1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 1990 Mentat Inc. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/stream.h> 29 #include <sys/dlpi.h> 30 #include <sys/stropts.h> 31 #include <sys/sysmacros.h> 32 #include <sys/strsubr.h> 33 #include <sys/strlog.h> 34 #include <sys/strsun.h> 35 #include <sys/zone.h> 36 #define _SUN_TPI_VERSION 2 37 #include <sys/tihdr.h> 38 #include <sys/xti_inet.h> 39 #include <sys/ddi.h> 40 #include <sys/suntpi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/kobj.h> 44 #include <sys/modctl.h> 45 #include <sys/atomic.h> 46 #include <sys/policy.h> 47 #include <sys/priv.h> 48 #include <sys/taskq.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/sadb.h> 98 #include <inet/ipsec_impl.h> 99 #include <inet/iptun/iptun_impl.h> 100 #include <inet/ipdrop.h> 101 #include <inet/ip_netinfo.h> 102 #include <inet/ilb_ip.h> 103 104 #include <sys/ethernet.h> 105 #include <net/if_types.h> 106 #include <sys/cpuvar.h> 107 108 #include <ipp/ipp.h> 109 #include <ipp/ipp_impl.h> 110 #include <ipp/ipgpc/ipgpc.h> 111 112 #include <sys/pattr.h> 113 #include <inet/ipclassifier.h> 114 #include <inet/sctp_ip.h> 115 #include <inet/sctp/sctp_impl.h> 116 #include <inet/udp_impl.h> 117 #include <inet/rawip_impl.h> 118 #include <inet/rts_impl.h> 119 120 #include <sys/tsol/label.h> 121 #include <sys/tsol/tnet.h> 122 123 #include <sys/squeue_impl.h> 124 #include <inet/ip_arp.h> 125 126 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 127 128 /* 129 * Values for squeue switch: 130 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 131 * IP_SQUEUE_ENTER: SQ_PROCESS 132 * IP_SQUEUE_FILL: SQ_FILL 133 */ 134 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */ 135 136 int ip_squeue_flag; 137 138 /* 139 * Setable in /etc/system 140 */ 141 int ip_poll_normal_ms = 100; 142 int ip_poll_normal_ticks = 0; 143 int ip_modclose_ackwait_ms = 3000; 144 145 /* 146 * It would be nice to have these present only in DEBUG systems, but the 147 * current design of the global symbol checking logic requires them to be 148 * unconditionally present. 149 */ 150 uint_t ip_thread_data; /* TSD key for debug support */ 151 krwlock_t ip_thread_rwlock; 152 list_t ip_thread_list; 153 154 /* 155 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 156 */ 157 158 struct listptr_s { 159 mblk_t *lp_head; /* pointer to the head of the list */ 160 mblk_t *lp_tail; /* pointer to the tail of the list */ 161 }; 162 163 typedef struct listptr_s listptr_t; 164 165 /* 166 * This is used by ip_snmp_get_mib2_ip_route_media and 167 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 168 */ 169 typedef struct iproutedata_s { 170 uint_t ird_idx; 171 uint_t ird_flags; /* see below */ 172 listptr_t ird_route; /* ipRouteEntryTable */ 173 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 174 listptr_t ird_attrs; /* ipRouteAttributeTable */ 175 } iproutedata_t; 176 177 /* Include ire_testhidden and IRE_IF_CLONE routes */ 178 #define IRD_REPORT_ALL 0x01 179 180 /* 181 * Cluster specific hooks. These should be NULL when booted as a non-cluster 182 */ 183 184 /* 185 * Hook functions to enable cluster networking 186 * On non-clustered systems these vectors must always be NULL. 187 * 188 * Hook function to Check ip specified ip address is a shared ip address 189 * in the cluster 190 * 191 */ 192 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 193 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 194 195 /* 196 * Hook function to generate cluster wide ip fragment identifier 197 */ 198 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 199 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 200 void *args) = NULL; 201 202 /* 203 * Hook function to generate cluster wide SPI. 204 */ 205 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 206 void *) = NULL; 207 208 /* 209 * Hook function to verify if the SPI is already utlized. 210 */ 211 212 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 213 214 /* 215 * Hook function to delete the SPI from the cluster wide repository. 216 */ 217 218 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 219 220 /* 221 * Hook function to inform the cluster when packet received on an IDLE SA 222 */ 223 224 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 225 in6_addr_t, in6_addr_t, void *) = NULL; 226 227 /* 228 * Synchronization notes: 229 * 230 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 231 * MT level protection given by STREAMS. IP uses a combination of its own 232 * internal serialization mechanism and standard Solaris locking techniques. 233 * The internal serialization is per phyint. This is used to serialize 234 * plumbing operations, IPMP operations, most set ioctls, etc. 235 * 236 * Plumbing is a long sequence of operations involving message 237 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 238 * involved in plumbing operations. A natural model is to serialize these 239 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 240 * parallel without any interference. But various set ioctls on hme0 are best 241 * serialized, along with IPMP operations and processing of DLPI control 242 * messages received from drivers on a per phyint basis. This serialization is 243 * provided by the ipsq_t and primitives operating on this. Details can 244 * be found in ip_if.c above the core primitives operating on ipsq_t. 245 * 246 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 247 * Simiarly lookup of an ire by a thread also returns a refheld ire. 248 * In addition ipif's and ill's referenced by the ire are also indirectly 249 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld 250 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 251 * address of an ipif has to go through the ipsq_t. This ensures that only 252 * one such exclusive operation proceeds at any time on the ipif. It then 253 * waits for all refcnts 254 * associated with this ipif to come down to zero. The address is changed 255 * only after the ipif has been quiesced. Then the ipif is brought up again. 256 * More details are described above the comment in ip_sioctl_flags. 257 * 258 * Packet processing is based mostly on IREs and are fully multi-threaded 259 * using standard Solaris MT techniques. 260 * 261 * There are explicit locks in IP to handle: 262 * - The ip_g_head list maintained by mi_open_link() and friends. 263 * 264 * - The reassembly data structures (one lock per hash bucket) 265 * 266 * - conn_lock is meant to protect conn_t fields. The fields actually 267 * protected by conn_lock are documented in the conn_t definition. 268 * 269 * - ire_lock to protect some of the fields of the ire, IRE tables 270 * (one lock per hash bucket). Refer to ip_ire.c for details. 271 * 272 * - ndp_g_lock and ncec_lock for protecting NCEs. 273 * 274 * - ill_lock protects fields of the ill and ipif. Details in ip.h 275 * 276 * - ill_g_lock: This is a global reader/writer lock. Protects the following 277 * * The AVL tree based global multi list of all ills. 278 * * The linked list of all ipifs of an ill 279 * * The <ipsq-xop> mapping 280 * * <ill-phyint> association 281 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 282 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 283 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 284 * writer for the actual duration of the insertion/deletion/change. 285 * 286 * - ill_lock: This is a per ill mutex. 287 * It protects some members of the ill_t struct; see ip.h for details. 288 * It also protects the <ill-phyint> assoc. 289 * It also protects the list of ipifs hanging off the ill. 290 * 291 * - ipsq_lock: This is a per ipsq_t mutex lock. 292 * This protects some members of the ipsq_t struct; see ip.h for details. 293 * It also protects the <ipsq-ipxop> mapping 294 * 295 * - ipx_lock: This is a per ipxop_t mutex lock. 296 * This protects some members of the ipxop_t struct; see ip.h for details. 297 * 298 * - phyint_lock: This is a per phyint mutex lock. Protects just the 299 * phyint_flags 300 * 301 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 302 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 303 * uniqueness check also done atomically. 304 * 305 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 306 * group list linked by ill_usesrc_grp_next. It also protects the 307 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 308 * group is being added or deleted. This lock is taken as a reader when 309 * walking the list/group(eg: to get the number of members in a usesrc group). 310 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 311 * field is changing state i.e from NULL to non-NULL or vice-versa. For 312 * example, it is not necessary to take this lock in the initial portion 313 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 314 * operations are executed exclusively and that ensures that the "usesrc 315 * group state" cannot change. The "usesrc group state" change can happen 316 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 317 * 318 * Changing <ill-phyint>, <ipsq-xop> assocications: 319 * 320 * To change the <ill-phyint> association, the ill_g_lock must be held 321 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 322 * must be held. 323 * 324 * To change the <ipsq-xop> association, the ill_g_lock must be held as 325 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 326 * This is only done when ills are added or removed from IPMP groups. 327 * 328 * To add or delete an ipif from the list of ipifs hanging off the ill, 329 * ill_g_lock (writer) and ill_lock must be held and the thread must be 330 * a writer on the associated ipsq. 331 * 332 * To add or delete an ill to the system, the ill_g_lock must be held as 333 * writer and the thread must be a writer on the associated ipsq. 334 * 335 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 336 * must be a writer on the associated ipsq. 337 * 338 * Lock hierarchy 339 * 340 * Some lock hierarchy scenarios are listed below. 341 * 342 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 343 * ill_g_lock -> ill_lock(s) -> phyint_lock 344 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock 345 * ill_g_lock -> ip_addr_avail_lock 346 * conn_lock -> irb_lock -> ill_lock -> ire_lock 347 * ill_g_lock -> ip_g_nd_lock 348 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock 349 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock 350 * arl_lock -> ill_lock 351 * ips_ire_dep_lock -> irb_lock 352 * 353 * When more than 1 ill lock is needed to be held, all ill lock addresses 354 * are sorted on address and locked starting from highest addressed lock 355 * downward. 356 * 357 * Multicast scenarios 358 * ips_ill_g_lock -> ill_mcast_lock 359 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock 360 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock 361 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock 362 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock 363 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock 364 * 365 * IPsec scenarios 366 * 367 * ipsa_lock -> ill_g_lock -> ill_lock 368 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 369 * 370 * Trusted Solaris scenarios 371 * 372 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 373 * igsa_lock -> gcdb_lock 374 * gcgrp_rwlock -> ire_lock 375 * gcgrp_rwlock -> gcdb_lock 376 * 377 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 378 * 379 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 380 * sq_lock -> conn_lock -> QLOCK(q) 381 * ill_lock -> ft_lock -> fe_lock 382 * 383 * Routing/forwarding table locking notes: 384 * 385 * Lock acquisition order: Radix tree lock, irb_lock. 386 * Requirements: 387 * i. Walker must not hold any locks during the walker callback. 388 * ii Walker must not see a truncated tree during the walk because of any node 389 * deletion. 390 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 391 * in many places in the code to walk the irb list. Thus even if all the 392 * ires in a bucket have been deleted, we still can't free the radix node 393 * until the ires have actually been inactive'd (freed). 394 * 395 * Tree traversal - Need to hold the global tree lock in read mode. 396 * Before dropping the global tree lock, need to either increment the ire_refcnt 397 * to ensure that the radix node can't be deleted. 398 * 399 * Tree add - Need to hold the global tree lock in write mode to add a 400 * radix node. To prevent the node from being deleted, increment the 401 * irb_refcnt, after the node is added to the tree. The ire itself is 402 * added later while holding the irb_lock, but not the tree lock. 403 * 404 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 405 * All associated ires must be inactive (i.e. freed), and irb_refcnt 406 * must be zero. 407 * 408 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 409 * global tree lock (read mode) for traversal. 410 * 411 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele 412 * hence we will acquire irb_lock while holding ips_ire_dep_lock. 413 * 414 * IPsec notes : 415 * 416 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes 417 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the 418 * ip_xmit_attr_t has the 419 * information used by the IPsec code for applying the right level of 420 * protection. The information initialized by IP in the ip_xmit_attr_t 421 * is determined by the per-socket policy or global policy in the system. 422 * For inbound datagrams, the ip_recv_attr_t 423 * starts out with nothing in it. It gets filled 424 * with the right information if it goes through the AH/ESP code, which 425 * happens if the incoming packet is secure. The information initialized 426 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether 427 * the policy requirements needed by per-socket policy or global policy 428 * is met or not. 429 * 430 * For fully connected sockets i.e dst, src [addr, port] is known, 431 * conn_policy_cached is set indicating that policy has been cached. 432 * conn_in_enforce_policy may or may not be set depending on whether 433 * there is a global policy match or per-socket policy match. 434 * Policy inheriting happpens in ip_policy_set once the destination is known. 435 * Once the right policy is set on the conn_t, policy cannot change for 436 * this socket. This makes life simpler for TCP (UDP ?) where 437 * re-transmissions go out with the same policy. For symmetry, policy 438 * is cached for fully connected UDP sockets also. Thus if policy is cached, 439 * it also implies that policy is latched i.e policy cannot change 440 * on these sockets. As we have the right policy on the conn, we don't 441 * have to lookup global policy for every outbound and inbound datagram 442 * and thus serving as an optimization. Note that a global policy change 443 * does not affect fully connected sockets if they have policy. If fully 444 * connected sockets did not have any policy associated with it, global 445 * policy change may affect them. 446 * 447 * IP Flow control notes: 448 * --------------------- 449 * Non-TCP streams are flow controlled by IP. The way this is accomplished 450 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 451 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 452 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 453 * functions. 454 * 455 * Per Tx ring udp flow control: 456 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 457 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 458 * 459 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 460 * To achieve best performance, outgoing traffic need to be fanned out among 461 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 462 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 463 * the address of connp as fanout hint to mac_tx(). Under flow controlled 464 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 465 * cookie points to a specific Tx ring that is blocked. The cookie is used to 466 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 467 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 468 * connp's. The drain list is not a single list but a configurable number of 469 * lists. 470 * 471 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 472 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 473 * which is equal to 128. This array in turn contains a pointer to idl_t[], 474 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 475 * list will point to the list of connp's that are flow controlled. 476 * 477 * --------------- ------- ------- ------- 478 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 479 * | --------------- ------- ------- ------- 480 * | --------------- ------- ------- ------- 481 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 482 * ---------------- | --------------- ------- ------- ------- 483 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 484 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 485 * | --------------- ------- ------- ------- 486 * . . . . . 487 * | --------------- ------- ------- ------- 488 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 489 * --------------- ------- ------- ------- 490 * --------------- ------- ------- ------- 491 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 492 * | --------------- ------- ------- ------- 493 * | --------------- ------- ------- ------- 494 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 495 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 496 * ---------------- | . . . . 497 * | --------------- ------- ------- ------- 498 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 499 * --------------- ------- ------- ------- 500 * ..... 501 * ---------------- 502 * |idl_tx_list[n]|-> ... 503 * ---------------- 504 * 505 * When mac_tx() returns a cookie, the cookie is hashed into an index into 506 * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list 507 * to insert the conn onto. conn_drain_insert() asserts flow control for the 508 * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS). 509 * Further, conn_blocked is set to indicate that the conn is blocked. 510 * 511 * GLDv3 calls ill_flow_enable() when flow control is relieved. The cookie 512 * passed in the call to ill_flow_enable() identifies the blocked Tx ring and 513 * is again hashed to locate the appropriate idl_tx_list, which is then 514 * drained via conn_walk_drain(). conn_walk_drain() goes through each conn in 515 * the drain list and calls conn_drain_remove() to clear flow control (via 516 * calling su_txq_full() or clearing QFULL), and remove the conn from the 517 * drain list. 518 * 519 * Note that the drain list is not a single list but a (configurable) array of 520 * lists (8 elements by default). Synchronization between drain insertion and 521 * flow control wakeup is handled by using idl_txl->txl_lock, and only 522 * conn_drain_insert() and conn_drain_remove() manipulate the drain list. 523 * 524 * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE. 525 * On the send side, if the packet cannot be sent down to the driver by IP 526 * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the 527 * caller, who may then invoke ixa_check_drain_insert() to insert the conn on 528 * the 0'th drain list. When ip_wsrv() runs on the ill_wq because flow 529 * control has been relieved, the blocked conns in the 0'th drain list are 530 * drained as in the non-STREAMS case. 531 * 532 * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL 533 * is done when the conn is inserted into the drain list (conn_drain_insert()) 534 * and cleared when the conn is removed from the it (conn_drain_remove()). 535 * 536 * IPQOS notes: 537 * 538 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 539 * and IPQoS modules. IPPF includes hooks in IP at different control points 540 * (callout positions) which direct packets to IPQoS modules for policy 541 * processing. Policies, if present, are global. 542 * 543 * The callout positions are located in the following paths: 544 * o local_in (packets destined for this host) 545 * o local_out (packets orginating from this host ) 546 * o fwd_in (packets forwarded by this m/c - inbound) 547 * o fwd_out (packets forwarded by this m/c - outbound) 548 * Hooks at these callout points can be enabled/disabled using the ndd variable 549 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 550 * By default all the callout positions are enabled. 551 * 552 * Outbound (local_out) 553 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6. 554 * 555 * Inbound (local_in) 556 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6. 557 * 558 * Forwarding (in and out) 559 * Hooks are placed in ire_recv_forward_v4/v6. 560 * 561 * IP Policy Framework processing (IPPF processing) 562 * Policy processing for a packet is initiated by ip_process, which ascertains 563 * that the classifier (ipgpc) is loaded and configured, failing which the 564 * packet resumes normal processing in IP. If the clasifier is present, the 565 * packet is acted upon by one or more IPQoS modules (action instances), per 566 * filters configured in ipgpc and resumes normal IP processing thereafter. 567 * An action instance can drop a packet in course of its processing. 568 * 569 * Zones notes: 570 * 571 * The partitioning rules for networking are as follows: 572 * 1) Packets coming from a zone must have a source address belonging to that 573 * zone. 574 * 2) Packets coming from a zone can only be sent on a physical interface on 575 * which the zone has an IP address. 576 * 3) Between two zones on the same machine, packet delivery is only allowed if 577 * there's a matching route for the destination and zone in the forwarding 578 * table. 579 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 580 * different zones can bind to the same port with the wildcard address 581 * (INADDR_ANY). 582 * 583 * The granularity of interface partitioning is at the logical interface level. 584 * Therefore, every zone has its own IP addresses, and incoming packets can be 585 * attributed to a zone unambiguously. A logical interface is placed into a zone 586 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 587 * structure. Rule (1) is implemented by modifying the source address selection 588 * algorithm so that the list of eligible addresses is filtered based on the 589 * sending process zone. 590 * 591 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 592 * across all zones, depending on their type. Here is the break-up: 593 * 594 * IRE type Shared/exclusive 595 * -------- ---------------- 596 * IRE_BROADCAST Exclusive 597 * IRE_DEFAULT (default routes) Shared (*) 598 * IRE_LOCAL Exclusive (x) 599 * IRE_LOOPBACK Exclusive 600 * IRE_PREFIX (net routes) Shared (*) 601 * IRE_IF_NORESOLVER (interface routes) Exclusive 602 * IRE_IF_RESOLVER (interface routes) Exclusive 603 * IRE_IF_CLONE (interface routes) Exclusive 604 * IRE_HOST (host routes) Shared (*) 605 * 606 * (*) A zone can only use a default or off-subnet route if the gateway is 607 * directly reachable from the zone, that is, if the gateway's address matches 608 * one of the zone's logical interfaces. 609 * 610 * (x) IRE_LOCAL are handled a bit differently. 611 * When ip_restrict_interzone_loopback is set (the default), 612 * ire_route_recursive restricts loopback using an IRE_LOCAL 613 * between zone to the case when L2 would have conceptually looped the packet 614 * back, i.e. the loopback which is required since neither Ethernet drivers 615 * nor Ethernet hardware loops them back. This is the case when the normal 616 * routes (ignoring IREs with different zoneids) would send out the packet on 617 * the same ill as the ill with which is IRE_LOCAL is associated. 618 * 619 * Multiple zones can share a common broadcast address; typically all zones 620 * share the 255.255.255.255 address. Incoming as well as locally originated 621 * broadcast packets must be dispatched to all the zones on the broadcast 622 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 623 * since some zones may not be on the 10.16.72/24 network. To handle this, each 624 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 625 * sent to every zone that has an IRE_BROADCAST entry for the destination 626 * address on the input ill, see ip_input_broadcast(). 627 * 628 * Applications in different zones can join the same multicast group address. 629 * The same logic applies for multicast as for broadcast. ip_input_multicast 630 * dispatches packets to all zones that have members on the physical interface. 631 */ 632 633 /* 634 * Squeue Fanout flags: 635 * 0: No fanout. 636 * 1: Fanout across all squeues 637 */ 638 boolean_t ip_squeue_fanout = 0; 639 640 /* 641 * Maximum dups allowed per packet. 642 */ 643 uint_t ip_max_frag_dups = 10; 644 645 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 646 cred_t *credp, boolean_t isv6); 647 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *); 648 649 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *); 650 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *); 651 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *, 652 ip_recv_attr_t *); 653 static void icmp_options_update(ipha_t *); 654 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *); 655 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *); 656 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *); 657 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *, 658 ip_recv_attr_t *); 659 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *); 660 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *, 661 ip_recv_attr_t *); 662 663 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 664 char *ip_dot_addr(ipaddr_t, char *); 665 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 666 int ip_close(queue_t *, int); 667 static char *ip_dot_saddr(uchar_t *, char *); 668 static void ip_lrput(queue_t *, mblk_t *); 669 ipaddr_t ip_net_mask(ipaddr_t); 670 char *ip_nv_lookup(nv_t *, int); 671 void ip_rput(queue_t *, mblk_t *); 672 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 673 void *dummy_arg); 674 int ip_snmp_get(queue_t *, mblk_t *, int, boolean_t); 675 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 676 mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t); 677 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 678 ip_stack_t *, boolean_t); 679 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *, 680 boolean_t); 681 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 683 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 685 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 686 ip_stack_t *ipst, boolean_t); 687 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 688 ip_stack_t *ipst, boolean_t); 689 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 690 ip_stack_t *ipst); 691 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 692 ip_stack_t *ipst); 693 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 694 ip_stack_t *ipst); 695 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 696 ip_stack_t *ipst); 697 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 698 ip_stack_t *ipst); 699 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 700 ip_stack_t *ipst); 701 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 702 ip_stack_t *ipst); 703 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 704 ip_stack_t *ipst); 705 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 706 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 707 static int ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *); 708 static int ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *); 709 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 710 711 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *, 712 mblk_t *); 713 714 static void conn_drain_init(ip_stack_t *); 715 static void conn_drain_fini(ip_stack_t *); 716 static void conn_drain(conn_t *connp, boolean_t closing); 717 718 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 719 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *); 720 721 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 722 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 723 static void ip_stack_fini(netstackid_t stackid, void *arg); 724 725 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 726 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 727 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t, 728 const in6_addr_t *); 729 730 static int ip_squeue_switch(int); 731 732 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 733 static void ip_kstat_fini(netstackid_t, kstat_t *); 734 static int ip_kstat_update(kstat_t *kp, int rw); 735 static void *icmp_kstat_init(netstackid_t); 736 static void icmp_kstat_fini(netstackid_t, kstat_t *); 737 static int icmp_kstat_update(kstat_t *kp, int rw); 738 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 739 static void ip_kstat2_fini(netstackid_t, kstat_t *); 740 741 static void ipobs_init(ip_stack_t *); 742 static void ipobs_fini(ip_stack_t *); 743 744 static int ip_tp_cpu_update(cpu_setup_t, int, void *); 745 746 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 747 748 static long ip_rput_pullups; 749 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 750 751 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 752 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 753 754 int ip_debug; 755 756 /* 757 * Multirouting/CGTP stuff 758 */ 759 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 760 761 /* 762 * IP tunables related declarations. Definitions are in ip_tunables.c 763 */ 764 extern mod_prop_info_t ip_propinfo_tbl[]; 765 extern int ip_propinfo_count; 766 767 /* 768 * Table of IP ioctls encoding the various properties of the ioctl and 769 * indexed based on the last byte of the ioctl command. Occasionally there 770 * is a clash, and there is more than 1 ioctl with the same last byte. 771 * In such a case 1 ioctl is encoded in the ndx table and the remaining 772 * ioctls are encoded in the misc table. An entry in the ndx table is 773 * retrieved by indexing on the last byte of the ioctl command and comparing 774 * the ioctl command with the value in the ndx table. In the event of a 775 * mismatch the misc table is then searched sequentially for the desired 776 * ioctl command. 777 * 778 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 779 */ 780 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 781 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 782 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 783 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 784 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 785 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 786 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 787 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 788 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 789 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 790 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 791 792 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 793 MISC_CMD, ip_siocaddrt, NULL }, 794 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 795 MISC_CMD, ip_siocdelrt, NULL }, 796 797 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 798 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 799 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 800 IF_CMD, ip_sioctl_get_addr, NULL }, 801 802 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 803 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 804 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 805 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 806 807 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 808 IPI_PRIV | IPI_WR, 809 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 810 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 811 IPI_MODOK | IPI_GET_CMD, 812 IF_CMD, ip_sioctl_get_flags, NULL }, 813 814 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 815 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 816 817 /* copyin size cannot be coded for SIOCGIFCONF */ 818 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 819 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 820 821 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 822 IF_CMD, ip_sioctl_mtu, NULL }, 823 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 824 IF_CMD, ip_sioctl_get_mtu, NULL }, 825 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 826 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 827 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 828 IF_CMD, ip_sioctl_brdaddr, NULL }, 829 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 830 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 831 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 832 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 833 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 834 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 835 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 836 IF_CMD, ip_sioctl_metric, NULL }, 837 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 838 839 /* See 166-168 below for extended SIOC*XARP ioctls */ 840 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 841 ARP_CMD, ip_sioctl_arp, NULL }, 842 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 843 ARP_CMD, ip_sioctl_arp, NULL }, 844 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 845 ARP_CMD, ip_sioctl_arp, NULL }, 846 847 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 848 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 849 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 850 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 851 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 852 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 853 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 854 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 855 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 856 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 857 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 858 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 859 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 860 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 861 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 862 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 863 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 864 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 865 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 866 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 867 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 868 869 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 870 MISC_CMD, if_unitsel, if_unitsel_restart }, 871 872 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 873 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 874 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 875 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 876 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 877 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 878 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 879 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 880 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 881 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 882 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 883 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 884 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 885 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 886 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 887 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 888 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 889 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 890 891 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 892 IPI_PRIV | IPI_WR | IPI_MODOK, 893 IF_CMD, ip_sioctl_sifname, NULL }, 894 895 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 896 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 897 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 898 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 899 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 900 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 901 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 902 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 903 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 904 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 905 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 906 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 907 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 908 909 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 910 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 911 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 912 IF_CMD, ip_sioctl_get_muxid, NULL }, 913 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 914 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 915 916 /* Both if and lif variants share same func */ 917 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 918 IF_CMD, ip_sioctl_get_lifindex, NULL }, 919 /* Both if and lif variants share same func */ 920 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 921 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 922 923 /* copyin size cannot be coded for SIOCGIFCONF */ 924 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 925 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 926 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 927 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 928 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 929 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 930 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 931 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 932 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 933 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 934 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 935 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 936 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 937 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 938 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 939 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 940 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 941 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 942 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 943 944 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 945 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 946 ip_sioctl_removeif_restart }, 947 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 948 IPI_GET_CMD | IPI_PRIV | IPI_WR, 949 LIF_CMD, ip_sioctl_addif, NULL }, 950 #define SIOCLIFADDR_NDX 112 951 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 952 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 953 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 954 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 955 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 956 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 957 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 958 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 959 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 960 IPI_PRIV | IPI_WR, 961 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 962 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 963 IPI_GET_CMD | IPI_MODOK, 964 LIF_CMD, ip_sioctl_get_flags, NULL }, 965 966 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 967 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 968 969 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 970 ip_sioctl_get_lifconf, NULL }, 971 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 972 LIF_CMD, ip_sioctl_mtu, NULL }, 973 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 974 LIF_CMD, ip_sioctl_get_mtu, NULL }, 975 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 976 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 977 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 978 LIF_CMD, ip_sioctl_brdaddr, NULL }, 979 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 980 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 981 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 982 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 983 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 984 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 985 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 986 LIF_CMD, ip_sioctl_metric, NULL }, 987 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 988 IPI_PRIV | IPI_WR | IPI_MODOK, 989 LIF_CMD, ip_sioctl_slifname, 990 ip_sioctl_slifname_restart }, 991 992 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 993 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 994 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 995 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 996 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 997 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 998 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 999 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1000 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1001 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1002 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1003 LIF_CMD, ip_sioctl_token, NULL }, 1004 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1005 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1006 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1007 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1008 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1009 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1010 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1011 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1012 1013 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1014 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1015 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1016 LIF_CMD, ip_siocdelndp_v6, NULL }, 1017 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1018 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1019 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1020 LIF_CMD, ip_siocsetndp_v6, NULL }, 1021 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1022 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1023 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1024 MISC_CMD, ip_sioctl_tonlink, NULL }, 1025 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1026 MISC_CMD, ip_sioctl_tmysite, NULL }, 1027 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1030 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1031 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1032 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1033 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1034 1035 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 1037 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1038 LIF_CMD, ip_sioctl_get_binding, NULL }, 1039 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1040 IPI_PRIV | IPI_WR, 1041 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1042 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1043 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1044 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1045 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1046 1047 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1048 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 1052 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 1054 /* These are handled in ip_sioctl_copyin_setup itself */ 1055 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1056 MISC_CMD, NULL, NULL }, 1057 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1058 MISC_CMD, NULL, NULL }, 1059 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1060 1061 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1062 ip_sioctl_get_lifconf, NULL }, 1063 1064 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1065 XARP_CMD, ip_sioctl_arp, NULL }, 1066 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1067 XARP_CMD, ip_sioctl_arp, NULL }, 1068 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1069 XARP_CMD, ip_sioctl_arp, NULL }, 1070 1071 /* SIOCPOPSOCKFS is not handled by IP */ 1072 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1073 1074 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1075 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1076 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1077 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1078 ip_sioctl_slifzone_restart }, 1079 /* 172-174 are SCTP ioctls and not handled by IP */ 1080 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1083 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1084 IPI_GET_CMD, LIF_CMD, 1085 ip_sioctl_get_lifusesrc, 0 }, 1086 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1087 IPI_PRIV | IPI_WR, 1088 LIF_CMD, ip_sioctl_slifusesrc, 1089 NULL }, 1090 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1091 ip_sioctl_get_lifsrcof, NULL }, 1092 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1093 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1094 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0, 1095 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1096 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1097 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1098 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0, 1099 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1100 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* SIOCSENABLESDP is handled by SDP */ 1102 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1103 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1104 /* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD, 1105 IF_CMD, ip_sioctl_get_ifhwaddr, NULL }, 1106 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL }, 1107 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD, 1108 ip_sioctl_ilb_cmd, NULL }, 1109 /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL }, 1110 /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL}, 1111 /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq), 1112 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL }, 1113 /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1114 LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart }, 1115 /* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD, 1116 LIF_CMD, ip_sioctl_get_lifhwaddr, NULL } 1117 }; 1118 1119 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1120 1121 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1122 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1123 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1124 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1125 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1126 { ND_GET, 0, 0, 0, NULL, NULL }, 1127 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1128 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1129 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1130 MISC_CMD, mrt_ioctl}, 1131 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1132 MISC_CMD, mrt_ioctl}, 1133 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1134 MISC_CMD, mrt_ioctl} 1135 }; 1136 1137 int ip_misc_ioctl_count = 1138 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1139 1140 int conn_drain_nthreads; /* Number of drainers reqd. */ 1141 /* Settable in /etc/system */ 1142 /* Defined in ip_ire.c */ 1143 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1144 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1145 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1146 1147 static nv_t ire_nv_arr[] = { 1148 { IRE_BROADCAST, "BROADCAST" }, 1149 { IRE_LOCAL, "LOCAL" }, 1150 { IRE_LOOPBACK, "LOOPBACK" }, 1151 { IRE_DEFAULT, "DEFAULT" }, 1152 { IRE_PREFIX, "PREFIX" }, 1153 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1154 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1155 { IRE_IF_CLONE, "IF_CLONE" }, 1156 { IRE_HOST, "HOST" }, 1157 { IRE_MULTICAST, "MULTICAST" }, 1158 { IRE_NOROUTE, "NOROUTE" }, 1159 { 0 } 1160 }; 1161 1162 nv_t *ire_nv_tbl = ire_nv_arr; 1163 1164 /* Simple ICMP IP Header Template */ 1165 static ipha_t icmp_ipha = { 1166 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1167 }; 1168 1169 struct module_info ip_mod_info = { 1170 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1171 IP_MOD_LOWAT 1172 }; 1173 1174 /* 1175 * Duplicate static symbols within a module confuses mdb; so we avoid the 1176 * problem by making the symbols here distinct from those in udp.c. 1177 */ 1178 1179 /* 1180 * Entry points for IP as a device and as a module. 1181 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1182 */ 1183 static struct qinit iprinitv4 = { 1184 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1185 &ip_mod_info 1186 }; 1187 1188 struct qinit iprinitv6 = { 1189 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1190 &ip_mod_info 1191 }; 1192 1193 static struct qinit ipwinit = { 1194 (pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1195 &ip_mod_info 1196 }; 1197 1198 static struct qinit iplrinit = { 1199 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1200 &ip_mod_info 1201 }; 1202 1203 static struct qinit iplwinit = { 1204 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1205 &ip_mod_info 1206 }; 1207 1208 /* For AF_INET aka /dev/ip */ 1209 struct streamtab ipinfov4 = { 1210 &iprinitv4, &ipwinit, &iplrinit, &iplwinit 1211 }; 1212 1213 /* For AF_INET6 aka /dev/ip6 */ 1214 struct streamtab ipinfov6 = { 1215 &iprinitv6, &ipwinit, &iplrinit, &iplwinit 1216 }; 1217 1218 #ifdef DEBUG 1219 boolean_t skip_sctp_cksum = B_FALSE; 1220 #endif 1221 1222 /* 1223 * Generate an ICMP fragmentation needed message. 1224 * When called from ip_output side a minimal ip_recv_attr_t needs to be 1225 * constructed by the caller. 1226 */ 1227 void 1228 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira) 1229 { 1230 icmph_t icmph; 1231 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1232 1233 mp = icmp_pkt_err_ok(mp, ira); 1234 if (mp == NULL) 1235 return; 1236 1237 bzero(&icmph, sizeof (icmph_t)); 1238 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1239 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1240 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1241 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1242 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1243 1244 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 1245 } 1246 1247 /* 1248 * icmp_inbound_v4 deals with ICMP messages that are handled by IP. 1249 * If the ICMP message is consumed by IP, i.e., it should not be delivered 1250 * to any IPPROTO_ICMP raw sockets, then it returns NULL. 1251 * Likewise, if the ICMP error is misformed (too short, etc), then it 1252 * returns NULL. The caller uses this to determine whether or not to send 1253 * to raw sockets. 1254 * 1255 * All error messages are passed to the matching transport stream. 1256 * 1257 * The following cases are handled by icmp_inbound: 1258 * 1) It needs to send a reply back and possibly delivering it 1259 * to the "interested" upper clients. 1260 * 2) Return the mblk so that the caller can pass it to the RAW socket clients. 1261 * 3) It needs to change some values in IP only. 1262 * 4) It needs to change some values in IP and upper layers e.g TCP 1263 * by delivering an error to the upper layers. 1264 * 1265 * We handle the above three cases in the context of IPsec in the 1266 * following way : 1267 * 1268 * 1) Send the reply back in the same way as the request came in. 1269 * If it came in encrypted, it goes out encrypted. If it came in 1270 * clear, it goes out in clear. Thus, this will prevent chosen 1271 * plain text attack. 1272 * 2) The client may or may not expect things to come in secure. 1273 * If it comes in secure, the policy constraints are checked 1274 * before delivering it to the upper layers. If it comes in 1275 * clear, ipsec_inbound_accept_clear will decide whether to 1276 * accept this in clear or not. In both the cases, if the returned 1277 * message (IP header + 8 bytes) that caused the icmp message has 1278 * AH/ESP headers, it is sent up to AH/ESP for validation before 1279 * sending up. If there are only 8 bytes of returned message, then 1280 * upper client will not be notified. 1281 * 3) Check with global policy to see whether it matches the constaints. 1282 * But this will be done only if icmp_accept_messages_in_clear is 1283 * zero. 1284 * 4) If we need to change both in IP and ULP, then the decision taken 1285 * while affecting the values in IP and while delivering up to TCP 1286 * should be the same. 1287 * 1288 * There are two cases. 1289 * 1290 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1291 * failed), we will not deliver it to the ULP, even though they 1292 * are *willing* to accept in *clear*. This is fine as our global 1293 * disposition to icmp messages asks us reject the datagram. 1294 * 1295 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1296 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1297 * to deliver it to ULP (policy failed), it can lead to 1298 * consistency problems. The cases known at this time are 1299 * ICMP_DESTINATION_UNREACHABLE messages with following code 1300 * values : 1301 * 1302 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1303 * and Upper layer rejects. Then the communication will 1304 * come to a stop. This is solved by making similar decisions 1305 * at both levels. Currently, when we are unable to deliver 1306 * to the Upper Layer (due to policy failures) while IP has 1307 * adjusted dce_pmtu, the next outbound datagram would 1308 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1309 * will be with the right level of protection. Thus the right 1310 * value will be communicated even if we are not able to 1311 * communicate when we get from the wire initially. But this 1312 * assumes there would be at least one outbound datagram after 1313 * IP has adjusted its dce_pmtu value. To make things 1314 * simpler, we accept in clear after the validation of 1315 * AH/ESP headers. 1316 * 1317 * - Other ICMP ERRORS : We may not be able to deliver it to the 1318 * upper layer depending on the level of protection the upper 1319 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1320 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1321 * should be accepted in clear when the Upper layer expects secure. 1322 * Thus the communication may get aborted by some bad ICMP 1323 * packets. 1324 */ 1325 mblk_t * 1326 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira) 1327 { 1328 icmph_t *icmph; 1329 ipha_t *ipha; /* Outer header */ 1330 int ip_hdr_length; /* Outer header length */ 1331 boolean_t interested; 1332 ipif_t *ipif; 1333 uint32_t ts; 1334 uint32_t *tsp; 1335 timestruc_t now; 1336 ill_t *ill = ira->ira_ill; 1337 ip_stack_t *ipst = ill->ill_ipst; 1338 zoneid_t zoneid = ira->ira_zoneid; 1339 int len_needed; 1340 mblk_t *mp_ret = NULL; 1341 1342 ipha = (ipha_t *)mp->b_rptr; 1343 1344 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1345 1346 ip_hdr_length = ira->ira_ip_hdr_length; 1347 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) { 1348 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) { 1349 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1350 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1351 freemsg(mp); 1352 return (NULL); 1353 } 1354 /* Last chance to get real. */ 1355 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira); 1356 if (ipha == NULL) { 1357 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1358 freemsg(mp); 1359 return (NULL); 1360 } 1361 } 1362 1363 /* The IP header will always be a multiple of four bytes */ 1364 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1365 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type, 1366 icmph->icmph_code)); 1367 1368 /* 1369 * We will set "interested" to "true" if we should pass a copy to 1370 * the transport or if we handle the packet locally. 1371 */ 1372 interested = B_FALSE; 1373 switch (icmph->icmph_type) { 1374 case ICMP_ECHO_REPLY: 1375 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1376 break; 1377 case ICMP_DEST_UNREACHABLE: 1378 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1379 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1380 interested = B_TRUE; /* Pass up to transport */ 1381 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1382 break; 1383 case ICMP_SOURCE_QUENCH: 1384 interested = B_TRUE; /* Pass up to transport */ 1385 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1386 break; 1387 case ICMP_REDIRECT: 1388 if (!ipst->ips_ip_ignore_redirect) 1389 interested = B_TRUE; 1390 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1391 break; 1392 case ICMP_ECHO_REQUEST: 1393 /* 1394 * Whether to respond to echo requests that come in as IP 1395 * broadcasts or as IP multicast is subject to debate 1396 * (what isn't?). We aim to please, you pick it. 1397 * Default is do it. 1398 */ 1399 if (ira->ira_flags & IRAF_MULTICAST) { 1400 /* multicast: respond based on tunable */ 1401 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1402 } else if (ira->ira_flags & IRAF_BROADCAST) { 1403 /* broadcast: respond based on tunable */ 1404 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1405 } else { 1406 /* unicast: always respond */ 1407 interested = B_TRUE; 1408 } 1409 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1410 if (!interested) { 1411 /* We never pass these to RAW sockets */ 1412 freemsg(mp); 1413 return (NULL); 1414 } 1415 1416 /* Check db_ref to make sure we can modify the packet. */ 1417 if (mp->b_datap->db_ref > 1) { 1418 mblk_t *mp1; 1419 1420 mp1 = copymsg(mp); 1421 freemsg(mp); 1422 if (!mp1) { 1423 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1424 return (NULL); 1425 } 1426 mp = mp1; 1427 ipha = (ipha_t *)mp->b_rptr; 1428 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1429 } 1430 icmph->icmph_type = ICMP_ECHO_REPLY; 1431 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1432 icmp_send_reply_v4(mp, ipha, icmph, ira); 1433 return (NULL); 1434 1435 case ICMP_ROUTER_ADVERTISEMENT: 1436 case ICMP_ROUTER_SOLICITATION: 1437 break; 1438 case ICMP_TIME_EXCEEDED: 1439 interested = B_TRUE; /* Pass up to transport */ 1440 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1441 break; 1442 case ICMP_PARAM_PROBLEM: 1443 interested = B_TRUE; /* Pass up to transport */ 1444 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1445 break; 1446 case ICMP_TIME_STAMP_REQUEST: 1447 /* Response to Time Stamp Requests is local policy. */ 1448 if (ipst->ips_ip_g_resp_to_timestamp) { 1449 if (ira->ira_flags & IRAF_MULTIBROADCAST) 1450 interested = 1451 ipst->ips_ip_g_resp_to_timestamp_bcast; 1452 else 1453 interested = B_TRUE; 1454 } 1455 if (!interested) { 1456 /* We never pass these to RAW sockets */ 1457 freemsg(mp); 1458 return (NULL); 1459 } 1460 1461 /* Make sure we have enough of the packet */ 1462 len_needed = ip_hdr_length + ICMPH_SIZE + 1463 3 * sizeof (uint32_t); 1464 1465 if (mp->b_wptr - mp->b_rptr < len_needed) { 1466 ipha = ip_pullup(mp, len_needed, ira); 1467 if (ipha == NULL) { 1468 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1469 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1470 mp, ill); 1471 freemsg(mp); 1472 return (NULL); 1473 } 1474 /* Refresh following the pullup. */ 1475 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1476 } 1477 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1478 /* Check db_ref to make sure we can modify the packet. */ 1479 if (mp->b_datap->db_ref > 1) { 1480 mblk_t *mp1; 1481 1482 mp1 = copymsg(mp); 1483 freemsg(mp); 1484 if (!mp1) { 1485 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1486 return (NULL); 1487 } 1488 mp = mp1; 1489 ipha = (ipha_t *)mp->b_rptr; 1490 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1491 } 1492 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1493 tsp = (uint32_t *)&icmph[1]; 1494 tsp++; /* Skip past 'originate time' */ 1495 /* Compute # of milliseconds since midnight */ 1496 gethrestime(&now); 1497 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1498 now.tv_nsec / (NANOSEC / MILLISEC); 1499 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1500 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1501 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1502 icmp_send_reply_v4(mp, ipha, icmph, ira); 1503 return (NULL); 1504 1505 case ICMP_TIME_STAMP_REPLY: 1506 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1507 break; 1508 case ICMP_INFO_REQUEST: 1509 /* Per RFC 1122 3.2.2.7, ignore this. */ 1510 case ICMP_INFO_REPLY: 1511 break; 1512 case ICMP_ADDRESS_MASK_REQUEST: 1513 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1514 interested = 1515 ipst->ips_ip_respond_to_address_mask_broadcast; 1516 } else { 1517 interested = B_TRUE; 1518 } 1519 if (!interested) { 1520 /* We never pass these to RAW sockets */ 1521 freemsg(mp); 1522 return (NULL); 1523 } 1524 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN; 1525 if (mp->b_wptr - mp->b_rptr < len_needed) { 1526 ipha = ip_pullup(mp, len_needed, ira); 1527 if (ipha == NULL) { 1528 BUMP_MIB(ill->ill_ip_mib, 1529 ipIfStatsInTruncatedPkts); 1530 ip_drop_input("ipIfStatsInTruncatedPkts", mp, 1531 ill); 1532 freemsg(mp); 1533 return (NULL); 1534 } 1535 /* Refresh following the pullup. */ 1536 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1537 } 1538 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1539 /* Check db_ref to make sure we can modify the packet. */ 1540 if (mp->b_datap->db_ref > 1) { 1541 mblk_t *mp1; 1542 1543 mp1 = copymsg(mp); 1544 freemsg(mp); 1545 if (!mp1) { 1546 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1547 return (NULL); 1548 } 1549 mp = mp1; 1550 ipha = (ipha_t *)mp->b_rptr; 1551 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1552 } 1553 /* 1554 * Need the ipif with the mask be the same as the source 1555 * address of the mask reply. For unicast we have a specific 1556 * ipif. For multicast/broadcast we only handle onlink 1557 * senders, and use the source address to pick an ipif. 1558 */ 1559 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst); 1560 if (ipif == NULL) { 1561 /* Broadcast or multicast */ 1562 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1563 if (ipif == NULL) { 1564 freemsg(mp); 1565 return (NULL); 1566 } 1567 } 1568 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1569 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 1570 ipif_refrele(ipif); 1571 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1572 icmp_send_reply_v4(mp, ipha, icmph, ira); 1573 return (NULL); 1574 1575 case ICMP_ADDRESS_MASK_REPLY: 1576 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1577 break; 1578 default: 1579 interested = B_TRUE; /* Pass up to transport */ 1580 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1581 break; 1582 } 1583 /* 1584 * See if there is an ICMP client to avoid an extra copymsg/freemsg 1585 * if there isn't one. 1586 */ 1587 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) { 1588 /* If there is an ICMP client and we want one too, copy it. */ 1589 1590 if (!interested) { 1591 /* Caller will deliver to RAW sockets */ 1592 return (mp); 1593 } 1594 mp_ret = copymsg(mp); 1595 if (mp_ret == NULL) { 1596 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1597 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1598 } 1599 } else if (!interested) { 1600 /* Neither we nor raw sockets are interested. Drop packet now */ 1601 freemsg(mp); 1602 return (NULL); 1603 } 1604 1605 /* 1606 * ICMP error or redirect packet. Make sure we have enough of 1607 * the header and that db_ref == 1 since we might end up modifying 1608 * the packet. 1609 */ 1610 if (mp->b_cont != NULL) { 1611 if (ip_pullup(mp, -1, ira) == NULL) { 1612 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1613 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1614 mp, ill); 1615 freemsg(mp); 1616 return (mp_ret); 1617 } 1618 } 1619 1620 if (mp->b_datap->db_ref > 1) { 1621 mblk_t *mp1; 1622 1623 mp1 = copymsg(mp); 1624 if (mp1 == NULL) { 1625 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1626 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1627 freemsg(mp); 1628 return (mp_ret); 1629 } 1630 freemsg(mp); 1631 mp = mp1; 1632 } 1633 1634 /* 1635 * In case mp has changed, verify the message before any further 1636 * processes. 1637 */ 1638 ipha = (ipha_t *)mp->b_rptr; 1639 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1640 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 1641 freemsg(mp); 1642 return (mp_ret); 1643 } 1644 1645 switch (icmph->icmph_type) { 1646 case ICMP_REDIRECT: 1647 icmp_redirect_v4(mp, ipha, icmph, ira); 1648 break; 1649 case ICMP_DEST_UNREACHABLE: 1650 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1651 /* Update DCE and adjust MTU is icmp header if needed */ 1652 icmp_inbound_too_big_v4(icmph, ira); 1653 } 1654 /* FALLTHRU */ 1655 default: 1656 icmp_inbound_error_fanout_v4(mp, icmph, ira); 1657 break; 1658 } 1659 return (mp_ret); 1660 } 1661 1662 /* 1663 * Send an ICMP echo, timestamp or address mask reply. 1664 * The caller has already updated the payload part of the packet. 1665 * We handle the ICMP checksum, IP source address selection and feed 1666 * the packet into ip_output_simple. 1667 */ 1668 static void 1669 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, 1670 ip_recv_attr_t *ira) 1671 { 1672 uint_t ip_hdr_length = ira->ira_ip_hdr_length; 1673 ill_t *ill = ira->ira_ill; 1674 ip_stack_t *ipst = ill->ill_ipst; 1675 ip_xmit_attr_t ixas; 1676 1677 /* Send out an ICMP packet */ 1678 icmph->icmph_checksum = 0; 1679 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0); 1680 /* Reset time to live. */ 1681 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1682 { 1683 /* Swap source and destination addresses */ 1684 ipaddr_t tmp; 1685 1686 tmp = ipha->ipha_src; 1687 ipha->ipha_src = ipha->ipha_dst; 1688 ipha->ipha_dst = tmp; 1689 } 1690 ipha->ipha_ident = 0; 1691 if (!IS_SIMPLE_IPH(ipha)) 1692 icmp_options_update(ipha); 1693 1694 bzero(&ixas, sizeof (ixas)); 1695 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 1696 ixas.ixa_zoneid = ira->ira_zoneid; 1697 ixas.ixa_cred = kcred; 1698 ixas.ixa_cpid = NOPID; 1699 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 1700 ixas.ixa_ifindex = 0; 1701 ixas.ixa_ipst = ipst; 1702 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1703 1704 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 1705 /* 1706 * This packet should go out the same way as it 1707 * came in i.e in clear, independent of the IPsec policy 1708 * for transmitting packets. 1709 */ 1710 ixas.ixa_flags |= IXAF_NO_IPSEC; 1711 } else { 1712 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 1713 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1714 /* Note: mp already consumed and ip_drop_packet done */ 1715 return; 1716 } 1717 } 1718 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1719 /* 1720 * Not one or our addresses (IRE_LOCALs), thus we let 1721 * ip_output_simple pick the source. 1722 */ 1723 ipha->ipha_src = INADDR_ANY; 1724 ixas.ixa_flags |= IXAF_SET_SOURCE; 1725 } 1726 /* Should we send with DF and use dce_pmtu? */ 1727 if (ipst->ips_ipv4_icmp_return_pmtu) { 1728 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY; 1729 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS; 1730 } 1731 1732 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 1733 1734 (void) ip_output_simple(mp, &ixas); 1735 ixa_cleanup(&ixas); 1736 } 1737 1738 /* 1739 * Verify the ICMP messages for either for ICMP error or redirect packet. 1740 * The caller should have fully pulled up the message. If it's a redirect 1741 * packet, only basic checks on IP header will be done; otherwise, verify 1742 * the packet by looking at the included ULP header. 1743 * 1744 * Called before icmp_inbound_error_fanout_v4 is called. 1745 */ 1746 static boolean_t 1747 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 1748 { 1749 ill_t *ill = ira->ira_ill; 1750 int hdr_length; 1751 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1752 conn_t *connp; 1753 ipha_t *ipha; /* Inner IP header */ 1754 1755 ipha = (ipha_t *)&icmph[1]; 1756 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr) 1757 goto truncated; 1758 1759 hdr_length = IPH_HDR_LENGTH(ipha); 1760 1761 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) 1762 goto discard_pkt; 1763 1764 if (hdr_length < sizeof (ipha_t)) 1765 goto truncated; 1766 1767 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) 1768 goto truncated; 1769 1770 /* 1771 * Stop here for ICMP_REDIRECT. 1772 */ 1773 if (icmph->icmph_type == ICMP_REDIRECT) 1774 return (B_TRUE); 1775 1776 /* 1777 * ICMP errors only. 1778 */ 1779 switch (ipha->ipha_protocol) { 1780 case IPPROTO_UDP: 1781 /* 1782 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1783 * transport header. 1784 */ 1785 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1786 mp->b_wptr) 1787 goto truncated; 1788 break; 1789 case IPPROTO_TCP: { 1790 tcpha_t *tcpha; 1791 1792 /* 1793 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1794 * transport header. 1795 */ 1796 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1797 mp->b_wptr) 1798 goto truncated; 1799 1800 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 1801 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 1802 ipst); 1803 if (connp == NULL) 1804 goto discard_pkt; 1805 1806 if ((connp->conn_verifyicmp != NULL) && 1807 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) { 1808 CONN_DEC_REF(connp); 1809 goto discard_pkt; 1810 } 1811 CONN_DEC_REF(connp); 1812 break; 1813 } 1814 case IPPROTO_SCTP: 1815 /* 1816 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1817 * transport header. 1818 */ 1819 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1820 mp->b_wptr) 1821 goto truncated; 1822 break; 1823 case IPPROTO_ESP: 1824 case IPPROTO_AH: 1825 break; 1826 case IPPROTO_ENCAP: 1827 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 1828 mp->b_wptr) 1829 goto truncated; 1830 break; 1831 default: 1832 break; 1833 } 1834 1835 return (B_TRUE); 1836 1837 discard_pkt: 1838 /* Bogus ICMP error. */ 1839 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1840 return (B_FALSE); 1841 1842 truncated: 1843 /* We pulled up everthing already. Must be truncated */ 1844 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1845 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1846 return (B_FALSE); 1847 } 1848 1849 /* Table from RFC 1191 */ 1850 static int icmp_frag_size_table[] = 1851 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 1852 1853 /* 1854 * Process received ICMP Packet too big. 1855 * Just handles the DCE create/update, including using the above table of 1856 * PMTU guesses. The caller is responsible for validating the packet before 1857 * passing it in and also to fanout the ICMP error to any matching transport 1858 * conns. Assumes the message has been fully pulled up and verified. 1859 * 1860 * Before getting here, the caller has called icmp_inbound_verify_v4() 1861 * that should have verified with ULP to prevent undoing the changes we're 1862 * going to make to DCE. For example, TCP might have verified that the packet 1863 * which generated error is in the send window. 1864 * 1865 * In some cases modified this MTU in the ICMP header packet; the caller 1866 * should pass to the matching ULP after this returns. 1867 */ 1868 static void 1869 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira) 1870 { 1871 dce_t *dce; 1872 int old_mtu; 1873 int mtu, orig_mtu; 1874 ipaddr_t dst; 1875 boolean_t disable_pmtud; 1876 ill_t *ill = ira->ira_ill; 1877 ip_stack_t *ipst = ill->ill_ipst; 1878 uint_t hdr_length; 1879 ipha_t *ipha; 1880 1881 /* Caller already pulled up everything. */ 1882 ipha = (ipha_t *)&icmph[1]; 1883 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 1884 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 1885 ASSERT(ill != NULL); 1886 1887 hdr_length = IPH_HDR_LENGTH(ipha); 1888 1889 /* 1890 * We handle path MTU for source routed packets since the DCE 1891 * is looked up using the final destination. 1892 */ 1893 dst = ip_get_dst(ipha); 1894 1895 dce = dce_lookup_and_add_v4(dst, ipst); 1896 if (dce == NULL) { 1897 /* Couldn't add a unique one - ENOMEM */ 1898 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n", 1899 ntohl(dst))); 1900 return; 1901 } 1902 1903 /* Check for MTU discovery advice as described in RFC 1191 */ 1904 mtu = ntohs(icmph->icmph_du_mtu); 1905 orig_mtu = mtu; 1906 disable_pmtud = B_FALSE; 1907 1908 mutex_enter(&dce->dce_lock); 1909 if (dce->dce_flags & DCEF_PMTU) 1910 old_mtu = dce->dce_pmtu; 1911 else 1912 old_mtu = ill->ill_mtu; 1913 1914 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 1915 uint32_t length; 1916 int i; 1917 1918 /* 1919 * Use the table from RFC 1191 to figure out 1920 * the next "plateau" based on the length in 1921 * the original IP packet. 1922 */ 1923 length = ntohs(ipha->ipha_length); 1924 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce, 1925 uint32_t, length); 1926 if (old_mtu <= length && 1927 old_mtu >= length - hdr_length) { 1928 /* 1929 * Handle broken BSD 4.2 systems that 1930 * return the wrong ipha_length in ICMP 1931 * errors. 1932 */ 1933 ip1dbg(("Wrong mtu: sent %d, dce %d\n", 1934 length, old_mtu)); 1935 length -= hdr_length; 1936 } 1937 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 1938 if (length > icmp_frag_size_table[i]) 1939 break; 1940 } 1941 if (i == A_CNT(icmp_frag_size_table)) { 1942 /* Smaller than IP_MIN_MTU! */ 1943 ip1dbg(("Too big for packet size %d\n", 1944 length)); 1945 disable_pmtud = B_TRUE; 1946 mtu = ipst->ips_ip_pmtu_min; 1947 } else { 1948 mtu = icmp_frag_size_table[i]; 1949 ip1dbg(("Calculated mtu %d, packet size %d, " 1950 "before %d\n", mtu, length, old_mtu)); 1951 if (mtu < ipst->ips_ip_pmtu_min) { 1952 mtu = ipst->ips_ip_pmtu_min; 1953 disable_pmtud = B_TRUE; 1954 } 1955 } 1956 } 1957 if (disable_pmtud) 1958 dce->dce_flags |= DCEF_TOO_SMALL_PMTU; 1959 else 1960 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU; 1961 1962 dce->dce_pmtu = MIN(old_mtu, mtu); 1963 /* Prepare to send the new max frag size for the ULP. */ 1964 icmph->icmph_du_zero = 0; 1965 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu); 1966 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *, 1967 dce, int, orig_mtu, int, mtu); 1968 1969 /* We now have a PMTU for sure */ 1970 dce->dce_flags |= DCEF_PMTU; 1971 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 1972 mutex_exit(&dce->dce_lock); 1973 /* 1974 * After dropping the lock the new value is visible to everyone. 1975 * Then we bump the generation number so any cached values reinspect 1976 * the dce_t. 1977 */ 1978 dce_increment_generation(dce); 1979 dce_refrele(dce); 1980 } 1981 1982 /* 1983 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4 1984 * calls this function. 1985 */ 1986 static mblk_t * 1987 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha) 1988 { 1989 int length; 1990 1991 ASSERT(mp->b_datap->db_type == M_DATA); 1992 1993 /* icmp_inbound_v4 has already pulled up the whole error packet */ 1994 ASSERT(mp->b_cont == NULL); 1995 1996 /* 1997 * The length that we want to overlay is the inner header 1998 * and what follows it. 1999 */ 2000 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr); 2001 2002 /* 2003 * Overlay the inner header and whatever follows it over the 2004 * outer header. 2005 */ 2006 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2007 2008 /* Adjust for what we removed */ 2009 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha; 2010 return (mp); 2011 } 2012 2013 /* 2014 * Try to pass the ICMP message upstream in case the ULP cares. 2015 * 2016 * If the packet that caused the ICMP error is secure, we send 2017 * it to AH/ESP to make sure that the attached packet has a 2018 * valid association. ipha in the code below points to the 2019 * IP header of the packet that caused the error. 2020 * 2021 * For IPsec cases, we let the next-layer-up (which has access to 2022 * cached policy on the conn_t, or can query the SPD directly) 2023 * subtract out any IPsec overhead if they must. We therefore make no 2024 * adjustments here for IPsec overhead. 2025 * 2026 * IFN could have been generated locally or by some router. 2027 * 2028 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call 2029 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN. 2030 * This happens because IP adjusted its value of MTU on an 2031 * earlier IFN message and could not tell the upper layer, 2032 * the new adjusted value of MTU e.g. Packet was encrypted 2033 * or there was not enough information to fanout to upper 2034 * layers. Thus on the next outbound datagram, ire_send_wire 2035 * generates the IFN, where IPsec processing has *not* been 2036 * done. 2037 * 2038 * Note that we retain ixa_fragsize across IPsec thus once 2039 * we have picking ixa_fragsize and entered ipsec_out_process we do 2040 * no change the fragsize even if the path MTU changes before 2041 * we reach ip_output_post_ipsec. 2042 * 2043 * In the local case, IRAF_LOOPBACK will be set indicating 2044 * that IFN was generated locally. 2045 * 2046 * ROUTER : IFN could be secure or non-secure. 2047 * 2048 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2049 * packet in error has AH/ESP headers to validate the AH/ESP 2050 * headers. AH/ESP will verify whether there is a valid SA or 2051 * not and send it back. We will fanout again if we have more 2052 * data in the packet. 2053 * 2054 * If the packet in error does not have AH/ESP, we handle it 2055 * like any other case. 2056 * 2057 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it 2058 * up to AH/ESP for validation. AH/ESP will verify whether there is a 2059 * valid SA or not and send it back. We will fanout again if 2060 * we have more data in the packet. 2061 * 2062 * If the packet in error does not have AH/ESP, we handle it 2063 * like any other case. 2064 * 2065 * The caller must have called icmp_inbound_verify_v4. 2066 */ 2067 static void 2068 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 2069 { 2070 uint16_t *up; /* Pointer to ports in ULP header */ 2071 uint32_t ports; /* reversed ports for fanout */ 2072 ipha_t ripha; /* With reversed addresses */ 2073 ipha_t *ipha; /* Inner IP header */ 2074 uint_t hdr_length; /* Inner IP header length */ 2075 tcpha_t *tcpha; 2076 conn_t *connp; 2077 ill_t *ill = ira->ira_ill; 2078 ip_stack_t *ipst = ill->ill_ipst; 2079 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2080 ill_t *rill = ira->ira_rill; 2081 2082 /* Caller already pulled up everything. */ 2083 ipha = (ipha_t *)&icmph[1]; 2084 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr); 2085 ASSERT(mp->b_cont == NULL); 2086 2087 hdr_length = IPH_HDR_LENGTH(ipha); 2088 ira->ira_protocol = ipha->ipha_protocol; 2089 2090 /* 2091 * We need a separate IP header with the source and destination 2092 * addresses reversed to do fanout/classification because the ipha in 2093 * the ICMP error is in the form we sent it out. 2094 */ 2095 ripha.ipha_src = ipha->ipha_dst; 2096 ripha.ipha_dst = ipha->ipha_src; 2097 ripha.ipha_protocol = ipha->ipha_protocol; 2098 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2099 2100 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n", 2101 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2102 ntohl(ipha->ipha_dst), 2103 icmph->icmph_type, icmph->icmph_code)); 2104 2105 switch (ipha->ipha_protocol) { 2106 case IPPROTO_UDP: 2107 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2108 2109 /* Attempt to find a client stream based on port. */ 2110 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n", 2111 ntohs(up[0]), ntohs(up[1]))); 2112 2113 /* Note that we send error to all matches. */ 2114 ira->ira_flags |= IRAF_ICMP_ERROR; 2115 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira); 2116 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2117 return; 2118 2119 case IPPROTO_TCP: 2120 /* 2121 * Find a TCP client stream for this packet. 2122 * Note that we do a reverse lookup since the header is 2123 * in the form we sent it out. 2124 */ 2125 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 2126 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 2127 ipst); 2128 if (connp == NULL) 2129 goto discard_pkt; 2130 2131 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 2132 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 2133 mp = ipsec_check_inbound_policy(mp, connp, 2134 ipha, NULL, ira); 2135 if (mp == NULL) { 2136 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2137 /* Note that mp is NULL */ 2138 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2139 CONN_DEC_REF(connp); 2140 return; 2141 } 2142 } 2143 2144 ira->ira_flags |= IRAF_ICMP_ERROR; 2145 ira->ira_ill = ira->ira_rill = NULL; 2146 if (IPCL_IS_TCP(connp)) { 2147 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2148 connp->conn_recvicmp, connp, ira, SQ_FILL, 2149 SQTAG_TCP_INPUT_ICMP_ERR); 2150 } else { 2151 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 2152 (connp->conn_recv)(connp, mp, NULL, ira); 2153 CONN_DEC_REF(connp); 2154 } 2155 ira->ira_ill = ill; 2156 ira->ira_rill = rill; 2157 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2158 return; 2159 2160 case IPPROTO_SCTP: 2161 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2162 /* Find a SCTP client stream for this packet. */ 2163 ((uint16_t *)&ports)[0] = up[1]; 2164 ((uint16_t *)&ports)[1] = up[0]; 2165 2166 ira->ira_flags |= IRAF_ICMP_ERROR; 2167 ip_fanout_sctp(mp, &ripha, NULL, ports, ira); 2168 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2169 return; 2170 2171 case IPPROTO_ESP: 2172 case IPPROTO_AH: 2173 if (!ipsec_loaded(ipss)) { 2174 ip_proto_not_sup(mp, ira); 2175 return; 2176 } 2177 2178 if (ipha->ipha_protocol == IPPROTO_ESP) 2179 mp = ipsecesp_icmp_error(mp, ira); 2180 else 2181 mp = ipsecah_icmp_error(mp, ira); 2182 if (mp == NULL) 2183 return; 2184 2185 /* Just in case ipsec didn't preserve the NULL b_cont */ 2186 if (mp->b_cont != NULL) { 2187 if (!pullupmsg(mp, -1)) 2188 goto discard_pkt; 2189 } 2190 2191 /* 2192 * Note that ira_pktlen and ira_ip_hdr_length are no longer 2193 * correct, but we don't use them any more here. 2194 * 2195 * If succesful, the mp has been modified to not include 2196 * the ESP/AH header so we can fanout to the ULP's icmp 2197 * error handler. 2198 */ 2199 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2200 goto truncated; 2201 2202 /* Verify the modified message before any further processes. */ 2203 ipha = (ipha_t *)mp->b_rptr; 2204 hdr_length = IPH_HDR_LENGTH(ipha); 2205 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2206 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2207 freemsg(mp); 2208 return; 2209 } 2210 2211 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2212 return; 2213 2214 case IPPROTO_ENCAP: { 2215 /* Look for self-encapsulated packets that caused an error */ 2216 ipha_t *in_ipha; 2217 2218 /* 2219 * Caller has verified that length has to be 2220 * at least the size of IP header. 2221 */ 2222 ASSERT(hdr_length >= sizeof (ipha_t)); 2223 /* 2224 * Check the sanity of the inner IP header like 2225 * we did for the outer header. 2226 */ 2227 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2228 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2229 goto discard_pkt; 2230 } 2231 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2232 goto discard_pkt; 2233 } 2234 /* Check for Self-encapsulated tunnels */ 2235 if (in_ipha->ipha_src == ipha->ipha_src && 2236 in_ipha->ipha_dst == ipha->ipha_dst) { 2237 2238 mp = icmp_inbound_self_encap_error_v4(mp, ipha, 2239 in_ipha); 2240 if (mp == NULL) 2241 goto discard_pkt; 2242 2243 /* 2244 * Just in case self_encap didn't preserve the NULL 2245 * b_cont 2246 */ 2247 if (mp->b_cont != NULL) { 2248 if (!pullupmsg(mp, -1)) 2249 goto discard_pkt; 2250 } 2251 /* 2252 * Note that ira_pktlen and ira_ip_hdr_length are no 2253 * longer correct, but we don't use them any more here. 2254 */ 2255 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2256 goto truncated; 2257 2258 /* 2259 * Verify the modified message before any further 2260 * processes. 2261 */ 2262 ipha = (ipha_t *)mp->b_rptr; 2263 hdr_length = IPH_HDR_LENGTH(ipha); 2264 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2265 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2266 freemsg(mp); 2267 return; 2268 } 2269 2270 /* 2271 * The packet in error is self-encapsualted. 2272 * And we are finding it further encapsulated 2273 * which we could not have possibly generated. 2274 */ 2275 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2276 goto discard_pkt; 2277 } 2278 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2279 return; 2280 } 2281 /* No self-encapsulated */ 2282 /* FALLTHRU */ 2283 } 2284 case IPPROTO_IPV6: 2285 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src, 2286 &ripha.ipha_dst, ipst)) != NULL) { 2287 ira->ira_flags |= IRAF_ICMP_ERROR; 2288 connp->conn_recvicmp(connp, mp, NULL, ira); 2289 CONN_DEC_REF(connp); 2290 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2291 return; 2292 } 2293 /* 2294 * No IP tunnel is interested, fallthrough and see 2295 * if a raw socket will want it. 2296 */ 2297 /* FALLTHRU */ 2298 default: 2299 ira->ira_flags |= IRAF_ICMP_ERROR; 2300 ip_fanout_proto_v4(mp, &ripha, ira); 2301 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2302 return; 2303 } 2304 /* NOTREACHED */ 2305 discard_pkt: 2306 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2307 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n")); 2308 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2309 freemsg(mp); 2310 return; 2311 2312 truncated: 2313 /* We pulled up everthing already. Must be truncated */ 2314 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 2315 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 2316 freemsg(mp); 2317 } 2318 2319 /* 2320 * Common IP options parser. 2321 * 2322 * Setup routine: fill in *optp with options-parsing state, then 2323 * tail-call ipoptp_next to return the first option. 2324 */ 2325 uint8_t 2326 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2327 { 2328 uint32_t totallen; /* total length of all options */ 2329 2330 totallen = ipha->ipha_version_and_hdr_length - 2331 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2332 totallen <<= 2; 2333 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2334 optp->ipoptp_end = optp->ipoptp_next + totallen; 2335 optp->ipoptp_flags = 0; 2336 return (ipoptp_next(optp)); 2337 } 2338 2339 /* Like above but without an ipha_t */ 2340 uint8_t 2341 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt) 2342 { 2343 optp->ipoptp_next = opt; 2344 optp->ipoptp_end = optp->ipoptp_next + totallen; 2345 optp->ipoptp_flags = 0; 2346 return (ipoptp_next(optp)); 2347 } 2348 2349 /* 2350 * Common IP options parser: extract next option. 2351 */ 2352 uint8_t 2353 ipoptp_next(ipoptp_t *optp) 2354 { 2355 uint8_t *end = optp->ipoptp_end; 2356 uint8_t *cur = optp->ipoptp_next; 2357 uint8_t opt, len, pointer; 2358 2359 /* 2360 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2361 * has been corrupted. 2362 */ 2363 ASSERT(cur <= end); 2364 2365 if (cur == end) 2366 return (IPOPT_EOL); 2367 2368 opt = cur[IPOPT_OPTVAL]; 2369 2370 /* 2371 * Skip any NOP options. 2372 */ 2373 while (opt == IPOPT_NOP) { 2374 cur++; 2375 if (cur == end) 2376 return (IPOPT_EOL); 2377 opt = cur[IPOPT_OPTVAL]; 2378 } 2379 2380 if (opt == IPOPT_EOL) 2381 return (IPOPT_EOL); 2382 2383 /* 2384 * Option requiring a length. 2385 */ 2386 if ((cur + 1) >= end) { 2387 optp->ipoptp_flags |= IPOPTP_ERROR; 2388 return (IPOPT_EOL); 2389 } 2390 len = cur[IPOPT_OLEN]; 2391 if (len < 2) { 2392 optp->ipoptp_flags |= IPOPTP_ERROR; 2393 return (IPOPT_EOL); 2394 } 2395 optp->ipoptp_cur = cur; 2396 optp->ipoptp_len = len; 2397 optp->ipoptp_next = cur + len; 2398 if (cur + len > end) { 2399 optp->ipoptp_flags |= IPOPTP_ERROR; 2400 return (IPOPT_EOL); 2401 } 2402 2403 /* 2404 * For the options which require a pointer field, make sure 2405 * its there, and make sure it points to either something 2406 * inside this option, or the end of the option. 2407 */ 2408 switch (opt) { 2409 case IPOPT_RR: 2410 case IPOPT_TS: 2411 case IPOPT_LSRR: 2412 case IPOPT_SSRR: 2413 if (len <= IPOPT_OFFSET) { 2414 optp->ipoptp_flags |= IPOPTP_ERROR; 2415 return (opt); 2416 } 2417 pointer = cur[IPOPT_OFFSET]; 2418 if (pointer - 1 > len) { 2419 optp->ipoptp_flags |= IPOPTP_ERROR; 2420 return (opt); 2421 } 2422 break; 2423 } 2424 2425 /* 2426 * Sanity check the pointer field based on the type of the 2427 * option. 2428 */ 2429 switch (opt) { 2430 case IPOPT_RR: 2431 case IPOPT_SSRR: 2432 case IPOPT_LSRR: 2433 if (pointer < IPOPT_MINOFF_SR) 2434 optp->ipoptp_flags |= IPOPTP_ERROR; 2435 break; 2436 case IPOPT_TS: 2437 if (pointer < IPOPT_MINOFF_IT) 2438 optp->ipoptp_flags |= IPOPTP_ERROR; 2439 /* 2440 * Note that the Internet Timestamp option also 2441 * contains two four bit fields (the Overflow field, 2442 * and the Flag field), which follow the pointer 2443 * field. We don't need to check that these fields 2444 * fall within the length of the option because this 2445 * was implicitely done above. We've checked that the 2446 * pointer value is at least IPOPT_MINOFF_IT, and that 2447 * it falls within the option. Since IPOPT_MINOFF_IT > 2448 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2449 */ 2450 ASSERT(len > IPOPT_POS_OV_FLG); 2451 break; 2452 } 2453 2454 return (opt); 2455 } 2456 2457 /* 2458 * Use the outgoing IP header to create an IP_OPTIONS option the way 2459 * it was passed down from the application. 2460 * 2461 * This is compatible with BSD in that it returns 2462 * the reverse source route with the final destination 2463 * as the last entry. The first 4 bytes of the option 2464 * will contain the final destination. 2465 */ 2466 int 2467 ip_opt_get_user(conn_t *connp, uchar_t *buf) 2468 { 2469 ipoptp_t opts; 2470 uchar_t *opt; 2471 uint8_t optval; 2472 uint8_t optlen; 2473 uint32_t len = 0; 2474 uchar_t *buf1 = buf; 2475 uint32_t totallen; 2476 ipaddr_t dst; 2477 ip_pkt_t *ipp = &connp->conn_xmit_ipp; 2478 2479 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 2480 return (0); 2481 2482 totallen = ipp->ipp_ipv4_options_len; 2483 if (totallen & 0x3) 2484 return (0); 2485 2486 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2487 len += IP_ADDR_LEN; 2488 bzero(buf1, IP_ADDR_LEN); 2489 2490 dst = connp->conn_faddr_v4; 2491 2492 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 2493 optval != IPOPT_EOL; 2494 optval = ipoptp_next(&opts)) { 2495 int off; 2496 2497 opt = opts.ipoptp_cur; 2498 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 2499 break; 2500 } 2501 optlen = opts.ipoptp_len; 2502 2503 switch (optval) { 2504 case IPOPT_SSRR: 2505 case IPOPT_LSRR: 2506 2507 /* 2508 * Insert destination as the first entry in the source 2509 * route and move down the entries on step. 2510 * The last entry gets placed at buf1. 2511 */ 2512 buf[IPOPT_OPTVAL] = optval; 2513 buf[IPOPT_OLEN] = optlen; 2514 buf[IPOPT_OFFSET] = optlen; 2515 2516 off = optlen - IP_ADDR_LEN; 2517 if (off < 0) { 2518 /* No entries in source route */ 2519 break; 2520 } 2521 /* Last entry in source route if not already set */ 2522 if (dst == INADDR_ANY) 2523 bcopy(opt + off, buf1, IP_ADDR_LEN); 2524 off -= IP_ADDR_LEN; 2525 2526 while (off > 0) { 2527 bcopy(opt + off, 2528 buf + off + IP_ADDR_LEN, 2529 IP_ADDR_LEN); 2530 off -= IP_ADDR_LEN; 2531 } 2532 /* ipha_dst into first slot */ 2533 bcopy(&dst, buf + off + IP_ADDR_LEN, 2534 IP_ADDR_LEN); 2535 buf += optlen; 2536 len += optlen; 2537 break; 2538 2539 default: 2540 bcopy(opt, buf, optlen); 2541 buf += optlen; 2542 len += optlen; 2543 break; 2544 } 2545 } 2546 done: 2547 /* Pad the resulting options */ 2548 while (len & 0x3) { 2549 *buf++ = IPOPT_EOL; 2550 len++; 2551 } 2552 return (len); 2553 } 2554 2555 /* 2556 * Update any record route or timestamp options to include this host. 2557 * Reverse any source route option. 2558 * This routine assumes that the options are well formed i.e. that they 2559 * have already been checked. 2560 */ 2561 static void 2562 icmp_options_update(ipha_t *ipha) 2563 { 2564 ipoptp_t opts; 2565 uchar_t *opt; 2566 uint8_t optval; 2567 ipaddr_t src; /* Our local address */ 2568 ipaddr_t dst; 2569 2570 ip2dbg(("icmp_options_update\n")); 2571 src = ipha->ipha_src; 2572 dst = ipha->ipha_dst; 2573 2574 for (optval = ipoptp_first(&opts, ipha); 2575 optval != IPOPT_EOL; 2576 optval = ipoptp_next(&opts)) { 2577 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2578 opt = opts.ipoptp_cur; 2579 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2580 optval, opts.ipoptp_len)); 2581 switch (optval) { 2582 int off1, off2; 2583 case IPOPT_SSRR: 2584 case IPOPT_LSRR: 2585 /* 2586 * Reverse the source route. The first entry 2587 * should be the next to last one in the current 2588 * source route (the last entry is our address). 2589 * The last entry should be the final destination. 2590 */ 2591 off1 = IPOPT_MINOFF_SR - 1; 2592 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2593 if (off2 < 0) { 2594 /* No entries in source route */ 2595 ip1dbg(( 2596 "icmp_options_update: bad src route\n")); 2597 break; 2598 } 2599 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2600 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2601 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2602 off2 -= IP_ADDR_LEN; 2603 2604 while (off1 < off2) { 2605 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2606 bcopy((char *)opt + off2, (char *)opt + off1, 2607 IP_ADDR_LEN); 2608 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2609 off1 += IP_ADDR_LEN; 2610 off2 -= IP_ADDR_LEN; 2611 } 2612 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2613 break; 2614 } 2615 } 2616 } 2617 2618 /* 2619 * Process received ICMP Redirect messages. 2620 * Assumes the caller has verified that the headers are in the pulled up mblk. 2621 * Consumes mp. 2622 */ 2623 static void 2624 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira) 2625 { 2626 ire_t *ire, *nire; 2627 ire_t *prev_ire; 2628 ipaddr_t src, dst, gateway; 2629 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2630 ipha_t *inner_ipha; /* Inner IP header */ 2631 2632 /* Caller already pulled up everything. */ 2633 inner_ipha = (ipha_t *)&icmph[1]; 2634 src = ipha->ipha_src; 2635 dst = inner_ipha->ipha_dst; 2636 gateway = icmph->icmph_rd_gateway; 2637 /* Make sure the new gateway is reachable somehow. */ 2638 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL, 2639 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 2640 /* 2641 * Make sure we had a route for the dest in question and that 2642 * that route was pointing to the old gateway (the source of the 2643 * redirect packet.) 2644 * We do longest match and then compare ire_gateway_addr below. 2645 */ 2646 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES, 2647 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 2648 /* 2649 * Check that 2650 * the redirect was not from ourselves 2651 * the new gateway and the old gateway are directly reachable 2652 */ 2653 if (prev_ire == NULL || ire == NULL || 2654 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) || 2655 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 2656 !(ire->ire_type & IRE_IF_ALL) || 2657 prev_ire->ire_gateway_addr != src) { 2658 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2659 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill); 2660 freemsg(mp); 2661 if (ire != NULL) 2662 ire_refrele(ire); 2663 if (prev_ire != NULL) 2664 ire_refrele(prev_ire); 2665 return; 2666 } 2667 2668 ire_refrele(prev_ire); 2669 ire_refrele(ire); 2670 2671 /* 2672 * TODO: more precise handling for cases 0, 2, 3, the latter two 2673 * require TOS routing 2674 */ 2675 switch (icmph->icmph_code) { 2676 case 0: 2677 case 1: 2678 /* TODO: TOS specificity for cases 2 and 3 */ 2679 case 2: 2680 case 3: 2681 break; 2682 default: 2683 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2684 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill); 2685 freemsg(mp); 2686 return; 2687 } 2688 /* 2689 * Create a Route Association. This will allow us to remember that 2690 * someone we believe told us to use the particular gateway. 2691 */ 2692 ire = ire_create( 2693 (uchar_t *)&dst, /* dest addr */ 2694 (uchar_t *)&ip_g_all_ones, /* mask */ 2695 (uchar_t *)&gateway, /* gateway addr */ 2696 IRE_HOST, 2697 NULL, /* ill */ 2698 ALL_ZONES, 2699 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2700 NULL, /* tsol_gc_t */ 2701 ipst); 2702 2703 if (ire == NULL) { 2704 freemsg(mp); 2705 return; 2706 } 2707 nire = ire_add(ire); 2708 /* Check if it was a duplicate entry */ 2709 if (nire != NULL && nire != ire) { 2710 ASSERT(nire->ire_identical_ref > 1); 2711 ire_delete(nire); 2712 ire_refrele(nire); 2713 nire = NULL; 2714 } 2715 ire = nire; 2716 if (ire != NULL) { 2717 ire_refrele(ire); /* Held in ire_add */ 2718 2719 /* tell routing sockets that we received a redirect */ 2720 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2721 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2722 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 2723 } 2724 2725 /* 2726 * Delete any existing IRE_HOST type redirect ires for this destination. 2727 * This together with the added IRE has the effect of 2728 * modifying an existing redirect. 2729 */ 2730 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL, 2731 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL); 2732 if (prev_ire != NULL) { 2733 if (prev_ire ->ire_flags & RTF_DYNAMIC) 2734 ire_delete(prev_ire); 2735 ire_refrele(prev_ire); 2736 } 2737 2738 freemsg(mp); 2739 } 2740 2741 /* 2742 * Generate an ICMP parameter problem message. 2743 * When called from ip_output side a minimal ip_recv_attr_t needs to be 2744 * constructed by the caller. 2745 */ 2746 static void 2747 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira) 2748 { 2749 icmph_t icmph; 2750 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2751 2752 mp = icmp_pkt_err_ok(mp, ira); 2753 if (mp == NULL) 2754 return; 2755 2756 bzero(&icmph, sizeof (icmph_t)); 2757 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2758 icmph.icmph_pp_ptr = ptr; 2759 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 2760 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 2761 } 2762 2763 /* 2764 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2765 * the ICMP header pointed to by "stuff". (May be called as writer.) 2766 * Note: assumes that icmp_pkt_err_ok has been called to verify that 2767 * an icmp error packet can be sent. 2768 * Assigns an appropriate source address to the packet. If ipha_dst is 2769 * one of our addresses use it for source. Otherwise let ip_output_simple 2770 * pick the source address. 2771 */ 2772 static void 2773 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira) 2774 { 2775 ipaddr_t dst; 2776 icmph_t *icmph; 2777 ipha_t *ipha; 2778 uint_t len_needed; 2779 size_t msg_len; 2780 mblk_t *mp1; 2781 ipaddr_t src; 2782 ire_t *ire; 2783 ip_xmit_attr_t ixas; 2784 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2785 2786 ipha = (ipha_t *)mp->b_rptr; 2787 2788 bzero(&ixas, sizeof (ixas)); 2789 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 2790 ixas.ixa_zoneid = ira->ira_zoneid; 2791 ixas.ixa_ifindex = 0; 2792 ixas.ixa_ipst = ipst; 2793 ixas.ixa_cred = kcred; 2794 ixas.ixa_cpid = NOPID; 2795 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 2796 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2797 2798 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 2799 /* 2800 * Apply IPsec based on how IPsec was applied to 2801 * the packet that had the error. 2802 * 2803 * If it was an outbound packet that caused the ICMP 2804 * error, then the caller will have setup the IRA 2805 * appropriately. 2806 */ 2807 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 2808 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2809 /* Note: mp already consumed and ip_drop_packet done */ 2810 return; 2811 } 2812 } else { 2813 /* 2814 * This is in clear. The icmp message we are building 2815 * here should go out in clear, independent of our policy. 2816 */ 2817 ixas.ixa_flags |= IXAF_NO_IPSEC; 2818 } 2819 2820 /* Remember our eventual destination */ 2821 dst = ipha->ipha_src; 2822 2823 /* 2824 * If the packet was for one of our unicast addresses, make 2825 * sure we respond with that as the source. Otherwise 2826 * have ip_output_simple pick the source address. 2827 */ 2828 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0, 2829 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL, 2830 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL); 2831 if (ire != NULL) { 2832 ire_refrele(ire); 2833 src = ipha->ipha_dst; 2834 } else { 2835 src = INADDR_ANY; 2836 ixas.ixa_flags |= IXAF_SET_SOURCE; 2837 } 2838 2839 /* 2840 * Check if we can send back more then 8 bytes in addition to 2841 * the IP header. We try to send 64 bytes of data and the internal 2842 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 2843 */ 2844 len_needed = IPH_HDR_LENGTH(ipha); 2845 if (ipha->ipha_protocol == IPPROTO_ENCAP || 2846 ipha->ipha_protocol == IPPROTO_IPV6) { 2847 if (!pullupmsg(mp, -1)) { 2848 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2849 ip_drop_output("ipIfStatsOutDiscards", mp, NULL); 2850 freemsg(mp); 2851 return; 2852 } 2853 ipha = (ipha_t *)mp->b_rptr; 2854 2855 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2856 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 2857 len_needed)); 2858 } else { 2859 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 2860 2861 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 2862 len_needed += ip_hdr_length_v6(mp, ip6h); 2863 } 2864 } 2865 len_needed += ipst->ips_ip_icmp_return; 2866 msg_len = msgdsize(mp); 2867 if (msg_len > len_needed) { 2868 (void) adjmsg(mp, len_needed - msg_len); 2869 msg_len = len_needed; 2870 } 2871 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED); 2872 if (mp1 == NULL) { 2873 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 2874 freemsg(mp); 2875 return; 2876 } 2877 mp1->b_cont = mp; 2878 mp = mp1; 2879 2880 /* 2881 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this 2882 * node generates be accepted in peace by all on-host destinations. 2883 * If we do NOT assume that all on-host destinations trust 2884 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 2885 * (Look for IXAF_TRUSTED_ICMP). 2886 */ 2887 ixas.ixa_flags |= IXAF_TRUSTED_ICMP; 2888 2889 ipha = (ipha_t *)mp->b_rptr; 2890 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 2891 *ipha = icmp_ipha; 2892 ipha->ipha_src = src; 2893 ipha->ipha_dst = dst; 2894 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2895 msg_len += sizeof (icmp_ipha) + len; 2896 if (msg_len > IP_MAXPACKET) { 2897 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 2898 msg_len = IP_MAXPACKET; 2899 } 2900 ipha->ipha_length = htons((uint16_t)msg_len); 2901 icmph = (icmph_t *)&ipha[1]; 2902 bcopy(stuff, icmph, len); 2903 icmph->icmph_checksum = 0; 2904 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 2905 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2906 2907 (void) ip_output_simple(mp, &ixas); 2908 ixa_cleanup(&ixas); 2909 } 2910 2911 /* 2912 * Determine if an ICMP error packet can be sent given the rate limit. 2913 * The limit consists of an average frequency (icmp_pkt_err_interval measured 2914 * in milliseconds) and a burst size. Burst size number of packets can 2915 * be sent arbitrarely closely spaced. 2916 * The state is tracked using two variables to implement an approximate 2917 * token bucket filter: 2918 * icmp_pkt_err_last - lbolt value when the last burst started 2919 * icmp_pkt_err_sent - number of packets sent in current burst 2920 */ 2921 boolean_t 2922 icmp_err_rate_limit(ip_stack_t *ipst) 2923 { 2924 clock_t now = TICK_TO_MSEC(ddi_get_lbolt()); 2925 uint_t refilled; /* Number of packets refilled in tbf since last */ 2926 /* Guard against changes by loading into local variable */ 2927 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 2928 2929 if (err_interval == 0) 2930 return (B_FALSE); 2931 2932 if (ipst->ips_icmp_pkt_err_last > now) { 2933 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 2934 ipst->ips_icmp_pkt_err_last = 0; 2935 ipst->ips_icmp_pkt_err_sent = 0; 2936 } 2937 /* 2938 * If we are in a burst update the token bucket filter. 2939 * Update the "last" time to be close to "now" but make sure 2940 * we don't loose precision. 2941 */ 2942 if (ipst->ips_icmp_pkt_err_sent != 0) { 2943 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 2944 if (refilled > ipst->ips_icmp_pkt_err_sent) { 2945 ipst->ips_icmp_pkt_err_sent = 0; 2946 } else { 2947 ipst->ips_icmp_pkt_err_sent -= refilled; 2948 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 2949 } 2950 } 2951 if (ipst->ips_icmp_pkt_err_sent == 0) { 2952 /* Start of new burst */ 2953 ipst->ips_icmp_pkt_err_last = now; 2954 } 2955 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 2956 ipst->ips_icmp_pkt_err_sent++; 2957 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 2958 ipst->ips_icmp_pkt_err_sent)); 2959 return (B_FALSE); 2960 } 2961 ip1dbg(("icmp_err_rate_limit: dropped\n")); 2962 return (B_TRUE); 2963 } 2964 2965 /* 2966 * Check if it is ok to send an IPv4 ICMP error packet in 2967 * response to the IPv4 packet in mp. 2968 * Free the message and return null if no 2969 * ICMP error packet should be sent. 2970 */ 2971 static mblk_t * 2972 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira) 2973 { 2974 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2975 icmph_t *icmph; 2976 ipha_t *ipha; 2977 uint_t len_needed; 2978 2979 if (!mp) 2980 return (NULL); 2981 ipha = (ipha_t *)mp->b_rptr; 2982 if (ip_csum_hdr(ipha)) { 2983 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 2984 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL); 2985 freemsg(mp); 2986 return (NULL); 2987 } 2988 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST || 2989 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST || 2990 CLASSD(ipha->ipha_dst) || 2991 CLASSD(ipha->ipha_src) || 2992 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 2993 /* Note: only errors to the fragment with offset 0 */ 2994 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 2995 freemsg(mp); 2996 return (NULL); 2997 } 2998 if (ipha->ipha_protocol == IPPROTO_ICMP) { 2999 /* 3000 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3001 * errors in response to any ICMP errors. 3002 */ 3003 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3004 if (mp->b_wptr - mp->b_rptr < len_needed) { 3005 if (!pullupmsg(mp, len_needed)) { 3006 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3007 freemsg(mp); 3008 return (NULL); 3009 } 3010 ipha = (ipha_t *)mp->b_rptr; 3011 } 3012 icmph = (icmph_t *) 3013 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3014 switch (icmph->icmph_type) { 3015 case ICMP_DEST_UNREACHABLE: 3016 case ICMP_SOURCE_QUENCH: 3017 case ICMP_TIME_EXCEEDED: 3018 case ICMP_PARAM_PROBLEM: 3019 case ICMP_REDIRECT: 3020 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3021 freemsg(mp); 3022 return (NULL); 3023 default: 3024 break; 3025 } 3026 } 3027 /* 3028 * If this is a labeled system, then check to see if we're allowed to 3029 * send a response to this particular sender. If not, then just drop. 3030 */ 3031 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 3032 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3033 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3034 freemsg(mp); 3035 return (NULL); 3036 } 3037 if (icmp_err_rate_limit(ipst)) { 3038 /* 3039 * Only send ICMP error packets every so often. 3040 * This should be done on a per port/source basis, 3041 * but for now this will suffice. 3042 */ 3043 freemsg(mp); 3044 return (NULL); 3045 } 3046 return (mp); 3047 } 3048 3049 /* 3050 * Called when a packet was sent out the same link that it arrived on. 3051 * Check if it is ok to send a redirect and then send it. 3052 */ 3053 void 3054 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire, 3055 ip_recv_attr_t *ira) 3056 { 3057 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3058 ipaddr_t src, nhop; 3059 mblk_t *mp1; 3060 ire_t *nhop_ire; 3061 3062 /* 3063 * Check the source address to see if it originated 3064 * on the same logical subnet it is going back out on. 3065 * If so, we should be able to send it a redirect. 3066 * Avoid sending a redirect if the destination 3067 * is directly connected (i.e., we matched an IRE_ONLINK), 3068 * or if the packet was source routed out this interface. 3069 * 3070 * We avoid sending a redirect if the 3071 * destination is directly connected 3072 * because it is possible that multiple 3073 * IP subnets may have been configured on 3074 * the link, and the source may not 3075 * be on the same subnet as ip destination, 3076 * even though they are on the same 3077 * physical link. 3078 */ 3079 if ((ire->ire_type & IRE_ONLINK) || 3080 ip_source_routed(ipha, ipst)) 3081 return; 3082 3083 nhop_ire = ire_nexthop(ire); 3084 if (nhop_ire == NULL) 3085 return; 3086 3087 nhop = nhop_ire->ire_addr; 3088 3089 if (nhop_ire->ire_type & IRE_IF_CLONE) { 3090 ire_t *ire2; 3091 3092 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */ 3093 mutex_enter(&nhop_ire->ire_lock); 3094 ire2 = nhop_ire->ire_dep_parent; 3095 if (ire2 != NULL) 3096 ire_refhold(ire2); 3097 mutex_exit(&nhop_ire->ire_lock); 3098 ire_refrele(nhop_ire); 3099 nhop_ire = ire2; 3100 } 3101 if (nhop_ire == NULL) 3102 return; 3103 3104 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE)); 3105 3106 src = ipha->ipha_src; 3107 3108 /* 3109 * We look at the interface ire for the nexthop, 3110 * to see if ipha_src is in the same subnet 3111 * as the nexthop. 3112 */ 3113 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) { 3114 /* 3115 * The source is directly connected. 3116 */ 3117 mp1 = copymsg(mp); 3118 if (mp1 != NULL) { 3119 icmp_send_redirect(mp1, nhop, ira); 3120 } 3121 } 3122 ire_refrele(nhop_ire); 3123 } 3124 3125 /* 3126 * Generate an ICMP redirect message. 3127 */ 3128 static void 3129 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira) 3130 { 3131 icmph_t icmph; 3132 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3133 3134 mp = icmp_pkt_err_ok(mp, ira); 3135 if (mp == NULL) 3136 return; 3137 3138 bzero(&icmph, sizeof (icmph_t)); 3139 icmph.icmph_type = ICMP_REDIRECT; 3140 icmph.icmph_code = 1; 3141 icmph.icmph_rd_gateway = gateway; 3142 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3143 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3144 } 3145 3146 /* 3147 * Generate an ICMP time exceeded message. 3148 */ 3149 void 3150 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3151 { 3152 icmph_t icmph; 3153 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3154 3155 mp = icmp_pkt_err_ok(mp, ira); 3156 if (mp == NULL) 3157 return; 3158 3159 bzero(&icmph, sizeof (icmph_t)); 3160 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3161 icmph.icmph_code = code; 3162 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3163 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3164 } 3165 3166 /* 3167 * Generate an ICMP unreachable message. 3168 * When called from ip_output side a minimal ip_recv_attr_t needs to be 3169 * constructed by the caller. 3170 */ 3171 void 3172 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3173 { 3174 icmph_t icmph; 3175 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3176 3177 mp = icmp_pkt_err_ok(mp, ira); 3178 if (mp == NULL) 3179 return; 3180 3181 bzero(&icmph, sizeof (icmph_t)); 3182 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3183 icmph.icmph_code = code; 3184 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3185 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3186 } 3187 3188 /* 3189 * Latch in the IPsec state for a stream based the policy in the listener 3190 * and the actions in the ip_recv_attr_t. 3191 * Called directly from TCP and SCTP. 3192 */ 3193 boolean_t 3194 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira) 3195 { 3196 ASSERT(lconnp->conn_policy != NULL); 3197 ASSERT(connp->conn_policy == NULL); 3198 3199 IPPH_REFHOLD(lconnp->conn_policy); 3200 connp->conn_policy = lconnp->conn_policy; 3201 3202 if (ira->ira_ipsec_action != NULL) { 3203 if (connp->conn_latch == NULL) { 3204 connp->conn_latch = iplatch_create(); 3205 if (connp->conn_latch == NULL) 3206 return (B_FALSE); 3207 } 3208 ipsec_latch_inbound(connp, ira); 3209 } 3210 return (B_TRUE); 3211 } 3212 3213 /* 3214 * Verify whether or not the IP address is a valid local address. 3215 * Could be a unicast, including one for a down interface. 3216 * If allow_mcbc then a multicast or broadcast address is also 3217 * acceptable. 3218 * 3219 * In the case of a broadcast/multicast address, however, the 3220 * upper protocol is expected to reset the src address 3221 * to zero when we return IPVL_MCAST/IPVL_BCAST so that 3222 * no packets are emitted with broadcast/multicast address as 3223 * source address (that violates hosts requirements RFC 1122) 3224 * The addresses valid for bind are: 3225 * (1) - INADDR_ANY (0) 3226 * (2) - IP address of an UP interface 3227 * (3) - IP address of a DOWN interface 3228 * (4) - valid local IP broadcast addresses. In this case 3229 * the conn will only receive packets destined to 3230 * the specified broadcast address. 3231 * (5) - a multicast address. In this case 3232 * the conn will only receive packets destined to 3233 * the specified multicast address. Note: the 3234 * application still has to issue an 3235 * IP_ADD_MEMBERSHIP socket option. 3236 * 3237 * In all the above cases, the bound address must be valid in the current zone. 3238 * When the address is loopback, multicast or broadcast, there might be many 3239 * matching IREs so bind has to look up based on the zone. 3240 */ 3241 ip_laddr_t 3242 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid, 3243 ip_stack_t *ipst, boolean_t allow_mcbc) 3244 { 3245 ire_t *src_ire; 3246 3247 ASSERT(src_addr != INADDR_ANY); 3248 3249 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0, 3250 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL); 3251 3252 /* 3253 * If an address other than in6addr_any is requested, 3254 * we verify that it is a valid address for bind 3255 * Note: Following code is in if-else-if form for 3256 * readability compared to a condition check. 3257 */ 3258 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) { 3259 /* 3260 * (2) Bind to address of local UP interface 3261 */ 3262 ire_refrele(src_ire); 3263 return (IPVL_UNICAST_UP); 3264 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) { 3265 /* 3266 * (4) Bind to broadcast address 3267 */ 3268 ire_refrele(src_ire); 3269 if (allow_mcbc) 3270 return (IPVL_BCAST); 3271 else 3272 return (IPVL_BAD); 3273 } else if (CLASSD(src_addr)) { 3274 /* (5) bind to multicast address. */ 3275 if (src_ire != NULL) 3276 ire_refrele(src_ire); 3277 3278 if (allow_mcbc) 3279 return (IPVL_MCAST); 3280 else 3281 return (IPVL_BAD); 3282 } else { 3283 ipif_t *ipif; 3284 3285 /* 3286 * (3) Bind to address of local DOWN interface? 3287 * (ipif_lookup_addr() looks up all interfaces 3288 * but we do not get here for UP interfaces 3289 * - case (2) above) 3290 */ 3291 if (src_ire != NULL) 3292 ire_refrele(src_ire); 3293 3294 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst); 3295 if (ipif == NULL) 3296 return (IPVL_BAD); 3297 3298 /* Not a useful source? */ 3299 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) { 3300 ipif_refrele(ipif); 3301 return (IPVL_BAD); 3302 } 3303 ipif_refrele(ipif); 3304 return (IPVL_UNICAST_DOWN); 3305 } 3306 } 3307 3308 /* 3309 * Insert in the bind fanout for IPv4 and IPv6. 3310 * The caller should already have used ip_laddr_verify_v*() before calling 3311 * this. 3312 */ 3313 int 3314 ip_laddr_fanout_insert(conn_t *connp) 3315 { 3316 int error; 3317 3318 /* 3319 * Allow setting new policies. For example, disconnects result 3320 * in us being called. As we would have set conn_policy_cached 3321 * to B_TRUE before, we should set it to B_FALSE, so that policy 3322 * can change after the disconnect. 3323 */ 3324 connp->conn_policy_cached = B_FALSE; 3325 3326 error = ipcl_bind_insert(connp); 3327 if (error != 0) { 3328 if (connp->conn_anon_port) { 3329 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 3330 connp->conn_mlp_type, connp->conn_proto, 3331 ntohs(connp->conn_lport), B_FALSE); 3332 } 3333 connp->conn_mlp_type = mlptSingle; 3334 } 3335 return (error); 3336 } 3337 3338 /* 3339 * Verify that both the source and destination addresses are valid. If 3340 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable, 3341 * i.e. have no route to it. Protocols like TCP want to verify destination 3342 * reachability, while tunnels do not. 3343 * 3344 * Determine the route, the interface, and (optionally) the source address 3345 * to use to reach a given destination. 3346 * Note that we allow connect to broadcast and multicast addresses when 3347 * IPDF_ALLOW_MCBC is set. 3348 * first_hop and dst_addr are normally the same, but if source routing 3349 * they will differ; in that case the first_hop is what we'll use for the 3350 * routing lookup but the dce and label checks will be done on dst_addr, 3351 * 3352 * If uinfo is set, then we fill in the best available information 3353 * we have for the destination. This is based on (in priority order) any 3354 * metrics and path MTU stored in a dce_t, route metrics, and finally the 3355 * ill_mtu/ill_mc_mtu. 3356 * 3357 * Tsol note: If we have a source route then dst_addr != firsthop. But we 3358 * always do the label check on dst_addr. 3359 */ 3360 int 3361 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop, 3362 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode) 3363 { 3364 ire_t *ire = NULL; 3365 int error = 0; 3366 ipaddr_t setsrc; /* RTF_SETSRC */ 3367 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */ 3368 ip_stack_t *ipst = ixa->ixa_ipst; 3369 dce_t *dce; 3370 uint_t pmtu; 3371 uint_t generation; 3372 nce_t *nce; 3373 ill_t *ill = NULL; 3374 boolean_t multirt = B_FALSE; 3375 3376 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4); 3377 3378 /* 3379 * We never send to zero; the ULPs map it to the loopback address. 3380 * We can't allow it since we use zero to mean unitialized in some 3381 * places. 3382 */ 3383 ASSERT(dst_addr != INADDR_ANY); 3384 3385 if (is_system_labeled()) { 3386 ts_label_t *tsl = NULL; 3387 3388 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION, 3389 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl); 3390 if (error != 0) 3391 return (error); 3392 if (tsl != NULL) { 3393 /* Update the label */ 3394 ip_xmit_attr_replace_tsl(ixa, tsl); 3395 } 3396 } 3397 3398 setsrc = INADDR_ANY; 3399 /* 3400 * Select a route; For IPMP interfaces, we would only select 3401 * a "hidden" route (i.e., going through a specific under_ill) 3402 * if ixa_ifindex has been specified. 3403 */ 3404 ire = ip_select_route_v4(firsthop, *src_addrp, ixa, 3405 &generation, &setsrc, &error, &multirt); 3406 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */ 3407 if (error != 0) 3408 goto bad_addr; 3409 3410 /* 3411 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set. 3412 * If IPDF_VERIFY_DST is set, the destination must be reachable; 3413 * Otherwise the destination needn't be reachable. 3414 * 3415 * If we match on a reject or black hole, then we've got a 3416 * local failure. May as well fail out the connect() attempt, 3417 * since it's never going to succeed. 3418 */ 3419 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 3420 /* 3421 * If we're verifying destination reachability, we always want 3422 * to complain here. 3423 * 3424 * If we're not verifying destination reachability but the 3425 * destination has a route, we still want to fail on the 3426 * temporary address and broadcast address tests. 3427 * 3428 * In both cases do we let the code continue so some reasonable 3429 * information is returned to the caller. That enables the 3430 * caller to use (and even cache) the IRE. conn_ip_ouput will 3431 * use the generation mismatch path to check for the unreachable 3432 * case thereby avoiding any specific check in the main path. 3433 */ 3434 ASSERT(generation == IRE_GENERATION_VERIFY); 3435 if (flags & IPDF_VERIFY_DST) { 3436 /* 3437 * Set errno but continue to set up ixa_ire to be 3438 * the RTF_REJECT|RTF_BLACKHOLE IRE. 3439 * That allows callers to use ip_output to get an 3440 * ICMP error back. 3441 */ 3442 if (!(ire->ire_type & IRE_HOST)) 3443 error = ENETUNREACH; 3444 else 3445 error = EHOSTUNREACH; 3446 } 3447 } 3448 3449 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) && 3450 !(flags & IPDF_ALLOW_MCBC)) { 3451 ire_refrele(ire); 3452 ire = ire_reject(ipst, B_FALSE); 3453 generation = IRE_GENERATION_VERIFY; 3454 error = ENETUNREACH; 3455 } 3456 3457 /* Cache things */ 3458 if (ixa->ixa_ire != NULL) 3459 ire_refrele_notr(ixa->ixa_ire); 3460 #ifdef DEBUG 3461 ire_refhold_notr(ire); 3462 ire_refrele(ire); 3463 #endif 3464 ixa->ixa_ire = ire; 3465 ixa->ixa_ire_generation = generation; 3466 3467 /* 3468 * Ensure that ixa_dce is always set any time that ixa_ire is set, 3469 * since some callers will send a packet to conn_ip_output() even if 3470 * there's an error. 3471 */ 3472 if (flags & IPDF_UNIQUE_DCE) { 3473 /* Fallback to the default dce if allocation fails */ 3474 dce = dce_lookup_and_add_v4(dst_addr, ipst); 3475 if (dce != NULL) 3476 generation = dce->dce_generation; 3477 else 3478 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3479 } else { 3480 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3481 } 3482 ASSERT(dce != NULL); 3483 if (ixa->ixa_dce != NULL) 3484 dce_refrele_notr(ixa->ixa_dce); 3485 #ifdef DEBUG 3486 dce_refhold_notr(dce); 3487 dce_refrele(dce); 3488 #endif 3489 ixa->ixa_dce = dce; 3490 ixa->ixa_dce_generation = generation; 3491 3492 /* 3493 * For multicast with multirt we have a flag passed back from 3494 * ire_lookup_multi_ill_v4 since we don't have an IRE for each 3495 * possible multicast address. 3496 * We also need a flag for multicast since we can't check 3497 * whether RTF_MULTIRT is set in ixa_ire for multicast. 3498 */ 3499 if (multirt) { 3500 ixa->ixa_postfragfn = ip_postfrag_multirt_v4; 3501 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST; 3502 } else { 3503 ixa->ixa_postfragfn = ire->ire_postfragfn; 3504 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST; 3505 } 3506 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3507 /* Get an nce to cache. */ 3508 nce = ire_to_nce(ire, firsthop, NULL); 3509 if (nce == NULL) { 3510 /* Allocation failure? */ 3511 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3512 } else { 3513 if (ixa->ixa_nce != NULL) 3514 nce_refrele(ixa->ixa_nce); 3515 ixa->ixa_nce = nce; 3516 } 3517 } 3518 3519 /* 3520 * If the source address is a loopback address, the 3521 * destination had best be local or multicast. 3522 * If we are sending to an IRE_LOCAL using a loopback source then 3523 * it had better be the same zoneid. 3524 */ 3525 if (*src_addrp == htonl(INADDR_LOOPBACK)) { 3526 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) { 3527 ire = NULL; /* Stored in ixa_ire */ 3528 error = EADDRNOTAVAIL; 3529 goto bad_addr; 3530 } 3531 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) { 3532 ire = NULL; /* Stored in ixa_ire */ 3533 error = EADDRNOTAVAIL; 3534 goto bad_addr; 3535 } 3536 } 3537 if (ire->ire_type & IRE_BROADCAST) { 3538 /* 3539 * If the ULP didn't have a specified source, then we 3540 * make sure we reselect the source when sending 3541 * broadcasts out different interfaces. 3542 */ 3543 if (flags & IPDF_SELECT_SRC) 3544 ixa->ixa_flags |= IXAF_SET_SOURCE; 3545 else 3546 ixa->ixa_flags &= ~IXAF_SET_SOURCE; 3547 } 3548 3549 /* 3550 * Does the caller want us to pick a source address? 3551 */ 3552 if (flags & IPDF_SELECT_SRC) { 3553 ipaddr_t src_addr; 3554 3555 /* 3556 * We use use ire_nexthop_ill to avoid the under ipmp 3557 * interface for source address selection. Note that for ipmp 3558 * probe packets, ixa_ifindex would have been specified, and 3559 * the ip_select_route() invocation would have picked an ire 3560 * will ire_ill pointing at an under interface. 3561 */ 3562 ill = ire_nexthop_ill(ire); 3563 3564 /* If unreachable we have no ill but need some source */ 3565 if (ill == NULL) { 3566 src_addr = htonl(INADDR_LOOPBACK); 3567 /* Make sure we look for a better source address */ 3568 generation = SRC_GENERATION_VERIFY; 3569 } else { 3570 error = ip_select_source_v4(ill, setsrc, dst_addr, 3571 ixa->ixa_multicast_ifaddr, zoneid, 3572 ipst, &src_addr, &generation, NULL); 3573 if (error != 0) { 3574 ire = NULL; /* Stored in ixa_ire */ 3575 goto bad_addr; 3576 } 3577 } 3578 3579 /* 3580 * We allow the source address to to down. 3581 * However, we check that we don't use the loopback address 3582 * as a source when sending out on the wire. 3583 */ 3584 if ((src_addr == htonl(INADDR_LOOPBACK)) && 3585 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) && 3586 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3587 ire = NULL; /* Stored in ixa_ire */ 3588 error = EADDRNOTAVAIL; 3589 goto bad_addr; 3590 } 3591 3592 *src_addrp = src_addr; 3593 ixa->ixa_src_generation = generation; 3594 } 3595 3596 /* 3597 * Make sure we don't leave an unreachable ixa_nce in place 3598 * since ip_select_route is used when we unplumb i.e., remove 3599 * references on ixa_ire, ixa_nce, and ixa_dce. 3600 */ 3601 nce = ixa->ixa_nce; 3602 if (nce != NULL && nce->nce_is_condemned) { 3603 nce_refrele(nce); 3604 ixa->ixa_nce = NULL; 3605 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3606 } 3607 3608 /* 3609 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired. 3610 * However, we can't do it for IPv4 multicast or broadcast. 3611 */ 3612 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) 3613 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3614 3615 /* 3616 * Set initial value for fragmentation limit. Either conn_ip_output 3617 * or ULP might updates it when there are routing changes. 3618 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT. 3619 */ 3620 pmtu = ip_get_pmtu(ixa); 3621 ixa->ixa_fragsize = pmtu; 3622 /* Make sure ixa_fragsize and ixa_pmtu remain identical */ 3623 if (ixa->ixa_flags & IXAF_VERIFY_PMTU) 3624 ixa->ixa_pmtu = pmtu; 3625 3626 /* 3627 * Extract information useful for some transports. 3628 * First we look for DCE metrics. Then we take what we have in 3629 * the metrics in the route, where the offlink is used if we have 3630 * one. 3631 */ 3632 if (uinfo != NULL) { 3633 bzero(uinfo, sizeof (*uinfo)); 3634 3635 if (dce->dce_flags & DCEF_UINFO) 3636 *uinfo = dce->dce_uinfo; 3637 3638 rts_merge_metrics(uinfo, &ire->ire_metrics); 3639 3640 /* Allow ire_metrics to decrease the path MTU from above */ 3641 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu) 3642 uinfo->iulp_mtu = pmtu; 3643 3644 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0; 3645 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0; 3646 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0; 3647 } 3648 3649 if (ill != NULL) 3650 ill_refrele(ill); 3651 3652 return (error); 3653 3654 bad_addr: 3655 if (ire != NULL) 3656 ire_refrele(ire); 3657 3658 if (ill != NULL) 3659 ill_refrele(ill); 3660 3661 /* 3662 * Make sure we don't leave an unreachable ixa_nce in place 3663 * since ip_select_route is used when we unplumb i.e., remove 3664 * references on ixa_ire, ixa_nce, and ixa_dce. 3665 */ 3666 nce = ixa->ixa_nce; 3667 if (nce != NULL && nce->nce_is_condemned) { 3668 nce_refrele(nce); 3669 ixa->ixa_nce = NULL; 3670 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3671 } 3672 3673 return (error); 3674 } 3675 3676 3677 /* 3678 * Get the base MTU for the case when path MTU discovery is not used. 3679 * Takes the MTU of the IRE into account. 3680 */ 3681 uint_t 3682 ip_get_base_mtu(ill_t *ill, ire_t *ire) 3683 { 3684 uint_t mtu; 3685 uint_t iremtu = ire->ire_metrics.iulp_mtu; 3686 3687 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) 3688 mtu = ill->ill_mc_mtu; 3689 else 3690 mtu = ill->ill_mtu; 3691 3692 if (iremtu != 0 && iremtu < mtu) 3693 mtu = iremtu; 3694 3695 return (mtu); 3696 } 3697 3698 /* 3699 * Get the PMTU for the attributes. Handles both IPv4 and IPv6. 3700 * Assumes that ixa_ire, dce, and nce have already been set up. 3701 * 3702 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired. 3703 * We avoid path MTU discovery if it is disabled with ndd. 3704 * Furtermore, if the path MTU is too small, then we don't set DF for IPv4. 3705 * 3706 * NOTE: We also used to turn it off for source routed packets. That 3707 * is no longer required since the dce is per final destination. 3708 */ 3709 uint_t 3710 ip_get_pmtu(ip_xmit_attr_t *ixa) 3711 { 3712 ip_stack_t *ipst = ixa->ixa_ipst; 3713 dce_t *dce; 3714 nce_t *nce; 3715 ire_t *ire; 3716 uint_t pmtu; 3717 3718 ire = ixa->ixa_ire; 3719 dce = ixa->ixa_dce; 3720 nce = ixa->ixa_nce; 3721 3722 /* 3723 * If path MTU discovery has been turned off by ndd, then we ignore 3724 * any dce_pmtu and for IPv4 we will not set DF. 3725 */ 3726 if (!ipst->ips_ip_path_mtu_discovery) 3727 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3728 3729 pmtu = IP_MAXPACKET; 3730 /* 3731 * Decide whether whether IPv4 sets DF 3732 * For IPv6 "no DF" means to use the 1280 mtu 3733 */ 3734 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3735 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3736 } else { 3737 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3738 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) 3739 pmtu = IPV6_MIN_MTU; 3740 } 3741 3742 /* Check if the PMTU is to old before we use it */ 3743 if ((dce->dce_flags & DCEF_PMTU) && 3744 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time > 3745 ipst->ips_ip_pathmtu_interval) { 3746 /* 3747 * Older than 20 minutes. Drop the path MTU information. 3748 */ 3749 mutex_enter(&dce->dce_lock); 3750 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU); 3751 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 3752 mutex_exit(&dce->dce_lock); 3753 dce_increment_generation(dce); 3754 } 3755 3756 /* The metrics on the route can lower the path MTU */ 3757 if (ire->ire_metrics.iulp_mtu != 0 && 3758 ire->ire_metrics.iulp_mtu < pmtu) 3759 pmtu = ire->ire_metrics.iulp_mtu; 3760 3761 /* 3762 * If the path MTU is smaller than some minimum, we still use dce_pmtu 3763 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear 3764 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4. 3765 */ 3766 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3767 if (dce->dce_flags & DCEF_PMTU) { 3768 if (dce->dce_pmtu < pmtu) 3769 pmtu = dce->dce_pmtu; 3770 3771 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) { 3772 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL; 3773 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3774 } else { 3775 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3776 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3777 } 3778 } else { 3779 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3780 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3781 } 3782 } 3783 3784 /* 3785 * If we have an IRE_LOCAL we use the loopback mtu instead of 3786 * the ill for going out the wire i.e., IRE_LOCAL gets the same 3787 * mtu as IRE_LOOPBACK. 3788 */ 3789 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3790 uint_t loopback_mtu; 3791 3792 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ? 3793 ip_loopback_mtu_v6plus : ip_loopback_mtuplus; 3794 3795 if (loopback_mtu < pmtu) 3796 pmtu = loopback_mtu; 3797 } else if (nce != NULL) { 3798 /* 3799 * Make sure we don't exceed the interface MTU. 3800 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have 3801 * an ill. We'd use the above IP_MAXPACKET in that case just 3802 * to tell the transport something larger than zero. 3803 */ 3804 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) { 3805 if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu) 3806 pmtu = nce->nce_common->ncec_ill->ill_mc_mtu; 3807 if (nce->nce_common->ncec_ill != nce->nce_ill && 3808 nce->nce_ill->ill_mc_mtu < pmtu) { 3809 /* 3810 * for interfaces in an IPMP group, the mtu of 3811 * the nce_ill (under_ill) could be different 3812 * from the mtu of the ncec_ill, so we take the 3813 * min of the two. 3814 */ 3815 pmtu = nce->nce_ill->ill_mc_mtu; 3816 } 3817 } else { 3818 if (nce->nce_common->ncec_ill->ill_mtu < pmtu) 3819 pmtu = nce->nce_common->ncec_ill->ill_mtu; 3820 if (nce->nce_common->ncec_ill != nce->nce_ill && 3821 nce->nce_ill->ill_mtu < pmtu) { 3822 /* 3823 * for interfaces in an IPMP group, the mtu of 3824 * the nce_ill (under_ill) could be different 3825 * from the mtu of the ncec_ill, so we take the 3826 * min of the two. 3827 */ 3828 pmtu = nce->nce_ill->ill_mtu; 3829 } 3830 } 3831 } 3832 3833 /* 3834 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data. 3835 * Only applies to IPv6. 3836 */ 3837 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3838 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) { 3839 switch (ixa->ixa_use_min_mtu) { 3840 case IPV6_USE_MIN_MTU_MULTICAST: 3841 if (ire->ire_type & IRE_MULTICAST) 3842 pmtu = IPV6_MIN_MTU; 3843 break; 3844 case IPV6_USE_MIN_MTU_ALWAYS: 3845 pmtu = IPV6_MIN_MTU; 3846 break; 3847 case IPV6_USE_MIN_MTU_NEVER: 3848 break; 3849 } 3850 } else { 3851 /* Default is IPV6_USE_MIN_MTU_MULTICAST */ 3852 if (ire->ire_type & IRE_MULTICAST) 3853 pmtu = IPV6_MIN_MTU; 3854 } 3855 } 3856 3857 /* 3858 * After receiving an ICMPv6 "packet too big" message with a 3859 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 3860 * will insert a 8-byte fragment header in every packet. We compensate 3861 * for those cases by returning a smaller path MTU to the ULP. 3862 * 3863 * In the case of CGTP then ip_output will add a fragment header. 3864 * Make sure there is room for it by telling a smaller number 3865 * to the transport. 3866 * 3867 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here 3868 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu() 3869 * which is the size of the packets it can send. 3870 */ 3871 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3872 if ((dce->dce_flags & DCEF_TOO_SMALL_PMTU) || 3873 (ire->ire_flags & RTF_MULTIRT) || 3874 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) { 3875 pmtu -= sizeof (ip6_frag_t); 3876 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR; 3877 } 3878 } 3879 3880 return (pmtu); 3881 } 3882 3883 /* 3884 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 3885 * the final piece where we don't. Return a pointer to the first mblk in the 3886 * result, and update the pointer to the next mblk to chew on. If anything 3887 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 3888 * NULL pointer. 3889 */ 3890 mblk_t * 3891 ip_carve_mp(mblk_t **mpp, ssize_t len) 3892 { 3893 mblk_t *mp0; 3894 mblk_t *mp1; 3895 mblk_t *mp2; 3896 3897 if (!len || !mpp || !(mp0 = *mpp)) 3898 return (NULL); 3899 /* If we aren't going to consume the first mblk, we need a dup. */ 3900 if (mp0->b_wptr - mp0->b_rptr > len) { 3901 mp1 = dupb(mp0); 3902 if (mp1) { 3903 /* Partition the data between the two mblks. */ 3904 mp1->b_wptr = mp1->b_rptr + len; 3905 mp0->b_rptr = mp1->b_wptr; 3906 /* 3907 * after adjustments if mblk not consumed is now 3908 * unaligned, try to align it. If this fails free 3909 * all messages and let upper layer recover. 3910 */ 3911 if (!OK_32PTR(mp0->b_rptr)) { 3912 if (!pullupmsg(mp0, -1)) { 3913 freemsg(mp0); 3914 freemsg(mp1); 3915 *mpp = NULL; 3916 return (NULL); 3917 } 3918 } 3919 } 3920 return (mp1); 3921 } 3922 /* Eat through as many mblks as we need to get len bytes. */ 3923 len -= mp0->b_wptr - mp0->b_rptr; 3924 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 3925 if (mp2->b_wptr - mp2->b_rptr > len) { 3926 /* 3927 * We won't consume the entire last mblk. Like 3928 * above, dup and partition it. 3929 */ 3930 mp1->b_cont = dupb(mp2); 3931 mp1 = mp1->b_cont; 3932 if (!mp1) { 3933 /* 3934 * Trouble. Rather than go to a lot of 3935 * trouble to clean up, we free the messages. 3936 * This won't be any worse than losing it on 3937 * the wire. 3938 */ 3939 freemsg(mp0); 3940 freemsg(mp2); 3941 *mpp = NULL; 3942 return (NULL); 3943 } 3944 mp1->b_wptr = mp1->b_rptr + len; 3945 mp2->b_rptr = mp1->b_wptr; 3946 /* 3947 * after adjustments if mblk not consumed is now 3948 * unaligned, try to align it. If this fails free 3949 * all messages and let upper layer recover. 3950 */ 3951 if (!OK_32PTR(mp2->b_rptr)) { 3952 if (!pullupmsg(mp2, -1)) { 3953 freemsg(mp0); 3954 freemsg(mp2); 3955 *mpp = NULL; 3956 return (NULL); 3957 } 3958 } 3959 *mpp = mp2; 3960 return (mp0); 3961 } 3962 /* Decrement len by the amount we just got. */ 3963 len -= mp2->b_wptr - mp2->b_rptr; 3964 } 3965 /* 3966 * len should be reduced to zero now. If not our caller has 3967 * screwed up. 3968 */ 3969 if (len) { 3970 /* Shouldn't happen! */ 3971 freemsg(mp0); 3972 *mpp = NULL; 3973 return (NULL); 3974 } 3975 /* 3976 * We consumed up to exactly the end of an mblk. Detach the part 3977 * we are returning from the rest of the chain. 3978 */ 3979 mp1->b_cont = NULL; 3980 *mpp = mp2; 3981 return (mp0); 3982 } 3983 3984 /* The ill stream is being unplumbed. Called from ip_close */ 3985 int 3986 ip_modclose(ill_t *ill) 3987 { 3988 boolean_t success; 3989 ipsq_t *ipsq; 3990 ipif_t *ipif; 3991 queue_t *q = ill->ill_rq; 3992 ip_stack_t *ipst = ill->ill_ipst; 3993 int i; 3994 arl_ill_common_t *ai = ill->ill_common; 3995 3996 /* 3997 * The punlink prior to this may have initiated a capability 3998 * negotiation. But ipsq_enter will block until that finishes or 3999 * times out. 4000 */ 4001 success = ipsq_enter(ill, B_FALSE, NEW_OP); 4002 4003 /* 4004 * Open/close/push/pop is guaranteed to be single threaded 4005 * per stream by STREAMS. FS guarantees that all references 4006 * from top are gone before close is called. So there can't 4007 * be another close thread that has set CONDEMNED on this ill. 4008 * and cause ipsq_enter to return failure. 4009 */ 4010 ASSERT(success); 4011 ipsq = ill->ill_phyint->phyint_ipsq; 4012 4013 /* 4014 * Mark it condemned. No new reference will be made to this ill. 4015 * Lookup functions will return an error. Threads that try to 4016 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 4017 * that the refcnt will drop down to zero. 4018 */ 4019 mutex_enter(&ill->ill_lock); 4020 ill->ill_state_flags |= ILL_CONDEMNED; 4021 for (ipif = ill->ill_ipif; ipif != NULL; 4022 ipif = ipif->ipif_next) { 4023 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4024 } 4025 /* 4026 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4027 * returns error if ILL_CONDEMNED is set 4028 */ 4029 cv_broadcast(&ill->ill_cv); 4030 mutex_exit(&ill->ill_lock); 4031 4032 /* 4033 * Send all the deferred DLPI messages downstream which came in 4034 * during the small window right before ipsq_enter(). We do this 4035 * without waiting for the ACKs because all the ACKs for M_PROTO 4036 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 4037 */ 4038 ill_dlpi_send_deferred(ill); 4039 4040 /* 4041 * Shut down fragmentation reassembly. 4042 * ill_frag_timer won't start a timer again. 4043 * Now cancel any existing timer 4044 */ 4045 (void) untimeout(ill->ill_frag_timer_id); 4046 (void) ill_frag_timeout(ill, 0); 4047 4048 /* 4049 * Call ill_delete to bring down the ipifs, ilms and ill on 4050 * this ill. Then wait for the refcnts to drop to zero. 4051 * ill_is_freeable checks whether the ill is really quiescent. 4052 * Then make sure that threads that are waiting to enter the 4053 * ipsq have seen the error returned by ipsq_enter and have 4054 * gone away. Then we call ill_delete_tail which does the 4055 * DL_UNBIND_REQ with the driver and then qprocsoff. 4056 */ 4057 ill_delete(ill); 4058 mutex_enter(&ill->ill_lock); 4059 while (!ill_is_freeable(ill)) 4060 cv_wait(&ill->ill_cv, &ill->ill_lock); 4061 4062 while (ill->ill_waiters) 4063 cv_wait(&ill->ill_cv, &ill->ill_lock); 4064 4065 mutex_exit(&ill->ill_lock); 4066 4067 /* 4068 * ill_delete_tail drops reference on ill_ipst, but we need to keep 4069 * it held until the end of the function since the cleanup 4070 * below needs to be able to use the ip_stack_t. 4071 */ 4072 netstack_hold(ipst->ips_netstack); 4073 4074 /* qprocsoff is done via ill_delete_tail */ 4075 ill_delete_tail(ill); 4076 /* 4077 * synchronously wait for arp stream to unbind. After this, we 4078 * cannot get any data packets up from the driver. 4079 */ 4080 arp_unbind_complete(ill); 4081 ASSERT(ill->ill_ipst == NULL); 4082 4083 /* 4084 * Walk through all conns and qenable those that have queued data. 4085 * Close synchronization needs this to 4086 * be done to ensure that all upper layers blocked 4087 * due to flow control to the closing device 4088 * get unblocked. 4089 */ 4090 ip1dbg(("ip_wsrv: walking\n")); 4091 for (i = 0; i < TX_FANOUT_SIZE; i++) { 4092 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 4093 } 4094 4095 /* 4096 * ai can be null if this is an IPv6 ill, or if the IPv4 4097 * stream is being torn down before ARP was plumbed (e.g., 4098 * /sbin/ifconfig plumbing a stream twice, and encountering 4099 * an error 4100 */ 4101 if (ai != NULL) { 4102 ASSERT(!ill->ill_isv6); 4103 mutex_enter(&ai->ai_lock); 4104 ai->ai_ill = NULL; 4105 if (ai->ai_arl == NULL) { 4106 mutex_destroy(&ai->ai_lock); 4107 kmem_free(ai, sizeof (*ai)); 4108 } else { 4109 cv_signal(&ai->ai_ill_unplumb_done); 4110 mutex_exit(&ai->ai_lock); 4111 } 4112 } 4113 4114 mutex_enter(&ipst->ips_ip_mi_lock); 4115 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 4116 mutex_exit(&ipst->ips_ip_mi_lock); 4117 4118 /* 4119 * credp could be null if the open didn't succeed and ip_modopen 4120 * itself calls ip_close. 4121 */ 4122 if (ill->ill_credp != NULL) 4123 crfree(ill->ill_credp); 4124 4125 mutex_destroy(&ill->ill_saved_ire_lock); 4126 mutex_destroy(&ill->ill_lock); 4127 rw_destroy(&ill->ill_mcast_lock); 4128 mutex_destroy(&ill->ill_mcast_serializer); 4129 list_destroy(&ill->ill_nce); 4130 4131 /* 4132 * Now we are done with the module close pieces that 4133 * need the netstack_t. 4134 */ 4135 netstack_rele(ipst->ips_netstack); 4136 4137 mi_close_free((IDP)ill); 4138 q->q_ptr = WR(q)->q_ptr = NULL; 4139 4140 ipsq_exit(ipsq); 4141 4142 return (0); 4143 } 4144 4145 /* 4146 * This is called as part of close() for IP, UDP, ICMP, and RTS 4147 * in order to quiesce the conn. 4148 */ 4149 void 4150 ip_quiesce_conn(conn_t *connp) 4151 { 4152 boolean_t drain_cleanup_reqd = B_FALSE; 4153 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4154 boolean_t ilg_cleanup_reqd = B_FALSE; 4155 ip_stack_t *ipst; 4156 4157 ASSERT(!IPCL_IS_TCP(connp)); 4158 ipst = connp->conn_netstack->netstack_ip; 4159 4160 /* 4161 * Mark the conn as closing, and this conn must not be 4162 * inserted in future into any list. Eg. conn_drain_insert(), 4163 * won't insert this conn into the conn_drain_list. 4164 * 4165 * conn_idl, and conn_ilg cannot get set henceforth. 4166 */ 4167 mutex_enter(&connp->conn_lock); 4168 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4169 connp->conn_state_flags |= CONN_CLOSING; 4170 if (connp->conn_idl != NULL) 4171 drain_cleanup_reqd = B_TRUE; 4172 if (connp->conn_oper_pending_ill != NULL) 4173 conn_ioctl_cleanup_reqd = B_TRUE; 4174 if (connp->conn_dhcpinit_ill != NULL) { 4175 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 4176 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 4177 ill_set_inputfn(connp->conn_dhcpinit_ill); 4178 connp->conn_dhcpinit_ill = NULL; 4179 } 4180 if (connp->conn_ilg != NULL) 4181 ilg_cleanup_reqd = B_TRUE; 4182 mutex_exit(&connp->conn_lock); 4183 4184 if (conn_ioctl_cleanup_reqd) 4185 conn_ioctl_cleanup(connp); 4186 4187 if (is_system_labeled() && connp->conn_anon_port) { 4188 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4189 connp->conn_mlp_type, connp->conn_proto, 4190 ntohs(connp->conn_lport), B_FALSE); 4191 connp->conn_anon_port = 0; 4192 } 4193 connp->conn_mlp_type = mlptSingle; 4194 4195 /* 4196 * Remove this conn from any fanout list it is on. 4197 * and then wait for any threads currently operating 4198 * on this endpoint to finish 4199 */ 4200 ipcl_hash_remove(connp); 4201 4202 /* 4203 * Remove this conn from the drain list, and do any other cleanup that 4204 * may be required. (TCP conns are never flow controlled, and 4205 * conn_idl will be NULL.) 4206 */ 4207 if (drain_cleanup_reqd && connp->conn_idl != NULL) { 4208 idl_t *idl = connp->conn_idl; 4209 4210 mutex_enter(&idl->idl_lock); 4211 conn_drain(connp, B_TRUE); 4212 mutex_exit(&idl->idl_lock); 4213 } 4214 4215 if (connp == ipst->ips_ip_g_mrouter) 4216 (void) ip_mrouter_done(ipst); 4217 4218 if (ilg_cleanup_reqd) 4219 ilg_delete_all(connp); 4220 4221 /* 4222 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4223 * callers from write side can't be there now because close 4224 * is in progress. The only other caller is ipcl_walk 4225 * which checks for the condemned flag. 4226 */ 4227 mutex_enter(&connp->conn_lock); 4228 connp->conn_state_flags |= CONN_CONDEMNED; 4229 while (connp->conn_ref != 1) 4230 cv_wait(&connp->conn_cv, &connp->conn_lock); 4231 connp->conn_state_flags |= CONN_QUIESCED; 4232 mutex_exit(&connp->conn_lock); 4233 } 4234 4235 /* ARGSUSED */ 4236 int 4237 ip_close(queue_t *q, int flags) 4238 { 4239 conn_t *connp; 4240 4241 /* 4242 * Call the appropriate delete routine depending on whether this is 4243 * a module or device. 4244 */ 4245 if (WR(q)->q_next != NULL) { 4246 /* This is a module close */ 4247 return (ip_modclose((ill_t *)q->q_ptr)); 4248 } 4249 4250 connp = q->q_ptr; 4251 ip_quiesce_conn(connp); 4252 4253 qprocsoff(q); 4254 4255 /* 4256 * Now we are truly single threaded on this stream, and can 4257 * delete the things hanging off the connp, and finally the connp. 4258 * We removed this connp from the fanout list, it cannot be 4259 * accessed thru the fanouts, and we already waited for the 4260 * conn_ref to drop to 0. We are already in close, so 4261 * there cannot be any other thread from the top. qprocsoff 4262 * has completed, and service has completed or won't run in 4263 * future. 4264 */ 4265 ASSERT(connp->conn_ref == 1); 4266 4267 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4268 4269 connp->conn_ref--; 4270 ipcl_conn_destroy(connp); 4271 4272 q->q_ptr = WR(q)->q_ptr = NULL; 4273 return (0); 4274 } 4275 4276 /* 4277 * Wapper around putnext() so that ip_rts_request can merely use 4278 * conn_recv. 4279 */ 4280 /*ARGSUSED2*/ 4281 static void 4282 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4283 { 4284 conn_t *connp = (conn_t *)arg1; 4285 4286 putnext(connp->conn_rq, mp); 4287 } 4288 4289 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */ 4290 /* ARGSUSED */ 4291 static void 4292 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4293 { 4294 freemsg(mp); 4295 } 4296 4297 /* 4298 * Called when the module is about to be unloaded 4299 */ 4300 void 4301 ip_ddi_destroy(void) 4302 { 4303 /* This needs to be called before destroying any transports. */ 4304 mutex_enter(&cpu_lock); 4305 unregister_cpu_setup_func(ip_tp_cpu_update, NULL); 4306 mutex_exit(&cpu_lock); 4307 4308 tnet_fini(); 4309 4310 icmp_ddi_g_destroy(); 4311 rts_ddi_g_destroy(); 4312 udp_ddi_g_destroy(); 4313 sctp_ddi_g_destroy(); 4314 tcp_ddi_g_destroy(); 4315 ilb_ddi_g_destroy(); 4316 dce_g_destroy(); 4317 ipsec_policy_g_destroy(); 4318 ipcl_g_destroy(); 4319 ip_net_g_destroy(); 4320 ip_ire_g_fini(); 4321 inet_minor_destroy(ip_minor_arena_sa); 4322 #if defined(_LP64) 4323 inet_minor_destroy(ip_minor_arena_la); 4324 #endif 4325 4326 #ifdef DEBUG 4327 list_destroy(&ip_thread_list); 4328 rw_destroy(&ip_thread_rwlock); 4329 tsd_destroy(&ip_thread_data); 4330 #endif 4331 4332 netstack_unregister(NS_IP); 4333 } 4334 4335 /* 4336 * First step in cleanup. 4337 */ 4338 /* ARGSUSED */ 4339 static void 4340 ip_stack_shutdown(netstackid_t stackid, void *arg) 4341 { 4342 ip_stack_t *ipst = (ip_stack_t *)arg; 4343 4344 #ifdef NS_DEBUG 4345 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 4346 #endif 4347 4348 /* 4349 * Perform cleanup for special interfaces (loopback and IPMP). 4350 */ 4351 ip_interface_cleanup(ipst); 4352 4353 /* 4354 * The *_hook_shutdown()s start the process of notifying any 4355 * consumers that things are going away.... nothing is destroyed. 4356 */ 4357 ipv4_hook_shutdown(ipst); 4358 ipv6_hook_shutdown(ipst); 4359 arp_hook_shutdown(ipst); 4360 4361 mutex_enter(&ipst->ips_capab_taskq_lock); 4362 ipst->ips_capab_taskq_quit = B_TRUE; 4363 cv_signal(&ipst->ips_capab_taskq_cv); 4364 mutex_exit(&ipst->ips_capab_taskq_lock); 4365 } 4366 4367 /* 4368 * Free the IP stack instance. 4369 */ 4370 static void 4371 ip_stack_fini(netstackid_t stackid, void *arg) 4372 { 4373 ip_stack_t *ipst = (ip_stack_t *)arg; 4374 int ret; 4375 4376 #ifdef NS_DEBUG 4377 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 4378 #endif 4379 /* 4380 * At this point, all of the notifications that the events and 4381 * protocols are going away have been run, meaning that we can 4382 * now set about starting to clean things up. 4383 */ 4384 ipobs_fini(ipst); 4385 ipv4_hook_destroy(ipst); 4386 ipv6_hook_destroy(ipst); 4387 arp_hook_destroy(ipst); 4388 ip_net_destroy(ipst); 4389 4390 ipmp_destroy(ipst); 4391 4392 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 4393 ipst->ips_ip_mibkp = NULL; 4394 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 4395 ipst->ips_icmp_mibkp = NULL; 4396 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 4397 ipst->ips_ip_kstat = NULL; 4398 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 4399 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 4400 ipst->ips_ip6_kstat = NULL; 4401 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 4402 4403 kmem_free(ipst->ips_propinfo_tbl, 4404 ip_propinfo_count * sizeof (mod_prop_info_t)); 4405 ipst->ips_propinfo_tbl = NULL; 4406 4407 dce_stack_destroy(ipst); 4408 ip_mrouter_stack_destroy(ipst); 4409 4410 ret = untimeout(ipst->ips_igmp_timeout_id); 4411 if (ret == -1) { 4412 ASSERT(ipst->ips_igmp_timeout_id == 0); 4413 } else { 4414 ASSERT(ipst->ips_igmp_timeout_id != 0); 4415 ipst->ips_igmp_timeout_id = 0; 4416 } 4417 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 4418 if (ret == -1) { 4419 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 4420 } else { 4421 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 4422 ipst->ips_igmp_slowtimeout_id = 0; 4423 } 4424 ret = untimeout(ipst->ips_mld_timeout_id); 4425 if (ret == -1) { 4426 ASSERT(ipst->ips_mld_timeout_id == 0); 4427 } else { 4428 ASSERT(ipst->ips_mld_timeout_id != 0); 4429 ipst->ips_mld_timeout_id = 0; 4430 } 4431 ret = untimeout(ipst->ips_mld_slowtimeout_id); 4432 if (ret == -1) { 4433 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 4434 } else { 4435 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 4436 ipst->ips_mld_slowtimeout_id = 0; 4437 } 4438 4439 ip_ire_fini(ipst); 4440 ip6_asp_free(ipst); 4441 conn_drain_fini(ipst); 4442 ipcl_destroy(ipst); 4443 4444 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 4445 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 4446 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 4447 ipst->ips_ndp4 = NULL; 4448 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 4449 ipst->ips_ndp6 = NULL; 4450 4451 if (ipst->ips_loopback_ksp != NULL) { 4452 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 4453 ipst->ips_loopback_ksp = NULL; 4454 } 4455 4456 mutex_destroy(&ipst->ips_capab_taskq_lock); 4457 cv_destroy(&ipst->ips_capab_taskq_cv); 4458 4459 rw_destroy(&ipst->ips_srcid_lock); 4460 4461 mutex_destroy(&ipst->ips_ip_mi_lock); 4462 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 4463 4464 mutex_destroy(&ipst->ips_igmp_timer_lock); 4465 mutex_destroy(&ipst->ips_mld_timer_lock); 4466 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 4467 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 4468 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 4469 rw_destroy(&ipst->ips_ill_g_lock); 4470 4471 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 4472 ipst->ips_phyint_g_list = NULL; 4473 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 4474 ipst->ips_ill_g_heads = NULL; 4475 4476 ldi_ident_release(ipst->ips_ldi_ident); 4477 kmem_free(ipst, sizeof (*ipst)); 4478 } 4479 4480 /* 4481 * This function is called from the TSD destructor, and is used to debug 4482 * reference count issues in IP. See block comment in <inet/ip_if.h> for 4483 * details. 4484 */ 4485 static void 4486 ip_thread_exit(void *phash) 4487 { 4488 th_hash_t *thh = phash; 4489 4490 rw_enter(&ip_thread_rwlock, RW_WRITER); 4491 list_remove(&ip_thread_list, thh); 4492 rw_exit(&ip_thread_rwlock); 4493 mod_hash_destroy_hash(thh->thh_hash); 4494 kmem_free(thh, sizeof (*thh)); 4495 } 4496 4497 /* 4498 * Called when the IP kernel module is loaded into the kernel 4499 */ 4500 void 4501 ip_ddi_init(void) 4502 { 4503 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 4504 4505 /* 4506 * For IP and TCP the minor numbers should start from 2 since we have 4 4507 * initial devices: ip, ip6, tcp, tcp6. 4508 */ 4509 /* 4510 * If this is a 64-bit kernel, then create two separate arenas - 4511 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 4512 * other for socket apps in the range 2^^18 through 2^^32-1. 4513 */ 4514 ip_minor_arena_la = NULL; 4515 ip_minor_arena_sa = NULL; 4516 #if defined(_LP64) 4517 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4518 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 4519 cmn_err(CE_PANIC, 4520 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4521 } 4522 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 4523 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 4524 cmn_err(CE_PANIC, 4525 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 4526 } 4527 #else 4528 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4529 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 4530 cmn_err(CE_PANIC, 4531 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4532 } 4533 #endif 4534 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4535 4536 ipcl_g_init(); 4537 ip_ire_g_init(); 4538 ip_net_g_init(); 4539 4540 #ifdef DEBUG 4541 tsd_create(&ip_thread_data, ip_thread_exit); 4542 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 4543 list_create(&ip_thread_list, sizeof (th_hash_t), 4544 offsetof(th_hash_t, thh_link)); 4545 #endif 4546 ipsec_policy_g_init(); 4547 tcp_ddi_g_init(); 4548 sctp_ddi_g_init(); 4549 dce_g_init(); 4550 4551 /* 4552 * We want to be informed each time a stack is created or 4553 * destroyed in the kernel, so we can maintain the 4554 * set of udp_stack_t's. 4555 */ 4556 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 4557 ip_stack_fini); 4558 4559 tnet_init(); 4560 4561 udp_ddi_g_init(); 4562 rts_ddi_g_init(); 4563 icmp_ddi_g_init(); 4564 ilb_ddi_g_init(); 4565 4566 /* This needs to be called after all transports are initialized. */ 4567 mutex_enter(&cpu_lock); 4568 register_cpu_setup_func(ip_tp_cpu_update, NULL); 4569 mutex_exit(&cpu_lock); 4570 } 4571 4572 /* 4573 * Initialize the IP stack instance. 4574 */ 4575 static void * 4576 ip_stack_init(netstackid_t stackid, netstack_t *ns) 4577 { 4578 ip_stack_t *ipst; 4579 size_t arrsz; 4580 major_t major; 4581 4582 #ifdef NS_DEBUG 4583 printf("ip_stack_init(stack %d)\n", stackid); 4584 #endif 4585 4586 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 4587 ipst->ips_netstack = ns; 4588 4589 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 4590 KM_SLEEP); 4591 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 4592 KM_SLEEP); 4593 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4594 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4595 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4596 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4597 4598 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4599 ipst->ips_igmp_deferred_next = INFINITY; 4600 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4601 ipst->ips_mld_deferred_next = INFINITY; 4602 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4603 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4604 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4605 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4606 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 4607 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4608 4609 ipcl_init(ipst); 4610 ip_ire_init(ipst); 4611 ip6_asp_init(ipst); 4612 ipif_init(ipst); 4613 conn_drain_init(ipst); 4614 ip_mrouter_stack_init(ipst); 4615 dce_stack_init(ipst); 4616 4617 ipst->ips_ip_multirt_log_interval = 1000; 4618 4619 ipst->ips_ill_index = 1; 4620 4621 ipst->ips_saved_ip_forwarding = -1; 4622 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 4623 4624 arrsz = ip_propinfo_count * sizeof (mod_prop_info_t); 4625 ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP); 4626 bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz); 4627 4628 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 4629 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 4630 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 4631 ipst->ips_ip6_kstat = 4632 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 4633 4634 ipst->ips_ip_src_id = 1; 4635 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 4636 4637 ipst->ips_src_generation = SRC_GENERATION_INITIAL; 4638 4639 ip_net_init(ipst, ns); 4640 ipv4_hook_init(ipst); 4641 ipv6_hook_init(ipst); 4642 arp_hook_init(ipst); 4643 ipmp_init(ipst); 4644 ipobs_init(ipst); 4645 4646 /* 4647 * Create the taskq dispatcher thread and initialize related stuff. 4648 */ 4649 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 4650 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 4651 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 4652 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 4653 4654 major = mod_name_to_major(INET_NAME); 4655 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 4656 return (ipst); 4657 } 4658 4659 /* 4660 * Allocate and initialize a DLPI template of the specified length. (May be 4661 * called as writer.) 4662 */ 4663 mblk_t * 4664 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4665 { 4666 mblk_t *mp; 4667 4668 mp = allocb(len, BPRI_MED); 4669 if (!mp) 4670 return (NULL); 4671 4672 /* 4673 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4674 * of which we don't seem to use) are sent with M_PCPROTO, and 4675 * that other DLPI are M_PROTO. 4676 */ 4677 if (prim == DL_INFO_REQ) { 4678 mp->b_datap->db_type = M_PCPROTO; 4679 } else { 4680 mp->b_datap->db_type = M_PROTO; 4681 } 4682 4683 mp->b_wptr = mp->b_rptr + len; 4684 bzero(mp->b_rptr, len); 4685 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4686 return (mp); 4687 } 4688 4689 /* 4690 * Allocate and initialize a DLPI notification. (May be called as writer.) 4691 */ 4692 mblk_t * 4693 ip_dlnotify_alloc(uint_t notification, uint_t data) 4694 { 4695 dl_notify_ind_t *notifyp; 4696 mblk_t *mp; 4697 4698 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4699 return (NULL); 4700 4701 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4702 notifyp->dl_notification = notification; 4703 notifyp->dl_data = data; 4704 return (mp); 4705 } 4706 4707 mblk_t * 4708 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2) 4709 { 4710 dl_notify_ind_t *notifyp; 4711 mblk_t *mp; 4712 4713 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4714 return (NULL); 4715 4716 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4717 notifyp->dl_notification = notification; 4718 notifyp->dl_data1 = data1; 4719 notifyp->dl_data2 = data2; 4720 return (mp); 4721 } 4722 4723 /* 4724 * Debug formatting routine. Returns a character string representation of the 4725 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 4726 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 4727 * 4728 * Once the ndd table-printing interfaces are removed, this can be changed to 4729 * standard dotted-decimal form. 4730 */ 4731 char * 4732 ip_dot_addr(ipaddr_t addr, char *buf) 4733 { 4734 uint8_t *ap = (uint8_t *)&addr; 4735 4736 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 4737 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 4738 return (buf); 4739 } 4740 4741 /* 4742 * Write the given MAC address as a printable string in the usual colon- 4743 * separated format. 4744 */ 4745 const char * 4746 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 4747 { 4748 char *bp; 4749 4750 if (alen == 0 || buflen < 4) 4751 return ("?"); 4752 bp = buf; 4753 for (;;) { 4754 /* 4755 * If there are more MAC address bytes available, but we won't 4756 * have any room to print them, then add "..." to the string 4757 * instead. See below for the 'magic number' explanation. 4758 */ 4759 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 4760 (void) strcpy(bp, "..."); 4761 break; 4762 } 4763 (void) sprintf(bp, "%02x", *addr++); 4764 bp += 2; 4765 if (--alen == 0) 4766 break; 4767 *bp++ = ':'; 4768 buflen -= 3; 4769 /* 4770 * At this point, based on the first 'if' statement above, 4771 * either alen == 1 and buflen >= 3, or alen > 1 and 4772 * buflen >= 4. The first case leaves room for the final "xx" 4773 * number and trailing NUL byte. The second leaves room for at 4774 * least "...". Thus the apparently 'magic' numbers chosen for 4775 * that statement. 4776 */ 4777 } 4778 return (buf); 4779 } 4780 4781 /* 4782 * Called when it is conceptually a ULP that would sent the packet 4783 * e.g., port unreachable and protocol unreachable. Check that the packet 4784 * would have passed the IPsec global policy before sending the error. 4785 * 4786 * Send an ICMP error after patching up the packet appropriately. 4787 * Uses ip_drop_input and bumps the appropriate MIB. 4788 */ 4789 void 4790 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code, 4791 ip_recv_attr_t *ira) 4792 { 4793 ipha_t *ipha; 4794 boolean_t secure; 4795 ill_t *ill = ira->ira_ill; 4796 ip_stack_t *ipst = ill->ill_ipst; 4797 netstack_t *ns = ipst->ips_netstack; 4798 ipsec_stack_t *ipss = ns->netstack_ipsec; 4799 4800 secure = ira->ira_flags & IRAF_IPSEC_SECURE; 4801 4802 /* 4803 * We are generating an icmp error for some inbound packet. 4804 * Called from all ip_fanout_(udp, tcp, proto) functions. 4805 * Before we generate an error, check with global policy 4806 * to see whether this is allowed to enter the system. As 4807 * there is no "conn", we are checking with global policy. 4808 */ 4809 ipha = (ipha_t *)mp->b_rptr; 4810 if (secure || ipss->ipsec_inbound_v4_policy_present) { 4811 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns); 4812 if (mp == NULL) 4813 return; 4814 } 4815 4816 /* We never send errors for protocols that we do implement */ 4817 if (ira->ira_protocol == IPPROTO_ICMP || 4818 ira->ira_protocol == IPPROTO_IGMP) { 4819 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4820 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill); 4821 freemsg(mp); 4822 return; 4823 } 4824 /* 4825 * Have to correct checksum since 4826 * the packet might have been 4827 * fragmented and the reassembly code in ip_rput 4828 * does not restore the IP checksum. 4829 */ 4830 ipha->ipha_hdr_checksum = 0; 4831 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 4832 4833 switch (icmp_type) { 4834 case ICMP_DEST_UNREACHABLE: 4835 switch (icmp_code) { 4836 case ICMP_PROTOCOL_UNREACHABLE: 4837 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos); 4838 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill); 4839 break; 4840 case ICMP_PORT_UNREACHABLE: 4841 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 4842 ip_drop_input("ipIfStatsNoPorts", mp, ill); 4843 break; 4844 } 4845 4846 icmp_unreachable(mp, icmp_code, ira); 4847 break; 4848 default: 4849 #ifdef DEBUG 4850 panic("ip_fanout_send_icmp_v4: wrong type"); 4851 /*NOTREACHED*/ 4852 #else 4853 freemsg(mp); 4854 break; 4855 #endif 4856 } 4857 } 4858 4859 /* 4860 * Used to send an ICMP error message when a packet is received for 4861 * a protocol that is not supported. The mblk passed as argument 4862 * is consumed by this function. 4863 */ 4864 void 4865 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira) 4866 { 4867 ipha_t *ipha; 4868 4869 ipha = (ipha_t *)mp->b_rptr; 4870 if (ira->ira_flags & IRAF_IS_IPV4) { 4871 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION); 4872 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4873 ICMP_PROTOCOL_UNREACHABLE, ira); 4874 } else { 4875 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 4876 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB, 4877 ICMP6_PARAMPROB_NEXTHEADER, ira); 4878 } 4879 } 4880 4881 /* 4882 * Deliver a rawip packet to the given conn, possibly applying ipsec policy. 4883 * Handles IPv4 and IPv6. 4884 * We are responsible for disposing of mp, such as by freemsg() or putnext() 4885 * Caller is responsible for dropping references to the conn. 4886 */ 4887 void 4888 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 4889 ip_recv_attr_t *ira) 4890 { 4891 ill_t *ill = ira->ira_ill; 4892 ip_stack_t *ipst = ill->ill_ipst; 4893 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 4894 boolean_t secure; 4895 uint_t protocol = ira->ira_protocol; 4896 iaflags_t iraflags = ira->ira_flags; 4897 queue_t *rq; 4898 4899 secure = iraflags & IRAF_IPSEC_SECURE; 4900 4901 rq = connp->conn_rq; 4902 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 4903 switch (protocol) { 4904 case IPPROTO_ICMPV6: 4905 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows); 4906 break; 4907 case IPPROTO_ICMP: 4908 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 4909 break; 4910 default: 4911 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 4912 break; 4913 } 4914 freemsg(mp); 4915 return; 4916 } 4917 4918 ASSERT(!(IPCL_IS_IPTUN(connp))); 4919 4920 if (((iraflags & IRAF_IS_IPV4) ? 4921 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 4922 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 4923 secure) { 4924 mp = ipsec_check_inbound_policy(mp, connp, ipha, 4925 ip6h, ira); 4926 if (mp == NULL) { 4927 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4928 /* Note that mp is NULL */ 4929 ip_drop_input("ipIfStatsInDiscards", mp, ill); 4930 return; 4931 } 4932 } 4933 4934 if (iraflags & IRAF_ICMP_ERROR) { 4935 (connp->conn_recvicmp)(connp, mp, NULL, ira); 4936 } else { 4937 ill_t *rill = ira->ira_rill; 4938 4939 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 4940 ira->ira_ill = ira->ira_rill = NULL; 4941 /* Send it upstream */ 4942 (connp->conn_recv)(connp, mp, NULL, ira); 4943 ira->ira_ill = ill; 4944 ira->ira_rill = rill; 4945 } 4946 } 4947 4948 /* 4949 * Handle protocols with which IP is less intimate. There 4950 * can be more than one stream bound to a particular 4951 * protocol. When this is the case, normally each one gets a copy 4952 * of any incoming packets. 4953 * 4954 * IPsec NOTE : 4955 * 4956 * Don't allow a secure packet going up a non-secure connection. 4957 * We don't allow this because 4958 * 4959 * 1) Reply might go out in clear which will be dropped at 4960 * the sending side. 4961 * 2) If the reply goes out in clear it will give the 4962 * adversary enough information for getting the key in 4963 * most of the cases. 4964 * 4965 * Moreover getting a secure packet when we expect clear 4966 * implies that SA's were added without checking for 4967 * policy on both ends. This should not happen once ISAKMP 4968 * is used to negotiate SAs as SAs will be added only after 4969 * verifying the policy. 4970 * 4971 * Zones notes: 4972 * Earlier in ip_input on a system with multiple shared-IP zones we 4973 * duplicate the multicast and broadcast packets and send them up 4974 * with each explicit zoneid that exists on that ill. 4975 * This means that here we can match the zoneid with SO_ALLZONES being special. 4976 */ 4977 void 4978 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 4979 { 4980 mblk_t *mp1; 4981 ipaddr_t laddr; 4982 conn_t *connp, *first_connp, *next_connp; 4983 connf_t *connfp; 4984 ill_t *ill = ira->ira_ill; 4985 ip_stack_t *ipst = ill->ill_ipst; 4986 4987 laddr = ipha->ipha_dst; 4988 4989 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol]; 4990 mutex_enter(&connfp->connf_lock); 4991 connp = connfp->connf_head; 4992 for (connp = connfp->connf_head; connp != NULL; 4993 connp = connp->conn_next) { 4994 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 4995 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 4996 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 4997 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) { 4998 break; 4999 } 5000 } 5001 5002 if (connp == NULL) { 5003 /* 5004 * No one bound to these addresses. Is 5005 * there a client that wants all 5006 * unclaimed datagrams? 5007 */ 5008 mutex_exit(&connfp->connf_lock); 5009 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 5010 ICMP_PROTOCOL_UNREACHABLE, ira); 5011 return; 5012 } 5013 5014 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5015 5016 CONN_INC_REF(connp); 5017 first_connp = connp; 5018 connp = connp->conn_next; 5019 5020 for (;;) { 5021 while (connp != NULL) { 5022 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5023 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5024 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5025 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5026 ira, connp))) 5027 break; 5028 connp = connp->conn_next; 5029 } 5030 5031 if (connp == NULL) { 5032 /* No more interested clients */ 5033 connp = first_connp; 5034 break; 5035 } 5036 if (((mp1 = dupmsg(mp)) == NULL) && 5037 ((mp1 = copymsg(mp)) == NULL)) { 5038 /* Memory allocation failed */ 5039 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5040 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5041 connp = first_connp; 5042 break; 5043 } 5044 5045 CONN_INC_REF(connp); 5046 mutex_exit(&connfp->connf_lock); 5047 5048 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL, 5049 ira); 5050 5051 mutex_enter(&connfp->connf_lock); 5052 /* Follow the next pointer before releasing the conn. */ 5053 next_connp = connp->conn_next; 5054 CONN_DEC_REF(connp); 5055 connp = next_connp; 5056 } 5057 5058 /* Last one. Send it upstream. */ 5059 mutex_exit(&connfp->connf_lock); 5060 5061 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira); 5062 5063 CONN_DEC_REF(connp); 5064 } 5065 5066 /* 5067 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 5068 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk 5069 * is not consumed. 5070 * 5071 * One of three things can happen, all of which affect the passed-in mblk: 5072 * 5073 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk.. 5074 * 5075 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent 5076 * ESP packet, and is passed along to ESP for consumption. Return NULL. 5077 * 5078 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL. 5079 */ 5080 mblk_t * 5081 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira) 5082 { 5083 int shift, plen, iph_len; 5084 ipha_t *ipha; 5085 udpha_t *udpha; 5086 uint32_t *spi; 5087 uint32_t esp_ports; 5088 uint8_t *orptr; 5089 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 5090 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5091 5092 ipha = (ipha_t *)mp->b_rptr; 5093 iph_len = ira->ira_ip_hdr_length; 5094 plen = ira->ira_pktlen; 5095 5096 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 5097 /* 5098 * Most likely a keepalive for the benefit of an intervening 5099 * NAT. These aren't for us, per se, so drop it. 5100 * 5101 * RFC 3947/8 doesn't say for sure what to do for 2-3 5102 * byte packets (keepalives are 1-byte), but we'll drop them 5103 * also. 5104 */ 5105 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5106 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 5107 return (NULL); 5108 } 5109 5110 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 5111 /* might as well pull it all up - it might be ESP. */ 5112 if (!pullupmsg(mp, -1)) { 5113 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5114 DROPPER(ipss, ipds_esp_nomem), 5115 &ipss->ipsec_dropper); 5116 return (NULL); 5117 } 5118 5119 ipha = (ipha_t *)mp->b_rptr; 5120 } 5121 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 5122 if (*spi == 0) { 5123 /* UDP packet - remove 0-spi. */ 5124 shift = sizeof (uint32_t); 5125 } else { 5126 /* ESP-in-UDP packet - reduce to ESP. */ 5127 ipha->ipha_protocol = IPPROTO_ESP; 5128 shift = sizeof (udpha_t); 5129 } 5130 5131 /* Fix IP header */ 5132 ira->ira_pktlen = (plen - shift); 5133 ipha->ipha_length = htons(ira->ira_pktlen); 5134 ipha->ipha_hdr_checksum = 0; 5135 5136 orptr = mp->b_rptr; 5137 mp->b_rptr += shift; 5138 5139 udpha = (udpha_t *)(orptr + iph_len); 5140 if (*spi == 0) { 5141 ASSERT((uint8_t *)ipha == orptr); 5142 udpha->uha_length = htons(plen - shift - iph_len); 5143 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 5144 esp_ports = 0; 5145 } else { 5146 esp_ports = *((uint32_t *)udpha); 5147 ASSERT(esp_ports != 0); 5148 } 5149 ovbcopy(orptr, orptr + shift, iph_len); 5150 if (esp_ports != 0) /* Punt up for ESP processing. */ { 5151 ipha = (ipha_t *)(orptr + shift); 5152 5153 ira->ira_flags |= IRAF_ESP_UDP_PORTS; 5154 ira->ira_esp_udp_ports = esp_ports; 5155 ip_fanout_v4(mp, ipha, ira); 5156 return (NULL); 5157 } 5158 return (mp); 5159 } 5160 5161 /* 5162 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5163 * Handles IPv4 and IPv6. 5164 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5165 * Caller is responsible for dropping references to the conn. 5166 */ 5167 void 5168 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 5169 ip_recv_attr_t *ira) 5170 { 5171 ill_t *ill = ira->ira_ill; 5172 ip_stack_t *ipst = ill->ill_ipst; 5173 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5174 boolean_t secure; 5175 iaflags_t iraflags = ira->ira_flags; 5176 5177 secure = iraflags & IRAF_IPSEC_SECURE; 5178 5179 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : 5180 !canputnext(connp->conn_rq)) { 5181 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 5182 freemsg(mp); 5183 return; 5184 } 5185 5186 if (((iraflags & IRAF_IS_IPV4) ? 5187 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 5188 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 5189 secure) { 5190 mp = ipsec_check_inbound_policy(mp, connp, ipha, 5191 ip6h, ira); 5192 if (mp == NULL) { 5193 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5194 /* Note that mp is NULL */ 5195 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5196 return; 5197 } 5198 } 5199 5200 /* 5201 * Since this code is not used for UDP unicast we don't need a NAT_T 5202 * check. Only ip_fanout_v4 has that check. 5203 */ 5204 if (ira->ira_flags & IRAF_ICMP_ERROR) { 5205 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5206 } else { 5207 ill_t *rill = ira->ira_rill; 5208 5209 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5210 ira->ira_ill = ira->ira_rill = NULL; 5211 /* Send it upstream */ 5212 (connp->conn_recv)(connp, mp, NULL, ira); 5213 ira->ira_ill = ill; 5214 ira->ira_rill = rill; 5215 } 5216 } 5217 5218 /* 5219 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors. 5220 * (Unicast fanout is handled in ip_input_v4.) 5221 * 5222 * If SO_REUSEADDR is set all multicast and broadcast packets 5223 * will be delivered to all conns bound to the same port. 5224 * 5225 * If there is at least one matching AF_INET receiver, then we will 5226 * ignore any AF_INET6 receivers. 5227 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5228 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5229 * packets. 5230 * 5231 * Zones notes: 5232 * Earlier in ip_input on a system with multiple shared-IP zones we 5233 * duplicate the multicast and broadcast packets and send them up 5234 * with each explicit zoneid that exists on that ill. 5235 * This means that here we can match the zoneid with SO_ALLZONES being special. 5236 */ 5237 void 5238 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport, 5239 ip_recv_attr_t *ira) 5240 { 5241 ipaddr_t laddr; 5242 in6_addr_t v6faddr; 5243 conn_t *connp; 5244 connf_t *connfp; 5245 ipaddr_t faddr; 5246 ill_t *ill = ira->ira_ill; 5247 ip_stack_t *ipst = ill->ill_ipst; 5248 5249 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR)); 5250 5251 laddr = ipha->ipha_dst; 5252 faddr = ipha->ipha_src; 5253 5254 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5255 mutex_enter(&connfp->connf_lock); 5256 connp = connfp->connf_head; 5257 5258 /* 5259 * If SO_REUSEADDR has been set on the first we send the 5260 * packet to all clients that have joined the group and 5261 * match the port. 5262 */ 5263 while (connp != NULL) { 5264 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) && 5265 conn_wantpacket(connp, ira, ipha) && 5266 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5267 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5268 break; 5269 connp = connp->conn_next; 5270 } 5271 5272 if (connp == NULL) 5273 goto notfound; 5274 5275 CONN_INC_REF(connp); 5276 5277 if (connp->conn_reuseaddr) { 5278 conn_t *first_connp = connp; 5279 conn_t *next_connp; 5280 mblk_t *mp1; 5281 5282 connp = connp->conn_next; 5283 for (;;) { 5284 while (connp != NULL) { 5285 if (IPCL_UDP_MATCH(connp, lport, laddr, 5286 fport, faddr) && 5287 conn_wantpacket(connp, ira, ipha) && 5288 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5289 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5290 ira, connp))) 5291 break; 5292 connp = connp->conn_next; 5293 } 5294 if (connp == NULL) { 5295 /* No more interested clients */ 5296 connp = first_connp; 5297 break; 5298 } 5299 if (((mp1 = dupmsg(mp)) == NULL) && 5300 ((mp1 = copymsg(mp)) == NULL)) { 5301 /* Memory allocation failed */ 5302 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5303 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5304 connp = first_connp; 5305 break; 5306 } 5307 CONN_INC_REF(connp); 5308 mutex_exit(&connfp->connf_lock); 5309 5310 IP_STAT(ipst, ip_udp_fanmb); 5311 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5312 NULL, ira); 5313 mutex_enter(&connfp->connf_lock); 5314 /* Follow the next pointer before releasing the conn */ 5315 next_connp = connp->conn_next; 5316 CONN_DEC_REF(connp); 5317 connp = next_connp; 5318 } 5319 } 5320 5321 /* Last one. Send it upstream. */ 5322 mutex_exit(&connfp->connf_lock); 5323 IP_STAT(ipst, ip_udp_fanmb); 5324 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5325 CONN_DEC_REF(connp); 5326 return; 5327 5328 notfound: 5329 mutex_exit(&connfp->connf_lock); 5330 /* 5331 * IPv6 endpoints bound to multicast IPv4-mapped addresses 5332 * have already been matched above, since they live in the IPv4 5333 * fanout tables. This implies we only need to 5334 * check for IPv6 in6addr_any endpoints here. 5335 * Thus we compare using ipv6_all_zeros instead of the destination 5336 * address, except for the multicast group membership lookup which 5337 * uses the IPv4 destination. 5338 */ 5339 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr); 5340 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5341 mutex_enter(&connfp->connf_lock); 5342 connp = connfp->connf_head; 5343 /* 5344 * IPv4 multicast packet being delivered to an AF_INET6 5345 * in6addr_any endpoint. 5346 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 5347 * and not conn_wantpacket_v6() since any multicast membership is 5348 * for an IPv4-mapped multicast address. 5349 */ 5350 while (connp != NULL) { 5351 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros, 5352 fport, v6faddr) && 5353 conn_wantpacket(connp, ira, ipha) && 5354 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5355 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5356 break; 5357 connp = connp->conn_next; 5358 } 5359 5360 if (connp == NULL) { 5361 /* 5362 * No one bound to this port. Is 5363 * there a client that wants all 5364 * unclaimed datagrams? 5365 */ 5366 mutex_exit(&connfp->connf_lock); 5367 5368 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head != 5369 NULL) { 5370 ASSERT(ira->ira_protocol == IPPROTO_UDP); 5371 ip_fanout_proto_v4(mp, ipha, ira); 5372 } else { 5373 /* 5374 * We used to attempt to send an icmp error here, but 5375 * since this is known to be a multicast packet 5376 * and we don't send icmp errors in response to 5377 * multicast, just drop the packet and give up sooner. 5378 */ 5379 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 5380 freemsg(mp); 5381 } 5382 return; 5383 } 5384 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5385 5386 /* 5387 * If SO_REUSEADDR has been set on the first we send the 5388 * packet to all clients that have joined the group and 5389 * match the port. 5390 */ 5391 if (connp->conn_reuseaddr) { 5392 conn_t *first_connp = connp; 5393 conn_t *next_connp; 5394 mblk_t *mp1; 5395 5396 CONN_INC_REF(connp); 5397 connp = connp->conn_next; 5398 for (;;) { 5399 while (connp != NULL) { 5400 if (IPCL_UDP_MATCH_V6(connp, lport, 5401 ipv6_all_zeros, fport, v6faddr) && 5402 conn_wantpacket(connp, ira, ipha) && 5403 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5404 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5405 ira, connp))) 5406 break; 5407 connp = connp->conn_next; 5408 } 5409 if (connp == NULL) { 5410 /* No more interested clients */ 5411 connp = first_connp; 5412 break; 5413 } 5414 if (((mp1 = dupmsg(mp)) == NULL) && 5415 ((mp1 = copymsg(mp)) == NULL)) { 5416 /* Memory allocation failed */ 5417 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5418 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5419 connp = first_connp; 5420 break; 5421 } 5422 CONN_INC_REF(connp); 5423 mutex_exit(&connfp->connf_lock); 5424 5425 IP_STAT(ipst, ip_udp_fanmb); 5426 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5427 NULL, ira); 5428 mutex_enter(&connfp->connf_lock); 5429 /* Follow the next pointer before releasing the conn */ 5430 next_connp = connp->conn_next; 5431 CONN_DEC_REF(connp); 5432 connp = next_connp; 5433 } 5434 } 5435 5436 /* Last one. Send it upstream. */ 5437 mutex_exit(&connfp->connf_lock); 5438 IP_STAT(ipst, ip_udp_fanmb); 5439 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5440 CONN_DEC_REF(connp); 5441 } 5442 5443 /* 5444 * Split an incoming packet's IPv4 options into the label and the other options. 5445 * If 'allocate' is set it does memory allocation for the ip_pkt_t, including 5446 * clearing out any leftover label or options. 5447 * Otherwise it just makes ipp point into the packet. 5448 * 5449 * Returns zero if ok; ENOMEM if the buffer couldn't be allocated. 5450 */ 5451 int 5452 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate) 5453 { 5454 uchar_t *opt; 5455 uint32_t totallen; 5456 uint32_t optval; 5457 uint32_t optlen; 5458 5459 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR; 5460 ipp->ipp_hoplimit = ipha->ipha_ttl; 5461 ipp->ipp_type_of_service = ipha->ipha_type_of_service; 5462 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr); 5463 5464 /* 5465 * Get length (in 4 byte octets) of IP header options. 5466 */ 5467 totallen = ipha->ipha_version_and_hdr_length - 5468 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5469 5470 if (totallen == 0) { 5471 if (!allocate) 5472 return (0); 5473 5474 /* Clear out anything from a previous packet */ 5475 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5476 kmem_free(ipp->ipp_ipv4_options, 5477 ipp->ipp_ipv4_options_len); 5478 ipp->ipp_ipv4_options = NULL; 5479 ipp->ipp_ipv4_options_len = 0; 5480 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5481 } 5482 if (ipp->ipp_fields & IPPF_LABEL_V4) { 5483 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5484 ipp->ipp_label_v4 = NULL; 5485 ipp->ipp_label_len_v4 = 0; 5486 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5487 } 5488 return (0); 5489 } 5490 5491 totallen <<= 2; 5492 opt = (uchar_t *)&ipha[1]; 5493 if (!is_system_labeled()) { 5494 5495 copyall: 5496 if (!allocate) { 5497 if (totallen != 0) { 5498 ipp->ipp_ipv4_options = opt; 5499 ipp->ipp_ipv4_options_len = totallen; 5500 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5501 } 5502 return (0); 5503 } 5504 /* Just copy all of options */ 5505 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5506 if (totallen == ipp->ipp_ipv4_options_len) { 5507 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5508 return (0); 5509 } 5510 kmem_free(ipp->ipp_ipv4_options, 5511 ipp->ipp_ipv4_options_len); 5512 ipp->ipp_ipv4_options = NULL; 5513 ipp->ipp_ipv4_options_len = 0; 5514 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5515 } 5516 if (totallen == 0) 5517 return (0); 5518 5519 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP); 5520 if (ipp->ipp_ipv4_options == NULL) 5521 return (ENOMEM); 5522 ipp->ipp_ipv4_options_len = totallen; 5523 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5524 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5525 return (0); 5526 } 5527 5528 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) { 5529 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5530 ipp->ipp_label_v4 = NULL; 5531 ipp->ipp_label_len_v4 = 0; 5532 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5533 } 5534 5535 /* 5536 * Search for CIPSO option. 5537 * We assume CIPSO is first in options if it is present. 5538 * If it isn't, then ipp_opt_ipv4_options will not include the options 5539 * prior to the CIPSO option. 5540 */ 5541 while (totallen != 0) { 5542 switch (optval = opt[IPOPT_OPTVAL]) { 5543 case IPOPT_EOL: 5544 return (0); 5545 case IPOPT_NOP: 5546 optlen = 1; 5547 break; 5548 default: 5549 if (totallen <= IPOPT_OLEN) 5550 return (EINVAL); 5551 optlen = opt[IPOPT_OLEN]; 5552 if (optlen < 2) 5553 return (EINVAL); 5554 } 5555 if (optlen > totallen) 5556 return (EINVAL); 5557 5558 switch (optval) { 5559 case IPOPT_COMSEC: 5560 if (!allocate) { 5561 ipp->ipp_label_v4 = opt; 5562 ipp->ipp_label_len_v4 = optlen; 5563 ipp->ipp_fields |= IPPF_LABEL_V4; 5564 } else { 5565 ipp->ipp_label_v4 = kmem_alloc(optlen, 5566 KM_NOSLEEP); 5567 if (ipp->ipp_label_v4 == NULL) 5568 return (ENOMEM); 5569 ipp->ipp_label_len_v4 = optlen; 5570 ipp->ipp_fields |= IPPF_LABEL_V4; 5571 bcopy(opt, ipp->ipp_label_v4, optlen); 5572 } 5573 totallen -= optlen; 5574 opt += optlen; 5575 5576 /* Skip padding bytes until we get to a multiple of 4 */ 5577 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) { 5578 totallen--; 5579 opt++; 5580 } 5581 /* Remaining as ipp_ipv4_options */ 5582 goto copyall; 5583 } 5584 totallen -= optlen; 5585 opt += optlen; 5586 } 5587 /* No CIPSO found; return everything as ipp_ipv4_options */ 5588 totallen = ipha->ipha_version_and_hdr_length - 5589 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5590 totallen <<= 2; 5591 opt = (uchar_t *)&ipha[1]; 5592 goto copyall; 5593 } 5594 5595 /* 5596 * Efficient versions of lookup for an IRE when we only 5597 * match the address. 5598 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5599 * Does not handle multicast addresses. 5600 */ 5601 uint_t 5602 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst) 5603 { 5604 ire_t *ire; 5605 uint_t result; 5606 5607 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL); 5608 ASSERT(ire != NULL); 5609 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5610 result = IRE_NOROUTE; 5611 else 5612 result = ire->ire_type; 5613 ire_refrele(ire); 5614 return (result); 5615 } 5616 5617 /* 5618 * Efficient versions of lookup for an IRE when we only 5619 * match the address. 5620 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5621 * Does not handle multicast addresses. 5622 */ 5623 uint_t 5624 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst) 5625 { 5626 ire_t *ire; 5627 uint_t result; 5628 5629 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL); 5630 ASSERT(ire != NULL); 5631 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5632 result = IRE_NOROUTE; 5633 else 5634 result = ire->ire_type; 5635 ire_refrele(ire); 5636 return (result); 5637 } 5638 5639 /* 5640 * Nobody should be sending 5641 * packets up this stream 5642 */ 5643 static void 5644 ip_lrput(queue_t *q, mblk_t *mp) 5645 { 5646 switch (mp->b_datap->db_type) { 5647 case M_FLUSH: 5648 /* Turn around */ 5649 if (*mp->b_rptr & FLUSHW) { 5650 *mp->b_rptr &= ~FLUSHR; 5651 qreply(q, mp); 5652 return; 5653 } 5654 break; 5655 } 5656 freemsg(mp); 5657 } 5658 5659 /* Nobody should be sending packets down this stream */ 5660 /* ARGSUSED */ 5661 void 5662 ip_lwput(queue_t *q, mblk_t *mp) 5663 { 5664 freemsg(mp); 5665 } 5666 5667 /* 5668 * Move the first hop in any source route to ipha_dst and remove that part of 5669 * the source route. Called by other protocols. Errors in option formatting 5670 * are ignored - will be handled by ip_output_options. Return the final 5671 * destination (either ipha_dst or the last entry in a source route.) 5672 */ 5673 ipaddr_t 5674 ip_massage_options(ipha_t *ipha, netstack_t *ns) 5675 { 5676 ipoptp_t opts; 5677 uchar_t *opt; 5678 uint8_t optval; 5679 uint8_t optlen; 5680 ipaddr_t dst; 5681 int i; 5682 ip_stack_t *ipst = ns->netstack_ip; 5683 5684 ip2dbg(("ip_massage_options\n")); 5685 dst = ipha->ipha_dst; 5686 for (optval = ipoptp_first(&opts, ipha); 5687 optval != IPOPT_EOL; 5688 optval = ipoptp_next(&opts)) { 5689 opt = opts.ipoptp_cur; 5690 switch (optval) { 5691 uint8_t off; 5692 case IPOPT_SSRR: 5693 case IPOPT_LSRR: 5694 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 5695 ip1dbg(("ip_massage_options: bad src route\n")); 5696 break; 5697 } 5698 optlen = opts.ipoptp_len; 5699 off = opt[IPOPT_OFFSET]; 5700 off--; 5701 redo_srr: 5702 if (optlen < IP_ADDR_LEN || 5703 off > optlen - IP_ADDR_LEN) { 5704 /* End of source route */ 5705 ip1dbg(("ip_massage_options: end of SR\n")); 5706 break; 5707 } 5708 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 5709 ip1dbg(("ip_massage_options: next hop 0x%x\n", 5710 ntohl(dst))); 5711 /* 5712 * Check if our address is present more than 5713 * once as consecutive hops in source route. 5714 * XXX verify per-interface ip_forwarding 5715 * for source route? 5716 */ 5717 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 5718 off += IP_ADDR_LEN; 5719 goto redo_srr; 5720 } 5721 if (dst == htonl(INADDR_LOOPBACK)) { 5722 ip1dbg(("ip_massage_options: loopback addr in " 5723 "source route!\n")); 5724 break; 5725 } 5726 /* 5727 * Update ipha_dst to be the first hop and remove the 5728 * first hop from the source route (by overwriting 5729 * part of the option with NOP options). 5730 */ 5731 ipha->ipha_dst = dst; 5732 /* Put the last entry in dst */ 5733 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 5734 3; 5735 bcopy(&opt[off], &dst, IP_ADDR_LEN); 5736 5737 ip1dbg(("ip_massage_options: last hop 0x%x\n", 5738 ntohl(dst))); 5739 /* Move down and overwrite */ 5740 opt[IP_ADDR_LEN] = opt[0]; 5741 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 5742 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 5743 for (i = 0; i < IP_ADDR_LEN; i++) 5744 opt[i] = IPOPT_NOP; 5745 break; 5746 } 5747 } 5748 return (dst); 5749 } 5750 5751 /* 5752 * Return the network mask 5753 * associated with the specified address. 5754 */ 5755 ipaddr_t 5756 ip_net_mask(ipaddr_t addr) 5757 { 5758 uchar_t *up = (uchar_t *)&addr; 5759 ipaddr_t mask = 0; 5760 uchar_t *maskp = (uchar_t *)&mask; 5761 5762 #if defined(__i386) || defined(__amd64) 5763 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 5764 #endif 5765 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 5766 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 5767 #endif 5768 if (CLASSD(addr)) { 5769 maskp[0] = 0xF0; 5770 return (mask); 5771 } 5772 5773 /* We assume Class E default netmask to be 32 */ 5774 if (CLASSE(addr)) 5775 return (0xffffffffU); 5776 5777 if (addr == 0) 5778 return (0); 5779 maskp[0] = 0xFF; 5780 if ((up[0] & 0x80) == 0) 5781 return (mask); 5782 5783 maskp[1] = 0xFF; 5784 if ((up[0] & 0xC0) == 0x80) 5785 return (mask); 5786 5787 maskp[2] = 0xFF; 5788 if ((up[0] & 0xE0) == 0xC0) 5789 return (mask); 5790 5791 /* Otherwise return no mask */ 5792 return ((ipaddr_t)0); 5793 } 5794 5795 /* Name/Value Table Lookup Routine */ 5796 char * 5797 ip_nv_lookup(nv_t *nv, int value) 5798 { 5799 if (!nv) 5800 return (NULL); 5801 for (; nv->nv_name; nv++) { 5802 if (nv->nv_value == value) 5803 return (nv->nv_name); 5804 } 5805 return ("unknown"); 5806 } 5807 5808 static int 5809 ip_wait_for_info_ack(ill_t *ill) 5810 { 5811 int err; 5812 5813 mutex_enter(&ill->ill_lock); 5814 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 5815 /* 5816 * Return value of 0 indicates a pending signal. 5817 */ 5818 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 5819 if (err == 0) { 5820 mutex_exit(&ill->ill_lock); 5821 return (EINTR); 5822 } 5823 } 5824 mutex_exit(&ill->ill_lock); 5825 /* 5826 * ip_rput_other could have set an error in ill_error on 5827 * receipt of M_ERROR. 5828 */ 5829 return (ill->ill_error); 5830 } 5831 5832 /* 5833 * This is a module open, i.e. this is a control stream for access 5834 * to a DLPI device. We allocate an ill_t as the instance data in 5835 * this case. 5836 */ 5837 static int 5838 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5839 { 5840 ill_t *ill; 5841 int err; 5842 zoneid_t zoneid; 5843 netstack_t *ns; 5844 ip_stack_t *ipst; 5845 5846 /* 5847 * Prevent unprivileged processes from pushing IP so that 5848 * they can't send raw IP. 5849 */ 5850 if (secpolicy_net_rawaccess(credp) != 0) 5851 return (EPERM); 5852 5853 ns = netstack_find_by_cred(credp); 5854 ASSERT(ns != NULL); 5855 ipst = ns->netstack_ip; 5856 ASSERT(ipst != NULL); 5857 5858 /* 5859 * For exclusive stacks we set the zoneid to zero 5860 * to make IP operate as if in the global zone. 5861 */ 5862 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5863 zoneid = GLOBAL_ZONEID; 5864 else 5865 zoneid = crgetzoneid(credp); 5866 5867 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 5868 q->q_ptr = WR(q)->q_ptr = ill; 5869 ill->ill_ipst = ipst; 5870 ill->ill_zoneid = zoneid; 5871 5872 /* 5873 * ill_init initializes the ill fields and then sends down 5874 * down a DL_INFO_REQ after calling qprocson. 5875 */ 5876 err = ill_init(q, ill); 5877 5878 if (err != 0) { 5879 mi_free(ill); 5880 netstack_rele(ipst->ips_netstack); 5881 q->q_ptr = NULL; 5882 WR(q)->q_ptr = NULL; 5883 return (err); 5884 } 5885 5886 /* 5887 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent. 5888 * 5889 * ill_init initializes the ipsq marking this thread as 5890 * writer 5891 */ 5892 ipsq_exit(ill->ill_phyint->phyint_ipsq); 5893 err = ip_wait_for_info_ack(ill); 5894 if (err == 0) 5895 ill->ill_credp = credp; 5896 else 5897 goto fail; 5898 5899 crhold(credp); 5900 5901 mutex_enter(&ipst->ips_ip_mi_lock); 5902 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag, 5903 sflag, credp); 5904 mutex_exit(&ipst->ips_ip_mi_lock); 5905 fail: 5906 if (err) { 5907 (void) ip_close(q, 0); 5908 return (err); 5909 } 5910 return (0); 5911 } 5912 5913 /* For /dev/ip aka AF_INET open */ 5914 int 5915 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5916 { 5917 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 5918 } 5919 5920 /* For /dev/ip6 aka AF_INET6 open */ 5921 int 5922 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5923 { 5924 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 5925 } 5926 5927 /* IP open routine. */ 5928 int 5929 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 5930 boolean_t isv6) 5931 { 5932 conn_t *connp; 5933 major_t maj; 5934 zoneid_t zoneid; 5935 netstack_t *ns; 5936 ip_stack_t *ipst; 5937 5938 /* Allow reopen. */ 5939 if (q->q_ptr != NULL) 5940 return (0); 5941 5942 if (sflag & MODOPEN) { 5943 /* This is a module open */ 5944 return (ip_modopen(q, devp, flag, sflag, credp)); 5945 } 5946 5947 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 5948 /* 5949 * Non streams based socket looking for a stream 5950 * to access IP 5951 */ 5952 return (ip_helper_stream_setup(q, devp, flag, sflag, 5953 credp, isv6)); 5954 } 5955 5956 ns = netstack_find_by_cred(credp); 5957 ASSERT(ns != NULL); 5958 ipst = ns->netstack_ip; 5959 ASSERT(ipst != NULL); 5960 5961 /* 5962 * For exclusive stacks we set the zoneid to zero 5963 * to make IP operate as if in the global zone. 5964 */ 5965 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5966 zoneid = GLOBAL_ZONEID; 5967 else 5968 zoneid = crgetzoneid(credp); 5969 5970 /* 5971 * We are opening as a device. This is an IP client stream, and we 5972 * allocate an conn_t as the instance data. 5973 */ 5974 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 5975 5976 /* 5977 * ipcl_conn_create did a netstack_hold. Undo the hold that was 5978 * done by netstack_find_by_cred() 5979 */ 5980 netstack_rele(ipst->ips_netstack); 5981 5982 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM; 5983 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 5984 connp->conn_ixa->ixa_zoneid = zoneid; 5985 connp->conn_zoneid = zoneid; 5986 5987 connp->conn_rq = q; 5988 q->q_ptr = WR(q)->q_ptr = connp; 5989 5990 /* Minor tells us which /dev entry was opened */ 5991 if (isv6) { 5992 connp->conn_family = AF_INET6; 5993 connp->conn_ipversion = IPV6_VERSION; 5994 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4; 5995 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 5996 } else { 5997 connp->conn_family = AF_INET; 5998 connp->conn_ipversion = IPV4_VERSION; 5999 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4; 6000 } 6001 6002 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 6003 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 6004 connp->conn_minor_arena = ip_minor_arena_la; 6005 } else { 6006 /* 6007 * Either minor numbers in the large arena were exhausted 6008 * or a non socket application is doing the open. 6009 * Try to allocate from the small arena. 6010 */ 6011 if ((connp->conn_dev = 6012 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 6013 /* CONN_DEC_REF takes care of netstack_rele() */ 6014 q->q_ptr = WR(q)->q_ptr = NULL; 6015 CONN_DEC_REF(connp); 6016 return (EBUSY); 6017 } 6018 connp->conn_minor_arena = ip_minor_arena_sa; 6019 } 6020 6021 maj = getemajor(*devp); 6022 *devp = makedevice(maj, (minor_t)connp->conn_dev); 6023 6024 /* 6025 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 6026 */ 6027 connp->conn_cred = credp; 6028 connp->conn_cpid = curproc->p_pid; 6029 /* Cache things in ixa without an extra refhold */ 6030 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 6031 connp->conn_ixa->ixa_cred = connp->conn_cred; 6032 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 6033 if (is_system_labeled()) 6034 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred); 6035 6036 /* 6037 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv 6038 */ 6039 connp->conn_recv = ip_conn_input; 6040 connp->conn_recvicmp = ip_conn_input_icmp; 6041 6042 crhold(connp->conn_cred); 6043 6044 /* 6045 * If the caller has the process-wide flag set, then default to MAC 6046 * exempt mode. This allows read-down to unlabeled hosts. 6047 */ 6048 if (getpflags(NET_MAC_AWARE, credp) != 0) 6049 connp->conn_mac_mode = CONN_MAC_AWARE; 6050 6051 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 6052 6053 connp->conn_rq = q; 6054 connp->conn_wq = WR(q); 6055 6056 /* Non-zero default values */ 6057 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP; 6058 6059 /* 6060 * Make the conn globally visible to walkers 6061 */ 6062 ASSERT(connp->conn_ref == 1); 6063 mutex_enter(&connp->conn_lock); 6064 connp->conn_state_flags &= ~CONN_INCIPIENT; 6065 mutex_exit(&connp->conn_lock); 6066 6067 qprocson(q); 6068 6069 return (0); 6070 } 6071 6072 /* 6073 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 6074 * all of them are copied to the conn_t. If the req is "zero", the policy is 6075 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 6076 * fields. 6077 * We keep only the latest setting of the policy and thus policy setting 6078 * is not incremental/cumulative. 6079 * 6080 * Requests to set policies with multiple alternative actions will 6081 * go through a different API. 6082 */ 6083 int 6084 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 6085 { 6086 uint_t ah_req = 0; 6087 uint_t esp_req = 0; 6088 uint_t se_req = 0; 6089 ipsec_act_t *actp = NULL; 6090 uint_t nact; 6091 ipsec_policy_head_t *ph; 6092 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 6093 int error = 0; 6094 netstack_t *ns = connp->conn_netstack; 6095 ip_stack_t *ipst = ns->netstack_ip; 6096 ipsec_stack_t *ipss = ns->netstack_ipsec; 6097 6098 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 6099 6100 /* 6101 * The IP_SEC_OPT option does not allow variable length parameters, 6102 * hence a request cannot be NULL. 6103 */ 6104 if (req == NULL) 6105 return (EINVAL); 6106 6107 ah_req = req->ipsr_ah_req; 6108 esp_req = req->ipsr_esp_req; 6109 se_req = req->ipsr_self_encap_req; 6110 6111 /* Don't allow setting self-encap without one or more of AH/ESP. */ 6112 if (se_req != 0 && esp_req == 0 && ah_req == 0) 6113 return (EINVAL); 6114 6115 /* 6116 * Are we dealing with a request to reset the policy (i.e. 6117 * zero requests). 6118 */ 6119 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 6120 (esp_req & REQ_MASK) == 0 && 6121 (se_req & REQ_MASK) == 0); 6122 6123 if (!is_pol_reset) { 6124 /* 6125 * If we couldn't load IPsec, fail with "protocol 6126 * not supported". 6127 * IPsec may not have been loaded for a request with zero 6128 * policies, so we don't fail in this case. 6129 */ 6130 mutex_enter(&ipss->ipsec_loader_lock); 6131 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 6132 mutex_exit(&ipss->ipsec_loader_lock); 6133 return (EPROTONOSUPPORT); 6134 } 6135 mutex_exit(&ipss->ipsec_loader_lock); 6136 6137 /* 6138 * Test for valid requests. Invalid algorithms 6139 * need to be tested by IPsec code because new 6140 * algorithms can be added dynamically. 6141 */ 6142 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6143 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6144 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 6145 return (EINVAL); 6146 } 6147 6148 /* 6149 * Only privileged users can issue these 6150 * requests. 6151 */ 6152 if (((ah_req & IPSEC_PREF_NEVER) || 6153 (esp_req & IPSEC_PREF_NEVER) || 6154 (se_req & IPSEC_PREF_NEVER)) && 6155 secpolicy_ip_config(cr, B_FALSE) != 0) { 6156 return (EPERM); 6157 } 6158 6159 /* 6160 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 6161 * are mutually exclusive. 6162 */ 6163 if (((ah_req & REQ_MASK) == REQ_MASK) || 6164 ((esp_req & REQ_MASK) == REQ_MASK) || 6165 ((se_req & REQ_MASK) == REQ_MASK)) { 6166 /* Both of them are set */ 6167 return (EINVAL); 6168 } 6169 } 6170 6171 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6172 6173 /* 6174 * If we have already cached policies in conn_connect(), don't 6175 * let them change now. We cache policies for connections 6176 * whose src,dst [addr, port] is known. 6177 */ 6178 if (connp->conn_policy_cached) { 6179 return (EINVAL); 6180 } 6181 6182 /* 6183 * We have a zero policies, reset the connection policy if already 6184 * set. This will cause the connection to inherit the 6185 * global policy, if any. 6186 */ 6187 if (is_pol_reset) { 6188 if (connp->conn_policy != NULL) { 6189 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 6190 connp->conn_policy = NULL; 6191 } 6192 connp->conn_in_enforce_policy = B_FALSE; 6193 connp->conn_out_enforce_policy = B_FALSE; 6194 return (0); 6195 } 6196 6197 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 6198 ipst->ips_netstack); 6199 if (ph == NULL) 6200 goto enomem; 6201 6202 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 6203 if (actp == NULL) 6204 goto enomem; 6205 6206 /* 6207 * Always insert IPv4 policy entries, since they can also apply to 6208 * ipv6 sockets being used in ipv4-compat mode. 6209 */ 6210 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6211 IPSEC_TYPE_INBOUND, ns)) 6212 goto enomem; 6213 is_pol_inserted = B_TRUE; 6214 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6215 IPSEC_TYPE_OUTBOUND, ns)) 6216 goto enomem; 6217 6218 /* 6219 * We're looking at a v6 socket, also insert the v6-specific 6220 * entries. 6221 */ 6222 if (connp->conn_family == AF_INET6) { 6223 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6224 IPSEC_TYPE_INBOUND, ns)) 6225 goto enomem; 6226 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6227 IPSEC_TYPE_OUTBOUND, ns)) 6228 goto enomem; 6229 } 6230 6231 ipsec_actvec_free(actp, nact); 6232 6233 /* 6234 * If the requests need security, set enforce_policy. 6235 * If the requests are IPSEC_PREF_NEVER, one should 6236 * still set conn_out_enforce_policy so that ip_set_destination 6237 * marks the ip_xmit_attr_t appropriatly. This is needed so that 6238 * for connections that we don't cache policy in at connect time, 6239 * if global policy matches in ip_output_attach_policy, we 6240 * don't wrongly inherit global policy. Similarly, we need 6241 * to set conn_in_enforce_policy also so that we don't verify 6242 * policy wrongly. 6243 */ 6244 if ((ah_req & REQ_MASK) != 0 || 6245 (esp_req & REQ_MASK) != 0 || 6246 (se_req & REQ_MASK) != 0) { 6247 connp->conn_in_enforce_policy = B_TRUE; 6248 connp->conn_out_enforce_policy = B_TRUE; 6249 } 6250 6251 return (error); 6252 #undef REQ_MASK 6253 6254 /* 6255 * Common memory-allocation-failure exit path. 6256 */ 6257 enomem: 6258 if (actp != NULL) 6259 ipsec_actvec_free(actp, nact); 6260 if (is_pol_inserted) 6261 ipsec_polhead_flush(ph, ns); 6262 return (ENOMEM); 6263 } 6264 6265 /* 6266 * Set socket options for joining and leaving multicast groups. 6267 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6268 * The caller has already check that the option name is consistent with 6269 * the address family of the socket. 6270 */ 6271 int 6272 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name, 6273 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6274 { 6275 int *i1 = (int *)invalp; 6276 int error = 0; 6277 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6278 struct ip_mreq *v4_mreqp; 6279 struct ipv6_mreq *v6_mreqp; 6280 struct group_req *greqp; 6281 ire_t *ire; 6282 boolean_t done = B_FALSE; 6283 ipaddr_t ifaddr; 6284 in6_addr_t v6group; 6285 uint_t ifindex; 6286 boolean_t mcast_opt = B_TRUE; 6287 mcast_record_t fmode; 6288 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6289 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6290 6291 switch (name) { 6292 case IP_ADD_MEMBERSHIP: 6293 case IPV6_JOIN_GROUP: 6294 mcast_opt = B_FALSE; 6295 /* FALLTHRU */ 6296 case MCAST_JOIN_GROUP: 6297 fmode = MODE_IS_EXCLUDE; 6298 optfn = ip_opt_add_group; 6299 break; 6300 6301 case IP_DROP_MEMBERSHIP: 6302 case IPV6_LEAVE_GROUP: 6303 mcast_opt = B_FALSE; 6304 /* FALLTHRU */ 6305 case MCAST_LEAVE_GROUP: 6306 fmode = MODE_IS_INCLUDE; 6307 optfn = ip_opt_delete_group; 6308 break; 6309 default: 6310 ASSERT(0); 6311 } 6312 6313 if (mcast_opt) { 6314 struct sockaddr_in *sin; 6315 struct sockaddr_in6 *sin6; 6316 6317 greqp = (struct group_req *)i1; 6318 if (greqp->gr_group.ss_family == AF_INET) { 6319 sin = (struct sockaddr_in *)&(greqp->gr_group); 6320 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group); 6321 } else { 6322 if (!inet6) 6323 return (EINVAL); /* Not on INET socket */ 6324 6325 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group); 6326 v6group = sin6->sin6_addr; 6327 } 6328 ifaddr = INADDR_ANY; 6329 ifindex = greqp->gr_interface; 6330 } else if (inet6) { 6331 v6_mreqp = (struct ipv6_mreq *)i1; 6332 v6group = v6_mreqp->ipv6mr_multiaddr; 6333 ifaddr = INADDR_ANY; 6334 ifindex = v6_mreqp->ipv6mr_interface; 6335 } else { 6336 v4_mreqp = (struct ip_mreq *)i1; 6337 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group); 6338 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr; 6339 ifindex = 0; 6340 } 6341 6342 /* 6343 * In the multirouting case, we need to replicate 6344 * the request on all interfaces that will take part 6345 * in replication. We do so because multirouting is 6346 * reflective, thus we will probably receive multi- 6347 * casts on those interfaces. 6348 * The ip_multirt_apply_membership() succeeds if 6349 * the operation succeeds on at least one interface. 6350 */ 6351 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6352 ipaddr_t group; 6353 6354 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6355 6356 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6357 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6358 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6359 } else { 6360 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6361 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6362 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6363 } 6364 if (ire != NULL) { 6365 if (ire->ire_flags & RTF_MULTIRT) { 6366 error = ip_multirt_apply_membership(optfn, ire, connp, 6367 checkonly, &v6group, fmode, &ipv6_all_zeros); 6368 done = B_TRUE; 6369 } 6370 ire_refrele(ire); 6371 } 6372 6373 if (!done) { 6374 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6375 fmode, &ipv6_all_zeros); 6376 } 6377 return (error); 6378 } 6379 6380 /* 6381 * Set socket options for joining and leaving multicast groups 6382 * for specific sources. 6383 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6384 * The caller has already check that the option name is consistent with 6385 * the address family of the socket. 6386 */ 6387 int 6388 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name, 6389 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6390 { 6391 int *i1 = (int *)invalp; 6392 int error = 0; 6393 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6394 struct ip_mreq_source *imreqp; 6395 struct group_source_req *gsreqp; 6396 in6_addr_t v6group, v6src; 6397 uint32_t ifindex; 6398 ipaddr_t ifaddr; 6399 boolean_t mcast_opt = B_TRUE; 6400 mcast_record_t fmode; 6401 ire_t *ire; 6402 boolean_t done = B_FALSE; 6403 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6404 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6405 6406 switch (name) { 6407 case IP_BLOCK_SOURCE: 6408 mcast_opt = B_FALSE; 6409 /* FALLTHRU */ 6410 case MCAST_BLOCK_SOURCE: 6411 fmode = MODE_IS_EXCLUDE; 6412 optfn = ip_opt_add_group; 6413 break; 6414 6415 case IP_UNBLOCK_SOURCE: 6416 mcast_opt = B_FALSE; 6417 /* FALLTHRU */ 6418 case MCAST_UNBLOCK_SOURCE: 6419 fmode = MODE_IS_EXCLUDE; 6420 optfn = ip_opt_delete_group; 6421 break; 6422 6423 case IP_ADD_SOURCE_MEMBERSHIP: 6424 mcast_opt = B_FALSE; 6425 /* FALLTHRU */ 6426 case MCAST_JOIN_SOURCE_GROUP: 6427 fmode = MODE_IS_INCLUDE; 6428 optfn = ip_opt_add_group; 6429 break; 6430 6431 case IP_DROP_SOURCE_MEMBERSHIP: 6432 mcast_opt = B_FALSE; 6433 /* FALLTHRU */ 6434 case MCAST_LEAVE_SOURCE_GROUP: 6435 fmode = MODE_IS_INCLUDE; 6436 optfn = ip_opt_delete_group; 6437 break; 6438 default: 6439 ASSERT(0); 6440 } 6441 6442 if (mcast_opt) { 6443 gsreqp = (struct group_source_req *)i1; 6444 ifindex = gsreqp->gsr_interface; 6445 if (gsreqp->gsr_group.ss_family == AF_INET) { 6446 struct sockaddr_in *s; 6447 s = (struct sockaddr_in *)&gsreqp->gsr_group; 6448 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group); 6449 s = (struct sockaddr_in *)&gsreqp->gsr_source; 6450 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 6451 } else { 6452 struct sockaddr_in6 *s6; 6453 6454 if (!inet6) 6455 return (EINVAL); /* Not on INET socket */ 6456 6457 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 6458 v6group = s6->sin6_addr; 6459 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 6460 v6src = s6->sin6_addr; 6461 } 6462 ifaddr = INADDR_ANY; 6463 } else { 6464 imreqp = (struct ip_mreq_source *)i1; 6465 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group); 6466 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src); 6467 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 6468 ifindex = 0; 6469 } 6470 6471 /* 6472 * Handle src being mapped INADDR_ANY by changing it to unspecified. 6473 */ 6474 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src)) 6475 v6src = ipv6_all_zeros; 6476 6477 /* 6478 * In the multirouting case, we need to replicate 6479 * the request as noted in the mcast cases above. 6480 */ 6481 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6482 ipaddr_t group; 6483 6484 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6485 6486 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6487 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6488 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6489 } else { 6490 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6491 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6492 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6493 } 6494 if (ire != NULL) { 6495 if (ire->ire_flags & RTF_MULTIRT) { 6496 error = ip_multirt_apply_membership(optfn, ire, connp, 6497 checkonly, &v6group, fmode, &v6src); 6498 done = B_TRUE; 6499 } 6500 ire_refrele(ire); 6501 } 6502 if (!done) { 6503 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6504 fmode, &v6src); 6505 } 6506 return (error); 6507 } 6508 6509 /* 6510 * Given a destination address and a pointer to where to put the information 6511 * this routine fills in the mtuinfo. 6512 * The socket must be connected. 6513 * For sctp conn_faddr is the primary address. 6514 */ 6515 int 6516 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo) 6517 { 6518 uint32_t pmtu = IP_MAXPACKET; 6519 uint_t scopeid; 6520 6521 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) 6522 return (-1); 6523 6524 /* In case we never sent or called ip_set_destination_v4/v6 */ 6525 if (ixa->ixa_ire != NULL) 6526 pmtu = ip_get_pmtu(ixa); 6527 6528 if (ixa->ixa_flags & IXAF_SCOPEID_SET) 6529 scopeid = ixa->ixa_scopeid; 6530 else 6531 scopeid = 0; 6532 6533 bzero(mtuinfo, sizeof (*mtuinfo)); 6534 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 6535 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport; 6536 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6; 6537 mtuinfo->ip6m_addr.sin6_scope_id = scopeid; 6538 mtuinfo->ip6m_mtu = pmtu; 6539 6540 return (sizeof (struct ip6_mtuinfo)); 6541 } 6542 6543 /* 6544 * When the src multihoming is changed from weak to [strong, preferred] 6545 * ip_ire_rebind_walker is called to walk the list of all ire_t entries 6546 * and identify routes that were created by user-applications in the 6547 * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not 6548 * currently defined. These routes are then 'rebound', i.e., their ire_ill 6549 * is selected by finding an interface route for the gateway. 6550 */ 6551 /* ARGSUSED */ 6552 void 6553 ip_ire_rebind_walker(ire_t *ire, void *notused) 6554 { 6555 if (!ire->ire_unbound || ire->ire_ill != NULL) 6556 return; 6557 ire_rebind(ire); 6558 ire_delete(ire); 6559 } 6560 6561 /* 6562 * When the src multihoming is changed from [strong, preferred] to weak, 6563 * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and 6564 * set any entries that were created by user-applications in the unbound state 6565 * (i.e., without RTA_IFP) back to having a NULL ire_ill. 6566 */ 6567 /* ARGSUSED */ 6568 void 6569 ip_ire_unbind_walker(ire_t *ire, void *notused) 6570 { 6571 ire_t *new_ire; 6572 6573 if (!ire->ire_unbound || ire->ire_ill == NULL) 6574 return; 6575 if (ire->ire_ipversion == IPV6_VERSION) { 6576 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6, 6577 &ire->ire_gateway_addr_v6, ire->ire_type, NULL, 6578 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6579 } else { 6580 new_ire = ire_create((uchar_t *)&ire->ire_addr, 6581 (uchar_t *)&ire->ire_mask, 6582 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL, 6583 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6584 } 6585 if (new_ire == NULL) 6586 return; 6587 new_ire->ire_unbound = B_TRUE; 6588 /* 6589 * The bound ire must first be deleted so that we don't return 6590 * the existing one on the attempt to add the unbound new_ire. 6591 */ 6592 ire_delete(ire); 6593 new_ire = ire_add(new_ire); 6594 if (new_ire != NULL) 6595 ire_refrele(new_ire); 6596 } 6597 6598 /* 6599 * When the settings of ip*_strict_src_multihoming tunables are changed, 6600 * all cached routes need to be recomputed. This recomputation needs to be 6601 * done when going from weaker to stronger modes so that the cached ire 6602 * for the connection does not violate the current ip*_strict_src_multihoming 6603 * setting. It also needs to be done when going from stronger to weaker modes, 6604 * so that we fall back to matching on the longest-matching-route (as opposed 6605 * to a shorter match that may have been selected in the strong mode 6606 * to satisfy src_multihoming settings). 6607 * 6608 * The cached ixa_ire entires for all conn_t entries are marked as 6609 * "verify" so that they will be recomputed for the next packet. 6610 */ 6611 void 6612 conn_ire_revalidate(conn_t *connp, void *arg) 6613 { 6614 boolean_t isv6 = (boolean_t)arg; 6615 6616 if ((isv6 && connp->conn_ipversion != IPV6_VERSION) || 6617 (!isv6 && connp->conn_ipversion != IPV4_VERSION)) 6618 return; 6619 connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 6620 } 6621 6622 /* 6623 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 6624 * When an ipf is passed here for the first time, if 6625 * we already have in-order fragments on the queue, we convert from the fast- 6626 * path reassembly scheme to the hard-case scheme. From then on, additional 6627 * fragments are reassembled here. We keep track of the start and end offsets 6628 * of each piece, and the number of holes in the chain. When the hole count 6629 * goes to zero, we are done! 6630 * 6631 * The ipf_count will be updated to account for any mblk(s) added (pointed to 6632 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 6633 * ipfb_count and ill_frag_count by the difference of ipf_count before and 6634 * after the call to ip_reassemble(). 6635 */ 6636 int 6637 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 6638 size_t msg_len) 6639 { 6640 uint_t end; 6641 mblk_t *next_mp; 6642 mblk_t *mp1; 6643 uint_t offset; 6644 boolean_t incr_dups = B_TRUE; 6645 boolean_t offset_zero_seen = B_FALSE; 6646 boolean_t pkt_boundary_checked = B_FALSE; 6647 6648 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 6649 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 6650 6651 /* Add in byte count */ 6652 ipf->ipf_count += msg_len; 6653 if (ipf->ipf_end) { 6654 /* 6655 * We were part way through in-order reassembly, but now there 6656 * is a hole. We walk through messages already queued, and 6657 * mark them for hard case reassembly. We know that up till 6658 * now they were in order starting from offset zero. 6659 */ 6660 offset = 0; 6661 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6662 IP_REASS_SET_START(mp1, offset); 6663 if (offset == 0) { 6664 ASSERT(ipf->ipf_nf_hdr_len != 0); 6665 offset = -ipf->ipf_nf_hdr_len; 6666 } 6667 offset += mp1->b_wptr - mp1->b_rptr; 6668 IP_REASS_SET_END(mp1, offset); 6669 } 6670 /* One hole at the end. */ 6671 ipf->ipf_hole_cnt = 1; 6672 /* Brand it as a hard case, forever. */ 6673 ipf->ipf_end = 0; 6674 } 6675 /* Walk through all the new pieces. */ 6676 do { 6677 end = start + (mp->b_wptr - mp->b_rptr); 6678 /* 6679 * If start is 0, decrease 'end' only for the first mblk of 6680 * the fragment. Otherwise 'end' can get wrong value in the 6681 * second pass of the loop if first mblk is exactly the 6682 * size of ipf_nf_hdr_len. 6683 */ 6684 if (start == 0 && !offset_zero_seen) { 6685 /* First segment */ 6686 ASSERT(ipf->ipf_nf_hdr_len != 0); 6687 end -= ipf->ipf_nf_hdr_len; 6688 offset_zero_seen = B_TRUE; 6689 } 6690 next_mp = mp->b_cont; 6691 /* 6692 * We are checking to see if there is any interesing data 6693 * to process. If there isn't and the mblk isn't the 6694 * one which carries the unfragmentable header then we 6695 * drop it. It's possible to have just the unfragmentable 6696 * header come through without any data. That needs to be 6697 * saved. 6698 * 6699 * If the assert at the top of this function holds then the 6700 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 6701 * is infrequently traveled enough that the test is left in 6702 * to protect against future code changes which break that 6703 * invariant. 6704 */ 6705 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 6706 /* Empty. Blast it. */ 6707 IP_REASS_SET_START(mp, 0); 6708 IP_REASS_SET_END(mp, 0); 6709 /* 6710 * If the ipf points to the mblk we are about to free, 6711 * update ipf to point to the next mblk (or NULL 6712 * if none). 6713 */ 6714 if (ipf->ipf_mp->b_cont == mp) 6715 ipf->ipf_mp->b_cont = next_mp; 6716 freeb(mp); 6717 continue; 6718 } 6719 mp->b_cont = NULL; 6720 IP_REASS_SET_START(mp, start); 6721 IP_REASS_SET_END(mp, end); 6722 if (!ipf->ipf_tail_mp) { 6723 ipf->ipf_tail_mp = mp; 6724 ipf->ipf_mp->b_cont = mp; 6725 if (start == 0 || !more) { 6726 ipf->ipf_hole_cnt = 1; 6727 /* 6728 * if the first fragment comes in more than one 6729 * mblk, this loop will be executed for each 6730 * mblk. Need to adjust hole count so exiting 6731 * this routine will leave hole count at 1. 6732 */ 6733 if (next_mp) 6734 ipf->ipf_hole_cnt++; 6735 } else 6736 ipf->ipf_hole_cnt = 2; 6737 continue; 6738 } else if (ipf->ipf_last_frag_seen && !more && 6739 !pkt_boundary_checked) { 6740 /* 6741 * We check datagram boundary only if this fragment 6742 * claims to be the last fragment and we have seen a 6743 * last fragment in the past too. We do this only 6744 * once for a given fragment. 6745 * 6746 * start cannot be 0 here as fragments with start=0 6747 * and MF=0 gets handled as a complete packet. These 6748 * fragments should not reach here. 6749 */ 6750 6751 if (start + msgdsize(mp) != 6752 IP_REASS_END(ipf->ipf_tail_mp)) { 6753 /* 6754 * We have two fragments both of which claim 6755 * to be the last fragment but gives conflicting 6756 * information about the whole datagram size. 6757 * Something fishy is going on. Drop the 6758 * fragment and free up the reassembly list. 6759 */ 6760 return (IP_REASS_FAILED); 6761 } 6762 6763 /* 6764 * We shouldn't come to this code block again for this 6765 * particular fragment. 6766 */ 6767 pkt_boundary_checked = B_TRUE; 6768 } 6769 6770 /* New stuff at or beyond tail? */ 6771 offset = IP_REASS_END(ipf->ipf_tail_mp); 6772 if (start >= offset) { 6773 if (ipf->ipf_last_frag_seen) { 6774 /* current fragment is beyond last fragment */ 6775 return (IP_REASS_FAILED); 6776 } 6777 /* Link it on end. */ 6778 ipf->ipf_tail_mp->b_cont = mp; 6779 ipf->ipf_tail_mp = mp; 6780 if (more) { 6781 if (start != offset) 6782 ipf->ipf_hole_cnt++; 6783 } else if (start == offset && next_mp == NULL) 6784 ipf->ipf_hole_cnt--; 6785 continue; 6786 } 6787 mp1 = ipf->ipf_mp->b_cont; 6788 offset = IP_REASS_START(mp1); 6789 /* New stuff at the front? */ 6790 if (start < offset) { 6791 if (start == 0) { 6792 if (end >= offset) { 6793 /* Nailed the hole at the begining. */ 6794 ipf->ipf_hole_cnt--; 6795 } 6796 } else if (end < offset) { 6797 /* 6798 * A hole, stuff, and a hole where there used 6799 * to be just a hole. 6800 */ 6801 ipf->ipf_hole_cnt++; 6802 } 6803 mp->b_cont = mp1; 6804 /* Check for overlap. */ 6805 while (end > offset) { 6806 if (end < IP_REASS_END(mp1)) { 6807 mp->b_wptr -= end - offset; 6808 IP_REASS_SET_END(mp, offset); 6809 BUMP_MIB(ill->ill_ip_mib, 6810 ipIfStatsReasmPartDups); 6811 break; 6812 } 6813 /* Did we cover another hole? */ 6814 if ((mp1->b_cont && 6815 IP_REASS_END(mp1) != 6816 IP_REASS_START(mp1->b_cont) && 6817 end >= IP_REASS_START(mp1->b_cont)) || 6818 (!ipf->ipf_last_frag_seen && !more)) { 6819 ipf->ipf_hole_cnt--; 6820 } 6821 /* Clip out mp1. */ 6822 if ((mp->b_cont = mp1->b_cont) == NULL) { 6823 /* 6824 * After clipping out mp1, this guy 6825 * is now hanging off the end. 6826 */ 6827 ipf->ipf_tail_mp = mp; 6828 } 6829 IP_REASS_SET_START(mp1, 0); 6830 IP_REASS_SET_END(mp1, 0); 6831 /* Subtract byte count */ 6832 ipf->ipf_count -= mp1->b_datap->db_lim - 6833 mp1->b_datap->db_base; 6834 freeb(mp1); 6835 BUMP_MIB(ill->ill_ip_mib, 6836 ipIfStatsReasmPartDups); 6837 mp1 = mp->b_cont; 6838 if (!mp1) 6839 break; 6840 offset = IP_REASS_START(mp1); 6841 } 6842 ipf->ipf_mp->b_cont = mp; 6843 continue; 6844 } 6845 /* 6846 * The new piece starts somewhere between the start of the head 6847 * and before the end of the tail. 6848 */ 6849 for (; mp1; mp1 = mp1->b_cont) { 6850 offset = IP_REASS_END(mp1); 6851 if (start < offset) { 6852 if (end <= offset) { 6853 /* Nothing new. */ 6854 IP_REASS_SET_START(mp, 0); 6855 IP_REASS_SET_END(mp, 0); 6856 /* Subtract byte count */ 6857 ipf->ipf_count -= mp->b_datap->db_lim - 6858 mp->b_datap->db_base; 6859 if (incr_dups) { 6860 ipf->ipf_num_dups++; 6861 incr_dups = B_FALSE; 6862 } 6863 freeb(mp); 6864 BUMP_MIB(ill->ill_ip_mib, 6865 ipIfStatsReasmDuplicates); 6866 break; 6867 } 6868 /* 6869 * Trim redundant stuff off beginning of new 6870 * piece. 6871 */ 6872 IP_REASS_SET_START(mp, offset); 6873 mp->b_rptr += offset - start; 6874 BUMP_MIB(ill->ill_ip_mib, 6875 ipIfStatsReasmPartDups); 6876 start = offset; 6877 if (!mp1->b_cont) { 6878 /* 6879 * After trimming, this guy is now 6880 * hanging off the end. 6881 */ 6882 mp1->b_cont = mp; 6883 ipf->ipf_tail_mp = mp; 6884 if (!more) { 6885 ipf->ipf_hole_cnt--; 6886 } 6887 break; 6888 } 6889 } 6890 if (start >= IP_REASS_START(mp1->b_cont)) 6891 continue; 6892 /* Fill a hole */ 6893 if (start > offset) 6894 ipf->ipf_hole_cnt++; 6895 mp->b_cont = mp1->b_cont; 6896 mp1->b_cont = mp; 6897 mp1 = mp->b_cont; 6898 offset = IP_REASS_START(mp1); 6899 if (end >= offset) { 6900 ipf->ipf_hole_cnt--; 6901 /* Check for overlap. */ 6902 while (end > offset) { 6903 if (end < IP_REASS_END(mp1)) { 6904 mp->b_wptr -= end - offset; 6905 IP_REASS_SET_END(mp, offset); 6906 /* 6907 * TODO we might bump 6908 * this up twice if there is 6909 * overlap at both ends. 6910 */ 6911 BUMP_MIB(ill->ill_ip_mib, 6912 ipIfStatsReasmPartDups); 6913 break; 6914 } 6915 /* Did we cover another hole? */ 6916 if ((mp1->b_cont && 6917 IP_REASS_END(mp1) 6918 != IP_REASS_START(mp1->b_cont) && 6919 end >= 6920 IP_REASS_START(mp1->b_cont)) || 6921 (!ipf->ipf_last_frag_seen && 6922 !more)) { 6923 ipf->ipf_hole_cnt--; 6924 } 6925 /* Clip out mp1. */ 6926 if ((mp->b_cont = mp1->b_cont) == 6927 NULL) { 6928 /* 6929 * After clipping out mp1, 6930 * this guy is now hanging 6931 * off the end. 6932 */ 6933 ipf->ipf_tail_mp = mp; 6934 } 6935 IP_REASS_SET_START(mp1, 0); 6936 IP_REASS_SET_END(mp1, 0); 6937 /* Subtract byte count */ 6938 ipf->ipf_count -= 6939 mp1->b_datap->db_lim - 6940 mp1->b_datap->db_base; 6941 freeb(mp1); 6942 BUMP_MIB(ill->ill_ip_mib, 6943 ipIfStatsReasmPartDups); 6944 mp1 = mp->b_cont; 6945 if (!mp1) 6946 break; 6947 offset = IP_REASS_START(mp1); 6948 } 6949 } 6950 break; 6951 } 6952 } while (start = end, mp = next_mp); 6953 6954 /* Fragment just processed could be the last one. Remember this fact */ 6955 if (!more) 6956 ipf->ipf_last_frag_seen = B_TRUE; 6957 6958 /* Still got holes? */ 6959 if (ipf->ipf_hole_cnt) 6960 return (IP_REASS_PARTIAL); 6961 /* Clean up overloaded fields to avoid upstream disasters. */ 6962 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6963 IP_REASS_SET_START(mp1, 0); 6964 IP_REASS_SET_END(mp1, 0); 6965 } 6966 return (IP_REASS_COMPLETE); 6967 } 6968 6969 /* 6970 * Fragmentation reassembly. Each ILL has a hash table for 6971 * queuing packets undergoing reassembly for all IPIFs 6972 * associated with the ILL. The hash is based on the packet 6973 * IP ident field. The ILL frag hash table was allocated 6974 * as a timer block at the time the ILL was created. Whenever 6975 * there is anything on the reassembly queue, the timer will 6976 * be running. Returns the reassembled packet if reassembly completes. 6977 */ 6978 mblk_t * 6979 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 6980 { 6981 uint32_t frag_offset_flags; 6982 mblk_t *t_mp; 6983 ipaddr_t dst; 6984 uint8_t proto = ipha->ipha_protocol; 6985 uint32_t sum_val; 6986 uint16_t sum_flags; 6987 ipf_t *ipf; 6988 ipf_t **ipfp; 6989 ipfb_t *ipfb; 6990 uint16_t ident; 6991 uint32_t offset; 6992 ipaddr_t src; 6993 uint_t hdr_length; 6994 uint32_t end; 6995 mblk_t *mp1; 6996 mblk_t *tail_mp; 6997 size_t count; 6998 size_t msg_len; 6999 uint8_t ecn_info = 0; 7000 uint32_t packet_size; 7001 boolean_t pruned = B_FALSE; 7002 ill_t *ill = ira->ira_ill; 7003 ip_stack_t *ipst = ill->ill_ipst; 7004 7005 /* 7006 * Drop the fragmented as early as possible, if 7007 * we don't have resource(s) to re-assemble. 7008 */ 7009 if (ipst->ips_ip_reass_queue_bytes == 0) { 7010 freemsg(mp); 7011 return (NULL); 7012 } 7013 7014 /* Check for fragmentation offset; return if there's none */ 7015 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 7016 (IPH_MF | IPH_OFFSET)) == 0) 7017 return (mp); 7018 7019 /* 7020 * We utilize hardware computed checksum info only for UDP since 7021 * IP fragmentation is a normal occurrence for the protocol. In 7022 * addition, checksum offload support for IP fragments carrying 7023 * UDP payload is commonly implemented across network adapters. 7024 */ 7025 ASSERT(ira->ira_rill != NULL); 7026 if (proto == IPPROTO_UDP && dohwcksum && 7027 ILL_HCKSUM_CAPABLE(ira->ira_rill) && 7028 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 7029 mblk_t *mp1 = mp->b_cont; 7030 int32_t len; 7031 7032 /* Record checksum information from the packet */ 7033 sum_val = (uint32_t)DB_CKSUM16(mp); 7034 sum_flags = DB_CKSUMFLAGS(mp); 7035 7036 /* IP payload offset from beginning of mblk */ 7037 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 7038 7039 if ((sum_flags & HCK_PARTIALCKSUM) && 7040 (mp1 == NULL || mp1->b_cont == NULL) && 7041 offset >= DB_CKSUMSTART(mp) && 7042 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 7043 uint32_t adj; 7044 /* 7045 * Partial checksum has been calculated by hardware 7046 * and attached to the packet; in addition, any 7047 * prepended extraneous data is even byte aligned. 7048 * If any such data exists, we adjust the checksum; 7049 * this would also handle any postpended data. 7050 */ 7051 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 7052 mp, mp1, len, adj); 7053 7054 /* One's complement subtract extraneous checksum */ 7055 if (adj >= sum_val) 7056 sum_val = ~(adj - sum_val) & 0xFFFF; 7057 else 7058 sum_val -= adj; 7059 } 7060 } else { 7061 sum_val = 0; 7062 sum_flags = 0; 7063 } 7064 7065 /* Clear hardware checksumming flag */ 7066 DB_CKSUMFLAGS(mp) = 0; 7067 7068 ident = ipha->ipha_ident; 7069 offset = (frag_offset_flags << 3) & 0xFFFF; 7070 src = ipha->ipha_src; 7071 dst = ipha->ipha_dst; 7072 hdr_length = IPH_HDR_LENGTH(ipha); 7073 end = ntohs(ipha->ipha_length) - hdr_length; 7074 7075 /* If end == 0 then we have a packet with no data, so just free it */ 7076 if (end == 0) { 7077 freemsg(mp); 7078 return (NULL); 7079 } 7080 7081 /* Record the ECN field info. */ 7082 ecn_info = (ipha->ipha_type_of_service & 0x3); 7083 if (offset != 0) { 7084 /* 7085 * If this isn't the first piece, strip the header, and 7086 * add the offset to the end value. 7087 */ 7088 mp->b_rptr += hdr_length; 7089 end += offset; 7090 } 7091 7092 /* Handle vnic loopback of fragments */ 7093 if (mp->b_datap->db_ref > 2) 7094 msg_len = 0; 7095 else 7096 msg_len = MBLKSIZE(mp); 7097 7098 tail_mp = mp; 7099 while (tail_mp->b_cont != NULL) { 7100 tail_mp = tail_mp->b_cont; 7101 if (tail_mp->b_datap->db_ref <= 2) 7102 msg_len += MBLKSIZE(tail_mp); 7103 } 7104 7105 /* If the reassembly list for this ILL will get too big, prune it */ 7106 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 7107 ipst->ips_ip_reass_queue_bytes) { 7108 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len, 7109 uint_t, ill->ill_frag_count, 7110 uint_t, ipst->ips_ip_reass_queue_bytes); 7111 ill_frag_prune(ill, 7112 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 7113 (ipst->ips_ip_reass_queue_bytes - msg_len)); 7114 pruned = B_TRUE; 7115 } 7116 7117 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 7118 mutex_enter(&ipfb->ipfb_lock); 7119 7120 ipfp = &ipfb->ipfb_ipf; 7121 /* Try to find an existing fragment queue for this packet. */ 7122 for (;;) { 7123 ipf = ipfp[0]; 7124 if (ipf != NULL) { 7125 /* 7126 * It has to match on ident and src/dst address. 7127 */ 7128 if (ipf->ipf_ident == ident && 7129 ipf->ipf_src == src && 7130 ipf->ipf_dst == dst && 7131 ipf->ipf_protocol == proto) { 7132 /* 7133 * If we have received too many 7134 * duplicate fragments for this packet 7135 * free it. 7136 */ 7137 if (ipf->ipf_num_dups > ip_max_frag_dups) { 7138 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7139 freemsg(mp); 7140 mutex_exit(&ipfb->ipfb_lock); 7141 return (NULL); 7142 } 7143 /* Found it. */ 7144 break; 7145 } 7146 ipfp = &ipf->ipf_hash_next; 7147 continue; 7148 } 7149 7150 /* 7151 * If we pruned the list, do we want to store this new 7152 * fragment?. We apply an optimization here based on the 7153 * fact that most fragments will be received in order. 7154 * So if the offset of this incoming fragment is zero, 7155 * it is the first fragment of a new packet. We will 7156 * keep it. Otherwise drop the fragment, as we have 7157 * probably pruned the packet already (since the 7158 * packet cannot be found). 7159 */ 7160 if (pruned && offset != 0) { 7161 mutex_exit(&ipfb->ipfb_lock); 7162 freemsg(mp); 7163 return (NULL); 7164 } 7165 7166 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 7167 /* 7168 * Too many fragmented packets in this hash 7169 * bucket. Free the oldest. 7170 */ 7171 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 7172 } 7173 7174 /* New guy. Allocate a frag message. */ 7175 mp1 = allocb(sizeof (*ipf), BPRI_MED); 7176 if (mp1 == NULL) { 7177 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7178 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7179 freemsg(mp); 7180 reass_done: 7181 mutex_exit(&ipfb->ipfb_lock); 7182 return (NULL); 7183 } 7184 7185 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 7186 mp1->b_cont = mp; 7187 7188 /* Initialize the fragment header. */ 7189 ipf = (ipf_t *)mp1->b_rptr; 7190 ipf->ipf_mp = mp1; 7191 ipf->ipf_ptphn = ipfp; 7192 ipfp[0] = ipf; 7193 ipf->ipf_hash_next = NULL; 7194 ipf->ipf_ident = ident; 7195 ipf->ipf_protocol = proto; 7196 ipf->ipf_src = src; 7197 ipf->ipf_dst = dst; 7198 ipf->ipf_nf_hdr_len = 0; 7199 /* Record reassembly start time. */ 7200 ipf->ipf_timestamp = gethrestime_sec(); 7201 /* Record ipf generation and account for frag header */ 7202 ipf->ipf_gen = ill->ill_ipf_gen++; 7203 ipf->ipf_count = MBLKSIZE(mp1); 7204 ipf->ipf_last_frag_seen = B_FALSE; 7205 ipf->ipf_ecn = ecn_info; 7206 ipf->ipf_num_dups = 0; 7207 ipfb->ipfb_frag_pkts++; 7208 ipf->ipf_checksum = 0; 7209 ipf->ipf_checksum_flags = 0; 7210 7211 /* Store checksum value in fragment header */ 7212 if (sum_flags != 0) { 7213 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7214 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7215 ipf->ipf_checksum = sum_val; 7216 ipf->ipf_checksum_flags = sum_flags; 7217 } 7218 7219 /* 7220 * We handle reassembly two ways. In the easy case, 7221 * where all the fragments show up in order, we do 7222 * minimal bookkeeping, and just clip new pieces on 7223 * the end. If we ever see a hole, then we go off 7224 * to ip_reassemble which has to mark the pieces and 7225 * keep track of the number of holes, etc. Obviously, 7226 * the point of having both mechanisms is so we can 7227 * handle the easy case as efficiently as possible. 7228 */ 7229 if (offset == 0) { 7230 /* Easy case, in-order reassembly so far. */ 7231 ipf->ipf_count += msg_len; 7232 ipf->ipf_tail_mp = tail_mp; 7233 /* 7234 * Keep track of next expected offset in 7235 * ipf_end. 7236 */ 7237 ipf->ipf_end = end; 7238 ipf->ipf_nf_hdr_len = hdr_length; 7239 } else { 7240 /* Hard case, hole at the beginning. */ 7241 ipf->ipf_tail_mp = NULL; 7242 /* 7243 * ipf_end == 0 means that we have given up 7244 * on easy reassembly. 7245 */ 7246 ipf->ipf_end = 0; 7247 7248 /* Forget checksum offload from now on */ 7249 ipf->ipf_checksum_flags = 0; 7250 7251 /* 7252 * ipf_hole_cnt is set by ip_reassemble. 7253 * ipf_count is updated by ip_reassemble. 7254 * No need to check for return value here 7255 * as we don't expect reassembly to complete 7256 * or fail for the first fragment itself. 7257 */ 7258 (void) ip_reassemble(mp, ipf, 7259 (frag_offset_flags & IPH_OFFSET) << 3, 7260 (frag_offset_flags & IPH_MF), ill, msg_len); 7261 } 7262 /* Update per ipfb and ill byte counts */ 7263 ipfb->ipfb_count += ipf->ipf_count; 7264 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7265 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 7266 /* If the frag timer wasn't already going, start it. */ 7267 mutex_enter(&ill->ill_lock); 7268 ill_frag_timer_start(ill); 7269 mutex_exit(&ill->ill_lock); 7270 goto reass_done; 7271 } 7272 7273 /* 7274 * If the packet's flag has changed (it could be coming up 7275 * from an interface different than the previous, therefore 7276 * possibly different checksum capability), then forget about 7277 * any stored checksum states. Otherwise add the value to 7278 * the existing one stored in the fragment header. 7279 */ 7280 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 7281 sum_val += ipf->ipf_checksum; 7282 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7283 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7284 ipf->ipf_checksum = sum_val; 7285 } else if (ipf->ipf_checksum_flags != 0) { 7286 /* Forget checksum offload from now on */ 7287 ipf->ipf_checksum_flags = 0; 7288 } 7289 7290 /* 7291 * We have a new piece of a datagram which is already being 7292 * reassembled. Update the ECN info if all IP fragments 7293 * are ECN capable. If there is one which is not, clear 7294 * all the info. If there is at least one which has CE 7295 * code point, IP needs to report that up to transport. 7296 */ 7297 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 7298 if (ecn_info == IPH_ECN_CE) 7299 ipf->ipf_ecn = IPH_ECN_CE; 7300 } else { 7301 ipf->ipf_ecn = IPH_ECN_NECT; 7302 } 7303 if (offset && ipf->ipf_end == offset) { 7304 /* The new fragment fits at the end */ 7305 ipf->ipf_tail_mp->b_cont = mp; 7306 /* Update the byte count */ 7307 ipf->ipf_count += msg_len; 7308 /* Update per ipfb and ill byte counts */ 7309 ipfb->ipfb_count += msg_len; 7310 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7311 atomic_add_32(&ill->ill_frag_count, msg_len); 7312 if (frag_offset_flags & IPH_MF) { 7313 /* More to come. */ 7314 ipf->ipf_end = end; 7315 ipf->ipf_tail_mp = tail_mp; 7316 goto reass_done; 7317 } 7318 } else { 7319 /* Go do the hard cases. */ 7320 int ret; 7321 7322 if (offset == 0) 7323 ipf->ipf_nf_hdr_len = hdr_length; 7324 7325 /* Save current byte count */ 7326 count = ipf->ipf_count; 7327 ret = ip_reassemble(mp, ipf, 7328 (frag_offset_flags & IPH_OFFSET) << 3, 7329 (frag_offset_flags & IPH_MF), ill, msg_len); 7330 /* Count of bytes added and subtracted (freeb()ed) */ 7331 count = ipf->ipf_count - count; 7332 if (count) { 7333 /* Update per ipfb and ill byte counts */ 7334 ipfb->ipfb_count += count; 7335 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7336 atomic_add_32(&ill->ill_frag_count, count); 7337 } 7338 if (ret == IP_REASS_PARTIAL) { 7339 goto reass_done; 7340 } else if (ret == IP_REASS_FAILED) { 7341 /* Reassembly failed. Free up all resources */ 7342 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7343 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 7344 IP_REASS_SET_START(t_mp, 0); 7345 IP_REASS_SET_END(t_mp, 0); 7346 } 7347 freemsg(mp); 7348 goto reass_done; 7349 } 7350 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 7351 } 7352 /* 7353 * We have completed reassembly. Unhook the frag header from 7354 * the reassembly list. 7355 * 7356 * Before we free the frag header, record the ECN info 7357 * to report back to the transport. 7358 */ 7359 ecn_info = ipf->ipf_ecn; 7360 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 7361 ipfp = ipf->ipf_ptphn; 7362 7363 /* We need to supply these to caller */ 7364 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 7365 sum_val = ipf->ipf_checksum; 7366 else 7367 sum_val = 0; 7368 7369 mp1 = ipf->ipf_mp; 7370 count = ipf->ipf_count; 7371 ipf = ipf->ipf_hash_next; 7372 if (ipf != NULL) 7373 ipf->ipf_ptphn = ipfp; 7374 ipfp[0] = ipf; 7375 atomic_add_32(&ill->ill_frag_count, -count); 7376 ASSERT(ipfb->ipfb_count >= count); 7377 ipfb->ipfb_count -= count; 7378 ipfb->ipfb_frag_pkts--; 7379 mutex_exit(&ipfb->ipfb_lock); 7380 /* Ditch the frag header. */ 7381 mp = mp1->b_cont; 7382 7383 freeb(mp1); 7384 7385 /* Restore original IP length in header. */ 7386 packet_size = (uint32_t)msgdsize(mp); 7387 if (packet_size > IP_MAXPACKET) { 7388 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7389 ip_drop_input("Reassembled packet too large", mp, ill); 7390 freemsg(mp); 7391 return (NULL); 7392 } 7393 7394 if (DB_REF(mp) > 1) { 7395 mblk_t *mp2 = copymsg(mp); 7396 7397 if (mp2 == NULL) { 7398 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7399 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7400 freemsg(mp); 7401 return (NULL); 7402 } 7403 freemsg(mp); 7404 mp = mp2; 7405 } 7406 ipha = (ipha_t *)mp->b_rptr; 7407 7408 ipha->ipha_length = htons((uint16_t)packet_size); 7409 /* We're now complete, zip the frag state */ 7410 ipha->ipha_fragment_offset_and_flags = 0; 7411 /* Record the ECN info. */ 7412 ipha->ipha_type_of_service &= 0xFC; 7413 ipha->ipha_type_of_service |= ecn_info; 7414 7415 /* Update the receive attributes */ 7416 ira->ira_pktlen = packet_size; 7417 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 7418 7419 /* Reassembly is successful; set checksum information in packet */ 7420 DB_CKSUM16(mp) = (uint16_t)sum_val; 7421 DB_CKSUMFLAGS(mp) = sum_flags; 7422 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length; 7423 7424 return (mp); 7425 } 7426 7427 /* 7428 * Pullup function that should be used for IP input in order to 7429 * ensure we do not loose the L2 source address; we need the l2 source 7430 * address for IP_RECVSLLA and for ndp_input. 7431 * 7432 * We return either NULL or b_rptr. 7433 */ 7434 void * 7435 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira) 7436 { 7437 ill_t *ill = ira->ira_ill; 7438 7439 if (ip_rput_pullups++ == 0) { 7440 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE, 7441 "ip_pullup: %s forced us to " 7442 " pullup pkt, hdr len %ld, hdr addr %p", 7443 ill->ill_name, len, (void *)mp->b_rptr); 7444 } 7445 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7446 ip_setl2src(mp, ira, ira->ira_rill); 7447 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7448 if (!pullupmsg(mp, len)) 7449 return (NULL); 7450 else 7451 return (mp->b_rptr); 7452 } 7453 7454 /* 7455 * Make sure ira_l2src has an address. If we don't have one fill with zeros. 7456 * When called from the ULP ira_rill will be NULL hence the caller has to 7457 * pass in the ill. 7458 */ 7459 /* ARGSUSED */ 7460 void 7461 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill) 7462 { 7463 const uchar_t *addr; 7464 int alen; 7465 7466 if (ira->ira_flags & IRAF_L2SRC_SET) 7467 return; 7468 7469 ASSERT(ill != NULL); 7470 alen = ill->ill_phys_addr_length; 7471 ASSERT(alen <= sizeof (ira->ira_l2src)); 7472 if (ira->ira_mhip != NULL && 7473 (addr = ira->ira_mhip->mhi_saddr) != NULL) { 7474 bcopy(addr, ira->ira_l2src, alen); 7475 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) && 7476 (addr = ill->ill_phys_addr) != NULL) { 7477 bcopy(addr, ira->ira_l2src, alen); 7478 } else { 7479 bzero(ira->ira_l2src, alen); 7480 } 7481 ira->ira_flags |= IRAF_L2SRC_SET; 7482 } 7483 7484 /* 7485 * check ip header length and align it. 7486 */ 7487 mblk_t * 7488 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira) 7489 { 7490 ill_t *ill = ira->ira_ill; 7491 ssize_t len; 7492 7493 len = MBLKL(mp); 7494 7495 if (!OK_32PTR(mp->b_rptr)) 7496 IP_STAT(ill->ill_ipst, ip_notaligned); 7497 else 7498 IP_STAT(ill->ill_ipst, ip_recv_pullup); 7499 7500 /* Guard against bogus device drivers */ 7501 if (len < 0) { 7502 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7503 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7504 freemsg(mp); 7505 return (NULL); 7506 } 7507 7508 if (len == 0) { 7509 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */ 7510 mblk_t *mp1 = mp->b_cont; 7511 7512 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7513 ip_setl2src(mp, ira, ira->ira_rill); 7514 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7515 7516 freeb(mp); 7517 mp = mp1; 7518 if (mp == NULL) 7519 return (NULL); 7520 7521 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size) 7522 return (mp); 7523 } 7524 if (ip_pullup(mp, min_size, ira) == NULL) { 7525 if (msgdsize(mp) < min_size) { 7526 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7527 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7528 } else { 7529 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7530 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7531 } 7532 freemsg(mp); 7533 return (NULL); 7534 } 7535 return (mp); 7536 } 7537 7538 /* 7539 * Common code for IPv4 and IPv6 to check and pullup multi-mblks 7540 */ 7541 mblk_t * 7542 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len, 7543 uint_t min_size, ip_recv_attr_t *ira) 7544 { 7545 ill_t *ill = ira->ira_ill; 7546 7547 /* 7548 * Make sure we have data length consistent 7549 * with the IP header. 7550 */ 7551 if (mp->b_cont == NULL) { 7552 /* pkt_len is based on ipha_len, not the mblk length */ 7553 if (pkt_len < min_size) { 7554 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7555 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7556 freemsg(mp); 7557 return (NULL); 7558 } 7559 if (len < 0) { 7560 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7561 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7562 freemsg(mp); 7563 return (NULL); 7564 } 7565 /* Drop any pad */ 7566 mp->b_wptr = rptr + pkt_len; 7567 } else if ((len += msgdsize(mp->b_cont)) != 0) { 7568 ASSERT(pkt_len >= min_size); 7569 if (pkt_len < min_size) { 7570 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7571 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7572 freemsg(mp); 7573 return (NULL); 7574 } 7575 if (len < 0) { 7576 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7577 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7578 freemsg(mp); 7579 return (NULL); 7580 } 7581 /* Drop any pad */ 7582 (void) adjmsg(mp, -len); 7583 /* 7584 * adjmsg may have freed an mblk from the chain, hence 7585 * invalidate any hw checksum here. This will force IP to 7586 * calculate the checksum in sw, but only for this packet. 7587 */ 7588 DB_CKSUMFLAGS(mp) = 0; 7589 IP_STAT(ill->ill_ipst, ip_multimblk); 7590 } 7591 return (mp); 7592 } 7593 7594 /* 7595 * Check that the IPv4 opt_len is consistent with the packet and pullup 7596 * the options. 7597 */ 7598 mblk_t * 7599 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len, 7600 ip_recv_attr_t *ira) 7601 { 7602 ill_t *ill = ira->ira_ill; 7603 ssize_t len; 7604 7605 /* Assume no IPv6 packets arrive over the IPv4 queue */ 7606 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { 7607 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7608 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 7609 ip_drop_input("IPvN packet on IPv4 ill", mp, ill); 7610 freemsg(mp); 7611 return (NULL); 7612 } 7613 7614 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 7615 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7616 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7617 freemsg(mp); 7618 return (NULL); 7619 } 7620 /* 7621 * Recompute complete header length and make sure we 7622 * have access to all of it. 7623 */ 7624 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 7625 if (len > (mp->b_wptr - mp->b_rptr)) { 7626 if (len > pkt_len) { 7627 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7628 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7629 freemsg(mp); 7630 return (NULL); 7631 } 7632 if (ip_pullup(mp, len, ira) == NULL) { 7633 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7634 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7635 freemsg(mp); 7636 return (NULL); 7637 } 7638 } 7639 return (mp); 7640 } 7641 7642 /* 7643 * Returns a new ire, or the same ire, or NULL. 7644 * If a different IRE is returned, then it is held; the caller 7645 * needs to release it. 7646 * In no case is there any hold/release on the ire argument. 7647 */ 7648 ire_t * 7649 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 7650 { 7651 ire_t *new_ire; 7652 ill_t *ire_ill; 7653 uint_t ifindex; 7654 ip_stack_t *ipst = ill->ill_ipst; 7655 boolean_t strict_check = B_FALSE; 7656 7657 /* 7658 * IPMP common case: if IRE and ILL are in the same group, there's no 7659 * issue (e.g. packet received on an underlying interface matched an 7660 * IRE_LOCAL on its associated group interface). 7661 */ 7662 ASSERT(ire->ire_ill != NULL); 7663 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill)) 7664 return (ire); 7665 7666 /* 7667 * Do another ire lookup here, using the ingress ill, to see if the 7668 * interface is in a usesrc group. 7669 * As long as the ills belong to the same group, we don't consider 7670 * them to be arriving on the wrong interface. Thus, if the switch 7671 * is doing inbound load spreading, we won't drop packets when the 7672 * ip*_strict_dst_multihoming switch is on. 7673 * We also need to check for IPIF_UNNUMBERED point2point interfaces 7674 * where the local address may not be unique. In this case we were 7675 * at the mercy of the initial ire lookup and the IRE_LOCAL it 7676 * actually returned. The new lookup, which is more specific, should 7677 * only find the IRE_LOCAL associated with the ingress ill if one 7678 * exists. 7679 */ 7680 if (ire->ire_ipversion == IPV4_VERSION) { 7681 if (ipst->ips_ip_strict_dst_multihoming) 7682 strict_check = B_TRUE; 7683 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0, 7684 IRE_LOCAL, ill, ALL_ZONES, NULL, 7685 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7686 } else { 7687 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 7688 if (ipst->ips_ipv6_strict_dst_multihoming) 7689 strict_check = B_TRUE; 7690 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 7691 IRE_LOCAL, ill, ALL_ZONES, NULL, 7692 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7693 } 7694 /* 7695 * If the same ire that was returned in ip_input() is found then this 7696 * is an indication that usesrc groups are in use. The packet 7697 * arrived on a different ill in the group than the one associated with 7698 * the destination address. If a different ire was found then the same 7699 * IP address must be hosted on multiple ills. This is possible with 7700 * unnumbered point2point interfaces. We switch to use this new ire in 7701 * order to have accurate interface statistics. 7702 */ 7703 if (new_ire != NULL) { 7704 /* Note: held in one case but not the other? Caller handles */ 7705 if (new_ire != ire) 7706 return (new_ire); 7707 /* Unchanged */ 7708 ire_refrele(new_ire); 7709 return (ire); 7710 } 7711 7712 /* 7713 * Chase pointers once and store locally. 7714 */ 7715 ASSERT(ire->ire_ill != NULL); 7716 ire_ill = ire->ire_ill; 7717 ifindex = ill->ill_usesrc_ifindex; 7718 7719 /* 7720 * Check if it's a legal address on the 'usesrc' interface. 7721 * For IPMP data addresses the IRE_LOCAL is the upper, hence we 7722 * can just check phyint_ifindex. 7723 */ 7724 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) { 7725 return (ire); 7726 } 7727 7728 /* 7729 * If the ip*_strict_dst_multihoming switch is on then we can 7730 * only accept this packet if the interface is marked as routing. 7731 */ 7732 if (!(strict_check)) 7733 return (ire); 7734 7735 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) { 7736 return (ire); 7737 } 7738 return (NULL); 7739 } 7740 7741 /* 7742 * This function is used to construct a mac_header_info_s from a 7743 * DL_UNITDATA_IND message. 7744 * The address fields in the mhi structure points into the message, 7745 * thus the caller can't use those fields after freeing the message. 7746 * 7747 * We determine whether the packet received is a non-unicast packet 7748 * and in doing so, determine whether or not it is broadcast vs multicast. 7749 * For it to be a broadcast packet, we must have the appropriate mblk_t 7750 * hanging off the ill_t. If this is either not present or doesn't match 7751 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7752 * to be multicast. Thus NICs that have no broadcast address (or no 7753 * capability for one, such as point to point links) cannot return as 7754 * the packet being broadcast. 7755 */ 7756 void 7757 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip) 7758 { 7759 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 7760 mblk_t *bmp; 7761 uint_t extra_offset; 7762 7763 bzero(mhip, sizeof (struct mac_header_info_s)); 7764 7765 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7766 7767 if (ill->ill_sap_length < 0) 7768 extra_offset = 0; 7769 else 7770 extra_offset = ill->ill_sap_length; 7771 7772 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset + 7773 extra_offset; 7774 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset + 7775 extra_offset; 7776 7777 if (!ind->dl_group_address) 7778 return; 7779 7780 /* Multicast or broadcast */ 7781 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7782 7783 if (ind->dl_dest_addr_offset > sizeof (*ind) && 7784 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) && 7785 (bmp = ill->ill_bcast_mp) != NULL) { 7786 dl_unitdata_req_t *dlur; 7787 uint8_t *bphys_addr; 7788 7789 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7790 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 7791 extra_offset; 7792 7793 if (bcmp(mhip->mhi_daddr, bphys_addr, 7794 ind->dl_dest_addr_length) == 0) 7795 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7796 } 7797 } 7798 7799 /* 7800 * This function is used to construct a mac_header_info_s from a 7801 * M_DATA fastpath message from a DLPI driver. 7802 * The address fields in the mhi structure points into the message, 7803 * thus the caller can't use those fields after freeing the message. 7804 * 7805 * We determine whether the packet received is a non-unicast packet 7806 * and in doing so, determine whether or not it is broadcast vs multicast. 7807 * For it to be a broadcast packet, we must have the appropriate mblk_t 7808 * hanging off the ill_t. If this is either not present or doesn't match 7809 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7810 * to be multicast. Thus NICs that have no broadcast address (or no 7811 * capability for one, such as point to point links) cannot return as 7812 * the packet being broadcast. 7813 */ 7814 void 7815 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip) 7816 { 7817 mblk_t *bmp; 7818 struct ether_header *pether; 7819 7820 bzero(mhip, sizeof (struct mac_header_info_s)); 7821 7822 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7823 7824 pether = (struct ether_header *)((char *)mp->b_rptr 7825 - sizeof (struct ether_header)); 7826 7827 /* 7828 * Make sure the interface is an ethernet type, since we don't 7829 * know the header format for anything but Ethernet. Also make 7830 * sure we are pointing correctly above db_base. 7831 */ 7832 if (ill->ill_type != IFT_ETHER) 7833 return; 7834 7835 retry: 7836 if ((uchar_t *)pether < mp->b_datap->db_base) 7837 return; 7838 7839 /* Is there a VLAN tag? */ 7840 if (ill->ill_isv6) { 7841 if (pether->ether_type != htons(ETHERTYPE_IPV6)) { 7842 pether = (struct ether_header *)((char *)pether - 4); 7843 goto retry; 7844 } 7845 } else { 7846 if (pether->ether_type != htons(ETHERTYPE_IP)) { 7847 pether = (struct ether_header *)((char *)pether - 4); 7848 goto retry; 7849 } 7850 } 7851 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost; 7852 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost; 7853 7854 if (!(mhip->mhi_daddr[0] & 0x01)) 7855 return; 7856 7857 /* Multicast or broadcast */ 7858 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7859 7860 if ((bmp = ill->ill_bcast_mp) != NULL) { 7861 dl_unitdata_req_t *dlur; 7862 uint8_t *bphys_addr; 7863 uint_t addrlen; 7864 7865 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7866 addrlen = dlur->dl_dest_addr_length; 7867 if (ill->ill_sap_length < 0) { 7868 bphys_addr = (uchar_t *)dlur + 7869 dlur->dl_dest_addr_offset; 7870 addrlen += ill->ill_sap_length; 7871 } else { 7872 bphys_addr = (uchar_t *)dlur + 7873 dlur->dl_dest_addr_offset + 7874 ill->ill_sap_length; 7875 addrlen -= ill->ill_sap_length; 7876 } 7877 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0) 7878 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7879 } 7880 } 7881 7882 /* 7883 * Handle anything but M_DATA messages 7884 * We see the DL_UNITDATA_IND which are part 7885 * of the data path, and also the other messages from the driver. 7886 */ 7887 void 7888 ip_rput_notdata(ill_t *ill, mblk_t *mp) 7889 { 7890 mblk_t *first_mp; 7891 struct iocblk *iocp; 7892 struct mac_header_info_s mhi; 7893 7894 switch (DB_TYPE(mp)) { 7895 case M_PROTO: 7896 case M_PCPROTO: { 7897 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive != 7898 DL_UNITDATA_IND) { 7899 /* Go handle anything other than data elsewhere. */ 7900 ip_rput_dlpi(ill, mp); 7901 return; 7902 } 7903 7904 first_mp = mp; 7905 mp = first_mp->b_cont; 7906 first_mp->b_cont = NULL; 7907 7908 if (mp == NULL) { 7909 freeb(first_mp); 7910 return; 7911 } 7912 ip_dlur_to_mhi(ill, first_mp, &mhi); 7913 if (ill->ill_isv6) 7914 ip_input_v6(ill, NULL, mp, &mhi); 7915 else 7916 ip_input(ill, NULL, mp, &mhi); 7917 7918 /* Ditch the DLPI header. */ 7919 freeb(first_mp); 7920 return; 7921 } 7922 case M_IOCACK: 7923 iocp = (struct iocblk *)mp->b_rptr; 7924 switch (iocp->ioc_cmd) { 7925 case DL_IOC_HDR_INFO: 7926 ill_fastpath_ack(ill, mp); 7927 return; 7928 default: 7929 putnext(ill->ill_rq, mp); 7930 return; 7931 } 7932 /* FALLTHRU */ 7933 case M_ERROR: 7934 case M_HANGUP: 7935 mutex_enter(&ill->ill_lock); 7936 if (ill->ill_state_flags & ILL_CONDEMNED) { 7937 mutex_exit(&ill->ill_lock); 7938 freemsg(mp); 7939 return; 7940 } 7941 ill_refhold_locked(ill); 7942 mutex_exit(&ill->ill_lock); 7943 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP, 7944 B_FALSE); 7945 return; 7946 case M_CTL: 7947 putnext(ill->ill_rq, mp); 7948 return; 7949 case M_IOCNAK: 7950 ip1dbg(("got iocnak ")); 7951 iocp = (struct iocblk *)mp->b_rptr; 7952 switch (iocp->ioc_cmd) { 7953 case DL_IOC_HDR_INFO: 7954 ip_rput_other(NULL, ill->ill_rq, mp, NULL); 7955 return; 7956 default: 7957 break; 7958 } 7959 /* FALLTHRU */ 7960 default: 7961 putnext(ill->ill_rq, mp); 7962 return; 7963 } 7964 } 7965 7966 /* Read side put procedure. Packets coming from the wire arrive here. */ 7967 void 7968 ip_rput(queue_t *q, mblk_t *mp) 7969 { 7970 ill_t *ill; 7971 union DL_primitives *dl; 7972 7973 ill = (ill_t *)q->q_ptr; 7974 7975 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 7976 /* 7977 * If things are opening or closing, only accept high-priority 7978 * DLPI messages. (On open ill->ill_ipif has not yet been 7979 * created; on close, things hanging off the ill may have been 7980 * freed already.) 7981 */ 7982 dl = (union DL_primitives *)mp->b_rptr; 7983 if (DB_TYPE(mp) != M_PCPROTO || 7984 dl->dl_primitive == DL_UNITDATA_IND) { 7985 inet_freemsg(mp); 7986 return; 7987 } 7988 } 7989 if (DB_TYPE(mp) == M_DATA) { 7990 struct mac_header_info_s mhi; 7991 7992 ip_mdata_to_mhi(ill, mp, &mhi); 7993 ip_input(ill, NULL, mp, &mhi); 7994 } else { 7995 ip_rput_notdata(ill, mp); 7996 } 7997 } 7998 7999 /* 8000 * Move the information to a copy. 8001 */ 8002 mblk_t * 8003 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira) 8004 { 8005 mblk_t *mp1; 8006 ill_t *ill = ira->ira_ill; 8007 ip_stack_t *ipst = ill->ill_ipst; 8008 8009 IP_STAT(ipst, ip_db_ref); 8010 8011 /* Make sure we have ira_l2src before we loose the original mblk */ 8012 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 8013 ip_setl2src(mp, ira, ira->ira_rill); 8014 8015 mp1 = copymsg(mp); 8016 if (mp1 == NULL) { 8017 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 8018 ip_drop_input("ipIfStatsInDiscards", mp, ill); 8019 freemsg(mp); 8020 return (NULL); 8021 } 8022 /* preserve the hardware checksum flags and data, if present */ 8023 if (DB_CKSUMFLAGS(mp) != 0) { 8024 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 8025 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 8026 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 8027 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 8028 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 8029 } 8030 freemsg(mp); 8031 return (mp1); 8032 } 8033 8034 static void 8035 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 8036 t_uscalar_t err) 8037 { 8038 if (dl_err == DL_SYSERR) { 8039 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8040 "%s: %s failed: DL_SYSERR (errno %u)\n", 8041 ill->ill_name, dl_primstr(prim), err); 8042 return; 8043 } 8044 8045 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8046 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 8047 dl_errstr(dl_err)); 8048 } 8049 8050 /* 8051 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 8052 * than DL_UNITDATA_IND messages. If we need to process this message 8053 * exclusively, we call qwriter_ip, in which case we also need to call 8054 * ill_refhold before that, since qwriter_ip does an ill_refrele. 8055 */ 8056 void 8057 ip_rput_dlpi(ill_t *ill, mblk_t *mp) 8058 { 8059 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8060 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8061 queue_t *q = ill->ill_rq; 8062 t_uscalar_t prim = dloa->dl_primitive; 8063 t_uscalar_t reqprim = DL_PRIM_INVAL; 8064 8065 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi", 8066 char *, dl_primstr(prim), ill_t *, ill); 8067 ip1dbg(("ip_rput_dlpi")); 8068 8069 /* 8070 * If we received an ACK but didn't send a request for it, then it 8071 * can't be part of any pending operation; discard up-front. 8072 */ 8073 switch (prim) { 8074 case DL_ERROR_ACK: 8075 reqprim = dlea->dl_error_primitive; 8076 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 8077 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 8078 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 8079 dlea->dl_unix_errno)); 8080 break; 8081 case DL_OK_ACK: 8082 reqprim = dloa->dl_correct_primitive; 8083 break; 8084 case DL_INFO_ACK: 8085 reqprim = DL_INFO_REQ; 8086 break; 8087 case DL_BIND_ACK: 8088 reqprim = DL_BIND_REQ; 8089 break; 8090 case DL_PHYS_ADDR_ACK: 8091 reqprim = DL_PHYS_ADDR_REQ; 8092 break; 8093 case DL_NOTIFY_ACK: 8094 reqprim = DL_NOTIFY_REQ; 8095 break; 8096 case DL_CAPABILITY_ACK: 8097 reqprim = DL_CAPABILITY_REQ; 8098 break; 8099 } 8100 8101 if (prim != DL_NOTIFY_IND) { 8102 if (reqprim == DL_PRIM_INVAL || 8103 !ill_dlpi_pending(ill, reqprim)) { 8104 /* Not a DLPI message we support or expected */ 8105 freemsg(mp); 8106 return; 8107 } 8108 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 8109 dl_primstr(reqprim))); 8110 } 8111 8112 switch (reqprim) { 8113 case DL_UNBIND_REQ: 8114 /* 8115 * NOTE: we mark the unbind as complete even if we got a 8116 * DL_ERROR_ACK, since there's not much else we can do. 8117 */ 8118 mutex_enter(&ill->ill_lock); 8119 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 8120 cv_signal(&ill->ill_cv); 8121 mutex_exit(&ill->ill_lock); 8122 break; 8123 8124 case DL_ENABMULTI_REQ: 8125 if (prim == DL_OK_ACK) { 8126 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8127 ill->ill_dlpi_multicast_state = IDS_OK; 8128 } 8129 break; 8130 } 8131 8132 /* 8133 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 8134 * need to become writer to continue to process it. Because an 8135 * exclusive operation doesn't complete until replies to all queued 8136 * DLPI messages have been received, we know we're in the middle of an 8137 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 8138 * 8139 * As required by qwriter_ip(), we refhold the ill; it will refrele. 8140 * Since this is on the ill stream we unconditionally bump up the 8141 * refcount without doing ILL_CAN_LOOKUP(). 8142 */ 8143 ill_refhold(ill); 8144 if (prim == DL_NOTIFY_IND) 8145 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 8146 else 8147 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 8148 } 8149 8150 /* 8151 * Handling of DLPI messages that require exclusive access to the ipsq. 8152 * 8153 * Need to do ipsq_pending_mp_get on ioctl completion, which could 8154 * happen here. (along with mi_copy_done) 8155 */ 8156 /* ARGSUSED */ 8157 static void 8158 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8159 { 8160 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8161 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8162 int err = 0; 8163 ill_t *ill = (ill_t *)q->q_ptr; 8164 ipif_t *ipif = NULL; 8165 mblk_t *mp1 = NULL; 8166 conn_t *connp = NULL; 8167 t_uscalar_t paddrreq; 8168 mblk_t *mp_hw; 8169 boolean_t success; 8170 boolean_t ioctl_aborted = B_FALSE; 8171 boolean_t log = B_TRUE; 8172 8173 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer", 8174 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill); 8175 8176 ip1dbg(("ip_rput_dlpi_writer ..")); 8177 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 8178 ASSERT(IAM_WRITER_ILL(ill)); 8179 8180 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 8181 /* 8182 * The current ioctl could have been aborted by the user and a new 8183 * ioctl to bring up another ill could have started. We could still 8184 * get a response from the driver later. 8185 */ 8186 if (ipif != NULL && ipif->ipif_ill != ill) 8187 ioctl_aborted = B_TRUE; 8188 8189 switch (dloa->dl_primitive) { 8190 case DL_ERROR_ACK: 8191 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 8192 dl_primstr(dlea->dl_error_primitive))); 8193 8194 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error", 8195 char *, dl_primstr(dlea->dl_error_primitive), 8196 ill_t *, ill); 8197 8198 switch (dlea->dl_error_primitive) { 8199 case DL_DISABMULTI_REQ: 8200 ill_dlpi_done(ill, dlea->dl_error_primitive); 8201 break; 8202 case DL_PROMISCON_REQ: 8203 case DL_PROMISCOFF_REQ: 8204 case DL_UNBIND_REQ: 8205 case DL_ATTACH_REQ: 8206 case DL_INFO_REQ: 8207 ill_dlpi_done(ill, dlea->dl_error_primitive); 8208 break; 8209 case DL_NOTIFY_REQ: 8210 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8211 log = B_FALSE; 8212 break; 8213 case DL_PHYS_ADDR_REQ: 8214 /* 8215 * For IPv6 only, there are two additional 8216 * phys_addr_req's sent to the driver to get the 8217 * IPv6 token and lla. This allows IP to acquire 8218 * the hardware address format for a given interface 8219 * without having built in knowledge of the hardware 8220 * address. ill_phys_addr_pend keeps track of the last 8221 * DL_PAR sent so we know which response we are 8222 * dealing with. ill_dlpi_done will update 8223 * ill_phys_addr_pend when it sends the next req. 8224 * We don't complete the IOCTL until all three DL_PARs 8225 * have been attempted, so set *_len to 0 and break. 8226 */ 8227 paddrreq = ill->ill_phys_addr_pend; 8228 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8229 if (paddrreq == DL_IPV6_TOKEN) { 8230 ill->ill_token_length = 0; 8231 log = B_FALSE; 8232 break; 8233 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8234 ill->ill_nd_lla_len = 0; 8235 log = B_FALSE; 8236 break; 8237 } 8238 /* 8239 * Something went wrong with the DL_PHYS_ADDR_REQ. 8240 * We presumably have an IOCTL hanging out waiting 8241 * for completion. Find it and complete the IOCTL 8242 * with the error noted. 8243 * However, ill_dl_phys was called on an ill queue 8244 * (from SIOCSLIFNAME), thus conn_pending_ill is not 8245 * set. But the ioctl is known to be pending on ill_wq. 8246 */ 8247 if (!ill->ill_ifname_pending) 8248 break; 8249 ill->ill_ifname_pending = 0; 8250 if (!ioctl_aborted) 8251 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8252 if (mp1 != NULL) { 8253 /* 8254 * This operation (SIOCSLIFNAME) must have 8255 * happened on the ill. Assert there is no conn 8256 */ 8257 ASSERT(connp == NULL); 8258 q = ill->ill_wq; 8259 } 8260 break; 8261 case DL_BIND_REQ: 8262 ill_dlpi_done(ill, DL_BIND_REQ); 8263 if (ill->ill_ifname_pending) 8264 break; 8265 mutex_enter(&ill->ill_lock); 8266 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8267 mutex_exit(&ill->ill_lock); 8268 /* 8269 * Something went wrong with the bind. We presumably 8270 * have an IOCTL hanging out waiting for completion. 8271 * Find it, take down the interface that was coming 8272 * up, and complete the IOCTL with the error noted. 8273 */ 8274 if (!ioctl_aborted) 8275 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8276 if (mp1 != NULL) { 8277 /* 8278 * This might be a result of a DL_NOTE_REPLUMB 8279 * notification. In that case, connp is NULL. 8280 */ 8281 if (connp != NULL) 8282 q = CONNP_TO_WQ(connp); 8283 8284 (void) ipif_down(ipif, NULL, NULL); 8285 /* error is set below the switch */ 8286 } 8287 break; 8288 case DL_ENABMULTI_REQ: 8289 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 8290 8291 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8292 ill->ill_dlpi_multicast_state = IDS_FAILED; 8293 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 8294 8295 printf("ip: joining multicasts failed (%d)" 8296 " on %s - will use link layer " 8297 "broadcasts for multicast\n", 8298 dlea->dl_errno, ill->ill_name); 8299 8300 /* 8301 * Set up for multi_bcast; We are the 8302 * writer, so ok to access ill->ill_ipif 8303 * without any lock. 8304 */ 8305 mutex_enter(&ill->ill_phyint->phyint_lock); 8306 ill->ill_phyint->phyint_flags |= 8307 PHYI_MULTI_BCAST; 8308 mutex_exit(&ill->ill_phyint->phyint_lock); 8309 8310 } 8311 freemsg(mp); /* Don't want to pass this up */ 8312 return; 8313 case DL_CAPABILITY_REQ: 8314 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 8315 "DL_CAPABILITY REQ\n")); 8316 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 8317 ill->ill_dlpi_capab_state = IDCS_FAILED; 8318 ill_capability_done(ill); 8319 freemsg(mp); 8320 return; 8321 } 8322 /* 8323 * Note the error for IOCTL completion (mp1 is set when 8324 * ready to complete ioctl). If ill_ifname_pending_err is 8325 * set, an error occured during plumbing (ill_ifname_pending), 8326 * so we want to report that error. 8327 * 8328 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 8329 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 8330 * expected to get errack'd if the driver doesn't support 8331 * these flags (e.g. ethernet). log will be set to B_FALSE 8332 * if these error conditions are encountered. 8333 */ 8334 if (mp1 != NULL) { 8335 if (ill->ill_ifname_pending_err != 0) { 8336 err = ill->ill_ifname_pending_err; 8337 ill->ill_ifname_pending_err = 0; 8338 } else { 8339 err = dlea->dl_unix_errno ? 8340 dlea->dl_unix_errno : ENXIO; 8341 } 8342 /* 8343 * If we're plumbing an interface and an error hasn't already 8344 * been saved, set ill_ifname_pending_err to the error passed 8345 * up. Ignore the error if log is B_FALSE (see comment above). 8346 */ 8347 } else if (log && ill->ill_ifname_pending && 8348 ill->ill_ifname_pending_err == 0) { 8349 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 8350 dlea->dl_unix_errno : ENXIO; 8351 } 8352 8353 if (log) 8354 ip_dlpi_error(ill, dlea->dl_error_primitive, 8355 dlea->dl_errno, dlea->dl_unix_errno); 8356 break; 8357 case DL_CAPABILITY_ACK: 8358 ill_capability_ack(ill, mp); 8359 /* 8360 * The message has been handed off to ill_capability_ack 8361 * and must not be freed below 8362 */ 8363 mp = NULL; 8364 break; 8365 8366 case DL_INFO_ACK: 8367 /* Call a routine to handle this one. */ 8368 ill_dlpi_done(ill, DL_INFO_REQ); 8369 ip_ll_subnet_defaults(ill, mp); 8370 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 8371 return; 8372 case DL_BIND_ACK: 8373 /* 8374 * We should have an IOCTL waiting on this unless 8375 * sent by ill_dl_phys, in which case just return 8376 */ 8377 ill_dlpi_done(ill, DL_BIND_REQ); 8378 8379 if (ill->ill_ifname_pending) { 8380 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending, 8381 ill_t *, ill, mblk_t *, mp); 8382 break; 8383 } 8384 mutex_enter(&ill->ill_lock); 8385 ill->ill_dl_up = 1; 8386 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8387 mutex_exit(&ill->ill_lock); 8388 8389 if (!ioctl_aborted) 8390 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8391 if (mp1 == NULL) { 8392 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill); 8393 break; 8394 } 8395 /* 8396 * mp1 was added by ill_dl_up(). if that is a result of 8397 * a DL_NOTE_REPLUMB notification, connp could be NULL. 8398 */ 8399 if (connp != NULL) 8400 q = CONNP_TO_WQ(connp); 8401 /* 8402 * We are exclusive. So nothing can change even after 8403 * we get the pending mp. 8404 */ 8405 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 8406 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill); 8407 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 8408 8409 /* 8410 * Now bring up the resolver; when that is complete, we'll 8411 * create IREs. Note that we intentionally mirror what 8412 * ipif_up() would have done, because we got here by way of 8413 * ill_dl_up(), which stopped ipif_up()'s processing. 8414 */ 8415 if (ill->ill_isv6) { 8416 /* 8417 * v6 interfaces. 8418 * Unlike ARP which has to do another bind 8419 * and attach, once we get here we are 8420 * done with NDP 8421 */ 8422 (void) ipif_resolver_up(ipif, Res_act_initial); 8423 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 8424 err = ipif_up_done_v6(ipif); 8425 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 8426 /* 8427 * ARP and other v4 external resolvers. 8428 * Leave the pending mblk intact so that 8429 * the ioctl completes in ip_rput(). 8430 */ 8431 if (connp != NULL) 8432 mutex_enter(&connp->conn_lock); 8433 mutex_enter(&ill->ill_lock); 8434 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 8435 mutex_exit(&ill->ill_lock); 8436 if (connp != NULL) 8437 mutex_exit(&connp->conn_lock); 8438 if (success) { 8439 err = ipif_resolver_up(ipif, Res_act_initial); 8440 if (err == EINPROGRESS) { 8441 freemsg(mp); 8442 return; 8443 } 8444 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8445 } else { 8446 /* The conn has started closing */ 8447 err = EINTR; 8448 } 8449 } else { 8450 /* 8451 * This one is complete. Reply to pending ioctl. 8452 */ 8453 (void) ipif_resolver_up(ipif, Res_act_initial); 8454 err = ipif_up_done(ipif); 8455 } 8456 8457 if ((err == 0) && (ill->ill_up_ipifs)) { 8458 err = ill_up_ipifs(ill, q, mp1); 8459 if (err == EINPROGRESS) { 8460 freemsg(mp); 8461 return; 8462 } 8463 } 8464 8465 /* 8466 * If we have a moved ipif to bring up, and everything has 8467 * succeeded to this point, bring it up on the IPMP ill. 8468 * Otherwise, leave it down -- the admin can try to bring it 8469 * up by hand if need be. 8470 */ 8471 if (ill->ill_move_ipif != NULL) { 8472 if (err != 0) { 8473 ill->ill_move_ipif = NULL; 8474 } else { 8475 ipif = ill->ill_move_ipif; 8476 ill->ill_move_ipif = NULL; 8477 err = ipif_up(ipif, q, mp1); 8478 if (err == EINPROGRESS) { 8479 freemsg(mp); 8480 return; 8481 } 8482 } 8483 } 8484 break; 8485 8486 case DL_NOTIFY_IND: { 8487 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 8488 uint_t orig_mtu, orig_mc_mtu; 8489 8490 switch (notify->dl_notification) { 8491 case DL_NOTE_PHYS_ADDR: 8492 err = ill_set_phys_addr(ill, mp); 8493 break; 8494 8495 case DL_NOTE_REPLUMB: 8496 /* 8497 * Directly return after calling ill_replumb(). 8498 * Note that we should not free mp as it is reused 8499 * in the ill_replumb() function. 8500 */ 8501 err = ill_replumb(ill, mp); 8502 return; 8503 8504 case DL_NOTE_FASTPATH_FLUSH: 8505 nce_flush(ill, B_FALSE); 8506 break; 8507 8508 case DL_NOTE_SDU_SIZE: 8509 case DL_NOTE_SDU_SIZE2: 8510 /* 8511 * The dce and fragmentation code can cope with 8512 * this changing while packets are being sent. 8513 * When packets are sent ip_output will discover 8514 * a change. 8515 * 8516 * Change the MTU size of the interface. 8517 */ 8518 mutex_enter(&ill->ill_lock); 8519 orig_mtu = ill->ill_mtu; 8520 orig_mc_mtu = ill->ill_mc_mtu; 8521 switch (notify->dl_notification) { 8522 case DL_NOTE_SDU_SIZE: 8523 ill->ill_current_frag = 8524 (uint_t)notify->dl_data; 8525 ill->ill_mc_mtu = (uint_t)notify->dl_data; 8526 break; 8527 case DL_NOTE_SDU_SIZE2: 8528 ill->ill_current_frag = 8529 (uint_t)notify->dl_data1; 8530 ill->ill_mc_mtu = (uint_t)notify->dl_data2; 8531 break; 8532 } 8533 if (ill->ill_current_frag > ill->ill_max_frag) 8534 ill->ill_max_frag = ill->ill_current_frag; 8535 8536 if (!(ill->ill_flags & ILLF_FIXEDMTU)) { 8537 ill->ill_mtu = ill->ill_current_frag; 8538 8539 /* 8540 * If ill_user_mtu was set (via 8541 * SIOCSLIFLNKINFO), clamp ill_mtu at it. 8542 */ 8543 if (ill->ill_user_mtu != 0 && 8544 ill->ill_user_mtu < ill->ill_mtu) 8545 ill->ill_mtu = ill->ill_user_mtu; 8546 8547 if (ill->ill_user_mtu != 0 && 8548 ill->ill_user_mtu < ill->ill_mc_mtu) 8549 ill->ill_mc_mtu = ill->ill_user_mtu; 8550 8551 if (ill->ill_isv6) { 8552 if (ill->ill_mtu < IPV6_MIN_MTU) 8553 ill->ill_mtu = IPV6_MIN_MTU; 8554 if (ill->ill_mc_mtu < IPV6_MIN_MTU) 8555 ill->ill_mc_mtu = IPV6_MIN_MTU; 8556 } else { 8557 if (ill->ill_mtu < IP_MIN_MTU) 8558 ill->ill_mtu = IP_MIN_MTU; 8559 if (ill->ill_mc_mtu < IP_MIN_MTU) 8560 ill->ill_mc_mtu = IP_MIN_MTU; 8561 } 8562 } else if (ill->ill_mc_mtu > ill->ill_mtu) { 8563 ill->ill_mc_mtu = ill->ill_mtu; 8564 } 8565 8566 mutex_exit(&ill->ill_lock); 8567 /* 8568 * Make sure all dce_generation checks find out 8569 * that ill_mtu/ill_mc_mtu has changed. 8570 */ 8571 if (orig_mtu != ill->ill_mtu || 8572 orig_mc_mtu != ill->ill_mc_mtu) { 8573 dce_increment_all_generations(ill->ill_isv6, 8574 ill->ill_ipst); 8575 } 8576 8577 /* 8578 * Refresh IPMP meta-interface MTU if necessary. 8579 */ 8580 if (IS_UNDER_IPMP(ill)) 8581 ipmp_illgrp_refresh_mtu(ill->ill_grp); 8582 break; 8583 8584 case DL_NOTE_LINK_UP: 8585 case DL_NOTE_LINK_DOWN: { 8586 /* 8587 * We are writer. ill / phyint / ipsq assocs stable. 8588 * The RUNNING flag reflects the state of the link. 8589 */ 8590 phyint_t *phyint = ill->ill_phyint; 8591 uint64_t new_phyint_flags; 8592 boolean_t changed = B_FALSE; 8593 boolean_t went_up; 8594 8595 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 8596 mutex_enter(&phyint->phyint_lock); 8597 8598 new_phyint_flags = went_up ? 8599 phyint->phyint_flags | PHYI_RUNNING : 8600 phyint->phyint_flags & ~PHYI_RUNNING; 8601 8602 if (IS_IPMP(ill)) { 8603 new_phyint_flags = went_up ? 8604 new_phyint_flags & ~PHYI_FAILED : 8605 new_phyint_flags | PHYI_FAILED; 8606 } 8607 8608 if (new_phyint_flags != phyint->phyint_flags) { 8609 phyint->phyint_flags = new_phyint_flags; 8610 changed = B_TRUE; 8611 } 8612 mutex_exit(&phyint->phyint_lock); 8613 /* 8614 * ill_restart_dad handles the DAD restart and routing 8615 * socket notification logic. 8616 */ 8617 if (changed) { 8618 ill_restart_dad(phyint->phyint_illv4, went_up); 8619 ill_restart_dad(phyint->phyint_illv6, went_up); 8620 } 8621 break; 8622 } 8623 case DL_NOTE_PROMISC_ON_PHYS: { 8624 phyint_t *phyint = ill->ill_phyint; 8625 8626 mutex_enter(&phyint->phyint_lock); 8627 phyint->phyint_flags |= PHYI_PROMISC; 8628 mutex_exit(&phyint->phyint_lock); 8629 break; 8630 } 8631 case DL_NOTE_PROMISC_OFF_PHYS: { 8632 phyint_t *phyint = ill->ill_phyint; 8633 8634 mutex_enter(&phyint->phyint_lock); 8635 phyint->phyint_flags &= ~PHYI_PROMISC; 8636 mutex_exit(&phyint->phyint_lock); 8637 break; 8638 } 8639 case DL_NOTE_CAPAB_RENEG: 8640 /* 8641 * Something changed on the driver side. 8642 * It wants us to renegotiate the capabilities 8643 * on this ill. One possible cause is the aggregation 8644 * interface under us where a port got added or 8645 * went away. 8646 * 8647 * If the capability negotiation is already done 8648 * or is in progress, reset the capabilities and 8649 * mark the ill's ill_capab_reneg to be B_TRUE, 8650 * so that when the ack comes back, we can start 8651 * the renegotiation process. 8652 * 8653 * Note that if ill_capab_reneg is already B_TRUE 8654 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 8655 * the capability resetting request has been sent 8656 * and the renegotiation has not been started yet; 8657 * nothing needs to be done in this case. 8658 */ 8659 ipsq_current_start(ipsq, ill->ill_ipif, 0); 8660 ill_capability_reset(ill, B_TRUE); 8661 ipsq_current_finish(ipsq); 8662 break; 8663 8664 case DL_NOTE_ALLOWED_IPS: 8665 ill_set_allowed_ips(ill, mp); 8666 break; 8667 default: 8668 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 8669 "type 0x%x for DL_NOTIFY_IND\n", 8670 notify->dl_notification)); 8671 break; 8672 } 8673 8674 /* 8675 * As this is an asynchronous operation, we 8676 * should not call ill_dlpi_done 8677 */ 8678 break; 8679 } 8680 case DL_NOTIFY_ACK: { 8681 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 8682 8683 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 8684 ill->ill_note_link = 1; 8685 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8686 break; 8687 } 8688 case DL_PHYS_ADDR_ACK: { 8689 /* 8690 * As part of plumbing the interface via SIOCSLIFNAME, 8691 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 8692 * whose answers we receive here. As each answer is received, 8693 * we call ill_dlpi_done() to dispatch the next request as 8694 * we're processing the current one. Once all answers have 8695 * been received, we use ipsq_pending_mp_get() to dequeue the 8696 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 8697 * is invoked from an ill queue, conn_oper_pending_ill is not 8698 * available, but we know the ioctl is pending on ill_wq.) 8699 */ 8700 uint_t paddrlen, paddroff; 8701 uint8_t *addr; 8702 8703 paddrreq = ill->ill_phys_addr_pend; 8704 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 8705 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 8706 addr = mp->b_rptr + paddroff; 8707 8708 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8709 if (paddrreq == DL_IPV6_TOKEN) { 8710 /* 8711 * bcopy to low-order bits of ill_token 8712 * 8713 * XXX Temporary hack - currently, all known tokens 8714 * are 64 bits, so I'll cheat for the moment. 8715 */ 8716 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 8717 ill->ill_token_length = paddrlen; 8718 break; 8719 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8720 ASSERT(ill->ill_nd_lla_mp == NULL); 8721 ill_set_ndmp(ill, mp, paddroff, paddrlen); 8722 mp = NULL; 8723 break; 8724 } else if (paddrreq == DL_CURR_DEST_ADDR) { 8725 ASSERT(ill->ill_dest_addr_mp == NULL); 8726 ill->ill_dest_addr_mp = mp; 8727 ill->ill_dest_addr = addr; 8728 mp = NULL; 8729 if (ill->ill_isv6) { 8730 ill_setdesttoken(ill); 8731 ipif_setdestlinklocal(ill->ill_ipif); 8732 } 8733 break; 8734 } 8735 8736 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 8737 ASSERT(ill->ill_phys_addr_mp == NULL); 8738 if (!ill->ill_ifname_pending) 8739 break; 8740 ill->ill_ifname_pending = 0; 8741 if (!ioctl_aborted) 8742 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8743 if (mp1 != NULL) { 8744 ASSERT(connp == NULL); 8745 q = ill->ill_wq; 8746 } 8747 /* 8748 * If any error acks received during the plumbing sequence, 8749 * ill_ifname_pending_err will be set. Break out and send up 8750 * the error to the pending ioctl. 8751 */ 8752 if (ill->ill_ifname_pending_err != 0) { 8753 err = ill->ill_ifname_pending_err; 8754 ill->ill_ifname_pending_err = 0; 8755 break; 8756 } 8757 8758 ill->ill_phys_addr_mp = mp; 8759 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 8760 mp = NULL; 8761 8762 /* 8763 * If paddrlen or ill_phys_addr_length is zero, the DLPI 8764 * provider doesn't support physical addresses. We check both 8765 * paddrlen and ill_phys_addr_length because sppp (PPP) does 8766 * not have physical addresses, but historically adversises a 8767 * physical address length of 0 in its DL_INFO_ACK, but 6 in 8768 * its DL_PHYS_ADDR_ACK. 8769 */ 8770 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 8771 ill->ill_phys_addr = NULL; 8772 } else if (paddrlen != ill->ill_phys_addr_length) { 8773 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 8774 paddrlen, ill->ill_phys_addr_length)); 8775 err = EINVAL; 8776 break; 8777 } 8778 8779 if (ill->ill_nd_lla_mp == NULL) { 8780 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 8781 err = ENOMEM; 8782 break; 8783 } 8784 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 8785 } 8786 8787 if (ill->ill_isv6) { 8788 ill_setdefaulttoken(ill); 8789 ipif_setlinklocal(ill->ill_ipif); 8790 } 8791 break; 8792 } 8793 case DL_OK_ACK: 8794 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 8795 dl_primstr((int)dloa->dl_correct_primitive), 8796 dloa->dl_correct_primitive)); 8797 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok", 8798 char *, dl_primstr(dloa->dl_correct_primitive), 8799 ill_t *, ill); 8800 8801 switch (dloa->dl_correct_primitive) { 8802 case DL_ENABMULTI_REQ: 8803 case DL_DISABMULTI_REQ: 8804 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8805 break; 8806 case DL_PROMISCON_REQ: 8807 case DL_PROMISCOFF_REQ: 8808 case DL_UNBIND_REQ: 8809 case DL_ATTACH_REQ: 8810 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8811 break; 8812 } 8813 break; 8814 default: 8815 break; 8816 } 8817 8818 freemsg(mp); 8819 if (mp1 == NULL) 8820 return; 8821 8822 /* 8823 * The operation must complete without EINPROGRESS since 8824 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 8825 * the operation will be stuck forever inside the IPSQ. 8826 */ 8827 ASSERT(err != EINPROGRESS); 8828 8829 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish", 8830 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill, 8831 ipif_t *, NULL); 8832 8833 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 8834 case 0: 8835 ipsq_current_finish(ipsq); 8836 break; 8837 8838 case SIOCSLIFNAME: 8839 case IF_UNITSEL: { 8840 ill_t *ill_other = ILL_OTHER(ill); 8841 8842 /* 8843 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 8844 * ill has a peer which is in an IPMP group, then place ill 8845 * into the same group. One catch: although ifconfig plumbs 8846 * the appropriate IPMP meta-interface prior to plumbing this 8847 * ill, it is possible for multiple ifconfig applications to 8848 * race (or for another application to adjust plumbing), in 8849 * which case the IPMP meta-interface we need will be missing. 8850 * If so, kick the phyint out of the group. 8851 */ 8852 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 8853 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 8854 ipmp_illgrp_t *illg; 8855 8856 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 8857 if (illg == NULL) 8858 ipmp_phyint_leave_grp(ill->ill_phyint); 8859 else 8860 ipmp_ill_join_illgrp(ill, illg); 8861 } 8862 8863 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 8864 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8865 else 8866 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8867 break; 8868 } 8869 case SIOCLIFADDIF: 8870 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8871 break; 8872 8873 default: 8874 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8875 break; 8876 } 8877 } 8878 8879 /* 8880 * ip_rput_other is called by ip_rput to handle messages modifying the global 8881 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 8882 */ 8883 /* ARGSUSED */ 8884 void 8885 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8886 { 8887 ill_t *ill = q->q_ptr; 8888 struct iocblk *iocp; 8889 8890 ip1dbg(("ip_rput_other ")); 8891 if (ipsq != NULL) { 8892 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8893 ASSERT(ipsq->ipsq_xop == 8894 ill->ill_phyint->phyint_ipsq->ipsq_xop); 8895 } 8896 8897 switch (mp->b_datap->db_type) { 8898 case M_ERROR: 8899 case M_HANGUP: 8900 /* 8901 * The device has a problem. We force the ILL down. It can 8902 * be brought up again manually using SIOCSIFFLAGS (via 8903 * ifconfig or equivalent). 8904 */ 8905 ASSERT(ipsq != NULL); 8906 if (mp->b_rptr < mp->b_wptr) 8907 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 8908 if (ill->ill_error == 0) 8909 ill->ill_error = ENXIO; 8910 if (!ill_down_start(q, mp)) 8911 return; 8912 ipif_all_down_tail(ipsq, q, mp, NULL); 8913 break; 8914 case M_IOCNAK: { 8915 iocp = (struct iocblk *)mp->b_rptr; 8916 8917 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 8918 /* 8919 * If this was the first attempt, turn off the fastpath 8920 * probing. 8921 */ 8922 mutex_enter(&ill->ill_lock); 8923 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 8924 ill->ill_dlpi_fastpath_state = IDS_FAILED; 8925 mutex_exit(&ill->ill_lock); 8926 /* 8927 * don't flush the nce_t entries: we use them 8928 * as an index to the ncec itself. 8929 */ 8930 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 8931 ill->ill_name)); 8932 } else { 8933 mutex_exit(&ill->ill_lock); 8934 } 8935 freemsg(mp); 8936 break; 8937 } 8938 default: 8939 ASSERT(0); 8940 break; 8941 } 8942 } 8943 8944 /* 8945 * Update any source route, record route or timestamp options 8946 * When it fails it has consumed the message and BUMPed the MIB. 8947 */ 8948 boolean_t 8949 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill, 8950 ip_recv_attr_t *ira) 8951 { 8952 ipoptp_t opts; 8953 uchar_t *opt; 8954 uint8_t optval; 8955 uint8_t optlen; 8956 ipaddr_t dst; 8957 ipaddr_t ifaddr; 8958 uint32_t ts; 8959 timestruc_t now; 8960 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 8961 8962 ip2dbg(("ip_forward_options\n")); 8963 dst = ipha->ipha_dst; 8964 for (optval = ipoptp_first(&opts, ipha); 8965 optval != IPOPT_EOL; 8966 optval = ipoptp_next(&opts)) { 8967 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 8968 opt = opts.ipoptp_cur; 8969 optlen = opts.ipoptp_len; 8970 ip2dbg(("ip_forward_options: opt %d, len %d\n", 8971 optval, opts.ipoptp_len)); 8972 switch (optval) { 8973 uint32_t off; 8974 case IPOPT_SSRR: 8975 case IPOPT_LSRR: 8976 /* Check if adminstratively disabled */ 8977 if (!ipst->ips_ip_forward_src_routed) { 8978 BUMP_MIB(dst_ill->ill_ip_mib, 8979 ipIfStatsForwProhibits); 8980 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", 8981 mp, dst_ill); 8982 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, 8983 ira); 8984 return (B_FALSE); 8985 } 8986 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 8987 /* 8988 * Must be partial since ip_input_options 8989 * checked for strict. 8990 */ 8991 break; 8992 } 8993 off = opt[IPOPT_OFFSET]; 8994 off--; 8995 redo_srr: 8996 if (optlen < IP_ADDR_LEN || 8997 off > optlen - IP_ADDR_LEN) { 8998 /* End of source route */ 8999 ip1dbg(( 9000 "ip_forward_options: end of SR\n")); 9001 break; 9002 } 9003 /* Pick a reasonable address on the outbound if */ 9004 ASSERT(dst_ill != NULL); 9005 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9006 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9007 NULL) != 0) { 9008 /* No source! Shouldn't happen */ 9009 ifaddr = INADDR_ANY; 9010 } 9011 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9012 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9013 ip1dbg(("ip_forward_options: next hop 0x%x\n", 9014 ntohl(dst))); 9015 9016 /* 9017 * Check if our address is present more than 9018 * once as consecutive hops in source route. 9019 */ 9020 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9021 off += IP_ADDR_LEN; 9022 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9023 goto redo_srr; 9024 } 9025 ipha->ipha_dst = dst; 9026 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9027 break; 9028 case IPOPT_RR: 9029 off = opt[IPOPT_OFFSET]; 9030 off--; 9031 if (optlen < IP_ADDR_LEN || 9032 off > optlen - IP_ADDR_LEN) { 9033 /* No more room - ignore */ 9034 ip1dbg(( 9035 "ip_forward_options: end of RR\n")); 9036 break; 9037 } 9038 /* Pick a reasonable address on the outbound if */ 9039 ASSERT(dst_ill != NULL); 9040 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9041 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9042 NULL) != 0) { 9043 /* No source! Shouldn't happen */ 9044 ifaddr = INADDR_ANY; 9045 } 9046 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9047 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9048 break; 9049 case IPOPT_TS: 9050 /* Insert timestamp if there is room */ 9051 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9052 case IPOPT_TS_TSONLY: 9053 off = IPOPT_TS_TIMELEN; 9054 break; 9055 case IPOPT_TS_PRESPEC: 9056 case IPOPT_TS_PRESPEC_RFC791: 9057 /* Verify that the address matched */ 9058 off = opt[IPOPT_OFFSET] - 1; 9059 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9060 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9061 /* Not for us */ 9062 break; 9063 } 9064 /* FALLTHRU */ 9065 case IPOPT_TS_TSANDADDR: 9066 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9067 break; 9068 default: 9069 /* 9070 * ip_*put_options should have already 9071 * dropped this packet. 9072 */ 9073 cmn_err(CE_PANIC, "ip_forward_options: " 9074 "unknown IT - bug in ip_input_options?\n"); 9075 return (B_TRUE); /* Keep "lint" happy */ 9076 } 9077 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9078 /* Increase overflow counter */ 9079 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9080 opt[IPOPT_POS_OV_FLG] = 9081 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9082 (off << 4)); 9083 break; 9084 } 9085 off = opt[IPOPT_OFFSET] - 1; 9086 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9087 case IPOPT_TS_PRESPEC: 9088 case IPOPT_TS_PRESPEC_RFC791: 9089 case IPOPT_TS_TSANDADDR: 9090 /* Pick a reasonable addr on the outbound if */ 9091 ASSERT(dst_ill != NULL); 9092 if (ip_select_source_v4(dst_ill, INADDR_ANY, 9093 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr, 9094 NULL, NULL) != 0) { 9095 /* No source! Shouldn't happen */ 9096 ifaddr = INADDR_ANY; 9097 } 9098 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9099 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9100 /* FALLTHRU */ 9101 case IPOPT_TS_TSONLY: 9102 off = opt[IPOPT_OFFSET] - 1; 9103 /* Compute # of milliseconds since midnight */ 9104 gethrestime(&now); 9105 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9106 now.tv_nsec / (NANOSEC / MILLISEC); 9107 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9108 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9109 break; 9110 } 9111 break; 9112 } 9113 } 9114 return (B_TRUE); 9115 } 9116 9117 /* 9118 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 9119 * returns 'true' if there are still fragments left on the queue, in 9120 * which case we restart the timer. 9121 */ 9122 void 9123 ill_frag_timer(void *arg) 9124 { 9125 ill_t *ill = (ill_t *)arg; 9126 boolean_t frag_pending; 9127 ip_stack_t *ipst = ill->ill_ipst; 9128 time_t timeout; 9129 9130 mutex_enter(&ill->ill_lock); 9131 ASSERT(!ill->ill_fragtimer_executing); 9132 if (ill->ill_state_flags & ILL_CONDEMNED) { 9133 ill->ill_frag_timer_id = 0; 9134 mutex_exit(&ill->ill_lock); 9135 return; 9136 } 9137 ill->ill_fragtimer_executing = 1; 9138 mutex_exit(&ill->ill_lock); 9139 9140 timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9141 ipst->ips_ip_reassembly_timeout); 9142 9143 frag_pending = ill_frag_timeout(ill, timeout); 9144 9145 /* 9146 * Restart the timer, if we have fragments pending or if someone 9147 * wanted us to be scheduled again. 9148 */ 9149 mutex_enter(&ill->ill_lock); 9150 ill->ill_fragtimer_executing = 0; 9151 ill->ill_frag_timer_id = 0; 9152 if (frag_pending || ill->ill_fragtimer_needrestart) 9153 ill_frag_timer_start(ill); 9154 mutex_exit(&ill->ill_lock); 9155 } 9156 9157 void 9158 ill_frag_timer_start(ill_t *ill) 9159 { 9160 ip_stack_t *ipst = ill->ill_ipst; 9161 clock_t timeo_ms; 9162 9163 ASSERT(MUTEX_HELD(&ill->ill_lock)); 9164 9165 /* If the ill is closing or opening don't proceed */ 9166 if (ill->ill_state_flags & ILL_CONDEMNED) 9167 return; 9168 9169 if (ill->ill_fragtimer_executing) { 9170 /* 9171 * ill_frag_timer is currently executing. Just record the 9172 * the fact that we want the timer to be restarted. 9173 * ill_frag_timer will post a timeout before it returns, 9174 * ensuring it will be called again. 9175 */ 9176 ill->ill_fragtimer_needrestart = 1; 9177 return; 9178 } 9179 9180 if (ill->ill_frag_timer_id == 0) { 9181 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9182 ipst->ips_ip_reassembly_timeout) * SECONDS; 9183 9184 /* 9185 * The timer is neither running nor is the timeout handler 9186 * executing. Post a timeout so that ill_frag_timer will be 9187 * called 9188 */ 9189 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 9190 MSEC_TO_TICK(timeo_ms >> 1)); 9191 ill->ill_fragtimer_needrestart = 0; 9192 } 9193 } 9194 9195 /* 9196 * Update any source route, record route or timestamp options. 9197 * Check that we are at end of strict source route. 9198 * The options have already been checked for sanity in ip_input_options(). 9199 */ 9200 boolean_t 9201 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 9202 { 9203 ipoptp_t opts; 9204 uchar_t *opt; 9205 uint8_t optval; 9206 uint8_t optlen; 9207 ipaddr_t dst; 9208 ipaddr_t ifaddr; 9209 uint32_t ts; 9210 timestruc_t now; 9211 ill_t *ill = ira->ira_ill; 9212 ip_stack_t *ipst = ill->ill_ipst; 9213 9214 ip2dbg(("ip_input_local_options\n")); 9215 9216 for (optval = ipoptp_first(&opts, ipha); 9217 optval != IPOPT_EOL; 9218 optval = ipoptp_next(&opts)) { 9219 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9220 opt = opts.ipoptp_cur; 9221 optlen = opts.ipoptp_len; 9222 ip2dbg(("ip_input_local_options: opt %d, len %d\n", 9223 optval, optlen)); 9224 switch (optval) { 9225 uint32_t off; 9226 case IPOPT_SSRR: 9227 case IPOPT_LSRR: 9228 off = opt[IPOPT_OFFSET]; 9229 off--; 9230 if (optlen < IP_ADDR_LEN || 9231 off > optlen - IP_ADDR_LEN) { 9232 /* End of source route */ 9233 ip1dbg(("ip_input_local_options: end of SR\n")); 9234 break; 9235 } 9236 /* 9237 * This will only happen if two consecutive entries 9238 * in the source route contains our address or if 9239 * it is a packet with a loose source route which 9240 * reaches us before consuming the whole source route 9241 */ 9242 ip1dbg(("ip_input_local_options: not end of SR\n")); 9243 if (optval == IPOPT_SSRR) { 9244 goto bad_src_route; 9245 } 9246 /* 9247 * Hack: instead of dropping the packet truncate the 9248 * source route to what has been used by filling the 9249 * rest with IPOPT_NOP. 9250 */ 9251 opt[IPOPT_OLEN] = (uint8_t)off; 9252 while (off < optlen) { 9253 opt[off++] = IPOPT_NOP; 9254 } 9255 break; 9256 case IPOPT_RR: 9257 off = opt[IPOPT_OFFSET]; 9258 off--; 9259 if (optlen < IP_ADDR_LEN || 9260 off > optlen - IP_ADDR_LEN) { 9261 /* No more room - ignore */ 9262 ip1dbg(( 9263 "ip_input_local_options: end of RR\n")); 9264 break; 9265 } 9266 /* Pick a reasonable address on the outbound if */ 9267 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst, 9268 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9269 NULL) != 0) { 9270 /* No source! Shouldn't happen */ 9271 ifaddr = INADDR_ANY; 9272 } 9273 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9274 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9275 break; 9276 case IPOPT_TS: 9277 /* Insert timestamp if there is romm */ 9278 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9279 case IPOPT_TS_TSONLY: 9280 off = IPOPT_TS_TIMELEN; 9281 break; 9282 case IPOPT_TS_PRESPEC: 9283 case IPOPT_TS_PRESPEC_RFC791: 9284 /* Verify that the address matched */ 9285 off = opt[IPOPT_OFFSET] - 1; 9286 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9287 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9288 /* Not for us */ 9289 break; 9290 } 9291 /* FALLTHRU */ 9292 case IPOPT_TS_TSANDADDR: 9293 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9294 break; 9295 default: 9296 /* 9297 * ip_*put_options should have already 9298 * dropped this packet. 9299 */ 9300 cmn_err(CE_PANIC, "ip_input_local_options: " 9301 "unknown IT - bug in ip_input_options?\n"); 9302 return (B_TRUE); /* Keep "lint" happy */ 9303 } 9304 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9305 /* Increase overflow counter */ 9306 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9307 opt[IPOPT_POS_OV_FLG] = 9308 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9309 (off << 4)); 9310 break; 9311 } 9312 off = opt[IPOPT_OFFSET] - 1; 9313 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9314 case IPOPT_TS_PRESPEC: 9315 case IPOPT_TS_PRESPEC_RFC791: 9316 case IPOPT_TS_TSANDADDR: 9317 /* Pick a reasonable addr on the outbound if */ 9318 if (ip_select_source_v4(ill, INADDR_ANY, 9319 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst, 9320 &ifaddr, NULL, NULL) != 0) { 9321 /* No source! Shouldn't happen */ 9322 ifaddr = INADDR_ANY; 9323 } 9324 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9325 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9326 /* FALLTHRU */ 9327 case IPOPT_TS_TSONLY: 9328 off = opt[IPOPT_OFFSET] - 1; 9329 /* Compute # of milliseconds since midnight */ 9330 gethrestime(&now); 9331 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9332 now.tv_nsec / (NANOSEC / MILLISEC); 9333 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9334 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9335 break; 9336 } 9337 break; 9338 } 9339 } 9340 return (B_TRUE); 9341 9342 bad_src_route: 9343 /* make sure we clear any indication of a hardware checksum */ 9344 DB_CKSUMFLAGS(mp) = 0; 9345 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 9346 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9347 return (B_FALSE); 9348 9349 } 9350 9351 /* 9352 * Process IP options in an inbound packet. Always returns the nexthop. 9353 * Normally this is the passed in nexthop, but if there is an option 9354 * that effects the nexthop (such as a source route) that will be returned. 9355 * Sets *errorp if there is an error, in which case an ICMP error has been sent 9356 * and mp freed. 9357 */ 9358 ipaddr_t 9359 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp, 9360 ip_recv_attr_t *ira, int *errorp) 9361 { 9362 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9363 ipoptp_t opts; 9364 uchar_t *opt; 9365 uint8_t optval; 9366 uint8_t optlen; 9367 intptr_t code = 0; 9368 ire_t *ire; 9369 9370 ip2dbg(("ip_input_options\n")); 9371 *errorp = 0; 9372 for (optval = ipoptp_first(&opts, ipha); 9373 optval != IPOPT_EOL; 9374 optval = ipoptp_next(&opts)) { 9375 opt = opts.ipoptp_cur; 9376 optlen = opts.ipoptp_len; 9377 ip2dbg(("ip_input_options: opt %d, len %d\n", 9378 optval, optlen)); 9379 /* 9380 * Note: we need to verify the checksum before we 9381 * modify anything thus this routine only extracts the next 9382 * hop dst from any source route. 9383 */ 9384 switch (optval) { 9385 uint32_t off; 9386 case IPOPT_SSRR: 9387 case IPOPT_LSRR: 9388 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9389 if (optval == IPOPT_SSRR) { 9390 ip1dbg(("ip_input_options: not next" 9391 " strict source route 0x%x\n", 9392 ntohl(dst))); 9393 code = (char *)&ipha->ipha_dst - 9394 (char *)ipha; 9395 goto param_prob; /* RouterReq's */ 9396 } 9397 ip2dbg(("ip_input_options: " 9398 "not next source route 0x%x\n", 9399 ntohl(dst))); 9400 break; 9401 } 9402 9403 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9404 ip1dbg(( 9405 "ip_input_options: bad option offset\n")); 9406 code = (char *)&opt[IPOPT_OLEN] - 9407 (char *)ipha; 9408 goto param_prob; 9409 } 9410 off = opt[IPOPT_OFFSET]; 9411 off--; 9412 redo_srr: 9413 if (optlen < IP_ADDR_LEN || 9414 off > optlen - IP_ADDR_LEN) { 9415 /* End of source route */ 9416 ip1dbg(("ip_input_options: end of SR\n")); 9417 break; 9418 } 9419 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9420 ip1dbg(("ip_input_options: next hop 0x%x\n", 9421 ntohl(dst))); 9422 9423 /* 9424 * Check if our address is present more than 9425 * once as consecutive hops in source route. 9426 * XXX verify per-interface ip_forwarding 9427 * for source route? 9428 */ 9429 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9430 off += IP_ADDR_LEN; 9431 goto redo_srr; 9432 } 9433 9434 if (dst == htonl(INADDR_LOOPBACK)) { 9435 ip1dbg(("ip_input_options: loopback addr in " 9436 "source route!\n")); 9437 goto bad_src_route; 9438 } 9439 /* 9440 * For strict: verify that dst is directly 9441 * reachable. 9442 */ 9443 if (optval == IPOPT_SSRR) { 9444 ire = ire_ftable_lookup_v4(dst, 0, 0, 9445 IRE_INTERFACE, NULL, ALL_ZONES, 9446 ira->ira_tsl, 9447 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 9448 NULL); 9449 if (ire == NULL) { 9450 ip1dbg(("ip_input_options: SSRR not " 9451 "directly reachable: 0x%x\n", 9452 ntohl(dst))); 9453 goto bad_src_route; 9454 } 9455 ire_refrele(ire); 9456 } 9457 /* 9458 * Defer update of the offset and the record route 9459 * until the packet is forwarded. 9460 */ 9461 break; 9462 case IPOPT_RR: 9463 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9464 ip1dbg(( 9465 "ip_input_options: bad option offset\n")); 9466 code = (char *)&opt[IPOPT_OLEN] - 9467 (char *)ipha; 9468 goto param_prob; 9469 } 9470 break; 9471 case IPOPT_TS: 9472 /* 9473 * Verify that length >= 5 and that there is either 9474 * room for another timestamp or that the overflow 9475 * counter is not maxed out. 9476 */ 9477 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 9478 if (optlen < IPOPT_MINLEN_IT) { 9479 goto param_prob; 9480 } 9481 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9482 ip1dbg(( 9483 "ip_input_options: bad option offset\n")); 9484 code = (char *)&opt[IPOPT_OFFSET] - 9485 (char *)ipha; 9486 goto param_prob; 9487 } 9488 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9489 case IPOPT_TS_TSONLY: 9490 off = IPOPT_TS_TIMELEN; 9491 break; 9492 case IPOPT_TS_TSANDADDR: 9493 case IPOPT_TS_PRESPEC: 9494 case IPOPT_TS_PRESPEC_RFC791: 9495 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9496 break; 9497 default: 9498 code = (char *)&opt[IPOPT_POS_OV_FLG] - 9499 (char *)ipha; 9500 goto param_prob; 9501 } 9502 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 9503 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 9504 /* 9505 * No room and the overflow counter is 15 9506 * already. 9507 */ 9508 goto param_prob; 9509 } 9510 break; 9511 } 9512 } 9513 9514 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 9515 return (dst); 9516 } 9517 9518 ip1dbg(("ip_input_options: error processing IP options.")); 9519 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 9520 9521 param_prob: 9522 /* make sure we clear any indication of a hardware checksum */ 9523 DB_CKSUMFLAGS(mp) = 0; 9524 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill); 9525 icmp_param_problem(mp, (uint8_t)code, ira); 9526 *errorp = -1; 9527 return (dst); 9528 9529 bad_src_route: 9530 /* make sure we clear any indication of a hardware checksum */ 9531 DB_CKSUMFLAGS(mp) = 0; 9532 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill); 9533 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9534 *errorp = -1; 9535 return (dst); 9536 } 9537 9538 /* 9539 * IP & ICMP info in >=14 msg's ... 9540 * - ip fixed part (mib2_ip_t) 9541 * - icmp fixed part (mib2_icmp_t) 9542 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 9543 * - ipRouteEntryTable (ip 21) all IPv4 IREs 9544 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries 9545 * - ipRouteAttributeTable (ip 102) labeled routes 9546 * - ip multicast membership (ip_member_t) 9547 * - ip multicast source filtering (ip_grpsrc_t) 9548 * - igmp fixed part (struct igmpstat) 9549 * - multicast routing stats (struct mrtstat) 9550 * - multicast routing vifs (array of struct vifctl) 9551 * - multicast routing routes (array of struct mfcctl) 9552 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 9553 * One per ill plus one generic 9554 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 9555 * One per ill plus one generic 9556 * - ipv6RouteEntry all IPv6 IREs 9557 * - ipv6RouteAttributeTable (ip6 102) labeled routes 9558 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries 9559 * - ipv6AddrEntry all IPv6 ipifs 9560 * - ipv6 multicast membership (ipv6_member_t) 9561 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 9562 * 9563 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 9564 * already filled in by the caller. 9565 * If legacy_req is true then MIB structures needs to be truncated to their 9566 * legacy sizes before being returned. 9567 * Return value of 0 indicates that no messages were sent and caller 9568 * should free mpctl. 9569 */ 9570 int 9571 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req) 9572 { 9573 ip_stack_t *ipst; 9574 sctp_stack_t *sctps; 9575 9576 if (q->q_next != NULL) { 9577 ipst = ILLQ_TO_IPST(q); 9578 } else { 9579 ipst = CONNQ_TO_IPST(q); 9580 } 9581 ASSERT(ipst != NULL); 9582 sctps = ipst->ips_netstack->netstack_sctp; 9583 9584 if (mpctl == NULL || mpctl->b_cont == NULL) { 9585 return (0); 9586 } 9587 9588 /* 9589 * For the purposes of the (broken) packet shell use 9590 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 9591 * to make TCP and UDP appear first in the list of mib items. 9592 * TBD: We could expand this and use it in netstat so that 9593 * the kernel doesn't have to produce large tables (connections, 9594 * routes, etc) when netstat only wants the statistics or a particular 9595 * table. 9596 */ 9597 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 9598 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 9599 return (1); 9600 } 9601 } 9602 9603 if (level != MIB2_TCP) { 9604 if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9605 return (1); 9606 } 9607 } 9608 9609 if (level != MIB2_UDP) { 9610 if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9611 return (1); 9612 } 9613 } 9614 9615 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 9616 ipst, legacy_req)) == NULL) { 9617 return (1); 9618 } 9619 9620 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst, 9621 legacy_req)) == NULL) { 9622 return (1); 9623 } 9624 9625 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 9626 return (1); 9627 } 9628 9629 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 9630 return (1); 9631 } 9632 9633 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 9634 return (1); 9635 } 9636 9637 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 9638 return (1); 9639 } 9640 9641 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst, 9642 legacy_req)) == NULL) { 9643 return (1); 9644 } 9645 9646 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst, 9647 legacy_req)) == NULL) { 9648 return (1); 9649 } 9650 9651 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 9652 return (1); 9653 } 9654 9655 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 9656 return (1); 9657 } 9658 9659 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 9660 return (1); 9661 } 9662 9663 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 9664 return (1); 9665 } 9666 9667 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 9668 return (1); 9669 } 9670 9671 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 9672 return (1); 9673 } 9674 9675 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 9676 if (mpctl == NULL) 9677 return (1); 9678 9679 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 9680 if (mpctl == NULL) 9681 return (1); 9682 9683 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 9684 return (1); 9685 } 9686 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) { 9687 return (1); 9688 } 9689 freemsg(mpctl); 9690 return (1); 9691 } 9692 9693 /* Get global (legacy) IPv4 statistics */ 9694 static mblk_t * 9695 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 9696 ip_stack_t *ipst, boolean_t legacy_req) 9697 { 9698 mib2_ip_t old_ip_mib; 9699 struct opthdr *optp; 9700 mblk_t *mp2ctl; 9701 mib2_ipAddrEntry_t mae; 9702 9703 /* 9704 * make a copy of the original message 9705 */ 9706 mp2ctl = copymsg(mpctl); 9707 9708 /* fixed length IP structure... */ 9709 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9710 optp->level = MIB2_IP; 9711 optp->name = 0; 9712 SET_MIB(old_ip_mib.ipForwarding, 9713 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 9714 SET_MIB(old_ip_mib.ipDefaultTTL, 9715 (uint32_t)ipst->ips_ip_def_ttl); 9716 SET_MIB(old_ip_mib.ipReasmTimeout, 9717 ipst->ips_ip_reassembly_timeout); 9718 SET_MIB(old_ip_mib.ipAddrEntrySize, 9719 (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 9720 sizeof (mib2_ipAddrEntry_t)); 9721 SET_MIB(old_ip_mib.ipRouteEntrySize, 9722 sizeof (mib2_ipRouteEntry_t)); 9723 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 9724 sizeof (mib2_ipNetToMediaEntry_t)); 9725 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 9726 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 9727 SET_MIB(old_ip_mib.ipRouteAttributeSize, 9728 sizeof (mib2_ipAttributeEntry_t)); 9729 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 9730 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t)); 9731 9732 /* 9733 * Grab the statistics from the new IP MIB 9734 */ 9735 SET_MIB(old_ip_mib.ipInReceives, 9736 (uint32_t)ipmib->ipIfStatsHCInReceives); 9737 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 9738 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 9739 SET_MIB(old_ip_mib.ipForwDatagrams, 9740 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 9741 SET_MIB(old_ip_mib.ipInUnknownProtos, 9742 ipmib->ipIfStatsInUnknownProtos); 9743 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 9744 SET_MIB(old_ip_mib.ipInDelivers, 9745 (uint32_t)ipmib->ipIfStatsHCInDelivers); 9746 SET_MIB(old_ip_mib.ipOutRequests, 9747 (uint32_t)ipmib->ipIfStatsHCOutRequests); 9748 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 9749 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 9750 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 9751 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 9752 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 9753 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 9754 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 9755 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 9756 9757 /* ipRoutingDiscards is not being used */ 9758 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 9759 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 9760 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 9761 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 9762 SET_MIB(old_ip_mib.ipReasmDuplicates, 9763 ipmib->ipIfStatsReasmDuplicates); 9764 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 9765 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 9766 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 9767 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 9768 SET_MIB(old_ip_mib.rawipInOverflows, 9769 ipmib->rawipIfStatsInOverflows); 9770 9771 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 9772 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 9773 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 9774 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 9775 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 9776 ipmib->ipIfStatsOutSwitchIPVersion); 9777 9778 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 9779 (int)sizeof (old_ip_mib))) { 9780 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 9781 (uint_t)sizeof (old_ip_mib))); 9782 } 9783 9784 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9785 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 9786 (int)optp->level, (int)optp->name, (int)optp->len)); 9787 qreply(q, mpctl); 9788 return (mp2ctl); 9789 } 9790 9791 /* Per interface IPv4 statistics */ 9792 static mblk_t * 9793 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9794 boolean_t legacy_req) 9795 { 9796 struct opthdr *optp; 9797 mblk_t *mp2ctl; 9798 ill_t *ill; 9799 ill_walk_context_t ctx; 9800 mblk_t *mp_tail = NULL; 9801 mib2_ipIfStatsEntry_t global_ip_mib; 9802 mib2_ipAddrEntry_t mae; 9803 9804 /* 9805 * Make a copy of the original message 9806 */ 9807 mp2ctl = copymsg(mpctl); 9808 9809 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9810 optp->level = MIB2_IP; 9811 optp->name = MIB2_IP_TRAFFIC_STATS; 9812 /* Include "unknown interface" ip_mib */ 9813 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 9814 ipst->ips_ip_mib.ipIfStatsIfIndex = 9815 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 9816 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 9817 (ipst->ips_ip_forwarding ? 1 : 2)); 9818 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 9819 (uint32_t)ipst->ips_ip_def_ttl); 9820 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 9821 sizeof (mib2_ipIfStatsEntry_t)); 9822 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 9823 sizeof (mib2_ipAddrEntry_t)); 9824 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 9825 sizeof (mib2_ipRouteEntry_t)); 9826 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 9827 sizeof (mib2_ipNetToMediaEntry_t)); 9828 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 9829 sizeof (ip_member_t)); 9830 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 9831 sizeof (ip_grpsrc_t)); 9832 9833 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 9834 9835 if (legacy_req) { 9836 SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize, 9837 LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t)); 9838 } 9839 9840 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9841 (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) { 9842 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9843 "failed to allocate %u bytes\n", 9844 (uint_t)sizeof (global_ip_mib))); 9845 } 9846 9847 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9848 ill = ILL_START_WALK_V4(&ctx, ipst); 9849 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9850 ill->ill_ip_mib->ipIfStatsIfIndex = 9851 ill->ill_phyint->phyint_ifindex; 9852 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 9853 (ipst->ips_ip_forwarding ? 1 : 2)); 9854 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 9855 (uint32_t)ipst->ips_ip_def_ttl); 9856 9857 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 9858 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9859 (char *)ill->ill_ip_mib, 9860 (int)sizeof (*ill->ill_ip_mib))) { 9861 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9862 "failed to allocate %u bytes\n", 9863 (uint_t)sizeof (*ill->ill_ip_mib))); 9864 } 9865 } 9866 rw_exit(&ipst->ips_ill_g_lock); 9867 9868 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9869 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9870 "level %d, name %d, len %d\n", 9871 (int)optp->level, (int)optp->name, (int)optp->len)); 9872 qreply(q, mpctl); 9873 9874 if (mp2ctl == NULL) 9875 return (NULL); 9876 9877 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst, 9878 legacy_req)); 9879 } 9880 9881 /* Global IPv4 ICMP statistics */ 9882 static mblk_t * 9883 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9884 { 9885 struct opthdr *optp; 9886 mblk_t *mp2ctl; 9887 9888 /* 9889 * Make a copy of the original message 9890 */ 9891 mp2ctl = copymsg(mpctl); 9892 9893 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9894 optp->level = MIB2_ICMP; 9895 optp->name = 0; 9896 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 9897 (int)sizeof (ipst->ips_icmp_mib))) { 9898 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 9899 (uint_t)sizeof (ipst->ips_icmp_mib))); 9900 } 9901 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9902 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 9903 (int)optp->level, (int)optp->name, (int)optp->len)); 9904 qreply(q, mpctl); 9905 return (mp2ctl); 9906 } 9907 9908 /* Global IPv4 IGMP statistics */ 9909 static mblk_t * 9910 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9911 { 9912 struct opthdr *optp; 9913 mblk_t *mp2ctl; 9914 9915 /* 9916 * make a copy of the original message 9917 */ 9918 mp2ctl = copymsg(mpctl); 9919 9920 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9921 optp->level = EXPER_IGMP; 9922 optp->name = 0; 9923 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 9924 (int)sizeof (ipst->ips_igmpstat))) { 9925 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 9926 (uint_t)sizeof (ipst->ips_igmpstat))); 9927 } 9928 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9929 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 9930 (int)optp->level, (int)optp->name, (int)optp->len)); 9931 qreply(q, mpctl); 9932 return (mp2ctl); 9933 } 9934 9935 /* Global IPv4 Multicast Routing statistics */ 9936 static mblk_t * 9937 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9938 { 9939 struct opthdr *optp; 9940 mblk_t *mp2ctl; 9941 9942 /* 9943 * make a copy of the original message 9944 */ 9945 mp2ctl = copymsg(mpctl); 9946 9947 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9948 optp->level = EXPER_DVMRP; 9949 optp->name = 0; 9950 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 9951 ip0dbg(("ip_mroute_stats: failed\n")); 9952 } 9953 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9954 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 9955 (int)optp->level, (int)optp->name, (int)optp->len)); 9956 qreply(q, mpctl); 9957 return (mp2ctl); 9958 } 9959 9960 /* IPv4 address information */ 9961 static mblk_t * 9962 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9963 boolean_t legacy_req) 9964 { 9965 struct opthdr *optp; 9966 mblk_t *mp2ctl; 9967 mblk_t *mp_tail = NULL; 9968 ill_t *ill; 9969 ipif_t *ipif; 9970 uint_t bitval; 9971 mib2_ipAddrEntry_t mae; 9972 size_t mae_size; 9973 zoneid_t zoneid; 9974 ill_walk_context_t ctx; 9975 9976 /* 9977 * make a copy of the original message 9978 */ 9979 mp2ctl = copymsg(mpctl); 9980 9981 mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 9982 sizeof (mib2_ipAddrEntry_t); 9983 9984 /* ipAddrEntryTable */ 9985 9986 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9987 optp->level = MIB2_IP; 9988 optp->name = MIB2_IP_ADDR; 9989 zoneid = Q_TO_CONN(q)->conn_zoneid; 9990 9991 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9992 ill = ILL_START_WALK_V4(&ctx, ipst); 9993 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9994 for (ipif = ill->ill_ipif; ipif != NULL; 9995 ipif = ipif->ipif_next) { 9996 if (ipif->ipif_zoneid != zoneid && 9997 ipif->ipif_zoneid != ALL_ZONES) 9998 continue; 9999 /* Sum of count from dead IRE_LO* and our current */ 10000 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10001 if (ipif->ipif_ire_local != NULL) { 10002 mae.ipAdEntInfo.ae_ibcnt += 10003 ipif->ipif_ire_local->ire_ib_pkt_count; 10004 } 10005 mae.ipAdEntInfo.ae_obcnt = 0; 10006 mae.ipAdEntInfo.ae_focnt = 0; 10007 10008 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 10009 OCTET_LENGTH); 10010 mae.ipAdEntIfIndex.o_length = 10011 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 10012 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 10013 mae.ipAdEntNetMask = ipif->ipif_net_mask; 10014 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 10015 mae.ipAdEntInfo.ae_subnet_len = 10016 ip_mask_to_plen(ipif->ipif_net_mask); 10017 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr; 10018 for (bitval = 1; 10019 bitval && 10020 !(bitval & ipif->ipif_brd_addr); 10021 bitval <<= 1) 10022 noop; 10023 mae.ipAdEntBcastAddr = bitval; 10024 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 10025 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10026 mae.ipAdEntInfo.ae_metric = ipif->ipif_ill->ill_metric; 10027 mae.ipAdEntInfo.ae_broadcast_addr = 10028 ipif->ipif_brd_addr; 10029 mae.ipAdEntInfo.ae_pp_dst_addr = 10030 ipif->ipif_pp_dst_addr; 10031 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 10032 ill->ill_flags | ill->ill_phyint->phyint_flags; 10033 mae.ipAdEntRetransmitTime = 10034 ill->ill_reachable_retrans_time; 10035 10036 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10037 (char *)&mae, (int)mae_size)) { 10038 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 10039 "allocate %u bytes\n", (uint_t)mae_size)); 10040 } 10041 } 10042 } 10043 rw_exit(&ipst->ips_ill_g_lock); 10044 10045 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10046 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 10047 (int)optp->level, (int)optp->name, (int)optp->len)); 10048 qreply(q, mpctl); 10049 return (mp2ctl); 10050 } 10051 10052 /* IPv6 address information */ 10053 static mblk_t * 10054 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10055 boolean_t legacy_req) 10056 { 10057 struct opthdr *optp; 10058 mblk_t *mp2ctl; 10059 mblk_t *mp_tail = NULL; 10060 ill_t *ill; 10061 ipif_t *ipif; 10062 mib2_ipv6AddrEntry_t mae6; 10063 size_t mae6_size; 10064 zoneid_t zoneid; 10065 ill_walk_context_t ctx; 10066 10067 /* 10068 * make a copy of the original message 10069 */ 10070 mp2ctl = copymsg(mpctl); 10071 10072 mae6_size = (legacy_req) ? 10073 LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) : 10074 sizeof (mib2_ipv6AddrEntry_t); 10075 10076 /* ipv6AddrEntryTable */ 10077 10078 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10079 optp->level = MIB2_IP6; 10080 optp->name = MIB2_IP6_ADDR; 10081 zoneid = Q_TO_CONN(q)->conn_zoneid; 10082 10083 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10084 ill = ILL_START_WALK_V6(&ctx, ipst); 10085 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10086 for (ipif = ill->ill_ipif; ipif != NULL; 10087 ipif = ipif->ipif_next) { 10088 if (ipif->ipif_zoneid != zoneid && 10089 ipif->ipif_zoneid != ALL_ZONES) 10090 continue; 10091 /* Sum of count from dead IRE_LO* and our current */ 10092 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10093 if (ipif->ipif_ire_local != NULL) { 10094 mae6.ipv6AddrInfo.ae_ibcnt += 10095 ipif->ipif_ire_local->ire_ib_pkt_count; 10096 } 10097 mae6.ipv6AddrInfo.ae_obcnt = 0; 10098 mae6.ipv6AddrInfo.ae_focnt = 0; 10099 10100 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 10101 OCTET_LENGTH); 10102 mae6.ipv6AddrIfIndex.o_length = 10103 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 10104 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 10105 mae6.ipv6AddrPfxLength = 10106 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10107 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 10108 mae6.ipv6AddrInfo.ae_subnet_len = 10109 mae6.ipv6AddrPfxLength; 10110 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr; 10111 10112 /* Type: stateless(1), stateful(2), unknown(3) */ 10113 if (ipif->ipif_flags & IPIF_ADDRCONF) 10114 mae6.ipv6AddrType = 1; 10115 else 10116 mae6.ipv6AddrType = 2; 10117 /* Anycast: true(1), false(2) */ 10118 if (ipif->ipif_flags & IPIF_ANYCAST) 10119 mae6.ipv6AddrAnycastFlag = 1; 10120 else 10121 mae6.ipv6AddrAnycastFlag = 2; 10122 10123 /* 10124 * Address status: preferred(1), deprecated(2), 10125 * invalid(3), inaccessible(4), unknown(5) 10126 */ 10127 if (ipif->ipif_flags & IPIF_NOLOCAL) 10128 mae6.ipv6AddrStatus = 3; 10129 else if (ipif->ipif_flags & IPIF_DEPRECATED) 10130 mae6.ipv6AddrStatus = 2; 10131 else 10132 mae6.ipv6AddrStatus = 1; 10133 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10134 mae6.ipv6AddrInfo.ae_metric = 10135 ipif->ipif_ill->ill_metric; 10136 mae6.ipv6AddrInfo.ae_pp_dst_addr = 10137 ipif->ipif_v6pp_dst_addr; 10138 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 10139 ill->ill_flags | ill->ill_phyint->phyint_flags; 10140 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 10141 mae6.ipv6AddrIdentifier = ill->ill_token; 10142 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 10143 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 10144 mae6.ipv6AddrRetransmitTime = 10145 ill->ill_reachable_retrans_time; 10146 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10147 (char *)&mae6, (int)mae6_size)) { 10148 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 10149 "allocate %u bytes\n", 10150 (uint_t)mae6_size)); 10151 } 10152 } 10153 } 10154 rw_exit(&ipst->ips_ill_g_lock); 10155 10156 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10157 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 10158 (int)optp->level, (int)optp->name, (int)optp->len)); 10159 qreply(q, mpctl); 10160 return (mp2ctl); 10161 } 10162 10163 /* IPv4 multicast group membership. */ 10164 static mblk_t * 10165 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10166 { 10167 struct opthdr *optp; 10168 mblk_t *mp2ctl; 10169 ill_t *ill; 10170 ipif_t *ipif; 10171 ilm_t *ilm; 10172 ip_member_t ipm; 10173 mblk_t *mp_tail = NULL; 10174 ill_walk_context_t ctx; 10175 zoneid_t zoneid; 10176 10177 /* 10178 * make a copy of the original message 10179 */ 10180 mp2ctl = copymsg(mpctl); 10181 zoneid = Q_TO_CONN(q)->conn_zoneid; 10182 10183 /* ipGroupMember table */ 10184 optp = (struct opthdr *)&mpctl->b_rptr[ 10185 sizeof (struct T_optmgmt_ack)]; 10186 optp->level = MIB2_IP; 10187 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 10188 10189 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10190 ill = ILL_START_WALK_V4(&ctx, ipst); 10191 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10192 /* Make sure the ill isn't going away. */ 10193 if (!ill_check_and_refhold(ill)) 10194 continue; 10195 rw_exit(&ipst->ips_ill_g_lock); 10196 rw_enter(&ill->ill_mcast_lock, RW_READER); 10197 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10198 if (ilm->ilm_zoneid != zoneid && 10199 ilm->ilm_zoneid != ALL_ZONES) 10200 continue; 10201 10202 /* Is there an ipif for ilm_ifaddr? */ 10203 for (ipif = ill->ill_ipif; ipif != NULL; 10204 ipif = ipif->ipif_next) { 10205 if (!IPIF_IS_CONDEMNED(ipif) && 10206 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10207 ilm->ilm_ifaddr != INADDR_ANY) 10208 break; 10209 } 10210 if (ipif != NULL) { 10211 ipif_get_name(ipif, 10212 ipm.ipGroupMemberIfIndex.o_bytes, 10213 OCTET_LENGTH); 10214 } else { 10215 ill_get_name(ill, 10216 ipm.ipGroupMemberIfIndex.o_bytes, 10217 OCTET_LENGTH); 10218 } 10219 ipm.ipGroupMemberIfIndex.o_length = 10220 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 10221 10222 ipm.ipGroupMemberAddress = ilm->ilm_addr; 10223 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 10224 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 10225 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10226 (char *)&ipm, (int)sizeof (ipm))) { 10227 ip1dbg(("ip_snmp_get_mib2_ip_group: " 10228 "failed to allocate %u bytes\n", 10229 (uint_t)sizeof (ipm))); 10230 } 10231 } 10232 rw_exit(&ill->ill_mcast_lock); 10233 ill_refrele(ill); 10234 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10235 } 10236 rw_exit(&ipst->ips_ill_g_lock); 10237 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10238 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10239 (int)optp->level, (int)optp->name, (int)optp->len)); 10240 qreply(q, mpctl); 10241 return (mp2ctl); 10242 } 10243 10244 /* IPv6 multicast group membership. */ 10245 static mblk_t * 10246 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10247 { 10248 struct opthdr *optp; 10249 mblk_t *mp2ctl; 10250 ill_t *ill; 10251 ilm_t *ilm; 10252 ipv6_member_t ipm6; 10253 mblk_t *mp_tail = NULL; 10254 ill_walk_context_t ctx; 10255 zoneid_t zoneid; 10256 10257 /* 10258 * make a copy of the original message 10259 */ 10260 mp2ctl = copymsg(mpctl); 10261 zoneid = Q_TO_CONN(q)->conn_zoneid; 10262 10263 /* ip6GroupMember table */ 10264 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10265 optp->level = MIB2_IP6; 10266 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 10267 10268 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10269 ill = ILL_START_WALK_V6(&ctx, ipst); 10270 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10271 /* Make sure the ill isn't going away. */ 10272 if (!ill_check_and_refhold(ill)) 10273 continue; 10274 rw_exit(&ipst->ips_ill_g_lock); 10275 /* 10276 * Normally we don't have any members on under IPMP interfaces. 10277 * We report them as a debugging aid. 10278 */ 10279 rw_enter(&ill->ill_mcast_lock, RW_READER); 10280 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 10281 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10282 if (ilm->ilm_zoneid != zoneid && 10283 ilm->ilm_zoneid != ALL_ZONES) 10284 continue; /* not this zone */ 10285 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 10286 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 10287 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 10288 if (!snmp_append_data2(mpctl->b_cont, 10289 &mp_tail, 10290 (char *)&ipm6, (int)sizeof (ipm6))) { 10291 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 10292 "failed to allocate %u bytes\n", 10293 (uint_t)sizeof (ipm6))); 10294 } 10295 } 10296 rw_exit(&ill->ill_mcast_lock); 10297 ill_refrele(ill); 10298 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10299 } 10300 rw_exit(&ipst->ips_ill_g_lock); 10301 10302 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10303 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10304 (int)optp->level, (int)optp->name, (int)optp->len)); 10305 qreply(q, mpctl); 10306 return (mp2ctl); 10307 } 10308 10309 /* IP multicast filtered sources */ 10310 static mblk_t * 10311 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10312 { 10313 struct opthdr *optp; 10314 mblk_t *mp2ctl; 10315 ill_t *ill; 10316 ipif_t *ipif; 10317 ilm_t *ilm; 10318 ip_grpsrc_t ips; 10319 mblk_t *mp_tail = NULL; 10320 ill_walk_context_t ctx; 10321 zoneid_t zoneid; 10322 int i; 10323 slist_t *sl; 10324 10325 /* 10326 * make a copy of the original message 10327 */ 10328 mp2ctl = copymsg(mpctl); 10329 zoneid = Q_TO_CONN(q)->conn_zoneid; 10330 10331 /* ipGroupSource table */ 10332 optp = (struct opthdr *)&mpctl->b_rptr[ 10333 sizeof (struct T_optmgmt_ack)]; 10334 optp->level = MIB2_IP; 10335 optp->name = EXPER_IP_GROUP_SOURCES; 10336 10337 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10338 ill = ILL_START_WALK_V4(&ctx, ipst); 10339 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10340 /* Make sure the ill isn't going away. */ 10341 if (!ill_check_and_refhold(ill)) 10342 continue; 10343 rw_exit(&ipst->ips_ill_g_lock); 10344 rw_enter(&ill->ill_mcast_lock, RW_READER); 10345 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10346 sl = ilm->ilm_filter; 10347 if (ilm->ilm_zoneid != zoneid && 10348 ilm->ilm_zoneid != ALL_ZONES) 10349 continue; 10350 if (SLIST_IS_EMPTY(sl)) 10351 continue; 10352 10353 /* Is there an ipif for ilm_ifaddr? */ 10354 for (ipif = ill->ill_ipif; ipif != NULL; 10355 ipif = ipif->ipif_next) { 10356 if (!IPIF_IS_CONDEMNED(ipif) && 10357 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10358 ilm->ilm_ifaddr != INADDR_ANY) 10359 break; 10360 } 10361 if (ipif != NULL) { 10362 ipif_get_name(ipif, 10363 ips.ipGroupSourceIfIndex.o_bytes, 10364 OCTET_LENGTH); 10365 } else { 10366 ill_get_name(ill, 10367 ips.ipGroupSourceIfIndex.o_bytes, 10368 OCTET_LENGTH); 10369 } 10370 ips.ipGroupSourceIfIndex.o_length = 10371 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 10372 10373 ips.ipGroupSourceGroup = ilm->ilm_addr; 10374 for (i = 0; i < sl->sl_numsrc; i++) { 10375 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i])) 10376 continue; 10377 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 10378 ips.ipGroupSourceAddress); 10379 if (snmp_append_data2(mpctl->b_cont, &mp_tail, 10380 (char *)&ips, (int)sizeof (ips)) == 0) { 10381 ip1dbg(("ip_snmp_get_mib2_ip_group_src:" 10382 " failed to allocate %u bytes\n", 10383 (uint_t)sizeof (ips))); 10384 } 10385 } 10386 } 10387 rw_exit(&ill->ill_mcast_lock); 10388 ill_refrele(ill); 10389 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10390 } 10391 rw_exit(&ipst->ips_ill_g_lock); 10392 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10393 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10394 (int)optp->level, (int)optp->name, (int)optp->len)); 10395 qreply(q, mpctl); 10396 return (mp2ctl); 10397 } 10398 10399 /* IPv6 multicast filtered sources. */ 10400 static mblk_t * 10401 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10402 { 10403 struct opthdr *optp; 10404 mblk_t *mp2ctl; 10405 ill_t *ill; 10406 ilm_t *ilm; 10407 ipv6_grpsrc_t ips6; 10408 mblk_t *mp_tail = NULL; 10409 ill_walk_context_t ctx; 10410 zoneid_t zoneid; 10411 int i; 10412 slist_t *sl; 10413 10414 /* 10415 * make a copy of the original message 10416 */ 10417 mp2ctl = copymsg(mpctl); 10418 zoneid = Q_TO_CONN(q)->conn_zoneid; 10419 10420 /* ip6GroupMember table */ 10421 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10422 optp->level = MIB2_IP6; 10423 optp->name = EXPER_IP6_GROUP_SOURCES; 10424 10425 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10426 ill = ILL_START_WALK_V6(&ctx, ipst); 10427 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10428 /* Make sure the ill isn't going away. */ 10429 if (!ill_check_and_refhold(ill)) 10430 continue; 10431 rw_exit(&ipst->ips_ill_g_lock); 10432 /* 10433 * Normally we don't have any members on under IPMP interfaces. 10434 * We report them as a debugging aid. 10435 */ 10436 rw_enter(&ill->ill_mcast_lock, RW_READER); 10437 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 10438 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10439 sl = ilm->ilm_filter; 10440 if (ilm->ilm_zoneid != zoneid && 10441 ilm->ilm_zoneid != ALL_ZONES) 10442 continue; 10443 if (SLIST_IS_EMPTY(sl)) 10444 continue; 10445 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 10446 for (i = 0; i < sl->sl_numsrc; i++) { 10447 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 10448 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10449 (char *)&ips6, (int)sizeof (ips6))) { 10450 ip1dbg(("ip_snmp_get_mib2_ip6_" 10451 "group_src: failed to allocate " 10452 "%u bytes\n", 10453 (uint_t)sizeof (ips6))); 10454 } 10455 } 10456 } 10457 rw_exit(&ill->ill_mcast_lock); 10458 ill_refrele(ill); 10459 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10460 } 10461 rw_exit(&ipst->ips_ill_g_lock); 10462 10463 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10464 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10465 (int)optp->level, (int)optp->name, (int)optp->len)); 10466 qreply(q, mpctl); 10467 return (mp2ctl); 10468 } 10469 10470 /* Multicast routing virtual interface table. */ 10471 static mblk_t * 10472 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10473 { 10474 struct opthdr *optp; 10475 mblk_t *mp2ctl; 10476 10477 /* 10478 * make a copy of the original message 10479 */ 10480 mp2ctl = copymsg(mpctl); 10481 10482 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10483 optp->level = EXPER_DVMRP; 10484 optp->name = EXPER_DVMRP_VIF; 10485 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 10486 ip0dbg(("ip_mroute_vif: failed\n")); 10487 } 10488 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10489 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 10490 (int)optp->level, (int)optp->name, (int)optp->len)); 10491 qreply(q, mpctl); 10492 return (mp2ctl); 10493 } 10494 10495 /* Multicast routing table. */ 10496 static mblk_t * 10497 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10498 { 10499 struct opthdr *optp; 10500 mblk_t *mp2ctl; 10501 10502 /* 10503 * make a copy of the original message 10504 */ 10505 mp2ctl = copymsg(mpctl); 10506 10507 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10508 optp->level = EXPER_DVMRP; 10509 optp->name = EXPER_DVMRP_MRT; 10510 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 10511 ip0dbg(("ip_mroute_mrt: failed\n")); 10512 } 10513 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10514 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 10515 (int)optp->level, (int)optp->name, (int)optp->len)); 10516 qreply(q, mpctl); 10517 return (mp2ctl); 10518 } 10519 10520 /* 10521 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 10522 * in one IRE walk. 10523 */ 10524 static mblk_t * 10525 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 10526 ip_stack_t *ipst) 10527 { 10528 struct opthdr *optp; 10529 mblk_t *mp2ctl; /* Returned */ 10530 mblk_t *mp3ctl; /* nettomedia */ 10531 mblk_t *mp4ctl; /* routeattrs */ 10532 iproutedata_t ird; 10533 zoneid_t zoneid; 10534 10535 /* 10536 * make copies of the original message 10537 * - mp2ctl is returned unchanged to the caller for his use 10538 * - mpctl is sent upstream as ipRouteEntryTable 10539 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 10540 * - mp4ctl is sent upstream as ipRouteAttributeTable 10541 */ 10542 mp2ctl = copymsg(mpctl); 10543 mp3ctl = copymsg(mpctl); 10544 mp4ctl = copymsg(mpctl); 10545 if (mp3ctl == NULL || mp4ctl == NULL) { 10546 freemsg(mp4ctl); 10547 freemsg(mp3ctl); 10548 freemsg(mp2ctl); 10549 freemsg(mpctl); 10550 return (NULL); 10551 } 10552 10553 bzero(&ird, sizeof (ird)); 10554 10555 ird.ird_route.lp_head = mpctl->b_cont; 10556 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10557 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10558 /* 10559 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10560 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10561 * intended a temporary solution until a proper MIB API is provided 10562 * that provides complete filtering/caller-opt-in. 10563 */ 10564 if (level == EXPER_IP_AND_ALL_IRES) 10565 ird.ird_flags |= IRD_REPORT_ALL; 10566 10567 zoneid = Q_TO_CONN(q)->conn_zoneid; 10568 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 10569 10570 /* ipRouteEntryTable in mpctl */ 10571 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10572 optp->level = MIB2_IP; 10573 optp->name = MIB2_IP_ROUTE; 10574 optp->len = msgdsize(ird.ird_route.lp_head); 10575 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10576 (int)optp->level, (int)optp->name, (int)optp->len)); 10577 qreply(q, mpctl); 10578 10579 /* ipNetToMediaEntryTable in mp3ctl */ 10580 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst); 10581 10582 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10583 optp->level = MIB2_IP; 10584 optp->name = MIB2_IP_MEDIA; 10585 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10586 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10587 (int)optp->level, (int)optp->name, (int)optp->len)); 10588 qreply(q, mp3ctl); 10589 10590 /* ipRouteAttributeTable in mp4ctl */ 10591 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10592 optp->level = MIB2_IP; 10593 optp->name = EXPER_IP_RTATTR; 10594 optp->len = msgdsize(ird.ird_attrs.lp_head); 10595 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10596 (int)optp->level, (int)optp->name, (int)optp->len)); 10597 if (optp->len == 0) 10598 freemsg(mp4ctl); 10599 else 10600 qreply(q, mp4ctl); 10601 10602 return (mp2ctl); 10603 } 10604 10605 /* 10606 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 10607 * ipv6NetToMediaEntryTable in an NDP walk. 10608 */ 10609 static mblk_t * 10610 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 10611 ip_stack_t *ipst) 10612 { 10613 struct opthdr *optp; 10614 mblk_t *mp2ctl; /* Returned */ 10615 mblk_t *mp3ctl; /* nettomedia */ 10616 mblk_t *mp4ctl; /* routeattrs */ 10617 iproutedata_t ird; 10618 zoneid_t zoneid; 10619 10620 /* 10621 * make copies of the original message 10622 * - mp2ctl is returned unchanged to the caller for his use 10623 * - mpctl is sent upstream as ipv6RouteEntryTable 10624 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 10625 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 10626 */ 10627 mp2ctl = copymsg(mpctl); 10628 mp3ctl = copymsg(mpctl); 10629 mp4ctl = copymsg(mpctl); 10630 if (mp3ctl == NULL || mp4ctl == NULL) { 10631 freemsg(mp4ctl); 10632 freemsg(mp3ctl); 10633 freemsg(mp2ctl); 10634 freemsg(mpctl); 10635 return (NULL); 10636 } 10637 10638 bzero(&ird, sizeof (ird)); 10639 10640 ird.ird_route.lp_head = mpctl->b_cont; 10641 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10642 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10643 /* 10644 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10645 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10646 * intended a temporary solution until a proper MIB API is provided 10647 * that provides complete filtering/caller-opt-in. 10648 */ 10649 if (level == EXPER_IP_AND_ALL_IRES) 10650 ird.ird_flags |= IRD_REPORT_ALL; 10651 10652 zoneid = Q_TO_CONN(q)->conn_zoneid; 10653 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 10654 10655 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10656 optp->level = MIB2_IP6; 10657 optp->name = MIB2_IP6_ROUTE; 10658 optp->len = msgdsize(ird.ird_route.lp_head); 10659 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10660 (int)optp->level, (int)optp->name, (int)optp->len)); 10661 qreply(q, mpctl); 10662 10663 /* ipv6NetToMediaEntryTable in mp3ctl */ 10664 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 10665 10666 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10667 optp->level = MIB2_IP6; 10668 optp->name = MIB2_IP6_MEDIA; 10669 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10670 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10671 (int)optp->level, (int)optp->name, (int)optp->len)); 10672 qreply(q, mp3ctl); 10673 10674 /* ipv6RouteAttributeTable in mp4ctl */ 10675 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10676 optp->level = MIB2_IP6; 10677 optp->name = EXPER_IP_RTATTR; 10678 optp->len = msgdsize(ird.ird_attrs.lp_head); 10679 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10680 (int)optp->level, (int)optp->name, (int)optp->len)); 10681 if (optp->len == 0) 10682 freemsg(mp4ctl); 10683 else 10684 qreply(q, mp4ctl); 10685 10686 return (mp2ctl); 10687 } 10688 10689 /* 10690 * IPv6 mib: One per ill 10691 */ 10692 static mblk_t * 10693 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10694 boolean_t legacy_req) 10695 { 10696 struct opthdr *optp; 10697 mblk_t *mp2ctl; 10698 ill_t *ill; 10699 ill_walk_context_t ctx; 10700 mblk_t *mp_tail = NULL; 10701 mib2_ipv6AddrEntry_t mae6; 10702 mib2_ipIfStatsEntry_t *ise; 10703 size_t ise_size, iae_size; 10704 10705 /* 10706 * Make a copy of the original message 10707 */ 10708 mp2ctl = copymsg(mpctl); 10709 10710 /* fixed length IPv6 structure ... */ 10711 10712 if (legacy_req) { 10713 ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib, 10714 mib2_ipIfStatsEntry_t); 10715 iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t); 10716 } else { 10717 ise_size = sizeof (mib2_ipIfStatsEntry_t); 10718 iae_size = sizeof (mib2_ipv6AddrEntry_t); 10719 } 10720 10721 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10722 optp->level = MIB2_IP6; 10723 optp->name = 0; 10724 /* Include "unknown interface" ip6_mib */ 10725 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 10726 ipst->ips_ip6_mib.ipIfStatsIfIndex = 10727 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 10728 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 10729 ipst->ips_ipv6_forwarding ? 1 : 2); 10730 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 10731 ipst->ips_ipv6_def_hops); 10732 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 10733 sizeof (mib2_ipIfStatsEntry_t)); 10734 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 10735 sizeof (mib2_ipv6AddrEntry_t)); 10736 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 10737 sizeof (mib2_ipv6RouteEntry_t)); 10738 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 10739 sizeof (mib2_ipv6NetToMediaEntry_t)); 10740 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 10741 sizeof (ipv6_member_t)); 10742 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 10743 sizeof (ipv6_grpsrc_t)); 10744 10745 /* 10746 * Synchronize 64- and 32-bit counters 10747 */ 10748 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 10749 ipIfStatsHCInReceives); 10750 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 10751 ipIfStatsHCInDelivers); 10752 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 10753 ipIfStatsHCOutRequests); 10754 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 10755 ipIfStatsHCOutForwDatagrams); 10756 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 10757 ipIfStatsHCOutMcastPkts); 10758 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 10759 ipIfStatsHCInMcastPkts); 10760 10761 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10762 (char *)&ipst->ips_ip6_mib, (int)ise_size)) { 10763 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 10764 (uint_t)ise_size)); 10765 } else if (legacy_req) { 10766 /* Adjust the EntrySize fields for legacy requests. */ 10767 ise = 10768 (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size); 10769 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10770 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10771 } 10772 10773 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10774 ill = ILL_START_WALK_V6(&ctx, ipst); 10775 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10776 ill->ill_ip_mib->ipIfStatsIfIndex = 10777 ill->ill_phyint->phyint_ifindex; 10778 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 10779 ipst->ips_ipv6_forwarding ? 1 : 2); 10780 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 10781 ill->ill_max_hops); 10782 10783 /* 10784 * Synchronize 64- and 32-bit counters 10785 */ 10786 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 10787 ipIfStatsHCInReceives); 10788 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 10789 ipIfStatsHCInDelivers); 10790 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 10791 ipIfStatsHCOutRequests); 10792 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 10793 ipIfStatsHCOutForwDatagrams); 10794 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 10795 ipIfStatsHCOutMcastPkts); 10796 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 10797 ipIfStatsHCInMcastPkts); 10798 10799 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10800 (char *)ill->ill_ip_mib, (int)ise_size)) { 10801 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 10802 "%u bytes\n", (uint_t)ise_size)); 10803 } else if (legacy_req) { 10804 /* Adjust the EntrySize fields for legacy requests. */ 10805 ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - 10806 (int)ise_size); 10807 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10808 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10809 } 10810 } 10811 rw_exit(&ipst->ips_ill_g_lock); 10812 10813 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10814 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 10815 (int)optp->level, (int)optp->name, (int)optp->len)); 10816 qreply(q, mpctl); 10817 return (mp2ctl); 10818 } 10819 10820 /* 10821 * ICMPv6 mib: One per ill 10822 */ 10823 static mblk_t * 10824 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10825 { 10826 struct opthdr *optp; 10827 mblk_t *mp2ctl; 10828 ill_t *ill; 10829 ill_walk_context_t ctx; 10830 mblk_t *mp_tail = NULL; 10831 /* 10832 * Make a copy of the original message 10833 */ 10834 mp2ctl = copymsg(mpctl); 10835 10836 /* fixed length ICMPv6 structure ... */ 10837 10838 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10839 optp->level = MIB2_ICMP6; 10840 optp->name = 0; 10841 /* Include "unknown interface" icmp6_mib */ 10842 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 10843 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 10844 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 10845 sizeof (mib2_ipv6IfIcmpEntry_t); 10846 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10847 (char *)&ipst->ips_icmp6_mib, 10848 (int)sizeof (ipst->ips_icmp6_mib))) { 10849 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 10850 (uint_t)sizeof (ipst->ips_icmp6_mib))); 10851 } 10852 10853 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10854 ill = ILL_START_WALK_V6(&ctx, ipst); 10855 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10856 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 10857 ill->ill_phyint->phyint_ifindex; 10858 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10859 (char *)ill->ill_icmp6_mib, 10860 (int)sizeof (*ill->ill_icmp6_mib))) { 10861 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 10862 "%u bytes\n", 10863 (uint_t)sizeof (*ill->ill_icmp6_mib))); 10864 } 10865 } 10866 rw_exit(&ipst->ips_ill_g_lock); 10867 10868 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10869 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 10870 (int)optp->level, (int)optp->name, (int)optp->len)); 10871 qreply(q, mpctl); 10872 return (mp2ctl); 10873 } 10874 10875 /* 10876 * ire_walk routine to create both ipRouteEntryTable and 10877 * ipRouteAttributeTable in one IRE walk 10878 */ 10879 static void 10880 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 10881 { 10882 ill_t *ill; 10883 mib2_ipRouteEntry_t *re; 10884 mib2_ipAttributeEntry_t iaes; 10885 tsol_ire_gw_secattr_t *attrp; 10886 tsol_gc_t *gc = NULL; 10887 tsol_gcgrp_t *gcgrp = NULL; 10888 ip_stack_t *ipst = ire->ire_ipst; 10889 10890 ASSERT(ire->ire_ipversion == IPV4_VERSION); 10891 10892 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10893 if (ire->ire_testhidden) 10894 return; 10895 if (ire->ire_type & IRE_IF_CLONE) 10896 return; 10897 } 10898 10899 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10900 return; 10901 10902 if ((attrp = ire->ire_gw_secattr) != NULL) { 10903 mutex_enter(&attrp->igsa_lock); 10904 if ((gc = attrp->igsa_gc) != NULL) { 10905 gcgrp = gc->gc_grp; 10906 ASSERT(gcgrp != NULL); 10907 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10908 } 10909 mutex_exit(&attrp->igsa_lock); 10910 } 10911 /* 10912 * Return all IRE types for route table... let caller pick and choose 10913 */ 10914 re->ipRouteDest = ire->ire_addr; 10915 ill = ire->ire_ill; 10916 re->ipRouteIfIndex.o_length = 0; 10917 if (ill != NULL) { 10918 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 10919 re->ipRouteIfIndex.o_length = 10920 mi_strlen(re->ipRouteIfIndex.o_bytes); 10921 } 10922 re->ipRouteMetric1 = -1; 10923 re->ipRouteMetric2 = -1; 10924 re->ipRouteMetric3 = -1; 10925 re->ipRouteMetric4 = -1; 10926 10927 re->ipRouteNextHop = ire->ire_gateway_addr; 10928 /* indirect(4), direct(3), or invalid(2) */ 10929 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 10930 re->ipRouteType = 2; 10931 else if (ire->ire_type & IRE_ONLINK) 10932 re->ipRouteType = 3; 10933 else 10934 re->ipRouteType = 4; 10935 10936 re->ipRouteProto = -1; 10937 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 10938 re->ipRouteMask = ire->ire_mask; 10939 re->ipRouteMetric5 = -1; 10940 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 10941 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0) 10942 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 10943 10944 re->ipRouteInfo.re_frag_flag = 0; 10945 re->ipRouteInfo.re_rtt = 0; 10946 re->ipRouteInfo.re_src_addr = 0; 10947 re->ipRouteInfo.re_ref = ire->ire_refcnt; 10948 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 10949 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 10950 re->ipRouteInfo.re_flags = ire->ire_flags; 10951 10952 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 10953 if (ire->ire_type & IRE_INTERFACE) { 10954 ire_t *child; 10955 10956 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 10957 child = ire->ire_dep_children; 10958 while (child != NULL) { 10959 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count; 10960 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count; 10961 child = child->ire_dep_sib_next; 10962 } 10963 rw_exit(&ipst->ips_ire_dep_lock); 10964 } 10965 10966 if (ire->ire_flags & RTF_DYNAMIC) { 10967 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 10968 } else { 10969 re->ipRouteInfo.re_ire_type = ire->ire_type; 10970 } 10971 10972 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 10973 (char *)re, (int)sizeof (*re))) { 10974 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 10975 (uint_t)sizeof (*re))); 10976 } 10977 10978 if (gc != NULL) { 10979 iaes.iae_routeidx = ird->ird_idx; 10980 iaes.iae_doi = gc->gc_db->gcdb_doi; 10981 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 10982 10983 if (!snmp_append_data2(ird->ird_attrs.lp_head, 10984 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 10985 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u " 10986 "bytes\n", (uint_t)sizeof (iaes))); 10987 } 10988 } 10989 10990 /* bump route index for next pass */ 10991 ird->ird_idx++; 10992 10993 kmem_free(re, sizeof (*re)); 10994 if (gcgrp != NULL) 10995 rw_exit(&gcgrp->gcgrp_rwlock); 10996 } 10997 10998 /* 10999 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 11000 */ 11001 static void 11002 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 11003 { 11004 ill_t *ill; 11005 mib2_ipv6RouteEntry_t *re; 11006 mib2_ipAttributeEntry_t iaes; 11007 tsol_ire_gw_secattr_t *attrp; 11008 tsol_gc_t *gc = NULL; 11009 tsol_gcgrp_t *gcgrp = NULL; 11010 ip_stack_t *ipst = ire->ire_ipst; 11011 11012 ASSERT(ire->ire_ipversion == IPV6_VERSION); 11013 11014 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 11015 if (ire->ire_testhidden) 11016 return; 11017 if (ire->ire_type & IRE_IF_CLONE) 11018 return; 11019 } 11020 11021 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 11022 return; 11023 11024 if ((attrp = ire->ire_gw_secattr) != NULL) { 11025 mutex_enter(&attrp->igsa_lock); 11026 if ((gc = attrp->igsa_gc) != NULL) { 11027 gcgrp = gc->gc_grp; 11028 ASSERT(gcgrp != NULL); 11029 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 11030 } 11031 mutex_exit(&attrp->igsa_lock); 11032 } 11033 /* 11034 * Return all IRE types for route table... let caller pick and choose 11035 */ 11036 re->ipv6RouteDest = ire->ire_addr_v6; 11037 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 11038 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 11039 re->ipv6RouteIfIndex.o_length = 0; 11040 ill = ire->ire_ill; 11041 if (ill != NULL) { 11042 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 11043 re->ipv6RouteIfIndex.o_length = 11044 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 11045 } 11046 11047 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 11048 11049 mutex_enter(&ire->ire_lock); 11050 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6; 11051 mutex_exit(&ire->ire_lock); 11052 11053 /* remote(4), local(3), or discard(2) */ 11054 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 11055 re->ipv6RouteType = 2; 11056 else if (ire->ire_type & IRE_ONLINK) 11057 re->ipv6RouteType = 3; 11058 else 11059 re->ipv6RouteType = 4; 11060 11061 re->ipv6RouteProtocol = -1; 11062 re->ipv6RoutePolicy = 0; 11063 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 11064 re->ipv6RouteNextHopRDI = 0; 11065 re->ipv6RouteWeight = 0; 11066 re->ipv6RouteMetric = 0; 11067 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 11068 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0) 11069 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 11070 11071 re->ipv6RouteInfo.re_frag_flag = 0; 11072 re->ipv6RouteInfo.re_rtt = 0; 11073 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros; 11074 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 11075 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 11076 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 11077 re->ipv6RouteInfo.re_flags = ire->ire_flags; 11078 11079 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11080 if (ire->ire_type & IRE_INTERFACE) { 11081 ire_t *child; 11082 11083 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11084 child = ire->ire_dep_children; 11085 while (child != NULL) { 11086 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count; 11087 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11088 child = child->ire_dep_sib_next; 11089 } 11090 rw_exit(&ipst->ips_ire_dep_lock); 11091 } 11092 if (ire->ire_flags & RTF_DYNAMIC) { 11093 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11094 } else { 11095 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 11096 } 11097 11098 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11099 (char *)re, (int)sizeof (*re))) { 11100 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 11101 (uint_t)sizeof (*re))); 11102 } 11103 11104 if (gc != NULL) { 11105 iaes.iae_routeidx = ird->ird_idx; 11106 iaes.iae_doi = gc->gc_db->gcdb_doi; 11107 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11108 11109 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11110 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11111 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u " 11112 "bytes\n", (uint_t)sizeof (iaes))); 11113 } 11114 } 11115 11116 /* bump route index for next pass */ 11117 ird->ird_idx++; 11118 11119 kmem_free(re, sizeof (*re)); 11120 if (gcgrp != NULL) 11121 rw_exit(&gcgrp->gcgrp_rwlock); 11122 } 11123 11124 /* 11125 * ncec_walk routine to create ipv6NetToMediaEntryTable 11126 */ 11127 static int 11128 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird) 11129 { 11130 ill_t *ill; 11131 mib2_ipv6NetToMediaEntry_t ntme; 11132 11133 ill = ncec->ncec_ill; 11134 /* skip arpce entries, and loopback ncec entries */ 11135 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK) 11136 return (0); 11137 /* 11138 * Neighbor cache entry attached to IRE with on-link 11139 * destination. 11140 * We report all IPMP groups on ncec_ill which is normally the upper. 11141 */ 11142 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 11143 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr; 11144 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length; 11145 if (ncec->ncec_lladdr != NULL) { 11146 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes, 11147 ntme.ipv6NetToMediaPhysAddress.o_length); 11148 } 11149 /* 11150 * Note: Returns ND_* states. Should be: 11151 * reachable(1), stale(2), delay(3), probe(4), 11152 * invalid(5), unknown(6) 11153 */ 11154 ntme.ipv6NetToMediaState = ncec->ncec_state; 11155 ntme.ipv6NetToMediaLastUpdated = 0; 11156 11157 /* other(1), dynamic(2), static(3), local(4) */ 11158 if (NCE_MYADDR(ncec)) { 11159 ntme.ipv6NetToMediaType = 4; 11160 } else if (ncec->ncec_flags & NCE_F_PUBLISH) { 11161 ntme.ipv6NetToMediaType = 1; /* proxy */ 11162 } else if (ncec->ncec_flags & NCE_F_STATIC) { 11163 ntme.ipv6NetToMediaType = 3; 11164 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) { 11165 ntme.ipv6NetToMediaType = 1; 11166 } else { 11167 ntme.ipv6NetToMediaType = 2; 11168 } 11169 11170 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11171 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11172 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 11173 (uint_t)sizeof (ntme))); 11174 } 11175 return (0); 11176 } 11177 11178 int 11179 nce2ace(ncec_t *ncec) 11180 { 11181 int flags = 0; 11182 11183 if (NCE_ISREACHABLE(ncec)) 11184 flags |= ACE_F_RESOLVED; 11185 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11186 flags |= ACE_F_AUTHORITY; 11187 if (ncec->ncec_flags & NCE_F_PUBLISH) 11188 flags |= ACE_F_PUBLISH; 11189 if ((ncec->ncec_flags & NCE_F_NONUD) != 0) 11190 flags |= ACE_F_PERMANENT; 11191 if (NCE_MYADDR(ncec)) 11192 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY); 11193 if (ncec->ncec_flags & NCE_F_UNVERIFIED) 11194 flags |= ACE_F_UNVERIFIED; 11195 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11196 flags |= ACE_F_AUTHORITY; 11197 if (ncec->ncec_flags & NCE_F_DELAYED) 11198 flags |= ACE_F_DELAYED; 11199 return (flags); 11200 } 11201 11202 /* 11203 * ncec_walk routine to create ipNetToMediaEntryTable 11204 */ 11205 static int 11206 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird) 11207 { 11208 ill_t *ill; 11209 mib2_ipNetToMediaEntry_t ntme; 11210 const char *name = "unknown"; 11211 ipaddr_t ncec_addr; 11212 11213 ill = ncec->ncec_ill; 11214 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) || 11215 ill->ill_net_type == IRE_LOOPBACK) 11216 return (0); 11217 11218 /* We report all IPMP groups on ncec_ill which is normally the upper. */ 11219 name = ill->ill_name; 11220 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */ 11221 if (NCE_MYADDR(ncec)) { 11222 ntme.ipNetToMediaType = 4; 11223 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) { 11224 ntme.ipNetToMediaType = 1; 11225 } else { 11226 ntme.ipNetToMediaType = 3; 11227 } 11228 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name)); 11229 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes, 11230 ntme.ipNetToMediaIfIndex.o_length); 11231 11232 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr); 11233 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr)); 11234 11235 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t); 11236 ncec_addr = INADDR_BROADCAST; 11237 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 11238 sizeof (ncec_addr)); 11239 /* 11240 * map all the flags to the ACE counterpart. 11241 */ 11242 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec); 11243 11244 ntme.ipNetToMediaPhysAddress.o_length = 11245 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 11246 11247 if (!NCE_ISREACHABLE(ncec)) 11248 ntme.ipNetToMediaPhysAddress.o_length = 0; 11249 else { 11250 if (ncec->ncec_lladdr != NULL) { 11251 bcopy(ncec->ncec_lladdr, 11252 ntme.ipNetToMediaPhysAddress.o_bytes, 11253 ntme.ipNetToMediaPhysAddress.o_length); 11254 } 11255 } 11256 11257 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11258 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11259 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n", 11260 (uint_t)sizeof (ntme))); 11261 } 11262 return (0); 11263 } 11264 11265 /* 11266 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 11267 */ 11268 /* ARGSUSED */ 11269 int 11270 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 11271 { 11272 switch (level) { 11273 case MIB2_IP: 11274 case MIB2_ICMP: 11275 switch (name) { 11276 default: 11277 break; 11278 } 11279 return (1); 11280 default: 11281 return (1); 11282 } 11283 } 11284 11285 /* 11286 * When there exists both a 64- and 32-bit counter of a particular type 11287 * (i.e., InReceives), only the 64-bit counters are added. 11288 */ 11289 void 11290 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 11291 { 11292 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 11293 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 11294 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 11295 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 11296 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 11297 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 11298 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 11299 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 11300 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 11301 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 11302 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 11303 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 11304 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 11305 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 11306 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 11307 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 11308 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 11309 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 11310 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 11311 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 11312 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 11313 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 11314 o2->ipIfStatsInWrongIPVersion); 11315 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 11316 o2->ipIfStatsInWrongIPVersion); 11317 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 11318 o2->ipIfStatsOutSwitchIPVersion); 11319 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 11320 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 11321 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 11322 o2->ipIfStatsHCInForwDatagrams); 11323 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 11324 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 11325 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 11326 o2->ipIfStatsHCOutForwDatagrams); 11327 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 11328 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 11329 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 11330 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 11331 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 11332 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 11333 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 11334 o2->ipIfStatsHCOutMcastOctets); 11335 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 11336 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 11337 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 11338 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 11339 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 11340 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 11341 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 11342 } 11343 11344 void 11345 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 11346 { 11347 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 11348 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 11349 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 11350 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 11351 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 11352 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 11353 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 11354 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 11355 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 11356 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 11357 o2->ipv6IfIcmpInRouterSolicits); 11358 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 11359 o2->ipv6IfIcmpInRouterAdvertisements); 11360 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 11361 o2->ipv6IfIcmpInNeighborSolicits); 11362 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 11363 o2->ipv6IfIcmpInNeighborAdvertisements); 11364 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 11365 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 11366 o2->ipv6IfIcmpInGroupMembQueries); 11367 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 11368 o2->ipv6IfIcmpInGroupMembResponses); 11369 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 11370 o2->ipv6IfIcmpInGroupMembReductions); 11371 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 11372 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 11373 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 11374 o2->ipv6IfIcmpOutDestUnreachs); 11375 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 11376 o2->ipv6IfIcmpOutAdminProhibs); 11377 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 11378 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 11379 o2->ipv6IfIcmpOutParmProblems); 11380 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 11381 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 11382 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 11383 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 11384 o2->ipv6IfIcmpOutRouterSolicits); 11385 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 11386 o2->ipv6IfIcmpOutRouterAdvertisements); 11387 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 11388 o2->ipv6IfIcmpOutNeighborSolicits); 11389 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 11390 o2->ipv6IfIcmpOutNeighborAdvertisements); 11391 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 11392 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 11393 o2->ipv6IfIcmpOutGroupMembQueries); 11394 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 11395 o2->ipv6IfIcmpOutGroupMembResponses); 11396 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 11397 o2->ipv6IfIcmpOutGroupMembReductions); 11398 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 11399 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 11400 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 11401 o2->ipv6IfIcmpInBadNeighborAdvertisements); 11402 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 11403 o2->ipv6IfIcmpInBadNeighborSolicitations); 11404 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 11405 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 11406 o2->ipv6IfIcmpInGroupMembTotal); 11407 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 11408 o2->ipv6IfIcmpInGroupMembBadQueries); 11409 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 11410 o2->ipv6IfIcmpInGroupMembBadReports); 11411 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 11412 o2->ipv6IfIcmpInGroupMembOurReports); 11413 } 11414 11415 /* 11416 * Called before the options are updated to check if this packet will 11417 * be source routed from here. 11418 * This routine assumes that the options are well formed i.e. that they 11419 * have already been checked. 11420 */ 11421 boolean_t 11422 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 11423 { 11424 ipoptp_t opts; 11425 uchar_t *opt; 11426 uint8_t optval; 11427 uint8_t optlen; 11428 ipaddr_t dst; 11429 11430 if (IS_SIMPLE_IPH(ipha)) { 11431 ip2dbg(("not source routed\n")); 11432 return (B_FALSE); 11433 } 11434 dst = ipha->ipha_dst; 11435 for (optval = ipoptp_first(&opts, ipha); 11436 optval != IPOPT_EOL; 11437 optval = ipoptp_next(&opts)) { 11438 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11439 opt = opts.ipoptp_cur; 11440 optlen = opts.ipoptp_len; 11441 ip2dbg(("ip_source_routed: opt %d, len %d\n", 11442 optval, optlen)); 11443 switch (optval) { 11444 uint32_t off; 11445 case IPOPT_SSRR: 11446 case IPOPT_LSRR: 11447 /* 11448 * If dst is one of our addresses and there are some 11449 * entries left in the source route return (true). 11450 */ 11451 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11452 ip2dbg(("ip_source_routed: not next" 11453 " source route 0x%x\n", 11454 ntohl(dst))); 11455 return (B_FALSE); 11456 } 11457 off = opt[IPOPT_OFFSET]; 11458 off--; 11459 if (optlen < IP_ADDR_LEN || 11460 off > optlen - IP_ADDR_LEN) { 11461 /* End of source route */ 11462 ip1dbg(("ip_source_routed: end of SR\n")); 11463 return (B_FALSE); 11464 } 11465 return (B_TRUE); 11466 } 11467 } 11468 ip2dbg(("not source routed\n")); 11469 return (B_FALSE); 11470 } 11471 11472 /* 11473 * ip_unbind is called by the transports to remove a conn from 11474 * the fanout table. 11475 */ 11476 void 11477 ip_unbind(conn_t *connp) 11478 { 11479 11480 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 11481 11482 if (is_system_labeled() && connp->conn_anon_port) { 11483 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 11484 connp->conn_mlp_type, connp->conn_proto, 11485 ntohs(connp->conn_lport), B_FALSE); 11486 connp->conn_anon_port = 0; 11487 } 11488 connp->conn_mlp_type = mlptSingle; 11489 11490 ipcl_hash_remove(connp); 11491 } 11492 11493 /* 11494 * Used for deciding the MSS size for the upper layer. Thus 11495 * we need to check the outbound policy values in the conn. 11496 */ 11497 int 11498 conn_ipsec_length(conn_t *connp) 11499 { 11500 ipsec_latch_t *ipl; 11501 11502 ipl = connp->conn_latch; 11503 if (ipl == NULL) 11504 return (0); 11505 11506 if (connp->conn_ixa->ixa_ipsec_policy == NULL) 11507 return (0); 11508 11509 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd); 11510 } 11511 11512 /* 11513 * Returns an estimate of the IPsec headers size. This is used if 11514 * we don't want to call into IPsec to get the exact size. 11515 */ 11516 int 11517 ipsec_out_extra_length(ip_xmit_attr_t *ixa) 11518 { 11519 ipsec_action_t *a; 11520 11521 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 11522 return (0); 11523 11524 a = ixa->ixa_ipsec_action; 11525 if (a == NULL) { 11526 ASSERT(ixa->ixa_ipsec_policy != NULL); 11527 a = ixa->ixa_ipsec_policy->ipsp_act; 11528 } 11529 ASSERT(a != NULL); 11530 11531 return (a->ipa_ovhd); 11532 } 11533 11534 /* 11535 * If there are any source route options, return the true final 11536 * destination. Otherwise, return the destination. 11537 */ 11538 ipaddr_t 11539 ip_get_dst(ipha_t *ipha) 11540 { 11541 ipoptp_t opts; 11542 uchar_t *opt; 11543 uint8_t optval; 11544 uint8_t optlen; 11545 ipaddr_t dst; 11546 uint32_t off; 11547 11548 dst = ipha->ipha_dst; 11549 11550 if (IS_SIMPLE_IPH(ipha)) 11551 return (dst); 11552 11553 for (optval = ipoptp_first(&opts, ipha); 11554 optval != IPOPT_EOL; 11555 optval = ipoptp_next(&opts)) { 11556 opt = opts.ipoptp_cur; 11557 optlen = opts.ipoptp_len; 11558 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11559 switch (optval) { 11560 case IPOPT_SSRR: 11561 case IPOPT_LSRR: 11562 off = opt[IPOPT_OFFSET]; 11563 /* 11564 * If one of the conditions is true, it means 11565 * end of options and dst already has the right 11566 * value. 11567 */ 11568 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 11569 off = optlen - IP_ADDR_LEN; 11570 bcopy(&opt[off], &dst, IP_ADDR_LEN); 11571 } 11572 return (dst); 11573 default: 11574 break; 11575 } 11576 } 11577 11578 return (dst); 11579 } 11580 11581 /* 11582 * Outbound IP fragmentation routine. 11583 * Assumes the caller has checked whether or not fragmentation should 11584 * be allowed. Here we copy the DF bit from the header to all the generated 11585 * fragments. 11586 */ 11587 int 11588 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags, 11589 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone, 11590 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie) 11591 { 11592 int i1; 11593 int hdr_len; 11594 mblk_t *hdr_mp; 11595 ipha_t *ipha; 11596 int ip_data_end; 11597 int len; 11598 mblk_t *mp = mp_orig; 11599 int offset; 11600 ill_t *ill = nce->nce_ill; 11601 ip_stack_t *ipst = ill->ill_ipst; 11602 mblk_t *carve_mp; 11603 uint32_t frag_flag; 11604 uint_t priority = mp->b_band; 11605 int error = 0; 11606 11607 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds); 11608 11609 if (pkt_len != msgdsize(mp)) { 11610 ip0dbg(("Packet length mismatch: %d, %ld\n", 11611 pkt_len, msgdsize(mp))); 11612 freemsg(mp); 11613 return (EINVAL); 11614 } 11615 11616 if (max_frag == 0) { 11617 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n")); 11618 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11619 ip_drop_output("FragFails: zero max_frag", mp, ill); 11620 freemsg(mp); 11621 return (EINVAL); 11622 } 11623 11624 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 11625 ipha = (ipha_t *)mp->b_rptr; 11626 ASSERT(ntohs(ipha->ipha_length) == pkt_len); 11627 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF; 11628 11629 /* 11630 * Establish the starting offset. May not be zero if we are fragging 11631 * a fragment that is being forwarded. 11632 */ 11633 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET; 11634 11635 /* TODO why is this test needed? */ 11636 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) { 11637 /* TODO: notify ulp somehow */ 11638 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11639 ip_drop_output("FragFails: bad starting offset", mp, ill); 11640 freemsg(mp); 11641 return (EINVAL); 11642 } 11643 11644 hdr_len = IPH_HDR_LENGTH(ipha); 11645 ipha->ipha_hdr_checksum = 0; 11646 11647 /* 11648 * Establish the number of bytes maximum per frag, after putting 11649 * in the header. 11650 */ 11651 len = (max_frag - hdr_len) & ~7; 11652 11653 /* Get a copy of the header for the trailing frags */ 11654 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 11655 mp); 11656 if (hdr_mp == NULL) { 11657 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11658 ip_drop_output("FragFails: no hdr_mp", mp, ill); 11659 freemsg(mp); 11660 return (ENOBUFS); 11661 } 11662 11663 /* Store the starting offset, with the MoreFrags flag. */ 11664 i1 = offset | IPH_MF | frag_flag; 11665 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 11666 11667 /* Establish the ending byte offset, based on the starting offset. */ 11668 offset <<= 3; 11669 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 11670 11671 /* Store the length of the first fragment in the IP header. */ 11672 i1 = len + hdr_len; 11673 ASSERT(i1 <= IP_MAXPACKET); 11674 ipha->ipha_length = htons((uint16_t)i1); 11675 11676 /* 11677 * Compute the IP header checksum for the first frag. We have to 11678 * watch out that we stop at the end of the header. 11679 */ 11680 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11681 11682 /* 11683 * Now carve off the first frag. Note that this will include the 11684 * original IP header. 11685 */ 11686 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 11687 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11688 ip_drop_output("FragFails: could not carve mp", mp_orig, ill); 11689 freeb(hdr_mp); 11690 freemsg(mp_orig); 11691 return (ENOBUFS); 11692 } 11693 11694 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11695 11696 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid, 11697 ixa_cookie); 11698 if (error != 0 && error != EWOULDBLOCK) { 11699 /* No point in sending the other fragments */ 11700 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11701 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill); 11702 freeb(hdr_mp); 11703 freemsg(mp_orig); 11704 return (error); 11705 } 11706 11707 /* No need to redo state machine in loop */ 11708 ixaflags &= ~IXAF_REACH_CONF; 11709 11710 /* Advance the offset to the second frag starting point. */ 11711 offset += len; 11712 /* 11713 * Update hdr_len from the copied header - there might be less options 11714 * in the later fragments. 11715 */ 11716 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 11717 /* Loop until done. */ 11718 for (;;) { 11719 uint16_t offset_and_flags; 11720 uint16_t ip_len; 11721 11722 if (ip_data_end - offset > len) { 11723 /* 11724 * Carve off the appropriate amount from the original 11725 * datagram. 11726 */ 11727 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11728 mp = NULL; 11729 break; 11730 } 11731 /* 11732 * More frags after this one. Get another copy 11733 * of the header. 11734 */ 11735 if (carve_mp->b_datap->db_ref == 1 && 11736 hdr_mp->b_wptr - hdr_mp->b_rptr < 11737 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11738 /* Inline IP header */ 11739 carve_mp->b_rptr -= hdr_mp->b_wptr - 11740 hdr_mp->b_rptr; 11741 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11742 hdr_mp->b_wptr - hdr_mp->b_rptr); 11743 mp = carve_mp; 11744 } else { 11745 if (!(mp = copyb(hdr_mp))) { 11746 freemsg(carve_mp); 11747 break; 11748 } 11749 /* Get priority marking, if any. */ 11750 mp->b_band = priority; 11751 mp->b_cont = carve_mp; 11752 } 11753 ipha = (ipha_t *)mp->b_rptr; 11754 offset_and_flags = IPH_MF; 11755 } else { 11756 /* 11757 * Last frag. Consume the header. Set len to 11758 * the length of this last piece. 11759 */ 11760 len = ip_data_end - offset; 11761 11762 /* 11763 * Carve off the appropriate amount from the original 11764 * datagram. 11765 */ 11766 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11767 mp = NULL; 11768 break; 11769 } 11770 if (carve_mp->b_datap->db_ref == 1 && 11771 hdr_mp->b_wptr - hdr_mp->b_rptr < 11772 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11773 /* Inline IP header */ 11774 carve_mp->b_rptr -= hdr_mp->b_wptr - 11775 hdr_mp->b_rptr; 11776 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11777 hdr_mp->b_wptr - hdr_mp->b_rptr); 11778 mp = carve_mp; 11779 freeb(hdr_mp); 11780 hdr_mp = mp; 11781 } else { 11782 mp = hdr_mp; 11783 /* Get priority marking, if any. */ 11784 mp->b_band = priority; 11785 mp->b_cont = carve_mp; 11786 } 11787 ipha = (ipha_t *)mp->b_rptr; 11788 /* A frag of a frag might have IPH_MF non-zero */ 11789 offset_and_flags = 11790 ntohs(ipha->ipha_fragment_offset_and_flags) & 11791 IPH_MF; 11792 } 11793 offset_and_flags |= (uint16_t)(offset >> 3); 11794 offset_and_flags |= (uint16_t)frag_flag; 11795 /* Store the offset and flags in the IP header. */ 11796 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 11797 11798 /* Store the length in the IP header. */ 11799 ip_len = (uint16_t)(len + hdr_len); 11800 ipha->ipha_length = htons(ip_len); 11801 11802 /* 11803 * Set the IP header checksum. Note that mp is just 11804 * the header, so this is easy to pass to ip_csum. 11805 */ 11806 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11807 11808 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11809 11810 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone, 11811 nolzid, ixa_cookie); 11812 /* All done if we just consumed the hdr_mp. */ 11813 if (mp == hdr_mp) { 11814 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 11815 return (error); 11816 } 11817 if (error != 0 && error != EWOULDBLOCK) { 11818 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill, 11819 mblk_t *, hdr_mp); 11820 /* No point in sending the other fragments */ 11821 break; 11822 } 11823 11824 /* Otherwise, advance and loop. */ 11825 offset += len; 11826 } 11827 /* Clean up following allocation failure. */ 11828 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11829 ip_drop_output("FragFails: loop ended", NULL, ill); 11830 if (mp != hdr_mp) 11831 freeb(hdr_mp); 11832 if (mp != mp_orig) 11833 freemsg(mp_orig); 11834 return (error); 11835 } 11836 11837 /* 11838 * Copy the header plus those options which have the copy bit set 11839 */ 11840 static mblk_t * 11841 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 11842 mblk_t *src) 11843 { 11844 mblk_t *mp; 11845 uchar_t *up; 11846 11847 /* 11848 * Quick check if we need to look for options without the copy bit 11849 * set 11850 */ 11851 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 11852 if (!mp) 11853 return (mp); 11854 mp->b_rptr += ipst->ips_ip_wroff_extra; 11855 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 11856 bcopy(rptr, mp->b_rptr, hdr_len); 11857 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 11858 return (mp); 11859 } 11860 up = mp->b_rptr; 11861 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 11862 up += IP_SIMPLE_HDR_LENGTH; 11863 rptr += IP_SIMPLE_HDR_LENGTH; 11864 hdr_len -= IP_SIMPLE_HDR_LENGTH; 11865 while (hdr_len > 0) { 11866 uint32_t optval; 11867 uint32_t optlen; 11868 11869 optval = *rptr; 11870 if (optval == IPOPT_EOL) 11871 break; 11872 if (optval == IPOPT_NOP) 11873 optlen = 1; 11874 else 11875 optlen = rptr[1]; 11876 if (optval & IPOPT_COPY) { 11877 bcopy(rptr, up, optlen); 11878 up += optlen; 11879 } 11880 rptr += optlen; 11881 hdr_len -= optlen; 11882 } 11883 /* 11884 * Make sure that we drop an even number of words by filling 11885 * with EOL to the next word boundary. 11886 */ 11887 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 11888 hdr_len & 0x3; hdr_len++) 11889 *up++ = IPOPT_EOL; 11890 mp->b_wptr = up; 11891 /* Update header length */ 11892 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 11893 return (mp); 11894 } 11895 11896 /* 11897 * Update any source route, record route, or timestamp options when 11898 * sending a packet back to ourselves. 11899 * Check that we are at end of strict source route. 11900 * The options have been sanity checked by ip_output_options(). 11901 */ 11902 void 11903 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst) 11904 { 11905 ipoptp_t opts; 11906 uchar_t *opt; 11907 uint8_t optval; 11908 uint8_t optlen; 11909 ipaddr_t dst; 11910 uint32_t ts; 11911 timestruc_t now; 11912 11913 for (optval = ipoptp_first(&opts, ipha); 11914 optval != IPOPT_EOL; 11915 optval = ipoptp_next(&opts)) { 11916 opt = opts.ipoptp_cur; 11917 optlen = opts.ipoptp_len; 11918 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11919 switch (optval) { 11920 uint32_t off; 11921 case IPOPT_SSRR: 11922 case IPOPT_LSRR: 11923 off = opt[IPOPT_OFFSET]; 11924 off--; 11925 if (optlen < IP_ADDR_LEN || 11926 off > optlen - IP_ADDR_LEN) { 11927 /* End of source route */ 11928 break; 11929 } 11930 /* 11931 * This will only happen if two consecutive entries 11932 * in the source route contains our address or if 11933 * it is a packet with a loose source route which 11934 * reaches us before consuming the whole source route 11935 */ 11936 11937 if (optval == IPOPT_SSRR) { 11938 return; 11939 } 11940 /* 11941 * Hack: instead of dropping the packet truncate the 11942 * source route to what has been used by filling the 11943 * rest with IPOPT_NOP. 11944 */ 11945 opt[IPOPT_OLEN] = (uint8_t)off; 11946 while (off < optlen) { 11947 opt[off++] = IPOPT_NOP; 11948 } 11949 break; 11950 case IPOPT_RR: 11951 off = opt[IPOPT_OFFSET]; 11952 off--; 11953 if (optlen < IP_ADDR_LEN || 11954 off > optlen - IP_ADDR_LEN) { 11955 /* No more room - ignore */ 11956 ip1dbg(( 11957 "ip_output_local_options: end of RR\n")); 11958 break; 11959 } 11960 dst = htonl(INADDR_LOOPBACK); 11961 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 11962 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 11963 break; 11964 case IPOPT_TS: 11965 /* Insert timestamp if there is romm */ 11966 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 11967 case IPOPT_TS_TSONLY: 11968 off = IPOPT_TS_TIMELEN; 11969 break; 11970 case IPOPT_TS_PRESPEC: 11971 case IPOPT_TS_PRESPEC_RFC791: 11972 /* Verify that the address matched */ 11973 off = opt[IPOPT_OFFSET] - 1; 11974 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 11975 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11976 /* Not for us */ 11977 break; 11978 } 11979 /* FALLTHRU */ 11980 case IPOPT_TS_TSANDADDR: 11981 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 11982 break; 11983 default: 11984 /* 11985 * ip_*put_options should have already 11986 * dropped this packet. 11987 */ 11988 cmn_err(CE_PANIC, "ip_output_local_options: " 11989 "unknown IT - bug in ip_output_options?\n"); 11990 return; /* Keep "lint" happy */ 11991 } 11992 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 11993 /* Increase overflow counter */ 11994 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 11995 opt[IPOPT_POS_OV_FLG] = (uint8_t) 11996 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 11997 (off << 4); 11998 break; 11999 } 12000 off = opt[IPOPT_OFFSET] - 1; 12001 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12002 case IPOPT_TS_PRESPEC: 12003 case IPOPT_TS_PRESPEC_RFC791: 12004 case IPOPT_TS_TSANDADDR: 12005 dst = htonl(INADDR_LOOPBACK); 12006 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 12007 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 12008 /* FALLTHRU */ 12009 case IPOPT_TS_TSONLY: 12010 off = opt[IPOPT_OFFSET] - 1; 12011 /* Compute # of milliseconds since midnight */ 12012 gethrestime(&now); 12013 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 12014 now.tv_nsec / (NANOSEC / MILLISEC); 12015 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 12016 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 12017 break; 12018 } 12019 break; 12020 } 12021 } 12022 } 12023 12024 /* 12025 * Prepend an M_DATA fastpath header, and if none present prepend a 12026 * DL_UNITDATA_REQ. Frees the mblk on failure. 12027 * 12028 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set. 12029 * If there is a change to them, the nce will be deleted (condemned) and 12030 * a new nce_t will be created when packets are sent. Thus we need no locks 12031 * to access those fields. 12032 * 12033 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended 12034 * we place b_band in dl_priority.dl_max. 12035 */ 12036 static mblk_t * 12037 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce) 12038 { 12039 uint_t hlen; 12040 mblk_t *mp1; 12041 uint_t priority; 12042 uchar_t *rptr; 12043 12044 rptr = mp->b_rptr; 12045 12046 ASSERT(DB_TYPE(mp) == M_DATA); 12047 priority = mp->b_band; 12048 12049 ASSERT(nce != NULL); 12050 if ((mp1 = nce->nce_fp_mp) != NULL) { 12051 hlen = MBLKL(mp1); 12052 /* 12053 * Check if we have enough room to prepend fastpath 12054 * header 12055 */ 12056 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 12057 rptr -= hlen; 12058 bcopy(mp1->b_rptr, rptr, hlen); 12059 /* 12060 * Set the b_rptr to the start of the link layer 12061 * header 12062 */ 12063 mp->b_rptr = rptr; 12064 return (mp); 12065 } 12066 mp1 = copyb(mp1); 12067 if (mp1 == NULL) { 12068 ill_t *ill = nce->nce_ill; 12069 12070 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12071 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12072 freemsg(mp); 12073 return (NULL); 12074 } 12075 mp1->b_band = priority; 12076 mp1->b_cont = mp; 12077 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 12078 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 12079 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 12080 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 12081 DB_LSOMSS(mp1) = DB_LSOMSS(mp); 12082 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1); 12083 /* 12084 * XXX disable ICK_VALID and compute checksum 12085 * here; can happen if nce_fp_mp changes and 12086 * it can't be copied now due to insufficient 12087 * space. (unlikely, fp mp can change, but it 12088 * does not increase in length) 12089 */ 12090 return (mp1); 12091 } 12092 mp1 = copyb(nce->nce_dlur_mp); 12093 12094 if (mp1 == NULL) { 12095 ill_t *ill = nce->nce_ill; 12096 12097 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12098 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12099 freemsg(mp); 12100 return (NULL); 12101 } 12102 mp1->b_cont = mp; 12103 if (priority != 0) { 12104 mp1->b_band = priority; 12105 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max = 12106 priority; 12107 } 12108 return (mp1); 12109 #undef rptr 12110 } 12111 12112 /* 12113 * Finish the outbound IPsec processing. This function is called from 12114 * ipsec_out_process() if the IPsec packet was processed 12115 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12116 * asynchronously. 12117 * 12118 * This is common to IPv4 and IPv6. 12119 */ 12120 int 12121 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa) 12122 { 12123 iaflags_t ixaflags = ixa->ixa_flags; 12124 uint_t pktlen; 12125 12126 12127 /* AH/ESP don't update ixa_pktlen when they modify the packet */ 12128 if (ixaflags & IXAF_IS_IPV4) { 12129 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12130 12131 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12132 pktlen = ntohs(ipha->ipha_length); 12133 } else { 12134 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12135 12136 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12137 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12138 } 12139 12140 /* 12141 * We release any hard reference on the SAs here to make 12142 * sure the SAs can be garbage collected. ipsr_sa has a soft reference 12143 * on the SAs. 12144 * If in the future we want the hard latching of the SAs in the 12145 * ip_xmit_attr_t then we should remove this. 12146 */ 12147 if (ixa->ixa_ipsec_esp_sa != NULL) { 12148 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12149 ixa->ixa_ipsec_esp_sa = NULL; 12150 } 12151 if (ixa->ixa_ipsec_ah_sa != NULL) { 12152 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12153 ixa->ixa_ipsec_ah_sa = NULL; 12154 } 12155 12156 /* Do we need to fragment? */ 12157 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) || 12158 pktlen > ixa->ixa_fragsize) { 12159 if (ixaflags & IXAF_IS_IPV4) { 12160 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR)); 12161 /* 12162 * We check for the DF case in ipsec_out_process 12163 * hence this only handles the non-DF case. 12164 */ 12165 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags, 12166 pktlen, ixa->ixa_fragsize, 12167 ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12168 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn, 12169 &ixa->ixa_cookie)); 12170 } else { 12171 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa); 12172 if (mp == NULL) { 12173 /* MIB and ip_drop_output already done */ 12174 return (ENOMEM); 12175 } 12176 pktlen += sizeof (ip6_frag_t); 12177 if (pktlen > ixa->ixa_fragsize) { 12178 return (ip_fragment_v6(mp, ixa->ixa_nce, 12179 ixa->ixa_flags, pktlen, 12180 ixa->ixa_fragsize, ixa->ixa_xmit_hint, 12181 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid, 12182 ixa->ixa_postfragfn, &ixa->ixa_cookie)); 12183 } 12184 } 12185 } 12186 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags, 12187 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12188 ixa->ixa_no_loop_zoneid, NULL)); 12189 } 12190 12191 /* 12192 * Finish the inbound IPsec processing. This function is called from 12193 * ipsec_out_process() if the IPsec packet was processed 12194 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12195 * asynchronously. 12196 * 12197 * This is common to IPv4 and IPv6. 12198 */ 12199 void 12200 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira) 12201 { 12202 iaflags_t iraflags = ira->ira_flags; 12203 12204 /* Length might have changed */ 12205 if (iraflags & IRAF_IS_IPV4) { 12206 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12207 12208 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12209 ira->ira_pktlen = ntohs(ipha->ipha_length); 12210 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 12211 ira->ira_protocol = ipha->ipha_protocol; 12212 12213 ip_fanout_v4(mp, ipha, ira); 12214 } else { 12215 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12216 uint8_t *nexthdrp; 12217 12218 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12219 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12220 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length, 12221 &nexthdrp)) { 12222 /* Malformed packet */ 12223 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards); 12224 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill); 12225 freemsg(mp); 12226 return; 12227 } 12228 ira->ira_protocol = *nexthdrp; 12229 ip_fanout_v6(mp, ip6h, ira); 12230 } 12231 } 12232 12233 /* 12234 * Select which AH & ESP SA's to use (if any) for the outbound packet. 12235 * 12236 * If this function returns B_TRUE, the requested SA's have been filled 12237 * into the ixa_ipsec_*_sa pointers. 12238 * 12239 * If the function returns B_FALSE, the packet has been "consumed", most 12240 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 12241 * 12242 * The SA references created by the protocol-specific "select" 12243 * function will be released in ip_output_post_ipsec. 12244 */ 12245 static boolean_t 12246 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa) 12247 { 12248 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 12249 ipsec_policy_t *pp; 12250 ipsec_action_t *ap; 12251 12252 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12253 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12254 (ixa->ixa_ipsec_action != NULL)); 12255 12256 ap = ixa->ixa_ipsec_action; 12257 if (ap == NULL) { 12258 pp = ixa->ixa_ipsec_policy; 12259 ASSERT(pp != NULL); 12260 ap = pp->ipsp_act; 12261 ASSERT(ap != NULL); 12262 } 12263 12264 /* 12265 * We have an action. now, let's select SA's. 12266 * A side effect of setting ixa_ipsec_*_sa is that it will 12267 * be cached in the conn_t. 12268 */ 12269 if (ap->ipa_want_esp) { 12270 if (ixa->ixa_ipsec_esp_sa == NULL) { 12271 need_esp_acquire = !ipsec_outbound_sa(mp, ixa, 12272 IPPROTO_ESP); 12273 } 12274 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL); 12275 } 12276 12277 if (ap->ipa_want_ah) { 12278 if (ixa->ixa_ipsec_ah_sa == NULL) { 12279 need_ah_acquire = !ipsec_outbound_sa(mp, ixa, 12280 IPPROTO_AH); 12281 } 12282 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL); 12283 /* 12284 * The ESP and AH processing order needs to be preserved 12285 * when both protocols are required (ESP should be applied 12286 * before AH for an outbound packet). Force an ESP ACQUIRE 12287 * when both ESP and AH are required, and an AH ACQUIRE 12288 * is needed. 12289 */ 12290 if (ap->ipa_want_esp && need_ah_acquire) 12291 need_esp_acquire = B_TRUE; 12292 } 12293 12294 /* 12295 * Send an ACQUIRE (extended, regular, or both) if we need one. 12296 * Release SAs that got referenced, but will not be used until we 12297 * acquire _all_ of the SAs we need. 12298 */ 12299 if (need_ah_acquire || need_esp_acquire) { 12300 if (ixa->ixa_ipsec_ah_sa != NULL) { 12301 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12302 ixa->ixa_ipsec_ah_sa = NULL; 12303 } 12304 if (ixa->ixa_ipsec_esp_sa != NULL) { 12305 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12306 ixa->ixa_ipsec_esp_sa = NULL; 12307 } 12308 12309 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire); 12310 return (B_FALSE); 12311 } 12312 12313 return (B_TRUE); 12314 } 12315 12316 /* 12317 * Handle IPsec output processing. 12318 * This function is only entered once for a given packet. 12319 * We try to do things synchronously, but if we need to have user-level 12320 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation 12321 * will be completed 12322 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish 12323 * - when asynchronous ESP is done it will do AH 12324 * 12325 * In all cases we come back in ip_output_post_ipsec() to fragment and 12326 * send out the packet. 12327 */ 12328 int 12329 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa) 12330 { 12331 ill_t *ill = ixa->ixa_nce->nce_ill; 12332 ip_stack_t *ipst = ixa->ixa_ipst; 12333 ipsec_stack_t *ipss; 12334 ipsec_policy_t *pp; 12335 ipsec_action_t *ap; 12336 12337 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12338 12339 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12340 (ixa->ixa_ipsec_action != NULL)); 12341 12342 ipss = ipst->ips_netstack->netstack_ipsec; 12343 if (!ipsec_loaded(ipss)) { 12344 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12345 ip_drop_packet(mp, B_TRUE, ill, 12346 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 12347 &ipss->ipsec_dropper); 12348 return (ENOTSUP); 12349 } 12350 12351 ap = ixa->ixa_ipsec_action; 12352 if (ap == NULL) { 12353 pp = ixa->ixa_ipsec_policy; 12354 ASSERT(pp != NULL); 12355 ap = pp->ipsp_act; 12356 ASSERT(ap != NULL); 12357 } 12358 12359 /* Handle explicit drop action and bypass. */ 12360 switch (ap->ipa_act.ipa_type) { 12361 case IPSEC_ACT_DISCARD: 12362 case IPSEC_ACT_REJECT: 12363 ip_drop_packet(mp, B_FALSE, ill, 12364 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper); 12365 return (EHOSTUNREACH); /* IPsec policy failure */ 12366 case IPSEC_ACT_BYPASS: 12367 return (ip_output_post_ipsec(mp, ixa)); 12368 } 12369 12370 /* 12371 * The order of processing is first insert a IP header if needed. 12372 * Then insert the ESP header and then the AH header. 12373 */ 12374 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) { 12375 /* 12376 * First get the outer IP header before sending 12377 * it to ESP. 12378 */ 12379 ipha_t *oipha, *iipha; 12380 mblk_t *outer_mp, *inner_mp; 12381 12382 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 12383 (void) mi_strlog(ill->ill_rq, 0, 12384 SL_ERROR|SL_TRACE|SL_CONSOLE, 12385 "ipsec_out_process: " 12386 "Self-Encapsulation failed: Out of memory\n"); 12387 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12388 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12389 freemsg(mp); 12390 return (ENOBUFS); 12391 } 12392 inner_mp = mp; 12393 ASSERT(inner_mp->b_datap->db_type == M_DATA); 12394 oipha = (ipha_t *)outer_mp->b_rptr; 12395 iipha = (ipha_t *)inner_mp->b_rptr; 12396 *oipha = *iipha; 12397 outer_mp->b_wptr += sizeof (ipha_t); 12398 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 12399 sizeof (ipha_t)); 12400 oipha->ipha_protocol = IPPROTO_ENCAP; 12401 oipha->ipha_version_and_hdr_length = 12402 IP_SIMPLE_HDR_VERSION; 12403 oipha->ipha_hdr_checksum = 0; 12404 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 12405 outer_mp->b_cont = inner_mp; 12406 mp = outer_mp; 12407 12408 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL; 12409 } 12410 12411 /* If we need to wait for a SA then we can't return any errno */ 12412 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) || 12413 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) && 12414 !ipsec_out_select_sa(mp, ixa)) 12415 return (0); 12416 12417 /* 12418 * By now, we know what SA's to use. Toss over to ESP & AH 12419 * to do the heavy lifting. 12420 */ 12421 if (ap->ipa_want_esp) { 12422 ASSERT(ixa->ixa_ipsec_esp_sa != NULL); 12423 12424 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa); 12425 if (mp == NULL) { 12426 /* 12427 * Either it failed or is pending. In the former case 12428 * ipIfStatsInDiscards was increased. 12429 */ 12430 return (0); 12431 } 12432 } 12433 12434 if (ap->ipa_want_ah) { 12435 ASSERT(ixa->ixa_ipsec_ah_sa != NULL); 12436 12437 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa); 12438 if (mp == NULL) { 12439 /* 12440 * Either it failed or is pending. In the former case 12441 * ipIfStatsInDiscards was increased. 12442 */ 12443 return (0); 12444 } 12445 } 12446 /* 12447 * We are done with IPsec processing. Send it over 12448 * the wire. 12449 */ 12450 return (ip_output_post_ipsec(mp, ixa)); 12451 } 12452 12453 /* 12454 * ioctls that go through a down/up sequence may need to wait for the down 12455 * to complete. This involves waiting for the ire and ipif refcnts to go down 12456 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 12457 */ 12458 /* ARGSUSED */ 12459 void 12460 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 12461 { 12462 struct iocblk *iocp; 12463 mblk_t *mp1; 12464 ip_ioctl_cmd_t *ipip; 12465 int err; 12466 sin_t *sin; 12467 struct lifreq *lifr; 12468 struct ifreq *ifr; 12469 12470 iocp = (struct iocblk *)mp->b_rptr; 12471 ASSERT(ipsq != NULL); 12472 /* Existence of mp1 verified in ip_wput_nondata */ 12473 mp1 = mp->b_cont->b_cont; 12474 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12475 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 12476 /* 12477 * Special case where ipx_current_ipif is not set: 12478 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 12479 * We are here as were not able to complete the operation in 12480 * ipif_set_values because we could not become exclusive on 12481 * the new ipsq. 12482 */ 12483 ill_t *ill = q->q_ptr; 12484 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 12485 } 12486 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 12487 12488 if (ipip->ipi_cmd_type == IF_CMD) { 12489 /* This a old style SIOC[GS]IF* command */ 12490 ifr = (struct ifreq *)mp1->b_rptr; 12491 sin = (sin_t *)&ifr->ifr_addr; 12492 } else if (ipip->ipi_cmd_type == LIF_CMD) { 12493 /* This a new style SIOC[GS]LIF* command */ 12494 lifr = (struct lifreq *)mp1->b_rptr; 12495 sin = (sin_t *)&lifr->lifr_addr; 12496 } else { 12497 sin = NULL; 12498 } 12499 12500 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 12501 q, mp, ipip, mp1->b_rptr); 12502 12503 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish", 12504 int, ipip->ipi_cmd, 12505 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill, 12506 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif); 12507 12508 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12509 } 12510 12511 /* 12512 * ioctl processing 12513 * 12514 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 12515 * the ioctl command in the ioctl tables, determines the copyin data size 12516 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 12517 * 12518 * ioctl processing then continues when the M_IOCDATA makes its way down to 12519 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 12520 * associated 'conn' is refheld till the end of the ioctl and the general 12521 * ioctl processing function ip_process_ioctl() is called to extract the 12522 * arguments and process the ioctl. To simplify extraction, ioctl commands 12523 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 12524 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 12525 * is used to extract the ioctl's arguments. 12526 * 12527 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 12528 * so goes thru the serialization primitive ipsq_try_enter. Then the 12529 * appropriate function to handle the ioctl is called based on the entry in 12530 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 12531 * which also refreleases the 'conn' that was refheld at the start of the 12532 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 12533 * 12534 * Many exclusive ioctls go thru an internal down up sequence as part of 12535 * the operation. For example an attempt to change the IP address of an 12536 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 12537 * does all the cleanup such as deleting all ires that use this address. 12538 * Then we need to wait till all references to the interface go away. 12539 */ 12540 void 12541 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12542 { 12543 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 12544 ip_ioctl_cmd_t *ipip = arg; 12545 ip_extract_func_t *extract_funcp; 12546 cmd_info_t ci; 12547 int err; 12548 boolean_t entered_ipsq = B_FALSE; 12549 12550 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 12551 12552 if (ipip == NULL) 12553 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12554 12555 /* 12556 * SIOCLIFADDIF needs to go thru a special path since the 12557 * ill may not exist yet. This happens in the case of lo0 12558 * which is created using this ioctl. 12559 */ 12560 if (ipip->ipi_cmd == SIOCLIFADDIF) { 12561 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 12562 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish", 12563 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12564 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12565 return; 12566 } 12567 12568 ci.ci_ipif = NULL; 12569 switch (ipip->ipi_cmd_type) { 12570 case MISC_CMD: 12571 case MSFILT_CMD: 12572 /* 12573 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 12574 */ 12575 if (ipip->ipi_cmd == IF_UNITSEL) { 12576 /* ioctl comes down the ill */ 12577 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 12578 ipif_refhold(ci.ci_ipif); 12579 } 12580 err = 0; 12581 ci.ci_sin = NULL; 12582 ci.ci_sin6 = NULL; 12583 ci.ci_lifr = NULL; 12584 extract_funcp = NULL; 12585 break; 12586 12587 case IF_CMD: 12588 case LIF_CMD: 12589 extract_funcp = ip_extract_lifreq; 12590 break; 12591 12592 case ARP_CMD: 12593 case XARP_CMD: 12594 extract_funcp = ip_extract_arpreq; 12595 break; 12596 12597 default: 12598 ASSERT(0); 12599 } 12600 12601 if (extract_funcp != NULL) { 12602 err = (*extract_funcp)(q, mp, ipip, &ci); 12603 if (err != 0) { 12604 DTRACE_PROBE4(ipif__ioctl, 12605 char *, "ip_process_ioctl finish err", 12606 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12607 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12608 return; 12609 } 12610 12611 /* 12612 * All of the extraction functions return a refheld ipif. 12613 */ 12614 ASSERT(ci.ci_ipif != NULL); 12615 } 12616 12617 if (!(ipip->ipi_flags & IPI_WR)) { 12618 /* 12619 * A return value of EINPROGRESS means the ioctl is 12620 * either queued and waiting for some reason or has 12621 * already completed. 12622 */ 12623 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 12624 ci.ci_lifr); 12625 if (ci.ci_ipif != NULL) { 12626 DTRACE_PROBE4(ipif__ioctl, 12627 char *, "ip_process_ioctl finish RD", 12628 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill, 12629 ipif_t *, ci.ci_ipif); 12630 ipif_refrele(ci.ci_ipif); 12631 } else { 12632 DTRACE_PROBE4(ipif__ioctl, 12633 char *, "ip_process_ioctl finish RD", 12634 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12635 } 12636 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12637 return; 12638 } 12639 12640 ASSERT(ci.ci_ipif != NULL); 12641 12642 /* 12643 * If ipsq is non-NULL, we are already being called exclusively 12644 */ 12645 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 12646 if (ipsq == NULL) { 12647 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 12648 NEW_OP, B_TRUE); 12649 if (ipsq == NULL) { 12650 ipif_refrele(ci.ci_ipif); 12651 return; 12652 } 12653 entered_ipsq = B_TRUE; 12654 } 12655 /* 12656 * Release the ipif so that ipif_down and friends that wait for 12657 * references to go away are not misled about the current ipif_refcnt 12658 * values. We are writer so we can access the ipif even after releasing 12659 * the ipif. 12660 */ 12661 ipif_refrele(ci.ci_ipif); 12662 12663 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 12664 12665 /* 12666 * A return value of EINPROGRESS means the ioctl is 12667 * either queued and waiting for some reason or has 12668 * already completed. 12669 */ 12670 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 12671 12672 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR", 12673 int, ipip->ipi_cmd, 12674 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill, 12675 ipif_t *, ci.ci_ipif); 12676 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12677 12678 if (entered_ipsq) 12679 ipsq_exit(ipsq); 12680 } 12681 12682 /* 12683 * Complete the ioctl. Typically ioctls use the mi package and need to 12684 * do mi_copyout/mi_copy_done. 12685 */ 12686 void 12687 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 12688 { 12689 conn_t *connp = NULL; 12690 12691 if (err == EINPROGRESS) 12692 return; 12693 12694 if (CONN_Q(q)) { 12695 connp = Q_TO_CONN(q); 12696 ASSERT(connp->conn_ref >= 2); 12697 } 12698 12699 switch (mode) { 12700 case COPYOUT: 12701 if (err == 0) 12702 mi_copyout(q, mp); 12703 else 12704 mi_copy_done(q, mp, err); 12705 break; 12706 12707 case NO_COPYOUT: 12708 mi_copy_done(q, mp, err); 12709 break; 12710 12711 default: 12712 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 12713 break; 12714 } 12715 12716 /* 12717 * The conn refhold and ioctlref placed on the conn at the start of the 12718 * ioctl are released here. 12719 */ 12720 if (connp != NULL) { 12721 CONN_DEC_IOCTLREF(connp); 12722 CONN_OPER_PENDING_DONE(connp); 12723 } 12724 12725 if (ipsq != NULL) 12726 ipsq_current_finish(ipsq); 12727 } 12728 12729 /* Handles all non data messages */ 12730 void 12731 ip_wput_nondata(queue_t *q, mblk_t *mp) 12732 { 12733 mblk_t *mp1; 12734 struct iocblk *iocp; 12735 ip_ioctl_cmd_t *ipip; 12736 conn_t *connp; 12737 cred_t *cr; 12738 char *proto_str; 12739 12740 if (CONN_Q(q)) 12741 connp = Q_TO_CONN(q); 12742 else 12743 connp = NULL; 12744 12745 switch (DB_TYPE(mp)) { 12746 case M_IOCTL: 12747 /* 12748 * IOCTL processing begins in ip_sioctl_copyin_setup which 12749 * will arrange to copy in associated control structures. 12750 */ 12751 ip_sioctl_copyin_setup(q, mp); 12752 return; 12753 case M_IOCDATA: 12754 /* 12755 * Ensure that this is associated with one of our trans- 12756 * parent ioctls. If it's not ours, discard it if we're 12757 * running as a driver, or pass it on if we're a module. 12758 */ 12759 iocp = (struct iocblk *)mp->b_rptr; 12760 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12761 if (ipip == NULL) { 12762 if (q->q_next == NULL) { 12763 goto nak; 12764 } else { 12765 putnext(q, mp); 12766 } 12767 return; 12768 } 12769 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 12770 /* 12771 * The ioctl is one we recognise, but is not consumed 12772 * by IP as a module and we are a module, so we drop 12773 */ 12774 goto nak; 12775 } 12776 12777 /* IOCTL continuation following copyin or copyout. */ 12778 if (mi_copy_state(q, mp, NULL) == -1) { 12779 /* 12780 * The copy operation failed. mi_copy_state already 12781 * cleaned up, so we're out of here. 12782 */ 12783 return; 12784 } 12785 /* 12786 * If we just completed a copy in, we become writer and 12787 * continue processing in ip_sioctl_copyin_done. If it 12788 * was a copy out, we call mi_copyout again. If there is 12789 * nothing more to copy out, it will complete the IOCTL. 12790 */ 12791 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 12792 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 12793 mi_copy_done(q, mp, EPROTO); 12794 return; 12795 } 12796 /* 12797 * Check for cases that need more copying. A return 12798 * value of 0 means a second copyin has been started, 12799 * so we return; a return value of 1 means no more 12800 * copying is needed, so we continue. 12801 */ 12802 if (ipip->ipi_cmd_type == MSFILT_CMD && 12803 MI_COPY_COUNT(mp) == 1) { 12804 if (ip_copyin_msfilter(q, mp) == 0) 12805 return; 12806 } 12807 /* 12808 * Refhold the conn, till the ioctl completes. This is 12809 * needed in case the ioctl ends up in the pending mp 12810 * list. Every mp in the ipx_pending_mp list must have 12811 * a refhold on the conn to resume processing. The 12812 * refhold is released when the ioctl completes 12813 * (whether normally or abnormally). An ioctlref is also 12814 * placed on the conn to prevent TCP from removing the 12815 * queue needed to send the ioctl reply back. 12816 * In all cases ip_ioctl_finish is called to finish 12817 * the ioctl and release the refholds. 12818 */ 12819 if (connp != NULL) { 12820 /* This is not a reentry */ 12821 CONN_INC_REF(connp); 12822 CONN_INC_IOCTLREF(connp); 12823 } else { 12824 if (!(ipip->ipi_flags & IPI_MODOK)) { 12825 mi_copy_done(q, mp, EINVAL); 12826 return; 12827 } 12828 } 12829 12830 ip_process_ioctl(NULL, q, mp, ipip); 12831 12832 } else { 12833 mi_copyout(q, mp); 12834 } 12835 return; 12836 12837 case M_IOCNAK: 12838 /* 12839 * The only way we could get here is if a resolver didn't like 12840 * an IOCTL we sent it. This shouldn't happen. 12841 */ 12842 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12843 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x", 12844 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 12845 freemsg(mp); 12846 return; 12847 case M_IOCACK: 12848 /* /dev/ip shouldn't see this */ 12849 goto nak; 12850 case M_FLUSH: 12851 if (*mp->b_rptr & FLUSHW) 12852 flushq(q, FLUSHALL); 12853 if (q->q_next) { 12854 putnext(q, mp); 12855 return; 12856 } 12857 if (*mp->b_rptr & FLUSHR) { 12858 *mp->b_rptr &= ~FLUSHW; 12859 qreply(q, mp); 12860 return; 12861 } 12862 freemsg(mp); 12863 return; 12864 case M_CTL: 12865 break; 12866 case M_PROTO: 12867 case M_PCPROTO: 12868 /* 12869 * The only PROTO messages we expect are SNMP-related. 12870 */ 12871 switch (((union T_primitives *)mp->b_rptr)->type) { 12872 case T_SVR4_OPTMGMT_REQ: 12873 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ " 12874 "flags %x\n", 12875 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 12876 12877 if (connp == NULL) { 12878 proto_str = "T_SVR4_OPTMGMT_REQ"; 12879 goto protonak; 12880 } 12881 12882 /* 12883 * All Solaris components should pass a db_credp 12884 * for this TPI message, hence we ASSERT. 12885 * But in case there is some other M_PROTO that looks 12886 * like a TPI message sent by some other kernel 12887 * component, we check and return an error. 12888 */ 12889 cr = msg_getcred(mp, NULL); 12890 ASSERT(cr != NULL); 12891 if (cr == NULL) { 12892 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 12893 if (mp != NULL) 12894 qreply(q, mp); 12895 return; 12896 } 12897 12898 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) { 12899 proto_str = "Bad SNMPCOM request?"; 12900 goto protonak; 12901 } 12902 return; 12903 default: 12904 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n", 12905 (int)*(uint_t *)mp->b_rptr)); 12906 freemsg(mp); 12907 return; 12908 } 12909 default: 12910 break; 12911 } 12912 if (q->q_next) { 12913 putnext(q, mp); 12914 } else 12915 freemsg(mp); 12916 return; 12917 12918 nak: 12919 iocp->ioc_error = EINVAL; 12920 mp->b_datap->db_type = M_IOCNAK; 12921 iocp->ioc_count = 0; 12922 qreply(q, mp); 12923 return; 12924 12925 protonak: 12926 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 12927 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 12928 qreply(q, mp); 12929 } 12930 12931 /* 12932 * Process IP options in an outbound packet. Verify that the nexthop in a 12933 * strict source route is onlink. 12934 * Returns non-zero if something fails in which case an ICMP error has been 12935 * sent and mp freed. 12936 * 12937 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst. 12938 */ 12939 int 12940 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill) 12941 { 12942 ipoptp_t opts; 12943 uchar_t *opt; 12944 uint8_t optval; 12945 uint8_t optlen; 12946 ipaddr_t dst; 12947 intptr_t code = 0; 12948 ire_t *ire; 12949 ip_stack_t *ipst = ixa->ixa_ipst; 12950 ip_recv_attr_t iras; 12951 12952 ip2dbg(("ip_output_options\n")); 12953 12954 dst = ipha->ipha_dst; 12955 for (optval = ipoptp_first(&opts, ipha); 12956 optval != IPOPT_EOL; 12957 optval = ipoptp_next(&opts)) { 12958 opt = opts.ipoptp_cur; 12959 optlen = opts.ipoptp_len; 12960 ip2dbg(("ip_output_options: opt %d, len %d\n", 12961 optval, optlen)); 12962 switch (optval) { 12963 uint32_t off; 12964 case IPOPT_SSRR: 12965 case IPOPT_LSRR: 12966 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 12967 ip1dbg(( 12968 "ip_output_options: bad option offset\n")); 12969 code = (char *)&opt[IPOPT_OLEN] - 12970 (char *)ipha; 12971 goto param_prob; 12972 } 12973 off = opt[IPOPT_OFFSET]; 12974 ip1dbg(("ip_output_options: next hop 0x%x\n", 12975 ntohl(dst))); 12976 /* 12977 * For strict: verify that dst is directly 12978 * reachable. 12979 */ 12980 if (optval == IPOPT_SSRR) { 12981 ire = ire_ftable_lookup_v4(dst, 0, 0, 12982 IRE_INTERFACE, NULL, ALL_ZONES, 12983 ixa->ixa_tsl, 12984 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 12985 NULL); 12986 if (ire == NULL) { 12987 ip1dbg(("ip_output_options: SSRR not" 12988 " directly reachable: 0x%x\n", 12989 ntohl(dst))); 12990 goto bad_src_route; 12991 } 12992 ire_refrele(ire); 12993 } 12994 break; 12995 case IPOPT_RR: 12996 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 12997 ip1dbg(( 12998 "ip_output_options: bad option offset\n")); 12999 code = (char *)&opt[IPOPT_OLEN] - 13000 (char *)ipha; 13001 goto param_prob; 13002 } 13003 break; 13004 case IPOPT_TS: 13005 /* 13006 * Verify that length >=5 and that there is either 13007 * room for another timestamp or that the overflow 13008 * counter is not maxed out. 13009 */ 13010 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 13011 if (optlen < IPOPT_MINLEN_IT) { 13012 goto param_prob; 13013 } 13014 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13015 ip1dbg(( 13016 "ip_output_options: bad option offset\n")); 13017 code = (char *)&opt[IPOPT_OFFSET] - 13018 (char *)ipha; 13019 goto param_prob; 13020 } 13021 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 13022 case IPOPT_TS_TSONLY: 13023 off = IPOPT_TS_TIMELEN; 13024 break; 13025 case IPOPT_TS_TSANDADDR: 13026 case IPOPT_TS_PRESPEC: 13027 case IPOPT_TS_PRESPEC_RFC791: 13028 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 13029 break; 13030 default: 13031 code = (char *)&opt[IPOPT_POS_OV_FLG] - 13032 (char *)ipha; 13033 goto param_prob; 13034 } 13035 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 13036 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 13037 /* 13038 * No room and the overflow counter is 15 13039 * already. 13040 */ 13041 goto param_prob; 13042 } 13043 break; 13044 } 13045 } 13046 13047 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 13048 return (0); 13049 13050 ip1dbg(("ip_output_options: error processing IP options.")); 13051 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 13052 13053 param_prob: 13054 bzero(&iras, sizeof (iras)); 13055 iras.ira_ill = iras.ira_rill = ill; 13056 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13057 iras.ira_rifindex = iras.ira_ruifindex; 13058 iras.ira_flags = IRAF_IS_IPV4; 13059 13060 ip_drop_output("ip_output_options", mp, ill); 13061 icmp_param_problem(mp, (uint8_t)code, &iras); 13062 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13063 return (-1); 13064 13065 bad_src_route: 13066 bzero(&iras, sizeof (iras)); 13067 iras.ira_ill = iras.ira_rill = ill; 13068 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13069 iras.ira_rifindex = iras.ira_ruifindex; 13070 iras.ira_flags = IRAF_IS_IPV4; 13071 13072 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 13073 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras); 13074 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13075 return (-1); 13076 } 13077 13078 /* 13079 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 13080 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 13081 * thru /etc/system. 13082 */ 13083 #define CONN_MAXDRAINCNT 64 13084 13085 static void 13086 conn_drain_init(ip_stack_t *ipst) 13087 { 13088 int i, j; 13089 idl_tx_list_t *itl_tx; 13090 13091 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 13092 13093 if ((ipst->ips_conn_drain_list_cnt == 0) || 13094 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 13095 /* 13096 * Default value of the number of drainers is the 13097 * number of cpus, subject to maximum of 8 drainers. 13098 */ 13099 if (boot_max_ncpus != -1) 13100 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 13101 else 13102 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 13103 } 13104 13105 ipst->ips_idl_tx_list = 13106 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 13107 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13108 itl_tx = &ipst->ips_idl_tx_list[i]; 13109 itl_tx->txl_drain_list = 13110 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 13111 sizeof (idl_t), KM_SLEEP); 13112 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 13113 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 13114 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 13115 MUTEX_DEFAULT, NULL); 13116 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 13117 } 13118 } 13119 } 13120 13121 static void 13122 conn_drain_fini(ip_stack_t *ipst) 13123 { 13124 int i; 13125 idl_tx_list_t *itl_tx; 13126 13127 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13128 itl_tx = &ipst->ips_idl_tx_list[i]; 13129 kmem_free(itl_tx->txl_drain_list, 13130 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 13131 } 13132 kmem_free(ipst->ips_idl_tx_list, 13133 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 13134 ipst->ips_idl_tx_list = NULL; 13135 } 13136 13137 /* 13138 * Flow control has blocked us from proceeding. Insert the given conn in one 13139 * of the conn drain lists. When flow control is unblocked, either ip_wsrv() 13140 * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn 13141 * will call conn_walk_drain(). See the flow control notes at the top of this 13142 * file for more details. 13143 */ 13144 void 13145 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 13146 { 13147 idl_t *idl = tx_list->txl_drain_list; 13148 uint_t index; 13149 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 13150 13151 mutex_enter(&connp->conn_lock); 13152 if (connp->conn_state_flags & CONN_CLOSING) { 13153 /* 13154 * The conn is closing as a result of which CONN_CLOSING 13155 * is set. Return. 13156 */ 13157 mutex_exit(&connp->conn_lock); 13158 return; 13159 } else if (connp->conn_idl == NULL) { 13160 /* 13161 * Assign the next drain list round robin. We dont' use 13162 * a lock, and thus it may not be strictly round robin. 13163 * Atomicity of load/stores is enough to make sure that 13164 * conn_drain_list_index is always within bounds. 13165 */ 13166 index = tx_list->txl_drain_index; 13167 ASSERT(index < ipst->ips_conn_drain_list_cnt); 13168 connp->conn_idl = &tx_list->txl_drain_list[index]; 13169 index++; 13170 if (index == ipst->ips_conn_drain_list_cnt) 13171 index = 0; 13172 tx_list->txl_drain_index = index; 13173 } else { 13174 ASSERT(connp->conn_idl->idl_itl == tx_list); 13175 } 13176 mutex_exit(&connp->conn_lock); 13177 13178 idl = connp->conn_idl; 13179 mutex_enter(&idl->idl_lock); 13180 if ((connp->conn_drain_prev != NULL) || 13181 (connp->conn_state_flags & CONN_CLOSING)) { 13182 /* 13183 * The conn is either already in the drain list or closing. 13184 * (We needed to check for CONN_CLOSING again since close can 13185 * sneak in between dropping conn_lock and acquiring idl_lock.) 13186 */ 13187 mutex_exit(&idl->idl_lock); 13188 return; 13189 } 13190 13191 /* 13192 * The conn is not in the drain list. Insert it at the 13193 * tail of the drain list. The drain list is circular 13194 * and doubly linked. idl_conn points to the 1st element 13195 * in the list. 13196 */ 13197 if (idl->idl_conn == NULL) { 13198 idl->idl_conn = connp; 13199 connp->conn_drain_next = connp; 13200 connp->conn_drain_prev = connp; 13201 } else { 13202 conn_t *head = idl->idl_conn; 13203 13204 connp->conn_drain_next = head; 13205 connp->conn_drain_prev = head->conn_drain_prev; 13206 head->conn_drain_prev->conn_drain_next = connp; 13207 head->conn_drain_prev = connp; 13208 } 13209 /* 13210 * For non streams based sockets assert flow control. 13211 */ 13212 conn_setqfull(connp, NULL); 13213 mutex_exit(&idl->idl_lock); 13214 } 13215 13216 static void 13217 conn_drain_remove(conn_t *connp) 13218 { 13219 idl_t *idl = connp->conn_idl; 13220 13221 if (idl != NULL) { 13222 /* 13223 * Remove ourself from the drain list. 13224 */ 13225 if (connp->conn_drain_next == connp) { 13226 /* Singleton in the list */ 13227 ASSERT(connp->conn_drain_prev == connp); 13228 idl->idl_conn = NULL; 13229 } else { 13230 connp->conn_drain_prev->conn_drain_next = 13231 connp->conn_drain_next; 13232 connp->conn_drain_next->conn_drain_prev = 13233 connp->conn_drain_prev; 13234 if (idl->idl_conn == connp) 13235 idl->idl_conn = connp->conn_drain_next; 13236 } 13237 13238 /* 13239 * NOTE: because conn_idl is associated with a specific drain 13240 * list which in turn is tied to the index the TX ring 13241 * (txl_cookie) hashes to, and because the TX ring can change 13242 * over the lifetime of the conn_t, we must clear conn_idl so 13243 * a subsequent conn_drain_insert() will set conn_idl again 13244 * based on the latest txl_cookie. 13245 */ 13246 connp->conn_idl = NULL; 13247 } 13248 connp->conn_drain_next = NULL; 13249 connp->conn_drain_prev = NULL; 13250 13251 conn_clrqfull(connp, NULL); 13252 /* 13253 * For streams based sockets open up flow control. 13254 */ 13255 if (!IPCL_IS_NONSTR(connp)) 13256 enableok(connp->conn_wq); 13257 } 13258 13259 /* 13260 * This conn is closing, and we are called from ip_close. OR 13261 * this conn is draining because flow-control on the ill has been relieved. 13262 * 13263 * We must also need to remove conn's on this idl from the list, and also 13264 * inform the sockfs upcalls about the change in flow-control. 13265 */ 13266 static void 13267 conn_drain(conn_t *connp, boolean_t closing) 13268 { 13269 idl_t *idl; 13270 conn_t *next_connp; 13271 13272 /* 13273 * connp->conn_idl is stable at this point, and no lock is needed 13274 * to check it. If we are called from ip_close, close has already 13275 * set CONN_CLOSING, thus freezing the value of conn_idl, and 13276 * called us only because conn_idl is non-null. If we are called thru 13277 * service, conn_idl could be null, but it cannot change because 13278 * service is single-threaded per queue, and there cannot be another 13279 * instance of service trying to call conn_drain_insert on this conn 13280 * now. 13281 */ 13282 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL); 13283 13284 /* 13285 * If the conn doesn't exist or is not on a drain list, bail. 13286 */ 13287 if (connp == NULL || connp->conn_idl == NULL || 13288 connp->conn_drain_prev == NULL) { 13289 return; 13290 } 13291 13292 idl = connp->conn_idl; 13293 ASSERT(MUTEX_HELD(&idl->idl_lock)); 13294 13295 if (!closing) { 13296 next_connp = connp->conn_drain_next; 13297 while (next_connp != connp) { 13298 conn_t *delconnp = next_connp; 13299 13300 next_connp = next_connp->conn_drain_next; 13301 conn_drain_remove(delconnp); 13302 } 13303 ASSERT(connp->conn_drain_next == idl->idl_conn); 13304 } 13305 conn_drain_remove(connp); 13306 } 13307 13308 /* 13309 * Write service routine. Shared perimeter entry point. 13310 * The device queue's messages has fallen below the low water mark and STREAMS 13311 * has backenabled the ill_wq. Send sockfs notification about flow-control on 13312 * each waiting conn. 13313 */ 13314 void 13315 ip_wsrv(queue_t *q) 13316 { 13317 ill_t *ill; 13318 13319 ill = (ill_t *)q->q_ptr; 13320 if (ill->ill_state_flags == 0) { 13321 ip_stack_t *ipst = ill->ill_ipst; 13322 13323 /* 13324 * The device flow control has opened up. 13325 * Walk through conn drain lists and qenable the 13326 * first conn in each list. This makes sense only 13327 * if the stream is fully plumbed and setup. 13328 * Hence the ill_state_flags check above. 13329 */ 13330 ip1dbg(("ip_wsrv: walking\n")); 13331 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 13332 enableok(ill->ill_wq); 13333 } 13334 } 13335 13336 /* 13337 * Callback to disable flow control in IP. 13338 * 13339 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 13340 * is enabled. 13341 * 13342 * When MAC_TX() is not able to send any more packets, dld sets its queue 13343 * to QFULL and enable the STREAMS flow control. Later, when the underlying 13344 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 13345 * function and wakes up corresponding mac worker threads, which in turn 13346 * calls this callback function, and disables flow control. 13347 */ 13348 void 13349 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 13350 { 13351 ill_t *ill = (ill_t *)arg; 13352 ip_stack_t *ipst = ill->ill_ipst; 13353 idl_tx_list_t *idl_txl; 13354 13355 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 13356 mutex_enter(&idl_txl->txl_lock); 13357 /* add code to to set a flag to indicate idl_txl is enabled */ 13358 conn_walk_drain(ipst, idl_txl); 13359 mutex_exit(&idl_txl->txl_lock); 13360 } 13361 13362 /* 13363 * Flow control has been relieved and STREAMS has backenabled us; drain 13364 * all the conn lists on `tx_list'. 13365 */ 13366 static void 13367 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 13368 { 13369 int i; 13370 idl_t *idl; 13371 13372 IP_STAT(ipst, ip_conn_walk_drain); 13373 13374 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 13375 idl = &tx_list->txl_drain_list[i]; 13376 mutex_enter(&idl->idl_lock); 13377 conn_drain(idl->idl_conn, B_FALSE); 13378 mutex_exit(&idl->idl_lock); 13379 } 13380 } 13381 13382 /* 13383 * Determine if the ill and multicast aspects of that packets 13384 * "matches" the conn. 13385 */ 13386 boolean_t 13387 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha) 13388 { 13389 ill_t *ill = ira->ira_rill; 13390 zoneid_t zoneid = ira->ira_zoneid; 13391 uint_t in_ifindex; 13392 ipaddr_t dst, src; 13393 13394 dst = ipha->ipha_dst; 13395 src = ipha->ipha_src; 13396 13397 /* 13398 * conn_incoming_ifindex is set by IP_BOUND_IF which limits 13399 * unicast, broadcast and multicast reception to 13400 * conn_incoming_ifindex. 13401 * conn_wantpacket is called for unicast, broadcast and 13402 * multicast packets. 13403 */ 13404 in_ifindex = connp->conn_incoming_ifindex; 13405 13406 /* mpathd can bind to the under IPMP interface, which we allow */ 13407 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) { 13408 if (!IS_UNDER_IPMP(ill)) 13409 return (B_FALSE); 13410 13411 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill)) 13412 return (B_FALSE); 13413 } 13414 13415 if (!IPCL_ZONE_MATCH(connp, zoneid)) 13416 return (B_FALSE); 13417 13418 if (!(ira->ira_flags & IRAF_MULTICAST)) 13419 return (B_TRUE); 13420 13421 if (connp->conn_multi_router) { 13422 /* multicast packet and multicast router socket: send up */ 13423 return (B_TRUE); 13424 } 13425 13426 if (ipha->ipha_protocol == IPPROTO_PIM || 13427 ipha->ipha_protocol == IPPROTO_RSVP) 13428 return (B_TRUE); 13429 13430 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill)); 13431 } 13432 13433 void 13434 conn_setqfull(conn_t *connp, boolean_t *flow_stopped) 13435 { 13436 if (IPCL_IS_NONSTR(connp)) { 13437 (*connp->conn_upcalls->su_txq_full) 13438 (connp->conn_upper_handle, B_TRUE); 13439 if (flow_stopped != NULL) 13440 *flow_stopped = B_TRUE; 13441 } else { 13442 queue_t *q = connp->conn_wq; 13443 13444 ASSERT(q != NULL); 13445 if (!(q->q_flag & QFULL)) { 13446 mutex_enter(QLOCK(q)); 13447 if (!(q->q_flag & QFULL)) { 13448 /* still need to set QFULL */ 13449 q->q_flag |= QFULL; 13450 /* set flow_stopped to true under QLOCK */ 13451 if (flow_stopped != NULL) 13452 *flow_stopped = B_TRUE; 13453 mutex_exit(QLOCK(q)); 13454 } else { 13455 /* flow_stopped is left unchanged */ 13456 mutex_exit(QLOCK(q)); 13457 } 13458 } 13459 } 13460 } 13461 13462 void 13463 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped) 13464 { 13465 if (IPCL_IS_NONSTR(connp)) { 13466 (*connp->conn_upcalls->su_txq_full) 13467 (connp->conn_upper_handle, B_FALSE); 13468 if (flow_stopped != NULL) 13469 *flow_stopped = B_FALSE; 13470 } else { 13471 queue_t *q = connp->conn_wq; 13472 13473 ASSERT(q != NULL); 13474 if (q->q_flag & QFULL) { 13475 mutex_enter(QLOCK(q)); 13476 if (q->q_flag & QFULL) { 13477 q->q_flag &= ~QFULL; 13478 /* set flow_stopped to false under QLOCK */ 13479 if (flow_stopped != NULL) 13480 *flow_stopped = B_FALSE; 13481 mutex_exit(QLOCK(q)); 13482 if (q->q_flag & QWANTW) 13483 qbackenable(q, 0); 13484 } else { 13485 /* flow_stopped is left unchanged */ 13486 mutex_exit(QLOCK(q)); 13487 } 13488 } 13489 } 13490 13491 mutex_enter(&connp->conn_lock); 13492 connp->conn_blocked = B_FALSE; 13493 mutex_exit(&connp->conn_lock); 13494 } 13495 13496 /* 13497 * Return the length in bytes of the IPv4 headers (base header, label, and 13498 * other IP options) that will be needed based on the 13499 * ip_pkt_t structure passed by the caller. 13500 * 13501 * The returned length does not include the length of the upper level 13502 * protocol (ULP) header. 13503 * The caller needs to check that the length doesn't exceed the max for IPv4. 13504 */ 13505 int 13506 ip_total_hdrs_len_v4(const ip_pkt_t *ipp) 13507 { 13508 int len; 13509 13510 len = IP_SIMPLE_HDR_LENGTH; 13511 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13512 ASSERT(ipp->ipp_label_len_v4 != 0); 13513 /* We need to round up here */ 13514 len += (ipp->ipp_label_len_v4 + 3) & ~3; 13515 } 13516 13517 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13518 ASSERT(ipp->ipp_ipv4_options_len != 0); 13519 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13520 len += ipp->ipp_ipv4_options_len; 13521 } 13522 return (len); 13523 } 13524 13525 /* 13526 * All-purpose routine to build an IPv4 header with options based 13527 * on the abstract ip_pkt_t. 13528 * 13529 * The caller has to set the source and destination address as well as 13530 * ipha_length. The caller has to massage any source route and compensate 13531 * for the ULP pseudo-header checksum due to the source route. 13532 */ 13533 void 13534 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp, 13535 uint8_t protocol) 13536 { 13537 ipha_t *ipha = (ipha_t *)buf; 13538 uint8_t *cp; 13539 13540 /* Initialize IPv4 header */ 13541 ipha->ipha_type_of_service = ipp->ipp_type_of_service; 13542 ipha->ipha_length = 0; /* Caller will set later */ 13543 ipha->ipha_ident = 0; 13544 ipha->ipha_fragment_offset_and_flags = 0; 13545 ipha->ipha_ttl = ipp->ipp_unicast_hops; 13546 ipha->ipha_protocol = protocol; 13547 ipha->ipha_hdr_checksum = 0; 13548 13549 if ((ipp->ipp_fields & IPPF_ADDR) && 13550 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) 13551 ipha->ipha_src = ipp->ipp_addr_v4; 13552 13553 cp = (uint8_t *)&ipha[1]; 13554 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13555 ASSERT(ipp->ipp_label_len_v4 != 0); 13556 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4); 13557 cp += ipp->ipp_label_len_v4; 13558 /* We need to round up here */ 13559 while ((uintptr_t)cp & 0x3) { 13560 *cp++ = IPOPT_NOP; 13561 } 13562 } 13563 13564 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13565 ASSERT(ipp->ipp_ipv4_options_len != 0); 13566 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13567 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len); 13568 cp += ipp->ipp_ipv4_options_len; 13569 } 13570 ipha->ipha_version_and_hdr_length = 13571 (uint8_t)((IP_VERSION << 4) + buf_len / 4); 13572 13573 ASSERT((int)(cp - buf) == buf_len); 13574 } 13575 13576 /* Allocate the private structure */ 13577 static int 13578 ip_priv_alloc(void **bufp) 13579 { 13580 void *buf; 13581 13582 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 13583 return (ENOMEM); 13584 13585 *bufp = buf; 13586 return (0); 13587 } 13588 13589 /* Function to delete the private structure */ 13590 void 13591 ip_priv_free(void *buf) 13592 { 13593 ASSERT(buf != NULL); 13594 kmem_free(buf, sizeof (ip_priv_t)); 13595 } 13596 13597 /* 13598 * The entry point for IPPF processing. 13599 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 13600 * routine just returns. 13601 * 13602 * When called, ip_process generates an ipp_packet_t structure 13603 * which holds the state information for this packet and invokes the 13604 * the classifier (via ipp_packet_process). The classification, depending on 13605 * configured filters, results in a list of actions for this packet. Invoking 13606 * an action may cause the packet to be dropped, in which case we return NULL. 13607 * proc indicates the callout position for 13608 * this packet and ill is the interface this packet arrived on or will leave 13609 * on (inbound and outbound resp.). 13610 * 13611 * We do the processing on the rill (mapped to the upper if ipmp), but MIB 13612 * on the ill corrsponding to the destination IP address. 13613 */ 13614 mblk_t * 13615 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill) 13616 { 13617 ip_priv_t *priv; 13618 ipp_action_id_t aid; 13619 int rc = 0; 13620 ipp_packet_t *pp; 13621 13622 /* If the classifier is not loaded, return */ 13623 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 13624 return (mp); 13625 } 13626 13627 ASSERT(mp != NULL); 13628 13629 /* Allocate the packet structure */ 13630 rc = ipp_packet_alloc(&pp, "ip", aid); 13631 if (rc != 0) 13632 goto drop; 13633 13634 /* Allocate the private structure */ 13635 rc = ip_priv_alloc((void **)&priv); 13636 if (rc != 0) { 13637 ipp_packet_free(pp); 13638 goto drop; 13639 } 13640 priv->proc = proc; 13641 priv->ill_index = ill_get_upper_ifindex(rill); 13642 13643 ipp_packet_set_private(pp, priv, ip_priv_free); 13644 ipp_packet_set_data(pp, mp); 13645 13646 /* Invoke the classifier */ 13647 rc = ipp_packet_process(&pp); 13648 if (pp != NULL) { 13649 mp = ipp_packet_get_data(pp); 13650 ipp_packet_free(pp); 13651 if (rc != 0) 13652 goto drop; 13653 return (mp); 13654 } else { 13655 /* No mp to trace in ip_drop_input/ip_drop_output */ 13656 mp = NULL; 13657 } 13658 drop: 13659 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) { 13660 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13661 ip_drop_input("ip_process", mp, ill); 13662 } else { 13663 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13664 ip_drop_output("ip_process", mp, ill); 13665 } 13666 freemsg(mp); 13667 return (NULL); 13668 } 13669 13670 /* 13671 * Propagate a multicast group membership operation (add/drop) on 13672 * all the interfaces crossed by the related multirt routes. 13673 * The call is considered successful if the operation succeeds 13674 * on at least one interface. 13675 * 13676 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the 13677 * multicast addresses with the ire argument being the first one. 13678 * We walk the bucket to find all the of those. 13679 * 13680 * Common to IPv4 and IPv6. 13681 */ 13682 static int 13683 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 13684 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 13685 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group, 13686 mcast_record_t fmode, const in6_addr_t *v6src) 13687 { 13688 ire_t *ire_gw; 13689 irb_t *irb; 13690 int ifindex; 13691 int error = 0; 13692 int result; 13693 ip_stack_t *ipst = ire->ire_ipst; 13694 ipaddr_t group; 13695 boolean_t isv6; 13696 int match_flags; 13697 13698 if (IN6_IS_ADDR_V4MAPPED(v6group)) { 13699 IN6_V4MAPPED_TO_IPADDR(v6group, group); 13700 isv6 = B_FALSE; 13701 } else { 13702 isv6 = B_TRUE; 13703 } 13704 13705 irb = ire->ire_bucket; 13706 ASSERT(irb != NULL); 13707 13708 result = 0; 13709 irb_refhold(irb); 13710 for (; ire != NULL; ire = ire->ire_next) { 13711 if ((ire->ire_flags & RTF_MULTIRT) == 0) 13712 continue; 13713 13714 /* We handle -ifp routes by matching on the ill if set */ 13715 match_flags = MATCH_IRE_TYPE; 13716 if (ire->ire_ill != NULL) 13717 match_flags |= MATCH_IRE_ILL; 13718 13719 if (isv6) { 13720 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group)) 13721 continue; 13722 13723 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 13724 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13725 match_flags, 0, ipst, NULL); 13726 } else { 13727 if (ire->ire_addr != group) 13728 continue; 13729 13730 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr, 13731 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13732 match_flags, 0, ipst, NULL); 13733 } 13734 /* No interface route exists for the gateway; skip this ire. */ 13735 if (ire_gw == NULL) 13736 continue; 13737 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 13738 ire_refrele(ire_gw); 13739 continue; 13740 } 13741 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */ 13742 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex; 13743 13744 /* 13745 * The operation is considered a success if 13746 * it succeeds at least once on any one interface. 13747 */ 13748 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex, 13749 fmode, v6src); 13750 if (error == 0) 13751 result = CGTP_MCAST_SUCCESS; 13752 13753 ire_refrele(ire_gw); 13754 } 13755 irb_refrele(irb); 13756 /* 13757 * Consider the call as successful if we succeeded on at least 13758 * one interface. Otherwise, return the last encountered error. 13759 */ 13760 return (result == CGTP_MCAST_SUCCESS ? 0 : error); 13761 } 13762 13763 /* 13764 * Return the expected CGTP hooks version number. 13765 */ 13766 int 13767 ip_cgtp_filter_supported(void) 13768 { 13769 return (ip_cgtp_filter_rev); 13770 } 13771 13772 /* 13773 * CGTP hooks can be registered by invoking this function. 13774 * Checks that the version number matches. 13775 */ 13776 int 13777 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 13778 { 13779 netstack_t *ns; 13780 ip_stack_t *ipst; 13781 13782 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 13783 return (ENOTSUP); 13784 13785 ns = netstack_find_by_stackid(stackid); 13786 if (ns == NULL) 13787 return (EINVAL); 13788 ipst = ns->netstack_ip; 13789 ASSERT(ipst != NULL); 13790 13791 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 13792 netstack_rele(ns); 13793 return (EALREADY); 13794 } 13795 13796 ipst->ips_ip_cgtp_filter_ops = ops; 13797 13798 ill_set_inputfn_all(ipst); 13799 13800 netstack_rele(ns); 13801 return (0); 13802 } 13803 13804 /* 13805 * CGTP hooks can be unregistered by invoking this function. 13806 * Returns ENXIO if there was no registration. 13807 * Returns EBUSY if the ndd variable has not been turned off. 13808 */ 13809 int 13810 ip_cgtp_filter_unregister(netstackid_t stackid) 13811 { 13812 netstack_t *ns; 13813 ip_stack_t *ipst; 13814 13815 ns = netstack_find_by_stackid(stackid); 13816 if (ns == NULL) 13817 return (EINVAL); 13818 ipst = ns->netstack_ip; 13819 ASSERT(ipst != NULL); 13820 13821 if (ipst->ips_ip_cgtp_filter) { 13822 netstack_rele(ns); 13823 return (EBUSY); 13824 } 13825 13826 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 13827 netstack_rele(ns); 13828 return (ENXIO); 13829 } 13830 ipst->ips_ip_cgtp_filter_ops = NULL; 13831 13832 ill_set_inputfn_all(ipst); 13833 13834 netstack_rele(ns); 13835 return (0); 13836 } 13837 13838 /* 13839 * Check whether there is a CGTP filter registration. 13840 * Returns non-zero if there is a registration, otherwise returns zero. 13841 * Note: returns zero if bad stackid. 13842 */ 13843 int 13844 ip_cgtp_filter_is_registered(netstackid_t stackid) 13845 { 13846 netstack_t *ns; 13847 ip_stack_t *ipst; 13848 int ret; 13849 13850 ns = netstack_find_by_stackid(stackid); 13851 if (ns == NULL) 13852 return (0); 13853 ipst = ns->netstack_ip; 13854 ASSERT(ipst != NULL); 13855 13856 if (ipst->ips_ip_cgtp_filter_ops != NULL) 13857 ret = 1; 13858 else 13859 ret = 0; 13860 13861 netstack_rele(ns); 13862 return (ret); 13863 } 13864 13865 static int 13866 ip_squeue_switch(int val) 13867 { 13868 int rval; 13869 13870 switch (val) { 13871 case IP_SQUEUE_ENTER_NODRAIN: 13872 rval = SQ_NODRAIN; 13873 break; 13874 case IP_SQUEUE_ENTER: 13875 rval = SQ_PROCESS; 13876 break; 13877 case IP_SQUEUE_FILL: 13878 default: 13879 rval = SQ_FILL; 13880 break; 13881 } 13882 return (rval); 13883 } 13884 13885 static void * 13886 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 13887 { 13888 kstat_t *ksp; 13889 13890 ip_stat_t template = { 13891 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 13892 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 13893 { "ip_recv_pullup", KSTAT_DATA_UINT64 }, 13894 { "ip_db_ref", KSTAT_DATA_UINT64 }, 13895 { "ip_notaligned", KSTAT_DATA_UINT64 }, 13896 { "ip_multimblk", KSTAT_DATA_UINT64 }, 13897 { "ip_opt", KSTAT_DATA_UINT64 }, 13898 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 13899 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 13900 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 13901 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 13902 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 13903 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 13904 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 13905 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 }, 13906 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 }, 13907 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13908 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 }, 13909 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13910 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13911 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13912 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13913 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13914 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13915 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13916 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 }, 13917 { "conn_in_recvopts", KSTAT_DATA_UINT64 }, 13918 { "conn_in_recvif", KSTAT_DATA_UINT64 }, 13919 { "conn_in_recvslla", KSTAT_DATA_UINT64 }, 13920 { "conn_in_recvucred", KSTAT_DATA_UINT64 }, 13921 { "conn_in_recvttl", KSTAT_DATA_UINT64 }, 13922 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 }, 13923 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 }, 13924 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 }, 13925 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 }, 13926 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 }, 13927 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 }, 13928 { "conn_in_recvtclass", KSTAT_DATA_UINT64 }, 13929 { "conn_in_timestamp", KSTAT_DATA_UINT64 }, 13930 }; 13931 13932 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 13933 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 13934 KSTAT_FLAG_VIRTUAL, stackid); 13935 13936 if (ksp == NULL) 13937 return (NULL); 13938 13939 bcopy(&template, ip_statisticsp, sizeof (template)); 13940 ksp->ks_data = (void *)ip_statisticsp; 13941 ksp->ks_private = (void *)(uintptr_t)stackid; 13942 13943 kstat_install(ksp); 13944 return (ksp); 13945 } 13946 13947 static void 13948 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 13949 { 13950 if (ksp != NULL) { 13951 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 13952 kstat_delete_netstack(ksp, stackid); 13953 } 13954 } 13955 13956 static void * 13957 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 13958 { 13959 kstat_t *ksp; 13960 13961 ip_named_kstat_t template = { 13962 { "forwarding", KSTAT_DATA_UINT32, 0 }, 13963 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 13964 { "inReceives", KSTAT_DATA_UINT64, 0 }, 13965 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 13966 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 13967 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 13968 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 13969 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 13970 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 13971 { "outRequests", KSTAT_DATA_UINT64, 0 }, 13972 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 13973 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 13974 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 13975 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 13976 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 13977 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 13978 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 13979 { "fragFails", KSTAT_DATA_UINT32, 0 }, 13980 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 13981 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 13982 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 13983 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 13984 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 13985 { "inErrs", KSTAT_DATA_UINT32, 0 }, 13986 { "noPorts", KSTAT_DATA_UINT32, 0 }, 13987 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 13988 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 13989 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 13990 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 13991 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 13992 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 13993 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 13994 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 13995 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 13996 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 13997 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 13998 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 13999 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 14000 }; 14001 14002 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 14003 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 14004 if (ksp == NULL || ksp->ks_data == NULL) 14005 return (NULL); 14006 14007 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 14008 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 14009 template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14010 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 14011 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 14012 14013 template.netToMediaEntrySize.value.i32 = 14014 sizeof (mib2_ipNetToMediaEntry_t); 14015 14016 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 14017 14018 bcopy(&template, ksp->ks_data, sizeof (template)); 14019 ksp->ks_update = ip_kstat_update; 14020 ksp->ks_private = (void *)(uintptr_t)stackid; 14021 14022 kstat_install(ksp); 14023 return (ksp); 14024 } 14025 14026 static void 14027 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14028 { 14029 if (ksp != NULL) { 14030 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14031 kstat_delete_netstack(ksp, stackid); 14032 } 14033 } 14034 14035 static int 14036 ip_kstat_update(kstat_t *kp, int rw) 14037 { 14038 ip_named_kstat_t *ipkp; 14039 mib2_ipIfStatsEntry_t ipmib; 14040 ill_walk_context_t ctx; 14041 ill_t *ill; 14042 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14043 netstack_t *ns; 14044 ip_stack_t *ipst; 14045 14046 if (kp == NULL || kp->ks_data == NULL) 14047 return (EIO); 14048 14049 if (rw == KSTAT_WRITE) 14050 return (EACCES); 14051 14052 ns = netstack_find_by_stackid(stackid); 14053 if (ns == NULL) 14054 return (-1); 14055 ipst = ns->netstack_ip; 14056 if (ipst == NULL) { 14057 netstack_rele(ns); 14058 return (-1); 14059 } 14060 ipkp = (ip_named_kstat_t *)kp->ks_data; 14061 14062 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 14063 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14064 ill = ILL_START_WALK_V4(&ctx, ipst); 14065 for (; ill != NULL; ill = ill_next(&ctx, ill)) 14066 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 14067 rw_exit(&ipst->ips_ill_g_lock); 14068 14069 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 14070 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 14071 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 14072 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 14073 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 14074 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 14075 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 14076 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 14077 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 14078 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 14079 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 14080 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 14081 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14082 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 14083 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 14084 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 14085 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 14086 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 14087 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 14088 14089 ipkp->routingDiscards.value.ui32 = 0; 14090 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 14091 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 14092 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 14093 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 14094 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 14095 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 14096 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 14097 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 14098 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 14099 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 14100 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 14101 14102 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 14103 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 14104 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 14105 14106 netstack_rele(ns); 14107 14108 return (0); 14109 } 14110 14111 static void * 14112 icmp_kstat_init(netstackid_t stackid) 14113 { 14114 kstat_t *ksp; 14115 14116 icmp_named_kstat_t template = { 14117 { "inMsgs", KSTAT_DATA_UINT32 }, 14118 { "inErrors", KSTAT_DATA_UINT32 }, 14119 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 14120 { "inTimeExcds", KSTAT_DATA_UINT32 }, 14121 { "inParmProbs", KSTAT_DATA_UINT32 }, 14122 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 14123 { "inRedirects", KSTAT_DATA_UINT32 }, 14124 { "inEchos", KSTAT_DATA_UINT32 }, 14125 { "inEchoReps", KSTAT_DATA_UINT32 }, 14126 { "inTimestamps", KSTAT_DATA_UINT32 }, 14127 { "inTimestampReps", KSTAT_DATA_UINT32 }, 14128 { "inAddrMasks", KSTAT_DATA_UINT32 }, 14129 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 14130 { "outMsgs", KSTAT_DATA_UINT32 }, 14131 { "outErrors", KSTAT_DATA_UINT32 }, 14132 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 14133 { "outTimeExcds", KSTAT_DATA_UINT32 }, 14134 { "outParmProbs", KSTAT_DATA_UINT32 }, 14135 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 14136 { "outRedirects", KSTAT_DATA_UINT32 }, 14137 { "outEchos", KSTAT_DATA_UINT32 }, 14138 { "outEchoReps", KSTAT_DATA_UINT32 }, 14139 { "outTimestamps", KSTAT_DATA_UINT32 }, 14140 { "outTimestampReps", KSTAT_DATA_UINT32 }, 14141 { "outAddrMasks", KSTAT_DATA_UINT32 }, 14142 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 14143 { "inChksumErrs", KSTAT_DATA_UINT32 }, 14144 { "inUnknowns", KSTAT_DATA_UINT32 }, 14145 { "inFragNeeded", KSTAT_DATA_UINT32 }, 14146 { "outFragNeeded", KSTAT_DATA_UINT32 }, 14147 { "outDrops", KSTAT_DATA_UINT32 }, 14148 { "inOverFlows", KSTAT_DATA_UINT32 }, 14149 { "inBadRedirects", KSTAT_DATA_UINT32 }, 14150 }; 14151 14152 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 14153 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 14154 if (ksp == NULL || ksp->ks_data == NULL) 14155 return (NULL); 14156 14157 bcopy(&template, ksp->ks_data, sizeof (template)); 14158 14159 ksp->ks_update = icmp_kstat_update; 14160 ksp->ks_private = (void *)(uintptr_t)stackid; 14161 14162 kstat_install(ksp); 14163 return (ksp); 14164 } 14165 14166 static void 14167 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14168 { 14169 if (ksp != NULL) { 14170 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14171 kstat_delete_netstack(ksp, stackid); 14172 } 14173 } 14174 14175 static int 14176 icmp_kstat_update(kstat_t *kp, int rw) 14177 { 14178 icmp_named_kstat_t *icmpkp; 14179 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14180 netstack_t *ns; 14181 ip_stack_t *ipst; 14182 14183 if ((kp == NULL) || (kp->ks_data == NULL)) 14184 return (EIO); 14185 14186 if (rw == KSTAT_WRITE) 14187 return (EACCES); 14188 14189 ns = netstack_find_by_stackid(stackid); 14190 if (ns == NULL) 14191 return (-1); 14192 ipst = ns->netstack_ip; 14193 if (ipst == NULL) { 14194 netstack_rele(ns); 14195 return (-1); 14196 } 14197 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 14198 14199 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 14200 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 14201 icmpkp->inDestUnreachs.value.ui32 = 14202 ipst->ips_icmp_mib.icmpInDestUnreachs; 14203 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 14204 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 14205 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 14206 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 14207 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 14208 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 14209 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 14210 icmpkp->inTimestampReps.value.ui32 = 14211 ipst->ips_icmp_mib.icmpInTimestampReps; 14212 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 14213 icmpkp->inAddrMaskReps.value.ui32 = 14214 ipst->ips_icmp_mib.icmpInAddrMaskReps; 14215 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 14216 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 14217 icmpkp->outDestUnreachs.value.ui32 = 14218 ipst->ips_icmp_mib.icmpOutDestUnreachs; 14219 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 14220 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 14221 icmpkp->outSrcQuenchs.value.ui32 = 14222 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 14223 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 14224 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 14225 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 14226 icmpkp->outTimestamps.value.ui32 = 14227 ipst->ips_icmp_mib.icmpOutTimestamps; 14228 icmpkp->outTimestampReps.value.ui32 = 14229 ipst->ips_icmp_mib.icmpOutTimestampReps; 14230 icmpkp->outAddrMasks.value.ui32 = 14231 ipst->ips_icmp_mib.icmpOutAddrMasks; 14232 icmpkp->outAddrMaskReps.value.ui32 = 14233 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 14234 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 14235 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 14236 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 14237 icmpkp->outFragNeeded.value.ui32 = 14238 ipst->ips_icmp_mib.icmpOutFragNeeded; 14239 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 14240 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 14241 icmpkp->inBadRedirects.value.ui32 = 14242 ipst->ips_icmp_mib.icmpInBadRedirects; 14243 14244 netstack_rele(ns); 14245 return (0); 14246 } 14247 14248 /* 14249 * This is the fanout function for raw socket opened for SCTP. Note 14250 * that it is called after SCTP checks that there is no socket which 14251 * wants a packet. Then before SCTP handles this out of the blue packet, 14252 * this function is called to see if there is any raw socket for SCTP. 14253 * If there is and it is bound to the correct address, the packet will 14254 * be sent to that socket. Note that only one raw socket can be bound to 14255 * a port. This is assured in ipcl_sctp_hash_insert(); 14256 */ 14257 void 14258 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports, 14259 ip_recv_attr_t *ira) 14260 { 14261 conn_t *connp; 14262 queue_t *rq; 14263 boolean_t secure; 14264 ill_t *ill = ira->ira_ill; 14265 ip_stack_t *ipst = ill->ill_ipst; 14266 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 14267 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 14268 iaflags_t iraflags = ira->ira_flags; 14269 ill_t *rill = ira->ira_rill; 14270 14271 secure = iraflags & IRAF_IPSEC_SECURE; 14272 14273 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h, 14274 ira, ipst); 14275 if (connp == NULL) { 14276 /* 14277 * Although raw sctp is not summed, OOB chunks must be. 14278 * Drop the packet here if the sctp checksum failed. 14279 */ 14280 if (iraflags & IRAF_SCTP_CSUM_ERR) { 14281 SCTPS_BUMP_MIB(sctps, sctpChecksumError); 14282 freemsg(mp); 14283 return; 14284 } 14285 ira->ira_ill = ira->ira_rill = NULL; 14286 sctp_ootb_input(mp, ira, ipst); 14287 ira->ira_ill = ill; 14288 ira->ira_rill = rill; 14289 return; 14290 } 14291 rq = connp->conn_rq; 14292 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 14293 CONN_DEC_REF(connp); 14294 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 14295 freemsg(mp); 14296 return; 14297 } 14298 if (((iraflags & IRAF_IS_IPV4) ? 14299 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 14300 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 14301 secure) { 14302 mp = ipsec_check_inbound_policy(mp, connp, ipha, 14303 ip6h, ira); 14304 if (mp == NULL) { 14305 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14306 /* Note that mp is NULL */ 14307 ip_drop_input("ipIfStatsInDiscards", mp, ill); 14308 CONN_DEC_REF(connp); 14309 return; 14310 } 14311 } 14312 14313 if (iraflags & IRAF_ICMP_ERROR) { 14314 (connp->conn_recvicmp)(connp, mp, NULL, ira); 14315 } else { 14316 ill_t *rill = ira->ira_rill; 14317 14318 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 14319 /* This is the SOCK_RAW, IPPROTO_SCTP case. */ 14320 ira->ira_ill = ira->ira_rill = NULL; 14321 (connp->conn_recv)(connp, mp, NULL, ira); 14322 ira->ira_ill = ill; 14323 ira->ira_rill = rill; 14324 } 14325 CONN_DEC_REF(connp); 14326 } 14327 14328 /* 14329 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path 14330 * header before the ip payload. 14331 */ 14332 static void 14333 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len) 14334 { 14335 int len = (mp->b_wptr - mp->b_rptr); 14336 mblk_t *ip_mp; 14337 14338 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14339 if (is_fp_mp || len != fp_mp_len) { 14340 if (len > fp_mp_len) { 14341 /* 14342 * fastpath header and ip header in the first mblk 14343 */ 14344 mp->b_rptr += fp_mp_len; 14345 } else { 14346 /* 14347 * ip_xmit_attach_llhdr had to prepend an mblk to 14348 * attach the fastpath header before ip header. 14349 */ 14350 ip_mp = mp->b_cont; 14351 freeb(mp); 14352 mp = ip_mp; 14353 mp->b_rptr += (fp_mp_len - len); 14354 } 14355 } else { 14356 ip_mp = mp->b_cont; 14357 freeb(mp); 14358 mp = ip_mp; 14359 } 14360 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill); 14361 freemsg(mp); 14362 } 14363 14364 /* 14365 * Normal post fragmentation function. 14366 * 14367 * Send a packet using the passed in nce. This handles both IPv4 and IPv6 14368 * using the same state machine. 14369 * 14370 * We return an error on failure. In particular we return EWOULDBLOCK 14371 * when the driver flow controls. In that case this ensures that ip_wsrv runs 14372 * (currently by canputnext failure resulting in backenabling from GLD.) 14373 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an 14374 * indication that they can flow control until ip_wsrv() tells then to restart. 14375 * 14376 * If the nce passed by caller is incomplete, this function 14377 * queues the packet and if necessary, sends ARP request and bails. 14378 * If the Neighbor Cache passed is fully resolved, we simply prepend 14379 * the link-layer header to the packet, do ipsec hw acceleration 14380 * work if necessary, and send the packet out on the wire. 14381 */ 14382 /* ARGSUSED6 */ 14383 int 14384 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len, 14385 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie) 14386 { 14387 queue_t *wq; 14388 ill_t *ill = nce->nce_ill; 14389 ip_stack_t *ipst = ill->ill_ipst; 14390 uint64_t delta; 14391 boolean_t isv6 = ill->ill_isv6; 14392 boolean_t fp_mp; 14393 ncec_t *ncec = nce->nce_common; 14394 int64_t now = LBOLT_FASTPATH64; 14395 boolean_t is_probe; 14396 14397 DTRACE_PROBE1(ip__xmit, nce_t *, nce); 14398 14399 ASSERT(mp != NULL); 14400 ASSERT(mp->b_datap->db_type == M_DATA); 14401 ASSERT(pkt_len == msgdsize(mp)); 14402 14403 /* 14404 * If we have already been here and are coming back after ARP/ND. 14405 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs 14406 * in that case since they have seen the packet when it came here 14407 * the first time. 14408 */ 14409 if (ixaflags & IXAF_NO_TRACE) 14410 goto sendit; 14411 14412 if (ixaflags & IXAF_IS_IPV4) { 14413 ipha_t *ipha = (ipha_t *)mp->b_rptr; 14414 14415 ASSERT(!isv6); 14416 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length)); 14417 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) && 14418 !(ixaflags & IXAF_NO_PFHOOK)) { 14419 int error; 14420 14421 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14422 ipst->ips_ipv4firewall_physical_out, 14423 NULL, ill, ipha, mp, mp, 0, ipst, error); 14424 DTRACE_PROBE1(ip4__physical__out__end, 14425 mblk_t *, mp); 14426 if (mp == NULL) 14427 return (error); 14428 14429 /* The length could have changed */ 14430 pkt_len = msgdsize(mp); 14431 } 14432 if (ipst->ips_ip4_observe.he_interested) { 14433 /* 14434 * Note that for TX the zoneid is the sending 14435 * zone, whether or not MLP is in play. 14436 * Since the szone argument is the IP zoneid (i.e., 14437 * zero for exclusive-IP zones) and ipobs wants 14438 * the system zoneid, we map it here. 14439 */ 14440 szone = IP_REAL_ZONEID(szone, ipst); 14441 14442 /* 14443 * On the outbound path the destination zone will be 14444 * unknown as we're sending this packet out on the 14445 * wire. 14446 */ 14447 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14448 ill, ipst); 14449 } 14450 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14451 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, 14452 ipha_t *, ipha, ip6_t *, NULL, int, 0); 14453 } else { 14454 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 14455 14456 ASSERT(isv6); 14457 ASSERT(pkt_len == 14458 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN); 14459 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) && 14460 !(ixaflags & IXAF_NO_PFHOOK)) { 14461 int error; 14462 14463 FW_HOOKS6(ipst->ips_ip6_physical_out_event, 14464 ipst->ips_ipv6firewall_physical_out, 14465 NULL, ill, ip6h, mp, mp, 0, ipst, error); 14466 DTRACE_PROBE1(ip6__physical__out__end, 14467 mblk_t *, mp); 14468 if (mp == NULL) 14469 return (error); 14470 14471 /* The length could have changed */ 14472 pkt_len = msgdsize(mp); 14473 } 14474 if (ipst->ips_ip6_observe.he_interested) { 14475 /* See above */ 14476 szone = IP_REAL_ZONEID(szone, ipst); 14477 14478 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14479 ill, ipst); 14480 } 14481 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14482 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill, 14483 ipha_t *, NULL, ip6_t *, ip6h, int, 0); 14484 } 14485 14486 sendit: 14487 /* 14488 * We check the state without a lock because the state can never 14489 * move "backwards" to initial or incomplete. 14490 */ 14491 switch (ncec->ncec_state) { 14492 case ND_REACHABLE: 14493 case ND_STALE: 14494 case ND_DELAY: 14495 case ND_PROBE: 14496 mp = ip_xmit_attach_llhdr(mp, nce); 14497 if (mp == NULL) { 14498 /* 14499 * ip_xmit_attach_llhdr has increased 14500 * ipIfStatsOutDiscards and called ip_drop_output() 14501 */ 14502 return (ENOBUFS); 14503 } 14504 /* 14505 * check if nce_fastpath completed and we tagged on a 14506 * copy of nce_fp_mp in ip_xmit_attach_llhdr(). 14507 */ 14508 fp_mp = (mp->b_datap->db_type == M_DATA); 14509 14510 if (fp_mp && 14511 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) { 14512 ill_dld_direct_t *idd; 14513 14514 idd = &ill->ill_dld_capab->idc_direct; 14515 /* 14516 * Send the packet directly to DLD, where it 14517 * may be queued depending on the availability 14518 * of transmit resources at the media layer. 14519 * Return value should be taken into 14520 * account and flow control the TCP. 14521 */ 14522 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14523 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14524 pkt_len); 14525 14526 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) { 14527 (void) idd->idd_tx_df(idd->idd_tx_dh, mp, 14528 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC); 14529 } else { 14530 uintptr_t cookie; 14531 14532 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh, 14533 mp, (uintptr_t)xmit_hint, 0)) != 0) { 14534 if (ixacookie != NULL) 14535 *ixacookie = cookie; 14536 return (EWOULDBLOCK); 14537 } 14538 } 14539 } else { 14540 wq = ill->ill_wq; 14541 14542 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) && 14543 !canputnext(wq)) { 14544 if (ixacookie != NULL) 14545 *ixacookie = 0; 14546 ip_xmit_flowctl_drop(ill, mp, fp_mp, 14547 nce->nce_fp_mp != NULL ? 14548 MBLKL(nce->nce_fp_mp) : 0); 14549 return (EWOULDBLOCK); 14550 } 14551 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14552 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14553 pkt_len); 14554 putnext(wq, mp); 14555 } 14556 14557 /* 14558 * The rest of this function implements Neighbor Unreachability 14559 * detection. Determine if the ncec is eligible for NUD. 14560 */ 14561 if (ncec->ncec_flags & NCE_F_NONUD) 14562 return (0); 14563 14564 ASSERT(ncec->ncec_state != ND_INCOMPLETE); 14565 14566 /* 14567 * Check for upper layer advice 14568 */ 14569 if (ixaflags & IXAF_REACH_CONF) { 14570 timeout_id_t tid; 14571 14572 /* 14573 * It should be o.k. to check the state without 14574 * a lock here, at most we lose an advice. 14575 */ 14576 ncec->ncec_last = TICK_TO_MSEC(now); 14577 if (ncec->ncec_state != ND_REACHABLE) { 14578 mutex_enter(&ncec->ncec_lock); 14579 ncec->ncec_state = ND_REACHABLE; 14580 tid = ncec->ncec_timeout_id; 14581 ncec->ncec_timeout_id = 0; 14582 mutex_exit(&ncec->ncec_lock); 14583 (void) untimeout(tid); 14584 if (ip_debug > 2) { 14585 /* ip1dbg */ 14586 pr_addr_dbg("ip_xmit: state" 14587 " for %s changed to" 14588 " REACHABLE\n", AF_INET6, 14589 &ncec->ncec_addr); 14590 } 14591 } 14592 return (0); 14593 } 14594 14595 delta = TICK_TO_MSEC(now) - ncec->ncec_last; 14596 ip1dbg(("ip_xmit: delta = %" PRId64 14597 " ill_reachable_time = %d \n", delta, 14598 ill->ill_reachable_time)); 14599 if (delta > (uint64_t)ill->ill_reachable_time) { 14600 mutex_enter(&ncec->ncec_lock); 14601 switch (ncec->ncec_state) { 14602 case ND_REACHABLE: 14603 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0); 14604 /* FALLTHROUGH */ 14605 case ND_STALE: 14606 /* 14607 * ND_REACHABLE is identical to 14608 * ND_STALE in this specific case. If 14609 * reachable time has expired for this 14610 * neighbor (delta is greater than 14611 * reachable time), conceptually, the 14612 * neighbor cache is no longer in 14613 * REACHABLE state, but already in 14614 * STALE state. So the correct 14615 * transition here is to ND_DELAY. 14616 */ 14617 ncec->ncec_state = ND_DELAY; 14618 mutex_exit(&ncec->ncec_lock); 14619 nce_restart_timer(ncec, 14620 ipst->ips_delay_first_probe_time); 14621 if (ip_debug > 3) { 14622 /* ip2dbg */ 14623 pr_addr_dbg("ip_xmit: state" 14624 " for %s changed to" 14625 " DELAY\n", AF_INET6, 14626 &ncec->ncec_addr); 14627 } 14628 break; 14629 case ND_DELAY: 14630 case ND_PROBE: 14631 mutex_exit(&ncec->ncec_lock); 14632 /* Timers have already started */ 14633 break; 14634 case ND_UNREACHABLE: 14635 /* 14636 * nce_timer has detected that this ncec 14637 * is unreachable and initiated deleting 14638 * this ncec. 14639 * This is a harmless race where we found the 14640 * ncec before it was deleted and have 14641 * just sent out a packet using this 14642 * unreachable ncec. 14643 */ 14644 mutex_exit(&ncec->ncec_lock); 14645 break; 14646 default: 14647 ASSERT(0); 14648 mutex_exit(&ncec->ncec_lock); 14649 } 14650 } 14651 return (0); 14652 14653 case ND_INCOMPLETE: 14654 /* 14655 * the state could have changed since we didn't hold the lock. 14656 * Re-verify state under lock. 14657 */ 14658 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14659 mutex_enter(&ncec->ncec_lock); 14660 if (NCE_ISREACHABLE(ncec)) { 14661 mutex_exit(&ncec->ncec_lock); 14662 goto sendit; 14663 } 14664 /* queue the packet */ 14665 nce_queue_mp(ncec, mp, is_probe); 14666 mutex_exit(&ncec->ncec_lock); 14667 DTRACE_PROBE2(ip__xmit__incomplete, 14668 (ncec_t *), ncec, (mblk_t *), mp); 14669 return (0); 14670 14671 case ND_INITIAL: 14672 /* 14673 * State could have changed since we didn't hold the lock, so 14674 * re-verify state. 14675 */ 14676 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14677 mutex_enter(&ncec->ncec_lock); 14678 if (NCE_ISREACHABLE(ncec)) { 14679 mutex_exit(&ncec->ncec_lock); 14680 goto sendit; 14681 } 14682 nce_queue_mp(ncec, mp, is_probe); 14683 if (ncec->ncec_state == ND_INITIAL) { 14684 ncec->ncec_state = ND_INCOMPLETE; 14685 mutex_exit(&ncec->ncec_lock); 14686 /* 14687 * figure out the source we want to use 14688 * and resolve it. 14689 */ 14690 ip_ndp_resolve(ncec); 14691 } else { 14692 mutex_exit(&ncec->ncec_lock); 14693 } 14694 return (0); 14695 14696 case ND_UNREACHABLE: 14697 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14698 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE", 14699 mp, ill); 14700 freemsg(mp); 14701 return (0); 14702 14703 default: 14704 ASSERT(0); 14705 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14706 ip_drop_output("ipIfStatsOutDiscards - ND_other", 14707 mp, ill); 14708 freemsg(mp); 14709 return (ENETUNREACH); 14710 } 14711 } 14712 14713 /* 14714 * Return B_TRUE if the buffers differ in length or content. 14715 * This is used for comparing extension header buffers. 14716 * Note that an extension header would be declared different 14717 * even if all that changed was the next header value in that header i.e. 14718 * what really changed is the next extension header. 14719 */ 14720 boolean_t 14721 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 14722 uint_t blen) 14723 { 14724 if (!b_valid) 14725 blen = 0; 14726 14727 if (alen != blen) 14728 return (B_TRUE); 14729 if (alen == 0) 14730 return (B_FALSE); /* Both zero length */ 14731 return (bcmp(abuf, bbuf, alen)); 14732 } 14733 14734 /* 14735 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 14736 * Return B_FALSE if memory allocation fails - don't change any state! 14737 */ 14738 boolean_t 14739 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14740 const void *src, uint_t srclen) 14741 { 14742 void *dst; 14743 14744 if (!src_valid) 14745 srclen = 0; 14746 14747 ASSERT(*dstlenp == 0); 14748 if (src != NULL && srclen != 0) { 14749 dst = mi_alloc(srclen, BPRI_MED); 14750 if (dst == NULL) 14751 return (B_FALSE); 14752 } else { 14753 dst = NULL; 14754 } 14755 if (*dstp != NULL) 14756 mi_free(*dstp); 14757 *dstp = dst; 14758 *dstlenp = dst == NULL ? 0 : srclen; 14759 return (B_TRUE); 14760 } 14761 14762 /* 14763 * Replace what is in *dst, *dstlen with the source. 14764 * Assumes ip_allocbuf has already been called. 14765 */ 14766 void 14767 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14768 const void *src, uint_t srclen) 14769 { 14770 if (!src_valid) 14771 srclen = 0; 14772 14773 ASSERT(*dstlenp == srclen); 14774 if (src != NULL && srclen != 0) 14775 bcopy(src, *dstp, srclen); 14776 } 14777 14778 /* 14779 * Free the storage pointed to by the members of an ip_pkt_t. 14780 */ 14781 void 14782 ip_pkt_free(ip_pkt_t *ipp) 14783 { 14784 uint_t fields = ipp->ipp_fields; 14785 14786 if (fields & IPPF_HOPOPTS) { 14787 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14788 ipp->ipp_hopopts = NULL; 14789 ipp->ipp_hopoptslen = 0; 14790 } 14791 if (fields & IPPF_RTHDRDSTOPTS) { 14792 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 14793 ipp->ipp_rthdrdstopts = NULL; 14794 ipp->ipp_rthdrdstoptslen = 0; 14795 } 14796 if (fields & IPPF_DSTOPTS) { 14797 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14798 ipp->ipp_dstopts = NULL; 14799 ipp->ipp_dstoptslen = 0; 14800 } 14801 if (fields & IPPF_RTHDR) { 14802 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 14803 ipp->ipp_rthdr = NULL; 14804 ipp->ipp_rthdrlen = 0; 14805 } 14806 if (fields & IPPF_IPV4_OPTIONS) { 14807 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len); 14808 ipp->ipp_ipv4_options = NULL; 14809 ipp->ipp_ipv4_options_len = 0; 14810 } 14811 if (fields & IPPF_LABEL_V4) { 14812 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 14813 ipp->ipp_label_v4 = NULL; 14814 ipp->ipp_label_len_v4 = 0; 14815 } 14816 if (fields & IPPF_LABEL_V6) { 14817 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6); 14818 ipp->ipp_label_v6 = NULL; 14819 ipp->ipp_label_len_v6 = 0; 14820 } 14821 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14822 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14823 } 14824 14825 /* 14826 * Copy from src to dst and allocate as needed. 14827 * Returns zero or ENOMEM. 14828 * 14829 * The caller must initialize dst to zero. 14830 */ 14831 int 14832 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag) 14833 { 14834 uint_t fields = src->ipp_fields; 14835 14836 /* Start with fields that don't require memory allocation */ 14837 dst->ipp_fields = fields & 14838 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14839 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14840 14841 dst->ipp_addr = src->ipp_addr; 14842 dst->ipp_unicast_hops = src->ipp_unicast_hops; 14843 dst->ipp_hoplimit = src->ipp_hoplimit; 14844 dst->ipp_tclass = src->ipp_tclass; 14845 dst->ipp_type_of_service = src->ipp_type_of_service; 14846 14847 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14848 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6))) 14849 return (0); 14850 14851 if (fields & IPPF_HOPOPTS) { 14852 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag); 14853 if (dst->ipp_hopopts == NULL) { 14854 ip_pkt_free(dst); 14855 return (ENOMEM); 14856 } 14857 dst->ipp_fields |= IPPF_HOPOPTS; 14858 bcopy(src->ipp_hopopts, dst->ipp_hopopts, 14859 src->ipp_hopoptslen); 14860 dst->ipp_hopoptslen = src->ipp_hopoptslen; 14861 } 14862 if (fields & IPPF_RTHDRDSTOPTS) { 14863 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen, 14864 kmflag); 14865 if (dst->ipp_rthdrdstopts == NULL) { 14866 ip_pkt_free(dst); 14867 return (ENOMEM); 14868 } 14869 dst->ipp_fields |= IPPF_RTHDRDSTOPTS; 14870 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts, 14871 src->ipp_rthdrdstoptslen); 14872 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen; 14873 } 14874 if (fields & IPPF_DSTOPTS) { 14875 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag); 14876 if (dst->ipp_dstopts == NULL) { 14877 ip_pkt_free(dst); 14878 return (ENOMEM); 14879 } 14880 dst->ipp_fields |= IPPF_DSTOPTS; 14881 bcopy(src->ipp_dstopts, dst->ipp_dstopts, 14882 src->ipp_dstoptslen); 14883 dst->ipp_dstoptslen = src->ipp_dstoptslen; 14884 } 14885 if (fields & IPPF_RTHDR) { 14886 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag); 14887 if (dst->ipp_rthdr == NULL) { 14888 ip_pkt_free(dst); 14889 return (ENOMEM); 14890 } 14891 dst->ipp_fields |= IPPF_RTHDR; 14892 bcopy(src->ipp_rthdr, dst->ipp_rthdr, 14893 src->ipp_rthdrlen); 14894 dst->ipp_rthdrlen = src->ipp_rthdrlen; 14895 } 14896 if (fields & IPPF_IPV4_OPTIONS) { 14897 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len, 14898 kmflag); 14899 if (dst->ipp_ipv4_options == NULL) { 14900 ip_pkt_free(dst); 14901 return (ENOMEM); 14902 } 14903 dst->ipp_fields |= IPPF_IPV4_OPTIONS; 14904 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options, 14905 src->ipp_ipv4_options_len); 14906 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len; 14907 } 14908 if (fields & IPPF_LABEL_V4) { 14909 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag); 14910 if (dst->ipp_label_v4 == NULL) { 14911 ip_pkt_free(dst); 14912 return (ENOMEM); 14913 } 14914 dst->ipp_fields |= IPPF_LABEL_V4; 14915 bcopy(src->ipp_label_v4, dst->ipp_label_v4, 14916 src->ipp_label_len_v4); 14917 dst->ipp_label_len_v4 = src->ipp_label_len_v4; 14918 } 14919 if (fields & IPPF_LABEL_V6) { 14920 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag); 14921 if (dst->ipp_label_v6 == NULL) { 14922 ip_pkt_free(dst); 14923 return (ENOMEM); 14924 } 14925 dst->ipp_fields |= IPPF_LABEL_V6; 14926 bcopy(src->ipp_label_v6, dst->ipp_label_v6, 14927 src->ipp_label_len_v6); 14928 dst->ipp_label_len_v6 = src->ipp_label_len_v6; 14929 } 14930 if (fields & IPPF_FRAGHDR) { 14931 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag); 14932 if (dst->ipp_fraghdr == NULL) { 14933 ip_pkt_free(dst); 14934 return (ENOMEM); 14935 } 14936 dst->ipp_fields |= IPPF_FRAGHDR; 14937 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr, 14938 src->ipp_fraghdrlen); 14939 dst->ipp_fraghdrlen = src->ipp_fraghdrlen; 14940 } 14941 return (0); 14942 } 14943 14944 /* 14945 * Returns INADDR_ANY if no source route 14946 */ 14947 ipaddr_t 14948 ip_pkt_source_route_v4(const ip_pkt_t *ipp) 14949 { 14950 ipaddr_t nexthop = INADDR_ANY; 14951 ipoptp_t opts; 14952 uchar_t *opt; 14953 uint8_t optval; 14954 uint8_t optlen; 14955 uint32_t totallen; 14956 14957 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 14958 return (INADDR_ANY); 14959 14960 totallen = ipp->ipp_ipv4_options_len; 14961 if (totallen & 0x3) 14962 return (INADDR_ANY); 14963 14964 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 14965 optval != IPOPT_EOL; 14966 optval = ipoptp_next(&opts)) { 14967 opt = opts.ipoptp_cur; 14968 switch (optval) { 14969 uint8_t off; 14970 case IPOPT_SSRR: 14971 case IPOPT_LSRR: 14972 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 14973 break; 14974 } 14975 optlen = opts.ipoptp_len; 14976 off = opt[IPOPT_OFFSET]; 14977 off--; 14978 if (optlen < IP_ADDR_LEN || 14979 off > optlen - IP_ADDR_LEN) { 14980 /* End of source route */ 14981 break; 14982 } 14983 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN); 14984 if (nexthop == htonl(INADDR_LOOPBACK)) { 14985 /* Ignore */ 14986 nexthop = INADDR_ANY; 14987 break; 14988 } 14989 break; 14990 } 14991 } 14992 return (nexthop); 14993 } 14994 14995 /* 14996 * Reverse a source route. 14997 */ 14998 void 14999 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp) 15000 { 15001 ipaddr_t tmp; 15002 ipoptp_t opts; 15003 uchar_t *opt; 15004 uint8_t optval; 15005 uint32_t totallen; 15006 15007 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 15008 return; 15009 15010 totallen = ipp->ipp_ipv4_options_len; 15011 if (totallen & 0x3) 15012 return; 15013 15014 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 15015 optval != IPOPT_EOL; 15016 optval = ipoptp_next(&opts)) { 15017 uint8_t off1, off2; 15018 15019 opt = opts.ipoptp_cur; 15020 switch (optval) { 15021 case IPOPT_SSRR: 15022 case IPOPT_LSRR: 15023 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15024 break; 15025 } 15026 off1 = IPOPT_MINOFF_SR - 1; 15027 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 15028 while (off2 > off1) { 15029 bcopy(opt + off2, &tmp, IP_ADDR_LEN); 15030 bcopy(opt + off1, opt + off2, IP_ADDR_LEN); 15031 bcopy(&tmp, opt + off2, IP_ADDR_LEN); 15032 off2 -= IP_ADDR_LEN; 15033 off1 += IP_ADDR_LEN; 15034 } 15035 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 15036 break; 15037 } 15038 } 15039 } 15040 15041 /* 15042 * Returns NULL if no routing header 15043 */ 15044 in6_addr_t * 15045 ip_pkt_source_route_v6(const ip_pkt_t *ipp) 15046 { 15047 in6_addr_t *nexthop = NULL; 15048 ip6_rthdr0_t *rthdr; 15049 15050 if (!(ipp->ipp_fields & IPPF_RTHDR)) 15051 return (NULL); 15052 15053 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr; 15054 if (rthdr->ip6r0_segleft == 0) 15055 return (NULL); 15056 15057 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr)); 15058 return (nexthop); 15059 } 15060 15061 zoneid_t 15062 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira, 15063 zoneid_t lookup_zoneid) 15064 { 15065 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15066 ire_t *ire; 15067 int ire_flags = MATCH_IRE_TYPE; 15068 zoneid_t zoneid = ALL_ZONES; 15069 15070 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15071 return (ALL_ZONES); 15072 15073 if (lookup_zoneid != ALL_ZONES) 15074 ire_flags |= MATCH_IRE_ZONEONLY; 15075 ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15076 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15077 if (ire != NULL) { 15078 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15079 ire_refrele(ire); 15080 } 15081 return (zoneid); 15082 } 15083 15084 zoneid_t 15085 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 15086 ip_recv_attr_t *ira, zoneid_t lookup_zoneid) 15087 { 15088 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15089 ire_t *ire; 15090 int ire_flags = MATCH_IRE_TYPE; 15091 zoneid_t zoneid = ALL_ZONES; 15092 15093 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15094 return (ALL_ZONES); 15095 15096 if (IN6_IS_ADDR_LINKLOCAL(addr)) 15097 ire_flags |= MATCH_IRE_ILL; 15098 15099 if (lookup_zoneid != ALL_ZONES) 15100 ire_flags |= MATCH_IRE_ZONEONLY; 15101 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15102 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15103 if (ire != NULL) { 15104 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15105 ire_refrele(ire); 15106 } 15107 return (zoneid); 15108 } 15109 15110 /* 15111 * IP obserability hook support functions. 15112 */ 15113 static void 15114 ipobs_init(ip_stack_t *ipst) 15115 { 15116 netid_t id; 15117 15118 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 15119 15120 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 15121 VERIFY(ipst->ips_ip4_observe_pr != NULL); 15122 15123 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 15124 VERIFY(ipst->ips_ip6_observe_pr != NULL); 15125 } 15126 15127 static void 15128 ipobs_fini(ip_stack_t *ipst) 15129 { 15130 15131 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0); 15132 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0); 15133 } 15134 15135 /* 15136 * hook_pkt_observe_t is composed in network byte order so that the 15137 * entire mblk_t chain handed into hook_run can be used as-is. 15138 * The caveat is that use of the fields, such as the zone fields, 15139 * requires conversion into host byte order first. 15140 */ 15141 void 15142 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 15143 const ill_t *ill, ip_stack_t *ipst) 15144 { 15145 hook_pkt_observe_t *hdr; 15146 uint64_t grifindex; 15147 mblk_t *imp; 15148 15149 imp = allocb(sizeof (*hdr), BPRI_HI); 15150 if (imp == NULL) 15151 return; 15152 15153 hdr = (hook_pkt_observe_t *)imp->b_rptr; 15154 /* 15155 * b_wptr is set to make the apparent size of the data in the mblk_t 15156 * to exclude the pointers at the end of hook_pkt_observer_t. 15157 */ 15158 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 15159 imp->b_cont = mp; 15160 15161 ASSERT(DB_TYPE(mp) == M_DATA); 15162 15163 if (IS_UNDER_IPMP(ill)) 15164 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 15165 else 15166 grifindex = 0; 15167 15168 hdr->hpo_version = 1; 15169 hdr->hpo_htype = htons(htype); 15170 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp)); 15171 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 15172 hdr->hpo_grifindex = htonl(grifindex); 15173 hdr->hpo_zsrc = htonl(zsrc); 15174 hdr->hpo_zdst = htonl(zdst); 15175 hdr->hpo_pkt = imp; 15176 hdr->hpo_ctx = ipst->ips_netstack; 15177 15178 if (ill->ill_isv6) { 15179 hdr->hpo_family = AF_INET6; 15180 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 15181 ipst->ips_ipv6observing, (hook_data_t)hdr); 15182 } else { 15183 hdr->hpo_family = AF_INET; 15184 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 15185 ipst->ips_ipv4observing, (hook_data_t)hdr); 15186 } 15187 15188 imp->b_cont = NULL; 15189 freemsg(imp); 15190 } 15191 15192 /* 15193 * Utility routine that checks if `v4srcp' is a valid address on underlying 15194 * interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif 15195 * associated with `v4srcp' on success. NOTE: if this is not called from 15196 * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the 15197 * group during or after this lookup. 15198 */ 15199 boolean_t 15200 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp) 15201 { 15202 ipif_t *ipif; 15203 15204 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst); 15205 if (ipif != NULL) { 15206 if (ipifp != NULL) 15207 *ipifp = ipif; 15208 else 15209 ipif_refrele(ipif); 15210 return (B_TRUE); 15211 } 15212 15213 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n", 15214 *v4srcp)); 15215 return (B_FALSE); 15216 } 15217 15218 /* 15219 * Transport protocol call back function for CPU state change. 15220 */ 15221 /* ARGSUSED */ 15222 static int 15223 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg) 15224 { 15225 processorid_t cpu_seqid; 15226 netstack_handle_t nh; 15227 netstack_t *ns; 15228 15229 ASSERT(MUTEX_HELD(&cpu_lock)); 15230 15231 switch (what) { 15232 case CPU_CONFIG: 15233 case CPU_ON: 15234 case CPU_INIT: 15235 case CPU_CPUPART_IN: 15236 cpu_seqid = cpu[id]->cpu_seqid; 15237 netstack_next_init(&nh); 15238 while ((ns = netstack_next(&nh)) != NULL) { 15239 tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid); 15240 sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid); 15241 udp_stack_cpu_add(ns->netstack_udp, cpu_seqid); 15242 netstack_rele(ns); 15243 } 15244 netstack_next_fini(&nh); 15245 break; 15246 case CPU_UNCONFIG: 15247 case CPU_OFF: 15248 case CPU_CPUPART_OUT: 15249 /* 15250 * Nothing to do. We don't remove the per CPU stats from 15251 * the IP stack even when the CPU goes offline. 15252 */ 15253 break; 15254 default: 15255 break; 15256 } 15257 return (0); 15258 } 15259