_mib.icmpInFragNeeded; 29126 icmpkp->outFragNeeded.value.ui32 = icmp_mib.icmpOutFragNeeded; 29127 icmpkp->outDrops.value.ui32 = icmp_mib.icmpOutDrops; 29128 icmpkp->inOverflows.value.ui32 = icmp_mib.icmpInOverflows; 29129 icmpkp->inBadRedirects.value.ui32 = icmp_mib.icmpInBadRedirects; 29130 29131 return (0); 29132 } 29133 29134 /* 29135 * This is the fanout function for raw socket opened for SCTP. Note 29136 * that it is called after SCTP checks that there is no socket which 29137 * wants a packet. Then before SCTP handles this out of the blue packet, 29138 * this function is called to see if there is any raw socket for SCTP. 29139 * If there is and it is bound to the correct address, the packet will 29140 * be sent to that socket. Note that only one raw socket can be bound to 29141 * a port. This is assured in ipcl_sctp_hash_insert(); 29142 */ 29143 void 29144 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29145 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29146 uint_t ipif_seqid, zoneid_t zoneid) 29147 { 29148 conn_t *connp; 29149 queue_t *rq; 29150 mblk_t *first_mp; 29151 boolean_t secure; 29152 ip6_t *ip6h; 29153 29154 first_mp = mp; 29155 if (mctl_present) { 29156 mp = first_mp->b_cont; 29157 secure = ipsec_in_is_secure(first_mp); 29158 ASSERT(mp != NULL); 29159 } else { 29160 secure = B_FALSE; 29161 } 29162 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29163 29164 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha); 29165 if (connp == NULL) { 29166 sctp_ootb_input(first_mp, recv_ill, ipif_seqid, zoneid, 29167 mctl_present); 29168 return; 29169 } 29170 rq = connp->conn_rq; 29171 if (!canputnext(rq)) { 29172 CONN_DEC_REF(connp); 29173 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29174 freemsg(first_mp); 29175 return; 29176 } 29177 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp) : 29178 CONN_INBOUND_POLICY_PRESENT_V6(connp)) || secure) { 29179 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29180 (isv4 ? ipha : NULL), ip6h, mctl_present); 29181 if (first_mp == NULL) { 29182 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29183 CONN_DEC_REF(connp); 29184 return; 29185 } 29186 } 29187 /* 29188 * We probably should not send M_CTL message up to 29189 * raw socket. 29190 */ 29191 if (mctl_present) 29192 freeb(first_mp); 29193 29194 /* Initiate IPPF processing here if needed. */ 29195 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) || 29196 (!isv4 && IP6_IN_IPP(flags))) { 29197 ip_process(IPP_LOCAL_IN, &mp, 29198 recv_ill->ill_phyint->phyint_ifindex); 29199 if (mp == NULL) { 29200 CONN_DEC_REF(connp); 29201 return; 29202 } 29203 } 29204 29205 if (connp->conn_recvif || connp->conn_recvslla || 29206 ((connp->conn_ip_recvpktinfo || 29207 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29208 (flags & IP_FF_IPINFO))) { 29209 int in_flags = 0; 29210 29211 /* 29212 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29213 * IPF_RECVIF. 29214 */ 29215 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29216 in_flags = IPF_RECVIF; 29217 } 29218 if (connp->conn_recvslla) { 29219 in_flags |= IPF_RECVSLLA; 29220 } 29221 if (isv4) { 29222 mp = ip_add_info(mp, recv_ill, in_flags, 29223 IPCL_ZONEID(connp)); 29224 } else { 29225 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29226 if (mp == NULL) { 29227 BUMP_MIB(recv_ill->ill_ip_mib, 29228 ipIfStatsInDiscards); 29229 CONN_DEC_REF(connp); 29230 return; 29231 } 29232 } 29233 } 29234 29235 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29236 /* 29237 * We are sending the IPSEC_IN message also up. Refer 29238 * to comments above this function. 29239 */ 29240 putnext(rq, mp); 29241 CONN_DEC_REF(connp); 29242 } 29243 29244 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29245 { \ 29246 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29247 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29248 } 29249 /* 29250 * This function should be called only if all packet processing 29251 * including fragmentation is complete. Callers of this function 29252 * must set mp->b_prev to one of these values: 29253 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29254 * prior to handing over the mp as first argument to this function. 29255 * 29256 * If the ire passed by caller is incomplete, this function 29257 * queues the packet and if necessary, sends ARP request and bails. 29258 * If the ire passed is fully resolved, we simply prepend 29259 * the link-layer header to the packet, do ipsec hw acceleration 29260 * work if necessary, and send the packet out on the wire. 29261 * 29262 * NOTE: IPSEC will only call this function with fully resolved 29263 * ires if hw acceleration is involved. 29264 * TODO list : 29265 * a Handle M_MULTIDATA so that 29266 * tcp_multisend->tcp_multisend_data can 29267 * call ip_xmit_v4 directly 29268 * b Handle post-ARP work for fragments so that 29269 * ip_wput_frag can call this function. 29270 */ 29271 ipxmit_state_t 29272 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 29273 { 29274 nce_t *arpce; 29275 queue_t *q; 29276 int ill_index; 29277 mblk_t *nxt_mp, *first_mp; 29278 boolean_t xmit_drop = B_FALSE; 29279 ip_proc_t proc; 29280 ill_t *out_ill; 29281 int pkt_len; 29282 29283 arpce = ire->ire_nce; 29284 ASSERT(arpce != NULL); 29285 29286 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29287 29288 mutex_enter(&arpce->nce_lock); 29289 switch (arpce->nce_state) { 29290 case ND_REACHABLE: 29291 /* If there are other queued packets, queue this packet */ 29292 if (arpce->nce_qd_mp != NULL) { 29293 if (mp != NULL) 29294 nce_queue_mp_common(arpce, mp, B_FALSE); 29295 mp = arpce->nce_qd_mp; 29296 } 29297 arpce->nce_qd_mp = NULL; 29298 mutex_exit(&arpce->nce_lock); 29299 29300 /* 29301 * Flush the queue. In the common case, where the 29302 * ARP is already resolved, it will go through the 29303 * while loop only once. 29304 */ 29305 while (mp != NULL) { 29306 29307 nxt_mp = mp->b_next; 29308 mp->b_next = NULL; 29309 ASSERT(mp->b_datap->db_type != M_CTL); 29310 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29311 /* 29312 * This info is needed for IPQOS to do COS marking 29313 * in ip_wput_attach_llhdr->ip_process. 29314 */ 29315 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29316 mp->b_prev = NULL; 29317 29318 /* set up ill index for outbound qos processing */ 29319 out_ill = ire->ire_ipif->ipif_ill; 29320 ill_index = out_ill->ill_phyint->phyint_ifindex; 29321 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29322 ill_index); 29323 if (first_mp == NULL) { 29324 xmit_drop = B_TRUE; 29325 BUMP_MIB(out_ill->ill_ip_mib, 29326 ipIfStatsOutDiscards); 29327 goto next_mp; 29328 } 29329 /* non-ipsec hw accel case */ 29330 if (io == NULL || !io->ipsec_out_accelerated) { 29331 /* send it */ 29332 q = ire->ire_stq; 29333 if (proc == IPP_FWD_OUT) { 29334 UPDATE_IB_PKT_COUNT(ire); 29335 } else { 29336 UPDATE_OB_PKT_COUNT(ire); 29337 } 29338 ire->ire_last_used_time = lbolt; 29339 29340 if (flow_ctl_enabled || canputnext(q)) { 29341 if (proc == IPP_FWD_OUT) { 29342 BUMP_MIB(out_ill->ill_ip_mib, 29343 ipIfStatsHCOutForwDatagrams); 29344 } 29345 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29346 pkt_len); 29347 29348 putnext(q, first_mp); 29349 } else { 29350 BUMP_MIB(out_ill->ill_ip_mib, 29351 ipIfStatsOutDiscards); 29352 xmit_drop = B_TRUE; 29353 freemsg(first_mp); 29354 } 29355 } else { 29356 /* 29357 * Safety Pup says: make sure this 29358 * is going to the right interface! 29359 */ 29360 ill_t *ill1 = 29361 (ill_t *)ire->ire_stq->q_ptr; 29362 int ifindex = 29363 ill1->ill_phyint->phyint_ifindex; 29364 if (ifindex != 29365 io->ipsec_out_capab_ill_index) { 29366 xmit_drop = B_TRUE; 29367 freemsg(mp); 29368 } else { 29369 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29370 pkt_len); 29371 ipsec_hw_putnext(ire->ire_stq, mp); 29372 } 29373 } 29374 next_mp: 29375 mp = nxt_mp; 29376 } /* while (mp != NULL) */ 29377 if (xmit_drop) 29378 return (SEND_FAILED); 29379 else 29380 return (SEND_PASSED); 29381 29382 case ND_INITIAL: 29383 case ND_INCOMPLETE: 29384 29385 /* 29386 * While we do send off packets to dests that 29387 * use fully-resolved CGTP routes, we do not 29388 * handle unresolved CGTP routes. 29389 */ 29390 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29391 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29392 29393 if (mp != NULL) { 29394 /* queue the packet */ 29395 nce_queue_mp_common(arpce, mp, B_FALSE); 29396 } 29397 29398 if (arpce->nce_state == ND_INCOMPLETE) { 29399 mutex_exit(&arpce->nce_lock); 29400 DTRACE_PROBE3(ip__xmit__incomplete, 29401 (ire_t *), ire, (mblk_t *), mp, 29402 (ipsec_out_t *), io); 29403 return (LOOKUP_IN_PROGRESS); 29404 } 29405 29406 arpce->nce_state = ND_INCOMPLETE; 29407 mutex_exit(&arpce->nce_lock); 29408 /* 29409 * Note that ire_add() (called from ire_forward()) 29410 * holds a ref on the ire until ARP is completed. 29411 */ 29412 29413 ire_arpresolve(ire, ire_to_ill(ire)); 29414 return (LOOKUP_IN_PROGRESS); 29415 default: 29416 ASSERT(0); 29417 mutex_exit(&arpce->nce_lock); 29418 return (LLHDR_RESLV_FAILED); 29419 } 29420 } 29421 29422 #undef UPDATE_IP_MIB_OB_COUNTERS 29423 29424 /* 29425 * Return B_TRUE if the buffers differ in length or content. 29426 * This is used for comparing extension header buffers. 29427 * Note that an extension header would be declared different 29428 * even if all that changed was the next header value in that header i.e. 29429 * what really changed is the next extension header. 29430 */ 29431 boolean_t 29432 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29433 uint_t blen) 29434 { 29435 if (!b_valid) 29436 blen = 0; 29437 29438 if (alen != blen) 29439 return (B_TRUE); 29440 if (alen == 0) 29441 return (B_FALSE); /* Both zero length */ 29442 return (bcmp(abuf, bbuf, alen)); 29443 } 29444 29445 /* 29446 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29447 * Return B_FALSE if memory allocation fails - don't change any state! 29448 */ 29449 boolean_t 29450 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29451 const void *src, uint_t srclen) 29452 { 29453 void *dst; 29454 29455 if (!src_valid) 29456 srclen = 0; 29457 29458 ASSERT(*dstlenp == 0); 29459 if (src != NULL && srclen != 0) { 29460 dst = mi_alloc(srclen, BPRI_MED); 29461 if (dst == NULL) 29462 return (B_FALSE); 29463 } else { 29464 dst = NULL; 29465 } 29466 if (*dstp != NULL) 29467 mi_free(*dstp); 29468 *dstp = dst; 29469 *dstlenp = dst == NULL ? 0 : srclen; 29470 return (B_TRUE); 29471 } 29472 29473 /* 29474 * Replace what is in *dst, *dstlen with the source. 29475 * Assumes ip_allocbuf has already been called. 29476 */ 29477 void 29478 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29479 const void *src, uint_t srclen) 29480 { 29481 if (!src_valid) 29482 srclen = 0; 29483 29484 ASSERT(*dstlenp == srclen); 29485 if (src != NULL && srclen != 0) 29486 bcopy(src, *dstp, srclen); 29487 } 29488 29489 /* 29490 * Free the storage pointed to by the members of an ip6_pkt_t. 29491 */ 29492 void 29493 ip6_pkt_free(ip6_pkt_t *ipp) 29494 { 29495 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 29496 29497 if (ipp->ipp_fields & IPPF_HOPOPTS) { 29498 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 29499 ipp->ipp_hopopts = NULL; 29500 ipp->ipp_hopoptslen = 0; 29501 } 29502 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 29503 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 29504 ipp->ipp_rtdstopts = NULL; 29505 ipp->ipp_rtdstoptslen = 0; 29506 } 29507 if (ipp->ipp_fields & IPPF_DSTOPTS) { 29508 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 29509 ipp->ipp_dstopts = NULL; 29510 ipp->ipp_dstoptslen = 0; 29511 } 29512 if (ipp->ipp_fields & IPPF_RTHDR) { 29513 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 29514 ipp->ipp_rthdr = NULL; 29515 ipp->ipp_rthdrlen = 0; 29516 } 29517 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 29518 IPPF_RTHDR); 29519 } 29520