1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/optcom.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/ipsec_info.h> 99 #include <inet/sadb.h> 100 #include <inet/ipsec_impl.h> 101 #include <sys/iphada.h> 102 #include <inet/tun.h> 103 #include <inet/ipdrop.h> 104 #include <inet/ip_netinfo.h> 105 106 #include <sys/ethernet.h> 107 #include <net/if_types.h> 108 #include <sys/cpuvar.h> 109 110 #include <ipp/ipp.h> 111 #include <ipp/ipp_impl.h> 112 #include <ipp/ipgpc/ipgpc.h> 113 114 #include <sys/multidata.h> 115 #include <sys/pattr.h> 116 117 #include <inet/ipclassifier.h> 118 #include <inet/sctp_ip.h> 119 #include <inet/sctp/sctp_impl.h> 120 #include <inet/udp_impl.h> 121 #include <sys/sunddi.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 128 /* 129 * Values for squeue switch: 130 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 131 * IP_SQUEUE_ENTER: squeue_enter 132 * IP_SQUEUE_FILL: squeue_fill 133 */ 134 int ip_squeue_enter = 2; /* Setable in /etc/system */ 135 136 squeue_func_t ip_input_proc; 137 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 138 139 #define TCP6 "tcp6" 140 #define TCP "tcp" 141 #define SCTP "sctp" 142 #define SCTP6 "sctp6" 143 144 major_t TCP6_MAJ; 145 major_t TCP_MAJ; 146 major_t SCTP_MAJ; 147 major_t SCTP6_MAJ; 148 149 /* 150 * Setable in /etc/system 151 */ 152 int ip_poll_normal_ms = 100; 153 int ip_poll_normal_ticks = 0; 154 int ip_modclose_ackwait_ms = 3000; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 listptr_t ird_route; /* ipRouteEntryTable */ 174 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 175 listptr_t ird_attrs; /* ipRouteAttributeTable */ 176 } iproutedata_t; 177 178 /* 179 * Cluster specific hooks. These should be NULL when booted as a non-cluster 180 */ 181 182 /* 183 * Hook functions to enable cluster networking 184 * On non-clustered systems these vectors must always be NULL. 185 * 186 * Hook function to Check ip specified ip address is a shared ip address 187 * in the cluster 188 * 189 */ 190 int (*cl_inet_isclusterwide)(uint8_t protocol, 191 sa_family_t addr_family, uint8_t *laddrp) = NULL; 192 193 /* 194 * Hook function to generate cluster wide ip fragment identifier 195 */ 196 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 197 uint8_t *laddrp, uint8_t *faddrp) = NULL; 198 199 /* 200 * Synchronization notes: 201 * 202 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 203 * MT level protection given by STREAMS. IP uses a combination of its own 204 * internal serialization mechanism and standard Solaris locking techniques. 205 * The internal serialization is per phyint (no IPMP) or per IPMP group. 206 * This is used to serialize plumbing operations, IPMP operations, certain 207 * multicast operations, most set ioctls, igmp/mld timers etc. 208 * 209 * Plumbing is a long sequence of operations involving message 210 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 211 * involved in plumbing operations. A natural model is to serialize these 212 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 213 * parallel without any interference. But various set ioctls on hme0 are best 214 * serialized. However if the system uses IPMP, the operations are easier if 215 * they are serialized on a per IPMP group basis since IPMP operations 216 * happen across ill's of a group. Thus the lowest common denominator is to 217 * serialize most set ioctls, multicast join/leave operations, IPMP operations 218 * igmp/mld timer operations, and processing of DLPI control messages received 219 * from drivers on a per IPMP group basis. If the system does not employ 220 * IPMP the serialization is on a per phyint basis. This serialization is 221 * provided by the ipsq_t and primitives operating on this. Details can 222 * be found in ip_if.c above the core primitives operating on ipsq_t. 223 * 224 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 225 * Simiarly lookup of an ire by a thread also returns a refheld ire. 226 * In addition ipif's and ill's referenced by the ire are also indirectly 227 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 228 * the ipif's address or netmask change as long as an ipif is refheld 229 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 230 * address of an ipif has to go through the ipsq_t. This ensures that only 231 * 1 such exclusive operation proceeds at any time on the ipif. It then 232 * deletes all ires associated with this ipif, and waits for all refcnts 233 * associated with this ipif to come down to zero. The address is changed 234 * only after the ipif has been quiesced. Then the ipif is brought up again. 235 * More details are described above the comment in ip_sioctl_flags. 236 * 237 * Packet processing is based mostly on IREs and are fully multi-threaded 238 * using standard Solaris MT techniques. 239 * 240 * There are explicit locks in IP to handle: 241 * - The ip_g_head list maintained by mi_open_link() and friends. 242 * 243 * - The reassembly data structures (one lock per hash bucket) 244 * 245 * - conn_lock is meant to protect conn_t fields. The fields actually 246 * protected by conn_lock are documented in the conn_t definition. 247 * 248 * - ire_lock to protect some of the fields of the ire, IRE tables 249 * (one lock per hash bucket). Refer to ip_ire.c for details. 250 * 251 * - ndp_g_lock and nce_lock for protecting NCEs. 252 * 253 * - ill_lock protects fields of the ill and ipif. Details in ip.h 254 * 255 * - ill_g_lock: This is a global reader/writer lock. Protects the following 256 * * The AVL tree based global multi list of all ills. 257 * * The linked list of all ipifs of an ill 258 * * The <ill-ipsq> mapping 259 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 260 * * The illgroup list threaded by ill_group_next. 261 * * <ill-phyint> association 262 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 263 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 264 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 265 * will all have to hold the ill_g_lock as writer for the actual duration 266 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 267 * may be found in the IPMP section. 268 * 269 * - ill_lock: This is a per ill mutex. 270 * It protects some members of the ill and is documented below. 271 * It also protects the <ill-ipsq> mapping 272 * It also protects the illgroup list threaded by ill_group_next. 273 * It also protects the <ill-phyint> assoc. 274 * It also protects the list of ipifs hanging off the ill. 275 * 276 * - ipsq_lock: This is a per ipsq_t mutex lock. 277 * This protects all the other members of the ipsq struct except 278 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 279 * 280 * - illgrp_lock: This is a per ill_group mutex lock. 281 * The only thing it protects is the illgrp_ill_schednext member of ill_group 282 * which dictates which is the next ill in an ill_group that is to be chosen 283 * for sending outgoing packets, through creation of an IRE_CACHE that 284 * references this ill. 285 * 286 * - phyint_lock: This is a per phyint mutex lock. Protects just the 287 * phyint_flags 288 * 289 * - ip_g_nd_lock: This is a global reader/writer lock. 290 * Any call to nd_load to load a new parameter to the ND table must hold the 291 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 292 * as reader. 293 * 294 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 295 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 296 * uniqueness check also done atomically. 297 * 298 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 299 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 300 * as a writer when adding or deleting elements from these lists, and 301 * as a reader when walking these lists to send a SADB update to the 302 * IPsec capable ills. 303 * 304 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 305 * group list linked by ill_usesrc_grp_next. It also protects the 306 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 307 * group is being added or deleted. This lock is taken as a reader when 308 * walking the list/group(eg: to get the number of members in a usesrc group). 309 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 310 * field is changing state i.e from NULL to non-NULL or vice-versa. For 311 * example, it is not necessary to take this lock in the initial portion 312 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 313 * ip_sioctl_flags since the these operations are executed exclusively and 314 * that ensures that the "usesrc group state" cannot change. The "usesrc 315 * group state" change can happen only in the latter part of 316 * ip_sioctl_slifusesrc and in ill_delete. 317 * 318 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 319 * 320 * To change the <ill-phyint> association, the ill_g_lock must be held 321 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 322 * must be held. 323 * 324 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 325 * and the ill_lock of the ill in question must be held. 326 * 327 * To change the <ill-illgroup> association the ill_g_lock must be held as 328 * writer and the ill_lock of the ill in question must be held. 329 * 330 * To add or delete an ipif from the list of ipifs hanging off the ill, 331 * ill_g_lock (writer) and ill_lock must be held and the thread must be 332 * a writer on the associated ipsq,. 333 * 334 * To add or delete an ill to the system, the ill_g_lock must be held as 335 * writer and the thread must be a writer on the associated ipsq. 336 * 337 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 338 * must be a writer on the associated ipsq. 339 * 340 * Lock hierarchy 341 * 342 * Some lock hierarchy scenarios are listed below. 343 * 344 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 345 * ill_g_lock -> illgrp_lock -> ill_lock 346 * ill_g_lock -> ill_lock(s) -> phyint_lock 347 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 348 * ill_g_lock -> ip_addr_avail_lock 349 * conn_lock -> irb_lock -> ill_lock -> ire_lock 350 * ill_g_lock -> ip_g_nd_lock 351 * 352 * When more than 1 ill lock is needed to be held, all ill lock addresses 353 * are sorted on address and locked starting from highest addressed lock 354 * downward. 355 * 356 * Mobile-IP scenarios 357 * 358 * irb_lock -> ill_lock -> ire_mrtun_lock 359 * irb_lock -> ill_lock -> ire_srcif_table_lock 360 * 361 * IPsec scenarios 362 * 363 * ipsa_lock -> ill_g_lock -> ill_lock 364 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 365 * ipsec_capab_ills_lock -> ipsa_lock 366 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 367 * 368 * Trusted Solaris scenarios 369 * 370 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 371 * igsa_lock -> gcdb_lock 372 * gcgrp_rwlock -> ire_lock 373 * gcgrp_rwlock -> gcdb_lock 374 * 375 * 376 * Routing/forwarding table locking notes: 377 * 378 * Lock acquisition order: Radix tree lock, irb_lock. 379 * Requirements: 380 * i. Walker must not hold any locks during the walker callback. 381 * ii Walker must not see a truncated tree during the walk because of any node 382 * deletion. 383 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 384 * in many places in the code to walk the irb list. Thus even if all the 385 * ires in a bucket have been deleted, we still can't free the radix node 386 * until the ires have actually been inactive'd (freed). 387 * 388 * Tree traversal - Need to hold the global tree lock in read mode. 389 * Before dropping the global tree lock, need to either increment the ire_refcnt 390 * to ensure that the radix node can't be deleted. 391 * 392 * Tree add - Need to hold the global tree lock in write mode to add a 393 * radix node. To prevent the node from being deleted, increment the 394 * irb_refcnt, after the node is added to the tree. The ire itself is 395 * added later while holding the irb_lock, but not the tree lock. 396 * 397 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 398 * All associated ires must be inactive (i.e. freed), and irb_refcnt 399 * must be zero. 400 * 401 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 402 * global tree lock (read mode) for traversal. 403 * 404 * IPSEC notes : 405 * 406 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 407 * in front of the actual packet. For outbound datagrams, the M_CTL 408 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 409 * information used by the IPSEC code for applying the right level of 410 * protection. The information initialized by IP in the ipsec_out_t 411 * is determined by the per-socket policy or global policy in the system. 412 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 413 * ipsec_info.h) which starts out with nothing in it. It gets filled 414 * with the right information if it goes through the AH/ESP code, which 415 * happens if the incoming packet is secure. The information initialized 416 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 417 * the policy requirements needed by per-socket policy or global policy 418 * is met or not. 419 * 420 * If there is both per-socket policy (set using setsockopt) and there 421 * is also global policy match for the 5 tuples of the socket, 422 * ipsec_override_policy() makes the decision of which one to use. 423 * 424 * For fully connected sockets i.e dst, src [addr, port] is known, 425 * conn_policy_cached is set indicating that policy has been cached. 426 * conn_in_enforce_policy may or may not be set depending on whether 427 * there is a global policy match or per-socket policy match. 428 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 429 * Once the right policy is set on the conn_t, policy cannot change for 430 * this socket. This makes life simpler for TCP (UDP ?) where 431 * re-transmissions go out with the same policy. For symmetry, policy 432 * is cached for fully connected UDP sockets also. Thus if policy is cached, 433 * it also implies that policy is latched i.e policy cannot change 434 * on these sockets. As we have the right policy on the conn, we don't 435 * have to lookup global policy for every outbound and inbound datagram 436 * and thus serving as an optimization. Note that a global policy change 437 * does not affect fully connected sockets if they have policy. If fully 438 * connected sockets did not have any policy associated with it, global 439 * policy change may affect them. 440 * 441 * IP Flow control notes: 442 * 443 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 444 * cannot be sent down to the driver by IP, because of a canput failure, IP 445 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 446 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 447 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 448 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 449 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 450 * the queued messages, and removes the conn from the drain list, if all 451 * messages were drained. It also qenables the next conn in the drain list to 452 * continue the drain process. 453 * 454 * In reality the drain list is not a single list, but a configurable number 455 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 456 * list. If the ip_wsrv of the next qenabled conn does not run, because the 457 * stream closes, ip_close takes responsibility to qenable the next conn in 458 * the drain list. The directly called ip_wput path always does a putq, if 459 * it cannot putnext. Thus synchronization problems are handled between 460 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 461 * functions that manipulate this drain list. Furthermore conn_drain_insert 462 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 463 * running on a queue at any time. conn_drain_tail can be simultaneously called 464 * from both ip_wsrv and ip_close. 465 * 466 * IPQOS notes: 467 * 468 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 469 * and IPQoS modules. IPPF includes hooks in IP at different control points 470 * (callout positions) which direct packets to IPQoS modules for policy 471 * processing. Policies, if present, are global. 472 * 473 * The callout positions are located in the following paths: 474 * o local_in (packets destined for this host) 475 * o local_out (packets orginating from this host ) 476 * o fwd_in (packets forwarded by this m/c - inbound) 477 * o fwd_out (packets forwarded by this m/c - outbound) 478 * Hooks at these callout points can be enabled/disabled using the ndd variable 479 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 480 * By default all the callout positions are enabled. 481 * 482 * Outbound (local_out) 483 * Hooks are placed in ip_wput_ire and ipsec_out_process. 484 * 485 * Inbound (local_in) 486 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 487 * TCP and UDP fanout routines. 488 * 489 * Forwarding (in and out) 490 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 491 * 492 * IP Policy Framework processing (IPPF processing) 493 * Policy processing for a packet is initiated by ip_process, which ascertains 494 * that the classifier (ipgpc) is loaded and configured, failing which the 495 * packet resumes normal processing in IP. If the clasifier is present, the 496 * packet is acted upon by one or more IPQoS modules (action instances), per 497 * filters configured in ipgpc and resumes normal IP processing thereafter. 498 * An action instance can drop a packet in course of its processing. 499 * 500 * A boolean variable, ip_policy, is used in all the fanout routines that can 501 * invoke ip_process for a packet. This variable indicates if the packet should 502 * to be sent for policy processing. The variable is set to B_TRUE by default, 503 * i.e. when the routines are invoked in the normal ip procesing path for a 504 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 505 * ip_policy is set to B_FALSE for all the routines called in these two 506 * functions because, in the former case, we don't process loopback traffic 507 * currently while in the latter, the packets have already been processed in 508 * icmp_inbound. 509 * 510 * Zones notes: 511 * 512 * The partitioning rules for networking are as follows: 513 * 1) Packets coming from a zone must have a source address belonging to that 514 * zone. 515 * 2) Packets coming from a zone can only be sent on a physical interface on 516 * which the zone has an IP address. 517 * 3) Between two zones on the same machine, packet delivery is only allowed if 518 * there's a matching route for the destination and zone in the forwarding 519 * table. 520 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 521 * different zones can bind to the same port with the wildcard address 522 * (INADDR_ANY). 523 * 524 * The granularity of interface partitioning is at the logical interface level. 525 * Therefore, every zone has its own IP addresses, and incoming packets can be 526 * attributed to a zone unambiguously. A logical interface is placed into a zone 527 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 528 * structure. Rule (1) is implemented by modifying the source address selection 529 * algorithm so that the list of eligible addresses is filtered based on the 530 * sending process zone. 531 * 532 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 533 * across all zones, depending on their type. Here is the break-up: 534 * 535 * IRE type Shared/exclusive 536 * -------- ---------------- 537 * IRE_BROADCAST Exclusive 538 * IRE_DEFAULT (default routes) Shared (*) 539 * IRE_LOCAL Exclusive (x) 540 * IRE_LOOPBACK Exclusive 541 * IRE_PREFIX (net routes) Shared (*) 542 * IRE_CACHE Exclusive 543 * IRE_IF_NORESOLVER (interface routes) Exclusive 544 * IRE_IF_RESOLVER (interface routes) Exclusive 545 * IRE_HOST (host routes) Shared (*) 546 * 547 * (*) A zone can only use a default or off-subnet route if the gateway is 548 * directly reachable from the zone, that is, if the gateway's address matches 549 * one of the zone's logical interfaces. 550 * 551 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 552 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 553 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 554 * address of the zone itself (the destination). Since IRE_LOCAL is used 555 * for communication between zones, ip_wput_ire has special logic to set 556 * the right source address when sending using an IRE_LOCAL. 557 * 558 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 559 * ire_cache_lookup restricts loopback using an IRE_LOCAL 560 * between zone to the case when L2 would have conceptually looped the packet 561 * back, i.e. the loopback which is required since neither Ethernet drivers 562 * nor Ethernet hardware loops them back. This is the case when the normal 563 * routes (ignoring IREs with different zoneids) would send out the packet on 564 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 565 * associated. 566 * 567 * Multiple zones can share a common broadcast address; typically all zones 568 * share the 255.255.255.255 address. Incoming as well as locally originated 569 * broadcast packets must be dispatched to all the zones on the broadcast 570 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 571 * since some zones may not be on the 10.16.72/24 network. To handle this, each 572 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 573 * sent to every zone that has an IRE_BROADCAST entry for the destination 574 * address on the input ill, see conn_wantpacket(). 575 * 576 * Applications in different zones can join the same multicast group address. 577 * For IPv4, group memberships are per-logical interface, so they're already 578 * inherently part of a zone. For IPv6, group memberships are per-physical 579 * interface, so we distinguish IPv6 group memberships based on group address, 580 * interface and zoneid. In both cases, received multicast packets are sent to 581 * every zone for which a group membership entry exists. On IPv6 we need to 582 * check that the target zone still has an address on the receiving physical 583 * interface; it could have been removed since the application issued the 584 * IPV6_JOIN_GROUP. 585 */ 586 587 /* 588 * Squeue Fanout flags: 589 * 0: No fanout. 590 * 1: Fanout across all squeues 591 */ 592 boolean_t ip_squeue_fanout = 0; 593 594 /* 595 * Maximum dups allowed per packet. 596 */ 597 uint_t ip_max_frag_dups = 10; 598 599 #define IS_SIMPLE_IPH(ipha) \ 600 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 601 602 /* RFC1122 Conformance */ 603 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 604 605 #define ILL_MAX_NAMELEN LIFNAMSIZ 606 607 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 608 609 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 610 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 611 612 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 613 ip_stack_t *); 614 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 615 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 616 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 617 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 618 mblk_t *, int, ip_stack_t *); 619 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 620 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 621 ill_t *, zoneid_t); 622 static void icmp_options_update(ipha_t *); 623 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 624 ip_stack_t *); 625 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 626 zoneid_t zoneid, ip_stack_t *); 627 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 628 static void icmp_redirect(ill_t *, mblk_t *); 629 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 630 ip_stack_t *); 631 632 static void ip_arp_news(queue_t *, mblk_t *); 633 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 634 ip_stack_t *); 635 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 636 char *ip_dot_addr(ipaddr_t, char *); 637 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 638 int ip_close(queue_t *, int); 639 static char *ip_dot_saddr(uchar_t *, char *); 640 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 641 boolean_t, boolean_t, ill_t *, zoneid_t); 642 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 643 boolean_t, boolean_t, zoneid_t); 644 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 645 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 646 static void ip_lrput(queue_t *, mblk_t *); 647 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 648 ipaddr_t ip_net_mask(ipaddr_t); 649 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *, 650 zoneid_t, ip_stack_t *); 651 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 652 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 653 char *ip_nv_lookup(nv_t *, int); 654 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 655 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 656 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 657 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 658 ipndp_t *, size_t); 659 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 660 void ip_rput(queue_t *, mblk_t *); 661 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 662 void *dummy_arg); 663 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 664 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 665 ip_stack_t *); 666 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 667 ire_t *, ip_stack_t *); 668 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 669 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 670 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 671 ip_stack_t *); 672 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 673 uint16_t *); 674 int ip_snmp_get(queue_t *, mblk_t *); 675 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 676 mib2_ipIfStatsEntry_t *, ip_stack_t *); 677 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 678 ip_stack_t *); 679 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 680 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 681 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 683 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 685 ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 701 ip_stack_t *ipst); 702 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 703 ip_stack_t *ipst); 704 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 705 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 706 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 707 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 708 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 709 static boolean_t ip_source_route_included(ipha_t *); 710 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 711 712 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 713 zoneid_t, ip_stack_t *); 714 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 715 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 716 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 717 zoneid_t, ip_stack_t *); 718 719 static void conn_drain_init(ip_stack_t *); 720 static void conn_drain_fini(ip_stack_t *); 721 static void conn_drain_tail(conn_t *connp, boolean_t closing); 722 723 static void conn_walk_drain(ip_stack_t *); 724 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 725 zoneid_t); 726 727 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 728 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 729 static void ip_stack_fini(netstackid_t stackid, void *arg); 730 731 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 732 zoneid_t); 733 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 734 void *dummy_arg); 735 736 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 737 738 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 739 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 740 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 741 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 742 743 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 744 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 745 caddr_t, cred_t *); 746 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 747 caddr_t cp, cred_t *cr); 748 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 749 cred_t *); 750 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 751 caddr_t cp, cred_t *cr); 752 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 753 cred_t *); 754 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 755 cred_t *); 756 static squeue_func_t ip_squeue_switch(int); 757 758 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 759 static void ip_kstat_fini(netstackid_t, kstat_t *); 760 static int ip_kstat_update(kstat_t *kp, int rw); 761 static void *icmp_kstat_init(netstackid_t); 762 static void icmp_kstat_fini(netstackid_t, kstat_t *); 763 static int icmp_kstat_update(kstat_t *kp, int rw); 764 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 765 static void ip_kstat2_fini(netstackid_t, kstat_t *); 766 767 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 768 769 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 770 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 771 772 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 773 ipha_t *, ill_t *, boolean_t); 774 775 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 776 ipha_t *, ill_t *, boolean_t); 777 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 778 779 /* How long, in seconds, we allow frags to hang around. */ 780 #define IP_FRAG_TIMEOUT 60 781 782 /* 783 * Threshold which determines whether MDT should be used when 784 * generating IP fragments; payload size must be greater than 785 * this threshold for MDT to take place. 786 */ 787 #define IP_WPUT_FRAG_MDT_MIN 32768 788 789 /* Setable in /etc/system only */ 790 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 791 792 static long ip_rput_pullups; 793 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 794 795 vmem_t *ip_minor_arena; 796 797 int ip_debug; 798 799 #ifdef DEBUG 800 uint32_t ipsechw_debug = 0; 801 #endif 802 803 /* 804 * Multirouting/CGTP stuff 805 */ 806 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 807 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 808 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 809 810 /* 811 * XXX following really should only be in a header. Would need more 812 * header and .c clean up first. 813 */ 814 extern optdb_obj_t ip_opt_obj; 815 816 ulong_t ip_squeue_enter_unbound = 0; 817 818 /* 819 * Named Dispatch Parameter Table. 820 * All of these are alterable, within the min/max values given, at run time. 821 */ 822 static ipparam_t lcl_param_arr[] = { 823 /* min max value name */ 824 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 825 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 826 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 827 { 0, 1, 0, "ip_respond_to_timestamp"}, 828 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 829 { 0, 1, 1, "ip_send_redirects"}, 830 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 831 { 0, 10, 0, "ip_debug"}, 832 { 0, 10, 0, "ip_mrtdebug"}, 833 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 834 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 835 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 836 { 1, 255, 255, "ip_def_ttl" }, 837 { 0, 1, 0, "ip_forward_src_routed"}, 838 { 0, 256, 32, "ip_wroff_extra" }, 839 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 840 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 841 { 0, 1, 1, "ip_path_mtu_discovery" }, 842 { 0, 240, 30, "ip_ignore_delete_time" }, 843 { 0, 1, 0, "ip_ignore_redirect" }, 844 { 0, 1, 1, "ip_output_queue" }, 845 { 1, 254, 1, "ip_broadcast_ttl" }, 846 { 0, 99999, 100, "ip_icmp_err_interval" }, 847 { 1, 99999, 10, "ip_icmp_err_burst" }, 848 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 849 { 0, 1, 0, "ip_strict_dst_multihoming" }, 850 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 851 { 0, 1, 0, "ipsec_override_persocket_policy" }, 852 { 0, 1, 1, "icmp_accept_clear_messages" }, 853 { 0, 1, 1, "igmp_accept_clear_messages" }, 854 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 855 "ip_ndp_delay_first_probe_time"}, 856 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 857 "ip_ndp_max_unicast_solicit"}, 858 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 859 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 860 { 0, 1, 0, "ip6_forward_src_routed"}, 861 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 862 { 0, 1, 1, "ip6_send_redirects"}, 863 { 0, 1, 0, "ip6_ignore_redirect" }, 864 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 865 866 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 867 868 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 869 870 { 0, 1, 1, "pim_accept_clear_messages" }, 871 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 872 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 873 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 874 { 0, 15, 0, "ip_policy_mask" }, 875 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 876 { 0, 255, 1, "ip_multirt_ttl" }, 877 { 0, 1, 1, "ip_multidata_outbound" }, 878 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 879 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 880 { 0, 1000, 1, "ip_max_temp_defend" }, 881 { 0, 1000, 3, "ip_max_defend" }, 882 { 0, 999999, 30, "ip_defend_interval" }, 883 { 0, 3600000, 300000, "ip_dup_recovery" }, 884 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 885 { 0, 1, 1, "ip_lso_outbound" }, 886 #ifdef DEBUG 887 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 888 #else 889 { 0, 0, 0, "" }, 890 #endif 891 }; 892 893 /* 894 * Extended NDP table 895 * The addresses for the first two are filled in to be ips_ip_g_forward 896 * and ips_ipv6_forward at init time. 897 */ 898 static ipndp_t lcl_ndp_arr[] = { 899 /* getf setf data name */ 900 #define IPNDP_IP_FORWARDING_OFFSET 0 901 { ip_param_generic_get, ip_forward_set, NULL, 902 "ip_forwarding" }, 903 #define IPNDP_IP6_FORWARDING_OFFSET 1 904 { ip_param_generic_get, ip_forward_set, NULL, 905 "ip6_forwarding" }, 906 { ip_ill_report, NULL, NULL, 907 "ip_ill_status" }, 908 { ip_ipif_report, NULL, NULL, 909 "ip_ipif_status" }, 910 { ip_ire_report, NULL, NULL, 911 "ipv4_ire_status" }, 912 { ip_ire_report_mrtun, NULL, NULL, 913 "ipv4_mrtun_ire_status" }, 914 { ip_ire_report_srcif, NULL, NULL, 915 "ipv4_srcif_ire_status" }, 916 { ip_ire_report_v6, NULL, NULL, 917 "ipv6_ire_status" }, 918 { ip_conn_report, NULL, NULL, 919 "ip_conn_status" }, 920 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 921 "ip_rput_pullups" }, 922 { ndp_report, NULL, NULL, 923 "ip_ndp_cache_report" }, 924 { ip_srcid_report, NULL, NULL, 925 "ip_srcid_status" }, 926 { ip_param_generic_get, ip_squeue_profile_set, 927 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 928 { ip_param_generic_get, ip_squeue_bind_set, 929 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 930 { ip_param_generic_get, ip_input_proc_set, 931 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 932 { ip_param_generic_get, ip_int_set, 933 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 934 #define IPNDP_CGTP_FILTER_OFFSET 16 935 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 936 "ip_cgtp_filter" }, 937 { ip_param_generic_get, ip_int_set, 938 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 939 #define IPNDP_IPMP_HOOK_OFFSET 18 940 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 941 "ipmp_hook_emulation" }, 942 }; 943 944 /* 945 * Table of IP ioctls encoding the various properties of the ioctl and 946 * indexed based on the last byte of the ioctl command. Occasionally there 947 * is a clash, and there is more than 1 ioctl with the same last byte. 948 * In such a case 1 ioctl is encoded in the ndx table and the remaining 949 * ioctls are encoded in the misc table. An entry in the ndx table is 950 * retrieved by indexing on the last byte of the ioctl command and comparing 951 * the ioctl command with the value in the ndx table. In the event of a 952 * mismatch the misc table is then searched sequentially for the desired 953 * ioctl command. 954 * 955 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 956 */ 957 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 958 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 959 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 960 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 961 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 962 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 963 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 964 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 965 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 966 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 967 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 968 969 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 970 MISC_CMD, ip_siocaddrt, NULL }, 971 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 972 MISC_CMD, ip_siocdelrt, NULL }, 973 974 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 975 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 976 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 977 IF_CMD, ip_sioctl_get_addr, NULL }, 978 979 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 980 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 981 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 982 IPI_GET_CMD | IPI_REPL, 983 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 984 985 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 986 IPI_PRIV | IPI_WR | IPI_REPL, 987 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 988 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 989 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 990 IF_CMD, ip_sioctl_get_flags, NULL }, 991 992 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 993 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 994 995 /* copyin size cannot be coded for SIOCGIFCONF */ 996 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 997 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 998 999 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1000 IF_CMD, ip_sioctl_mtu, NULL }, 1001 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1002 IF_CMD, ip_sioctl_get_mtu, NULL }, 1003 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1004 IPI_GET_CMD | IPI_REPL, 1005 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1006 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1007 IF_CMD, ip_sioctl_brdaddr, NULL }, 1008 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1009 IPI_GET_CMD | IPI_REPL, 1010 IF_CMD, ip_sioctl_get_netmask, NULL }, 1011 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1012 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1013 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1014 IPI_GET_CMD | IPI_REPL, 1015 IF_CMD, ip_sioctl_get_metric, NULL }, 1016 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1017 IF_CMD, ip_sioctl_metric, NULL }, 1018 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1019 1020 /* See 166-168 below for extended SIOC*XARP ioctls */ 1021 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1022 MISC_CMD, ip_sioctl_arp, NULL }, 1023 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1024 MISC_CMD, ip_sioctl_arp, NULL }, 1025 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1026 MISC_CMD, ip_sioctl_arp, NULL }, 1027 1028 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 1050 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1051 MISC_CMD, if_unitsel, if_unitsel_restart }, 1052 1053 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1061 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1062 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1063 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1064 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 1072 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1073 IPI_PRIV | IPI_WR | IPI_MODOK, 1074 IF_CMD, ip_sioctl_sifname, NULL }, 1075 1076 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1083 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1084 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1085 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1086 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1087 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1088 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1089 1090 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1091 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1092 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1093 IF_CMD, ip_sioctl_get_muxid, NULL }, 1094 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1095 IPI_PRIV | IPI_WR | IPI_REPL, 1096 IF_CMD, ip_sioctl_muxid, NULL }, 1097 1098 /* Both if and lif variants share same func */ 1099 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1100 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1101 /* Both if and lif variants share same func */ 1102 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1103 IPI_PRIV | IPI_WR | IPI_REPL, 1104 IF_CMD, ip_sioctl_slifindex, NULL }, 1105 1106 /* copyin size cannot be coded for SIOCGIFCONF */ 1107 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1108 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1109 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 1127 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1128 IPI_PRIV | IPI_WR | IPI_REPL, 1129 LIF_CMD, ip_sioctl_removeif, 1130 ip_sioctl_removeif_restart }, 1131 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1132 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1133 LIF_CMD, ip_sioctl_addif, NULL }, 1134 #define SIOCLIFADDR_NDX 112 1135 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1136 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1137 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1138 IPI_GET_CMD | IPI_REPL, 1139 LIF_CMD, ip_sioctl_get_addr, NULL }, 1140 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1141 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1142 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1143 IPI_GET_CMD | IPI_REPL, 1144 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1145 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1146 IPI_PRIV | IPI_WR | IPI_REPL, 1147 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1148 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1149 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1150 LIF_CMD, ip_sioctl_get_flags, NULL }, 1151 1152 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1153 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1154 1155 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1156 ip_sioctl_get_lifconf, NULL }, 1157 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1158 LIF_CMD, ip_sioctl_mtu, NULL }, 1159 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1160 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1161 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1162 IPI_GET_CMD | IPI_REPL, 1163 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1164 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1165 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1166 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1167 IPI_GET_CMD | IPI_REPL, 1168 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1169 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1170 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1171 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1172 IPI_GET_CMD | IPI_REPL, 1173 LIF_CMD, ip_sioctl_get_metric, NULL }, 1174 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1175 LIF_CMD, ip_sioctl_metric, NULL }, 1176 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1177 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1178 LIF_CMD, ip_sioctl_slifname, 1179 ip_sioctl_slifname_restart }, 1180 1181 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1182 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1183 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1184 IPI_GET_CMD | IPI_REPL, 1185 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1186 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1187 IPI_PRIV | IPI_WR | IPI_REPL, 1188 LIF_CMD, ip_sioctl_muxid, NULL }, 1189 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1190 IPI_GET_CMD | IPI_REPL, 1191 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1192 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1193 IPI_PRIV | IPI_WR | IPI_REPL, 1194 LIF_CMD, ip_sioctl_slifindex, 0 }, 1195 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1196 LIF_CMD, ip_sioctl_token, NULL }, 1197 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1198 IPI_GET_CMD | IPI_REPL, 1199 LIF_CMD, ip_sioctl_get_token, NULL }, 1200 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1201 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1202 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1203 IPI_GET_CMD | IPI_REPL, 1204 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1205 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1206 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1207 1208 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1209 IPI_GET_CMD | IPI_REPL, 1210 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1211 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1212 LIF_CMD, ip_siocdelndp_v6, NULL }, 1213 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1214 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1215 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1216 LIF_CMD, ip_siocsetndp_v6, NULL }, 1217 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1218 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1219 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1220 MISC_CMD, ip_sioctl_tonlink, NULL }, 1221 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1222 MISC_CMD, ip_sioctl_tmysite, NULL }, 1223 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1224 TUN_CMD, ip_sioctl_tunparam, NULL }, 1225 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1226 IPI_PRIV | IPI_WR, 1227 TUN_CMD, ip_sioctl_tunparam, NULL }, 1228 1229 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1230 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1231 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1232 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1233 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1234 1235 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1236 IPI_PRIV | IPI_WR | IPI_REPL, 1237 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1238 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1239 IPI_PRIV | IPI_WR | IPI_REPL, 1240 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1241 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1242 IPI_PRIV | IPI_WR, 1243 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1244 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1245 IPI_GET_CMD | IPI_REPL, 1246 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1247 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1248 IPI_GET_CMD | IPI_REPL, 1249 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1250 1251 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1252 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1253 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1254 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1255 1256 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1257 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1258 1259 /* These are handled in ip_sioctl_copyin_setup itself */ 1260 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1261 MISC_CMD, NULL, NULL }, 1262 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1263 MISC_CMD, NULL, NULL }, 1264 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1265 1266 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1267 ip_sioctl_get_lifconf, NULL }, 1268 1269 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1270 MISC_CMD, ip_sioctl_xarp, NULL }, 1271 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1272 MISC_CMD, ip_sioctl_xarp, NULL }, 1273 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1274 MISC_CMD, ip_sioctl_xarp, NULL }, 1275 1276 /* SIOCPOPSOCKFS is not handled by IP */ 1277 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1278 1279 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1280 IPI_GET_CMD | IPI_REPL, 1281 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1282 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1283 IPI_PRIV | IPI_WR | IPI_REPL, 1284 LIF_CMD, ip_sioctl_slifzone, 1285 ip_sioctl_slifzone_restart }, 1286 /* 172-174 are SCTP ioctls and not handled by IP */ 1287 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1288 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1289 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1290 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1291 IPI_GET_CMD, LIF_CMD, 1292 ip_sioctl_get_lifusesrc, 0 }, 1293 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1294 IPI_PRIV | IPI_WR, 1295 LIF_CMD, ip_sioctl_slifusesrc, 1296 NULL }, 1297 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1298 ip_sioctl_get_lifsrcof, NULL }, 1299 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1300 MISC_CMD, ip_sioctl_msfilter, NULL }, 1301 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1302 MISC_CMD, ip_sioctl_msfilter, NULL }, 1303 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1304 MISC_CMD, ip_sioctl_msfilter, NULL }, 1305 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1306 MISC_CMD, ip_sioctl_msfilter, NULL }, 1307 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1308 ip_sioctl_set_ipmpfailback, NULL } 1309 }; 1310 1311 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1312 1313 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1314 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1315 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1316 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1317 TUN_CMD, ip_sioctl_tunparam, NULL }, 1318 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1319 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1320 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1321 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1322 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1323 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1324 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1325 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1326 MISC_CMD, mrt_ioctl}, 1327 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1328 MISC_CMD, mrt_ioctl}, 1329 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1330 MISC_CMD, mrt_ioctl} 1331 }; 1332 1333 int ip_misc_ioctl_count = 1334 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1335 1336 int conn_drain_nthreads; /* Number of drainers reqd. */ 1337 /* Settable in /etc/system */ 1338 /* Defined in ip_ire.c */ 1339 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1340 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1341 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1342 1343 static nv_t ire_nv_arr[] = { 1344 { IRE_BROADCAST, "BROADCAST" }, 1345 { IRE_LOCAL, "LOCAL" }, 1346 { IRE_LOOPBACK, "LOOPBACK" }, 1347 { IRE_CACHE, "CACHE" }, 1348 { IRE_DEFAULT, "DEFAULT" }, 1349 { IRE_PREFIX, "PREFIX" }, 1350 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1351 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1352 { IRE_HOST, "HOST" }, 1353 { 0 } 1354 }; 1355 1356 nv_t *ire_nv_tbl = ire_nv_arr; 1357 1358 /* Defined in ip_netinfo.c */ 1359 extern ddi_taskq_t *eventq_queue_nic; 1360 1361 /* Simple ICMP IP Header Template */ 1362 static ipha_t icmp_ipha = { 1363 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1364 }; 1365 1366 struct module_info ip_mod_info = { 1367 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1368 }; 1369 1370 /* 1371 * Duplicate static symbols within a module confuses mdb; so we avoid the 1372 * problem by making the symbols here distinct from those in udp.c. 1373 */ 1374 1375 static struct qinit iprinit = { 1376 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1377 &ip_mod_info 1378 }; 1379 1380 static struct qinit ipwinit = { 1381 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1382 &ip_mod_info 1383 }; 1384 1385 static struct qinit iplrinit = { 1386 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1387 &ip_mod_info 1388 }; 1389 1390 static struct qinit iplwinit = { 1391 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1392 &ip_mod_info 1393 }; 1394 1395 struct streamtab ipinfo = { 1396 &iprinit, &ipwinit, &iplrinit, &iplwinit 1397 }; 1398 1399 #ifdef DEBUG 1400 static boolean_t skip_sctp_cksum = B_FALSE; 1401 #endif 1402 1403 /* 1404 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1405 * ip_rput_v6(), ip_output(), etc. If the message 1406 * block already has a M_CTL at the front of it, then simply set the zoneid 1407 * appropriately. 1408 */ 1409 mblk_t * 1410 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1411 { 1412 mblk_t *first_mp; 1413 ipsec_out_t *io; 1414 1415 ASSERT(zoneid != ALL_ZONES); 1416 if (mp->b_datap->db_type == M_CTL) { 1417 io = (ipsec_out_t *)mp->b_rptr; 1418 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1419 io->ipsec_out_zoneid = zoneid; 1420 return (mp); 1421 } 1422 1423 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1424 if (first_mp == NULL) 1425 return (NULL); 1426 io = (ipsec_out_t *)first_mp->b_rptr; 1427 /* This is not a secure packet */ 1428 io->ipsec_out_secure = B_FALSE; 1429 io->ipsec_out_zoneid = zoneid; 1430 first_mp->b_cont = mp; 1431 return (first_mp); 1432 } 1433 1434 /* 1435 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1436 */ 1437 mblk_t * 1438 ip_copymsg(mblk_t *mp) 1439 { 1440 mblk_t *nmp; 1441 ipsec_info_t *in; 1442 1443 if (mp->b_datap->db_type != M_CTL) 1444 return (copymsg(mp)); 1445 1446 in = (ipsec_info_t *)mp->b_rptr; 1447 1448 /* 1449 * Note that M_CTL is also used for delivering ICMP error messages 1450 * upstream to transport layers. 1451 */ 1452 if (in->ipsec_info_type != IPSEC_OUT && 1453 in->ipsec_info_type != IPSEC_IN) 1454 return (copymsg(mp)); 1455 1456 nmp = copymsg(mp->b_cont); 1457 1458 if (in->ipsec_info_type == IPSEC_OUT) { 1459 return (ipsec_out_tag(mp, nmp, 1460 ((ipsec_out_t *)in)->ipsec_out_ns)); 1461 } else { 1462 return (ipsec_in_tag(mp, nmp, 1463 ((ipsec_in_t *)in)->ipsec_in_ns)); 1464 } 1465 } 1466 1467 /* Generate an ICMP fragmentation needed message. */ 1468 static void 1469 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1470 ip_stack_t *ipst) 1471 { 1472 icmph_t icmph; 1473 mblk_t *first_mp; 1474 boolean_t mctl_present; 1475 1476 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1477 1478 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1479 if (mctl_present) 1480 freeb(first_mp); 1481 return; 1482 } 1483 1484 bzero(&icmph, sizeof (icmph_t)); 1485 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1486 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1487 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1488 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1489 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1490 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1491 ipst); 1492 } 1493 1494 /* 1495 * icmp_inbound deals with ICMP messages in the following ways. 1496 * 1497 * 1) It needs to send a reply back and possibly delivering it 1498 * to the "interested" upper clients. 1499 * 2) It needs to send it to the upper clients only. 1500 * 3) It needs to change some values in IP only. 1501 * 4) It needs to change some values in IP and upper layers e.g TCP. 1502 * 1503 * We need to accomodate icmp messages coming in clear until we get 1504 * everything secure from the wire. If icmp_accept_clear_messages 1505 * is zero we check with the global policy and act accordingly. If 1506 * it is non-zero, we accept the message without any checks. But 1507 * *this does not mean* that this will be delivered to the upper 1508 * clients. By accepting we might send replies back, change our MTU 1509 * value etc. but delivery to the ULP/clients depends on their policy 1510 * dispositions. 1511 * 1512 * We handle the above 4 cases in the context of IPSEC in the 1513 * following way : 1514 * 1515 * 1) Send the reply back in the same way as the request came in. 1516 * If it came in encrypted, it goes out encrypted. If it came in 1517 * clear, it goes out in clear. Thus, this will prevent chosen 1518 * plain text attack. 1519 * 2) The client may or may not expect things to come in secure. 1520 * If it comes in secure, the policy constraints are checked 1521 * before delivering it to the upper layers. If it comes in 1522 * clear, ipsec_inbound_accept_clear will decide whether to 1523 * accept this in clear or not. In both the cases, if the returned 1524 * message (IP header + 8 bytes) that caused the icmp message has 1525 * AH/ESP headers, it is sent up to AH/ESP for validation before 1526 * sending up. If there are only 8 bytes of returned message, then 1527 * upper client will not be notified. 1528 * 3) Check with global policy to see whether it matches the constaints. 1529 * But this will be done only if icmp_accept_messages_in_clear is 1530 * zero. 1531 * 4) If we need to change both in IP and ULP, then the decision taken 1532 * while affecting the values in IP and while delivering up to TCP 1533 * should be the same. 1534 * 1535 * There are two cases. 1536 * 1537 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1538 * failed), we will not deliver it to the ULP, even though they 1539 * are *willing* to accept in *clear*. This is fine as our global 1540 * disposition to icmp messages asks us reject the datagram. 1541 * 1542 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1543 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1544 * to deliver it to ULP (policy failed), it can lead to 1545 * consistency problems. The cases known at this time are 1546 * ICMP_DESTINATION_UNREACHABLE messages with following code 1547 * values : 1548 * 1549 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1550 * and Upper layer rejects. Then the communication will 1551 * come to a stop. This is solved by making similar decisions 1552 * at both levels. Currently, when we are unable to deliver 1553 * to the Upper Layer (due to policy failures) while IP has 1554 * adjusted ire_max_frag, the next outbound datagram would 1555 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1556 * will be with the right level of protection. Thus the right 1557 * value will be communicated even if we are not able to 1558 * communicate when we get from the wire initially. But this 1559 * assumes there would be at least one outbound datagram after 1560 * IP has adjusted its ire_max_frag value. To make things 1561 * simpler, we accept in clear after the validation of 1562 * AH/ESP headers. 1563 * 1564 * - Other ICMP ERRORS : We may not be able to deliver it to the 1565 * upper layer depending on the level of protection the upper 1566 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1567 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1568 * should be accepted in clear when the Upper layer expects secure. 1569 * Thus the communication may get aborted by some bad ICMP 1570 * packets. 1571 * 1572 * IPQoS Notes: 1573 * The only instance when a packet is sent for processing is when there 1574 * isn't an ICMP client and if we are interested in it. 1575 * If there is a client, IPPF processing will take place in the 1576 * ip_fanout_proto routine. 1577 * 1578 * Zones notes: 1579 * The packet is only processed in the context of the specified zone: typically 1580 * only this zone will reply to an echo request, and only interested clients in 1581 * this zone will receive a copy of the packet. This means that the caller must 1582 * call icmp_inbound() for each relevant zone. 1583 */ 1584 static void 1585 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1586 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1587 ill_t *recv_ill, zoneid_t zoneid) 1588 { 1589 icmph_t *icmph; 1590 ipha_t *ipha; 1591 int iph_hdr_length; 1592 int hdr_length; 1593 boolean_t interested; 1594 uint32_t ts; 1595 uchar_t *wptr; 1596 ipif_t *ipif; 1597 mblk_t *first_mp; 1598 ipsec_in_t *ii; 1599 ire_t *src_ire; 1600 boolean_t onlink; 1601 timestruc_t now; 1602 uint32_t ill_index; 1603 ip_stack_t *ipst; 1604 1605 ASSERT(ill != NULL); 1606 ipst = ill->ill_ipst; 1607 1608 first_mp = mp; 1609 if (mctl_present) { 1610 mp = first_mp->b_cont; 1611 ASSERT(mp != NULL); 1612 } 1613 1614 ipha = (ipha_t *)mp->b_rptr; 1615 if (ipst->ips_icmp_accept_clear_messages == 0) { 1616 first_mp = ipsec_check_global_policy(first_mp, NULL, 1617 ipha, NULL, mctl_present, ipst->ips_netstack); 1618 if (first_mp == NULL) 1619 return; 1620 } 1621 1622 /* 1623 * On a labeled system, we have to check whether the zone itself is 1624 * permitted to receive raw traffic. 1625 */ 1626 if (is_system_labeled()) { 1627 if (zoneid == ALL_ZONES) 1628 zoneid = tsol_packet_to_zoneid(mp); 1629 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1630 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1631 zoneid)); 1632 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1633 freemsg(first_mp); 1634 return; 1635 } 1636 } 1637 1638 /* 1639 * We have accepted the ICMP message. It means that we will 1640 * respond to the packet if needed. It may not be delivered 1641 * to the upper client depending on the policy constraints 1642 * and the disposition in ipsec_inbound_accept_clear. 1643 */ 1644 1645 ASSERT(ill != NULL); 1646 1647 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1648 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1649 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1650 /* Last chance to get real. */ 1651 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1652 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1653 freemsg(first_mp); 1654 return; 1655 } 1656 /* Refresh iph following the pullup. */ 1657 ipha = (ipha_t *)mp->b_rptr; 1658 } 1659 /* ICMP header checksum, including checksum field, should be zero. */ 1660 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1661 IP_CSUM(mp, iph_hdr_length, 0)) { 1662 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1663 freemsg(first_mp); 1664 return; 1665 } 1666 /* The IP header will always be a multiple of four bytes */ 1667 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1668 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1669 icmph->icmph_code)); 1670 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1671 /* We will set "interested" to "true" if we want a copy */ 1672 interested = B_FALSE; 1673 switch (icmph->icmph_type) { 1674 case ICMP_ECHO_REPLY: 1675 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1676 break; 1677 case ICMP_DEST_UNREACHABLE: 1678 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1679 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1680 interested = B_TRUE; /* Pass up to transport */ 1681 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1682 break; 1683 case ICMP_SOURCE_QUENCH: 1684 interested = B_TRUE; /* Pass up to transport */ 1685 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1686 break; 1687 case ICMP_REDIRECT: 1688 if (!ipst->ips_ip_ignore_redirect) 1689 interested = B_TRUE; 1690 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1691 break; 1692 case ICMP_ECHO_REQUEST: 1693 /* 1694 * Whether to respond to echo requests that come in as IP 1695 * broadcasts or as IP multicast is subject to debate 1696 * (what isn't?). We aim to please, you pick it. 1697 * Default is do it. 1698 */ 1699 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1700 /* unicast: always respond */ 1701 interested = B_TRUE; 1702 } else if (CLASSD(ipha->ipha_dst)) { 1703 /* multicast: respond based on tunable */ 1704 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1705 } else if (broadcast) { 1706 /* broadcast: respond based on tunable */ 1707 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1708 } 1709 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1710 break; 1711 case ICMP_ROUTER_ADVERTISEMENT: 1712 case ICMP_ROUTER_SOLICITATION: 1713 break; 1714 case ICMP_TIME_EXCEEDED: 1715 interested = B_TRUE; /* Pass up to transport */ 1716 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1717 break; 1718 case ICMP_PARAM_PROBLEM: 1719 interested = B_TRUE; /* Pass up to transport */ 1720 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1721 break; 1722 case ICMP_TIME_STAMP_REQUEST: 1723 /* Response to Time Stamp Requests is local policy. */ 1724 if (ipst->ips_ip_g_resp_to_timestamp && 1725 /* So is whether to respond if it was an IP broadcast. */ 1726 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1727 int tstamp_len = 3 * sizeof (uint32_t); 1728 1729 if (wptr + tstamp_len > mp->b_wptr) { 1730 if (!pullupmsg(mp, wptr + tstamp_len - 1731 mp->b_rptr)) { 1732 BUMP_MIB(ill->ill_ip_mib, 1733 ipIfStatsInDiscards); 1734 freemsg(first_mp); 1735 return; 1736 } 1737 /* Refresh ipha following the pullup. */ 1738 ipha = (ipha_t *)mp->b_rptr; 1739 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1740 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1741 } 1742 interested = B_TRUE; 1743 } 1744 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1745 break; 1746 case ICMP_TIME_STAMP_REPLY: 1747 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1748 break; 1749 case ICMP_INFO_REQUEST: 1750 /* Per RFC 1122 3.2.2.7, ignore this. */ 1751 case ICMP_INFO_REPLY: 1752 break; 1753 case ICMP_ADDRESS_MASK_REQUEST: 1754 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1755 !broadcast) && 1756 /* TODO m_pullup of complete header? */ 1757 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1758 interested = B_TRUE; 1759 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1760 break; 1761 case ICMP_ADDRESS_MASK_REPLY: 1762 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1763 break; 1764 default: 1765 interested = B_TRUE; /* Pass up to transport */ 1766 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1767 break; 1768 } 1769 /* See if there is an ICMP client. */ 1770 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1771 /* If there is an ICMP client and we want one too, copy it. */ 1772 mblk_t *first_mp1; 1773 1774 if (!interested) { 1775 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1776 ip_policy, recv_ill, zoneid); 1777 return; 1778 } 1779 first_mp1 = ip_copymsg(first_mp); 1780 if (first_mp1 != NULL) { 1781 ip_fanout_proto(q, first_mp1, ill, ipha, 1782 0, mctl_present, ip_policy, recv_ill, zoneid); 1783 } 1784 } else if (!interested) { 1785 freemsg(first_mp); 1786 return; 1787 } else { 1788 /* 1789 * Initiate policy processing for this packet if ip_policy 1790 * is true. 1791 */ 1792 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1793 ill_index = ill->ill_phyint->phyint_ifindex; 1794 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1795 if (mp == NULL) { 1796 if (mctl_present) { 1797 freeb(first_mp); 1798 } 1799 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1800 return; 1801 } 1802 } 1803 } 1804 /* We want to do something with it. */ 1805 /* Check db_ref to make sure we can modify the packet. */ 1806 if (mp->b_datap->db_ref > 1) { 1807 mblk_t *first_mp1; 1808 1809 first_mp1 = ip_copymsg(first_mp); 1810 freemsg(first_mp); 1811 if (!first_mp1) { 1812 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1813 return; 1814 } 1815 first_mp = first_mp1; 1816 if (mctl_present) { 1817 mp = first_mp->b_cont; 1818 ASSERT(mp != NULL); 1819 } else { 1820 mp = first_mp; 1821 } 1822 ipha = (ipha_t *)mp->b_rptr; 1823 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1824 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1825 } 1826 switch (icmph->icmph_type) { 1827 case ICMP_ADDRESS_MASK_REQUEST: 1828 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1829 if (ipif == NULL) { 1830 freemsg(first_mp); 1831 return; 1832 } 1833 /* 1834 * outging interface must be IPv4 1835 */ 1836 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1837 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1838 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1839 ipif_refrele(ipif); 1840 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1841 break; 1842 case ICMP_ECHO_REQUEST: 1843 icmph->icmph_type = ICMP_ECHO_REPLY; 1844 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1845 break; 1846 case ICMP_TIME_STAMP_REQUEST: { 1847 uint32_t *tsp; 1848 1849 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1850 tsp = (uint32_t *)wptr; 1851 tsp++; /* Skip past 'originate time' */ 1852 /* Compute # of milliseconds since midnight */ 1853 gethrestime(&now); 1854 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1855 now.tv_nsec / (NANOSEC / MILLISEC); 1856 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1857 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1858 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1859 break; 1860 } 1861 default: 1862 ipha = (ipha_t *)&icmph[1]; 1863 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1864 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1865 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1866 freemsg(first_mp); 1867 return; 1868 } 1869 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1870 ipha = (ipha_t *)&icmph[1]; 1871 } 1872 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1873 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1874 freemsg(first_mp); 1875 return; 1876 } 1877 hdr_length = IPH_HDR_LENGTH(ipha); 1878 if (hdr_length < sizeof (ipha_t)) { 1879 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1880 freemsg(first_mp); 1881 return; 1882 } 1883 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1884 if (!pullupmsg(mp, 1885 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1886 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1887 freemsg(first_mp); 1888 return; 1889 } 1890 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1891 ipha = (ipha_t *)&icmph[1]; 1892 } 1893 switch (icmph->icmph_type) { 1894 case ICMP_REDIRECT: 1895 /* 1896 * As there is no upper client to deliver, we don't 1897 * need the first_mp any more. 1898 */ 1899 if (mctl_present) { 1900 freeb(first_mp); 1901 } 1902 icmp_redirect(ill, mp); 1903 return; 1904 case ICMP_DEST_UNREACHABLE: 1905 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1906 if (!icmp_inbound_too_big(icmph, ipha, ill, 1907 zoneid, mp, iph_hdr_length, ipst)) { 1908 freemsg(first_mp); 1909 return; 1910 } 1911 /* 1912 * icmp_inbound_too_big() may alter mp. 1913 * Resynch ipha and icmph accordingly. 1914 */ 1915 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1916 ipha = (ipha_t *)&icmph[1]; 1917 } 1918 /* FALLTHRU */ 1919 default : 1920 /* 1921 * IPQoS notes: Since we have already done IPQoS 1922 * processing we don't want to do it again in 1923 * the fanout routines called by 1924 * icmp_inbound_error_fanout, hence the last 1925 * argument, ip_policy, is B_FALSE. 1926 */ 1927 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1928 ipha, iph_hdr_length, hdr_length, mctl_present, 1929 B_FALSE, recv_ill, zoneid); 1930 } 1931 return; 1932 } 1933 /* Send out an ICMP packet */ 1934 icmph->icmph_checksum = 0; 1935 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1936 if (icmph->icmph_checksum == 0) 1937 icmph->icmph_checksum = 0xFFFF; 1938 if (broadcast || CLASSD(ipha->ipha_dst)) { 1939 ipif_t *ipif_chosen; 1940 /* 1941 * Make it look like it was directed to us, so we don't look 1942 * like a fool with a broadcast or multicast source address. 1943 */ 1944 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1945 /* 1946 * Make sure that we haven't grabbed an interface that's DOWN. 1947 */ 1948 if (ipif != NULL) { 1949 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1950 ipha->ipha_src, zoneid); 1951 if (ipif_chosen != NULL) { 1952 ipif_refrele(ipif); 1953 ipif = ipif_chosen; 1954 } 1955 } 1956 if (ipif == NULL) { 1957 ip0dbg(("icmp_inbound: " 1958 "No source for broadcast/multicast:\n" 1959 "\tsrc 0x%x dst 0x%x ill %p " 1960 "ipif_lcl_addr 0x%x\n", 1961 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1962 (void *)ill, 1963 ill->ill_ipif->ipif_lcl_addr)); 1964 freemsg(first_mp); 1965 return; 1966 } 1967 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1968 ipha->ipha_dst = ipif->ipif_src_addr; 1969 ipif_refrele(ipif); 1970 } 1971 /* Reset time to live. */ 1972 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1973 { 1974 /* Swap source and destination addresses */ 1975 ipaddr_t tmp; 1976 1977 tmp = ipha->ipha_src; 1978 ipha->ipha_src = ipha->ipha_dst; 1979 ipha->ipha_dst = tmp; 1980 } 1981 ipha->ipha_ident = 0; 1982 if (!IS_SIMPLE_IPH(ipha)) 1983 icmp_options_update(ipha); 1984 1985 /* 1986 * ICMP echo replies should go out on the same interface 1987 * the request came on as probes used by in.mpathd for detecting 1988 * NIC failures are ECHO packets. We turn-off load spreading 1989 * by setting ipsec_in_attach_if to B_TRUE, which is copied 1990 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 1991 * function. This is in turn handled by ip_wput and ip_newroute 1992 * to make sure that the packet goes out on the interface it came 1993 * in on. If we don't turnoff load spreading, the packets might get 1994 * dropped if there are no non-FAILED/INACTIVE interfaces for it 1995 * to go out and in.mpathd would wrongly detect a failure or 1996 * mis-detect a NIC failure for link failure. As load spreading 1997 * can happen only if ill_group is not NULL, we do only for 1998 * that case and this does not affect the normal case. 1999 * 2000 * We turn off load spreading only on echo packets that came from 2001 * on-link hosts. If the interface route has been deleted, this will 2002 * not be enforced as we can't do much. For off-link hosts, as the 2003 * default routes in IPv4 does not typically have an ire_ipif 2004 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2005 * Moreover, expecting a default route through this interface may 2006 * not be correct. We use ipha_dst because of the swap above. 2007 */ 2008 onlink = B_FALSE; 2009 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2010 /* 2011 * First, we need to make sure that it is not one of our 2012 * local addresses. If we set onlink when it is one of 2013 * our local addresses, we will end up creating IRE_CACHES 2014 * for one of our local addresses. Then, we will never 2015 * accept packets for them afterwards. 2016 */ 2017 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2018 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2019 if (src_ire == NULL) { 2020 ipif = ipif_get_next_ipif(NULL, ill); 2021 if (ipif == NULL) { 2022 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2023 freemsg(mp); 2024 return; 2025 } 2026 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2027 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2028 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2029 ipif_refrele(ipif); 2030 if (src_ire != NULL) { 2031 onlink = B_TRUE; 2032 ire_refrele(src_ire); 2033 } 2034 } else { 2035 ire_refrele(src_ire); 2036 } 2037 } 2038 if (!mctl_present) { 2039 /* 2040 * This packet should go out the same way as it 2041 * came in i.e in clear. To make sure that global 2042 * policy will not be applied to this in ip_wput_ire, 2043 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2044 */ 2045 ASSERT(first_mp == mp); 2046 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2047 if (first_mp == NULL) { 2048 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2049 freemsg(mp); 2050 return; 2051 } 2052 ii = (ipsec_in_t *)first_mp->b_rptr; 2053 2054 /* This is not a secure packet */ 2055 ii->ipsec_in_secure = B_FALSE; 2056 if (onlink) { 2057 ii->ipsec_in_attach_if = B_TRUE; 2058 ii->ipsec_in_ill_index = 2059 ill->ill_phyint->phyint_ifindex; 2060 ii->ipsec_in_rill_index = 2061 recv_ill->ill_phyint->phyint_ifindex; 2062 } 2063 first_mp->b_cont = mp; 2064 } else if (onlink) { 2065 ii = (ipsec_in_t *)first_mp->b_rptr; 2066 ii->ipsec_in_attach_if = B_TRUE; 2067 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2068 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2069 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2070 } else { 2071 ii = (ipsec_in_t *)first_mp->b_rptr; 2072 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2073 } 2074 ii->ipsec_in_zoneid = zoneid; 2075 ASSERT(zoneid != ALL_ZONES); 2076 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2077 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2078 return; 2079 } 2080 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2081 put(WR(q), first_mp); 2082 } 2083 2084 static ipaddr_t 2085 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2086 { 2087 conn_t *connp; 2088 connf_t *connfp; 2089 ipaddr_t nexthop_addr = INADDR_ANY; 2090 int hdr_length = IPH_HDR_LENGTH(ipha); 2091 uint16_t *up; 2092 uint32_t ports; 2093 ip_stack_t *ipst = ill->ill_ipst; 2094 2095 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2096 switch (ipha->ipha_protocol) { 2097 case IPPROTO_TCP: 2098 { 2099 tcph_t *tcph; 2100 2101 /* do a reverse lookup */ 2102 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2103 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2104 TCPS_LISTEN, ipst); 2105 break; 2106 } 2107 case IPPROTO_UDP: 2108 { 2109 uint32_t dstport, srcport; 2110 2111 ((uint16_t *)&ports)[0] = up[1]; 2112 ((uint16_t *)&ports)[1] = up[0]; 2113 2114 /* Extract ports in net byte order */ 2115 dstport = htons(ntohl(ports) & 0xFFFF); 2116 srcport = htons(ntohl(ports) >> 16); 2117 2118 connfp = &ipst->ips_ipcl_udp_fanout[ 2119 IPCL_UDP_HASH(dstport, ipst)]; 2120 mutex_enter(&connfp->connf_lock); 2121 connp = connfp->connf_head; 2122 2123 /* do a reverse lookup */ 2124 while ((connp != NULL) && 2125 (!IPCL_UDP_MATCH(connp, dstport, 2126 ipha->ipha_src, srcport, ipha->ipha_dst) || 2127 !IPCL_ZONE_MATCH(connp, zoneid))) { 2128 connp = connp->conn_next; 2129 } 2130 if (connp != NULL) 2131 CONN_INC_REF(connp); 2132 mutex_exit(&connfp->connf_lock); 2133 break; 2134 } 2135 case IPPROTO_SCTP: 2136 { 2137 in6_addr_t map_src, map_dst; 2138 2139 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2140 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2141 ((uint16_t *)&ports)[0] = up[1]; 2142 ((uint16_t *)&ports)[1] = up[0]; 2143 2144 connp = sctp_find_conn(&map_src, &map_dst, ports, 2145 zoneid, ipst->ips_netstack->netstack_sctp); 2146 if (connp == NULL) { 2147 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2148 zoneid, ports, ipha, ipst); 2149 } else { 2150 CONN_INC_REF(connp); 2151 SCTP_REFRELE(CONN2SCTP(connp)); 2152 } 2153 break; 2154 } 2155 default: 2156 { 2157 ipha_t ripha; 2158 2159 ripha.ipha_src = ipha->ipha_dst; 2160 ripha.ipha_dst = ipha->ipha_src; 2161 ripha.ipha_protocol = ipha->ipha_protocol; 2162 2163 connfp = &ipst->ips_ipcl_proto_fanout[ 2164 ipha->ipha_protocol]; 2165 mutex_enter(&connfp->connf_lock); 2166 connp = connfp->connf_head; 2167 for (connp = connfp->connf_head; connp != NULL; 2168 connp = connp->conn_next) { 2169 if (IPCL_PROTO_MATCH(connp, 2170 ipha->ipha_protocol, &ripha, ill, 2171 0, zoneid)) { 2172 CONN_INC_REF(connp); 2173 break; 2174 } 2175 } 2176 mutex_exit(&connfp->connf_lock); 2177 } 2178 } 2179 if (connp != NULL) { 2180 if (connp->conn_nexthop_set) 2181 nexthop_addr = connp->conn_nexthop_v4; 2182 CONN_DEC_REF(connp); 2183 } 2184 return (nexthop_addr); 2185 } 2186 2187 /* Table from RFC 1191 */ 2188 static int icmp_frag_size_table[] = 2189 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2190 2191 /* 2192 * Process received ICMP Packet too big. 2193 * After updating any IRE it does the fanout to any matching transport streams. 2194 * Assumes the message has been pulled up till the IP header that caused 2195 * the error. 2196 * 2197 * Returns B_FALSE on failure and B_TRUE on success. 2198 */ 2199 static boolean_t 2200 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2201 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2202 ip_stack_t *ipst) 2203 { 2204 ire_t *ire, *first_ire; 2205 int mtu; 2206 int hdr_length; 2207 ipaddr_t nexthop_addr; 2208 2209 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2210 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2211 ASSERT(ill != NULL); 2212 2213 hdr_length = IPH_HDR_LENGTH(ipha); 2214 2215 /* Drop if the original packet contained a source route */ 2216 if (ip_source_route_included(ipha)) { 2217 return (B_FALSE); 2218 } 2219 /* 2220 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2221 * header. 2222 */ 2223 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2224 mp->b_wptr) { 2225 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2226 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2227 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2228 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2229 return (B_FALSE); 2230 } 2231 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2232 ipha = (ipha_t *)&icmph[1]; 2233 } 2234 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2235 if (nexthop_addr != INADDR_ANY) { 2236 /* nexthop set */ 2237 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2238 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2239 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2240 } else { 2241 /* nexthop not set */ 2242 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2243 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2244 } 2245 2246 if (!first_ire) { 2247 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2248 ntohl(ipha->ipha_dst))); 2249 return (B_FALSE); 2250 } 2251 /* Check for MTU discovery advice as described in RFC 1191 */ 2252 mtu = ntohs(icmph->icmph_du_mtu); 2253 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2254 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2255 ire = ire->ire_next) { 2256 /* 2257 * Look for the connection to which this ICMP message is 2258 * directed. If it has the IP_NEXTHOP option set, then the 2259 * search is limited to IREs with the MATCH_IRE_PRIVATE 2260 * option. Else the search is limited to regular IREs. 2261 */ 2262 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2263 (nexthop_addr != ire->ire_gateway_addr)) || 2264 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2265 (nexthop_addr != INADDR_ANY))) 2266 continue; 2267 2268 mutex_enter(&ire->ire_lock); 2269 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2270 /* Reduce the IRE max frag value as advised. */ 2271 ip1dbg(("Received mtu from router: %d (was %d)\n", 2272 mtu, ire->ire_max_frag)); 2273 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2274 } else { 2275 uint32_t length; 2276 int i; 2277 2278 /* 2279 * Use the table from RFC 1191 to figure out 2280 * the next "plateau" based on the length in 2281 * the original IP packet. 2282 */ 2283 length = ntohs(ipha->ipha_length); 2284 if (ire->ire_max_frag <= length && 2285 ire->ire_max_frag >= length - hdr_length) { 2286 /* 2287 * Handle broken BSD 4.2 systems that 2288 * return the wrong iph_length in ICMP 2289 * errors. 2290 */ 2291 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2292 length, ire->ire_max_frag)); 2293 length -= hdr_length; 2294 } 2295 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2296 if (length > icmp_frag_size_table[i]) 2297 break; 2298 } 2299 if (i == A_CNT(icmp_frag_size_table)) { 2300 /* Smaller than 68! */ 2301 ip1dbg(("Too big for packet size %d\n", 2302 length)); 2303 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2304 ire->ire_frag_flag = 0; 2305 } else { 2306 mtu = icmp_frag_size_table[i]; 2307 ip1dbg(("Calculated mtu %d, packet size %d, " 2308 "before %d", mtu, length, 2309 ire->ire_max_frag)); 2310 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2311 ip1dbg((", after %d\n", ire->ire_max_frag)); 2312 } 2313 /* Record the new max frag size for the ULP. */ 2314 icmph->icmph_du_zero = 0; 2315 icmph->icmph_du_mtu = 2316 htons((uint16_t)ire->ire_max_frag); 2317 } 2318 mutex_exit(&ire->ire_lock); 2319 } 2320 rw_exit(&first_ire->ire_bucket->irb_lock); 2321 ire_refrele(first_ire); 2322 return (B_TRUE); 2323 } 2324 2325 /* 2326 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2327 * calls this function. 2328 */ 2329 static mblk_t * 2330 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2331 { 2332 ipha_t *ipha; 2333 icmph_t *icmph; 2334 ipha_t *in_ipha; 2335 int length; 2336 2337 ASSERT(mp->b_datap->db_type == M_DATA); 2338 2339 /* 2340 * For Self-encapsulated packets, we added an extra IP header 2341 * without the options. Inner IP header is the one from which 2342 * the outer IP header was formed. Thus, we need to remove the 2343 * outer IP header. To do this, we pullup the whole message 2344 * and overlay whatever follows the outer IP header over the 2345 * outer IP header. 2346 */ 2347 2348 if (!pullupmsg(mp, -1)) 2349 return (NULL); 2350 2351 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2352 ipha = (ipha_t *)&icmph[1]; 2353 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2354 2355 /* 2356 * The length that we want to overlay is following the inner 2357 * IP header. Subtracting the IP header + icmp header + outer 2358 * IP header's length should give us the length that we want to 2359 * overlay. 2360 */ 2361 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2362 hdr_length; 2363 /* 2364 * Overlay whatever follows the inner header over the 2365 * outer header. 2366 */ 2367 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2368 2369 /* Set the wptr to account for the outer header */ 2370 mp->b_wptr -= hdr_length; 2371 return (mp); 2372 } 2373 2374 /* 2375 * Try to pass the ICMP message upstream in case the ULP cares. 2376 * 2377 * If the packet that caused the ICMP error is secure, we send 2378 * it to AH/ESP to make sure that the attached packet has a 2379 * valid association. ipha in the code below points to the 2380 * IP header of the packet that caused the error. 2381 * 2382 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2383 * in the context of IPSEC. Normally we tell the upper layer 2384 * whenever we send the ire (including ip_bind), the IPSEC header 2385 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2386 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2387 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2388 * same thing. As TCP has the IPSEC options size that needs to be 2389 * adjusted, we just pass the MTU unchanged. 2390 * 2391 * IFN could have been generated locally or by some router. 2392 * 2393 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2394 * This happens because IP adjusted its value of MTU on an 2395 * earlier IFN message and could not tell the upper layer, 2396 * the new adjusted value of MTU e.g. Packet was encrypted 2397 * or there was not enough information to fanout to upper 2398 * layers. Thus on the next outbound datagram, ip_wput_ire 2399 * generates the IFN, where IPSEC processing has *not* been 2400 * done. 2401 * 2402 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2403 * could have generated this. This happens because ire_max_frag 2404 * value in IP was set to a new value, while the IPSEC processing 2405 * was being done and after we made the fragmentation check in 2406 * ip_wput_ire. Thus on return from IPSEC processing, 2407 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2408 * and generates the IFN. As IPSEC processing is over, we fanout 2409 * to AH/ESP to remove the header. 2410 * 2411 * In both these cases, ipsec_in_loopback will be set indicating 2412 * that IFN was generated locally. 2413 * 2414 * ROUTER : IFN could be secure or non-secure. 2415 * 2416 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2417 * packet in error has AH/ESP headers to validate the AH/ESP 2418 * headers. AH/ESP will verify whether there is a valid SA or 2419 * not and send it back. We will fanout again if we have more 2420 * data in the packet. 2421 * 2422 * If the packet in error does not have AH/ESP, we handle it 2423 * like any other case. 2424 * 2425 * * NON_SECURE : If the packet in error has AH/ESP headers, 2426 * we attach a dummy ipsec_in and send it up to AH/ESP 2427 * for validation. AH/ESP will verify whether there is a 2428 * valid SA or not and send it back. We will fanout again if 2429 * we have more data in the packet. 2430 * 2431 * If the packet in error does not have AH/ESP, we handle it 2432 * like any other case. 2433 */ 2434 static void 2435 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2436 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2437 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2438 zoneid_t zoneid) 2439 { 2440 uint16_t *up; /* Pointer to ports in ULP header */ 2441 uint32_t ports; /* reversed ports for fanout */ 2442 ipha_t ripha; /* With reversed addresses */ 2443 mblk_t *first_mp; 2444 ipsec_in_t *ii; 2445 tcph_t *tcph; 2446 conn_t *connp; 2447 ip_stack_t *ipst; 2448 2449 ASSERT(ill != NULL); 2450 2451 ASSERT(recv_ill != NULL); 2452 ipst = recv_ill->ill_ipst; 2453 2454 first_mp = mp; 2455 if (mctl_present) { 2456 mp = first_mp->b_cont; 2457 ASSERT(mp != NULL); 2458 2459 ii = (ipsec_in_t *)first_mp->b_rptr; 2460 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2461 } else { 2462 ii = NULL; 2463 } 2464 2465 switch (ipha->ipha_protocol) { 2466 case IPPROTO_UDP: 2467 /* 2468 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2469 * transport header. 2470 */ 2471 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2472 mp->b_wptr) { 2473 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2474 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2475 goto discard_pkt; 2476 } 2477 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2478 ipha = (ipha_t *)&icmph[1]; 2479 } 2480 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2481 2482 /* 2483 * Attempt to find a client stream based on port. 2484 * Note that we do a reverse lookup since the header is 2485 * in the form we sent it out. 2486 * The ripha header is only used for the IP_UDP_MATCH and we 2487 * only set the src and dst addresses and protocol. 2488 */ 2489 ripha.ipha_src = ipha->ipha_dst; 2490 ripha.ipha_dst = ipha->ipha_src; 2491 ripha.ipha_protocol = ipha->ipha_protocol; 2492 ((uint16_t *)&ports)[0] = up[1]; 2493 ((uint16_t *)&ports)[1] = up[0]; 2494 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2495 ntohl(ipha->ipha_src), ntohs(up[0]), 2496 ntohl(ipha->ipha_dst), ntohs(up[1]), 2497 icmph->icmph_type, icmph->icmph_code)); 2498 2499 /* Have to change db_type after any pullupmsg */ 2500 DB_TYPE(mp) = M_CTL; 2501 2502 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2503 mctl_present, ip_policy, recv_ill, zoneid); 2504 return; 2505 2506 case IPPROTO_TCP: 2507 /* 2508 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2509 * transport header. 2510 */ 2511 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2512 mp->b_wptr) { 2513 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2514 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2515 goto discard_pkt; 2516 } 2517 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2518 ipha = (ipha_t *)&icmph[1]; 2519 } 2520 /* 2521 * Find a TCP client stream for this packet. 2522 * Note that we do a reverse lookup since the header is 2523 * in the form we sent it out. 2524 */ 2525 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2526 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2527 ipst); 2528 if (connp == NULL) 2529 goto discard_pkt; 2530 2531 /* Have to change db_type after any pullupmsg */ 2532 DB_TYPE(mp) = M_CTL; 2533 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2534 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2535 return; 2536 2537 case IPPROTO_SCTP: 2538 /* 2539 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2540 * transport header. 2541 */ 2542 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2543 mp->b_wptr) { 2544 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2545 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2546 goto discard_pkt; 2547 } 2548 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2549 ipha = (ipha_t *)&icmph[1]; 2550 } 2551 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2552 /* 2553 * Find a SCTP client stream for this packet. 2554 * Note that we do a reverse lookup since the header is 2555 * in the form we sent it out. 2556 * The ripha header is only used for the matching and we 2557 * only set the src and dst addresses, protocol, and version. 2558 */ 2559 ripha.ipha_src = ipha->ipha_dst; 2560 ripha.ipha_dst = ipha->ipha_src; 2561 ripha.ipha_protocol = ipha->ipha_protocol; 2562 ripha.ipha_version_and_hdr_length = 2563 ipha->ipha_version_and_hdr_length; 2564 ((uint16_t *)&ports)[0] = up[1]; 2565 ((uint16_t *)&ports)[1] = up[0]; 2566 2567 /* Have to change db_type after any pullupmsg */ 2568 DB_TYPE(mp) = M_CTL; 2569 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2570 mctl_present, ip_policy, zoneid); 2571 return; 2572 2573 case IPPROTO_ESP: 2574 case IPPROTO_AH: { 2575 int ipsec_rc; 2576 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2577 2578 /* 2579 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2580 * We will re-use the IPSEC_IN if it is already present as 2581 * AH/ESP will not affect any fields in the IPSEC_IN for 2582 * ICMP errors. If there is no IPSEC_IN, allocate a new 2583 * one and attach it in the front. 2584 */ 2585 if (ii != NULL) { 2586 /* 2587 * ip_fanout_proto_again converts the ICMP errors 2588 * that come back from AH/ESP to M_DATA so that 2589 * if it is non-AH/ESP and we do a pullupmsg in 2590 * this function, it would work. Convert it back 2591 * to M_CTL before we send up as this is a ICMP 2592 * error. This could have been generated locally or 2593 * by some router. Validate the inner IPSEC 2594 * headers. 2595 * 2596 * NOTE : ill_index is used by ip_fanout_proto_again 2597 * to locate the ill. 2598 */ 2599 ASSERT(ill != NULL); 2600 ii->ipsec_in_ill_index = 2601 ill->ill_phyint->phyint_ifindex; 2602 ii->ipsec_in_rill_index = 2603 recv_ill->ill_phyint->phyint_ifindex; 2604 DB_TYPE(first_mp->b_cont) = M_CTL; 2605 } else { 2606 /* 2607 * IPSEC_IN is not present. We attach a ipsec_in 2608 * message and send up to IPSEC for validating 2609 * and removing the IPSEC headers. Clear 2610 * ipsec_in_secure so that when we return 2611 * from IPSEC, we don't mistakenly think that this 2612 * is a secure packet came from the network. 2613 * 2614 * NOTE : ill_index is used by ip_fanout_proto_again 2615 * to locate the ill. 2616 */ 2617 ASSERT(first_mp == mp); 2618 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2619 if (first_mp == NULL) { 2620 freemsg(mp); 2621 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2622 return; 2623 } 2624 ii = (ipsec_in_t *)first_mp->b_rptr; 2625 2626 /* This is not a secure packet */ 2627 ii->ipsec_in_secure = B_FALSE; 2628 first_mp->b_cont = mp; 2629 DB_TYPE(mp) = M_CTL; 2630 ASSERT(ill != NULL); 2631 ii->ipsec_in_ill_index = 2632 ill->ill_phyint->phyint_ifindex; 2633 ii->ipsec_in_rill_index = 2634 recv_ill->ill_phyint->phyint_ifindex; 2635 } 2636 ip2dbg(("icmp_inbound_error: ipsec\n")); 2637 2638 if (!ipsec_loaded(ipss)) { 2639 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2640 return; 2641 } 2642 2643 if (ipha->ipha_protocol == IPPROTO_ESP) 2644 ipsec_rc = ipsecesp_icmp_error(first_mp); 2645 else 2646 ipsec_rc = ipsecah_icmp_error(first_mp); 2647 if (ipsec_rc == IPSEC_STATUS_FAILED) 2648 return; 2649 2650 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2651 return; 2652 } 2653 default: 2654 /* 2655 * The ripha header is only used for the lookup and we 2656 * only set the src and dst addresses and protocol. 2657 */ 2658 ripha.ipha_src = ipha->ipha_dst; 2659 ripha.ipha_dst = ipha->ipha_src; 2660 ripha.ipha_protocol = ipha->ipha_protocol; 2661 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2662 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2663 ntohl(ipha->ipha_dst), 2664 icmph->icmph_type, icmph->icmph_code)); 2665 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2666 ipha_t *in_ipha; 2667 2668 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2669 mp->b_wptr) { 2670 if (!pullupmsg(mp, (uchar_t *)ipha + 2671 hdr_length + sizeof (ipha_t) - 2672 mp->b_rptr)) { 2673 goto discard_pkt; 2674 } 2675 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2676 ipha = (ipha_t *)&icmph[1]; 2677 } 2678 /* 2679 * Caller has verified that length has to be 2680 * at least the size of IP header. 2681 */ 2682 ASSERT(hdr_length >= sizeof (ipha_t)); 2683 /* 2684 * Check the sanity of the inner IP header like 2685 * we did for the outer header. 2686 */ 2687 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2688 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2689 goto discard_pkt; 2690 } 2691 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2692 goto discard_pkt; 2693 } 2694 /* Check for Self-encapsulated tunnels */ 2695 if (in_ipha->ipha_src == ipha->ipha_src && 2696 in_ipha->ipha_dst == ipha->ipha_dst) { 2697 2698 mp = icmp_inbound_self_encap_error(mp, 2699 iph_hdr_length, hdr_length); 2700 if (mp == NULL) 2701 goto discard_pkt; 2702 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2703 ipha = (ipha_t *)&icmph[1]; 2704 hdr_length = IPH_HDR_LENGTH(ipha); 2705 /* 2706 * The packet in error is self-encapsualted. 2707 * And we are finding it further encapsulated 2708 * which we could not have possibly generated. 2709 */ 2710 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2711 goto discard_pkt; 2712 } 2713 icmp_inbound_error_fanout(q, ill, first_mp, 2714 icmph, ipha, iph_hdr_length, hdr_length, 2715 mctl_present, ip_policy, recv_ill, zoneid); 2716 return; 2717 } 2718 } 2719 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2720 ipha->ipha_protocol == IPPROTO_IPV6) && 2721 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2722 ii != NULL && 2723 ii->ipsec_in_loopback && 2724 ii->ipsec_in_secure) { 2725 /* 2726 * For IP tunnels that get a looped-back 2727 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2728 * reported new MTU to take into account the IPsec 2729 * headers protecting this configured tunnel. 2730 * 2731 * This allows the tunnel module (tun.c) to blindly 2732 * accept the MTU reported in an ICMP "too big" 2733 * message. 2734 * 2735 * Non-looped back ICMP messages will just be 2736 * handled by the security protocols (if needed), 2737 * and the first subsequent packet will hit this 2738 * path. 2739 */ 2740 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2741 ipsec_in_extra_length(first_mp)); 2742 } 2743 /* Have to change db_type after any pullupmsg */ 2744 DB_TYPE(mp) = M_CTL; 2745 2746 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2747 ip_policy, recv_ill, zoneid); 2748 return; 2749 } 2750 /* NOTREACHED */ 2751 discard_pkt: 2752 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2753 drop_pkt:; 2754 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2755 freemsg(first_mp); 2756 } 2757 2758 /* 2759 * Common IP options parser. 2760 * 2761 * Setup routine: fill in *optp with options-parsing state, then 2762 * tail-call ipoptp_next to return the first option. 2763 */ 2764 uint8_t 2765 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2766 { 2767 uint32_t totallen; /* total length of all options */ 2768 2769 totallen = ipha->ipha_version_and_hdr_length - 2770 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2771 totallen <<= 2; 2772 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2773 optp->ipoptp_end = optp->ipoptp_next + totallen; 2774 optp->ipoptp_flags = 0; 2775 return (ipoptp_next(optp)); 2776 } 2777 2778 /* 2779 * Common IP options parser: extract next option. 2780 */ 2781 uint8_t 2782 ipoptp_next(ipoptp_t *optp) 2783 { 2784 uint8_t *end = optp->ipoptp_end; 2785 uint8_t *cur = optp->ipoptp_next; 2786 uint8_t opt, len, pointer; 2787 2788 /* 2789 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2790 * has been corrupted. 2791 */ 2792 ASSERT(cur <= end); 2793 2794 if (cur == end) 2795 return (IPOPT_EOL); 2796 2797 opt = cur[IPOPT_OPTVAL]; 2798 2799 /* 2800 * Skip any NOP options. 2801 */ 2802 while (opt == IPOPT_NOP) { 2803 cur++; 2804 if (cur == end) 2805 return (IPOPT_EOL); 2806 opt = cur[IPOPT_OPTVAL]; 2807 } 2808 2809 if (opt == IPOPT_EOL) 2810 return (IPOPT_EOL); 2811 2812 /* 2813 * Option requiring a length. 2814 */ 2815 if ((cur + 1) >= end) { 2816 optp->ipoptp_flags |= IPOPTP_ERROR; 2817 return (IPOPT_EOL); 2818 } 2819 len = cur[IPOPT_OLEN]; 2820 if (len < 2) { 2821 optp->ipoptp_flags |= IPOPTP_ERROR; 2822 return (IPOPT_EOL); 2823 } 2824 optp->ipoptp_cur = cur; 2825 optp->ipoptp_len = len; 2826 optp->ipoptp_next = cur + len; 2827 if (cur + len > end) { 2828 optp->ipoptp_flags |= IPOPTP_ERROR; 2829 return (IPOPT_EOL); 2830 } 2831 2832 /* 2833 * For the options which require a pointer field, make sure 2834 * its there, and make sure it points to either something 2835 * inside this option, or the end of the option. 2836 */ 2837 switch (opt) { 2838 case IPOPT_RR: 2839 case IPOPT_TS: 2840 case IPOPT_LSRR: 2841 case IPOPT_SSRR: 2842 if (len <= IPOPT_OFFSET) { 2843 optp->ipoptp_flags |= IPOPTP_ERROR; 2844 return (opt); 2845 } 2846 pointer = cur[IPOPT_OFFSET]; 2847 if (pointer - 1 > len) { 2848 optp->ipoptp_flags |= IPOPTP_ERROR; 2849 return (opt); 2850 } 2851 break; 2852 } 2853 2854 /* 2855 * Sanity check the pointer field based on the type of the 2856 * option. 2857 */ 2858 switch (opt) { 2859 case IPOPT_RR: 2860 case IPOPT_SSRR: 2861 case IPOPT_LSRR: 2862 if (pointer < IPOPT_MINOFF_SR) 2863 optp->ipoptp_flags |= IPOPTP_ERROR; 2864 break; 2865 case IPOPT_TS: 2866 if (pointer < IPOPT_MINOFF_IT) 2867 optp->ipoptp_flags |= IPOPTP_ERROR; 2868 /* 2869 * Note that the Internet Timestamp option also 2870 * contains two four bit fields (the Overflow field, 2871 * and the Flag field), which follow the pointer 2872 * field. We don't need to check that these fields 2873 * fall within the length of the option because this 2874 * was implicitely done above. We've checked that the 2875 * pointer value is at least IPOPT_MINOFF_IT, and that 2876 * it falls within the option. Since IPOPT_MINOFF_IT > 2877 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2878 */ 2879 ASSERT(len > IPOPT_POS_OV_FLG); 2880 break; 2881 } 2882 2883 return (opt); 2884 } 2885 2886 /* 2887 * Use the outgoing IP header to create an IP_OPTIONS option the way 2888 * it was passed down from the application. 2889 */ 2890 int 2891 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2892 { 2893 ipoptp_t opts; 2894 const uchar_t *opt; 2895 uint8_t optval; 2896 uint8_t optlen; 2897 uint32_t len = 0; 2898 uchar_t *buf1 = buf; 2899 2900 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2901 len += IP_ADDR_LEN; 2902 bzero(buf1, IP_ADDR_LEN); 2903 2904 /* 2905 * OK to cast away const here, as we don't store through the returned 2906 * opts.ipoptp_cur pointer. 2907 */ 2908 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2909 optval != IPOPT_EOL; 2910 optval = ipoptp_next(&opts)) { 2911 int off; 2912 2913 opt = opts.ipoptp_cur; 2914 optlen = opts.ipoptp_len; 2915 switch (optval) { 2916 case IPOPT_SSRR: 2917 case IPOPT_LSRR: 2918 2919 /* 2920 * Insert ipha_dst as the first entry in the source 2921 * route and move down the entries on step. 2922 * The last entry gets placed at buf1. 2923 */ 2924 buf[IPOPT_OPTVAL] = optval; 2925 buf[IPOPT_OLEN] = optlen; 2926 buf[IPOPT_OFFSET] = optlen; 2927 2928 off = optlen - IP_ADDR_LEN; 2929 if (off < 0) { 2930 /* No entries in source route */ 2931 break; 2932 } 2933 /* Last entry in source route */ 2934 bcopy(opt + off, buf1, IP_ADDR_LEN); 2935 off -= IP_ADDR_LEN; 2936 2937 while (off > 0) { 2938 bcopy(opt + off, 2939 buf + off + IP_ADDR_LEN, 2940 IP_ADDR_LEN); 2941 off -= IP_ADDR_LEN; 2942 } 2943 /* ipha_dst into first slot */ 2944 bcopy(&ipha->ipha_dst, 2945 buf + off + IP_ADDR_LEN, 2946 IP_ADDR_LEN); 2947 buf += optlen; 2948 len += optlen; 2949 break; 2950 2951 case IPOPT_COMSEC: 2952 case IPOPT_SECURITY: 2953 /* if passing up a label is not ok, then remove */ 2954 if (is_system_labeled()) 2955 break; 2956 /* FALLTHROUGH */ 2957 default: 2958 bcopy(opt, buf, optlen); 2959 buf += optlen; 2960 len += optlen; 2961 break; 2962 } 2963 } 2964 done: 2965 /* Pad the resulting options */ 2966 while (len & 0x3) { 2967 *buf++ = IPOPT_EOL; 2968 len++; 2969 } 2970 return (len); 2971 } 2972 2973 /* 2974 * Update any record route or timestamp options to include this host. 2975 * Reverse any source route option. 2976 * This routine assumes that the options are well formed i.e. that they 2977 * have already been checked. 2978 */ 2979 static void 2980 icmp_options_update(ipha_t *ipha) 2981 { 2982 ipoptp_t opts; 2983 uchar_t *opt; 2984 uint8_t optval; 2985 ipaddr_t src; /* Our local address */ 2986 ipaddr_t dst; 2987 2988 ip2dbg(("icmp_options_update\n")); 2989 src = ipha->ipha_src; 2990 dst = ipha->ipha_dst; 2991 2992 for (optval = ipoptp_first(&opts, ipha); 2993 optval != IPOPT_EOL; 2994 optval = ipoptp_next(&opts)) { 2995 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2996 opt = opts.ipoptp_cur; 2997 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2998 optval, opts.ipoptp_len)); 2999 switch (optval) { 3000 int off1, off2; 3001 case IPOPT_SSRR: 3002 case IPOPT_LSRR: 3003 /* 3004 * Reverse the source route. The first entry 3005 * should be the next to last one in the current 3006 * source route (the last entry is our address). 3007 * The last entry should be the final destination. 3008 */ 3009 off1 = IPOPT_MINOFF_SR - 1; 3010 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3011 if (off2 < 0) { 3012 /* No entries in source route */ 3013 ip1dbg(( 3014 "icmp_options_update: bad src route\n")); 3015 break; 3016 } 3017 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3018 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3019 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3020 off2 -= IP_ADDR_LEN; 3021 3022 while (off1 < off2) { 3023 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3024 bcopy((char *)opt + off2, (char *)opt + off1, 3025 IP_ADDR_LEN); 3026 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3027 off1 += IP_ADDR_LEN; 3028 off2 -= IP_ADDR_LEN; 3029 } 3030 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3031 break; 3032 } 3033 } 3034 } 3035 3036 /* 3037 * Process received ICMP Redirect messages. 3038 */ 3039 static void 3040 icmp_redirect(ill_t *ill, mblk_t *mp) 3041 { 3042 ipha_t *ipha; 3043 int iph_hdr_length; 3044 icmph_t *icmph; 3045 ipha_t *ipha_err; 3046 ire_t *ire; 3047 ire_t *prev_ire; 3048 ire_t *save_ire; 3049 ipaddr_t src, dst, gateway; 3050 iulp_t ulp_info = { 0 }; 3051 int error; 3052 ip_stack_t *ipst; 3053 3054 ASSERT(ill != NULL); 3055 ipst = ill->ill_ipst; 3056 3057 ipha = (ipha_t *)mp->b_rptr; 3058 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3059 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3060 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3061 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3062 freemsg(mp); 3063 return; 3064 } 3065 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3066 ipha_err = (ipha_t *)&icmph[1]; 3067 src = ipha->ipha_src; 3068 dst = ipha_err->ipha_dst; 3069 gateway = icmph->icmph_rd_gateway; 3070 /* Make sure the new gateway is reachable somehow. */ 3071 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3072 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3073 /* 3074 * Make sure we had a route for the dest in question and that 3075 * that route was pointing to the old gateway (the source of the 3076 * redirect packet.) 3077 */ 3078 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3079 NULL, MATCH_IRE_GW, ipst); 3080 /* 3081 * Check that 3082 * the redirect was not from ourselves 3083 * the new gateway and the old gateway are directly reachable 3084 */ 3085 if (!prev_ire || 3086 !ire || 3087 ire->ire_type == IRE_LOCAL) { 3088 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3089 freemsg(mp); 3090 if (ire != NULL) 3091 ire_refrele(ire); 3092 if (prev_ire != NULL) 3093 ire_refrele(prev_ire); 3094 return; 3095 } 3096 3097 /* 3098 * Should we use the old ULP info to create the new gateway? From 3099 * a user's perspective, we should inherit the info so that it 3100 * is a "smooth" transition. If we do not do that, then new 3101 * connections going thru the new gateway will have no route metrics, 3102 * which is counter-intuitive to user. From a network point of 3103 * view, this may or may not make sense even though the new gateway 3104 * is still directly connected to us so the route metrics should not 3105 * change much. 3106 * 3107 * But if the old ire_uinfo is not initialized, we do another 3108 * recursive lookup on the dest using the new gateway. There may 3109 * be a route to that. If so, use it to initialize the redirect 3110 * route. 3111 */ 3112 if (prev_ire->ire_uinfo.iulp_set) { 3113 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3114 } else { 3115 ire_t *tmp_ire; 3116 ire_t *sire; 3117 3118 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3119 ALL_ZONES, 0, NULL, 3120 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3121 ipst); 3122 if (sire != NULL) { 3123 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3124 /* 3125 * If sire != NULL, ire_ftable_lookup() should not 3126 * return a NULL value. 3127 */ 3128 ASSERT(tmp_ire != NULL); 3129 ire_refrele(tmp_ire); 3130 ire_refrele(sire); 3131 } else if (tmp_ire != NULL) { 3132 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3133 sizeof (iulp_t)); 3134 ire_refrele(tmp_ire); 3135 } 3136 } 3137 if (prev_ire->ire_type == IRE_CACHE) 3138 ire_delete(prev_ire); 3139 ire_refrele(prev_ire); 3140 /* 3141 * TODO: more precise handling for cases 0, 2, 3, the latter two 3142 * require TOS routing 3143 */ 3144 switch (icmph->icmph_code) { 3145 case 0: 3146 case 1: 3147 /* TODO: TOS specificity for cases 2 and 3 */ 3148 case 2: 3149 case 3: 3150 break; 3151 default: 3152 freemsg(mp); 3153 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3154 ire_refrele(ire); 3155 return; 3156 } 3157 /* 3158 * Create a Route Association. This will allow us to remember that 3159 * someone we believe told us to use the particular gateway. 3160 */ 3161 save_ire = ire; 3162 ire = ire_create( 3163 (uchar_t *)&dst, /* dest addr */ 3164 (uchar_t *)&ip_g_all_ones, /* mask */ 3165 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3166 (uchar_t *)&gateway, /* gateway addr */ 3167 NULL, /* no in_srcaddr */ 3168 &save_ire->ire_max_frag, /* max frag */ 3169 NULL, /* Fast Path header */ 3170 NULL, /* no rfq */ 3171 NULL, /* no stq */ 3172 IRE_HOST, 3173 NULL, 3174 NULL, 3175 NULL, 3176 0, 3177 0, 3178 0, 3179 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3180 &ulp_info, 3181 NULL, 3182 NULL, 3183 ipst); 3184 3185 if (ire == NULL) { 3186 freemsg(mp); 3187 ire_refrele(save_ire); 3188 return; 3189 } 3190 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3191 ire_refrele(save_ire); 3192 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3193 3194 if (error == 0) { 3195 ire_refrele(ire); /* Held in ire_add_v4 */ 3196 /* tell routing sockets that we received a redirect */ 3197 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3198 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3199 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3200 } 3201 3202 /* 3203 * Delete any existing IRE_HOST type redirect ires for this destination. 3204 * This together with the added IRE has the effect of 3205 * modifying an existing redirect. 3206 */ 3207 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3208 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3209 if (prev_ire != NULL) { 3210 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3211 ire_delete(prev_ire); 3212 ire_refrele(prev_ire); 3213 } 3214 3215 freemsg(mp); 3216 } 3217 3218 /* 3219 * Generate an ICMP parameter problem message. 3220 */ 3221 static void 3222 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3223 ip_stack_t *ipst) 3224 { 3225 icmph_t icmph; 3226 boolean_t mctl_present; 3227 mblk_t *first_mp; 3228 3229 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3230 3231 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3232 if (mctl_present) 3233 freeb(first_mp); 3234 return; 3235 } 3236 3237 bzero(&icmph, sizeof (icmph_t)); 3238 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3239 icmph.icmph_pp_ptr = ptr; 3240 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3241 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3242 ipst); 3243 } 3244 3245 /* 3246 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3247 * the ICMP header pointed to by "stuff". (May be called as writer.) 3248 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3249 * an icmp error packet can be sent. 3250 * Assigns an appropriate source address to the packet. If ipha_dst is 3251 * one of our addresses use it for source. Otherwise pick a source based 3252 * on a route lookup back to ipha_src. 3253 * Note that ipha_src must be set here since the 3254 * packet is likely to arrive on an ill queue in ip_wput() which will 3255 * not set a source address. 3256 */ 3257 static void 3258 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3259 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3260 { 3261 ipaddr_t dst; 3262 icmph_t *icmph; 3263 ipha_t *ipha; 3264 uint_t len_needed; 3265 size_t msg_len; 3266 mblk_t *mp1; 3267 ipaddr_t src; 3268 ire_t *ire; 3269 mblk_t *ipsec_mp; 3270 ipsec_out_t *io = NULL; 3271 boolean_t xmit_if_on = B_FALSE; 3272 3273 if (mctl_present) { 3274 /* 3275 * If it is : 3276 * 3277 * 1) a IPSEC_OUT, then this is caused by outbound 3278 * datagram originating on this host. IPSEC processing 3279 * may or may not have been done. Refer to comments above 3280 * icmp_inbound_error_fanout for details. 3281 * 3282 * 2) a IPSEC_IN if we are generating a icmp_message 3283 * for an incoming datagram destined for us i.e called 3284 * from ip_fanout_send_icmp. 3285 */ 3286 ipsec_info_t *in; 3287 ipsec_mp = mp; 3288 mp = ipsec_mp->b_cont; 3289 3290 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3291 ipha = (ipha_t *)mp->b_rptr; 3292 3293 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3294 in->ipsec_info_type == IPSEC_IN); 3295 3296 if (in->ipsec_info_type == IPSEC_IN) { 3297 /* 3298 * Convert the IPSEC_IN to IPSEC_OUT. 3299 */ 3300 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3301 BUMP_MIB(&ipst->ips_ip_mib, 3302 ipIfStatsOutDiscards); 3303 return; 3304 } 3305 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3306 } else { 3307 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3308 io = (ipsec_out_t *)in; 3309 if (io->ipsec_out_xmit_if) 3310 xmit_if_on = B_TRUE; 3311 /* 3312 * Clear out ipsec_out_proc_begin, so we do a fresh 3313 * ire lookup. 3314 */ 3315 io->ipsec_out_proc_begin = B_FALSE; 3316 } 3317 ASSERT(zoneid == io->ipsec_out_zoneid); 3318 ASSERT(zoneid != ALL_ZONES); 3319 } else { 3320 /* 3321 * This is in clear. The icmp message we are building 3322 * here should go out in clear. 3323 * 3324 * Pardon the convolution of it all, but it's easier to 3325 * allocate a "use cleartext" IPSEC_IN message and convert 3326 * it than it is to allocate a new one. 3327 */ 3328 ipsec_in_t *ii; 3329 ASSERT(DB_TYPE(mp) == M_DATA); 3330 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3331 if (ipsec_mp == NULL) { 3332 freemsg(mp); 3333 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3334 return; 3335 } 3336 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3337 3338 /* This is not a secure packet */ 3339 ii->ipsec_in_secure = B_FALSE; 3340 /* 3341 * For trusted extensions using a shared IP address we can 3342 * send using any zoneid. 3343 */ 3344 if (zoneid == ALL_ZONES) 3345 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3346 else 3347 ii->ipsec_in_zoneid = zoneid; 3348 ipsec_mp->b_cont = mp; 3349 ipha = (ipha_t *)mp->b_rptr; 3350 /* 3351 * Convert the IPSEC_IN to IPSEC_OUT. 3352 */ 3353 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3354 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3355 return; 3356 } 3357 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3358 } 3359 3360 /* Remember our eventual destination */ 3361 dst = ipha->ipha_src; 3362 3363 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3364 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3365 if (ire != NULL && 3366 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3367 src = ipha->ipha_dst; 3368 } else if (!xmit_if_on) { 3369 if (ire != NULL) 3370 ire_refrele(ire); 3371 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3372 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3373 ipst); 3374 if (ire == NULL) { 3375 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3376 freemsg(ipsec_mp); 3377 return; 3378 } 3379 src = ire->ire_src_addr; 3380 } else { 3381 ipif_t *ipif = NULL; 3382 ill_t *ill; 3383 /* 3384 * This must be an ICMP error coming from 3385 * ip_mrtun_forward(). The src addr should 3386 * be equal to the IP-addr of the outgoing 3387 * interface. 3388 */ 3389 if (io == NULL) { 3390 /* This is not a IPSEC_OUT type control msg */ 3391 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3392 freemsg(ipsec_mp); 3393 return; 3394 } 3395 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3396 NULL, NULL, NULL, NULL, ipst); 3397 if (ill != NULL) { 3398 ipif = ipif_get_next_ipif(NULL, ill); 3399 ill_refrele(ill); 3400 } 3401 if (ipif == NULL) { 3402 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3403 freemsg(ipsec_mp); 3404 return; 3405 } 3406 src = ipif->ipif_src_addr; 3407 ipif_refrele(ipif); 3408 } 3409 3410 if (ire != NULL) 3411 ire_refrele(ire); 3412 3413 /* 3414 * Check if we can send back more then 8 bytes in addition 3415 * to the IP header. We will include as much as 64 bytes. 3416 */ 3417 len_needed = IPH_HDR_LENGTH(ipha); 3418 if (ipha->ipha_protocol == IPPROTO_ENCAP && 3419 (uchar_t *)ipha + len_needed + 1 <= mp->b_wptr) { 3420 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + len_needed)); 3421 } 3422 len_needed += ipst->ips_ip_icmp_return; 3423 msg_len = msgdsize(mp); 3424 if (msg_len > len_needed) { 3425 (void) adjmsg(mp, len_needed - msg_len); 3426 msg_len = len_needed; 3427 } 3428 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3429 if (mp1 == NULL) { 3430 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3431 freemsg(ipsec_mp); 3432 return; 3433 } 3434 /* 3435 * On an unlabeled system, dblks don't necessarily have creds. 3436 */ 3437 ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL); 3438 if (DB_CRED(mp) != NULL) 3439 mblk_setcred(mp1, DB_CRED(mp)); 3440 mp1->b_cont = mp; 3441 mp = mp1; 3442 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3443 ipsec_mp->b_rptr == (uint8_t *)io && 3444 io->ipsec_out_type == IPSEC_OUT); 3445 ipsec_mp->b_cont = mp; 3446 3447 /* 3448 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3449 * node generates be accepted in peace by all on-host destinations. 3450 * If we do NOT assume that all on-host destinations trust 3451 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3452 * (Look for ipsec_out_icmp_loopback). 3453 */ 3454 io->ipsec_out_icmp_loopback = B_TRUE; 3455 3456 ipha = (ipha_t *)mp->b_rptr; 3457 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3458 *ipha = icmp_ipha; 3459 ipha->ipha_src = src; 3460 ipha->ipha_dst = dst; 3461 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3462 msg_len += sizeof (icmp_ipha) + len; 3463 if (msg_len > IP_MAXPACKET) { 3464 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3465 msg_len = IP_MAXPACKET; 3466 } 3467 ipha->ipha_length = htons((uint16_t)msg_len); 3468 icmph = (icmph_t *)&ipha[1]; 3469 bcopy(stuff, icmph, len); 3470 icmph->icmph_checksum = 0; 3471 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3472 if (icmph->icmph_checksum == 0) 3473 icmph->icmph_checksum = 0xFFFF; 3474 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3475 put(q, ipsec_mp); 3476 } 3477 3478 /* 3479 * Determine if an ICMP error packet can be sent given the rate limit. 3480 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3481 * in milliseconds) and a burst size. Burst size number of packets can 3482 * be sent arbitrarely closely spaced. 3483 * The state is tracked using two variables to implement an approximate 3484 * token bucket filter: 3485 * icmp_pkt_err_last - lbolt value when the last burst started 3486 * icmp_pkt_err_sent - number of packets sent in current burst 3487 */ 3488 boolean_t 3489 icmp_err_rate_limit(ip_stack_t *ipst) 3490 { 3491 clock_t now = TICK_TO_MSEC(lbolt); 3492 uint_t refilled; /* Number of packets refilled in tbf since last */ 3493 /* Guard against changes by loading into local variable */ 3494 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3495 3496 if (err_interval == 0) 3497 return (B_FALSE); 3498 3499 if (ipst->ips_icmp_pkt_err_last > now) { 3500 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3501 ipst->ips_icmp_pkt_err_last = 0; 3502 ipst->ips_icmp_pkt_err_sent = 0; 3503 } 3504 /* 3505 * If we are in a burst update the token bucket filter. 3506 * Update the "last" time to be close to "now" but make sure 3507 * we don't loose precision. 3508 */ 3509 if (ipst->ips_icmp_pkt_err_sent != 0) { 3510 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3511 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3512 ipst->ips_icmp_pkt_err_sent = 0; 3513 } else { 3514 ipst->ips_icmp_pkt_err_sent -= refilled; 3515 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3516 } 3517 } 3518 if (ipst->ips_icmp_pkt_err_sent == 0) { 3519 /* Start of new burst */ 3520 ipst->ips_icmp_pkt_err_last = now; 3521 } 3522 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3523 ipst->ips_icmp_pkt_err_sent++; 3524 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3525 ipst->ips_icmp_pkt_err_sent)); 3526 return (B_FALSE); 3527 } 3528 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3529 return (B_TRUE); 3530 } 3531 3532 /* 3533 * Check if it is ok to send an IPv4 ICMP error packet in 3534 * response to the IPv4 packet in mp. 3535 * Free the message and return null if no 3536 * ICMP error packet should be sent. 3537 */ 3538 static mblk_t * 3539 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3540 { 3541 icmph_t *icmph; 3542 ipha_t *ipha; 3543 uint_t len_needed; 3544 ire_t *src_ire; 3545 ire_t *dst_ire; 3546 3547 if (!mp) 3548 return (NULL); 3549 ipha = (ipha_t *)mp->b_rptr; 3550 if (ip_csum_hdr(ipha)) { 3551 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3552 freemsg(mp); 3553 return (NULL); 3554 } 3555 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3556 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3557 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3558 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3559 if (src_ire != NULL || dst_ire != NULL || 3560 CLASSD(ipha->ipha_dst) || 3561 CLASSD(ipha->ipha_src) || 3562 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3563 /* Note: only errors to the fragment with offset 0 */ 3564 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3565 freemsg(mp); 3566 if (src_ire != NULL) 3567 ire_refrele(src_ire); 3568 if (dst_ire != NULL) 3569 ire_refrele(dst_ire); 3570 return (NULL); 3571 } 3572 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3573 /* 3574 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3575 * errors in response to any ICMP errors. 3576 */ 3577 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3578 if (mp->b_wptr - mp->b_rptr < len_needed) { 3579 if (!pullupmsg(mp, len_needed)) { 3580 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3581 freemsg(mp); 3582 return (NULL); 3583 } 3584 ipha = (ipha_t *)mp->b_rptr; 3585 } 3586 icmph = (icmph_t *) 3587 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3588 switch (icmph->icmph_type) { 3589 case ICMP_DEST_UNREACHABLE: 3590 case ICMP_SOURCE_QUENCH: 3591 case ICMP_TIME_EXCEEDED: 3592 case ICMP_PARAM_PROBLEM: 3593 case ICMP_REDIRECT: 3594 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3595 freemsg(mp); 3596 return (NULL); 3597 default: 3598 break; 3599 } 3600 } 3601 /* 3602 * If this is a labeled system, then check to see if we're allowed to 3603 * send a response to this particular sender. If not, then just drop. 3604 */ 3605 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3606 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3607 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3608 freemsg(mp); 3609 return (NULL); 3610 } 3611 if (icmp_err_rate_limit(ipst)) { 3612 /* 3613 * Only send ICMP error packets every so often. 3614 * This should be done on a per port/source basis, 3615 * but for now this will suffice. 3616 */ 3617 freemsg(mp); 3618 return (NULL); 3619 } 3620 return (mp); 3621 } 3622 3623 /* 3624 * Generate an ICMP redirect message. 3625 */ 3626 static void 3627 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3628 { 3629 icmph_t icmph; 3630 3631 /* 3632 * We are called from ip_rput where we could 3633 * not have attached an IPSEC_IN. 3634 */ 3635 ASSERT(mp->b_datap->db_type == M_DATA); 3636 3637 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3638 return; 3639 } 3640 3641 bzero(&icmph, sizeof (icmph_t)); 3642 icmph.icmph_type = ICMP_REDIRECT; 3643 icmph.icmph_code = 1; 3644 icmph.icmph_rd_gateway = gateway; 3645 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3646 /* Redirects sent by router, and router is global zone */ 3647 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3648 } 3649 3650 /* 3651 * Generate an ICMP time exceeded message. 3652 */ 3653 void 3654 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3655 ip_stack_t *ipst) 3656 { 3657 icmph_t icmph; 3658 boolean_t mctl_present; 3659 mblk_t *first_mp; 3660 3661 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3662 3663 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3664 if (mctl_present) 3665 freeb(first_mp); 3666 return; 3667 } 3668 3669 bzero(&icmph, sizeof (icmph_t)); 3670 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3671 icmph.icmph_code = code; 3672 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3673 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3674 ipst); 3675 } 3676 3677 /* 3678 * Generate an ICMP unreachable message. 3679 */ 3680 void 3681 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3682 ip_stack_t *ipst) 3683 { 3684 icmph_t icmph; 3685 mblk_t *first_mp; 3686 boolean_t mctl_present; 3687 3688 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3689 3690 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3691 if (mctl_present) 3692 freeb(first_mp); 3693 return; 3694 } 3695 3696 bzero(&icmph, sizeof (icmph_t)); 3697 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3698 icmph.icmph_code = code; 3699 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3700 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3701 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3702 zoneid, ipst); 3703 } 3704 3705 /* 3706 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3707 * duplicate. As long as someone else holds the address, the interface will 3708 * stay down. When that conflict goes away, the interface is brought back up. 3709 * This is done so that accidental shutdowns of addresses aren't made 3710 * permanent. Your server will recover from a failure. 3711 * 3712 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3713 * user space process (dhcpagent). 3714 * 3715 * Recovery completes if ARP reports that the address is now ours (via 3716 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3717 * 3718 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3719 */ 3720 static void 3721 ipif_dup_recovery(void *arg) 3722 { 3723 ipif_t *ipif = arg; 3724 ill_t *ill = ipif->ipif_ill; 3725 mblk_t *arp_add_mp; 3726 mblk_t *arp_del_mp; 3727 area_t *area; 3728 ip_stack_t *ipst = ill->ill_ipst; 3729 3730 ipif->ipif_recovery_id = 0; 3731 3732 /* 3733 * No lock needed for moving or condemned check, as this is just an 3734 * optimization. 3735 */ 3736 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3737 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3738 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3739 /* No reason to try to bring this address back. */ 3740 return; 3741 } 3742 3743 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3744 goto alloc_fail; 3745 3746 if (ipif->ipif_arp_del_mp == NULL) { 3747 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3748 goto alloc_fail; 3749 ipif->ipif_arp_del_mp = arp_del_mp; 3750 } 3751 3752 /* Setting the 'unverified' flag restarts DAD */ 3753 area = (area_t *)arp_add_mp->b_rptr; 3754 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3755 ACE_F_UNVERIFIED; 3756 putnext(ill->ill_rq, arp_add_mp); 3757 return; 3758 3759 alloc_fail: 3760 /* 3761 * On allocation failure, just restart the timer. Note that the ipif 3762 * is down here, so no other thread could be trying to start a recovery 3763 * timer. The ill_lock protects the condemned flag and the recovery 3764 * timer ID. 3765 */ 3766 freemsg(arp_add_mp); 3767 mutex_enter(&ill->ill_lock); 3768 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3769 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3770 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3771 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3772 } 3773 mutex_exit(&ill->ill_lock); 3774 } 3775 3776 /* 3777 * This is for exclusive changes due to ARP. Either tear down an interface due 3778 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3779 */ 3780 /* ARGSUSED */ 3781 static void 3782 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3783 { 3784 ill_t *ill = rq->q_ptr; 3785 arh_t *arh; 3786 ipaddr_t src; 3787 ipif_t *ipif; 3788 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3789 char hbuf[MAC_STR_LEN]; 3790 char sbuf[INET_ADDRSTRLEN]; 3791 const char *failtype; 3792 boolean_t bring_up; 3793 ip_stack_t *ipst = ill->ill_ipst; 3794 3795 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3796 case AR_CN_READY: 3797 failtype = NULL; 3798 bring_up = B_TRUE; 3799 break; 3800 case AR_CN_FAILED: 3801 failtype = "in use"; 3802 bring_up = B_FALSE; 3803 break; 3804 default: 3805 failtype = "claimed"; 3806 bring_up = B_FALSE; 3807 break; 3808 } 3809 3810 arh = (arh_t *)mp->b_cont->b_rptr; 3811 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3812 3813 /* Handle failures due to probes */ 3814 if (src == 0) { 3815 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3816 IP_ADDR_LEN); 3817 } 3818 3819 (void) strlcpy(ibuf, ill->ill_name, sizeof (ibuf)); 3820 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3821 sizeof (hbuf)); 3822 (void) ip_dot_addr(src, sbuf); 3823 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3824 3825 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3826 ipif->ipif_lcl_addr != src) { 3827 continue; 3828 } 3829 3830 /* 3831 * If we failed on a recovery probe, then restart the timer to 3832 * try again later. 3833 */ 3834 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3835 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3836 ill->ill_net_type == IRE_IF_RESOLVER && 3837 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3838 ipst->ips_ip_dup_recovery > 0 && 3839 ipif->ipif_recovery_id == 0) { 3840 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3841 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3842 continue; 3843 } 3844 3845 /* 3846 * If what we're trying to do has already been done, then do 3847 * nothing. 3848 */ 3849 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3850 continue; 3851 3852 if (ipif->ipif_id != 0) { 3853 (void) snprintf(ibuf + ill->ill_name_length - 1, 3854 sizeof (ibuf) - ill->ill_name_length + 1, ":%d", 3855 ipif->ipif_id); 3856 } 3857 if (failtype == NULL) { 3858 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3859 ibuf); 3860 } else { 3861 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3862 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3863 } 3864 3865 if (bring_up) { 3866 ASSERT(ill->ill_dl_up); 3867 /* 3868 * Free up the ARP delete message so we can allocate 3869 * a fresh one through the normal path. 3870 */ 3871 freemsg(ipif->ipif_arp_del_mp); 3872 ipif->ipif_arp_del_mp = NULL; 3873 if (ipif_resolver_up(ipif, Res_act_initial) != 3874 EINPROGRESS) { 3875 ipif->ipif_addr_ready = 1; 3876 (void) ipif_up_done(ipif); 3877 } 3878 continue; 3879 } 3880 3881 mutex_enter(&ill->ill_lock); 3882 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3883 ipif->ipif_flags |= IPIF_DUPLICATE; 3884 ill->ill_ipif_dup_count++; 3885 mutex_exit(&ill->ill_lock); 3886 /* 3887 * Already exclusive on the ill; no need to handle deferred 3888 * processing here. 3889 */ 3890 (void) ipif_down(ipif, NULL, NULL); 3891 ipif_down_tail(ipif); 3892 mutex_enter(&ill->ill_lock); 3893 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3894 ill->ill_net_type == IRE_IF_RESOLVER && 3895 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3896 ipst->ips_ip_dup_recovery > 0) { 3897 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3898 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3899 } 3900 mutex_exit(&ill->ill_lock); 3901 } 3902 freemsg(mp); 3903 } 3904 3905 /* ARGSUSED */ 3906 static void 3907 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3908 { 3909 ill_t *ill = rq->q_ptr; 3910 arh_t *arh; 3911 ipaddr_t src; 3912 ipif_t *ipif; 3913 3914 arh = (arh_t *)mp->b_cont->b_rptr; 3915 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3916 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3917 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3918 (void) ipif_resolver_up(ipif, Res_act_defend); 3919 } 3920 freemsg(mp); 3921 } 3922 3923 /* 3924 * News from ARP. ARP sends notification of interesting events down 3925 * to its clients using M_CTL messages with the interesting ARP packet 3926 * attached via b_cont. 3927 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3928 * queue as opposed to ARP sending the message to all the clients, i.e. all 3929 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3930 * table if a cache IRE is found to delete all the entries for the address in 3931 * the packet. 3932 */ 3933 static void 3934 ip_arp_news(queue_t *q, mblk_t *mp) 3935 { 3936 arcn_t *arcn; 3937 arh_t *arh; 3938 ire_t *ire = NULL; 3939 char hbuf[MAC_STR_LEN]; 3940 char sbuf[INET_ADDRSTRLEN]; 3941 ipaddr_t src; 3942 in6_addr_t v6src; 3943 boolean_t isv6 = B_FALSE; 3944 ipif_t *ipif; 3945 ill_t *ill; 3946 ip_stack_t *ipst; 3947 3948 if (CONN_Q(q)) { 3949 conn_t *connp = Q_TO_CONN(q); 3950 3951 ipst = connp->conn_netstack->netstack_ip; 3952 } else { 3953 ill_t *ill = (ill_t *)q->q_ptr; 3954 3955 ipst = ill->ill_ipst; 3956 } 3957 3958 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3959 if (q->q_next) { 3960 putnext(q, mp); 3961 } else 3962 freemsg(mp); 3963 return; 3964 } 3965 arh = (arh_t *)mp->b_cont->b_rptr; 3966 /* Is it one we are interested in? */ 3967 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3968 isv6 = B_TRUE; 3969 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3970 IPV6_ADDR_LEN); 3971 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3972 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3973 IP_ADDR_LEN); 3974 } else { 3975 freemsg(mp); 3976 return; 3977 } 3978 3979 ill = q->q_ptr; 3980 3981 arcn = (arcn_t *)mp->b_rptr; 3982 switch (arcn->arcn_code) { 3983 case AR_CN_BOGON: 3984 /* 3985 * Someone is sending ARP packets with a source protocol 3986 * address that we have published and for which we believe our 3987 * entry is authoritative and (when ill_arp_extend is set) 3988 * verified to be unique on the network. 3989 * 3990 * The ARP module internally handles the cases where the sender 3991 * is just probing (for DAD) and where the hardware address of 3992 * a non-authoritative entry has changed. Thus, these are the 3993 * real conflicts, and we have to do resolution. 3994 * 3995 * We back away quickly from the address if it's from DHCP or 3996 * otherwise temporary and hasn't been used recently (or at 3997 * all). We'd like to include "deprecated" addresses here as 3998 * well (as there's no real reason to defend something we're 3999 * discarding), but IPMP "reuses" this flag to mean something 4000 * other than the standard meaning. 4001 * 4002 * If the ARP module above is not extended (meaning that it 4003 * doesn't know how to defend the address), then we just log 4004 * the problem as we always did and continue on. It's not 4005 * right, but there's little else we can do, and those old ATM 4006 * users are going away anyway. 4007 */ 4008 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 4009 hbuf, sizeof (hbuf)); 4010 (void) ip_dot_addr(src, sbuf); 4011 if (isv6) { 4012 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 4013 ipst); 4014 } else { 4015 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 4016 } 4017 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4018 uint32_t now; 4019 uint32_t maxage; 4020 clock_t lused; 4021 uint_t maxdefense; 4022 uint_t defs; 4023 4024 /* 4025 * First, figure out if this address hasn't been used 4026 * in a while. If it hasn't, then it's a better 4027 * candidate for abandoning. 4028 */ 4029 ipif = ire->ire_ipif; 4030 ASSERT(ipif != NULL); 4031 now = gethrestime_sec(); 4032 maxage = now - ire->ire_create_time; 4033 if (maxage > ipst->ips_ip_max_temp_idle) 4034 maxage = ipst->ips_ip_max_temp_idle; 4035 lused = drv_hztousec(ddi_get_lbolt() - 4036 ire->ire_last_used_time) / MICROSEC + 1; 4037 if (lused >= maxage && (ipif->ipif_flags & 4038 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4039 maxdefense = ipst->ips_ip_max_temp_defend; 4040 else 4041 maxdefense = ipst->ips_ip_max_defend; 4042 4043 /* 4044 * Now figure out how many times we've defended 4045 * ourselves. Ignore defenses that happened long in 4046 * the past. 4047 */ 4048 mutex_enter(&ire->ire_lock); 4049 if ((defs = ire->ire_defense_count) > 0 && 4050 now - ire->ire_defense_time > 4051 ipst->ips_ip_defend_interval) { 4052 ire->ire_defense_count = defs = 0; 4053 } 4054 ire->ire_defense_count++; 4055 ire->ire_defense_time = now; 4056 mutex_exit(&ire->ire_lock); 4057 ill_refhold(ill); 4058 ire_refrele(ire); 4059 4060 /* 4061 * If we've defended ourselves too many times already, 4062 * then give up and tear down the interface(s) using 4063 * this address. Otherwise, defend by sending out a 4064 * gratuitous ARP. 4065 */ 4066 if (defs >= maxdefense && ill->ill_arp_extend) { 4067 (void) qwriter_ip(NULL, ill, q, mp, 4068 ip_arp_excl, CUR_OP, B_FALSE); 4069 } else { 4070 cmn_err(CE_WARN, 4071 "node %s is using our IP address %s on %s", 4072 hbuf, sbuf, ill->ill_name); 4073 /* 4074 * If this is an old (ATM) ARP module, then 4075 * don't try to defend the address. Remain 4076 * compatible with the old behavior. Defend 4077 * only with new ARP. 4078 */ 4079 if (ill->ill_arp_extend) { 4080 (void) qwriter_ip(NULL, ill, q, mp, 4081 ip_arp_defend, CUR_OP, B_FALSE); 4082 } else { 4083 ill_refrele(ill); 4084 } 4085 } 4086 return; 4087 } 4088 cmn_err(CE_WARN, 4089 "proxy ARP problem? Node '%s' is using %s on %s", 4090 hbuf, sbuf, ill->ill_name); 4091 if (ire != NULL) 4092 ire_refrele(ire); 4093 break; 4094 case AR_CN_ANNOUNCE: 4095 if (isv6) { 4096 /* 4097 * For XRESOLV interfaces. 4098 * Delete the IRE cache entry and NCE for this 4099 * v6 address 4100 */ 4101 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4102 /* 4103 * If v6src is a non-zero, it's a router address 4104 * as below. Do the same sort of thing to clean 4105 * out off-net IRE_CACHE entries that go through 4106 * the router. 4107 */ 4108 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4109 ire_walk_v6(ire_delete_cache_gw_v6, 4110 (char *)&v6src, ALL_ZONES, ipst); 4111 } 4112 } else { 4113 nce_hw_map_t hwm; 4114 4115 /* 4116 * ARP gives us a copy of any packet where it thinks 4117 * the address has changed, so that we can update our 4118 * caches. We're responsible for caching known answers 4119 * in the current design. We check whether the 4120 * hardware address really has changed in all of our 4121 * entries that have cached this mapping, and if so, we 4122 * blow them away. This way we will immediately pick 4123 * up the rare case of a host changing hardware 4124 * address. 4125 */ 4126 if (src == 0) 4127 break; 4128 hwm.hwm_addr = src; 4129 hwm.hwm_hwlen = arh->arh_hlen; 4130 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4131 ndp_walk_common(ipst->ips_ndp4, NULL, 4132 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4133 } 4134 break; 4135 case AR_CN_READY: 4136 /* No external v6 resolver has a contract to use this */ 4137 if (isv6) 4138 break; 4139 /* If the link is down, we'll retry this later */ 4140 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4141 break; 4142 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4143 NULL, NULL, ipst); 4144 if (ipif != NULL) { 4145 /* 4146 * If this is a duplicate recovery, then we now need to 4147 * go exclusive to bring this thing back up. 4148 */ 4149 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4150 IPIF_DUPLICATE) { 4151 ipif_refrele(ipif); 4152 ill_refhold(ill); 4153 (void) qwriter_ip(NULL, ill, q, mp, 4154 ip_arp_excl, CUR_OP, B_FALSE); 4155 return; 4156 } 4157 /* 4158 * If this is the first notice that this address is 4159 * ready, then let the user know now. 4160 */ 4161 if ((ipif->ipif_flags & IPIF_UP) && 4162 !ipif->ipif_addr_ready) { 4163 ipif_mask_reply(ipif); 4164 ip_rts_ifmsg(ipif); 4165 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4166 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4167 } 4168 ipif->ipif_addr_ready = 1; 4169 ipif_refrele(ipif); 4170 } 4171 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4172 if (ire != NULL) { 4173 ire->ire_defense_count = 0; 4174 ire_refrele(ire); 4175 } 4176 break; 4177 case AR_CN_FAILED: 4178 /* No external v6 resolver has a contract to use this */ 4179 if (isv6) 4180 break; 4181 ill_refhold(ill); 4182 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_excl, CUR_OP, 4183 B_FALSE); 4184 return; 4185 } 4186 freemsg(mp); 4187 } 4188 4189 /* 4190 * Create a mblk suitable for carrying the interface index and/or source link 4191 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4192 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4193 * application. 4194 */ 4195 mblk_t * 4196 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4197 ip_stack_t *ipst) 4198 { 4199 mblk_t *mp; 4200 ip_pktinfo_t *pinfo; 4201 ipha_t *ipha; 4202 struct ether_header *pether; 4203 4204 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4205 if (mp == NULL) { 4206 ip1dbg(("ip_add_info: allocation failure.\n")); 4207 return (data_mp); 4208 } 4209 4210 ipha = (ipha_t *)data_mp->b_rptr; 4211 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4212 bzero(pinfo, sizeof (ip_pktinfo_t)); 4213 pinfo->ip_pkt_flags = (uchar_t)flags; 4214 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4215 4216 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4217 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4218 if (flags & IPF_RECVADDR) { 4219 ipif_t *ipif; 4220 ire_t *ire; 4221 4222 /* 4223 * Only valid for V4 4224 */ 4225 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4226 (IPV4_VERSION << 4)); 4227 4228 ipif = ipif_get_next_ipif(NULL, ill); 4229 if (ipif != NULL) { 4230 /* 4231 * Since a decision has already been made to deliver the 4232 * packet, there is no need to test for SECATTR and 4233 * ZONEONLY. 4234 */ 4235 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 0, ipif, 4236 zoneid, NULL, MATCH_IRE_ILL_GROUP, ipst); 4237 if (ire == NULL) { 4238 /* 4239 * packet must have come on a different 4240 * interface. 4241 * Since a decision has already been made to 4242 * deliver the packet, there is no need to test 4243 * for SECATTR and ZONEONLY. 4244 */ 4245 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 0, 4246 ipif, zoneid, NULL, NULL, ipst); 4247 } 4248 4249 if (ire == NULL) { 4250 /* 4251 * This is either a multicast packet or 4252 * the address has been removed since 4253 * the packet was received. 4254 * Return INADDR_ANY so that normal source 4255 * selection occurs for the response. 4256 */ 4257 4258 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4259 } else { 4260 ASSERT(ire->ire_type != IRE_CACHE); 4261 pinfo->ip_pkt_match_addr.s_addr = 4262 ire->ire_src_addr; 4263 ire_refrele(ire); 4264 } 4265 ipif_refrele(ipif); 4266 } else { 4267 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4268 } 4269 } 4270 4271 pether = (struct ether_header *)((char *)ipha 4272 - sizeof (struct ether_header)); 4273 /* 4274 * Make sure the interface is an ethernet type, since this option 4275 * is currently supported only on this type of interface. Also make 4276 * sure we are pointing correctly above db_base. 4277 */ 4278 4279 if ((flags & IPF_RECVSLLA) && 4280 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4281 (ill->ill_type == IFT_ETHER) && 4282 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4283 4284 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4285 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4286 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4287 } else { 4288 /* 4289 * Clear the bit. Indicate to upper layer that IP is not 4290 * sending this ancillary info. 4291 */ 4292 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4293 } 4294 4295 mp->b_datap->db_type = M_CTL; 4296 mp->b_wptr += sizeof (ip_pktinfo_t); 4297 mp->b_cont = data_mp; 4298 4299 return (mp); 4300 } 4301 4302 /* 4303 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4304 * part of the bind request. 4305 */ 4306 4307 boolean_t 4308 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4309 { 4310 ipsec_in_t *ii; 4311 4312 ASSERT(policy_mp != NULL); 4313 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4314 4315 ii = (ipsec_in_t *)policy_mp->b_rptr; 4316 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4317 4318 connp->conn_policy = ii->ipsec_in_policy; 4319 ii->ipsec_in_policy = NULL; 4320 4321 if (ii->ipsec_in_action != NULL) { 4322 if (connp->conn_latch == NULL) { 4323 connp->conn_latch = iplatch_create(); 4324 if (connp->conn_latch == NULL) 4325 return (B_FALSE); 4326 } 4327 ipsec_latch_inbound(connp->conn_latch, ii); 4328 } 4329 return (B_TRUE); 4330 } 4331 4332 /* 4333 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4334 * and to arrange for power-fanout assist. The ULP is identified by 4335 * adding a single byte at the end of the original bind message. 4336 * A ULP other than UDP or TCP that wishes to be recognized passes 4337 * down a bind with a zero length address. 4338 * 4339 * The binding works as follows: 4340 * - A zero byte address means just bind to the protocol. 4341 * - A four byte address is treated as a request to validate 4342 * that the address is a valid local address, appropriate for 4343 * an application to bind to. This does not affect any fanout 4344 * information in IP. 4345 * - A sizeof sin_t byte address is used to bind to only the local address 4346 * and port. 4347 * - A sizeof ipa_conn_t byte address contains complete fanout information 4348 * consisting of local and remote addresses and ports. In 4349 * this case, the addresses are both validated as appropriate 4350 * for this operation, and, if so, the information is retained 4351 * for use in the inbound fanout. 4352 * 4353 * The ULP (except in the zero-length bind) can append an 4354 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4355 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4356 * a copy of the source or destination IRE (source for local bind; 4357 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4358 * policy information contained should be copied on to the conn. 4359 * 4360 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4361 */ 4362 mblk_t * 4363 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4364 { 4365 ssize_t len; 4366 struct T_bind_req *tbr; 4367 sin_t *sin; 4368 ipa_conn_t *ac; 4369 uchar_t *ucp; 4370 mblk_t *mp1; 4371 boolean_t ire_requested; 4372 boolean_t ipsec_policy_set = B_FALSE; 4373 int error = 0; 4374 int protocol; 4375 ipa_conn_x_t *acx; 4376 4377 ASSERT(!connp->conn_af_isv6); 4378 connp->conn_pkt_isv6 = B_FALSE; 4379 4380 len = MBLKL(mp); 4381 if (len < (sizeof (*tbr) + 1)) { 4382 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4383 "ip_bind: bogus msg, len %ld", len); 4384 /* XXX: Need to return something better */ 4385 goto bad_addr; 4386 } 4387 /* Back up and extract the protocol identifier. */ 4388 mp->b_wptr--; 4389 protocol = *mp->b_wptr & 0xFF; 4390 tbr = (struct T_bind_req *)mp->b_rptr; 4391 /* Reset the message type in preparation for shipping it back. */ 4392 DB_TYPE(mp) = M_PCPROTO; 4393 4394 connp->conn_ulp = (uint8_t)protocol; 4395 4396 /* 4397 * Check for a zero length address. This is from a protocol that 4398 * wants to register to receive all packets of its type. 4399 */ 4400 if (tbr->ADDR_length == 0) { 4401 /* 4402 * These protocols are now intercepted in ip_bind_v6(). 4403 * Reject protocol-level binds here for now. 4404 * 4405 * For SCTP raw socket, ICMP sends down a bind with sin_t 4406 * so that the protocol type cannot be SCTP. 4407 */ 4408 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4409 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4410 goto bad_addr; 4411 } 4412 4413 /* 4414 * 4415 * The udp module never sends down a zero-length address, 4416 * and allowing this on a labeled system will break MLP 4417 * functionality. 4418 */ 4419 if (is_system_labeled() && protocol == IPPROTO_UDP) 4420 goto bad_addr; 4421 4422 if (connp->conn_mac_exempt) 4423 goto bad_addr; 4424 4425 /* No hash here really. The table is big enough. */ 4426 connp->conn_srcv6 = ipv6_all_zeros; 4427 4428 ipcl_proto_insert(connp, protocol); 4429 4430 tbr->PRIM_type = T_BIND_ACK; 4431 return (mp); 4432 } 4433 4434 /* Extract the address pointer from the message. */ 4435 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4436 tbr->ADDR_length); 4437 if (ucp == NULL) { 4438 ip1dbg(("ip_bind: no address\n")); 4439 goto bad_addr; 4440 } 4441 if (!OK_32PTR(ucp)) { 4442 ip1dbg(("ip_bind: unaligned address\n")); 4443 goto bad_addr; 4444 } 4445 /* 4446 * Check for trailing mps. 4447 */ 4448 4449 mp1 = mp->b_cont; 4450 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4451 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4452 4453 switch (tbr->ADDR_length) { 4454 default: 4455 ip1dbg(("ip_bind: bad address length %d\n", 4456 (int)tbr->ADDR_length)); 4457 goto bad_addr; 4458 4459 case IP_ADDR_LEN: 4460 /* Verification of local address only */ 4461 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4462 ire_requested, ipsec_policy_set, B_FALSE); 4463 break; 4464 4465 case sizeof (sin_t): 4466 sin = (sin_t *)ucp; 4467 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4468 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4469 break; 4470 4471 case sizeof (ipa_conn_t): 4472 ac = (ipa_conn_t *)ucp; 4473 /* For raw socket, the local port is not set. */ 4474 if (ac->ac_lport == 0) 4475 ac->ac_lport = connp->conn_lport; 4476 /* Always verify destination reachability. */ 4477 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4478 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4479 ipsec_policy_set, B_TRUE, B_TRUE); 4480 break; 4481 4482 case sizeof (ipa_conn_x_t): 4483 acx = (ipa_conn_x_t *)ucp; 4484 /* 4485 * Whether or not to verify destination reachability depends 4486 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4487 */ 4488 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4489 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4490 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4491 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4492 break; 4493 } 4494 if (error == EINPROGRESS) 4495 return (NULL); 4496 else if (error != 0) 4497 goto bad_addr; 4498 /* 4499 * Pass the IPSEC headers size in ire_ipsec_overhead. 4500 * We can't do this in ip_bind_insert_ire because the policy 4501 * may not have been inherited at that point in time and hence 4502 * conn_out_enforce_policy may not be set. 4503 */ 4504 mp1 = mp->b_cont; 4505 if (ire_requested && connp->conn_out_enforce_policy && 4506 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4507 ire_t *ire = (ire_t *)mp1->b_rptr; 4508 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4509 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4510 } 4511 4512 /* Send it home. */ 4513 mp->b_datap->db_type = M_PCPROTO; 4514 tbr->PRIM_type = T_BIND_ACK; 4515 return (mp); 4516 4517 bad_addr: 4518 /* 4519 * If error = -1 then we generate a TBADADDR - otherwise error is 4520 * a unix errno. 4521 */ 4522 if (error > 0) 4523 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4524 else 4525 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4526 return (mp); 4527 } 4528 4529 /* 4530 * Here address is verified to be a valid local address. 4531 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4532 * address is also considered a valid local address. 4533 * In the case of a broadcast/multicast address, however, the 4534 * upper protocol is expected to reset the src address 4535 * to 0 if it sees a IRE_BROADCAST type returned so that 4536 * no packets are emitted with broadcast/multicast address as 4537 * source address (that violates hosts requirements RFC1122) 4538 * The addresses valid for bind are: 4539 * (1) - INADDR_ANY (0) 4540 * (2) - IP address of an UP interface 4541 * (3) - IP address of a DOWN interface 4542 * (4) - valid local IP broadcast addresses. In this case 4543 * the conn will only receive packets destined to 4544 * the specified broadcast address. 4545 * (5) - a multicast address. In this case 4546 * the conn will only receive packets destined to 4547 * the specified multicast address. Note: the 4548 * application still has to issue an 4549 * IP_ADD_MEMBERSHIP socket option. 4550 * 4551 * On error, return -1 for TBADADDR otherwise pass the 4552 * errno with TSYSERR reply. 4553 * 4554 * In all the above cases, the bound address must be valid in the current zone. 4555 * When the address is loopback, multicast or broadcast, there might be many 4556 * matching IREs so bind has to look up based on the zone. 4557 * 4558 * Note: lport is in network byte order. 4559 */ 4560 int 4561 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4562 boolean_t ire_requested, boolean_t ipsec_policy_set, 4563 boolean_t fanout_insert) 4564 { 4565 int error = 0; 4566 ire_t *src_ire; 4567 mblk_t *policy_mp; 4568 ipif_t *ipif; 4569 zoneid_t zoneid; 4570 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4571 4572 if (ipsec_policy_set) { 4573 policy_mp = mp->b_cont; 4574 } 4575 4576 /* 4577 * If it was previously connected, conn_fully_bound would have 4578 * been set. 4579 */ 4580 connp->conn_fully_bound = B_FALSE; 4581 4582 src_ire = NULL; 4583 ipif = NULL; 4584 4585 zoneid = IPCL_ZONEID(connp); 4586 4587 if (src_addr) { 4588 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4589 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4590 /* 4591 * If an address other than 0.0.0.0 is requested, 4592 * we verify that it is a valid address for bind 4593 * Note: Following code is in if-else-if form for 4594 * readability compared to a condition check. 4595 */ 4596 /* LINTED - statement has no consequent */ 4597 if (IRE_IS_LOCAL(src_ire)) { 4598 /* 4599 * (2) Bind to address of local UP interface 4600 */ 4601 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4602 /* 4603 * (4) Bind to broadcast address 4604 * Note: permitted only from transports that 4605 * request IRE 4606 */ 4607 if (!ire_requested) 4608 error = EADDRNOTAVAIL; 4609 } else { 4610 /* 4611 * (3) Bind to address of local DOWN interface 4612 * (ipif_lookup_addr() looks up all interfaces 4613 * but we do not get here for UP interfaces 4614 * - case (2) above) 4615 * We put the protocol byte back into the mblk 4616 * since we may come back via ip_wput_nondata() 4617 * later with this mblk if ipif_lookup_addr chooses 4618 * to defer processing. 4619 */ 4620 *mp->b_wptr++ = (char)connp->conn_ulp; 4621 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4622 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4623 &error, ipst)) != NULL) { 4624 ipif_refrele(ipif); 4625 } else if (error == EINPROGRESS) { 4626 if (src_ire != NULL) 4627 ire_refrele(src_ire); 4628 return (EINPROGRESS); 4629 } else if (CLASSD(src_addr)) { 4630 error = 0; 4631 if (src_ire != NULL) 4632 ire_refrele(src_ire); 4633 /* 4634 * (5) bind to multicast address. 4635 * Fake out the IRE returned to upper 4636 * layer to be a broadcast IRE. 4637 */ 4638 src_ire = ire_ctable_lookup( 4639 INADDR_BROADCAST, INADDR_ANY, 4640 IRE_BROADCAST, NULL, zoneid, NULL, 4641 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4642 ipst); 4643 if (src_ire == NULL || !ire_requested) 4644 error = EADDRNOTAVAIL; 4645 } else { 4646 /* 4647 * Not a valid address for bind 4648 */ 4649 error = EADDRNOTAVAIL; 4650 } 4651 /* 4652 * Just to keep it consistent with the processing in 4653 * ip_bind_v4() 4654 */ 4655 mp->b_wptr--; 4656 } 4657 if (error) { 4658 /* Red Alert! Attempting to be a bogon! */ 4659 ip1dbg(("ip_bind: bad src address 0x%x\n", 4660 ntohl(src_addr))); 4661 goto bad_addr; 4662 } 4663 } 4664 4665 /* 4666 * Allow setting new policies. For example, disconnects come 4667 * down as ipa_t bind. As we would have set conn_policy_cached 4668 * to B_TRUE before, we should set it to B_FALSE, so that policy 4669 * can change after the disconnect. 4670 */ 4671 connp->conn_policy_cached = B_FALSE; 4672 4673 /* 4674 * If not fanout_insert this was just an address verification 4675 */ 4676 if (fanout_insert) { 4677 /* 4678 * The addresses have been verified. Time to insert in 4679 * the correct fanout list. 4680 */ 4681 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4682 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4683 connp->conn_lport = lport; 4684 connp->conn_fport = 0; 4685 /* 4686 * Do we need to add a check to reject Multicast packets 4687 * 4688 * We need to make sure that the conn_recv is set to a non-null 4689 * value before we insert the conn into the classifier table. 4690 * This is to avoid a race with an incoming packet which does an 4691 * ipcl_classify(). 4692 */ 4693 if (*mp->b_wptr == IPPROTO_TCP) 4694 connp->conn_recv = tcp_conn_request; 4695 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4696 } 4697 4698 if (error == 0) { 4699 if (ire_requested) { 4700 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4701 error = -1; 4702 /* Falls through to bad_addr */ 4703 } 4704 } else if (ipsec_policy_set) { 4705 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4706 error = -1; 4707 /* Falls through to bad_addr */ 4708 } 4709 } 4710 } else if (connp->conn_ulp == IPPROTO_TCP) { 4711 connp->conn_recv = tcp_input; 4712 } 4713 bad_addr: 4714 if (error != 0) { 4715 if (connp->conn_anon_port) { 4716 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4717 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4718 B_FALSE); 4719 } 4720 connp->conn_mlp_type = mlptSingle; 4721 } 4722 if (src_ire != NULL) 4723 IRE_REFRELE(src_ire); 4724 if (ipsec_policy_set) { 4725 ASSERT(policy_mp == mp->b_cont); 4726 ASSERT(policy_mp != NULL); 4727 freeb(policy_mp); 4728 /* 4729 * As of now assume that nothing else accompanies 4730 * IPSEC_POLICY_SET. 4731 */ 4732 mp->b_cont = NULL; 4733 } 4734 return (error); 4735 } 4736 4737 /* 4738 * Verify that both the source and destination addresses 4739 * are valid. If verify_dst is false, then the destination address may be 4740 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4741 * destination reachability, while tunnels do not. 4742 * Note that we allow connect to broadcast and multicast 4743 * addresses when ire_requested is set. Thus the ULP 4744 * has to check for IRE_BROADCAST and multicast. 4745 * 4746 * Returns zero if ok. 4747 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4748 * (for use with TSYSERR reply). 4749 * 4750 * Note: lport and fport are in network byte order. 4751 */ 4752 int 4753 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4754 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4755 boolean_t ire_requested, boolean_t ipsec_policy_set, 4756 boolean_t fanout_insert, boolean_t verify_dst) 4757 { 4758 ire_t *src_ire; 4759 ire_t *dst_ire; 4760 int error = 0; 4761 int protocol; 4762 mblk_t *policy_mp; 4763 ire_t *sire = NULL; 4764 ire_t *md_dst_ire = NULL; 4765 ire_t *lso_dst_ire = NULL; 4766 ill_t *ill = NULL; 4767 zoneid_t zoneid; 4768 ipaddr_t src_addr = *src_addrp; 4769 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4770 4771 src_ire = dst_ire = NULL; 4772 protocol = *mp->b_wptr & 0xFF; 4773 4774 /* 4775 * If we never got a disconnect before, clear it now. 4776 */ 4777 connp->conn_fully_bound = B_FALSE; 4778 4779 if (ipsec_policy_set) { 4780 policy_mp = mp->b_cont; 4781 } 4782 4783 zoneid = IPCL_ZONEID(connp); 4784 4785 if (CLASSD(dst_addr)) { 4786 /* Pick up an IRE_BROADCAST */ 4787 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4788 NULL, zoneid, MBLK_GETLABEL(mp), 4789 (MATCH_IRE_RECURSIVE | 4790 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4791 MATCH_IRE_SECATTR), ipst); 4792 } else { 4793 /* 4794 * If conn_dontroute is set or if conn_nexthop_set is set, 4795 * and onlink ipif is not found set ENETUNREACH error. 4796 */ 4797 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4798 ipif_t *ipif; 4799 4800 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4801 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4802 if (ipif == NULL) { 4803 error = ENETUNREACH; 4804 goto bad_addr; 4805 } 4806 ipif_refrele(ipif); 4807 } 4808 4809 if (connp->conn_nexthop_set) { 4810 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4811 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4812 MATCH_IRE_SECATTR, ipst); 4813 } else { 4814 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4815 &sire, zoneid, MBLK_GETLABEL(mp), 4816 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4817 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4818 MATCH_IRE_SECATTR), ipst); 4819 } 4820 } 4821 /* 4822 * dst_ire can't be a broadcast when not ire_requested. 4823 * We also prevent ire's with src address INADDR_ANY to 4824 * be used, which are created temporarily for 4825 * sending out packets from endpoints that have 4826 * conn_unspec_src set. If verify_dst is true, the destination must be 4827 * reachable. If verify_dst is false, the destination needn't be 4828 * reachable. 4829 * 4830 * If we match on a reject or black hole, then we've got a 4831 * local failure. May as well fail out the connect() attempt, 4832 * since it's never going to succeed. 4833 */ 4834 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4835 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4836 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4837 /* 4838 * If we're verifying destination reachability, we always want 4839 * to complain here. 4840 * 4841 * If we're not verifying destination reachability but the 4842 * destination has a route, we still want to fail on the 4843 * temporary address and broadcast address tests. 4844 */ 4845 if (verify_dst || (dst_ire != NULL)) { 4846 if (ip_debug > 2) { 4847 pr_addr_dbg("ip_bind_connected: bad connected " 4848 "dst %s\n", AF_INET, &dst_addr); 4849 } 4850 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4851 error = ENETUNREACH; 4852 else 4853 error = EHOSTUNREACH; 4854 goto bad_addr; 4855 } 4856 } 4857 4858 /* 4859 * We now know that routing will allow us to reach the destination. 4860 * Check whether Trusted Solaris policy allows communication with this 4861 * host, and pretend that the destination is unreachable if not. 4862 * 4863 * This is never a problem for TCP, since that transport is known to 4864 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4865 * handling. If the remote is unreachable, it will be detected at that 4866 * point, so there's no reason to check it here. 4867 * 4868 * Note that for sendto (and other datagram-oriented friends), this 4869 * check is done as part of the data path label computation instead. 4870 * The check here is just to make non-TCP connect() report the right 4871 * error. 4872 */ 4873 if (dst_ire != NULL && is_system_labeled() && 4874 !IPCL_IS_TCP(connp) && 4875 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4876 connp->conn_mac_exempt, ipst) != 0) { 4877 error = EHOSTUNREACH; 4878 if (ip_debug > 2) { 4879 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4880 AF_INET, &dst_addr); 4881 } 4882 goto bad_addr; 4883 } 4884 4885 /* 4886 * If the app does a connect(), it means that it will most likely 4887 * send more than 1 packet to the destination. It makes sense 4888 * to clear the temporary flag. 4889 */ 4890 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4891 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4892 irb_t *irb = dst_ire->ire_bucket; 4893 4894 rw_enter(&irb->irb_lock, RW_WRITER); 4895 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4896 irb->irb_tmp_ire_cnt--; 4897 rw_exit(&irb->irb_lock); 4898 } 4899 4900 /* 4901 * See if we should notify ULP about LSO/MDT; we do this whether or not 4902 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4903 * eligibility tests for passive connects are handled separately 4904 * through tcp_adapt_ire(). We do this before the source address 4905 * selection, because dst_ire may change after a call to 4906 * ipif_select_source(). This is a best-effort check, as the 4907 * packet for this connection may not actually go through 4908 * dst_ire->ire_stq, and the exact IRE can only be known after 4909 * calling ip_newroute(). This is why we further check on the 4910 * IRE during LSO/Multidata packet transmission in 4911 * tcp_lsosend()/tcp_multisend(). 4912 */ 4913 if (!ipsec_policy_set && dst_ire != NULL && 4914 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4915 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4916 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4917 lso_dst_ire = dst_ire; 4918 IRE_REFHOLD(lso_dst_ire); 4919 } else if (ipst->ips_ip_multidata_outbound && 4920 ILL_MDT_CAPABLE(ill)) { 4921 md_dst_ire = dst_ire; 4922 IRE_REFHOLD(md_dst_ire); 4923 } 4924 } 4925 4926 if (dst_ire != NULL && 4927 dst_ire->ire_type == IRE_LOCAL && 4928 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4929 /* 4930 * If the IRE belongs to a different zone, look for a matching 4931 * route in the forwarding table and use the source address from 4932 * that route. 4933 */ 4934 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4935 zoneid, 0, NULL, 4936 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4937 MATCH_IRE_RJ_BHOLE, ipst); 4938 if (src_ire == NULL) { 4939 error = EHOSTUNREACH; 4940 goto bad_addr; 4941 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4942 if (!(src_ire->ire_type & IRE_HOST)) 4943 error = ENETUNREACH; 4944 else 4945 error = EHOSTUNREACH; 4946 goto bad_addr; 4947 } 4948 if (src_addr == INADDR_ANY) 4949 src_addr = src_ire->ire_src_addr; 4950 ire_refrele(src_ire); 4951 src_ire = NULL; 4952 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4953 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4954 src_addr = sire->ire_src_addr; 4955 ire_refrele(dst_ire); 4956 dst_ire = sire; 4957 sire = NULL; 4958 } else { 4959 /* 4960 * Pick a source address so that a proper inbound 4961 * load spreading would happen. 4962 */ 4963 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4964 ipif_t *src_ipif = NULL; 4965 ire_t *ipif_ire; 4966 4967 /* 4968 * Supply a local source address such that inbound 4969 * load spreading happens. 4970 * 4971 * Determine the best source address on this ill for 4972 * the destination. 4973 * 4974 * 1) For broadcast, we should return a broadcast ire 4975 * found above so that upper layers know that the 4976 * destination address is a broadcast address. 4977 * 4978 * 2) If this is part of a group, select a better 4979 * source address so that better inbound load 4980 * balancing happens. Do the same if the ipif 4981 * is DEPRECATED. 4982 * 4983 * 3) If the outgoing interface is part of a usesrc 4984 * group, then try selecting a source address from 4985 * the usesrc ILL. 4986 */ 4987 if ((dst_ire->ire_zoneid != zoneid && 4988 dst_ire->ire_zoneid != ALL_ZONES) || 4989 (!(dst_ire->ire_type & IRE_BROADCAST) && 4990 ((dst_ill->ill_group != NULL) || 4991 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4992 (dst_ill->ill_usesrc_ifindex != 0)))) { 4993 /* 4994 * If the destination is reachable via a 4995 * given gateway, the selected source address 4996 * should be in the same subnet as the gateway. 4997 * Otherwise, the destination is not reachable. 4998 * 4999 * If there are no interfaces on the same subnet 5000 * as the destination, ipif_select_source gives 5001 * first non-deprecated interface which might be 5002 * on a different subnet than the gateway. 5003 * This is not desirable. Hence pass the dst_ire 5004 * source address to ipif_select_source. 5005 * It is sure that the destination is reachable 5006 * with the dst_ire source address subnet. 5007 * So passing dst_ire source address to 5008 * ipif_select_source will make sure that the 5009 * selected source will be on the same subnet 5010 * as dst_ire source address. 5011 */ 5012 ipaddr_t saddr = 5013 dst_ire->ire_ipif->ipif_src_addr; 5014 src_ipif = ipif_select_source(dst_ill, 5015 saddr, zoneid); 5016 if (src_ipif != NULL) { 5017 if (IS_VNI(src_ipif->ipif_ill)) { 5018 /* 5019 * For VNI there is no 5020 * interface route 5021 */ 5022 src_addr = 5023 src_ipif->ipif_src_addr; 5024 } else { 5025 ipif_ire = 5026 ipif_to_ire(src_ipif); 5027 if (ipif_ire != NULL) { 5028 IRE_REFRELE(dst_ire); 5029 dst_ire = ipif_ire; 5030 } 5031 src_addr = 5032 dst_ire->ire_src_addr; 5033 } 5034 ipif_refrele(src_ipif); 5035 } else { 5036 src_addr = dst_ire->ire_src_addr; 5037 } 5038 } else { 5039 src_addr = dst_ire->ire_src_addr; 5040 } 5041 } 5042 } 5043 5044 /* 5045 * We do ire_route_lookup() here (and not 5046 * interface lookup as we assert that 5047 * src_addr should only come from an 5048 * UP interface for hard binding. 5049 */ 5050 ASSERT(src_ire == NULL); 5051 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5052 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5053 /* src_ire must be a local|loopback */ 5054 if (!IRE_IS_LOCAL(src_ire)) { 5055 if (ip_debug > 2) { 5056 pr_addr_dbg("ip_bind_connected: bad connected " 5057 "src %s\n", AF_INET, &src_addr); 5058 } 5059 error = EADDRNOTAVAIL; 5060 goto bad_addr; 5061 } 5062 5063 /* 5064 * If the source address is a loopback address, the 5065 * destination had best be local or multicast. 5066 * The transports that can't handle multicast will reject 5067 * those addresses. 5068 */ 5069 if (src_ire->ire_type == IRE_LOOPBACK && 5070 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5071 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5072 error = -1; 5073 goto bad_addr; 5074 } 5075 5076 /* 5077 * Allow setting new policies. For example, disconnects come 5078 * down as ipa_t bind. As we would have set conn_policy_cached 5079 * to B_TRUE before, we should set it to B_FALSE, so that policy 5080 * can change after the disconnect. 5081 */ 5082 connp->conn_policy_cached = B_FALSE; 5083 5084 /* 5085 * Set the conn addresses/ports immediately, so the IPsec policy calls 5086 * can handle their passed-in conn's. 5087 */ 5088 5089 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5090 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5091 connp->conn_lport = lport; 5092 connp->conn_fport = fport; 5093 *src_addrp = src_addr; 5094 5095 ASSERT(!(ipsec_policy_set && ire_requested)); 5096 if (ire_requested) { 5097 iulp_t *ulp_info = NULL; 5098 5099 /* 5100 * Note that sire will not be NULL if this is an off-link 5101 * connection and there is not cache for that dest yet. 5102 * 5103 * XXX Because of an existing bug, if there are multiple 5104 * default routes, the IRE returned now may not be the actual 5105 * default route used (default routes are chosen in a 5106 * round robin fashion). So if the metrics for different 5107 * default routes are different, we may return the wrong 5108 * metrics. This will not be a problem if the existing 5109 * bug is fixed. 5110 */ 5111 if (sire != NULL) { 5112 ulp_info = &(sire->ire_uinfo); 5113 } 5114 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5115 error = -1; 5116 goto bad_addr; 5117 } 5118 } else if (ipsec_policy_set) { 5119 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5120 error = -1; 5121 goto bad_addr; 5122 } 5123 } 5124 5125 /* 5126 * Cache IPsec policy in this conn. If we have per-socket policy, 5127 * we'll cache that. If we don't, we'll inherit global policy. 5128 * 5129 * We can't insert until the conn reflects the policy. Note that 5130 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5131 * connections where we don't have a policy. This is to prevent 5132 * global policy lookups in the inbound path. 5133 * 5134 * If we insert before we set conn_policy_cached, 5135 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5136 * because global policy cound be non-empty. We normally call 5137 * ipsec_check_policy() for conn_policy_cached connections only if 5138 * ipc_in_enforce_policy is set. But in this case, 5139 * conn_policy_cached can get set anytime since we made the 5140 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5141 * called, which will make the above assumption false. Thus, we 5142 * need to insert after we set conn_policy_cached. 5143 */ 5144 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5145 goto bad_addr; 5146 5147 if (fanout_insert) { 5148 /* 5149 * The addresses have been verified. Time to insert in 5150 * the correct fanout list. 5151 * We need to make sure that the conn_recv is set to a non-null 5152 * value before we insert into the classifier table to avoid a 5153 * race with an incoming packet which does an ipcl_classify(). 5154 */ 5155 if (protocol == IPPROTO_TCP) 5156 connp->conn_recv = tcp_input; 5157 error = ipcl_conn_insert(connp, protocol, src_addr, 5158 dst_addr, connp->conn_ports); 5159 } 5160 5161 if (error == 0) { 5162 connp->conn_fully_bound = B_TRUE; 5163 /* 5164 * Our initial checks for LSO/MDT have passed; the IRE is not 5165 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5166 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5167 * ip_xxinfo_return(), which performs further checks 5168 * against them and upon success, returns the LSO/MDT info 5169 * mblk which we will attach to the bind acknowledgment. 5170 */ 5171 if (lso_dst_ire != NULL) { 5172 mblk_t *lsoinfo_mp; 5173 5174 ASSERT(ill->ill_lso_capab != NULL); 5175 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5176 ill->ill_name, ill->ill_lso_capab)) != NULL) 5177 linkb(mp, lsoinfo_mp); 5178 } else if (md_dst_ire != NULL) { 5179 mblk_t *mdinfo_mp; 5180 5181 ASSERT(ill->ill_mdt_capab != NULL); 5182 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5183 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5184 linkb(mp, mdinfo_mp); 5185 } 5186 } 5187 bad_addr: 5188 if (ipsec_policy_set) { 5189 ASSERT(policy_mp == mp->b_cont); 5190 ASSERT(policy_mp != NULL); 5191 freeb(policy_mp); 5192 /* 5193 * As of now assume that nothing else accompanies 5194 * IPSEC_POLICY_SET. 5195 */ 5196 mp->b_cont = NULL; 5197 } 5198 if (src_ire != NULL) 5199 IRE_REFRELE(src_ire); 5200 if (dst_ire != NULL) 5201 IRE_REFRELE(dst_ire); 5202 if (sire != NULL) 5203 IRE_REFRELE(sire); 5204 if (md_dst_ire != NULL) 5205 IRE_REFRELE(md_dst_ire); 5206 if (lso_dst_ire != NULL) 5207 IRE_REFRELE(lso_dst_ire); 5208 return (error); 5209 } 5210 5211 /* 5212 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5213 * Prefers dst_ire over src_ire. 5214 */ 5215 static boolean_t 5216 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5217 { 5218 mblk_t *mp1; 5219 ire_t *ret_ire = NULL; 5220 5221 mp1 = mp->b_cont; 5222 ASSERT(mp1 != NULL); 5223 5224 if (ire != NULL) { 5225 /* 5226 * mp1 initialized above to IRE_DB_REQ_TYPE 5227 * appended mblk. Its <upper protocol>'s 5228 * job to make sure there is room. 5229 */ 5230 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5231 return (0); 5232 5233 mp1->b_datap->db_type = IRE_DB_TYPE; 5234 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5235 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5236 ret_ire = (ire_t *)mp1->b_rptr; 5237 /* 5238 * Pass the latest setting of the ip_path_mtu_discovery and 5239 * copy the ulp info if any. 5240 */ 5241 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5242 IPH_DF : 0; 5243 if (ulp_info != NULL) { 5244 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5245 sizeof (iulp_t)); 5246 } 5247 ret_ire->ire_mp = mp1; 5248 } else { 5249 /* 5250 * No IRE was found. Remove IRE mblk. 5251 */ 5252 mp->b_cont = mp1->b_cont; 5253 freeb(mp1); 5254 } 5255 5256 return (1); 5257 } 5258 5259 /* 5260 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5261 * the final piece where we don't. Return a pointer to the first mblk in the 5262 * result, and update the pointer to the next mblk to chew on. If anything 5263 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5264 * NULL pointer. 5265 */ 5266 mblk_t * 5267 ip_carve_mp(mblk_t **mpp, ssize_t len) 5268 { 5269 mblk_t *mp0; 5270 mblk_t *mp1; 5271 mblk_t *mp2; 5272 5273 if (!len || !mpp || !(mp0 = *mpp)) 5274 return (NULL); 5275 /* If we aren't going to consume the first mblk, we need a dup. */ 5276 if (mp0->b_wptr - mp0->b_rptr > len) { 5277 mp1 = dupb(mp0); 5278 if (mp1) { 5279 /* Partition the data between the two mblks. */ 5280 mp1->b_wptr = mp1->b_rptr + len; 5281 mp0->b_rptr = mp1->b_wptr; 5282 /* 5283 * after adjustments if mblk not consumed is now 5284 * unaligned, try to align it. If this fails free 5285 * all messages and let upper layer recover. 5286 */ 5287 if (!OK_32PTR(mp0->b_rptr)) { 5288 if (!pullupmsg(mp0, -1)) { 5289 freemsg(mp0); 5290 freemsg(mp1); 5291 *mpp = NULL; 5292 return (NULL); 5293 } 5294 } 5295 } 5296 return (mp1); 5297 } 5298 /* Eat through as many mblks as we need to get len bytes. */ 5299 len -= mp0->b_wptr - mp0->b_rptr; 5300 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5301 if (mp2->b_wptr - mp2->b_rptr > len) { 5302 /* 5303 * We won't consume the entire last mblk. Like 5304 * above, dup and partition it. 5305 */ 5306 mp1->b_cont = dupb(mp2); 5307 mp1 = mp1->b_cont; 5308 if (!mp1) { 5309 /* 5310 * Trouble. Rather than go to a lot of 5311 * trouble to clean up, we free the messages. 5312 * This won't be any worse than losing it on 5313 * the wire. 5314 */ 5315 freemsg(mp0); 5316 freemsg(mp2); 5317 *mpp = NULL; 5318 return (NULL); 5319 } 5320 mp1->b_wptr = mp1->b_rptr + len; 5321 mp2->b_rptr = mp1->b_wptr; 5322 /* 5323 * after adjustments if mblk not consumed is now 5324 * unaligned, try to align it. If this fails free 5325 * all messages and let upper layer recover. 5326 */ 5327 if (!OK_32PTR(mp2->b_rptr)) { 5328 if (!pullupmsg(mp2, -1)) { 5329 freemsg(mp0); 5330 freemsg(mp2); 5331 *mpp = NULL; 5332 return (NULL); 5333 } 5334 } 5335 *mpp = mp2; 5336 return (mp0); 5337 } 5338 /* Decrement len by the amount we just got. */ 5339 len -= mp2->b_wptr - mp2->b_rptr; 5340 } 5341 /* 5342 * len should be reduced to zero now. If not our caller has 5343 * screwed up. 5344 */ 5345 if (len) { 5346 /* Shouldn't happen! */ 5347 freemsg(mp0); 5348 *mpp = NULL; 5349 return (NULL); 5350 } 5351 /* 5352 * We consumed up to exactly the end of an mblk. Detach the part 5353 * we are returning from the rest of the chain. 5354 */ 5355 mp1->b_cont = NULL; 5356 *mpp = mp2; 5357 return (mp0); 5358 } 5359 5360 /* The ill stream is being unplumbed. Called from ip_close */ 5361 int 5362 ip_modclose(ill_t *ill) 5363 { 5364 5365 boolean_t success; 5366 ipsq_t *ipsq; 5367 ipif_t *ipif; 5368 queue_t *q = ill->ill_rq; 5369 ip_stack_t *ipst = ill->ill_ipst; 5370 clock_t timeout; 5371 5372 /* 5373 * Wait for the ACKs of all deferred control messages to be processed. 5374 * In particular, we wait for a potential capability reset initiated 5375 * in ip_sioctl_plink() to complete before proceeding. 5376 * 5377 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5378 * in case the driver never replies. 5379 */ 5380 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5381 mutex_enter(&ill->ill_lock); 5382 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5383 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5384 /* Timeout */ 5385 break; 5386 } 5387 } 5388 mutex_exit(&ill->ill_lock); 5389 5390 /* 5391 * Forcibly enter the ipsq after some delay. This is to take 5392 * care of the case when some ioctl does not complete because 5393 * we sent a control message to the driver and it did not 5394 * send us a reply. We want to be able to at least unplumb 5395 * and replumb rather than force the user to reboot the system. 5396 */ 5397 success = ipsq_enter(ill, B_FALSE); 5398 5399 /* 5400 * Open/close/push/pop is guaranteed to be single threaded 5401 * per stream by STREAMS. FS guarantees that all references 5402 * from top are gone before close is called. So there can't 5403 * be another close thread that has set CONDEMNED on this ill. 5404 * and cause ipsq_enter to return failure. 5405 */ 5406 ASSERT(success); 5407 ipsq = ill->ill_phyint->phyint_ipsq; 5408 5409 /* 5410 * Mark it condemned. No new reference will be made to this ill. 5411 * Lookup functions will return an error. Threads that try to 5412 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5413 * that the refcnt will drop down to zero. 5414 */ 5415 mutex_enter(&ill->ill_lock); 5416 ill->ill_state_flags |= ILL_CONDEMNED; 5417 for (ipif = ill->ill_ipif; ipif != NULL; 5418 ipif = ipif->ipif_next) { 5419 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5420 } 5421 /* 5422 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5423 * returns error if ILL_CONDEMNED is set 5424 */ 5425 cv_broadcast(&ill->ill_cv); 5426 mutex_exit(&ill->ill_lock); 5427 5428 /* 5429 * Send all the deferred control messages downstream which came in 5430 * during the small window right before ipsq_enter(). We do this 5431 * without waiting for the ACKs because all the ACKs for M_PROTO 5432 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5433 */ 5434 ill_send_all_deferred_mp(ill); 5435 5436 /* 5437 * Shut down fragmentation reassembly. 5438 * ill_frag_timer won't start a timer again. 5439 * Now cancel any existing timer 5440 */ 5441 (void) untimeout(ill->ill_frag_timer_id); 5442 (void) ill_frag_timeout(ill, 0); 5443 5444 /* 5445 * If MOVE was in progress, clear the 5446 * move_in_progress fields also. 5447 */ 5448 if (ill->ill_move_in_progress) { 5449 ILL_CLEAR_MOVE(ill); 5450 } 5451 5452 /* 5453 * Call ill_delete to bring down the ipifs, ilms and ill on 5454 * this ill. Then wait for the refcnts to drop to zero. 5455 * ill_is_quiescent checks whether the ill is really quiescent. 5456 * Then make sure that threads that are waiting to enter the 5457 * ipsq have seen the error returned by ipsq_enter and have 5458 * gone away. Then we call ill_delete_tail which does the 5459 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff. 5460 */ 5461 ill_delete(ill); 5462 mutex_enter(&ill->ill_lock); 5463 while (!ill_is_quiescent(ill)) 5464 cv_wait(&ill->ill_cv, &ill->ill_lock); 5465 while (ill->ill_waiters) 5466 cv_wait(&ill->ill_cv, &ill->ill_lock); 5467 5468 mutex_exit(&ill->ill_lock); 5469 5470 /* 5471 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5472 * it held until the end of the function since the cleanup 5473 * below needs to be able to use the ip_stack_t. 5474 */ 5475 netstack_hold(ipst->ips_netstack); 5476 5477 /* qprocsoff is called in ill_delete_tail */ 5478 ill_delete_tail(ill); 5479 ASSERT(ill->ill_ipst == NULL); 5480 5481 /* 5482 * Walk through all upper (conn) streams and qenable 5483 * those that have queued data. 5484 * close synchronization needs this to 5485 * be done to ensure that all upper layers blocked 5486 * due to flow control to the closing device 5487 * get unblocked. 5488 */ 5489 ip1dbg(("ip_wsrv: walking\n")); 5490 conn_walk_drain(ipst); 5491 5492 mutex_enter(&ipst->ips_ip_mi_lock); 5493 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5494 mutex_exit(&ipst->ips_ip_mi_lock); 5495 5496 /* 5497 * credp could be null if the open didn't succeed and ip_modopen 5498 * itself calls ip_close. 5499 */ 5500 if (ill->ill_credp != NULL) 5501 crfree(ill->ill_credp); 5502 5503 mutex_enter(&ill->ill_lock); 5504 ill_nic_info_dispatch(ill); 5505 mutex_exit(&ill->ill_lock); 5506 5507 /* 5508 * Now we are done with the module close pieces that 5509 * need the netstack_t. 5510 */ 5511 netstack_rele(ipst->ips_netstack); 5512 5513 mi_close_free((IDP)ill); 5514 q->q_ptr = WR(q)->q_ptr = NULL; 5515 5516 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5517 5518 return (0); 5519 } 5520 5521 /* 5522 * This is called as part of close() for both IP and UDP 5523 * in order to quiesce the conn. 5524 */ 5525 void 5526 ip_quiesce_conn(conn_t *connp) 5527 { 5528 boolean_t drain_cleanup_reqd = B_FALSE; 5529 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5530 boolean_t ilg_cleanup_reqd = B_FALSE; 5531 ip_stack_t *ipst; 5532 5533 ASSERT(!IPCL_IS_TCP(connp)); 5534 ipst = connp->conn_netstack->netstack_ip; 5535 5536 /* 5537 * Mark the conn as closing, and this conn must not be 5538 * inserted in future into any list. Eg. conn_drain_insert(), 5539 * won't insert this conn into the conn_drain_list. 5540 * Similarly ill_pending_mp_add() will not add any mp to 5541 * the pending mp list, after this conn has started closing. 5542 * 5543 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5544 * cannot get set henceforth. 5545 */ 5546 mutex_enter(&connp->conn_lock); 5547 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5548 connp->conn_state_flags |= CONN_CLOSING; 5549 if (connp->conn_idl != NULL) 5550 drain_cleanup_reqd = B_TRUE; 5551 if (connp->conn_oper_pending_ill != NULL) 5552 conn_ioctl_cleanup_reqd = B_TRUE; 5553 if (connp->conn_ilg_inuse != 0) 5554 ilg_cleanup_reqd = B_TRUE; 5555 mutex_exit(&connp->conn_lock); 5556 5557 if (IPCL_IS_UDP(connp)) 5558 udp_quiesce_conn(connp); 5559 5560 if (conn_ioctl_cleanup_reqd) 5561 conn_ioctl_cleanup(connp); 5562 5563 if (is_system_labeled() && connp->conn_anon_port) { 5564 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5565 connp->conn_mlp_type, connp->conn_ulp, 5566 ntohs(connp->conn_lport), B_FALSE); 5567 connp->conn_anon_port = 0; 5568 } 5569 connp->conn_mlp_type = mlptSingle; 5570 5571 /* 5572 * Remove this conn from any fanout list it is on. 5573 * and then wait for any threads currently operating 5574 * on this endpoint to finish 5575 */ 5576 ipcl_hash_remove(connp); 5577 5578 /* 5579 * Remove this conn from the drain list, and do 5580 * any other cleanup that may be required. 5581 * (Only non-tcp streams may have a non-null conn_idl. 5582 * TCP streams are never flow controlled, and 5583 * conn_idl will be null) 5584 */ 5585 if (drain_cleanup_reqd) 5586 conn_drain_tail(connp, B_TRUE); 5587 5588 if (connp->conn_rq == ipst->ips_ip_g_mrouter || 5589 connp->conn_wq == ipst->ips_ip_g_mrouter) 5590 (void) ip_mrouter_done(NULL, ipst); 5591 5592 if (ilg_cleanup_reqd) 5593 ilg_delete_all(connp); 5594 5595 conn_delete_ire(connp, NULL); 5596 5597 /* 5598 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5599 * callers from write side can't be there now because close 5600 * is in progress. The only other caller is ipcl_walk 5601 * which checks for the condemned flag. 5602 */ 5603 mutex_enter(&connp->conn_lock); 5604 connp->conn_state_flags |= CONN_CONDEMNED; 5605 while (connp->conn_ref != 1) 5606 cv_wait(&connp->conn_cv, &connp->conn_lock); 5607 connp->conn_state_flags |= CONN_QUIESCED; 5608 mutex_exit(&connp->conn_lock); 5609 } 5610 5611 /* ARGSUSED */ 5612 int 5613 ip_close(queue_t *q, int flags) 5614 { 5615 conn_t *connp; 5616 5617 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5618 5619 /* 5620 * Call the appropriate delete routine depending on whether this is 5621 * a module or device. 5622 */ 5623 if (WR(q)->q_next != NULL) { 5624 /* This is a module close */ 5625 return (ip_modclose((ill_t *)q->q_ptr)); 5626 } 5627 5628 connp = q->q_ptr; 5629 ip_quiesce_conn(connp); 5630 5631 qprocsoff(q); 5632 5633 /* 5634 * Now we are truly single threaded on this stream, and can 5635 * delete the things hanging off the connp, and finally the connp. 5636 * We removed this connp from the fanout list, it cannot be 5637 * accessed thru the fanouts, and we already waited for the 5638 * conn_ref to drop to 0. We are already in close, so 5639 * there cannot be any other thread from the top. qprocsoff 5640 * has completed, and service has completed or won't run in 5641 * future. 5642 */ 5643 ASSERT(connp->conn_ref == 1); 5644 5645 /* 5646 * A conn which was previously marked as IPCL_UDP cannot 5647 * retain the flag because it would have been cleared by 5648 * udp_close(). 5649 */ 5650 ASSERT(!IPCL_IS_UDP(connp)); 5651 5652 if (connp->conn_latch != NULL) { 5653 IPLATCH_REFRELE(connp->conn_latch, connp->conn_netstack); 5654 connp->conn_latch = NULL; 5655 } 5656 if (connp->conn_policy != NULL) { 5657 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 5658 connp->conn_policy = NULL; 5659 } 5660 if (connp->conn_ipsec_opt_mp != NULL) { 5661 freemsg(connp->conn_ipsec_opt_mp); 5662 connp->conn_ipsec_opt_mp = NULL; 5663 } 5664 5665 inet_minor_free(ip_minor_arena, connp->conn_dev); 5666 5667 connp->conn_ref--; 5668 ipcl_conn_destroy(connp); 5669 5670 q->q_ptr = WR(q)->q_ptr = NULL; 5671 return (0); 5672 } 5673 5674 int 5675 ip_snmpmod_close(queue_t *q) 5676 { 5677 conn_t *connp = Q_TO_CONN(q); 5678 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5679 5680 qprocsoff(q); 5681 5682 if (connp->conn_flags & IPCL_UDPMOD) 5683 udp_close_free(connp); 5684 5685 if (connp->conn_cred != NULL) { 5686 crfree(connp->conn_cred); 5687 connp->conn_cred = NULL; 5688 } 5689 CONN_DEC_REF(connp); 5690 q->q_ptr = WR(q)->q_ptr = NULL; 5691 return (0); 5692 } 5693 5694 /* 5695 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5696 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5697 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5698 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5699 * queues as we never enqueue messages there and we don't handle any ioctls. 5700 * Everything else is freed. 5701 */ 5702 void 5703 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5704 { 5705 conn_t *connp = q->q_ptr; 5706 pfi_t setfn; 5707 pfi_t getfn; 5708 5709 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5710 5711 switch (DB_TYPE(mp)) { 5712 case M_PROTO: 5713 case M_PCPROTO: 5714 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5715 ((((union T_primitives *)mp->b_rptr)->type == 5716 T_SVR4_OPTMGMT_REQ) || 5717 (((union T_primitives *)mp->b_rptr)->type == 5718 T_OPTMGMT_REQ))) { 5719 /* 5720 * This is the only TPI primitive supported. Its 5721 * handling does not require tcp_t, but it does require 5722 * conn_t to check permissions. 5723 */ 5724 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5725 5726 if (connp->conn_flags & IPCL_TCPMOD) { 5727 setfn = tcp_snmp_set; 5728 getfn = tcp_snmp_get; 5729 } else { 5730 setfn = udp_snmp_set; 5731 getfn = udp_snmp_get; 5732 } 5733 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5734 freemsg(mp); 5735 return; 5736 } 5737 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5738 != NULL) 5739 qreply(q, mp); 5740 break; 5741 case M_FLUSH: 5742 case M_IOCTL: 5743 putnext(q, mp); 5744 break; 5745 default: 5746 freemsg(mp); 5747 break; 5748 } 5749 } 5750 5751 /* Return the IP checksum for the IP header at "iph". */ 5752 uint16_t 5753 ip_csum_hdr(ipha_t *ipha) 5754 { 5755 uint16_t *uph; 5756 uint32_t sum; 5757 int opt_len; 5758 5759 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5760 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5761 uph = (uint16_t *)ipha; 5762 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5763 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5764 if (opt_len > 0) { 5765 do { 5766 sum += uph[10]; 5767 sum += uph[11]; 5768 uph += 2; 5769 } while (--opt_len); 5770 } 5771 sum = (sum & 0xFFFF) + (sum >> 16); 5772 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5773 if (sum == 0xffff) 5774 sum = 0; 5775 return ((uint16_t)sum); 5776 } 5777 5778 /* 5779 * Called when the module is about to be unloaded 5780 */ 5781 void 5782 ip_ddi_destroy(void) 5783 { 5784 tnet_fini(); 5785 5786 sctp_ddi_g_destroy(); 5787 tcp_ddi_g_destroy(); 5788 ipsec_policy_g_destroy(); 5789 ipcl_g_destroy(); 5790 ip_net_g_destroy(); 5791 ip_ire_g_fini(); 5792 inet_minor_destroy(ip_minor_arena); 5793 5794 netstack_unregister(NS_IP); 5795 } 5796 5797 /* 5798 * First step in cleanup. 5799 */ 5800 /* ARGSUSED */ 5801 static void 5802 ip_stack_shutdown(netstackid_t stackid, void *arg) 5803 { 5804 ip_stack_t *ipst = (ip_stack_t *)arg; 5805 5806 #ifdef NS_DEBUG 5807 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5808 #endif 5809 5810 /* Get rid of loopback interfaces and their IREs */ 5811 ip_loopback_cleanup(ipst); 5812 } 5813 5814 /* 5815 * Free the IP stack instance. 5816 */ 5817 static void 5818 ip_stack_fini(netstackid_t stackid, void *arg) 5819 { 5820 ip_stack_t *ipst = (ip_stack_t *)arg; 5821 int ret; 5822 5823 #ifdef NS_DEBUG 5824 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5825 #endif 5826 ipv4_hook_destroy(ipst); 5827 ipv6_hook_destroy(ipst); 5828 ip_net_destroy(ipst); 5829 5830 rw_destroy(&ipst->ips_srcid_lock); 5831 5832 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5833 ipst->ips_ip_mibkp = NULL; 5834 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5835 ipst->ips_icmp_mibkp = NULL; 5836 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5837 ipst->ips_ip_kstat = NULL; 5838 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5839 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5840 ipst->ips_ip6_kstat = NULL; 5841 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5842 5843 nd_free(&ipst->ips_ip_g_nd); 5844 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5845 ipst->ips_param_arr = NULL; 5846 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5847 ipst->ips_ndp_arr = NULL; 5848 5849 ip_mrouter_stack_destroy(ipst); 5850 5851 mutex_destroy(&ipst->ips_ip_mi_lock); 5852 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5853 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5854 rw_destroy(&ipst->ips_ip_g_nd_lock); 5855 5856 ret = untimeout(ipst->ips_igmp_timeout_id); 5857 if (ret == -1) { 5858 ASSERT(ipst->ips_igmp_timeout_id == 0); 5859 } else { 5860 ASSERT(ipst->ips_igmp_timeout_id != 0); 5861 ipst->ips_igmp_timeout_id = 0; 5862 } 5863 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5864 if (ret == -1) { 5865 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5866 } else { 5867 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5868 ipst->ips_igmp_slowtimeout_id = 0; 5869 } 5870 ret = untimeout(ipst->ips_mld_timeout_id); 5871 if (ret == -1) { 5872 ASSERT(ipst->ips_mld_timeout_id == 0); 5873 } else { 5874 ASSERT(ipst->ips_mld_timeout_id != 0); 5875 ipst->ips_mld_timeout_id = 0; 5876 } 5877 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5878 if (ret == -1) { 5879 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5880 } else { 5881 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5882 ipst->ips_mld_slowtimeout_id = 0; 5883 } 5884 ret = untimeout(ipst->ips_ip_ire_expire_id); 5885 if (ret == -1) { 5886 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5887 } else { 5888 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5889 ipst->ips_ip_ire_expire_id = 0; 5890 } 5891 5892 mutex_destroy(&ipst->ips_igmp_timer_lock); 5893 mutex_destroy(&ipst->ips_mld_timer_lock); 5894 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5895 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5896 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5897 rw_destroy(&ipst->ips_ill_g_lock); 5898 5899 ip_ire_fini(ipst); 5900 ip6_asp_free(ipst); 5901 conn_drain_fini(ipst); 5902 ipcl_destroy(ipst); 5903 5904 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5905 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5906 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5907 ipst->ips_ndp4 = NULL; 5908 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5909 ipst->ips_ndp6 = NULL; 5910 5911 if (ipst->ips_loopback_ksp != NULL) { 5912 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5913 ipst->ips_loopback_ksp = NULL; 5914 } 5915 5916 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5917 ipst->ips_phyint_g_list = NULL; 5918 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5919 ipst->ips_ill_g_heads = NULL; 5920 5921 kmem_free(ipst, sizeof (*ipst)); 5922 } 5923 5924 /* 5925 * Called when the IP kernel module is loaded into the kernel 5926 */ 5927 void 5928 ip_ddi_init(void) 5929 { 5930 TCP6_MAJ = ddi_name_to_major(TCP6); 5931 TCP_MAJ = ddi_name_to_major(TCP); 5932 SCTP_MAJ = ddi_name_to_major(SCTP); 5933 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5934 5935 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5936 5937 /* 5938 * For IP and TCP the minor numbers should start from 2 since we have 4 5939 * initial devices: ip, ip6, tcp, tcp6. 5940 */ 5941 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5942 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5943 cmn_err(CE_PANIC, 5944 "ip_ddi_init: ip_minor_arena creation failed\n"); 5945 } 5946 5947 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5948 5949 ipcl_g_init(); 5950 ip_ire_g_init(); 5951 ip_net_g_init(); 5952 5953 /* 5954 * We want to be informed each time a stack is created or 5955 * destroyed in the kernel, so we can maintain the 5956 * set of udp_stack_t's. 5957 */ 5958 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5959 ip_stack_fini); 5960 5961 ipsec_policy_g_init(); 5962 tcp_ddi_g_init(); 5963 sctp_ddi_g_init(); 5964 5965 tnet_init(); 5966 } 5967 5968 /* 5969 * Initialize the IP stack instance. 5970 */ 5971 static void * 5972 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5973 { 5974 ip_stack_t *ipst; 5975 ipparam_t *pa; 5976 ipndp_t *na; 5977 5978 #ifdef NS_DEBUG 5979 printf("ip_stack_init(stack %d)\n", stackid); 5980 #endif 5981 5982 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5983 ipst->ips_netstack = ns; 5984 5985 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5986 KM_SLEEP); 5987 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5988 KM_SLEEP); 5989 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5990 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5991 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5992 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5993 5994 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5995 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5996 ipst->ips_igmp_deferred_next = INFINITY; 5997 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5998 ipst->ips_mld_deferred_next = INFINITY; 5999 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6000 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6001 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 6002 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 6003 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 6004 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 6005 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 6006 6007 ipcl_init(ipst); 6008 ip_ire_init(ipst); 6009 ip6_asp_init(ipst); 6010 ipif_init(ipst); 6011 conn_drain_init(ipst); 6012 ip_mrouter_stack_init(ipst); 6013 6014 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 6015 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 6016 6017 ipst->ips_ip_multirt_log_interval = 1000; 6018 6019 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 6020 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 6021 ipst->ips_ill_index = 1; 6022 6023 ipst->ips_saved_ip_g_forward = -1; 6024 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 6025 6026 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6027 ipst->ips_param_arr = pa; 6028 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6029 6030 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6031 ipst->ips_ndp_arr = na; 6032 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6033 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6034 (caddr_t)&ipst->ips_ip_g_forward; 6035 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6036 (caddr_t)&ipst->ips_ipv6_forward; 6037 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6038 "ip_cgtp_filter") == 0); 6039 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6040 (caddr_t)&ip_cgtp_filter; 6041 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 6042 "ipmp_hook_emulation") == 0); 6043 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 6044 (caddr_t)&ipst->ips_ipmp_hook_emulation; 6045 6046 (void) ip_param_register(&ipst->ips_ip_g_nd, 6047 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6048 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6049 6050 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6051 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6052 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6053 ipst->ips_ip6_kstat = 6054 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6055 6056 ipst->ips_ipmp_enable_failback = B_TRUE; 6057 6058 ipst->ips_ip_src_id = 1; 6059 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6060 6061 ip_net_init(ipst, ns); 6062 ipv4_hook_init(ipst); 6063 ipv6_hook_init(ipst); 6064 6065 return (ipst); 6066 } 6067 6068 /* 6069 * Allocate and initialize a DLPI template of the specified length. (May be 6070 * called as writer.) 6071 */ 6072 mblk_t * 6073 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6074 { 6075 mblk_t *mp; 6076 6077 mp = allocb(len, BPRI_MED); 6078 if (!mp) 6079 return (NULL); 6080 6081 /* 6082 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6083 * of which we don't seem to use) are sent with M_PCPROTO, and 6084 * that other DLPI are M_PROTO. 6085 */ 6086 if (prim == DL_INFO_REQ) { 6087 mp->b_datap->db_type = M_PCPROTO; 6088 } else { 6089 mp->b_datap->db_type = M_PROTO; 6090 } 6091 6092 mp->b_wptr = mp->b_rptr + len; 6093 bzero(mp->b_rptr, len); 6094 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6095 return (mp); 6096 } 6097 6098 const char * 6099 dlpi_prim_str(int prim) 6100 { 6101 switch (prim) { 6102 case DL_INFO_REQ: return ("DL_INFO_REQ"); 6103 case DL_INFO_ACK: return ("DL_INFO_ACK"); 6104 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 6105 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 6106 case DL_BIND_REQ: return ("DL_BIND_REQ"); 6107 case DL_BIND_ACK: return ("DL_BIND_ACK"); 6108 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 6109 case DL_OK_ACK: return ("DL_OK_ACK"); 6110 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 6111 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 6112 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 6113 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 6114 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 6115 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 6116 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 6117 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 6118 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 6119 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 6120 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 6121 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 6122 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 6123 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 6124 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 6125 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 6126 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 6127 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 6128 default: return ("<unknown primitive>"); 6129 } 6130 } 6131 6132 const char * 6133 dlpi_err_str(int err) 6134 { 6135 switch (err) { 6136 case DL_ACCESS: return ("DL_ACCESS"); 6137 case DL_BADADDR: return ("DL_BADADDR"); 6138 case DL_BADCORR: return ("DL_BADCORR"); 6139 case DL_BADDATA: return ("DL_BADDATA"); 6140 case DL_BADPPA: return ("DL_BADPPA"); 6141 case DL_BADPRIM: return ("DL_BADPRIM"); 6142 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 6143 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 6144 case DL_BADSAP: return ("DL_BADSAP"); 6145 case DL_BADTOKEN: return ("DL_BADTOKEN"); 6146 case DL_BOUND: return ("DL_BOUND"); 6147 case DL_INITFAILED: return ("DL_INITFAILED"); 6148 case DL_NOADDR: return ("DL_NOADDR"); 6149 case DL_NOTINIT: return ("DL_NOTINIT"); 6150 case DL_OUTSTATE: return ("DL_OUTSTATE"); 6151 case DL_SYSERR: return ("DL_SYSERR"); 6152 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 6153 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 6154 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 6155 case DL_TOOMANY: return ("DL_TOOMANY"); 6156 case DL_NOTENAB: return ("DL_NOTENAB"); 6157 case DL_BUSY: return ("DL_BUSY"); 6158 case DL_NOAUTO: return ("DL_NOAUTO"); 6159 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 6160 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 6161 case DL_XIDAUTO: return ("DL_XIDAUTO"); 6162 case DL_TESTAUTO: return ("DL_TESTAUTO"); 6163 case DL_PENDING: return ("DL_PENDING"); 6164 default: return ("<unknown error>"); 6165 } 6166 } 6167 6168 /* 6169 * Debug formatting routine. Returns a character string representation of the 6170 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6171 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6172 * 6173 * Once the ndd table-printing interfaces are removed, this can be changed to 6174 * standard dotted-decimal form. 6175 */ 6176 char * 6177 ip_dot_addr(ipaddr_t addr, char *buf) 6178 { 6179 uint8_t *ap = (uint8_t *)&addr; 6180 6181 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6182 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6183 return (buf); 6184 } 6185 6186 /* 6187 * Write the given MAC address as a printable string in the usual colon- 6188 * separated format. 6189 */ 6190 const char * 6191 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6192 { 6193 char *bp; 6194 6195 if (alen == 0 || buflen < 4) 6196 return ("?"); 6197 bp = buf; 6198 for (;;) { 6199 /* 6200 * If there are more MAC address bytes available, but we won't 6201 * have any room to print them, then add "..." to the string 6202 * instead. See below for the 'magic number' explanation. 6203 */ 6204 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6205 (void) strcpy(bp, "..."); 6206 break; 6207 } 6208 (void) sprintf(bp, "%02x", *addr++); 6209 bp += 2; 6210 if (--alen == 0) 6211 break; 6212 *bp++ = ':'; 6213 buflen -= 3; 6214 /* 6215 * At this point, based on the first 'if' statement above, 6216 * either alen == 1 and buflen >= 3, or alen > 1 and 6217 * buflen >= 4. The first case leaves room for the final "xx" 6218 * number and trailing NUL byte. The second leaves room for at 6219 * least "...". Thus the apparently 'magic' numbers chosen for 6220 * that statement. 6221 */ 6222 } 6223 return (buf); 6224 } 6225 6226 /* 6227 * Send an ICMP error after patching up the packet appropriately. Returns 6228 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6229 */ 6230 static boolean_t 6231 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6232 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6233 zoneid_t zoneid, ip_stack_t *ipst) 6234 { 6235 ipha_t *ipha; 6236 mblk_t *first_mp; 6237 boolean_t secure; 6238 unsigned char db_type; 6239 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6240 6241 first_mp = mp; 6242 if (mctl_present) { 6243 mp = mp->b_cont; 6244 secure = ipsec_in_is_secure(first_mp); 6245 ASSERT(mp != NULL); 6246 } else { 6247 /* 6248 * If this is an ICMP error being reported - which goes 6249 * up as M_CTLs, we need to convert them to M_DATA till 6250 * we finish checking with global policy because 6251 * ipsec_check_global_policy() assumes M_DATA as clear 6252 * and M_CTL as secure. 6253 */ 6254 db_type = DB_TYPE(mp); 6255 DB_TYPE(mp) = M_DATA; 6256 secure = B_FALSE; 6257 } 6258 /* 6259 * We are generating an icmp error for some inbound packet. 6260 * Called from all ip_fanout_(udp, tcp, proto) functions. 6261 * Before we generate an error, check with global policy 6262 * to see whether this is allowed to enter the system. As 6263 * there is no "conn", we are checking with global policy. 6264 */ 6265 ipha = (ipha_t *)mp->b_rptr; 6266 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6267 first_mp = ipsec_check_global_policy(first_mp, NULL, 6268 ipha, NULL, mctl_present, ipst->ips_netstack); 6269 if (first_mp == NULL) 6270 return (B_FALSE); 6271 } 6272 6273 if (!mctl_present) 6274 DB_TYPE(mp) = db_type; 6275 6276 if (flags & IP_FF_SEND_ICMP) { 6277 if (flags & IP_FF_HDR_COMPLETE) { 6278 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6279 freemsg(first_mp); 6280 return (B_TRUE); 6281 } 6282 } 6283 if (flags & IP_FF_CKSUM) { 6284 /* 6285 * Have to correct checksum since 6286 * the packet might have been 6287 * fragmented and the reassembly code in ip_rput 6288 * does not restore the IP checksum. 6289 */ 6290 ipha->ipha_hdr_checksum = 0; 6291 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6292 } 6293 switch (icmp_type) { 6294 case ICMP_DEST_UNREACHABLE: 6295 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6296 ipst); 6297 break; 6298 default: 6299 freemsg(first_mp); 6300 break; 6301 } 6302 } else { 6303 freemsg(first_mp); 6304 return (B_FALSE); 6305 } 6306 6307 return (B_TRUE); 6308 } 6309 6310 /* 6311 * Used to send an ICMP error message when a packet is received for 6312 * a protocol that is not supported. The mblk passed as argument 6313 * is consumed by this function. 6314 */ 6315 void 6316 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6317 ip_stack_t *ipst) 6318 { 6319 mblk_t *mp; 6320 ipha_t *ipha; 6321 ill_t *ill; 6322 ipsec_in_t *ii; 6323 6324 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6325 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6326 6327 mp = ipsec_mp->b_cont; 6328 ipsec_mp->b_cont = NULL; 6329 ipha = (ipha_t *)mp->b_rptr; 6330 /* Get ill from index in ipsec_in_t. */ 6331 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6332 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6333 ipst); 6334 if (ill != NULL) { 6335 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6336 if (ip_fanout_send_icmp(q, mp, flags, 6337 ICMP_DEST_UNREACHABLE, 6338 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6339 BUMP_MIB(ill->ill_ip_mib, 6340 ipIfStatsInUnknownProtos); 6341 } 6342 } else { 6343 if (ip_fanout_send_icmp_v6(q, mp, flags, 6344 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6345 0, B_FALSE, zoneid, ipst)) { 6346 BUMP_MIB(ill->ill_ip_mib, 6347 ipIfStatsInUnknownProtos); 6348 } 6349 } 6350 ill_refrele(ill); 6351 } else { /* re-link for the freemsg() below. */ 6352 ipsec_mp->b_cont = mp; 6353 } 6354 6355 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6356 freemsg(ipsec_mp); 6357 } 6358 6359 /* 6360 * See if the inbound datagram has had IPsec processing applied to it. 6361 */ 6362 boolean_t 6363 ipsec_in_is_secure(mblk_t *ipsec_mp) 6364 { 6365 ipsec_in_t *ii; 6366 6367 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6368 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6369 6370 if (ii->ipsec_in_loopback) { 6371 return (ii->ipsec_in_secure); 6372 } else { 6373 return (ii->ipsec_in_ah_sa != NULL || 6374 ii->ipsec_in_esp_sa != NULL || 6375 ii->ipsec_in_decaps); 6376 } 6377 } 6378 6379 /* 6380 * Handle protocols with which IP is less intimate. There 6381 * can be more than one stream bound to a particular 6382 * protocol. When this is the case, normally each one gets a copy 6383 * of any incoming packets. 6384 * 6385 * IPSEC NOTE : 6386 * 6387 * Don't allow a secure packet going up a non-secure connection. 6388 * We don't allow this because 6389 * 6390 * 1) Reply might go out in clear which will be dropped at 6391 * the sending side. 6392 * 2) If the reply goes out in clear it will give the 6393 * adversary enough information for getting the key in 6394 * most of the cases. 6395 * 6396 * Moreover getting a secure packet when we expect clear 6397 * implies that SA's were added without checking for 6398 * policy on both ends. This should not happen once ISAKMP 6399 * is used to negotiate SAs as SAs will be added only after 6400 * verifying the policy. 6401 * 6402 * NOTE : If the packet was tunneled and not multicast we only send 6403 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6404 * back to delivering packets to AF_INET6 raw sockets. 6405 * 6406 * IPQoS Notes: 6407 * Once we have determined the client, invoke IPPF processing. 6408 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6409 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6410 * ip_policy will be false. 6411 * 6412 * Zones notes: 6413 * Currently only applications in the global zone can create raw sockets for 6414 * protocols other than ICMP. So unlike the broadcast / multicast case of 6415 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6416 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6417 */ 6418 static void 6419 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6420 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6421 zoneid_t zoneid) 6422 { 6423 queue_t *rq; 6424 mblk_t *mp1, *first_mp1; 6425 uint_t protocol = ipha->ipha_protocol; 6426 ipaddr_t dst; 6427 boolean_t one_only; 6428 mblk_t *first_mp = mp; 6429 boolean_t secure; 6430 uint32_t ill_index; 6431 conn_t *connp, *first_connp, *next_connp; 6432 connf_t *connfp; 6433 boolean_t shared_addr; 6434 mib2_ipIfStatsEntry_t *mibptr; 6435 ip_stack_t *ipst = recv_ill->ill_ipst; 6436 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6437 6438 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6439 if (mctl_present) { 6440 mp = first_mp->b_cont; 6441 secure = ipsec_in_is_secure(first_mp); 6442 ASSERT(mp != NULL); 6443 } else { 6444 secure = B_FALSE; 6445 } 6446 dst = ipha->ipha_dst; 6447 /* 6448 * If the packet was tunneled and not multicast we only send to it 6449 * the first match. 6450 */ 6451 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6452 !CLASSD(dst)); 6453 6454 shared_addr = (zoneid == ALL_ZONES); 6455 if (shared_addr) { 6456 /* 6457 * We don't allow multilevel ports for raw IP, so no need to 6458 * check for that here. 6459 */ 6460 zoneid = tsol_packet_to_zoneid(mp); 6461 } 6462 6463 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6464 mutex_enter(&connfp->connf_lock); 6465 connp = connfp->connf_head; 6466 for (connp = connfp->connf_head; connp != NULL; 6467 connp = connp->conn_next) { 6468 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6469 zoneid) && 6470 (!is_system_labeled() || 6471 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6472 connp))) 6473 break; 6474 } 6475 6476 if (connp == NULL || connp->conn_upq == NULL) { 6477 /* 6478 * No one bound to these addresses. Is 6479 * there a client that wants all 6480 * unclaimed datagrams? 6481 */ 6482 mutex_exit(&connfp->connf_lock); 6483 /* 6484 * Check for IPPROTO_ENCAP... 6485 */ 6486 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6487 /* 6488 * If an IPsec mblk is here on a multicast 6489 * tunnel (using ip_mroute stuff), check policy here, 6490 * THEN ship off to ip_mroute_decap(). 6491 * 6492 * BTW, If I match a configured IP-in-IP 6493 * tunnel, this path will not be reached, and 6494 * ip_mroute_decap will never be called. 6495 */ 6496 first_mp = ipsec_check_global_policy(first_mp, connp, 6497 ipha, NULL, mctl_present, ipst->ips_netstack); 6498 if (first_mp != NULL) { 6499 if (mctl_present) 6500 freeb(first_mp); 6501 ip_mroute_decap(q, mp, ill); 6502 } /* Else we already freed everything! */ 6503 } else { 6504 /* 6505 * Otherwise send an ICMP protocol unreachable. 6506 */ 6507 if (ip_fanout_send_icmp(q, first_mp, flags, 6508 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6509 mctl_present, zoneid, ipst)) { 6510 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6511 } 6512 } 6513 return; 6514 } 6515 CONN_INC_REF(connp); 6516 first_connp = connp; 6517 6518 /* 6519 * Only send message to one tunnel driver by immediately 6520 * terminating the loop. 6521 */ 6522 connp = one_only ? NULL : connp->conn_next; 6523 6524 for (;;) { 6525 while (connp != NULL) { 6526 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6527 flags, zoneid) && 6528 (!is_system_labeled() || 6529 tsol_receive_local(mp, &dst, IPV4_VERSION, 6530 shared_addr, connp))) 6531 break; 6532 connp = connp->conn_next; 6533 } 6534 6535 /* 6536 * Copy the packet. 6537 */ 6538 if (connp == NULL || connp->conn_upq == NULL || 6539 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6540 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6541 /* 6542 * No more interested clients or memory 6543 * allocation failed 6544 */ 6545 connp = first_connp; 6546 break; 6547 } 6548 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6549 CONN_INC_REF(connp); 6550 mutex_exit(&connfp->connf_lock); 6551 rq = connp->conn_rq; 6552 if (!canputnext(rq)) { 6553 if (flags & IP_FF_RAWIP) { 6554 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6555 } else { 6556 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6557 } 6558 6559 freemsg(first_mp1); 6560 } else { 6561 /* 6562 * Don't enforce here if we're an actual tunnel - 6563 * let "tun" do it instead. 6564 */ 6565 if (!IPCL_IS_IPTUN(connp) && 6566 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6567 secure)) { 6568 first_mp1 = ipsec_check_inbound_policy 6569 (first_mp1, connp, ipha, NULL, 6570 mctl_present); 6571 } 6572 if (first_mp1 != NULL) { 6573 int in_flags = 0; 6574 /* 6575 * ip_fanout_proto also gets called from 6576 * icmp_inbound_error_fanout, in which case 6577 * the msg type is M_CTL. Don't add info 6578 * in this case for the time being. In future 6579 * when there is a need for knowing the 6580 * inbound iface index for ICMP error msgs, 6581 * then this can be changed. 6582 */ 6583 if (connp->conn_recvif) 6584 in_flags = IPF_RECVIF; 6585 /* 6586 * The ULP may support IP_RECVPKTINFO for both 6587 * IP v4 and v6 so pass the appropriate argument 6588 * based on conn IP version. 6589 */ 6590 if (connp->conn_ip_recvpktinfo) { 6591 if (connp->conn_af_isv6) { 6592 /* 6593 * V6 only needs index 6594 */ 6595 in_flags |= IPF_RECVIF; 6596 } else { 6597 /* 6598 * V4 needs index + 6599 * matching address. 6600 */ 6601 in_flags |= IPF_RECVADDR; 6602 } 6603 } 6604 if ((in_flags != 0) && 6605 (mp->b_datap->db_type != M_CTL)) { 6606 /* 6607 * the actual data will be 6608 * contained in b_cont upon 6609 * successful return of the 6610 * following call else 6611 * original mblk is returned 6612 */ 6613 ASSERT(recv_ill != NULL); 6614 mp1 = ip_add_info(mp1, recv_ill, 6615 in_flags, IPCL_ZONEID(connp), ipst); 6616 } 6617 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6618 if (mctl_present) 6619 freeb(first_mp1); 6620 putnext(rq, mp1); 6621 } 6622 } 6623 mutex_enter(&connfp->connf_lock); 6624 /* Follow the next pointer before releasing the conn. */ 6625 next_connp = connp->conn_next; 6626 CONN_DEC_REF(connp); 6627 connp = next_connp; 6628 } 6629 6630 /* Last one. Send it upstream. */ 6631 mutex_exit(&connfp->connf_lock); 6632 6633 /* 6634 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6635 * will be set to false. 6636 */ 6637 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6638 ill_index = ill->ill_phyint->phyint_ifindex; 6639 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6640 if (mp == NULL) { 6641 CONN_DEC_REF(connp); 6642 if (mctl_present) { 6643 freeb(first_mp); 6644 } 6645 return; 6646 } 6647 } 6648 6649 rq = connp->conn_rq; 6650 if (!canputnext(rq)) { 6651 if (flags & IP_FF_RAWIP) { 6652 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6653 } else { 6654 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6655 } 6656 6657 freemsg(first_mp); 6658 } else { 6659 if (IPCL_IS_IPTUN(connp)) { 6660 /* 6661 * Tunneled packet. We enforce policy in the tunnel 6662 * module itself. 6663 * 6664 * Send the WHOLE packet up (incl. IPSEC_IN) without 6665 * a policy check. 6666 */ 6667 putnext(rq, first_mp); 6668 CONN_DEC_REF(connp); 6669 return; 6670 } 6671 6672 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6673 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6674 ipha, NULL, mctl_present); 6675 } 6676 6677 if (first_mp != NULL) { 6678 int in_flags = 0; 6679 6680 /* 6681 * ip_fanout_proto also gets called 6682 * from icmp_inbound_error_fanout, in 6683 * which case the msg type is M_CTL. 6684 * Don't add info in this case for time 6685 * being. In future when there is a 6686 * need for knowing the inbound iface 6687 * index for ICMP error msgs, then this 6688 * can be changed 6689 */ 6690 if (connp->conn_recvif) 6691 in_flags = IPF_RECVIF; 6692 if (connp->conn_ip_recvpktinfo) { 6693 if (connp->conn_af_isv6) { 6694 /* 6695 * V6 only needs index 6696 */ 6697 in_flags |= IPF_RECVIF; 6698 } else { 6699 /* 6700 * V4 needs index + 6701 * matching address. 6702 */ 6703 in_flags |= IPF_RECVADDR; 6704 } 6705 } 6706 if ((in_flags != 0) && 6707 (mp->b_datap->db_type != M_CTL)) { 6708 6709 /* 6710 * the actual data will be contained in 6711 * b_cont upon successful return 6712 * of the following call else original 6713 * mblk is returned 6714 */ 6715 ASSERT(recv_ill != NULL); 6716 mp = ip_add_info(mp, recv_ill, 6717 in_flags, IPCL_ZONEID(connp), ipst); 6718 } 6719 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6720 putnext(rq, mp); 6721 if (mctl_present) 6722 freeb(first_mp); 6723 } 6724 } 6725 CONN_DEC_REF(connp); 6726 } 6727 6728 /* 6729 * Fanout for TCP packets 6730 * The caller puts <fport, lport> in the ports parameter. 6731 * 6732 * IPQoS Notes 6733 * Before sending it to the client, invoke IPPF processing. 6734 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6735 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6736 * ip_policy is false. 6737 */ 6738 static void 6739 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6740 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6741 { 6742 mblk_t *first_mp; 6743 boolean_t secure; 6744 uint32_t ill_index; 6745 int ip_hdr_len; 6746 tcph_t *tcph; 6747 boolean_t syn_present = B_FALSE; 6748 conn_t *connp; 6749 ip_stack_t *ipst = recv_ill->ill_ipst; 6750 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6751 6752 ASSERT(recv_ill != NULL); 6753 6754 first_mp = mp; 6755 if (mctl_present) { 6756 ASSERT(first_mp->b_datap->db_type == M_CTL); 6757 mp = first_mp->b_cont; 6758 secure = ipsec_in_is_secure(first_mp); 6759 ASSERT(mp != NULL); 6760 } else { 6761 secure = B_FALSE; 6762 } 6763 6764 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6765 6766 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6767 zoneid, ipst)) == NULL) { 6768 /* 6769 * No connected connection or listener. Send a 6770 * TH_RST via tcp_xmit_listeners_reset. 6771 */ 6772 6773 /* Initiate IPPf processing, if needed. */ 6774 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6775 uint32_t ill_index; 6776 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6777 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6778 if (first_mp == NULL) 6779 return; 6780 } 6781 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6782 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6783 zoneid)); 6784 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6785 ipst->ips_netstack->netstack_tcp); 6786 return; 6787 } 6788 6789 /* 6790 * Allocate the SYN for the TCP connection here itself 6791 */ 6792 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6793 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6794 if (IPCL_IS_TCP(connp)) { 6795 squeue_t *sqp; 6796 6797 /* 6798 * For fused tcp loopback, assign the eager's 6799 * squeue to be that of the active connect's. 6800 * Note that we don't check for IP_FF_LOOPBACK 6801 * here since this routine gets called only 6802 * for loopback (unlike the IPv6 counterpart). 6803 */ 6804 ASSERT(Q_TO_CONN(q) != NULL); 6805 if (do_tcp_fusion && 6806 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6807 !secure && 6808 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6809 IPCL_IS_TCP(Q_TO_CONN(q))) { 6810 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6811 sqp = Q_TO_CONN(q)->conn_sqp; 6812 } else { 6813 sqp = IP_SQUEUE_GET(lbolt); 6814 } 6815 6816 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6817 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6818 syn_present = B_TRUE; 6819 } 6820 } 6821 6822 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6823 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6824 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6825 if ((flags & TH_RST) || (flags & TH_URG)) { 6826 CONN_DEC_REF(connp); 6827 freemsg(first_mp); 6828 return; 6829 } 6830 if (flags & TH_ACK) { 6831 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6832 ipst->ips_netstack->netstack_tcp); 6833 CONN_DEC_REF(connp); 6834 return; 6835 } 6836 6837 CONN_DEC_REF(connp); 6838 freemsg(first_mp); 6839 return; 6840 } 6841 6842 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6843 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6844 NULL, mctl_present); 6845 if (first_mp == NULL) { 6846 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6847 CONN_DEC_REF(connp); 6848 return; 6849 } 6850 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6851 ASSERT(syn_present); 6852 if (mctl_present) { 6853 ASSERT(first_mp != mp); 6854 first_mp->b_datap->db_struioflag |= 6855 STRUIO_POLICY; 6856 } else { 6857 ASSERT(first_mp == mp); 6858 mp->b_datap->db_struioflag &= 6859 ~STRUIO_EAGER; 6860 mp->b_datap->db_struioflag |= 6861 STRUIO_POLICY; 6862 } 6863 } else { 6864 /* 6865 * Discard first_mp early since we're dealing with a 6866 * fully-connected conn_t and tcp doesn't do policy in 6867 * this case. 6868 */ 6869 if (mctl_present) { 6870 freeb(first_mp); 6871 mctl_present = B_FALSE; 6872 } 6873 first_mp = mp; 6874 } 6875 } 6876 6877 /* 6878 * Initiate policy processing here if needed. If we get here from 6879 * icmp_inbound_error_fanout, ip_policy is false. 6880 */ 6881 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6882 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6883 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6884 if (mp == NULL) { 6885 CONN_DEC_REF(connp); 6886 if (mctl_present) 6887 freeb(first_mp); 6888 return; 6889 } else if (mctl_present) { 6890 ASSERT(first_mp != mp); 6891 first_mp->b_cont = mp; 6892 } else { 6893 first_mp = mp; 6894 } 6895 } 6896 6897 6898 6899 /* Handle socket options. */ 6900 if (!syn_present && 6901 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6902 /* Add header */ 6903 ASSERT(recv_ill != NULL); 6904 /* 6905 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6906 * IPF_RECVIF. 6907 */ 6908 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6909 ipst); 6910 if (mp == NULL) { 6911 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6912 CONN_DEC_REF(connp); 6913 if (mctl_present) 6914 freeb(first_mp); 6915 return; 6916 } else if (mctl_present) { 6917 /* 6918 * ip_add_info might return a new mp. 6919 */ 6920 ASSERT(first_mp != mp); 6921 first_mp->b_cont = mp; 6922 } else { 6923 first_mp = mp; 6924 } 6925 } 6926 6927 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6928 if (IPCL_IS_TCP(connp)) { 6929 (*ip_input_proc)(connp->conn_sqp, first_mp, 6930 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6931 } else { 6932 putnext(connp->conn_rq, first_mp); 6933 CONN_DEC_REF(connp); 6934 } 6935 } 6936 6937 /* 6938 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6939 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6940 * Caller is responsible for dropping references to the conn, and freeing 6941 * first_mp. 6942 * 6943 * IPQoS Notes 6944 * Before sending it to the client, invoke IPPF processing. Policy processing 6945 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6946 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6947 * ip_wput_local, ip_policy is false. 6948 */ 6949 static void 6950 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6951 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6952 boolean_t ip_policy) 6953 { 6954 boolean_t mctl_present = (first_mp != NULL); 6955 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6956 uint32_t ill_index; 6957 ip_stack_t *ipst = recv_ill->ill_ipst; 6958 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6959 6960 ASSERT(ill != NULL); 6961 6962 if (mctl_present) 6963 first_mp->b_cont = mp; 6964 else 6965 first_mp = mp; 6966 6967 if (CONN_UDP_FLOWCTLD(connp)) { 6968 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 6969 freemsg(first_mp); 6970 return; 6971 } 6972 6973 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6974 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6975 NULL, mctl_present); 6976 if (first_mp == NULL) { 6977 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 6978 return; /* Freed by ipsec_check_inbound_policy(). */ 6979 } 6980 } 6981 if (mctl_present) 6982 freeb(first_mp); 6983 6984 /* Handle options. */ 6985 if (connp->conn_recvif) 6986 in_flags = IPF_RECVIF; 6987 /* 6988 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 6989 * passed to ip_add_info is based on IP version of connp. 6990 */ 6991 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6992 if (connp->conn_af_isv6) { 6993 /* 6994 * V6 only needs index 6995 */ 6996 in_flags |= IPF_RECVIF; 6997 } else { 6998 /* 6999 * V4 needs index + matching address. 7000 */ 7001 in_flags |= IPF_RECVADDR; 7002 } 7003 } 7004 7005 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7006 in_flags |= IPF_RECVSLLA; 7007 7008 /* 7009 * Initiate IPPF processing here, if needed. Note first_mp won't be 7010 * freed if the packet is dropped. The caller will do so. 7011 */ 7012 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7013 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7014 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7015 if (mp == NULL) { 7016 return; 7017 } 7018 } 7019 if ((in_flags != 0) && 7020 (mp->b_datap->db_type != M_CTL)) { 7021 /* 7022 * The actual data will be contained in b_cont 7023 * upon successful return of the following call 7024 * else original mblk is returned 7025 */ 7026 ASSERT(recv_ill != NULL); 7027 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7028 ipst); 7029 } 7030 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7031 /* Send it upstream */ 7032 CONN_UDP_RECV(connp, mp); 7033 } 7034 7035 /* 7036 * Fanout for UDP packets. 7037 * The caller puts <fport, lport> in the ports parameter. 7038 * 7039 * If SO_REUSEADDR is set all multicast and broadcast packets 7040 * will be delivered to all streams bound to the same port. 7041 * 7042 * Zones notes: 7043 * Multicast and broadcast packets will be distributed to streams in all zones. 7044 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7045 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7046 * packets. To maintain this behavior with multiple zones, the conns are grouped 7047 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7048 * each zone. If unset, all the following conns in the same zone are skipped. 7049 */ 7050 static void 7051 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7052 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7053 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7054 { 7055 uint32_t dstport, srcport; 7056 ipaddr_t dst; 7057 mblk_t *first_mp; 7058 boolean_t secure; 7059 in6_addr_t v6src; 7060 conn_t *connp; 7061 connf_t *connfp; 7062 conn_t *first_connp; 7063 conn_t *next_connp; 7064 mblk_t *mp1, *first_mp1; 7065 ipaddr_t src; 7066 zoneid_t last_zoneid; 7067 boolean_t reuseaddr; 7068 boolean_t shared_addr; 7069 ip_stack_t *ipst; 7070 7071 ASSERT(recv_ill != NULL); 7072 ipst = recv_ill->ill_ipst; 7073 7074 first_mp = mp; 7075 if (mctl_present) { 7076 mp = first_mp->b_cont; 7077 first_mp->b_cont = NULL; 7078 secure = ipsec_in_is_secure(first_mp); 7079 ASSERT(mp != NULL); 7080 } else { 7081 first_mp = NULL; 7082 secure = B_FALSE; 7083 } 7084 7085 /* Extract ports in net byte order */ 7086 dstport = htons(ntohl(ports) & 0xFFFF); 7087 srcport = htons(ntohl(ports) >> 16); 7088 dst = ipha->ipha_dst; 7089 src = ipha->ipha_src; 7090 7091 shared_addr = (zoneid == ALL_ZONES); 7092 if (shared_addr) { 7093 /* 7094 * No need to handle exclusive-stack zones since ALL_ZONES 7095 * only applies to the shared stack. 7096 */ 7097 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7098 if (zoneid == ALL_ZONES) 7099 zoneid = tsol_packet_to_zoneid(mp); 7100 } 7101 7102 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7103 mutex_enter(&connfp->connf_lock); 7104 connp = connfp->connf_head; 7105 if (!broadcast && !CLASSD(dst)) { 7106 /* 7107 * Not broadcast or multicast. Send to the one (first) 7108 * client we find. No need to check conn_wantpacket() 7109 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7110 * IPv4 unicast packets. 7111 */ 7112 while ((connp != NULL) && 7113 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7114 !IPCL_ZONE_MATCH(connp, zoneid))) { 7115 connp = connp->conn_next; 7116 } 7117 7118 if (connp == NULL || connp->conn_upq == NULL) 7119 goto notfound; 7120 7121 if (is_system_labeled() && 7122 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7123 connp)) 7124 goto notfound; 7125 7126 CONN_INC_REF(connp); 7127 mutex_exit(&connfp->connf_lock); 7128 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7129 flags, recv_ill, ip_policy); 7130 IP_STAT(ipst, ip_udp_fannorm); 7131 CONN_DEC_REF(connp); 7132 return; 7133 } 7134 7135 /* 7136 * Broadcast and multicast case 7137 * 7138 * Need to check conn_wantpacket(). 7139 * If SO_REUSEADDR has been set on the first we send the 7140 * packet to all clients that have joined the group and 7141 * match the port. 7142 */ 7143 7144 while (connp != NULL) { 7145 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7146 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7147 (!is_system_labeled() || 7148 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7149 connp))) 7150 break; 7151 connp = connp->conn_next; 7152 } 7153 7154 if (connp == NULL || connp->conn_upq == NULL) 7155 goto notfound; 7156 7157 first_connp = connp; 7158 /* 7159 * When SO_REUSEADDR is not set, send the packet only to the first 7160 * matching connection in its zone by keeping track of the zoneid. 7161 */ 7162 reuseaddr = first_connp->conn_reuseaddr; 7163 last_zoneid = first_connp->conn_zoneid; 7164 7165 CONN_INC_REF(connp); 7166 connp = connp->conn_next; 7167 for (;;) { 7168 while (connp != NULL) { 7169 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7170 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7171 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7172 (!is_system_labeled() || 7173 tsol_receive_local(mp, &dst, IPV4_VERSION, 7174 shared_addr, connp))) 7175 break; 7176 connp = connp->conn_next; 7177 } 7178 /* 7179 * Just copy the data part alone. The mctl part is 7180 * needed just for verifying policy and it is never 7181 * sent up. 7182 */ 7183 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7184 ((mp1 = copymsg(mp)) == NULL))) { 7185 /* 7186 * No more interested clients or memory 7187 * allocation failed 7188 */ 7189 connp = first_connp; 7190 break; 7191 } 7192 if (connp->conn_zoneid != last_zoneid) { 7193 /* 7194 * Update the zoneid so that the packet isn't sent to 7195 * any more conns in the same zone unless SO_REUSEADDR 7196 * is set. 7197 */ 7198 reuseaddr = connp->conn_reuseaddr; 7199 last_zoneid = connp->conn_zoneid; 7200 } 7201 if (first_mp != NULL) { 7202 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7203 ipsec_info_type == IPSEC_IN); 7204 first_mp1 = ipsec_in_tag(first_mp, NULL, 7205 ipst->ips_netstack); 7206 if (first_mp1 == NULL) { 7207 freemsg(mp1); 7208 connp = first_connp; 7209 break; 7210 } 7211 } else { 7212 first_mp1 = NULL; 7213 } 7214 CONN_INC_REF(connp); 7215 mutex_exit(&connfp->connf_lock); 7216 /* 7217 * IPQoS notes: We don't send the packet for policy 7218 * processing here, will do it for the last one (below). 7219 * i.e. we do it per-packet now, but if we do policy 7220 * processing per-conn, then we would need to do it 7221 * here too. 7222 */ 7223 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7224 ipha, flags, recv_ill, B_FALSE); 7225 mutex_enter(&connfp->connf_lock); 7226 /* Follow the next pointer before releasing the conn. */ 7227 next_connp = connp->conn_next; 7228 IP_STAT(ipst, ip_udp_fanmb); 7229 CONN_DEC_REF(connp); 7230 connp = next_connp; 7231 } 7232 7233 /* Last one. Send it upstream. */ 7234 mutex_exit(&connfp->connf_lock); 7235 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7236 recv_ill, ip_policy); 7237 IP_STAT(ipst, ip_udp_fanmb); 7238 CONN_DEC_REF(connp); 7239 return; 7240 7241 notfound: 7242 7243 mutex_exit(&connfp->connf_lock); 7244 IP_STAT(ipst, ip_udp_fanothers); 7245 /* 7246 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7247 * have already been matched above, since they live in the IPv4 7248 * fanout tables. This implies we only need to 7249 * check for IPv6 in6addr_any endpoints here. 7250 * Thus we compare using ipv6_all_zeros instead of the destination 7251 * address, except for the multicast group membership lookup which 7252 * uses the IPv4 destination. 7253 */ 7254 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7255 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7256 mutex_enter(&connfp->connf_lock); 7257 connp = connfp->connf_head; 7258 if (!broadcast && !CLASSD(dst)) { 7259 while (connp != NULL) { 7260 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7261 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7262 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7263 !connp->conn_ipv6_v6only) 7264 break; 7265 connp = connp->conn_next; 7266 } 7267 7268 if (connp != NULL && is_system_labeled() && 7269 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7270 connp)) 7271 connp = NULL; 7272 7273 if (connp == NULL || connp->conn_upq == NULL) { 7274 /* 7275 * No one bound to this port. Is 7276 * there a client that wants all 7277 * unclaimed datagrams? 7278 */ 7279 mutex_exit(&connfp->connf_lock); 7280 7281 if (mctl_present) 7282 first_mp->b_cont = mp; 7283 else 7284 first_mp = mp; 7285 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7286 connf_head != NULL) { 7287 ip_fanout_proto(q, first_mp, ill, ipha, 7288 flags | IP_FF_RAWIP, mctl_present, 7289 ip_policy, recv_ill, zoneid); 7290 } else { 7291 if (ip_fanout_send_icmp(q, first_mp, flags, 7292 ICMP_DEST_UNREACHABLE, 7293 ICMP_PORT_UNREACHABLE, 7294 mctl_present, zoneid, ipst)) { 7295 BUMP_MIB(ill->ill_ip_mib, 7296 udpIfStatsNoPorts); 7297 } 7298 } 7299 return; 7300 } 7301 7302 CONN_INC_REF(connp); 7303 mutex_exit(&connfp->connf_lock); 7304 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7305 flags, recv_ill, ip_policy); 7306 CONN_DEC_REF(connp); 7307 return; 7308 } 7309 /* 7310 * IPv4 multicast packet being delivered to an AF_INET6 7311 * in6addr_any endpoint. 7312 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7313 * and not conn_wantpacket_v6() since any multicast membership is 7314 * for an IPv4-mapped multicast address. 7315 * The packet is sent to all clients in all zones that have joined the 7316 * group and match the port. 7317 */ 7318 while (connp != NULL) { 7319 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7320 srcport, v6src) && 7321 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7322 (!is_system_labeled() || 7323 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7324 connp))) 7325 break; 7326 connp = connp->conn_next; 7327 } 7328 7329 if (connp == NULL || connp->conn_upq == NULL) { 7330 /* 7331 * No one bound to this port. Is 7332 * there a client that wants all 7333 * unclaimed datagrams? 7334 */ 7335 mutex_exit(&connfp->connf_lock); 7336 7337 if (mctl_present) 7338 first_mp->b_cont = mp; 7339 else 7340 first_mp = mp; 7341 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7342 NULL) { 7343 ip_fanout_proto(q, first_mp, ill, ipha, 7344 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7345 recv_ill, zoneid); 7346 } else { 7347 /* 7348 * We used to attempt to send an icmp error here, but 7349 * since this is known to be a multicast packet 7350 * and we don't send icmp errors in response to 7351 * multicast, just drop the packet and give up sooner. 7352 */ 7353 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7354 freemsg(first_mp); 7355 } 7356 return; 7357 } 7358 7359 first_connp = connp; 7360 7361 CONN_INC_REF(connp); 7362 connp = connp->conn_next; 7363 for (;;) { 7364 while (connp != NULL) { 7365 if (IPCL_UDP_MATCH_V6(connp, dstport, 7366 ipv6_all_zeros, srcport, v6src) && 7367 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7368 (!is_system_labeled() || 7369 tsol_receive_local(mp, &dst, IPV4_VERSION, 7370 shared_addr, connp))) 7371 break; 7372 connp = connp->conn_next; 7373 } 7374 /* 7375 * Just copy the data part alone. The mctl part is 7376 * needed just for verifying policy and it is never 7377 * sent up. 7378 */ 7379 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7380 ((mp1 = copymsg(mp)) == NULL))) { 7381 /* 7382 * No more intested clients or memory 7383 * allocation failed 7384 */ 7385 connp = first_connp; 7386 break; 7387 } 7388 if (first_mp != NULL) { 7389 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7390 ipsec_info_type == IPSEC_IN); 7391 first_mp1 = ipsec_in_tag(first_mp, NULL, 7392 ipst->ips_netstack); 7393 if (first_mp1 == NULL) { 7394 freemsg(mp1); 7395 connp = first_connp; 7396 break; 7397 } 7398 } else { 7399 first_mp1 = NULL; 7400 } 7401 CONN_INC_REF(connp); 7402 mutex_exit(&connfp->connf_lock); 7403 /* 7404 * IPQoS notes: We don't send the packet for policy 7405 * processing here, will do it for the last one (below). 7406 * i.e. we do it per-packet now, but if we do policy 7407 * processing per-conn, then we would need to do it 7408 * here too. 7409 */ 7410 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7411 ipha, flags, recv_ill, B_FALSE); 7412 mutex_enter(&connfp->connf_lock); 7413 /* Follow the next pointer before releasing the conn. */ 7414 next_connp = connp->conn_next; 7415 CONN_DEC_REF(connp); 7416 connp = next_connp; 7417 } 7418 7419 /* Last one. Send it upstream. */ 7420 mutex_exit(&connfp->connf_lock); 7421 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7422 recv_ill, ip_policy); 7423 CONN_DEC_REF(connp); 7424 } 7425 7426 /* 7427 * Complete the ip_wput header so that it 7428 * is possible to generate ICMP 7429 * errors. 7430 */ 7431 int 7432 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7433 { 7434 ire_t *ire; 7435 7436 if (ipha->ipha_src == INADDR_ANY) { 7437 ire = ire_lookup_local(zoneid, ipst); 7438 if (ire == NULL) { 7439 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7440 return (1); 7441 } 7442 ipha->ipha_src = ire->ire_addr; 7443 ire_refrele(ire); 7444 } 7445 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7446 ipha->ipha_hdr_checksum = 0; 7447 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7448 return (0); 7449 } 7450 7451 /* 7452 * Nobody should be sending 7453 * packets up this stream 7454 */ 7455 static void 7456 ip_lrput(queue_t *q, mblk_t *mp) 7457 { 7458 mblk_t *mp1; 7459 7460 switch (mp->b_datap->db_type) { 7461 case M_FLUSH: 7462 /* Turn around */ 7463 if (*mp->b_rptr & FLUSHW) { 7464 *mp->b_rptr &= ~FLUSHR; 7465 qreply(q, mp); 7466 return; 7467 } 7468 break; 7469 } 7470 /* Could receive messages that passed through ar_rput */ 7471 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7472 mp1->b_prev = mp1->b_next = NULL; 7473 freemsg(mp); 7474 } 7475 7476 /* Nobody should be sending packets down this stream */ 7477 /* ARGSUSED */ 7478 void 7479 ip_lwput(queue_t *q, mblk_t *mp) 7480 { 7481 freemsg(mp); 7482 } 7483 7484 /* 7485 * Move the first hop in any source route to ipha_dst and remove that part of 7486 * the source route. Called by other protocols. Errors in option formatting 7487 * are ignored - will be handled by ip_wput_options Return the final 7488 * destination (either ipha_dst or the last entry in a source route.) 7489 */ 7490 ipaddr_t 7491 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7492 { 7493 ipoptp_t opts; 7494 uchar_t *opt; 7495 uint8_t optval; 7496 uint8_t optlen; 7497 ipaddr_t dst; 7498 int i; 7499 ire_t *ire; 7500 ip_stack_t *ipst = ns->netstack_ip; 7501 7502 ip2dbg(("ip_massage_options\n")); 7503 dst = ipha->ipha_dst; 7504 for (optval = ipoptp_first(&opts, ipha); 7505 optval != IPOPT_EOL; 7506 optval = ipoptp_next(&opts)) { 7507 opt = opts.ipoptp_cur; 7508 switch (optval) { 7509 uint8_t off; 7510 case IPOPT_SSRR: 7511 case IPOPT_LSRR: 7512 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7513 ip1dbg(("ip_massage_options: bad src route\n")); 7514 break; 7515 } 7516 optlen = opts.ipoptp_len; 7517 off = opt[IPOPT_OFFSET]; 7518 off--; 7519 redo_srr: 7520 if (optlen < IP_ADDR_LEN || 7521 off > optlen - IP_ADDR_LEN) { 7522 /* End of source route */ 7523 ip1dbg(("ip_massage_options: end of SR\n")); 7524 break; 7525 } 7526 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7527 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7528 ntohl(dst))); 7529 /* 7530 * Check if our address is present more than 7531 * once as consecutive hops in source route. 7532 * XXX verify per-interface ip_forwarding 7533 * for source route? 7534 */ 7535 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7536 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7537 if (ire != NULL) { 7538 ire_refrele(ire); 7539 off += IP_ADDR_LEN; 7540 goto redo_srr; 7541 } 7542 if (dst == htonl(INADDR_LOOPBACK)) { 7543 ip1dbg(("ip_massage_options: loopback addr in " 7544 "source route!\n")); 7545 break; 7546 } 7547 /* 7548 * Update ipha_dst to be the first hop and remove the 7549 * first hop from the source route (by overwriting 7550 * part of the option with NOP options). 7551 */ 7552 ipha->ipha_dst = dst; 7553 /* Put the last entry in dst */ 7554 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7555 3; 7556 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7557 7558 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7559 ntohl(dst))); 7560 /* Move down and overwrite */ 7561 opt[IP_ADDR_LEN] = opt[0]; 7562 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7563 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7564 for (i = 0; i < IP_ADDR_LEN; i++) 7565 opt[i] = IPOPT_NOP; 7566 break; 7567 } 7568 } 7569 return (dst); 7570 } 7571 7572 /* 7573 * This function's job is to forward data to the reverse tunnel (FA->HA) 7574 * after doing a few checks. It is assumed that the incoming interface 7575 * of the packet is always different than the outgoing interface and the 7576 * ire_type of the found ire has to be a non-resolver type. 7577 * 7578 * IPQoS notes 7579 * IP policy is invoked twice for a forwarded packet, once on the read side 7580 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 7581 * enabled. 7582 */ 7583 static void 7584 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 7585 { 7586 ipha_t *ipha; 7587 queue_t *q; 7588 uint32_t pkt_len; 7589 #define rptr ((uchar_t *)ipha) 7590 uint32_t sum; 7591 uint32_t max_frag; 7592 mblk_t *first_mp; 7593 uint32_t ill_index; 7594 ipxmit_state_t pktxmit_state; 7595 ill_t *out_ill; 7596 ip_stack_t *ipst = in_ill->ill_ipst; 7597 7598 ASSERT(ire != NULL); 7599 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 7600 ASSERT(ire->ire_stq != NULL); 7601 7602 /* Initiate read side IPPF processing */ 7603 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 7604 ill_index = in_ill->ill_phyint->phyint_ifindex; 7605 ip_process(IPP_FWD_IN, &mp, ill_index); 7606 if (mp == NULL) { 7607 ip2dbg(("ip_mrtun_forward: inbound pkt " 7608 "dropped during IPPF processing\n")); 7609 return; 7610 } 7611 } 7612 7613 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 7614 ILLF_ROUTER) == 0) || 7615 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 7616 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsForwProhibits); 7617 ip0dbg(("ip_mrtun_forward: Can't forward :" 7618 "forwarding is not turned on\n")); 7619 goto drop_pkt; 7620 } 7621 7622 /* 7623 * Don't forward if the interface is down 7624 */ 7625 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 7626 goto discard_pkt; 7627 } 7628 7629 ipha = (ipha_t *)mp->b_rptr; 7630 pkt_len = ntohs(ipha->ipha_length); 7631 /* Adjust the checksum to reflect the ttl decrement. */ 7632 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 7633 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 7634 if (ipha->ipha_ttl-- <= 1) { 7635 if (ip_csum_hdr(ipha)) { 7636 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInCksumErrs); 7637 goto drop_pkt; 7638 } 7639 q = ire->ire_stq; 7640 if ((first_mp = allocb(sizeof (ipsec_info_t), 7641 BPRI_HI)) == NULL) { 7642 goto discard_pkt; 7643 } 7644 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsForwProhibits); 7645 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7646 /* Sent by forwarding path, and router is global zone */ 7647 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED, 7648 GLOBAL_ZONEID, ipst); 7649 return; 7650 } 7651 7652 /* Get the ill_index of the ILL */ 7653 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 7654 7655 /* 7656 * This location is chosen for the placement of the forwarding hook 7657 * because at this point we know that we have a path out for the 7658 * packet but haven't yet applied any logic (such as fragmenting) 7659 * that happen as part of transmitting the packet out. 7660 */ 7661 out_ill = ire->ire_ipif->ipif_ill; 7662 7663 DTRACE_PROBE4(ip4__forwarding__start, 7664 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7665 7666 FW_HOOKS(ipst->ips_ip4_forwarding_event, 7667 ipst->ips_ipv4firewall_forwarding, 7668 in_ill, out_ill, ipha, mp, mp, ipst); 7669 7670 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 7671 7672 if (mp == NULL) 7673 return; 7674 pkt_len = ntohs(ipha->ipha_length); 7675 7676 /* 7677 * ip_mrtun_forward is only used by foreign agent to reverse 7678 * tunnel the incoming packet. So it does not do any option 7679 * processing for source routing. 7680 */ 7681 max_frag = ire->ire_max_frag; 7682 if (pkt_len > max_frag) { 7683 /* 7684 * It needs fragging on its way out. We haven't 7685 * verified the header checksum yet. Since we 7686 * are going to put a surely good checksum in the 7687 * outgoing header, we have to make sure that it 7688 * was good coming in. 7689 */ 7690 if (ip_csum_hdr(ipha)) { 7691 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInCksumErrs); 7692 goto drop_pkt; 7693 } 7694 7695 /* Initiate write side IPPF processing */ 7696 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 7697 ip_process(IPP_FWD_OUT, &mp, ill_index); 7698 if (mp == NULL) { 7699 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 7700 "dropped/deferred during ip policy "\ 7701 "processing\n")); 7702 return; 7703 } 7704 } 7705 if ((first_mp = allocb(sizeof (ipsec_info_t), 7706 BPRI_HI)) == NULL) { 7707 goto discard_pkt; 7708 } 7709 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7710 mp = first_mp; 7711 7712 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 7713 return; 7714 } 7715 7716 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 7717 7718 ASSERT(ire->ire_ipif != NULL); 7719 7720 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 7721 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7722 FW_HOOKS(ipst->ips_ip4_physical_out_event, 7723 ipst->ips_ipv4firewall_physical_out, 7724 NULL, out_ill, ipha, mp, mp, ipst); 7725 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 7726 if (mp == NULL) 7727 return; 7728 7729 /* Now send the packet to the tunnel interface */ 7730 mp->b_prev = SET_BPREV_FLAG(IPP_FWD_OUT); 7731 q = ire->ire_stq; 7732 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_FALSE); 7733 if ((pktxmit_state == SEND_FAILED) || 7734 (pktxmit_state == LLHDR_RESLV_FAILED)) { 7735 ip2dbg(("ip_mrtun_forward: failed to send packet to ill %p\n", 7736 q->q_ptr)); 7737 } 7738 7739 return; 7740 discard_pkt: 7741 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInDiscards); 7742 drop_pkt:; 7743 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 7744 freemsg(mp); 7745 #undef rptr 7746 } 7747 7748 /* 7749 * Fills the ipsec_out_t data structure with appropriate fields and 7750 * prepends it to mp which contains the IP hdr + data that was meant 7751 * to be forwarded. Please note that ipsec_out_info data structure 7752 * is used here to communicate the outgoing ill path at ip_wput() 7753 * for the ICMP error packet. This has nothing to do with ipsec IP 7754 * security. ipsec_out_t is really used to pass the info to the module 7755 * IP where this information cannot be extracted from conn. 7756 * This functions is called by ip_mrtun_forward(). 7757 */ 7758 void 7759 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 7760 { 7761 ipsec_out_t *io; 7762 7763 ASSERT(xmit_ill != NULL); 7764 first_mp->b_datap->db_type = M_CTL; 7765 first_mp->b_wptr += sizeof (ipsec_info_t); 7766 /* 7767 * This is to pass info to ip_wput in absence of conn. 7768 * ipsec_out_secure will be B_FALSE because of this. 7769 * Thus ipsec_out_secure being B_FALSE indicates that 7770 * this is not IPSEC security related information. 7771 */ 7772 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 7773 io = (ipsec_out_t *)first_mp->b_rptr; 7774 io->ipsec_out_type = IPSEC_OUT; 7775 io->ipsec_out_len = sizeof (ipsec_out_t); 7776 first_mp->b_cont = mp; 7777 io->ipsec_out_ill_index = 7778 xmit_ill->ill_phyint->phyint_ifindex; 7779 io->ipsec_out_xmit_if = B_TRUE; 7780 io->ipsec_out_ns = xmit_ill->ill_ipst->ips_netstack; 7781 } 7782 7783 /* 7784 * Return the network mask 7785 * associated with the specified address. 7786 */ 7787 ipaddr_t 7788 ip_net_mask(ipaddr_t addr) 7789 { 7790 uchar_t *up = (uchar_t *)&addr; 7791 ipaddr_t mask = 0; 7792 uchar_t *maskp = (uchar_t *)&mask; 7793 7794 #if defined(__i386) || defined(__amd64) 7795 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7796 #endif 7797 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7798 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7799 #endif 7800 if (CLASSD(addr)) { 7801 maskp[0] = 0xF0; 7802 return (mask); 7803 } 7804 if (addr == 0) 7805 return (0); 7806 maskp[0] = 0xFF; 7807 if ((up[0] & 0x80) == 0) 7808 return (mask); 7809 7810 maskp[1] = 0xFF; 7811 if ((up[0] & 0xC0) == 0x80) 7812 return (mask); 7813 7814 maskp[2] = 0xFF; 7815 if ((up[0] & 0xE0) == 0xC0) 7816 return (mask); 7817 7818 /* Must be experimental or multicast, indicate as much */ 7819 return ((ipaddr_t)0); 7820 } 7821 7822 /* 7823 * Select an ill for the packet by considering load spreading across 7824 * a different ill in the group if dst_ill is part of some group. 7825 */ 7826 ill_t * 7827 ip_newroute_get_dst_ill(ill_t *dst_ill) 7828 { 7829 ill_t *ill; 7830 7831 /* 7832 * We schedule irrespective of whether the source address is 7833 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7834 */ 7835 ill = illgrp_scheduler(dst_ill); 7836 if (ill == NULL) 7837 return (NULL); 7838 7839 /* 7840 * For groups with names ip_sioctl_groupname ensures that all 7841 * ills are of same type. For groups without names, ifgrp_insert 7842 * ensures this. 7843 */ 7844 ASSERT(dst_ill->ill_type == ill->ill_type); 7845 7846 return (ill); 7847 } 7848 7849 /* 7850 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7851 */ 7852 ill_t * 7853 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7854 ip_stack_t *ipst) 7855 { 7856 ill_t *ret_ill; 7857 7858 ASSERT(ifindex != 0); 7859 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7860 ipst); 7861 if (ret_ill == NULL || 7862 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7863 if (isv6) { 7864 if (ill != NULL) { 7865 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7866 } else { 7867 BUMP_MIB(&ipst->ips_ip6_mib, 7868 ipIfStatsOutDiscards); 7869 } 7870 ip1dbg(("ip_grab_attach_ill (IPv6): " 7871 "bad ifindex %d.\n", ifindex)); 7872 } else { 7873 if (ill != NULL) { 7874 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7875 } else { 7876 BUMP_MIB(&ipst->ips_ip_mib, 7877 ipIfStatsOutDiscards); 7878 } 7879 ip1dbg(("ip_grab_attach_ill (IPv4): " 7880 "bad ifindex %d.\n", ifindex)); 7881 } 7882 if (ret_ill != NULL) 7883 ill_refrele(ret_ill); 7884 freemsg(first_mp); 7885 return (NULL); 7886 } 7887 7888 return (ret_ill); 7889 } 7890 7891 /* 7892 * IPv4 - 7893 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7894 * out a packet to a destination address for which we do not have specific 7895 * (or sufficient) routing information. 7896 * 7897 * NOTE : These are the scopes of some of the variables that point at IRE, 7898 * which needs to be followed while making any future modifications 7899 * to avoid memory leaks. 7900 * 7901 * - ire and sire are the entries looked up initially by 7902 * ire_ftable_lookup. 7903 * - ipif_ire is used to hold the interface ire associated with 7904 * the new cache ire. But it's scope is limited, so we always REFRELE 7905 * it before branching out to error paths. 7906 * - save_ire is initialized before ire_create, so that ire returned 7907 * by ire_create will not over-write the ire. We REFRELE save_ire 7908 * before breaking out of the switch. 7909 * 7910 * Thus on failures, we have to REFRELE only ire and sire, if they 7911 * are not NULL. 7912 */ 7913 void 7914 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp, 7915 zoneid_t zoneid, ip_stack_t *ipst) 7916 { 7917 areq_t *areq; 7918 ipaddr_t gw = 0; 7919 ire_t *ire = NULL; 7920 mblk_t *res_mp; 7921 ipaddr_t *addrp; 7922 ipaddr_t nexthop_addr; 7923 ipif_t *src_ipif = NULL; 7924 ill_t *dst_ill = NULL; 7925 ipha_t *ipha; 7926 ire_t *sire = NULL; 7927 mblk_t *first_mp; 7928 ire_t *save_ire; 7929 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7930 ushort_t ire_marks = 0; 7931 boolean_t mctl_present; 7932 ipsec_out_t *io; 7933 mblk_t *saved_mp; 7934 ire_t *first_sire = NULL; 7935 mblk_t *copy_mp = NULL; 7936 mblk_t *xmit_mp = NULL; 7937 ipaddr_t save_dst; 7938 uint32_t multirt_flags = 7939 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7940 boolean_t multirt_is_resolvable; 7941 boolean_t multirt_resolve_next; 7942 boolean_t do_attach_ill = B_FALSE; 7943 boolean_t ip_nexthop = B_FALSE; 7944 tsol_ire_gw_secattr_t *attrp = NULL; 7945 tsol_gcgrp_t *gcgrp = NULL; 7946 tsol_gcgrp_addr_t ga; 7947 7948 if (ip_debug > 2) { 7949 /* ip1dbg */ 7950 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7951 } 7952 7953 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7954 if (mctl_present) { 7955 io = (ipsec_out_t *)first_mp->b_rptr; 7956 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7957 ASSERT(zoneid == io->ipsec_out_zoneid); 7958 ASSERT(zoneid != ALL_ZONES); 7959 } 7960 7961 ipha = (ipha_t *)mp->b_rptr; 7962 7963 /* All multicast lookups come through ip_newroute_ipif() */ 7964 if (CLASSD(dst)) { 7965 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7966 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7967 freemsg(first_mp); 7968 return; 7969 } 7970 7971 if (mctl_present && io->ipsec_out_attach_if) { 7972 /* ip_grab_attach_ill returns a held ill */ 7973 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7974 io->ipsec_out_ill_index, B_FALSE, ipst); 7975 7976 /* Failure case frees things for us. */ 7977 if (attach_ill == NULL) 7978 return; 7979 7980 /* 7981 * Check if we need an ire that will not be 7982 * looked up by anybody else i.e. HIDDEN. 7983 */ 7984 if (ill_is_probeonly(attach_ill)) 7985 ire_marks = IRE_MARK_HIDDEN; 7986 } 7987 if (mctl_present && io->ipsec_out_ip_nexthop) { 7988 ip_nexthop = B_TRUE; 7989 nexthop_addr = io->ipsec_out_nexthop_addr; 7990 } 7991 /* 7992 * If this IRE is created for forwarding or it is not for 7993 * traffic for congestion controlled protocols, mark it as temporary. 7994 */ 7995 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7996 ire_marks |= IRE_MARK_TEMPORARY; 7997 7998 /* 7999 * Get what we can from ire_ftable_lookup which will follow an IRE 8000 * chain until it gets the most specific information available. 8001 * For example, we know that there is no IRE_CACHE for this dest, 8002 * but there may be an IRE_OFFSUBNET which specifies a gateway. 8003 * ire_ftable_lookup will look up the gateway, etc. 8004 * Check if in_ill != NULL. If it is true, the packet must be 8005 * from an incoming interface where RTA_SRCIFP is set. 8006 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 8007 * to the destination, of equal netmask length in the forward table, 8008 * will be recursively explored. If no information is available 8009 * for the final gateway of that route, we force the returned ire 8010 * to be equal to sire using MATCH_IRE_PARENT. 8011 * At least, in this case we have a starting point (in the buckets) 8012 * to look for other routes to the destination in the forward table. 8013 * This is actually used only for multirouting, where a list 8014 * of routes has to be processed in sequence. 8015 * 8016 * In the process of coming up with the most specific information, 8017 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 8018 * for the gateway (i.e., one for which the ire_nce->nce_state is 8019 * not yet ND_REACHABLE, and is in the middle of arp resolution). 8020 * Two caveats when handling incomplete ire's in ip_newroute: 8021 * - we should be careful when accessing its ire_nce (specifically 8022 * the nce_res_mp) ast it might change underneath our feet, and, 8023 * - not all legacy code path callers are prepared to handle 8024 * incomplete ire's, so we should not create/add incomplete 8025 * ire_cache entries here. (See discussion about temporary solution 8026 * further below). 8027 * 8028 * In order to minimize packet dropping, and to preserve existing 8029 * behavior, we treat this case as if there were no IRE_CACHE for the 8030 * gateway, and instead use the IF_RESOLVER ire to send out 8031 * another request to ARP (this is achieved by passing the 8032 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 8033 * arp response comes back in ip_wput_nondata, we will create 8034 * a per-dst ire_cache that has an ND_COMPLETE ire. 8035 * 8036 * Note that this is a temporary solution; the correct solution is 8037 * to create an incomplete per-dst ire_cache entry, and send the 8038 * packet out when the gw's nce is resolved. In order to achieve this, 8039 * all packet processing must have been completed prior to calling 8040 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 8041 * to be modified to accomodate this solution. 8042 */ 8043 if (in_ill != NULL) { 8044 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 8045 in_ill, MATCH_IRE_TYPE); 8046 } else if (ip_nexthop) { 8047 /* 8048 * The first time we come here, we look for an IRE_INTERFACE 8049 * entry for the specified nexthop, set the dst to be the 8050 * nexthop address and create an IRE_CACHE entry for the 8051 * nexthop. The next time around, we are able to find an 8052 * IRE_CACHE entry for the nexthop, set the gateway to be the 8053 * nexthop address and create an IRE_CACHE entry for the 8054 * destination address via the specified nexthop. 8055 */ 8056 ire = ire_cache_lookup(nexthop_addr, zoneid, 8057 MBLK_GETLABEL(mp), ipst); 8058 if (ire != NULL) { 8059 gw = nexthop_addr; 8060 ire_marks |= IRE_MARK_PRIVATE_ADDR; 8061 } else { 8062 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 8063 IRE_INTERFACE, NULL, NULL, zoneid, 0, 8064 MBLK_GETLABEL(mp), 8065 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 8066 ipst); 8067 if (ire != NULL) { 8068 dst = nexthop_addr; 8069 } 8070 } 8071 } else if (attach_ill == NULL) { 8072 ire = ire_ftable_lookup(dst, 0, 0, 0, 8073 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 8074 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 8075 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 8076 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 8077 ipst); 8078 } else { 8079 /* 8080 * attach_ill is set only for communicating with 8081 * on-link hosts. So, don't look for DEFAULT. 8082 */ 8083 ipif_t *attach_ipif; 8084 8085 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 8086 if (attach_ipif == NULL) { 8087 ill_refrele(attach_ill); 8088 goto icmp_err_ret; 8089 } 8090 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 8091 &sire, zoneid, 0, MBLK_GETLABEL(mp), 8092 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 8093 MATCH_IRE_SECATTR, ipst); 8094 ipif_refrele(attach_ipif); 8095 } 8096 ip3dbg(("ip_newroute: ire_ftable_lookup() " 8097 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 8098 8099 /* 8100 * This loop is run only once in most cases. 8101 * We loop to resolve further routes only when the destination 8102 * can be reached through multiple RTF_MULTIRT-flagged ires. 8103 */ 8104 do { 8105 /* Clear the previous iteration's values */ 8106 if (src_ipif != NULL) { 8107 ipif_refrele(src_ipif); 8108 src_ipif = NULL; 8109 } 8110 if (dst_ill != NULL) { 8111 ill_refrele(dst_ill); 8112 dst_ill = NULL; 8113 } 8114 8115 multirt_resolve_next = B_FALSE; 8116 /* 8117 * We check if packets have to be multirouted. 8118 * In this case, given the current <ire, sire> couple, 8119 * we look for the next suitable <ire, sire>. 8120 * This check is done in ire_multirt_lookup(), 8121 * which applies various criteria to find the next route 8122 * to resolve. ire_multirt_lookup() leaves <ire, sire> 8123 * unchanged if it detects it has not been tried yet. 8124 */ 8125 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8126 ip3dbg(("ip_newroute: starting next_resolution " 8127 "with first_mp %p, tag %d\n", 8128 (void *)first_mp, 8129 MULTIRT_DEBUG_TAGGED(first_mp))); 8130 8131 ASSERT(sire != NULL); 8132 multirt_is_resolvable = 8133 ire_multirt_lookup(&ire, &sire, multirt_flags, 8134 MBLK_GETLABEL(mp), ipst); 8135 8136 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8137 "ire %p, sire %p\n", 8138 multirt_is_resolvable, 8139 (void *)ire, (void *)sire)); 8140 8141 if (!multirt_is_resolvable) { 8142 /* 8143 * No more multirt route to resolve; give up 8144 * (all routes resolved or no more 8145 * resolvable routes). 8146 */ 8147 if (ire != NULL) { 8148 ire_refrele(ire); 8149 ire = NULL; 8150 } 8151 } else { 8152 ASSERT(sire != NULL); 8153 ASSERT(ire != NULL); 8154 /* 8155 * We simply use first_sire as a flag that 8156 * indicates if a resolvable multirt route 8157 * has already been found. 8158 * If it is not the case, we may have to send 8159 * an ICMP error to report that the 8160 * destination is unreachable. 8161 * We do not IRE_REFHOLD first_sire. 8162 */ 8163 if (first_sire == NULL) { 8164 first_sire = sire; 8165 } 8166 } 8167 } 8168 if (ire == NULL) { 8169 if (ip_debug > 3) { 8170 /* ip2dbg */ 8171 pr_addr_dbg("ip_newroute: " 8172 "can't resolve %s\n", AF_INET, &dst); 8173 } 8174 ip3dbg(("ip_newroute: " 8175 "ire %p, sire %p, first_sire %p\n", 8176 (void *)ire, (void *)sire, (void *)first_sire)); 8177 8178 if (sire != NULL) { 8179 ire_refrele(sire); 8180 sire = NULL; 8181 } 8182 8183 if (first_sire != NULL) { 8184 /* 8185 * At least one multirt route has been found 8186 * in the same call to ip_newroute(); 8187 * there is no need to report an ICMP error. 8188 * first_sire was not IRE_REFHOLDed. 8189 */ 8190 MULTIRT_DEBUG_UNTAG(first_mp); 8191 freemsg(first_mp); 8192 return; 8193 } 8194 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8195 RTA_DST, ipst); 8196 if (attach_ill != NULL) 8197 ill_refrele(attach_ill); 8198 goto icmp_err_ret; 8199 } 8200 8201 /* 8202 * When RTA_SRCIFP is used to add a route, then an interface 8203 * route is added in the source interface's routing table. 8204 * If the outgoing interface of this route is of type 8205 * IRE_IF_RESOLVER, then upon creation of the ire, 8206 * ire_nce->nce_res_mp is set to NULL. 8207 * Later, when this route is first used for forwarding 8208 * a packet, ip_newroute() is called 8209 * to resolve the hardware address of the outgoing ipif. 8210 * We do not come here for IRE_IF_NORESOLVER entries in the 8211 * source interface based table. We only come here if the 8212 * outgoing interface is a resolver interface and we don't 8213 * have the ire_nce->nce_res_mp information yet. 8214 * If in_ill is not null that means it is called from 8215 * ip_rput. 8216 */ 8217 8218 ASSERT(ire->ire_in_ill == NULL || 8219 (ire->ire_type == IRE_IF_RESOLVER && 8220 ire->ire_nce != NULL && ire->ire_nce->nce_res_mp == NULL)); 8221 8222 /* 8223 * Verify that the returned IRE does not have either 8224 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8225 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8226 */ 8227 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8228 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8229 if (attach_ill != NULL) 8230 ill_refrele(attach_ill); 8231 goto icmp_err_ret; 8232 } 8233 /* 8234 * Increment the ire_ob_pkt_count field for ire if it is an 8235 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8236 * increment the same for the parent IRE, sire, if it is some 8237 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST 8238 * and HOST_REDIRECT). 8239 */ 8240 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8241 UPDATE_OB_PKT_COUNT(ire); 8242 ire->ire_last_used_time = lbolt; 8243 } 8244 8245 if (sire != NULL) { 8246 gw = sire->ire_gateway_addr; 8247 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8248 IRE_INTERFACE)) == 0); 8249 UPDATE_OB_PKT_COUNT(sire); 8250 sire->ire_last_used_time = lbolt; 8251 } 8252 /* 8253 * We have a route to reach the destination. 8254 * 8255 * 1) If the interface is part of ill group, try to get a new 8256 * ill taking load spreading into account. 8257 * 8258 * 2) After selecting the ill, get a source address that 8259 * might create good inbound load spreading. 8260 * ipif_select_source does this for us. 8261 * 8262 * If the application specified the ill (ifindex), we still 8263 * load spread. Only if the packets needs to go out 8264 * specifically on a given ill e.g. binding to 8265 * IPIF_NOFAILOVER address, then we don't try to use a 8266 * different ill for load spreading. 8267 */ 8268 if (attach_ill == NULL) { 8269 /* 8270 * Don't perform outbound load spreading in the 8271 * case of an RTF_MULTIRT route, as we actually 8272 * typically want to replicate outgoing packets 8273 * through particular interfaces. 8274 */ 8275 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8276 dst_ill = ire->ire_ipif->ipif_ill; 8277 /* for uniformity */ 8278 ill_refhold(dst_ill); 8279 } else { 8280 /* 8281 * If we are here trying to create an IRE_CACHE 8282 * for an offlink destination and have the 8283 * IRE_CACHE for the next hop and the latter is 8284 * using virtual IP source address selection i.e 8285 * it's ire->ire_ipif is pointing to a virtual 8286 * network interface (vni) then 8287 * ip_newroute_get_dst_ll() will return the vni 8288 * interface as the dst_ill. Since the vni is 8289 * virtual i.e not associated with any physical 8290 * interface, it cannot be the dst_ill, hence 8291 * in such a case call ip_newroute_get_dst_ll() 8292 * with the stq_ill instead of the ire_ipif ILL. 8293 * The function returns a refheld ill. 8294 */ 8295 if ((ire->ire_type == IRE_CACHE) && 8296 IS_VNI(ire->ire_ipif->ipif_ill)) 8297 dst_ill = ip_newroute_get_dst_ill( 8298 ire->ire_stq->q_ptr); 8299 else 8300 dst_ill = ip_newroute_get_dst_ill( 8301 ire->ire_ipif->ipif_ill); 8302 } 8303 if (dst_ill == NULL) { 8304 if (ip_debug > 2) { 8305 pr_addr_dbg("ip_newroute: " 8306 "no dst ill for dst" 8307 " %s\n", AF_INET, &dst); 8308 } 8309 goto icmp_err_ret; 8310 } 8311 } else { 8312 dst_ill = ire->ire_ipif->ipif_ill; 8313 /* for uniformity */ 8314 ill_refhold(dst_ill); 8315 /* 8316 * We should have found a route matching ill as we 8317 * called ire_ftable_lookup with MATCH_IRE_ILL. 8318 * Rather than asserting, when there is a mismatch, 8319 * we just drop the packet. 8320 */ 8321 if (dst_ill != attach_ill) { 8322 ip0dbg(("ip_newroute: Packet dropped as " 8323 "IPIF_NOFAILOVER ill is %s, " 8324 "ire->ire_ipif->ipif_ill is %s\n", 8325 attach_ill->ill_name, 8326 dst_ill->ill_name)); 8327 ill_refrele(attach_ill); 8328 goto icmp_err_ret; 8329 } 8330 } 8331 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8332 if (attach_ill != NULL) { 8333 ill_refrele(attach_ill); 8334 attach_ill = NULL; 8335 do_attach_ill = B_TRUE; 8336 } 8337 ASSERT(dst_ill != NULL); 8338 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8339 8340 /* 8341 * Pick the best source address from dst_ill. 8342 * 8343 * 1) If it is part of a multipathing group, we would 8344 * like to spread the inbound packets across different 8345 * interfaces. ipif_select_source picks a random source 8346 * across the different ills in the group. 8347 * 8348 * 2) If it is not part of a multipathing group, we try 8349 * to pick the source address from the destination 8350 * route. Clustering assumes that when we have multiple 8351 * prefixes hosted on an interface, the prefix of the 8352 * source address matches the prefix of the destination 8353 * route. We do this only if the address is not 8354 * DEPRECATED. 8355 * 8356 * 3) If the conn is in a different zone than the ire, we 8357 * need to pick a source address from the right zone. 8358 * 8359 * NOTE : If we hit case (1) above, the prefix of the source 8360 * address picked may not match the prefix of the 8361 * destination routes prefix as ipif_select_source 8362 * does not look at "dst" while picking a source 8363 * address. 8364 * If we want the same behavior as (2), we will need 8365 * to change the behavior of ipif_select_source. 8366 */ 8367 ASSERT(src_ipif == NULL); 8368 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8369 /* 8370 * The RTF_SETSRC flag is set in the parent ire (sire). 8371 * Check that the ipif matching the requested source 8372 * address still exists. 8373 */ 8374 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8375 zoneid, NULL, NULL, NULL, NULL, ipst); 8376 } 8377 if (src_ipif == NULL) { 8378 ire_marks |= IRE_MARK_USESRC_CHECK; 8379 if ((dst_ill->ill_group != NULL) || 8380 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8381 (connp != NULL && ire->ire_zoneid != zoneid && 8382 ire->ire_zoneid != ALL_ZONES) || 8383 (dst_ill->ill_usesrc_ifindex != 0)) { 8384 /* 8385 * If the destination is reachable via a 8386 * given gateway, the selected source address 8387 * should be in the same subnet as the gateway. 8388 * Otherwise, the destination is not reachable. 8389 * 8390 * If there are no interfaces on the same subnet 8391 * as the destination, ipif_select_source gives 8392 * first non-deprecated interface which might be 8393 * on a different subnet than the gateway. 8394 * This is not desirable. Hence pass the dst_ire 8395 * source address to ipif_select_source. 8396 * It is sure that the destination is reachable 8397 * with the dst_ire source address subnet. 8398 * So passing dst_ire source address to 8399 * ipif_select_source will make sure that the 8400 * selected source will be on the same subnet 8401 * as dst_ire source address. 8402 */ 8403 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8404 src_ipif = ipif_select_source(dst_ill, saddr, 8405 zoneid); 8406 if (src_ipif == NULL) { 8407 if (ip_debug > 2) { 8408 pr_addr_dbg("ip_newroute: " 8409 "no src for dst %s ", 8410 AF_INET, &dst); 8411 printf("through interface %s\n", 8412 dst_ill->ill_name); 8413 } 8414 goto icmp_err_ret; 8415 } 8416 } else { 8417 src_ipif = ire->ire_ipif; 8418 ASSERT(src_ipif != NULL); 8419 /* hold src_ipif for uniformity */ 8420 ipif_refhold(src_ipif); 8421 } 8422 } 8423 8424 /* 8425 * Assign a source address while we have the conn. 8426 * We can't have ip_wput_ire pick a source address when the 8427 * packet returns from arp since we need to look at 8428 * conn_unspec_src and conn_zoneid, and we lose the conn when 8429 * going through arp. 8430 * 8431 * NOTE : ip_newroute_v6 does not have this piece of code as 8432 * it uses ip6i to store this information. 8433 */ 8434 if (ipha->ipha_src == INADDR_ANY && 8435 (connp == NULL || !connp->conn_unspec_src)) { 8436 ipha->ipha_src = src_ipif->ipif_src_addr; 8437 } 8438 if (ip_debug > 3) { 8439 /* ip2dbg */ 8440 pr_addr_dbg("ip_newroute: first hop %s\n", 8441 AF_INET, &gw); 8442 } 8443 ip2dbg(("\tire type %s (%d)\n", 8444 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8445 8446 /* 8447 * The TTL of multirouted packets is bounded by the 8448 * ip_multirt_ttl ndd variable. 8449 */ 8450 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8451 /* Force TTL of multirouted packets */ 8452 if ((ipst->ips_ip_multirt_ttl > 0) && 8453 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8454 ip2dbg(("ip_newroute: forcing multirt TTL " 8455 "to %d (was %d), dst 0x%08x\n", 8456 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8457 ntohl(sire->ire_addr))); 8458 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8459 } 8460 } 8461 /* 8462 * At this point in ip_newroute(), ire is either the 8463 * IRE_CACHE of the next-hop gateway for an off-subnet 8464 * destination or an IRE_INTERFACE type that should be used 8465 * to resolve an on-subnet destination or an on-subnet 8466 * next-hop gateway. 8467 * 8468 * In the IRE_CACHE case, we have the following : 8469 * 8470 * 1) src_ipif - used for getting a source address. 8471 * 8472 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8473 * means packets using this IRE_CACHE will go out on 8474 * dst_ill. 8475 * 8476 * 3) The IRE sire will point to the prefix that is the 8477 * longest matching route for the destination. These 8478 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8479 * 8480 * The newly created IRE_CACHE entry for the off-subnet 8481 * destination is tied to both the prefix route and the 8482 * interface route used to resolve the next-hop gateway 8483 * via the ire_phandle and ire_ihandle fields, 8484 * respectively. 8485 * 8486 * In the IRE_INTERFACE case, we have the following : 8487 * 8488 * 1) src_ipif - used for getting a source address. 8489 * 8490 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8491 * means packets using the IRE_CACHE that we will build 8492 * here will go out on dst_ill. 8493 * 8494 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8495 * to be created will only be tied to the IRE_INTERFACE 8496 * that was derived from the ire_ihandle field. 8497 * 8498 * If sire is non-NULL, it means the destination is 8499 * off-link and we will first create the IRE_CACHE for the 8500 * gateway. Next time through ip_newroute, we will create 8501 * the IRE_CACHE for the final destination as described 8502 * above. 8503 * 8504 * In both cases, after the current resolution has been 8505 * completed (or possibly initialised, in the IRE_INTERFACE 8506 * case), the loop may be re-entered to attempt the resolution 8507 * of another RTF_MULTIRT route. 8508 * 8509 * When an IRE_CACHE entry for the off-subnet destination is 8510 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8511 * for further processing in emission loops. 8512 */ 8513 save_ire = ire; 8514 switch (ire->ire_type) { 8515 case IRE_CACHE: { 8516 ire_t *ipif_ire; 8517 mblk_t *ire_fp_mp; 8518 8519 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8520 if (gw == 0) 8521 gw = ire->ire_gateway_addr; 8522 /* 8523 * We need 3 ire's to create a new cache ire for an 8524 * off-link destination from the cache ire of the 8525 * gateway. 8526 * 8527 * 1. The prefix ire 'sire' (Note that this does 8528 * not apply to the conn_nexthop_set case) 8529 * 2. The cache ire of the gateway 'ire' 8530 * 3. The interface ire 'ipif_ire' 8531 * 8532 * We have (1) and (2). We lookup (3) below. 8533 * 8534 * If there is no interface route to the gateway, 8535 * it is a race condition, where we found the cache 8536 * but the interface route has been deleted. 8537 */ 8538 if (ip_nexthop) { 8539 ipif_ire = ire_ihandle_lookup_onlink(ire); 8540 } else { 8541 ipif_ire = 8542 ire_ihandle_lookup_offlink(ire, sire); 8543 } 8544 if (ipif_ire == NULL) { 8545 ip1dbg(("ip_newroute: " 8546 "ire_ihandle_lookup_offlink failed\n")); 8547 goto icmp_err_ret; 8548 } 8549 /* 8550 * XXX We are using the same res_mp 8551 * (DL_UNITDATA_REQ) though the save_ire is not 8552 * pointing at the same ill. 8553 * This is incorrect. We need to send it up to the 8554 * resolver to get the right res_mp. For ethernets 8555 * this may be okay (ill_type == DL_ETHER). 8556 */ 8557 res_mp = save_ire->ire_nce->nce_res_mp; 8558 ire_fp_mp = NULL; 8559 /* 8560 * save_ire's nce_fp_mp can't change since it is 8561 * not an IRE_MIPRTUN or IRE_BROADCAST 8562 * LOCK_IRE_FP_MP does not do any useful work in 8563 * the case of IRE_CACHE. So we don't use it below. 8564 */ 8565 if (save_ire->ire_stq == dst_ill->ill_wq) 8566 ire_fp_mp = save_ire->ire_nce->nce_fp_mp; 8567 8568 /* 8569 * Check cached gateway IRE for any security 8570 * attributes; if found, associate the gateway 8571 * credentials group to the destination IRE. 8572 */ 8573 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8574 mutex_enter(&attrp->igsa_lock); 8575 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8576 GCGRP_REFHOLD(gcgrp); 8577 mutex_exit(&attrp->igsa_lock); 8578 } 8579 8580 ire = ire_create( 8581 (uchar_t *)&dst, /* dest address */ 8582 (uchar_t *)&ip_g_all_ones, /* mask */ 8583 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8584 (uchar_t *)&gw, /* gateway address */ 8585 NULL, 8586 &save_ire->ire_max_frag, 8587 ire_fp_mp, /* Fast Path header */ 8588 dst_ill->ill_rq, /* recv-from queue */ 8589 dst_ill->ill_wq, /* send-to queue */ 8590 IRE_CACHE, /* IRE type */ 8591 res_mp, 8592 src_ipif, 8593 in_ill, /* incoming ill */ 8594 (sire != NULL) ? 8595 sire->ire_mask : 0, /* Parent mask */ 8596 (sire != NULL) ? 8597 sire->ire_phandle : 0, /* Parent handle */ 8598 ipif_ire->ire_ihandle, /* Interface handle */ 8599 (sire != NULL) ? (sire->ire_flags & 8600 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8601 (sire != NULL) ? 8602 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8603 NULL, 8604 gcgrp, 8605 ipst); 8606 8607 if (ire == NULL) { 8608 if (gcgrp != NULL) { 8609 GCGRP_REFRELE(gcgrp); 8610 gcgrp = NULL; 8611 } 8612 ire_refrele(ipif_ire); 8613 ire_refrele(save_ire); 8614 break; 8615 } 8616 8617 /* reference now held by IRE */ 8618 gcgrp = NULL; 8619 8620 ire->ire_marks |= ire_marks; 8621 8622 /* 8623 * Prevent sire and ipif_ire from getting deleted. 8624 * The newly created ire is tied to both of them via 8625 * the phandle and ihandle respectively. 8626 */ 8627 if (sire != NULL) { 8628 IRB_REFHOLD(sire->ire_bucket); 8629 /* Has it been removed already ? */ 8630 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8631 IRB_REFRELE(sire->ire_bucket); 8632 ire_refrele(ipif_ire); 8633 ire_refrele(save_ire); 8634 break; 8635 } 8636 } 8637 8638 IRB_REFHOLD(ipif_ire->ire_bucket); 8639 /* Has it been removed already ? */ 8640 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8641 IRB_REFRELE(ipif_ire->ire_bucket); 8642 if (sire != NULL) 8643 IRB_REFRELE(sire->ire_bucket); 8644 ire_refrele(ipif_ire); 8645 ire_refrele(save_ire); 8646 break; 8647 } 8648 8649 xmit_mp = first_mp; 8650 /* 8651 * In the case of multirouting, a copy 8652 * of the packet is done before its sending. 8653 * The copy is used to attempt another 8654 * route resolution, in a next loop. 8655 */ 8656 if (ire->ire_flags & RTF_MULTIRT) { 8657 copy_mp = copymsg(first_mp); 8658 if (copy_mp != NULL) { 8659 xmit_mp = copy_mp; 8660 MULTIRT_DEBUG_TAG(first_mp); 8661 } 8662 } 8663 ire_add_then_send(q, ire, xmit_mp); 8664 ire_refrele(save_ire); 8665 8666 /* Assert that sire is not deleted yet. */ 8667 if (sire != NULL) { 8668 ASSERT(sire->ire_ptpn != NULL); 8669 IRB_REFRELE(sire->ire_bucket); 8670 } 8671 8672 /* Assert that ipif_ire is not deleted yet. */ 8673 ASSERT(ipif_ire->ire_ptpn != NULL); 8674 IRB_REFRELE(ipif_ire->ire_bucket); 8675 ire_refrele(ipif_ire); 8676 8677 /* 8678 * If copy_mp is not NULL, multirouting was 8679 * requested. We loop to initiate a next 8680 * route resolution attempt, starting from sire. 8681 */ 8682 if (copy_mp != NULL) { 8683 /* 8684 * Search for the next unresolved 8685 * multirt route. 8686 */ 8687 copy_mp = NULL; 8688 ipif_ire = NULL; 8689 ire = NULL; 8690 multirt_resolve_next = B_TRUE; 8691 continue; 8692 } 8693 if (sire != NULL) 8694 ire_refrele(sire); 8695 ipif_refrele(src_ipif); 8696 ill_refrele(dst_ill); 8697 return; 8698 } 8699 case IRE_IF_NORESOLVER: { 8700 /* 8701 * We have what we need to build an IRE_CACHE. 8702 * 8703 * Create a new res_mp with the IP gateway address 8704 * in destination address in the DLPI hdr if the 8705 * physical length is exactly 4 bytes. 8706 */ 8707 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8708 uchar_t *addr; 8709 8710 if (gw) 8711 addr = (uchar_t *)&gw; 8712 else 8713 addr = (uchar_t *)&dst; 8714 8715 res_mp = ill_dlur_gen(addr, 8716 dst_ill->ill_phys_addr_length, 8717 dst_ill->ill_sap, 8718 dst_ill->ill_sap_length); 8719 8720 if (res_mp == NULL) { 8721 ip1dbg(("ip_newroute: res_mp NULL\n")); 8722 break; 8723 } 8724 } else if (dst_ill->ill_resolver_mp == NULL) { 8725 ip1dbg(("ip_newroute: dst_ill %p " 8726 "for IF_NORESOLV ire %p has " 8727 "no ill_resolver_mp\n", 8728 (void *)dst_ill, (void *)ire)); 8729 break; 8730 } else { 8731 res_mp = NULL; 8732 } 8733 8734 /* 8735 * TSol note: We are creating the ire cache for the 8736 * destination 'dst'. If 'dst' is offlink, going 8737 * through the first hop 'gw', the security attributes 8738 * of 'dst' must be set to point to the gateway 8739 * credentials of gateway 'gw'. If 'dst' is onlink, it 8740 * is possible that 'dst' is a potential gateway that is 8741 * referenced by some route that has some security 8742 * attributes. Thus in the former case, we need to do a 8743 * gcgrp_lookup of 'gw' while in the latter case we 8744 * need to do gcgrp_lookup of 'dst' itself. 8745 */ 8746 ga.ga_af = AF_INET; 8747 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8748 &ga.ga_addr); 8749 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8750 8751 ire = ire_create( 8752 (uchar_t *)&dst, /* dest address */ 8753 (uchar_t *)&ip_g_all_ones, /* mask */ 8754 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8755 (uchar_t *)&gw, /* gateway address */ 8756 NULL, 8757 &save_ire->ire_max_frag, 8758 NULL, /* Fast Path header */ 8759 dst_ill->ill_rq, /* recv-from queue */ 8760 dst_ill->ill_wq, /* send-to queue */ 8761 IRE_CACHE, 8762 res_mp, 8763 src_ipif, 8764 in_ill, /* Incoming ill */ 8765 save_ire->ire_mask, /* Parent mask */ 8766 (sire != NULL) ? /* Parent handle */ 8767 sire->ire_phandle : 0, 8768 save_ire->ire_ihandle, /* Interface handle */ 8769 (sire != NULL) ? sire->ire_flags & 8770 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8771 &(save_ire->ire_uinfo), 8772 NULL, 8773 gcgrp, 8774 ipst); 8775 8776 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 8777 freeb(res_mp); 8778 8779 if (ire == NULL) { 8780 if (gcgrp != NULL) { 8781 GCGRP_REFRELE(gcgrp); 8782 gcgrp = NULL; 8783 } 8784 ire_refrele(save_ire); 8785 break; 8786 } 8787 8788 /* reference now held by IRE */ 8789 gcgrp = NULL; 8790 8791 ire->ire_marks |= ire_marks; 8792 8793 /* Prevent save_ire from getting deleted */ 8794 IRB_REFHOLD(save_ire->ire_bucket); 8795 /* Has it been removed already ? */ 8796 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8797 IRB_REFRELE(save_ire->ire_bucket); 8798 ire_refrele(save_ire); 8799 break; 8800 } 8801 8802 /* 8803 * In the case of multirouting, a copy 8804 * of the packet is made before it is sent. 8805 * The copy is used in the next 8806 * loop to attempt another resolution. 8807 */ 8808 xmit_mp = first_mp; 8809 if ((sire != NULL) && 8810 (sire->ire_flags & RTF_MULTIRT)) { 8811 copy_mp = copymsg(first_mp); 8812 if (copy_mp != NULL) { 8813 xmit_mp = copy_mp; 8814 MULTIRT_DEBUG_TAG(first_mp); 8815 } 8816 } 8817 ire_add_then_send(q, ire, xmit_mp); 8818 8819 /* Assert that it is not deleted yet. */ 8820 ASSERT(save_ire->ire_ptpn != NULL); 8821 IRB_REFRELE(save_ire->ire_bucket); 8822 ire_refrele(save_ire); 8823 8824 if (copy_mp != NULL) { 8825 /* 8826 * If we found a (no)resolver, we ignore any 8827 * trailing top priority IRE_CACHE in further 8828 * loops. This ensures that we do not omit any 8829 * (no)resolver. 8830 * This IRE_CACHE, if any, will be processed 8831 * by another thread entering ip_newroute(). 8832 * IRE_CACHE entries, if any, will be processed 8833 * by another thread entering ip_newroute(), 8834 * (upon resolver response, for instance). 8835 * This aims to force parallel multirt 8836 * resolutions as soon as a packet must be sent. 8837 * In the best case, after the tx of only one 8838 * packet, all reachable routes are resolved. 8839 * Otherwise, the resolution of all RTF_MULTIRT 8840 * routes would require several emissions. 8841 */ 8842 multirt_flags &= ~MULTIRT_CACHEGW; 8843 8844 /* 8845 * Search for the next unresolved multirt 8846 * route. 8847 */ 8848 copy_mp = NULL; 8849 save_ire = NULL; 8850 ire = NULL; 8851 multirt_resolve_next = B_TRUE; 8852 continue; 8853 } 8854 8855 /* 8856 * Don't need sire anymore 8857 */ 8858 if (sire != NULL) 8859 ire_refrele(sire); 8860 8861 ipif_refrele(src_ipif); 8862 ill_refrele(dst_ill); 8863 return; 8864 } 8865 case IRE_IF_RESOLVER: 8866 /* 8867 * We can't build an IRE_CACHE yet, but at least we 8868 * found a resolver that can help. 8869 */ 8870 res_mp = dst_ill->ill_resolver_mp; 8871 if (!OK_RESOLVER_MP(res_mp)) 8872 break; 8873 8874 /* 8875 * To be at this point in the code with a non-zero gw 8876 * means that dst is reachable through a gateway that 8877 * we have never resolved. By changing dst to the gw 8878 * addr we resolve the gateway first. 8879 * When ire_add_then_send() tries to put the IP dg 8880 * to dst, it will reenter ip_newroute() at which 8881 * time we will find the IRE_CACHE for the gw and 8882 * create another IRE_CACHE in case IRE_CACHE above. 8883 */ 8884 if (gw != INADDR_ANY) { 8885 /* 8886 * The source ipif that was determined above was 8887 * relative to the destination address, not the 8888 * gateway's. If src_ipif was not taken out of 8889 * the IRE_IF_RESOLVER entry, we'll need to call 8890 * ipif_select_source() again. 8891 */ 8892 if (src_ipif != ire->ire_ipif) { 8893 ipif_refrele(src_ipif); 8894 src_ipif = ipif_select_source(dst_ill, 8895 gw, zoneid); 8896 if (src_ipif == NULL) { 8897 if (ip_debug > 2) { 8898 pr_addr_dbg( 8899 "ip_newroute: no " 8900 "src for gw %s ", 8901 AF_INET, &gw); 8902 printf("through " 8903 "interface %s\n", 8904 dst_ill->ill_name); 8905 } 8906 goto icmp_err_ret; 8907 } 8908 } 8909 save_dst = dst; 8910 dst = gw; 8911 gw = INADDR_ANY; 8912 } 8913 8914 /* 8915 * We obtain a partial IRE_CACHE which we will pass 8916 * along with the resolver query. When the response 8917 * comes back it will be there ready for us to add. 8918 * The ire_max_frag is atomically set under the 8919 * irebucket lock in ire_add_v[46]. 8920 */ 8921 8922 ire = ire_create_mp( 8923 (uchar_t *)&dst, /* dest address */ 8924 (uchar_t *)&ip_g_all_ones, /* mask */ 8925 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8926 (uchar_t *)&gw, /* gateway address */ 8927 NULL, /* no in_src_addr */ 8928 NULL, /* ire_max_frag */ 8929 NULL, /* Fast Path header */ 8930 dst_ill->ill_rq, /* recv-from queue */ 8931 dst_ill->ill_wq, /* send-to queue */ 8932 IRE_CACHE, 8933 NULL, 8934 src_ipif, /* Interface ipif */ 8935 in_ill, /* Incoming ILL */ 8936 save_ire->ire_mask, /* Parent mask */ 8937 0, 8938 save_ire->ire_ihandle, /* Interface handle */ 8939 0, /* flags if any */ 8940 &(save_ire->ire_uinfo), 8941 NULL, 8942 NULL, 8943 ipst); 8944 8945 if (ire == NULL) { 8946 ire_refrele(save_ire); 8947 break; 8948 } 8949 8950 if ((sire != NULL) && 8951 (sire->ire_flags & RTF_MULTIRT)) { 8952 copy_mp = copymsg(first_mp); 8953 if (copy_mp != NULL) 8954 MULTIRT_DEBUG_TAG(copy_mp); 8955 } 8956 8957 ire->ire_marks |= ire_marks; 8958 8959 /* 8960 * Construct message chain for the resolver 8961 * of the form: 8962 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8963 * Packet could contain a IPSEC_OUT mp. 8964 * 8965 * NOTE : ire will be added later when the response 8966 * comes back from ARP. If the response does not 8967 * come back, ARP frees the packet. For this reason, 8968 * we can't REFHOLD the bucket of save_ire to prevent 8969 * deletions. We may not be able to REFRELE the bucket 8970 * if the response never comes back. Thus, before 8971 * adding the ire, ire_add_v4 will make sure that the 8972 * interface route does not get deleted. This is the 8973 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8974 * where we can always prevent deletions because of 8975 * the synchronous nature of adding IRES i.e 8976 * ire_add_then_send is called after creating the IRE. 8977 */ 8978 ASSERT(ire->ire_mp != NULL); 8979 ire->ire_mp->b_cont = first_mp; 8980 /* Have saved_mp handy, for cleanup if canput fails */ 8981 saved_mp = mp; 8982 mp = copyb(res_mp); 8983 if (mp == NULL) { 8984 /* Prepare for cleanup */ 8985 mp = saved_mp; /* pkt */ 8986 ire_delete(ire); /* ire_mp */ 8987 ire = NULL; 8988 ire_refrele(save_ire); 8989 if (copy_mp != NULL) { 8990 MULTIRT_DEBUG_UNTAG(copy_mp); 8991 freemsg(copy_mp); 8992 copy_mp = NULL; 8993 } 8994 break; 8995 } 8996 linkb(mp, ire->ire_mp); 8997 8998 /* 8999 * Fill in the source and dest addrs for the resolver. 9000 * NOTE: this depends on memory layouts imposed by 9001 * ill_init(). 9002 */ 9003 areq = (areq_t *)mp->b_rptr; 9004 addrp = (ipaddr_t *)((char *)areq + 9005 areq->areq_sender_addr_offset); 9006 if (do_attach_ill) { 9007 /* 9008 * This is bind to no failover case. 9009 * arp packet also must go out on attach_ill. 9010 */ 9011 ASSERT(ipha->ipha_src != NULL); 9012 *addrp = ipha->ipha_src; 9013 } else { 9014 *addrp = save_ire->ire_src_addr; 9015 } 9016 9017 ire_refrele(save_ire); 9018 addrp = (ipaddr_t *)((char *)areq + 9019 areq->areq_target_addr_offset); 9020 *addrp = dst; 9021 /* Up to the resolver. */ 9022 if (canputnext(dst_ill->ill_rq) && 9023 !(dst_ill->ill_arp_closing)) { 9024 putnext(dst_ill->ill_rq, mp); 9025 ire = NULL; 9026 if (copy_mp != NULL) { 9027 /* 9028 * If we found a resolver, we ignore 9029 * any trailing top priority IRE_CACHE 9030 * in the further loops. This ensures 9031 * that we do not omit any resolver. 9032 * IRE_CACHE entries, if any, will be 9033 * processed next time we enter 9034 * ip_newroute(). 9035 */ 9036 multirt_flags &= ~MULTIRT_CACHEGW; 9037 /* 9038 * Search for the next unresolved 9039 * multirt route. 9040 */ 9041 first_mp = copy_mp; 9042 copy_mp = NULL; 9043 /* Prepare the next resolution loop. */ 9044 mp = first_mp; 9045 EXTRACT_PKT_MP(mp, first_mp, 9046 mctl_present); 9047 if (mctl_present) 9048 io = (ipsec_out_t *) 9049 first_mp->b_rptr; 9050 ipha = (ipha_t *)mp->b_rptr; 9051 9052 ASSERT(sire != NULL); 9053 9054 dst = save_dst; 9055 multirt_resolve_next = B_TRUE; 9056 continue; 9057 } 9058 9059 if (sire != NULL) 9060 ire_refrele(sire); 9061 9062 /* 9063 * The response will come back in ip_wput 9064 * with db_type IRE_DB_TYPE. 9065 */ 9066 ipif_refrele(src_ipif); 9067 ill_refrele(dst_ill); 9068 return; 9069 } else { 9070 /* Prepare for cleanup */ 9071 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 9072 mp); 9073 mp->b_cont = NULL; 9074 freeb(mp); /* areq */ 9075 /* 9076 * this is an ire that is not added to the 9077 * cache. ire_freemblk will handle the release 9078 * of any resources associated with the ire. 9079 */ 9080 ire_delete(ire); /* ire_mp */ 9081 mp = saved_mp; /* pkt */ 9082 ire = NULL; 9083 if (copy_mp != NULL) { 9084 MULTIRT_DEBUG_UNTAG(copy_mp); 9085 freemsg(copy_mp); 9086 copy_mp = NULL; 9087 } 9088 break; 9089 } 9090 default: 9091 break; 9092 } 9093 } while (multirt_resolve_next); 9094 9095 ip1dbg(("ip_newroute: dropped\n")); 9096 /* Did this packet originate externally? */ 9097 if (mp->b_prev) { 9098 mp->b_next = NULL; 9099 mp->b_prev = NULL; 9100 if (in_ill != NULL) { 9101 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInDiscards); 9102 } else { 9103 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 9104 } 9105 } else { 9106 if (dst_ill != NULL) { 9107 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 9108 } else { 9109 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 9110 } 9111 } 9112 ASSERT(copy_mp == NULL); 9113 MULTIRT_DEBUG_UNTAG(first_mp); 9114 freemsg(first_mp); 9115 if (ire != NULL) 9116 ire_refrele(ire); 9117 if (sire != NULL) 9118 ire_refrele(sire); 9119 if (src_ipif != NULL) 9120 ipif_refrele(src_ipif); 9121 if (dst_ill != NULL) 9122 ill_refrele(dst_ill); 9123 return; 9124 9125 icmp_err_ret: 9126 ip1dbg(("ip_newroute: no route\n")); 9127 if (src_ipif != NULL) 9128 ipif_refrele(src_ipif); 9129 if (dst_ill != NULL) 9130 ill_refrele(dst_ill); 9131 if (sire != NULL) 9132 ire_refrele(sire); 9133 /* Did this packet originate externally? */ 9134 if (mp->b_prev) { 9135 mp->b_next = NULL; 9136 mp->b_prev = NULL; 9137 if (in_ill != NULL) { 9138 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInNoRoutes); 9139 } else { 9140 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 9141 } 9142 q = WR(q); 9143 } else { 9144 /* 9145 * There is no outgoing ill, so just increment the 9146 * system MIB. 9147 */ 9148 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 9149 /* 9150 * Since ip_wput() isn't close to finished, we fill 9151 * in enough of the header for credible error reporting. 9152 */ 9153 if (ip_hdr_complete(ipha, zoneid, ipst)) { 9154 /* Failed */ 9155 MULTIRT_DEBUG_UNTAG(first_mp); 9156 freemsg(first_mp); 9157 if (ire != NULL) 9158 ire_refrele(ire); 9159 return; 9160 } 9161 } 9162 9163 /* 9164 * At this point we will have ire only if RTF_BLACKHOLE 9165 * or RTF_REJECT flags are set on the IRE. It will not 9166 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9167 */ 9168 if (ire != NULL) { 9169 if (ire->ire_flags & RTF_BLACKHOLE) { 9170 ire_refrele(ire); 9171 MULTIRT_DEBUG_UNTAG(first_mp); 9172 freemsg(first_mp); 9173 return; 9174 } 9175 ire_refrele(ire); 9176 } 9177 if (ip_source_routed(ipha, ipst)) { 9178 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 9179 zoneid, ipst); 9180 return; 9181 } 9182 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9183 } 9184 9185 ip_opt_info_t zero_info; 9186 9187 /* 9188 * IPv4 - 9189 * ip_newroute_ipif is called by ip_wput_multicast and 9190 * ip_rput_forward_multicast whenever we need to send 9191 * out a packet to a destination address for which we do not have specific 9192 * routing information. It is used when the packet will be sent out 9193 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 9194 * socket option is set or icmp error message wants to go out on a particular 9195 * interface for a unicast packet. 9196 * 9197 * In most cases, the destination address is resolved thanks to the ipif 9198 * intrinsic resolver. However, there are some cases where the call to 9199 * ip_newroute_ipif must take into account the potential presence of 9200 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 9201 * that uses the interface. This is specified through flags, 9202 * which can be a combination of: 9203 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 9204 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9205 * and flags. Additionally, the packet source address has to be set to 9206 * the specified address. The caller is thus expected to set this flag 9207 * if the packet has no specific source address yet. 9208 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9209 * flag, the resulting ire will inherit the flag. All unresolved routes 9210 * to the destination must be explored in the same call to 9211 * ip_newroute_ipif(). 9212 */ 9213 static void 9214 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9215 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9216 { 9217 areq_t *areq; 9218 ire_t *ire = NULL; 9219 mblk_t *res_mp; 9220 ipaddr_t *addrp; 9221 mblk_t *first_mp; 9222 ire_t *save_ire = NULL; 9223 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 9224 ipif_t *src_ipif = NULL; 9225 ushort_t ire_marks = 0; 9226 ill_t *dst_ill = NULL; 9227 boolean_t mctl_present; 9228 ipsec_out_t *io; 9229 ipha_t *ipha; 9230 int ihandle = 0; 9231 mblk_t *saved_mp; 9232 ire_t *fire = NULL; 9233 mblk_t *copy_mp = NULL; 9234 boolean_t multirt_resolve_next; 9235 ipaddr_t ipha_dst; 9236 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9237 9238 /* 9239 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9240 * here for uniformity 9241 */ 9242 ipif_refhold(ipif); 9243 9244 /* 9245 * This loop is run only once in most cases. 9246 * We loop to resolve further routes only when the destination 9247 * can be reached through multiple RTF_MULTIRT-flagged ires. 9248 */ 9249 do { 9250 if (dst_ill != NULL) { 9251 ill_refrele(dst_ill); 9252 dst_ill = NULL; 9253 } 9254 if (src_ipif != NULL) { 9255 ipif_refrele(src_ipif); 9256 src_ipif = NULL; 9257 } 9258 multirt_resolve_next = B_FALSE; 9259 9260 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9261 ipif->ipif_ill->ill_name)); 9262 9263 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9264 if (mctl_present) 9265 io = (ipsec_out_t *)first_mp->b_rptr; 9266 9267 ipha = (ipha_t *)mp->b_rptr; 9268 9269 /* 9270 * Save the packet destination address, we may need it after 9271 * the packet has been consumed. 9272 */ 9273 ipha_dst = ipha->ipha_dst; 9274 9275 /* 9276 * If the interface is a pt-pt interface we look for an 9277 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9278 * local_address and the pt-pt destination address. Otherwise 9279 * we just match the local address. 9280 * NOTE: dst could be different than ipha->ipha_dst in case 9281 * of sending igmp multicast packets over a point-to-point 9282 * connection. 9283 * Thus we must be careful enough to check ipha_dst to be a 9284 * multicast address, otherwise it will take xmit_if path for 9285 * multicast packets resulting into kernel stack overflow by 9286 * repeated calls to ip_newroute_ipif from ire_send(). 9287 */ 9288 if (CLASSD(ipha_dst) && 9289 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9290 goto err_ret; 9291 } 9292 9293 /* 9294 * We check if an IRE_OFFSUBNET for the addr that goes through 9295 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9296 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9297 * propagate its flags to the new ire. 9298 */ 9299 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9300 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9301 ip2dbg(("ip_newroute_ipif: " 9302 "ipif_lookup_multi_ire(" 9303 "ipif %p, dst %08x) = fire %p\n", 9304 (void *)ipif, ntohl(dst), (void *)fire)); 9305 } 9306 9307 if (mctl_present && io->ipsec_out_attach_if) { 9308 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9309 io->ipsec_out_ill_index, B_FALSE, ipst); 9310 9311 /* Failure case frees things for us. */ 9312 if (attach_ill == NULL) { 9313 ipif_refrele(ipif); 9314 if (fire != NULL) 9315 ire_refrele(fire); 9316 return; 9317 } 9318 9319 /* 9320 * Check if we need an ire that will not be 9321 * looked up by anybody else i.e. HIDDEN. 9322 */ 9323 if (ill_is_probeonly(attach_ill)) { 9324 ire_marks = IRE_MARK_HIDDEN; 9325 } 9326 /* 9327 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9328 * case. 9329 */ 9330 dst_ill = ipif->ipif_ill; 9331 /* attach_ill has been refheld by ip_grab_attach_ill */ 9332 ASSERT(dst_ill == attach_ill); 9333 } else { 9334 /* 9335 * If this is set by IP_XMIT_IF, then make sure that 9336 * ipif is pointing to the same ill as the IP_XMIT_IF 9337 * specified ill. 9338 */ 9339 ASSERT((connp == NULL) || 9340 (connp->conn_xmit_if_ill == NULL) || 9341 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 9342 /* 9343 * If the interface belongs to an interface group, 9344 * make sure the next possible interface in the group 9345 * is used. This encourages load spreading among 9346 * peers in an interface group. 9347 * Note: load spreading is disabled for RTF_MULTIRT 9348 * routes. 9349 */ 9350 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9351 (fire->ire_flags & RTF_MULTIRT)) { 9352 /* 9353 * Don't perform outbound load spreading 9354 * in the case of an RTF_MULTIRT issued route, 9355 * we actually typically want to replicate 9356 * outgoing packets through particular 9357 * interfaces. 9358 */ 9359 dst_ill = ipif->ipif_ill; 9360 ill_refhold(dst_ill); 9361 } else { 9362 dst_ill = ip_newroute_get_dst_ill( 9363 ipif->ipif_ill); 9364 } 9365 if (dst_ill == NULL) { 9366 if (ip_debug > 2) { 9367 pr_addr_dbg("ip_newroute_ipif: " 9368 "no dst ill for dst %s\n", 9369 AF_INET, &dst); 9370 } 9371 goto err_ret; 9372 } 9373 } 9374 9375 /* 9376 * Pick a source address preferring non-deprecated ones. 9377 * Unlike ip_newroute, we don't do any source address 9378 * selection here since for multicast it really does not help 9379 * in inbound load spreading as in the unicast case. 9380 */ 9381 if ((flags & RTF_SETSRC) && (fire != NULL) && 9382 (fire->ire_flags & RTF_SETSRC)) { 9383 /* 9384 * As requested by flags, an IRE_OFFSUBNET was looked up 9385 * on that interface. This ire has RTF_SETSRC flag, so 9386 * the source address of the packet must be changed. 9387 * Check that the ipif matching the requested source 9388 * address still exists. 9389 */ 9390 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9391 zoneid, NULL, NULL, NULL, NULL, ipst); 9392 } 9393 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 9394 (connp != NULL && ipif->ipif_zoneid != zoneid && 9395 ipif->ipif_zoneid != ALL_ZONES)) && 9396 (src_ipif == NULL)) { 9397 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9398 if (src_ipif == NULL) { 9399 if (ip_debug > 2) { 9400 /* ip1dbg */ 9401 pr_addr_dbg("ip_newroute_ipif: " 9402 "no src for dst %s", 9403 AF_INET, &dst); 9404 } 9405 ip1dbg((" through interface %s\n", 9406 dst_ill->ill_name)); 9407 goto err_ret; 9408 } 9409 ipif_refrele(ipif); 9410 ipif = src_ipif; 9411 ipif_refhold(ipif); 9412 } 9413 if (src_ipif == NULL) { 9414 src_ipif = ipif; 9415 ipif_refhold(src_ipif); 9416 } 9417 9418 /* 9419 * Assign a source address while we have the conn. 9420 * We can't have ip_wput_ire pick a source address when the 9421 * packet returns from arp since conn_unspec_src might be set 9422 * and we loose the conn when going through arp. 9423 */ 9424 if (ipha->ipha_src == INADDR_ANY && 9425 (connp == NULL || !connp->conn_unspec_src)) { 9426 ipha->ipha_src = src_ipif->ipif_src_addr; 9427 } 9428 9429 /* 9430 * In case of IP_XMIT_IF, it is possible that the outgoing 9431 * interface does not have an interface ire. 9432 * Example: Thousands of mobileip PPP interfaces to mobile 9433 * nodes. We don't want to create interface ires because 9434 * packets from other mobile nodes must not take the route 9435 * via interface ires to the visiting mobile node without 9436 * going through the home agent, in absence of mobileip 9437 * route optimization. 9438 */ 9439 if (CLASSD(ipha_dst) && (connp == NULL || 9440 connp->conn_xmit_if_ill == NULL) && 9441 infop->ip_opt_ill_index == 0) { 9442 /* ipif_to_ire returns an held ire */ 9443 ire = ipif_to_ire(ipif); 9444 if (ire == NULL) 9445 goto err_ret; 9446 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9447 goto err_ret; 9448 /* 9449 * ihandle is needed when the ire is added to 9450 * cache table. 9451 */ 9452 save_ire = ire; 9453 ihandle = save_ire->ire_ihandle; 9454 9455 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9456 "flags %04x\n", 9457 (void *)ire, (void *)ipif, flags)); 9458 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9459 (fire->ire_flags & RTF_MULTIRT)) { 9460 /* 9461 * As requested by flags, an IRE_OFFSUBNET was 9462 * looked up on that interface. This ire has 9463 * RTF_MULTIRT flag, so the resolution loop will 9464 * be re-entered to resolve additional routes on 9465 * other interfaces. For that purpose, a copy of 9466 * the packet is performed at this point. 9467 */ 9468 fire->ire_last_used_time = lbolt; 9469 copy_mp = copymsg(first_mp); 9470 if (copy_mp) { 9471 MULTIRT_DEBUG_TAG(copy_mp); 9472 } 9473 } 9474 if ((flags & RTF_SETSRC) && (fire != NULL) && 9475 (fire->ire_flags & RTF_SETSRC)) { 9476 /* 9477 * As requested by flags, an IRE_OFFSUBET was 9478 * looked up on that interface. This ire has 9479 * RTF_SETSRC flag, so the source address of the 9480 * packet must be changed. 9481 */ 9482 ipha->ipha_src = fire->ire_src_addr; 9483 } 9484 } else { 9485 ASSERT((connp == NULL) || 9486 (connp->conn_xmit_if_ill != NULL) || 9487 (connp->conn_dontroute) || 9488 infop->ip_opt_ill_index != 0); 9489 /* 9490 * The only ways we can come here are: 9491 * 1) IP_XMIT_IF socket option is set 9492 * 2) ICMP error message generated from 9493 * ip_mrtun_forward() routine and it needs 9494 * to go through the specified ill. 9495 * 3) SO_DONTROUTE socket option is set 9496 * 4) IP_PKTINFO option is passed in as ancillary data. 9497 * In all cases, the new ire will not be added 9498 * into cache table. 9499 */ 9500 ire_marks |= IRE_MARK_NOADD; 9501 } 9502 9503 switch (ipif->ipif_net_type) { 9504 case IRE_IF_NORESOLVER: { 9505 /* We have what we need to build an IRE_CACHE. */ 9506 mblk_t *res_mp; 9507 9508 /* 9509 * Create a new res_mp with the 9510 * IP gateway address as destination address in the 9511 * DLPI hdr if the physical length is exactly 4 bytes. 9512 */ 9513 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 9514 res_mp = ill_dlur_gen((uchar_t *)&dst, 9515 dst_ill->ill_phys_addr_length, 9516 dst_ill->ill_sap, 9517 dst_ill->ill_sap_length); 9518 } else if (dst_ill->ill_resolver_mp == NULL) { 9519 ip1dbg(("ip_newroute: dst_ill %p " 9520 "for IF_NORESOLV ire %p has " 9521 "no ill_resolver_mp\n", 9522 (void *)dst_ill, (void *)ire)); 9523 break; 9524 } else { 9525 /* use the value set in ip_ll_subnet_defaults */ 9526 res_mp = ill_dlur_gen(NULL, 9527 dst_ill->ill_phys_addr_length, 9528 dst_ill->ill_sap, 9529 dst_ill->ill_sap_length); 9530 } 9531 9532 if (res_mp == NULL) 9533 break; 9534 /* 9535 * The new ire inherits the IRE_OFFSUBNET flags 9536 * and source address, if this was requested. 9537 */ 9538 ire = ire_create( 9539 (uchar_t *)&dst, /* dest address */ 9540 (uchar_t *)&ip_g_all_ones, /* mask */ 9541 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9542 NULL, /* gateway address */ 9543 NULL, 9544 &ipif->ipif_mtu, 9545 NULL, /* Fast Path header */ 9546 dst_ill->ill_rq, /* recv-from queue */ 9547 dst_ill->ill_wq, /* send-to queue */ 9548 IRE_CACHE, 9549 res_mp, 9550 src_ipif, 9551 NULL, 9552 (save_ire != NULL ? save_ire->ire_mask : 0), 9553 (fire != NULL) ? /* Parent handle */ 9554 fire->ire_phandle : 0, 9555 ihandle, /* Interface handle */ 9556 (fire != NULL) ? 9557 (fire->ire_flags & 9558 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9559 (save_ire == NULL ? &ire_uinfo_null : 9560 &save_ire->ire_uinfo), 9561 NULL, 9562 NULL, 9563 ipst); 9564 9565 freeb(res_mp); 9566 9567 if (ire == NULL) { 9568 if (save_ire != NULL) 9569 ire_refrele(save_ire); 9570 break; 9571 } 9572 9573 ire->ire_marks |= ire_marks; 9574 9575 /* 9576 * If IRE_MARK_NOADD is set then we need to convert 9577 * the max_fragp to a useable value now. This is 9578 * normally done in ire_add_v[46]. We also need to 9579 * associate the ire with an nce (normally would be 9580 * done in ip_wput_nondata()). 9581 * 9582 * Note that IRE_MARK_NOADD packets created here 9583 * do not have a non-null ire_mp pointer. The null 9584 * value of ire_bucket indicates that they were 9585 * never added. 9586 */ 9587 if (ire->ire_marks & IRE_MARK_NOADD) { 9588 uint_t max_frag; 9589 9590 max_frag = *ire->ire_max_fragp; 9591 ire->ire_max_fragp = NULL; 9592 ire->ire_max_frag = max_frag; 9593 9594 if ((ire->ire_nce = ndp_lookup_v4( 9595 ire_to_ill(ire), 9596 (ire->ire_gateway_addr != INADDR_ANY ? 9597 &ire->ire_gateway_addr : &ire->ire_addr), 9598 B_FALSE)) == NULL) { 9599 if (save_ire != NULL) 9600 ire_refrele(save_ire); 9601 break; 9602 } 9603 ASSERT(ire->ire_nce->nce_state == 9604 ND_REACHABLE); 9605 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9606 } 9607 9608 /* Prevent save_ire from getting deleted */ 9609 if (save_ire != NULL) { 9610 IRB_REFHOLD(save_ire->ire_bucket); 9611 /* Has it been removed already ? */ 9612 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9613 IRB_REFRELE(save_ire->ire_bucket); 9614 ire_refrele(save_ire); 9615 break; 9616 } 9617 } 9618 9619 ire_add_then_send(q, ire, first_mp); 9620 9621 /* Assert that save_ire is not deleted yet. */ 9622 if (save_ire != NULL) { 9623 ASSERT(save_ire->ire_ptpn != NULL); 9624 IRB_REFRELE(save_ire->ire_bucket); 9625 ire_refrele(save_ire); 9626 save_ire = NULL; 9627 } 9628 if (fire != NULL) { 9629 ire_refrele(fire); 9630 fire = NULL; 9631 } 9632 9633 /* 9634 * the resolution loop is re-entered if this 9635 * was requested through flags and if we 9636 * actually are in a multirouting case. 9637 */ 9638 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9639 boolean_t need_resolve = 9640 ire_multirt_need_resolve(ipha_dst, 9641 MBLK_GETLABEL(copy_mp), ipst); 9642 if (!need_resolve) { 9643 MULTIRT_DEBUG_UNTAG(copy_mp); 9644 freemsg(copy_mp); 9645 copy_mp = NULL; 9646 } else { 9647 /* 9648 * ipif_lookup_group() calls 9649 * ire_lookup_multi() that uses 9650 * ire_ftable_lookup() to find 9651 * an IRE_INTERFACE for the group. 9652 * In the multirt case, 9653 * ire_lookup_multi() then invokes 9654 * ire_multirt_lookup() to find 9655 * the next resolvable ire. 9656 * As a result, we obtain an new 9657 * interface, derived from the 9658 * next ire. 9659 */ 9660 ipif_refrele(ipif); 9661 ipif = ipif_lookup_group(ipha_dst, 9662 zoneid, ipst); 9663 ip2dbg(("ip_newroute_ipif: " 9664 "multirt dst %08x, ipif %p\n", 9665 htonl(dst), (void *)ipif)); 9666 if (ipif != NULL) { 9667 mp = copy_mp; 9668 copy_mp = NULL; 9669 multirt_resolve_next = B_TRUE; 9670 continue; 9671 } else { 9672 freemsg(copy_mp); 9673 } 9674 } 9675 } 9676 if (ipif != NULL) 9677 ipif_refrele(ipif); 9678 ill_refrele(dst_ill); 9679 ipif_refrele(src_ipif); 9680 return; 9681 } 9682 case IRE_IF_RESOLVER: 9683 /* 9684 * We can't build an IRE_CACHE yet, but at least 9685 * we found a resolver that can help. 9686 */ 9687 res_mp = dst_ill->ill_resolver_mp; 9688 if (!OK_RESOLVER_MP(res_mp)) 9689 break; 9690 9691 /* 9692 * We obtain a partial IRE_CACHE which we will pass 9693 * along with the resolver query. When the response 9694 * comes back it will be there ready for us to add. 9695 * The new ire inherits the IRE_OFFSUBNET flags 9696 * and source address, if this was requested. 9697 * The ire_max_frag is atomically set under the 9698 * irebucket lock in ire_add_v[46]. Only in the 9699 * case of IRE_MARK_NOADD, we set it here itself. 9700 */ 9701 ire = ire_create_mp( 9702 (uchar_t *)&dst, /* dest address */ 9703 (uchar_t *)&ip_g_all_ones, /* mask */ 9704 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9705 NULL, /* gateway address */ 9706 NULL, /* no in_src_addr */ 9707 (ire_marks & IRE_MARK_NOADD) ? 9708 ipif->ipif_mtu : 0, /* max_frag */ 9709 NULL, /* Fast path header */ 9710 dst_ill->ill_rq, /* recv-from queue */ 9711 dst_ill->ill_wq, /* send-to queue */ 9712 IRE_CACHE, 9713 NULL, /* let ire_nce_init figure res_mp out */ 9714 src_ipif, 9715 NULL, 9716 (save_ire != NULL ? save_ire->ire_mask : 0), 9717 (fire != NULL) ? /* Parent handle */ 9718 fire->ire_phandle : 0, 9719 ihandle, /* Interface handle */ 9720 (fire != NULL) ? /* flags if any */ 9721 (fire->ire_flags & 9722 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9723 (save_ire == NULL ? &ire_uinfo_null : 9724 &save_ire->ire_uinfo), 9725 NULL, 9726 NULL, 9727 ipst); 9728 9729 if (save_ire != NULL) { 9730 ire_refrele(save_ire); 9731 save_ire = NULL; 9732 } 9733 if (ire == NULL) 9734 break; 9735 9736 ire->ire_marks |= ire_marks; 9737 /* 9738 * Construct message chain for the resolver of the 9739 * form: 9740 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9741 * 9742 * NOTE : ire will be added later when the response 9743 * comes back from ARP. If the response does not 9744 * come back, ARP frees the packet. For this reason, 9745 * we can't REFHOLD the bucket of save_ire to prevent 9746 * deletions. We may not be able to REFRELE the 9747 * bucket if the response never comes back. 9748 * Thus, before adding the ire, ire_add_v4 will make 9749 * sure that the interface route does not get deleted. 9750 * This is the only case unlike ip_newroute_v6, 9751 * ip_newroute_ipif_v6 where we can always prevent 9752 * deletions because ire_add_then_send is called after 9753 * creating the IRE. 9754 * If IRE_MARK_NOADD is set, then ire_add_then_send 9755 * does not add this IRE into the IRE CACHE. 9756 */ 9757 ASSERT(ire->ire_mp != NULL); 9758 ire->ire_mp->b_cont = first_mp; 9759 /* Have saved_mp handy, for cleanup if canput fails */ 9760 saved_mp = mp; 9761 mp = copyb(res_mp); 9762 if (mp == NULL) { 9763 /* Prepare for cleanup */ 9764 mp = saved_mp; /* pkt */ 9765 ire_delete(ire); /* ire_mp */ 9766 ire = NULL; 9767 if (copy_mp != NULL) { 9768 MULTIRT_DEBUG_UNTAG(copy_mp); 9769 freemsg(copy_mp); 9770 copy_mp = NULL; 9771 } 9772 break; 9773 } 9774 linkb(mp, ire->ire_mp); 9775 9776 /* 9777 * Fill in the source and dest addrs for the resolver. 9778 * NOTE: this depends on memory layouts imposed by 9779 * ill_init(). 9780 */ 9781 areq = (areq_t *)mp->b_rptr; 9782 addrp = (ipaddr_t *)((char *)areq + 9783 areq->areq_sender_addr_offset); 9784 *addrp = ire->ire_src_addr; 9785 addrp = (ipaddr_t *)((char *)areq + 9786 areq->areq_target_addr_offset); 9787 *addrp = dst; 9788 /* Up to the resolver. */ 9789 if (canputnext(dst_ill->ill_rq) && 9790 !(dst_ill->ill_arp_closing)) { 9791 putnext(dst_ill->ill_rq, mp); 9792 /* 9793 * The response will come back in ip_wput 9794 * with db_type IRE_DB_TYPE. 9795 */ 9796 } else { 9797 mp->b_cont = NULL; 9798 freeb(mp); /* areq */ 9799 ire_delete(ire); /* ire_mp */ 9800 saved_mp->b_next = NULL; 9801 saved_mp->b_prev = NULL; 9802 freemsg(first_mp); /* pkt */ 9803 ip2dbg(("ip_newroute_ipif: dropped\n")); 9804 } 9805 9806 if (fire != NULL) { 9807 ire_refrele(fire); 9808 fire = NULL; 9809 } 9810 9811 9812 /* 9813 * The resolution loop is re-entered if this was 9814 * requested through flags and we actually are 9815 * in a multirouting case. 9816 */ 9817 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9818 boolean_t need_resolve = 9819 ire_multirt_need_resolve(ipha_dst, 9820 MBLK_GETLABEL(copy_mp), ipst); 9821 if (!need_resolve) { 9822 MULTIRT_DEBUG_UNTAG(copy_mp); 9823 freemsg(copy_mp); 9824 copy_mp = NULL; 9825 } else { 9826 /* 9827 * ipif_lookup_group() calls 9828 * ire_lookup_multi() that uses 9829 * ire_ftable_lookup() to find 9830 * an IRE_INTERFACE for the group. 9831 * In the multirt case, 9832 * ire_lookup_multi() then invokes 9833 * ire_multirt_lookup() to find 9834 * the next resolvable ire. 9835 * As a result, we obtain an new 9836 * interface, derived from the 9837 * next ire. 9838 */ 9839 ipif_refrele(ipif); 9840 ipif = ipif_lookup_group(ipha_dst, 9841 zoneid, ipst); 9842 if (ipif != NULL) { 9843 mp = copy_mp; 9844 copy_mp = NULL; 9845 multirt_resolve_next = B_TRUE; 9846 continue; 9847 } else { 9848 freemsg(copy_mp); 9849 } 9850 } 9851 } 9852 if (ipif != NULL) 9853 ipif_refrele(ipif); 9854 ill_refrele(dst_ill); 9855 ipif_refrele(src_ipif); 9856 return; 9857 default: 9858 break; 9859 } 9860 } while (multirt_resolve_next); 9861 9862 err_ret: 9863 ip2dbg(("ip_newroute_ipif: dropped\n")); 9864 if (fire != NULL) 9865 ire_refrele(fire); 9866 ipif_refrele(ipif); 9867 /* Did this packet originate externally? */ 9868 if (dst_ill != NULL) 9869 ill_refrele(dst_ill); 9870 if (src_ipif != NULL) 9871 ipif_refrele(src_ipif); 9872 if (mp->b_prev || mp->b_next) { 9873 mp->b_next = NULL; 9874 mp->b_prev = NULL; 9875 } else { 9876 /* 9877 * Since ip_wput() isn't close to finished, we fill 9878 * in enough of the header for credible error reporting. 9879 */ 9880 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9881 /* Failed */ 9882 freemsg(first_mp); 9883 if (ire != NULL) 9884 ire_refrele(ire); 9885 return; 9886 } 9887 } 9888 /* 9889 * At this point we will have ire only if RTF_BLACKHOLE 9890 * or RTF_REJECT flags are set on the IRE. It will not 9891 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9892 */ 9893 if (ire != NULL) { 9894 if (ire->ire_flags & RTF_BLACKHOLE) { 9895 ire_refrele(ire); 9896 freemsg(first_mp); 9897 return; 9898 } 9899 ire_refrele(ire); 9900 } 9901 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9902 } 9903 9904 /* Name/Value Table Lookup Routine */ 9905 char * 9906 ip_nv_lookup(nv_t *nv, int value) 9907 { 9908 if (!nv) 9909 return (NULL); 9910 for (; nv->nv_name; nv++) { 9911 if (nv->nv_value == value) 9912 return (nv->nv_name); 9913 } 9914 return ("unknown"); 9915 } 9916 9917 /* 9918 * This is a module open, i.e. this is a control stream for access 9919 * to a DLPI device. We allocate an ill_t as the instance data in 9920 * this case. 9921 */ 9922 int 9923 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9924 { 9925 ill_t *ill; 9926 int err; 9927 zoneid_t zoneid; 9928 netstack_t *ns; 9929 ip_stack_t *ipst; 9930 9931 /* 9932 * Prevent unprivileged processes from pushing IP so that 9933 * they can't send raw IP. 9934 */ 9935 if (secpolicy_net_rawaccess(credp) != 0) 9936 return (EPERM); 9937 9938 ns = netstack_find_by_cred(credp); 9939 ASSERT(ns != NULL); 9940 ipst = ns->netstack_ip; 9941 ASSERT(ipst != NULL); 9942 9943 /* 9944 * For exclusive stacks we set the zoneid to zero 9945 * to make IP operate as if in the global zone. 9946 */ 9947 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9948 zoneid = GLOBAL_ZONEID; 9949 else 9950 zoneid = crgetzoneid(credp); 9951 9952 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9953 q->q_ptr = WR(q)->q_ptr = ill; 9954 ill->ill_ipst = ipst; 9955 ill->ill_zoneid = zoneid; 9956 9957 /* 9958 * ill_init initializes the ill fields and then sends down 9959 * down a DL_INFO_REQ after calling qprocson. 9960 */ 9961 err = ill_init(q, ill); 9962 if (err != 0) { 9963 mi_free(ill); 9964 netstack_rele(ipst->ips_netstack); 9965 q->q_ptr = NULL; 9966 WR(q)->q_ptr = NULL; 9967 return (err); 9968 } 9969 9970 /* ill_init initializes the ipsq marking this thread as writer */ 9971 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9972 /* Wait for the DL_INFO_ACK */ 9973 mutex_enter(&ill->ill_lock); 9974 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9975 /* 9976 * Return value of 0 indicates a pending signal. 9977 */ 9978 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9979 if (err == 0) { 9980 mutex_exit(&ill->ill_lock); 9981 (void) ip_close(q, 0); 9982 return (EINTR); 9983 } 9984 } 9985 mutex_exit(&ill->ill_lock); 9986 9987 /* 9988 * ip_rput_other could have set an error in ill_error on 9989 * receipt of M_ERROR. 9990 */ 9991 9992 err = ill->ill_error; 9993 if (err != 0) { 9994 (void) ip_close(q, 0); 9995 return (err); 9996 } 9997 9998 ill->ill_credp = credp; 9999 crhold(credp); 10000 10001 mutex_enter(&ipst->ips_ip_mi_lock); 10002 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 10003 credp); 10004 mutex_exit(&ipst->ips_ip_mi_lock); 10005 if (err) { 10006 (void) ip_close(q, 0); 10007 return (err); 10008 } 10009 return (0); 10010 } 10011 10012 /* IP open routine. */ 10013 int 10014 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 10015 { 10016 conn_t *connp; 10017 major_t maj; 10018 zoneid_t zoneid; 10019 netstack_t *ns; 10020 ip_stack_t *ipst; 10021 10022 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 10023 10024 /* Allow reopen. */ 10025 if (q->q_ptr != NULL) 10026 return (0); 10027 10028 if (sflag & MODOPEN) { 10029 /* This is a module open */ 10030 return (ip_modopen(q, devp, flag, sflag, credp)); 10031 } 10032 10033 ns = netstack_find_by_cred(credp); 10034 ASSERT(ns != NULL); 10035 ipst = ns->netstack_ip; 10036 ASSERT(ipst != NULL); 10037 10038 /* 10039 * For exclusive stacks we set the zoneid to zero 10040 * to make IP operate as if in the global zone. 10041 */ 10042 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 10043 zoneid = GLOBAL_ZONEID; 10044 else 10045 zoneid = crgetzoneid(credp); 10046 10047 /* 10048 * We are opening as a device. This is an IP client stream, and we 10049 * allocate an conn_t as the instance data. 10050 */ 10051 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 10052 10053 /* 10054 * ipcl_conn_create did a netstack_hold. Undo the hold that was 10055 * done by netstack_find_by_cred() 10056 */ 10057 netstack_rele(ipst->ips_netstack); 10058 10059 connp->conn_zoneid = zoneid; 10060 10061 connp->conn_upq = q; 10062 q->q_ptr = WR(q)->q_ptr = connp; 10063 10064 if (flag & SO_SOCKSTR) 10065 connp->conn_flags |= IPCL_SOCKET; 10066 10067 /* Minor tells us which /dev entry was opened */ 10068 if (geteminor(*devp) == IPV6_MINOR) { 10069 connp->conn_flags |= IPCL_ISV6; 10070 connp->conn_af_isv6 = B_TRUE; 10071 ip_setqinfo(q, geteminor(*devp), B_FALSE, ipst); 10072 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 10073 } else { 10074 connp->conn_af_isv6 = B_FALSE; 10075 connp->conn_pkt_isv6 = B_FALSE; 10076 } 10077 10078 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 10079 /* CONN_DEC_REF takes care of netstack_rele() */ 10080 q->q_ptr = WR(q)->q_ptr = NULL; 10081 CONN_DEC_REF(connp); 10082 return (EBUSY); 10083 } 10084 10085 maj = getemajor(*devp); 10086 *devp = makedevice(maj, (minor_t)connp->conn_dev); 10087 10088 /* 10089 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 10090 */ 10091 connp->conn_cred = credp; 10092 crhold(connp->conn_cred); 10093 10094 /* 10095 * If the caller has the process-wide flag set, then default to MAC 10096 * exempt mode. This allows read-down to unlabeled hosts. 10097 */ 10098 if (getpflags(NET_MAC_AWARE, credp) != 0) 10099 connp->conn_mac_exempt = B_TRUE; 10100 10101 /* 10102 * This should only happen for ndd, netstat, raw socket or other SCTP 10103 * administrative ops. In these cases, we just need a normal conn_t 10104 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 10105 * an error will be returned. 10106 */ 10107 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 10108 connp->conn_rq = q; 10109 connp->conn_wq = WR(q); 10110 } else { 10111 connp->conn_ulp = IPPROTO_SCTP; 10112 connp->conn_rq = connp->conn_wq = NULL; 10113 } 10114 /* Non-zero default values */ 10115 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 10116 10117 /* 10118 * Make the conn globally visible to walkers 10119 */ 10120 mutex_enter(&connp->conn_lock); 10121 connp->conn_state_flags &= ~CONN_INCIPIENT; 10122 mutex_exit(&connp->conn_lock); 10123 ASSERT(connp->conn_ref == 1); 10124 10125 qprocson(q); 10126 10127 return (0); 10128 } 10129 10130 /* 10131 * Change q_qinfo based on the value of isv6. 10132 * This can not called on an ill queue. 10133 * Note that there is no race since either q_qinfo works for conn queues - it 10134 * is just an optimization to enter the best wput routine directly. 10135 */ 10136 void 10137 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib, ip_stack_t *ipst) 10138 { 10139 ASSERT(q->q_flag & QREADR); 10140 ASSERT(WR(q)->q_next == NULL); 10141 ASSERT(q->q_ptr != NULL); 10142 10143 if (minor == IPV6_MINOR) { 10144 if (bump_mib) { 10145 BUMP_MIB(&ipst->ips_ip6_mib, 10146 ipIfStatsOutSwitchIPVersion); 10147 } 10148 q->q_qinfo = &rinit_ipv6; 10149 WR(q)->q_qinfo = &winit_ipv6; 10150 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 10151 } else { 10152 if (bump_mib) { 10153 BUMP_MIB(&ipst->ips_ip_mib, 10154 ipIfStatsOutSwitchIPVersion); 10155 } 10156 q->q_qinfo = &iprinit; 10157 WR(q)->q_qinfo = &ipwinit; 10158 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 10159 } 10160 10161 } 10162 10163 /* 10164 * See if IPsec needs loading because of the options in mp. 10165 */ 10166 static boolean_t 10167 ipsec_opt_present(mblk_t *mp) 10168 { 10169 uint8_t *optcp, *next_optcp, *opt_endcp; 10170 struct opthdr *opt; 10171 struct T_opthdr *topt; 10172 int opthdr_len; 10173 t_uscalar_t optname, optlevel; 10174 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 10175 ipsec_req_t *ipsr; 10176 10177 /* 10178 * Walk through the mess, and find IP_SEC_OPT. If it's there, 10179 * return TRUE. 10180 */ 10181 10182 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 10183 opt_endcp = optcp + tor->OPT_length; 10184 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10185 opthdr_len = sizeof (struct T_opthdr); 10186 } else { /* O_OPTMGMT_REQ */ 10187 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 10188 opthdr_len = sizeof (struct opthdr); 10189 } 10190 for (; optcp < opt_endcp; optcp = next_optcp) { 10191 if (optcp + opthdr_len > opt_endcp) 10192 return (B_FALSE); /* Not enough option header. */ 10193 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10194 topt = (struct T_opthdr *)optcp; 10195 optlevel = topt->level; 10196 optname = topt->name; 10197 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 10198 } else { 10199 opt = (struct opthdr *)optcp; 10200 optlevel = opt->level; 10201 optname = opt->name; 10202 next_optcp = optcp + opthdr_len + 10203 _TPI_ALIGN_OPT(opt->len); 10204 } 10205 if ((next_optcp < optcp) || /* wraparound pointer space */ 10206 ((next_optcp >= opt_endcp) && /* last option bad len */ 10207 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 10208 return (B_FALSE); /* bad option buffer */ 10209 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 10210 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 10211 /* 10212 * Check to see if it's an all-bypass or all-zeroes 10213 * IPsec request. Don't bother loading IPsec if 10214 * the socket doesn't want to use it. (A good example 10215 * is a bypass request.) 10216 * 10217 * Basically, if any of the non-NEVER bits are set, 10218 * load IPsec. 10219 */ 10220 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 10221 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 10222 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 10223 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 10224 != 0) 10225 return (B_TRUE); 10226 } 10227 } 10228 return (B_FALSE); 10229 } 10230 10231 /* 10232 * If conn is is waiting for ipsec to finish loading, kick it. 10233 */ 10234 /* ARGSUSED */ 10235 static void 10236 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 10237 { 10238 t_scalar_t optreq_prim; 10239 mblk_t *mp; 10240 cred_t *cr; 10241 int err = 0; 10242 10243 /* 10244 * This function is called, after ipsec loading is complete. 10245 * Since IP checks exclusively and atomically (i.e it prevents 10246 * ipsec load from completing until ip_optcom_req completes) 10247 * whether ipsec load is complete, there cannot be a race with IP 10248 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10249 */ 10250 mutex_enter(&connp->conn_lock); 10251 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10252 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10253 mp = connp->conn_ipsec_opt_mp; 10254 connp->conn_ipsec_opt_mp = NULL; 10255 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10256 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10257 mutex_exit(&connp->conn_lock); 10258 10259 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10260 10261 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10262 if (optreq_prim == T_OPTMGMT_REQ) { 10263 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10264 &ip_opt_obj); 10265 } else { 10266 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10267 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10268 &ip_opt_obj); 10269 } 10270 if (err != EINPROGRESS) 10271 CONN_OPER_PENDING_DONE(connp); 10272 return; 10273 } 10274 mutex_exit(&connp->conn_lock); 10275 } 10276 10277 /* 10278 * Called from the ipsec_loader thread, outside any perimeter, to tell 10279 * ip qenable any of the queues waiting for the ipsec loader to 10280 * complete. 10281 */ 10282 void 10283 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10284 { 10285 netstack_t *ns = ipss->ipsec_netstack; 10286 10287 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10288 } 10289 10290 /* 10291 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10292 * determines the grp on which it has to become exclusive, queues the mp 10293 * and sq draining restarts the optmgmt 10294 */ 10295 static boolean_t 10296 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10297 { 10298 conn_t *connp = Q_TO_CONN(q); 10299 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10300 10301 /* 10302 * Take IPsec requests and treat them special. 10303 */ 10304 if (ipsec_opt_present(mp)) { 10305 /* First check if IPsec is loaded. */ 10306 mutex_enter(&ipss->ipsec_loader_lock); 10307 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10308 mutex_exit(&ipss->ipsec_loader_lock); 10309 return (B_FALSE); 10310 } 10311 mutex_enter(&connp->conn_lock); 10312 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10313 10314 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10315 connp->conn_ipsec_opt_mp = mp; 10316 mutex_exit(&connp->conn_lock); 10317 mutex_exit(&ipss->ipsec_loader_lock); 10318 10319 ipsec_loader_loadnow(ipss); 10320 return (B_TRUE); 10321 } 10322 return (B_FALSE); 10323 } 10324 10325 /* 10326 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10327 * all of them are copied to the conn_t. If the req is "zero", the policy is 10328 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10329 * fields. 10330 * We keep only the latest setting of the policy and thus policy setting 10331 * is not incremental/cumulative. 10332 * 10333 * Requests to set policies with multiple alternative actions will 10334 * go through a different API. 10335 */ 10336 int 10337 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10338 { 10339 uint_t ah_req = 0; 10340 uint_t esp_req = 0; 10341 uint_t se_req = 0; 10342 ipsec_selkey_t sel; 10343 ipsec_act_t *actp = NULL; 10344 uint_t nact; 10345 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10346 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10347 ipsec_policy_root_t *pr; 10348 ipsec_policy_head_t *ph; 10349 int fam; 10350 boolean_t is_pol_reset; 10351 int error = 0; 10352 netstack_t *ns = connp->conn_netstack; 10353 ip_stack_t *ipst = ns->netstack_ip; 10354 ipsec_stack_t *ipss = ns->netstack_ipsec; 10355 10356 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10357 10358 /* 10359 * The IP_SEC_OPT option does not allow variable length parameters, 10360 * hence a request cannot be NULL. 10361 */ 10362 if (req == NULL) 10363 return (EINVAL); 10364 10365 ah_req = req->ipsr_ah_req; 10366 esp_req = req->ipsr_esp_req; 10367 se_req = req->ipsr_self_encap_req; 10368 10369 /* 10370 * Are we dealing with a request to reset the policy (i.e. 10371 * zero requests). 10372 */ 10373 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10374 (esp_req & REQ_MASK) == 0 && 10375 (se_req & REQ_MASK) == 0); 10376 10377 if (!is_pol_reset) { 10378 /* 10379 * If we couldn't load IPsec, fail with "protocol 10380 * not supported". 10381 * IPsec may not have been loaded for a request with zero 10382 * policies, so we don't fail in this case. 10383 */ 10384 mutex_enter(&ipss->ipsec_loader_lock); 10385 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10386 mutex_exit(&ipss->ipsec_loader_lock); 10387 return (EPROTONOSUPPORT); 10388 } 10389 mutex_exit(&ipss->ipsec_loader_lock); 10390 10391 /* 10392 * Test for valid requests. Invalid algorithms 10393 * need to be tested by IPSEC code because new 10394 * algorithms can be added dynamically. 10395 */ 10396 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10397 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10398 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10399 return (EINVAL); 10400 } 10401 10402 /* 10403 * Only privileged users can issue these 10404 * requests. 10405 */ 10406 if (((ah_req & IPSEC_PREF_NEVER) || 10407 (esp_req & IPSEC_PREF_NEVER) || 10408 (se_req & IPSEC_PREF_NEVER)) && 10409 secpolicy_ip_config(cr, B_FALSE) != 0) { 10410 return (EPERM); 10411 } 10412 10413 /* 10414 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10415 * are mutually exclusive. 10416 */ 10417 if (((ah_req & REQ_MASK) == REQ_MASK) || 10418 ((esp_req & REQ_MASK) == REQ_MASK) || 10419 ((se_req & REQ_MASK) == REQ_MASK)) { 10420 /* Both of them are set */ 10421 return (EINVAL); 10422 } 10423 } 10424 10425 mutex_enter(&connp->conn_lock); 10426 10427 /* 10428 * If we have already cached policies in ip_bind_connected*(), don't 10429 * let them change now. We cache policies for connections 10430 * whose src,dst [addr, port] is known. 10431 */ 10432 if (connp->conn_policy_cached) { 10433 mutex_exit(&connp->conn_lock); 10434 return (EINVAL); 10435 } 10436 10437 /* 10438 * We have a zero policies, reset the connection policy if already 10439 * set. This will cause the connection to inherit the 10440 * global policy, if any. 10441 */ 10442 if (is_pol_reset) { 10443 if (connp->conn_policy != NULL) { 10444 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10445 connp->conn_policy = NULL; 10446 } 10447 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10448 connp->conn_in_enforce_policy = B_FALSE; 10449 connp->conn_out_enforce_policy = B_FALSE; 10450 mutex_exit(&connp->conn_lock); 10451 return (0); 10452 } 10453 10454 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10455 ipst->ips_netstack); 10456 if (ph == NULL) 10457 goto enomem; 10458 10459 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10460 if (actp == NULL) 10461 goto enomem; 10462 10463 /* 10464 * Always allocate IPv4 policy entries, since they can also 10465 * apply to ipv6 sockets being used in ipv4-compat mode. 10466 */ 10467 bzero(&sel, sizeof (sel)); 10468 sel.ipsl_valid = IPSL_IPV4; 10469 10470 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10471 ipst->ips_netstack); 10472 if (pin4 == NULL) 10473 goto enomem; 10474 10475 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10476 ipst->ips_netstack); 10477 if (pout4 == NULL) 10478 goto enomem; 10479 10480 if (connp->conn_pkt_isv6) { 10481 /* 10482 * We're looking at a v6 socket, also allocate the 10483 * v6-specific entries... 10484 */ 10485 sel.ipsl_valid = IPSL_IPV6; 10486 pin6 = ipsec_policy_create(&sel, actp, nact, 10487 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10488 if (pin6 == NULL) 10489 goto enomem; 10490 10491 pout6 = ipsec_policy_create(&sel, actp, nact, 10492 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10493 if (pout6 == NULL) 10494 goto enomem; 10495 10496 /* 10497 * .. and file them away in the right place. 10498 */ 10499 fam = IPSEC_AF_V6; 10500 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10501 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10502 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10503 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10504 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10505 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10506 } 10507 10508 ipsec_actvec_free(actp, nact); 10509 10510 /* 10511 * File the v4 policies. 10512 */ 10513 fam = IPSEC_AF_V4; 10514 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10515 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10516 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10517 10518 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10519 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10520 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10521 10522 /* 10523 * If the requests need security, set enforce_policy. 10524 * If the requests are IPSEC_PREF_NEVER, one should 10525 * still set conn_out_enforce_policy so that an ipsec_out 10526 * gets attached in ip_wput. This is needed so that 10527 * for connections that we don't cache policy in ip_bind, 10528 * if global policy matches in ip_wput_attach_policy, we 10529 * don't wrongly inherit global policy. Similarly, we need 10530 * to set conn_in_enforce_policy also so that we don't verify 10531 * policy wrongly. 10532 */ 10533 if ((ah_req & REQ_MASK) != 0 || 10534 (esp_req & REQ_MASK) != 0 || 10535 (se_req & REQ_MASK) != 0) { 10536 connp->conn_in_enforce_policy = B_TRUE; 10537 connp->conn_out_enforce_policy = B_TRUE; 10538 connp->conn_flags |= IPCL_CHECK_POLICY; 10539 } 10540 10541 mutex_exit(&connp->conn_lock); 10542 return (error); 10543 #undef REQ_MASK 10544 10545 /* 10546 * Common memory-allocation-failure exit path. 10547 */ 10548 enomem: 10549 mutex_exit(&connp->conn_lock); 10550 if (actp != NULL) 10551 ipsec_actvec_free(actp, nact); 10552 if (pin4 != NULL) 10553 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10554 if (pout4 != NULL) 10555 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10556 if (pin6 != NULL) 10557 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10558 if (pout6 != NULL) 10559 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10560 return (ENOMEM); 10561 } 10562 10563 /* 10564 * Only for options that pass in an IP addr. Currently only V4 options 10565 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10566 * So this function assumes level is IPPROTO_IP 10567 */ 10568 int 10569 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10570 mblk_t *first_mp) 10571 { 10572 ipif_t *ipif = NULL; 10573 int error; 10574 ill_t *ill; 10575 int zoneid; 10576 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10577 10578 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10579 10580 if (addr != INADDR_ANY || checkonly) { 10581 ASSERT(connp != NULL); 10582 zoneid = IPCL_ZONEID(connp); 10583 if (option == IP_NEXTHOP) { 10584 ipif = ipif_lookup_onlink_addr(addr, 10585 connp->conn_zoneid, ipst); 10586 } else { 10587 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10588 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10589 &error, ipst); 10590 } 10591 if (ipif == NULL) { 10592 if (error == EINPROGRESS) 10593 return (error); 10594 else if ((option == IP_MULTICAST_IF) || 10595 (option == IP_NEXTHOP)) 10596 return (EHOSTUNREACH); 10597 else 10598 return (EINVAL); 10599 } else if (checkonly) { 10600 if (option == IP_MULTICAST_IF) { 10601 ill = ipif->ipif_ill; 10602 /* not supported by the virtual network iface */ 10603 if (IS_VNI(ill)) { 10604 ipif_refrele(ipif); 10605 return (EINVAL); 10606 } 10607 } 10608 ipif_refrele(ipif); 10609 return (0); 10610 } 10611 ill = ipif->ipif_ill; 10612 mutex_enter(&connp->conn_lock); 10613 mutex_enter(&ill->ill_lock); 10614 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10615 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10616 mutex_exit(&ill->ill_lock); 10617 mutex_exit(&connp->conn_lock); 10618 ipif_refrele(ipif); 10619 return (option == IP_MULTICAST_IF ? 10620 EHOSTUNREACH : EINVAL); 10621 } 10622 } else { 10623 mutex_enter(&connp->conn_lock); 10624 } 10625 10626 /* None of the options below are supported on the VNI */ 10627 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10628 mutex_exit(&ill->ill_lock); 10629 mutex_exit(&connp->conn_lock); 10630 ipif_refrele(ipif); 10631 return (EINVAL); 10632 } 10633 10634 switch (option) { 10635 case IP_DONTFAILOVER_IF: 10636 /* 10637 * This option is used by in.mpathd to ensure 10638 * that IPMP probe packets only go out on the 10639 * test interfaces. in.mpathd sets this option 10640 * on the non-failover interfaces. 10641 * For backward compatibility, this option 10642 * implicitly sets IP_MULTICAST_IF, as used 10643 * be done in bind(), so that ip_wput gets 10644 * this ipif to send mcast packets. 10645 */ 10646 if (ipif != NULL) { 10647 ASSERT(addr != INADDR_ANY); 10648 connp->conn_nofailover_ill = ipif->ipif_ill; 10649 connp->conn_multicast_ipif = ipif; 10650 } else { 10651 ASSERT(addr == INADDR_ANY); 10652 connp->conn_nofailover_ill = NULL; 10653 connp->conn_multicast_ipif = NULL; 10654 } 10655 break; 10656 10657 case IP_MULTICAST_IF: 10658 connp->conn_multicast_ipif = ipif; 10659 break; 10660 case IP_NEXTHOP: 10661 connp->conn_nexthop_v4 = addr; 10662 connp->conn_nexthop_set = B_TRUE; 10663 break; 10664 } 10665 10666 if (ipif != NULL) { 10667 mutex_exit(&ill->ill_lock); 10668 mutex_exit(&connp->conn_lock); 10669 ipif_refrele(ipif); 10670 return (0); 10671 } 10672 mutex_exit(&connp->conn_lock); 10673 /* We succeded in cleared the option */ 10674 return (0); 10675 } 10676 10677 /* 10678 * For options that pass in an ifindex specifying the ill. V6 options always 10679 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10680 */ 10681 int 10682 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10683 int level, int option, mblk_t *first_mp) 10684 { 10685 ill_t *ill = NULL; 10686 int error = 0; 10687 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10688 10689 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10690 if (ifindex != 0) { 10691 ASSERT(connp != NULL); 10692 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10693 first_mp, ip_restart_optmgmt, &error, ipst); 10694 if (ill != NULL) { 10695 if (checkonly) { 10696 /* not supported by the virtual network iface */ 10697 if (IS_VNI(ill)) { 10698 ill_refrele(ill); 10699 return (EINVAL); 10700 } 10701 ill_refrele(ill); 10702 return (0); 10703 } 10704 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10705 0, NULL)) { 10706 ill_refrele(ill); 10707 ill = NULL; 10708 mutex_enter(&connp->conn_lock); 10709 goto setit; 10710 } 10711 mutex_enter(&connp->conn_lock); 10712 mutex_enter(&ill->ill_lock); 10713 if (ill->ill_state_flags & ILL_CONDEMNED) { 10714 mutex_exit(&ill->ill_lock); 10715 mutex_exit(&connp->conn_lock); 10716 ill_refrele(ill); 10717 ill = NULL; 10718 mutex_enter(&connp->conn_lock); 10719 } 10720 goto setit; 10721 } else if (error == EINPROGRESS) { 10722 return (error); 10723 } else { 10724 error = 0; 10725 } 10726 } 10727 mutex_enter(&connp->conn_lock); 10728 setit: 10729 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10730 10731 /* 10732 * The options below assume that the ILL (if any) transmits and/or 10733 * receives traffic. Neither of which is true for the virtual network 10734 * interface, so fail setting these on a VNI. 10735 */ 10736 if (IS_VNI(ill)) { 10737 ASSERT(ill != NULL); 10738 mutex_exit(&ill->ill_lock); 10739 mutex_exit(&connp->conn_lock); 10740 ill_refrele(ill); 10741 return (EINVAL); 10742 } 10743 10744 if (level == IPPROTO_IP) { 10745 switch (option) { 10746 case IP_BOUND_IF: 10747 connp->conn_incoming_ill = ill; 10748 connp->conn_outgoing_ill = ill; 10749 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10750 0 : ifindex; 10751 break; 10752 10753 case IP_XMIT_IF: 10754 /* 10755 * Similar to IP_BOUND_IF, but this only 10756 * determines the outgoing interface for 10757 * unicast packets. Also no IRE_CACHE entry 10758 * is added for the destination of the 10759 * outgoing packets. This feature is needed 10760 * for mobile IP. 10761 */ 10762 connp->conn_xmit_if_ill = ill; 10763 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 10764 0 : ifindex; 10765 break; 10766 10767 case IP_MULTICAST_IF: 10768 /* 10769 * This option is an internal special. The socket 10770 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10771 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10772 * specifies an ifindex and we try first on V6 ill's. 10773 * If we don't find one, we they try using on v4 ill's 10774 * intenally and we come here. 10775 */ 10776 if (!checkonly && ill != NULL) { 10777 ipif_t *ipif; 10778 ipif = ill->ill_ipif; 10779 10780 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10781 mutex_exit(&ill->ill_lock); 10782 mutex_exit(&connp->conn_lock); 10783 ill_refrele(ill); 10784 ill = NULL; 10785 mutex_enter(&connp->conn_lock); 10786 } else { 10787 connp->conn_multicast_ipif = ipif; 10788 } 10789 } 10790 break; 10791 } 10792 } else { 10793 switch (option) { 10794 case IPV6_BOUND_IF: 10795 connp->conn_incoming_ill = ill; 10796 connp->conn_outgoing_ill = ill; 10797 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10798 0 : ifindex; 10799 break; 10800 10801 case IPV6_BOUND_PIF: 10802 /* 10803 * Limit all transmit to this ill. 10804 * Unlike IPV6_BOUND_IF, using this option 10805 * prevents load spreading and failover from 10806 * happening when the interface is part of the 10807 * group. That's why we don't need to remember 10808 * the ifindex in orig_bound_ifindex as in 10809 * IPV6_BOUND_IF. 10810 */ 10811 connp->conn_outgoing_pill = ill; 10812 break; 10813 10814 case IPV6_DONTFAILOVER_IF: 10815 /* 10816 * This option is used by in.mpathd to ensure 10817 * that IPMP probe packets only go out on the 10818 * test interfaces. in.mpathd sets this option 10819 * on the non-failover interfaces. 10820 */ 10821 connp->conn_nofailover_ill = ill; 10822 /* 10823 * For backward compatibility, this option 10824 * implicitly sets ip_multicast_ill as used in 10825 * IP_MULTICAST_IF so that ip_wput gets 10826 * this ipif to send mcast packets. 10827 */ 10828 connp->conn_multicast_ill = ill; 10829 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10830 0 : ifindex; 10831 break; 10832 10833 case IPV6_MULTICAST_IF: 10834 /* 10835 * Set conn_multicast_ill to be the IPv6 ill. 10836 * Set conn_multicast_ipif to be an IPv4 ipif 10837 * for ifindex to make IPv4 mapped addresses 10838 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10839 * Even if no IPv6 ill exists for the ifindex 10840 * we need to check for an IPv4 ifindex in order 10841 * for this to work with mapped addresses. In that 10842 * case only set conn_multicast_ipif. 10843 */ 10844 if (!checkonly) { 10845 if (ifindex == 0) { 10846 connp->conn_multicast_ill = NULL; 10847 connp->conn_orig_multicast_ifindex = 0; 10848 connp->conn_multicast_ipif = NULL; 10849 } else if (ill != NULL) { 10850 connp->conn_multicast_ill = ill; 10851 connp->conn_orig_multicast_ifindex = 10852 ifindex; 10853 } 10854 } 10855 break; 10856 } 10857 } 10858 10859 if (ill != NULL) { 10860 mutex_exit(&ill->ill_lock); 10861 mutex_exit(&connp->conn_lock); 10862 ill_refrele(ill); 10863 return (0); 10864 } 10865 mutex_exit(&connp->conn_lock); 10866 /* 10867 * We succeeded in clearing the option (ifindex == 0) or failed to 10868 * locate the ill and could not set the option (ifindex != 0) 10869 */ 10870 return (ifindex == 0 ? 0 : EINVAL); 10871 } 10872 10873 /* This routine sets socket options. */ 10874 /* ARGSUSED */ 10875 int 10876 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10877 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10878 void *dummy, cred_t *cr, mblk_t *first_mp) 10879 { 10880 int *i1 = (int *)invalp; 10881 conn_t *connp = Q_TO_CONN(q); 10882 int error = 0; 10883 boolean_t checkonly; 10884 ire_t *ire; 10885 boolean_t found; 10886 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10887 10888 switch (optset_context) { 10889 10890 case SETFN_OPTCOM_CHECKONLY: 10891 checkonly = B_TRUE; 10892 /* 10893 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10894 * inlen != 0 implies value supplied and 10895 * we have to "pretend" to set it. 10896 * inlen == 0 implies that there is no 10897 * value part in T_CHECK request and just validation 10898 * done elsewhere should be enough, we just return here. 10899 */ 10900 if (inlen == 0) { 10901 *outlenp = 0; 10902 return (0); 10903 } 10904 break; 10905 case SETFN_OPTCOM_NEGOTIATE: 10906 case SETFN_UD_NEGOTIATE: 10907 case SETFN_CONN_NEGOTIATE: 10908 checkonly = B_FALSE; 10909 break; 10910 default: 10911 /* 10912 * We should never get here 10913 */ 10914 *outlenp = 0; 10915 return (EINVAL); 10916 } 10917 10918 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10919 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10920 10921 /* 10922 * For fixed length options, no sanity check 10923 * of passed in length is done. It is assumed *_optcom_req() 10924 * routines do the right thing. 10925 */ 10926 10927 switch (level) { 10928 case SOL_SOCKET: 10929 /* 10930 * conn_lock protects the bitfields, and is used to 10931 * set the fields atomically. 10932 */ 10933 switch (name) { 10934 case SO_BROADCAST: 10935 if (!checkonly) { 10936 /* TODO: use value someplace? */ 10937 mutex_enter(&connp->conn_lock); 10938 connp->conn_broadcast = *i1 ? 1 : 0; 10939 mutex_exit(&connp->conn_lock); 10940 } 10941 break; /* goto sizeof (int) option return */ 10942 case SO_USELOOPBACK: 10943 if (!checkonly) { 10944 /* TODO: use value someplace? */ 10945 mutex_enter(&connp->conn_lock); 10946 connp->conn_loopback = *i1 ? 1 : 0; 10947 mutex_exit(&connp->conn_lock); 10948 } 10949 break; /* goto sizeof (int) option return */ 10950 case SO_DONTROUTE: 10951 if (!checkonly) { 10952 mutex_enter(&connp->conn_lock); 10953 connp->conn_dontroute = *i1 ? 1 : 0; 10954 mutex_exit(&connp->conn_lock); 10955 } 10956 break; /* goto sizeof (int) option return */ 10957 case SO_REUSEADDR: 10958 if (!checkonly) { 10959 mutex_enter(&connp->conn_lock); 10960 connp->conn_reuseaddr = *i1 ? 1 : 0; 10961 mutex_exit(&connp->conn_lock); 10962 } 10963 break; /* goto sizeof (int) option return */ 10964 case SO_PROTOTYPE: 10965 if (!checkonly) { 10966 mutex_enter(&connp->conn_lock); 10967 connp->conn_proto = *i1; 10968 mutex_exit(&connp->conn_lock); 10969 } 10970 break; /* goto sizeof (int) option return */ 10971 case SO_ALLZONES: 10972 if (!checkonly) { 10973 mutex_enter(&connp->conn_lock); 10974 if (IPCL_IS_BOUND(connp)) { 10975 mutex_exit(&connp->conn_lock); 10976 return (EINVAL); 10977 } 10978 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10979 mutex_exit(&connp->conn_lock); 10980 } 10981 break; /* goto sizeof (int) option return */ 10982 case SO_ANON_MLP: 10983 if (!checkonly) { 10984 mutex_enter(&connp->conn_lock); 10985 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10986 mutex_exit(&connp->conn_lock); 10987 } 10988 break; /* goto sizeof (int) option return */ 10989 case SO_MAC_EXEMPT: 10990 if (secpolicy_net_mac_aware(cr) != 0 || 10991 IPCL_IS_BOUND(connp)) 10992 return (EACCES); 10993 if (!checkonly) { 10994 mutex_enter(&connp->conn_lock); 10995 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10996 mutex_exit(&connp->conn_lock); 10997 } 10998 break; /* goto sizeof (int) option return */ 10999 default: 11000 /* 11001 * "soft" error (negative) 11002 * option not handled at this level 11003 * Note: Do not modify *outlenp 11004 */ 11005 return (-EINVAL); 11006 } 11007 break; 11008 case IPPROTO_IP: 11009 switch (name) { 11010 case IP_NEXTHOP: 11011 if (secpolicy_ip_config(cr, B_FALSE) != 0) 11012 return (EPERM); 11013 /* FALLTHRU */ 11014 case IP_MULTICAST_IF: 11015 case IP_DONTFAILOVER_IF: { 11016 ipaddr_t addr = *i1; 11017 11018 error = ip_opt_set_ipif(connp, addr, checkonly, name, 11019 first_mp); 11020 if (error != 0) 11021 return (error); 11022 break; /* goto sizeof (int) option return */ 11023 } 11024 11025 case IP_MULTICAST_TTL: 11026 /* Recorded in transport above IP */ 11027 *outvalp = *invalp; 11028 *outlenp = sizeof (uchar_t); 11029 return (0); 11030 case IP_MULTICAST_LOOP: 11031 if (!checkonly) { 11032 mutex_enter(&connp->conn_lock); 11033 connp->conn_multicast_loop = *invalp ? 1 : 0; 11034 mutex_exit(&connp->conn_lock); 11035 } 11036 *outvalp = *invalp; 11037 *outlenp = sizeof (uchar_t); 11038 return (0); 11039 case IP_ADD_MEMBERSHIP: 11040 case MCAST_JOIN_GROUP: 11041 case IP_DROP_MEMBERSHIP: 11042 case MCAST_LEAVE_GROUP: { 11043 struct ip_mreq *mreqp; 11044 struct group_req *greqp; 11045 ire_t *ire; 11046 boolean_t done = B_FALSE; 11047 ipaddr_t group, ifaddr; 11048 struct sockaddr_in *sin; 11049 uint32_t *ifindexp; 11050 boolean_t mcast_opt = B_TRUE; 11051 mcast_record_t fmode; 11052 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 11053 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 11054 11055 switch (name) { 11056 case IP_ADD_MEMBERSHIP: 11057 mcast_opt = B_FALSE; 11058 /* FALLTHRU */ 11059 case MCAST_JOIN_GROUP: 11060 fmode = MODE_IS_EXCLUDE; 11061 optfn = ip_opt_add_group; 11062 break; 11063 11064 case IP_DROP_MEMBERSHIP: 11065 mcast_opt = B_FALSE; 11066 /* FALLTHRU */ 11067 case MCAST_LEAVE_GROUP: 11068 fmode = MODE_IS_INCLUDE; 11069 optfn = ip_opt_delete_group; 11070 break; 11071 } 11072 11073 if (mcast_opt) { 11074 greqp = (struct group_req *)i1; 11075 sin = (struct sockaddr_in *)&greqp->gr_group; 11076 if (sin->sin_family != AF_INET) { 11077 *outlenp = 0; 11078 return (ENOPROTOOPT); 11079 } 11080 group = (ipaddr_t)sin->sin_addr.s_addr; 11081 ifaddr = INADDR_ANY; 11082 ifindexp = &greqp->gr_interface; 11083 } else { 11084 mreqp = (struct ip_mreq *)i1; 11085 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 11086 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 11087 ifindexp = NULL; 11088 } 11089 11090 /* 11091 * In the multirouting case, we need to replicate 11092 * the request on all interfaces that will take part 11093 * in replication. We do so because multirouting is 11094 * reflective, thus we will probably receive multi- 11095 * casts on those interfaces. 11096 * The ip_multirt_apply_membership() succeeds if the 11097 * operation succeeds on at least one interface. 11098 */ 11099 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 11100 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11101 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11102 if (ire != NULL) { 11103 if (ire->ire_flags & RTF_MULTIRT) { 11104 error = ip_multirt_apply_membership( 11105 optfn, ire, connp, checkonly, group, 11106 fmode, INADDR_ANY, first_mp); 11107 done = B_TRUE; 11108 } 11109 ire_refrele(ire); 11110 } 11111 if (!done) { 11112 error = optfn(connp, checkonly, group, ifaddr, 11113 ifindexp, fmode, INADDR_ANY, first_mp); 11114 } 11115 if (error) { 11116 /* 11117 * EINPROGRESS is a soft error, needs retry 11118 * so don't make *outlenp zero. 11119 */ 11120 if (error != EINPROGRESS) 11121 *outlenp = 0; 11122 return (error); 11123 } 11124 /* OK return - copy input buffer into output buffer */ 11125 if (invalp != outvalp) { 11126 /* don't trust bcopy for identical src/dst */ 11127 bcopy(invalp, outvalp, inlen); 11128 } 11129 *outlenp = inlen; 11130 return (0); 11131 } 11132 case IP_BLOCK_SOURCE: 11133 case IP_UNBLOCK_SOURCE: 11134 case IP_ADD_SOURCE_MEMBERSHIP: 11135 case IP_DROP_SOURCE_MEMBERSHIP: 11136 case MCAST_BLOCK_SOURCE: 11137 case MCAST_UNBLOCK_SOURCE: 11138 case MCAST_JOIN_SOURCE_GROUP: 11139 case MCAST_LEAVE_SOURCE_GROUP: { 11140 struct ip_mreq_source *imreqp; 11141 struct group_source_req *gsreqp; 11142 in_addr_t grp, src, ifaddr = INADDR_ANY; 11143 uint32_t ifindex = 0; 11144 mcast_record_t fmode; 11145 struct sockaddr_in *sin; 11146 ire_t *ire; 11147 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 11148 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 11149 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 11150 11151 switch (name) { 11152 case IP_BLOCK_SOURCE: 11153 mcast_opt = B_FALSE; 11154 /* FALLTHRU */ 11155 case MCAST_BLOCK_SOURCE: 11156 fmode = MODE_IS_EXCLUDE; 11157 optfn = ip_opt_add_group; 11158 break; 11159 11160 case IP_UNBLOCK_SOURCE: 11161 mcast_opt = B_FALSE; 11162 /* FALLTHRU */ 11163 case MCAST_UNBLOCK_SOURCE: 11164 fmode = MODE_IS_EXCLUDE; 11165 optfn = ip_opt_delete_group; 11166 break; 11167 11168 case IP_ADD_SOURCE_MEMBERSHIP: 11169 mcast_opt = B_FALSE; 11170 /* FALLTHRU */ 11171 case MCAST_JOIN_SOURCE_GROUP: 11172 fmode = MODE_IS_INCLUDE; 11173 optfn = ip_opt_add_group; 11174 break; 11175 11176 case IP_DROP_SOURCE_MEMBERSHIP: 11177 mcast_opt = B_FALSE; 11178 /* FALLTHRU */ 11179 case MCAST_LEAVE_SOURCE_GROUP: 11180 fmode = MODE_IS_INCLUDE; 11181 optfn = ip_opt_delete_group; 11182 break; 11183 } 11184 11185 if (mcast_opt) { 11186 gsreqp = (struct group_source_req *)i1; 11187 if (gsreqp->gsr_group.ss_family != AF_INET) { 11188 *outlenp = 0; 11189 return (ENOPROTOOPT); 11190 } 11191 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 11192 grp = (ipaddr_t)sin->sin_addr.s_addr; 11193 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 11194 src = (ipaddr_t)sin->sin_addr.s_addr; 11195 ifindex = gsreqp->gsr_interface; 11196 } else { 11197 imreqp = (struct ip_mreq_source *)i1; 11198 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 11199 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 11200 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 11201 } 11202 11203 /* 11204 * In the multirouting case, we need to replicate 11205 * the request as noted in the mcast cases above. 11206 */ 11207 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 11208 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11209 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11210 if (ire != NULL) { 11211 if (ire->ire_flags & RTF_MULTIRT) { 11212 error = ip_multirt_apply_membership( 11213 optfn, ire, connp, checkonly, grp, 11214 fmode, src, first_mp); 11215 done = B_TRUE; 11216 } 11217 ire_refrele(ire); 11218 } 11219 if (!done) { 11220 error = optfn(connp, checkonly, grp, ifaddr, 11221 &ifindex, fmode, src, first_mp); 11222 } 11223 if (error != 0) { 11224 /* 11225 * EINPROGRESS is a soft error, needs retry 11226 * so don't make *outlenp zero. 11227 */ 11228 if (error != EINPROGRESS) 11229 *outlenp = 0; 11230 return (error); 11231 } 11232 /* OK return - copy input buffer into output buffer */ 11233 if (invalp != outvalp) { 11234 bcopy(invalp, outvalp, inlen); 11235 } 11236 *outlenp = inlen; 11237 return (0); 11238 } 11239 case IP_SEC_OPT: 11240 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11241 if (error != 0) { 11242 *outlenp = 0; 11243 return (error); 11244 } 11245 break; 11246 case IP_HDRINCL: 11247 case IP_OPTIONS: 11248 case T_IP_OPTIONS: 11249 case IP_TOS: 11250 case T_IP_TOS: 11251 case IP_TTL: 11252 case IP_RECVDSTADDR: 11253 case IP_RECVOPTS: 11254 /* OK return - copy input buffer into output buffer */ 11255 if (invalp != outvalp) { 11256 /* don't trust bcopy for identical src/dst */ 11257 bcopy(invalp, outvalp, inlen); 11258 } 11259 *outlenp = inlen; 11260 return (0); 11261 case IP_RECVIF: 11262 /* Retrieve the inbound interface index */ 11263 if (!checkonly) { 11264 mutex_enter(&connp->conn_lock); 11265 connp->conn_recvif = *i1 ? 1 : 0; 11266 mutex_exit(&connp->conn_lock); 11267 } 11268 break; /* goto sizeof (int) option return */ 11269 case IP_RECVPKTINFO: 11270 if (!checkonly) { 11271 mutex_enter(&connp->conn_lock); 11272 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11273 mutex_exit(&connp->conn_lock); 11274 } 11275 break; /* goto sizeof (int) option return */ 11276 case IP_RECVSLLA: 11277 /* Retrieve the source link layer address */ 11278 if (!checkonly) { 11279 mutex_enter(&connp->conn_lock); 11280 connp->conn_recvslla = *i1 ? 1 : 0; 11281 mutex_exit(&connp->conn_lock); 11282 } 11283 break; /* goto sizeof (int) option return */ 11284 case MRT_INIT: 11285 case MRT_DONE: 11286 case MRT_ADD_VIF: 11287 case MRT_DEL_VIF: 11288 case MRT_ADD_MFC: 11289 case MRT_DEL_MFC: 11290 case MRT_ASSERT: 11291 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11292 *outlenp = 0; 11293 return (error); 11294 } 11295 error = ip_mrouter_set((int)name, q, checkonly, 11296 (uchar_t *)invalp, inlen, first_mp); 11297 if (error) { 11298 *outlenp = 0; 11299 return (error); 11300 } 11301 /* OK return - copy input buffer into output buffer */ 11302 if (invalp != outvalp) { 11303 /* don't trust bcopy for identical src/dst */ 11304 bcopy(invalp, outvalp, inlen); 11305 } 11306 *outlenp = inlen; 11307 return (0); 11308 case IP_BOUND_IF: 11309 case IP_XMIT_IF: 11310 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11311 level, name, first_mp); 11312 if (error != 0) 11313 return (error); 11314 break; /* goto sizeof (int) option return */ 11315 11316 case IP_UNSPEC_SRC: 11317 /* Allow sending with a zero source address */ 11318 if (!checkonly) { 11319 mutex_enter(&connp->conn_lock); 11320 connp->conn_unspec_src = *i1 ? 1 : 0; 11321 mutex_exit(&connp->conn_lock); 11322 } 11323 break; /* goto sizeof (int) option return */ 11324 default: 11325 /* 11326 * "soft" error (negative) 11327 * option not handled at this level 11328 * Note: Do not modify *outlenp 11329 */ 11330 return (-EINVAL); 11331 } 11332 break; 11333 case IPPROTO_IPV6: 11334 switch (name) { 11335 case IPV6_BOUND_IF: 11336 case IPV6_BOUND_PIF: 11337 case IPV6_DONTFAILOVER_IF: 11338 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11339 level, name, first_mp); 11340 if (error != 0) 11341 return (error); 11342 break; /* goto sizeof (int) option return */ 11343 11344 case IPV6_MULTICAST_IF: 11345 /* 11346 * The only possible errors are EINPROGRESS and 11347 * EINVAL. EINPROGRESS will be restarted and is not 11348 * a hard error. We call this option on both V4 and V6 11349 * If both return EINVAL, then this call returns 11350 * EINVAL. If at least one of them succeeds we 11351 * return success. 11352 */ 11353 found = B_FALSE; 11354 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11355 level, name, first_mp); 11356 if (error == EINPROGRESS) 11357 return (error); 11358 if (error == 0) 11359 found = B_TRUE; 11360 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11361 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11362 if (error == 0) 11363 found = B_TRUE; 11364 if (!found) 11365 return (error); 11366 break; /* goto sizeof (int) option return */ 11367 11368 case IPV6_MULTICAST_HOPS: 11369 /* Recorded in transport above IP */ 11370 break; /* goto sizeof (int) option return */ 11371 case IPV6_MULTICAST_LOOP: 11372 if (!checkonly) { 11373 mutex_enter(&connp->conn_lock); 11374 connp->conn_multicast_loop = *i1; 11375 mutex_exit(&connp->conn_lock); 11376 } 11377 break; /* goto sizeof (int) option return */ 11378 case IPV6_JOIN_GROUP: 11379 case MCAST_JOIN_GROUP: 11380 case IPV6_LEAVE_GROUP: 11381 case MCAST_LEAVE_GROUP: { 11382 struct ipv6_mreq *ip_mreqp; 11383 struct group_req *greqp; 11384 ire_t *ire; 11385 boolean_t done = B_FALSE; 11386 in6_addr_t groupv6; 11387 uint32_t ifindex; 11388 boolean_t mcast_opt = B_TRUE; 11389 mcast_record_t fmode; 11390 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11391 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11392 11393 switch (name) { 11394 case IPV6_JOIN_GROUP: 11395 mcast_opt = B_FALSE; 11396 /* FALLTHRU */ 11397 case MCAST_JOIN_GROUP: 11398 fmode = MODE_IS_EXCLUDE; 11399 optfn = ip_opt_add_group_v6; 11400 break; 11401 11402 case IPV6_LEAVE_GROUP: 11403 mcast_opt = B_FALSE; 11404 /* FALLTHRU */ 11405 case MCAST_LEAVE_GROUP: 11406 fmode = MODE_IS_INCLUDE; 11407 optfn = ip_opt_delete_group_v6; 11408 break; 11409 } 11410 11411 if (mcast_opt) { 11412 struct sockaddr_in *sin; 11413 struct sockaddr_in6 *sin6; 11414 greqp = (struct group_req *)i1; 11415 if (greqp->gr_group.ss_family == AF_INET) { 11416 sin = (struct sockaddr_in *) 11417 &(greqp->gr_group); 11418 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11419 &groupv6); 11420 } else { 11421 sin6 = (struct sockaddr_in6 *) 11422 &(greqp->gr_group); 11423 groupv6 = sin6->sin6_addr; 11424 } 11425 ifindex = greqp->gr_interface; 11426 } else { 11427 ip_mreqp = (struct ipv6_mreq *)i1; 11428 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11429 ifindex = ip_mreqp->ipv6mr_interface; 11430 } 11431 /* 11432 * In the multirouting case, we need to replicate 11433 * the request on all interfaces that will take part 11434 * in replication. We do so because multirouting is 11435 * reflective, thus we will probably receive multi- 11436 * casts on those interfaces. 11437 * The ip_multirt_apply_membership_v6() succeeds if 11438 * the operation succeeds on at least one interface. 11439 */ 11440 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11441 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11442 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11443 if (ire != NULL) { 11444 if (ire->ire_flags & RTF_MULTIRT) { 11445 error = ip_multirt_apply_membership_v6( 11446 optfn, ire, connp, checkonly, 11447 &groupv6, fmode, &ipv6_all_zeros, 11448 first_mp); 11449 done = B_TRUE; 11450 } 11451 ire_refrele(ire); 11452 } 11453 if (!done) { 11454 error = optfn(connp, checkonly, &groupv6, 11455 ifindex, fmode, &ipv6_all_zeros, first_mp); 11456 } 11457 if (error) { 11458 /* 11459 * EINPROGRESS is a soft error, needs retry 11460 * so don't make *outlenp zero. 11461 */ 11462 if (error != EINPROGRESS) 11463 *outlenp = 0; 11464 return (error); 11465 } 11466 /* OK return - copy input buffer into output buffer */ 11467 if (invalp != outvalp) { 11468 /* don't trust bcopy for identical src/dst */ 11469 bcopy(invalp, outvalp, inlen); 11470 } 11471 *outlenp = inlen; 11472 return (0); 11473 } 11474 case MCAST_BLOCK_SOURCE: 11475 case MCAST_UNBLOCK_SOURCE: 11476 case MCAST_JOIN_SOURCE_GROUP: 11477 case MCAST_LEAVE_SOURCE_GROUP: { 11478 struct group_source_req *gsreqp; 11479 in6_addr_t v6grp, v6src; 11480 uint32_t ifindex; 11481 mcast_record_t fmode; 11482 ire_t *ire; 11483 boolean_t done = B_FALSE; 11484 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11485 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11486 11487 switch (name) { 11488 case MCAST_BLOCK_SOURCE: 11489 fmode = MODE_IS_EXCLUDE; 11490 optfn = ip_opt_add_group_v6; 11491 break; 11492 case MCAST_UNBLOCK_SOURCE: 11493 fmode = MODE_IS_EXCLUDE; 11494 optfn = ip_opt_delete_group_v6; 11495 break; 11496 case MCAST_JOIN_SOURCE_GROUP: 11497 fmode = MODE_IS_INCLUDE; 11498 optfn = ip_opt_add_group_v6; 11499 break; 11500 case MCAST_LEAVE_SOURCE_GROUP: 11501 fmode = MODE_IS_INCLUDE; 11502 optfn = ip_opt_delete_group_v6; 11503 break; 11504 } 11505 11506 gsreqp = (struct group_source_req *)i1; 11507 ifindex = gsreqp->gsr_interface; 11508 if (gsreqp->gsr_group.ss_family == AF_INET) { 11509 struct sockaddr_in *s; 11510 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11511 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11512 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11513 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11514 } else { 11515 struct sockaddr_in6 *s6; 11516 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11517 v6grp = s6->sin6_addr; 11518 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11519 v6src = s6->sin6_addr; 11520 } 11521 11522 /* 11523 * In the multirouting case, we need to replicate 11524 * the request as noted in the mcast cases above. 11525 */ 11526 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11527 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11528 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11529 if (ire != NULL) { 11530 if (ire->ire_flags & RTF_MULTIRT) { 11531 error = ip_multirt_apply_membership_v6( 11532 optfn, ire, connp, checkonly, 11533 &v6grp, fmode, &v6src, first_mp); 11534 done = B_TRUE; 11535 } 11536 ire_refrele(ire); 11537 } 11538 if (!done) { 11539 error = optfn(connp, checkonly, &v6grp, 11540 ifindex, fmode, &v6src, first_mp); 11541 } 11542 if (error != 0) { 11543 /* 11544 * EINPROGRESS is a soft error, needs retry 11545 * so don't make *outlenp zero. 11546 */ 11547 if (error != EINPROGRESS) 11548 *outlenp = 0; 11549 return (error); 11550 } 11551 /* OK return - copy input buffer into output buffer */ 11552 if (invalp != outvalp) { 11553 bcopy(invalp, outvalp, inlen); 11554 } 11555 *outlenp = inlen; 11556 return (0); 11557 } 11558 case IPV6_UNICAST_HOPS: 11559 /* Recorded in transport above IP */ 11560 break; /* goto sizeof (int) option return */ 11561 case IPV6_UNSPEC_SRC: 11562 /* Allow sending with a zero source address */ 11563 if (!checkonly) { 11564 mutex_enter(&connp->conn_lock); 11565 connp->conn_unspec_src = *i1 ? 1 : 0; 11566 mutex_exit(&connp->conn_lock); 11567 } 11568 break; /* goto sizeof (int) option return */ 11569 case IPV6_RECVPKTINFO: 11570 if (!checkonly) { 11571 mutex_enter(&connp->conn_lock); 11572 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11573 mutex_exit(&connp->conn_lock); 11574 } 11575 break; /* goto sizeof (int) option return */ 11576 case IPV6_RECVTCLASS: 11577 if (!checkonly) { 11578 if (*i1 < 0 || *i1 > 1) { 11579 return (EINVAL); 11580 } 11581 mutex_enter(&connp->conn_lock); 11582 connp->conn_ipv6_recvtclass = *i1; 11583 mutex_exit(&connp->conn_lock); 11584 } 11585 break; 11586 case IPV6_RECVPATHMTU: 11587 if (!checkonly) { 11588 if (*i1 < 0 || *i1 > 1) { 11589 return (EINVAL); 11590 } 11591 mutex_enter(&connp->conn_lock); 11592 connp->conn_ipv6_recvpathmtu = *i1; 11593 mutex_exit(&connp->conn_lock); 11594 } 11595 break; 11596 case IPV6_RECVHOPLIMIT: 11597 if (!checkonly) { 11598 mutex_enter(&connp->conn_lock); 11599 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11600 mutex_exit(&connp->conn_lock); 11601 } 11602 break; /* goto sizeof (int) option return */ 11603 case IPV6_RECVHOPOPTS: 11604 if (!checkonly) { 11605 mutex_enter(&connp->conn_lock); 11606 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11607 mutex_exit(&connp->conn_lock); 11608 } 11609 break; /* goto sizeof (int) option return */ 11610 case IPV6_RECVDSTOPTS: 11611 if (!checkonly) { 11612 mutex_enter(&connp->conn_lock); 11613 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11614 mutex_exit(&connp->conn_lock); 11615 } 11616 break; /* goto sizeof (int) option return */ 11617 case IPV6_RECVRTHDR: 11618 if (!checkonly) { 11619 mutex_enter(&connp->conn_lock); 11620 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11621 mutex_exit(&connp->conn_lock); 11622 } 11623 break; /* goto sizeof (int) option return */ 11624 case IPV6_RECVRTHDRDSTOPTS: 11625 if (!checkonly) { 11626 mutex_enter(&connp->conn_lock); 11627 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11628 mutex_exit(&connp->conn_lock); 11629 } 11630 break; /* goto sizeof (int) option return */ 11631 case IPV6_PKTINFO: 11632 if (inlen == 0) 11633 return (-EINVAL); /* clearing option */ 11634 error = ip6_set_pktinfo(cr, connp, 11635 (struct in6_pktinfo *)invalp, first_mp); 11636 if (error != 0) 11637 *outlenp = 0; 11638 else 11639 *outlenp = inlen; 11640 return (error); 11641 case IPV6_NEXTHOP: { 11642 struct sockaddr_in6 *sin6; 11643 11644 /* Verify that the nexthop is reachable */ 11645 if (inlen == 0) 11646 return (-EINVAL); /* clearing option */ 11647 11648 sin6 = (struct sockaddr_in6 *)invalp; 11649 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11650 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11651 NULL, MATCH_IRE_DEFAULT, ipst); 11652 11653 if (ire == NULL) { 11654 *outlenp = 0; 11655 return (EHOSTUNREACH); 11656 } 11657 ire_refrele(ire); 11658 return (-EINVAL); 11659 } 11660 case IPV6_SEC_OPT: 11661 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11662 if (error != 0) { 11663 *outlenp = 0; 11664 return (error); 11665 } 11666 break; 11667 case IPV6_SRC_PREFERENCES: { 11668 /* 11669 * This is implemented strictly in the ip module 11670 * (here and in tcp_opt_*() to accomodate tcp 11671 * sockets). Modules above ip pass this option 11672 * down here since ip is the only one that needs to 11673 * be aware of source address preferences. 11674 * 11675 * This socket option only affects connected 11676 * sockets that haven't already bound to a specific 11677 * IPv6 address. In other words, sockets that 11678 * don't call bind() with an address other than the 11679 * unspecified address and that call connect(). 11680 * ip_bind_connected_v6() passes these preferences 11681 * to the ipif_select_source_v6() function. 11682 */ 11683 if (inlen != sizeof (uint32_t)) 11684 return (EINVAL); 11685 error = ip6_set_src_preferences(connp, 11686 *(uint32_t *)invalp); 11687 if (error != 0) { 11688 *outlenp = 0; 11689 return (error); 11690 } else { 11691 *outlenp = sizeof (uint32_t); 11692 } 11693 break; 11694 } 11695 case IPV6_V6ONLY: 11696 if (*i1 < 0 || *i1 > 1) { 11697 return (EINVAL); 11698 } 11699 mutex_enter(&connp->conn_lock); 11700 connp->conn_ipv6_v6only = *i1; 11701 mutex_exit(&connp->conn_lock); 11702 break; 11703 default: 11704 return (-EINVAL); 11705 } 11706 break; 11707 default: 11708 /* 11709 * "soft" error (negative) 11710 * option not handled at this level 11711 * Note: Do not modify *outlenp 11712 */ 11713 return (-EINVAL); 11714 } 11715 /* 11716 * Common case of return from an option that is sizeof (int) 11717 */ 11718 *(int *)outvalp = *i1; 11719 *outlenp = sizeof (int); 11720 return (0); 11721 } 11722 11723 /* 11724 * This routine gets default values of certain options whose default 11725 * values are maintained by protocol specific code 11726 */ 11727 /* ARGSUSED */ 11728 int 11729 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11730 { 11731 int *i1 = (int *)ptr; 11732 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11733 11734 switch (level) { 11735 case IPPROTO_IP: 11736 switch (name) { 11737 case IP_MULTICAST_TTL: 11738 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11739 return (sizeof (uchar_t)); 11740 case IP_MULTICAST_LOOP: 11741 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11742 return (sizeof (uchar_t)); 11743 default: 11744 return (-1); 11745 } 11746 case IPPROTO_IPV6: 11747 switch (name) { 11748 case IPV6_UNICAST_HOPS: 11749 *i1 = ipst->ips_ipv6_def_hops; 11750 return (sizeof (int)); 11751 case IPV6_MULTICAST_HOPS: 11752 *i1 = IP_DEFAULT_MULTICAST_TTL; 11753 return (sizeof (int)); 11754 case IPV6_MULTICAST_LOOP: 11755 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11756 return (sizeof (int)); 11757 case IPV6_V6ONLY: 11758 *i1 = 1; 11759 return (sizeof (int)); 11760 default: 11761 return (-1); 11762 } 11763 default: 11764 return (-1); 11765 } 11766 /* NOTREACHED */ 11767 } 11768 11769 /* 11770 * Given a destination address and a pointer to where to put the information 11771 * this routine fills in the mtuinfo. 11772 */ 11773 int 11774 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11775 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11776 { 11777 ire_t *ire; 11778 ip_stack_t *ipst = ns->netstack_ip; 11779 11780 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11781 return (-1); 11782 11783 bzero(mtuinfo, sizeof (*mtuinfo)); 11784 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11785 mtuinfo->ip6m_addr.sin6_port = port; 11786 mtuinfo->ip6m_addr.sin6_addr = *in6; 11787 11788 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11789 if (ire != NULL) { 11790 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11791 ire_refrele(ire); 11792 } else { 11793 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11794 } 11795 return (sizeof (struct ip6_mtuinfo)); 11796 } 11797 11798 /* 11799 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11800 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11801 * isn't. This doesn't matter as the error checking is done properly for the 11802 * other MRT options coming in through ip_opt_set. 11803 */ 11804 int 11805 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11806 { 11807 conn_t *connp = Q_TO_CONN(q); 11808 ipsec_req_t *req = (ipsec_req_t *)ptr; 11809 11810 switch (level) { 11811 case IPPROTO_IP: 11812 switch (name) { 11813 case MRT_VERSION: 11814 case MRT_ASSERT: 11815 (void) ip_mrouter_get(name, q, ptr); 11816 return (sizeof (int)); 11817 case IP_SEC_OPT: 11818 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11819 case IP_NEXTHOP: 11820 if (connp->conn_nexthop_set) { 11821 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11822 return (sizeof (ipaddr_t)); 11823 } else 11824 return (0); 11825 case IP_RECVPKTINFO: 11826 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11827 return (sizeof (int)); 11828 default: 11829 break; 11830 } 11831 break; 11832 case IPPROTO_IPV6: 11833 switch (name) { 11834 case IPV6_SEC_OPT: 11835 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11836 case IPV6_SRC_PREFERENCES: { 11837 return (ip6_get_src_preferences(connp, 11838 (uint32_t *)ptr)); 11839 } 11840 case IPV6_V6ONLY: 11841 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11842 return (sizeof (int)); 11843 case IPV6_PATHMTU: 11844 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11845 (struct ip6_mtuinfo *)ptr, 11846 connp->conn_netstack)); 11847 default: 11848 break; 11849 } 11850 break; 11851 default: 11852 break; 11853 } 11854 return (-1); 11855 } 11856 11857 /* Named Dispatch routine to get a current value out of our parameter table. */ 11858 /* ARGSUSED */ 11859 static int 11860 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11861 { 11862 ipparam_t *ippa = (ipparam_t *)cp; 11863 11864 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11865 return (0); 11866 } 11867 11868 /* ARGSUSED */ 11869 static int 11870 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11871 { 11872 11873 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11874 return (0); 11875 } 11876 11877 /* 11878 * Set ip{,6}_forwarding values. This means walking through all of the 11879 * ill's and toggling their forwarding values. 11880 */ 11881 /* ARGSUSED */ 11882 static int 11883 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11884 { 11885 long new_value; 11886 int *forwarding_value = (int *)cp; 11887 ill_t *walker; 11888 boolean_t isv6; 11889 ill_walk_context_t ctx; 11890 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11891 11892 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11893 11894 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11895 new_value < 0 || new_value > 1) { 11896 return (EINVAL); 11897 } 11898 11899 *forwarding_value = new_value; 11900 11901 /* 11902 * Regardless of the current value of ip_forwarding, set all per-ill 11903 * values of ip_forwarding to the value being set. 11904 * 11905 * Bring all the ill's up to date with the new global value. 11906 */ 11907 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11908 11909 if (isv6) 11910 walker = ILL_START_WALK_V6(&ctx, ipst); 11911 else 11912 walker = ILL_START_WALK_V4(&ctx, ipst); 11913 for (; walker != NULL; walker = ill_next(&ctx, walker)) { 11914 (void) ill_forward_set(q, mp, (new_value != 0), 11915 (caddr_t)walker); 11916 } 11917 rw_exit(&ipst->ips_ill_g_lock); 11918 11919 return (0); 11920 } 11921 11922 /* 11923 * Walk through the param array specified registering each element with the 11924 * Named Dispatch handler. This is called only during init. So it is ok 11925 * not to acquire any locks 11926 */ 11927 static boolean_t 11928 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11929 ipndp_t *ipnd, size_t ipnd_cnt) 11930 { 11931 for (; ippa_cnt-- > 0; ippa++) { 11932 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11933 if (!nd_load(ndp, ippa->ip_param_name, 11934 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11935 nd_free(ndp); 11936 return (B_FALSE); 11937 } 11938 } 11939 } 11940 11941 for (; ipnd_cnt-- > 0; ipnd++) { 11942 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11943 if (!nd_load(ndp, ipnd->ip_ndp_name, 11944 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11945 ipnd->ip_ndp_data)) { 11946 nd_free(ndp); 11947 return (B_FALSE); 11948 } 11949 } 11950 } 11951 11952 return (B_TRUE); 11953 } 11954 11955 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11956 /* ARGSUSED */ 11957 static int 11958 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11959 { 11960 long new_value; 11961 ipparam_t *ippa = (ipparam_t *)cp; 11962 11963 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11964 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11965 return (EINVAL); 11966 } 11967 ippa->ip_param_value = new_value; 11968 return (0); 11969 } 11970 11971 /* 11972 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11973 * When an ipf is passed here for the first time, if 11974 * we already have in-order fragments on the queue, we convert from the fast- 11975 * path reassembly scheme to the hard-case scheme. From then on, additional 11976 * fragments are reassembled here. We keep track of the start and end offsets 11977 * of each piece, and the number of holes in the chain. When the hole count 11978 * goes to zero, we are done! 11979 * 11980 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11981 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11982 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11983 * after the call to ip_reassemble(). 11984 */ 11985 int 11986 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11987 size_t msg_len) 11988 { 11989 uint_t end; 11990 mblk_t *next_mp; 11991 mblk_t *mp1; 11992 uint_t offset; 11993 boolean_t incr_dups = B_TRUE; 11994 boolean_t offset_zero_seen = B_FALSE; 11995 boolean_t pkt_boundary_checked = B_FALSE; 11996 11997 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11998 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11999 12000 /* Add in byte count */ 12001 ipf->ipf_count += msg_len; 12002 if (ipf->ipf_end) { 12003 /* 12004 * We were part way through in-order reassembly, but now there 12005 * is a hole. We walk through messages already queued, and 12006 * mark them for hard case reassembly. We know that up till 12007 * now they were in order starting from offset zero. 12008 */ 12009 offset = 0; 12010 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12011 IP_REASS_SET_START(mp1, offset); 12012 if (offset == 0) { 12013 ASSERT(ipf->ipf_nf_hdr_len != 0); 12014 offset = -ipf->ipf_nf_hdr_len; 12015 } 12016 offset += mp1->b_wptr - mp1->b_rptr; 12017 IP_REASS_SET_END(mp1, offset); 12018 } 12019 /* One hole at the end. */ 12020 ipf->ipf_hole_cnt = 1; 12021 /* Brand it as a hard case, forever. */ 12022 ipf->ipf_end = 0; 12023 } 12024 /* Walk through all the new pieces. */ 12025 do { 12026 end = start + (mp->b_wptr - mp->b_rptr); 12027 /* 12028 * If start is 0, decrease 'end' only for the first mblk of 12029 * the fragment. Otherwise 'end' can get wrong value in the 12030 * second pass of the loop if first mblk is exactly the 12031 * size of ipf_nf_hdr_len. 12032 */ 12033 if (start == 0 && !offset_zero_seen) { 12034 /* First segment */ 12035 ASSERT(ipf->ipf_nf_hdr_len != 0); 12036 end -= ipf->ipf_nf_hdr_len; 12037 offset_zero_seen = B_TRUE; 12038 } 12039 next_mp = mp->b_cont; 12040 /* 12041 * We are checking to see if there is any interesing data 12042 * to process. If there isn't and the mblk isn't the 12043 * one which carries the unfragmentable header then we 12044 * drop it. It's possible to have just the unfragmentable 12045 * header come through without any data. That needs to be 12046 * saved. 12047 * 12048 * If the assert at the top of this function holds then the 12049 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 12050 * is infrequently traveled enough that the test is left in 12051 * to protect against future code changes which break that 12052 * invariant. 12053 */ 12054 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 12055 /* Empty. Blast it. */ 12056 IP_REASS_SET_START(mp, 0); 12057 IP_REASS_SET_END(mp, 0); 12058 /* 12059 * If the ipf points to the mblk we are about to free, 12060 * update ipf to point to the next mblk (or NULL 12061 * if none). 12062 */ 12063 if (ipf->ipf_mp->b_cont == mp) 12064 ipf->ipf_mp->b_cont = next_mp; 12065 freeb(mp); 12066 continue; 12067 } 12068 mp->b_cont = NULL; 12069 IP_REASS_SET_START(mp, start); 12070 IP_REASS_SET_END(mp, end); 12071 if (!ipf->ipf_tail_mp) { 12072 ipf->ipf_tail_mp = mp; 12073 ipf->ipf_mp->b_cont = mp; 12074 if (start == 0 || !more) { 12075 ipf->ipf_hole_cnt = 1; 12076 /* 12077 * if the first fragment comes in more than one 12078 * mblk, this loop will be executed for each 12079 * mblk. Need to adjust hole count so exiting 12080 * this routine will leave hole count at 1. 12081 */ 12082 if (next_mp) 12083 ipf->ipf_hole_cnt++; 12084 } else 12085 ipf->ipf_hole_cnt = 2; 12086 continue; 12087 } else if (ipf->ipf_last_frag_seen && !more && 12088 !pkt_boundary_checked) { 12089 /* 12090 * We check datagram boundary only if this fragment 12091 * claims to be the last fragment and we have seen a 12092 * last fragment in the past too. We do this only 12093 * once for a given fragment. 12094 * 12095 * start cannot be 0 here as fragments with start=0 12096 * and MF=0 gets handled as a complete packet. These 12097 * fragments should not reach here. 12098 */ 12099 12100 if (start + msgdsize(mp) != 12101 IP_REASS_END(ipf->ipf_tail_mp)) { 12102 /* 12103 * We have two fragments both of which claim 12104 * to be the last fragment but gives conflicting 12105 * information about the whole datagram size. 12106 * Something fishy is going on. Drop the 12107 * fragment and free up the reassembly list. 12108 */ 12109 return (IP_REASS_FAILED); 12110 } 12111 12112 /* 12113 * We shouldn't come to this code block again for this 12114 * particular fragment. 12115 */ 12116 pkt_boundary_checked = B_TRUE; 12117 } 12118 12119 /* New stuff at or beyond tail? */ 12120 offset = IP_REASS_END(ipf->ipf_tail_mp); 12121 if (start >= offset) { 12122 if (ipf->ipf_last_frag_seen) { 12123 /* current fragment is beyond last fragment */ 12124 return (IP_REASS_FAILED); 12125 } 12126 /* Link it on end. */ 12127 ipf->ipf_tail_mp->b_cont = mp; 12128 ipf->ipf_tail_mp = mp; 12129 if (more) { 12130 if (start != offset) 12131 ipf->ipf_hole_cnt++; 12132 } else if (start == offset && next_mp == NULL) 12133 ipf->ipf_hole_cnt--; 12134 continue; 12135 } 12136 mp1 = ipf->ipf_mp->b_cont; 12137 offset = IP_REASS_START(mp1); 12138 /* New stuff at the front? */ 12139 if (start < offset) { 12140 if (start == 0) { 12141 if (end >= offset) { 12142 /* Nailed the hole at the begining. */ 12143 ipf->ipf_hole_cnt--; 12144 } 12145 } else if (end < offset) { 12146 /* 12147 * A hole, stuff, and a hole where there used 12148 * to be just a hole. 12149 */ 12150 ipf->ipf_hole_cnt++; 12151 } 12152 mp->b_cont = mp1; 12153 /* Check for overlap. */ 12154 while (end > offset) { 12155 if (end < IP_REASS_END(mp1)) { 12156 mp->b_wptr -= end - offset; 12157 IP_REASS_SET_END(mp, offset); 12158 BUMP_MIB(ill->ill_ip_mib, 12159 ipIfStatsReasmPartDups); 12160 break; 12161 } 12162 /* Did we cover another hole? */ 12163 if ((mp1->b_cont && 12164 IP_REASS_END(mp1) != 12165 IP_REASS_START(mp1->b_cont) && 12166 end >= IP_REASS_START(mp1->b_cont)) || 12167 (!ipf->ipf_last_frag_seen && !more)) { 12168 ipf->ipf_hole_cnt--; 12169 } 12170 /* Clip out mp1. */ 12171 if ((mp->b_cont = mp1->b_cont) == NULL) { 12172 /* 12173 * After clipping out mp1, this guy 12174 * is now hanging off the end. 12175 */ 12176 ipf->ipf_tail_mp = mp; 12177 } 12178 IP_REASS_SET_START(mp1, 0); 12179 IP_REASS_SET_END(mp1, 0); 12180 /* Subtract byte count */ 12181 ipf->ipf_count -= mp1->b_datap->db_lim - 12182 mp1->b_datap->db_base; 12183 freeb(mp1); 12184 BUMP_MIB(ill->ill_ip_mib, 12185 ipIfStatsReasmPartDups); 12186 mp1 = mp->b_cont; 12187 if (!mp1) 12188 break; 12189 offset = IP_REASS_START(mp1); 12190 } 12191 ipf->ipf_mp->b_cont = mp; 12192 continue; 12193 } 12194 /* 12195 * The new piece starts somewhere between the start of the head 12196 * and before the end of the tail. 12197 */ 12198 for (; mp1; mp1 = mp1->b_cont) { 12199 offset = IP_REASS_END(mp1); 12200 if (start < offset) { 12201 if (end <= offset) { 12202 /* Nothing new. */ 12203 IP_REASS_SET_START(mp, 0); 12204 IP_REASS_SET_END(mp, 0); 12205 /* Subtract byte count */ 12206 ipf->ipf_count -= mp->b_datap->db_lim - 12207 mp->b_datap->db_base; 12208 if (incr_dups) { 12209 ipf->ipf_num_dups++; 12210 incr_dups = B_FALSE; 12211 } 12212 freeb(mp); 12213 BUMP_MIB(ill->ill_ip_mib, 12214 ipIfStatsReasmDuplicates); 12215 break; 12216 } 12217 /* 12218 * Trim redundant stuff off beginning of new 12219 * piece. 12220 */ 12221 IP_REASS_SET_START(mp, offset); 12222 mp->b_rptr += offset - start; 12223 BUMP_MIB(ill->ill_ip_mib, 12224 ipIfStatsReasmPartDups); 12225 start = offset; 12226 if (!mp1->b_cont) { 12227 /* 12228 * After trimming, this guy is now 12229 * hanging off the end. 12230 */ 12231 mp1->b_cont = mp; 12232 ipf->ipf_tail_mp = mp; 12233 if (!more) { 12234 ipf->ipf_hole_cnt--; 12235 } 12236 break; 12237 } 12238 } 12239 if (start >= IP_REASS_START(mp1->b_cont)) 12240 continue; 12241 /* Fill a hole */ 12242 if (start > offset) 12243 ipf->ipf_hole_cnt++; 12244 mp->b_cont = mp1->b_cont; 12245 mp1->b_cont = mp; 12246 mp1 = mp->b_cont; 12247 offset = IP_REASS_START(mp1); 12248 if (end >= offset) { 12249 ipf->ipf_hole_cnt--; 12250 /* Check for overlap. */ 12251 while (end > offset) { 12252 if (end < IP_REASS_END(mp1)) { 12253 mp->b_wptr -= end - offset; 12254 IP_REASS_SET_END(mp, offset); 12255 /* 12256 * TODO we might bump 12257 * this up twice if there is 12258 * overlap at both ends. 12259 */ 12260 BUMP_MIB(ill->ill_ip_mib, 12261 ipIfStatsReasmPartDups); 12262 break; 12263 } 12264 /* Did we cover another hole? */ 12265 if ((mp1->b_cont && 12266 IP_REASS_END(mp1) 12267 != IP_REASS_START(mp1->b_cont) && 12268 end >= 12269 IP_REASS_START(mp1->b_cont)) || 12270 (!ipf->ipf_last_frag_seen && 12271 !more)) { 12272 ipf->ipf_hole_cnt--; 12273 } 12274 /* Clip out mp1. */ 12275 if ((mp->b_cont = mp1->b_cont) == 12276 NULL) { 12277 /* 12278 * After clipping out mp1, 12279 * this guy is now hanging 12280 * off the end. 12281 */ 12282 ipf->ipf_tail_mp = mp; 12283 } 12284 IP_REASS_SET_START(mp1, 0); 12285 IP_REASS_SET_END(mp1, 0); 12286 /* Subtract byte count */ 12287 ipf->ipf_count -= 12288 mp1->b_datap->db_lim - 12289 mp1->b_datap->db_base; 12290 freeb(mp1); 12291 BUMP_MIB(ill->ill_ip_mib, 12292 ipIfStatsReasmPartDups); 12293 mp1 = mp->b_cont; 12294 if (!mp1) 12295 break; 12296 offset = IP_REASS_START(mp1); 12297 } 12298 } 12299 break; 12300 } 12301 } while (start = end, mp = next_mp); 12302 12303 /* Fragment just processed could be the last one. Remember this fact */ 12304 if (!more) 12305 ipf->ipf_last_frag_seen = B_TRUE; 12306 12307 /* Still got holes? */ 12308 if (ipf->ipf_hole_cnt) 12309 return (IP_REASS_PARTIAL); 12310 /* Clean up overloaded fields to avoid upstream disasters. */ 12311 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12312 IP_REASS_SET_START(mp1, 0); 12313 IP_REASS_SET_END(mp1, 0); 12314 } 12315 return (IP_REASS_COMPLETE); 12316 } 12317 12318 /* 12319 * ipsec processing for the fast path, used for input UDP Packets 12320 */ 12321 static boolean_t 12322 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12323 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 12324 { 12325 uint32_t ill_index; 12326 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12327 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12328 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12329 12330 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12331 /* The ill_index of the incoming ILL */ 12332 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12333 12334 /* pass packet up to the transport */ 12335 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12336 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12337 NULL, mctl_present); 12338 if (*first_mpp == NULL) { 12339 return (B_FALSE); 12340 } 12341 } 12342 12343 /* Initiate IPPF processing for fastpath UDP */ 12344 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12345 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12346 if (*mpp == NULL) { 12347 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12348 "deferred/dropped during IPPF processing\n")); 12349 return (B_FALSE); 12350 } 12351 } 12352 /* 12353 * We make the checks as below since we are in the fast path 12354 * and want to minimize the number of checks if the IP_RECVIF and/or 12355 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12356 */ 12357 if (connp->conn_recvif || connp->conn_recvslla || 12358 connp->conn_ip_recvpktinfo) { 12359 if (connp->conn_recvif) { 12360 in_flags = IPF_RECVIF; 12361 } 12362 /* 12363 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12364 * so the flag passed to ip_add_info is based on IP version 12365 * of connp. 12366 */ 12367 if (connp->conn_ip_recvpktinfo) { 12368 if (connp->conn_af_isv6) { 12369 /* 12370 * V6 only needs index 12371 */ 12372 in_flags |= IPF_RECVIF; 12373 } else { 12374 /* 12375 * V4 needs index + matching address. 12376 */ 12377 in_flags |= IPF_RECVADDR; 12378 } 12379 } 12380 if (connp->conn_recvslla) { 12381 in_flags |= IPF_RECVSLLA; 12382 } 12383 /* 12384 * since in_flags are being set ill will be 12385 * referenced in ip_add_info, so it better not 12386 * be NULL. 12387 */ 12388 /* 12389 * the actual data will be contained in b_cont 12390 * upon successful return of the following call. 12391 * If the call fails then the original mblk is 12392 * returned. 12393 */ 12394 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12395 ipst); 12396 } 12397 12398 return (B_TRUE); 12399 } 12400 12401 /* 12402 * Fragmentation reassembly. Each ILL has a hash table for 12403 * queuing packets undergoing reassembly for all IPIFs 12404 * associated with the ILL. The hash is based on the packet 12405 * IP ident field. The ILL frag hash table was allocated 12406 * as a timer block at the time the ILL was created. Whenever 12407 * there is anything on the reassembly queue, the timer will 12408 * be running. Returns B_TRUE if successful else B_FALSE; 12409 * frees mp on failure. 12410 */ 12411 static boolean_t 12412 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12413 uint32_t *cksum_val, uint16_t *cksum_flags) 12414 { 12415 uint32_t frag_offset_flags; 12416 ill_t *ill = (ill_t *)q->q_ptr; 12417 mblk_t *mp = *mpp; 12418 mblk_t *t_mp; 12419 ipaddr_t dst; 12420 uint8_t proto = ipha->ipha_protocol; 12421 uint32_t sum_val; 12422 uint16_t sum_flags; 12423 ipf_t *ipf; 12424 ipf_t **ipfp; 12425 ipfb_t *ipfb; 12426 uint16_t ident; 12427 uint32_t offset; 12428 ipaddr_t src; 12429 uint_t hdr_length; 12430 uint32_t end; 12431 mblk_t *mp1; 12432 mblk_t *tail_mp; 12433 size_t count; 12434 size_t msg_len; 12435 uint8_t ecn_info = 0; 12436 uint32_t packet_size; 12437 boolean_t pruned = B_FALSE; 12438 ip_stack_t *ipst = ill->ill_ipst; 12439 12440 if (cksum_val != NULL) 12441 *cksum_val = 0; 12442 if (cksum_flags != NULL) 12443 *cksum_flags = 0; 12444 12445 /* 12446 * Drop the fragmented as early as possible, if 12447 * we don't have resource(s) to re-assemble. 12448 */ 12449 if (ipst->ips_ip_reass_queue_bytes == 0) { 12450 freemsg(mp); 12451 return (B_FALSE); 12452 } 12453 12454 /* Check for fragmentation offset; return if there's none */ 12455 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12456 (IPH_MF | IPH_OFFSET)) == 0) 12457 return (B_TRUE); 12458 12459 /* 12460 * We utilize hardware computed checksum info only for UDP since 12461 * IP fragmentation is a normal occurence for the protocol. In 12462 * addition, checksum offload support for IP fragments carrying 12463 * UDP payload is commonly implemented across network adapters. 12464 */ 12465 ASSERT(ill != NULL); 12466 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12467 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12468 mblk_t *mp1 = mp->b_cont; 12469 int32_t len; 12470 12471 /* Record checksum information from the packet */ 12472 sum_val = (uint32_t)DB_CKSUM16(mp); 12473 sum_flags = DB_CKSUMFLAGS(mp); 12474 12475 /* IP payload offset from beginning of mblk */ 12476 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12477 12478 if ((sum_flags & HCK_PARTIALCKSUM) && 12479 (mp1 == NULL || mp1->b_cont == NULL) && 12480 offset >= DB_CKSUMSTART(mp) && 12481 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12482 uint32_t adj; 12483 /* 12484 * Partial checksum has been calculated by hardware 12485 * and attached to the packet; in addition, any 12486 * prepended extraneous data is even byte aligned. 12487 * If any such data exists, we adjust the checksum; 12488 * this would also handle any postpended data. 12489 */ 12490 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12491 mp, mp1, len, adj); 12492 12493 /* One's complement subtract extraneous checksum */ 12494 if (adj >= sum_val) 12495 sum_val = ~(adj - sum_val) & 0xFFFF; 12496 else 12497 sum_val -= adj; 12498 } 12499 } else { 12500 sum_val = 0; 12501 sum_flags = 0; 12502 } 12503 12504 /* Clear hardware checksumming flag */ 12505 DB_CKSUMFLAGS(mp) = 0; 12506 12507 ident = ipha->ipha_ident; 12508 offset = (frag_offset_flags << 3) & 0xFFFF; 12509 src = ipha->ipha_src; 12510 dst = ipha->ipha_dst; 12511 hdr_length = IPH_HDR_LENGTH(ipha); 12512 end = ntohs(ipha->ipha_length) - hdr_length; 12513 12514 /* If end == 0 then we have a packet with no data, so just free it */ 12515 if (end == 0) { 12516 freemsg(mp); 12517 return (B_FALSE); 12518 } 12519 12520 /* Record the ECN field info. */ 12521 ecn_info = (ipha->ipha_type_of_service & 0x3); 12522 if (offset != 0) { 12523 /* 12524 * If this isn't the first piece, strip the header, and 12525 * add the offset to the end value. 12526 */ 12527 mp->b_rptr += hdr_length; 12528 end += offset; 12529 } 12530 12531 msg_len = MBLKSIZE(mp); 12532 tail_mp = mp; 12533 while (tail_mp->b_cont != NULL) { 12534 tail_mp = tail_mp->b_cont; 12535 msg_len += MBLKSIZE(tail_mp); 12536 } 12537 12538 /* If the reassembly list for this ILL will get too big, prune it */ 12539 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12540 ipst->ips_ip_reass_queue_bytes) { 12541 ill_frag_prune(ill, 12542 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12543 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12544 pruned = B_TRUE; 12545 } 12546 12547 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12548 mutex_enter(&ipfb->ipfb_lock); 12549 12550 ipfp = &ipfb->ipfb_ipf; 12551 /* Try to find an existing fragment queue for this packet. */ 12552 for (;;) { 12553 ipf = ipfp[0]; 12554 if (ipf != NULL) { 12555 /* 12556 * It has to match on ident and src/dst address. 12557 */ 12558 if (ipf->ipf_ident == ident && 12559 ipf->ipf_src == src && 12560 ipf->ipf_dst == dst && 12561 ipf->ipf_protocol == proto) { 12562 /* 12563 * If we have received too many 12564 * duplicate fragments for this packet 12565 * free it. 12566 */ 12567 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12568 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12569 freemsg(mp); 12570 mutex_exit(&ipfb->ipfb_lock); 12571 return (B_FALSE); 12572 } 12573 /* Found it. */ 12574 break; 12575 } 12576 ipfp = &ipf->ipf_hash_next; 12577 continue; 12578 } 12579 12580 /* 12581 * If we pruned the list, do we want to store this new 12582 * fragment?. We apply an optimization here based on the 12583 * fact that most fragments will be received in order. 12584 * So if the offset of this incoming fragment is zero, 12585 * it is the first fragment of a new packet. We will 12586 * keep it. Otherwise drop the fragment, as we have 12587 * probably pruned the packet already (since the 12588 * packet cannot be found). 12589 */ 12590 if (pruned && offset != 0) { 12591 mutex_exit(&ipfb->ipfb_lock); 12592 freemsg(mp); 12593 return (B_FALSE); 12594 } 12595 12596 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12597 /* 12598 * Too many fragmented packets in this hash 12599 * bucket. Free the oldest. 12600 */ 12601 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12602 } 12603 12604 /* New guy. Allocate a frag message. */ 12605 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12606 if (mp1 == NULL) { 12607 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12608 freemsg(mp); 12609 reass_done: 12610 mutex_exit(&ipfb->ipfb_lock); 12611 return (B_FALSE); 12612 } 12613 12614 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12615 mp1->b_cont = mp; 12616 12617 /* Initialize the fragment header. */ 12618 ipf = (ipf_t *)mp1->b_rptr; 12619 ipf->ipf_mp = mp1; 12620 ipf->ipf_ptphn = ipfp; 12621 ipfp[0] = ipf; 12622 ipf->ipf_hash_next = NULL; 12623 ipf->ipf_ident = ident; 12624 ipf->ipf_protocol = proto; 12625 ipf->ipf_src = src; 12626 ipf->ipf_dst = dst; 12627 ipf->ipf_nf_hdr_len = 0; 12628 /* Record reassembly start time. */ 12629 ipf->ipf_timestamp = gethrestime_sec(); 12630 /* Record ipf generation and account for frag header */ 12631 ipf->ipf_gen = ill->ill_ipf_gen++; 12632 ipf->ipf_count = MBLKSIZE(mp1); 12633 ipf->ipf_last_frag_seen = B_FALSE; 12634 ipf->ipf_ecn = ecn_info; 12635 ipf->ipf_num_dups = 0; 12636 ipfb->ipfb_frag_pkts++; 12637 ipf->ipf_checksum = 0; 12638 ipf->ipf_checksum_flags = 0; 12639 12640 /* Store checksum value in fragment header */ 12641 if (sum_flags != 0) { 12642 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12643 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12644 ipf->ipf_checksum = sum_val; 12645 ipf->ipf_checksum_flags = sum_flags; 12646 } 12647 12648 /* 12649 * We handle reassembly two ways. In the easy case, 12650 * where all the fragments show up in order, we do 12651 * minimal bookkeeping, and just clip new pieces on 12652 * the end. If we ever see a hole, then we go off 12653 * to ip_reassemble which has to mark the pieces and 12654 * keep track of the number of holes, etc. Obviously, 12655 * the point of having both mechanisms is so we can 12656 * handle the easy case as efficiently as possible. 12657 */ 12658 if (offset == 0) { 12659 /* Easy case, in-order reassembly so far. */ 12660 ipf->ipf_count += msg_len; 12661 ipf->ipf_tail_mp = tail_mp; 12662 /* 12663 * Keep track of next expected offset in 12664 * ipf_end. 12665 */ 12666 ipf->ipf_end = end; 12667 ipf->ipf_nf_hdr_len = hdr_length; 12668 } else { 12669 /* Hard case, hole at the beginning. */ 12670 ipf->ipf_tail_mp = NULL; 12671 /* 12672 * ipf_end == 0 means that we have given up 12673 * on easy reassembly. 12674 */ 12675 ipf->ipf_end = 0; 12676 12677 /* Forget checksum offload from now on */ 12678 ipf->ipf_checksum_flags = 0; 12679 12680 /* 12681 * ipf_hole_cnt is set by ip_reassemble. 12682 * ipf_count is updated by ip_reassemble. 12683 * No need to check for return value here 12684 * as we don't expect reassembly to complete 12685 * or fail for the first fragment itself. 12686 */ 12687 (void) ip_reassemble(mp, ipf, 12688 (frag_offset_flags & IPH_OFFSET) << 3, 12689 (frag_offset_flags & IPH_MF), ill, msg_len); 12690 } 12691 /* Update per ipfb and ill byte counts */ 12692 ipfb->ipfb_count += ipf->ipf_count; 12693 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12694 ill->ill_frag_count += ipf->ipf_count; 12695 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 12696 /* If the frag timer wasn't already going, start it. */ 12697 mutex_enter(&ill->ill_lock); 12698 ill_frag_timer_start(ill); 12699 mutex_exit(&ill->ill_lock); 12700 goto reass_done; 12701 } 12702 12703 /* 12704 * If the packet's flag has changed (it could be coming up 12705 * from an interface different than the previous, therefore 12706 * possibly different checksum capability), then forget about 12707 * any stored checksum states. Otherwise add the value to 12708 * the existing one stored in the fragment header. 12709 */ 12710 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12711 sum_val += ipf->ipf_checksum; 12712 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12713 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12714 ipf->ipf_checksum = sum_val; 12715 } else if (ipf->ipf_checksum_flags != 0) { 12716 /* Forget checksum offload from now on */ 12717 ipf->ipf_checksum_flags = 0; 12718 } 12719 12720 /* 12721 * We have a new piece of a datagram which is already being 12722 * reassembled. Update the ECN info if all IP fragments 12723 * are ECN capable. If there is one which is not, clear 12724 * all the info. If there is at least one which has CE 12725 * code point, IP needs to report that up to transport. 12726 */ 12727 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12728 if (ecn_info == IPH_ECN_CE) 12729 ipf->ipf_ecn = IPH_ECN_CE; 12730 } else { 12731 ipf->ipf_ecn = IPH_ECN_NECT; 12732 } 12733 if (offset && ipf->ipf_end == offset) { 12734 /* The new fragment fits at the end */ 12735 ipf->ipf_tail_mp->b_cont = mp; 12736 /* Update the byte count */ 12737 ipf->ipf_count += msg_len; 12738 /* Update per ipfb and ill byte counts */ 12739 ipfb->ipfb_count += msg_len; 12740 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12741 ill->ill_frag_count += msg_len; 12742 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 12743 if (frag_offset_flags & IPH_MF) { 12744 /* More to come. */ 12745 ipf->ipf_end = end; 12746 ipf->ipf_tail_mp = tail_mp; 12747 goto reass_done; 12748 } 12749 } else { 12750 /* Go do the hard cases. */ 12751 int ret; 12752 12753 if (offset == 0) 12754 ipf->ipf_nf_hdr_len = hdr_length; 12755 12756 /* Save current byte count */ 12757 count = ipf->ipf_count; 12758 ret = ip_reassemble(mp, ipf, 12759 (frag_offset_flags & IPH_OFFSET) << 3, 12760 (frag_offset_flags & IPH_MF), ill, msg_len); 12761 /* Count of bytes added and subtracted (freeb()ed) */ 12762 count = ipf->ipf_count - count; 12763 if (count) { 12764 /* Update per ipfb and ill byte counts */ 12765 ipfb->ipfb_count += count; 12766 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12767 ill->ill_frag_count += count; 12768 ASSERT(ill->ill_frag_count > 0); 12769 } 12770 if (ret == IP_REASS_PARTIAL) { 12771 goto reass_done; 12772 } else if (ret == IP_REASS_FAILED) { 12773 /* Reassembly failed. Free up all resources */ 12774 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12775 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12776 IP_REASS_SET_START(t_mp, 0); 12777 IP_REASS_SET_END(t_mp, 0); 12778 } 12779 freemsg(mp); 12780 goto reass_done; 12781 } 12782 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12783 } 12784 /* 12785 * We have completed reassembly. Unhook the frag header from 12786 * the reassembly list. 12787 * 12788 * Before we free the frag header, record the ECN info 12789 * to report back to the transport. 12790 */ 12791 ecn_info = ipf->ipf_ecn; 12792 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12793 ipfp = ipf->ipf_ptphn; 12794 12795 /* We need to supply these to caller */ 12796 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12797 sum_val = ipf->ipf_checksum; 12798 else 12799 sum_val = 0; 12800 12801 mp1 = ipf->ipf_mp; 12802 count = ipf->ipf_count; 12803 ipf = ipf->ipf_hash_next; 12804 if (ipf != NULL) 12805 ipf->ipf_ptphn = ipfp; 12806 ipfp[0] = ipf; 12807 ill->ill_frag_count -= count; 12808 ASSERT(ipfb->ipfb_count >= count); 12809 ipfb->ipfb_count -= count; 12810 ipfb->ipfb_frag_pkts--; 12811 mutex_exit(&ipfb->ipfb_lock); 12812 /* Ditch the frag header. */ 12813 mp = mp1->b_cont; 12814 12815 freeb(mp1); 12816 12817 /* Restore original IP length in header. */ 12818 packet_size = (uint32_t)msgdsize(mp); 12819 if (packet_size > IP_MAXPACKET) { 12820 freemsg(mp); 12821 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12822 return (B_FALSE); 12823 } 12824 12825 if (DB_REF(mp) > 1) { 12826 mblk_t *mp2 = copymsg(mp); 12827 12828 freemsg(mp); 12829 if (mp2 == NULL) { 12830 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12831 return (B_FALSE); 12832 } 12833 mp = mp2; 12834 } 12835 ipha = (ipha_t *)mp->b_rptr; 12836 12837 ipha->ipha_length = htons((uint16_t)packet_size); 12838 /* We're now complete, zip the frag state */ 12839 ipha->ipha_fragment_offset_and_flags = 0; 12840 /* Record the ECN info. */ 12841 ipha->ipha_type_of_service &= 0xFC; 12842 ipha->ipha_type_of_service |= ecn_info; 12843 *mpp = mp; 12844 12845 /* Reassembly is successful; return checksum information if needed */ 12846 if (cksum_val != NULL) 12847 *cksum_val = sum_val; 12848 if (cksum_flags != NULL) 12849 *cksum_flags = sum_flags; 12850 12851 return (B_TRUE); 12852 } 12853 12854 /* 12855 * Perform ip header check sum update local options. 12856 * return B_TRUE if all is well, else return B_FALSE and release 12857 * the mp. caller is responsible for decrementing ire ref cnt. 12858 */ 12859 static boolean_t 12860 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12861 ip_stack_t *ipst) 12862 { 12863 mblk_t *first_mp; 12864 boolean_t mctl_present; 12865 uint16_t sum; 12866 12867 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12868 /* 12869 * Don't do the checksum if it has gone through AH/ESP 12870 * processing. 12871 */ 12872 if (!mctl_present) { 12873 sum = ip_csum_hdr(ipha); 12874 if (sum != 0) { 12875 if (ill != NULL) { 12876 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12877 } else { 12878 BUMP_MIB(&ipst->ips_ip_mib, 12879 ipIfStatsInCksumErrs); 12880 } 12881 freemsg(first_mp); 12882 return (B_FALSE); 12883 } 12884 } 12885 12886 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12887 if (mctl_present) 12888 freeb(first_mp); 12889 return (B_FALSE); 12890 } 12891 12892 return (B_TRUE); 12893 } 12894 12895 /* 12896 * All udp packet are delivered to the local host via this routine. 12897 */ 12898 void 12899 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12900 ill_t *recv_ill) 12901 { 12902 uint32_t sum; 12903 uint32_t u1; 12904 boolean_t mctl_present; 12905 conn_t *connp; 12906 mblk_t *first_mp; 12907 uint16_t *up; 12908 ill_t *ill = (ill_t *)q->q_ptr; 12909 uint16_t reass_hck_flags = 0; 12910 ip_stack_t *ipst; 12911 12912 ASSERT(recv_ill != NULL); 12913 ipst = recv_ill->ill_ipst; 12914 12915 #define rptr ((uchar_t *)ipha) 12916 12917 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12918 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12919 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12920 ASSERT(ill != NULL); 12921 12922 /* 12923 * FAST PATH for udp packets 12924 */ 12925 12926 /* u1 is # words of IP options */ 12927 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12928 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12929 12930 /* IP options present */ 12931 if (u1 != 0) 12932 goto ipoptions; 12933 12934 /* Check the IP header checksum. */ 12935 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12936 /* Clear the IP header h/w cksum flag */ 12937 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12938 } else { 12939 #define uph ((uint16_t *)ipha) 12940 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12941 uph[6] + uph[7] + uph[8] + uph[9]; 12942 #undef uph 12943 /* finish doing IP checksum */ 12944 sum = (sum & 0xFFFF) + (sum >> 16); 12945 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12946 /* 12947 * Don't verify header checksum if this packet is coming 12948 * back from AH/ESP as we already did it. 12949 */ 12950 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 12951 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12952 freemsg(first_mp); 12953 return; 12954 } 12955 } 12956 12957 /* 12958 * Count for SNMP of inbound packets for ire. 12959 * if mctl is present this might be a secure packet and 12960 * has already been counted for in ip_proto_input(). 12961 */ 12962 if (!mctl_present) { 12963 UPDATE_IB_PKT_COUNT(ire); 12964 ire->ire_last_used_time = lbolt; 12965 } 12966 12967 /* packet part of fragmented IP packet? */ 12968 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12969 if (u1 & (IPH_MF | IPH_OFFSET)) { 12970 goto fragmented; 12971 } 12972 12973 /* u1 = IP header length (20 bytes) */ 12974 u1 = IP_SIMPLE_HDR_LENGTH; 12975 12976 /* packet does not contain complete IP & UDP headers */ 12977 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12978 goto udppullup; 12979 12980 /* up points to UDP header */ 12981 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12982 #define iphs ((uint16_t *)ipha) 12983 12984 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12985 if (up[3] != 0) { 12986 mblk_t *mp1 = mp->b_cont; 12987 boolean_t cksum_err; 12988 uint16_t hck_flags = 0; 12989 12990 /* Pseudo-header checksum */ 12991 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12992 iphs[9] + up[2]; 12993 12994 /* 12995 * Revert to software checksum calculation if the interface 12996 * isn't capable of checksum offload or if IPsec is present. 12997 */ 12998 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12999 hck_flags = DB_CKSUMFLAGS(mp); 13000 13001 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13002 IP_STAT(ipst, ip_in_sw_cksum); 13003 13004 IP_CKSUM_RECV(hck_flags, u1, 13005 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13006 (int32_t)((uchar_t *)up - rptr), 13007 mp, mp1, cksum_err); 13008 13009 if (cksum_err) { 13010 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 13011 if (hck_flags & HCK_FULLCKSUM) 13012 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 13013 else if (hck_flags & HCK_PARTIALCKSUM) 13014 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 13015 else 13016 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 13017 13018 freemsg(first_mp); 13019 return; 13020 } 13021 } 13022 13023 /* Non-fragmented broadcast or multicast packet? */ 13024 if (ire->ire_type == IRE_BROADCAST) 13025 goto udpslowpath; 13026 13027 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 13028 ire->ire_zoneid, ipst)) != NULL) { 13029 ASSERT(connp->conn_upq != NULL); 13030 IP_STAT(ipst, ip_udp_fast_path); 13031 13032 if (CONN_UDP_FLOWCTLD(connp)) { 13033 freemsg(mp); 13034 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 13035 } else { 13036 if (!mctl_present) { 13037 BUMP_MIB(ill->ill_ip_mib, 13038 ipIfStatsHCInDelivers); 13039 } 13040 /* 13041 * mp and first_mp can change. 13042 */ 13043 if (ip_udp_check(q, connp, recv_ill, 13044 ipha, &mp, &first_mp, mctl_present)) { 13045 /* Send it upstream */ 13046 CONN_UDP_RECV(connp, mp); 13047 } 13048 } 13049 /* 13050 * freeb() cannot deal with null mblk being passed 13051 * in and first_mp can be set to null in the call 13052 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 13053 */ 13054 if (mctl_present && first_mp != NULL) { 13055 freeb(first_mp); 13056 } 13057 CONN_DEC_REF(connp); 13058 return; 13059 } 13060 13061 /* 13062 * if we got here we know the packet is not fragmented and 13063 * has no options. The classifier could not find a conn_t and 13064 * most likely its an icmp packet so send it through slow path. 13065 */ 13066 13067 goto udpslowpath; 13068 13069 ipoptions: 13070 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 13071 goto slow_done; 13072 } 13073 13074 UPDATE_IB_PKT_COUNT(ire); 13075 ire->ire_last_used_time = lbolt; 13076 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13077 if (u1 & (IPH_MF | IPH_OFFSET)) { 13078 fragmented: 13079 /* 13080 * "sum" and "reass_hck_flags" are non-zero if the 13081 * reassembled packet has a valid hardware computed 13082 * checksum information associated with it. 13083 */ 13084 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 13085 goto slow_done; 13086 /* 13087 * Make sure that first_mp points back to mp as 13088 * the mp we came in with could have changed in 13089 * ip_rput_fragment(). 13090 */ 13091 ASSERT(!mctl_present); 13092 ipha = (ipha_t *)mp->b_rptr; 13093 first_mp = mp; 13094 } 13095 13096 /* Now we have a complete datagram, destined for this machine. */ 13097 u1 = IPH_HDR_LENGTH(ipha); 13098 /* Pull up the UDP header, if necessary. */ 13099 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 13100 udppullup: 13101 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 13102 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13103 freemsg(first_mp); 13104 goto slow_done; 13105 } 13106 ipha = (ipha_t *)mp->b_rptr; 13107 } 13108 13109 /* 13110 * Validate the checksum for the reassembled packet; for the 13111 * pullup case we calculate the payload checksum in software. 13112 */ 13113 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 13114 if (up[3] != 0) { 13115 boolean_t cksum_err; 13116 13117 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13118 IP_STAT(ipst, ip_in_sw_cksum); 13119 13120 IP_CKSUM_RECV_REASS(reass_hck_flags, 13121 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 13122 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 13123 iphs[9] + up[2], sum, cksum_err); 13124 13125 if (cksum_err) { 13126 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 13127 13128 if (reass_hck_flags & HCK_FULLCKSUM) 13129 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 13130 else if (reass_hck_flags & HCK_PARTIALCKSUM) 13131 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 13132 else 13133 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 13134 13135 freemsg(first_mp); 13136 goto slow_done; 13137 } 13138 } 13139 udpslowpath: 13140 13141 /* Clear hardware checksum flag to be safe */ 13142 DB_CKSUMFLAGS(mp) = 0; 13143 13144 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 13145 (ire->ire_type == IRE_BROADCAST), 13146 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 13147 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 13148 13149 slow_done: 13150 IP_STAT(ipst, ip_udp_slow_path); 13151 return; 13152 13153 #undef iphs 13154 #undef rptr 13155 } 13156 13157 /* ARGSUSED */ 13158 static mblk_t * 13159 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13160 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 13161 ill_rx_ring_t *ill_ring) 13162 { 13163 conn_t *connp; 13164 uint32_t sum; 13165 uint32_t u1; 13166 uint16_t *up; 13167 int offset; 13168 ssize_t len; 13169 mblk_t *mp1; 13170 boolean_t syn_present = B_FALSE; 13171 tcph_t *tcph; 13172 uint_t ip_hdr_len; 13173 ill_t *ill = (ill_t *)q->q_ptr; 13174 zoneid_t zoneid = ire->ire_zoneid; 13175 boolean_t cksum_err; 13176 uint16_t hck_flags = 0; 13177 ip_stack_t *ipst = recv_ill->ill_ipst; 13178 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 13179 13180 #define rptr ((uchar_t *)ipha) 13181 13182 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 13183 ASSERT(ill != NULL); 13184 13185 /* 13186 * FAST PATH for tcp packets 13187 */ 13188 13189 /* u1 is # words of IP options */ 13190 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13191 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13192 13193 /* IP options present */ 13194 if (u1) { 13195 goto ipoptions; 13196 } else { 13197 /* Check the IP header checksum. */ 13198 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13199 /* Clear the IP header h/w cksum flag */ 13200 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 13201 } else { 13202 #define uph ((uint16_t *)ipha) 13203 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13204 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13205 #undef uph 13206 /* finish doing IP checksum */ 13207 sum = (sum & 0xFFFF) + (sum >> 16); 13208 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13209 /* 13210 * Don't verify header checksum if this packet 13211 * is coming back from AH/ESP as we already did it. 13212 */ 13213 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13214 BUMP_MIB(ill->ill_ip_mib, 13215 ipIfStatsInCksumErrs); 13216 goto error; 13217 } 13218 } 13219 } 13220 13221 if (!mctl_present) { 13222 UPDATE_IB_PKT_COUNT(ire); 13223 ire->ire_last_used_time = lbolt; 13224 } 13225 13226 /* packet part of fragmented IP packet? */ 13227 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13228 if (u1 & (IPH_MF | IPH_OFFSET)) { 13229 goto fragmented; 13230 } 13231 13232 /* u1 = IP header length (20 bytes) */ 13233 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13234 13235 /* does packet contain IP+TCP headers? */ 13236 len = mp->b_wptr - rptr; 13237 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13238 IP_STAT(ipst, ip_tcppullup); 13239 goto tcppullup; 13240 } 13241 13242 /* TCP options present? */ 13243 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13244 13245 /* 13246 * If options need to be pulled up, then goto tcpoptions. 13247 * otherwise we are still in the fast path 13248 */ 13249 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13250 IP_STAT(ipst, ip_tcpoptions); 13251 goto tcpoptions; 13252 } 13253 13254 /* multiple mblks of tcp data? */ 13255 if ((mp1 = mp->b_cont) != NULL) { 13256 /* more then two? */ 13257 if (mp1->b_cont != NULL) { 13258 IP_STAT(ipst, ip_multipkttcp); 13259 goto multipkttcp; 13260 } 13261 len += mp1->b_wptr - mp1->b_rptr; 13262 } 13263 13264 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13265 13266 /* part of pseudo checksum */ 13267 13268 /* TCP datagram length */ 13269 u1 = len - IP_SIMPLE_HDR_LENGTH; 13270 13271 #define iphs ((uint16_t *)ipha) 13272 13273 #ifdef _BIG_ENDIAN 13274 u1 += IPPROTO_TCP; 13275 #else 13276 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13277 #endif 13278 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13279 13280 /* 13281 * Revert to software checksum calculation if the interface 13282 * isn't capable of checksum offload or if IPsec is present. 13283 */ 13284 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13285 hck_flags = DB_CKSUMFLAGS(mp); 13286 13287 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13288 IP_STAT(ipst, ip_in_sw_cksum); 13289 13290 IP_CKSUM_RECV(hck_flags, u1, 13291 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13292 (int32_t)((uchar_t *)up - rptr), 13293 mp, mp1, cksum_err); 13294 13295 if (cksum_err) { 13296 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13297 13298 if (hck_flags & HCK_FULLCKSUM) 13299 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13300 else if (hck_flags & HCK_PARTIALCKSUM) 13301 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13302 else 13303 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13304 13305 goto error; 13306 } 13307 13308 try_again: 13309 13310 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13311 zoneid, ipst)) == NULL) { 13312 /* Send the TH_RST */ 13313 goto no_conn; 13314 } 13315 13316 /* 13317 * TCP FAST PATH for AF_INET socket. 13318 * 13319 * TCP fast path to avoid extra work. An AF_INET socket type 13320 * does not have facility to receive extra information via 13321 * ip_process or ip_add_info. Also, when the connection was 13322 * established, we made a check if this connection is impacted 13323 * by any global IPSec policy or per connection policy (a 13324 * policy that comes in effect later will not apply to this 13325 * connection). Since all this can be determined at the 13326 * connection establishment time, a quick check of flags 13327 * can avoid extra work. 13328 */ 13329 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13330 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13331 ASSERT(first_mp == mp); 13332 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13333 SET_SQUEUE(mp, tcp_rput_data, connp); 13334 return (mp); 13335 } 13336 13337 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13338 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13339 if (IPCL_IS_TCP(connp)) { 13340 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13341 DB_CKSUMSTART(mp) = 13342 (intptr_t)ip_squeue_get(ill_ring); 13343 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13344 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13345 BUMP_MIB(ill->ill_ip_mib, 13346 ipIfStatsHCInDelivers); 13347 SET_SQUEUE(mp, connp->conn_recv, connp); 13348 return (mp); 13349 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13350 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13351 BUMP_MIB(ill->ill_ip_mib, 13352 ipIfStatsHCInDelivers); 13353 ip_squeue_enter_unbound++; 13354 SET_SQUEUE(mp, tcp_conn_request_unbound, 13355 connp); 13356 return (mp); 13357 } 13358 syn_present = B_TRUE; 13359 } 13360 13361 } 13362 13363 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13364 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13365 13366 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13367 /* No need to send this packet to TCP */ 13368 if ((flags & TH_RST) || (flags & TH_URG)) { 13369 CONN_DEC_REF(connp); 13370 freemsg(first_mp); 13371 return (NULL); 13372 } 13373 if (flags & TH_ACK) { 13374 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13375 ipst->ips_netstack->netstack_tcp); 13376 CONN_DEC_REF(connp); 13377 return (NULL); 13378 } 13379 13380 CONN_DEC_REF(connp); 13381 freemsg(first_mp); 13382 return (NULL); 13383 } 13384 13385 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13386 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13387 ipha, NULL, mctl_present); 13388 if (first_mp == NULL) { 13389 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13390 CONN_DEC_REF(connp); 13391 return (NULL); 13392 } 13393 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13394 ASSERT(syn_present); 13395 if (mctl_present) { 13396 ASSERT(first_mp != mp); 13397 first_mp->b_datap->db_struioflag |= 13398 STRUIO_POLICY; 13399 } else { 13400 ASSERT(first_mp == mp); 13401 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13402 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13403 } 13404 } else { 13405 /* 13406 * Discard first_mp early since we're dealing with a 13407 * fully-connected conn_t and tcp doesn't do policy in 13408 * this case. 13409 */ 13410 if (mctl_present) { 13411 freeb(first_mp); 13412 mctl_present = B_FALSE; 13413 } 13414 first_mp = mp; 13415 } 13416 } 13417 13418 /* Initiate IPPF processing for fastpath */ 13419 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13420 uint32_t ill_index; 13421 13422 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13423 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13424 if (mp == NULL) { 13425 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13426 "deferred/dropped during IPPF processing\n")); 13427 CONN_DEC_REF(connp); 13428 if (mctl_present) 13429 freeb(first_mp); 13430 return (NULL); 13431 } else if (mctl_present) { 13432 /* 13433 * ip_process might return a new mp. 13434 */ 13435 ASSERT(first_mp != mp); 13436 first_mp->b_cont = mp; 13437 } else { 13438 first_mp = mp; 13439 } 13440 13441 } 13442 13443 if (!syn_present && connp->conn_ip_recvpktinfo) { 13444 /* 13445 * TCP does not support IP_RECVPKTINFO for v4 so lets 13446 * make sure IPF_RECVIF is passed to ip_add_info. 13447 */ 13448 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13449 IPCL_ZONEID(connp), ipst); 13450 if (mp == NULL) { 13451 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13452 CONN_DEC_REF(connp); 13453 if (mctl_present) 13454 freeb(first_mp); 13455 return (NULL); 13456 } else if (mctl_present) { 13457 /* 13458 * ip_add_info might return a new mp. 13459 */ 13460 ASSERT(first_mp != mp); 13461 first_mp->b_cont = mp; 13462 } else { 13463 first_mp = mp; 13464 } 13465 } 13466 13467 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13468 if (IPCL_IS_TCP(connp)) { 13469 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13470 return (first_mp); 13471 } else { 13472 putnext(connp->conn_rq, first_mp); 13473 CONN_DEC_REF(connp); 13474 return (NULL); 13475 } 13476 13477 no_conn: 13478 /* Initiate IPPf processing, if needed. */ 13479 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13480 uint32_t ill_index; 13481 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13482 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13483 if (first_mp == NULL) { 13484 return (NULL); 13485 } 13486 } 13487 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13488 13489 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13490 ipst->ips_netstack->netstack_tcp); 13491 return (NULL); 13492 ipoptions: 13493 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13494 goto slow_done; 13495 } 13496 13497 UPDATE_IB_PKT_COUNT(ire); 13498 ire->ire_last_used_time = lbolt; 13499 13500 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13501 if (u1 & (IPH_MF | IPH_OFFSET)) { 13502 fragmented: 13503 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13504 if (mctl_present) 13505 freeb(first_mp); 13506 goto slow_done; 13507 } 13508 /* 13509 * Make sure that first_mp points back to mp as 13510 * the mp we came in with could have changed in 13511 * ip_rput_fragment(). 13512 */ 13513 ASSERT(!mctl_present); 13514 ipha = (ipha_t *)mp->b_rptr; 13515 first_mp = mp; 13516 } 13517 13518 /* Now we have a complete datagram, destined for this machine. */ 13519 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13520 13521 len = mp->b_wptr - mp->b_rptr; 13522 /* Pull up a minimal TCP header, if necessary. */ 13523 if (len < (u1 + 20)) { 13524 tcppullup: 13525 if (!pullupmsg(mp, u1 + 20)) { 13526 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13527 goto error; 13528 } 13529 ipha = (ipha_t *)mp->b_rptr; 13530 len = mp->b_wptr - mp->b_rptr; 13531 } 13532 13533 /* 13534 * Extract the offset field from the TCP header. As usual, we 13535 * try to help the compiler more than the reader. 13536 */ 13537 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13538 if (offset != 5) { 13539 tcpoptions: 13540 if (offset < 5) { 13541 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13542 goto error; 13543 } 13544 /* 13545 * There must be TCP options. 13546 * Make sure we can grab them. 13547 */ 13548 offset <<= 2; 13549 offset += u1; 13550 if (len < offset) { 13551 if (!pullupmsg(mp, offset)) { 13552 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13553 goto error; 13554 } 13555 ipha = (ipha_t *)mp->b_rptr; 13556 len = mp->b_wptr - rptr; 13557 } 13558 } 13559 13560 /* Get the total packet length in len, including headers. */ 13561 if (mp->b_cont) { 13562 multipkttcp: 13563 len = msgdsize(mp); 13564 } 13565 13566 /* 13567 * Check the TCP checksum by pulling together the pseudo- 13568 * header checksum, and passing it to ip_csum to be added in 13569 * with the TCP datagram. 13570 * 13571 * Since we are not using the hwcksum if available we must 13572 * clear the flag. We may come here via tcppullup or tcpoptions. 13573 * If either of these fails along the way the mblk is freed. 13574 * If this logic ever changes and mblk is reused to say send 13575 * ICMP's back, then this flag may need to be cleared in 13576 * other places as well. 13577 */ 13578 DB_CKSUMFLAGS(mp) = 0; 13579 13580 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13581 13582 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13583 #ifdef _BIG_ENDIAN 13584 u1 += IPPROTO_TCP; 13585 #else 13586 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13587 #endif 13588 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13589 /* 13590 * Not M_DATA mblk or its a dup, so do the checksum now. 13591 */ 13592 IP_STAT(ipst, ip_in_sw_cksum); 13593 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13594 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13595 goto error; 13596 } 13597 13598 IP_STAT(ipst, ip_tcp_slow_path); 13599 goto try_again; 13600 #undef iphs 13601 #undef rptr 13602 13603 error: 13604 freemsg(first_mp); 13605 slow_done: 13606 return (NULL); 13607 } 13608 13609 /* ARGSUSED */ 13610 static void 13611 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13612 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13613 { 13614 conn_t *connp; 13615 uint32_t sum; 13616 uint32_t u1; 13617 ssize_t len; 13618 sctp_hdr_t *sctph; 13619 zoneid_t zoneid = ire->ire_zoneid; 13620 uint32_t pktsum; 13621 uint32_t calcsum; 13622 uint32_t ports; 13623 in6_addr_t map_src, map_dst; 13624 ill_t *ill = (ill_t *)q->q_ptr; 13625 ip_stack_t *ipst; 13626 sctp_stack_t *sctps; 13627 13628 ASSERT(recv_ill != NULL); 13629 ipst = recv_ill->ill_ipst; 13630 sctps = ipst->ips_netstack->netstack_sctp; 13631 13632 #define rptr ((uchar_t *)ipha) 13633 13634 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13635 ASSERT(ill != NULL); 13636 13637 /* u1 is # words of IP options */ 13638 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13639 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13640 13641 /* IP options present */ 13642 if (u1 > 0) { 13643 goto ipoptions; 13644 } else { 13645 /* Check the IP header checksum. */ 13646 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13647 #define uph ((uint16_t *)ipha) 13648 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13649 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13650 #undef uph 13651 /* finish doing IP checksum */ 13652 sum = (sum & 0xFFFF) + (sum >> 16); 13653 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13654 /* 13655 * Don't verify header checksum if this packet 13656 * is coming back from AH/ESP as we already did it. 13657 */ 13658 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13659 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13660 goto error; 13661 } 13662 } 13663 /* 13664 * Since there is no SCTP h/w cksum support yet, just 13665 * clear the flag. 13666 */ 13667 DB_CKSUMFLAGS(mp) = 0; 13668 } 13669 13670 /* 13671 * Don't verify header checksum if this packet is coming 13672 * back from AH/ESP as we already did it. 13673 */ 13674 if (!mctl_present) { 13675 UPDATE_IB_PKT_COUNT(ire); 13676 ire->ire_last_used_time = lbolt; 13677 } 13678 13679 /* packet part of fragmented IP packet? */ 13680 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13681 if (u1 & (IPH_MF | IPH_OFFSET)) 13682 goto fragmented; 13683 13684 /* u1 = IP header length (20 bytes) */ 13685 u1 = IP_SIMPLE_HDR_LENGTH; 13686 13687 find_sctp_client: 13688 /* Pullup if we don't have the sctp common header. */ 13689 len = MBLKL(mp); 13690 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13691 if (mp->b_cont == NULL || 13692 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13693 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13694 goto error; 13695 } 13696 ipha = (ipha_t *)mp->b_rptr; 13697 len = MBLKL(mp); 13698 } 13699 13700 sctph = (sctp_hdr_t *)(rptr + u1); 13701 #ifdef DEBUG 13702 if (!skip_sctp_cksum) { 13703 #endif 13704 pktsum = sctph->sh_chksum; 13705 sctph->sh_chksum = 0; 13706 calcsum = sctp_cksum(mp, u1); 13707 if (calcsum != pktsum) { 13708 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 13709 goto error; 13710 } 13711 sctph->sh_chksum = pktsum; 13712 #ifdef DEBUG /* skip_sctp_cksum */ 13713 } 13714 #endif 13715 /* get the ports */ 13716 ports = *(uint32_t *)&sctph->sh_sport; 13717 13718 IRE_REFRELE(ire); 13719 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13720 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13721 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13722 sctps)) == NULL) { 13723 /* Check for raw socket or OOTB handling */ 13724 goto no_conn; 13725 } 13726 13727 /* Found a client; up it goes */ 13728 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13729 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13730 return; 13731 13732 no_conn: 13733 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13734 ports, mctl_present, flags, B_TRUE, zoneid); 13735 return; 13736 13737 ipoptions: 13738 DB_CKSUMFLAGS(mp) = 0; 13739 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13740 goto slow_done; 13741 13742 UPDATE_IB_PKT_COUNT(ire); 13743 ire->ire_last_used_time = lbolt; 13744 13745 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13746 if (u1 & (IPH_MF | IPH_OFFSET)) { 13747 fragmented: 13748 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13749 goto slow_done; 13750 /* 13751 * Make sure that first_mp points back to mp as 13752 * the mp we came in with could have changed in 13753 * ip_rput_fragment(). 13754 */ 13755 ASSERT(!mctl_present); 13756 ipha = (ipha_t *)mp->b_rptr; 13757 first_mp = mp; 13758 } 13759 13760 /* Now we have a complete datagram, destined for this machine. */ 13761 u1 = IPH_HDR_LENGTH(ipha); 13762 goto find_sctp_client; 13763 #undef iphs 13764 #undef rptr 13765 13766 error: 13767 freemsg(first_mp); 13768 slow_done: 13769 IRE_REFRELE(ire); 13770 } 13771 13772 #define VER_BITS 0xF0 13773 #define VERSION_6 0x60 13774 13775 static boolean_t 13776 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13777 ipaddr_t *dstp, ip_stack_t *ipst) 13778 { 13779 uint_t opt_len; 13780 ipha_t *ipha; 13781 ssize_t len; 13782 uint_t pkt_len; 13783 13784 ASSERT(ill != NULL); 13785 IP_STAT(ipst, ip_ipoptions); 13786 ipha = *iphapp; 13787 13788 #define rptr ((uchar_t *)ipha) 13789 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13790 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13791 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13792 freemsg(mp); 13793 return (B_FALSE); 13794 } 13795 13796 /* multiple mblk or too short */ 13797 pkt_len = ntohs(ipha->ipha_length); 13798 13799 /* Get the number of words of IP options in the IP header. */ 13800 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13801 if (opt_len) { 13802 /* IP Options present! Validate and process. */ 13803 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13804 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13805 goto done; 13806 } 13807 /* 13808 * Recompute complete header length and make sure we 13809 * have access to all of it. 13810 */ 13811 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13812 if (len > (mp->b_wptr - rptr)) { 13813 if (len > pkt_len) { 13814 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13815 goto done; 13816 } 13817 if (!pullupmsg(mp, len)) { 13818 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13819 goto done; 13820 } 13821 ipha = (ipha_t *)mp->b_rptr; 13822 } 13823 /* 13824 * Go off to ip_rput_options which returns the next hop 13825 * destination address, which may have been affected 13826 * by source routing. 13827 */ 13828 IP_STAT(ipst, ip_opt); 13829 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13830 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13831 return (B_FALSE); 13832 } 13833 } 13834 *iphapp = ipha; 13835 return (B_TRUE); 13836 done: 13837 /* clear b_prev - used by ip_mroute_decap */ 13838 mp->b_prev = NULL; 13839 freemsg(mp); 13840 return (B_FALSE); 13841 #undef rptr 13842 } 13843 13844 /* 13845 * Deal with the fact that there is no ire for the destination. 13846 * The incoming ill (in_ill) is passed in to ip_newroute only 13847 * in the case of packets coming from mobile ip forward tunnel. 13848 * It must be null otherwise. 13849 */ 13850 static ire_t * 13851 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 13852 ipaddr_t dst) 13853 { 13854 ipha_t *ipha; 13855 ill_t *ill; 13856 ire_t *ire; 13857 boolean_t check_multirt = B_FALSE; 13858 ip_stack_t *ipst; 13859 13860 ipha = (ipha_t *)mp->b_rptr; 13861 ill = (ill_t *)q->q_ptr; 13862 13863 ASSERT(ill != NULL); 13864 ipst = ill->ill_ipst; 13865 13866 /* 13867 * No IRE for this destination, so it can't be for us. 13868 * Unless we are forwarding, drop the packet. 13869 * We have to let source routed packets through 13870 * since we don't yet know if they are 'ping -l' 13871 * packets i.e. if they will go out over the 13872 * same interface as they came in on. 13873 */ 13874 if (ll_multicast) { 13875 freemsg(mp); 13876 return (NULL); 13877 } 13878 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13879 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13880 freemsg(mp); 13881 return (NULL); 13882 } 13883 13884 /* 13885 * Mark this packet as having originated externally. 13886 * 13887 * For non-forwarding code path, ire_send later double 13888 * checks this interface to see if it is still exists 13889 * post-ARP resolution. 13890 * 13891 * Also, IPQOS uses this to differentiate between 13892 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13893 * QOS packet processing in ip_wput_attach_llhdr(). 13894 * The QoS module can mark the b_band for a fastpath message 13895 * or the dl_priority field in a unitdata_req header for 13896 * CoS marking. This info can only be found in 13897 * ip_wput_attach_llhdr(). 13898 */ 13899 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13900 /* 13901 * Clear the indication that this may have a hardware checksum 13902 * as we are not using it 13903 */ 13904 DB_CKSUMFLAGS(mp) = 0; 13905 13906 if (in_ill != NULL) { 13907 /* 13908 * Now hand the packet to ip_newroute. 13909 */ 13910 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID, ipst); 13911 return (NULL); 13912 } 13913 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13914 MBLK_GETLABEL(mp), ipst); 13915 13916 if (ire == NULL && check_multirt) { 13917 /* Let ip_newroute handle CGTP */ 13918 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID, ipst); 13919 return (NULL); 13920 } 13921 13922 if (ire != NULL) 13923 return (ire); 13924 13925 mp->b_prev = mp->b_next = 0; 13926 /* send icmp unreachable */ 13927 q = WR(q); 13928 /* Sent by forwarding path, and router is global zone */ 13929 if (ip_source_routed(ipha, ipst)) { 13930 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13931 GLOBAL_ZONEID, ipst); 13932 } else { 13933 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13934 ipst); 13935 } 13936 13937 return (NULL); 13938 13939 } 13940 13941 /* 13942 * check ip header length and align it. 13943 */ 13944 static boolean_t 13945 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13946 { 13947 ssize_t len; 13948 ill_t *ill; 13949 ipha_t *ipha; 13950 13951 len = MBLKL(mp); 13952 13953 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13954 ill = (ill_t *)q->q_ptr; 13955 13956 if (!OK_32PTR(mp->b_rptr)) 13957 IP_STAT(ipst, ip_notaligned1); 13958 else 13959 IP_STAT(ipst, ip_notaligned2); 13960 /* Guard against bogus device drivers */ 13961 if (len < 0) { 13962 /* clear b_prev - used by ip_mroute_decap */ 13963 mp->b_prev = NULL; 13964 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13965 freemsg(mp); 13966 return (B_FALSE); 13967 } 13968 13969 if (ip_rput_pullups++ == 0) { 13970 ipha = (ipha_t *)mp->b_rptr; 13971 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13972 "ip_check_and_align_header: %s forced us to " 13973 " pullup pkt, hdr len %ld, hdr addr %p", 13974 ill->ill_name, len, ipha); 13975 } 13976 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13977 /* clear b_prev - used by ip_mroute_decap */ 13978 mp->b_prev = NULL; 13979 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13980 freemsg(mp); 13981 return (B_FALSE); 13982 } 13983 } 13984 return (B_TRUE); 13985 } 13986 13987 ire_t * 13988 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13989 { 13990 ire_t *new_ire; 13991 ill_t *ire_ill; 13992 uint_t ifindex; 13993 ip_stack_t *ipst = ill->ill_ipst; 13994 boolean_t strict_check = B_FALSE; 13995 13996 /* 13997 * This packet came in on an interface other than the one associated 13998 * with the first ire we found for the destination address. We do 13999 * another ire lookup here, using the ingress ill, to see if the 14000 * interface is in an interface group. 14001 * As long as the ills belong to the same group, we don't consider 14002 * them to be arriving on the wrong interface. Thus, if the switch 14003 * is doing inbound load spreading, we won't drop packets when the 14004 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 14005 * for 'usesrc groups' where the destination address may belong to 14006 * another interface to allow multipathing to happen. 14007 * We also need to check for IPIF_UNNUMBERED point2point interfaces 14008 * where the local address may not be unique. In this case we were 14009 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 14010 * actually returned. The new lookup, which is more specific, should 14011 * only find the IRE_LOCAL associated with the ingress ill if one 14012 * exists. 14013 */ 14014 14015 if (ire->ire_ipversion == IPV4_VERSION) { 14016 if (ipst->ips_ip_strict_dst_multihoming) 14017 strict_check = B_TRUE; 14018 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 14019 ill->ill_ipif, ALL_ZONES, NULL, 14020 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 14021 } else { 14022 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 14023 if (ipst->ips_ipv6_strict_dst_multihoming) 14024 strict_check = B_TRUE; 14025 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 14026 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 14027 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 14028 } 14029 /* 14030 * If the same ire that was returned in ip_input() is found then this 14031 * is an indication that interface groups are in use. The packet 14032 * arrived on a different ill in the group than the one associated with 14033 * the destination address. If a different ire was found then the same 14034 * IP address must be hosted on multiple ills. This is possible with 14035 * unnumbered point2point interfaces. We switch to use this new ire in 14036 * order to have accurate interface statistics. 14037 */ 14038 if (new_ire != NULL) { 14039 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 14040 ire_refrele(ire); 14041 ire = new_ire; 14042 } else { 14043 ire_refrele(new_ire); 14044 } 14045 return (ire); 14046 } else if ((ire->ire_rfq == NULL) && 14047 (ire->ire_ipversion == IPV4_VERSION)) { 14048 /* 14049 * The best match could have been the original ire which 14050 * was created against an IRE_LOCAL on lo0. In the IPv4 case 14051 * the strict multihoming checks are irrelevant as we consider 14052 * local addresses hosted on lo0 to be interface agnostic. We 14053 * only expect a null ire_rfq on IREs which are associated with 14054 * lo0 hence we can return now. 14055 */ 14056 return (ire); 14057 } 14058 14059 /* 14060 * Chase pointers once and store locally. 14061 */ 14062 ire_ill = (ire->ire_rfq == NULL) ? NULL : 14063 (ill_t *)(ire->ire_rfq->q_ptr); 14064 ifindex = ill->ill_usesrc_ifindex; 14065 14066 /* 14067 * Check if it's a legal address on the 'usesrc' interface. 14068 */ 14069 if ((ifindex != 0) && (ire_ill != NULL) && 14070 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 14071 return (ire); 14072 } 14073 14074 /* 14075 * If the ip*_strict_dst_multihoming switch is on then we can 14076 * only accept this packet if the interface is marked as routing. 14077 */ 14078 if (!(strict_check)) 14079 return (ire); 14080 14081 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 14082 ILLF_ROUTER) != 0) { 14083 return (ire); 14084 } 14085 14086 ire_refrele(ire); 14087 return (NULL); 14088 } 14089 14090 ire_t * 14091 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 14092 { 14093 ipha_t *ipha; 14094 ipaddr_t ip_dst, ip_src; 14095 ire_t *src_ire = NULL; 14096 ill_t *stq_ill; 14097 uint_t hlen; 14098 uint_t pkt_len; 14099 uint32_t sum; 14100 queue_t *dev_q; 14101 boolean_t check_multirt = B_FALSE; 14102 ip_stack_t *ipst = ill->ill_ipst; 14103 14104 ipha = (ipha_t *)mp->b_rptr; 14105 14106 /* 14107 * Martian Address Filtering [RFC 1812, Section 5.3.7] 14108 * The loopback address check for both src and dst has already 14109 * been checked in ip_input 14110 */ 14111 ip_dst = ntohl(dst); 14112 ip_src = ntohl(ipha->ipha_src); 14113 14114 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 14115 IN_CLASSD(ip_src)) { 14116 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14117 goto drop; 14118 } 14119 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14120 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14121 14122 if (src_ire != NULL) { 14123 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14124 goto drop; 14125 } 14126 14127 14128 /* No ire cache of nexthop. So first create one */ 14129 if (ire == NULL) { 14130 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL, ipst); 14131 /* 14132 * We only come to ip_fast_forward if ip_cgtp_filter is 14133 * is not set. So upon return from ire_forward 14134 * check_multirt should remain as false. 14135 */ 14136 ASSERT(!check_multirt); 14137 if (ire == NULL) { 14138 /* An attempt was made to forward the packet */ 14139 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14140 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14141 mp->b_prev = mp->b_next = 0; 14142 /* send icmp unreachable */ 14143 /* Sent by forwarding path, and router is global zone */ 14144 if (ip_source_routed(ipha, ipst)) { 14145 icmp_unreachable(ill->ill_wq, mp, 14146 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, 14147 ipst); 14148 } else { 14149 icmp_unreachable(ill->ill_wq, mp, 14150 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 14151 ipst); 14152 } 14153 return (ire); 14154 } 14155 } 14156 14157 /* 14158 * Forwarding fastpath exception case: 14159 * If either of the follwoing case is true, we take 14160 * the slowpath 14161 * o forwarding is not enabled 14162 * o incoming and outgoing interface are the same, or the same 14163 * IPMP group 14164 * o corresponding ire is in incomplete state 14165 * o packet needs fragmentation 14166 * 14167 * The codeflow from here on is thus: 14168 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 14169 */ 14170 pkt_len = ntohs(ipha->ipha_length); 14171 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 14172 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 14173 !(ill->ill_flags & ILLF_ROUTER) || 14174 (ill == stq_ill) || 14175 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 14176 (ire->ire_nce == NULL) || 14177 (ire->ire_nce->nce_state != ND_REACHABLE) || 14178 (pkt_len > ire->ire_max_frag) || 14179 ipha->ipha_ttl <= 1) { 14180 ip_rput_process_forward(ill->ill_rq, mp, ire, 14181 ipha, ill, B_FALSE); 14182 return (ire); 14183 } 14184 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14185 14186 DTRACE_PROBE4(ip4__forwarding__start, 14187 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14188 14189 FW_HOOKS(ipst->ips_ip4_forwarding_event, 14190 ipst->ips_ipv4firewall_forwarding, 14191 ill, stq_ill, ipha, mp, mp, ipst); 14192 14193 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 14194 14195 if (mp == NULL) 14196 goto drop; 14197 14198 mp->b_datap->db_struioun.cksum.flags = 0; 14199 /* Adjust the checksum to reflect the ttl decrement. */ 14200 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14201 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14202 ipha->ipha_ttl--; 14203 14204 dev_q = ire->ire_stq->q_next; 14205 if ((dev_q->q_next != NULL || 14206 dev_q->q_first != NULL) && !canput(dev_q)) { 14207 goto indiscard; 14208 } 14209 14210 hlen = ire->ire_nce->nce_fp_mp != NULL ? 14211 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 14212 14213 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 14214 mblk_t *mpip = mp; 14215 14216 mp = ip_wput_attach_llhdr(mpip, ire, 0, 0); 14217 if (mp != NULL) { 14218 DTRACE_PROBE4(ip4__physical__out__start, 14219 ill_t *, NULL, ill_t *, stq_ill, 14220 ipha_t *, ipha, mblk_t *, mp); 14221 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14222 ipst->ips_ipv4firewall_physical_out, 14223 NULL, stq_ill, ipha, mp, mpip, ipst); 14224 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, 14225 mp); 14226 if (mp == NULL) 14227 goto drop; 14228 14229 UPDATE_IB_PKT_COUNT(ire); 14230 ire->ire_last_used_time = lbolt; 14231 BUMP_MIB(stq_ill->ill_ip_mib, 14232 ipIfStatsHCOutForwDatagrams); 14233 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14234 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, 14235 pkt_len); 14236 putnext(ire->ire_stq, mp); 14237 return (ire); 14238 } 14239 } 14240 14241 indiscard: 14242 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14243 drop: 14244 if (mp != NULL) 14245 freemsg(mp); 14246 if (src_ire != NULL) 14247 ire_refrele(src_ire); 14248 return (ire); 14249 14250 } 14251 14252 /* 14253 * This function is called in the forwarding slowpath, when 14254 * either the ire lacks the link-layer address, or the packet needs 14255 * further processing(eg. fragmentation), before transmission. 14256 */ 14257 14258 static void 14259 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14260 ill_t *ill, boolean_t ll_multicast) 14261 { 14262 ill_group_t *ill_group; 14263 ill_group_t *ire_group; 14264 queue_t *dev_q; 14265 ire_t *src_ire; 14266 ip_stack_t *ipst = ill->ill_ipst; 14267 14268 ASSERT(ire->ire_stq != NULL); 14269 14270 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14271 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14272 14273 if (ll_multicast != 0) { 14274 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14275 goto drop_pkt; 14276 } 14277 14278 /* 14279 * check if ipha_src is a broadcast address. Note that this 14280 * check is redundant when we get here from ip_fast_forward() 14281 * which has already done this check. However, since we can 14282 * also get here from ip_rput_process_broadcast() or, for 14283 * for the slow path through ip_fast_forward(), we perform 14284 * the check again for code-reusability 14285 */ 14286 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14287 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14288 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 14289 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 14290 if (src_ire != NULL) 14291 ire_refrele(src_ire); 14292 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14293 ip2dbg(("ip_rput_process_forward: Received packet with" 14294 " bad src/dst address on %s\n", ill->ill_name)); 14295 goto drop_pkt; 14296 } 14297 14298 ill_group = ill->ill_group; 14299 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14300 /* 14301 * Check if we want to forward this one at this time. 14302 * We allow source routed packets on a host provided that 14303 * they go out the same interface or same interface group 14304 * as they came in on. 14305 * 14306 * XXX To be quicker, we may wish to not chase pointers to 14307 * get the ILLF_ROUTER flag and instead store the 14308 * forwarding policy in the ire. An unfortunate 14309 * side-effect of that would be requiring an ire flush 14310 * whenever the ILLF_ROUTER flag changes. 14311 */ 14312 if (((ill->ill_flags & 14313 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14314 ILLF_ROUTER) == 0) && 14315 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14316 (ill_group != NULL && ill_group == ire_group)))) { 14317 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14318 if (ip_source_routed(ipha, ipst)) { 14319 q = WR(q); 14320 /* 14321 * Clear the indication that this may have 14322 * hardware checksum as we are not using it. 14323 */ 14324 DB_CKSUMFLAGS(mp) = 0; 14325 /* Sent by forwarding path, and router is global zone */ 14326 icmp_unreachable(q, mp, 14327 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14328 return; 14329 } 14330 goto drop_pkt; 14331 } 14332 14333 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14334 14335 /* Packet is being forwarded. Turning off hwcksum flag. */ 14336 DB_CKSUMFLAGS(mp) = 0; 14337 if (ipst->ips_ip_g_send_redirects) { 14338 /* 14339 * Check whether the incoming interface and outgoing 14340 * interface is part of the same group. If so, 14341 * send redirects. 14342 * 14343 * Check the source address to see if it originated 14344 * on the same logical subnet it is going back out on. 14345 * If so, we should be able to send it a redirect. 14346 * Avoid sending a redirect if the destination 14347 * is directly connected (i.e., ipha_dst is the same 14348 * as ire_gateway_addr or the ire_addr of the 14349 * nexthop IRE_CACHE ), or if the packet was source 14350 * routed out this interface. 14351 */ 14352 ipaddr_t src, nhop; 14353 mblk_t *mp1; 14354 ire_t *nhop_ire = NULL; 14355 14356 /* 14357 * Check whether ire_rfq and q are from the same ill 14358 * or if they are not same, they at least belong 14359 * to the same group. If so, send redirects. 14360 */ 14361 if ((ire->ire_rfq == q || 14362 (ill_group != NULL && ill_group == ire_group)) && 14363 !ip_source_routed(ipha, ipst)) { 14364 14365 nhop = (ire->ire_gateway_addr != 0 ? 14366 ire->ire_gateway_addr : ire->ire_addr); 14367 14368 if (ipha->ipha_dst == nhop) { 14369 /* 14370 * We avoid sending a redirect if the 14371 * destination is directly connected 14372 * because it is possible that multiple 14373 * IP subnets may have been configured on 14374 * the link, and the source may not 14375 * be on the same subnet as ip destination, 14376 * even though they are on the same 14377 * physical link. 14378 */ 14379 goto sendit; 14380 } 14381 14382 src = ipha->ipha_src; 14383 14384 /* 14385 * We look up the interface ire for the nexthop, 14386 * to see if ipha_src is in the same subnet 14387 * as the nexthop. 14388 * 14389 * Note that, if, in the future, IRE_CACHE entries 14390 * are obsoleted, this lookup will not be needed, 14391 * as the ire passed to this function will be the 14392 * same as the nhop_ire computed below. 14393 */ 14394 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14395 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14396 0, NULL, MATCH_IRE_TYPE, ipst); 14397 14398 if (nhop_ire != NULL) { 14399 if ((src & nhop_ire->ire_mask) == 14400 (nhop & nhop_ire->ire_mask)) { 14401 /* 14402 * The source is directly connected. 14403 * Just copy the ip header (which is 14404 * in the first mblk) 14405 */ 14406 mp1 = copyb(mp); 14407 if (mp1 != NULL) { 14408 icmp_send_redirect(WR(q), mp1, 14409 nhop, ipst); 14410 } 14411 } 14412 ire_refrele(nhop_ire); 14413 } 14414 } 14415 } 14416 sendit: 14417 dev_q = ire->ire_stq->q_next; 14418 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14419 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14420 freemsg(mp); 14421 return; 14422 } 14423 14424 ip_rput_forward(ire, ipha, mp, ill); 14425 return; 14426 14427 drop_pkt: 14428 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14429 freemsg(mp); 14430 } 14431 14432 ire_t * 14433 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14434 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14435 { 14436 queue_t *q; 14437 uint16_t hcksumflags; 14438 ip_stack_t *ipst = ill->ill_ipst; 14439 14440 q = *qp; 14441 14442 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14443 14444 /* 14445 * Clear the indication that this may have hardware 14446 * checksum as we are not using it for forwarding. 14447 */ 14448 hcksumflags = DB_CKSUMFLAGS(mp); 14449 DB_CKSUMFLAGS(mp) = 0; 14450 14451 /* 14452 * Directed broadcast forwarding: if the packet came in over a 14453 * different interface then it is routed out over we can forward it. 14454 */ 14455 if (ipha->ipha_protocol == IPPROTO_TCP) { 14456 ire_refrele(ire); 14457 freemsg(mp); 14458 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14459 return (NULL); 14460 } 14461 /* 14462 * For multicast we have set dst to be INADDR_BROADCAST 14463 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14464 * only for broadcast packets. 14465 */ 14466 if (!CLASSD(ipha->ipha_dst)) { 14467 ire_t *new_ire; 14468 ipif_t *ipif; 14469 /* 14470 * For ill groups, as the switch duplicates broadcasts 14471 * across all the ports, we need to filter out and 14472 * send up only one copy. There is one copy for every 14473 * broadcast address on each ill. Thus, we look for a 14474 * specific IRE on this ill and look at IRE_MARK_NORECV 14475 * later to see whether this ill is eligible to receive 14476 * them or not. ill_nominate_bcast_rcv() nominates only 14477 * one set of IREs for receiving. 14478 */ 14479 14480 ipif = ipif_get_next_ipif(NULL, ill); 14481 if (ipif == NULL) { 14482 ire_refrele(ire); 14483 freemsg(mp); 14484 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14485 return (NULL); 14486 } 14487 new_ire = ire_ctable_lookup(dst, 0, 0, 14488 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14489 ipif_refrele(ipif); 14490 14491 if (new_ire != NULL) { 14492 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14493 ire_refrele(ire); 14494 ire_refrele(new_ire); 14495 freemsg(mp); 14496 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14497 return (NULL); 14498 } 14499 /* 14500 * In the special case of multirouted broadcast 14501 * packets, we unconditionally need to "gateway" 14502 * them to the appropriate interface here. 14503 * In the normal case, this cannot happen, because 14504 * there is no broadcast IRE tagged with the 14505 * RTF_MULTIRT flag. 14506 */ 14507 if (new_ire->ire_flags & RTF_MULTIRT) { 14508 ire_refrele(new_ire); 14509 if (ire->ire_rfq != NULL) { 14510 q = ire->ire_rfq; 14511 *qp = q; 14512 } 14513 } else { 14514 ire_refrele(ire); 14515 ire = new_ire; 14516 } 14517 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14518 if (!ipst->ips_ip_g_forward_directed_bcast) { 14519 /* 14520 * Free the message if 14521 * ip_g_forward_directed_bcast is turned 14522 * off for non-local broadcast. 14523 */ 14524 ire_refrele(ire); 14525 freemsg(mp); 14526 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14527 return (NULL); 14528 } 14529 } else { 14530 /* 14531 * This CGTP packet successfully passed the 14532 * CGTP filter, but the related CGTP 14533 * broadcast IRE has not been found, 14534 * meaning that the redundant ipif is 14535 * probably down. However, if we discarded 14536 * this packet, its duplicate would be 14537 * filtered out by the CGTP filter so none 14538 * of them would get through. So we keep 14539 * going with this one. 14540 */ 14541 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14542 if (ire->ire_rfq != NULL) { 14543 q = ire->ire_rfq; 14544 *qp = q; 14545 } 14546 } 14547 } 14548 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14549 /* 14550 * Verify that there are not more then one 14551 * IRE_BROADCAST with this broadcast address which 14552 * has ire_stq set. 14553 * TODO: simplify, loop over all IRE's 14554 */ 14555 ire_t *ire1; 14556 int num_stq = 0; 14557 mblk_t *mp1; 14558 14559 /* Find the first one with ire_stq set */ 14560 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14561 for (ire1 = ire; ire1 && 14562 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14563 ire1 = ire1->ire_next) 14564 ; 14565 if (ire1) { 14566 ire_refrele(ire); 14567 ire = ire1; 14568 IRE_REFHOLD(ire); 14569 } 14570 14571 /* Check if there are additional ones with stq set */ 14572 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14573 if (ire->ire_addr != ire1->ire_addr) 14574 break; 14575 if (ire1->ire_stq) { 14576 num_stq++; 14577 break; 14578 } 14579 } 14580 rw_exit(&ire->ire_bucket->irb_lock); 14581 if (num_stq == 1 && ire->ire_stq != NULL) { 14582 ip1dbg(("ip_rput_process_broadcast: directed " 14583 "broadcast to 0x%x\n", 14584 ntohl(ire->ire_addr))); 14585 mp1 = copymsg(mp); 14586 if (mp1) { 14587 switch (ipha->ipha_protocol) { 14588 case IPPROTO_UDP: 14589 ip_udp_input(q, mp1, ipha, ire, ill); 14590 break; 14591 default: 14592 ip_proto_input(q, mp1, ipha, ire, ill); 14593 break; 14594 } 14595 } 14596 /* 14597 * Adjust ttl to 2 (1+1 - the forward engine 14598 * will decrement it by one. 14599 */ 14600 if (ip_csum_hdr(ipha)) { 14601 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14602 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14603 freemsg(mp); 14604 ire_refrele(ire); 14605 return (NULL); 14606 } 14607 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14608 ipha->ipha_hdr_checksum = 0; 14609 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14610 ip_rput_process_forward(q, mp, ire, ipha, 14611 ill, ll_multicast); 14612 ire_refrele(ire); 14613 return (NULL); 14614 } 14615 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14616 ntohl(ire->ire_addr))); 14617 } 14618 14619 14620 /* Restore any hardware checksum flags */ 14621 DB_CKSUMFLAGS(mp) = hcksumflags; 14622 return (ire); 14623 } 14624 14625 /* ARGSUSED */ 14626 static boolean_t 14627 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14628 int *ll_multicast, ipaddr_t *dstp) 14629 { 14630 ip_stack_t *ipst = ill->ill_ipst; 14631 14632 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14633 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14634 ntohs(ipha->ipha_length)); 14635 14636 /* 14637 * Forward packets only if we have joined the allmulti 14638 * group on this interface. 14639 */ 14640 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14641 int retval; 14642 14643 /* 14644 * Clear the indication that this may have hardware 14645 * checksum as we are not using it. 14646 */ 14647 DB_CKSUMFLAGS(mp) = 0; 14648 retval = ip_mforward(ill, ipha, mp); 14649 /* ip_mforward updates mib variables if needed */ 14650 /* clear b_prev - used by ip_mroute_decap */ 14651 mp->b_prev = NULL; 14652 14653 switch (retval) { 14654 case 0: 14655 /* 14656 * pkt is okay and arrived on phyint. 14657 * 14658 * If we are running as a multicast router 14659 * we need to see all IGMP and/or PIM packets. 14660 */ 14661 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14662 (ipha->ipha_protocol == IPPROTO_PIM)) { 14663 goto done; 14664 } 14665 break; 14666 case -1: 14667 /* pkt is mal-formed, toss it */ 14668 goto drop_pkt; 14669 case 1: 14670 /* pkt is okay and arrived on a tunnel */ 14671 /* 14672 * If we are running a multicast router 14673 * we need to see all igmp packets. 14674 */ 14675 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14676 *dstp = INADDR_BROADCAST; 14677 *ll_multicast = 1; 14678 return (B_FALSE); 14679 } 14680 14681 goto drop_pkt; 14682 } 14683 } 14684 14685 ILM_WALKER_HOLD(ill); 14686 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14687 /* 14688 * This might just be caused by the fact that 14689 * multiple IP Multicast addresses map to the same 14690 * link layer multicast - no need to increment counter! 14691 */ 14692 ILM_WALKER_RELE(ill); 14693 freemsg(mp); 14694 return (B_TRUE); 14695 } 14696 ILM_WALKER_RELE(ill); 14697 done: 14698 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14699 /* 14700 * This assumes the we deliver to all streams for multicast 14701 * and broadcast packets. 14702 */ 14703 *dstp = INADDR_BROADCAST; 14704 *ll_multicast = 1; 14705 return (B_FALSE); 14706 drop_pkt: 14707 ip2dbg(("ip_rput: drop pkt\n")); 14708 freemsg(mp); 14709 return (B_TRUE); 14710 } 14711 14712 static boolean_t 14713 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14714 int *ll_multicast, mblk_t **mpp) 14715 { 14716 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14717 boolean_t must_copy = B_FALSE; 14718 struct iocblk *iocp; 14719 ipha_t *ipha; 14720 ip_stack_t *ipst = ill->ill_ipst; 14721 14722 #define rptr ((uchar_t *)ipha) 14723 14724 first_mp = *first_mpp; 14725 mp = *mpp; 14726 14727 ASSERT(first_mp == mp); 14728 14729 /* 14730 * if db_ref > 1 then copymsg and free original. Packet may be 14731 * changed and do not want other entity who has a reference to this 14732 * message to trip over the changes. This is a blind change because 14733 * trying to catch all places that might change packet is too 14734 * difficult (since it may be a module above this one) 14735 * 14736 * This corresponds to the non-fast path case. We walk down the full 14737 * chain in this case, and check the db_ref count of all the dblks, 14738 * and do a copymsg if required. It is possible that the db_ref counts 14739 * of the data blocks in the mblk chain can be different. 14740 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14741 * count of 1, followed by a M_DATA block with a ref count of 2, if 14742 * 'snoop' is running. 14743 */ 14744 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14745 if (mp1->b_datap->db_ref > 1) { 14746 must_copy = B_TRUE; 14747 break; 14748 } 14749 } 14750 14751 if (must_copy) { 14752 mp1 = copymsg(mp); 14753 if (mp1 == NULL) { 14754 for (mp1 = mp; mp1 != NULL; 14755 mp1 = mp1->b_cont) { 14756 mp1->b_next = NULL; 14757 mp1->b_prev = NULL; 14758 } 14759 freemsg(mp); 14760 if (ill != NULL) { 14761 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14762 } else { 14763 BUMP_MIB(&ipst->ips_ip_mib, 14764 ipIfStatsInDiscards); 14765 } 14766 return (B_TRUE); 14767 } 14768 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14769 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14770 /* Copy b_prev - used by ip_mroute_decap */ 14771 to_mp->b_prev = from_mp->b_prev; 14772 from_mp->b_prev = NULL; 14773 } 14774 *first_mpp = first_mp = mp1; 14775 freemsg(mp); 14776 mp = mp1; 14777 *mpp = mp1; 14778 } 14779 14780 ipha = (ipha_t *)mp->b_rptr; 14781 14782 /* 14783 * previous code has a case for M_DATA. 14784 * We want to check how that happens. 14785 */ 14786 ASSERT(first_mp->b_datap->db_type != M_DATA); 14787 switch (first_mp->b_datap->db_type) { 14788 case M_PROTO: 14789 case M_PCPROTO: 14790 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14791 DL_UNITDATA_IND) { 14792 /* Go handle anything other than data elsewhere. */ 14793 ip_rput_dlpi(q, mp); 14794 return (B_TRUE); 14795 } 14796 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14797 /* Ditch the DLPI header. */ 14798 mp1 = mp->b_cont; 14799 ASSERT(first_mp == mp); 14800 *first_mpp = mp1; 14801 freeb(mp); 14802 *mpp = mp1; 14803 return (B_FALSE); 14804 case M_IOCACK: 14805 ip1dbg(("got iocack ")); 14806 iocp = (struct iocblk *)mp->b_rptr; 14807 switch (iocp->ioc_cmd) { 14808 case DL_IOC_HDR_INFO: 14809 ill = (ill_t *)q->q_ptr; 14810 ill_fastpath_ack(ill, mp); 14811 return (B_TRUE); 14812 case SIOCSTUNPARAM: 14813 case OSIOCSTUNPARAM: 14814 /* Go through qwriter_ip */ 14815 break; 14816 case SIOCGTUNPARAM: 14817 case OSIOCGTUNPARAM: 14818 ip_rput_other(NULL, q, mp, NULL); 14819 return (B_TRUE); 14820 default: 14821 putnext(q, mp); 14822 return (B_TRUE); 14823 } 14824 /* FALLTHRU */ 14825 case M_ERROR: 14826 case M_HANGUP: 14827 /* 14828 * Since this is on the ill stream we unconditionally 14829 * bump up the refcount 14830 */ 14831 ill_refhold(ill); 14832 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP, 14833 B_FALSE); 14834 return (B_TRUE); 14835 case M_CTL: 14836 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14837 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14838 IPHADA_M_CTL)) { 14839 /* 14840 * It's an IPsec accelerated packet. 14841 * Make sure that the ill from which we received the 14842 * packet has enabled IPsec hardware acceleration. 14843 */ 14844 if (!(ill->ill_capabilities & 14845 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14846 /* IPsec kstats: bean counter */ 14847 freemsg(mp); 14848 return (B_TRUE); 14849 } 14850 14851 /* 14852 * Make mp point to the mblk following the M_CTL, 14853 * then process according to type of mp. 14854 * After this processing, first_mp will point to 14855 * the data-attributes and mp to the pkt following 14856 * the M_CTL. 14857 */ 14858 mp = first_mp->b_cont; 14859 if (mp == NULL) { 14860 freemsg(first_mp); 14861 return (B_TRUE); 14862 } 14863 /* 14864 * A Hardware Accelerated packet can only be M_DATA 14865 * ESP or AH packet. 14866 */ 14867 if (mp->b_datap->db_type != M_DATA) { 14868 /* non-M_DATA IPsec accelerated packet */ 14869 IPSECHW_DEBUG(IPSECHW_PKT, 14870 ("non-M_DATA IPsec accelerated pkt\n")); 14871 freemsg(first_mp); 14872 return (B_TRUE); 14873 } 14874 ipha = (ipha_t *)mp->b_rptr; 14875 if (ipha->ipha_protocol != IPPROTO_AH && 14876 ipha->ipha_protocol != IPPROTO_ESP) { 14877 IPSECHW_DEBUG(IPSECHW_PKT, 14878 ("non-M_DATA IPsec accelerated pkt\n")); 14879 freemsg(first_mp); 14880 return (B_TRUE); 14881 } 14882 *mpp = mp; 14883 return (B_FALSE); 14884 } 14885 putnext(q, mp); 14886 return (B_TRUE); 14887 case M_FLUSH: 14888 if (*mp->b_rptr & FLUSHW) { 14889 *mp->b_rptr &= ~FLUSHR; 14890 qreply(q, mp); 14891 return (B_TRUE); 14892 } 14893 freemsg(mp); 14894 return (B_TRUE); 14895 case M_IOCNAK: 14896 ip1dbg(("got iocnak ")); 14897 iocp = (struct iocblk *)mp->b_rptr; 14898 switch (iocp->ioc_cmd) { 14899 case DL_IOC_HDR_INFO: 14900 case SIOCSTUNPARAM: 14901 case OSIOCSTUNPARAM: 14902 /* 14903 * Since this is on the ill stream we unconditionally 14904 * bump up the refcount 14905 */ 14906 ill_refhold(ill); 14907 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, 14908 CUR_OP, B_FALSE); 14909 return (B_TRUE); 14910 case SIOCGTUNPARAM: 14911 case OSIOCGTUNPARAM: 14912 ip_rput_other(NULL, q, mp, NULL); 14913 return (B_TRUE); 14914 default: 14915 break; 14916 } 14917 /* FALLTHRU */ 14918 default: 14919 putnext(q, mp); 14920 return (B_TRUE); 14921 } 14922 } 14923 14924 /* Read side put procedure. Packets coming from the wire arrive here. */ 14925 void 14926 ip_rput(queue_t *q, mblk_t *mp) 14927 { 14928 ill_t *ill; 14929 ip_stack_t *ipst; 14930 14931 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14932 14933 ill = (ill_t *)q->q_ptr; 14934 ipst = ill->ill_ipst; 14935 14936 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14937 union DL_primitives *dl; 14938 14939 /* 14940 * Things are opening or closing. Only accept DLPI control 14941 * messages. In the open case, the ill->ill_ipif has not yet 14942 * been created. In the close case, things hanging off the 14943 * ill could have been freed already. In either case it 14944 * may not be safe to proceed further. 14945 */ 14946 14947 dl = (union DL_primitives *)mp->b_rptr; 14948 if ((mp->b_datap->db_type != M_PCPROTO) || 14949 (dl->dl_primitive == DL_UNITDATA_IND)) { 14950 /* 14951 * Also SIOC[GS]TUN* ioctls can come here. 14952 */ 14953 inet_freemsg(mp); 14954 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14955 "ip_input_end: q %p (%S)", q, "uninit"); 14956 return; 14957 } 14958 } 14959 14960 /* 14961 * if db_ref > 1 then copymsg and free original. Packet may be 14962 * changed and we do not want the other entity who has a reference to 14963 * this message to trip over the changes. This is a blind change because 14964 * trying to catch all places that might change the packet is too 14965 * difficult. 14966 * 14967 * This corresponds to the fast path case, where we have a chain of 14968 * M_DATA mblks. We check the db_ref count of only the 1st data block 14969 * in the mblk chain. There doesn't seem to be a reason why a device 14970 * driver would send up data with varying db_ref counts in the mblk 14971 * chain. In any case the Fast path is a private interface, and our 14972 * drivers don't do such a thing. Given the above assumption, there is 14973 * no need to walk down the entire mblk chain (which could have a 14974 * potential performance problem) 14975 */ 14976 if (mp->b_datap->db_ref > 1) { 14977 mblk_t *mp1; 14978 boolean_t adjusted = B_FALSE; 14979 IP_STAT(ipst, ip_db_ref); 14980 14981 /* 14982 * The IP_RECVSLLA option depends on having the link layer 14983 * header. First check that: 14984 * a> the underlying device is of type ether, since this 14985 * option is currently supported only over ethernet. 14986 * b> there is enough room to copy over the link layer header. 14987 * 14988 * Once the checks are done, adjust rptr so that the link layer 14989 * header will be copied via copymsg. Note that, IFT_ETHER may 14990 * be returned by some non-ethernet drivers but in this case the 14991 * second check will fail. 14992 */ 14993 if (ill->ill_type == IFT_ETHER && 14994 (mp->b_rptr - mp->b_datap->db_base) >= 14995 sizeof (struct ether_header)) { 14996 mp->b_rptr -= sizeof (struct ether_header); 14997 adjusted = B_TRUE; 14998 } 14999 mp1 = copymsg(mp); 15000 if (mp1 == NULL) { 15001 mp->b_next = NULL; 15002 /* clear b_prev - used by ip_mroute_decap */ 15003 mp->b_prev = NULL; 15004 freemsg(mp); 15005 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15006 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15007 "ip_rput_end: q %p (%S)", q, "copymsg"); 15008 return; 15009 } 15010 if (adjusted) { 15011 /* 15012 * Copy is done. Restore the pointer in the _new_ mblk 15013 */ 15014 mp1->b_rptr += sizeof (struct ether_header); 15015 } 15016 /* Copy b_prev - used by ip_mroute_decap */ 15017 mp1->b_prev = mp->b_prev; 15018 mp->b_prev = NULL; 15019 freemsg(mp); 15020 mp = mp1; 15021 } 15022 15023 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15024 "ip_rput_end: q %p (%S)", q, "end"); 15025 15026 ip_input(ill, NULL, mp, NULL); 15027 } 15028 15029 /* 15030 * Direct read side procedure capable of dealing with chains. GLDv3 based 15031 * drivers call this function directly with mblk chains while STREAMS 15032 * read side procedure ip_rput() calls this for single packet with ip_ring 15033 * set to NULL to process one packet at a time. 15034 * 15035 * The ill will always be valid if this function is called directly from 15036 * the driver. 15037 * 15038 * If ip_input() is called from GLDv3: 15039 * 15040 * - This must be a non-VLAN IP stream. 15041 * - 'mp' is either an untagged or a special priority-tagged packet. 15042 * - Any VLAN tag that was in the MAC header has been stripped. 15043 * 15044 * If the IP header in packet is not 32-bit aligned, every message in the 15045 * chain will be aligned before further operations. This is required on SPARC 15046 * platform. 15047 */ 15048 /* ARGSUSED */ 15049 void 15050 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 15051 struct mac_header_info_s *mhip) 15052 { 15053 ipaddr_t dst = NULL; 15054 ipaddr_t prev_dst; 15055 ire_t *ire = NULL; 15056 ipha_t *ipha; 15057 uint_t pkt_len; 15058 ssize_t len; 15059 uint_t opt_len; 15060 int ll_multicast; 15061 int cgtp_flt_pkt; 15062 queue_t *q = ill->ill_rq; 15063 squeue_t *curr_sqp = NULL; 15064 mblk_t *head = NULL; 15065 mblk_t *tail = NULL; 15066 mblk_t *first_mp; 15067 mblk_t *mp; 15068 mblk_t *dmp; 15069 int cnt = 0; 15070 ip_stack_t *ipst = ill->ill_ipst; 15071 15072 ASSERT(mp_chain != NULL); 15073 ASSERT(ill != NULL); 15074 15075 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 15076 15077 #define rptr ((uchar_t *)ipha) 15078 15079 while (mp_chain != NULL) { 15080 first_mp = mp = mp_chain; 15081 mp_chain = mp_chain->b_next; 15082 mp->b_next = NULL; 15083 ll_multicast = 0; 15084 15085 /* 15086 * We do ire caching from one iteration to 15087 * another. In the event the packet chain contains 15088 * all packets from the same dst, this caching saves 15089 * an ire_cache_lookup for each of the succeeding 15090 * packets in a packet chain. 15091 */ 15092 prev_dst = dst; 15093 15094 /* 15095 * Check and align the IP header. 15096 */ 15097 if (DB_TYPE(mp) == M_DATA) { 15098 dmp = mp; 15099 } else if (DB_TYPE(mp) == M_PROTO && 15100 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 15101 dmp = mp->b_cont; 15102 } else { 15103 dmp = NULL; 15104 } 15105 if (dmp != NULL) { 15106 /* 15107 * IP header ptr not aligned? 15108 * OR IP header not complete in first mblk 15109 */ 15110 if (!OK_32PTR(dmp->b_rptr) || 15111 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 15112 if (!ip_check_and_align_header(q, dmp, ipst)) 15113 continue; 15114 } 15115 } 15116 15117 /* 15118 * ip_input fast path 15119 */ 15120 15121 /* mblk type is not M_DATA */ 15122 if (DB_TYPE(mp) != M_DATA) { 15123 if (ip_rput_process_notdata(q, &first_mp, ill, 15124 &ll_multicast, &mp)) 15125 continue; 15126 } 15127 15128 /* Make sure its an M_DATA and that its aligned */ 15129 ASSERT(DB_TYPE(mp) == M_DATA); 15130 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15131 15132 ipha = (ipha_t *)mp->b_rptr; 15133 len = mp->b_wptr - rptr; 15134 pkt_len = ntohs(ipha->ipha_length); 15135 15136 /* 15137 * We must count all incoming packets, even if they end 15138 * up being dropped later on. 15139 */ 15140 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15141 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15142 15143 /* multiple mblk or too short */ 15144 len -= pkt_len; 15145 if (len != 0) { 15146 /* 15147 * Make sure we have data length consistent 15148 * with the IP header. 15149 */ 15150 if (mp->b_cont == NULL) { 15151 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15152 BUMP_MIB(ill->ill_ip_mib, 15153 ipIfStatsInHdrErrors); 15154 ip2dbg(("ip_input: drop pkt\n")); 15155 freemsg(mp); 15156 continue; 15157 } 15158 mp->b_wptr = rptr + pkt_len; 15159 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15160 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15161 BUMP_MIB(ill->ill_ip_mib, 15162 ipIfStatsInHdrErrors); 15163 ip2dbg(("ip_input: drop pkt\n")); 15164 freemsg(mp); 15165 continue; 15166 } 15167 (void) adjmsg(mp, -len); 15168 IP_STAT(ipst, ip_multimblk3); 15169 } 15170 } 15171 15172 /* Obtain the dst of the current packet */ 15173 dst = ipha->ipha_dst; 15174 15175 if (IP_LOOPBACK_ADDR(dst) || 15176 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 15177 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15178 cmn_err(CE_CONT, "dst %X src %X\n", 15179 dst, ipha->ipha_src); 15180 freemsg(mp); 15181 continue; 15182 } 15183 15184 /* 15185 * The event for packets being received from a 'physical' 15186 * interface is placed after validation of the source and/or 15187 * destination address as being local so that packets can be 15188 * redirected to loopback addresses using ipnat. 15189 */ 15190 DTRACE_PROBE4(ip4__physical__in__start, 15191 ill_t *, ill, ill_t *, NULL, 15192 ipha_t *, ipha, mblk_t *, first_mp); 15193 15194 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15195 ipst->ips_ipv4firewall_physical_in, 15196 ill, NULL, ipha, first_mp, mp, ipst); 15197 15198 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15199 15200 if (first_mp == NULL) { 15201 continue; 15202 } 15203 dst = ipha->ipha_dst; 15204 15205 /* 15206 * Attach any necessary label information to 15207 * this packet 15208 */ 15209 if (is_system_labeled() && 15210 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15211 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15212 freemsg(mp); 15213 continue; 15214 } 15215 15216 /* 15217 * Reuse the cached ire only if the ipha_dst of the previous 15218 * packet is the same as the current packet AND it is not 15219 * INADDR_ANY. 15220 */ 15221 if (!(dst == prev_dst && dst != INADDR_ANY) && 15222 (ire != NULL)) { 15223 ire_refrele(ire); 15224 ire = NULL; 15225 } 15226 opt_len = ipha->ipha_version_and_hdr_length - 15227 IP_SIMPLE_HDR_VERSION; 15228 15229 /* 15230 * Check to see if we can take the fastpath. 15231 * That is possible if the following conditions are met 15232 * o Tsol disabled 15233 * o CGTP disabled 15234 * o ipp_action_count is 0 15235 * o Mobile IP not running 15236 * o no options in the packet 15237 * o not a RSVP packet 15238 * o not a multicast packet 15239 */ 15240 if (!is_system_labeled() && 15241 !ip_cgtp_filter && ipp_action_count == 0 && 15242 ill->ill_mrtun_refcnt == 0 && ill->ill_srcif_refcnt == 0 && 15243 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15244 !ll_multicast && !CLASSD(dst)) { 15245 if (ire == NULL) 15246 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15247 ipst); 15248 15249 /* incoming packet is for forwarding */ 15250 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15251 ire = ip_fast_forward(ire, dst, ill, mp); 15252 continue; 15253 } 15254 /* incoming packet is for local consumption */ 15255 if (ire->ire_type & IRE_LOCAL) 15256 goto local; 15257 } 15258 15259 /* 15260 * Disable ire caching for anything more complex 15261 * than the simple fast path case we checked for above. 15262 */ 15263 if (ire != NULL) { 15264 ire_refrele(ire); 15265 ire = NULL; 15266 } 15267 15268 /* Full-blown slow path */ 15269 if (opt_len != 0) { 15270 if (len != 0) 15271 IP_STAT(ipst, ip_multimblk4); 15272 else 15273 IP_STAT(ipst, ip_ipoptions); 15274 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15275 &dst, ipst)) 15276 continue; 15277 } 15278 15279 /* 15280 * Invoke the CGTP (multirouting) filtering module to process 15281 * the incoming packet. Packets identified as duplicates 15282 * must be discarded. Filtering is active only if the 15283 * the ip_cgtp_filter ndd variable is non-zero. 15284 * 15285 * Only applies to the shared stack since the filter_ops 15286 * do not carry an ip_stack_t or zoneid. 15287 */ 15288 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15289 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL) && 15290 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 15291 cgtp_flt_pkt = 15292 ip_cgtp_filter_ops->cfo_filter(q, mp); 15293 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15294 freemsg(first_mp); 15295 continue; 15296 } 15297 } 15298 15299 /* 15300 * If rsvpd is running, let RSVP daemon handle its processing 15301 * and forwarding of RSVP multicast/unicast packets. 15302 * If rsvpd is not running but mrouted is running, RSVP 15303 * multicast packets are forwarded as multicast traffic 15304 * and RSVP unicast packets are forwarded by unicast router. 15305 * If neither rsvpd nor mrouted is running, RSVP multicast 15306 * packets are not forwarded, but the unicast packets are 15307 * forwarded like unicast traffic. 15308 */ 15309 if (ipha->ipha_protocol == IPPROTO_RSVP && 15310 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15311 NULL) { 15312 /* RSVP packet and rsvpd running. Treat as ours */ 15313 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15314 /* 15315 * This assumes that we deliver to all streams for 15316 * multicast and broadcast packets. 15317 * We have to force ll_multicast to 1 to handle the 15318 * M_DATA messages passed in from ip_mroute_decap. 15319 */ 15320 dst = INADDR_BROADCAST; 15321 ll_multicast = 1; 15322 } else if (CLASSD(dst)) { 15323 /* packet is multicast */ 15324 mp->b_next = NULL; 15325 if (ip_rput_process_multicast(q, mp, ill, ipha, 15326 &ll_multicast, &dst)) 15327 continue; 15328 } 15329 15330 15331 /* 15332 * Check if the packet is coming from the Mobile IP 15333 * forward tunnel interface 15334 */ 15335 if (ill->ill_srcif_refcnt > 0) { 15336 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 15337 NULL, ill, MATCH_IRE_TYPE); 15338 if (ire != NULL && ire->ire_nce->nce_res_mp == NULL && 15339 ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER) { 15340 15341 /* We need to resolve the link layer info */ 15342 ire_refrele(ire); 15343 ire = NULL; 15344 (void) ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 15345 ll_multicast, dst); 15346 continue; 15347 } 15348 } 15349 15350 if (ire == NULL) { 15351 ire = ire_cache_lookup(dst, ALL_ZONES, 15352 MBLK_GETLABEL(mp), ipst); 15353 } 15354 15355 /* 15356 * If mipagent is running and reverse tunnel is created as per 15357 * mobile node request, then any packet coming through the 15358 * incoming interface from the mobile-node, should be reverse 15359 * tunneled to it's home agent except those that are destined 15360 * to foreign agent only. 15361 * This needs source address based ire lookup. The routing 15362 * entries for source address based lookup are only created by 15363 * mipagent program only when a reverse tunnel is created. 15364 * Reference : RFC2002, RFC2344 15365 */ 15366 if (ill->ill_mrtun_refcnt > 0) { 15367 ipaddr_t srcaddr; 15368 ire_t *tmp_ire; 15369 15370 tmp_ire = ire; /* Save, we might need it later */ 15371 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 15372 ire->ire_type != IRE_BROADCAST)) { 15373 srcaddr = ipha->ipha_src; 15374 ire = ire_mrtun_lookup(srcaddr, ill); 15375 if (ire != NULL) { 15376 /* 15377 * Should not be getting iphada packet 15378 * here. we should only get those for 15379 * IRE_LOCAL traffic, excluded above. 15380 * Fail-safe (drop packet) in the event 15381 * hardware is misbehaving. 15382 */ 15383 if (first_mp != mp) { 15384 /* IPsec KSTATS: beancount me */ 15385 freemsg(first_mp); 15386 } else { 15387 /* 15388 * This packet must be forwarded 15389 * to Reverse Tunnel 15390 */ 15391 ip_mrtun_forward(ire, ill, mp); 15392 } 15393 ire_refrele(ire); 15394 ire = NULL; 15395 if (tmp_ire != NULL) { 15396 ire_refrele(tmp_ire); 15397 tmp_ire = NULL; 15398 } 15399 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15400 "ip_input_end: q %p (%S)", 15401 q, "uninit"); 15402 continue; 15403 } 15404 } 15405 /* 15406 * If this packet is from a non-mobilenode or a 15407 * mobile-node which does not request reverse 15408 * tunnel service 15409 */ 15410 ire = tmp_ire; 15411 } 15412 15413 15414 /* 15415 * If we reach here that means the incoming packet satisfies 15416 * one of the following conditions: 15417 * - packet is from a mobile node which does not request 15418 * reverse tunnel 15419 * - packet is from a non-mobile node, which is the most 15420 * common case 15421 * - packet is from a reverse tunnel enabled mobile node 15422 * and destined to foreign agent only 15423 */ 15424 15425 if (ire == NULL) { 15426 /* 15427 * No IRE for this destination, so it can't be for us. 15428 * Unless we are forwarding, drop the packet. 15429 * We have to let source routed packets through 15430 * since we don't yet know if they are 'ping -l' 15431 * packets i.e. if they will go out over the 15432 * same interface as they came in on. 15433 */ 15434 ire = ip_rput_noire(q, NULL, mp, ll_multicast, dst); 15435 if (ire == NULL) 15436 continue; 15437 } 15438 15439 /* 15440 * Broadcast IRE may indicate either broadcast or 15441 * multicast packet 15442 */ 15443 if (ire->ire_type == IRE_BROADCAST) { 15444 /* 15445 * Skip broadcast checks if packet is UDP multicast; 15446 * we'd rather not enter ip_rput_process_broadcast() 15447 * unless the packet is broadcast for real, since 15448 * that routine is a no-op for multicast. 15449 */ 15450 if (ipha->ipha_protocol != IPPROTO_UDP || 15451 !CLASSD(ipha->ipha_dst)) { 15452 ire = ip_rput_process_broadcast(&q, mp, 15453 ire, ipha, ill, dst, cgtp_flt_pkt, 15454 ll_multicast); 15455 if (ire == NULL) 15456 continue; 15457 } 15458 } else if (ire->ire_stq != NULL) { 15459 /* fowarding? */ 15460 ip_rput_process_forward(q, mp, ire, ipha, ill, 15461 ll_multicast); 15462 /* ip_rput_process_forward consumed the packet */ 15463 continue; 15464 } 15465 15466 local: 15467 /* 15468 * If the queue in the ire is different to the ingress queue 15469 * then we need to check to see if we can accept the packet. 15470 * Note that for multicast packets and broadcast packets sent 15471 * to a broadcast address which is shared between multiple 15472 * interfaces we should not do this since we just got a random 15473 * broadcast ire. 15474 */ 15475 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15476 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15477 ill)) == NULL) { 15478 /* Drop packet */ 15479 BUMP_MIB(ill->ill_ip_mib, 15480 ipIfStatsForwProhibits); 15481 freemsg(mp); 15482 continue; 15483 } 15484 if (ire->ire_rfq != NULL) 15485 q = ire->ire_rfq; 15486 } 15487 15488 switch (ipha->ipha_protocol) { 15489 case IPPROTO_TCP: 15490 ASSERT(first_mp == mp); 15491 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15492 mp, 0, q, ip_ring)) != NULL) { 15493 if (curr_sqp == NULL) { 15494 curr_sqp = GET_SQUEUE(mp); 15495 ASSERT(cnt == 0); 15496 cnt++; 15497 head = tail = mp; 15498 } else if (curr_sqp == GET_SQUEUE(mp)) { 15499 ASSERT(tail != NULL); 15500 cnt++; 15501 tail->b_next = mp; 15502 tail = mp; 15503 } else { 15504 /* 15505 * A different squeue. Send the 15506 * chain for the previous squeue on 15507 * its way. This shouldn't happen 15508 * often unless interrupt binding 15509 * changes. 15510 */ 15511 IP_STAT(ipst, ip_input_multi_squeue); 15512 squeue_enter_chain(curr_sqp, head, 15513 tail, cnt, SQTAG_IP_INPUT); 15514 curr_sqp = GET_SQUEUE(mp); 15515 head = mp; 15516 tail = mp; 15517 cnt = 1; 15518 } 15519 } 15520 continue; 15521 case IPPROTO_UDP: 15522 ASSERT(first_mp == mp); 15523 ip_udp_input(q, mp, ipha, ire, ill); 15524 continue; 15525 case IPPROTO_SCTP: 15526 ASSERT(first_mp == mp); 15527 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15528 q, dst); 15529 /* ire has been released by ip_sctp_input */ 15530 ire = NULL; 15531 continue; 15532 default: 15533 ip_proto_input(q, first_mp, ipha, ire, ill); 15534 continue; 15535 } 15536 } 15537 15538 if (ire != NULL) 15539 ire_refrele(ire); 15540 15541 if (head != NULL) 15542 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15543 15544 /* 15545 * This code is there just to make netperf/ttcp look good. 15546 * 15547 * Its possible that after being in polling mode (and having cleared 15548 * the backlog), squeues have turned the interrupt frequency higher 15549 * to improve latency at the expense of more CPU utilization (less 15550 * packets per interrupts or more number of interrupts). Workloads 15551 * like ttcp/netperf do manage to tickle polling once in a while 15552 * but for the remaining time, stay in higher interrupt mode since 15553 * their packet arrival rate is pretty uniform and this shows up 15554 * as higher CPU utilization. Since people care about CPU utilization 15555 * while running netperf/ttcp, turn the interrupt frequency back to 15556 * normal/default if polling has not been used in ip_poll_normal_ticks. 15557 */ 15558 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15559 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15560 ip_ring->rr_poll_state &= ~ILL_POLLING; 15561 ip_ring->rr_blank(ip_ring->rr_handle, 15562 ip_ring->rr_normal_blank_time, 15563 ip_ring->rr_normal_pkt_cnt); 15564 } 15565 } 15566 15567 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15568 "ip_input_end: q %p (%S)", q, "end"); 15569 #undef rptr 15570 } 15571 15572 static void 15573 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15574 t_uscalar_t err) 15575 { 15576 if (dl_err == DL_SYSERR) { 15577 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15578 "%s: %s failed: DL_SYSERR (errno %u)\n", 15579 ill->ill_name, dlpi_prim_str(prim), err); 15580 return; 15581 } 15582 15583 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15584 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15585 dlpi_err_str(dl_err)); 15586 } 15587 15588 /* 15589 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15590 * than DL_UNITDATA_IND messages. If we need to process this message 15591 * exclusively, we call qwriter_ip, in which case we also need to call 15592 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15593 */ 15594 void 15595 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15596 { 15597 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15598 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15599 ill_t *ill; 15600 15601 ip1dbg(("ip_rput_dlpi")); 15602 ill = (ill_t *)q->q_ptr; 15603 switch (dloa->dl_primitive) { 15604 case DL_ERROR_ACK: 15605 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15606 "%s (0x%x), unix %u\n", ill->ill_name, 15607 dlpi_prim_str(dlea->dl_error_primitive), 15608 dlea->dl_error_primitive, 15609 dlpi_err_str(dlea->dl_errno), 15610 dlea->dl_errno, 15611 dlea->dl_unix_errno)); 15612 switch (dlea->dl_error_primitive) { 15613 case DL_UNBIND_REQ: 15614 mutex_enter(&ill->ill_lock); 15615 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15616 cv_signal(&ill->ill_cv); 15617 mutex_exit(&ill->ill_lock); 15618 /* FALLTHRU */ 15619 case DL_NOTIFY_REQ: 15620 case DL_ATTACH_REQ: 15621 case DL_DETACH_REQ: 15622 case DL_INFO_REQ: 15623 case DL_BIND_REQ: 15624 case DL_ENABMULTI_REQ: 15625 case DL_PHYS_ADDR_REQ: 15626 case DL_CAPABILITY_REQ: 15627 case DL_CONTROL_REQ: 15628 /* 15629 * Refhold the ill to match qwriter_ip which does a 15630 * refrele. Since this is on the ill stream we 15631 * unconditionally bump up the refcount without 15632 * checking for ILL_CAN_LOOKUP 15633 */ 15634 ill_refhold(ill); 15635 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15636 CUR_OP, B_FALSE); 15637 return; 15638 case DL_DISABMULTI_REQ: 15639 freemsg(mp); /* Don't want to pass this up */ 15640 return; 15641 default: 15642 break; 15643 } 15644 ip_dlpi_error(ill, dlea->dl_error_primitive, 15645 dlea->dl_errno, dlea->dl_unix_errno); 15646 freemsg(mp); 15647 return; 15648 case DL_INFO_ACK: 15649 case DL_BIND_ACK: 15650 case DL_PHYS_ADDR_ACK: 15651 case DL_NOTIFY_ACK: 15652 case DL_CAPABILITY_ACK: 15653 case DL_CONTROL_ACK: 15654 /* 15655 * Refhold the ill to match qwriter_ip which does a refrele 15656 * Since this is on the ill stream we unconditionally 15657 * bump up the refcount without doing ILL_CAN_LOOKUP. 15658 */ 15659 ill_refhold(ill); 15660 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15661 CUR_OP, B_FALSE); 15662 return; 15663 case DL_NOTIFY_IND: 15664 ill_refhold(ill); 15665 /* 15666 * The DL_NOTIFY_IND is an asynchronous message that has no 15667 * relation to the current ioctl in progress (if any). Hence we 15668 * pass in NEW_OP in this case. 15669 */ 15670 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15671 NEW_OP, B_FALSE); 15672 return; 15673 case DL_OK_ACK: 15674 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15675 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15676 switch (dloa->dl_correct_primitive) { 15677 case DL_UNBIND_REQ: 15678 mutex_enter(&ill->ill_lock); 15679 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15680 cv_signal(&ill->ill_cv); 15681 mutex_exit(&ill->ill_lock); 15682 /* FALLTHRU */ 15683 case DL_ATTACH_REQ: 15684 case DL_DETACH_REQ: 15685 /* 15686 * Refhold the ill to match qwriter_ip which does a 15687 * refrele. Since this is on the ill stream we 15688 * unconditionally bump up the refcount 15689 */ 15690 ill_refhold(ill); 15691 qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15692 CUR_OP, B_FALSE); 15693 return; 15694 case DL_ENABMULTI_REQ: 15695 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15696 ill->ill_dlpi_multicast_state = IDS_OK; 15697 break; 15698 15699 } 15700 break; 15701 default: 15702 break; 15703 } 15704 freemsg(mp); 15705 } 15706 15707 /* 15708 * Handling of DLPI messages that require exclusive access to the ipsq. 15709 * 15710 * Need to do ill_pending_mp_release on ioctl completion, which could 15711 * happen here. (along with mi_copy_done) 15712 */ 15713 /* ARGSUSED */ 15714 static void 15715 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15716 { 15717 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15718 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15719 int err = 0; 15720 ill_t *ill; 15721 ipif_t *ipif = NULL; 15722 mblk_t *mp1 = NULL; 15723 conn_t *connp = NULL; 15724 t_uscalar_t paddrreq; 15725 mblk_t *mp_hw; 15726 boolean_t success; 15727 boolean_t ioctl_aborted = B_FALSE; 15728 boolean_t log = B_TRUE; 15729 hook_nic_event_t *info; 15730 ip_stack_t *ipst; 15731 15732 ip1dbg(("ip_rput_dlpi_writer ..")); 15733 ill = (ill_t *)q->q_ptr; 15734 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15735 15736 ASSERT(IAM_WRITER_ILL(ill)); 15737 15738 ipst = ill->ill_ipst; 15739 15740 /* 15741 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15742 * both are null or non-null. However we can assert that only 15743 * after grabbing the ipsq_lock. So we don't make any assertion 15744 * here and in other places in the code. 15745 */ 15746 ipif = ipsq->ipsq_pending_ipif; 15747 /* 15748 * The current ioctl could have been aborted by the user and a new 15749 * ioctl to bring up another ill could have started. We could still 15750 * get a response from the driver later. 15751 */ 15752 if (ipif != NULL && ipif->ipif_ill != ill) 15753 ioctl_aborted = B_TRUE; 15754 15755 switch (dloa->dl_primitive) { 15756 case DL_ERROR_ACK: 15757 switch (dlea->dl_error_primitive) { 15758 case DL_UNBIND_REQ: 15759 case DL_ATTACH_REQ: 15760 case DL_DETACH_REQ: 15761 case DL_INFO_REQ: 15762 ill_dlpi_done(ill, dlea->dl_error_primitive); 15763 break; 15764 case DL_NOTIFY_REQ: 15765 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15766 log = B_FALSE; 15767 break; 15768 case DL_PHYS_ADDR_REQ: 15769 /* 15770 * For IPv6 only, there are two additional 15771 * phys_addr_req's sent to the driver to get the 15772 * IPv6 token and lla. This allows IP to acquire 15773 * the hardware address format for a given interface 15774 * without having built in knowledge of the hardware 15775 * address. ill_phys_addr_pend keeps track of the last 15776 * DL_PAR sent so we know which response we are 15777 * dealing with. ill_dlpi_done will update 15778 * ill_phys_addr_pend when it sends the next req. 15779 * We don't complete the IOCTL until all three DL_PARs 15780 * have been attempted, so set *_len to 0 and break. 15781 */ 15782 paddrreq = ill->ill_phys_addr_pend; 15783 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15784 if (paddrreq == DL_IPV6_TOKEN) { 15785 ill->ill_token_length = 0; 15786 log = B_FALSE; 15787 break; 15788 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15789 ill->ill_nd_lla_len = 0; 15790 log = B_FALSE; 15791 break; 15792 } 15793 /* 15794 * Something went wrong with the DL_PHYS_ADDR_REQ. 15795 * We presumably have an IOCTL hanging out waiting 15796 * for completion. Find it and complete the IOCTL 15797 * with the error noted. 15798 * However, ill_dl_phys was called on an ill queue 15799 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15800 * set. But the ioctl is known to be pending on ill_wq. 15801 */ 15802 if (!ill->ill_ifname_pending) 15803 break; 15804 ill->ill_ifname_pending = 0; 15805 if (!ioctl_aborted) 15806 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15807 if (mp1 != NULL) { 15808 /* 15809 * This operation (SIOCSLIFNAME) must have 15810 * happened on the ill. Assert there is no conn 15811 */ 15812 ASSERT(connp == NULL); 15813 q = ill->ill_wq; 15814 } 15815 break; 15816 case DL_BIND_REQ: 15817 ill_dlpi_done(ill, DL_BIND_REQ); 15818 if (ill->ill_ifname_pending) 15819 break; 15820 /* 15821 * Something went wrong with the bind. We presumably 15822 * have an IOCTL hanging out waiting for completion. 15823 * Find it, take down the interface that was coming 15824 * up, and complete the IOCTL with the error noted. 15825 */ 15826 if (!ioctl_aborted) 15827 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15828 if (mp1 != NULL) { 15829 /* 15830 * This operation (SIOCSLIFFLAGS) must have 15831 * happened from a conn. 15832 */ 15833 ASSERT(connp != NULL); 15834 q = CONNP_TO_WQ(connp); 15835 if (ill->ill_move_in_progress) { 15836 ILL_CLEAR_MOVE(ill); 15837 } 15838 (void) ipif_down(ipif, NULL, NULL); 15839 /* error is set below the switch */ 15840 } 15841 break; 15842 case DL_ENABMULTI_REQ: 15843 ip1dbg(("DL_ERROR_ACK to enabmulti\n")); 15844 15845 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15846 ill->ill_dlpi_multicast_state = IDS_FAILED; 15847 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15848 ipif_t *ipif; 15849 15850 log = B_FALSE; 15851 printf("ip: joining multicasts failed (%d)" 15852 " on %s - will use link layer " 15853 "broadcasts for multicast\n", 15854 dlea->dl_errno, ill->ill_name); 15855 15856 /* 15857 * Set up the multicast mapping alone. 15858 * writer, so ok to access ill->ill_ipif 15859 * without any lock. 15860 */ 15861 ipif = ill->ill_ipif; 15862 mutex_enter(&ill->ill_phyint->phyint_lock); 15863 ill->ill_phyint->phyint_flags |= 15864 PHYI_MULTI_BCAST; 15865 mutex_exit(&ill->ill_phyint->phyint_lock); 15866 15867 if (!ill->ill_isv6) { 15868 (void) ipif_arp_setup_multicast(ipif, 15869 NULL); 15870 } else { 15871 (void) ipif_ndp_setup_multicast(ipif, 15872 NULL); 15873 } 15874 } 15875 freemsg(mp); /* Don't want to pass this up */ 15876 return; 15877 case DL_CAPABILITY_REQ: 15878 case DL_CONTROL_REQ: 15879 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15880 "DL_CAPABILITY/CONTROL REQ\n")); 15881 ill_dlpi_done(ill, dlea->dl_error_primitive); 15882 ill->ill_dlpi_capab_state = IDS_FAILED; 15883 freemsg(mp); 15884 return; 15885 } 15886 /* 15887 * Note the error for IOCTL completion (mp1 is set when 15888 * ready to complete ioctl). If ill_ifname_pending_err is 15889 * set, an error occured during plumbing (ill_ifname_pending), 15890 * so we want to report that error. 15891 * 15892 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15893 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15894 * expected to get errack'd if the driver doesn't support 15895 * these flags (e.g. ethernet). log will be set to B_FALSE 15896 * if these error conditions are encountered. 15897 */ 15898 if (mp1 != NULL) { 15899 if (ill->ill_ifname_pending_err != 0) { 15900 err = ill->ill_ifname_pending_err; 15901 ill->ill_ifname_pending_err = 0; 15902 } else { 15903 err = dlea->dl_unix_errno ? 15904 dlea->dl_unix_errno : ENXIO; 15905 } 15906 /* 15907 * If we're plumbing an interface and an error hasn't already 15908 * been saved, set ill_ifname_pending_err to the error passed 15909 * up. Ignore the error if log is B_FALSE (see comment above). 15910 */ 15911 } else if (log && ill->ill_ifname_pending && 15912 ill->ill_ifname_pending_err == 0) { 15913 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15914 dlea->dl_unix_errno : ENXIO; 15915 } 15916 15917 if (log) 15918 ip_dlpi_error(ill, dlea->dl_error_primitive, 15919 dlea->dl_errno, dlea->dl_unix_errno); 15920 break; 15921 case DL_CAPABILITY_ACK: { 15922 boolean_t reneg_flag = B_FALSE; 15923 /* Call a routine to handle this one. */ 15924 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15925 /* 15926 * Check if the ACK is due to renegotiation case since we 15927 * will need to send a new CAPABILITY_REQ later. 15928 */ 15929 if (ill->ill_dlpi_capab_state == IDS_RENEG) { 15930 /* This is the ack for a renogiation case */ 15931 reneg_flag = B_TRUE; 15932 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 15933 } 15934 ill_capability_ack(ill, mp); 15935 if (reneg_flag) 15936 ill_capability_probe(ill); 15937 break; 15938 } 15939 case DL_CONTROL_ACK: 15940 /* We treat all of these as "fire and forget" */ 15941 ill_dlpi_done(ill, DL_CONTROL_REQ); 15942 break; 15943 case DL_INFO_ACK: 15944 /* Call a routine to handle this one. */ 15945 ill_dlpi_done(ill, DL_INFO_REQ); 15946 ip_ll_subnet_defaults(ill, mp); 15947 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15948 return; 15949 case DL_BIND_ACK: 15950 /* 15951 * We should have an IOCTL waiting on this unless 15952 * sent by ill_dl_phys, in which case just return 15953 */ 15954 ill_dlpi_done(ill, DL_BIND_REQ); 15955 if (ill->ill_ifname_pending) 15956 break; 15957 15958 if (!ioctl_aborted) 15959 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15960 if (mp1 == NULL) 15961 break; 15962 /* 15963 * Because mp1 was added by ill_dl_up(), and it always 15964 * passes a valid connp, connp must be valid here. 15965 */ 15966 ASSERT(connp != NULL); 15967 q = CONNP_TO_WQ(connp); 15968 15969 /* 15970 * We are exclusive. So nothing can change even after 15971 * we get the pending mp. If need be we can put it back 15972 * and restart, as in calling ipif_arp_up() below. 15973 */ 15974 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15975 15976 mutex_enter(&ill->ill_lock); 15977 15978 ill->ill_dl_up = 1; 15979 15980 if ((info = ill->ill_nic_event_info) != NULL) { 15981 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15982 "attached for %s\n", info->hne_event, 15983 ill->ill_name)); 15984 if (info->hne_data != NULL) 15985 kmem_free(info->hne_data, info->hne_datalen); 15986 kmem_free(info, sizeof (hook_nic_event_t)); 15987 } 15988 15989 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15990 if (info != NULL) { 15991 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 15992 info->hne_lif = 0; 15993 info->hne_event = NE_UP; 15994 info->hne_data = NULL; 15995 info->hne_datalen = 0; 15996 info->hne_family = ill->ill_isv6 ? 15997 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 15998 } else 15999 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 16000 "event information for %s (ENOMEM)\n", 16001 ill->ill_name)); 16002 16003 ill->ill_nic_event_info = info; 16004 16005 mutex_exit(&ill->ill_lock); 16006 16007 /* 16008 * Now bring up the resolver; when that is complete, we'll 16009 * create IREs. Note that we intentionally mirror what 16010 * ipif_up() would have done, because we got here by way of 16011 * ill_dl_up(), which stopped ipif_up()'s processing. 16012 */ 16013 if (ill->ill_isv6) { 16014 /* 16015 * v6 interfaces. 16016 * Unlike ARP which has to do another bind 16017 * and attach, once we get here we are 16018 * done with NDP. Except in the case of 16019 * ILLF_XRESOLV, in which case we send an 16020 * AR_INTERFACE_UP to the external resolver. 16021 * If all goes well, the ioctl will complete 16022 * in ip_rput(). If there's an error, we 16023 * complete it here. 16024 */ 16025 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr); 16026 if (err == 0) { 16027 if (ill->ill_flags & ILLF_XRESOLV) { 16028 mutex_enter(&connp->conn_lock); 16029 mutex_enter(&ill->ill_lock); 16030 success = ipsq_pending_mp_add( 16031 connp, ipif, q, mp1, 0); 16032 mutex_exit(&ill->ill_lock); 16033 mutex_exit(&connp->conn_lock); 16034 if (success) { 16035 err = ipif_resolver_up(ipif, 16036 Res_act_initial); 16037 if (err == EINPROGRESS) { 16038 freemsg(mp); 16039 return; 16040 } 16041 ASSERT(err != 0); 16042 mp1 = ipsq_pending_mp_get(ipsq, 16043 &connp); 16044 ASSERT(mp1 != NULL); 16045 } else { 16046 /* conn has started closing */ 16047 err = EINTR; 16048 } 16049 } else { /* Non XRESOLV interface */ 16050 (void) ipif_resolver_up(ipif, 16051 Res_act_initial); 16052 err = ipif_up_done_v6(ipif); 16053 } 16054 } 16055 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 16056 /* 16057 * ARP and other v4 external resolvers. 16058 * Leave the pending mblk intact so that 16059 * the ioctl completes in ip_rput(). 16060 */ 16061 mutex_enter(&connp->conn_lock); 16062 mutex_enter(&ill->ill_lock); 16063 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 16064 mutex_exit(&ill->ill_lock); 16065 mutex_exit(&connp->conn_lock); 16066 if (success) { 16067 err = ipif_resolver_up(ipif, Res_act_initial); 16068 if (err == EINPROGRESS) { 16069 freemsg(mp); 16070 return; 16071 } 16072 ASSERT(err != 0); 16073 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16074 } else { 16075 /* The conn has started closing */ 16076 err = EINTR; 16077 } 16078 } else { 16079 /* 16080 * This one is complete. Reply to pending ioctl. 16081 */ 16082 (void) ipif_resolver_up(ipif, Res_act_initial); 16083 err = ipif_up_done(ipif); 16084 } 16085 16086 if ((err == 0) && (ill->ill_up_ipifs)) { 16087 err = ill_up_ipifs(ill, q, mp1); 16088 if (err == EINPROGRESS) { 16089 freemsg(mp); 16090 return; 16091 } 16092 } 16093 16094 if (ill->ill_up_ipifs) { 16095 ill_group_cleanup(ill); 16096 } 16097 16098 break; 16099 case DL_NOTIFY_IND: { 16100 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 16101 ire_t *ire; 16102 boolean_t need_ire_walk_v4 = B_FALSE; 16103 boolean_t need_ire_walk_v6 = B_FALSE; 16104 16105 switch (notify->dl_notification) { 16106 case DL_NOTE_PHYS_ADDR: 16107 err = ill_set_phys_addr(ill, mp); 16108 break; 16109 16110 case DL_NOTE_FASTPATH_FLUSH: 16111 ill_fastpath_flush(ill); 16112 break; 16113 16114 case DL_NOTE_SDU_SIZE: 16115 /* 16116 * Change the MTU size of the interface, of all 16117 * attached ipif's, and of all relevant ire's. The 16118 * new value's a uint32_t at notify->dl_data. 16119 * Mtu change Vs. new ire creation - protocol below. 16120 * 16121 * a Mark the ipif as IPIF_CHANGING. 16122 * b Set the new mtu in the ipif. 16123 * c Change the ire_max_frag on all affected ires 16124 * d Unmark the IPIF_CHANGING 16125 * 16126 * To see how the protocol works, assume an interface 16127 * route is also being added simultaneously by 16128 * ip_rt_add and let 'ipif' be the ipif referenced by 16129 * the ire. If the ire is created before step a, 16130 * it will be cleaned up by step c. If the ire is 16131 * created after step d, it will see the new value of 16132 * ipif_mtu. Any attempt to create the ire between 16133 * steps a to d will fail because of the IPIF_CHANGING 16134 * flag. Note that ire_create() is passed a pointer to 16135 * the ipif_mtu, and not the value. During ire_add 16136 * under the bucket lock, the ire_max_frag of the 16137 * new ire being created is set from the ipif/ire from 16138 * which it is being derived. 16139 */ 16140 mutex_enter(&ill->ill_lock); 16141 ill->ill_max_frag = (uint_t)notify->dl_data; 16142 16143 /* 16144 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 16145 * leave it alone 16146 */ 16147 if (ill->ill_mtu_userspecified) { 16148 mutex_exit(&ill->ill_lock); 16149 break; 16150 } 16151 ill->ill_max_mtu = ill->ill_max_frag; 16152 if (ill->ill_isv6) { 16153 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16154 ill->ill_max_mtu = IPV6_MIN_MTU; 16155 } else { 16156 if (ill->ill_max_mtu < IP_MIN_MTU) 16157 ill->ill_max_mtu = IP_MIN_MTU; 16158 } 16159 for (ipif = ill->ill_ipif; ipif != NULL; 16160 ipif = ipif->ipif_next) { 16161 /* 16162 * Don't override the mtu if the user 16163 * has explicitly set it. 16164 */ 16165 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16166 continue; 16167 ipif->ipif_mtu = (uint_t)notify->dl_data; 16168 if (ipif->ipif_isv6) 16169 ire = ipif_to_ire_v6(ipif); 16170 else 16171 ire = ipif_to_ire(ipif); 16172 if (ire != NULL) { 16173 ire->ire_max_frag = ipif->ipif_mtu; 16174 ire_refrele(ire); 16175 } 16176 if (ipif->ipif_flags & IPIF_UP) { 16177 if (ill->ill_isv6) 16178 need_ire_walk_v6 = B_TRUE; 16179 else 16180 need_ire_walk_v4 = B_TRUE; 16181 } 16182 } 16183 mutex_exit(&ill->ill_lock); 16184 if (need_ire_walk_v4) 16185 ire_walk_v4(ill_mtu_change, (char *)ill, 16186 ALL_ZONES, ipst); 16187 if (need_ire_walk_v6) 16188 ire_walk_v6(ill_mtu_change, (char *)ill, 16189 ALL_ZONES, ipst); 16190 break; 16191 case DL_NOTE_LINK_UP: 16192 case DL_NOTE_LINK_DOWN: { 16193 /* 16194 * We are writer. ill / phyint / ipsq assocs stable. 16195 * The RUNNING flag reflects the state of the link. 16196 */ 16197 phyint_t *phyint = ill->ill_phyint; 16198 uint64_t new_phyint_flags; 16199 boolean_t changed = B_FALSE; 16200 boolean_t went_up; 16201 16202 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16203 mutex_enter(&phyint->phyint_lock); 16204 new_phyint_flags = went_up ? 16205 phyint->phyint_flags | PHYI_RUNNING : 16206 phyint->phyint_flags & ~PHYI_RUNNING; 16207 if (new_phyint_flags != phyint->phyint_flags) { 16208 phyint->phyint_flags = new_phyint_flags; 16209 changed = B_TRUE; 16210 } 16211 mutex_exit(&phyint->phyint_lock); 16212 /* 16213 * ill_restart_dad handles the DAD restart and routing 16214 * socket notification logic. 16215 */ 16216 if (changed) { 16217 ill_restart_dad(phyint->phyint_illv4, went_up); 16218 ill_restart_dad(phyint->phyint_illv6, went_up); 16219 } 16220 break; 16221 } 16222 case DL_NOTE_PROMISC_ON_PHYS: 16223 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16224 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16225 mutex_enter(&ill->ill_lock); 16226 ill->ill_promisc_on_phys = B_TRUE; 16227 mutex_exit(&ill->ill_lock); 16228 break; 16229 case DL_NOTE_PROMISC_OFF_PHYS: 16230 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16231 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16232 mutex_enter(&ill->ill_lock); 16233 ill->ill_promisc_on_phys = B_FALSE; 16234 mutex_exit(&ill->ill_lock); 16235 break; 16236 case DL_NOTE_CAPAB_RENEG: 16237 /* 16238 * Something changed on the driver side. 16239 * It wants us to renegotiate the capabilities 16240 * on this ill. The most likely cause is the 16241 * aggregation interface under us where a 16242 * port got added or went away. 16243 * 16244 * We reset the capabilities and set the 16245 * state to IDS_RENG so that when the ack 16246 * comes back, we can start the 16247 * renegotiation process. 16248 */ 16249 ill_capability_reset(ill); 16250 ill->ill_dlpi_capab_state = IDS_RENEG; 16251 break; 16252 default: 16253 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16254 "type 0x%x for DL_NOTIFY_IND\n", 16255 notify->dl_notification)); 16256 break; 16257 } 16258 16259 /* 16260 * As this is an asynchronous operation, we 16261 * should not call ill_dlpi_done 16262 */ 16263 break; 16264 } 16265 case DL_NOTIFY_ACK: { 16266 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16267 16268 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16269 ill->ill_note_link = 1; 16270 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16271 break; 16272 } 16273 case DL_PHYS_ADDR_ACK: { 16274 /* 16275 * As part of plumbing the interface via SIOCSLIFNAME, 16276 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16277 * whose answers we receive here. As each answer is received, 16278 * we call ill_dlpi_done() to dispatch the next request as 16279 * we're processing the current one. Once all answers have 16280 * been received, we use ipsq_pending_mp_get() to dequeue the 16281 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16282 * is invoked from an ill queue, conn_oper_pending_ill is not 16283 * available, but we know the ioctl is pending on ill_wq.) 16284 */ 16285 uint_t paddrlen, paddroff; 16286 16287 paddrreq = ill->ill_phys_addr_pend; 16288 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16289 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16290 16291 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16292 if (paddrreq == DL_IPV6_TOKEN) { 16293 /* 16294 * bcopy to low-order bits of ill_token 16295 * 16296 * XXX Temporary hack - currently, all known tokens 16297 * are 64 bits, so I'll cheat for the moment. 16298 */ 16299 bcopy(mp->b_rptr + paddroff, 16300 &ill->ill_token.s6_addr32[2], paddrlen); 16301 ill->ill_token_length = paddrlen; 16302 break; 16303 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16304 ASSERT(ill->ill_nd_lla_mp == NULL); 16305 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16306 mp = NULL; 16307 break; 16308 } 16309 16310 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16311 ASSERT(ill->ill_phys_addr_mp == NULL); 16312 if (!ill->ill_ifname_pending) 16313 break; 16314 ill->ill_ifname_pending = 0; 16315 if (!ioctl_aborted) 16316 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16317 if (mp1 != NULL) { 16318 ASSERT(connp == NULL); 16319 q = ill->ill_wq; 16320 } 16321 /* 16322 * If any error acks received during the plumbing sequence, 16323 * ill_ifname_pending_err will be set. Break out and send up 16324 * the error to the pending ioctl. 16325 */ 16326 if (ill->ill_ifname_pending_err != 0) { 16327 err = ill->ill_ifname_pending_err; 16328 ill->ill_ifname_pending_err = 0; 16329 break; 16330 } 16331 16332 ill->ill_phys_addr_mp = mp; 16333 ill->ill_phys_addr = mp->b_rptr + paddroff; 16334 mp = NULL; 16335 16336 /* 16337 * If paddrlen is zero, the DLPI provider doesn't support 16338 * physical addresses. The other two tests were historical 16339 * workarounds for bugs in our former PPP implementation, but 16340 * now other things have grown dependencies on them -- e.g., 16341 * the tun module specifies a dl_addr_length of zero in its 16342 * DL_BIND_ACK, but then specifies an incorrect value in its 16343 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16344 * but only after careful testing ensures that all dependent 16345 * broken DLPI providers have been fixed. 16346 */ 16347 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16348 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16349 ill->ill_phys_addr = NULL; 16350 } else if (paddrlen != ill->ill_phys_addr_length) { 16351 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16352 paddrlen, ill->ill_phys_addr_length)); 16353 err = EINVAL; 16354 break; 16355 } 16356 16357 if (ill->ill_nd_lla_mp == NULL) { 16358 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16359 err = ENOMEM; 16360 break; 16361 } 16362 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16363 } 16364 16365 /* 16366 * Set the interface token. If the zeroth interface address 16367 * is unspecified, then set it to the link local address. 16368 */ 16369 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16370 (void) ill_setdefaulttoken(ill); 16371 16372 ASSERT(ill->ill_ipif->ipif_id == 0); 16373 if (ipif != NULL && 16374 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16375 (void) ipif_setlinklocal(ipif); 16376 } 16377 break; 16378 } 16379 case DL_OK_ACK: 16380 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16381 dlpi_prim_str((int)dloa->dl_correct_primitive), 16382 dloa->dl_correct_primitive)); 16383 switch (dloa->dl_correct_primitive) { 16384 case DL_UNBIND_REQ: 16385 case DL_ATTACH_REQ: 16386 case DL_DETACH_REQ: 16387 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16388 break; 16389 } 16390 break; 16391 default: 16392 break; 16393 } 16394 16395 freemsg(mp); 16396 if (mp1 != NULL) { 16397 /* 16398 * The operation must complete without EINPROGRESS 16399 * since ipsq_pending_mp_get() has removed the mblk 16400 * from ipsq_pending_mp. Otherwise, the operation 16401 * will be stuck forever in the ipsq. 16402 */ 16403 ASSERT(err != EINPROGRESS); 16404 16405 switch (ipsq->ipsq_current_ioctl) { 16406 case 0: 16407 ipsq_current_finish(ipsq); 16408 break; 16409 16410 case SIOCLIFADDIF: 16411 case SIOCSLIFNAME: 16412 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16413 break; 16414 16415 default: 16416 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16417 break; 16418 } 16419 } 16420 } 16421 16422 /* 16423 * ip_rput_other is called by ip_rput to handle messages modifying the global 16424 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16425 */ 16426 /* ARGSUSED */ 16427 void 16428 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16429 { 16430 ill_t *ill; 16431 struct iocblk *iocp; 16432 mblk_t *mp1; 16433 conn_t *connp = NULL; 16434 16435 ip1dbg(("ip_rput_other ")); 16436 ill = (ill_t *)q->q_ptr; 16437 /* 16438 * This routine is not a writer in the case of SIOCGTUNPARAM 16439 * in which case ipsq is NULL. 16440 */ 16441 if (ipsq != NULL) { 16442 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16443 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16444 } 16445 16446 switch (mp->b_datap->db_type) { 16447 case M_ERROR: 16448 case M_HANGUP: 16449 /* 16450 * The device has a problem. We force the ILL down. It can 16451 * be brought up again manually using SIOCSIFFLAGS (via 16452 * ifconfig or equivalent). 16453 */ 16454 ASSERT(ipsq != NULL); 16455 if (mp->b_rptr < mp->b_wptr) 16456 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16457 if (ill->ill_error == 0) 16458 ill->ill_error = ENXIO; 16459 if (!ill_down_start(q, mp)) 16460 return; 16461 ipif_all_down_tail(ipsq, q, mp, NULL); 16462 break; 16463 case M_IOCACK: 16464 iocp = (struct iocblk *)mp->b_rptr; 16465 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16466 switch (iocp->ioc_cmd) { 16467 case SIOCSTUNPARAM: 16468 case OSIOCSTUNPARAM: 16469 ASSERT(ipsq != NULL); 16470 /* 16471 * Finish socket ioctl passed through to tun. 16472 * We should have an IOCTL waiting on this. 16473 */ 16474 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16475 if (ill->ill_isv6) { 16476 struct iftun_req *ta; 16477 16478 /* 16479 * if a source or destination is 16480 * being set, try and set the link 16481 * local address for the tunnel 16482 */ 16483 ta = (struct iftun_req *)mp->b_cont-> 16484 b_cont->b_rptr; 16485 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16486 ipif_set_tun_llink(ill, ta); 16487 } 16488 16489 } 16490 if (mp1 != NULL) { 16491 /* 16492 * Now copy back the b_next/b_prev used by 16493 * mi code for the mi_copy* functions. 16494 * See ip_sioctl_tunparam() for the reason. 16495 * Also protect against missing b_cont. 16496 */ 16497 if (mp->b_cont != NULL) { 16498 mp->b_cont->b_next = 16499 mp1->b_cont->b_next; 16500 mp->b_cont->b_prev = 16501 mp1->b_cont->b_prev; 16502 } 16503 inet_freemsg(mp1); 16504 ASSERT(connp != NULL); 16505 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16506 iocp->ioc_error, NO_COPYOUT, ipsq); 16507 } else { 16508 ASSERT(connp == NULL); 16509 putnext(q, mp); 16510 } 16511 break; 16512 case SIOCGTUNPARAM: 16513 case OSIOCGTUNPARAM: 16514 /* 16515 * This is really M_IOCDATA from the tunnel driver. 16516 * convert back and complete the ioctl. 16517 * We should have an IOCTL waiting on this. 16518 */ 16519 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16520 if (mp1) { 16521 /* 16522 * Now copy back the b_next/b_prev used by 16523 * mi code for the mi_copy* functions. 16524 * See ip_sioctl_tunparam() for the reason. 16525 * Also protect against missing b_cont. 16526 */ 16527 if (mp->b_cont != NULL) { 16528 mp->b_cont->b_next = 16529 mp1->b_cont->b_next; 16530 mp->b_cont->b_prev = 16531 mp1->b_cont->b_prev; 16532 } 16533 inet_freemsg(mp1); 16534 if (iocp->ioc_error == 0) 16535 mp->b_datap->db_type = M_IOCDATA; 16536 ASSERT(connp != NULL); 16537 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16538 iocp->ioc_error, COPYOUT, NULL); 16539 } else { 16540 ASSERT(connp == NULL); 16541 putnext(q, mp); 16542 } 16543 break; 16544 default: 16545 break; 16546 } 16547 break; 16548 case M_IOCNAK: 16549 iocp = (struct iocblk *)mp->b_rptr; 16550 16551 switch (iocp->ioc_cmd) { 16552 int mode; 16553 16554 case DL_IOC_HDR_INFO: 16555 /* 16556 * If this was the first attempt turn of the 16557 * fastpath probing. 16558 */ 16559 mutex_enter(&ill->ill_lock); 16560 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16561 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16562 mutex_exit(&ill->ill_lock); 16563 ill_fastpath_nack(ill); 16564 ip1dbg(("ip_rput: DLPI fastpath off on " 16565 "interface %s\n", 16566 ill->ill_name)); 16567 } else { 16568 mutex_exit(&ill->ill_lock); 16569 } 16570 freemsg(mp); 16571 break; 16572 case SIOCSTUNPARAM: 16573 case OSIOCSTUNPARAM: 16574 ASSERT(ipsq != NULL); 16575 /* 16576 * Finish socket ioctl passed through to tun 16577 * We should have an IOCTL waiting on this. 16578 */ 16579 /* FALLTHRU */ 16580 case SIOCGTUNPARAM: 16581 case OSIOCGTUNPARAM: 16582 /* 16583 * This is really M_IOCDATA from the tunnel driver. 16584 * convert back and complete the ioctl. 16585 * We should have an IOCTL waiting on this. 16586 */ 16587 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16588 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16589 mp1 = ill_pending_mp_get(ill, &connp, 16590 iocp->ioc_id); 16591 mode = COPYOUT; 16592 ipsq = NULL; 16593 } else { 16594 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16595 mode = NO_COPYOUT; 16596 } 16597 if (mp1 != NULL) { 16598 /* 16599 * Now copy back the b_next/b_prev used by 16600 * mi code for the mi_copy* functions. 16601 * See ip_sioctl_tunparam() for the reason. 16602 * Also protect against missing b_cont. 16603 */ 16604 if (mp->b_cont != NULL) { 16605 mp->b_cont->b_next = 16606 mp1->b_cont->b_next; 16607 mp->b_cont->b_prev = 16608 mp1->b_cont->b_prev; 16609 } 16610 inet_freemsg(mp1); 16611 if (iocp->ioc_error == 0) 16612 iocp->ioc_error = EINVAL; 16613 ASSERT(connp != NULL); 16614 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16615 iocp->ioc_error, mode, ipsq); 16616 } else { 16617 ASSERT(connp == NULL); 16618 putnext(q, mp); 16619 } 16620 break; 16621 default: 16622 break; 16623 } 16624 default: 16625 break; 16626 } 16627 } 16628 16629 /* 16630 * NOTE : This function does not ire_refrele the ire argument passed in. 16631 * 16632 * IPQoS notes 16633 * IP policy is invoked twice for a forwarded packet, once on the read side 16634 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16635 * enabled. An additional parameter, in_ill, has been added for this purpose. 16636 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16637 * because ip_mroute drops this information. 16638 * 16639 */ 16640 void 16641 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16642 { 16643 uint32_t pkt_len; 16644 queue_t *q; 16645 uint32_t sum; 16646 #define rptr ((uchar_t *)ipha) 16647 uint32_t max_frag; 16648 uint32_t ill_index; 16649 ill_t *out_ill; 16650 mib2_ipIfStatsEntry_t *mibptr; 16651 ip_stack_t *ipst = in_ill->ill_ipst; 16652 16653 /* Get the ill_index of the incoming ILL */ 16654 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16655 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16656 16657 /* Initiate Read side IPPF processing */ 16658 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16659 ip_process(IPP_FWD_IN, &mp, ill_index); 16660 if (mp == NULL) { 16661 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16662 "during IPPF processing\n")); 16663 return; 16664 } 16665 } 16666 16667 pkt_len = ntohs(ipha->ipha_length); 16668 16669 /* Adjust the checksum to reflect the ttl decrement. */ 16670 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16671 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16672 16673 if (ipha->ipha_ttl-- <= 1) { 16674 if (ip_csum_hdr(ipha)) { 16675 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16676 goto drop_pkt; 16677 } 16678 /* 16679 * Note: ire_stq this will be NULL for multicast 16680 * datagrams using the long path through arp (the IRE 16681 * is not an IRE_CACHE). This should not cause 16682 * problems since we don't generate ICMP errors for 16683 * multicast packets. 16684 */ 16685 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16686 q = ire->ire_stq; 16687 if (q != NULL) { 16688 /* Sent by forwarding path, and router is global zone */ 16689 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16690 GLOBAL_ZONEID, ipst); 16691 } else 16692 freemsg(mp); 16693 return; 16694 } 16695 16696 /* 16697 * Don't forward if the interface is down 16698 */ 16699 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16700 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16701 ip2dbg(("ip_rput_forward:interface is down\n")); 16702 goto drop_pkt; 16703 } 16704 16705 /* Get the ill_index of the outgoing ILL */ 16706 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 16707 16708 out_ill = ire->ire_ipif->ipif_ill; 16709 16710 DTRACE_PROBE4(ip4__forwarding__start, 16711 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16712 16713 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16714 ipst->ips_ipv4firewall_forwarding, 16715 in_ill, out_ill, ipha, mp, mp, ipst); 16716 16717 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16718 16719 if (mp == NULL) 16720 return; 16721 pkt_len = ntohs(ipha->ipha_length); 16722 16723 if (is_system_labeled()) { 16724 mblk_t *mp1; 16725 16726 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16727 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16728 goto drop_pkt; 16729 } 16730 /* Size may have changed */ 16731 mp = mp1; 16732 ipha = (ipha_t *)mp->b_rptr; 16733 pkt_len = ntohs(ipha->ipha_length); 16734 } 16735 16736 /* Check if there are options to update */ 16737 if (!IS_SIMPLE_IPH(ipha)) { 16738 if (ip_csum_hdr(ipha)) { 16739 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16740 goto drop_pkt; 16741 } 16742 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16743 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16744 return; 16745 } 16746 16747 ipha->ipha_hdr_checksum = 0; 16748 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16749 } 16750 max_frag = ire->ire_max_frag; 16751 if (pkt_len > max_frag) { 16752 /* 16753 * It needs fragging on its way out. We haven't 16754 * verified the header checksum yet. Since we 16755 * are going to put a surely good checksum in the 16756 * outgoing header, we have to make sure that it 16757 * was good coming in. 16758 */ 16759 if (ip_csum_hdr(ipha)) { 16760 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16761 goto drop_pkt; 16762 } 16763 /* Initiate Write side IPPF processing */ 16764 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16765 ip_process(IPP_FWD_OUT, &mp, ill_index); 16766 if (mp == NULL) { 16767 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16768 " during IPPF processing\n")); 16769 return; 16770 } 16771 } 16772 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16773 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16774 return; 16775 } 16776 16777 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16778 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16779 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16780 ipst->ips_ipv4firewall_physical_out, 16781 NULL, out_ill, ipha, mp, mp, ipst); 16782 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16783 if (mp == NULL) 16784 return; 16785 16786 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16787 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16788 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16789 /* ip_xmit_v4 always consumes the packet */ 16790 return; 16791 16792 drop_pkt:; 16793 ip1dbg(("ip_rput_forward: drop pkt\n")); 16794 freemsg(mp); 16795 #undef rptr 16796 } 16797 16798 void 16799 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16800 { 16801 ire_t *ire; 16802 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16803 16804 ASSERT(!ipif->ipif_isv6); 16805 /* 16806 * Find an IRE which matches the destination and the outgoing 16807 * queue in the cache table. All we need is an IRE_CACHE which 16808 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16809 * then it is enough to have some IRE_CACHE in the group. 16810 */ 16811 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16812 dst = ipif->ipif_pp_dst_addr; 16813 16814 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16815 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16816 if (ire == NULL) { 16817 /* 16818 * Mark this packet to make it be delivered to 16819 * ip_rput_forward after the new ire has been 16820 * created. 16821 */ 16822 mp->b_prev = NULL; 16823 mp->b_next = mp; 16824 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16825 NULL, 0, GLOBAL_ZONEID, &zero_info); 16826 } else { 16827 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16828 IRE_REFRELE(ire); 16829 } 16830 } 16831 16832 /* Update any source route, record route or timestamp options */ 16833 static int 16834 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16835 { 16836 ipoptp_t opts; 16837 uchar_t *opt; 16838 uint8_t optval; 16839 uint8_t optlen; 16840 ipaddr_t dst; 16841 uint32_t ts; 16842 ire_t *dst_ire = NULL; 16843 ire_t *tmp_ire = NULL; 16844 timestruc_t now; 16845 16846 ip2dbg(("ip_rput_forward_options\n")); 16847 dst = ipha->ipha_dst; 16848 for (optval = ipoptp_first(&opts, ipha); 16849 optval != IPOPT_EOL; 16850 optval = ipoptp_next(&opts)) { 16851 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16852 opt = opts.ipoptp_cur; 16853 optlen = opts.ipoptp_len; 16854 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16855 optval, opts.ipoptp_len)); 16856 switch (optval) { 16857 uint32_t off; 16858 case IPOPT_SSRR: 16859 case IPOPT_LSRR: 16860 /* Check if adminstratively disabled */ 16861 if (!ipst->ips_ip_forward_src_routed) { 16862 if (ire->ire_stq != NULL) { 16863 /* 16864 * Sent by forwarding path, and router 16865 * is global zone 16866 */ 16867 icmp_unreachable(ire->ire_stq, mp, 16868 ICMP_SOURCE_ROUTE_FAILED, 16869 GLOBAL_ZONEID, ipst); 16870 } else { 16871 ip0dbg(("ip_rput_forward_options: " 16872 "unable to send unreach\n")); 16873 freemsg(mp); 16874 } 16875 return (-1); 16876 } 16877 16878 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16879 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16880 if (dst_ire == NULL) { 16881 /* 16882 * Must be partial since ip_rput_options 16883 * checked for strict. 16884 */ 16885 break; 16886 } 16887 off = opt[IPOPT_OFFSET]; 16888 off--; 16889 redo_srr: 16890 if (optlen < IP_ADDR_LEN || 16891 off > optlen - IP_ADDR_LEN) { 16892 /* End of source route */ 16893 ip1dbg(( 16894 "ip_rput_forward_options: end of SR\n")); 16895 ire_refrele(dst_ire); 16896 break; 16897 } 16898 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16899 bcopy(&ire->ire_src_addr, (char *)opt + off, 16900 IP_ADDR_LEN); 16901 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16902 ntohl(dst))); 16903 16904 /* 16905 * Check if our address is present more than 16906 * once as consecutive hops in source route. 16907 */ 16908 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16909 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16910 if (tmp_ire != NULL) { 16911 ire_refrele(tmp_ire); 16912 off += IP_ADDR_LEN; 16913 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16914 goto redo_srr; 16915 } 16916 ipha->ipha_dst = dst; 16917 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16918 ire_refrele(dst_ire); 16919 break; 16920 case IPOPT_RR: 16921 off = opt[IPOPT_OFFSET]; 16922 off--; 16923 if (optlen < IP_ADDR_LEN || 16924 off > optlen - IP_ADDR_LEN) { 16925 /* No more room - ignore */ 16926 ip1dbg(( 16927 "ip_rput_forward_options: end of RR\n")); 16928 break; 16929 } 16930 bcopy(&ire->ire_src_addr, (char *)opt + off, 16931 IP_ADDR_LEN); 16932 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16933 break; 16934 case IPOPT_TS: 16935 /* Insert timestamp if there is room */ 16936 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16937 case IPOPT_TS_TSONLY: 16938 off = IPOPT_TS_TIMELEN; 16939 break; 16940 case IPOPT_TS_PRESPEC: 16941 case IPOPT_TS_PRESPEC_RFC791: 16942 /* Verify that the address matched */ 16943 off = opt[IPOPT_OFFSET] - 1; 16944 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16945 dst_ire = ire_ctable_lookup(dst, 0, 16946 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16947 MATCH_IRE_TYPE, ipst); 16948 if (dst_ire == NULL) { 16949 /* Not for us */ 16950 break; 16951 } 16952 ire_refrele(dst_ire); 16953 /* FALLTHRU */ 16954 case IPOPT_TS_TSANDADDR: 16955 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16956 break; 16957 default: 16958 /* 16959 * ip_*put_options should have already 16960 * dropped this packet. 16961 */ 16962 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16963 "unknown IT - bug in ip_rput_options?\n"); 16964 return (0); /* Keep "lint" happy */ 16965 } 16966 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16967 /* Increase overflow counter */ 16968 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16969 opt[IPOPT_POS_OV_FLG] = 16970 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16971 (off << 4)); 16972 break; 16973 } 16974 off = opt[IPOPT_OFFSET] - 1; 16975 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16976 case IPOPT_TS_PRESPEC: 16977 case IPOPT_TS_PRESPEC_RFC791: 16978 case IPOPT_TS_TSANDADDR: 16979 bcopy(&ire->ire_src_addr, 16980 (char *)opt + off, IP_ADDR_LEN); 16981 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16982 /* FALLTHRU */ 16983 case IPOPT_TS_TSONLY: 16984 off = opt[IPOPT_OFFSET] - 1; 16985 /* Compute # of milliseconds since midnight */ 16986 gethrestime(&now); 16987 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16988 now.tv_nsec / (NANOSEC / MILLISEC); 16989 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16990 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16991 break; 16992 } 16993 break; 16994 } 16995 } 16996 return (0); 16997 } 16998 16999 /* 17000 * This is called after processing at least one of AH/ESP headers. 17001 * 17002 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 17003 * the actual, physical interface on which the packet was received, 17004 * but, when ip_strict_dst_multihoming is set to 1, could be the 17005 * interface which had the ipha_dst configured when the packet went 17006 * through ip_rput. The ill_index corresponding to the recv_ill 17007 * is saved in ipsec_in_rill_index 17008 */ 17009 void 17010 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 17011 { 17012 mblk_t *mp; 17013 ipaddr_t dst; 17014 in6_addr_t *v6dstp; 17015 ipha_t *ipha; 17016 ip6_t *ip6h; 17017 ipsec_in_t *ii; 17018 boolean_t ill_need_rele = B_FALSE; 17019 boolean_t rill_need_rele = B_FALSE; 17020 boolean_t ire_need_rele = B_FALSE; 17021 netstack_t *ns; 17022 ip_stack_t *ipst; 17023 17024 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 17025 ASSERT(ii->ipsec_in_ill_index != 0); 17026 ns = ii->ipsec_in_ns; 17027 ASSERT(ii->ipsec_in_ns != NULL); 17028 ipst = ns->netstack_ip; 17029 17030 mp = ipsec_mp->b_cont; 17031 ASSERT(mp != NULL); 17032 17033 17034 if (ill == NULL) { 17035 ASSERT(recv_ill == NULL); 17036 /* 17037 * We need to get the original queue on which ip_rput_local 17038 * or ip_rput_data_v6 was called. 17039 */ 17040 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 17041 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 17042 ill_need_rele = B_TRUE; 17043 17044 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 17045 recv_ill = ill_lookup_on_ifindex( 17046 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 17047 NULL, NULL, NULL, NULL, ipst); 17048 rill_need_rele = B_TRUE; 17049 } else { 17050 recv_ill = ill; 17051 } 17052 17053 if ((ill == NULL) || (recv_ill == NULL)) { 17054 ip0dbg(("ip_fanout_proto_again: interface " 17055 "disappeared\n")); 17056 if (ill != NULL) 17057 ill_refrele(ill); 17058 if (recv_ill != NULL) 17059 ill_refrele(recv_ill); 17060 freemsg(ipsec_mp); 17061 return; 17062 } 17063 } 17064 17065 ASSERT(ill != NULL && recv_ill != NULL); 17066 17067 if (mp->b_datap->db_type == M_CTL) { 17068 /* 17069 * AH/ESP is returning the ICMP message after 17070 * removing their headers. Fanout again till 17071 * it gets to the right protocol. 17072 */ 17073 if (ii->ipsec_in_v4) { 17074 icmph_t *icmph; 17075 int iph_hdr_length; 17076 int hdr_length; 17077 17078 ipha = (ipha_t *)mp->b_rptr; 17079 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17080 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17081 ipha = (ipha_t *)&icmph[1]; 17082 hdr_length = IPH_HDR_LENGTH(ipha); 17083 /* 17084 * icmp_inbound_error_fanout may need to do pullupmsg. 17085 * Reset the type to M_DATA. 17086 */ 17087 mp->b_datap->db_type = M_DATA; 17088 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17089 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17090 B_FALSE, ill, ii->ipsec_in_zoneid); 17091 } else { 17092 icmp6_t *icmp6; 17093 int hdr_length; 17094 17095 ip6h = (ip6_t *)mp->b_rptr; 17096 /* Don't call hdr_length_v6() unless you have to. */ 17097 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17098 hdr_length = ip_hdr_length_v6(mp, ip6h); 17099 else 17100 hdr_length = IPV6_HDR_LEN; 17101 17102 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17103 /* 17104 * icmp_inbound_error_fanout_v6 may need to do 17105 * pullupmsg. Reset the type to M_DATA. 17106 */ 17107 mp->b_datap->db_type = M_DATA; 17108 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17109 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 17110 } 17111 if (ill_need_rele) 17112 ill_refrele(ill); 17113 if (rill_need_rele) 17114 ill_refrele(recv_ill); 17115 return; 17116 } 17117 17118 if (ii->ipsec_in_v4) { 17119 ipha = (ipha_t *)mp->b_rptr; 17120 dst = ipha->ipha_dst; 17121 if (CLASSD(dst)) { 17122 /* 17123 * Multicast has to be delivered to all streams. 17124 */ 17125 dst = INADDR_BROADCAST; 17126 } 17127 17128 if (ire == NULL) { 17129 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17130 MBLK_GETLABEL(mp), ipst); 17131 if (ire == NULL) { 17132 if (ill_need_rele) 17133 ill_refrele(ill); 17134 if (rill_need_rele) 17135 ill_refrele(recv_ill); 17136 ip1dbg(("ip_fanout_proto_again: " 17137 "IRE not found")); 17138 freemsg(ipsec_mp); 17139 return; 17140 } 17141 ire_need_rele = B_TRUE; 17142 } 17143 17144 switch (ipha->ipha_protocol) { 17145 case IPPROTO_UDP: 17146 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17147 recv_ill); 17148 if (ire_need_rele) 17149 ire_refrele(ire); 17150 break; 17151 case IPPROTO_TCP: 17152 if (!ire_need_rele) 17153 IRE_REFHOLD(ire); 17154 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17155 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17156 IRE_REFRELE(ire); 17157 if (mp != NULL) 17158 squeue_enter_chain(GET_SQUEUE(mp), mp, 17159 mp, 1, SQTAG_IP_PROTO_AGAIN); 17160 break; 17161 case IPPROTO_SCTP: 17162 if (!ire_need_rele) 17163 IRE_REFHOLD(ire); 17164 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17165 ipsec_mp, 0, ill->ill_rq, dst); 17166 break; 17167 default: 17168 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17169 recv_ill); 17170 if (ire_need_rele) 17171 ire_refrele(ire); 17172 break; 17173 } 17174 } else { 17175 uint32_t rput_flags = 0; 17176 17177 ip6h = (ip6_t *)mp->b_rptr; 17178 v6dstp = &ip6h->ip6_dst; 17179 /* 17180 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17181 * address. 17182 * 17183 * Currently, we don't store that state in the IPSEC_IN 17184 * message, and we may need to. 17185 */ 17186 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17187 IP6_IN_LLMCAST : 0); 17188 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17189 NULL, NULL); 17190 } 17191 if (ill_need_rele) 17192 ill_refrele(ill); 17193 if (rill_need_rele) 17194 ill_refrele(recv_ill); 17195 } 17196 17197 /* 17198 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17199 * returns 'true' if there are still fragments left on the queue, in 17200 * which case we restart the timer. 17201 */ 17202 void 17203 ill_frag_timer(void *arg) 17204 { 17205 ill_t *ill = (ill_t *)arg; 17206 boolean_t frag_pending; 17207 ip_stack_t *ipst = ill->ill_ipst; 17208 17209 mutex_enter(&ill->ill_lock); 17210 ASSERT(!ill->ill_fragtimer_executing); 17211 if (ill->ill_state_flags & ILL_CONDEMNED) { 17212 ill->ill_frag_timer_id = 0; 17213 mutex_exit(&ill->ill_lock); 17214 return; 17215 } 17216 ill->ill_fragtimer_executing = 1; 17217 mutex_exit(&ill->ill_lock); 17218 17219 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17220 17221 /* 17222 * Restart the timer, if we have fragments pending or if someone 17223 * wanted us to be scheduled again. 17224 */ 17225 mutex_enter(&ill->ill_lock); 17226 ill->ill_fragtimer_executing = 0; 17227 ill->ill_frag_timer_id = 0; 17228 if (frag_pending || ill->ill_fragtimer_needrestart) 17229 ill_frag_timer_start(ill); 17230 mutex_exit(&ill->ill_lock); 17231 } 17232 17233 void 17234 ill_frag_timer_start(ill_t *ill) 17235 { 17236 ip_stack_t *ipst = ill->ill_ipst; 17237 17238 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17239 17240 /* If the ill is closing or opening don't proceed */ 17241 if (ill->ill_state_flags & ILL_CONDEMNED) 17242 return; 17243 17244 if (ill->ill_fragtimer_executing) { 17245 /* 17246 * ill_frag_timer is currently executing. Just record the 17247 * the fact that we want the timer to be restarted. 17248 * ill_frag_timer will post a timeout before it returns, 17249 * ensuring it will be called again. 17250 */ 17251 ill->ill_fragtimer_needrestart = 1; 17252 return; 17253 } 17254 17255 if (ill->ill_frag_timer_id == 0) { 17256 /* 17257 * The timer is neither running nor is the timeout handler 17258 * executing. Post a timeout so that ill_frag_timer will be 17259 * called 17260 */ 17261 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17262 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17263 ill->ill_fragtimer_needrestart = 0; 17264 } 17265 } 17266 17267 /* 17268 * This routine is needed for loopback when forwarding multicasts. 17269 * 17270 * IPQoS Notes: 17271 * IPPF processing is done in fanout routines. 17272 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17273 * processing for IPSec packets is done when it comes back in clear. 17274 * NOTE : The callers of this function need to do the ire_refrele for the 17275 * ire that is being passed in. 17276 */ 17277 void 17278 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17279 ill_t *recv_ill) 17280 { 17281 ill_t *ill = (ill_t *)q->q_ptr; 17282 uint32_t sum; 17283 uint32_t u1; 17284 uint32_t u2; 17285 int hdr_length; 17286 boolean_t mctl_present; 17287 mblk_t *first_mp = mp; 17288 mblk_t *hada_mp = NULL; 17289 ipha_t *inner_ipha; 17290 ip_stack_t *ipst; 17291 17292 ASSERT(recv_ill != NULL); 17293 ipst = recv_ill->ill_ipst; 17294 17295 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17296 "ip_rput_locl_start: q %p", q); 17297 17298 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17299 ASSERT(ill != NULL); 17300 17301 17302 #define rptr ((uchar_t *)ipha) 17303 #define iphs ((uint16_t *)ipha) 17304 17305 /* 17306 * no UDP or TCP packet should come here anymore. 17307 */ 17308 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 17309 (ipha->ipha_protocol != IPPROTO_UDP)); 17310 17311 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17312 if (mctl_present && 17313 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17314 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17315 17316 /* 17317 * It's an IPsec accelerated packet. 17318 * Keep a pointer to the data attributes around until 17319 * we allocate the ipsec_info_t. 17320 */ 17321 IPSECHW_DEBUG(IPSECHW_PKT, 17322 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17323 hada_mp = first_mp; 17324 hada_mp->b_cont = NULL; 17325 /* 17326 * Since it is accelerated, it comes directly from 17327 * the ill and the data attributes is followed by 17328 * the packet data. 17329 */ 17330 ASSERT(mp->b_datap->db_type != M_CTL); 17331 first_mp = mp; 17332 mctl_present = B_FALSE; 17333 } 17334 17335 /* 17336 * IF M_CTL is not present, then ipsec_in_is_secure 17337 * should return B_TRUE. There is a case where loopback 17338 * packets has an M_CTL in the front with all the 17339 * IPSEC options set to IPSEC_PREF_NEVER - which means 17340 * ipsec_in_is_secure will return B_FALSE. As loopback 17341 * packets never comes here, it is safe to ASSERT the 17342 * following. 17343 */ 17344 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17345 17346 17347 /* u1 is # words of IP options */ 17348 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 17349 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17350 17351 if (u1) { 17352 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17353 if (hada_mp != NULL) 17354 freemsg(hada_mp); 17355 return; 17356 } 17357 } else { 17358 /* Check the IP header checksum. */ 17359 #define uph ((uint16_t *)ipha) 17360 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 17361 uph[6] + uph[7] + uph[8] + uph[9]; 17362 #undef uph 17363 /* finish doing IP checksum */ 17364 sum = (sum & 0xFFFF) + (sum >> 16); 17365 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17366 /* 17367 * Don't verify header checksum if this packet is coming 17368 * back from AH/ESP as we already did it. 17369 */ 17370 if (!mctl_present && (sum && sum != 0xFFFF)) { 17371 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17372 goto drop_pkt; 17373 } 17374 } 17375 17376 /* 17377 * Count for SNMP of inbound packets for ire. As ip_proto_input 17378 * might be called more than once for secure packets, count only 17379 * the first time. 17380 */ 17381 if (!mctl_present) { 17382 UPDATE_IB_PKT_COUNT(ire); 17383 ire->ire_last_used_time = lbolt; 17384 } 17385 17386 /* Check for fragmentation offset. */ 17387 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17388 u1 = u2 & (IPH_MF | IPH_OFFSET); 17389 if (u1) { 17390 /* 17391 * We re-assemble fragments before we do the AH/ESP 17392 * processing. Thus, M_CTL should not be present 17393 * while we are re-assembling. 17394 */ 17395 ASSERT(!mctl_present); 17396 ASSERT(first_mp == mp); 17397 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17398 return; 17399 } 17400 /* 17401 * Make sure that first_mp points back to mp as 17402 * the mp we came in with could have changed in 17403 * ip_rput_fragment(). 17404 */ 17405 ipha = (ipha_t *)mp->b_rptr; 17406 first_mp = mp; 17407 } 17408 17409 /* 17410 * Clear hardware checksumming flag as it is currently only 17411 * used by TCP and UDP. 17412 */ 17413 DB_CKSUMFLAGS(mp) = 0; 17414 17415 /* Now we have a complete datagram, destined for this machine. */ 17416 u1 = IPH_HDR_LENGTH(ipha); 17417 switch (ipha->ipha_protocol) { 17418 case IPPROTO_ICMP: { 17419 ire_t *ire_zone; 17420 ilm_t *ilm; 17421 mblk_t *mp1; 17422 zoneid_t last_zoneid; 17423 17424 if (CLASSD(ipha->ipha_dst) && 17425 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 17426 ASSERT(ire->ire_type == IRE_BROADCAST); 17427 /* 17428 * In the multicast case, applications may have joined 17429 * the group from different zones, so we need to deliver 17430 * the packet to each of them. Loop through the 17431 * multicast memberships structures (ilm) on the receive 17432 * ill and send a copy of the packet up each matching 17433 * one. However, we don't do this for multicasts sent on 17434 * the loopback interface (PHYI_LOOPBACK flag set) as 17435 * they must stay in the sender's zone. 17436 * 17437 * ilm_add_v6() ensures that ilms in the same zone are 17438 * contiguous in the ill_ilm list. We use this property 17439 * to avoid sending duplicates needed when two 17440 * applications in the same zone join the same group on 17441 * different logical interfaces: we ignore the ilm if 17442 * its zoneid is the same as the last matching one. 17443 * In addition, the sending of the packet for 17444 * ire_zoneid is delayed until all of the other ilms 17445 * have been exhausted. 17446 */ 17447 last_zoneid = -1; 17448 ILM_WALKER_HOLD(recv_ill); 17449 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17450 ilm = ilm->ilm_next) { 17451 if ((ilm->ilm_flags & ILM_DELETED) || 17452 ipha->ipha_dst != ilm->ilm_addr || 17453 ilm->ilm_zoneid == last_zoneid || 17454 ilm->ilm_zoneid == ire->ire_zoneid || 17455 ilm->ilm_zoneid == ALL_ZONES || 17456 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17457 continue; 17458 mp1 = ip_copymsg(first_mp); 17459 if (mp1 == NULL) 17460 continue; 17461 icmp_inbound(q, mp1, B_TRUE, ill, 17462 0, sum, mctl_present, B_TRUE, 17463 recv_ill, ilm->ilm_zoneid); 17464 last_zoneid = ilm->ilm_zoneid; 17465 } 17466 ILM_WALKER_RELE(recv_ill); 17467 } else if (ire->ire_type == IRE_BROADCAST) { 17468 /* 17469 * In the broadcast case, there may be many zones 17470 * which need a copy of the packet delivered to them. 17471 * There is one IRE_BROADCAST per broadcast address 17472 * and per zone; we walk those using a helper function. 17473 * In addition, the sending of the packet for ire is 17474 * delayed until all of the other ires have been 17475 * processed. 17476 */ 17477 IRB_REFHOLD(ire->ire_bucket); 17478 ire_zone = NULL; 17479 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17480 ire)) != NULL) { 17481 mp1 = ip_copymsg(first_mp); 17482 if (mp1 == NULL) 17483 continue; 17484 17485 UPDATE_IB_PKT_COUNT(ire_zone); 17486 ire_zone->ire_last_used_time = lbolt; 17487 icmp_inbound(q, mp1, B_TRUE, ill, 17488 0, sum, mctl_present, B_TRUE, 17489 recv_ill, ire_zone->ire_zoneid); 17490 } 17491 IRB_REFRELE(ire->ire_bucket); 17492 } 17493 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17494 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17495 ire->ire_zoneid); 17496 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17497 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17498 return; 17499 } 17500 case IPPROTO_IGMP: 17501 /* 17502 * If we are not willing to accept IGMP packets in clear, 17503 * then check with global policy. 17504 */ 17505 if (ipst->ips_igmp_accept_clear_messages == 0) { 17506 first_mp = ipsec_check_global_policy(first_mp, NULL, 17507 ipha, NULL, mctl_present, ipst->ips_netstack); 17508 if (first_mp == NULL) 17509 return; 17510 } 17511 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17512 freemsg(first_mp); 17513 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17514 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17515 return; 17516 } 17517 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17518 /* Bad packet - discarded by igmp_input */ 17519 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17520 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17521 if (mctl_present) 17522 freeb(first_mp); 17523 return; 17524 } 17525 /* 17526 * igmp_input() may have returned the pulled up message. 17527 * So first_mp and ipha need to be reinitialized. 17528 */ 17529 ipha = (ipha_t *)mp->b_rptr; 17530 if (mctl_present) 17531 first_mp->b_cont = mp; 17532 else 17533 first_mp = mp; 17534 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17535 connf_head != NULL) { 17536 /* No user-level listener for IGMP packets */ 17537 goto drop_pkt; 17538 } 17539 /* deliver to local raw users */ 17540 break; 17541 case IPPROTO_PIM: 17542 /* 17543 * If we are not willing to accept PIM packets in clear, 17544 * then check with global policy. 17545 */ 17546 if (ipst->ips_pim_accept_clear_messages == 0) { 17547 first_mp = ipsec_check_global_policy(first_mp, NULL, 17548 ipha, NULL, mctl_present, ipst->ips_netstack); 17549 if (first_mp == NULL) 17550 return; 17551 } 17552 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17553 freemsg(first_mp); 17554 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17555 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17556 return; 17557 } 17558 if (pim_input(q, mp, ill) != 0) { 17559 /* Bad packet - discarded by pim_input */ 17560 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17561 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17562 if (mctl_present) 17563 freeb(first_mp); 17564 return; 17565 } 17566 17567 /* 17568 * pim_input() may have pulled up the message so ipha needs to 17569 * be reinitialized. 17570 */ 17571 ipha = (ipha_t *)mp->b_rptr; 17572 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17573 connf_head != NULL) { 17574 /* No user-level listener for PIM packets */ 17575 goto drop_pkt; 17576 } 17577 /* deliver to local raw users */ 17578 break; 17579 case IPPROTO_ENCAP: 17580 /* 17581 * Handle self-encapsulated packets (IP-in-IP where 17582 * the inner addresses == the outer addresses). 17583 */ 17584 hdr_length = IPH_HDR_LENGTH(ipha); 17585 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17586 mp->b_wptr) { 17587 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17588 sizeof (ipha_t) - mp->b_rptr)) { 17589 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17590 freemsg(first_mp); 17591 return; 17592 } 17593 ipha = (ipha_t *)mp->b_rptr; 17594 } 17595 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17596 /* 17597 * Check the sanity of the inner IP header. 17598 */ 17599 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17600 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17601 freemsg(first_mp); 17602 return; 17603 } 17604 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17605 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17606 freemsg(first_mp); 17607 return; 17608 } 17609 if (inner_ipha->ipha_src == ipha->ipha_src && 17610 inner_ipha->ipha_dst == ipha->ipha_dst) { 17611 ipsec_in_t *ii; 17612 17613 /* 17614 * Self-encapsulated tunnel packet. Remove 17615 * the outer IP header and fanout again. 17616 * We also need to make sure that the inner 17617 * header is pulled up until options. 17618 */ 17619 mp->b_rptr = (uchar_t *)inner_ipha; 17620 ipha = inner_ipha; 17621 hdr_length = IPH_HDR_LENGTH(ipha); 17622 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17623 if (!pullupmsg(mp, (uchar_t *)ipha + 17624 + hdr_length - mp->b_rptr)) { 17625 freemsg(first_mp); 17626 return; 17627 } 17628 ipha = (ipha_t *)mp->b_rptr; 17629 } 17630 if (!mctl_present) { 17631 ASSERT(first_mp == mp); 17632 /* 17633 * This means that somebody is sending 17634 * Self-encapsualted packets without AH/ESP. 17635 * If AH/ESP was present, we would have already 17636 * allocated the first_mp. 17637 */ 17638 first_mp = ipsec_in_alloc(B_TRUE, 17639 ipst->ips_netstack); 17640 if (first_mp == NULL) { 17641 ip1dbg(("ip_proto_input: IPSEC_IN " 17642 "allocation failure.\n")); 17643 BUMP_MIB(ill->ill_ip_mib, 17644 ipIfStatsInDiscards); 17645 freemsg(mp); 17646 return; 17647 } 17648 first_mp->b_cont = mp; 17649 } 17650 /* 17651 * We generally store the ill_index if we need to 17652 * do IPSEC processing as we lose the ill queue when 17653 * we come back. But in this case, we never should 17654 * have to store the ill_index here as it should have 17655 * been stored previously when we processed the 17656 * AH/ESP header in this routine or for non-ipsec 17657 * cases, we still have the queue. But for some bad 17658 * packets from the wire, we can get to IPSEC after 17659 * this and we better store the index for that case. 17660 */ 17661 ill = (ill_t *)q->q_ptr; 17662 ii = (ipsec_in_t *)first_mp->b_rptr; 17663 ii->ipsec_in_ill_index = 17664 ill->ill_phyint->phyint_ifindex; 17665 ii->ipsec_in_rill_index = 17666 recv_ill->ill_phyint->phyint_ifindex; 17667 if (ii->ipsec_in_decaps) { 17668 /* 17669 * This packet is self-encapsulated multiple 17670 * times. We don't want to recurse infinitely. 17671 * To keep it simple, drop the packet. 17672 */ 17673 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17674 freemsg(first_mp); 17675 return; 17676 } 17677 ii->ipsec_in_decaps = B_TRUE; 17678 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17679 ire); 17680 return; 17681 } 17682 break; 17683 case IPPROTO_AH: 17684 case IPPROTO_ESP: { 17685 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17686 17687 /* 17688 * Fast path for AH/ESP. If this is the first time 17689 * we are sending a datagram to AH/ESP, allocate 17690 * a IPSEC_IN message and prepend it. Otherwise, 17691 * just fanout. 17692 */ 17693 17694 int ipsec_rc; 17695 ipsec_in_t *ii; 17696 netstack_t *ns = ipst->ips_netstack; 17697 17698 IP_STAT(ipst, ipsec_proto_ahesp); 17699 if (!mctl_present) { 17700 ASSERT(first_mp == mp); 17701 first_mp = ipsec_in_alloc(B_TRUE, ns); 17702 if (first_mp == NULL) { 17703 ip1dbg(("ip_proto_input: IPSEC_IN " 17704 "allocation failure.\n")); 17705 freemsg(hada_mp); /* okay ifnull */ 17706 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17707 freemsg(mp); 17708 return; 17709 } 17710 /* 17711 * Store the ill_index so that when we come back 17712 * from IPSEC we ride on the same queue. 17713 */ 17714 ill = (ill_t *)q->q_ptr; 17715 ii = (ipsec_in_t *)first_mp->b_rptr; 17716 ii->ipsec_in_ill_index = 17717 ill->ill_phyint->phyint_ifindex; 17718 ii->ipsec_in_rill_index = 17719 recv_ill->ill_phyint->phyint_ifindex; 17720 first_mp->b_cont = mp; 17721 /* 17722 * Cache hardware acceleration info. 17723 */ 17724 if (hada_mp != NULL) { 17725 IPSECHW_DEBUG(IPSECHW_PKT, 17726 ("ip_rput_local: caching data attr.\n")); 17727 ii->ipsec_in_accelerated = B_TRUE; 17728 ii->ipsec_in_da = hada_mp; 17729 hada_mp = NULL; 17730 } 17731 } else { 17732 ii = (ipsec_in_t *)first_mp->b_rptr; 17733 } 17734 17735 if (!ipsec_loaded(ipss)) { 17736 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17737 ire->ire_zoneid, ipst); 17738 return; 17739 } 17740 17741 ns = ipst->ips_netstack; 17742 /* select inbound SA and have IPsec process the pkt */ 17743 if (ipha->ipha_protocol == IPPROTO_ESP) { 17744 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17745 if (esph == NULL) 17746 return; 17747 ASSERT(ii->ipsec_in_esp_sa != NULL); 17748 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17749 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17750 first_mp, esph); 17751 } else { 17752 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17753 if (ah == NULL) 17754 return; 17755 ASSERT(ii->ipsec_in_ah_sa != NULL); 17756 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17757 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17758 first_mp, ah); 17759 } 17760 17761 switch (ipsec_rc) { 17762 case IPSEC_STATUS_SUCCESS: 17763 break; 17764 case IPSEC_STATUS_FAILED: 17765 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17766 /* FALLTHRU */ 17767 case IPSEC_STATUS_PENDING: 17768 return; 17769 } 17770 /* we're done with IPsec processing, send it up */ 17771 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17772 return; 17773 } 17774 default: 17775 break; 17776 } 17777 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17778 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17779 ire->ire_zoneid)); 17780 goto drop_pkt; 17781 } 17782 /* 17783 * Handle protocols with which IP is less intimate. There 17784 * can be more than one stream bound to a particular 17785 * protocol. When this is the case, each one gets a copy 17786 * of any incoming packets. 17787 */ 17788 ip_fanout_proto(q, first_mp, ill, ipha, 17789 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17790 B_TRUE, recv_ill, ire->ire_zoneid); 17791 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17792 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17793 return; 17794 17795 drop_pkt: 17796 freemsg(first_mp); 17797 if (hada_mp != NULL) 17798 freeb(hada_mp); 17799 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17800 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17801 #undef rptr 17802 #undef iphs 17803 17804 } 17805 17806 /* 17807 * Update any source route, record route or timestamp options. 17808 * Check that we are at end of strict source route. 17809 * The options have already been checked for sanity in ip_rput_options(). 17810 */ 17811 static boolean_t 17812 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17813 ip_stack_t *ipst) 17814 { 17815 ipoptp_t opts; 17816 uchar_t *opt; 17817 uint8_t optval; 17818 uint8_t optlen; 17819 ipaddr_t dst; 17820 uint32_t ts; 17821 ire_t *dst_ire; 17822 timestruc_t now; 17823 zoneid_t zoneid; 17824 ill_t *ill; 17825 17826 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17827 17828 ip2dbg(("ip_rput_local_options\n")); 17829 17830 for (optval = ipoptp_first(&opts, ipha); 17831 optval != IPOPT_EOL; 17832 optval = ipoptp_next(&opts)) { 17833 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17834 opt = opts.ipoptp_cur; 17835 optlen = opts.ipoptp_len; 17836 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17837 optval, optlen)); 17838 switch (optval) { 17839 uint32_t off; 17840 case IPOPT_SSRR: 17841 case IPOPT_LSRR: 17842 off = opt[IPOPT_OFFSET]; 17843 off--; 17844 if (optlen < IP_ADDR_LEN || 17845 off > optlen - IP_ADDR_LEN) { 17846 /* End of source route */ 17847 ip1dbg(("ip_rput_local_options: end of SR\n")); 17848 break; 17849 } 17850 /* 17851 * This will only happen if two consecutive entries 17852 * in the source route contains our address or if 17853 * it is a packet with a loose source route which 17854 * reaches us before consuming the whole source route 17855 */ 17856 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17857 if (optval == IPOPT_SSRR) { 17858 goto bad_src_route; 17859 } 17860 /* 17861 * Hack: instead of dropping the packet truncate the 17862 * source route to what has been used by filling the 17863 * rest with IPOPT_NOP. 17864 */ 17865 opt[IPOPT_OLEN] = (uint8_t)off; 17866 while (off < optlen) { 17867 opt[off++] = IPOPT_NOP; 17868 } 17869 break; 17870 case IPOPT_RR: 17871 off = opt[IPOPT_OFFSET]; 17872 off--; 17873 if (optlen < IP_ADDR_LEN || 17874 off > optlen - IP_ADDR_LEN) { 17875 /* No more room - ignore */ 17876 ip1dbg(( 17877 "ip_rput_local_options: end of RR\n")); 17878 break; 17879 } 17880 bcopy(&ire->ire_src_addr, (char *)opt + off, 17881 IP_ADDR_LEN); 17882 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17883 break; 17884 case IPOPT_TS: 17885 /* Insert timestamp if there is romm */ 17886 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17887 case IPOPT_TS_TSONLY: 17888 off = IPOPT_TS_TIMELEN; 17889 break; 17890 case IPOPT_TS_PRESPEC: 17891 case IPOPT_TS_PRESPEC_RFC791: 17892 /* Verify that the address matched */ 17893 off = opt[IPOPT_OFFSET] - 1; 17894 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17895 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17896 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17897 ipst); 17898 if (dst_ire == NULL) { 17899 /* Not for us */ 17900 break; 17901 } 17902 ire_refrele(dst_ire); 17903 /* FALLTHRU */ 17904 case IPOPT_TS_TSANDADDR: 17905 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17906 break; 17907 default: 17908 /* 17909 * ip_*put_options should have already 17910 * dropped this packet. 17911 */ 17912 cmn_err(CE_PANIC, "ip_rput_local_options: " 17913 "unknown IT - bug in ip_rput_options?\n"); 17914 return (B_TRUE); /* Keep "lint" happy */ 17915 } 17916 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17917 /* Increase overflow counter */ 17918 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17919 opt[IPOPT_POS_OV_FLG] = 17920 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17921 (off << 4)); 17922 break; 17923 } 17924 off = opt[IPOPT_OFFSET] - 1; 17925 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17926 case IPOPT_TS_PRESPEC: 17927 case IPOPT_TS_PRESPEC_RFC791: 17928 case IPOPT_TS_TSANDADDR: 17929 bcopy(&ire->ire_src_addr, (char *)opt + off, 17930 IP_ADDR_LEN); 17931 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17932 /* FALLTHRU */ 17933 case IPOPT_TS_TSONLY: 17934 off = opt[IPOPT_OFFSET] - 1; 17935 /* Compute # of milliseconds since midnight */ 17936 gethrestime(&now); 17937 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17938 now.tv_nsec / (NANOSEC / MILLISEC); 17939 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17940 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17941 break; 17942 } 17943 break; 17944 } 17945 } 17946 return (B_TRUE); 17947 17948 bad_src_route: 17949 q = WR(q); 17950 if (q->q_next != NULL) 17951 ill = q->q_ptr; 17952 else 17953 ill = NULL; 17954 17955 /* make sure we clear any indication of a hardware checksum */ 17956 DB_CKSUMFLAGS(mp) = 0; 17957 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17958 if (zoneid == ALL_ZONES) 17959 freemsg(mp); 17960 else 17961 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17962 return (B_FALSE); 17963 17964 } 17965 17966 /* 17967 * Process IP options in an inbound packet. If an option affects the 17968 * effective destination address, return the next hop address via dstp. 17969 * Returns -1 if something fails in which case an ICMP error has been sent 17970 * and mp freed. 17971 */ 17972 static int 17973 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17974 ip_stack_t *ipst) 17975 { 17976 ipoptp_t opts; 17977 uchar_t *opt; 17978 uint8_t optval; 17979 uint8_t optlen; 17980 ipaddr_t dst; 17981 intptr_t code = 0; 17982 ire_t *ire = NULL; 17983 zoneid_t zoneid; 17984 ill_t *ill; 17985 17986 ip2dbg(("ip_rput_options\n")); 17987 dst = ipha->ipha_dst; 17988 for (optval = ipoptp_first(&opts, ipha); 17989 optval != IPOPT_EOL; 17990 optval = ipoptp_next(&opts)) { 17991 opt = opts.ipoptp_cur; 17992 optlen = opts.ipoptp_len; 17993 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17994 optval, optlen)); 17995 /* 17996 * Note: we need to verify the checksum before we 17997 * modify anything thus this routine only extracts the next 17998 * hop dst from any source route. 17999 */ 18000 switch (optval) { 18001 uint32_t off; 18002 case IPOPT_SSRR: 18003 case IPOPT_LSRR: 18004 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18005 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18006 if (ire == NULL) { 18007 if (optval == IPOPT_SSRR) { 18008 ip1dbg(("ip_rput_options: not next" 18009 " strict source route 0x%x\n", 18010 ntohl(dst))); 18011 code = (char *)&ipha->ipha_dst - 18012 (char *)ipha; 18013 goto param_prob; /* RouterReq's */ 18014 } 18015 ip2dbg(("ip_rput_options: " 18016 "not next source route 0x%x\n", 18017 ntohl(dst))); 18018 break; 18019 } 18020 ire_refrele(ire); 18021 18022 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18023 ip1dbg(( 18024 "ip_rput_options: bad option offset\n")); 18025 code = (char *)&opt[IPOPT_OLEN] - 18026 (char *)ipha; 18027 goto param_prob; 18028 } 18029 off = opt[IPOPT_OFFSET]; 18030 off--; 18031 redo_srr: 18032 if (optlen < IP_ADDR_LEN || 18033 off > optlen - IP_ADDR_LEN) { 18034 /* End of source route */ 18035 ip1dbg(("ip_rput_options: end of SR\n")); 18036 break; 18037 } 18038 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18039 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18040 ntohl(dst))); 18041 18042 /* 18043 * Check if our address is present more than 18044 * once as consecutive hops in source route. 18045 * XXX verify per-interface ip_forwarding 18046 * for source route? 18047 */ 18048 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18049 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18050 18051 if (ire != NULL) { 18052 ire_refrele(ire); 18053 off += IP_ADDR_LEN; 18054 goto redo_srr; 18055 } 18056 18057 if (dst == htonl(INADDR_LOOPBACK)) { 18058 ip1dbg(("ip_rput_options: loopback addr in " 18059 "source route!\n")); 18060 goto bad_src_route; 18061 } 18062 /* 18063 * For strict: verify that dst is directly 18064 * reachable. 18065 */ 18066 if (optval == IPOPT_SSRR) { 18067 ire = ire_ftable_lookup(dst, 0, 0, 18068 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18069 MBLK_GETLABEL(mp), 18070 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18071 if (ire == NULL) { 18072 ip1dbg(("ip_rput_options: SSRR not " 18073 "directly reachable: 0x%x\n", 18074 ntohl(dst))); 18075 goto bad_src_route; 18076 } 18077 ire_refrele(ire); 18078 } 18079 /* 18080 * Defer update of the offset and the record route 18081 * until the packet is forwarded. 18082 */ 18083 break; 18084 case IPOPT_RR: 18085 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18086 ip1dbg(( 18087 "ip_rput_options: bad option offset\n")); 18088 code = (char *)&opt[IPOPT_OLEN] - 18089 (char *)ipha; 18090 goto param_prob; 18091 } 18092 break; 18093 case IPOPT_TS: 18094 /* 18095 * Verify that length >= 5 and that there is either 18096 * room for another timestamp or that the overflow 18097 * counter is not maxed out. 18098 */ 18099 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18100 if (optlen < IPOPT_MINLEN_IT) { 18101 goto param_prob; 18102 } 18103 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18104 ip1dbg(( 18105 "ip_rput_options: bad option offset\n")); 18106 code = (char *)&opt[IPOPT_OFFSET] - 18107 (char *)ipha; 18108 goto param_prob; 18109 } 18110 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18111 case IPOPT_TS_TSONLY: 18112 off = IPOPT_TS_TIMELEN; 18113 break; 18114 case IPOPT_TS_TSANDADDR: 18115 case IPOPT_TS_PRESPEC: 18116 case IPOPT_TS_PRESPEC_RFC791: 18117 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18118 break; 18119 default: 18120 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18121 (char *)ipha; 18122 goto param_prob; 18123 } 18124 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18125 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18126 /* 18127 * No room and the overflow counter is 15 18128 * already. 18129 */ 18130 goto param_prob; 18131 } 18132 break; 18133 } 18134 } 18135 18136 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18137 *dstp = dst; 18138 return (0); 18139 } 18140 18141 ip1dbg(("ip_rput_options: error processing IP options.")); 18142 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18143 18144 param_prob: 18145 q = WR(q); 18146 if (q->q_next != NULL) 18147 ill = q->q_ptr; 18148 else 18149 ill = NULL; 18150 18151 /* make sure we clear any indication of a hardware checksum */ 18152 DB_CKSUMFLAGS(mp) = 0; 18153 /* Don't know whether this is for non-global or global/forwarding */ 18154 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18155 if (zoneid == ALL_ZONES) 18156 freemsg(mp); 18157 else 18158 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18159 return (-1); 18160 18161 bad_src_route: 18162 q = WR(q); 18163 if (q->q_next != NULL) 18164 ill = q->q_ptr; 18165 else 18166 ill = NULL; 18167 18168 /* make sure we clear any indication of a hardware checksum */ 18169 DB_CKSUMFLAGS(mp) = 0; 18170 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18171 if (zoneid == ALL_ZONES) 18172 freemsg(mp); 18173 else 18174 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18175 return (-1); 18176 } 18177 18178 /* 18179 * IP & ICMP info in >=14 msg's ... 18180 * - ip fixed part (mib2_ip_t) 18181 * - icmp fixed part (mib2_icmp_t) 18182 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18183 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18184 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18185 * - ipRouteAttributeTable (ip 102) labeled routes 18186 * - ip multicast membership (ip_member_t) 18187 * - ip multicast source filtering (ip_grpsrc_t) 18188 * - igmp fixed part (struct igmpstat) 18189 * - multicast routing stats (struct mrtstat) 18190 * - multicast routing vifs (array of struct vifctl) 18191 * - multicast routing routes (array of struct mfcctl) 18192 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18193 * One per ill plus one generic 18194 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18195 * One per ill plus one generic 18196 * - ipv6RouteEntry all IPv6 IREs 18197 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18198 * - ipv6NetToMediaEntry all Neighbor Cache entries 18199 * - ipv6AddrEntry all IPv6 ipifs 18200 * - ipv6 multicast membership (ipv6_member_t) 18201 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18202 * 18203 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18204 * 18205 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18206 * already filled in by the caller. 18207 * Return value of 0 indicates that no messages were sent and caller 18208 * should free mpctl. 18209 */ 18210 int 18211 ip_snmp_get(queue_t *q, mblk_t *mpctl) 18212 { 18213 ip_stack_t *ipst; 18214 sctp_stack_t *sctps; 18215 18216 18217 if (q->q_next != NULL) { 18218 ipst = ILLQ_TO_IPST(q); 18219 } else { 18220 ipst = CONNQ_TO_IPST(q); 18221 } 18222 ASSERT(ipst != NULL); 18223 sctps = ipst->ips_netstack->netstack_sctp; 18224 18225 if (mpctl == NULL || mpctl->b_cont == NULL) { 18226 return (0); 18227 } 18228 18229 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18230 ipst)) == NULL) { 18231 return (1); 18232 } 18233 18234 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18235 return (1); 18236 } 18237 18238 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18239 return (1); 18240 } 18241 18242 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18243 return (1); 18244 } 18245 18246 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18247 return (1); 18248 } 18249 18250 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18251 return (1); 18252 } 18253 18254 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18255 return (1); 18256 } 18257 18258 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18259 return (1); 18260 } 18261 18262 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18263 return (1); 18264 } 18265 18266 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18267 return (1); 18268 } 18269 18270 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18271 return (1); 18272 } 18273 18274 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18275 return (1); 18276 } 18277 18278 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18279 return (1); 18280 } 18281 18282 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18283 return (1); 18284 } 18285 18286 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18287 return (1); 18288 } 18289 18290 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18291 if (mpctl == NULL) { 18292 return (1); 18293 } 18294 18295 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18296 return (1); 18297 } 18298 freemsg(mpctl); 18299 return (1); 18300 } 18301 18302 18303 /* Get global (legacy) IPv4 statistics */ 18304 static mblk_t * 18305 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18306 ip_stack_t *ipst) 18307 { 18308 mib2_ip_t old_ip_mib; 18309 struct opthdr *optp; 18310 mblk_t *mp2ctl; 18311 18312 /* 18313 * make a copy of the original message 18314 */ 18315 mp2ctl = copymsg(mpctl); 18316 18317 /* fixed length IP structure... */ 18318 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18319 optp->level = MIB2_IP; 18320 optp->name = 0; 18321 SET_MIB(old_ip_mib.ipForwarding, 18322 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18323 SET_MIB(old_ip_mib.ipDefaultTTL, 18324 (uint32_t)ipst->ips_ip_def_ttl); 18325 SET_MIB(old_ip_mib.ipReasmTimeout, 18326 ipst->ips_ip_g_frag_timeout); 18327 SET_MIB(old_ip_mib.ipAddrEntrySize, 18328 sizeof (mib2_ipAddrEntry_t)); 18329 SET_MIB(old_ip_mib.ipRouteEntrySize, 18330 sizeof (mib2_ipRouteEntry_t)); 18331 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18332 sizeof (mib2_ipNetToMediaEntry_t)); 18333 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18334 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18335 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18336 sizeof (mib2_ipAttributeEntry_t)); 18337 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18338 18339 /* 18340 * Grab the statistics from the new IP MIB 18341 */ 18342 SET_MIB(old_ip_mib.ipInReceives, 18343 (uint32_t)ipmib->ipIfStatsHCInReceives); 18344 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18345 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18346 SET_MIB(old_ip_mib.ipForwDatagrams, 18347 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18348 SET_MIB(old_ip_mib.ipInUnknownProtos, 18349 ipmib->ipIfStatsInUnknownProtos); 18350 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18351 SET_MIB(old_ip_mib.ipInDelivers, 18352 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18353 SET_MIB(old_ip_mib.ipOutRequests, 18354 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18355 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18356 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18357 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18358 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18359 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18360 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18361 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18362 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18363 18364 /* ipRoutingDiscards is not being used */ 18365 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18366 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18367 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18368 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18369 SET_MIB(old_ip_mib.ipReasmDuplicates, 18370 ipmib->ipIfStatsReasmDuplicates); 18371 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18372 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18373 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18374 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18375 SET_MIB(old_ip_mib.rawipInOverflows, 18376 ipmib->rawipIfStatsInOverflows); 18377 18378 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18379 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18380 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18381 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18382 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18383 ipmib->ipIfStatsOutSwitchIPVersion); 18384 18385 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18386 (int)sizeof (old_ip_mib))) { 18387 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18388 (uint_t)sizeof (old_ip_mib))); 18389 } 18390 18391 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18392 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18393 (int)optp->level, (int)optp->name, (int)optp->len)); 18394 qreply(q, mpctl); 18395 return (mp2ctl); 18396 } 18397 18398 /* Per interface IPv4 statistics */ 18399 static mblk_t * 18400 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18401 { 18402 struct opthdr *optp; 18403 mblk_t *mp2ctl; 18404 ill_t *ill; 18405 ill_walk_context_t ctx; 18406 mblk_t *mp_tail = NULL; 18407 mib2_ipIfStatsEntry_t global_ip_mib; 18408 18409 /* 18410 * Make a copy of the original message 18411 */ 18412 mp2ctl = copymsg(mpctl); 18413 18414 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18415 optp->level = MIB2_IP; 18416 optp->name = MIB2_IP_TRAFFIC_STATS; 18417 /* Include "unknown interface" ip_mib */ 18418 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18419 ipst->ips_ip_mib.ipIfStatsIfIndex = 18420 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18421 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18422 (ipst->ips_ip_g_forward ? 1 : 2)); 18423 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18424 (uint32_t)ipst->ips_ip_def_ttl); 18425 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18426 sizeof (mib2_ipIfStatsEntry_t)); 18427 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18428 sizeof (mib2_ipAddrEntry_t)); 18429 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18430 sizeof (mib2_ipRouteEntry_t)); 18431 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18432 sizeof (mib2_ipNetToMediaEntry_t)); 18433 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18434 sizeof (ip_member_t)); 18435 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18436 sizeof (ip_grpsrc_t)); 18437 18438 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18439 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18440 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18441 "failed to allocate %u bytes\n", 18442 (uint_t)sizeof (ipst->ips_ip_mib))); 18443 } 18444 18445 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18446 18447 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18448 ill = ILL_START_WALK_V4(&ctx, ipst); 18449 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18450 ill->ill_ip_mib->ipIfStatsIfIndex = 18451 ill->ill_phyint->phyint_ifindex; 18452 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18453 (ipst->ips_ip_g_forward ? 1 : 2)); 18454 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18455 (uint32_t)ipst->ips_ip_def_ttl); 18456 18457 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18458 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18459 (char *)ill->ill_ip_mib, 18460 (int)sizeof (*ill->ill_ip_mib))) { 18461 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18462 "failed to allocate %u bytes\n", 18463 (uint_t)sizeof (*ill->ill_ip_mib))); 18464 } 18465 } 18466 rw_exit(&ipst->ips_ill_g_lock); 18467 18468 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18469 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18470 "level %d, name %d, len %d\n", 18471 (int)optp->level, (int)optp->name, (int)optp->len)); 18472 qreply(q, mpctl); 18473 18474 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18475 } 18476 18477 /* Global IPv4 ICMP statistics */ 18478 static mblk_t * 18479 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18480 { 18481 struct opthdr *optp; 18482 mblk_t *mp2ctl; 18483 18484 /* 18485 * Make a copy of the original message 18486 */ 18487 mp2ctl = copymsg(mpctl); 18488 18489 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18490 optp->level = MIB2_ICMP; 18491 optp->name = 0; 18492 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18493 (int)sizeof (ipst->ips_icmp_mib))) { 18494 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18495 (uint_t)sizeof (ipst->ips_icmp_mib))); 18496 } 18497 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18498 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18499 (int)optp->level, (int)optp->name, (int)optp->len)); 18500 qreply(q, mpctl); 18501 return (mp2ctl); 18502 } 18503 18504 /* Global IPv4 IGMP statistics */ 18505 static mblk_t * 18506 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18507 { 18508 struct opthdr *optp; 18509 mblk_t *mp2ctl; 18510 18511 /* 18512 * make a copy of the original message 18513 */ 18514 mp2ctl = copymsg(mpctl); 18515 18516 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18517 optp->level = EXPER_IGMP; 18518 optp->name = 0; 18519 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18520 (int)sizeof (ipst->ips_igmpstat))) { 18521 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18522 (uint_t)sizeof (ipst->ips_igmpstat))); 18523 } 18524 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18525 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18526 (int)optp->level, (int)optp->name, (int)optp->len)); 18527 qreply(q, mpctl); 18528 return (mp2ctl); 18529 } 18530 18531 /* Global IPv4 Multicast Routing statistics */ 18532 static mblk_t * 18533 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18534 { 18535 struct opthdr *optp; 18536 mblk_t *mp2ctl; 18537 18538 /* 18539 * make a copy of the original message 18540 */ 18541 mp2ctl = copymsg(mpctl); 18542 18543 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18544 optp->level = EXPER_DVMRP; 18545 optp->name = 0; 18546 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18547 ip0dbg(("ip_mroute_stats: failed\n")); 18548 } 18549 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18550 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18551 (int)optp->level, (int)optp->name, (int)optp->len)); 18552 qreply(q, mpctl); 18553 return (mp2ctl); 18554 } 18555 18556 /* IPv4 address information */ 18557 static mblk_t * 18558 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18559 { 18560 struct opthdr *optp; 18561 mblk_t *mp2ctl; 18562 mblk_t *mp_tail = NULL; 18563 ill_t *ill; 18564 ipif_t *ipif; 18565 uint_t bitval; 18566 mib2_ipAddrEntry_t mae; 18567 zoneid_t zoneid; 18568 ill_walk_context_t ctx; 18569 18570 /* 18571 * make a copy of the original message 18572 */ 18573 mp2ctl = copymsg(mpctl); 18574 18575 /* ipAddrEntryTable */ 18576 18577 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18578 optp->level = MIB2_IP; 18579 optp->name = MIB2_IP_ADDR; 18580 zoneid = Q_TO_CONN(q)->conn_zoneid; 18581 18582 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18583 ill = ILL_START_WALK_V4(&ctx, ipst); 18584 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18585 for (ipif = ill->ill_ipif; ipif != NULL; 18586 ipif = ipif->ipif_next) { 18587 if (ipif->ipif_zoneid != zoneid && 18588 ipif->ipif_zoneid != ALL_ZONES) 18589 continue; 18590 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18591 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18592 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18593 18594 (void) ipif_get_name(ipif, 18595 mae.ipAdEntIfIndex.o_bytes, 18596 OCTET_LENGTH); 18597 mae.ipAdEntIfIndex.o_length = 18598 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18599 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18600 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18601 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18602 mae.ipAdEntInfo.ae_subnet_len = 18603 ip_mask_to_plen(ipif->ipif_net_mask); 18604 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18605 for (bitval = 1; 18606 bitval && 18607 !(bitval & ipif->ipif_brd_addr); 18608 bitval <<= 1) 18609 noop; 18610 mae.ipAdEntBcastAddr = bitval; 18611 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18612 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18613 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18614 mae.ipAdEntInfo.ae_broadcast_addr = 18615 ipif->ipif_brd_addr; 18616 mae.ipAdEntInfo.ae_pp_dst_addr = 18617 ipif->ipif_pp_dst_addr; 18618 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18619 ill->ill_flags | ill->ill_phyint->phyint_flags; 18620 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18621 18622 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18623 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18624 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18625 "allocate %u bytes\n", 18626 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18627 } 18628 } 18629 } 18630 rw_exit(&ipst->ips_ill_g_lock); 18631 18632 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18633 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18634 (int)optp->level, (int)optp->name, (int)optp->len)); 18635 qreply(q, mpctl); 18636 return (mp2ctl); 18637 } 18638 18639 /* IPv6 address information */ 18640 static mblk_t * 18641 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18642 { 18643 struct opthdr *optp; 18644 mblk_t *mp2ctl; 18645 mblk_t *mp_tail = NULL; 18646 ill_t *ill; 18647 ipif_t *ipif; 18648 mib2_ipv6AddrEntry_t mae6; 18649 zoneid_t zoneid; 18650 ill_walk_context_t ctx; 18651 18652 /* 18653 * make a copy of the original message 18654 */ 18655 mp2ctl = copymsg(mpctl); 18656 18657 /* ipv6AddrEntryTable */ 18658 18659 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18660 optp->level = MIB2_IP6; 18661 optp->name = MIB2_IP6_ADDR; 18662 zoneid = Q_TO_CONN(q)->conn_zoneid; 18663 18664 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18665 ill = ILL_START_WALK_V6(&ctx, ipst); 18666 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18667 for (ipif = ill->ill_ipif; ipif != NULL; 18668 ipif = ipif->ipif_next) { 18669 if (ipif->ipif_zoneid != zoneid && 18670 ipif->ipif_zoneid != ALL_ZONES) 18671 continue; 18672 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18673 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18674 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18675 18676 (void) ipif_get_name(ipif, 18677 mae6.ipv6AddrIfIndex.o_bytes, 18678 OCTET_LENGTH); 18679 mae6.ipv6AddrIfIndex.o_length = 18680 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18681 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18682 mae6.ipv6AddrPfxLength = 18683 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18684 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18685 mae6.ipv6AddrInfo.ae_subnet_len = 18686 mae6.ipv6AddrPfxLength; 18687 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18688 18689 /* Type: stateless(1), stateful(2), unknown(3) */ 18690 if (ipif->ipif_flags & IPIF_ADDRCONF) 18691 mae6.ipv6AddrType = 1; 18692 else 18693 mae6.ipv6AddrType = 2; 18694 /* Anycast: true(1), false(2) */ 18695 if (ipif->ipif_flags & IPIF_ANYCAST) 18696 mae6.ipv6AddrAnycastFlag = 1; 18697 else 18698 mae6.ipv6AddrAnycastFlag = 2; 18699 18700 /* 18701 * Address status: preferred(1), deprecated(2), 18702 * invalid(3), inaccessible(4), unknown(5) 18703 */ 18704 if (ipif->ipif_flags & IPIF_NOLOCAL) 18705 mae6.ipv6AddrStatus = 3; 18706 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18707 mae6.ipv6AddrStatus = 2; 18708 else 18709 mae6.ipv6AddrStatus = 1; 18710 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18711 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18712 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18713 ipif->ipif_v6pp_dst_addr; 18714 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18715 ill->ill_flags | ill->ill_phyint->phyint_flags; 18716 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18717 mae6.ipv6AddrIdentifier = ill->ill_token; 18718 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18719 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18720 mae6.ipv6AddrRetransmitTime = 18721 ill->ill_reachable_retrans_time; 18722 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18723 (char *)&mae6, 18724 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18725 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18726 "allocate %u bytes\n", 18727 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18728 } 18729 } 18730 } 18731 rw_exit(&ipst->ips_ill_g_lock); 18732 18733 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18734 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18735 (int)optp->level, (int)optp->name, (int)optp->len)); 18736 qreply(q, mpctl); 18737 return (mp2ctl); 18738 } 18739 18740 /* IPv4 multicast group membership. */ 18741 static mblk_t * 18742 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18743 { 18744 struct opthdr *optp; 18745 mblk_t *mp2ctl; 18746 ill_t *ill; 18747 ipif_t *ipif; 18748 ilm_t *ilm; 18749 ip_member_t ipm; 18750 mblk_t *mp_tail = NULL; 18751 ill_walk_context_t ctx; 18752 zoneid_t zoneid; 18753 18754 /* 18755 * make a copy of the original message 18756 */ 18757 mp2ctl = copymsg(mpctl); 18758 zoneid = Q_TO_CONN(q)->conn_zoneid; 18759 18760 /* ipGroupMember table */ 18761 optp = (struct opthdr *)&mpctl->b_rptr[ 18762 sizeof (struct T_optmgmt_ack)]; 18763 optp->level = MIB2_IP; 18764 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18765 18766 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18767 ill = ILL_START_WALK_V4(&ctx, ipst); 18768 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18769 ILM_WALKER_HOLD(ill); 18770 for (ipif = ill->ill_ipif; ipif != NULL; 18771 ipif = ipif->ipif_next) { 18772 if (ipif->ipif_zoneid != zoneid && 18773 ipif->ipif_zoneid != ALL_ZONES) 18774 continue; /* not this zone */ 18775 (void) ipif_get_name(ipif, 18776 ipm.ipGroupMemberIfIndex.o_bytes, 18777 OCTET_LENGTH); 18778 ipm.ipGroupMemberIfIndex.o_length = 18779 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18780 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18781 ASSERT(ilm->ilm_ipif != NULL); 18782 ASSERT(ilm->ilm_ill == NULL); 18783 if (ilm->ilm_ipif != ipif) 18784 continue; 18785 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18786 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18787 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18788 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18789 (char *)&ipm, (int)sizeof (ipm))) { 18790 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18791 "failed to allocate %u bytes\n", 18792 (uint_t)sizeof (ipm))); 18793 } 18794 } 18795 } 18796 ILM_WALKER_RELE(ill); 18797 } 18798 rw_exit(&ipst->ips_ill_g_lock); 18799 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18800 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18801 (int)optp->level, (int)optp->name, (int)optp->len)); 18802 qreply(q, mpctl); 18803 return (mp2ctl); 18804 } 18805 18806 /* IPv6 multicast group membership. */ 18807 static mblk_t * 18808 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18809 { 18810 struct opthdr *optp; 18811 mblk_t *mp2ctl; 18812 ill_t *ill; 18813 ilm_t *ilm; 18814 ipv6_member_t ipm6; 18815 mblk_t *mp_tail = NULL; 18816 ill_walk_context_t ctx; 18817 zoneid_t zoneid; 18818 18819 /* 18820 * make a copy of the original message 18821 */ 18822 mp2ctl = copymsg(mpctl); 18823 zoneid = Q_TO_CONN(q)->conn_zoneid; 18824 18825 /* ip6GroupMember table */ 18826 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18827 optp->level = MIB2_IP6; 18828 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18829 18830 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18831 ill = ILL_START_WALK_V6(&ctx, ipst); 18832 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18833 ILM_WALKER_HOLD(ill); 18834 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18835 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18836 ASSERT(ilm->ilm_ipif == NULL); 18837 ASSERT(ilm->ilm_ill != NULL); 18838 if (ilm->ilm_zoneid != zoneid) 18839 continue; /* not this zone */ 18840 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18841 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18842 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18843 if (!snmp_append_data2(mpctl->b_cont, 18844 &mp_tail, 18845 (char *)&ipm6, (int)sizeof (ipm6))) { 18846 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18847 "failed to allocate %u bytes\n", 18848 (uint_t)sizeof (ipm6))); 18849 } 18850 } 18851 ILM_WALKER_RELE(ill); 18852 } 18853 rw_exit(&ipst->ips_ill_g_lock); 18854 18855 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18856 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18857 (int)optp->level, (int)optp->name, (int)optp->len)); 18858 qreply(q, mpctl); 18859 return (mp2ctl); 18860 } 18861 18862 /* IP multicast filtered sources */ 18863 static mblk_t * 18864 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18865 { 18866 struct opthdr *optp; 18867 mblk_t *mp2ctl; 18868 ill_t *ill; 18869 ipif_t *ipif; 18870 ilm_t *ilm; 18871 ip_grpsrc_t ips; 18872 mblk_t *mp_tail = NULL; 18873 ill_walk_context_t ctx; 18874 zoneid_t zoneid; 18875 int i; 18876 slist_t *sl; 18877 18878 /* 18879 * make a copy of the original message 18880 */ 18881 mp2ctl = copymsg(mpctl); 18882 zoneid = Q_TO_CONN(q)->conn_zoneid; 18883 18884 /* ipGroupSource table */ 18885 optp = (struct opthdr *)&mpctl->b_rptr[ 18886 sizeof (struct T_optmgmt_ack)]; 18887 optp->level = MIB2_IP; 18888 optp->name = EXPER_IP_GROUP_SOURCES; 18889 18890 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18891 ill = ILL_START_WALK_V4(&ctx, ipst); 18892 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18893 ILM_WALKER_HOLD(ill); 18894 for (ipif = ill->ill_ipif; ipif != NULL; 18895 ipif = ipif->ipif_next) { 18896 if (ipif->ipif_zoneid != zoneid) 18897 continue; /* not this zone */ 18898 (void) ipif_get_name(ipif, 18899 ips.ipGroupSourceIfIndex.o_bytes, 18900 OCTET_LENGTH); 18901 ips.ipGroupSourceIfIndex.o_length = 18902 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18903 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18904 ASSERT(ilm->ilm_ipif != NULL); 18905 ASSERT(ilm->ilm_ill == NULL); 18906 sl = ilm->ilm_filter; 18907 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18908 continue; 18909 ips.ipGroupSourceGroup = ilm->ilm_addr; 18910 for (i = 0; i < sl->sl_numsrc; i++) { 18911 if (!IN6_IS_ADDR_V4MAPPED( 18912 &sl->sl_addr[i])) 18913 continue; 18914 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18915 ips.ipGroupSourceAddress); 18916 if (snmp_append_data2(mpctl->b_cont, 18917 &mp_tail, (char *)&ips, 18918 (int)sizeof (ips)) == 0) { 18919 ip1dbg(("ip_snmp_get_mib2_" 18920 "ip_group_src: failed to " 18921 "allocate %u bytes\n", 18922 (uint_t)sizeof (ips))); 18923 } 18924 } 18925 } 18926 } 18927 ILM_WALKER_RELE(ill); 18928 } 18929 rw_exit(&ipst->ips_ill_g_lock); 18930 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18931 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18932 (int)optp->level, (int)optp->name, (int)optp->len)); 18933 qreply(q, mpctl); 18934 return (mp2ctl); 18935 } 18936 18937 /* IPv6 multicast filtered sources. */ 18938 static mblk_t * 18939 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18940 { 18941 struct opthdr *optp; 18942 mblk_t *mp2ctl; 18943 ill_t *ill; 18944 ilm_t *ilm; 18945 ipv6_grpsrc_t ips6; 18946 mblk_t *mp_tail = NULL; 18947 ill_walk_context_t ctx; 18948 zoneid_t zoneid; 18949 int i; 18950 slist_t *sl; 18951 18952 /* 18953 * make a copy of the original message 18954 */ 18955 mp2ctl = copymsg(mpctl); 18956 zoneid = Q_TO_CONN(q)->conn_zoneid; 18957 18958 /* ip6GroupMember table */ 18959 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18960 optp->level = MIB2_IP6; 18961 optp->name = EXPER_IP6_GROUP_SOURCES; 18962 18963 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18964 ill = ILL_START_WALK_V6(&ctx, ipst); 18965 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18966 ILM_WALKER_HOLD(ill); 18967 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18968 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18969 ASSERT(ilm->ilm_ipif == NULL); 18970 ASSERT(ilm->ilm_ill != NULL); 18971 sl = ilm->ilm_filter; 18972 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18973 continue; 18974 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18975 for (i = 0; i < sl->sl_numsrc; i++) { 18976 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18977 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18978 (char *)&ips6, (int)sizeof (ips6))) { 18979 ip1dbg(("ip_snmp_get_mib2_ip6_" 18980 "group_src: failed to allocate " 18981 "%u bytes\n", 18982 (uint_t)sizeof (ips6))); 18983 } 18984 } 18985 } 18986 ILM_WALKER_RELE(ill); 18987 } 18988 rw_exit(&ipst->ips_ill_g_lock); 18989 18990 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18991 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18992 (int)optp->level, (int)optp->name, (int)optp->len)); 18993 qreply(q, mpctl); 18994 return (mp2ctl); 18995 } 18996 18997 /* Multicast routing virtual interface table. */ 18998 static mblk_t * 18999 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19000 { 19001 struct opthdr *optp; 19002 mblk_t *mp2ctl; 19003 19004 /* 19005 * make a copy of the original message 19006 */ 19007 mp2ctl = copymsg(mpctl); 19008 19009 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19010 optp->level = EXPER_DVMRP; 19011 optp->name = EXPER_DVMRP_VIF; 19012 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 19013 ip0dbg(("ip_mroute_vif: failed\n")); 19014 } 19015 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19016 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 19017 (int)optp->level, (int)optp->name, (int)optp->len)); 19018 qreply(q, mpctl); 19019 return (mp2ctl); 19020 } 19021 19022 /* Multicast routing table. */ 19023 static mblk_t * 19024 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19025 { 19026 struct opthdr *optp; 19027 mblk_t *mp2ctl; 19028 19029 /* 19030 * make a copy of the original message 19031 */ 19032 mp2ctl = copymsg(mpctl); 19033 19034 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19035 optp->level = EXPER_DVMRP; 19036 optp->name = EXPER_DVMRP_MRT; 19037 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19038 ip0dbg(("ip_mroute_mrt: failed\n")); 19039 } 19040 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19041 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19042 (int)optp->level, (int)optp->name, (int)optp->len)); 19043 qreply(q, mpctl); 19044 return (mp2ctl); 19045 } 19046 19047 /* 19048 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19049 * in one IRE walk. 19050 */ 19051 static mblk_t * 19052 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19053 { 19054 struct opthdr *optp; 19055 mblk_t *mp2ctl; /* Returned */ 19056 mblk_t *mp3ctl; /* nettomedia */ 19057 mblk_t *mp4ctl; /* routeattrs */ 19058 iproutedata_t ird; 19059 zoneid_t zoneid; 19060 19061 /* 19062 * make copies of the original message 19063 * - mp2ctl is returned unchanged to the caller for his use 19064 * - mpctl is sent upstream as ipRouteEntryTable 19065 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19066 * - mp4ctl is sent upstream as ipRouteAttributeTable 19067 */ 19068 mp2ctl = copymsg(mpctl); 19069 mp3ctl = copymsg(mpctl); 19070 mp4ctl = copymsg(mpctl); 19071 if (mp3ctl == NULL || mp4ctl == NULL) { 19072 freemsg(mp4ctl); 19073 freemsg(mp3ctl); 19074 freemsg(mp2ctl); 19075 freemsg(mpctl); 19076 return (NULL); 19077 } 19078 19079 bzero(&ird, sizeof (ird)); 19080 19081 ird.ird_route.lp_head = mpctl->b_cont; 19082 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19083 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19084 19085 zoneid = Q_TO_CONN(q)->conn_zoneid; 19086 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19087 if (zoneid == GLOBAL_ZONEID) { 19088 /* 19089 * Those IREs are used by Mobile-IP; since mipagent(1M) 19090 * requires the sys_net_config or sys_ip_config privilege, 19091 * it can only run in the global zone or an exclusive-IP zone, 19092 * and both those have a conn_zoneid == GLOBAL_ZONEID. 19093 */ 19094 ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird, ipst); 19095 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL, ipst); 19096 } 19097 19098 /* ipRouteEntryTable in mpctl */ 19099 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19100 optp->level = MIB2_IP; 19101 optp->name = MIB2_IP_ROUTE; 19102 optp->len = msgdsize(ird.ird_route.lp_head); 19103 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19104 (int)optp->level, (int)optp->name, (int)optp->len)); 19105 qreply(q, mpctl); 19106 19107 /* ipNetToMediaEntryTable in mp3ctl */ 19108 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19109 optp->level = MIB2_IP; 19110 optp->name = MIB2_IP_MEDIA; 19111 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19112 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19113 (int)optp->level, (int)optp->name, (int)optp->len)); 19114 qreply(q, mp3ctl); 19115 19116 /* ipRouteAttributeTable in mp4ctl */ 19117 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19118 optp->level = MIB2_IP; 19119 optp->name = EXPER_IP_RTATTR; 19120 optp->len = msgdsize(ird.ird_attrs.lp_head); 19121 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19122 (int)optp->level, (int)optp->name, (int)optp->len)); 19123 if (optp->len == 0) 19124 freemsg(mp4ctl); 19125 else 19126 qreply(q, mp4ctl); 19127 19128 return (mp2ctl); 19129 } 19130 19131 /* 19132 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19133 * ipv6NetToMediaEntryTable in an NDP walk. 19134 */ 19135 static mblk_t * 19136 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19137 { 19138 struct opthdr *optp; 19139 mblk_t *mp2ctl; /* Returned */ 19140 mblk_t *mp3ctl; /* nettomedia */ 19141 mblk_t *mp4ctl; /* routeattrs */ 19142 iproutedata_t ird; 19143 zoneid_t zoneid; 19144 19145 /* 19146 * make copies of the original message 19147 * - mp2ctl is returned unchanged to the caller for his use 19148 * - mpctl is sent upstream as ipv6RouteEntryTable 19149 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19150 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19151 */ 19152 mp2ctl = copymsg(mpctl); 19153 mp3ctl = copymsg(mpctl); 19154 mp4ctl = copymsg(mpctl); 19155 if (mp3ctl == NULL || mp4ctl == NULL) { 19156 freemsg(mp4ctl); 19157 freemsg(mp3ctl); 19158 freemsg(mp2ctl); 19159 freemsg(mpctl); 19160 return (NULL); 19161 } 19162 19163 bzero(&ird, sizeof (ird)); 19164 19165 ird.ird_route.lp_head = mpctl->b_cont; 19166 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19167 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19168 19169 zoneid = Q_TO_CONN(q)->conn_zoneid; 19170 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19171 19172 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19173 optp->level = MIB2_IP6; 19174 optp->name = MIB2_IP6_ROUTE; 19175 optp->len = msgdsize(ird.ird_route.lp_head); 19176 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19177 (int)optp->level, (int)optp->name, (int)optp->len)); 19178 qreply(q, mpctl); 19179 19180 /* ipv6NetToMediaEntryTable in mp3ctl */ 19181 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19182 19183 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19184 optp->level = MIB2_IP6; 19185 optp->name = MIB2_IP6_MEDIA; 19186 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19187 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19188 (int)optp->level, (int)optp->name, (int)optp->len)); 19189 qreply(q, mp3ctl); 19190 19191 /* ipv6RouteAttributeTable in mp4ctl */ 19192 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19193 optp->level = MIB2_IP6; 19194 optp->name = EXPER_IP_RTATTR; 19195 optp->len = msgdsize(ird.ird_attrs.lp_head); 19196 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19197 (int)optp->level, (int)optp->name, (int)optp->len)); 19198 if (optp->len == 0) 19199 freemsg(mp4ctl); 19200 else 19201 qreply(q, mp4ctl); 19202 19203 return (mp2ctl); 19204 } 19205 19206 /* 19207 * IPv6 mib: One per ill 19208 */ 19209 static mblk_t * 19210 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19211 { 19212 struct opthdr *optp; 19213 mblk_t *mp2ctl; 19214 ill_t *ill; 19215 ill_walk_context_t ctx; 19216 mblk_t *mp_tail = NULL; 19217 19218 /* 19219 * Make a copy of the original message 19220 */ 19221 mp2ctl = copymsg(mpctl); 19222 19223 /* fixed length IPv6 structure ... */ 19224 19225 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19226 optp->level = MIB2_IP6; 19227 optp->name = 0; 19228 /* Include "unknown interface" ip6_mib */ 19229 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19230 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19231 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19232 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19233 ipst->ips_ipv6_forward ? 1 : 2); 19234 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19235 ipst->ips_ipv6_def_hops); 19236 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19237 sizeof (mib2_ipIfStatsEntry_t)); 19238 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19239 sizeof (mib2_ipv6AddrEntry_t)); 19240 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19241 sizeof (mib2_ipv6RouteEntry_t)); 19242 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19243 sizeof (mib2_ipv6NetToMediaEntry_t)); 19244 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19245 sizeof (ipv6_member_t)); 19246 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19247 sizeof (ipv6_grpsrc_t)); 19248 19249 /* 19250 * Synchronize 64- and 32-bit counters 19251 */ 19252 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19253 ipIfStatsHCInReceives); 19254 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19255 ipIfStatsHCInDelivers); 19256 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19257 ipIfStatsHCOutRequests); 19258 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19259 ipIfStatsHCOutForwDatagrams); 19260 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19261 ipIfStatsHCOutMcastPkts); 19262 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19263 ipIfStatsHCInMcastPkts); 19264 19265 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19266 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19267 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19268 (uint_t)sizeof (ipst->ips_ip6_mib))); 19269 } 19270 19271 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19272 ill = ILL_START_WALK_V6(&ctx, ipst); 19273 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19274 ill->ill_ip_mib->ipIfStatsIfIndex = 19275 ill->ill_phyint->phyint_ifindex; 19276 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19277 ipst->ips_ipv6_forward ? 1 : 2); 19278 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19279 ill->ill_max_hops); 19280 19281 /* 19282 * Synchronize 64- and 32-bit counters 19283 */ 19284 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19285 ipIfStatsHCInReceives); 19286 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19287 ipIfStatsHCInDelivers); 19288 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19289 ipIfStatsHCOutRequests); 19290 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19291 ipIfStatsHCOutForwDatagrams); 19292 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19293 ipIfStatsHCOutMcastPkts); 19294 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19295 ipIfStatsHCInMcastPkts); 19296 19297 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19298 (char *)ill->ill_ip_mib, 19299 (int)sizeof (*ill->ill_ip_mib))) { 19300 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19301 "%u bytes\n", 19302 (uint_t)sizeof (*ill->ill_ip_mib))); 19303 } 19304 } 19305 rw_exit(&ipst->ips_ill_g_lock); 19306 19307 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19308 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19309 (int)optp->level, (int)optp->name, (int)optp->len)); 19310 qreply(q, mpctl); 19311 return (mp2ctl); 19312 } 19313 19314 /* 19315 * ICMPv6 mib: One per ill 19316 */ 19317 static mblk_t * 19318 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19319 { 19320 struct opthdr *optp; 19321 mblk_t *mp2ctl; 19322 ill_t *ill; 19323 ill_walk_context_t ctx; 19324 mblk_t *mp_tail = NULL; 19325 /* 19326 * Make a copy of the original message 19327 */ 19328 mp2ctl = copymsg(mpctl); 19329 19330 /* fixed length ICMPv6 structure ... */ 19331 19332 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19333 optp->level = MIB2_ICMP6; 19334 optp->name = 0; 19335 /* Include "unknown interface" icmp6_mib */ 19336 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19337 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19338 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19339 sizeof (mib2_ipv6IfIcmpEntry_t); 19340 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19341 (char *)&ipst->ips_icmp6_mib, 19342 (int)sizeof (ipst->ips_icmp6_mib))) { 19343 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19344 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19345 } 19346 19347 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19348 ill = ILL_START_WALK_V6(&ctx, ipst); 19349 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19350 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19351 ill->ill_phyint->phyint_ifindex; 19352 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19353 (char *)ill->ill_icmp6_mib, 19354 (int)sizeof (*ill->ill_icmp6_mib))) { 19355 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19356 "%u bytes\n", 19357 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19358 } 19359 } 19360 rw_exit(&ipst->ips_ill_g_lock); 19361 19362 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19363 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19364 (int)optp->level, (int)optp->name, (int)optp->len)); 19365 qreply(q, mpctl); 19366 return (mp2ctl); 19367 } 19368 19369 /* 19370 * ire_walk routine to create both ipRouteEntryTable and 19371 * ipRouteAttributeTable in one IRE walk 19372 */ 19373 static void 19374 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19375 { 19376 ill_t *ill; 19377 ipif_t *ipif; 19378 mib2_ipRouteEntry_t *re; 19379 mib2_ipAttributeEntry_t *iae, *iaeptr; 19380 ipaddr_t gw_addr; 19381 tsol_ire_gw_secattr_t *attrp; 19382 tsol_gc_t *gc = NULL; 19383 tsol_gcgrp_t *gcgrp = NULL; 19384 uint_t sacnt = 0; 19385 int i; 19386 19387 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19388 19389 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19390 return; 19391 19392 if ((attrp = ire->ire_gw_secattr) != NULL) { 19393 mutex_enter(&attrp->igsa_lock); 19394 if ((gc = attrp->igsa_gc) != NULL) { 19395 gcgrp = gc->gc_grp; 19396 ASSERT(gcgrp != NULL); 19397 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19398 sacnt = 1; 19399 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19400 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19401 gc = gcgrp->gcgrp_head; 19402 sacnt = gcgrp->gcgrp_count; 19403 } 19404 mutex_exit(&attrp->igsa_lock); 19405 19406 /* do nothing if there's no gc to report */ 19407 if (gc == NULL) { 19408 ASSERT(sacnt == 0); 19409 if (gcgrp != NULL) { 19410 /* we might as well drop the lock now */ 19411 rw_exit(&gcgrp->gcgrp_rwlock); 19412 gcgrp = NULL; 19413 } 19414 attrp = NULL; 19415 } 19416 19417 ASSERT(gc == NULL || (gcgrp != NULL && 19418 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19419 } 19420 ASSERT(sacnt == 0 || gc != NULL); 19421 19422 if (sacnt != 0 && 19423 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19424 kmem_free(re, sizeof (*re)); 19425 rw_exit(&gcgrp->gcgrp_rwlock); 19426 return; 19427 } 19428 19429 /* 19430 * Return all IRE types for route table... let caller pick and choose 19431 */ 19432 re->ipRouteDest = ire->ire_addr; 19433 ipif = ire->ire_ipif; 19434 re->ipRouteIfIndex.o_length = 0; 19435 if (ire->ire_type == IRE_CACHE) { 19436 ill = (ill_t *)ire->ire_stq->q_ptr; 19437 re->ipRouteIfIndex.o_length = 19438 ill->ill_name_length == 0 ? 0 : 19439 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19440 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19441 re->ipRouteIfIndex.o_length); 19442 } else if (ipif != NULL) { 19443 (void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, 19444 OCTET_LENGTH); 19445 re->ipRouteIfIndex.o_length = 19446 mi_strlen(re->ipRouteIfIndex.o_bytes); 19447 } 19448 re->ipRouteMetric1 = -1; 19449 re->ipRouteMetric2 = -1; 19450 re->ipRouteMetric3 = -1; 19451 re->ipRouteMetric4 = -1; 19452 19453 gw_addr = ire->ire_gateway_addr; 19454 19455 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19456 re->ipRouteNextHop = ire->ire_src_addr; 19457 else 19458 re->ipRouteNextHop = gw_addr; 19459 /* indirect(4), direct(3), or invalid(2) */ 19460 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19461 re->ipRouteType = 2; 19462 else 19463 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19464 re->ipRouteProto = -1; 19465 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19466 re->ipRouteMask = ire->ire_mask; 19467 re->ipRouteMetric5 = -1; 19468 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19469 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19470 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19471 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19472 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19473 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19474 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19475 re->ipRouteInfo.re_flags = ire->ire_flags; 19476 re->ipRouteInfo.re_in_ill.o_length = 0; 19477 19478 if (ire->ire_flags & RTF_DYNAMIC) { 19479 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19480 } else { 19481 re->ipRouteInfo.re_ire_type = ire->ire_type; 19482 } 19483 19484 if (ire->ire_in_ill != NULL) { 19485 re->ipRouteInfo.re_in_ill.o_length = 19486 ire->ire_in_ill->ill_name_length == 0 ? 0 : 19487 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 19488 bcopy(ire->ire_in_ill->ill_name, 19489 re->ipRouteInfo.re_in_ill.o_bytes, 19490 re->ipRouteInfo.re_in_ill.o_length); 19491 } 19492 re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 19493 19494 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19495 (char *)re, (int)sizeof (*re))) { 19496 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19497 (uint_t)sizeof (*re))); 19498 } 19499 19500 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19501 iaeptr->iae_routeidx = ird->ird_idx; 19502 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19503 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19504 } 19505 19506 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19507 (char *)iae, sacnt * sizeof (*iae))) { 19508 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19509 (unsigned)(sacnt * sizeof (*iae)))); 19510 } 19511 19512 /* bump route index for next pass */ 19513 ird->ird_idx++; 19514 19515 kmem_free(re, sizeof (*re)); 19516 if (sacnt != 0) 19517 kmem_free(iae, sacnt * sizeof (*iae)); 19518 19519 if (gcgrp != NULL) 19520 rw_exit(&gcgrp->gcgrp_rwlock); 19521 } 19522 19523 /* 19524 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19525 */ 19526 static void 19527 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19528 { 19529 ill_t *ill; 19530 ipif_t *ipif; 19531 mib2_ipv6RouteEntry_t *re; 19532 mib2_ipAttributeEntry_t *iae, *iaeptr; 19533 in6_addr_t gw_addr_v6; 19534 tsol_ire_gw_secattr_t *attrp; 19535 tsol_gc_t *gc = NULL; 19536 tsol_gcgrp_t *gcgrp = NULL; 19537 uint_t sacnt = 0; 19538 int i; 19539 19540 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19541 19542 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19543 return; 19544 19545 if ((attrp = ire->ire_gw_secattr) != NULL) { 19546 mutex_enter(&attrp->igsa_lock); 19547 if ((gc = attrp->igsa_gc) != NULL) { 19548 gcgrp = gc->gc_grp; 19549 ASSERT(gcgrp != NULL); 19550 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19551 sacnt = 1; 19552 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19553 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19554 gc = gcgrp->gcgrp_head; 19555 sacnt = gcgrp->gcgrp_count; 19556 } 19557 mutex_exit(&attrp->igsa_lock); 19558 19559 /* do nothing if there's no gc to report */ 19560 if (gc == NULL) { 19561 ASSERT(sacnt == 0); 19562 if (gcgrp != NULL) { 19563 /* we might as well drop the lock now */ 19564 rw_exit(&gcgrp->gcgrp_rwlock); 19565 gcgrp = NULL; 19566 } 19567 attrp = NULL; 19568 } 19569 19570 ASSERT(gc == NULL || (gcgrp != NULL && 19571 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19572 } 19573 ASSERT(sacnt == 0 || gc != NULL); 19574 19575 if (sacnt != 0 && 19576 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19577 kmem_free(re, sizeof (*re)); 19578 rw_exit(&gcgrp->gcgrp_rwlock); 19579 return; 19580 } 19581 19582 /* 19583 * Return all IRE types for route table... let caller pick and choose 19584 */ 19585 re->ipv6RouteDest = ire->ire_addr_v6; 19586 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19587 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19588 re->ipv6RouteIfIndex.o_length = 0; 19589 ipif = ire->ire_ipif; 19590 if (ire->ire_type == IRE_CACHE) { 19591 ill = (ill_t *)ire->ire_stq->q_ptr; 19592 re->ipv6RouteIfIndex.o_length = 19593 ill->ill_name_length == 0 ? 0 : 19594 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19595 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19596 re->ipv6RouteIfIndex.o_length); 19597 } else if (ipif != NULL) { 19598 (void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, 19599 OCTET_LENGTH); 19600 re->ipv6RouteIfIndex.o_length = 19601 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19602 } 19603 19604 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19605 19606 mutex_enter(&ire->ire_lock); 19607 gw_addr_v6 = ire->ire_gateway_addr_v6; 19608 mutex_exit(&ire->ire_lock); 19609 19610 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19611 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19612 else 19613 re->ipv6RouteNextHop = gw_addr_v6; 19614 19615 /* remote(4), local(3), or discard(2) */ 19616 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19617 re->ipv6RouteType = 2; 19618 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19619 re->ipv6RouteType = 3; 19620 else 19621 re->ipv6RouteType = 4; 19622 19623 re->ipv6RouteProtocol = -1; 19624 re->ipv6RoutePolicy = 0; 19625 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19626 re->ipv6RouteNextHopRDI = 0; 19627 re->ipv6RouteWeight = 0; 19628 re->ipv6RouteMetric = 0; 19629 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19630 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19631 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19632 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19633 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19634 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19635 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19636 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19637 19638 if (ire->ire_flags & RTF_DYNAMIC) { 19639 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19640 } else { 19641 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19642 } 19643 19644 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19645 (char *)re, (int)sizeof (*re))) { 19646 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19647 (uint_t)sizeof (*re))); 19648 } 19649 19650 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19651 iaeptr->iae_routeidx = ird->ird_idx; 19652 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19653 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19654 } 19655 19656 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19657 (char *)iae, sacnt * sizeof (*iae))) { 19658 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19659 (unsigned)(sacnt * sizeof (*iae)))); 19660 } 19661 19662 /* bump route index for next pass */ 19663 ird->ird_idx++; 19664 19665 kmem_free(re, sizeof (*re)); 19666 if (sacnt != 0) 19667 kmem_free(iae, sacnt * sizeof (*iae)); 19668 19669 if (gcgrp != NULL) 19670 rw_exit(&gcgrp->gcgrp_rwlock); 19671 } 19672 19673 /* 19674 * ndp_walk routine to create ipv6NetToMediaEntryTable 19675 */ 19676 static int 19677 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19678 { 19679 ill_t *ill; 19680 mib2_ipv6NetToMediaEntry_t ntme; 19681 dl_unitdata_req_t *dl; 19682 19683 ill = nce->nce_ill; 19684 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19685 return (0); 19686 19687 /* 19688 * Neighbor cache entry attached to IRE with on-link 19689 * destination. 19690 */ 19691 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19692 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19693 if ((ill->ill_flags & ILLF_XRESOLV) && 19694 (nce->nce_res_mp != NULL)) { 19695 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19696 ntme.ipv6NetToMediaPhysAddress.o_length = 19697 dl->dl_dest_addr_length; 19698 } else { 19699 ntme.ipv6NetToMediaPhysAddress.o_length = 19700 ill->ill_phys_addr_length; 19701 } 19702 if (nce->nce_res_mp != NULL) { 19703 bcopy((char *)nce->nce_res_mp->b_rptr + 19704 NCE_LL_ADDR_OFFSET(ill), 19705 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19706 ntme.ipv6NetToMediaPhysAddress.o_length); 19707 } else { 19708 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19709 ill->ill_phys_addr_length); 19710 } 19711 /* 19712 * Note: Returns ND_* states. Should be: 19713 * reachable(1), stale(2), delay(3), probe(4), 19714 * invalid(5), unknown(6) 19715 */ 19716 ntme.ipv6NetToMediaState = nce->nce_state; 19717 ntme.ipv6NetToMediaLastUpdated = 0; 19718 19719 /* other(1), dynamic(2), static(3), local(4) */ 19720 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19721 ntme.ipv6NetToMediaType = 4; 19722 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19723 ntme.ipv6NetToMediaType = 1; 19724 } else { 19725 ntme.ipv6NetToMediaType = 2; 19726 } 19727 19728 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19729 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19730 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19731 (uint_t)sizeof (ntme))); 19732 } 19733 return (0); 19734 } 19735 19736 /* 19737 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19738 */ 19739 /* ARGSUSED */ 19740 int 19741 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19742 { 19743 switch (level) { 19744 case MIB2_IP: 19745 case MIB2_ICMP: 19746 switch (name) { 19747 default: 19748 break; 19749 } 19750 return (1); 19751 default: 19752 return (1); 19753 } 19754 } 19755 19756 /* 19757 * When there exists both a 64- and 32-bit counter of a particular type 19758 * (i.e., InReceives), only the 64-bit counters are added. 19759 */ 19760 void 19761 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19762 { 19763 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19764 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19765 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19766 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19767 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19768 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19769 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19770 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19771 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19772 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19773 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19774 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19775 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19776 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19777 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19778 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19779 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19780 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19781 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19782 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19783 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19784 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19785 o2->ipIfStatsInWrongIPVersion); 19786 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19787 o2->ipIfStatsInWrongIPVersion); 19788 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19789 o2->ipIfStatsOutSwitchIPVersion); 19790 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19791 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19792 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19793 o2->ipIfStatsHCInForwDatagrams); 19794 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19795 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19796 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19797 o2->ipIfStatsHCOutForwDatagrams); 19798 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19799 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19800 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19801 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19802 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19803 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19804 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19805 o2->ipIfStatsHCOutMcastOctets); 19806 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19807 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19808 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19809 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19810 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19811 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19812 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19813 } 19814 19815 void 19816 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19817 { 19818 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19819 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19820 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19821 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19822 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19823 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19824 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19825 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19826 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19827 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19828 o2->ipv6IfIcmpInRouterSolicits); 19829 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19830 o2->ipv6IfIcmpInRouterAdvertisements); 19831 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19832 o2->ipv6IfIcmpInNeighborSolicits); 19833 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19834 o2->ipv6IfIcmpInNeighborAdvertisements); 19835 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19836 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19837 o2->ipv6IfIcmpInGroupMembQueries); 19838 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19839 o2->ipv6IfIcmpInGroupMembResponses); 19840 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19841 o2->ipv6IfIcmpInGroupMembReductions); 19842 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19843 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19844 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19845 o2->ipv6IfIcmpOutDestUnreachs); 19846 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19847 o2->ipv6IfIcmpOutAdminProhibs); 19848 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19849 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19850 o2->ipv6IfIcmpOutParmProblems); 19851 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19852 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19853 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19854 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19855 o2->ipv6IfIcmpOutRouterSolicits); 19856 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19857 o2->ipv6IfIcmpOutRouterAdvertisements); 19858 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19859 o2->ipv6IfIcmpOutNeighborSolicits); 19860 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19861 o2->ipv6IfIcmpOutNeighborAdvertisements); 19862 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19863 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19864 o2->ipv6IfIcmpOutGroupMembQueries); 19865 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19866 o2->ipv6IfIcmpOutGroupMembResponses); 19867 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19868 o2->ipv6IfIcmpOutGroupMembReductions); 19869 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19870 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19871 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19872 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19873 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19874 o2->ipv6IfIcmpInBadNeighborSolicitations); 19875 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19876 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19877 o2->ipv6IfIcmpInGroupMembTotal); 19878 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19879 o2->ipv6IfIcmpInGroupMembBadQueries); 19880 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19881 o2->ipv6IfIcmpInGroupMembBadReports); 19882 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19883 o2->ipv6IfIcmpInGroupMembOurReports); 19884 } 19885 19886 /* 19887 * Called before the options are updated to check if this packet will 19888 * be source routed from here. 19889 * This routine assumes that the options are well formed i.e. that they 19890 * have already been checked. 19891 */ 19892 static boolean_t 19893 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19894 { 19895 ipoptp_t opts; 19896 uchar_t *opt; 19897 uint8_t optval; 19898 uint8_t optlen; 19899 ipaddr_t dst; 19900 ire_t *ire; 19901 19902 if (IS_SIMPLE_IPH(ipha)) { 19903 ip2dbg(("not source routed\n")); 19904 return (B_FALSE); 19905 } 19906 dst = ipha->ipha_dst; 19907 for (optval = ipoptp_first(&opts, ipha); 19908 optval != IPOPT_EOL; 19909 optval = ipoptp_next(&opts)) { 19910 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19911 opt = opts.ipoptp_cur; 19912 optlen = opts.ipoptp_len; 19913 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19914 optval, optlen)); 19915 switch (optval) { 19916 uint32_t off; 19917 case IPOPT_SSRR: 19918 case IPOPT_LSRR: 19919 /* 19920 * If dst is one of our addresses and there are some 19921 * entries left in the source route return (true). 19922 */ 19923 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19924 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19925 if (ire == NULL) { 19926 ip2dbg(("ip_source_routed: not next" 19927 " source route 0x%x\n", 19928 ntohl(dst))); 19929 return (B_FALSE); 19930 } 19931 ire_refrele(ire); 19932 off = opt[IPOPT_OFFSET]; 19933 off--; 19934 if (optlen < IP_ADDR_LEN || 19935 off > optlen - IP_ADDR_LEN) { 19936 /* End of source route */ 19937 ip1dbg(("ip_source_routed: end of SR\n")); 19938 return (B_FALSE); 19939 } 19940 return (B_TRUE); 19941 } 19942 } 19943 ip2dbg(("not source routed\n")); 19944 return (B_FALSE); 19945 } 19946 19947 /* 19948 * Check if the packet contains any source route. 19949 */ 19950 static boolean_t 19951 ip_source_route_included(ipha_t *ipha) 19952 { 19953 ipoptp_t opts; 19954 uint8_t optval; 19955 19956 if (IS_SIMPLE_IPH(ipha)) 19957 return (B_FALSE); 19958 for (optval = ipoptp_first(&opts, ipha); 19959 optval != IPOPT_EOL; 19960 optval = ipoptp_next(&opts)) { 19961 switch (optval) { 19962 case IPOPT_SSRR: 19963 case IPOPT_LSRR: 19964 return (B_TRUE); 19965 } 19966 } 19967 return (B_FALSE); 19968 } 19969 19970 /* 19971 * Called when the IRE expiration timer fires. 19972 */ 19973 void 19974 ip_trash_timer_expire(void *args) 19975 { 19976 int flush_flag = 0; 19977 ire_expire_arg_t iea; 19978 ip_stack_t *ipst = (ip_stack_t *)args; 19979 19980 iea.iea_ipst = ipst; /* No netstack_hold */ 19981 19982 /* 19983 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19984 * This lock makes sure that a new invocation of this function 19985 * that occurs due to an almost immediate timer firing will not 19986 * progress beyond this point until the current invocation is done 19987 */ 19988 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19989 ipst->ips_ip_ire_expire_id = 0; 19990 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19991 19992 /* Periodic timer */ 19993 if (ipst->ips_ip_ire_arp_time_elapsed >= 19994 ipst->ips_ip_ire_arp_interval) { 19995 /* 19996 * Remove all IRE_CACHE entries since they might 19997 * contain arp information. 19998 */ 19999 flush_flag |= FLUSH_ARP_TIME; 20000 ipst->ips_ip_ire_arp_time_elapsed = 0; 20001 IP_STAT(ipst, ip_ire_arp_timer_expired); 20002 } 20003 if (ipst->ips_ip_ire_rd_time_elapsed >= 20004 ipst->ips_ip_ire_redir_interval) { 20005 /* Remove all redirects */ 20006 flush_flag |= FLUSH_REDIRECT_TIME; 20007 ipst->ips_ip_ire_rd_time_elapsed = 0; 20008 IP_STAT(ipst, ip_ire_redirect_timer_expired); 20009 } 20010 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 20011 ipst->ips_ip_ire_pathmtu_interval) { 20012 /* Increase path mtu */ 20013 flush_flag |= FLUSH_MTU_TIME; 20014 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 20015 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 20016 } 20017 20018 /* 20019 * Optimize for the case when there are no redirects in the 20020 * ftable, that is, no need to walk the ftable in that case. 20021 */ 20022 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 20023 iea.iea_flush_flag = flush_flag; 20024 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 20025 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 20026 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 20027 NULL, ALL_ZONES, ipst); 20028 } 20029 if ((flush_flag & FLUSH_REDIRECT_TIME) && 20030 ipst->ips_ip_redirect_cnt > 0) { 20031 iea.iea_flush_flag = flush_flag; 20032 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 20033 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 20034 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 20035 } 20036 if (flush_flag & FLUSH_MTU_TIME) { 20037 /* 20038 * Walk all IPv6 IRE's and update them 20039 * Note that ARP and redirect timers are not 20040 * needed since NUD handles stale entries. 20041 */ 20042 flush_flag = FLUSH_MTU_TIME; 20043 iea.iea_flush_flag = flush_flag; 20044 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20045 ALL_ZONES, ipst); 20046 } 20047 20048 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20049 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20050 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20051 20052 /* 20053 * Hold the lock to serialize timeout calls and prevent 20054 * stale values in ip_ire_expire_id. Otherwise it is possible 20055 * for the timer to fire and a new invocation of this function 20056 * to start before the return value of timeout has been stored 20057 * in ip_ire_expire_id by the current invocation. 20058 */ 20059 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20060 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20061 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20062 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20063 } 20064 20065 /* 20066 * Called by the memory allocator subsystem directly, when the system 20067 * is running low on memory. 20068 */ 20069 /* ARGSUSED */ 20070 void 20071 ip_trash_ire_reclaim(void *args) 20072 { 20073 netstack_handle_t nh; 20074 netstack_t *ns; 20075 20076 netstack_next_init(&nh); 20077 while ((ns = netstack_next(&nh)) != NULL) { 20078 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20079 netstack_rele(ns); 20080 } 20081 netstack_next_fini(&nh); 20082 } 20083 20084 static void 20085 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20086 { 20087 ire_cache_count_t icc; 20088 ire_cache_reclaim_t icr; 20089 ncc_cache_count_t ncc; 20090 nce_cache_reclaim_t ncr; 20091 uint_t delete_cnt; 20092 /* 20093 * Memory reclaim call back. 20094 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20095 * Then, with a target of freeing 1/Nth of IRE_CACHE 20096 * entries, determine what fraction to free for 20097 * each category of IRE_CACHE entries giving absolute priority 20098 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20099 * entry will be freed unless all offlink entries are freed). 20100 */ 20101 icc.icc_total = 0; 20102 icc.icc_unused = 0; 20103 icc.icc_offlink = 0; 20104 icc.icc_pmtu = 0; 20105 icc.icc_onlink = 0; 20106 ire_walk(ire_cache_count, (char *)&icc, ipst); 20107 20108 /* 20109 * Free NCEs for IPv6 like the onlink ires. 20110 */ 20111 ncc.ncc_total = 0; 20112 ncc.ncc_host = 0; 20113 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20114 20115 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20116 icc.icc_pmtu + icc.icc_onlink); 20117 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20118 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20119 if (delete_cnt == 0) 20120 return; 20121 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20122 /* Always delete all unused offlink entries */ 20123 icr.icr_ipst = ipst; 20124 icr.icr_unused = 1; 20125 if (delete_cnt <= icc.icc_unused) { 20126 /* 20127 * Only need to free unused entries. In other words, 20128 * there are enough unused entries to free to meet our 20129 * target number of freed ire cache entries. 20130 */ 20131 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20132 ncr.ncr_host = 0; 20133 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20134 /* 20135 * Only need to free unused entries, plus a fraction of offlink 20136 * entries. It follows from the first if statement that 20137 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20138 */ 20139 delete_cnt -= icc.icc_unused; 20140 /* Round up # deleted by truncating fraction */ 20141 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20142 icr.icr_pmtu = icr.icr_onlink = 0; 20143 ncr.ncr_host = 0; 20144 } else if (delete_cnt <= 20145 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20146 /* 20147 * Free all unused and offlink entries, plus a fraction of 20148 * pmtu entries. It follows from the previous if statement 20149 * that icc_pmtu is non-zero, and that 20150 * delete_cnt != icc_unused + icc_offlink. 20151 */ 20152 icr.icr_offlink = 1; 20153 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20154 /* Round up # deleted by truncating fraction */ 20155 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20156 icr.icr_onlink = 0; 20157 ncr.ncr_host = 0; 20158 } else { 20159 /* 20160 * Free all unused, offlink, and pmtu entries, plus a fraction 20161 * of onlink entries. If we're here, then we know that 20162 * icc_onlink is non-zero, and that 20163 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20164 */ 20165 icr.icr_offlink = icr.icr_pmtu = 1; 20166 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20167 icc.icc_pmtu; 20168 /* Round up # deleted by truncating fraction */ 20169 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20170 /* Using the same delete fraction as for onlink IREs */ 20171 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20172 } 20173 #ifdef DEBUG 20174 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20175 "fractions %d/%d/%d/%d\n", 20176 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20177 icc.icc_unused, icc.icc_offlink, 20178 icc.icc_pmtu, icc.icc_onlink, 20179 icr.icr_unused, icr.icr_offlink, 20180 icr.icr_pmtu, icr.icr_onlink)); 20181 #endif 20182 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20183 if (ncr.ncr_host != 0) 20184 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20185 (uchar_t *)&ncr, ipst); 20186 #ifdef DEBUG 20187 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20188 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20189 ire_walk(ire_cache_count, (char *)&icc, ipst); 20190 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20191 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20192 icc.icc_pmtu, icc.icc_onlink)); 20193 #endif 20194 } 20195 20196 /* 20197 * ip_unbind is called when a copy of an unbind request is received from the 20198 * upper level protocol. We remove this conn from any fanout hash list it is 20199 * on, and zero out the bind information. No reply is expected up above. 20200 */ 20201 mblk_t * 20202 ip_unbind(queue_t *q, mblk_t *mp) 20203 { 20204 conn_t *connp = Q_TO_CONN(q); 20205 20206 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20207 20208 if (is_system_labeled() && connp->conn_anon_port) { 20209 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20210 connp->conn_mlp_type, connp->conn_ulp, 20211 ntohs(connp->conn_lport), B_FALSE); 20212 connp->conn_anon_port = 0; 20213 } 20214 connp->conn_mlp_type = mlptSingle; 20215 20216 ipcl_hash_remove(connp); 20217 20218 ASSERT(mp->b_cont == NULL); 20219 /* 20220 * Convert mp into a T_OK_ACK 20221 */ 20222 mp = mi_tpi_ok_ack_alloc(mp); 20223 20224 /* 20225 * should not happen in practice... T_OK_ACK is smaller than the 20226 * original message. 20227 */ 20228 if (mp == NULL) 20229 return (NULL); 20230 20231 /* 20232 * Don't bzero the ports if its TCP since TCP still needs the 20233 * lport to remove it from its own bind hash. TCP will do the 20234 * cleanup. 20235 */ 20236 if (!IPCL_IS_TCP(connp)) 20237 bzero(&connp->u_port, sizeof (connp->u_port)); 20238 20239 return (mp); 20240 } 20241 20242 /* 20243 * Write side put procedure. Outbound data, IOCTLs, responses from 20244 * resolvers, etc, come down through here. 20245 * 20246 * arg2 is always a queue_t *. 20247 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20248 * the zoneid. 20249 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20250 */ 20251 void 20252 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20253 { 20254 ip_output_options(arg, mp, arg2, caller, &zero_info); 20255 } 20256 20257 void 20258 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20259 ip_opt_info_t *infop) 20260 { 20261 conn_t *connp = NULL; 20262 queue_t *q = (queue_t *)arg2; 20263 ipha_t *ipha; 20264 #define rptr ((uchar_t *)ipha) 20265 ire_t *ire = NULL; 20266 ire_t *sctp_ire = NULL; 20267 uint32_t v_hlen_tos_len; 20268 ipaddr_t dst; 20269 mblk_t *first_mp = NULL; 20270 boolean_t mctl_present; 20271 ipsec_out_t *io; 20272 int match_flags; 20273 ill_t *attach_ill = NULL; 20274 /* Bind to IPIF_NOFAILOVER ill etc. */ 20275 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 20276 ipif_t *dst_ipif; 20277 boolean_t multirt_need_resolve = B_FALSE; 20278 mblk_t *copy_mp = NULL; 20279 int err; 20280 zoneid_t zoneid; 20281 int adjust; 20282 uint16_t iplen; 20283 boolean_t need_decref = B_FALSE; 20284 boolean_t ignore_dontroute = B_FALSE; 20285 boolean_t ignore_nexthop = B_FALSE; 20286 boolean_t ip_nexthop = B_FALSE; 20287 ipaddr_t nexthop_addr; 20288 ip_stack_t *ipst; 20289 20290 #ifdef _BIG_ENDIAN 20291 #define V_HLEN (v_hlen_tos_len >> 24) 20292 #else 20293 #define V_HLEN (v_hlen_tos_len & 0xFF) 20294 #endif 20295 20296 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20297 "ip_wput_start: q %p", q); 20298 20299 /* 20300 * ip_wput fast path 20301 */ 20302 20303 /* is packet from ARP ? */ 20304 if (q->q_next != NULL) { 20305 zoneid = (zoneid_t)(uintptr_t)arg; 20306 goto qnext; 20307 } 20308 20309 connp = (conn_t *)arg; 20310 ASSERT(connp != NULL); 20311 zoneid = connp->conn_zoneid; 20312 ipst = connp->conn_netstack->netstack_ip; 20313 20314 /* is queue flow controlled? */ 20315 if ((q->q_first != NULL || connp->conn_draining) && 20316 (caller == IP_WPUT)) { 20317 ASSERT(!need_decref); 20318 (void) putq(q, mp); 20319 return; 20320 } 20321 20322 /* Multidata transmit? */ 20323 if (DB_TYPE(mp) == M_MULTIDATA) { 20324 /* 20325 * We should never get here, since all Multidata messages 20326 * originating from tcp should have been directed over to 20327 * tcp_multisend() in the first place. 20328 */ 20329 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20330 freemsg(mp); 20331 return; 20332 } else if (DB_TYPE(mp) != M_DATA) 20333 goto notdata; 20334 20335 if (mp->b_flag & MSGHASREF) { 20336 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20337 mp->b_flag &= ~MSGHASREF; 20338 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20339 need_decref = B_TRUE; 20340 } 20341 ipha = (ipha_t *)mp->b_rptr; 20342 20343 /* is IP header non-aligned or mblk smaller than basic IP header */ 20344 #ifndef SAFETY_BEFORE_SPEED 20345 if (!OK_32PTR(rptr) || 20346 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20347 goto hdrtoosmall; 20348 #endif 20349 20350 ASSERT(OK_32PTR(ipha)); 20351 20352 /* 20353 * This function assumes that mp points to an IPv4 packet. If it's the 20354 * wrong version, we'll catch it again in ip_output_v6. 20355 * 20356 * Note that this is *only* locally-generated output here, and never 20357 * forwarded data, and that we need to deal only with transports that 20358 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20359 * label.) 20360 */ 20361 if (is_system_labeled() && 20362 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20363 !connp->conn_ulp_labeled) { 20364 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 20365 connp->conn_mac_exempt, ipst); 20366 ipha = (ipha_t *)mp->b_rptr; 20367 if (err != 0) { 20368 first_mp = mp; 20369 if (err == EINVAL) 20370 goto icmp_parameter_problem; 20371 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20372 goto discard_pkt; 20373 } 20374 iplen = ntohs(ipha->ipha_length) + adjust; 20375 ipha->ipha_length = htons(iplen); 20376 } 20377 20378 ASSERT(infop != NULL); 20379 20380 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20381 /* 20382 * IP_PKTINFO ancillary option is present. 20383 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20384 * allows using address of any zone as the source address. 20385 */ 20386 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20387 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20388 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20389 if (ire == NULL) 20390 goto drop_pkt; 20391 ire_refrele(ire); 20392 ire = NULL; 20393 } 20394 20395 /* 20396 * IP_DONTFAILOVER_IF and IP_XMIT_IF have precedence over 20397 * ill index passed in IP_PKTINFO. 20398 */ 20399 if (infop->ip_opt_ill_index != 0 && 20400 connp->conn_xmit_if_ill == NULL && 20401 connp->conn_nofailover_ill == NULL) { 20402 20403 xmit_ill = ill_lookup_on_ifindex( 20404 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20405 ipst); 20406 20407 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20408 goto drop_pkt; 20409 /* 20410 * check that there is an ipif belonging 20411 * to our zone. IPCL_ZONEID is not used because 20412 * IP_ALLZONES option is valid only when the ill is 20413 * accessible from all zones i.e has a valid ipif in 20414 * all zones. 20415 */ 20416 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20417 goto drop_pkt; 20418 } 20419 } 20420 20421 /* 20422 * If there is a policy, try to attach an ipsec_out in 20423 * the front. At the end, first_mp either points to a 20424 * M_DATA message or IPSEC_OUT message linked to a 20425 * M_DATA message. We have to do it now as we might 20426 * lose the "conn" if we go through ip_newroute. 20427 */ 20428 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20429 if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL, 20430 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20431 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20432 if (need_decref) 20433 CONN_DEC_REF(connp); 20434 return; 20435 } else { 20436 ASSERT(mp->b_datap->db_type == M_CTL); 20437 first_mp = mp; 20438 mp = mp->b_cont; 20439 mctl_present = B_TRUE; 20440 } 20441 } else { 20442 first_mp = mp; 20443 mctl_present = B_FALSE; 20444 } 20445 20446 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20447 20448 /* is wrong version or IP options present */ 20449 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20450 goto version_hdrlen_check; 20451 dst = ipha->ipha_dst; 20452 20453 if (connp->conn_nofailover_ill != NULL) { 20454 attach_ill = conn_get_held_ill(connp, 20455 &connp->conn_nofailover_ill, &err); 20456 if (err == ILL_LOOKUP_FAILED) { 20457 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20458 if (need_decref) 20459 CONN_DEC_REF(connp); 20460 freemsg(first_mp); 20461 return; 20462 } 20463 } 20464 20465 20466 /* is packet multicast? */ 20467 if (CLASSD(dst)) 20468 goto multicast; 20469 20470 /* 20471 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20472 * takes precedence over conn_dontroute and conn_nexthop_set 20473 */ 20474 if (xmit_ill != NULL) { 20475 goto send_from_ill; 20476 } 20477 20478 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 20479 (connp->conn_nexthop_set)) { 20480 /* 20481 * If the destination is a broadcast or a loopback 20482 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 20483 * through the standard path. But in the case of local 20484 * destination only SO_DONTROUTE and IP_NEXTHOP go through 20485 * the standard path not IP_XMIT_IF. 20486 */ 20487 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20488 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 20489 (ire->ire_type != IRE_LOOPBACK))) { 20490 if ((connp->conn_dontroute || 20491 connp->conn_nexthop_set) && (ire != NULL) && 20492 (ire->ire_type == IRE_LOCAL)) 20493 goto standard_path; 20494 20495 if (ire != NULL) { 20496 ire_refrele(ire); 20497 /* No more access to ire */ 20498 ire = NULL; 20499 } 20500 /* 20501 * bypass routing checks and go directly to 20502 * interface. 20503 */ 20504 if (connp->conn_dontroute) { 20505 goto dontroute; 20506 } else if (connp->conn_nexthop_set) { 20507 ip_nexthop = B_TRUE; 20508 nexthop_addr = connp->conn_nexthop_v4; 20509 goto send_from_ill; 20510 } 20511 20512 /* 20513 * If IP_XMIT_IF socket option is set, 20514 * then we allow unicast and multicast 20515 * packets to go through the ill. It is 20516 * quite possible that the destination 20517 * is not in the ire cache table and we 20518 * do not want to go to ip_newroute() 20519 * instead we call ip_newroute_ipif. 20520 */ 20521 xmit_ill = conn_get_held_ill(connp, 20522 &connp->conn_xmit_if_ill, &err); 20523 if (err == ILL_LOOKUP_FAILED) { 20524 BUMP_MIB(&ipst->ips_ip_mib, 20525 ipIfStatsOutDiscards); 20526 if (attach_ill != NULL) 20527 ill_refrele(attach_ill); 20528 if (need_decref) 20529 CONN_DEC_REF(connp); 20530 freemsg(first_mp); 20531 return; 20532 } 20533 goto send_from_ill; 20534 } 20535 standard_path: 20536 /* Must be a broadcast, a loopback or a local ire */ 20537 if (ire != NULL) { 20538 ire_refrele(ire); 20539 /* No more access to ire */ 20540 ire = NULL; 20541 } 20542 } 20543 20544 if (attach_ill != NULL) 20545 goto send_from_ill; 20546 20547 /* 20548 * We cache IRE_CACHEs to avoid lookups. We don't do 20549 * this for the tcp global queue and listen end point 20550 * as it does not really have a real destination to 20551 * talk to. This is also true for SCTP. 20552 */ 20553 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20554 !connp->conn_fully_bound) { 20555 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20556 if (ire == NULL) 20557 goto noirefound; 20558 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20559 "ip_wput_end: q %p (%S)", q, "end"); 20560 20561 /* 20562 * Check if the ire has the RTF_MULTIRT flag, inherited 20563 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20564 */ 20565 if (ire->ire_flags & RTF_MULTIRT) { 20566 20567 /* 20568 * Force the TTL of multirouted packets if required. 20569 * The TTL of such packets is bounded by the 20570 * ip_multirt_ttl ndd variable. 20571 */ 20572 if ((ipst->ips_ip_multirt_ttl > 0) && 20573 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20574 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20575 "(was %d), dst 0x%08x\n", 20576 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20577 ntohl(ire->ire_addr))); 20578 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20579 } 20580 /* 20581 * We look at this point if there are pending 20582 * unresolved routes. ire_multirt_resolvable() 20583 * checks in O(n) that all IRE_OFFSUBNET ire 20584 * entries for the packet's destination and 20585 * flagged RTF_MULTIRT are currently resolved. 20586 * If some remain unresolved, we make a copy 20587 * of the current message. It will be used 20588 * to initiate additional route resolutions. 20589 */ 20590 multirt_need_resolve = 20591 ire_multirt_need_resolve(ire->ire_addr, 20592 MBLK_GETLABEL(first_mp), ipst); 20593 ip2dbg(("ip_wput[TCP]: ire %p, " 20594 "multirt_need_resolve %d, first_mp %p\n", 20595 (void *)ire, multirt_need_resolve, 20596 (void *)first_mp)); 20597 if (multirt_need_resolve) { 20598 copy_mp = copymsg(first_mp); 20599 if (copy_mp != NULL) { 20600 MULTIRT_DEBUG_TAG(copy_mp); 20601 } 20602 } 20603 } 20604 20605 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20606 20607 /* 20608 * Try to resolve another multiroute if 20609 * ire_multirt_need_resolve() deemed it necessary. 20610 */ 20611 if (copy_mp != NULL) { 20612 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 20613 } 20614 if (need_decref) 20615 CONN_DEC_REF(connp); 20616 return; 20617 } 20618 20619 /* 20620 * Access to conn_ire_cache. (protected by conn_lock) 20621 * 20622 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20623 * the ire bucket lock here to check for CONDEMNED as it is okay to 20624 * send a packet or two with the IRE_CACHE that is going away. 20625 * Access to the ire requires an ire refhold on the ire prior to 20626 * its use since an interface unplumb thread may delete the cached 20627 * ire and release the refhold at any time. 20628 * 20629 * Caching an ire in the conn_ire_cache 20630 * 20631 * o Caching an ire pointer in the conn requires a strict check for 20632 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20633 * ires before cleaning up the conns. So the caching of an ire pointer 20634 * in the conn is done after making sure under the bucket lock that the 20635 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20636 * caching an ire after the unplumb thread has cleaned up the conn. 20637 * If the conn does not send a packet subsequently the unplumb thread 20638 * will be hanging waiting for the ire count to drop to zero. 20639 * 20640 * o We also need to atomically test for a null conn_ire_cache and 20641 * set the conn_ire_cache under the the protection of the conn_lock 20642 * to avoid races among concurrent threads trying to simultaneously 20643 * cache an ire in the conn_ire_cache. 20644 */ 20645 mutex_enter(&connp->conn_lock); 20646 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20647 20648 if (ire != NULL && ire->ire_addr == dst && 20649 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20650 20651 IRE_REFHOLD(ire); 20652 mutex_exit(&connp->conn_lock); 20653 20654 } else { 20655 boolean_t cached = B_FALSE; 20656 connp->conn_ire_cache = NULL; 20657 mutex_exit(&connp->conn_lock); 20658 /* Release the old ire */ 20659 if (ire != NULL && sctp_ire == NULL) 20660 IRE_REFRELE_NOTR(ire); 20661 20662 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20663 if (ire == NULL) 20664 goto noirefound; 20665 IRE_REFHOLD_NOTR(ire); 20666 20667 mutex_enter(&connp->conn_lock); 20668 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20669 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20670 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20671 connp->conn_ire_cache = ire; 20672 cached = B_TRUE; 20673 } 20674 rw_exit(&ire->ire_bucket->irb_lock); 20675 } 20676 mutex_exit(&connp->conn_lock); 20677 20678 /* 20679 * We can continue to use the ire but since it was 20680 * not cached, we should drop the extra reference. 20681 */ 20682 if (!cached) 20683 IRE_REFRELE_NOTR(ire); 20684 } 20685 20686 20687 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20688 "ip_wput_end: q %p (%S)", q, "end"); 20689 20690 /* 20691 * Check if the ire has the RTF_MULTIRT flag, inherited 20692 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20693 */ 20694 if (ire->ire_flags & RTF_MULTIRT) { 20695 20696 /* 20697 * Force the TTL of multirouted packets if required. 20698 * The TTL of such packets is bounded by the 20699 * ip_multirt_ttl ndd variable. 20700 */ 20701 if ((ipst->ips_ip_multirt_ttl > 0) && 20702 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20703 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20704 "(was %d), dst 0x%08x\n", 20705 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20706 ntohl(ire->ire_addr))); 20707 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20708 } 20709 20710 /* 20711 * At this point, we check to see if there are any pending 20712 * unresolved routes. ire_multirt_resolvable() 20713 * checks in O(n) that all IRE_OFFSUBNET ire 20714 * entries for the packet's destination and 20715 * flagged RTF_MULTIRT are currently resolved. 20716 * If some remain unresolved, we make a copy 20717 * of the current message. It will be used 20718 * to initiate additional route resolutions. 20719 */ 20720 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20721 MBLK_GETLABEL(first_mp), ipst); 20722 ip2dbg(("ip_wput[not TCP]: ire %p, " 20723 "multirt_need_resolve %d, first_mp %p\n", 20724 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20725 if (multirt_need_resolve) { 20726 copy_mp = copymsg(first_mp); 20727 if (copy_mp != NULL) { 20728 MULTIRT_DEBUG_TAG(copy_mp); 20729 } 20730 } 20731 } 20732 20733 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20734 20735 /* 20736 * Try to resolve another multiroute if 20737 * ire_multirt_resolvable() deemed it necessary 20738 */ 20739 if (copy_mp != NULL) { 20740 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 20741 } 20742 if (need_decref) 20743 CONN_DEC_REF(connp); 20744 return; 20745 20746 qnext: 20747 /* 20748 * Upper Level Protocols pass down complete IP datagrams 20749 * as M_DATA messages. Everything else is a sideshow. 20750 * 20751 * 1) We could be re-entering ip_wput because of ip_neworute 20752 * in which case we could have a IPSEC_OUT message. We 20753 * need to pass through ip_wput like other datagrams and 20754 * hence cannot branch to ip_wput_nondata. 20755 * 20756 * 2) ARP, AH, ESP, and other clients who are on the module 20757 * instance of IP stream, give us something to deal with. 20758 * We will handle AH and ESP here and rest in ip_wput_nondata. 20759 * 20760 * 3) ICMP replies also could come here. 20761 */ 20762 ipst = ILLQ_TO_IPST(q); 20763 20764 if (DB_TYPE(mp) != M_DATA) { 20765 notdata: 20766 if (DB_TYPE(mp) == M_CTL) { 20767 /* 20768 * M_CTL messages are used by ARP, AH and ESP to 20769 * communicate with IP. We deal with IPSEC_IN and 20770 * IPSEC_OUT here. ip_wput_nondata handles other 20771 * cases. 20772 */ 20773 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20774 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20775 first_mp = mp->b_cont; 20776 first_mp->b_flag &= ~MSGHASREF; 20777 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20778 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20779 CONN_DEC_REF(connp); 20780 connp = NULL; 20781 } 20782 if (ii->ipsec_info_type == IPSEC_IN) { 20783 /* 20784 * Either this message goes back to 20785 * IPSEC for further processing or to 20786 * ULP after policy checks. 20787 */ 20788 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20789 return; 20790 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20791 io = (ipsec_out_t *)ii; 20792 if (io->ipsec_out_proc_begin) { 20793 /* 20794 * IPSEC processing has already started. 20795 * Complete it. 20796 * IPQoS notes: We don't care what is 20797 * in ipsec_out_ill_index since this 20798 * won't be processed for IPQoS policies 20799 * in ipsec_out_process. 20800 */ 20801 ipsec_out_process(q, mp, NULL, 20802 io->ipsec_out_ill_index); 20803 return; 20804 } else { 20805 connp = (q->q_next != NULL) ? 20806 NULL : Q_TO_CONN(q); 20807 first_mp = mp; 20808 mp = mp->b_cont; 20809 mctl_present = B_TRUE; 20810 } 20811 zoneid = io->ipsec_out_zoneid; 20812 ASSERT(zoneid != ALL_ZONES); 20813 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20814 /* 20815 * It's an IPsec control message requesting 20816 * an SADB update to be sent to the IPsec 20817 * hardware acceleration capable ills. 20818 */ 20819 ipsec_ctl_t *ipsec_ctl = 20820 (ipsec_ctl_t *)mp->b_rptr; 20821 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20822 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20823 mblk_t *cmp = mp->b_cont; 20824 20825 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20826 ASSERT(cmp != NULL); 20827 20828 freeb(mp); 20829 ill_ipsec_capab_send_all(satype, cmp, sa, 20830 ipst->ips_netstack); 20831 return; 20832 } else { 20833 /* 20834 * This must be ARP or special TSOL signaling. 20835 */ 20836 ip_wput_nondata(NULL, q, mp, NULL); 20837 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20838 "ip_wput_end: q %p (%S)", q, "nondata"); 20839 return; 20840 } 20841 } else { 20842 /* 20843 * This must be non-(ARP/AH/ESP) messages. 20844 */ 20845 ASSERT(!need_decref); 20846 ip_wput_nondata(NULL, q, mp, NULL); 20847 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20848 "ip_wput_end: q %p (%S)", q, "nondata"); 20849 return; 20850 } 20851 } else { 20852 first_mp = mp; 20853 mctl_present = B_FALSE; 20854 } 20855 20856 ASSERT(first_mp != NULL); 20857 /* 20858 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20859 * to make sure that this packet goes out on the same interface it 20860 * came in. We handle that here. 20861 */ 20862 if (mctl_present) { 20863 uint_t ifindex; 20864 20865 io = (ipsec_out_t *)first_mp->b_rptr; 20866 if (io->ipsec_out_attach_if || 20867 io->ipsec_out_xmit_if || 20868 io->ipsec_out_ip_nexthop) { 20869 ill_t *ill; 20870 20871 /* 20872 * We may have lost the conn context if we are 20873 * coming here from ip_newroute(). Copy the 20874 * nexthop information. 20875 */ 20876 if (io->ipsec_out_ip_nexthop) { 20877 ip_nexthop = B_TRUE; 20878 nexthop_addr = io->ipsec_out_nexthop_addr; 20879 20880 ipha = (ipha_t *)mp->b_rptr; 20881 dst = ipha->ipha_dst; 20882 goto send_from_ill; 20883 } else { 20884 ASSERT(io->ipsec_out_ill_index != 0); 20885 ifindex = io->ipsec_out_ill_index; 20886 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 20887 NULL, NULL, NULL, NULL, ipst); 20888 /* 20889 * ipsec_out_xmit_if bit is used to tell 20890 * ip_wput to use the ill to send outgoing data 20891 * as we have no conn when data comes from ICMP 20892 * error msg routines. Currently this feature is 20893 * only used by ip_mrtun_forward routine. 20894 */ 20895 if (io->ipsec_out_xmit_if) { 20896 xmit_ill = ill; 20897 if (xmit_ill == NULL) { 20898 ip1dbg(("ip_output:bad ifindex " 20899 "for xmit_ill %d\n", 20900 ifindex)); 20901 freemsg(first_mp); 20902 BUMP_MIB(&ipst->ips_ip_mib, 20903 ipIfStatsOutDiscards); 20904 ASSERT(!need_decref); 20905 return; 20906 } 20907 /* Free up the ipsec_out_t mblk */ 20908 ASSERT(first_mp->b_cont == mp); 20909 first_mp->b_cont = NULL; 20910 freeb(first_mp); 20911 /* Just send the IP header+ICMP+data */ 20912 first_mp = mp; 20913 ipha = (ipha_t *)mp->b_rptr; 20914 dst = ipha->ipha_dst; 20915 goto send_from_ill; 20916 } else { 20917 attach_ill = ill; 20918 } 20919 20920 if (attach_ill == NULL) { 20921 ASSERT(xmit_ill == NULL); 20922 ip1dbg(("ip_output: bad ifindex for " 20923 "(BIND TO IPIF_NOFAILOVER) %d\n", 20924 ifindex)); 20925 freemsg(first_mp); 20926 BUMP_MIB(&ipst->ips_ip_mib, 20927 ipIfStatsOutDiscards); 20928 ASSERT(!need_decref); 20929 return; 20930 } 20931 } 20932 } 20933 } 20934 20935 ASSERT(xmit_ill == NULL); 20936 20937 /* We have a complete IP datagram heading outbound. */ 20938 ipha = (ipha_t *)mp->b_rptr; 20939 20940 #ifndef SPEED_BEFORE_SAFETY 20941 /* 20942 * Make sure we have a full-word aligned message and that at least 20943 * a simple IP header is accessible in the first message. If not, 20944 * try a pullup. 20945 */ 20946 if (!OK_32PTR(rptr) || 20947 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20948 hdrtoosmall: 20949 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20950 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20951 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20952 if (first_mp == NULL) 20953 first_mp = mp; 20954 goto discard_pkt; 20955 } 20956 20957 /* This function assumes that mp points to an IPv4 packet. */ 20958 if (is_system_labeled() && q->q_next == NULL && 20959 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20960 !connp->conn_ulp_labeled) { 20961 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20962 &adjust, connp->conn_mac_exempt, ipst); 20963 ipha = (ipha_t *)mp->b_rptr; 20964 if (first_mp != NULL) 20965 first_mp->b_cont = mp; 20966 if (err != 0) { 20967 if (first_mp == NULL) 20968 first_mp = mp; 20969 if (err == EINVAL) 20970 goto icmp_parameter_problem; 20971 ip2dbg(("ip_wput: label check failed (%d)\n", 20972 err)); 20973 goto discard_pkt; 20974 } 20975 iplen = ntohs(ipha->ipha_length) + adjust; 20976 ipha->ipha_length = htons(iplen); 20977 } 20978 20979 ipha = (ipha_t *)mp->b_rptr; 20980 if (first_mp == NULL) { 20981 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20982 /* 20983 * If we got here because of "goto hdrtoosmall" 20984 * We need to attach a IPSEC_OUT. 20985 */ 20986 if (connp->conn_out_enforce_policy) { 20987 if (((mp = ipsec_attach_ipsec_out(mp, connp, 20988 NULL, ipha->ipha_protocol, 20989 ipst->ips_netstack)) == NULL)) { 20990 BUMP_MIB(&ipst->ips_ip_mib, 20991 ipIfStatsOutDiscards); 20992 if (need_decref) 20993 CONN_DEC_REF(connp); 20994 return; 20995 } else { 20996 ASSERT(mp->b_datap->db_type == M_CTL); 20997 first_mp = mp; 20998 mp = mp->b_cont; 20999 mctl_present = B_TRUE; 21000 } 21001 } else { 21002 first_mp = mp; 21003 mctl_present = B_FALSE; 21004 } 21005 } 21006 } 21007 #endif 21008 21009 /* Most of the code below is written for speed, not readability */ 21010 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21011 21012 /* 21013 * If ip_newroute() fails, we're going to need a full 21014 * header for the icmp wraparound. 21015 */ 21016 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 21017 uint_t v_hlen; 21018 version_hdrlen_check: 21019 ASSERT(first_mp != NULL); 21020 v_hlen = V_HLEN; 21021 /* 21022 * siphon off IPv6 packets coming down from transport 21023 * layer modules here. 21024 * Note: high-order bit carries NUD reachability confirmation 21025 */ 21026 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 21027 /* 21028 * XXX implement a IPv4 and IPv6 packet counter per 21029 * conn and switch when ratio exceeds e.g. 10:1 21030 */ 21031 #ifdef notyet 21032 if (q->q_next == NULL) /* Avoid ill queue */ 21033 ip_setqinfo(RD(q), B_TRUE, B_TRUE, ipst); 21034 #endif 21035 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 21036 ASSERT(xmit_ill == NULL); 21037 if (attach_ill != NULL) 21038 ill_refrele(attach_ill); 21039 if (need_decref) 21040 mp->b_flag |= MSGHASREF; 21041 (void) ip_output_v6(arg, first_mp, arg2, caller); 21042 return; 21043 } 21044 21045 if ((v_hlen >> 4) != IP_VERSION) { 21046 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21047 "ip_wput_end: q %p (%S)", q, "badvers"); 21048 goto discard_pkt; 21049 } 21050 /* 21051 * Is the header length at least 20 bytes? 21052 * 21053 * Are there enough bytes accessible in the header? If 21054 * not, try a pullup. 21055 */ 21056 v_hlen &= 0xF; 21057 v_hlen <<= 2; 21058 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 21059 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21060 "ip_wput_end: q %p (%S)", q, "badlen"); 21061 goto discard_pkt; 21062 } 21063 if (v_hlen > (mp->b_wptr - rptr)) { 21064 if (!pullupmsg(mp, v_hlen)) { 21065 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21066 "ip_wput_end: q %p (%S)", q, "badpullup2"); 21067 goto discard_pkt; 21068 } 21069 ipha = (ipha_t *)mp->b_rptr; 21070 } 21071 /* 21072 * Move first entry from any source route into ipha_dst and 21073 * verify the options 21074 */ 21075 if (ip_wput_options(q, first_mp, ipha, mctl_present, 21076 zoneid, ipst)) { 21077 ASSERT(xmit_ill == NULL); 21078 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21079 if (attach_ill != NULL) 21080 ill_refrele(attach_ill); 21081 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21082 "ip_wput_end: q %p (%S)", q, "badopts"); 21083 if (need_decref) 21084 CONN_DEC_REF(connp); 21085 return; 21086 } 21087 } 21088 dst = ipha->ipha_dst; 21089 21090 /* 21091 * Try to get an IRE_CACHE for the destination address. If we can't, 21092 * we have to run the packet through ip_newroute which will take 21093 * the appropriate action to arrange for an IRE_CACHE, such as querying 21094 * a resolver, or assigning a default gateway, etc. 21095 */ 21096 if (CLASSD(dst)) { 21097 ipif_t *ipif; 21098 uint32_t setsrc = 0; 21099 21100 multicast: 21101 ASSERT(first_mp != NULL); 21102 ip2dbg(("ip_wput: CLASSD\n")); 21103 if (connp == NULL) { 21104 /* 21105 * Use the first good ipif on the ill. 21106 * XXX Should this ever happen? (Appears 21107 * to show up with just ppp and no ethernet due 21108 * to in.rdisc.) 21109 * However, ire_send should be able to 21110 * call ip_wput_ire directly. 21111 * 21112 * XXX Also, this can happen for ICMP and other packets 21113 * with multicast source addresses. Perhaps we should 21114 * fix things so that we drop the packet in question, 21115 * but for now, just run with it. 21116 */ 21117 ill_t *ill = (ill_t *)q->q_ptr; 21118 21119 /* 21120 * Don't honor attach_if for this case. If ill 21121 * is part of the group, ipif could belong to 21122 * any ill and we cannot maintain attach_ill 21123 * and ipif_ill same anymore and the assert 21124 * below would fail. 21125 */ 21126 if (mctl_present && io->ipsec_out_attach_if) { 21127 io->ipsec_out_ill_index = 0; 21128 io->ipsec_out_attach_if = B_FALSE; 21129 ASSERT(attach_ill != NULL); 21130 ill_refrele(attach_ill); 21131 attach_ill = NULL; 21132 } 21133 21134 ASSERT(attach_ill == NULL); 21135 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21136 if (ipif == NULL) { 21137 if (need_decref) 21138 CONN_DEC_REF(connp); 21139 freemsg(first_mp); 21140 return; 21141 } 21142 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21143 ntohl(dst), ill->ill_name)); 21144 } else { 21145 /* 21146 * The order of precedence is IP_XMIT_IF, IP_PKTINFO 21147 * and IP_MULTICAST_IF. 21148 * Block comment above this function explains the 21149 * locking mechanism used here 21150 */ 21151 if (xmit_ill == NULL) { 21152 xmit_ill = conn_get_held_ill(connp, 21153 &connp->conn_xmit_if_ill, &err); 21154 if (err == ILL_LOOKUP_FAILED) { 21155 ip1dbg(("ip_wput: No ill for " 21156 "IP_XMIT_IF\n")); 21157 BUMP_MIB(&ipst->ips_ip_mib, 21158 ipIfStatsOutNoRoutes); 21159 goto drop_pkt; 21160 } 21161 } 21162 21163 if (xmit_ill == NULL) { 21164 ipif = conn_get_held_ipif(connp, 21165 &connp->conn_multicast_ipif, &err); 21166 if (err == IPIF_LOOKUP_FAILED) { 21167 ip1dbg(("ip_wput: No ipif for " 21168 "multicast\n")); 21169 BUMP_MIB(&ipst->ips_ip_mib, 21170 ipIfStatsOutNoRoutes); 21171 goto drop_pkt; 21172 } 21173 } 21174 if (xmit_ill != NULL) { 21175 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21176 if (ipif == NULL) { 21177 ip1dbg(("ip_wput: No ipif for " 21178 "IP_XMIT_IF\n")); 21179 BUMP_MIB(&ipst->ips_ip_mib, 21180 ipIfStatsOutNoRoutes); 21181 goto drop_pkt; 21182 } 21183 } else if (ipif == NULL || ipif->ipif_isv6) { 21184 /* 21185 * We must do this ipif determination here 21186 * else we could pass through ip_newroute 21187 * and come back here without the conn context. 21188 * 21189 * Note: we do late binding i.e. we bind to 21190 * the interface when the first packet is sent. 21191 * For performance reasons we do not rebind on 21192 * each packet but keep the binding until the 21193 * next IP_MULTICAST_IF option. 21194 * 21195 * conn_multicast_{ipif,ill} are shared between 21196 * IPv4 and IPv6 and AF_INET6 sockets can 21197 * send both IPv4 and IPv6 packets. Hence 21198 * we have to check that "isv6" matches above. 21199 */ 21200 if (ipif != NULL) 21201 ipif_refrele(ipif); 21202 ipif = ipif_lookup_group(dst, zoneid, ipst); 21203 if (ipif == NULL) { 21204 ip1dbg(("ip_wput: No ipif for " 21205 "multicast\n")); 21206 BUMP_MIB(&ipst->ips_ip_mib, 21207 ipIfStatsOutNoRoutes); 21208 goto drop_pkt; 21209 } 21210 err = conn_set_held_ipif(connp, 21211 &connp->conn_multicast_ipif, ipif); 21212 if (err == IPIF_LOOKUP_FAILED) { 21213 ipif_refrele(ipif); 21214 ip1dbg(("ip_wput: No ipif for " 21215 "multicast\n")); 21216 BUMP_MIB(&ipst->ips_ip_mib, 21217 ipIfStatsOutNoRoutes); 21218 goto drop_pkt; 21219 } 21220 } 21221 } 21222 ASSERT(!ipif->ipif_isv6); 21223 /* 21224 * As we may lose the conn by the time we reach ip_wput_ire, 21225 * we copy conn_multicast_loop and conn_dontroute on to an 21226 * ipsec_out. In case if this datagram goes out secure, 21227 * we need the ill_index also. Copy that also into the 21228 * ipsec_out. 21229 */ 21230 if (mctl_present) { 21231 io = (ipsec_out_t *)first_mp->b_rptr; 21232 ASSERT(first_mp->b_datap->db_type == M_CTL); 21233 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21234 } else { 21235 ASSERT(mp == first_mp); 21236 if ((first_mp = allocb(sizeof (ipsec_info_t), 21237 BPRI_HI)) == NULL) { 21238 ipif_refrele(ipif); 21239 first_mp = mp; 21240 goto discard_pkt; 21241 } 21242 first_mp->b_datap->db_type = M_CTL; 21243 first_mp->b_wptr += sizeof (ipsec_info_t); 21244 /* ipsec_out_secure is B_FALSE now */ 21245 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21246 io = (ipsec_out_t *)first_mp->b_rptr; 21247 io->ipsec_out_type = IPSEC_OUT; 21248 io->ipsec_out_len = sizeof (ipsec_out_t); 21249 io->ipsec_out_use_global_policy = B_TRUE; 21250 io->ipsec_out_ns = ipst->ips_netstack; 21251 first_mp->b_cont = mp; 21252 mctl_present = B_TRUE; 21253 } 21254 if (attach_ill != NULL) { 21255 ASSERT(attach_ill == ipif->ipif_ill); 21256 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21257 21258 /* 21259 * Check if we need an ire that will not be 21260 * looked up by anybody else i.e. HIDDEN. 21261 */ 21262 if (ill_is_probeonly(attach_ill)) { 21263 match_flags |= MATCH_IRE_MARK_HIDDEN; 21264 } 21265 io->ipsec_out_ill_index = 21266 attach_ill->ill_phyint->phyint_ifindex; 21267 io->ipsec_out_attach_if = B_TRUE; 21268 } else { 21269 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21270 io->ipsec_out_ill_index = 21271 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21272 } 21273 if (connp != NULL) { 21274 io->ipsec_out_multicast_loop = 21275 connp->conn_multicast_loop; 21276 io->ipsec_out_dontroute = connp->conn_dontroute; 21277 io->ipsec_out_zoneid = connp->conn_zoneid; 21278 } 21279 /* 21280 * If the application uses IP_MULTICAST_IF with 21281 * different logical addresses of the same ILL, we 21282 * need to make sure that the soruce address of 21283 * the packet matches the logical IP address used 21284 * in the option. We do it by initializing ipha_src 21285 * here. This should keep IPSEC also happy as 21286 * when we return from IPSEC processing, we don't 21287 * have to worry about getting the right address on 21288 * the packet. Thus it is sufficient to look for 21289 * IRE_CACHE using MATCH_IRE_ILL rathen than 21290 * MATCH_IRE_IPIF. 21291 * 21292 * NOTE : We need to do it for non-secure case also as 21293 * this might go out secure if there is a global policy 21294 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21295 * address, the source should be initialized already and 21296 * hence we won't be initializing here. 21297 * 21298 * As we do not have the ire yet, it is possible that 21299 * we set the source address here and then later discover 21300 * that the ire implies the source address to be assigned 21301 * through the RTF_SETSRC flag. 21302 * In that case, the setsrc variable will remind us 21303 * that overwritting the source address by the one 21304 * of the RTF_SETSRC-flagged ire is allowed. 21305 */ 21306 if (ipha->ipha_src == INADDR_ANY && 21307 (connp == NULL || !connp->conn_unspec_src)) { 21308 ipha->ipha_src = ipif->ipif_src_addr; 21309 setsrc = RTF_SETSRC; 21310 } 21311 /* 21312 * Find an IRE which matches the destination and the outgoing 21313 * queue (i.e. the outgoing interface.) 21314 * For loopback use a unicast IP address for 21315 * the ire lookup. 21316 */ 21317 if (ipif->ipif_ill->ill_phyint->phyint_flags & 21318 PHYI_LOOPBACK) { 21319 dst = ipif->ipif_lcl_addr; 21320 } 21321 /* 21322 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 21323 * We don't need to lookup ire in ctable as the packet 21324 * needs to be sent to the destination through the specified 21325 * ill irrespective of ires in the cache table. 21326 */ 21327 ire = NULL; 21328 if (xmit_ill == NULL) { 21329 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21330 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21331 } 21332 21333 /* 21334 * refrele attach_ill as its not needed anymore. 21335 */ 21336 if (attach_ill != NULL) { 21337 ill_refrele(attach_ill); 21338 attach_ill = NULL; 21339 } 21340 21341 if (ire == NULL) { 21342 /* 21343 * Multicast loopback and multicast forwarding is 21344 * done in ip_wput_ire. 21345 * 21346 * Mark this packet to make it be delivered to 21347 * ip_wput_ire after the new ire has been 21348 * created. 21349 * 21350 * The call to ip_newroute_ipif takes into account 21351 * the setsrc reminder. In any case, we take care 21352 * of the RTF_MULTIRT flag. 21353 */ 21354 mp->b_prev = mp->b_next = NULL; 21355 if (xmit_ill == NULL || 21356 xmit_ill->ill_ipif_up_count > 0) { 21357 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21358 setsrc | RTF_MULTIRT, zoneid, infop); 21359 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21360 "ip_wput_end: q %p (%S)", q, "noire"); 21361 } else { 21362 freemsg(first_mp); 21363 } 21364 ipif_refrele(ipif); 21365 if (xmit_ill != NULL) 21366 ill_refrele(xmit_ill); 21367 if (need_decref) 21368 CONN_DEC_REF(connp); 21369 return; 21370 } 21371 21372 ipif_refrele(ipif); 21373 ipif = NULL; 21374 ASSERT(xmit_ill == NULL); 21375 21376 /* 21377 * Honor the RTF_SETSRC flag for multicast packets, 21378 * if allowed by the setsrc reminder. 21379 */ 21380 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21381 ipha->ipha_src = ire->ire_src_addr; 21382 } 21383 21384 /* 21385 * Unconditionally force the TTL to 1 for 21386 * multirouted multicast packets: 21387 * multirouted multicast should not cross 21388 * multicast routers. 21389 */ 21390 if (ire->ire_flags & RTF_MULTIRT) { 21391 if (ipha->ipha_ttl > 1) { 21392 ip2dbg(("ip_wput: forcing multicast " 21393 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21394 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21395 ipha->ipha_ttl = 1; 21396 } 21397 } 21398 } else { 21399 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21400 if ((ire != NULL) && (ire->ire_type & 21401 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21402 ignore_dontroute = B_TRUE; 21403 ignore_nexthop = B_TRUE; 21404 } 21405 if (ire != NULL) { 21406 ire_refrele(ire); 21407 ire = NULL; 21408 } 21409 /* 21410 * Guard against coming in from arp in which case conn is NULL. 21411 * Also guard against non M_DATA with dontroute set but 21412 * destined to local, loopback or broadcast addresses. 21413 */ 21414 if (connp != NULL && connp->conn_dontroute && 21415 !ignore_dontroute) { 21416 dontroute: 21417 /* 21418 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21419 * routing protocols from seeing false direct 21420 * connectivity. 21421 */ 21422 ipha->ipha_ttl = 1; 21423 /* 21424 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 21425 * along with SO_DONTROUTE, higher precedence is 21426 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 21427 */ 21428 if (connp->conn_xmit_if_ill == NULL) { 21429 /* If suitable ipif not found, drop packet */ 21430 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, 21431 ipst); 21432 if (dst_ipif == NULL) { 21433 ip1dbg(("ip_wput: no route for " 21434 "dst using SO_DONTROUTE\n")); 21435 BUMP_MIB(&ipst->ips_ip_mib, 21436 ipIfStatsOutNoRoutes); 21437 mp->b_prev = mp->b_next = NULL; 21438 if (first_mp == NULL) 21439 first_mp = mp; 21440 goto drop_pkt; 21441 } else { 21442 /* 21443 * If suitable ipif has been found, set 21444 * xmit_ill to the corresponding 21445 * ipif_ill because we'll be following 21446 * the IP_XMIT_IF logic. 21447 */ 21448 ASSERT(xmit_ill == NULL); 21449 xmit_ill = dst_ipif->ipif_ill; 21450 mutex_enter(&xmit_ill->ill_lock); 21451 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21452 mutex_exit(&xmit_ill->ill_lock); 21453 xmit_ill = NULL; 21454 ipif_refrele(dst_ipif); 21455 ip1dbg(("ip_wput: no route for" 21456 " dst using" 21457 " SO_DONTROUTE\n")); 21458 BUMP_MIB(&ipst->ips_ip_mib, 21459 ipIfStatsOutNoRoutes); 21460 mp->b_prev = mp->b_next = NULL; 21461 if (first_mp == NULL) 21462 first_mp = mp; 21463 goto drop_pkt; 21464 } 21465 ill_refhold_locked(xmit_ill); 21466 mutex_exit(&xmit_ill->ill_lock); 21467 ipif_refrele(dst_ipif); 21468 } 21469 } 21470 21471 } 21472 /* 21473 * If we are bound to IPIF_NOFAILOVER address, look for 21474 * an IRE_CACHE matching the ill. 21475 */ 21476 send_from_ill: 21477 if (attach_ill != NULL) { 21478 ipif_t *attach_ipif; 21479 21480 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21481 21482 /* 21483 * Check if we need an ire that will not be 21484 * looked up by anybody else i.e. HIDDEN. 21485 */ 21486 if (ill_is_probeonly(attach_ill)) { 21487 match_flags |= MATCH_IRE_MARK_HIDDEN; 21488 } 21489 21490 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21491 if (attach_ipif == NULL) { 21492 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21493 goto discard_pkt; 21494 } 21495 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21496 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21497 ipif_refrele(attach_ipif); 21498 } else if (xmit_ill != NULL || (connp != NULL && 21499 connp->conn_xmit_if_ill != NULL)) { 21500 /* 21501 * Mark this packet as originated locally 21502 */ 21503 mp->b_prev = mp->b_next = NULL; 21504 /* 21505 * xmit_ill could be NULL if SO_DONTROUTE 21506 * is also set. 21507 */ 21508 if (xmit_ill == NULL) { 21509 xmit_ill = conn_get_held_ill(connp, 21510 &connp->conn_xmit_if_ill, &err); 21511 if (err == ILL_LOOKUP_FAILED) { 21512 BUMP_MIB(&ipst->ips_ip_mib, 21513 ipIfStatsOutDiscards); 21514 if (need_decref) 21515 CONN_DEC_REF(connp); 21516 freemsg(first_mp); 21517 return; 21518 } 21519 if (xmit_ill == NULL) { 21520 if (connp->conn_dontroute) 21521 goto dontroute; 21522 goto send_from_ill; 21523 } 21524 } 21525 /* 21526 * Could be SO_DONTROUTE case also. 21527 * check at least one interface is UP as 21528 * specified by this ILL 21529 */ 21530 if (xmit_ill->ill_ipif_up_count > 0) { 21531 ipif_t *ipif; 21532 21533 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21534 if (ipif == NULL) { 21535 ip1dbg(("ip_output: " 21536 "xmit_ill NULL ipif\n")); 21537 goto drop_pkt; 21538 } 21539 /* 21540 * Look for a ire that is part of the group, 21541 * if found use it else call ip_newroute_ipif. 21542 * IPCL_ZONEID is not used for matching because 21543 * IP_ALLZONES option is valid only when the 21544 * ill is accessible from all zones i.e has a 21545 * valid ipif in all zones. 21546 */ 21547 match_flags = MATCH_IRE_ILL_GROUP | 21548 MATCH_IRE_SECATTR; 21549 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21550 MBLK_GETLABEL(mp), match_flags, ipst); 21551 /* 21552 * If an ire exists use it or else create 21553 * an ire but don't add it to the cache. 21554 * Adding an ire may cause issues with 21555 * asymmetric routing. 21556 * In case of multiroute always act as if 21557 * ire does not exist. 21558 */ 21559 if (ire == NULL || 21560 ire->ire_flags & RTF_MULTIRT) { 21561 if (ire != NULL) 21562 ire_refrele(ire); 21563 ip_newroute_ipif(q, first_mp, ipif, 21564 dst, connp, 0, zoneid, infop); 21565 ipif_refrele(ipif); 21566 ip1dbg(("ip_wput: ip_unicast_if\n")); 21567 ill_refrele(xmit_ill); 21568 if (need_decref) 21569 CONN_DEC_REF(connp); 21570 return; 21571 } 21572 ipif_refrele(ipif); 21573 } else { 21574 goto drop_pkt; 21575 } 21576 } else if (ip_nexthop || (connp != NULL && 21577 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21578 if (!ip_nexthop) { 21579 ip_nexthop = B_TRUE; 21580 nexthop_addr = connp->conn_nexthop_v4; 21581 } 21582 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21583 MATCH_IRE_GW; 21584 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21585 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21586 } else { 21587 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21588 ipst); 21589 } 21590 if (!ire) { 21591 /* 21592 * Make sure we don't load spread if this 21593 * is IPIF_NOFAILOVER case. 21594 */ 21595 if ((attach_ill != NULL) || 21596 (ip_nexthop && !ignore_nexthop)) { 21597 if (mctl_present) { 21598 io = (ipsec_out_t *)first_mp->b_rptr; 21599 ASSERT(first_mp->b_datap->db_type == 21600 M_CTL); 21601 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21602 } else { 21603 ASSERT(mp == first_mp); 21604 first_mp = allocb( 21605 sizeof (ipsec_info_t), BPRI_HI); 21606 if (first_mp == NULL) { 21607 first_mp = mp; 21608 goto discard_pkt; 21609 } 21610 first_mp->b_datap->db_type = M_CTL; 21611 first_mp->b_wptr += 21612 sizeof (ipsec_info_t); 21613 /* ipsec_out_secure is B_FALSE now */ 21614 bzero(first_mp->b_rptr, 21615 sizeof (ipsec_info_t)); 21616 io = (ipsec_out_t *)first_mp->b_rptr; 21617 io->ipsec_out_type = IPSEC_OUT; 21618 io->ipsec_out_len = 21619 sizeof (ipsec_out_t); 21620 io->ipsec_out_use_global_policy = 21621 B_TRUE; 21622 io->ipsec_out_ns = ipst->ips_netstack; 21623 first_mp->b_cont = mp; 21624 mctl_present = B_TRUE; 21625 } 21626 if (attach_ill != NULL) { 21627 io->ipsec_out_ill_index = attach_ill-> 21628 ill_phyint->phyint_ifindex; 21629 io->ipsec_out_attach_if = B_TRUE; 21630 } else { 21631 io->ipsec_out_ip_nexthop = ip_nexthop; 21632 io->ipsec_out_nexthop_addr = 21633 nexthop_addr; 21634 } 21635 } 21636 noirefound: 21637 /* 21638 * Mark this packet as having originated on 21639 * this machine. This will be noted in 21640 * ire_add_then_send, which needs to know 21641 * whether to run it back through ip_wput or 21642 * ip_rput following successful resolution. 21643 */ 21644 mp->b_prev = NULL; 21645 mp->b_next = NULL; 21646 ip_newroute(q, first_mp, dst, NULL, connp, zoneid, 21647 ipst); 21648 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21649 "ip_wput_end: q %p (%S)", q, "newroute"); 21650 if (attach_ill != NULL) 21651 ill_refrele(attach_ill); 21652 if (xmit_ill != NULL) 21653 ill_refrele(xmit_ill); 21654 if (need_decref) 21655 CONN_DEC_REF(connp); 21656 return; 21657 } 21658 } 21659 21660 /* We now know where we are going with it. */ 21661 21662 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21663 "ip_wput_end: q %p (%S)", q, "end"); 21664 21665 /* 21666 * Check if the ire has the RTF_MULTIRT flag, inherited 21667 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21668 */ 21669 if (ire->ire_flags & RTF_MULTIRT) { 21670 /* 21671 * Force the TTL of multirouted packets if required. 21672 * The TTL of such packets is bounded by the 21673 * ip_multirt_ttl ndd variable. 21674 */ 21675 if ((ipst->ips_ip_multirt_ttl > 0) && 21676 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21677 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21678 "(was %d), dst 0x%08x\n", 21679 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21680 ntohl(ire->ire_addr))); 21681 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21682 } 21683 /* 21684 * At this point, we check to see if there are any pending 21685 * unresolved routes. ire_multirt_resolvable() 21686 * checks in O(n) that all IRE_OFFSUBNET ire 21687 * entries for the packet's destination and 21688 * flagged RTF_MULTIRT are currently resolved. 21689 * If some remain unresolved, we make a copy 21690 * of the current message. It will be used 21691 * to initiate additional route resolutions. 21692 */ 21693 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21694 MBLK_GETLABEL(first_mp), ipst); 21695 ip2dbg(("ip_wput[noirefound]: ire %p, " 21696 "multirt_need_resolve %d, first_mp %p\n", 21697 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21698 if (multirt_need_resolve) { 21699 copy_mp = copymsg(first_mp); 21700 if (copy_mp != NULL) { 21701 MULTIRT_DEBUG_TAG(copy_mp); 21702 } 21703 } 21704 } 21705 21706 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21707 /* 21708 * Try to resolve another multiroute if 21709 * ire_multirt_resolvable() deemed it necessary. 21710 * At this point, we need to distinguish 21711 * multicasts from other packets. For multicasts, 21712 * we call ip_newroute_ipif() and request that both 21713 * multirouting and setsrc flags are checked. 21714 */ 21715 if (copy_mp != NULL) { 21716 if (CLASSD(dst)) { 21717 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21718 if (ipif) { 21719 ASSERT(infop->ip_opt_ill_index == 0); 21720 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21721 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21722 ipif_refrele(ipif); 21723 } else { 21724 MULTIRT_DEBUG_UNTAG(copy_mp); 21725 freemsg(copy_mp); 21726 copy_mp = NULL; 21727 } 21728 } else { 21729 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 21730 } 21731 } 21732 if (attach_ill != NULL) 21733 ill_refrele(attach_ill); 21734 if (xmit_ill != NULL) 21735 ill_refrele(xmit_ill); 21736 if (need_decref) 21737 CONN_DEC_REF(connp); 21738 return; 21739 21740 icmp_parameter_problem: 21741 /* could not have originated externally */ 21742 ASSERT(mp->b_prev == NULL); 21743 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21744 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21745 /* it's the IP header length that's in trouble */ 21746 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21747 first_mp = NULL; 21748 } 21749 21750 discard_pkt: 21751 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21752 drop_pkt: 21753 ip1dbg(("ip_wput: dropped packet\n")); 21754 if (ire != NULL) 21755 ire_refrele(ire); 21756 if (need_decref) 21757 CONN_DEC_REF(connp); 21758 freemsg(first_mp); 21759 if (attach_ill != NULL) 21760 ill_refrele(attach_ill); 21761 if (xmit_ill != NULL) 21762 ill_refrele(xmit_ill); 21763 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21764 "ip_wput_end: q %p (%S)", q, "droppkt"); 21765 } 21766 21767 /* 21768 * If this is a conn_t queue, then we pass in the conn. This includes the 21769 * zoneid. 21770 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21771 * in which case we use the global zoneid since those are all part of 21772 * the global zone. 21773 */ 21774 void 21775 ip_wput(queue_t *q, mblk_t *mp) 21776 { 21777 if (CONN_Q(q)) 21778 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21779 else 21780 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21781 } 21782 21783 /* 21784 * 21785 * The following rules must be observed when accessing any ipif or ill 21786 * that has been cached in the conn. Typically conn_nofailover_ill, 21787 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 21788 * 21789 * Access: The ipif or ill pointed to from the conn can be accessed under 21790 * the protection of the conn_lock or after it has been refheld under the 21791 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21792 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21793 * The reason for this is that a concurrent unplumb could actually be 21794 * cleaning up these cached pointers by walking the conns and might have 21795 * finished cleaning up the conn in question. The macros check that an 21796 * unplumb has not yet started on the ipif or ill. 21797 * 21798 * Caching: An ipif or ill pointer may be cached in the conn only after 21799 * making sure that an unplumb has not started. So the caching is done 21800 * while holding both the conn_lock and the ill_lock and after using the 21801 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21802 * flag before starting the cleanup of conns. 21803 * 21804 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21805 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21806 * or a reference to the ipif or a reference to an ire that references the 21807 * ipif. An ipif does not change its ill except for failover/failback. Since 21808 * failover/failback happens only after bringing down the ipif and making sure 21809 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21810 * the above holds. 21811 */ 21812 ipif_t * 21813 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21814 { 21815 ipif_t *ipif; 21816 ill_t *ill; 21817 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21818 21819 *err = 0; 21820 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21821 mutex_enter(&connp->conn_lock); 21822 ipif = *ipifp; 21823 if (ipif != NULL) { 21824 ill = ipif->ipif_ill; 21825 mutex_enter(&ill->ill_lock); 21826 if (IPIF_CAN_LOOKUP(ipif)) { 21827 ipif_refhold_locked(ipif); 21828 mutex_exit(&ill->ill_lock); 21829 mutex_exit(&connp->conn_lock); 21830 rw_exit(&ipst->ips_ill_g_lock); 21831 return (ipif); 21832 } else { 21833 *err = IPIF_LOOKUP_FAILED; 21834 } 21835 mutex_exit(&ill->ill_lock); 21836 } 21837 mutex_exit(&connp->conn_lock); 21838 rw_exit(&ipst->ips_ill_g_lock); 21839 return (NULL); 21840 } 21841 21842 ill_t * 21843 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21844 { 21845 ill_t *ill; 21846 21847 *err = 0; 21848 mutex_enter(&connp->conn_lock); 21849 ill = *illp; 21850 if (ill != NULL) { 21851 mutex_enter(&ill->ill_lock); 21852 if (ILL_CAN_LOOKUP(ill)) { 21853 ill_refhold_locked(ill); 21854 mutex_exit(&ill->ill_lock); 21855 mutex_exit(&connp->conn_lock); 21856 return (ill); 21857 } else { 21858 *err = ILL_LOOKUP_FAILED; 21859 } 21860 mutex_exit(&ill->ill_lock); 21861 } 21862 mutex_exit(&connp->conn_lock); 21863 return (NULL); 21864 } 21865 21866 static int 21867 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21868 { 21869 ill_t *ill; 21870 21871 ill = ipif->ipif_ill; 21872 mutex_enter(&connp->conn_lock); 21873 mutex_enter(&ill->ill_lock); 21874 if (IPIF_CAN_LOOKUP(ipif)) { 21875 *ipifp = ipif; 21876 mutex_exit(&ill->ill_lock); 21877 mutex_exit(&connp->conn_lock); 21878 return (0); 21879 } 21880 mutex_exit(&ill->ill_lock); 21881 mutex_exit(&connp->conn_lock); 21882 return (IPIF_LOOKUP_FAILED); 21883 } 21884 21885 /* 21886 * This is called if the outbound datagram needs fragmentation. 21887 * 21888 * NOTE : This function does not ire_refrele the ire argument passed in. 21889 */ 21890 static void 21891 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21892 ip_stack_t *ipst) 21893 { 21894 ipha_t *ipha; 21895 mblk_t *mp; 21896 uint32_t v_hlen_tos_len; 21897 uint32_t max_frag; 21898 uint32_t frag_flag; 21899 boolean_t dont_use; 21900 21901 if (ipsec_mp->b_datap->db_type == M_CTL) { 21902 mp = ipsec_mp->b_cont; 21903 } else { 21904 mp = ipsec_mp; 21905 } 21906 21907 ipha = (ipha_t *)mp->b_rptr; 21908 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21909 21910 #ifdef _BIG_ENDIAN 21911 #define V_HLEN (v_hlen_tos_len >> 24) 21912 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21913 #else 21914 #define V_HLEN (v_hlen_tos_len & 0xFF) 21915 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21916 #endif 21917 21918 #ifndef SPEED_BEFORE_SAFETY 21919 /* 21920 * Check that ipha_length is consistent with 21921 * the mblk length 21922 */ 21923 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21924 ip0dbg(("Packet length mismatch: %d, %ld\n", 21925 LENGTH, msgdsize(mp))); 21926 freemsg(ipsec_mp); 21927 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21928 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21929 "packet length mismatch"); 21930 return; 21931 } 21932 #endif 21933 /* 21934 * Don't use frag_flag if pre-built packet or source 21935 * routed or if multicast (since multicast packets do not solicit 21936 * ICMP "packet too big" messages). Get the values of 21937 * max_frag and frag_flag atomically by acquiring the 21938 * ire_lock. 21939 */ 21940 mutex_enter(&ire->ire_lock); 21941 max_frag = ire->ire_max_frag; 21942 frag_flag = ire->ire_frag_flag; 21943 mutex_exit(&ire->ire_lock); 21944 21945 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21946 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21947 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21948 21949 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21950 (dont_use ? 0 : frag_flag), zoneid, ipst); 21951 } 21952 21953 /* 21954 * Used for deciding the MSS size for the upper layer. Thus 21955 * we need to check the outbound policy values in the conn. 21956 */ 21957 int 21958 conn_ipsec_length(conn_t *connp) 21959 { 21960 ipsec_latch_t *ipl; 21961 21962 ipl = connp->conn_latch; 21963 if (ipl == NULL) 21964 return (0); 21965 21966 if (ipl->ipl_out_policy == NULL) 21967 return (0); 21968 21969 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21970 } 21971 21972 /* 21973 * Returns an estimate of the IPSEC headers size. This is used if 21974 * we don't want to call into IPSEC to get the exact size. 21975 */ 21976 int 21977 ipsec_out_extra_length(mblk_t *ipsec_mp) 21978 { 21979 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21980 ipsec_action_t *a; 21981 21982 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21983 if (!io->ipsec_out_secure) 21984 return (0); 21985 21986 a = io->ipsec_out_act; 21987 21988 if (a == NULL) { 21989 ASSERT(io->ipsec_out_policy != NULL); 21990 a = io->ipsec_out_policy->ipsp_act; 21991 } 21992 ASSERT(a != NULL); 21993 21994 return (a->ipa_ovhd); 21995 } 21996 21997 /* 21998 * Returns an estimate of the IPSEC headers size. This is used if 21999 * we don't want to call into IPSEC to get the exact size. 22000 */ 22001 int 22002 ipsec_in_extra_length(mblk_t *ipsec_mp) 22003 { 22004 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22005 ipsec_action_t *a; 22006 22007 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22008 22009 a = ii->ipsec_in_action; 22010 return (a == NULL ? 0 : a->ipa_ovhd); 22011 } 22012 22013 /* 22014 * If there are any source route options, return the true final 22015 * destination. Otherwise, return the destination. 22016 */ 22017 ipaddr_t 22018 ip_get_dst(ipha_t *ipha) 22019 { 22020 ipoptp_t opts; 22021 uchar_t *opt; 22022 uint8_t optval; 22023 uint8_t optlen; 22024 ipaddr_t dst; 22025 uint32_t off; 22026 22027 dst = ipha->ipha_dst; 22028 22029 if (IS_SIMPLE_IPH(ipha)) 22030 return (dst); 22031 22032 for (optval = ipoptp_first(&opts, ipha); 22033 optval != IPOPT_EOL; 22034 optval = ipoptp_next(&opts)) { 22035 opt = opts.ipoptp_cur; 22036 optlen = opts.ipoptp_len; 22037 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 22038 switch (optval) { 22039 case IPOPT_SSRR: 22040 case IPOPT_LSRR: 22041 off = opt[IPOPT_OFFSET]; 22042 /* 22043 * If one of the conditions is true, it means 22044 * end of options and dst already has the right 22045 * value. 22046 */ 22047 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 22048 off = optlen - IP_ADDR_LEN; 22049 bcopy(&opt[off], &dst, IP_ADDR_LEN); 22050 } 22051 return (dst); 22052 default: 22053 break; 22054 } 22055 } 22056 22057 return (dst); 22058 } 22059 22060 mblk_t * 22061 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 22062 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 22063 { 22064 ipsec_out_t *io; 22065 mblk_t *first_mp; 22066 boolean_t policy_present; 22067 ip_stack_t *ipst; 22068 ipsec_stack_t *ipss; 22069 22070 ASSERT(ire != NULL); 22071 ipst = ire->ire_ipst; 22072 ipss = ipst->ips_netstack->netstack_ipsec; 22073 22074 first_mp = mp; 22075 if (mp->b_datap->db_type == M_CTL) { 22076 io = (ipsec_out_t *)first_mp->b_rptr; 22077 /* 22078 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 22079 * 22080 * 1) There is per-socket policy (including cached global 22081 * policy) or a policy on the IP-in-IP tunnel. 22082 * 2) There is no per-socket policy, but it is 22083 * a multicast packet that needs to go out 22084 * on a specific interface. This is the case 22085 * where (ip_wput and ip_wput_multicast) attaches 22086 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 22087 * 22088 * In case (2) we check with global policy to 22089 * see if there is a match and set the ill_index 22090 * appropriately so that we can lookup the ire 22091 * properly in ip_wput_ipsec_out. 22092 */ 22093 22094 /* 22095 * ipsec_out_use_global_policy is set to B_FALSE 22096 * in ipsec_in_to_out(). Refer to that function for 22097 * details. 22098 */ 22099 if ((io->ipsec_out_latch == NULL) && 22100 (io->ipsec_out_use_global_policy)) { 22101 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 22102 ire, connp, unspec_src, zoneid)); 22103 } 22104 if (!io->ipsec_out_secure) { 22105 /* 22106 * If this is not a secure packet, drop 22107 * the IPSEC_OUT mp and treat it as a clear 22108 * packet. This happens when we are sending 22109 * a ICMP reply back to a clear packet. See 22110 * ipsec_in_to_out() for details. 22111 */ 22112 mp = first_mp->b_cont; 22113 freeb(first_mp); 22114 } 22115 return (mp); 22116 } 22117 /* 22118 * See whether we need to attach a global policy here. We 22119 * don't depend on the conn (as it could be null) for deciding 22120 * what policy this datagram should go through because it 22121 * should have happened in ip_wput if there was some 22122 * policy. This normally happens for connections which are not 22123 * fully bound preventing us from caching policies in 22124 * ip_bind. Packets coming from the TCP listener/global queue 22125 * - which are non-hard_bound - could also be affected by 22126 * applying policy here. 22127 * 22128 * If this packet is coming from tcp global queue or listener, 22129 * we will be applying policy here. This may not be *right* 22130 * if these packets are coming from the detached connection as 22131 * it could have gone in clear before. This happens only if a 22132 * TCP connection started when there is no policy and somebody 22133 * added policy before it became detached. Thus packets of the 22134 * detached connection could go out secure and the other end 22135 * would drop it because it will be expecting in clear. The 22136 * converse is not true i.e if somebody starts a TCP 22137 * connection and deletes the policy, all the packets will 22138 * still go out with the policy that existed before deleting 22139 * because ip_unbind sends up policy information which is used 22140 * by TCP on subsequent ip_wputs. The right solution is to fix 22141 * TCP to attach a dummy IPSEC_OUT and set 22142 * ipsec_out_use_global_policy to B_FALSE. As this might 22143 * affect performance for normal cases, we are not doing it. 22144 * Thus, set policy before starting any TCP connections. 22145 * 22146 * NOTE - We might apply policy even for a hard bound connection 22147 * - for which we cached policy in ip_bind - if somebody added 22148 * global policy after we inherited the policy in ip_bind. 22149 * This means that the packets that were going out in clear 22150 * previously would start going secure and hence get dropped 22151 * on the other side. To fix this, TCP attaches a dummy 22152 * ipsec_out and make sure that we don't apply global policy. 22153 */ 22154 if (ipha != NULL) 22155 policy_present = ipss->ipsec_outbound_v4_policy_present; 22156 else 22157 policy_present = ipss->ipsec_outbound_v6_policy_present; 22158 if (!policy_present) 22159 return (mp); 22160 22161 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 22162 zoneid)); 22163 } 22164 22165 ire_t * 22166 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 22167 { 22168 ipaddr_t addr; 22169 ire_t *save_ire; 22170 irb_t *irb; 22171 ill_group_t *illgrp; 22172 int err; 22173 22174 save_ire = ire; 22175 addr = ire->ire_addr; 22176 22177 ASSERT(ire->ire_type == IRE_BROADCAST); 22178 22179 illgrp = connp->conn_outgoing_ill->ill_group; 22180 if (illgrp == NULL) { 22181 *conn_outgoing_ill = conn_get_held_ill(connp, 22182 &connp->conn_outgoing_ill, &err); 22183 if (err == ILL_LOOKUP_FAILED) { 22184 ire_refrele(save_ire); 22185 return (NULL); 22186 } 22187 return (save_ire); 22188 } 22189 /* 22190 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 22191 * If it is part of the group, we need to send on the ire 22192 * that has been cleared of IRE_MARK_NORECV and that belongs 22193 * to this group. This is okay as IP_BOUND_IF really means 22194 * any ill in the group. We depend on the fact that the 22195 * first ire in the group is always cleared of IRE_MARK_NORECV 22196 * if such an ire exists. This is possible only if you have 22197 * at least one ill in the group that has not failed. 22198 * 22199 * First get to the ire that matches the address and group. 22200 * 22201 * We don't look for an ire with a matching zoneid because a given zone 22202 * won't always have broadcast ires on all ills in the group. 22203 */ 22204 irb = ire->ire_bucket; 22205 rw_enter(&irb->irb_lock, RW_READER); 22206 if (ire->ire_marks & IRE_MARK_NORECV) { 22207 /* 22208 * If the current zone only has an ire broadcast for this 22209 * address marked NORECV, the ire we want is ahead in the 22210 * bucket, so we look it up deliberately ignoring the zoneid. 22211 */ 22212 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 22213 if (ire->ire_addr != addr) 22214 continue; 22215 /* skip over deleted ires */ 22216 if (ire->ire_marks & IRE_MARK_CONDEMNED) 22217 continue; 22218 } 22219 } 22220 while (ire != NULL) { 22221 /* 22222 * If a new interface is coming up, we could end up 22223 * seeing the loopback ire and the non-loopback ire 22224 * may not have been added yet. So check for ire_stq 22225 */ 22226 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 22227 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 22228 break; 22229 } 22230 ire = ire->ire_next; 22231 } 22232 if (ire != NULL && ire->ire_addr == addr && 22233 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 22234 IRE_REFHOLD(ire); 22235 rw_exit(&irb->irb_lock); 22236 ire_refrele(save_ire); 22237 *conn_outgoing_ill = ire_to_ill(ire); 22238 /* 22239 * Refhold the ill to make the conn_outgoing_ill 22240 * independent of the ire. ip_wput_ire goes in a loop 22241 * and may refrele the ire. Since we have an ire at this 22242 * point we don't need to use ILL_CAN_LOOKUP on the ill. 22243 */ 22244 ill_refhold(*conn_outgoing_ill); 22245 return (ire); 22246 } 22247 rw_exit(&irb->irb_lock); 22248 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 22249 /* 22250 * If we can't find a suitable ire, return the original ire. 22251 */ 22252 return (save_ire); 22253 } 22254 22255 /* 22256 * This function does the ire_refrele of the ire passed in as the 22257 * argument. As this function looks up more ires i.e broadcast ires, 22258 * it needs to REFRELE them. Currently, for simplicity we don't 22259 * differentiate the one passed in and looked up here. We always 22260 * REFRELE. 22261 * IPQoS Notes: 22262 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22263 * IPSec packets are done in ipsec_out_process. 22264 * 22265 */ 22266 void 22267 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22268 zoneid_t zoneid) 22269 { 22270 ipha_t *ipha; 22271 #define rptr ((uchar_t *)ipha) 22272 queue_t *stq; 22273 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22274 uint32_t v_hlen_tos_len; 22275 uint32_t ttl_protocol; 22276 ipaddr_t src; 22277 ipaddr_t dst; 22278 uint32_t cksum; 22279 ipaddr_t orig_src; 22280 ire_t *ire1; 22281 mblk_t *next_mp; 22282 uint_t hlen; 22283 uint16_t *up; 22284 uint32_t max_frag = ire->ire_max_frag; 22285 ill_t *ill = ire_to_ill(ire); 22286 int clusterwide; 22287 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22288 int ipsec_len; 22289 mblk_t *first_mp; 22290 ipsec_out_t *io; 22291 boolean_t conn_dontroute; /* conn value for multicast */ 22292 boolean_t conn_multicast_loop; /* conn value for multicast */ 22293 boolean_t multicast_forward; /* Should we forward ? */ 22294 boolean_t unspec_src; 22295 ill_t *conn_outgoing_ill = NULL; 22296 ill_t *ire_ill; 22297 ill_t *ire1_ill; 22298 ill_t *out_ill; 22299 uint32_t ill_index = 0; 22300 boolean_t multirt_send = B_FALSE; 22301 int err; 22302 ipxmit_state_t pktxmit_state; 22303 ip_stack_t *ipst = ire->ire_ipst; 22304 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22305 22306 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22307 "ip_wput_ire_start: q %p", q); 22308 22309 multicast_forward = B_FALSE; 22310 unspec_src = (connp != NULL && connp->conn_unspec_src); 22311 22312 if (ire->ire_flags & RTF_MULTIRT) { 22313 /* 22314 * Multirouting case. The bucket where ire is stored 22315 * probably holds other RTF_MULTIRT flagged ire 22316 * to the destination. In this call to ip_wput_ire, 22317 * we attempt to send the packet through all 22318 * those ires. Thus, we first ensure that ire is the 22319 * first RTF_MULTIRT ire in the bucket, 22320 * before walking the ire list. 22321 */ 22322 ire_t *first_ire; 22323 irb_t *irb = ire->ire_bucket; 22324 ASSERT(irb != NULL); 22325 22326 /* Make sure we do not omit any multiroute ire. */ 22327 IRB_REFHOLD(irb); 22328 for (first_ire = irb->irb_ire; 22329 first_ire != NULL; 22330 first_ire = first_ire->ire_next) { 22331 if ((first_ire->ire_flags & RTF_MULTIRT) && 22332 (first_ire->ire_addr == ire->ire_addr) && 22333 !(first_ire->ire_marks & 22334 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 22335 break; 22336 } 22337 22338 if ((first_ire != NULL) && (first_ire != ire)) { 22339 IRE_REFHOLD(first_ire); 22340 ire_refrele(ire); 22341 ire = first_ire; 22342 ill = ire_to_ill(ire); 22343 } 22344 IRB_REFRELE(irb); 22345 } 22346 22347 /* 22348 * conn_outgoing_ill is used only in the broadcast loop. 22349 * for performance we don't grab the mutexs in the fastpath 22350 */ 22351 if ((connp != NULL) && 22352 (connp->conn_xmit_if_ill == NULL) && 22353 (ire->ire_type == IRE_BROADCAST) && 22354 ((connp->conn_nofailover_ill != NULL) || 22355 (connp->conn_outgoing_ill != NULL))) { 22356 /* 22357 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22358 * option. So, see if this endpoint is bound to a 22359 * IPIF_NOFAILOVER address. If so, honor it. This implies 22360 * that if the interface is failed, we will still send 22361 * the packet on the same ill which is what we want. 22362 */ 22363 conn_outgoing_ill = conn_get_held_ill(connp, 22364 &connp->conn_nofailover_ill, &err); 22365 if (err == ILL_LOOKUP_FAILED) { 22366 ire_refrele(ire); 22367 freemsg(mp); 22368 return; 22369 } 22370 if (conn_outgoing_ill == NULL) { 22371 /* 22372 * Choose a good ill in the group to send the 22373 * packets on. 22374 */ 22375 ire = conn_set_outgoing_ill(connp, ire, 22376 &conn_outgoing_ill); 22377 if (ire == NULL) { 22378 freemsg(mp); 22379 return; 22380 } 22381 } 22382 } 22383 22384 if (mp->b_datap->db_type != M_CTL) { 22385 ipha = (ipha_t *)mp->b_rptr; 22386 } else { 22387 io = (ipsec_out_t *)mp->b_rptr; 22388 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22389 ASSERT(zoneid == io->ipsec_out_zoneid); 22390 ASSERT(zoneid != ALL_ZONES); 22391 ipha = (ipha_t *)mp->b_cont->b_rptr; 22392 dst = ipha->ipha_dst; 22393 /* 22394 * For the multicast case, ipsec_out carries conn_dontroute and 22395 * conn_multicast_loop as conn may not be available here. We 22396 * need this for multicast loopback and forwarding which is done 22397 * later in the code. 22398 */ 22399 if (CLASSD(dst)) { 22400 conn_dontroute = io->ipsec_out_dontroute; 22401 conn_multicast_loop = io->ipsec_out_multicast_loop; 22402 /* 22403 * If conn_dontroute is not set or conn_multicast_loop 22404 * is set, we need to do forwarding/loopback. For 22405 * datagrams from ip_wput_multicast, conn_dontroute is 22406 * set to B_TRUE and conn_multicast_loop is set to 22407 * B_FALSE so that we neither do forwarding nor 22408 * loopback. 22409 */ 22410 if (!conn_dontroute || conn_multicast_loop) 22411 multicast_forward = B_TRUE; 22412 } 22413 } 22414 22415 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22416 ire->ire_zoneid != ALL_ZONES) { 22417 /* 22418 * When a zone sends a packet to another zone, we try to deliver 22419 * the packet under the same conditions as if the destination 22420 * was a real node on the network. To do so, we look for a 22421 * matching route in the forwarding table. 22422 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22423 * ip_newroute() does. 22424 * Note that IRE_LOCAL are special, since they are used 22425 * when the zoneid doesn't match in some cases. This means that 22426 * we need to handle ipha_src differently since ire_src_addr 22427 * belongs to the receiving zone instead of the sending zone. 22428 * When ip_restrict_interzone_loopback is set, then 22429 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22430 * for loopback between zones when the logical "Ethernet" would 22431 * have looped them back. 22432 */ 22433 ire_t *src_ire; 22434 22435 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22436 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22437 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22438 if (src_ire != NULL && 22439 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22440 (!ipst->ips_ip_restrict_interzone_loopback || 22441 ire_local_same_ill_group(ire, src_ire))) { 22442 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22443 ipha->ipha_src = src_ire->ire_src_addr; 22444 ire_refrele(src_ire); 22445 } else { 22446 ire_refrele(ire); 22447 if (conn_outgoing_ill != NULL) 22448 ill_refrele(conn_outgoing_ill); 22449 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22450 if (src_ire != NULL) { 22451 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22452 ire_refrele(src_ire); 22453 freemsg(mp); 22454 return; 22455 } 22456 ire_refrele(src_ire); 22457 } 22458 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22459 /* Failed */ 22460 freemsg(mp); 22461 return; 22462 } 22463 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22464 ipst); 22465 return; 22466 } 22467 } 22468 22469 if (mp->b_datap->db_type == M_CTL || 22470 ipss->ipsec_outbound_v4_policy_present) { 22471 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22472 unspec_src, zoneid); 22473 if (mp == NULL) { 22474 ire_refrele(ire); 22475 if (conn_outgoing_ill != NULL) 22476 ill_refrele(conn_outgoing_ill); 22477 return; 22478 } 22479 } 22480 22481 first_mp = mp; 22482 ipsec_len = 0; 22483 22484 if (first_mp->b_datap->db_type == M_CTL) { 22485 io = (ipsec_out_t *)first_mp->b_rptr; 22486 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22487 mp = first_mp->b_cont; 22488 ipsec_len = ipsec_out_extra_length(first_mp); 22489 ASSERT(ipsec_len >= 0); 22490 /* We already picked up the zoneid from the M_CTL above */ 22491 ASSERT(zoneid == io->ipsec_out_zoneid); 22492 ASSERT(zoneid != ALL_ZONES); 22493 22494 /* 22495 * Drop M_CTL here if IPsec processing is not needed. 22496 * (Non-IPsec use of M_CTL extracted any information it 22497 * needed above). 22498 */ 22499 if (ipsec_len == 0) { 22500 freeb(first_mp); 22501 first_mp = mp; 22502 } 22503 } 22504 22505 /* 22506 * Fast path for ip_wput_ire 22507 */ 22508 22509 ipha = (ipha_t *)mp->b_rptr; 22510 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22511 dst = ipha->ipha_dst; 22512 22513 /* 22514 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22515 * if the socket is a SOCK_RAW type. The transport checksum should 22516 * be provided in the pre-built packet, so we don't need to compute it. 22517 * Also, other application set flags, like DF, should not be altered. 22518 * Other transport MUST pass down zero. 22519 */ 22520 ip_hdr_included = ipha->ipha_ident; 22521 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22522 22523 if (CLASSD(dst)) { 22524 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22525 ntohl(dst), 22526 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22527 ntohl(ire->ire_addr))); 22528 } 22529 22530 /* Macros to extract header fields from data already in registers */ 22531 #ifdef _BIG_ENDIAN 22532 #define V_HLEN (v_hlen_tos_len >> 24) 22533 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22534 #define PROTO (ttl_protocol & 0xFF) 22535 #else 22536 #define V_HLEN (v_hlen_tos_len & 0xFF) 22537 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22538 #define PROTO (ttl_protocol >> 8) 22539 #endif 22540 22541 22542 orig_src = src = ipha->ipha_src; 22543 /* (The loop back to "another" is explained down below.) */ 22544 another:; 22545 /* 22546 * Assign an ident value for this packet. We assign idents on 22547 * a per destination basis out of the IRE. There could be 22548 * other threads targeting the same destination, so we have to 22549 * arrange for a atomic increment. Note that we use a 32-bit 22550 * atomic add because it has better performance than its 22551 * 16-bit sibling. 22552 * 22553 * If running in cluster mode and if the source address 22554 * belongs to a replicated service then vector through 22555 * cl_inet_ipident vector to allocate ip identifier 22556 * NOTE: This is a contract private interface with the 22557 * clustering group. 22558 */ 22559 clusterwide = 0; 22560 if (cl_inet_ipident) { 22561 ASSERT(cl_inet_isclusterwide); 22562 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22563 AF_INET, (uint8_t *)(uintptr_t)src)) { 22564 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22565 AF_INET, (uint8_t *)(uintptr_t)src, 22566 (uint8_t *)(uintptr_t)dst); 22567 clusterwide = 1; 22568 } 22569 } 22570 if (!clusterwide) { 22571 ipha->ipha_ident = 22572 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22573 } 22574 22575 #ifndef _BIG_ENDIAN 22576 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22577 #endif 22578 22579 /* 22580 * Set source address unless sent on an ill or conn_unspec_src is set. 22581 * This is needed to obey conn_unspec_src when packets go through 22582 * ip_newroute + arp. 22583 * Assumes ip_newroute{,_multi} sets the source address as well. 22584 */ 22585 if (src == INADDR_ANY && !unspec_src) { 22586 /* 22587 * Assign the appropriate source address from the IRE if none 22588 * was specified. 22589 */ 22590 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22591 22592 /* 22593 * With IP multipathing, broadcast packets are sent on the ire 22594 * that has been cleared of IRE_MARK_NORECV and that belongs to 22595 * the group. However, this ire might not be in the same zone so 22596 * we can't always use its source address. We look for a 22597 * broadcast ire in the same group and in the right zone. 22598 */ 22599 if (ire->ire_type == IRE_BROADCAST && 22600 ire->ire_zoneid != zoneid) { 22601 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22602 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22603 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22604 if (src_ire != NULL) { 22605 src = src_ire->ire_src_addr; 22606 ire_refrele(src_ire); 22607 } else { 22608 ire_refrele(ire); 22609 if (conn_outgoing_ill != NULL) 22610 ill_refrele(conn_outgoing_ill); 22611 freemsg(first_mp); 22612 if (ill != NULL) { 22613 BUMP_MIB(ill->ill_ip_mib, 22614 ipIfStatsOutDiscards); 22615 } else { 22616 BUMP_MIB(&ipst->ips_ip_mib, 22617 ipIfStatsOutDiscards); 22618 } 22619 return; 22620 } 22621 } else { 22622 src = ire->ire_src_addr; 22623 } 22624 22625 if (connp == NULL) { 22626 ip1dbg(("ip_wput_ire: no connp and no src " 22627 "address for dst 0x%x, using src 0x%x\n", 22628 ntohl(dst), 22629 ntohl(src))); 22630 } 22631 ipha->ipha_src = src; 22632 } 22633 stq = ire->ire_stq; 22634 22635 /* 22636 * We only allow ire chains for broadcasts since there will 22637 * be multiple IRE_CACHE entries for the same multicast 22638 * address (one per ipif). 22639 */ 22640 next_mp = NULL; 22641 22642 /* broadcast packet */ 22643 if (ire->ire_type == IRE_BROADCAST) 22644 goto broadcast; 22645 22646 /* loopback ? */ 22647 if (stq == NULL) 22648 goto nullstq; 22649 22650 /* The ill_index for outbound ILL */ 22651 ill_index = Q_TO_INDEX(stq); 22652 22653 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22654 ttl_protocol = ((uint16_t *)ipha)[4]; 22655 22656 /* pseudo checksum (do it in parts for IP header checksum) */ 22657 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22658 22659 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22660 queue_t *dev_q = stq->q_next; 22661 22662 /* flow controlled */ 22663 if ((dev_q->q_next || dev_q->q_first) && 22664 !canput(dev_q)) 22665 goto blocked; 22666 if ((PROTO == IPPROTO_UDP) && 22667 (ip_hdr_included != IP_HDR_INCLUDED)) { 22668 hlen = (V_HLEN & 0xF) << 2; 22669 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22670 if (*up != 0) { 22671 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22672 hlen, LENGTH, max_frag, ipsec_len, cksum); 22673 /* Software checksum? */ 22674 if (DB_CKSUMFLAGS(mp) == 0) { 22675 IP_STAT(ipst, ip_out_sw_cksum); 22676 IP_STAT_UPDATE(ipst, 22677 ip_udp_out_sw_cksum_bytes, 22678 LENGTH - hlen); 22679 } 22680 } 22681 } 22682 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22683 hlen = (V_HLEN & 0xF) << 2; 22684 if (PROTO == IPPROTO_TCP) { 22685 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22686 /* 22687 * The packet header is processed once and for all, even 22688 * in the multirouting case. We disable hardware 22689 * checksum if the packet is multirouted, as it will be 22690 * replicated via several interfaces, and not all of 22691 * them may have this capability. 22692 */ 22693 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22694 LENGTH, max_frag, ipsec_len, cksum); 22695 /* Software checksum? */ 22696 if (DB_CKSUMFLAGS(mp) == 0) { 22697 IP_STAT(ipst, ip_out_sw_cksum); 22698 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22699 LENGTH - hlen); 22700 } 22701 } else { 22702 sctp_hdr_t *sctph; 22703 22704 ASSERT(PROTO == IPPROTO_SCTP); 22705 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22706 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22707 /* 22708 * Zero out the checksum field to ensure proper 22709 * checksum calculation. 22710 */ 22711 sctph->sh_chksum = 0; 22712 #ifdef DEBUG 22713 if (!skip_sctp_cksum) 22714 #endif 22715 sctph->sh_chksum = sctp_cksum(mp, hlen); 22716 } 22717 } 22718 22719 /* 22720 * If this is a multicast packet and originated from ip_wput 22721 * we need to do loopback and forwarding checks. If it comes 22722 * from ip_wput_multicast, we SHOULD not do this. 22723 */ 22724 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22725 22726 /* checksum */ 22727 cksum += ttl_protocol; 22728 22729 /* fragment the packet */ 22730 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22731 goto fragmentit; 22732 /* 22733 * Don't use frag_flag if packet is pre-built or source 22734 * routed or if multicast (since multicast packets do 22735 * not solicit ICMP "packet too big" messages). 22736 */ 22737 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22738 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22739 !ip_source_route_included(ipha)) && 22740 !CLASSD(ipha->ipha_dst)) 22741 ipha->ipha_fragment_offset_and_flags |= 22742 htons(ire->ire_frag_flag); 22743 22744 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22745 /* calculate IP header checksum */ 22746 cksum += ipha->ipha_ident; 22747 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22748 cksum += ipha->ipha_fragment_offset_and_flags; 22749 22750 /* IP options present */ 22751 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22752 if (hlen) 22753 goto checksumoptions; 22754 22755 /* calculate hdr checksum */ 22756 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22757 cksum = ~(cksum + (cksum >> 16)); 22758 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22759 } 22760 if (ipsec_len != 0) { 22761 /* 22762 * We will do the rest of the processing after 22763 * we come back from IPSEC in ip_wput_ipsec_out(). 22764 */ 22765 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22766 22767 io = (ipsec_out_t *)first_mp->b_rptr; 22768 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22769 ill_phyint->phyint_ifindex; 22770 22771 ipsec_out_process(q, first_mp, ire, ill_index); 22772 ire_refrele(ire); 22773 if (conn_outgoing_ill != NULL) 22774 ill_refrele(conn_outgoing_ill); 22775 return; 22776 } 22777 22778 /* 22779 * In most cases, the emission loop below is entered only 22780 * once. Only in the case where the ire holds the 22781 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22782 * flagged ires in the bucket, and send the packet 22783 * through all crossed RTF_MULTIRT routes. 22784 */ 22785 if (ire->ire_flags & RTF_MULTIRT) { 22786 multirt_send = B_TRUE; 22787 } 22788 do { 22789 if (multirt_send) { 22790 irb_t *irb; 22791 /* 22792 * We are in a multiple send case, need to get 22793 * the next ire and make a duplicate of the packet. 22794 * ire1 holds here the next ire to process in the 22795 * bucket. If multirouting is expected, 22796 * any non-RTF_MULTIRT ire that has the 22797 * right destination address is ignored. 22798 */ 22799 irb = ire->ire_bucket; 22800 ASSERT(irb != NULL); 22801 22802 IRB_REFHOLD(irb); 22803 for (ire1 = ire->ire_next; 22804 ire1 != NULL; 22805 ire1 = ire1->ire_next) { 22806 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22807 continue; 22808 if (ire1->ire_addr != ire->ire_addr) 22809 continue; 22810 if (ire1->ire_marks & 22811 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22812 continue; 22813 22814 /* Got one */ 22815 IRE_REFHOLD(ire1); 22816 break; 22817 } 22818 IRB_REFRELE(irb); 22819 22820 if (ire1 != NULL) { 22821 next_mp = copyb(mp); 22822 if ((next_mp == NULL) || 22823 ((mp->b_cont != NULL) && 22824 ((next_mp->b_cont = 22825 dupmsg(mp->b_cont)) == NULL))) { 22826 freemsg(next_mp); 22827 next_mp = NULL; 22828 ire_refrele(ire1); 22829 ire1 = NULL; 22830 } 22831 } 22832 22833 /* Last multiroute ire; don't loop anymore. */ 22834 if (ire1 == NULL) { 22835 multirt_send = B_FALSE; 22836 } 22837 } 22838 22839 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22840 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22841 mblk_t *, mp); 22842 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22843 ipst->ips_ipv4firewall_physical_out, 22844 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, ipst); 22845 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22846 if (mp == NULL) 22847 goto release_ire_and_ill; 22848 22849 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22850 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22851 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22852 if ((pktxmit_state == SEND_FAILED) || 22853 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22854 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22855 "- packet dropped\n")); 22856 release_ire_and_ill: 22857 ire_refrele(ire); 22858 if (next_mp != NULL) { 22859 freemsg(next_mp); 22860 ire_refrele(ire1); 22861 } 22862 if (conn_outgoing_ill != NULL) 22863 ill_refrele(conn_outgoing_ill); 22864 return; 22865 } 22866 22867 if (CLASSD(dst)) { 22868 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22869 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22870 LENGTH); 22871 } 22872 22873 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22874 "ip_wput_ire_end: q %p (%S)", 22875 q, "last copy out"); 22876 IRE_REFRELE(ire); 22877 22878 if (multirt_send) { 22879 ASSERT(ire1); 22880 /* 22881 * Proceed with the next RTF_MULTIRT ire, 22882 * Also set up the send-to queue accordingly. 22883 */ 22884 ire = ire1; 22885 ire1 = NULL; 22886 stq = ire->ire_stq; 22887 mp = next_mp; 22888 next_mp = NULL; 22889 ipha = (ipha_t *)mp->b_rptr; 22890 ill_index = Q_TO_INDEX(stq); 22891 ill = (ill_t *)stq->q_ptr; 22892 } 22893 } while (multirt_send); 22894 if (conn_outgoing_ill != NULL) 22895 ill_refrele(conn_outgoing_ill); 22896 return; 22897 22898 /* 22899 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22900 */ 22901 broadcast: 22902 { 22903 /* 22904 * Avoid broadcast storms by setting the ttl to 1 22905 * for broadcasts. This parameter can be set 22906 * via ndd, so make sure that for the SO_DONTROUTE 22907 * case that ipha_ttl is always set to 1. 22908 * In the event that we are replying to incoming 22909 * ICMP packets, conn could be NULL. 22910 */ 22911 if ((connp != NULL) && connp->conn_dontroute) 22912 ipha->ipha_ttl = 1; 22913 else 22914 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22915 22916 /* 22917 * Note that we are not doing a IRB_REFHOLD here. 22918 * Actually we don't care if the list changes i.e 22919 * if somebody deletes an IRE from the list while 22920 * we drop the lock, the next time we come around 22921 * ire_next will be NULL and hence we won't send 22922 * out multiple copies which is fine. 22923 */ 22924 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22925 ire1 = ire->ire_next; 22926 if (conn_outgoing_ill != NULL) { 22927 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22928 ASSERT(ire1 == ire->ire_next); 22929 if (ire1 != NULL && ire1->ire_addr == dst) { 22930 ire_refrele(ire); 22931 ire = ire1; 22932 IRE_REFHOLD(ire); 22933 ire1 = ire->ire_next; 22934 continue; 22935 } 22936 rw_exit(&ire->ire_bucket->irb_lock); 22937 /* Did not find a matching ill */ 22938 ip1dbg(("ip_wput_ire: broadcast with no " 22939 "matching IP_BOUND_IF ill %s\n", 22940 conn_outgoing_ill->ill_name)); 22941 freemsg(first_mp); 22942 if (ire != NULL) 22943 ire_refrele(ire); 22944 ill_refrele(conn_outgoing_ill); 22945 return; 22946 } 22947 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22948 /* 22949 * If the next IRE has the same address and is not one 22950 * of the two copies that we need to send, try to see 22951 * whether this copy should be sent at all. This 22952 * assumes that we insert loopbacks first and then 22953 * non-loopbacks. This is acheived by inserting the 22954 * loopback always before non-loopback. 22955 * This is used to send a single copy of a broadcast 22956 * packet out all physical interfaces that have an 22957 * matching IRE_BROADCAST while also looping 22958 * back one copy (to ip_wput_local) for each 22959 * matching physical interface. However, we avoid 22960 * sending packets out different logical that match by 22961 * having ipif_up/ipif_down supress duplicate 22962 * IRE_BROADCASTS. 22963 * 22964 * This feature is currently used to get broadcasts 22965 * sent to multiple interfaces, when the broadcast 22966 * address being used applies to multiple interfaces. 22967 * For example, a whole net broadcast will be 22968 * replicated on every connected subnet of 22969 * the target net. 22970 * 22971 * Each zone has its own set of IRE_BROADCASTs, so that 22972 * we're able to distribute inbound packets to multiple 22973 * zones who share a broadcast address. We avoid looping 22974 * back outbound packets in different zones but on the 22975 * same ill, as the application would see duplicates. 22976 * 22977 * If the interfaces are part of the same group, 22978 * we would want to send only one copy out for 22979 * whole group. 22980 * 22981 * This logic assumes that ire_add_v4() groups the 22982 * IRE_BROADCAST entries so that those with the same 22983 * ire_addr and ill_group are kept together. 22984 */ 22985 ire_ill = ire->ire_ipif->ipif_ill; 22986 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22987 if (ire_ill->ill_group != NULL && 22988 (ire->ire_marks & IRE_MARK_NORECV)) { 22989 /* 22990 * If the current zone only has an ire 22991 * broadcast for this address marked 22992 * NORECV, the ire we want is ahead in 22993 * the bucket, so we look it up 22994 * deliberately ignoring the zoneid. 22995 */ 22996 for (ire1 = ire->ire_bucket->irb_ire; 22997 ire1 != NULL; 22998 ire1 = ire1->ire_next) { 22999 ire1_ill = 23000 ire1->ire_ipif->ipif_ill; 23001 if (ire1->ire_addr != dst) 23002 continue; 23003 /* skip over the current ire */ 23004 if (ire1 == ire) 23005 continue; 23006 /* skip over deleted ires */ 23007 if (ire1->ire_marks & 23008 IRE_MARK_CONDEMNED) 23009 continue; 23010 /* 23011 * non-loopback ire in our 23012 * group: use it for the next 23013 * pass in the loop 23014 */ 23015 if (ire1->ire_stq != NULL && 23016 ire1_ill->ill_group == 23017 ire_ill->ill_group) 23018 break; 23019 } 23020 } 23021 } else { 23022 while (ire1 != NULL && ire1->ire_addr == dst) { 23023 ire1_ill = ire1->ire_ipif->ipif_ill; 23024 /* 23025 * We can have two broadcast ires on the 23026 * same ill in different zones; here 23027 * we'll send a copy of the packet on 23028 * each ill and the fanout code will 23029 * call conn_wantpacket() to check that 23030 * the zone has the broadcast address 23031 * configured on the ill. If the two 23032 * ires are in the same group we only 23033 * send one copy up. 23034 */ 23035 if (ire1_ill != ire_ill && 23036 (ire1_ill->ill_group == NULL || 23037 ire_ill->ill_group == NULL || 23038 ire1_ill->ill_group != 23039 ire_ill->ill_group)) { 23040 break; 23041 } 23042 ire1 = ire1->ire_next; 23043 } 23044 } 23045 } 23046 ASSERT(multirt_send == B_FALSE); 23047 if (ire1 != NULL && ire1->ire_addr == dst) { 23048 if ((ire->ire_flags & RTF_MULTIRT) && 23049 (ire1->ire_flags & RTF_MULTIRT)) { 23050 /* 23051 * We are in the multirouting case. 23052 * The message must be sent at least 23053 * on both ires. These ires have been 23054 * inserted AFTER the standard ones 23055 * in ip_rt_add(). There are thus no 23056 * other ire entries for the destination 23057 * address in the rest of the bucket 23058 * that do not have the RTF_MULTIRT 23059 * flag. We don't process a copy 23060 * of the message here. This will be 23061 * done in the final sending loop. 23062 */ 23063 multirt_send = B_TRUE; 23064 } else { 23065 next_mp = ip_copymsg(first_mp); 23066 if (next_mp != NULL) 23067 IRE_REFHOLD(ire1); 23068 } 23069 } 23070 rw_exit(&ire->ire_bucket->irb_lock); 23071 } 23072 23073 if (stq) { 23074 /* 23075 * A non-NULL send-to queue means this packet is going 23076 * out of this machine. 23077 */ 23078 out_ill = (ill_t *)stq->q_ptr; 23079 23080 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 23081 ttl_protocol = ((uint16_t *)ipha)[4]; 23082 /* 23083 * We accumulate the pseudo header checksum in cksum. 23084 * This is pretty hairy code, so watch close. One 23085 * thing to keep in mind is that UDP and TCP have 23086 * stored their respective datagram lengths in their 23087 * checksum fields. This lines things up real nice. 23088 */ 23089 cksum = (dst >> 16) + (dst & 0xFFFF) + 23090 (src >> 16) + (src & 0xFFFF); 23091 /* 23092 * We assume the udp checksum field contains the 23093 * length, so to compute the pseudo header checksum, 23094 * all we need is the protocol number and src/dst. 23095 */ 23096 /* Provide the checksums for UDP and TCP. */ 23097 if ((PROTO == IPPROTO_TCP) && 23098 (ip_hdr_included != IP_HDR_INCLUDED)) { 23099 /* hlen gets the number of uchar_ts in the IP header */ 23100 hlen = (V_HLEN & 0xF) << 2; 23101 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 23102 IP_STAT(ipst, ip_out_sw_cksum); 23103 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 23104 LENGTH - hlen); 23105 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 23106 if (*up == 0) 23107 *up = 0xFFFF; 23108 } else if (PROTO == IPPROTO_SCTP && 23109 (ip_hdr_included != IP_HDR_INCLUDED)) { 23110 sctp_hdr_t *sctph; 23111 23112 hlen = (V_HLEN & 0xF) << 2; 23113 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 23114 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 23115 sctph->sh_chksum = 0; 23116 #ifdef DEBUG 23117 if (!skip_sctp_cksum) 23118 #endif 23119 sctph->sh_chksum = sctp_cksum(mp, hlen); 23120 } else { 23121 queue_t *dev_q = stq->q_next; 23122 23123 if ((dev_q->q_next || dev_q->q_first) && 23124 !canput(dev_q)) { 23125 blocked: 23126 ipha->ipha_ident = ip_hdr_included; 23127 /* 23128 * If we don't have a conn to apply 23129 * backpressure, free the message. 23130 * In the ire_send path, we don't know 23131 * the position to requeue the packet. Rather 23132 * than reorder packets, we just drop this 23133 * packet. 23134 */ 23135 if (ipst->ips_ip_output_queue && 23136 connp != NULL && 23137 caller != IRE_SEND) { 23138 if (caller == IP_WSRV) { 23139 connp->conn_did_putbq = 1; 23140 (void) putbq(connp->conn_wq, 23141 first_mp); 23142 conn_drain_insert(connp); 23143 /* 23144 * This is the service thread, 23145 * and the queue is already 23146 * noenabled. The check for 23147 * canput and the putbq is not 23148 * atomic. So we need to check 23149 * again. 23150 */ 23151 if (canput(stq->q_next)) 23152 connp->conn_did_putbq 23153 = 0; 23154 IP_STAT(ipst, ip_conn_flputbq); 23155 } else { 23156 /* 23157 * We are not the service proc. 23158 * ip_wsrv will be scheduled or 23159 * is already running. 23160 */ 23161 (void) putq(connp->conn_wq, 23162 first_mp); 23163 } 23164 } else { 23165 out_ill = (ill_t *)stq->q_ptr; 23166 BUMP_MIB(out_ill->ill_ip_mib, 23167 ipIfStatsOutDiscards); 23168 freemsg(first_mp); 23169 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23170 "ip_wput_ire_end: q %p (%S)", 23171 q, "discard"); 23172 } 23173 ire_refrele(ire); 23174 if (next_mp) { 23175 ire_refrele(ire1); 23176 freemsg(next_mp); 23177 } 23178 if (conn_outgoing_ill != NULL) 23179 ill_refrele(conn_outgoing_ill); 23180 return; 23181 } 23182 if ((PROTO == IPPROTO_UDP) && 23183 (ip_hdr_included != IP_HDR_INCLUDED)) { 23184 /* 23185 * hlen gets the number of uchar_ts in the 23186 * IP header 23187 */ 23188 hlen = (V_HLEN & 0xF) << 2; 23189 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 23190 max_frag = ire->ire_max_frag; 23191 if (*up != 0) { 23192 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 23193 up, PROTO, hlen, LENGTH, max_frag, 23194 ipsec_len, cksum); 23195 /* Software checksum? */ 23196 if (DB_CKSUMFLAGS(mp) == 0) { 23197 IP_STAT(ipst, ip_out_sw_cksum); 23198 IP_STAT_UPDATE(ipst, 23199 ip_udp_out_sw_cksum_bytes, 23200 LENGTH - hlen); 23201 } 23202 } 23203 } 23204 } 23205 /* 23206 * Need to do this even when fragmenting. The local 23207 * loopback can be done without computing checksums 23208 * but forwarding out other interface must be done 23209 * after the IP checksum (and ULP checksums) have been 23210 * computed. 23211 * 23212 * NOTE : multicast_forward is set only if this packet 23213 * originated from ip_wput. For packets originating from 23214 * ip_wput_multicast, it is not set. 23215 */ 23216 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23217 multi_loopback: 23218 ip2dbg(("ip_wput: multicast, loop %d\n", 23219 conn_multicast_loop)); 23220 23221 /* Forget header checksum offload */ 23222 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23223 23224 /* 23225 * Local loopback of multicasts? Check the 23226 * ill. 23227 * 23228 * Note that the loopback function will not come 23229 * in through ip_rput - it will only do the 23230 * client fanout thus we need to do an mforward 23231 * as well. The is different from the BSD 23232 * logic. 23233 */ 23234 if (ill != NULL) { 23235 ilm_t *ilm; 23236 23237 ILM_WALKER_HOLD(ill); 23238 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 23239 ALL_ZONES); 23240 ILM_WALKER_RELE(ill); 23241 if (ilm != NULL) { 23242 /* 23243 * Pass along the virtual output q. 23244 * ip_wput_local() will distribute the 23245 * packet to all the matching zones, 23246 * except the sending zone when 23247 * IP_MULTICAST_LOOP is false. 23248 */ 23249 ip_multicast_loopback(q, ill, first_mp, 23250 conn_multicast_loop ? 0 : 23251 IP_FF_NO_MCAST_LOOP, zoneid); 23252 } 23253 } 23254 if (ipha->ipha_ttl == 0) { 23255 /* 23256 * 0 => only to this host i.e. we are 23257 * done. We are also done if this was the 23258 * loopback interface since it is sufficient 23259 * to loopback one copy of a multicast packet. 23260 */ 23261 freemsg(first_mp); 23262 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23263 "ip_wput_ire_end: q %p (%S)", 23264 q, "loopback"); 23265 ire_refrele(ire); 23266 if (conn_outgoing_ill != NULL) 23267 ill_refrele(conn_outgoing_ill); 23268 return; 23269 } 23270 /* 23271 * ILLF_MULTICAST is checked in ip_newroute 23272 * i.e. we don't need to check it here since 23273 * all IRE_CACHEs come from ip_newroute. 23274 * For multicast traffic, SO_DONTROUTE is interpreted 23275 * to mean only send the packet out the interface 23276 * (optionally specified with IP_MULTICAST_IF) 23277 * and do not forward it out additional interfaces. 23278 * RSVP and the rsvp daemon is an example of a 23279 * protocol and user level process that 23280 * handles it's own routing. Hence, it uses the 23281 * SO_DONTROUTE option to accomplish this. 23282 */ 23283 23284 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23285 ill != NULL) { 23286 /* Unconditionally redo the checksum */ 23287 ipha->ipha_hdr_checksum = 0; 23288 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23289 23290 /* 23291 * If this needs to go out secure, we need 23292 * to wait till we finish the IPSEC 23293 * processing. 23294 */ 23295 if (ipsec_len == 0 && 23296 ip_mforward(ill, ipha, mp)) { 23297 freemsg(first_mp); 23298 ip1dbg(("ip_wput: mforward failed\n")); 23299 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23300 "ip_wput_ire_end: q %p (%S)", 23301 q, "mforward failed"); 23302 ire_refrele(ire); 23303 if (conn_outgoing_ill != NULL) 23304 ill_refrele(conn_outgoing_ill); 23305 return; 23306 } 23307 } 23308 } 23309 max_frag = ire->ire_max_frag; 23310 cksum += ttl_protocol; 23311 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23312 /* No fragmentation required for this one. */ 23313 /* 23314 * Don't use frag_flag if packet is pre-built or source 23315 * routed or if multicast (since multicast packets do 23316 * not solicit ICMP "packet too big" messages). 23317 */ 23318 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23319 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23320 !ip_source_route_included(ipha)) && 23321 !CLASSD(ipha->ipha_dst)) 23322 ipha->ipha_fragment_offset_and_flags |= 23323 htons(ire->ire_frag_flag); 23324 23325 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23326 /* Complete the IP header checksum. */ 23327 cksum += ipha->ipha_ident; 23328 cksum += (v_hlen_tos_len >> 16)+ 23329 (v_hlen_tos_len & 0xFFFF); 23330 cksum += ipha->ipha_fragment_offset_and_flags; 23331 hlen = (V_HLEN & 0xF) - 23332 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23333 if (hlen) { 23334 checksumoptions: 23335 /* 23336 * Account for the IP Options in the IP 23337 * header checksum. 23338 */ 23339 up = (uint16_t *)(rptr+ 23340 IP_SIMPLE_HDR_LENGTH); 23341 do { 23342 cksum += up[0]; 23343 cksum += up[1]; 23344 up += 2; 23345 } while (--hlen); 23346 } 23347 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23348 cksum = ~(cksum + (cksum >> 16)); 23349 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23350 } 23351 if (ipsec_len != 0) { 23352 ipsec_out_process(q, first_mp, ire, ill_index); 23353 if (!next_mp) { 23354 ire_refrele(ire); 23355 if (conn_outgoing_ill != NULL) 23356 ill_refrele(conn_outgoing_ill); 23357 return; 23358 } 23359 goto next; 23360 } 23361 23362 /* 23363 * multirt_send has already been handled 23364 * for broadcast, but not yet for multicast 23365 * or IP options. 23366 */ 23367 if (next_mp == NULL) { 23368 if (ire->ire_flags & RTF_MULTIRT) { 23369 multirt_send = B_TRUE; 23370 } 23371 } 23372 23373 /* 23374 * In most cases, the emission loop below is 23375 * entered only once. Only in the case where 23376 * the ire holds the RTF_MULTIRT flag, do we loop 23377 * to process all RTF_MULTIRT ires in the bucket, 23378 * and send the packet through all crossed 23379 * RTF_MULTIRT routes. 23380 */ 23381 do { 23382 if (multirt_send) { 23383 irb_t *irb; 23384 23385 irb = ire->ire_bucket; 23386 ASSERT(irb != NULL); 23387 /* 23388 * We are in a multiple send case, 23389 * need to get the next IRE and make 23390 * a duplicate of the packet. 23391 */ 23392 IRB_REFHOLD(irb); 23393 for (ire1 = ire->ire_next; 23394 ire1 != NULL; 23395 ire1 = ire1->ire_next) { 23396 if (!(ire1->ire_flags & 23397 RTF_MULTIRT)) 23398 continue; 23399 if (ire1->ire_addr != 23400 ire->ire_addr) 23401 continue; 23402 if (ire1->ire_marks & 23403 (IRE_MARK_CONDEMNED| 23404 IRE_MARK_HIDDEN)) 23405 continue; 23406 23407 /* Got one */ 23408 IRE_REFHOLD(ire1); 23409 break; 23410 } 23411 IRB_REFRELE(irb); 23412 23413 if (ire1 != NULL) { 23414 next_mp = copyb(mp); 23415 if ((next_mp == NULL) || 23416 ((mp->b_cont != NULL) && 23417 ((next_mp->b_cont = 23418 dupmsg(mp->b_cont)) 23419 == NULL))) { 23420 freemsg(next_mp); 23421 next_mp = NULL; 23422 ire_refrele(ire1); 23423 ire1 = NULL; 23424 } 23425 } 23426 23427 /* 23428 * Last multiroute ire; don't loop 23429 * anymore. The emission is over 23430 * and next_mp is NULL. 23431 */ 23432 if (ire1 == NULL) { 23433 multirt_send = B_FALSE; 23434 } 23435 } 23436 23437 out_ill = ire->ire_ipif->ipif_ill; 23438 DTRACE_PROBE4(ip4__physical__out__start, 23439 ill_t *, NULL, 23440 ill_t *, out_ill, 23441 ipha_t *, ipha, mblk_t *, mp); 23442 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23443 ipst->ips_ipv4firewall_physical_out, 23444 NULL, out_ill, ipha, mp, mp, ipst); 23445 DTRACE_PROBE1(ip4__physical__out__end, 23446 mblk_t *, mp); 23447 if (mp == NULL) 23448 goto release_ire_and_ill_2; 23449 23450 ASSERT(ipsec_len == 0); 23451 mp->b_prev = 23452 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23453 DTRACE_PROBE2(ip__xmit__2, 23454 mblk_t *, mp, ire_t *, ire); 23455 pktxmit_state = ip_xmit_v4(mp, ire, 23456 NULL, B_TRUE); 23457 if ((pktxmit_state == SEND_FAILED) || 23458 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23459 release_ire_and_ill_2: 23460 if (next_mp) { 23461 freemsg(next_mp); 23462 ire_refrele(ire1); 23463 } 23464 ire_refrele(ire); 23465 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23466 "ip_wput_ire_end: q %p (%S)", 23467 q, "discard MDATA"); 23468 if (conn_outgoing_ill != NULL) 23469 ill_refrele(conn_outgoing_ill); 23470 return; 23471 } 23472 23473 if (CLASSD(dst)) { 23474 BUMP_MIB(out_ill->ill_ip_mib, 23475 ipIfStatsHCOutMcastPkts); 23476 UPDATE_MIB(out_ill->ill_ip_mib, 23477 ipIfStatsHCOutMcastOctets, 23478 LENGTH); 23479 } else if (ire->ire_type == IRE_BROADCAST) { 23480 BUMP_MIB(out_ill->ill_ip_mib, 23481 ipIfStatsHCOutBcastPkts); 23482 } 23483 23484 if (multirt_send) { 23485 /* 23486 * We are in a multiple send case, 23487 * need to re-enter the sending loop 23488 * using the next ire. 23489 */ 23490 ire_refrele(ire); 23491 ire = ire1; 23492 stq = ire->ire_stq; 23493 mp = next_mp; 23494 next_mp = NULL; 23495 ipha = (ipha_t *)mp->b_rptr; 23496 ill_index = Q_TO_INDEX(stq); 23497 } 23498 } while (multirt_send); 23499 23500 if (!next_mp) { 23501 /* 23502 * Last copy going out (the ultra-common 23503 * case). Note that we intentionally replicate 23504 * the putnext rather than calling it before 23505 * the next_mp check in hopes of a little 23506 * tail-call action out of the compiler. 23507 */ 23508 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23509 "ip_wput_ire_end: q %p (%S)", 23510 q, "last copy out(1)"); 23511 ire_refrele(ire); 23512 if (conn_outgoing_ill != NULL) 23513 ill_refrele(conn_outgoing_ill); 23514 return; 23515 } 23516 /* More copies going out below. */ 23517 } else { 23518 int offset; 23519 fragmentit: 23520 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23521 /* 23522 * If this would generate a icmp_frag_needed message, 23523 * we need to handle it before we do the IPSEC 23524 * processing. Otherwise, we need to strip the IPSEC 23525 * headers before we send up the message to the ULPs 23526 * which becomes messy and difficult. 23527 */ 23528 if (ipsec_len != 0) { 23529 if ((max_frag < (unsigned int)(LENGTH + 23530 ipsec_len)) && (offset & IPH_DF)) { 23531 out_ill = (ill_t *)stq->q_ptr; 23532 BUMP_MIB(out_ill->ill_ip_mib, 23533 ipIfStatsOutFragFails); 23534 BUMP_MIB(out_ill->ill_ip_mib, 23535 ipIfStatsOutFragReqds); 23536 ipha->ipha_hdr_checksum = 0; 23537 ipha->ipha_hdr_checksum = 23538 (uint16_t)ip_csum_hdr(ipha); 23539 icmp_frag_needed(ire->ire_stq, first_mp, 23540 max_frag, zoneid, ipst); 23541 if (!next_mp) { 23542 ire_refrele(ire); 23543 if (conn_outgoing_ill != NULL) { 23544 ill_refrele( 23545 conn_outgoing_ill); 23546 } 23547 return; 23548 } 23549 } else { 23550 /* 23551 * This won't cause a icmp_frag_needed 23552 * message. to be generated. Send it on 23553 * the wire. Note that this could still 23554 * cause fragmentation and all we 23555 * do is the generation of the message 23556 * to the ULP if needed before IPSEC. 23557 */ 23558 if (!next_mp) { 23559 ipsec_out_process(q, first_mp, 23560 ire, ill_index); 23561 TRACE_2(TR_FAC_IP, 23562 TR_IP_WPUT_IRE_END, 23563 "ip_wput_ire_end: q %p " 23564 "(%S)", q, 23565 "last ipsec_out_process"); 23566 ire_refrele(ire); 23567 if (conn_outgoing_ill != NULL) { 23568 ill_refrele( 23569 conn_outgoing_ill); 23570 } 23571 return; 23572 } 23573 ipsec_out_process(q, first_mp, 23574 ire, ill_index); 23575 } 23576 } else { 23577 /* 23578 * Initiate IPPF processing. For 23579 * fragmentable packets we finish 23580 * all QOS packet processing before 23581 * calling: 23582 * ip_wput_ire_fragmentit->ip_wput_frag 23583 */ 23584 23585 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23586 ip_process(IPP_LOCAL_OUT, &mp, 23587 ill_index); 23588 if (mp == NULL) { 23589 out_ill = (ill_t *)stq->q_ptr; 23590 BUMP_MIB(out_ill->ill_ip_mib, 23591 ipIfStatsOutDiscards); 23592 if (next_mp != NULL) { 23593 freemsg(next_mp); 23594 ire_refrele(ire1); 23595 } 23596 ire_refrele(ire); 23597 TRACE_2(TR_FAC_IP, 23598 TR_IP_WPUT_IRE_END, 23599 "ip_wput_ire: q %p (%S)", 23600 q, "discard MDATA"); 23601 if (conn_outgoing_ill != NULL) { 23602 ill_refrele( 23603 conn_outgoing_ill); 23604 } 23605 return; 23606 } 23607 } 23608 if (!next_mp) { 23609 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23610 "ip_wput_ire_end: q %p (%S)", 23611 q, "last fragmentation"); 23612 ip_wput_ire_fragmentit(mp, ire, 23613 zoneid, ipst); 23614 ire_refrele(ire); 23615 if (conn_outgoing_ill != NULL) 23616 ill_refrele(conn_outgoing_ill); 23617 return; 23618 } 23619 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23620 } 23621 } 23622 } else { 23623 nullstq: 23624 /* A NULL stq means the destination address is local. */ 23625 UPDATE_OB_PKT_COUNT(ire); 23626 ire->ire_last_used_time = lbolt; 23627 ASSERT(ire->ire_ipif != NULL); 23628 if (!next_mp) { 23629 /* 23630 * Is there an "in" and "out" for traffic local 23631 * to a host (loopback)? The code in Solaris doesn't 23632 * explicitly draw a line in its code for in vs out, 23633 * so we've had to draw a line in the sand: ip_wput_ire 23634 * is considered to be the "output" side and 23635 * ip_wput_local to be the "input" side. 23636 */ 23637 out_ill = ire->ire_ipif->ipif_ill; 23638 23639 DTRACE_PROBE4(ip4__loopback__out__start, 23640 ill_t *, NULL, ill_t *, out_ill, 23641 ipha_t *, ipha, mblk_t *, first_mp); 23642 23643 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23644 ipst->ips_ipv4firewall_loopback_out, 23645 NULL, out_ill, ipha, first_mp, mp, ipst); 23646 23647 DTRACE_PROBE1(ip4__loopback__out_end, 23648 mblk_t *, first_mp); 23649 23650 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23651 "ip_wput_ire_end: q %p (%S)", 23652 q, "local address"); 23653 23654 if (first_mp != NULL) 23655 ip_wput_local(q, out_ill, ipha, 23656 first_mp, ire, 0, ire->ire_zoneid); 23657 ire_refrele(ire); 23658 if (conn_outgoing_ill != NULL) 23659 ill_refrele(conn_outgoing_ill); 23660 return; 23661 } 23662 23663 out_ill = ire->ire_ipif->ipif_ill; 23664 23665 DTRACE_PROBE4(ip4__loopback__out__start, 23666 ill_t *, NULL, ill_t *, out_ill, 23667 ipha_t *, ipha, mblk_t *, first_mp); 23668 23669 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23670 ipst->ips_ipv4firewall_loopback_out, 23671 NULL, out_ill, ipha, first_mp, mp, ipst); 23672 23673 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23674 23675 if (first_mp != NULL) 23676 ip_wput_local(q, out_ill, ipha, 23677 first_mp, ire, 0, ire->ire_zoneid); 23678 } 23679 next: 23680 /* 23681 * More copies going out to additional interfaces. 23682 * ire1 has already been held. We don't need the 23683 * "ire" anymore. 23684 */ 23685 ire_refrele(ire); 23686 ire = ire1; 23687 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23688 mp = next_mp; 23689 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23690 ill = ire_to_ill(ire); 23691 first_mp = mp; 23692 if (ipsec_len != 0) { 23693 ASSERT(first_mp->b_datap->db_type == M_CTL); 23694 mp = mp->b_cont; 23695 } 23696 dst = ire->ire_addr; 23697 ipha = (ipha_t *)mp->b_rptr; 23698 /* 23699 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23700 * Restore ipha_ident "no checksum" flag. 23701 */ 23702 src = orig_src; 23703 ipha->ipha_ident = ip_hdr_included; 23704 goto another; 23705 23706 #undef rptr 23707 #undef Q_TO_INDEX 23708 } 23709 23710 /* 23711 * Routine to allocate a message that is used to notify the ULP about MDT. 23712 * The caller may provide a pointer to the link-layer MDT capabilities, 23713 * or NULL if MDT is to be disabled on the stream. 23714 */ 23715 mblk_t * 23716 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23717 { 23718 mblk_t *mp; 23719 ip_mdt_info_t *mdti; 23720 ill_mdt_capab_t *idst; 23721 23722 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23723 DB_TYPE(mp) = M_CTL; 23724 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23725 mdti = (ip_mdt_info_t *)mp->b_rptr; 23726 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23727 idst = &(mdti->mdt_capab); 23728 23729 /* 23730 * If the caller provides us with the capability, copy 23731 * it over into our notification message; otherwise 23732 * we zero out the capability portion. 23733 */ 23734 if (isrc != NULL) 23735 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23736 else 23737 bzero((caddr_t)idst, sizeof (*idst)); 23738 } 23739 return (mp); 23740 } 23741 23742 /* 23743 * Routine which determines whether MDT can be enabled on the destination 23744 * IRE and IPC combination, and if so, allocates and returns the MDT 23745 * notification mblk that may be used by ULP. We also check if we need to 23746 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23747 * MDT usage in the past have been lifted. This gets called during IP 23748 * and ULP binding. 23749 */ 23750 mblk_t * 23751 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23752 ill_mdt_capab_t *mdt_cap) 23753 { 23754 mblk_t *mp; 23755 boolean_t rc = B_FALSE; 23756 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23757 23758 ASSERT(dst_ire != NULL); 23759 ASSERT(connp != NULL); 23760 ASSERT(mdt_cap != NULL); 23761 23762 /* 23763 * Currently, we only support simple TCP/{IPv4,IPv6} with 23764 * Multidata, which is handled in tcp_multisend(). This 23765 * is the reason why we do all these checks here, to ensure 23766 * that we don't enable Multidata for the cases which we 23767 * can't handle at the moment. 23768 */ 23769 do { 23770 /* Only do TCP at the moment */ 23771 if (connp->conn_ulp != IPPROTO_TCP) 23772 break; 23773 23774 /* 23775 * IPSEC outbound policy present? Note that we get here 23776 * after calling ipsec_conn_cache_policy() where the global 23777 * policy checking is performed. conn_latch will be 23778 * non-NULL as long as there's a policy defined, 23779 * i.e. conn_out_enforce_policy may be NULL in such case 23780 * when the connection is non-secure, and hence we check 23781 * further if the latch refers to an outbound policy. 23782 */ 23783 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23784 break; 23785 23786 /* CGTP (multiroute) is enabled? */ 23787 if (dst_ire->ire_flags & RTF_MULTIRT) 23788 break; 23789 23790 /* Outbound IPQoS enabled? */ 23791 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23792 /* 23793 * In this case, we disable MDT for this and all 23794 * future connections going over the interface. 23795 */ 23796 mdt_cap->ill_mdt_on = 0; 23797 break; 23798 } 23799 23800 /* socket option(s) present? */ 23801 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23802 break; 23803 23804 rc = B_TRUE; 23805 /* CONSTCOND */ 23806 } while (0); 23807 23808 /* Remember the result */ 23809 connp->conn_mdt_ok = rc; 23810 23811 if (!rc) 23812 return (NULL); 23813 else if (!mdt_cap->ill_mdt_on) { 23814 /* 23815 * If MDT has been previously turned off in the past, and we 23816 * currently can do MDT (due to IPQoS policy removal, etc.) 23817 * then enable it for this interface. 23818 */ 23819 mdt_cap->ill_mdt_on = 1; 23820 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23821 "interface %s\n", ill_name)); 23822 } 23823 23824 /* Allocate the MDT info mblk */ 23825 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23826 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23827 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23828 return (NULL); 23829 } 23830 return (mp); 23831 } 23832 23833 /* 23834 * Routine to allocate a message that is used to notify the ULP about LSO. 23835 * The caller may provide a pointer to the link-layer LSO capabilities, 23836 * or NULL if LSO is to be disabled on the stream. 23837 */ 23838 mblk_t * 23839 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23840 { 23841 mblk_t *mp; 23842 ip_lso_info_t *lsoi; 23843 ill_lso_capab_t *idst; 23844 23845 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23846 DB_TYPE(mp) = M_CTL; 23847 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23848 lsoi = (ip_lso_info_t *)mp->b_rptr; 23849 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23850 idst = &(lsoi->lso_capab); 23851 23852 /* 23853 * If the caller provides us with the capability, copy 23854 * it over into our notification message; otherwise 23855 * we zero out the capability portion. 23856 */ 23857 if (isrc != NULL) 23858 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23859 else 23860 bzero((caddr_t)idst, sizeof (*idst)); 23861 } 23862 return (mp); 23863 } 23864 23865 /* 23866 * Routine which determines whether LSO can be enabled on the destination 23867 * IRE and IPC combination, and if so, allocates and returns the LSO 23868 * notification mblk that may be used by ULP. We also check if we need to 23869 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23870 * LSO usage in the past have been lifted. This gets called during IP 23871 * and ULP binding. 23872 */ 23873 mblk_t * 23874 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23875 ill_lso_capab_t *lso_cap) 23876 { 23877 mblk_t *mp; 23878 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23879 23880 ASSERT(dst_ire != NULL); 23881 ASSERT(connp != NULL); 23882 ASSERT(lso_cap != NULL); 23883 23884 connp->conn_lso_ok = B_TRUE; 23885 23886 if ((connp->conn_ulp != IPPROTO_TCP) || 23887 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23888 (dst_ire->ire_flags & RTF_MULTIRT) || 23889 !CONN_IS_LSO_MD_FASTPATH(connp) || 23890 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23891 connp->conn_lso_ok = B_FALSE; 23892 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23893 /* 23894 * Disable LSO for this and all future connections going 23895 * over the interface. 23896 */ 23897 lso_cap->ill_lso_on = 0; 23898 } 23899 } 23900 23901 if (!connp->conn_lso_ok) 23902 return (NULL); 23903 else if (!lso_cap->ill_lso_on) { 23904 /* 23905 * If LSO has been previously turned off in the past, and we 23906 * currently can do LSO (due to IPQoS policy removal, etc.) 23907 * then enable it for this interface. 23908 */ 23909 lso_cap->ill_lso_on = 1; 23910 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23911 ill_name)); 23912 } 23913 23914 /* Allocate the LSO info mblk */ 23915 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23916 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23917 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23918 23919 return (mp); 23920 } 23921 23922 /* 23923 * Create destination address attribute, and fill it with the physical 23924 * destination address and SAP taken from the template DL_UNITDATA_REQ 23925 * message block. 23926 */ 23927 boolean_t 23928 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23929 { 23930 dl_unitdata_req_t *dlurp; 23931 pattr_t *pa; 23932 pattrinfo_t pa_info; 23933 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23934 uint_t das_len, das_off; 23935 23936 ASSERT(dlmp != NULL); 23937 23938 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23939 das_len = dlurp->dl_dest_addr_length; 23940 das_off = dlurp->dl_dest_addr_offset; 23941 23942 pa_info.type = PATTR_DSTADDRSAP; 23943 pa_info.len = sizeof (**das) + das_len - 1; 23944 23945 /* create and associate the attribute */ 23946 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23947 if (pa != NULL) { 23948 ASSERT(*das != NULL); 23949 (*das)->addr_is_group = 0; 23950 (*das)->addr_len = (uint8_t)das_len; 23951 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23952 } 23953 23954 return (pa != NULL); 23955 } 23956 23957 /* 23958 * Create hardware checksum attribute and fill it with the values passed. 23959 */ 23960 boolean_t 23961 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23962 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23963 { 23964 pattr_t *pa; 23965 pattrinfo_t pa_info; 23966 23967 ASSERT(mmd != NULL); 23968 23969 pa_info.type = PATTR_HCKSUM; 23970 pa_info.len = sizeof (pattr_hcksum_t); 23971 23972 /* create and associate the attribute */ 23973 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23974 if (pa != NULL) { 23975 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23976 23977 hck->hcksum_start_offset = start_offset; 23978 hck->hcksum_stuff_offset = stuff_offset; 23979 hck->hcksum_end_offset = end_offset; 23980 hck->hcksum_flags = flags; 23981 } 23982 return (pa != NULL); 23983 } 23984 23985 /* 23986 * Create zerocopy attribute and fill it with the specified flags 23987 */ 23988 boolean_t 23989 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23990 { 23991 pattr_t *pa; 23992 pattrinfo_t pa_info; 23993 23994 ASSERT(mmd != NULL); 23995 pa_info.type = PATTR_ZCOPY; 23996 pa_info.len = sizeof (pattr_zcopy_t); 23997 23998 /* create and associate the attribute */ 23999 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 24000 if (pa != NULL) { 24001 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 24002 24003 zcopy->zcopy_flags = flags; 24004 } 24005 return (pa != NULL); 24006 } 24007 24008 /* 24009 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 24010 * block chain. We could rewrite to handle arbitrary message block chains but 24011 * that would make the code complicated and slow. Right now there three 24012 * restrictions: 24013 * 24014 * 1. The first message block must contain the complete IP header and 24015 * at least 1 byte of payload data. 24016 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 24017 * so that we can use a single Multidata message. 24018 * 3. No frag must be distributed over two or more message blocks so 24019 * that we don't need more than two packet descriptors per frag. 24020 * 24021 * The above restrictions allow us to support userland applications (which 24022 * will send down a single message block) and NFS over UDP (which will 24023 * send down a chain of at most three message blocks). 24024 * 24025 * We also don't use MDT for payloads with less than or equal to 24026 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 24027 */ 24028 boolean_t 24029 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 24030 { 24031 int blocks; 24032 ssize_t total, missing, size; 24033 24034 ASSERT(mp != NULL); 24035 ASSERT(hdr_len > 0); 24036 24037 size = MBLKL(mp) - hdr_len; 24038 if (size <= 0) 24039 return (B_FALSE); 24040 24041 /* The first mblk contains the header and some payload. */ 24042 blocks = 1; 24043 total = size; 24044 size %= len; 24045 missing = (size == 0) ? 0 : (len - size); 24046 mp = mp->b_cont; 24047 24048 while (mp != NULL) { 24049 /* 24050 * Give up if we encounter a zero length message block. 24051 * In practice, this should rarely happen and therefore 24052 * not worth the trouble of freeing and re-linking the 24053 * mblk from the chain to handle such case. 24054 */ 24055 if ((size = MBLKL(mp)) == 0) 24056 return (B_FALSE); 24057 24058 /* Too many payload buffers for a single Multidata message? */ 24059 if (++blocks > MULTIDATA_MAX_PBUFS) 24060 return (B_FALSE); 24061 24062 total += size; 24063 /* Is a frag distributed over two or more message blocks? */ 24064 if (missing > size) 24065 return (B_FALSE); 24066 size -= missing; 24067 24068 size %= len; 24069 missing = (size == 0) ? 0 : (len - size); 24070 24071 mp = mp->b_cont; 24072 } 24073 24074 return (total > ip_wput_frag_mdt_min); 24075 } 24076 24077 /* 24078 * Outbound IPv4 fragmentation routine using MDT. 24079 */ 24080 static void 24081 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 24082 uint32_t frag_flag, int offset) 24083 { 24084 ipha_t *ipha_orig; 24085 int i1, ip_data_end; 24086 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 24087 mblk_t *hdr_mp, *md_mp = NULL; 24088 unsigned char *hdr_ptr, *pld_ptr; 24089 multidata_t *mmd; 24090 ip_pdescinfo_t pdi; 24091 ill_t *ill; 24092 ip_stack_t *ipst = ire->ire_ipst; 24093 24094 ASSERT(DB_TYPE(mp) == M_DATA); 24095 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 24096 24097 ill = ire_to_ill(ire); 24098 ASSERT(ill != NULL); 24099 24100 ipha_orig = (ipha_t *)mp->b_rptr; 24101 mp->b_rptr += sizeof (ipha_t); 24102 24103 /* Calculate how many packets we will send out */ 24104 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 24105 pkts = (i1 + len - 1) / len; 24106 ASSERT(pkts > 1); 24107 24108 /* Allocate a message block which will hold all the IP Headers. */ 24109 wroff = ipst->ips_ip_wroff_extra; 24110 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 24111 24112 i1 = pkts * hdr_chunk_len; 24113 /* 24114 * Create the header buffer, Multidata and destination address 24115 * and SAP attribute that should be associated with it. 24116 */ 24117 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 24118 ((hdr_mp->b_wptr += i1), 24119 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 24120 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 24121 freemsg(mp); 24122 if (md_mp == NULL) { 24123 freemsg(hdr_mp); 24124 } else { 24125 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 24126 freemsg(md_mp); 24127 } 24128 IP_STAT(ipst, ip_frag_mdt_allocfail); 24129 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 24130 return; 24131 } 24132 IP_STAT(ipst, ip_frag_mdt_allocd); 24133 24134 /* 24135 * Add a payload buffer to the Multidata; this operation must not 24136 * fail, or otherwise our logic in this routine is broken. There 24137 * is no memory allocation done by the routine, so any returned 24138 * failure simply tells us that we've done something wrong. 24139 * 24140 * A failure tells us that either we're adding the same payload 24141 * buffer more than once, or we're trying to add more buffers than 24142 * allowed. None of the above cases should happen, and we panic 24143 * because either there's horrible heap corruption, and/or 24144 * programming mistake. 24145 */ 24146 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24147 goto pbuf_panic; 24148 24149 hdr_ptr = hdr_mp->b_rptr; 24150 pld_ptr = mp->b_rptr; 24151 24152 /* Establish the ending byte offset, based on the starting offset. */ 24153 offset <<= 3; 24154 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 24155 IP_SIMPLE_HDR_LENGTH; 24156 24157 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 24158 24159 while (pld_ptr < mp->b_wptr) { 24160 ipha_t *ipha; 24161 uint16_t offset_and_flags; 24162 uint16_t ip_len; 24163 int error; 24164 24165 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 24166 ipha = (ipha_t *)(hdr_ptr + wroff); 24167 ASSERT(OK_32PTR(ipha)); 24168 *ipha = *ipha_orig; 24169 24170 if (ip_data_end - offset > len) { 24171 offset_and_flags = IPH_MF; 24172 } else { 24173 /* 24174 * Last frag. Set len to the length of this last piece. 24175 */ 24176 len = ip_data_end - offset; 24177 /* A frag of a frag might have IPH_MF non-zero */ 24178 offset_and_flags = 24179 ntohs(ipha->ipha_fragment_offset_and_flags) & 24180 IPH_MF; 24181 } 24182 offset_and_flags |= (uint16_t)(offset >> 3); 24183 offset_and_flags |= (uint16_t)frag_flag; 24184 /* Store the offset and flags in the IP header. */ 24185 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24186 24187 /* Store the length in the IP header. */ 24188 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 24189 ipha->ipha_length = htons(ip_len); 24190 24191 /* 24192 * Set the IP header checksum. Note that mp is just 24193 * the header, so this is easy to pass to ip_csum. 24194 */ 24195 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24196 24197 /* 24198 * Record offset and size of header and data of the next packet 24199 * in the multidata message. 24200 */ 24201 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24202 PDESC_PLD_INIT(&pdi); 24203 i1 = MIN(mp->b_wptr - pld_ptr, len); 24204 ASSERT(i1 > 0); 24205 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24206 if (i1 == len) { 24207 pld_ptr += len; 24208 } else { 24209 i1 = len - i1; 24210 mp = mp->b_cont; 24211 ASSERT(mp != NULL); 24212 ASSERT(MBLKL(mp) >= i1); 24213 /* 24214 * Attach the next payload message block to the 24215 * multidata message. 24216 */ 24217 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24218 goto pbuf_panic; 24219 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24220 pld_ptr = mp->b_rptr + i1; 24221 } 24222 24223 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24224 KM_NOSLEEP)) == NULL) { 24225 /* 24226 * Any failure other than ENOMEM indicates that we 24227 * have passed in invalid pdesc info or parameters 24228 * to mmd_addpdesc, which must not happen. 24229 * 24230 * EINVAL is a result of failure on boundary checks 24231 * against the pdesc info contents. It should not 24232 * happen, and we panic because either there's 24233 * horrible heap corruption, and/or programming 24234 * mistake. 24235 */ 24236 if (error != ENOMEM) { 24237 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24238 "pdesc logic error detected for " 24239 "mmd %p pinfo %p (%d)\n", 24240 (void *)mmd, (void *)&pdi, error); 24241 /* NOTREACHED */ 24242 } 24243 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24244 /* Free unattached payload message blocks as well */ 24245 md_mp->b_cont = mp->b_cont; 24246 goto free_mmd; 24247 } 24248 24249 /* Advance fragment offset. */ 24250 offset += len; 24251 24252 /* Advance to location for next header in the buffer. */ 24253 hdr_ptr += hdr_chunk_len; 24254 24255 /* Did we reach the next payload message block? */ 24256 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24257 mp = mp->b_cont; 24258 /* 24259 * Attach the next message block with payload 24260 * data to the multidata message. 24261 */ 24262 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24263 goto pbuf_panic; 24264 pld_ptr = mp->b_rptr; 24265 } 24266 } 24267 24268 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24269 ASSERT(mp->b_wptr == pld_ptr); 24270 24271 /* Update IP statistics */ 24272 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24273 24274 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24275 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24276 24277 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24278 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24279 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24280 24281 if (pkt_type == OB_PKT) { 24282 ire->ire_ob_pkt_count += pkts; 24283 if (ire->ire_ipif != NULL) 24284 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24285 } else { 24286 /* 24287 * The type is IB_PKT in the forwarding path and in 24288 * the mobile IP case when the packet is being reverse- 24289 * tunneled to the home agent. 24290 */ 24291 ire->ire_ib_pkt_count += pkts; 24292 ASSERT(!IRE_IS_LOCAL(ire)); 24293 if (ire->ire_type & IRE_BROADCAST) { 24294 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24295 } else { 24296 UPDATE_MIB(ill->ill_ip_mib, 24297 ipIfStatsHCOutForwDatagrams, pkts); 24298 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24299 } 24300 } 24301 ire->ire_last_used_time = lbolt; 24302 /* Send it down */ 24303 putnext(ire->ire_stq, md_mp); 24304 return; 24305 24306 pbuf_panic: 24307 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24308 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24309 pbuf_idx); 24310 /* NOTREACHED */ 24311 } 24312 24313 /* 24314 * Outbound IP fragmentation routine. 24315 * 24316 * NOTE : This routine does not ire_refrele the ire that is passed in 24317 * as the argument. 24318 */ 24319 static void 24320 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24321 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 24322 { 24323 int i1; 24324 mblk_t *ll_hdr_mp; 24325 int ll_hdr_len; 24326 int hdr_len; 24327 mblk_t *hdr_mp; 24328 ipha_t *ipha; 24329 int ip_data_end; 24330 int len; 24331 mblk_t *mp = mp_orig, *mp1; 24332 int offset; 24333 queue_t *q; 24334 uint32_t v_hlen_tos_len; 24335 mblk_t *first_mp; 24336 boolean_t mctl_present; 24337 ill_t *ill; 24338 ill_t *out_ill; 24339 mblk_t *xmit_mp; 24340 mblk_t *carve_mp; 24341 ire_t *ire1 = NULL; 24342 ire_t *save_ire = NULL; 24343 mblk_t *next_mp = NULL; 24344 boolean_t last_frag = B_FALSE; 24345 boolean_t multirt_send = B_FALSE; 24346 ire_t *first_ire = NULL; 24347 irb_t *irb = NULL; 24348 mib2_ipIfStatsEntry_t *mibptr = NULL; 24349 24350 ill = ire_to_ill(ire); 24351 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24352 24353 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24354 24355 /* 24356 * IPSEC does not allow hw accelerated packets to be fragmented 24357 * This check is made in ip_wput_ipsec_out prior to coming here 24358 * via ip_wput_ire_fragmentit. 24359 * 24360 * If at this point we have an ire whose ARP request has not 24361 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24362 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24363 * This packet and all fragmentable packets for this ire will 24364 * continue to get dropped while ire_nce->nce_state remains in 24365 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24366 * ND_REACHABLE, all subsquent large packets for this ire will 24367 * get fragemented and sent out by this function. 24368 */ 24369 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24370 /* If nce_state is ND_INITIAL, trigger ARP query */ 24371 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24372 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24373 " - dropping packet\n")); 24374 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24375 freemsg(mp); 24376 return; 24377 } 24378 24379 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24380 "ip_wput_frag_start:"); 24381 24382 if (mp->b_datap->db_type == M_CTL) { 24383 first_mp = mp; 24384 mp_orig = mp = mp->b_cont; 24385 mctl_present = B_TRUE; 24386 } else { 24387 first_mp = mp; 24388 mctl_present = B_FALSE; 24389 } 24390 24391 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24392 ipha = (ipha_t *)mp->b_rptr; 24393 24394 /* 24395 * If the Don't Fragment flag is on, generate an ICMP destination 24396 * unreachable, fragmentation needed. 24397 */ 24398 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24399 if (offset & IPH_DF) { 24400 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24401 /* 24402 * Need to compute hdr checksum if called from ip_wput_ire. 24403 * Note that ip_rput_forward verifies the checksum before 24404 * calling this routine so in that case this is a noop. 24405 */ 24406 ipha->ipha_hdr_checksum = 0; 24407 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24408 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24409 ipst); 24410 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24411 "ip_wput_frag_end:(%S)", 24412 "don't fragment"); 24413 return; 24414 } 24415 if (mctl_present) 24416 freeb(first_mp); 24417 /* 24418 * Establish the starting offset. May not be zero if we are fragging 24419 * a fragment that is being forwarded. 24420 */ 24421 offset = offset & IPH_OFFSET; 24422 24423 /* TODO why is this test needed? */ 24424 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24425 if (((max_frag - LENGTH) & ~7) < 8) { 24426 /* TODO: notify ulp somehow */ 24427 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24428 freemsg(mp); 24429 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24430 "ip_wput_frag_end:(%S)", 24431 "len < 8"); 24432 return; 24433 } 24434 24435 hdr_len = (V_HLEN & 0xF) << 2; 24436 24437 ipha->ipha_hdr_checksum = 0; 24438 24439 /* 24440 * Establish the number of bytes maximum per frag, after putting 24441 * in the header. 24442 */ 24443 len = (max_frag - hdr_len) & ~7; 24444 24445 /* Check if we can use MDT to send out the frags. */ 24446 ASSERT(!IRE_IS_LOCAL(ire)); 24447 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24448 ipst->ips_ip_multidata_outbound && 24449 !(ire->ire_flags & RTF_MULTIRT) && 24450 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24451 ill != NULL && ILL_MDT_CAPABLE(ill) && 24452 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24453 ASSERT(ill->ill_mdt_capab != NULL); 24454 if (!ill->ill_mdt_capab->ill_mdt_on) { 24455 /* 24456 * If MDT has been previously turned off in the past, 24457 * and we currently can do MDT (due to IPQoS policy 24458 * removal, etc.) then enable it for this interface. 24459 */ 24460 ill->ill_mdt_capab->ill_mdt_on = 1; 24461 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24462 ill->ill_name)); 24463 } 24464 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24465 offset); 24466 return; 24467 } 24468 24469 /* Get a copy of the header for the trailing frags */ 24470 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24471 if (!hdr_mp) { 24472 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24473 freemsg(mp); 24474 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24475 "ip_wput_frag_end:(%S)", 24476 "couldn't copy hdr"); 24477 return; 24478 } 24479 if (DB_CRED(mp) != NULL) 24480 mblk_setcred(hdr_mp, DB_CRED(mp)); 24481 24482 /* Store the starting offset, with the MoreFrags flag. */ 24483 i1 = offset | IPH_MF | frag_flag; 24484 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24485 24486 /* Establish the ending byte offset, based on the starting offset. */ 24487 offset <<= 3; 24488 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24489 24490 /* Store the length of the first fragment in the IP header. */ 24491 i1 = len + hdr_len; 24492 ASSERT(i1 <= IP_MAXPACKET); 24493 ipha->ipha_length = htons((uint16_t)i1); 24494 24495 /* 24496 * Compute the IP header checksum for the first frag. We have to 24497 * watch out that we stop at the end of the header. 24498 */ 24499 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24500 24501 /* 24502 * Now carve off the first frag. Note that this will include the 24503 * original IP header. 24504 */ 24505 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24506 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24507 freeb(hdr_mp); 24508 freemsg(mp_orig); 24509 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24510 "ip_wput_frag_end:(%S)", 24511 "couldn't carve first"); 24512 return; 24513 } 24514 24515 /* 24516 * Multirouting case. Each fragment is replicated 24517 * via all non-condemned RTF_MULTIRT routes 24518 * currently resolved. 24519 * We ensure that first_ire is the first RTF_MULTIRT 24520 * ire in the bucket. 24521 */ 24522 if (ire->ire_flags & RTF_MULTIRT) { 24523 irb = ire->ire_bucket; 24524 ASSERT(irb != NULL); 24525 24526 multirt_send = B_TRUE; 24527 24528 /* Make sure we do not omit any multiroute ire. */ 24529 IRB_REFHOLD(irb); 24530 for (first_ire = irb->irb_ire; 24531 first_ire != NULL; 24532 first_ire = first_ire->ire_next) { 24533 if ((first_ire->ire_flags & RTF_MULTIRT) && 24534 (first_ire->ire_addr == ire->ire_addr) && 24535 !(first_ire->ire_marks & 24536 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 24537 break; 24538 } 24539 24540 if (first_ire != NULL) { 24541 if (first_ire != ire) { 24542 IRE_REFHOLD(first_ire); 24543 /* 24544 * Do not release the ire passed in 24545 * as the argument. 24546 */ 24547 ire = first_ire; 24548 } else { 24549 first_ire = NULL; 24550 } 24551 } 24552 IRB_REFRELE(irb); 24553 24554 /* 24555 * Save the first ire; we will need to restore it 24556 * for the trailing frags. 24557 * We REFHOLD save_ire, as each iterated ire will be 24558 * REFRELEd. 24559 */ 24560 save_ire = ire; 24561 IRE_REFHOLD(save_ire); 24562 } 24563 24564 /* 24565 * First fragment emission loop. 24566 * In most cases, the emission loop below is entered only 24567 * once. Only in the case where the ire holds the RTF_MULTIRT 24568 * flag, do we loop to process all RTF_MULTIRT ires in the 24569 * bucket, and send the fragment through all crossed 24570 * RTF_MULTIRT routes. 24571 */ 24572 do { 24573 if (ire->ire_flags & RTF_MULTIRT) { 24574 /* 24575 * We are in a multiple send case, need to get 24576 * the next ire and make a copy of the packet. 24577 * ire1 holds here the next ire to process in the 24578 * bucket. If multirouting is expected, 24579 * any non-RTF_MULTIRT ire that has the 24580 * right destination address is ignored. 24581 * 24582 * We have to take into account the MTU of 24583 * each walked ire. max_frag is set by the 24584 * the caller and generally refers to 24585 * the primary ire entry. Here we ensure that 24586 * no route with a lower MTU will be used, as 24587 * fragments are carved once for all ires, 24588 * then replicated. 24589 */ 24590 ASSERT(irb != NULL); 24591 IRB_REFHOLD(irb); 24592 for (ire1 = ire->ire_next; 24593 ire1 != NULL; 24594 ire1 = ire1->ire_next) { 24595 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24596 continue; 24597 if (ire1->ire_addr != ire->ire_addr) 24598 continue; 24599 if (ire1->ire_marks & 24600 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24601 continue; 24602 /* 24603 * Ensure we do not exceed the MTU 24604 * of the next route. 24605 */ 24606 if (ire1->ire_max_frag < max_frag) { 24607 ip_multirt_bad_mtu(ire1, max_frag); 24608 continue; 24609 } 24610 24611 /* Got one. */ 24612 IRE_REFHOLD(ire1); 24613 break; 24614 } 24615 IRB_REFRELE(irb); 24616 24617 if (ire1 != NULL) { 24618 next_mp = copyb(mp); 24619 if ((next_mp == NULL) || 24620 ((mp->b_cont != NULL) && 24621 ((next_mp->b_cont = 24622 dupmsg(mp->b_cont)) == NULL))) { 24623 freemsg(next_mp); 24624 next_mp = NULL; 24625 ire_refrele(ire1); 24626 ire1 = NULL; 24627 } 24628 } 24629 24630 /* Last multiroute ire; don't loop anymore. */ 24631 if (ire1 == NULL) { 24632 multirt_send = B_FALSE; 24633 } 24634 } 24635 24636 ll_hdr_len = 0; 24637 LOCK_IRE_FP_MP(ire); 24638 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24639 if (ll_hdr_mp != NULL) { 24640 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24641 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24642 } else { 24643 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24644 } 24645 24646 /* If there is a transmit header, get a copy for this frag. */ 24647 /* 24648 * TODO: should check db_ref before calling ip_carve_mp since 24649 * it might give us a dup. 24650 */ 24651 if (!ll_hdr_mp) { 24652 /* No xmit header. */ 24653 xmit_mp = mp; 24654 24655 /* We have a link-layer header that can fit in our mblk. */ 24656 } else if (mp->b_datap->db_ref == 1 && 24657 ll_hdr_len != 0 && 24658 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24659 /* M_DATA fastpath */ 24660 mp->b_rptr -= ll_hdr_len; 24661 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24662 xmit_mp = mp; 24663 24664 /* Corner case if copyb has failed */ 24665 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24666 UNLOCK_IRE_FP_MP(ire); 24667 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24668 freeb(hdr_mp); 24669 freemsg(mp); 24670 freemsg(mp_orig); 24671 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24672 "ip_wput_frag_end:(%S)", 24673 "discard"); 24674 24675 if (multirt_send) { 24676 ASSERT(ire1); 24677 ASSERT(next_mp); 24678 24679 freemsg(next_mp); 24680 ire_refrele(ire1); 24681 } 24682 if (save_ire != NULL) 24683 IRE_REFRELE(save_ire); 24684 24685 if (first_ire != NULL) 24686 ire_refrele(first_ire); 24687 return; 24688 24689 /* 24690 * Case of res_mp OR the fastpath mp can't fit 24691 * in the mblk 24692 */ 24693 } else { 24694 xmit_mp->b_cont = mp; 24695 if (DB_CRED(mp) != NULL) 24696 mblk_setcred(xmit_mp, DB_CRED(mp)); 24697 /* 24698 * Get priority marking, if any. 24699 * We propagate the CoS marking from the 24700 * original packet that went to QoS processing 24701 * in ip_wput_ire to the newly carved mp. 24702 */ 24703 if (DB_TYPE(xmit_mp) == M_DATA) 24704 xmit_mp->b_band = mp->b_band; 24705 } 24706 UNLOCK_IRE_FP_MP(ire); 24707 24708 q = ire->ire_stq; 24709 out_ill = (ill_t *)q->q_ptr; 24710 24711 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24712 24713 DTRACE_PROBE4(ip4__physical__out__start, 24714 ill_t *, NULL, ill_t *, out_ill, 24715 ipha_t *, ipha, mblk_t *, xmit_mp); 24716 24717 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24718 ipst->ips_ipv4firewall_physical_out, 24719 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24720 24721 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24722 24723 if (xmit_mp != NULL) { 24724 putnext(q, xmit_mp); 24725 24726 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24727 UPDATE_MIB(out_ill->ill_ip_mib, 24728 ipIfStatsHCOutOctets, i1); 24729 24730 if (pkt_type != OB_PKT) { 24731 /* 24732 * Update the packet count and MIB stats 24733 * of trailing RTF_MULTIRT ires. 24734 */ 24735 UPDATE_OB_PKT_COUNT(ire); 24736 BUMP_MIB(out_ill->ill_ip_mib, 24737 ipIfStatsOutFragReqds); 24738 } 24739 } 24740 24741 if (multirt_send) { 24742 /* 24743 * We are in a multiple send case; look for 24744 * the next ire and re-enter the loop. 24745 */ 24746 ASSERT(ire1); 24747 ASSERT(next_mp); 24748 /* REFRELE the current ire before looping */ 24749 ire_refrele(ire); 24750 ire = ire1; 24751 ire1 = NULL; 24752 mp = next_mp; 24753 next_mp = NULL; 24754 } 24755 } while (multirt_send); 24756 24757 ASSERT(ire1 == NULL); 24758 24759 /* Restore the original ire; we need it for the trailing frags */ 24760 if (save_ire != NULL) { 24761 /* REFRELE the last iterated ire */ 24762 ire_refrele(ire); 24763 /* save_ire has been REFHOLDed */ 24764 ire = save_ire; 24765 save_ire = NULL; 24766 q = ire->ire_stq; 24767 } 24768 24769 if (pkt_type == OB_PKT) { 24770 UPDATE_OB_PKT_COUNT(ire); 24771 } else { 24772 out_ill = (ill_t *)q->q_ptr; 24773 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24774 UPDATE_IB_PKT_COUNT(ire); 24775 } 24776 24777 /* Advance the offset to the second frag starting point. */ 24778 offset += len; 24779 /* 24780 * Update hdr_len from the copied header - there might be less options 24781 * in the later fragments. 24782 */ 24783 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24784 /* Loop until done. */ 24785 for (;;) { 24786 uint16_t offset_and_flags; 24787 uint16_t ip_len; 24788 24789 if (ip_data_end - offset > len) { 24790 /* 24791 * Carve off the appropriate amount from the original 24792 * datagram. 24793 */ 24794 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24795 mp = NULL; 24796 break; 24797 } 24798 /* 24799 * More frags after this one. Get another copy 24800 * of the header. 24801 */ 24802 if (carve_mp->b_datap->db_ref == 1 && 24803 hdr_mp->b_wptr - hdr_mp->b_rptr < 24804 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24805 /* Inline IP header */ 24806 carve_mp->b_rptr -= hdr_mp->b_wptr - 24807 hdr_mp->b_rptr; 24808 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24809 hdr_mp->b_wptr - hdr_mp->b_rptr); 24810 mp = carve_mp; 24811 } else { 24812 if (!(mp = copyb(hdr_mp))) { 24813 freemsg(carve_mp); 24814 break; 24815 } 24816 /* Get priority marking, if any. */ 24817 mp->b_band = carve_mp->b_band; 24818 mp->b_cont = carve_mp; 24819 } 24820 ipha = (ipha_t *)mp->b_rptr; 24821 offset_and_flags = IPH_MF; 24822 } else { 24823 /* 24824 * Last frag. Consume the header. Set len to 24825 * the length of this last piece. 24826 */ 24827 len = ip_data_end - offset; 24828 24829 /* 24830 * Carve off the appropriate amount from the original 24831 * datagram. 24832 */ 24833 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24834 mp = NULL; 24835 break; 24836 } 24837 if (carve_mp->b_datap->db_ref == 1 && 24838 hdr_mp->b_wptr - hdr_mp->b_rptr < 24839 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24840 /* Inline IP header */ 24841 carve_mp->b_rptr -= hdr_mp->b_wptr - 24842 hdr_mp->b_rptr; 24843 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24844 hdr_mp->b_wptr - hdr_mp->b_rptr); 24845 mp = carve_mp; 24846 freeb(hdr_mp); 24847 hdr_mp = mp; 24848 } else { 24849 mp = hdr_mp; 24850 /* Get priority marking, if any. */ 24851 mp->b_band = carve_mp->b_band; 24852 mp->b_cont = carve_mp; 24853 } 24854 ipha = (ipha_t *)mp->b_rptr; 24855 /* A frag of a frag might have IPH_MF non-zero */ 24856 offset_and_flags = 24857 ntohs(ipha->ipha_fragment_offset_and_flags) & 24858 IPH_MF; 24859 } 24860 offset_and_flags |= (uint16_t)(offset >> 3); 24861 offset_and_flags |= (uint16_t)frag_flag; 24862 /* Store the offset and flags in the IP header. */ 24863 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24864 24865 /* Store the length in the IP header. */ 24866 ip_len = (uint16_t)(len + hdr_len); 24867 ipha->ipha_length = htons(ip_len); 24868 24869 /* 24870 * Set the IP header checksum. Note that mp is just 24871 * the header, so this is easy to pass to ip_csum. 24872 */ 24873 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24874 24875 /* Attach a transmit header, if any, and ship it. */ 24876 if (pkt_type == OB_PKT) { 24877 UPDATE_OB_PKT_COUNT(ire); 24878 } else { 24879 out_ill = (ill_t *)q->q_ptr; 24880 BUMP_MIB(out_ill->ill_ip_mib, 24881 ipIfStatsHCOutForwDatagrams); 24882 UPDATE_IB_PKT_COUNT(ire); 24883 } 24884 24885 if (ire->ire_flags & RTF_MULTIRT) { 24886 irb = ire->ire_bucket; 24887 ASSERT(irb != NULL); 24888 24889 multirt_send = B_TRUE; 24890 24891 /* 24892 * Save the original ire; we will need to restore it 24893 * for the tailing frags. 24894 */ 24895 save_ire = ire; 24896 IRE_REFHOLD(save_ire); 24897 } 24898 /* 24899 * Emission loop for this fragment, similar 24900 * to what is done for the first fragment. 24901 */ 24902 do { 24903 if (multirt_send) { 24904 /* 24905 * We are in a multiple send case, need to get 24906 * the next ire and make a copy of the packet. 24907 */ 24908 ASSERT(irb != NULL); 24909 IRB_REFHOLD(irb); 24910 for (ire1 = ire->ire_next; 24911 ire1 != NULL; 24912 ire1 = ire1->ire_next) { 24913 if (!(ire1->ire_flags & RTF_MULTIRT)) 24914 continue; 24915 if (ire1->ire_addr != ire->ire_addr) 24916 continue; 24917 if (ire1->ire_marks & 24918 (IRE_MARK_CONDEMNED| 24919 IRE_MARK_HIDDEN)) 24920 continue; 24921 /* 24922 * Ensure we do not exceed the MTU 24923 * of the next route. 24924 */ 24925 if (ire1->ire_max_frag < max_frag) { 24926 ip_multirt_bad_mtu(ire1, 24927 max_frag); 24928 continue; 24929 } 24930 24931 /* Got one. */ 24932 IRE_REFHOLD(ire1); 24933 break; 24934 } 24935 IRB_REFRELE(irb); 24936 24937 if (ire1 != NULL) { 24938 next_mp = copyb(mp); 24939 if ((next_mp == NULL) || 24940 ((mp->b_cont != NULL) && 24941 ((next_mp->b_cont = 24942 dupmsg(mp->b_cont)) == NULL))) { 24943 freemsg(next_mp); 24944 next_mp = NULL; 24945 ire_refrele(ire1); 24946 ire1 = NULL; 24947 } 24948 } 24949 24950 /* Last multiroute ire; don't loop anymore. */ 24951 if (ire1 == NULL) { 24952 multirt_send = B_FALSE; 24953 } 24954 } 24955 24956 /* Update transmit header */ 24957 ll_hdr_len = 0; 24958 LOCK_IRE_FP_MP(ire); 24959 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24960 if (ll_hdr_mp != NULL) { 24961 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24962 ll_hdr_len = MBLKL(ll_hdr_mp); 24963 } else { 24964 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24965 } 24966 24967 if (!ll_hdr_mp) { 24968 xmit_mp = mp; 24969 24970 /* 24971 * We have link-layer header that can fit in 24972 * our mblk. 24973 */ 24974 } else if (mp->b_datap->db_ref == 1 && 24975 ll_hdr_len != 0 && 24976 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24977 /* M_DATA fastpath */ 24978 mp->b_rptr -= ll_hdr_len; 24979 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24980 ll_hdr_len); 24981 xmit_mp = mp; 24982 24983 /* 24984 * Case of res_mp OR the fastpath mp can't fit 24985 * in the mblk 24986 */ 24987 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24988 xmit_mp->b_cont = mp; 24989 if (DB_CRED(mp) != NULL) 24990 mblk_setcred(xmit_mp, DB_CRED(mp)); 24991 /* Get priority marking, if any. */ 24992 if (DB_TYPE(xmit_mp) == M_DATA) 24993 xmit_mp->b_band = mp->b_band; 24994 24995 /* Corner case if copyb failed */ 24996 } else { 24997 /* 24998 * Exit both the replication and 24999 * fragmentation loops. 25000 */ 25001 UNLOCK_IRE_FP_MP(ire); 25002 goto drop_pkt; 25003 } 25004 UNLOCK_IRE_FP_MP(ire); 25005 25006 mp1 = mp; 25007 out_ill = (ill_t *)q->q_ptr; 25008 25009 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 25010 25011 DTRACE_PROBE4(ip4__physical__out__start, 25012 ill_t *, NULL, ill_t *, out_ill, 25013 ipha_t *, ipha, mblk_t *, xmit_mp); 25014 25015 FW_HOOKS(ipst->ips_ip4_physical_out_event, 25016 ipst->ips_ipv4firewall_physical_out, 25017 NULL, out_ill, ipha, xmit_mp, mp, ipst); 25018 25019 DTRACE_PROBE1(ip4__physical__out__end, 25020 mblk_t *, xmit_mp); 25021 25022 if (mp != mp1 && hdr_mp == mp1) 25023 hdr_mp = mp; 25024 if (mp != mp1 && mp_orig == mp1) 25025 mp_orig = mp; 25026 25027 if (xmit_mp != NULL) { 25028 putnext(q, xmit_mp); 25029 25030 BUMP_MIB(out_ill->ill_ip_mib, 25031 ipIfStatsHCOutTransmits); 25032 UPDATE_MIB(out_ill->ill_ip_mib, 25033 ipIfStatsHCOutOctets, ip_len); 25034 25035 if (pkt_type != OB_PKT) { 25036 /* 25037 * Update the packet count of trailing 25038 * RTF_MULTIRT ires. 25039 */ 25040 UPDATE_OB_PKT_COUNT(ire); 25041 } 25042 } 25043 25044 /* All done if we just consumed the hdr_mp. */ 25045 if (mp == hdr_mp) { 25046 last_frag = B_TRUE; 25047 BUMP_MIB(out_ill->ill_ip_mib, 25048 ipIfStatsOutFragOKs); 25049 } 25050 25051 if (multirt_send) { 25052 /* 25053 * We are in a multiple send case; look for 25054 * the next ire and re-enter the loop. 25055 */ 25056 ASSERT(ire1); 25057 ASSERT(next_mp); 25058 /* REFRELE the current ire before looping */ 25059 ire_refrele(ire); 25060 ire = ire1; 25061 ire1 = NULL; 25062 q = ire->ire_stq; 25063 mp = next_mp; 25064 next_mp = NULL; 25065 } 25066 } while (multirt_send); 25067 /* 25068 * Restore the original ire; we need it for the 25069 * trailing frags 25070 */ 25071 if (save_ire != NULL) { 25072 ASSERT(ire1 == NULL); 25073 /* REFRELE the last iterated ire */ 25074 ire_refrele(ire); 25075 /* save_ire has been REFHOLDed */ 25076 ire = save_ire; 25077 q = ire->ire_stq; 25078 save_ire = NULL; 25079 } 25080 25081 if (last_frag) { 25082 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25083 "ip_wput_frag_end:(%S)", 25084 "consumed hdr_mp"); 25085 25086 if (first_ire != NULL) 25087 ire_refrele(first_ire); 25088 return; 25089 } 25090 /* Otherwise, advance and loop. */ 25091 offset += len; 25092 } 25093 25094 drop_pkt: 25095 /* Clean up following allocation failure. */ 25096 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 25097 freemsg(mp); 25098 if (mp != hdr_mp) 25099 freeb(hdr_mp); 25100 if (mp != mp_orig) 25101 freemsg(mp_orig); 25102 25103 if (save_ire != NULL) 25104 IRE_REFRELE(save_ire); 25105 if (first_ire != NULL) 25106 ire_refrele(first_ire); 25107 25108 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25109 "ip_wput_frag_end:(%S)", 25110 "end--alloc failure"); 25111 } 25112 25113 /* 25114 * Copy the header plus those options which have the copy bit set 25115 */ 25116 static mblk_t * 25117 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 25118 { 25119 mblk_t *mp; 25120 uchar_t *up; 25121 25122 /* 25123 * Quick check if we need to look for options without the copy bit 25124 * set 25125 */ 25126 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 25127 if (!mp) 25128 return (mp); 25129 mp->b_rptr += ipst->ips_ip_wroff_extra; 25130 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 25131 bcopy(rptr, mp->b_rptr, hdr_len); 25132 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 25133 return (mp); 25134 } 25135 up = mp->b_rptr; 25136 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 25137 up += IP_SIMPLE_HDR_LENGTH; 25138 rptr += IP_SIMPLE_HDR_LENGTH; 25139 hdr_len -= IP_SIMPLE_HDR_LENGTH; 25140 while (hdr_len > 0) { 25141 uint32_t optval; 25142 uint32_t optlen; 25143 25144 optval = *rptr; 25145 if (optval == IPOPT_EOL) 25146 break; 25147 if (optval == IPOPT_NOP) 25148 optlen = 1; 25149 else 25150 optlen = rptr[1]; 25151 if (optval & IPOPT_COPY) { 25152 bcopy(rptr, up, optlen); 25153 up += optlen; 25154 } 25155 rptr += optlen; 25156 hdr_len -= optlen; 25157 } 25158 /* 25159 * Make sure that we drop an even number of words by filling 25160 * with EOL to the next word boundary. 25161 */ 25162 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 25163 hdr_len & 0x3; hdr_len++) 25164 *up++ = IPOPT_EOL; 25165 mp->b_wptr = up; 25166 /* Update header length */ 25167 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 25168 return (mp); 25169 } 25170 25171 /* 25172 * Delivery to local recipients including fanout to multiple recipients. 25173 * Does not do checksumming of UDP/TCP. 25174 * Note: q should be the read side queue for either the ill or conn. 25175 * Note: rq should be the read side q for the lower (ill) stream. 25176 * We don't send packets to IPPF processing, thus the last argument 25177 * to all the fanout calls are B_FALSE. 25178 */ 25179 void 25180 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25181 int fanout_flags, zoneid_t zoneid) 25182 { 25183 uint32_t protocol; 25184 mblk_t *first_mp; 25185 boolean_t mctl_present; 25186 int ire_type; 25187 #define rptr ((uchar_t *)ipha) 25188 ip_stack_t *ipst = ill->ill_ipst; 25189 25190 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25191 "ip_wput_local_start: q %p", q); 25192 25193 if (ire != NULL) { 25194 ire_type = ire->ire_type; 25195 } else { 25196 /* 25197 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25198 * packet is not multicast, we can't tell the ire type. 25199 */ 25200 ASSERT(CLASSD(ipha->ipha_dst)); 25201 ire_type = IRE_BROADCAST; 25202 } 25203 25204 first_mp = mp; 25205 if (first_mp->b_datap->db_type == M_CTL) { 25206 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25207 if (!io->ipsec_out_secure) { 25208 /* 25209 * This ipsec_out_t was allocated in ip_wput 25210 * for multicast packets to store the ill_index. 25211 * As this is being delivered locally, we don't 25212 * need this anymore. 25213 */ 25214 mp = first_mp->b_cont; 25215 freeb(first_mp); 25216 first_mp = mp; 25217 mctl_present = B_FALSE; 25218 } else { 25219 /* 25220 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25221 * security properties for the looped-back packet. 25222 */ 25223 mctl_present = B_TRUE; 25224 mp = first_mp->b_cont; 25225 ASSERT(mp != NULL); 25226 ipsec_out_to_in(first_mp); 25227 } 25228 } else { 25229 mctl_present = B_FALSE; 25230 } 25231 25232 DTRACE_PROBE4(ip4__loopback__in__start, 25233 ill_t *, ill, ill_t *, NULL, 25234 ipha_t *, ipha, mblk_t *, first_mp); 25235 25236 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25237 ipst->ips_ipv4firewall_loopback_in, 25238 ill, NULL, ipha, first_mp, mp, ipst); 25239 25240 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25241 25242 if (first_mp == NULL) 25243 return; 25244 25245 ipst->ips_loopback_packets++; 25246 25247 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25248 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25249 if (!IS_SIMPLE_IPH(ipha)) { 25250 ip_wput_local_options(ipha, ipst); 25251 } 25252 25253 protocol = ipha->ipha_protocol; 25254 switch (protocol) { 25255 case IPPROTO_ICMP: { 25256 ire_t *ire_zone; 25257 ilm_t *ilm; 25258 mblk_t *mp1; 25259 zoneid_t last_zoneid; 25260 25261 if (CLASSD(ipha->ipha_dst) && 25262 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 25263 ASSERT(ire_type == IRE_BROADCAST); 25264 /* 25265 * In the multicast case, applications may have joined 25266 * the group from different zones, so we need to deliver 25267 * the packet to each of them. Loop through the 25268 * multicast memberships structures (ilm) on the receive 25269 * ill and send a copy of the packet up each matching 25270 * one. However, we don't do this for multicasts sent on 25271 * the loopback interface (PHYI_LOOPBACK flag set) as 25272 * they must stay in the sender's zone. 25273 * 25274 * ilm_add_v6() ensures that ilms in the same zone are 25275 * contiguous in the ill_ilm list. We use this property 25276 * to avoid sending duplicates needed when two 25277 * applications in the same zone join the same group on 25278 * different logical interfaces: we ignore the ilm if 25279 * it's zoneid is the same as the last matching one. 25280 * In addition, the sending of the packet for 25281 * ire_zoneid is delayed until all of the other ilms 25282 * have been exhausted. 25283 */ 25284 last_zoneid = -1; 25285 ILM_WALKER_HOLD(ill); 25286 for (ilm = ill->ill_ilm; ilm != NULL; 25287 ilm = ilm->ilm_next) { 25288 if ((ilm->ilm_flags & ILM_DELETED) || 25289 ipha->ipha_dst != ilm->ilm_addr || 25290 ilm->ilm_zoneid == last_zoneid || 25291 ilm->ilm_zoneid == zoneid || 25292 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25293 continue; 25294 mp1 = ip_copymsg(first_mp); 25295 if (mp1 == NULL) 25296 continue; 25297 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25298 mctl_present, B_FALSE, ill, 25299 ilm->ilm_zoneid); 25300 last_zoneid = ilm->ilm_zoneid; 25301 } 25302 ILM_WALKER_RELE(ill); 25303 /* 25304 * Loopback case: the sending endpoint has 25305 * IP_MULTICAST_LOOP disabled, therefore we don't 25306 * dispatch the multicast packet to the sending zone. 25307 */ 25308 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25309 freemsg(first_mp); 25310 return; 25311 } 25312 } else if (ire_type == IRE_BROADCAST) { 25313 /* 25314 * In the broadcast case, there may be many zones 25315 * which need a copy of the packet delivered to them. 25316 * There is one IRE_BROADCAST per broadcast address 25317 * and per zone; we walk those using a helper function. 25318 * In addition, the sending of the packet for zoneid is 25319 * delayed until all of the other ires have been 25320 * processed. 25321 */ 25322 IRB_REFHOLD(ire->ire_bucket); 25323 ire_zone = NULL; 25324 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25325 ire)) != NULL) { 25326 mp1 = ip_copymsg(first_mp); 25327 if (mp1 == NULL) 25328 continue; 25329 25330 UPDATE_IB_PKT_COUNT(ire_zone); 25331 ire_zone->ire_last_used_time = lbolt; 25332 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25333 mctl_present, B_FALSE, ill, 25334 ire_zone->ire_zoneid); 25335 } 25336 IRB_REFRELE(ire->ire_bucket); 25337 } 25338 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25339 0, mctl_present, B_FALSE, ill, zoneid); 25340 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25341 "ip_wput_local_end: q %p (%S)", 25342 q, "icmp"); 25343 return; 25344 } 25345 case IPPROTO_IGMP: 25346 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25347 /* Bad packet - discarded by igmp_input */ 25348 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25349 "ip_wput_local_end: q %p (%S)", 25350 q, "igmp_input--bad packet"); 25351 if (mctl_present) 25352 freeb(first_mp); 25353 return; 25354 } 25355 /* 25356 * igmp_input() may have returned the pulled up message. 25357 * So first_mp and ipha need to be reinitialized. 25358 */ 25359 ipha = (ipha_t *)mp->b_rptr; 25360 if (mctl_present) 25361 first_mp->b_cont = mp; 25362 else 25363 first_mp = mp; 25364 /* deliver to local raw users */ 25365 break; 25366 case IPPROTO_ENCAP: 25367 /* 25368 * This case is covered by either ip_fanout_proto, or by 25369 * the above security processing for self-tunneled packets. 25370 */ 25371 break; 25372 case IPPROTO_UDP: { 25373 uint16_t *up; 25374 uint32_t ports; 25375 25376 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25377 UDP_PORTS_OFFSET); 25378 /* Force a 'valid' checksum. */ 25379 up[3] = 0; 25380 25381 ports = *(uint32_t *)up; 25382 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25383 (ire_type == IRE_BROADCAST), 25384 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25385 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25386 ill, zoneid); 25387 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25388 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25389 return; 25390 } 25391 case IPPROTO_TCP: { 25392 25393 /* 25394 * For TCP, discard broadcast packets. 25395 */ 25396 if ((ushort_t)ire_type == IRE_BROADCAST) { 25397 freemsg(first_mp); 25398 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25399 ip2dbg(("ip_wput_local: discard broadcast\n")); 25400 return; 25401 } 25402 25403 if (mp->b_datap->db_type == M_DATA) { 25404 /* 25405 * M_DATA mblk, so init mblk (chain) for no struio(). 25406 */ 25407 mblk_t *mp1 = mp; 25408 25409 do 25410 mp1->b_datap->db_struioflag = 0; 25411 while ((mp1 = mp1->b_cont) != NULL); 25412 } 25413 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25414 <= mp->b_wptr); 25415 ip_fanout_tcp(q, first_mp, ill, ipha, 25416 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25417 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25418 mctl_present, B_FALSE, zoneid); 25419 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25420 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25421 return; 25422 } 25423 case IPPROTO_SCTP: 25424 { 25425 uint32_t ports; 25426 25427 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25428 ip_fanout_sctp(first_mp, ill, ipha, ports, 25429 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25430 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25431 return; 25432 } 25433 25434 default: 25435 break; 25436 } 25437 /* 25438 * Find a client for some other protocol. We give 25439 * copies to multiple clients, if more than one is 25440 * bound. 25441 */ 25442 ip_fanout_proto(q, first_mp, ill, ipha, 25443 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25444 mctl_present, B_FALSE, ill, zoneid); 25445 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25446 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25447 #undef rptr 25448 } 25449 25450 /* 25451 * Update any source route, record route, or timestamp options. 25452 * Check that we are at end of strict source route. 25453 * The options have been sanity checked by ip_wput_options(). 25454 */ 25455 static void 25456 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25457 { 25458 ipoptp_t opts; 25459 uchar_t *opt; 25460 uint8_t optval; 25461 uint8_t optlen; 25462 ipaddr_t dst; 25463 uint32_t ts; 25464 ire_t *ire; 25465 timestruc_t now; 25466 25467 ip2dbg(("ip_wput_local_options\n")); 25468 for (optval = ipoptp_first(&opts, ipha); 25469 optval != IPOPT_EOL; 25470 optval = ipoptp_next(&opts)) { 25471 opt = opts.ipoptp_cur; 25472 optlen = opts.ipoptp_len; 25473 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25474 switch (optval) { 25475 uint32_t off; 25476 case IPOPT_SSRR: 25477 case IPOPT_LSRR: 25478 off = opt[IPOPT_OFFSET]; 25479 off--; 25480 if (optlen < IP_ADDR_LEN || 25481 off > optlen - IP_ADDR_LEN) { 25482 /* End of source route */ 25483 break; 25484 } 25485 /* 25486 * This will only happen if two consecutive entries 25487 * in the source route contains our address or if 25488 * it is a packet with a loose source route which 25489 * reaches us before consuming the whole source route 25490 */ 25491 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25492 if (optval == IPOPT_SSRR) { 25493 return; 25494 } 25495 /* 25496 * Hack: instead of dropping the packet truncate the 25497 * source route to what has been used by filling the 25498 * rest with IPOPT_NOP. 25499 */ 25500 opt[IPOPT_OLEN] = (uint8_t)off; 25501 while (off < optlen) { 25502 opt[off++] = IPOPT_NOP; 25503 } 25504 break; 25505 case IPOPT_RR: 25506 off = opt[IPOPT_OFFSET]; 25507 off--; 25508 if (optlen < IP_ADDR_LEN || 25509 off > optlen - IP_ADDR_LEN) { 25510 /* No more room - ignore */ 25511 ip1dbg(( 25512 "ip_wput_forward_options: end of RR\n")); 25513 break; 25514 } 25515 dst = htonl(INADDR_LOOPBACK); 25516 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25517 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25518 break; 25519 case IPOPT_TS: 25520 /* Insert timestamp if there is romm */ 25521 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25522 case IPOPT_TS_TSONLY: 25523 off = IPOPT_TS_TIMELEN; 25524 break; 25525 case IPOPT_TS_PRESPEC: 25526 case IPOPT_TS_PRESPEC_RFC791: 25527 /* Verify that the address matched */ 25528 off = opt[IPOPT_OFFSET] - 1; 25529 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25530 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25531 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25532 ipst); 25533 if (ire == NULL) { 25534 /* Not for us */ 25535 break; 25536 } 25537 ire_refrele(ire); 25538 /* FALLTHRU */ 25539 case IPOPT_TS_TSANDADDR: 25540 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25541 break; 25542 default: 25543 /* 25544 * ip_*put_options should have already 25545 * dropped this packet. 25546 */ 25547 cmn_err(CE_PANIC, "ip_wput_local_options: " 25548 "unknown IT - bug in ip_wput_options?\n"); 25549 return; /* Keep "lint" happy */ 25550 } 25551 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25552 /* Increase overflow counter */ 25553 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25554 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25555 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25556 (off << 4); 25557 break; 25558 } 25559 off = opt[IPOPT_OFFSET] - 1; 25560 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25561 case IPOPT_TS_PRESPEC: 25562 case IPOPT_TS_PRESPEC_RFC791: 25563 case IPOPT_TS_TSANDADDR: 25564 dst = htonl(INADDR_LOOPBACK); 25565 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25566 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25567 /* FALLTHRU */ 25568 case IPOPT_TS_TSONLY: 25569 off = opt[IPOPT_OFFSET] - 1; 25570 /* Compute # of milliseconds since midnight */ 25571 gethrestime(&now); 25572 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25573 now.tv_nsec / (NANOSEC / MILLISEC); 25574 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25575 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25576 break; 25577 } 25578 break; 25579 } 25580 } 25581 } 25582 25583 /* 25584 * Send out a multicast packet on interface ipif. 25585 * The sender does not have an conn. 25586 * Caller verifies that this isn't a PHYI_LOOPBACK. 25587 */ 25588 void 25589 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25590 { 25591 ipha_t *ipha; 25592 ire_t *ire; 25593 ipaddr_t dst; 25594 mblk_t *first_mp; 25595 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25596 25597 /* igmp_sendpkt always allocates a ipsec_out_t */ 25598 ASSERT(mp->b_datap->db_type == M_CTL); 25599 ASSERT(!ipif->ipif_isv6); 25600 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 25601 25602 first_mp = mp; 25603 mp = first_mp->b_cont; 25604 ASSERT(mp->b_datap->db_type == M_DATA); 25605 ipha = (ipha_t *)mp->b_rptr; 25606 25607 /* 25608 * Find an IRE which matches the destination and the outgoing 25609 * queue (i.e. the outgoing interface.) 25610 */ 25611 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25612 dst = ipif->ipif_pp_dst_addr; 25613 else 25614 dst = ipha->ipha_dst; 25615 /* 25616 * The source address has already been initialized by the 25617 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25618 * be sufficient rather than MATCH_IRE_IPIF. 25619 * 25620 * This function is used for sending IGMP packets. We need 25621 * to make sure that we send the packet out of the interface 25622 * (ipif->ipif_ill) where we joined the group. This is to 25623 * prevent from switches doing IGMP snooping to send us multicast 25624 * packets for a given group on the interface we have joined. 25625 * If we can't find an ire, igmp_sendpkt has already initialized 25626 * ipsec_out_attach_if so that this will not be load spread in 25627 * ip_newroute_ipif. 25628 */ 25629 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25630 MATCH_IRE_ILL, ipst); 25631 if (!ire) { 25632 /* 25633 * Mark this packet to make it be delivered to 25634 * ip_wput_ire after the new ire has been 25635 * created. 25636 */ 25637 mp->b_prev = NULL; 25638 mp->b_next = NULL; 25639 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25640 zoneid, &zero_info); 25641 return; 25642 } 25643 25644 /* 25645 * Honor the RTF_SETSRC flag; this is the only case 25646 * where we force this addr whatever the current src addr is, 25647 * because this address is set by igmp_sendpkt(), and 25648 * cannot be specified by any user. 25649 */ 25650 if (ire->ire_flags & RTF_SETSRC) { 25651 ipha->ipha_src = ire->ire_src_addr; 25652 } 25653 25654 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25655 } 25656 25657 /* 25658 * NOTE : This function does not ire_refrele the ire argument passed in. 25659 * 25660 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25661 * failure. The nce_fp_mp can vanish any time in the case of IRE_MIPRTUN 25662 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25663 * the ire_lock to access the nce_fp_mp in this case. 25664 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25665 * prepending a fastpath message IPQoS processing must precede it, we also set 25666 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25667 * (IPQoS might have set the b_band for CoS marking). 25668 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25669 * must follow it so that IPQoS can mark the dl_priority field for CoS 25670 * marking, if needed. 25671 */ 25672 static mblk_t * 25673 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 25674 { 25675 uint_t hlen; 25676 ipha_t *ipha; 25677 mblk_t *mp1; 25678 boolean_t qos_done = B_FALSE; 25679 uchar_t *ll_hdr; 25680 ip_stack_t *ipst = ire->ire_ipst; 25681 25682 #define rptr ((uchar_t *)ipha) 25683 25684 ipha = (ipha_t *)mp->b_rptr; 25685 hlen = 0; 25686 LOCK_IRE_FP_MP(ire); 25687 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25688 ASSERT(DB_TYPE(mp1) == M_DATA); 25689 /* Initiate IPPF processing */ 25690 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25691 UNLOCK_IRE_FP_MP(ire); 25692 ip_process(proc, &mp, ill_index); 25693 if (mp == NULL) 25694 return (NULL); 25695 25696 ipha = (ipha_t *)mp->b_rptr; 25697 LOCK_IRE_FP_MP(ire); 25698 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25699 qos_done = B_TRUE; 25700 goto no_fp_mp; 25701 } 25702 ASSERT(DB_TYPE(mp1) == M_DATA); 25703 } 25704 hlen = MBLKL(mp1); 25705 /* 25706 * Check if we have enough room to prepend fastpath 25707 * header 25708 */ 25709 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25710 ll_hdr = rptr - hlen; 25711 bcopy(mp1->b_rptr, ll_hdr, hlen); 25712 /* 25713 * Set the b_rptr to the start of the link layer 25714 * header 25715 */ 25716 mp->b_rptr = ll_hdr; 25717 mp1 = mp; 25718 } else { 25719 mp1 = copyb(mp1); 25720 if (mp1 == NULL) 25721 goto unlock_err; 25722 mp1->b_band = mp->b_band; 25723 mp1->b_cont = mp; 25724 /* 25725 * certain system generated traffic may not 25726 * have cred/label in ip header block. This 25727 * is true even for a labeled system. But for 25728 * labeled traffic, inherit the label in the 25729 * new header. 25730 */ 25731 if (DB_CRED(mp) != NULL) 25732 mblk_setcred(mp1, DB_CRED(mp)); 25733 /* 25734 * XXX disable ICK_VALID and compute checksum 25735 * here; can happen if nce_fp_mp changes and 25736 * it can't be copied now due to insufficient 25737 * space. (unlikely, fp mp can change, but it 25738 * does not increase in length) 25739 */ 25740 } 25741 UNLOCK_IRE_FP_MP(ire); 25742 } else { 25743 no_fp_mp: 25744 mp1 = copyb(ire->ire_nce->nce_res_mp); 25745 if (mp1 == NULL) { 25746 unlock_err: 25747 UNLOCK_IRE_FP_MP(ire); 25748 freemsg(mp); 25749 return (NULL); 25750 } 25751 UNLOCK_IRE_FP_MP(ire); 25752 mp1->b_cont = mp; 25753 /* 25754 * certain system generated traffic may not 25755 * have cred/label in ip header block. This 25756 * is true even for a labeled system. But for 25757 * labeled traffic, inherit the label in the 25758 * new header. 25759 */ 25760 if (DB_CRED(mp) != NULL) 25761 mblk_setcred(mp1, DB_CRED(mp)); 25762 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25763 ip_process(proc, &mp1, ill_index); 25764 if (mp1 == NULL) 25765 return (NULL); 25766 } 25767 } 25768 return (mp1); 25769 #undef rptr 25770 } 25771 25772 /* 25773 * Finish the outbound IPsec processing for an IPv6 packet. This function 25774 * is called from ipsec_out_process() if the IPsec packet was processed 25775 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25776 * asynchronously. 25777 */ 25778 void 25779 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25780 ire_t *ire_arg) 25781 { 25782 in6_addr_t *v6dstp; 25783 ire_t *ire; 25784 mblk_t *mp; 25785 ip6_t *ip6h1; 25786 uint_t ill_index; 25787 ipsec_out_t *io; 25788 boolean_t attach_if, hwaccel; 25789 uint32_t flags = IP6_NO_IPPOLICY; 25790 int match_flags; 25791 zoneid_t zoneid; 25792 boolean_t ill_need_rele = B_FALSE; 25793 boolean_t ire_need_rele = B_FALSE; 25794 ip_stack_t *ipst; 25795 25796 mp = ipsec_mp->b_cont; 25797 ip6h1 = (ip6_t *)mp->b_rptr; 25798 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25799 ASSERT(io->ipsec_out_ns != NULL); 25800 ipst = io->ipsec_out_ns->netstack_ip; 25801 ill_index = io->ipsec_out_ill_index; 25802 if (io->ipsec_out_reachable) { 25803 flags |= IPV6_REACHABILITY_CONFIRMATION; 25804 } 25805 attach_if = io->ipsec_out_attach_if; 25806 hwaccel = io->ipsec_out_accelerated; 25807 zoneid = io->ipsec_out_zoneid; 25808 ASSERT(zoneid != ALL_ZONES); 25809 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25810 /* Multicast addresses should have non-zero ill_index. */ 25811 v6dstp = &ip6h->ip6_dst; 25812 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25813 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25814 ASSERT(!attach_if || ill_index != 0); 25815 if (ill_index != 0) { 25816 if (ill == NULL) { 25817 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25818 B_TRUE, ipst); 25819 25820 /* Failure case frees things for us. */ 25821 if (ill == NULL) 25822 return; 25823 25824 ill_need_rele = B_TRUE; 25825 } 25826 /* 25827 * If this packet needs to go out on a particular interface 25828 * honor it. 25829 */ 25830 if (attach_if) { 25831 match_flags = MATCH_IRE_ILL; 25832 25833 /* 25834 * Check if we need an ire that will not be 25835 * looked up by anybody else i.e. HIDDEN. 25836 */ 25837 if (ill_is_probeonly(ill)) { 25838 match_flags |= MATCH_IRE_MARK_HIDDEN; 25839 } 25840 } 25841 } 25842 ASSERT(mp != NULL); 25843 25844 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25845 boolean_t unspec_src; 25846 ipif_t *ipif; 25847 25848 /* 25849 * Use the ill_index to get the right ill. 25850 */ 25851 unspec_src = io->ipsec_out_unspec_src; 25852 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25853 if (ipif == NULL) { 25854 if (ill_need_rele) 25855 ill_refrele(ill); 25856 freemsg(ipsec_mp); 25857 return; 25858 } 25859 25860 if (ire_arg != NULL) { 25861 ire = ire_arg; 25862 } else { 25863 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25864 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25865 ire_need_rele = B_TRUE; 25866 } 25867 if (ire != NULL) { 25868 ipif_refrele(ipif); 25869 /* 25870 * XXX Do the multicast forwarding now, as the IPSEC 25871 * processing has been done. 25872 */ 25873 goto send; 25874 } 25875 25876 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25877 mp->b_prev = NULL; 25878 mp->b_next = NULL; 25879 25880 /* 25881 * If the IPsec packet was processed asynchronously, 25882 * drop it now. 25883 */ 25884 if (q == NULL) { 25885 if (ill_need_rele) 25886 ill_refrele(ill); 25887 freemsg(ipsec_mp); 25888 return; 25889 } 25890 25891 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25892 unspec_src, zoneid); 25893 ipif_refrele(ipif); 25894 } else { 25895 if (attach_if) { 25896 ipif_t *ipif; 25897 25898 ipif = ipif_get_next_ipif(NULL, ill); 25899 if (ipif == NULL) { 25900 if (ill_need_rele) 25901 ill_refrele(ill); 25902 freemsg(ipsec_mp); 25903 return; 25904 } 25905 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25906 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25907 ire_need_rele = B_TRUE; 25908 ipif_refrele(ipif); 25909 } else { 25910 if (ire_arg != NULL) { 25911 ire = ire_arg; 25912 } else { 25913 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25914 ipst); 25915 ire_need_rele = B_TRUE; 25916 } 25917 } 25918 if (ire != NULL) 25919 goto send; 25920 /* 25921 * ire disappeared underneath. 25922 * 25923 * What we need to do here is the ip_newroute 25924 * logic to get the ire without doing the IPSEC 25925 * processing. Follow the same old path. But this 25926 * time, ip_wput or ire_add_then_send will call us 25927 * directly as all the IPSEC operations are done. 25928 */ 25929 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25930 mp->b_prev = NULL; 25931 mp->b_next = NULL; 25932 25933 /* 25934 * If the IPsec packet was processed asynchronously, 25935 * drop it now. 25936 */ 25937 if (q == NULL) { 25938 if (ill_need_rele) 25939 ill_refrele(ill); 25940 freemsg(ipsec_mp); 25941 return; 25942 } 25943 25944 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25945 zoneid, ipst); 25946 } 25947 if (ill != NULL && ill_need_rele) 25948 ill_refrele(ill); 25949 return; 25950 send: 25951 if (ill != NULL && ill_need_rele) 25952 ill_refrele(ill); 25953 25954 /* Local delivery */ 25955 if (ire->ire_stq == NULL) { 25956 ill_t *out_ill; 25957 ASSERT(q != NULL); 25958 25959 /* PFHooks: LOOPBACK_OUT */ 25960 out_ill = ire->ire_ipif->ipif_ill; 25961 25962 DTRACE_PROBE4(ip6__loopback__out__start, 25963 ill_t *, NULL, ill_t *, out_ill, 25964 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25965 25966 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25967 ipst->ips_ipv6firewall_loopback_out, 25968 NULL, out_ill, ip6h1, ipsec_mp, mp, ipst); 25969 25970 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25971 25972 if (ipsec_mp != NULL) 25973 ip_wput_local_v6(RD(q), out_ill, 25974 ip6h, ipsec_mp, ire, 0); 25975 if (ire_need_rele) 25976 ire_refrele(ire); 25977 return; 25978 } 25979 /* 25980 * Everything is done. Send it out on the wire. 25981 * We force the insertion of a fragment header using the 25982 * IPH_FRAG_HDR flag in two cases: 25983 * - after reception of an ICMPv6 "packet too big" message 25984 * with a MTU < 1280 (cf. RFC 2460 section 5) 25985 * - for multirouted IPv6 packets, so that the receiver can 25986 * discard duplicates according to their fragment identifier 25987 */ 25988 /* XXX fix flow control problems. */ 25989 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25990 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25991 if (hwaccel) { 25992 /* 25993 * hardware acceleration does not handle these 25994 * "slow path" cases. 25995 */ 25996 /* IPsec KSTATS: should bump bean counter here. */ 25997 if (ire_need_rele) 25998 ire_refrele(ire); 25999 freemsg(ipsec_mp); 26000 return; 26001 } 26002 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 26003 (mp->b_cont ? msgdsize(mp) : 26004 mp->b_wptr - (uchar_t *)ip6h)) { 26005 /* IPsec KSTATS: should bump bean counter here. */ 26006 ip0dbg(("Packet length mismatch: %d, %ld\n", 26007 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 26008 msgdsize(mp))); 26009 if (ire_need_rele) 26010 ire_refrele(ire); 26011 freemsg(ipsec_mp); 26012 return; 26013 } 26014 ASSERT(mp->b_prev == NULL); 26015 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 26016 ntohs(ip6h->ip6_plen) + 26017 IPV6_HDR_LEN, ire->ire_max_frag)); 26018 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 26019 ire->ire_max_frag); 26020 } else { 26021 UPDATE_OB_PKT_COUNT(ire); 26022 ire->ire_last_used_time = lbolt; 26023 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 26024 } 26025 if (ire_need_rele) 26026 ire_refrele(ire); 26027 freeb(ipsec_mp); 26028 } 26029 26030 void 26031 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 26032 { 26033 mblk_t *hada_mp; /* attributes M_CTL mblk */ 26034 da_ipsec_t *hada; /* data attributes */ 26035 ill_t *ill = (ill_t *)q->q_ptr; 26036 26037 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 26038 26039 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 26040 /* IPsec KSTATS: Bump lose counter here! */ 26041 freemsg(mp); 26042 return; 26043 } 26044 26045 /* 26046 * It's an IPsec packet that must be 26047 * accelerated by the Provider, and the 26048 * outbound ill is IPsec acceleration capable. 26049 * Prepends the mblk with an IPHADA_M_CTL, and ship it 26050 * to the ill. 26051 * IPsec KSTATS: should bump packet counter here. 26052 */ 26053 26054 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 26055 if (hada_mp == NULL) { 26056 /* IPsec KSTATS: should bump packet counter here. */ 26057 freemsg(mp); 26058 return; 26059 } 26060 26061 hada_mp->b_datap->db_type = M_CTL; 26062 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 26063 hada_mp->b_cont = mp; 26064 26065 hada = (da_ipsec_t *)hada_mp->b_rptr; 26066 bzero(hada, sizeof (da_ipsec_t)); 26067 hada->da_type = IPHADA_M_CTL; 26068 26069 putnext(q, hada_mp); 26070 } 26071 26072 /* 26073 * Finish the outbound IPsec processing. This function is called from 26074 * ipsec_out_process() if the IPsec packet was processed 26075 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 26076 * asynchronously. 26077 */ 26078 void 26079 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 26080 ire_t *ire_arg) 26081 { 26082 uint32_t v_hlen_tos_len; 26083 ipaddr_t dst; 26084 ipif_t *ipif = NULL; 26085 ire_t *ire; 26086 ire_t *ire1 = NULL; 26087 mblk_t *next_mp = NULL; 26088 uint32_t max_frag; 26089 boolean_t multirt_send = B_FALSE; 26090 mblk_t *mp; 26091 mblk_t *mp1; 26092 ipha_t *ipha1; 26093 uint_t ill_index; 26094 ipsec_out_t *io; 26095 boolean_t attach_if; 26096 int match_flags, offset; 26097 irb_t *irb = NULL; 26098 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 26099 zoneid_t zoneid; 26100 uint32_t cksum; 26101 uint16_t *up; 26102 ipxmit_state_t pktxmit_state; 26103 ip_stack_t *ipst; 26104 26105 #ifdef _BIG_ENDIAN 26106 #define LENGTH (v_hlen_tos_len & 0xFFFF) 26107 #else 26108 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 26109 #endif 26110 26111 mp = ipsec_mp->b_cont; 26112 ipha1 = (ipha_t *)mp->b_rptr; 26113 ASSERT(mp != NULL); 26114 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 26115 dst = ipha->ipha_dst; 26116 26117 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26118 ill_index = io->ipsec_out_ill_index; 26119 attach_if = io->ipsec_out_attach_if; 26120 zoneid = io->ipsec_out_zoneid; 26121 ASSERT(zoneid != ALL_ZONES); 26122 ipst = io->ipsec_out_ns->netstack_ip; 26123 ASSERT(io->ipsec_out_ns != NULL); 26124 26125 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 26126 if (ill_index != 0) { 26127 if (ill == NULL) { 26128 ill = ip_grab_attach_ill(NULL, ipsec_mp, 26129 ill_index, B_FALSE, ipst); 26130 26131 /* Failure case frees things for us. */ 26132 if (ill == NULL) 26133 return; 26134 26135 ill_need_rele = B_TRUE; 26136 } 26137 /* 26138 * If this packet needs to go out on a particular interface 26139 * honor it. 26140 */ 26141 if (attach_if) { 26142 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 26143 26144 /* 26145 * Check if we need an ire that will not be 26146 * looked up by anybody else i.e. HIDDEN. 26147 */ 26148 if (ill_is_probeonly(ill)) { 26149 match_flags |= MATCH_IRE_MARK_HIDDEN; 26150 } 26151 } 26152 } 26153 26154 if (CLASSD(dst)) { 26155 boolean_t conn_dontroute; 26156 /* 26157 * Use the ill_index to get the right ipif. 26158 */ 26159 conn_dontroute = io->ipsec_out_dontroute; 26160 if (ill_index == 0) 26161 ipif = ipif_lookup_group(dst, zoneid, ipst); 26162 else 26163 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 26164 if (ipif == NULL) { 26165 ip1dbg(("ip_wput_ipsec_out: No ipif for" 26166 " multicast\n")); 26167 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 26168 freemsg(ipsec_mp); 26169 goto done; 26170 } 26171 /* 26172 * ipha_src has already been intialized with the 26173 * value of the ipif in ip_wput. All we need now is 26174 * an ire to send this downstream. 26175 */ 26176 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 26177 MBLK_GETLABEL(mp), match_flags, ipst); 26178 if (ire != NULL) { 26179 ill_t *ill1; 26180 /* 26181 * Do the multicast forwarding now, as the IPSEC 26182 * processing has been done. 26183 */ 26184 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 26185 (ill1 = ire_to_ill(ire))) { 26186 if (ip_mforward(ill1, ipha, mp)) { 26187 freemsg(ipsec_mp); 26188 ip1dbg(("ip_wput_ipsec_out: mforward " 26189 "failed\n")); 26190 ire_refrele(ire); 26191 goto done; 26192 } 26193 } 26194 goto send; 26195 } 26196 26197 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 26198 mp->b_prev = NULL; 26199 mp->b_next = NULL; 26200 26201 /* 26202 * If the IPsec packet was processed asynchronously, 26203 * drop it now. 26204 */ 26205 if (q == NULL) { 26206 freemsg(ipsec_mp); 26207 goto done; 26208 } 26209 26210 /* 26211 * We may be using a wrong ipif to create the ire. 26212 * But it is okay as the source address is assigned 26213 * for the packet already. Next outbound packet would 26214 * create the IRE with the right IPIF in ip_wput. 26215 * 26216 * Also handle RTF_MULTIRT routes. 26217 */ 26218 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26219 zoneid, &zero_info); 26220 } else { 26221 if (attach_if) { 26222 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 26223 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26224 } else { 26225 if (ire_arg != NULL) { 26226 ire = ire_arg; 26227 ire_need_rele = B_FALSE; 26228 } else { 26229 ire = ire_cache_lookup(dst, zoneid, 26230 MBLK_GETLABEL(mp), ipst); 26231 } 26232 } 26233 if (ire != NULL) { 26234 goto send; 26235 } 26236 26237 /* 26238 * ire disappeared underneath. 26239 * 26240 * What we need to do here is the ip_newroute 26241 * logic to get the ire without doing the IPSEC 26242 * processing. Follow the same old path. But this 26243 * time, ip_wput or ire_add_then_put will call us 26244 * directly as all the IPSEC operations are done. 26245 */ 26246 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26247 mp->b_prev = NULL; 26248 mp->b_next = NULL; 26249 26250 /* 26251 * If the IPsec packet was processed asynchronously, 26252 * drop it now. 26253 */ 26254 if (q == NULL) { 26255 freemsg(ipsec_mp); 26256 goto done; 26257 } 26258 26259 /* 26260 * Since we're going through ip_newroute() again, we 26261 * need to make sure we don't: 26262 * 26263 * 1.) Trigger the ASSERT() with the ipha_ident 26264 * overloading. 26265 * 2.) Redo transport-layer checksumming, since we've 26266 * already done all that to get this far. 26267 * 26268 * The easiest way not do either of the above is to set 26269 * the ipha_ident field to IP_HDR_INCLUDED. 26270 */ 26271 ipha->ipha_ident = IP_HDR_INCLUDED; 26272 ip_newroute(q, ipsec_mp, dst, NULL, 26273 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), zoneid, ipst); 26274 } 26275 goto done; 26276 send: 26277 if (ipha->ipha_protocol == IPPROTO_UDP && 26278 udp_compute_checksum(ipst->ips_netstack)) { 26279 /* 26280 * ESP NAT-Traversal packet. 26281 * 26282 * Just do software checksum for now. 26283 */ 26284 26285 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 26286 IP_STAT(ipst, ip_out_sw_cksum); 26287 IP_STAT_UPDATE(ipst, ip_udp_out_sw_cksum_bytes, 26288 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 26289 #define iphs ((uint16_t *)ipha) 26290 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 26291 iphs[9] + ntohs(htons(ipha->ipha_length) - 26292 IP_SIMPLE_HDR_LENGTH); 26293 #undef iphs 26294 if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0) 26295 cksum = 0xFFFF; 26296 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 26297 if (mp1->b_wptr - mp1->b_rptr >= 26298 offset + sizeof (uint16_t)) { 26299 up = (uint16_t *)(mp1->b_rptr + offset); 26300 *up = cksum; 26301 break; /* out of for loop */ 26302 } else { 26303 offset -= (mp->b_wptr - mp->b_rptr); 26304 } 26305 } /* Otherwise, just keep the all-zero checksum. */ 26306 26307 if (ire->ire_stq == NULL) { 26308 ill_t *out_ill; 26309 /* 26310 * Loopbacks go through ip_wput_local except for one case. 26311 * We come here if we generate a icmp_frag_needed message 26312 * after IPSEC processing is over. When this function calls 26313 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26314 * icmp_frag_needed. The message generated comes back here 26315 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26316 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26317 * source address as it is usually set in ip_wput_ire. As 26318 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26319 * and we end up here. We can't enter ip_wput_ire once the 26320 * IPSEC processing is over and hence we need to do it here. 26321 */ 26322 ASSERT(q != NULL); 26323 UPDATE_OB_PKT_COUNT(ire); 26324 ire->ire_last_used_time = lbolt; 26325 if (ipha->ipha_src == 0) 26326 ipha->ipha_src = ire->ire_src_addr; 26327 26328 /* PFHooks: LOOPBACK_OUT */ 26329 out_ill = ire->ire_ipif->ipif_ill; 26330 26331 DTRACE_PROBE4(ip4__loopback__out__start, 26332 ill_t *, NULL, ill_t *, out_ill, 26333 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26334 26335 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26336 ipst->ips_ipv4firewall_loopback_out, 26337 NULL, out_ill, ipha1, ipsec_mp, mp, ipst); 26338 26339 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26340 26341 if (ipsec_mp != NULL) 26342 ip_wput_local(RD(q), out_ill, 26343 ipha, ipsec_mp, ire, 0, zoneid); 26344 if (ire_need_rele) 26345 ire_refrele(ire); 26346 goto done; 26347 } 26348 26349 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26350 /* 26351 * We are through with IPSEC processing. 26352 * Fragment this and send it on the wire. 26353 */ 26354 if (io->ipsec_out_accelerated) { 26355 /* 26356 * The packet has been accelerated but must 26357 * be fragmented. This should not happen 26358 * since AH and ESP must not accelerate 26359 * packets that need fragmentation, however 26360 * the configuration could have changed 26361 * since the AH or ESP processing. 26362 * Drop packet. 26363 * IPsec KSTATS: bump bean counter here. 26364 */ 26365 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26366 "fragmented accelerated packet!\n")); 26367 freemsg(ipsec_mp); 26368 } else { 26369 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26370 } 26371 if (ire_need_rele) 26372 ire_refrele(ire); 26373 goto done; 26374 } 26375 26376 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26377 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26378 (void *)ire->ire_ipif, (void *)ipif)); 26379 26380 /* 26381 * Multiroute the secured packet, unless IPsec really 26382 * requires the packet to go out only through a particular 26383 * interface. 26384 */ 26385 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26386 ire_t *first_ire; 26387 irb = ire->ire_bucket; 26388 ASSERT(irb != NULL); 26389 /* 26390 * This ire has been looked up as the one that 26391 * goes through the given ipif; 26392 * make sure we do not omit any other multiroute ire 26393 * that may be present in the bucket before this one. 26394 */ 26395 IRB_REFHOLD(irb); 26396 for (first_ire = irb->irb_ire; 26397 first_ire != NULL; 26398 first_ire = first_ire->ire_next) { 26399 if ((first_ire->ire_flags & RTF_MULTIRT) && 26400 (first_ire->ire_addr == ire->ire_addr) && 26401 !(first_ire->ire_marks & 26402 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 26403 break; 26404 } 26405 26406 if ((first_ire != NULL) && (first_ire != ire)) { 26407 /* 26408 * Don't change the ire if the packet must 26409 * be fragmented if sent via this new one. 26410 */ 26411 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26412 IRE_REFHOLD(first_ire); 26413 if (ire_need_rele) 26414 ire_refrele(ire); 26415 else 26416 ire_need_rele = B_TRUE; 26417 ire = first_ire; 26418 } 26419 } 26420 IRB_REFRELE(irb); 26421 26422 multirt_send = B_TRUE; 26423 max_frag = ire->ire_max_frag; 26424 } else { 26425 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26426 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26427 "flag, attach_if %d\n", attach_if)); 26428 } 26429 } 26430 26431 /* 26432 * In most cases, the emission loop below is entered only once. 26433 * Only in the case where the ire holds the RTF_MULTIRT 26434 * flag, we loop to process all RTF_MULTIRT ires in the 26435 * bucket, and send the packet through all crossed 26436 * RTF_MULTIRT routes. 26437 */ 26438 do { 26439 if (multirt_send) { 26440 /* 26441 * ire1 holds here the next ire to process in the 26442 * bucket. If multirouting is expected, 26443 * any non-RTF_MULTIRT ire that has the 26444 * right destination address is ignored. 26445 */ 26446 ASSERT(irb != NULL); 26447 IRB_REFHOLD(irb); 26448 for (ire1 = ire->ire_next; 26449 ire1 != NULL; 26450 ire1 = ire1->ire_next) { 26451 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26452 continue; 26453 if (ire1->ire_addr != ire->ire_addr) 26454 continue; 26455 if (ire1->ire_marks & 26456 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26457 continue; 26458 /* No loopback here */ 26459 if (ire1->ire_stq == NULL) 26460 continue; 26461 /* 26462 * Ensure we do not exceed the MTU 26463 * of the next route. 26464 */ 26465 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26466 ip_multirt_bad_mtu(ire1, max_frag); 26467 continue; 26468 } 26469 26470 IRE_REFHOLD(ire1); 26471 break; 26472 } 26473 IRB_REFRELE(irb); 26474 if (ire1 != NULL) { 26475 /* 26476 * We are in a multiple send case, need to 26477 * make a copy of the packet. 26478 */ 26479 next_mp = copymsg(ipsec_mp); 26480 if (next_mp == NULL) { 26481 ire_refrele(ire1); 26482 ire1 = NULL; 26483 } 26484 } 26485 } 26486 /* 26487 * Everything is done. Send it out on the wire 26488 * 26489 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26490 * either send it on the wire or, in the case of 26491 * HW acceleration, call ipsec_hw_putnext. 26492 */ 26493 if (ire->ire_nce && 26494 ire->ire_nce->nce_state != ND_REACHABLE) { 26495 DTRACE_PROBE2(ip__wput__ipsec__bail, 26496 (ire_t *), ire, (mblk_t *), ipsec_mp); 26497 /* 26498 * If ire's link-layer is unresolved (this 26499 * would only happen if the incomplete ire 26500 * was added to cachetable via forwarding path) 26501 * don't bother going to ip_xmit_v4. Just drop the 26502 * packet. 26503 * There is a slight risk here, in that, if we 26504 * have the forwarding path create an incomplete 26505 * IRE, then until the IRE is completed, any 26506 * transmitted IPSEC packets will be dropped 26507 * instead of being queued waiting for resolution. 26508 * 26509 * But the likelihood of a forwarding packet and a wput 26510 * packet sending to the same dst at the same time 26511 * and there not yet be an ARP entry for it is small. 26512 * Furthermore, if this actually happens, it might 26513 * be likely that wput would generate multiple 26514 * packets (and forwarding would also have a train 26515 * of packets) for that destination. If this is 26516 * the case, some of them would have been dropped 26517 * anyway, since ARP only queues a few packets while 26518 * waiting for resolution 26519 * 26520 * NOTE: We should really call ip_xmit_v4, 26521 * and let it queue the packet and send the 26522 * ARP query and have ARP come back thus: 26523 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26524 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26525 * hw accel work. But it's too complex to get 26526 * the IPsec hw acceleration approach to fit 26527 * well with ip_xmit_v4 doing ARP without 26528 * doing IPSEC simplification. For now, we just 26529 * poke ip_xmit_v4 to trigger the arp resolve, so 26530 * that we can continue with the send on the next 26531 * attempt. 26532 * 26533 * XXX THis should be revisited, when 26534 * the IPsec/IP interaction is cleaned up 26535 */ 26536 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26537 " - dropping packet\n")); 26538 freemsg(ipsec_mp); 26539 /* 26540 * Call ip_xmit_v4() to trigger ARP query 26541 * in case the nce_state is ND_INITIAL 26542 */ 26543 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26544 goto drop_pkt; 26545 } 26546 26547 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26548 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26549 mblk_t *, mp); 26550 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26551 ipst->ips_ipv4firewall_physical_out, 26552 NULL, ire->ire_ipif->ipif_ill, ipha1, mp, mp, ipst); 26553 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 26554 if (mp == NULL) 26555 goto drop_pkt; 26556 26557 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26558 pktxmit_state = ip_xmit_v4(mp, ire, 26559 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26560 26561 if ((pktxmit_state == SEND_FAILED) || 26562 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26563 26564 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26565 drop_pkt: 26566 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26567 ipIfStatsOutDiscards); 26568 if (ire_need_rele) 26569 ire_refrele(ire); 26570 if (ire1 != NULL) { 26571 ire_refrele(ire1); 26572 freemsg(next_mp); 26573 } 26574 goto done; 26575 } 26576 26577 freeb(ipsec_mp); 26578 if (ire_need_rele) 26579 ire_refrele(ire); 26580 26581 if (ire1 != NULL) { 26582 ire = ire1; 26583 ire_need_rele = B_TRUE; 26584 ASSERT(next_mp); 26585 ipsec_mp = next_mp; 26586 mp = ipsec_mp->b_cont; 26587 ire1 = NULL; 26588 next_mp = NULL; 26589 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26590 } else { 26591 multirt_send = B_FALSE; 26592 } 26593 } while (multirt_send); 26594 done: 26595 if (ill != NULL && ill_need_rele) 26596 ill_refrele(ill); 26597 if (ipif != NULL) 26598 ipif_refrele(ipif); 26599 } 26600 26601 /* 26602 * Get the ill corresponding to the specified ire, and compare its 26603 * capabilities with the protocol and algorithms specified by the 26604 * the SA obtained from ipsec_out. If they match, annotate the 26605 * ipsec_out structure to indicate that the packet needs acceleration. 26606 * 26607 * 26608 * A packet is eligible for outbound hardware acceleration if the 26609 * following conditions are satisfied: 26610 * 26611 * 1. the packet will not be fragmented 26612 * 2. the provider supports the algorithm 26613 * 3. there is no pending control message being exchanged 26614 * 4. snoop is not attached 26615 * 5. the destination address is not a broadcast or multicast address. 26616 * 26617 * Rationale: 26618 * - Hardware drivers do not support fragmentation with 26619 * the current interface. 26620 * - snoop, multicast, and broadcast may result in exposure of 26621 * a cleartext datagram. 26622 * We check all five of these conditions here. 26623 * 26624 * XXX would like to nuke "ire_t *" parameter here; problem is that 26625 * IRE is only way to figure out if a v4 address is a broadcast and 26626 * thus ineligible for acceleration... 26627 */ 26628 static void 26629 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26630 { 26631 ipsec_out_t *io; 26632 mblk_t *data_mp; 26633 uint_t plen, overhead; 26634 ip_stack_t *ipst; 26635 26636 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26637 return; 26638 26639 if (ill == NULL) 26640 return; 26641 ipst = ill->ill_ipst; 26642 /* 26643 * Destination address is a broadcast or multicast. Punt. 26644 */ 26645 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26646 IRE_LOCAL))) 26647 return; 26648 26649 data_mp = ipsec_mp->b_cont; 26650 26651 if (ill->ill_isv6) { 26652 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26653 26654 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26655 return; 26656 26657 plen = ip6h->ip6_plen; 26658 } else { 26659 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26660 26661 if (CLASSD(ipha->ipha_dst)) 26662 return; 26663 26664 plen = ipha->ipha_length; 26665 } 26666 /* 26667 * Is there a pending DLPI control message being exchanged 26668 * between IP/IPsec and the DLS Provider? If there is, it 26669 * could be a SADB update, and the state of the DLS Provider 26670 * SADB might not be in sync with the SADB maintained by 26671 * IPsec. To avoid dropping packets or using the wrong keying 26672 * material, we do not accelerate this packet. 26673 */ 26674 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26675 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26676 "ill_dlpi_pending! don't accelerate packet\n")); 26677 return; 26678 } 26679 26680 /* 26681 * Is the Provider in promiscous mode? If it does, we don't 26682 * accelerate the packet since it will bounce back up to the 26683 * listeners in the clear. 26684 */ 26685 if (ill->ill_promisc_on_phys) { 26686 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26687 "ill in promiscous mode, don't accelerate packet\n")); 26688 return; 26689 } 26690 26691 /* 26692 * Will the packet require fragmentation? 26693 */ 26694 26695 /* 26696 * IPsec ESP note: this is a pessimistic estimate, but the same 26697 * as is used elsewhere. 26698 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26699 * + 2-byte trailer 26700 */ 26701 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26702 IPSEC_BASE_ESP_HDR_SIZE(sa); 26703 26704 if ((plen + overhead) > ill->ill_max_mtu) 26705 return; 26706 26707 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26708 26709 /* 26710 * Can the ill accelerate this IPsec protocol and algorithm 26711 * specified by the SA? 26712 */ 26713 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26714 ill->ill_isv6, sa, ipst->ips_netstack)) { 26715 return; 26716 } 26717 26718 /* 26719 * Tell AH or ESP that the outbound ill is capable of 26720 * accelerating this packet. 26721 */ 26722 io->ipsec_out_is_capab_ill = B_TRUE; 26723 } 26724 26725 /* 26726 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26727 * 26728 * If this function returns B_TRUE, the requested SA's have been filled 26729 * into the ipsec_out_*_sa pointers. 26730 * 26731 * If the function returns B_FALSE, the packet has been "consumed", most 26732 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26733 * 26734 * The SA references created by the protocol-specific "select" 26735 * function will be released when the ipsec_mp is freed, thanks to the 26736 * ipsec_out_free destructor -- see spd.c. 26737 */ 26738 static boolean_t 26739 ipsec_out_select_sa(mblk_t *ipsec_mp) 26740 { 26741 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26742 ipsec_out_t *io; 26743 ipsec_policy_t *pp; 26744 ipsec_action_t *ap; 26745 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26746 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26747 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26748 26749 if (!io->ipsec_out_secure) { 26750 /* 26751 * We came here by mistake. 26752 * Don't bother with ipsec processing 26753 * We should "discourage" this path in the future. 26754 */ 26755 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26756 return (B_FALSE); 26757 } 26758 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26759 ASSERT((io->ipsec_out_policy != NULL) || 26760 (io->ipsec_out_act != NULL)); 26761 26762 ASSERT(io->ipsec_out_failed == B_FALSE); 26763 26764 /* 26765 * IPSEC processing has started. 26766 */ 26767 io->ipsec_out_proc_begin = B_TRUE; 26768 ap = io->ipsec_out_act; 26769 if (ap == NULL) { 26770 pp = io->ipsec_out_policy; 26771 ASSERT(pp != NULL); 26772 ap = pp->ipsp_act; 26773 ASSERT(ap != NULL); 26774 } 26775 26776 /* 26777 * We have an action. now, let's select SA's. 26778 * (In the future, we can cache this in the conn_t..) 26779 */ 26780 if (ap->ipa_want_esp) { 26781 if (io->ipsec_out_esp_sa == NULL) { 26782 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26783 IPPROTO_ESP); 26784 } 26785 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26786 } 26787 26788 if (ap->ipa_want_ah) { 26789 if (io->ipsec_out_ah_sa == NULL) { 26790 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26791 IPPROTO_AH); 26792 } 26793 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26794 /* 26795 * The ESP and AH processing order needs to be preserved 26796 * when both protocols are required (ESP should be applied 26797 * before AH for an outbound packet). Force an ESP ACQUIRE 26798 * when both ESP and AH are required, and an AH ACQUIRE 26799 * is needed. 26800 */ 26801 if (ap->ipa_want_esp && need_ah_acquire) 26802 need_esp_acquire = B_TRUE; 26803 } 26804 26805 /* 26806 * Send an ACQUIRE (extended, regular, or both) if we need one. 26807 * Release SAs that got referenced, but will not be used until we 26808 * acquire _all_ of the SAs we need. 26809 */ 26810 if (need_ah_acquire || need_esp_acquire) { 26811 if (io->ipsec_out_ah_sa != NULL) { 26812 IPSA_REFRELE(io->ipsec_out_ah_sa); 26813 io->ipsec_out_ah_sa = NULL; 26814 } 26815 if (io->ipsec_out_esp_sa != NULL) { 26816 IPSA_REFRELE(io->ipsec_out_esp_sa); 26817 io->ipsec_out_esp_sa = NULL; 26818 } 26819 26820 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26821 return (B_FALSE); 26822 } 26823 26824 return (B_TRUE); 26825 } 26826 26827 /* 26828 * Process an IPSEC_OUT message and see what you can 26829 * do with it. 26830 * IPQoS Notes: 26831 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26832 * IPSec. 26833 * XXX would like to nuke ire_t. 26834 * XXX ill_index better be "real" 26835 */ 26836 void 26837 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26838 { 26839 ipsec_out_t *io; 26840 ipsec_policy_t *pp; 26841 ipsec_action_t *ap; 26842 ipha_t *ipha; 26843 ip6_t *ip6h; 26844 mblk_t *mp; 26845 ill_t *ill; 26846 zoneid_t zoneid; 26847 ipsec_status_t ipsec_rc; 26848 boolean_t ill_need_rele = B_FALSE; 26849 ip_stack_t *ipst; 26850 ipsec_stack_t *ipss; 26851 26852 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26853 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26854 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26855 ipst = io->ipsec_out_ns->netstack_ip; 26856 mp = ipsec_mp->b_cont; 26857 26858 /* 26859 * Initiate IPPF processing. We do it here to account for packets 26860 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26861 * We can check for ipsec_out_proc_begin even for such packets, as 26862 * they will always be false (asserted below). 26863 */ 26864 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26865 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26866 io->ipsec_out_ill_index : ill_index); 26867 if (mp == NULL) { 26868 ip2dbg(("ipsec_out_process: packet dropped "\ 26869 "during IPPF processing\n")); 26870 freeb(ipsec_mp); 26871 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26872 return; 26873 } 26874 } 26875 26876 if (!io->ipsec_out_secure) { 26877 /* 26878 * We came here by mistake. 26879 * Don't bother with ipsec processing 26880 * Should "discourage" this path in the future. 26881 */ 26882 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26883 goto done; 26884 } 26885 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26886 ASSERT((io->ipsec_out_policy != NULL) || 26887 (io->ipsec_out_act != NULL)); 26888 ASSERT(io->ipsec_out_failed == B_FALSE); 26889 26890 ipss = ipst->ips_netstack->netstack_ipsec; 26891 if (!ipsec_loaded(ipss)) { 26892 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26893 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26894 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26895 } else { 26896 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26897 } 26898 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26899 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26900 &ipss->ipsec_dropper); 26901 return; 26902 } 26903 26904 /* 26905 * IPSEC processing has started. 26906 */ 26907 io->ipsec_out_proc_begin = B_TRUE; 26908 ap = io->ipsec_out_act; 26909 if (ap == NULL) { 26910 pp = io->ipsec_out_policy; 26911 ASSERT(pp != NULL); 26912 ap = pp->ipsp_act; 26913 ASSERT(ap != NULL); 26914 } 26915 26916 /* 26917 * Save the outbound ill index. When the packet comes back 26918 * from IPsec, we make sure the ill hasn't changed or disappeared 26919 * before sending it the accelerated packet. 26920 */ 26921 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26922 int ifindex; 26923 ill = ire_to_ill(ire); 26924 ifindex = ill->ill_phyint->phyint_ifindex; 26925 io->ipsec_out_capab_ill_index = ifindex; 26926 } 26927 26928 /* 26929 * The order of processing is first insert a IP header if needed. 26930 * Then insert the ESP header and then the AH header. 26931 */ 26932 if ((io->ipsec_out_se_done == B_FALSE) && 26933 (ap->ipa_want_se)) { 26934 /* 26935 * First get the outer IP header before sending 26936 * it to ESP. 26937 */ 26938 ipha_t *oipha, *iipha; 26939 mblk_t *outer_mp, *inner_mp; 26940 26941 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26942 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26943 "ipsec_out_process: " 26944 "Self-Encapsulation failed: Out of memory\n"); 26945 freemsg(ipsec_mp); 26946 if (ill != NULL) { 26947 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26948 } else { 26949 BUMP_MIB(&ipst->ips_ip_mib, 26950 ipIfStatsOutDiscards); 26951 } 26952 return; 26953 } 26954 inner_mp = ipsec_mp->b_cont; 26955 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26956 oipha = (ipha_t *)outer_mp->b_rptr; 26957 iipha = (ipha_t *)inner_mp->b_rptr; 26958 *oipha = *iipha; 26959 outer_mp->b_wptr += sizeof (ipha_t); 26960 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26961 sizeof (ipha_t)); 26962 oipha->ipha_protocol = IPPROTO_ENCAP; 26963 oipha->ipha_version_and_hdr_length = 26964 IP_SIMPLE_HDR_VERSION; 26965 oipha->ipha_hdr_checksum = 0; 26966 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26967 outer_mp->b_cont = inner_mp; 26968 ipsec_mp->b_cont = outer_mp; 26969 26970 io->ipsec_out_se_done = B_TRUE; 26971 io->ipsec_out_tunnel = B_TRUE; 26972 } 26973 26974 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26975 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26976 !ipsec_out_select_sa(ipsec_mp)) 26977 return; 26978 26979 /* 26980 * By now, we know what SA's to use. Toss over to ESP & AH 26981 * to do the heavy lifting. 26982 */ 26983 zoneid = io->ipsec_out_zoneid; 26984 ASSERT(zoneid != ALL_ZONES); 26985 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26986 ASSERT(io->ipsec_out_esp_sa != NULL); 26987 io->ipsec_out_esp_done = B_TRUE; 26988 /* 26989 * Note that since hw accel can only apply one transform, 26990 * not two, we skip hw accel for ESP if we also have AH 26991 * This is an design limitation of the interface 26992 * which should be revisited. 26993 */ 26994 ASSERT(ire != NULL); 26995 if (io->ipsec_out_ah_sa == NULL) { 26996 ill = (ill_t *)ire->ire_stq->q_ptr; 26997 ipsec_out_is_accelerated(ipsec_mp, 26998 io->ipsec_out_esp_sa, ill, ire); 26999 } 27000 27001 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 27002 switch (ipsec_rc) { 27003 case IPSEC_STATUS_SUCCESS: 27004 break; 27005 case IPSEC_STATUS_FAILED: 27006 if (ill != NULL) { 27007 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 27008 } else { 27009 BUMP_MIB(&ipst->ips_ip_mib, 27010 ipIfStatsOutDiscards); 27011 } 27012 /* FALLTHRU */ 27013 case IPSEC_STATUS_PENDING: 27014 return; 27015 } 27016 } 27017 27018 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 27019 ASSERT(io->ipsec_out_ah_sa != NULL); 27020 io->ipsec_out_ah_done = B_TRUE; 27021 if (ire == NULL) { 27022 int idx = io->ipsec_out_capab_ill_index; 27023 ill = ill_lookup_on_ifindex(idx, B_FALSE, 27024 NULL, NULL, NULL, NULL, ipst); 27025 ill_need_rele = B_TRUE; 27026 } else { 27027 ill = (ill_t *)ire->ire_stq->q_ptr; 27028 } 27029 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 27030 ire); 27031 27032 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 27033 switch (ipsec_rc) { 27034 case IPSEC_STATUS_SUCCESS: 27035 break; 27036 case IPSEC_STATUS_FAILED: 27037 if (ill != NULL) { 27038 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 27039 } else { 27040 BUMP_MIB(&ipst->ips_ip_mib, 27041 ipIfStatsOutDiscards); 27042 } 27043 /* FALLTHRU */ 27044 case IPSEC_STATUS_PENDING: 27045 if (ill != NULL && ill_need_rele) 27046 ill_refrele(ill); 27047 return; 27048 } 27049 } 27050 /* 27051 * We are done with IPSEC processing. Send it over 27052 * the wire. 27053 */ 27054 done: 27055 mp = ipsec_mp->b_cont; 27056 ipha = (ipha_t *)mp->b_rptr; 27057 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 27058 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 27059 } else { 27060 ip6h = (ip6_t *)ipha; 27061 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 27062 } 27063 if (ill != NULL && ill_need_rele) 27064 ill_refrele(ill); 27065 } 27066 27067 /* ARGSUSED */ 27068 void 27069 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 27070 { 27071 opt_restart_t *or; 27072 int err; 27073 conn_t *connp; 27074 27075 ASSERT(CONN_Q(q)); 27076 connp = Q_TO_CONN(q); 27077 27078 ASSERT(first_mp->b_datap->db_type == M_CTL); 27079 or = (opt_restart_t *)first_mp->b_rptr; 27080 /* 27081 * We don't need to pass any credentials here since this is just 27082 * a restart. The credentials are passed in when svr4_optcom_req 27083 * is called the first time (from ip_wput_nondata). 27084 */ 27085 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 27086 err = svr4_optcom_req(q, first_mp, NULL, 27087 &ip_opt_obj); 27088 } else { 27089 ASSERT(or->or_type == T_OPTMGMT_REQ); 27090 err = tpi_optcom_req(q, first_mp, NULL, 27091 &ip_opt_obj); 27092 } 27093 if (err != EINPROGRESS) { 27094 /* operation is done */ 27095 CONN_OPER_PENDING_DONE(connp); 27096 } 27097 } 27098 27099 /* 27100 * ioctls that go through a down/up sequence may need to wait for the down 27101 * to complete. This involves waiting for the ire and ipif refcnts to go down 27102 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 27103 */ 27104 /* ARGSUSED */ 27105 void 27106 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27107 { 27108 struct iocblk *iocp; 27109 mblk_t *mp1; 27110 ip_ioctl_cmd_t *ipip; 27111 int err; 27112 sin_t *sin; 27113 struct lifreq *lifr; 27114 struct ifreq *ifr; 27115 27116 iocp = (struct iocblk *)mp->b_rptr; 27117 ASSERT(ipsq != NULL); 27118 /* Existence of mp1 verified in ip_wput_nondata */ 27119 mp1 = mp->b_cont->b_cont; 27120 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27121 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 27122 /* 27123 * Special case where ipsq_current_ipif is not set: 27124 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 27125 * ill could also have become part of a ipmp group in the 27126 * process, we are here as were not able to complete the 27127 * operation in ipif_set_values because we could not become 27128 * exclusive on the new ipsq, In such a case ipsq_current_ipif 27129 * will not be set so we need to set it. 27130 */ 27131 ill_t *ill = q->q_ptr; 27132 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 27133 } 27134 ASSERT(ipsq->ipsq_current_ipif != NULL); 27135 27136 if (ipip->ipi_cmd_type == IF_CMD) { 27137 /* This a old style SIOC[GS]IF* command */ 27138 ifr = (struct ifreq *)mp1->b_rptr; 27139 sin = (sin_t *)&ifr->ifr_addr; 27140 } else if (ipip->ipi_cmd_type == LIF_CMD) { 27141 /* This a new style SIOC[GS]LIF* command */ 27142 lifr = (struct lifreq *)mp1->b_rptr; 27143 sin = (sin_t *)&lifr->lifr_addr; 27144 } else { 27145 sin = NULL; 27146 } 27147 27148 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 27149 ipip, mp1->b_rptr); 27150 27151 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27152 } 27153 27154 /* 27155 * ioctl processing 27156 * 27157 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 27158 * the ioctl command in the ioctl tables and determines the copyin data size 27159 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 27160 * size. 27161 * 27162 * ioctl processing then continues when the M_IOCDATA makes its way down. 27163 * Now the ioctl is looked up again in the ioctl table, and its properties are 27164 * extracted. The associated 'conn' is then refheld till the end of the ioctl 27165 * and the general ioctl processing function ip_process_ioctl is called. 27166 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 27167 * so goes thru the serialization primitive ipsq_try_enter. Then the 27168 * appropriate function to handle the ioctl is called based on the entry in 27169 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 27170 * which also refreleases the 'conn' that was refheld at the start of the 27171 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 27172 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 27173 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 27174 * 27175 * Many exclusive ioctls go thru an internal down up sequence as part of 27176 * the operation. For example an attempt to change the IP address of an 27177 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 27178 * does all the cleanup such as deleting all ires that use this address. 27179 * Then we need to wait till all references to the interface go away. 27180 */ 27181 void 27182 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 27183 { 27184 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 27185 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 27186 cmd_info_t ci; 27187 int err; 27188 boolean_t entered_ipsq = B_FALSE; 27189 27190 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 27191 27192 if (ipip == NULL) 27193 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27194 27195 /* 27196 * SIOCLIFADDIF needs to go thru a special path since the 27197 * ill may not exist yet. This happens in the case of lo0 27198 * which is created using this ioctl. 27199 */ 27200 if (ipip->ipi_cmd == SIOCLIFADDIF) { 27201 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 27202 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27203 return; 27204 } 27205 27206 ci.ci_ipif = NULL; 27207 switch (ipip->ipi_cmd_type) { 27208 case IF_CMD: 27209 case LIF_CMD: 27210 /* 27211 * ioctls that pass in a [l]ifreq appear here. 27212 * ip_extract_lifreq_cmn returns a refheld ipif in 27213 * ci.ci_ipif 27214 */ 27215 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 27216 ipip->ipi_flags, &ci, ip_process_ioctl); 27217 if (err != 0) { 27218 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27219 return; 27220 } 27221 ASSERT(ci.ci_ipif != NULL); 27222 break; 27223 27224 case TUN_CMD: 27225 /* 27226 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 27227 * a refheld ipif in ci.ci_ipif 27228 */ 27229 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 27230 if (err != 0) { 27231 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27232 return; 27233 } 27234 ASSERT(ci.ci_ipif != NULL); 27235 break; 27236 27237 case MISC_CMD: 27238 /* 27239 * ioctls that neither pass in [l]ifreq or iftun_req come here 27240 * For eg. SIOCGLIFCONF will appear here. 27241 */ 27242 switch (ipip->ipi_cmd) { 27243 case IF_UNITSEL: 27244 /* ioctl comes down the ill */ 27245 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 27246 ipif_refhold(ci.ci_ipif); 27247 break; 27248 case SIOCGMSFILTER: 27249 case SIOCSMSFILTER: 27250 case SIOCGIPMSFILTER: 27251 case SIOCSIPMSFILTER: 27252 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 27253 ip_process_ioctl); 27254 if (err != 0) { 27255 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), 27256 NULL); 27257 } 27258 break; 27259 } 27260 err = 0; 27261 ci.ci_sin = NULL; 27262 ci.ci_sin6 = NULL; 27263 ci.ci_lifr = NULL; 27264 break; 27265 } 27266 27267 /* 27268 * If ipsq is non-null, we are already being called exclusively 27269 */ 27270 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27271 if (!(ipip->ipi_flags & IPI_WR)) { 27272 /* 27273 * A return value of EINPROGRESS means the ioctl is 27274 * either queued and waiting for some reason or has 27275 * already completed. 27276 */ 27277 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27278 ci.ci_lifr); 27279 if (ci.ci_ipif != NULL) 27280 ipif_refrele(ci.ci_ipif); 27281 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27282 return; 27283 } 27284 27285 ASSERT(ci.ci_ipif != NULL); 27286 27287 if (ipsq == NULL) { 27288 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 27289 ip_process_ioctl, NEW_OP, B_TRUE); 27290 entered_ipsq = B_TRUE; 27291 } 27292 /* 27293 * Release the ipif so that ipif_down and friends that wait for 27294 * references to go away are not misled about the current ipif_refcnt 27295 * values. We are writer so we can access the ipif even after releasing 27296 * the ipif. 27297 */ 27298 ipif_refrele(ci.ci_ipif); 27299 if (ipsq == NULL) 27300 return; 27301 27302 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27303 27304 /* 27305 * For most set ioctls that come here, this serves as a single point 27306 * where we set the IPIF_CHANGING flag. This ensures that there won't 27307 * be any new references to the ipif. This helps functions that go 27308 * through this path and end up trying to wait for the refcnts 27309 * associated with the ipif to go down to zero. Some exceptions are 27310 * Failover, Failback, and Groupname commands that operate on more than 27311 * just the ci.ci_ipif. These commands internally determine the 27312 * set of ipif's they operate on and set and clear the IPIF_CHANGING 27313 * flags on that set. Another exception is the Removeif command that 27314 * sets the IPIF_CONDEMNED flag internally after identifying the right 27315 * ipif to operate on. 27316 */ 27317 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27318 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 27319 ipip->ipi_cmd != SIOCLIFFAILOVER && 27320 ipip->ipi_cmd != SIOCLIFFAILBACK && 27321 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 27322 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27323 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27324 27325 /* 27326 * A return value of EINPROGRESS means the ioctl is 27327 * either queued and waiting for some reason or has 27328 * already completed. 27329 */ 27330 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27331 27332 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27333 27334 if (entered_ipsq) 27335 ipsq_exit(ipsq, B_TRUE, B_TRUE); 27336 } 27337 27338 /* 27339 * Complete the ioctl. Typically ioctls use the mi package and need to 27340 * do mi_copyout/mi_copy_done. 27341 */ 27342 void 27343 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27344 { 27345 conn_t *connp = NULL; 27346 27347 if (err == EINPROGRESS) 27348 return; 27349 27350 if (CONN_Q(q)) { 27351 connp = Q_TO_CONN(q); 27352 ASSERT(connp->conn_ref >= 2); 27353 } 27354 27355 switch (mode) { 27356 case COPYOUT: 27357 if (err == 0) 27358 mi_copyout(q, mp); 27359 else 27360 mi_copy_done(q, mp, err); 27361 break; 27362 27363 case NO_COPYOUT: 27364 mi_copy_done(q, mp, err); 27365 break; 27366 27367 default: 27368 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27369 break; 27370 } 27371 27372 /* 27373 * The refhold placed at the start of the ioctl is released here. 27374 */ 27375 if (connp != NULL) 27376 CONN_OPER_PENDING_DONE(connp); 27377 27378 if (ipsq != NULL) 27379 ipsq_current_finish(ipsq); 27380 } 27381 27382 /* 27383 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27384 */ 27385 /* ARGSUSED */ 27386 void 27387 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27388 { 27389 conn_t *connp = arg; 27390 tcp_t *tcp; 27391 27392 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27393 tcp = connp->conn_tcp; 27394 27395 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27396 freemsg(mp); 27397 else 27398 tcp_rput_other(tcp, mp); 27399 CONN_OPER_PENDING_DONE(connp); 27400 } 27401 27402 /* Called from ip_wput for all non data messages */ 27403 /* ARGSUSED */ 27404 void 27405 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27406 { 27407 mblk_t *mp1; 27408 ire_t *ire, *fake_ire; 27409 ill_t *ill; 27410 struct iocblk *iocp; 27411 ip_ioctl_cmd_t *ipip; 27412 cred_t *cr; 27413 conn_t *connp; 27414 int cmd, err; 27415 nce_t *nce; 27416 ipif_t *ipif; 27417 ip_stack_t *ipst; 27418 char *proto_str; 27419 27420 if (CONN_Q(q)) { 27421 connp = Q_TO_CONN(q); 27422 ipst = connp->conn_netstack->netstack_ip; 27423 } else { 27424 connp = NULL; 27425 ipst = ILLQ_TO_IPST(q); 27426 } 27427 27428 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27429 27430 /* Check if it is a queue to /dev/sctp. */ 27431 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 27432 connp->conn_rq == NULL) { 27433 sctp_wput(q, mp); 27434 return; 27435 } 27436 27437 switch (DB_TYPE(mp)) { 27438 case M_IOCTL: 27439 /* 27440 * IOCTL processing begins in ip_sioctl_copyin_setup which 27441 * will arrange to copy in associated control structures. 27442 */ 27443 ip_sioctl_copyin_setup(q, mp); 27444 return; 27445 case M_IOCDATA: 27446 /* 27447 * Ensure that this is associated with one of our trans- 27448 * parent ioctls. If it's not ours, discard it if we're 27449 * running as a driver, or pass it on if we're a module. 27450 */ 27451 iocp = (struct iocblk *)mp->b_rptr; 27452 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27453 if (ipip == NULL) { 27454 if (q->q_next == NULL) { 27455 goto nak; 27456 } else { 27457 putnext(q, mp); 27458 } 27459 return; 27460 } else if ((q->q_next != NULL) && 27461 !(ipip->ipi_flags & IPI_MODOK)) { 27462 /* 27463 * the ioctl is one we recognise, but is not 27464 * consumed by IP as a module, pass M_IOCDATA 27465 * for processing downstream, but only for 27466 * common Streams ioctls. 27467 */ 27468 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27469 putnext(q, mp); 27470 return; 27471 } else { 27472 goto nak; 27473 } 27474 } 27475 27476 /* IOCTL continuation following copyin or copyout. */ 27477 if (mi_copy_state(q, mp, NULL) == -1) { 27478 /* 27479 * The copy operation failed. mi_copy_state already 27480 * cleaned up, so we're out of here. 27481 */ 27482 return; 27483 } 27484 /* 27485 * If we just completed a copy in, we become writer and 27486 * continue processing in ip_sioctl_copyin_done. If it 27487 * was a copy out, we call mi_copyout again. If there is 27488 * nothing more to copy out, it will complete the IOCTL. 27489 */ 27490 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27491 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27492 mi_copy_done(q, mp, EPROTO); 27493 return; 27494 } 27495 /* 27496 * Check for cases that need more copying. A return 27497 * value of 0 means a second copyin has been started, 27498 * so we return; a return value of 1 means no more 27499 * copying is needed, so we continue. 27500 */ 27501 cmd = iocp->ioc_cmd; 27502 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 27503 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 27504 MI_COPY_COUNT(mp) == 1) { 27505 if (ip_copyin_msfilter(q, mp) == 0) 27506 return; 27507 } 27508 /* 27509 * Refhold the conn, till the ioctl completes. This is 27510 * needed in case the ioctl ends up in the pending mp 27511 * list. Every mp in the ill_pending_mp list and 27512 * the ipsq_pending_mp must have a refhold on the conn 27513 * to resume processing. The refhold is released when 27514 * the ioctl completes. (normally or abnormally) 27515 * In all cases ip_ioctl_finish is called to finish 27516 * the ioctl. 27517 */ 27518 if (connp != NULL) { 27519 /* This is not a reentry */ 27520 ASSERT(ipsq == NULL); 27521 CONN_INC_REF(connp); 27522 } else { 27523 if (!(ipip->ipi_flags & IPI_MODOK)) { 27524 mi_copy_done(q, mp, EINVAL); 27525 return; 27526 } 27527 } 27528 27529 ip_process_ioctl(ipsq, q, mp, ipip); 27530 27531 } else { 27532 mi_copyout(q, mp); 27533 } 27534 return; 27535 nak: 27536 iocp->ioc_error = EINVAL; 27537 mp->b_datap->db_type = M_IOCNAK; 27538 iocp->ioc_count = 0; 27539 qreply(q, mp); 27540 return; 27541 27542 case M_IOCNAK: 27543 /* 27544 * The only way we could get here is if a resolver didn't like 27545 * an IOCTL we sent it. This shouldn't happen. 27546 */ 27547 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27548 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27549 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27550 freemsg(mp); 27551 return; 27552 case M_IOCACK: 27553 /* /dev/ip shouldn't see this */ 27554 if (CONN_Q(q)) 27555 goto nak; 27556 27557 /* Finish socket ioctls passed through to ARP. */ 27558 ip_sioctl_iocack(q, mp); 27559 return; 27560 case M_FLUSH: 27561 if (*mp->b_rptr & FLUSHW) 27562 flushq(q, FLUSHALL); 27563 if (q->q_next) { 27564 /* 27565 * M_FLUSH is sent up to IP by some drivers during 27566 * unbind. ip_rput has already replied to it. We are 27567 * here for the M_FLUSH that we originated in IP 27568 * before sending the unbind request to the driver. 27569 * Just free it as we don't queue packets in IP 27570 * on the write side of the device instance. 27571 */ 27572 freemsg(mp); 27573 return; 27574 } 27575 if (*mp->b_rptr & FLUSHR) { 27576 *mp->b_rptr &= ~FLUSHW; 27577 qreply(q, mp); 27578 return; 27579 } 27580 freemsg(mp); 27581 return; 27582 case IRE_DB_REQ_TYPE: 27583 if (connp == NULL) { 27584 proto_str = "IRE_DB_REQ_TYPE"; 27585 goto protonak; 27586 } 27587 /* An Upper Level Protocol wants a copy of an IRE. */ 27588 ip_ire_req(q, mp); 27589 return; 27590 case M_CTL: 27591 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27592 break; 27593 27594 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27595 TUN_HELLO) { 27596 ASSERT(connp != NULL); 27597 connp->conn_flags |= IPCL_IPTUN; 27598 freeb(mp); 27599 return; 27600 } 27601 27602 if (connp != NULL && *(uint32_t *)mp->b_rptr == 27603 IP_ULP_OUT_LABELED) { 27604 out_labeled_t *olp; 27605 27606 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 27607 break; 27608 olp = (out_labeled_t *)mp->b_rptr; 27609 connp->conn_ulp_labeled = olp->out_qnext == q; 27610 freemsg(mp); 27611 return; 27612 } 27613 27614 /* M_CTL messages are used by ARP to tell us things. */ 27615 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27616 break; 27617 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27618 case AR_ENTRY_SQUERY: 27619 ip_wput_ctl(q, mp); 27620 return; 27621 case AR_CLIENT_NOTIFY: 27622 ip_arp_news(q, mp); 27623 return; 27624 case AR_DLPIOP_DONE: 27625 ASSERT(q->q_next != NULL); 27626 ill = (ill_t *)q->q_ptr; 27627 /* qwriter_ip releases the refhold */ 27628 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27629 ill_refhold(ill); 27630 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_done, 27631 CUR_OP, B_FALSE); 27632 return; 27633 case AR_ARP_CLOSING: 27634 /* 27635 * ARP (above us) is closing. If no ARP bringup is 27636 * currently pending, ack the message so that ARP 27637 * can complete its close. Also mark ill_arp_closing 27638 * so that new ARP bringups will fail. If any 27639 * ARP bringup is currently in progress, we will 27640 * ack this when the current ARP bringup completes. 27641 */ 27642 ASSERT(q->q_next != NULL); 27643 ill = (ill_t *)q->q_ptr; 27644 mutex_enter(&ill->ill_lock); 27645 ill->ill_arp_closing = 1; 27646 if (!ill->ill_arp_bringup_pending) { 27647 mutex_exit(&ill->ill_lock); 27648 qreply(q, mp); 27649 } else { 27650 mutex_exit(&ill->ill_lock); 27651 freemsg(mp); 27652 } 27653 return; 27654 case AR_ARP_EXTEND: 27655 /* 27656 * The ARP module above us is capable of duplicate 27657 * address detection. Old ATM drivers will not send 27658 * this message. 27659 */ 27660 ASSERT(q->q_next != NULL); 27661 ill = (ill_t *)q->q_ptr; 27662 ill->ill_arp_extend = B_TRUE; 27663 freemsg(mp); 27664 return; 27665 default: 27666 break; 27667 } 27668 break; 27669 case M_PROTO: 27670 case M_PCPROTO: 27671 /* 27672 * The only PROTO messages we expect are ULP binds and 27673 * copies of option negotiation acknowledgements. 27674 */ 27675 switch (((union T_primitives *)mp->b_rptr)->type) { 27676 case O_T_BIND_REQ: 27677 case T_BIND_REQ: { 27678 /* Request can get queued in bind */ 27679 if (connp == NULL) { 27680 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27681 goto protonak; 27682 } 27683 /* 27684 * Both TCP and UDP call ip_bind_{v4,v6}() directly 27685 * instead of going through this path. We only get 27686 * here in the following cases: 27687 * 27688 * a. Bind retries, where ipsq is non-NULL. 27689 * b. T_BIND_REQ is issued from non TCP/UDP 27690 * transport, e.g. icmp for raw socket, 27691 * in which case ipsq will be NULL. 27692 */ 27693 ASSERT(ipsq != NULL || 27694 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 27695 27696 /* Don't increment refcnt if this is a re-entry */ 27697 if (ipsq == NULL) 27698 CONN_INC_REF(connp); 27699 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27700 connp, NULL) : ip_bind_v4(q, mp, connp); 27701 if (mp == NULL) 27702 return; 27703 if (IPCL_IS_TCP(connp)) { 27704 /* 27705 * In the case of TCP endpoint we 27706 * come here only for bind retries 27707 */ 27708 ASSERT(ipsq != NULL); 27709 CONN_INC_REF(connp); 27710 squeue_fill(connp->conn_sqp, mp, 27711 ip_resume_tcp_bind, connp, 27712 SQTAG_BIND_RETRY); 27713 return; 27714 } else if (IPCL_IS_UDP(connp)) { 27715 /* 27716 * In the case of UDP endpoint we 27717 * come here only for bind retries 27718 */ 27719 ASSERT(ipsq != NULL); 27720 udp_resume_bind(connp, mp); 27721 return; 27722 } 27723 qreply(q, mp); 27724 CONN_OPER_PENDING_DONE(connp); 27725 return; 27726 } 27727 case T_SVR4_OPTMGMT_REQ: 27728 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27729 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27730 27731 if (connp == NULL) { 27732 proto_str = "T_SVR4_OPTMGMT_REQ"; 27733 goto protonak; 27734 } 27735 27736 if (!snmpcom_req(q, mp, ip_snmp_set, 27737 ip_snmp_get, cr)) { 27738 /* 27739 * Call svr4_optcom_req so that it can 27740 * generate the ack. We don't come here 27741 * if this operation is being restarted. 27742 * ip_restart_optmgmt will drop the conn ref. 27743 * In the case of ipsec option after the ipsec 27744 * load is complete conn_restart_ipsec_waiter 27745 * drops the conn ref. 27746 */ 27747 ASSERT(ipsq == NULL); 27748 CONN_INC_REF(connp); 27749 if (ip_check_for_ipsec_opt(q, mp)) 27750 return; 27751 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 27752 if (err != EINPROGRESS) { 27753 /* Operation is done */ 27754 CONN_OPER_PENDING_DONE(connp); 27755 } 27756 } 27757 return; 27758 case T_OPTMGMT_REQ: 27759 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27760 /* 27761 * Note: No snmpcom_req support through new 27762 * T_OPTMGMT_REQ. 27763 * Call tpi_optcom_req so that it can 27764 * generate the ack. 27765 */ 27766 if (connp == NULL) { 27767 proto_str = "T_OPTMGMT_REQ"; 27768 goto protonak; 27769 } 27770 27771 ASSERT(ipsq == NULL); 27772 /* 27773 * We don't come here for restart. ip_restart_optmgmt 27774 * will drop the conn ref. In the case of ipsec option 27775 * after the ipsec load is complete 27776 * conn_restart_ipsec_waiter drops the conn ref. 27777 */ 27778 CONN_INC_REF(connp); 27779 if (ip_check_for_ipsec_opt(q, mp)) 27780 return; 27781 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 27782 if (err != EINPROGRESS) { 27783 /* Operation is done */ 27784 CONN_OPER_PENDING_DONE(connp); 27785 } 27786 return; 27787 case T_UNBIND_REQ: 27788 if (connp == NULL) { 27789 proto_str = "T_UNBIND_REQ"; 27790 goto protonak; 27791 } 27792 mp = ip_unbind(q, mp); 27793 qreply(q, mp); 27794 return; 27795 default: 27796 /* 27797 * Have to drop any DLPI messages coming down from 27798 * arp (such as an info_req which would cause ip 27799 * to receive an extra info_ack if it was passed 27800 * through. 27801 */ 27802 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27803 (int)*(uint_t *)mp->b_rptr)); 27804 freemsg(mp); 27805 return; 27806 } 27807 /* NOTREACHED */ 27808 case IRE_DB_TYPE: { 27809 nce_t *nce; 27810 ill_t *ill; 27811 in6_addr_t gw_addr_v6; 27812 27813 27814 /* 27815 * This is a response back from a resolver. It 27816 * consists of a message chain containing: 27817 * IRE_MBLK-->LL_HDR_MBLK->pkt 27818 * The IRE_MBLK is the one we allocated in ip_newroute. 27819 * The LL_HDR_MBLK is the DLPI header to use to get 27820 * the attached packet, and subsequent ones for the 27821 * same destination, transmitted. 27822 */ 27823 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27824 break; 27825 /* 27826 * First, check to make sure the resolution succeeded. 27827 * If it failed, the second mblk will be empty. 27828 * If it is, free the chain, dropping the packet. 27829 * (We must ire_delete the ire; that frees the ire mblk) 27830 * We're doing this now to support PVCs for ATM; it's 27831 * a partial xresolv implementation. When we fully implement 27832 * xresolv interfaces, instead of freeing everything here 27833 * we'll initiate neighbor discovery. 27834 * 27835 * For v4 (ARP and other external resolvers) the resolver 27836 * frees the message, so no check is needed. This check 27837 * is required, though, for a full xresolve implementation. 27838 * Including this code here now both shows how external 27839 * resolvers can NACK a resolution request using an 27840 * existing design that has no specific provisions for NACKs, 27841 * and also takes into account that the current non-ARP 27842 * external resolver has been coded to use this method of 27843 * NACKing for all IPv6 (xresolv) cases, 27844 * whether our xresolv implementation is complete or not. 27845 * 27846 */ 27847 ire = (ire_t *)mp->b_rptr; 27848 ill = ire_to_ill(ire); 27849 mp1 = mp->b_cont; /* dl_unitdata_req */ 27850 if (mp1->b_rptr == mp1->b_wptr) { 27851 if (ire->ire_ipversion == IPV6_VERSION) { 27852 /* 27853 * XRESOLV interface. 27854 */ 27855 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27856 mutex_enter(&ire->ire_lock); 27857 gw_addr_v6 = ire->ire_gateway_addr_v6; 27858 mutex_exit(&ire->ire_lock); 27859 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27860 nce = ndp_lookup_v6(ill, 27861 &ire->ire_addr_v6, B_FALSE); 27862 } else { 27863 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27864 B_FALSE); 27865 } 27866 if (nce != NULL) { 27867 nce_resolv_failed(nce); 27868 ndp_delete(nce); 27869 NCE_REFRELE(nce); 27870 } 27871 } 27872 mp->b_cont = NULL; 27873 freemsg(mp1); /* frees the pkt as well */ 27874 ASSERT(ire->ire_nce == NULL); 27875 ire_delete((ire_t *)mp->b_rptr); 27876 return; 27877 } 27878 27879 /* 27880 * Split them into IRE_MBLK and pkt and feed it into 27881 * ire_add_then_send. Then in ire_add_then_send 27882 * the IRE will be added, and then the packet will be 27883 * run back through ip_wput. This time it will make 27884 * it to the wire. 27885 */ 27886 mp->b_cont = NULL; 27887 mp = mp1->b_cont; /* now, mp points to pkt */ 27888 mp1->b_cont = NULL; 27889 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27890 if (ire->ire_ipversion == IPV6_VERSION) { 27891 /* 27892 * XRESOLV interface. Find the nce and put a copy 27893 * of the dl_unitdata_req in nce_res_mp 27894 */ 27895 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27896 mutex_enter(&ire->ire_lock); 27897 gw_addr_v6 = ire->ire_gateway_addr_v6; 27898 mutex_exit(&ire->ire_lock); 27899 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27900 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27901 B_FALSE); 27902 } else { 27903 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27904 } 27905 if (nce != NULL) { 27906 /* 27907 * We have to protect nce_res_mp here 27908 * from being accessed by other threads 27909 * while we change the mblk pointer. 27910 * Other functions will also lock the nce when 27911 * accessing nce_res_mp. 27912 * 27913 * The reason we change the mblk pointer 27914 * here rather than copying the resolved address 27915 * into the template is that, unlike with 27916 * ethernet, we have no guarantee that the 27917 * resolved address length will be 27918 * smaller than or equal to the lla length 27919 * with which the template was allocated, 27920 * (for ethernet, they're equal) 27921 * so we have to use the actual resolved 27922 * address mblk - which holds the real 27923 * dl_unitdata_req with the resolved address. 27924 * 27925 * Doing this is the same behavior as was 27926 * previously used in the v4 ARP case. 27927 */ 27928 mutex_enter(&nce->nce_lock); 27929 if (nce->nce_res_mp != NULL) 27930 freemsg(nce->nce_res_mp); 27931 nce->nce_res_mp = mp1; 27932 mutex_exit(&nce->nce_lock); 27933 /* 27934 * We do a fastpath probe here because 27935 * we have resolved the address without 27936 * using Neighbor Discovery. 27937 * In the non-XRESOLV v6 case, the fastpath 27938 * probe is done right after neighbor 27939 * discovery completes. 27940 */ 27941 if (nce->nce_res_mp != NULL) { 27942 int res; 27943 nce_fastpath_list_add(nce); 27944 res = ill_fastpath_probe(ill, 27945 nce->nce_res_mp); 27946 if (res != 0 && res != EAGAIN) 27947 nce_fastpath_list_delete(nce); 27948 } 27949 27950 ire_add_then_send(q, ire, mp); 27951 /* 27952 * Now we have to clean out any packets 27953 * that may have been queued on the nce 27954 * while it was waiting for address resolution 27955 * to complete. 27956 */ 27957 mutex_enter(&nce->nce_lock); 27958 mp1 = nce->nce_qd_mp; 27959 nce->nce_qd_mp = NULL; 27960 mutex_exit(&nce->nce_lock); 27961 while (mp1 != NULL) { 27962 mblk_t *nxt_mp; 27963 queue_t *fwdq = NULL; 27964 ill_t *inbound_ill; 27965 uint_t ifindex; 27966 27967 nxt_mp = mp1->b_next; 27968 mp1->b_next = NULL; 27969 /* 27970 * Retrieve ifindex stored in 27971 * ip_rput_data_v6() 27972 */ 27973 ifindex = 27974 (uint_t)(uintptr_t)mp1->b_prev; 27975 inbound_ill = 27976 ill_lookup_on_ifindex(ifindex, 27977 B_TRUE, NULL, NULL, NULL, 27978 NULL, ipst); 27979 mp1->b_prev = NULL; 27980 if (inbound_ill != NULL) 27981 fwdq = inbound_ill->ill_rq; 27982 27983 if (fwdq != NULL) { 27984 put(fwdq, mp1); 27985 ill_refrele(inbound_ill); 27986 } else 27987 put(WR(ill->ill_rq), mp1); 27988 mp1 = nxt_mp; 27989 } 27990 NCE_REFRELE(nce); 27991 } else { /* nce is NULL; clean up */ 27992 ire_delete(ire); 27993 freemsg(mp); 27994 freemsg(mp1); 27995 return; 27996 } 27997 } else { 27998 nce_t *arpce; 27999 /* 28000 * Link layer resolution succeeded. Recompute the 28001 * ire_nce. 28002 */ 28003 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 28004 if ((arpce = ndp_lookup_v4(ill, 28005 (ire->ire_gateway_addr != INADDR_ANY ? 28006 &ire->ire_gateway_addr : &ire->ire_addr), 28007 B_FALSE)) == NULL) { 28008 freeb(ire->ire_mp); 28009 freeb(mp1); 28010 freemsg(mp); 28011 return; 28012 } 28013 mutex_enter(&arpce->nce_lock); 28014 arpce->nce_last = TICK_TO_MSEC(lbolt64); 28015 if (arpce->nce_state == ND_REACHABLE) { 28016 /* 28017 * Someone resolved this before us; 28018 * cleanup the res_mp. Since ire has 28019 * not been added yet, the call to ire_add_v4 28020 * from ire_add_then_send (when a dup is 28021 * detected) will clean up the ire. 28022 */ 28023 freeb(mp1); 28024 } else { 28025 if (arpce->nce_res_mp != NULL) 28026 freemsg(arpce->nce_res_mp); 28027 arpce->nce_res_mp = mp1; 28028 arpce->nce_state = ND_REACHABLE; 28029 } 28030 mutex_exit(&arpce->nce_lock); 28031 if (ire->ire_marks & IRE_MARK_NOADD) { 28032 /* 28033 * this ire will not be added to the ire 28034 * cache table, so we can set the ire_nce 28035 * here, as there are no atomicity constraints. 28036 */ 28037 ire->ire_nce = arpce; 28038 /* 28039 * We are associating this nce with the ire 28040 * so change the nce ref taken in 28041 * ndp_lookup_v4() from 28042 * NCE_REFHOLD to NCE_REFHOLD_NOTR 28043 */ 28044 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 28045 } else { 28046 NCE_REFRELE(arpce); 28047 } 28048 ire_add_then_send(q, ire, mp); 28049 } 28050 return; /* All is well, the packet has been sent. */ 28051 } 28052 case IRE_ARPRESOLVE_TYPE: { 28053 28054 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 28055 break; 28056 mp1 = mp->b_cont; /* dl_unitdata_req */ 28057 mp->b_cont = NULL; 28058 /* 28059 * First, check to make sure the resolution succeeded. 28060 * If it failed, the second mblk will be empty. 28061 */ 28062 if (mp1->b_rptr == mp1->b_wptr) { 28063 /* cleanup the incomplete ire, free queued packets */ 28064 freemsg(mp); /* fake ire */ 28065 freeb(mp1); /* dl_unitdata response */ 28066 return; 28067 } 28068 28069 /* 28070 * update any incomplete nce_t found. we lookup the ctable 28071 * and find the nce from the ire->ire_nce because we need 28072 * to pass the ire to ip_xmit_v4 later, and can find both 28073 * ire and nce in one lookup from the ctable. 28074 */ 28075 fake_ire = (ire_t *)mp->b_rptr; 28076 /* 28077 * By the time we come back here from ARP 28078 * the logical outgoing interface of the incomplete ire 28079 * we added in ire_forward could have disappeared, 28080 * causing the incomplete ire to also have 28081 * dissapeared. So we need to retreive the 28082 * proper ipif for the ire before looking 28083 * in ctable; do the ctablelookup based on ire_ipif_seqid 28084 */ 28085 ill = q->q_ptr; 28086 28087 /* Get the outgoing ipif */ 28088 mutex_enter(&ill->ill_lock); 28089 if (ill->ill_state_flags & ILL_CONDEMNED) { 28090 mutex_exit(&ill->ill_lock); 28091 freemsg(mp); /* fake ire */ 28092 freeb(mp1); /* dl_unitdata response */ 28093 return; 28094 } 28095 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 28096 28097 if (ipif == NULL) { 28098 mutex_exit(&ill->ill_lock); 28099 ip1dbg(("logical intrf to incomplete ire vanished\n")); 28100 freemsg(mp); 28101 freeb(mp1); 28102 return; 28103 } 28104 ipif_refhold_locked(ipif); 28105 mutex_exit(&ill->ill_lock); 28106 ire = ire_ctable_lookup(fake_ire->ire_addr, 28107 fake_ire->ire_gateway_addr, IRE_CACHE, 28108 ipif, fake_ire->ire_zoneid, NULL, 28109 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY), ipst); 28110 ipif_refrele(ipif); 28111 if (ire == NULL) { 28112 /* 28113 * no ire was found; check if there is an nce 28114 * for this lookup; if it has no ire's pointing at it 28115 * cleanup. 28116 */ 28117 if ((nce = ndp_lookup_v4(ill, 28118 (fake_ire->ire_gateway_addr != INADDR_ANY ? 28119 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 28120 B_FALSE)) != NULL) { 28121 /* 28122 * cleanup: just reset nce. 28123 * We check for refcnt 2 (one for the nce 28124 * hash list + 1 for the ref taken by 28125 * ndp_lookup_v4) to ensure that there are 28126 * no ire's pointing at the nce. 28127 */ 28128 if (nce->nce_refcnt == 2) { 28129 nce = nce_reinit(nce); 28130 } 28131 if (nce != NULL) 28132 NCE_REFRELE(nce); 28133 } 28134 freeb(mp1); /* dl_unitdata response */ 28135 freemsg(mp); /* fake ire */ 28136 return; 28137 } 28138 nce = ire->ire_nce; 28139 DTRACE_PROBE2(ire__arpresolve__type, 28140 ire_t *, ire, nce_t *, nce); 28141 ASSERT(nce->nce_state != ND_INITIAL); 28142 mutex_enter(&nce->nce_lock); 28143 nce->nce_last = TICK_TO_MSEC(lbolt64); 28144 if (nce->nce_state == ND_REACHABLE) { 28145 /* 28146 * Someone resolved this before us; 28147 * our response is not needed any more. 28148 */ 28149 mutex_exit(&nce->nce_lock); 28150 freeb(mp1); /* dl_unitdata response */ 28151 } else { 28152 if (nce->nce_res_mp != NULL) { 28153 freemsg(nce->nce_res_mp); 28154 /* existing dl_unitdata template */ 28155 } 28156 nce->nce_res_mp = mp1; 28157 nce->nce_state = ND_REACHABLE; 28158 mutex_exit(&nce->nce_lock); 28159 nce_fastpath(nce); 28160 } 28161 /* 28162 * The cached nce_t has been updated to be reachable; 28163 * Set the IRE_MARK_UNCACHED flag and free the fake_ire. 28164 */ 28165 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 28166 freemsg(mp); 28167 /* 28168 * send out queued packets. 28169 */ 28170 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 28171 28172 IRE_REFRELE(ire); 28173 return; 28174 } 28175 default: 28176 break; 28177 } 28178 if (q->q_next) { 28179 putnext(q, mp); 28180 } else 28181 freemsg(mp); 28182 return; 28183 28184 protonak: 28185 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 28186 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 28187 qreply(q, mp); 28188 } 28189 28190 /* 28191 * Process IP options in an outbound packet. Modify the destination if there 28192 * is a source route option. 28193 * Returns non-zero if something fails in which case an ICMP error has been 28194 * sent and mp freed. 28195 */ 28196 static int 28197 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 28198 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 28199 { 28200 ipoptp_t opts; 28201 uchar_t *opt; 28202 uint8_t optval; 28203 uint8_t optlen; 28204 ipaddr_t dst; 28205 intptr_t code = 0; 28206 mblk_t *mp; 28207 ire_t *ire = NULL; 28208 28209 ip2dbg(("ip_wput_options\n")); 28210 mp = ipsec_mp; 28211 if (mctl_present) { 28212 mp = ipsec_mp->b_cont; 28213 } 28214 28215 dst = ipha->ipha_dst; 28216 for (optval = ipoptp_first(&opts, ipha); 28217 optval != IPOPT_EOL; 28218 optval = ipoptp_next(&opts)) { 28219 opt = opts.ipoptp_cur; 28220 optlen = opts.ipoptp_len; 28221 ip2dbg(("ip_wput_options: opt %d, len %d\n", 28222 optval, optlen)); 28223 switch (optval) { 28224 uint32_t off; 28225 case IPOPT_SSRR: 28226 case IPOPT_LSRR: 28227 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28228 ip1dbg(( 28229 "ip_wput_options: bad option offset\n")); 28230 code = (char *)&opt[IPOPT_OLEN] - 28231 (char *)ipha; 28232 goto param_prob; 28233 } 28234 off = opt[IPOPT_OFFSET]; 28235 ip1dbg(("ip_wput_options: next hop 0x%x\n", 28236 ntohl(dst))); 28237 /* 28238 * For strict: verify that dst is directly 28239 * reachable. 28240 */ 28241 if (optval == IPOPT_SSRR) { 28242 ire = ire_ftable_lookup(dst, 0, 0, 28243 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 28244 MBLK_GETLABEL(mp), 28245 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 28246 if (ire == NULL) { 28247 ip1dbg(("ip_wput_options: SSRR not" 28248 " directly reachable: 0x%x\n", 28249 ntohl(dst))); 28250 goto bad_src_route; 28251 } 28252 ire_refrele(ire); 28253 } 28254 break; 28255 case IPOPT_RR: 28256 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28257 ip1dbg(( 28258 "ip_wput_options: bad option offset\n")); 28259 code = (char *)&opt[IPOPT_OLEN] - 28260 (char *)ipha; 28261 goto param_prob; 28262 } 28263 break; 28264 case IPOPT_TS: 28265 /* 28266 * Verify that length >=5 and that there is either 28267 * room for another timestamp or that the overflow 28268 * counter is not maxed out. 28269 */ 28270 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 28271 if (optlen < IPOPT_MINLEN_IT) { 28272 goto param_prob; 28273 } 28274 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28275 ip1dbg(( 28276 "ip_wput_options: bad option offset\n")); 28277 code = (char *)&opt[IPOPT_OFFSET] - 28278 (char *)ipha; 28279 goto param_prob; 28280 } 28281 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 28282 case IPOPT_TS_TSONLY: 28283 off = IPOPT_TS_TIMELEN; 28284 break; 28285 case IPOPT_TS_TSANDADDR: 28286 case IPOPT_TS_PRESPEC: 28287 case IPOPT_TS_PRESPEC_RFC791: 28288 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 28289 break; 28290 default: 28291 code = (char *)&opt[IPOPT_POS_OV_FLG] - 28292 (char *)ipha; 28293 goto param_prob; 28294 } 28295 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28296 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28297 /* 28298 * No room and the overflow counter is 15 28299 * already. 28300 */ 28301 goto param_prob; 28302 } 28303 break; 28304 } 28305 } 28306 28307 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28308 return (0); 28309 28310 ip1dbg(("ip_wput_options: error processing IP options.")); 28311 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28312 28313 param_prob: 28314 /* 28315 * Since ip_wput() isn't close to finished, we fill 28316 * in enough of the header for credible error reporting. 28317 */ 28318 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28319 /* Failed */ 28320 freemsg(ipsec_mp); 28321 return (-1); 28322 } 28323 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28324 return (-1); 28325 28326 bad_src_route: 28327 /* 28328 * Since ip_wput() isn't close to finished, we fill 28329 * in enough of the header for credible error reporting. 28330 */ 28331 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28332 /* Failed */ 28333 freemsg(ipsec_mp); 28334 return (-1); 28335 } 28336 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28337 return (-1); 28338 } 28339 28340 /* 28341 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28342 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28343 * thru /etc/system. 28344 */ 28345 #define CONN_MAXDRAINCNT 64 28346 28347 static void 28348 conn_drain_init(ip_stack_t *ipst) 28349 { 28350 int i; 28351 28352 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28353 28354 if ((ipst->ips_conn_drain_list_cnt == 0) || 28355 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28356 /* 28357 * Default value of the number of drainers is the 28358 * number of cpus, subject to maximum of 8 drainers. 28359 */ 28360 if (boot_max_ncpus != -1) 28361 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28362 else 28363 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28364 } 28365 28366 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28367 sizeof (idl_t), KM_SLEEP); 28368 28369 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28370 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28371 MUTEX_DEFAULT, NULL); 28372 } 28373 } 28374 28375 static void 28376 conn_drain_fini(ip_stack_t *ipst) 28377 { 28378 int i; 28379 28380 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28381 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28382 kmem_free(ipst->ips_conn_drain_list, 28383 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28384 ipst->ips_conn_drain_list = NULL; 28385 } 28386 28387 /* 28388 * Note: For an overview of how flowcontrol is handled in IP please see the 28389 * IP Flowcontrol notes at the top of this file. 28390 * 28391 * Flow control has blocked us from proceeding. Insert the given conn in one 28392 * of the conn drain lists. These conn wq's will be qenabled later on when 28393 * STREAMS flow control does a backenable. conn_walk_drain will enable 28394 * the first conn in each of these drain lists. Each of these qenabled conns 28395 * in turn enables the next in the list, after it runs, or when it closes, 28396 * thus sustaining the drain process. 28397 * 28398 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28399 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28400 * running at any time, on a given conn, since there can be only 1 service proc 28401 * running on a queue at any time. 28402 */ 28403 void 28404 conn_drain_insert(conn_t *connp) 28405 { 28406 idl_t *idl; 28407 uint_t index; 28408 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28409 28410 mutex_enter(&connp->conn_lock); 28411 if (connp->conn_state_flags & CONN_CLOSING) { 28412 /* 28413 * The conn is closing as a result of which CONN_CLOSING 28414 * is set. Return. 28415 */ 28416 mutex_exit(&connp->conn_lock); 28417 return; 28418 } else if (connp->conn_idl == NULL) { 28419 /* 28420 * Assign the next drain list round robin. We dont' use 28421 * a lock, and thus it may not be strictly round robin. 28422 * Atomicity of load/stores is enough to make sure that 28423 * conn_drain_list_index is always within bounds. 28424 */ 28425 index = ipst->ips_conn_drain_list_index; 28426 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28427 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28428 index++; 28429 if (index == ipst->ips_conn_drain_list_cnt) 28430 index = 0; 28431 ipst->ips_conn_drain_list_index = index; 28432 } 28433 mutex_exit(&connp->conn_lock); 28434 28435 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28436 if ((connp->conn_drain_prev != NULL) || 28437 (connp->conn_state_flags & CONN_CLOSING)) { 28438 /* 28439 * The conn is already in the drain list, OR 28440 * the conn is closing. We need to check again for 28441 * the closing case again since close can happen 28442 * after we drop the conn_lock, and before we 28443 * acquire the CONN_DRAIN_LIST_LOCK. 28444 */ 28445 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28446 return; 28447 } else { 28448 idl = connp->conn_idl; 28449 } 28450 28451 /* 28452 * The conn is not in the drain list. Insert it at the 28453 * tail of the drain list. The drain list is circular 28454 * and doubly linked. idl_conn points to the 1st element 28455 * in the list. 28456 */ 28457 if (idl->idl_conn == NULL) { 28458 idl->idl_conn = connp; 28459 connp->conn_drain_next = connp; 28460 connp->conn_drain_prev = connp; 28461 } else { 28462 conn_t *head = idl->idl_conn; 28463 28464 connp->conn_drain_next = head; 28465 connp->conn_drain_prev = head->conn_drain_prev; 28466 head->conn_drain_prev->conn_drain_next = connp; 28467 head->conn_drain_prev = connp; 28468 } 28469 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28470 } 28471 28472 /* 28473 * This conn is closing, and we are called from ip_close. OR 28474 * This conn has been serviced by ip_wsrv, and we need to do the tail 28475 * processing. 28476 * If this conn is part of the drain list, we may need to sustain the drain 28477 * process by qenabling the next conn in the drain list. We may also need to 28478 * remove this conn from the list, if it is done. 28479 */ 28480 static void 28481 conn_drain_tail(conn_t *connp, boolean_t closing) 28482 { 28483 idl_t *idl; 28484 28485 /* 28486 * connp->conn_idl is stable at this point, and no lock is needed 28487 * to check it. If we are called from ip_close, close has already 28488 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28489 * called us only because conn_idl is non-null. If we are called thru 28490 * service, conn_idl could be null, but it cannot change because 28491 * service is single-threaded per queue, and there cannot be another 28492 * instance of service trying to call conn_drain_insert on this conn 28493 * now. 28494 */ 28495 ASSERT(!closing || (connp->conn_idl != NULL)); 28496 28497 /* 28498 * If connp->conn_idl is null, the conn has not been inserted into any 28499 * drain list even once since creation of the conn. Just return. 28500 */ 28501 if (connp->conn_idl == NULL) 28502 return; 28503 28504 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28505 28506 if (connp->conn_drain_prev == NULL) { 28507 /* This conn is currently not in the drain list. */ 28508 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28509 return; 28510 } 28511 idl = connp->conn_idl; 28512 if (idl->idl_conn_draining == connp) { 28513 /* 28514 * This conn is the current drainer. If this is the last conn 28515 * in the drain list, we need to do more checks, in the 'if' 28516 * below. Otherwwise we need to just qenable the next conn, 28517 * to sustain the draining, and is handled in the 'else' 28518 * below. 28519 */ 28520 if (connp->conn_drain_next == idl->idl_conn) { 28521 /* 28522 * This conn is the last in this list. This round 28523 * of draining is complete. If idl_repeat is set, 28524 * it means another flow enabling has happened from 28525 * the driver/streams and we need to another round 28526 * of draining. 28527 * If there are more than 2 conns in the drain list, 28528 * do a left rotate by 1, so that all conns except the 28529 * conn at the head move towards the head by 1, and the 28530 * the conn at the head goes to the tail. This attempts 28531 * a more even share for all queues that are being 28532 * drained. 28533 */ 28534 if ((connp->conn_drain_next != connp) && 28535 (idl->idl_conn->conn_drain_next != connp)) { 28536 idl->idl_conn = idl->idl_conn->conn_drain_next; 28537 } 28538 if (idl->idl_repeat) { 28539 qenable(idl->idl_conn->conn_wq); 28540 idl->idl_conn_draining = idl->idl_conn; 28541 idl->idl_repeat = 0; 28542 } else { 28543 idl->idl_conn_draining = NULL; 28544 } 28545 } else { 28546 /* 28547 * If the next queue that we are now qenable'ing, 28548 * is closing, it will remove itself from this list 28549 * and qenable the subsequent queue in ip_close(). 28550 * Serialization is acheived thru idl_lock. 28551 */ 28552 qenable(connp->conn_drain_next->conn_wq); 28553 idl->idl_conn_draining = connp->conn_drain_next; 28554 } 28555 } 28556 if (!connp->conn_did_putbq || closing) { 28557 /* 28558 * Remove ourself from the drain list, if we did not do 28559 * a putbq, or if the conn is closing. 28560 * Note: It is possible that q->q_first is non-null. It means 28561 * that these messages landed after we did a enableok() in 28562 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28563 * service them. 28564 */ 28565 if (connp->conn_drain_next == connp) { 28566 /* Singleton in the list */ 28567 ASSERT(connp->conn_drain_prev == connp); 28568 idl->idl_conn = NULL; 28569 idl->idl_conn_draining = NULL; 28570 } else { 28571 connp->conn_drain_prev->conn_drain_next = 28572 connp->conn_drain_next; 28573 connp->conn_drain_next->conn_drain_prev = 28574 connp->conn_drain_prev; 28575 if (idl->idl_conn == connp) 28576 idl->idl_conn = connp->conn_drain_next; 28577 ASSERT(idl->idl_conn_draining != connp); 28578 28579 } 28580 connp->conn_drain_next = NULL; 28581 connp->conn_drain_prev = NULL; 28582 } 28583 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28584 } 28585 28586 /* 28587 * Write service routine. Shared perimeter entry point. 28588 * ip_wsrv can be called in any of the following ways. 28589 * 1. The device queue's messages has fallen below the low water mark 28590 * and STREAMS has backenabled the ill_wq. We walk thru all the 28591 * the drain lists and backenable the first conn in each list. 28592 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28593 * qenabled non-tcp upper layers. We start dequeing messages and call 28594 * ip_wput for each message. 28595 */ 28596 28597 void 28598 ip_wsrv(queue_t *q) 28599 { 28600 conn_t *connp; 28601 ill_t *ill; 28602 mblk_t *mp; 28603 28604 if (q->q_next) { 28605 ill = (ill_t *)q->q_ptr; 28606 if (ill->ill_state_flags == 0) { 28607 /* 28608 * The device flow control has opened up. 28609 * Walk through conn drain lists and qenable the 28610 * first conn in each list. This makes sense only 28611 * if the stream is fully plumbed and setup. 28612 * Hence the if check above. 28613 */ 28614 ip1dbg(("ip_wsrv: walking\n")); 28615 conn_walk_drain(ill->ill_ipst); 28616 } 28617 return; 28618 } 28619 28620 connp = Q_TO_CONN(q); 28621 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28622 28623 /* 28624 * 1. Set conn_draining flag to signal that service is active. 28625 * 28626 * 2. ip_output determines whether it has been called from service, 28627 * based on the last parameter. If it is IP_WSRV it concludes it 28628 * has been called from service. 28629 * 28630 * 3. Message ordering is preserved by the following logic. 28631 * i. A directly called ip_output (i.e. not thru service) will queue 28632 * the message at the tail, if conn_draining is set (i.e. service 28633 * is running) or if q->q_first is non-null. 28634 * 28635 * ii. If ip_output is called from service, and if ip_output cannot 28636 * putnext due to flow control, it does a putbq. 28637 * 28638 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28639 * (causing an infinite loop). 28640 */ 28641 ASSERT(!connp->conn_did_putbq); 28642 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28643 connp->conn_draining = 1; 28644 noenable(q); 28645 while ((mp = getq(q)) != NULL) { 28646 ASSERT(CONN_Q(q)); 28647 28648 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28649 if (connp->conn_did_putbq) { 28650 /* ip_wput did a putbq */ 28651 break; 28652 } 28653 } 28654 /* 28655 * At this point, a thread coming down from top, calling 28656 * ip_wput, may end up queueing the message. We have not yet 28657 * enabled the queue, so ip_wsrv won't be called again. 28658 * To avoid this race, check q->q_first again (in the loop) 28659 * If the other thread queued the message before we call 28660 * enableok(), we will catch it in the q->q_first check. 28661 * If the other thread queues the message after we call 28662 * enableok(), ip_wsrv will be called again by STREAMS. 28663 */ 28664 connp->conn_draining = 0; 28665 enableok(q); 28666 } 28667 28668 /* Enable the next conn for draining */ 28669 conn_drain_tail(connp, B_FALSE); 28670 28671 connp->conn_did_putbq = 0; 28672 } 28673 28674 /* 28675 * Walk the list of all conn's calling the function provided with the 28676 * specified argument for each. Note that this only walks conn's that 28677 * have been bound. 28678 * Applies to both IPv4 and IPv6. 28679 */ 28680 static void 28681 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28682 { 28683 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28684 ipst->ips_ipcl_udp_fanout_size, 28685 func, arg, zoneid); 28686 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28687 ipst->ips_ipcl_conn_fanout_size, 28688 func, arg, zoneid); 28689 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28690 ipst->ips_ipcl_bind_fanout_size, 28691 func, arg, zoneid); 28692 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28693 IPPROTO_MAX, func, arg, zoneid); 28694 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28695 IPPROTO_MAX, func, arg, zoneid); 28696 } 28697 28698 /* 28699 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28700 * of conns that need to be drained, check if drain is already in progress. 28701 * If so set the idl_repeat bit, indicating that the last conn in the list 28702 * needs to reinitiate the drain once again, for the list. If drain is not 28703 * in progress for the list, initiate the draining, by qenabling the 1st 28704 * conn in the list. The drain is self-sustaining, each qenabled conn will 28705 * in turn qenable the next conn, when it is done/blocked/closing. 28706 */ 28707 static void 28708 conn_walk_drain(ip_stack_t *ipst) 28709 { 28710 int i; 28711 idl_t *idl; 28712 28713 IP_STAT(ipst, ip_conn_walk_drain); 28714 28715 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28716 idl = &ipst->ips_conn_drain_list[i]; 28717 mutex_enter(&idl->idl_lock); 28718 if (idl->idl_conn == NULL) { 28719 mutex_exit(&idl->idl_lock); 28720 continue; 28721 } 28722 /* 28723 * If this list is not being drained currently by 28724 * an ip_wsrv thread, start the process. 28725 */ 28726 if (idl->idl_conn_draining == NULL) { 28727 ASSERT(idl->idl_repeat == 0); 28728 qenable(idl->idl_conn->conn_wq); 28729 idl->idl_conn_draining = idl->idl_conn; 28730 } else { 28731 idl->idl_repeat = 1; 28732 } 28733 mutex_exit(&idl->idl_lock); 28734 } 28735 } 28736 28737 /* 28738 * Walk an conn hash table of `count' buckets, calling func for each entry. 28739 */ 28740 static void 28741 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28742 zoneid_t zoneid) 28743 { 28744 conn_t *connp; 28745 28746 while (count-- > 0) { 28747 mutex_enter(&connfp->connf_lock); 28748 for (connp = connfp->connf_head; connp != NULL; 28749 connp = connp->conn_next) { 28750 if (zoneid == GLOBAL_ZONEID || 28751 zoneid == connp->conn_zoneid) { 28752 CONN_INC_REF(connp); 28753 mutex_exit(&connfp->connf_lock); 28754 (*func)(connp, arg); 28755 mutex_enter(&connfp->connf_lock); 28756 CONN_DEC_REF(connp); 28757 } 28758 } 28759 mutex_exit(&connfp->connf_lock); 28760 connfp++; 28761 } 28762 } 28763 28764 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 28765 static void 28766 conn_report1(conn_t *connp, void *mp) 28767 { 28768 char buf1[INET6_ADDRSTRLEN]; 28769 char buf2[INET6_ADDRSTRLEN]; 28770 uint_t print_len, buf_len; 28771 28772 ASSERT(connp != NULL); 28773 28774 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28775 if (buf_len <= 0) 28776 return; 28777 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 28778 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 28779 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28780 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28781 "%5d %s/%05d %s/%05d\n", 28782 (void *)connp, (void *)CONNP_TO_RQ(connp), 28783 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28784 buf1, connp->conn_lport, 28785 buf2, connp->conn_fport); 28786 if (print_len < buf_len) { 28787 ((mblk_t *)mp)->b_wptr += print_len; 28788 } else { 28789 ((mblk_t *)mp)->b_wptr += buf_len; 28790 } 28791 } 28792 28793 /* 28794 * Named Dispatch routine to produce a formatted report on all conns 28795 * that are listed in one of the fanout tables. 28796 * This report is accessed by using the ndd utility to "get" ND variable 28797 * "ip_conn_status". 28798 */ 28799 /* ARGSUSED */ 28800 static int 28801 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28802 { 28803 conn_t *connp = Q_TO_CONN(q); 28804 28805 (void) mi_mpprintf(mp, 28806 "CONN " MI_COL_HDRPAD_STR 28807 "rfq " MI_COL_HDRPAD_STR 28808 "stq " MI_COL_HDRPAD_STR 28809 " zone local remote"); 28810 28811 /* 28812 * Because of the ndd constraint, at most we can have 64K buffer 28813 * to put in all conn info. So to be more efficient, just 28814 * allocate a 64K buffer here, assuming we need that large buffer. 28815 * This should be OK as only privileged processes can do ndd /dev/ip. 28816 */ 28817 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28818 /* The following may work even if we cannot get a large buf. */ 28819 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28820 return (0); 28821 } 28822 28823 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28824 connp->conn_netstack->netstack_ip); 28825 return (0); 28826 } 28827 28828 /* 28829 * Determine if the ill and multicast aspects of that packets 28830 * "matches" the conn. 28831 */ 28832 boolean_t 28833 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28834 zoneid_t zoneid) 28835 { 28836 ill_t *in_ill; 28837 boolean_t found; 28838 ipif_t *ipif; 28839 ire_t *ire; 28840 ipaddr_t dst, src; 28841 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28842 28843 dst = ipha->ipha_dst; 28844 src = ipha->ipha_src; 28845 28846 /* 28847 * conn_incoming_ill is set by IP_BOUND_IF which limits 28848 * unicast, broadcast and multicast reception to 28849 * conn_incoming_ill. conn_wantpacket itself is called 28850 * only for BROADCAST and multicast. 28851 * 28852 * 1) ip_rput supresses duplicate broadcasts if the ill 28853 * is part of a group. Hence, we should be receiving 28854 * just one copy of broadcast for the whole group. 28855 * Thus, if it is part of the group the packet could 28856 * come on any ill of the group and hence we need a 28857 * match on the group. Otherwise, match on ill should 28858 * be sufficient. 28859 * 28860 * 2) ip_rput does not suppress duplicate multicast packets. 28861 * If there are two interfaces in a ill group and we have 28862 * 2 applications (conns) joined a multicast group G on 28863 * both the interfaces, ilm_lookup_ill filter in ip_rput 28864 * will give us two packets because we join G on both the 28865 * interfaces rather than nominating just one interface 28866 * for receiving multicast like broadcast above. So, 28867 * we have to call ilg_lookup_ill to filter out duplicate 28868 * copies, if ill is part of a group. 28869 */ 28870 in_ill = connp->conn_incoming_ill; 28871 if (in_ill != NULL) { 28872 if (in_ill->ill_group == NULL) { 28873 if (in_ill != ill) 28874 return (B_FALSE); 28875 } else if (in_ill->ill_group != ill->ill_group) { 28876 return (B_FALSE); 28877 } 28878 } 28879 28880 if (!CLASSD(dst)) { 28881 if (IPCL_ZONE_MATCH(connp, zoneid)) 28882 return (B_TRUE); 28883 /* 28884 * The conn is in a different zone; we need to check that this 28885 * broadcast address is configured in the application's zone and 28886 * on one ill in the group. 28887 */ 28888 ipif = ipif_get_next_ipif(NULL, ill); 28889 if (ipif == NULL) 28890 return (B_FALSE); 28891 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28892 connp->conn_zoneid, NULL, 28893 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28894 ipif_refrele(ipif); 28895 if (ire != NULL) { 28896 ire_refrele(ire); 28897 return (B_TRUE); 28898 } else { 28899 return (B_FALSE); 28900 } 28901 } 28902 28903 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28904 connp->conn_zoneid == zoneid) { 28905 /* 28906 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28907 * disabled, therefore we don't dispatch the multicast packet to 28908 * the sending zone. 28909 */ 28910 return (B_FALSE); 28911 } 28912 28913 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 28914 connp->conn_zoneid != zoneid) { 28915 /* 28916 * Multicast packet on the loopback interface: we only match 28917 * conns who joined the group in the specified zone. 28918 */ 28919 return (B_FALSE); 28920 } 28921 28922 if (connp->conn_multi_router) { 28923 /* multicast packet and multicast router socket: send up */ 28924 return (B_TRUE); 28925 } 28926 28927 mutex_enter(&connp->conn_lock); 28928 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28929 mutex_exit(&connp->conn_lock); 28930 return (found); 28931 } 28932 28933 /* 28934 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28935 */ 28936 /* ARGSUSED */ 28937 static void 28938 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28939 { 28940 ill_t *ill = (ill_t *)q->q_ptr; 28941 mblk_t *mp1, *mp2; 28942 ipif_t *ipif; 28943 int err = 0; 28944 conn_t *connp = NULL; 28945 ipsq_t *ipsq; 28946 arc_t *arc; 28947 28948 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28949 28950 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28951 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28952 28953 ASSERT(IAM_WRITER_ILL(ill)); 28954 mp2 = mp->b_cont; 28955 mp->b_cont = NULL; 28956 28957 /* 28958 * We have now received the arp bringup completion message 28959 * from ARP. Mark the arp bringup as done. Also if the arp 28960 * stream has already started closing, send up the AR_ARP_CLOSING 28961 * ack now since ARP is waiting in close for this ack. 28962 */ 28963 mutex_enter(&ill->ill_lock); 28964 ill->ill_arp_bringup_pending = 0; 28965 if (ill->ill_arp_closing) { 28966 mutex_exit(&ill->ill_lock); 28967 /* Let's reuse the mp for sending the ack */ 28968 arc = (arc_t *)mp->b_rptr; 28969 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28970 arc->arc_cmd = AR_ARP_CLOSING; 28971 qreply(q, mp); 28972 } else { 28973 mutex_exit(&ill->ill_lock); 28974 freeb(mp); 28975 } 28976 28977 ipsq = ill->ill_phyint->phyint_ipsq; 28978 ipif = ipsq->ipsq_pending_ipif; 28979 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28980 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28981 if (mp1 == NULL) { 28982 /* bringup was aborted by the user */ 28983 freemsg(mp2); 28984 return; 28985 } 28986 28987 /* 28988 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28989 * must have an associated conn_t. Otherwise, we're bringing this 28990 * interface back up as part of handling an asynchronous event (e.g., 28991 * physical address change). 28992 */ 28993 if (ipsq->ipsq_current_ioctl != 0) { 28994 ASSERT(connp != NULL); 28995 q = CONNP_TO_WQ(connp); 28996 } else { 28997 ASSERT(connp == NULL); 28998 q = ill->ill_rq; 28999 } 29000 29001 /* 29002 * If the DL_BIND_REQ fails, it is noted 29003 * in arc_name_offset. 29004 */ 29005 err = *((int *)mp2->b_rptr); 29006 if (err == 0) { 29007 if (ipif->ipif_isv6) { 29008 if ((err = ipif_up_done_v6(ipif)) != 0) 29009 ip0dbg(("ip_arp_done: init failed\n")); 29010 } else { 29011 if ((err = ipif_up_done(ipif)) != 0) 29012 ip0dbg(("ip_arp_done: init failed\n")); 29013 } 29014 } else { 29015 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 29016 } 29017 29018 freemsg(mp2); 29019 29020 if ((err == 0) && (ill->ill_up_ipifs)) { 29021 err = ill_up_ipifs(ill, q, mp1); 29022 if (err == EINPROGRESS) 29023 return; 29024 } 29025 29026 if (ill->ill_up_ipifs) 29027 ill_group_cleanup(ill); 29028 29029 /* 29030 * The operation must complete without EINPROGRESS since 29031 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 29032 * Otherwise, the operation will be stuck forever in the ipsq. 29033 */ 29034 ASSERT(err != EINPROGRESS); 29035 if (ipsq->ipsq_current_ioctl != 0) 29036 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 29037 else 29038 ipsq_current_finish(ipsq); 29039 } 29040 29041 /* Allocate the private structure */ 29042 static int 29043 ip_priv_alloc(void **bufp) 29044 { 29045 void *buf; 29046 29047 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 29048 return (ENOMEM); 29049 29050 *bufp = buf; 29051 return (0); 29052 } 29053 29054 /* Function to delete the private structure */ 29055 void 29056 ip_priv_free(void *buf) 29057 { 29058 ASSERT(buf != NULL); 29059 kmem_free(buf, sizeof (ip_priv_t)); 29060 } 29061 29062 /* 29063 * The entry point for IPPF processing. 29064 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 29065 * routine just returns. 29066 * 29067 * When called, ip_process generates an ipp_packet_t structure 29068 * which holds the state information for this packet and invokes the 29069 * the classifier (via ipp_packet_process). The classification, depending on 29070 * configured filters, results in a list of actions for this packet. Invoking 29071 * an action may cause the packet to be dropped, in which case the resulting 29072 * mblk (*mpp) is NULL. proc indicates the callout position for 29073 * this packet and ill_index is the interface this packet on or will leave 29074 * on (inbound and outbound resp.). 29075 */ 29076 void 29077 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 29078 { 29079 mblk_t *mp; 29080 ip_priv_t *priv; 29081 ipp_action_id_t aid; 29082 int rc = 0; 29083 ipp_packet_t *pp; 29084 #define IP_CLASS "ip" 29085 29086 /* If the classifier is not loaded, return */ 29087 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 29088 return; 29089 } 29090 29091 mp = *mpp; 29092 ASSERT(mp != NULL); 29093 29094 /* Allocate the packet structure */ 29095 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 29096 if (rc != 0) { 29097 *mpp = NULL; 29098 freemsg(mp); 29099 return; 29100 } 29101 29102 /* Allocate the private structure */ 29103 rc = ip_priv_alloc((void **)&priv); 29104 if (rc != 0) { 29105 *mpp = NULL; 29106 freemsg(mp); 29107 ipp_packet_free(pp); 29108 return; 29109 } 29110 priv->proc = proc; 29111 priv->ill_index = ill_index; 29112 ipp_packet_set_private(pp, priv, ip_priv_free); 29113 ipp_packet_set_data(pp, mp); 29114 29115 /* Invoke the classifier */ 29116 rc = ipp_packet_process(&pp); 29117 if (pp != NULL) { 29118 mp = ipp_packet_get_data(pp); 29119 ipp_packet_free(pp); 29120 if (rc != 0) { 29121 freemsg(mp); 29122 *mpp = NULL; 29123 } 29124 } else { 29125 *mpp = NULL; 29126 } 29127 #undef IP_CLASS 29128 } 29129 29130 /* 29131 * Propagate a multicast group membership operation (add/drop) on 29132 * all the interfaces crossed by the related multirt routes. 29133 * The call is considered successful if the operation succeeds 29134 * on at least one interface. 29135 */ 29136 static int 29137 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 29138 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 29139 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 29140 mblk_t *first_mp) 29141 { 29142 ire_t *ire_gw; 29143 irb_t *irb; 29144 int error = 0; 29145 opt_restart_t *or; 29146 ip_stack_t *ipst = ire->ire_ipst; 29147 29148 irb = ire->ire_bucket; 29149 ASSERT(irb != NULL); 29150 29151 ASSERT(DB_TYPE(first_mp) == M_CTL); 29152 29153 or = (opt_restart_t *)first_mp->b_rptr; 29154 IRB_REFHOLD(irb); 29155 for (; ire != NULL; ire = ire->ire_next) { 29156 if ((ire->ire_flags & RTF_MULTIRT) == 0) 29157 continue; 29158 if (ire->ire_addr != group) 29159 continue; 29160 29161 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 29162 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 29163 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 29164 /* No resolver exists for the gateway; skip this ire. */ 29165 if (ire_gw == NULL) 29166 continue; 29167 29168 /* 29169 * This function can return EINPROGRESS. If so the operation 29170 * will be restarted from ip_restart_optmgmt which will 29171 * call ip_opt_set and option processing will restart for 29172 * this option. So we may end up calling 'fn' more than once. 29173 * This requires that 'fn' is idempotent except for the 29174 * return value. The operation is considered a success if 29175 * it succeeds at least once on any one interface. 29176 */ 29177 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 29178 NULL, fmode, src, first_mp); 29179 if (error == 0) 29180 or->or_private = CGTP_MCAST_SUCCESS; 29181 29182 if (ip_debug > 0) { 29183 ulong_t off; 29184 char *ksym; 29185 ksym = kobj_getsymname((uintptr_t)fn, &off); 29186 ip2dbg(("ip_multirt_apply_membership: " 29187 "called %s, multirt group 0x%08x via itf 0x%08x, " 29188 "error %d [success %u]\n", 29189 ksym ? ksym : "?", 29190 ntohl(group), ntohl(ire_gw->ire_src_addr), 29191 error, or->or_private)); 29192 } 29193 29194 ire_refrele(ire_gw); 29195 if (error == EINPROGRESS) { 29196 IRB_REFRELE(irb); 29197 return (error); 29198 } 29199 } 29200 IRB_REFRELE(irb); 29201 /* 29202 * Consider the call as successful if we succeeded on at least 29203 * one interface. Otherwise, return the last encountered error. 29204 */ 29205 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 29206 } 29207 29208 29209 /* 29210 * Issue a warning regarding a route crossing an interface with an 29211 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 29212 * amount of time is logged. 29213 */ 29214 static void 29215 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 29216 { 29217 hrtime_t current = gethrtime(); 29218 char buf[INET_ADDRSTRLEN]; 29219 ip_stack_t *ipst = ire->ire_ipst; 29220 29221 /* Convert interval in ms to hrtime in ns */ 29222 if (ipst->ips_multirt_bad_mtu_last_time + 29223 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 29224 current) { 29225 cmn_err(CE_WARN, "ip: ignoring multiroute " 29226 "to %s, incorrect MTU %u (expected %u)\n", 29227 ip_dot_addr(ire->ire_addr, buf), 29228 ire->ire_max_frag, max_frag); 29229 29230 ipst->ips_multirt_bad_mtu_last_time = current; 29231 } 29232 } 29233 29234 29235 /* 29236 * Get the CGTP (multirouting) filtering status. 29237 * If 0, the CGTP hooks are transparent. 29238 */ 29239 /* ARGSUSED */ 29240 static int 29241 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 29242 { 29243 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29244 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29245 29246 /* 29247 * Only applies to the shared stack since the filter_ops 29248 * do not carry an ip_stack_t or zoneid. 29249 */ 29250 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 29251 return (ENOTSUP); 29252 29253 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 29254 return (0); 29255 } 29256 29257 29258 /* 29259 * Set the CGTP (multirouting) filtering status. 29260 * If the status is changed from active to transparent 29261 * or from transparent to active, forward the new status 29262 * to the filtering module (if loaded). 29263 */ 29264 /* ARGSUSED */ 29265 static int 29266 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 29267 cred_t *ioc_cr) 29268 { 29269 long new_value; 29270 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29271 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29272 29273 if (secpolicy_net_config(ioc_cr, B_FALSE) != 0) 29274 return (EPERM); 29275 29276 /* 29277 * Only applies to the shared stack since the filter_ops 29278 * do not carry an ip_stack_t or zoneid. 29279 */ 29280 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 29281 return (ENOTSUP); 29282 29283 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 29284 new_value < 0 || new_value > 1) { 29285 return (EINVAL); 29286 } 29287 29288 /* 29289 * Do not enable CGTP filtering - thus preventing the hooks 29290 * from being invoked - if the version number of the 29291 * filtering module hooks does not match. 29292 */ 29293 if ((ip_cgtp_filter_ops != NULL) && 29294 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 29295 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 29296 "(module hooks version %d, expecting %d)\n", 29297 ip_cgtp_filter_ops->cfo_filter_rev, 29298 CGTP_FILTER_REV); 29299 return (ENOTSUP); 29300 } 29301 29302 if ((!*ip_cgtp_filter_value) && new_value) { 29303 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 29304 ip_cgtp_filter_ops == NULL ? 29305 " (module not loaded)" : ""); 29306 } 29307 if (*ip_cgtp_filter_value && (!new_value)) { 29308 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 29309 ip_cgtp_filter_ops == NULL ? 29310 " (module not loaded)" : ""); 29311 } 29312 29313 if (ip_cgtp_filter_ops != NULL) { 29314 int res; 29315 29316 res = ip_cgtp_filter_ops->cfo_change_state(new_value); 29317 if (res) 29318 return (res); 29319 } 29320 29321 *ip_cgtp_filter_value = (boolean_t)new_value; 29322 29323 return (0); 29324 } 29325 29326 29327 /* 29328 * Return the expected CGTP hooks version number. 29329 */ 29330 int 29331 ip_cgtp_filter_supported(void) 29332 { 29333 ip_stack_t *ipst; 29334 int ret; 29335 29336 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 29337 if (ipst == NULL) 29338 return (-1); 29339 ret = ip_cgtp_filter_rev; 29340 netstack_rele(ipst->ips_netstack); 29341 return (ret); 29342 } 29343 29344 29345 /* 29346 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 29347 * or by invoking this function. In the first case, the version number 29348 * of the registered structure is checked at hooks activation time 29349 * in ip_cgtp_filter_set(). 29350 * 29351 * Only applies to the shared stack since the filter_ops 29352 * do not carry an ip_stack_t or zoneid. 29353 */ 29354 int 29355 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 29356 { 29357 ip_stack_t *ipst; 29358 29359 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29360 return (ENOTSUP); 29361 29362 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 29363 if (ipst == NULL) 29364 return (EINVAL); 29365 29366 ip_cgtp_filter_ops = ops; 29367 netstack_rele(ipst->ips_netstack); 29368 return (0); 29369 } 29370 29371 static squeue_func_t 29372 ip_squeue_switch(int val) 29373 { 29374 squeue_func_t rval = squeue_fill; 29375 29376 switch (val) { 29377 case IP_SQUEUE_ENTER_NODRAIN: 29378 rval = squeue_enter_nodrain; 29379 break; 29380 case IP_SQUEUE_ENTER: 29381 rval = squeue_enter; 29382 break; 29383 default: 29384 break; 29385 } 29386 return (rval); 29387 } 29388 29389 /* ARGSUSED */ 29390 static int 29391 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29392 caddr_t addr, cred_t *cr) 29393 { 29394 int *v = (int *)addr; 29395 long new_value; 29396 29397 if (secpolicy_net_config(cr, B_FALSE) != 0) 29398 return (EPERM); 29399 29400 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29401 return (EINVAL); 29402 29403 ip_input_proc = ip_squeue_switch(new_value); 29404 *v = new_value; 29405 return (0); 29406 } 29407 29408 /* ARGSUSED */ 29409 static int 29410 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29411 caddr_t addr, cred_t *cr) 29412 { 29413 int *v = (int *)addr; 29414 long new_value; 29415 29416 if (secpolicy_net_config(cr, B_FALSE) != 0) 29417 return (EPERM); 29418 29419 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29420 return (EINVAL); 29421 29422 *v = new_value; 29423 return (0); 29424 } 29425 29426 /* 29427 * Handle changes to ipmp_hook_emulation ndd variable. 29428 * Need to update phyint_hook_ifindex. 29429 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29430 */ 29431 static void 29432 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29433 { 29434 phyint_t *phyi; 29435 phyint_t *phyi_tmp; 29436 char *groupname; 29437 int namelen; 29438 ill_t *ill; 29439 boolean_t new_group; 29440 29441 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29442 /* 29443 * Group indicies are stored in the phyint - a common structure 29444 * to both IPv4 and IPv6. 29445 */ 29446 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29447 for (; phyi != NULL; 29448 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29449 phyi, AVL_AFTER)) { 29450 /* Ignore the ones that do not have a group */ 29451 if (phyi->phyint_groupname_len == 0) 29452 continue; 29453 29454 /* 29455 * Look for other phyint in group. 29456 * Clear name/namelen so the lookup doesn't find ourselves. 29457 */ 29458 namelen = phyi->phyint_groupname_len; 29459 groupname = phyi->phyint_groupname; 29460 phyi->phyint_groupname_len = 0; 29461 phyi->phyint_groupname = NULL; 29462 29463 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29464 /* Restore */ 29465 phyi->phyint_groupname_len = namelen; 29466 phyi->phyint_groupname = groupname; 29467 29468 new_group = B_FALSE; 29469 if (ipst->ips_ipmp_hook_emulation) { 29470 /* 29471 * If the group already exists and has already 29472 * been assigned a group ifindex, we use the existing 29473 * group_ifindex, otherwise we pick a new group_ifindex 29474 * here. 29475 */ 29476 if (phyi_tmp != NULL && 29477 phyi_tmp->phyint_group_ifindex != 0) { 29478 phyi->phyint_group_ifindex = 29479 phyi_tmp->phyint_group_ifindex; 29480 } else { 29481 /* XXX We need a recovery strategy here. */ 29482 if (!ip_assign_ifindex( 29483 &phyi->phyint_group_ifindex, ipst)) 29484 cmn_err(CE_PANIC, 29485 "ip_assign_ifindex() failed"); 29486 new_group = B_TRUE; 29487 } 29488 } else { 29489 phyi->phyint_group_ifindex = 0; 29490 } 29491 if (ipst->ips_ipmp_hook_emulation) 29492 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29493 else 29494 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29495 29496 /* 29497 * For IP Filter to find out the relationship between 29498 * names and interface indicies, we need to generate 29499 * a NE_PLUMB event when a new group can appear. 29500 * We always generate events when a new interface appears 29501 * (even when ipmp_hook_emulation is set) so there 29502 * is no need to generate NE_PLUMB events when 29503 * ipmp_hook_emulation is turned off. 29504 * And since it isn't critical for IP Filter to get 29505 * the NE_UNPLUMB events we skip those here. 29506 */ 29507 if (new_group) { 29508 /* 29509 * First phyint in group - generate group PLUMB event. 29510 * Since we are not running inside the ipsq we do 29511 * the dispatch immediately. 29512 */ 29513 if (phyi->phyint_illv4 != NULL) 29514 ill = phyi->phyint_illv4; 29515 else 29516 ill = phyi->phyint_illv6; 29517 29518 if (ill != NULL) { 29519 mutex_enter(&ill->ill_lock); 29520 ill_nic_info_plumb(ill, B_TRUE); 29521 ill_nic_info_dispatch(ill); 29522 mutex_exit(&ill->ill_lock); 29523 } 29524 } 29525 } 29526 rw_exit(&ipst->ips_ill_g_lock); 29527 } 29528 29529 /* ARGSUSED */ 29530 static int 29531 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29532 caddr_t addr, cred_t *cr) 29533 { 29534 int *v = (int *)addr; 29535 long new_value; 29536 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29537 29538 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29539 return (EINVAL); 29540 29541 if (*v != new_value) { 29542 *v = new_value; 29543 ipmp_hook_emulation_changed(ipst); 29544 } 29545 return (0); 29546 } 29547 29548 static void * 29549 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29550 { 29551 kstat_t *ksp; 29552 29553 ip_stat_t template = { 29554 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29555 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29556 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29557 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29558 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29559 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29560 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29561 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29562 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29563 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29564 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29565 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29566 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29567 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29568 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29569 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29570 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29571 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29572 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29573 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29574 { "ip_opt", KSTAT_DATA_UINT64 }, 29575 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29576 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29577 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29578 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29579 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29580 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29581 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29582 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29583 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29584 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29585 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29586 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29587 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29588 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29589 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29590 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29591 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29592 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29593 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29594 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29595 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29596 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29597 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29598 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29599 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29600 }; 29601 29602 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29603 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29604 KSTAT_FLAG_VIRTUAL, stackid); 29605 29606 if (ksp == NULL) 29607 return (NULL); 29608 29609 bcopy(&template, ip_statisticsp, sizeof (template)); 29610 ksp->ks_data = (void *)ip_statisticsp; 29611 ksp->ks_private = (void *)(uintptr_t)stackid; 29612 29613 kstat_install(ksp); 29614 return (ksp); 29615 } 29616 29617 static void 29618 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29619 { 29620 if (ksp != NULL) { 29621 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29622 kstat_delete_netstack(ksp, stackid); 29623 } 29624 } 29625 29626 static void * 29627 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29628 { 29629 kstat_t *ksp; 29630 29631 ip_named_kstat_t template = { 29632 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29633 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29634 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29635 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29636 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29637 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29638 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29639 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29640 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29641 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29642 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29643 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29644 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29645 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29646 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29647 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29648 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29649 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29650 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29651 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29652 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29653 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29654 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29655 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29656 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29657 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29658 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29659 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29660 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29661 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29662 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29663 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29664 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29665 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29666 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29667 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29668 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29669 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29670 }; 29671 29672 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29673 NUM_OF_FIELDS(ip_named_kstat_t), 29674 0, stackid); 29675 if (ksp == NULL || ksp->ks_data == NULL) 29676 return (NULL); 29677 29678 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29679 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29680 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29681 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29682 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29683 29684 template.netToMediaEntrySize.value.i32 = 29685 sizeof (mib2_ipNetToMediaEntry_t); 29686 29687 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29688 29689 bcopy(&template, ksp->ks_data, sizeof (template)); 29690 ksp->ks_update = ip_kstat_update; 29691 ksp->ks_private = (void *)(uintptr_t)stackid; 29692 29693 kstat_install(ksp); 29694 return (ksp); 29695 } 29696 29697 static void 29698 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29699 { 29700 if (ksp != NULL) { 29701 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29702 kstat_delete_netstack(ksp, stackid); 29703 } 29704 } 29705 29706 static int 29707 ip_kstat_update(kstat_t *kp, int rw) 29708 { 29709 ip_named_kstat_t *ipkp; 29710 mib2_ipIfStatsEntry_t ipmib; 29711 ill_walk_context_t ctx; 29712 ill_t *ill; 29713 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29714 netstack_t *ns; 29715 ip_stack_t *ipst; 29716 29717 if (kp == NULL || kp->ks_data == NULL) 29718 return (EIO); 29719 29720 if (rw == KSTAT_WRITE) 29721 return (EACCES); 29722 29723 ns = netstack_find_by_stackid(stackid); 29724 if (ns == NULL) 29725 return (-1); 29726 ipst = ns->netstack_ip; 29727 if (ipst == NULL) { 29728 netstack_rele(ns); 29729 return (-1); 29730 } 29731 ipkp = (ip_named_kstat_t *)kp->ks_data; 29732 29733 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29734 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29735 ill = ILL_START_WALK_V4(&ctx, ipst); 29736 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29737 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29738 rw_exit(&ipst->ips_ill_g_lock); 29739 29740 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29741 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29742 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29743 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29744 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29745 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29746 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29747 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29748 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29749 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29750 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29751 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29752 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29753 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29754 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29755 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29756 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29757 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29758 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29759 29760 ipkp->routingDiscards.value.ui32 = 0; 29761 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29762 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29763 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29764 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29765 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29766 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29767 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29768 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29769 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29770 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29771 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29772 29773 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29774 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29775 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29776 29777 netstack_rele(ns); 29778 29779 return (0); 29780 } 29781 29782 static void * 29783 icmp_kstat_init(netstackid_t stackid) 29784 { 29785 kstat_t *ksp; 29786 29787 icmp_named_kstat_t template = { 29788 { "inMsgs", KSTAT_DATA_UINT32 }, 29789 { "inErrors", KSTAT_DATA_UINT32 }, 29790 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29791 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29792 { "inParmProbs", KSTAT_DATA_UINT32 }, 29793 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29794 { "inRedirects", KSTAT_DATA_UINT32 }, 29795 { "inEchos", KSTAT_DATA_UINT32 }, 29796 { "inEchoReps", KSTAT_DATA_UINT32 }, 29797 { "inTimestamps", KSTAT_DATA_UINT32 }, 29798 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29799 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29800 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29801 { "outMsgs", KSTAT_DATA_UINT32 }, 29802 { "outErrors", KSTAT_DATA_UINT32 }, 29803 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29804 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29805 { "outParmProbs", KSTAT_DATA_UINT32 }, 29806 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29807 { "outRedirects", KSTAT_DATA_UINT32 }, 29808 { "outEchos", KSTAT_DATA_UINT32 }, 29809 { "outEchoReps", KSTAT_DATA_UINT32 }, 29810 { "outTimestamps", KSTAT_DATA_UINT32 }, 29811 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29812 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29813 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29814 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29815 { "inUnknowns", KSTAT_DATA_UINT32 }, 29816 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29817 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29818 { "outDrops", KSTAT_DATA_UINT32 }, 29819 { "inOverFlows", KSTAT_DATA_UINT32 }, 29820 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29821 }; 29822 29823 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29824 NUM_OF_FIELDS(icmp_named_kstat_t), 29825 0, stackid); 29826 if (ksp == NULL || ksp->ks_data == NULL) 29827 return (NULL); 29828 29829 bcopy(&template, ksp->ks_data, sizeof (template)); 29830 29831 ksp->ks_update = icmp_kstat_update; 29832 ksp->ks_private = (void *)(uintptr_t)stackid; 29833 29834 kstat_install(ksp); 29835 return (ksp); 29836 } 29837 29838 static void 29839 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29840 { 29841 if (ksp != NULL) { 29842 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29843 kstat_delete_netstack(ksp, stackid); 29844 } 29845 } 29846 29847 static int 29848 icmp_kstat_update(kstat_t *kp, int rw) 29849 { 29850 icmp_named_kstat_t *icmpkp; 29851 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29852 netstack_t *ns; 29853 ip_stack_t *ipst; 29854 29855 if ((kp == NULL) || (kp->ks_data == NULL)) 29856 return (EIO); 29857 29858 if (rw == KSTAT_WRITE) 29859 return (EACCES); 29860 29861 ns = netstack_find_by_stackid(stackid); 29862 if (ns == NULL) 29863 return (-1); 29864 ipst = ns->netstack_ip; 29865 if (ipst == NULL) { 29866 netstack_rele(ns); 29867 return (-1); 29868 } 29869 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29870 29871 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29872 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29873 icmpkp->inDestUnreachs.value.ui32 = 29874 ipst->ips_icmp_mib.icmpInDestUnreachs; 29875 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29876 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29877 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29878 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29879 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29880 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29881 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29882 icmpkp->inTimestampReps.value.ui32 = 29883 ipst->ips_icmp_mib.icmpInTimestampReps; 29884 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29885 icmpkp->inAddrMaskReps.value.ui32 = 29886 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29887 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29888 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29889 icmpkp->outDestUnreachs.value.ui32 = 29890 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29891 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29892 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29893 icmpkp->outSrcQuenchs.value.ui32 = 29894 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29895 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29896 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29897 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29898 icmpkp->outTimestamps.value.ui32 = 29899 ipst->ips_icmp_mib.icmpOutTimestamps; 29900 icmpkp->outTimestampReps.value.ui32 = 29901 ipst->ips_icmp_mib.icmpOutTimestampReps; 29902 icmpkp->outAddrMasks.value.ui32 = 29903 ipst->ips_icmp_mib.icmpOutAddrMasks; 29904 icmpkp->outAddrMaskReps.value.ui32 = 29905 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29906 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29907 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29908 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29909 icmpkp->outFragNeeded.value.ui32 = 29910 ipst->ips_icmp_mib.icmpOutFragNeeded; 29911 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29912 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29913 icmpkp->inBadRedirects.value.ui32 = 29914 ipst->ips_icmp_mib.icmpInBadRedirects; 29915 29916 netstack_rele(ns); 29917 return (0); 29918 } 29919 29920 /* 29921 * This is the fanout function for raw socket opened for SCTP. Note 29922 * that it is called after SCTP checks that there is no socket which 29923 * wants a packet. Then before SCTP handles this out of the blue packet, 29924 * this function is called to see if there is any raw socket for SCTP. 29925 * If there is and it is bound to the correct address, the packet will 29926 * be sent to that socket. Note that only one raw socket can be bound to 29927 * a port. This is assured in ipcl_sctp_hash_insert(); 29928 */ 29929 void 29930 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29931 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29932 zoneid_t zoneid) 29933 { 29934 conn_t *connp; 29935 queue_t *rq; 29936 mblk_t *first_mp; 29937 boolean_t secure; 29938 ip6_t *ip6h; 29939 ip_stack_t *ipst = recv_ill->ill_ipst; 29940 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29941 29942 first_mp = mp; 29943 if (mctl_present) { 29944 mp = first_mp->b_cont; 29945 secure = ipsec_in_is_secure(first_mp); 29946 ASSERT(mp != NULL); 29947 } else { 29948 secure = B_FALSE; 29949 } 29950 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29951 29952 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29953 if (connp == NULL) { 29954 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29955 return; 29956 } 29957 rq = connp->conn_rq; 29958 if (!canputnext(rq)) { 29959 CONN_DEC_REF(connp); 29960 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29961 freemsg(first_mp); 29962 return; 29963 } 29964 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29965 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29966 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29967 (isv4 ? ipha : NULL), ip6h, mctl_present); 29968 if (first_mp == NULL) { 29969 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29970 CONN_DEC_REF(connp); 29971 return; 29972 } 29973 } 29974 /* 29975 * We probably should not send M_CTL message up to 29976 * raw socket. 29977 */ 29978 if (mctl_present) 29979 freeb(first_mp); 29980 29981 /* Initiate IPPF processing here if needed. */ 29982 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29983 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29984 ip_process(IPP_LOCAL_IN, &mp, 29985 recv_ill->ill_phyint->phyint_ifindex); 29986 if (mp == NULL) { 29987 CONN_DEC_REF(connp); 29988 return; 29989 } 29990 } 29991 29992 if (connp->conn_recvif || connp->conn_recvslla || 29993 ((connp->conn_ip_recvpktinfo || 29994 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29995 (flags & IP_FF_IPINFO))) { 29996 int in_flags = 0; 29997 29998 /* 29999 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 30000 * IPF_RECVIF. 30001 */ 30002 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 30003 in_flags = IPF_RECVIF; 30004 } 30005 if (connp->conn_recvslla) { 30006 in_flags |= IPF_RECVSLLA; 30007 } 30008 if (isv4) { 30009 mp = ip_add_info(mp, recv_ill, in_flags, 30010 IPCL_ZONEID(connp), ipst); 30011 } else { 30012 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 30013 if (mp == NULL) { 30014 BUMP_MIB(recv_ill->ill_ip_mib, 30015 ipIfStatsInDiscards); 30016 CONN_DEC_REF(connp); 30017 return; 30018 } 30019 } 30020 } 30021 30022 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 30023 /* 30024 * We are sending the IPSEC_IN message also up. Refer 30025 * to comments above this function. 30026 */ 30027 putnext(rq, mp); 30028 CONN_DEC_REF(connp); 30029 } 30030 30031 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 30032 { \ 30033 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 30034 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 30035 } 30036 /* 30037 * This function should be called only if all packet processing 30038 * including fragmentation is complete. Callers of this function 30039 * must set mp->b_prev to one of these values: 30040 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 30041 * prior to handing over the mp as first argument to this function. 30042 * 30043 * If the ire passed by caller is incomplete, this function 30044 * queues the packet and if necessary, sends ARP request and bails. 30045 * If the ire passed is fully resolved, we simply prepend 30046 * the link-layer header to the packet, do ipsec hw acceleration 30047 * work if necessary, and send the packet out on the wire. 30048 * 30049 * NOTE: IPSEC will only call this function with fully resolved 30050 * ires if hw acceleration is involved. 30051 * TODO list : 30052 * a Handle M_MULTIDATA so that 30053 * tcp_multisend->tcp_multisend_data can 30054 * call ip_xmit_v4 directly 30055 * b Handle post-ARP work for fragments so that 30056 * ip_wput_frag can call this function. 30057 */ 30058 ipxmit_state_t 30059 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 30060 { 30061 nce_t *arpce; 30062 queue_t *q; 30063 int ill_index; 30064 mblk_t *nxt_mp, *first_mp; 30065 boolean_t xmit_drop = B_FALSE; 30066 ip_proc_t proc; 30067 ill_t *out_ill; 30068 int pkt_len; 30069 30070 arpce = ire->ire_nce; 30071 ASSERT(arpce != NULL); 30072 30073 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 30074 30075 mutex_enter(&arpce->nce_lock); 30076 switch (arpce->nce_state) { 30077 case ND_REACHABLE: 30078 /* If there are other queued packets, queue this packet */ 30079 if (arpce->nce_qd_mp != NULL) { 30080 if (mp != NULL) 30081 nce_queue_mp_common(arpce, mp, B_FALSE); 30082 mp = arpce->nce_qd_mp; 30083 } 30084 arpce->nce_qd_mp = NULL; 30085 mutex_exit(&arpce->nce_lock); 30086 30087 /* 30088 * Flush the queue. In the common case, where the 30089 * ARP is already resolved, it will go through the 30090 * while loop only once. 30091 */ 30092 while (mp != NULL) { 30093 30094 nxt_mp = mp->b_next; 30095 mp->b_next = NULL; 30096 ASSERT(mp->b_datap->db_type != M_CTL); 30097 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 30098 /* 30099 * This info is needed for IPQOS to do COS marking 30100 * in ip_wput_attach_llhdr->ip_process. 30101 */ 30102 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 30103 mp->b_prev = NULL; 30104 30105 /* set up ill index for outbound qos processing */ 30106 out_ill = ire->ire_ipif->ipif_ill; 30107 ill_index = out_ill->ill_phyint->phyint_ifindex; 30108 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 30109 ill_index); 30110 if (first_mp == NULL) { 30111 xmit_drop = B_TRUE; 30112 BUMP_MIB(out_ill->ill_ip_mib, 30113 ipIfStatsOutDiscards); 30114 goto next_mp; 30115 } 30116 /* non-ipsec hw accel case */ 30117 if (io == NULL || !io->ipsec_out_accelerated) { 30118 /* send it */ 30119 q = ire->ire_stq; 30120 if (proc == IPP_FWD_OUT) { 30121 UPDATE_IB_PKT_COUNT(ire); 30122 } else { 30123 UPDATE_OB_PKT_COUNT(ire); 30124 } 30125 ire->ire_last_used_time = lbolt; 30126 30127 if (flow_ctl_enabled || canputnext(q)) { 30128 if (proc == IPP_FWD_OUT) { 30129 BUMP_MIB(out_ill->ill_ip_mib, 30130 ipIfStatsHCOutForwDatagrams); 30131 } 30132 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 30133 pkt_len); 30134 30135 putnext(q, first_mp); 30136 } else { 30137 BUMP_MIB(out_ill->ill_ip_mib, 30138 ipIfStatsOutDiscards); 30139 xmit_drop = B_TRUE; 30140 freemsg(first_mp); 30141 } 30142 } else { 30143 /* 30144 * Safety Pup says: make sure this 30145 * is going to the right interface! 30146 */ 30147 ill_t *ill1 = 30148 (ill_t *)ire->ire_stq->q_ptr; 30149 int ifindex = 30150 ill1->ill_phyint->phyint_ifindex; 30151 if (ifindex != 30152 io->ipsec_out_capab_ill_index) { 30153 xmit_drop = B_TRUE; 30154 freemsg(mp); 30155 } else { 30156 UPDATE_IP_MIB_OB_COUNTERS(ill1, 30157 pkt_len); 30158 ipsec_hw_putnext(ire->ire_stq, mp); 30159 } 30160 } 30161 next_mp: 30162 mp = nxt_mp; 30163 } /* while (mp != NULL) */ 30164 if (xmit_drop) 30165 return (SEND_FAILED); 30166 else 30167 return (SEND_PASSED); 30168 30169 case ND_INITIAL: 30170 case ND_INCOMPLETE: 30171 30172 /* 30173 * While we do send off packets to dests that 30174 * use fully-resolved CGTP routes, we do not 30175 * handle unresolved CGTP routes. 30176 */ 30177 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 30178 ASSERT(io == NULL || !io->ipsec_out_accelerated); 30179 30180 if (mp != NULL) { 30181 /* queue the packet */ 30182 nce_queue_mp_common(arpce, mp, B_FALSE); 30183 } 30184 30185 if (arpce->nce_state == ND_INCOMPLETE) { 30186 mutex_exit(&arpce->nce_lock); 30187 DTRACE_PROBE3(ip__xmit__incomplete, 30188 (ire_t *), ire, (mblk_t *), mp, 30189 (ipsec_out_t *), io); 30190 return (LOOKUP_IN_PROGRESS); 30191 } 30192 30193 arpce->nce_state = ND_INCOMPLETE; 30194 mutex_exit(&arpce->nce_lock); 30195 /* 30196 * Note that ire_add() (called from ire_forward()) 30197 * holds a ref on the ire until ARP is completed. 30198 */ 30199 30200 ire_arpresolve(ire, ire_to_ill(ire)); 30201 return (LOOKUP_IN_PROGRESS); 30202 default: 30203 ASSERT(0); 30204 mutex_exit(&arpce->nce_lock); 30205 return (LLHDR_RESLV_FAILED); 30206 } 30207 } 30208 30209 #undef UPDATE_IP_MIB_OB_COUNTERS 30210 30211 /* 30212 * Return B_TRUE if the buffers differ in length or content. 30213 * This is used for comparing extension header buffers. 30214 * Note that an extension header would be declared different 30215 * even if all that changed was the next header value in that header i.e. 30216 * what really changed is the next extension header. 30217 */ 30218 boolean_t 30219 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 30220 uint_t blen) 30221 { 30222 if (!b_valid) 30223 blen = 0; 30224 30225 if (alen != blen) 30226 return (B_TRUE); 30227 if (alen == 0) 30228 return (B_FALSE); /* Both zero length */ 30229 return (bcmp(abuf, bbuf, alen)); 30230 } 30231 30232 /* 30233 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 30234 * Return B_FALSE if memory allocation fails - don't change any state! 30235 */ 30236 boolean_t 30237 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30238 const void *src, uint_t srclen) 30239 { 30240 void *dst; 30241 30242 if (!src_valid) 30243 srclen = 0; 30244 30245 ASSERT(*dstlenp == 0); 30246 if (src != NULL && srclen != 0) { 30247 dst = mi_alloc(srclen, BPRI_MED); 30248 if (dst == NULL) 30249 return (B_FALSE); 30250 } else { 30251 dst = NULL; 30252 } 30253 if (*dstp != NULL) 30254 mi_free(*dstp); 30255 *dstp = dst; 30256 *dstlenp = dst == NULL ? 0 : srclen; 30257 return (B_TRUE); 30258 } 30259 30260 /* 30261 * Replace what is in *dst, *dstlen with the source. 30262 * Assumes ip_allocbuf has already been called. 30263 */ 30264 void 30265 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30266 const void *src, uint_t srclen) 30267 { 30268 if (!src_valid) 30269 srclen = 0; 30270 30271 ASSERT(*dstlenp == srclen); 30272 if (src != NULL && srclen != 0) 30273 bcopy(src, *dstp, srclen); 30274 } 30275 30276 /* 30277 * Free the storage pointed to by the members of an ip6_pkt_t. 30278 */ 30279 void 30280 ip6_pkt_free(ip6_pkt_t *ipp) 30281 { 30282 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30283 30284 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30285 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30286 ipp->ipp_hopopts = NULL; 30287 ipp->ipp_hopoptslen = 0; 30288 } 30289 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30290 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30291 ipp->ipp_rtdstopts = NULL; 30292 ipp->ipp_rtdstoptslen = 0; 30293 } 30294 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30295 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30296 ipp->ipp_dstopts = NULL; 30297 ipp->ipp_dstoptslen = 0; 30298 } 30299 if (ipp->ipp_fields & IPPF_RTHDR) { 30300 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30301 ipp->ipp_rthdr = NULL; 30302 ipp->ipp_rthdrlen = 0; 30303 } 30304 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30305 IPPF_RTHDR); 30306 } 30307