1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/socket.h> 56 #include <sys/vtrace.h> 57 #include <sys/isa_defs.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/kstatcom.h> 72 73 #include <netinet/igmp_var.h> 74 #include <netinet/ip6.h> 75 #include <netinet/icmp6.h> 76 #include <netinet/sctp.h> 77 78 #include <inet/ip.h> 79 #include <inet/ip_impl.h> 80 #include <inet/ip6.h> 81 #include <inet/ip6_asp.h> 82 #include <inet/tcp.h> 83 #include <inet/tcp_impl.h> 84 #include <inet/ip_multi.h> 85 #include <inet/ip_if.h> 86 #include <inet/ip_ire.h> 87 #include <inet/ip_rts.h> 88 #include <inet/optcom.h> 89 #include <inet/ip_ndp.h> 90 #include <inet/ip_listutils.h> 91 #include <netinet/igmp.h> 92 #include <netinet/ip_mroute.h> 93 #include <inet/ipp_common.h> 94 95 #include <net/pfkeyv2.h> 96 #include <inet/ipsec_info.h> 97 #include <inet/sadb.h> 98 #include <inet/ipsec_impl.h> 99 #include <sys/iphada.h> 100 #include <inet/tun.h> 101 #include <inet/ipdrop.h> 102 103 #include <sys/ethernet.h> 104 #include <net/if_types.h> 105 #include <sys/cpuvar.h> 106 107 #include <ipp/ipp.h> 108 #include <ipp/ipp_impl.h> 109 #include <ipp/ipgpc/ipgpc.h> 110 111 #include <sys/multidata.h> 112 #include <sys/pattr.h> 113 114 #include <inet/ipclassifier.h> 115 #include <inet/sctp_ip.h> 116 #include <inet/sctp/sctp_impl.h> 117 #include <inet/udp_impl.h> 118 119 #include <sys/tsol/label.h> 120 #include <sys/tsol/tnet.h> 121 122 #include <rpc/pmap_prot.h> 123 124 /* 125 * Values for squeue switch: 126 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 127 * IP_SQUEUE_ENTER: squeue_enter 128 * IP_SQUEUE_FILL: squeue_fill 129 */ 130 int ip_squeue_enter = 2; 131 squeue_func_t ip_input_proc; 132 /* 133 * IP statistics. 134 */ 135 #define IP_STAT(x) (ip_statistics.x.value.ui64++) 136 #define IP_STAT_UPDATE(x, n) (ip_statistics.x.value.ui64 += (n)) 137 138 typedef struct ip_stat { 139 kstat_named_t ipsec_fanout_proto; 140 kstat_named_t ip_udp_fannorm; 141 kstat_named_t ip_udp_fanmb; 142 kstat_named_t ip_udp_fanothers; 143 kstat_named_t ip_udp_fast_path; 144 kstat_named_t ip_udp_slow_path; 145 kstat_named_t ip_udp_input_err; 146 kstat_named_t ip_tcppullup; 147 kstat_named_t ip_tcpoptions; 148 kstat_named_t ip_multipkttcp; 149 kstat_named_t ip_tcp_fast_path; 150 kstat_named_t ip_tcp_slow_path; 151 kstat_named_t ip_tcp_input_error; 152 kstat_named_t ip_db_ref; 153 kstat_named_t ip_notaligned1; 154 kstat_named_t ip_notaligned2; 155 kstat_named_t ip_multimblk3; 156 kstat_named_t ip_multimblk4; 157 kstat_named_t ip_ipoptions; 158 kstat_named_t ip_classify_fail; 159 kstat_named_t ip_opt; 160 kstat_named_t ip_udp_rput_local; 161 kstat_named_t ipsec_proto_ahesp; 162 kstat_named_t ip_conn_flputbq; 163 kstat_named_t ip_conn_walk_drain; 164 kstat_named_t ip_out_sw_cksum; 165 kstat_named_t ip_in_sw_cksum; 166 kstat_named_t ip_trash_ire_reclaim_calls; 167 kstat_named_t ip_trash_ire_reclaim_success; 168 kstat_named_t ip_ire_arp_timer_expired; 169 kstat_named_t ip_ire_redirect_timer_expired; 170 kstat_named_t ip_ire_pmtu_timer_expired; 171 kstat_named_t ip_input_multi_squeue; 172 kstat_named_t ip_tcp_in_full_hw_cksum_err; 173 kstat_named_t ip_tcp_in_part_hw_cksum_err; 174 kstat_named_t ip_tcp_in_sw_cksum_err; 175 kstat_named_t ip_tcp_out_sw_cksum_bytes; 176 kstat_named_t ip_udp_in_full_hw_cksum_err; 177 kstat_named_t ip_udp_in_part_hw_cksum_err; 178 kstat_named_t ip_udp_in_sw_cksum_err; 179 kstat_named_t ip_udp_out_sw_cksum_bytes; 180 kstat_named_t ip_frag_mdt_pkt_out; 181 kstat_named_t ip_frag_mdt_discarded; 182 kstat_named_t ip_frag_mdt_allocfail; 183 kstat_named_t ip_frag_mdt_addpdescfail; 184 kstat_named_t ip_frag_mdt_allocd; 185 } ip_stat_t; 186 187 static ip_stat_t ip_statistics = { 188 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 189 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 190 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 191 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 192 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 193 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 194 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 195 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 196 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 197 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 198 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 199 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 200 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 201 { "ip_db_ref", KSTAT_DATA_UINT64 }, 202 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 203 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 204 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 205 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 206 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 207 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 208 { "ip_opt", KSTAT_DATA_UINT64 }, 209 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 210 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 211 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 212 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 213 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 214 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 215 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 216 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 217 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 218 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 219 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 220 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 221 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 222 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 223 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 224 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 225 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 226 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 227 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 228 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 229 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 230 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 231 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 232 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 233 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 234 }; 235 236 static kstat_t *ip_kstat; 237 238 #define TCP6 "tcp6" 239 #define TCP "tcp" 240 #define SCTP "sctp" 241 #define SCTP6 "sctp6" 242 243 major_t TCP6_MAJ; 244 major_t TCP_MAJ; 245 major_t SCTP_MAJ; 246 major_t SCTP6_MAJ; 247 248 int ip_poll_normal_ms = 100; 249 int ip_poll_normal_ticks = 0; 250 251 /* 252 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 253 */ 254 255 struct listptr_s { 256 mblk_t *lp_head; /* pointer to the head of the list */ 257 mblk_t *lp_tail; /* pointer to the tail of the list */ 258 }; 259 260 typedef struct listptr_s listptr_t; 261 262 /* 263 * This is used by ip_snmp_get_mib2_ip_route_media and 264 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 265 */ 266 typedef struct iproutedata_s { 267 uint_t ird_idx; 268 listptr_t ird_route; /* ipRouteEntryTable */ 269 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 270 listptr_t ird_attrs; /* ipRouteAttributeTable */ 271 } iproutedata_t; 272 273 /* 274 * Cluster specific hooks. These should be NULL when booted as a non-cluster 275 */ 276 277 /* 278 * Hook functions to enable cluster networking 279 * On non-clustered systems these vectors must always be NULL. 280 * 281 * Hook function to Check ip specified ip address is a shared ip address 282 * in the cluster 283 * 284 */ 285 int (*cl_inet_isclusterwide)(uint8_t protocol, 286 sa_family_t addr_family, uint8_t *laddrp) = NULL; 287 288 /* 289 * Hook function to generate cluster wide ip fragment identifier 290 */ 291 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 292 uint8_t *laddrp, uint8_t *faddrp) = NULL; 293 294 /* 295 * Synchronization notes: 296 * 297 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 298 * MT level protection given by STREAMS. IP uses a combination of its own 299 * internal serialization mechanism and standard Solaris locking techniques. 300 * The internal serialization is per phyint (no IPMP) or per IPMP group. 301 * This is used to serialize plumbing operations, IPMP operations, certain 302 * multicast operations, most set ioctls, igmp/mld timers etc. 303 * 304 * Plumbing is a long sequence of operations involving message 305 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 306 * involved in plumbing operations. A natural model is to serialize these 307 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 308 * parallel without any interference. But various set ioctls on hme0 are best 309 * serialized. However if the system uses IPMP, the operations are easier if 310 * they are serialized on a per IPMP group basis since IPMP operations 311 * happen across ill's of a group. Thus the lowest common denominator is to 312 * serialize most set ioctls, multicast join/leave operations, IPMP operations 313 * igmp/mld timer operations, and processing of DLPI control messages received 314 * from drivers on a per IPMP group basis. If the system does not employ 315 * IPMP the serialization is on a per phyint basis. This serialization is 316 * provided by the ipsq_t and primitives operating on this. Details can 317 * be found in ip_if.c above the core primitives operating on ipsq_t. 318 * 319 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 320 * Simiarly lookup of an ire by a thread also returns a refheld ire. 321 * In addition ipif's and ill's referenced by the ire are also indirectly 322 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 323 * the ipif's address or netmask change as long as an ipif is refheld 324 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 325 * address of an ipif has to go through the ipsq_t. This ensures that only 326 * 1 such exclusive operation proceeds at any time on the ipif. It then 327 * deletes all ires associated with this ipif, and waits for all refcnts 328 * associated with this ipif to come down to zero. The address is changed 329 * only after the ipif has been quiesced. Then the ipif is brought up again. 330 * More details are described above the comment in ip_sioctl_flags. 331 * 332 * Packet processing is based mostly on IREs and are fully multi-threaded 333 * using standard Solaris MT techniques. 334 * 335 * There are explicit locks in IP to handle: 336 * - The ip_g_head list maintained by mi_open_link() and friends. 337 * 338 * - The reassembly data structures (one lock per hash bucket) 339 * 340 * - conn_lock is meant to protect conn_t fields. The fields actually 341 * protected by conn_lock are documented in the conn_t definition. 342 * 343 * - ire_lock to protect some of the fields of the ire, IRE tables 344 * (one lock per hash bucket). Refer to ip_ire.c for details. 345 * 346 * - ndp_g_lock and nce_lock for protecting NCEs. 347 * 348 * - ill_lock protects fields of the ill and ipif. Details in ip.h 349 * 350 * - ill_g_lock: This is a global reader/writer lock. Protects the following 351 * * The AVL tree based global multi list of all ills. 352 * * The linked list of all ipifs of an ill 353 * * The <ill-ipsq> mapping 354 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 355 * * The illgroup list threaded by ill_group_next. 356 * * <ill-phyint> association 357 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 358 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 359 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 360 * will all have to hold the ill_g_lock as writer for the actual duration 361 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 362 * may be found in the IPMP section. 363 * 364 * - ill_lock: This is a per ill mutex. 365 * It protects some members of the ill and is documented below. 366 * It also protects the <ill-ipsq> mapping 367 * It also protects the illgroup list threaded by ill_group_next. 368 * It also protects the <ill-phyint> assoc. 369 * It also protects the list of ipifs hanging off the ill. 370 * 371 * - ipsq_lock: This is a per ipsq_t mutex lock. 372 * This protects all the other members of the ipsq struct except 373 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 374 * 375 * - illgrp_lock: This is a per ill_group mutex lock. 376 * The only thing it protects is the illgrp_ill_schednext member of ill_group 377 * which dictates which is the next ill in an ill_group that is to be chosen 378 * for sending outgoing packets, through creation of an IRE_CACHE that 379 * references this ill. 380 * 381 * - phyint_lock: This is a per phyint mutex lock. Protects just the 382 * phyint_flags 383 * 384 * - ip_g_nd_lock: This is a global reader/writer lock. 385 * Any call to nd_load to load a new parameter to the ND table must hold the 386 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 387 * as reader. 388 * 389 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 390 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 391 * uniqueness check also done atomically. 392 * 393 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 394 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 395 * as a writer when adding or deleting elements from these lists, and 396 * as a reader when walking these lists to send a SADB update to the 397 * IPsec capable ills. 398 * 399 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 400 * group list linked by ill_usesrc_grp_next. It also protects the 401 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 402 * group is being added or deleted. This lock is taken as a reader when 403 * walking the list/group(eg: to get the number of members in a usesrc group). 404 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 405 * field is changing state i.e from NULL to non-NULL or vice-versa. For 406 * example, it is not necessary to take this lock in the initial portion 407 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 408 * ip_sioctl_flags since the these operations are executed exclusively and 409 * that ensures that the "usesrc group state" cannot change. The "usesrc 410 * group state" change can happen only in the latter part of 411 * ip_sioctl_slifusesrc and in ill_delete. 412 * 413 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 414 * 415 * To change the <ill-phyint> association, the ill_g_lock must be held 416 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 417 * must be held. 418 * 419 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 420 * and the ill_lock of the ill in question must be held. 421 * 422 * To change the <ill-illgroup> association the ill_g_lock must be held as 423 * writer and the ill_lock of the ill in question must be held. 424 * 425 * To add or delete an ipif from the list of ipifs hanging off the ill, 426 * ill_g_lock (writer) and ill_lock must be held and the thread must be 427 * a writer on the associated ipsq,. 428 * 429 * To add or delete an ill to the system, the ill_g_lock must be held as 430 * writer and the thread must be a writer on the associated ipsq. 431 * 432 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 433 * must be a writer on the associated ipsq. 434 * 435 * Lock hierarchy 436 * 437 * Some lock hierarchy scenarios are listed below. 438 * 439 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 440 * ill_g_lock -> illgrp_lock -> ill_lock 441 * ill_g_lock -> ill_lock(s) -> phyint_lock 442 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 443 * ill_g_lock -> ip_addr_avail_lock 444 * conn_lock -> irb_lock -> ill_lock -> ire_lock 445 * ill_g_lock -> ip_g_nd_lock 446 * 447 * When more than 1 ill lock is needed to be held, all ill lock addresses 448 * are sorted on address and locked starting from highest addressed lock 449 * downward. 450 * 451 * Mobile-IP scenarios 452 * 453 * irb_lock -> ill_lock -> ire_mrtun_lock 454 * irb_lock -> ill_lock -> ire_srcif_table_lock 455 * 456 * IPsec scenarios 457 * 458 * ipsa_lock -> ill_g_lock -> ill_lock 459 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 460 * ipsec_capab_ills_lock -> ipsa_lock 461 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 462 * 463 * Trusted Solaris scenarios 464 * 465 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 466 * igsa_lock -> gcdb_lock 467 * gcgrp_rwlock -> ire_lock 468 * gcgrp_rwlock -> gcdb_lock 469 * 470 * IPSEC notes : 471 * 472 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 473 * in front of the actual packet. For outbound datagrams, the M_CTL 474 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 475 * information used by the IPSEC code for applying the right level of 476 * protection. The information initialized by IP in the ipsec_out_t 477 * is determined by the per-socket policy or global policy in the system. 478 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 479 * ipsec_info.h) which starts out with nothing in it. It gets filled 480 * with the right information if it goes through the AH/ESP code, which 481 * happens if the incoming packet is secure. The information initialized 482 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 483 * the policy requirements needed by per-socket policy or global policy 484 * is met or not. 485 * 486 * If there is both per-socket policy (set using setsockopt) and there 487 * is also global policy match for the 5 tuples of the socket, 488 * ipsec_override_policy() makes the decision of which one to use. 489 * 490 * For fully connected sockets i.e dst, src [addr, port] is known, 491 * conn_policy_cached is set indicating that policy has been cached. 492 * conn_in_enforce_policy may or may not be set depending on whether 493 * there is a global policy match or per-socket policy match. 494 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 495 * Once the right policy is set on the conn_t, policy cannot change for 496 * this socket. This makes life simpler for TCP (UDP ?) where 497 * re-transmissions go out with the same policy. For symmetry, policy 498 * is cached for fully connected UDP sockets also. Thus if policy is cached, 499 * it also implies that policy is latched i.e policy cannot change 500 * on these sockets. As we have the right policy on the conn, we don't 501 * have to lookup global policy for every outbound and inbound datagram 502 * and thus serving as an optimization. Note that a global policy change 503 * does not affect fully connected sockets if they have policy. If fully 504 * connected sockets did not have any policy associated with it, global 505 * policy change may affect them. 506 * 507 * IP Flow control notes: 508 * 509 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 510 * cannot be sent down to the driver by IP, because of a canput failure, IP 511 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 512 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 513 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 514 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 515 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 516 * the queued messages, and removes the conn from the drain list, if all 517 * messages were drained. It also qenables the next conn in the drain list to 518 * continue the drain process. 519 * 520 * In reality the drain list is not a single list, but a configurable number 521 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 522 * list. If the ip_wsrv of the next qenabled conn does not run, because the 523 * stream closes, ip_close takes responsibility to qenable the next conn in 524 * the drain list. The directly called ip_wput path always does a putq, if 525 * it cannot putnext. Thus synchronization problems are handled between 526 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 527 * functions that manipulate this drain list. Furthermore conn_drain_insert 528 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 529 * running on a queue at any time. conn_drain_tail can be simultaneously called 530 * from both ip_wsrv and ip_close. 531 * 532 * IPQOS notes: 533 * 534 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 535 * and IPQoS modules. IPPF includes hooks in IP at different control points 536 * (callout positions) which direct packets to IPQoS modules for policy 537 * processing. Policies, if present, are global. 538 * 539 * The callout positions are located in the following paths: 540 * o local_in (packets destined for this host) 541 * o local_out (packets orginating from this host ) 542 * o fwd_in (packets forwarded by this m/c - inbound) 543 * o fwd_out (packets forwarded by this m/c - outbound) 544 * Hooks at these callout points can be enabled/disabled using the ndd variable 545 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 546 * By default all the callout positions are enabled. 547 * 548 * Outbound (local_out) 549 * Hooks are placed in ip_wput_ire and ipsec_out_process. 550 * 551 * Inbound (local_in) 552 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 553 * TCP and UDP fanout routines. 554 * 555 * Forwarding (in and out) 556 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 557 * 558 * IP Policy Framework processing (IPPF processing) 559 * Policy processing for a packet is initiated by ip_process, which ascertains 560 * that the classifier (ipgpc) is loaded and configured, failing which the 561 * packet resumes normal processing in IP. If the clasifier is present, the 562 * packet is acted upon by one or more IPQoS modules (action instances), per 563 * filters configured in ipgpc and resumes normal IP processing thereafter. 564 * An action instance can drop a packet in course of its processing. 565 * 566 * A boolean variable, ip_policy, is used in all the fanout routines that can 567 * invoke ip_process for a packet. This variable indicates if the packet should 568 * to be sent for policy processing. The variable is set to B_TRUE by default, 569 * i.e. when the routines are invoked in the normal ip procesing path for a 570 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 571 * ip_policy is set to B_FALSE for all the routines called in these two 572 * functions because, in the former case, we don't process loopback traffic 573 * currently while in the latter, the packets have already been processed in 574 * icmp_inbound. 575 * 576 * Zones notes: 577 * 578 * The partitioning rules for networking are as follows: 579 * 1) Packets coming from a zone must have a source address belonging to that 580 * zone. 581 * 2) Packets coming from a zone can only be sent on a physical interface on 582 * which the zone has an IP address. 583 * 3) Between two zones on the same machine, packet delivery is only allowed if 584 * there's a matching route for the destination and zone in the forwarding 585 * table. 586 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 587 * different zones can bind to the same port with the wildcard address 588 * (INADDR_ANY). 589 * 590 * The granularity of interface partitioning is at the logical interface level. 591 * Therefore, every zone has its own IP addresses, and incoming packets can be 592 * attributed to a zone unambiguously. A logical interface is placed into a zone 593 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 594 * structure. Rule (1) is implemented by modifying the source address selection 595 * algorithm so that the list of eligible addresses is filtered based on the 596 * sending process zone. 597 * 598 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 599 * across all zones, depending on their type. Here is the break-up: 600 * 601 * IRE type Shared/exclusive 602 * -------- ---------------- 603 * IRE_BROADCAST Exclusive 604 * IRE_DEFAULT (default routes) Shared (*) 605 * IRE_LOCAL Exclusive 606 * IRE_LOOPBACK Exclusive 607 * IRE_PREFIX (net routes) Shared (*) 608 * IRE_CACHE Exclusive 609 * IRE_IF_NORESOLVER (interface routes) Exclusive 610 * IRE_IF_RESOLVER (interface routes) Exclusive 611 * IRE_HOST (host routes) Shared (*) 612 * 613 * (*) A zone can only use a default or off-subnet route if the gateway is 614 * directly reachable from the zone, that is, if the gateway's address matches 615 * one of the zone's logical interfaces. 616 * 617 * Multiple zones can share a common broadcast address; typically all zones 618 * share the 255.255.255.255 address. Incoming as well as locally originated 619 * broadcast packets must be dispatched to all the zones on the broadcast 620 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 621 * since some zones may not be on the 10.16.72/24 network. To handle this, each 622 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 623 * sent to every zone that has an IRE_BROADCAST entry for the destination 624 * address on the input ill, see conn_wantpacket(). 625 * 626 * Applications in different zones can join the same multicast group address. 627 * For IPv4, group memberships are per-logical interface, so they're already 628 * inherently part of a zone. For IPv6, group memberships are per-physical 629 * interface, so we distinguish IPv6 group memberships based on group address, 630 * interface and zoneid. In both cases, received multicast packets are sent to 631 * every zone for which a group membership entry exists. On IPv6 we need to 632 * check that the target zone still has an address on the receiving physical 633 * interface; it could have been removed since the application issued the 634 * IPV6_JOIN_GROUP. 635 */ 636 637 /* 638 * Squeue Fanout flags: 639 * 0: No fanout. 640 * 1: Fanout across all squeues 641 */ 642 boolean_t ip_squeue_fanout = 0; 643 644 /* 645 * Maximum dups allowed per packet. 646 */ 647 uint_t ip_max_frag_dups = 10; 648 649 #define IS_SIMPLE_IPH(ipha) \ 650 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 651 652 /* RFC1122 Conformance */ 653 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 654 655 #define ILL_MAX_NAMELEN LIFNAMSIZ 656 657 /* Leave room for ip_newroute to tack on the src and target addresses */ 658 #define OK_RESOLVER_MP(mp) \ 659 ((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN)) 660 661 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 662 663 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 664 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 665 666 static void icmp_frag_needed(queue_t *, mblk_t *, int); 667 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 668 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 669 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 670 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 671 mblk_t *, int); 672 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 673 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 674 ill_t *, zoneid_t); 675 static void icmp_options_update(ipha_t *); 676 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t); 677 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t); 678 static mblk_t *icmp_pkt_err_ok(mblk_t *); 679 static void icmp_redirect(mblk_t *); 680 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t); 681 682 static void ip_arp_news(queue_t *, mblk_t *); 683 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *); 684 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 685 char *ip_dot_addr(ipaddr_t, char *); 686 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 687 int ip_close(queue_t *, int); 688 static char *ip_dot_saddr(uchar_t *, char *); 689 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 690 boolean_t, boolean_t, ill_t *, zoneid_t); 691 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 692 boolean_t, boolean_t, zoneid_t); 693 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 694 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 695 static void ip_lrput(queue_t *, mblk_t *); 696 ipaddr_t ip_massage_options(ipha_t *); 697 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 698 ipaddr_t ip_net_mask(ipaddr_t); 699 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *); 700 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 701 conn_t *, uint32_t); 702 static int ip_hdr_complete(ipha_t *, zoneid_t); 703 char *ip_nv_lookup(nv_t *, int); 704 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 705 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 706 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 707 static boolean_t ip_param_register(ipparam_t *, size_t, ipndp_t *, 708 size_t); 709 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 710 void ip_rput(queue_t *, mblk_t *); 711 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 712 void *dummy_arg); 713 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 714 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *); 715 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 716 ire_t *); 717 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *); 718 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 719 uint16_t *); 720 int ip_snmp_get(queue_t *, mblk_t *); 721 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *); 722 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *); 723 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *); 724 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *); 725 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *); 726 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *); 727 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *); 728 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *); 729 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *); 730 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *); 731 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *); 732 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *); 733 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *); 734 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *); 735 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *); 736 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *); 737 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 738 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 739 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 740 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 741 static boolean_t ip_source_routed(ipha_t *); 742 static boolean_t ip_source_route_included(ipha_t *); 743 744 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t); 745 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int); 746 static void ip_wput_local_options(ipha_t *); 747 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 748 zoneid_t); 749 750 static void conn_drain_init(void); 751 static void conn_drain_fini(void); 752 static void conn_drain_tail(conn_t *connp, boolean_t closing); 753 754 static void conn_walk_drain(void); 755 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 756 zoneid_t); 757 758 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 759 zoneid_t); 760 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 761 void *dummy_arg); 762 763 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 764 765 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 766 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 767 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 768 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 769 770 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 771 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 772 caddr_t, cred_t *); 773 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 774 caddr_t cp, cred_t *cr); 775 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 776 cred_t *); 777 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 778 caddr_t cp, cred_t *cr); 779 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 780 cred_t *); 781 static squeue_func_t ip_squeue_switch(int); 782 783 static void ip_kstat_init(void); 784 static void ip_kstat_fini(void); 785 static int ip_kstat_update(kstat_t *kp, int rw); 786 static void icmp_kstat_init(void); 787 static void icmp_kstat_fini(void); 788 static int icmp_kstat_update(kstat_t *kp, int rw); 789 790 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 791 792 static boolean_t ip_no_forward(ipha_t *, ill_t *); 793 static boolean_t ip_loopback_src_or_dst(ipha_t *, ill_t *); 794 795 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 796 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 797 798 void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, size_t); 799 800 timeout_id_t ip_ire_expire_id; /* IRE expiration timer. */ 801 static clock_t ip_ire_arp_time_elapsed; /* Time since IRE cache last flushed */ 802 static clock_t ip_ire_rd_time_elapsed; /* ... redirect IREs last flushed */ 803 static clock_t ip_ire_pmtu_time_elapsed; /* Time since path mtu increase */ 804 805 uint_t ip_ire_default_count; /* Number of IPv4 IRE_DEFAULT entries. */ 806 uint_t ip_ire_default_index; /* Walking index used to mod in */ 807 808 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 809 clock_t icmp_pkt_err_last = 0; /* Time since last icmp_pkt_err */ 810 uint_t icmp_pkt_err_sent = 0; /* Number of packets sent in burst */ 811 812 /* How long, in seconds, we allow frags to hang around. */ 813 #define IP_FRAG_TIMEOUT 60 814 815 time_t ip_g_frag_timeout = IP_FRAG_TIMEOUT; 816 clock_t ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 817 818 /* 819 * Threshold which determines whether MDT should be used when 820 * generating IP fragments; payload size must be greater than 821 * this threshold for MDT to take place. 822 */ 823 #define IP_WPUT_FRAG_MDT_MIN 32768 824 825 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 826 827 /* Protected by ip_mi_lock */ 828 static void *ip_g_head; /* Instance Data List Head */ 829 kmutex_t ip_mi_lock; /* Lock for list of instances */ 830 831 /* Only modified during _init and _fini thus no locking is needed. */ 832 caddr_t ip_g_nd; /* Named Dispatch List Head */ 833 834 835 static long ip_rput_pullups; 836 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 837 838 vmem_t *ip_minor_arena; 839 840 /* 841 * MIB-2 stuff for SNMP (both IP and ICMP) 842 */ 843 mib2_ip_t ip_mib; 844 mib2_icmp_t icmp_mib; 845 846 #ifdef DEBUG 847 uint32_t ipsechw_debug = 0; 848 #endif 849 850 kstat_t *ip_mibkp; /* kstat exporting ip_mib data */ 851 kstat_t *icmp_mibkp; /* kstat exporting icmp_mib data */ 852 853 uint_t loopback_packets = 0; 854 855 /* 856 * Multirouting/CGTP stuff 857 */ 858 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 859 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 860 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 861 /* Interval (in ms) between consecutive 'bad MTU' warnings */ 862 hrtime_t ip_multirt_log_interval = 1000; 863 /* Time since last warning issued. */ 864 static hrtime_t multirt_bad_mtu_last_time = 0; 865 866 kmutex_t ip_trash_timer_lock; 867 krwlock_t ip_g_nd_lock; 868 869 /* 870 * XXX following really should only be in a header. Would need more 871 * header and .c clean up first. 872 */ 873 extern optdb_obj_t ip_opt_obj; 874 875 ulong_t ip_squeue_enter_unbound = 0; 876 877 /* 878 * Named Dispatch Parameter Table. 879 * All of these are alterable, within the min/max values given, at run time. 880 */ 881 static ipparam_t lcl_param_arr[] = { 882 /* min max value name */ 883 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 884 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 885 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 886 { 0, 1, 0, "ip_respond_to_timestamp"}, 887 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 888 { 0, 1, 1, "ip_send_redirects"}, 889 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 890 { 0, 10, 0, "ip_debug"}, 891 { 0, 10, 0, "ip_mrtdebug"}, 892 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 893 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 894 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 895 { 1, 255, 255, "ip_def_ttl" }, 896 { 0, 1, 0, "ip_forward_src_routed"}, 897 { 0, 256, 32, "ip_wroff_extra" }, 898 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 899 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 900 { 0, 1, 1, "ip_path_mtu_discovery" }, 901 { 0, 240, 30, "ip_ignore_delete_time" }, 902 { 0, 1, 0, "ip_ignore_redirect" }, 903 { 0, 1, 1, "ip_output_queue" }, 904 { 1, 254, 1, "ip_broadcast_ttl" }, 905 { 0, 99999, 100, "ip_icmp_err_interval" }, 906 { 1, 99999, 10, "ip_icmp_err_burst" }, 907 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 908 { 0, 1, 0, "ip_strict_dst_multihoming" }, 909 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 910 { 0, 1, 0, "ipsec_override_persocket_policy" }, 911 { 0, 1, 1, "icmp_accept_clear_messages" }, 912 { 0, 1, 1, "igmp_accept_clear_messages" }, 913 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 914 "ip_ndp_delay_first_probe_time"}, 915 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 916 "ip_ndp_max_unicast_solicit"}, 917 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 918 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 919 { 0, 1, 0, "ip6_forward_src_routed"}, 920 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 921 { 0, 1, 1, "ip6_send_redirects"}, 922 { 0, 1, 0, "ip6_ignore_redirect" }, 923 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 924 925 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 926 927 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 928 929 { 0, 1, 1, "pim_accept_clear_messages" }, 930 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 931 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 932 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 933 { 0, 15, 0, "ip_policy_mask" }, 934 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 935 { 0, 255, 1, "ip_multirt_ttl" }, 936 { 0, 1, 1, "ip_multidata_outbound" }, 937 #ifdef DEBUG 938 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 939 #endif 940 }; 941 942 ipparam_t *ip_param_arr = lcl_param_arr; 943 944 /* Extended NDP table */ 945 static ipndp_t lcl_ndp_arr[] = { 946 /* getf setf data name */ 947 { ip_param_generic_get, ip_forward_set, (caddr_t)&ip_g_forward, 948 "ip_forwarding" }, 949 { ip_param_generic_get, ip_forward_set, (caddr_t)&ipv6_forward, 950 "ip6_forwarding" }, 951 { ip_ill_report, NULL, NULL, 952 "ip_ill_status" }, 953 { ip_ipif_report, NULL, NULL, 954 "ip_ipif_status" }, 955 { ip_ire_report, NULL, NULL, 956 "ipv4_ire_status" }, 957 { ip_ire_report_mrtun, NULL, NULL, 958 "ipv4_mrtun_ire_status" }, 959 { ip_ire_report_srcif, NULL, NULL, 960 "ipv4_srcif_ire_status" }, 961 { ip_ire_report_v6, NULL, NULL, 962 "ipv6_ire_status" }, 963 { ip_conn_report, NULL, NULL, 964 "ip_conn_status" }, 965 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 966 "ip_rput_pullups" }, 967 { ndp_report, NULL, NULL, 968 "ip_ndp_cache_report" }, 969 { ip_srcid_report, NULL, NULL, 970 "ip_srcid_status" }, 971 { ip_param_generic_get, ip_squeue_profile_set, 972 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 973 { ip_param_generic_get, ip_squeue_bind_set, 974 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 975 { ip_param_generic_get, ip_input_proc_set, 976 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 977 { ip_param_generic_get, ip_int_set, 978 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 979 { ip_cgtp_filter_get, ip_cgtp_filter_set, (caddr_t)&ip_cgtp_filter, 980 "ip_cgtp_filter" }, 981 { ip_param_generic_get, ip_int_set, 982 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" } 983 }; 984 985 /* 986 * ip_g_forward controls IP forwarding. It takes two values: 987 * 0: IP_FORWARD_NEVER Don't forward packets ever. 988 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 989 * 990 * RFC1122 says there must be a configuration switch to control forwarding, 991 * but that the default MUST be to not forward packets ever. Implicit 992 * control based on configuration of multiple interfaces MUST NOT be 993 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 994 * and, in fact, it was the default. That capability is now provided in the 995 * /etc/rc2.d/S69inet script. 996 */ 997 int ip_g_forward = IP_FORWARD_DEFAULT; 998 999 /* It also has an IPv6 counterpart. */ 1000 1001 int ipv6_forward = IP_FORWARD_DEFAULT; 1002 1003 /* Following line is external, and in ip.h. Normally marked with * *. */ 1004 #define ip_respond_to_address_mask_broadcast ip_param_arr[0].ip_param_value 1005 #define ip_g_resp_to_echo_bcast ip_param_arr[1].ip_param_value 1006 #define ip_g_resp_to_echo_mcast ip_param_arr[2].ip_param_value 1007 #define ip_g_resp_to_timestamp ip_param_arr[3].ip_param_value 1008 #define ip_g_resp_to_timestamp_bcast ip_param_arr[4].ip_param_value 1009 #define ip_g_send_redirects ip_param_arr[5].ip_param_value 1010 #define ip_g_forward_directed_bcast ip_param_arr[6].ip_param_value 1011 #define ip_debug ip_param_arr[7].ip_param_value /* */ 1012 #define ip_mrtdebug ip_param_arr[8].ip_param_value /* */ 1013 #define ip_timer_interval ip_param_arr[9].ip_param_value /* */ 1014 #define ip_ire_arp_interval ip_param_arr[10].ip_param_value /* */ 1015 #define ip_ire_redir_interval ip_param_arr[11].ip_param_value 1016 #define ip_def_ttl ip_param_arr[12].ip_param_value 1017 #define ip_forward_src_routed ip_param_arr[13].ip_param_value 1018 #define ip_wroff_extra ip_param_arr[14].ip_param_value 1019 #define ip_ire_pathmtu_interval ip_param_arr[15].ip_param_value 1020 #define ip_icmp_return ip_param_arr[16].ip_param_value 1021 #define ip_path_mtu_discovery ip_param_arr[17].ip_param_value /* */ 1022 #define ip_ignore_delete_time ip_param_arr[18].ip_param_value /* */ 1023 #define ip_ignore_redirect ip_param_arr[19].ip_param_value 1024 #define ip_output_queue ip_param_arr[20].ip_param_value 1025 #define ip_broadcast_ttl ip_param_arr[21].ip_param_value 1026 #define ip_icmp_err_interval ip_param_arr[22].ip_param_value 1027 #define ip_icmp_err_burst ip_param_arr[23].ip_param_value 1028 #define ip_reass_queue_bytes ip_param_arr[24].ip_param_value 1029 #define ip_strict_dst_multihoming ip_param_arr[25].ip_param_value 1030 #define ip_addrs_per_if ip_param_arr[26].ip_param_value 1031 #define ipsec_override_persocket_policy ip_param_arr[27].ip_param_value /* */ 1032 #define icmp_accept_clear_messages ip_param_arr[28].ip_param_value 1033 #define igmp_accept_clear_messages ip_param_arr[29].ip_param_value 1034 1035 /* IPv6 configuration knobs */ 1036 #define delay_first_probe_time ip_param_arr[30].ip_param_value 1037 #define max_unicast_solicit ip_param_arr[31].ip_param_value 1038 #define ipv6_def_hops ip_param_arr[32].ip_param_value 1039 #define ipv6_icmp_return ip_param_arr[33].ip_param_value 1040 #define ipv6_forward_src_routed ip_param_arr[34].ip_param_value 1041 #define ipv6_resp_echo_mcast ip_param_arr[35].ip_param_value 1042 #define ipv6_send_redirects ip_param_arr[36].ip_param_value 1043 #define ipv6_ignore_redirect ip_param_arr[37].ip_param_value 1044 #define ipv6_strict_dst_multihoming ip_param_arr[38].ip_param_value 1045 #define ip_ire_reclaim_fraction ip_param_arr[39].ip_param_value 1046 #define ipsec_policy_log_interval ip_param_arr[40].ip_param_value 1047 #define pim_accept_clear_messages ip_param_arr[41].ip_param_value 1048 #define ip_ndp_unsolicit_interval ip_param_arr[42].ip_param_value 1049 #define ip_ndp_unsolicit_count ip_param_arr[43].ip_param_value 1050 #define ipv6_ignore_home_address_opt ip_param_arr[44].ip_param_value 1051 #define ip_policy_mask ip_param_arr[45].ip_param_value 1052 #define ip_multirt_resolution_interval ip_param_arr[46].ip_param_value 1053 #define ip_multirt_ttl ip_param_arr[47].ip_param_value 1054 #define ip_multidata_outbound ip_param_arr[48].ip_param_value 1055 #ifdef DEBUG 1056 #define ipv6_drop_inbound_icmpv6 ip_param_arr[49].ip_param_value 1057 #else 1058 #define ipv6_drop_inbound_icmpv6 0 1059 #endif 1060 1061 1062 /* 1063 * Table of IP ioctls encoding the various properties of the ioctl and 1064 * indexed based on the last byte of the ioctl command. Occasionally there 1065 * is a clash, and there is more than 1 ioctl with the same last byte. 1066 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1067 * ioctls are encoded in the misc table. An entry in the ndx table is 1068 * retrieved by indexing on the last byte of the ioctl command and comparing 1069 * the ioctl command with the value in the ndx table. In the event of a 1070 * mismatch the misc table is then searched sequentially for the desired 1071 * ioctl command. 1072 * 1073 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1074 */ 1075 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1076 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1083 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1084 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1085 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1086 1087 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1088 MISC_CMD, ip_siocaddrt, NULL }, 1089 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1090 MISC_CMD, ip_siocdelrt, NULL }, 1091 1092 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1093 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1094 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1095 IF_CMD, ip_sioctl_get_addr, NULL }, 1096 1097 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1098 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1099 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1100 IPI_GET_CMD | IPI_REPL, 1101 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1102 1103 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1104 IPI_PRIV | IPI_WR | IPI_REPL, 1105 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1106 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1107 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 1108 IF_CMD, ip_sioctl_get_flags, NULL }, 1109 1110 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 1113 /* copyin size cannot be coded for SIOCGIFCONF */ 1114 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1115 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1116 1117 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1118 IF_CMD, ip_sioctl_mtu, NULL }, 1119 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1120 IF_CMD, ip_sioctl_get_mtu, NULL }, 1121 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1122 IPI_GET_CMD | IPI_REPL, 1123 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1124 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1125 IF_CMD, ip_sioctl_brdaddr, NULL }, 1126 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1127 IPI_GET_CMD | IPI_REPL, 1128 IF_CMD, ip_sioctl_get_netmask, NULL }, 1129 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1130 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1131 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1132 IPI_GET_CMD | IPI_REPL, 1133 IF_CMD, ip_sioctl_get_metric, NULL }, 1134 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1135 IF_CMD, ip_sioctl_metric, NULL }, 1136 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1137 1138 /* See 166-168 below for extended SIOC*XARP ioctls */ 1139 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1140 MISC_CMD, ip_sioctl_arp, NULL }, 1141 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1142 MISC_CMD, ip_sioctl_arp, NULL }, 1143 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1144 MISC_CMD, ip_sioctl_arp, NULL }, 1145 1146 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1153 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1154 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1155 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1156 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1157 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1158 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1159 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1160 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1161 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1162 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1163 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1164 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1165 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1166 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1167 1168 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1169 MISC_CMD, if_unitsel, if_unitsel_restart }, 1170 1171 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1179 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1180 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1181 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1182 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1183 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1184 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1187 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1188 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1189 1190 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1191 IPI_PRIV | IPI_WR | IPI_MODOK, 1192 IF_CMD, ip_sioctl_sifname, NULL }, 1193 1194 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1195 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1196 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1197 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1198 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1199 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1200 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1201 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1202 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1203 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1204 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1205 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1206 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1207 1208 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1209 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1210 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1211 IF_CMD, ip_sioctl_get_muxid, NULL }, 1212 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1213 IPI_PRIV | IPI_WR | IPI_REPL, 1214 IF_CMD, ip_sioctl_muxid, NULL }, 1215 1216 /* Both if and lif variants share same func */ 1217 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1218 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1219 /* Both if and lif variants share same func */ 1220 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1221 IPI_PRIV | IPI_WR | IPI_REPL, 1222 IF_CMD, ip_sioctl_slifindex, NULL }, 1223 1224 /* copyin size cannot be coded for SIOCGIFCONF */ 1225 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1226 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1227 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1228 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1229 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1230 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1231 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1232 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1233 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1234 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1235 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1236 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1237 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1238 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1239 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1240 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1241 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1242 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1243 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1244 1245 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1246 IPI_PRIV | IPI_WR | IPI_REPL, 1247 LIF_CMD, ip_sioctl_removeif, 1248 ip_sioctl_removeif_restart }, 1249 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1250 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1251 LIF_CMD, ip_sioctl_addif, NULL }, 1252 #define SIOCLIFADDR_NDX 112 1253 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1254 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1255 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1256 IPI_GET_CMD | IPI_REPL, 1257 LIF_CMD, ip_sioctl_get_addr, NULL }, 1258 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1259 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1260 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1261 IPI_GET_CMD | IPI_REPL, 1262 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1263 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1264 IPI_PRIV | IPI_WR | IPI_REPL, 1265 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1266 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1267 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1268 LIF_CMD, ip_sioctl_get_flags, NULL }, 1269 1270 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1271 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1272 1273 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1274 ip_sioctl_get_lifconf, NULL }, 1275 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1276 LIF_CMD, ip_sioctl_mtu, NULL }, 1277 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1278 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1279 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1280 IPI_GET_CMD | IPI_REPL, 1281 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1282 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1283 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1284 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1285 IPI_GET_CMD | IPI_REPL, 1286 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1287 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1288 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1289 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1290 IPI_GET_CMD | IPI_REPL, 1291 LIF_CMD, ip_sioctl_get_metric, NULL }, 1292 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1293 LIF_CMD, ip_sioctl_metric, NULL }, 1294 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1295 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1296 LIF_CMD, ip_sioctl_slifname, 1297 ip_sioctl_slifname_restart }, 1298 1299 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1300 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1301 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1302 IPI_GET_CMD | IPI_REPL, 1303 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1304 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1305 IPI_PRIV | IPI_WR | IPI_REPL, 1306 LIF_CMD, ip_sioctl_muxid, NULL }, 1307 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1308 IPI_GET_CMD | IPI_REPL, 1309 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1310 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1311 IPI_PRIV | IPI_WR | IPI_REPL, 1312 LIF_CMD, ip_sioctl_slifindex, 0 }, 1313 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1314 LIF_CMD, ip_sioctl_token, NULL }, 1315 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1316 IPI_GET_CMD | IPI_REPL, 1317 LIF_CMD, ip_sioctl_get_token, NULL }, 1318 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1319 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1320 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1321 IPI_GET_CMD | IPI_REPL, 1322 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1323 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1324 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1325 1326 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1327 IPI_GET_CMD | IPI_REPL, 1328 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1329 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1330 LIF_CMD, ip_siocdelndp_v6, NULL }, 1331 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1332 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1333 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1334 LIF_CMD, ip_siocsetndp_v6, NULL }, 1335 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1336 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1337 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1338 MISC_CMD, ip_sioctl_tonlink, NULL }, 1339 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1340 MISC_CMD, ip_sioctl_tmysite, NULL }, 1341 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1342 TUN_CMD, ip_sioctl_tunparam, NULL }, 1343 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1344 IPI_PRIV | IPI_WR, 1345 TUN_CMD, ip_sioctl_tunparam, NULL }, 1346 1347 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1348 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1349 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1350 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1351 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1352 1353 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1354 IPI_PRIV | IPI_WR | IPI_REPL, 1355 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1356 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1357 IPI_PRIV | IPI_WR | IPI_REPL, 1358 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1359 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1360 IPI_PRIV | IPI_WR, 1361 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1362 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1363 IPI_GET_CMD | IPI_REPL, 1364 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1365 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1366 IPI_GET_CMD | IPI_REPL, 1367 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1368 1369 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1370 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1371 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1372 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1373 1374 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1375 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1376 1377 /* These are handled in ip_sioctl_copyin_setup itself */ 1378 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1379 MISC_CMD, NULL, NULL }, 1380 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1381 MISC_CMD, NULL, NULL }, 1382 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1383 1384 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1385 ip_sioctl_get_lifconf, NULL }, 1386 1387 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1388 MISC_CMD, ip_sioctl_xarp, NULL }, 1389 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1390 MISC_CMD, ip_sioctl_xarp, NULL }, 1391 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1392 MISC_CMD, ip_sioctl_xarp, NULL }, 1393 1394 /* SIOCPOPSOCKFS is not handled by IP */ 1395 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1396 1397 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1398 IPI_GET_CMD | IPI_REPL, 1399 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1400 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1401 IPI_PRIV | IPI_WR | IPI_REPL, 1402 LIF_CMD, ip_sioctl_slifzone, 1403 ip_sioctl_slifzone_restart }, 1404 /* 172-174 are SCTP ioctls and not handled by IP */ 1405 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1406 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1407 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1408 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1409 IPI_GET_CMD, LIF_CMD, 1410 ip_sioctl_get_lifusesrc, 0 }, 1411 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1412 IPI_PRIV | IPI_WR, 1413 LIF_CMD, ip_sioctl_slifusesrc, 1414 NULL }, 1415 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1416 ip_sioctl_get_lifsrcof, NULL }, 1417 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1418 MISC_CMD, ip_sioctl_msfilter, NULL }, 1419 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1420 MISC_CMD, ip_sioctl_msfilter, NULL }, 1421 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1422 MISC_CMD, ip_sioctl_msfilter, NULL }, 1423 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1424 MISC_CMD, ip_sioctl_msfilter, NULL }, 1425 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1426 ip_sioctl_set_ipmpfailback, NULL } 1427 }; 1428 1429 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1430 1431 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1432 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1433 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1434 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1435 TUN_CMD, ip_sioctl_tunparam, NULL }, 1436 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1437 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1438 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1439 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1440 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1441 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1442 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1443 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1444 MISC_CMD, mrt_ioctl}, 1445 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1446 MISC_CMD, mrt_ioctl}, 1447 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1448 MISC_CMD, mrt_ioctl} 1449 }; 1450 1451 int ip_misc_ioctl_count = 1452 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1453 1454 static idl_t *conn_drain_list; /* The array of conn drain lists */ 1455 static uint_t conn_drain_list_cnt; /* Total count of conn_drain_list */ 1456 static int conn_drain_list_index; /* Next drain_list to be used */ 1457 int conn_drain_nthreads; /* Number of drainers reqd. */ 1458 /* Settable in /etc/system */ 1459 1460 /* Defined in ip_ire.c */ 1461 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1462 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1463 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1464 1465 static nv_t ire_nv_arr[] = { 1466 { IRE_BROADCAST, "BROADCAST" }, 1467 { IRE_LOCAL, "LOCAL" }, 1468 { IRE_LOOPBACK, "LOOPBACK" }, 1469 { IRE_CACHE, "CACHE" }, 1470 { IRE_DEFAULT, "DEFAULT" }, 1471 { IRE_PREFIX, "PREFIX" }, 1472 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1473 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1474 { IRE_HOST, "HOST" }, 1475 { IRE_HOST_REDIRECT, "HOST_REDIRECT" }, 1476 { 0 } 1477 }; 1478 1479 nv_t *ire_nv_tbl = ire_nv_arr; 1480 1481 /* Defined in ip_if.c, protect the list of IPsec capable ills */ 1482 extern krwlock_t ipsec_capab_ills_lock; 1483 1484 /* Packet dropper for IP IPsec processing failures */ 1485 ipdropper_t ip_dropper; 1486 1487 /* Simple ICMP IP Header Template */ 1488 static ipha_t icmp_ipha = { 1489 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1490 }; 1491 1492 struct module_info ip_mod_info = { 1493 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1494 }; 1495 1496 static struct qinit rinit = { 1497 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1498 &ip_mod_info 1499 }; 1500 1501 static struct qinit winit = { 1502 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1503 &ip_mod_info 1504 }; 1505 1506 static struct qinit lrinit = { 1507 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1508 &ip_mod_info 1509 }; 1510 1511 static struct qinit lwinit = { 1512 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1513 &ip_mod_info 1514 }; 1515 1516 struct streamtab ipinfo = { 1517 &rinit, &winit, &lrinit, &lwinit 1518 }; 1519 1520 #ifdef DEBUG 1521 static boolean_t skip_sctp_cksum = B_FALSE; 1522 #endif 1523 /* 1524 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1525 */ 1526 mblk_t * 1527 ip_copymsg(mblk_t *mp) 1528 { 1529 mblk_t *nmp; 1530 ipsec_info_t *in; 1531 1532 if (mp->b_datap->db_type != M_CTL) 1533 return (copymsg(mp)); 1534 1535 in = (ipsec_info_t *)mp->b_rptr; 1536 1537 /* 1538 * Note that M_CTL is also used for delivering ICMP error messages 1539 * upstream to transport layers. 1540 */ 1541 if (in->ipsec_info_type != IPSEC_OUT && 1542 in->ipsec_info_type != IPSEC_IN) 1543 return (copymsg(mp)); 1544 1545 nmp = copymsg(mp->b_cont); 1546 1547 if (in->ipsec_info_type == IPSEC_OUT) 1548 return (ipsec_out_tag(mp, nmp)); 1549 else 1550 return (ipsec_in_tag(mp, nmp)); 1551 } 1552 1553 /* Generate an ICMP fragmentation needed message. */ 1554 static void 1555 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu) 1556 { 1557 icmph_t icmph; 1558 mblk_t *first_mp; 1559 boolean_t mctl_present; 1560 1561 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1562 1563 if (!(mp = icmp_pkt_err_ok(mp))) { 1564 if (mctl_present) 1565 freeb(first_mp); 1566 return; 1567 } 1568 1569 bzero(&icmph, sizeof (icmph_t)); 1570 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1571 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1572 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1573 BUMP_MIB(&icmp_mib, icmpOutFragNeeded); 1574 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 1575 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 1576 } 1577 1578 /* 1579 * icmp_inbound deals with ICMP messages in the following ways. 1580 * 1581 * 1) It needs to send a reply back and possibly delivering it 1582 * to the "interested" upper clients. 1583 * 2) It needs to send it to the upper clients only. 1584 * 3) It needs to change some values in IP only. 1585 * 4) It needs to change some values in IP and upper layers e.g TCP. 1586 * 1587 * We need to accomodate icmp messages coming in clear until we get 1588 * everything secure from the wire. If icmp_accept_clear_messages 1589 * is zero we check with the global policy and act accordingly. If 1590 * it is non-zero, we accept the message without any checks. But 1591 * *this does not mean* that this will be delivered to the upper 1592 * clients. By accepting we might send replies back, change our MTU 1593 * value etc. but delivery to the ULP/clients depends on their policy 1594 * dispositions. 1595 * 1596 * We handle the above 4 cases in the context of IPSEC in the 1597 * following way : 1598 * 1599 * 1) Send the reply back in the same way as the request came in. 1600 * If it came in encrypted, it goes out encrypted. If it came in 1601 * clear, it goes out in clear. Thus, this will prevent chosen 1602 * plain text attack. 1603 * 2) The client may or may not expect things to come in secure. 1604 * If it comes in secure, the policy constraints are checked 1605 * before delivering it to the upper layers. If it comes in 1606 * clear, ipsec_inbound_accept_clear will decide whether to 1607 * accept this in clear or not. In both the cases, if the returned 1608 * message (IP header + 8 bytes) that caused the icmp message has 1609 * AH/ESP headers, it is sent up to AH/ESP for validation before 1610 * sending up. If there are only 8 bytes of returned message, then 1611 * upper client will not be notified. 1612 * 3) Check with global policy to see whether it matches the constaints. 1613 * But this will be done only if icmp_accept_messages_in_clear is 1614 * zero. 1615 * 4) If we need to change both in IP and ULP, then the decision taken 1616 * while affecting the values in IP and while delivering up to TCP 1617 * should be the same. 1618 * 1619 * There are two cases. 1620 * 1621 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1622 * failed), we will not deliver it to the ULP, even though they 1623 * are *willing* to accept in *clear*. This is fine as our global 1624 * disposition to icmp messages asks us reject the datagram. 1625 * 1626 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1627 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1628 * to deliver it to ULP (policy failed), it can lead to 1629 * consistency problems. The cases known at this time are 1630 * ICMP_DESTINATION_UNREACHABLE messages with following code 1631 * values : 1632 * 1633 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1634 * and Upper layer rejects. Then the communication will 1635 * come to a stop. This is solved by making similar decisions 1636 * at both levels. Currently, when we are unable to deliver 1637 * to the Upper Layer (due to policy failures) while IP has 1638 * adjusted ire_max_frag, the next outbound datagram would 1639 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1640 * will be with the right level of protection. Thus the right 1641 * value will be communicated even if we are not able to 1642 * communicate when we get from the wire initially. But this 1643 * assumes there would be at least one outbound datagram after 1644 * IP has adjusted its ire_max_frag value. To make things 1645 * simpler, we accept in clear after the validation of 1646 * AH/ESP headers. 1647 * 1648 * - Other ICMP ERRORS : We may not be able to deliver it to the 1649 * upper layer depending on the level of protection the upper 1650 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1651 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1652 * should be accepted in clear when the Upper layer expects secure. 1653 * Thus the communication may get aborted by some bad ICMP 1654 * packets. 1655 * 1656 * IPQoS Notes: 1657 * The only instance when a packet is sent for processing is when there 1658 * isn't an ICMP client and if we are interested in it. 1659 * If there is a client, IPPF processing will take place in the 1660 * ip_fanout_proto routine. 1661 * 1662 * Zones notes: 1663 * The packet is only processed in the context of the specified zone: typically 1664 * only this zone will reply to an echo request, and only interested clients in 1665 * this zone will receive a copy of the packet. This means that the caller must 1666 * call icmp_inbound() for each relevant zone. 1667 */ 1668 static void 1669 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1670 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1671 ill_t *recv_ill, zoneid_t zoneid) 1672 { 1673 icmph_t *icmph; 1674 ipha_t *ipha; 1675 int iph_hdr_length; 1676 int hdr_length; 1677 boolean_t interested; 1678 uint32_t ts; 1679 uchar_t *wptr; 1680 ipif_t *ipif; 1681 mblk_t *first_mp; 1682 ipsec_in_t *ii; 1683 ire_t *src_ire; 1684 boolean_t onlink; 1685 timestruc_t now; 1686 uint32_t ill_index; 1687 1688 ASSERT(ill != NULL); 1689 1690 first_mp = mp; 1691 if (mctl_present) { 1692 mp = first_mp->b_cont; 1693 ASSERT(mp != NULL); 1694 } 1695 1696 ipha = (ipha_t *)mp->b_rptr; 1697 if (icmp_accept_clear_messages == 0) { 1698 first_mp = ipsec_check_global_policy(first_mp, NULL, 1699 ipha, NULL, mctl_present); 1700 if (first_mp == NULL) 1701 return; 1702 } 1703 1704 /* 1705 * On a labeled system, we have to check whether the zone itself is 1706 * permitted to receive raw traffic. 1707 */ 1708 if (is_system_labeled()) { 1709 if (zoneid == ALL_ZONES) 1710 zoneid = tsol_packet_to_zoneid(mp); 1711 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1712 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1713 zoneid)); 1714 BUMP_MIB(&icmp_mib, icmpInErrors); 1715 freemsg(first_mp); 1716 return; 1717 } 1718 } 1719 1720 /* 1721 * We have accepted the ICMP message. It means that we will 1722 * respond to the packet if needed. It may not be delivered 1723 * to the upper client depending on the policy constraints 1724 * and the disposition in ipsec_inbound_accept_clear. 1725 */ 1726 1727 ASSERT(ill != NULL); 1728 1729 BUMP_MIB(&icmp_mib, icmpInMsgs); 1730 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1731 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1732 /* Last chance to get real. */ 1733 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1734 BUMP_MIB(&icmp_mib, icmpInErrors); 1735 freemsg(first_mp); 1736 return; 1737 } 1738 /* Refresh iph following the pullup. */ 1739 ipha = (ipha_t *)mp->b_rptr; 1740 } 1741 /* ICMP header checksum, including checksum field, should be zero. */ 1742 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1743 IP_CSUM(mp, iph_hdr_length, 0)) { 1744 BUMP_MIB(&icmp_mib, icmpInCksumErrs); 1745 freemsg(first_mp); 1746 return; 1747 } 1748 /* The IP header will always be a multiple of four bytes */ 1749 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1750 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1751 icmph->icmph_code)); 1752 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1753 /* We will set "interested" to "true" if we want a copy */ 1754 interested = B_FALSE; 1755 switch (icmph->icmph_type) { 1756 case ICMP_ECHO_REPLY: 1757 BUMP_MIB(&icmp_mib, icmpInEchoReps); 1758 break; 1759 case ICMP_DEST_UNREACHABLE: 1760 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1761 BUMP_MIB(&icmp_mib, icmpInFragNeeded); 1762 interested = B_TRUE; /* Pass up to transport */ 1763 BUMP_MIB(&icmp_mib, icmpInDestUnreachs); 1764 break; 1765 case ICMP_SOURCE_QUENCH: 1766 interested = B_TRUE; /* Pass up to transport */ 1767 BUMP_MIB(&icmp_mib, icmpInSrcQuenchs); 1768 break; 1769 case ICMP_REDIRECT: 1770 if (!ip_ignore_redirect) 1771 interested = B_TRUE; 1772 BUMP_MIB(&icmp_mib, icmpInRedirects); 1773 break; 1774 case ICMP_ECHO_REQUEST: 1775 /* 1776 * Whether to respond to echo requests that come in as IP 1777 * broadcasts or as IP multicast is subject to debate 1778 * (what isn't?). We aim to please, you pick it. 1779 * Default is do it. 1780 */ 1781 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1782 /* unicast: always respond */ 1783 interested = B_TRUE; 1784 } else if (CLASSD(ipha->ipha_dst)) { 1785 /* multicast: respond based on tunable */ 1786 interested = ip_g_resp_to_echo_mcast; 1787 } else if (broadcast) { 1788 /* broadcast: respond based on tunable */ 1789 interested = ip_g_resp_to_echo_bcast; 1790 } 1791 BUMP_MIB(&icmp_mib, icmpInEchos); 1792 break; 1793 case ICMP_ROUTER_ADVERTISEMENT: 1794 case ICMP_ROUTER_SOLICITATION: 1795 break; 1796 case ICMP_TIME_EXCEEDED: 1797 interested = B_TRUE; /* Pass up to transport */ 1798 BUMP_MIB(&icmp_mib, icmpInTimeExcds); 1799 break; 1800 case ICMP_PARAM_PROBLEM: 1801 interested = B_TRUE; /* Pass up to transport */ 1802 BUMP_MIB(&icmp_mib, icmpInParmProbs); 1803 break; 1804 case ICMP_TIME_STAMP_REQUEST: 1805 /* Response to Time Stamp Requests is local policy. */ 1806 if (ip_g_resp_to_timestamp && 1807 /* So is whether to respond if it was an IP broadcast. */ 1808 (!broadcast || ip_g_resp_to_timestamp_bcast)) { 1809 int tstamp_len = 3 * sizeof (uint32_t); 1810 1811 if (wptr + tstamp_len > mp->b_wptr) { 1812 if (!pullupmsg(mp, wptr + tstamp_len - 1813 mp->b_rptr)) { 1814 BUMP_MIB(&ip_mib, ipInDiscards); 1815 freemsg(first_mp); 1816 return; 1817 } 1818 /* Refresh ipha following the pullup. */ 1819 ipha = (ipha_t *)mp->b_rptr; 1820 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1821 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1822 } 1823 interested = B_TRUE; 1824 } 1825 BUMP_MIB(&icmp_mib, icmpInTimestamps); 1826 break; 1827 case ICMP_TIME_STAMP_REPLY: 1828 BUMP_MIB(&icmp_mib, icmpInTimestampReps); 1829 break; 1830 case ICMP_INFO_REQUEST: 1831 /* Per RFC 1122 3.2.2.7, ignore this. */ 1832 case ICMP_INFO_REPLY: 1833 break; 1834 case ICMP_ADDRESS_MASK_REQUEST: 1835 if ((ip_respond_to_address_mask_broadcast || !broadcast) && 1836 /* TODO m_pullup of complete header? */ 1837 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1838 interested = B_TRUE; 1839 BUMP_MIB(&icmp_mib, icmpInAddrMasks); 1840 break; 1841 case ICMP_ADDRESS_MASK_REPLY: 1842 BUMP_MIB(&icmp_mib, icmpInAddrMaskReps); 1843 break; 1844 default: 1845 interested = B_TRUE; /* Pass up to transport */ 1846 BUMP_MIB(&icmp_mib, icmpInUnknowns); 1847 break; 1848 } 1849 /* See if there is an ICMP client. */ 1850 if (ipcl_proto_search(IPPROTO_ICMP) != NULL) { 1851 /* If there is an ICMP client and we want one too, copy it. */ 1852 mblk_t *first_mp1; 1853 1854 if (!interested) { 1855 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1856 ip_policy, recv_ill, zoneid); 1857 return; 1858 } 1859 first_mp1 = ip_copymsg(first_mp); 1860 if (first_mp1 != NULL) { 1861 ip_fanout_proto(q, first_mp1, ill, ipha, 1862 0, mctl_present, ip_policy, recv_ill, zoneid); 1863 } 1864 } else if (!interested) { 1865 freemsg(first_mp); 1866 return; 1867 } else { 1868 /* 1869 * Initiate policy processing for this packet if ip_policy 1870 * is true. 1871 */ 1872 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 1873 ill_index = ill->ill_phyint->phyint_ifindex; 1874 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1875 if (mp == NULL) { 1876 if (mctl_present) { 1877 freeb(first_mp); 1878 } 1879 BUMP_MIB(&icmp_mib, icmpInErrors); 1880 return; 1881 } 1882 } 1883 } 1884 /* We want to do something with it. */ 1885 /* Check db_ref to make sure we can modify the packet. */ 1886 if (mp->b_datap->db_ref > 1) { 1887 mblk_t *first_mp1; 1888 1889 first_mp1 = ip_copymsg(first_mp); 1890 freemsg(first_mp); 1891 if (!first_mp1) { 1892 BUMP_MIB(&icmp_mib, icmpOutDrops); 1893 return; 1894 } 1895 first_mp = first_mp1; 1896 if (mctl_present) { 1897 mp = first_mp->b_cont; 1898 ASSERT(mp != NULL); 1899 } else { 1900 mp = first_mp; 1901 } 1902 ipha = (ipha_t *)mp->b_rptr; 1903 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1904 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1905 } 1906 switch (icmph->icmph_type) { 1907 case ICMP_ADDRESS_MASK_REQUEST: 1908 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1909 if (ipif == NULL) { 1910 freemsg(first_mp); 1911 return; 1912 } 1913 /* 1914 * outging interface must be IPv4 1915 */ 1916 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1917 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1918 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1919 ipif_refrele(ipif); 1920 BUMP_MIB(&icmp_mib, icmpOutAddrMaskReps); 1921 break; 1922 case ICMP_ECHO_REQUEST: 1923 icmph->icmph_type = ICMP_ECHO_REPLY; 1924 BUMP_MIB(&icmp_mib, icmpOutEchoReps); 1925 break; 1926 case ICMP_TIME_STAMP_REQUEST: { 1927 uint32_t *tsp; 1928 1929 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1930 tsp = (uint32_t *)wptr; 1931 tsp++; /* Skip past 'originate time' */ 1932 /* Compute # of milliseconds since midnight */ 1933 gethrestime(&now); 1934 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1935 now.tv_nsec / (NANOSEC / MILLISEC); 1936 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1937 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1938 BUMP_MIB(&icmp_mib, icmpOutTimestampReps); 1939 break; 1940 } 1941 default: 1942 ipha = (ipha_t *)&icmph[1]; 1943 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1944 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1945 BUMP_MIB(&ip_mib, ipInDiscards); 1946 freemsg(first_mp); 1947 return; 1948 } 1949 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1950 ipha = (ipha_t *)&icmph[1]; 1951 } 1952 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1953 BUMP_MIB(&ip_mib, ipInDiscards); 1954 freemsg(first_mp); 1955 return; 1956 } 1957 hdr_length = IPH_HDR_LENGTH(ipha); 1958 if (hdr_length < sizeof (ipha_t)) { 1959 BUMP_MIB(&ip_mib, ipInDiscards); 1960 freemsg(first_mp); 1961 return; 1962 } 1963 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1964 if (!pullupmsg(mp, 1965 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1966 BUMP_MIB(&ip_mib, ipInDiscards); 1967 freemsg(first_mp); 1968 return; 1969 } 1970 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1971 ipha = (ipha_t *)&icmph[1]; 1972 } 1973 switch (icmph->icmph_type) { 1974 case ICMP_REDIRECT: 1975 /* 1976 * As there is no upper client to deliver, we don't 1977 * need the first_mp any more. 1978 */ 1979 if (mctl_present) { 1980 freeb(first_mp); 1981 } 1982 icmp_redirect(mp); 1983 return; 1984 case ICMP_DEST_UNREACHABLE: 1985 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1986 if (!icmp_inbound_too_big(icmph, ipha, ill, 1987 zoneid, mp, iph_hdr_length)) { 1988 freemsg(first_mp); 1989 return; 1990 } 1991 /* 1992 * icmp_inbound_too_big() may alter mp. 1993 * Resynch ipha and icmph accordingly. 1994 */ 1995 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1996 ipha = (ipha_t *)&icmph[1]; 1997 } 1998 /* FALLTHRU */ 1999 default : 2000 /* 2001 * IPQoS notes: Since we have already done IPQoS 2002 * processing we don't want to do it again in 2003 * the fanout routines called by 2004 * icmp_inbound_error_fanout, hence the last 2005 * argument, ip_policy, is B_FALSE. 2006 */ 2007 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 2008 ipha, iph_hdr_length, hdr_length, mctl_present, 2009 B_FALSE, recv_ill, zoneid); 2010 } 2011 return; 2012 } 2013 /* Send out an ICMP packet */ 2014 icmph->icmph_checksum = 0; 2015 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 2016 if (icmph->icmph_checksum == 0) 2017 icmph->icmph_checksum = 0xFFFF; 2018 if (broadcast || CLASSD(ipha->ipha_dst)) { 2019 ipif_t *ipif_chosen; 2020 /* 2021 * Make it look like it was directed to us, so we don't look 2022 * like a fool with a broadcast or multicast source address. 2023 */ 2024 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 2025 /* 2026 * Make sure that we haven't grabbed an interface that's DOWN. 2027 */ 2028 if (ipif != NULL) { 2029 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2030 ipha->ipha_src, zoneid); 2031 if (ipif_chosen != NULL) { 2032 ipif_refrele(ipif); 2033 ipif = ipif_chosen; 2034 } 2035 } 2036 if (ipif == NULL) { 2037 ip0dbg(("icmp_inbound: " 2038 "No source for broadcast/multicast:\n" 2039 "\tsrc 0x%x dst 0x%x ill %p " 2040 "ipif_lcl_addr 0x%x\n", 2041 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2042 (void *)ill, 2043 ill->ill_ipif->ipif_lcl_addr)); 2044 freemsg(first_mp); 2045 return; 2046 } 2047 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2048 ipha->ipha_dst = ipif->ipif_src_addr; 2049 ipif_refrele(ipif); 2050 } 2051 /* Reset time to live. */ 2052 ipha->ipha_ttl = ip_def_ttl; 2053 { 2054 /* Swap source and destination addresses */ 2055 ipaddr_t tmp; 2056 2057 tmp = ipha->ipha_src; 2058 ipha->ipha_src = ipha->ipha_dst; 2059 ipha->ipha_dst = tmp; 2060 } 2061 ipha->ipha_ident = 0; 2062 if (!IS_SIMPLE_IPH(ipha)) 2063 icmp_options_update(ipha); 2064 2065 /* 2066 * ICMP echo replies should go out on the same interface 2067 * the request came on as probes used by in.mpathd for detecting 2068 * NIC failures are ECHO packets. We turn-off load spreading 2069 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2070 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2071 * function. This is in turn handled by ip_wput and ip_newroute 2072 * to make sure that the packet goes out on the interface it came 2073 * in on. If we don't turnoff load spreading, the packets might get 2074 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2075 * to go out and in.mpathd would wrongly detect a failure or 2076 * mis-detect a NIC failure for link failure. As load spreading 2077 * can happen only if ill_group is not NULL, we do only for 2078 * that case and this does not affect the normal case. 2079 * 2080 * We turn off load spreading only on echo packets that came from 2081 * on-link hosts. If the interface route has been deleted, this will 2082 * not be enforced as we can't do much. For off-link hosts, as the 2083 * default routes in IPv4 does not typically have an ire_ipif 2084 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2085 * Moreover, expecting a default route through this interface may 2086 * not be correct. We use ipha_dst because of the swap above. 2087 */ 2088 onlink = B_FALSE; 2089 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2090 /* 2091 * First, we need to make sure that it is not one of our 2092 * local addresses. If we set onlink when it is one of 2093 * our local addresses, we will end up creating IRE_CACHES 2094 * for one of our local addresses. Then, we will never 2095 * accept packets for them afterwards. 2096 */ 2097 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2098 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2099 if (src_ire == NULL) { 2100 ipif = ipif_get_next_ipif(NULL, ill); 2101 if (ipif == NULL) { 2102 BUMP_MIB(&ip_mib, ipInDiscards); 2103 freemsg(mp); 2104 return; 2105 } 2106 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2107 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2108 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE); 2109 ipif_refrele(ipif); 2110 if (src_ire != NULL) { 2111 onlink = B_TRUE; 2112 ire_refrele(src_ire); 2113 } 2114 } else { 2115 ire_refrele(src_ire); 2116 } 2117 } 2118 if (!mctl_present) { 2119 /* 2120 * This packet should go out the same way as it 2121 * came in i.e in clear. To make sure that global 2122 * policy will not be applied to this in ip_wput_ire, 2123 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2124 */ 2125 ASSERT(first_mp == mp); 2126 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 2127 BUMP_MIB(&ip_mib, ipInDiscards); 2128 freemsg(mp); 2129 return; 2130 } 2131 ii = (ipsec_in_t *)first_mp->b_rptr; 2132 2133 /* This is not a secure packet */ 2134 ii->ipsec_in_secure = B_FALSE; 2135 if (onlink) { 2136 ii->ipsec_in_attach_if = B_TRUE; 2137 ii->ipsec_in_ill_index = 2138 ill->ill_phyint->phyint_ifindex; 2139 ii->ipsec_in_rill_index = 2140 recv_ill->ill_phyint->phyint_ifindex; 2141 } 2142 first_mp->b_cont = mp; 2143 } else if (onlink) { 2144 ii = (ipsec_in_t *)first_mp->b_rptr; 2145 ii->ipsec_in_attach_if = B_TRUE; 2146 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2147 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2148 } else { 2149 ii = (ipsec_in_t *)first_mp->b_rptr; 2150 } 2151 ii->ipsec_in_zoneid = zoneid; 2152 ASSERT(zoneid != ALL_ZONES); 2153 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2154 BUMP_MIB(&ip_mib, ipInDiscards); 2155 return; 2156 } 2157 BUMP_MIB(&icmp_mib, icmpOutMsgs); 2158 put(WR(q), first_mp); 2159 } 2160 2161 static ipaddr_t 2162 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2163 { 2164 conn_t *connp; 2165 connf_t *connfp; 2166 ipaddr_t nexthop_addr = INADDR_ANY; 2167 int hdr_length = IPH_HDR_LENGTH(ipha); 2168 uint16_t *up; 2169 uint32_t ports; 2170 2171 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2172 switch (ipha->ipha_protocol) { 2173 case IPPROTO_TCP: 2174 { 2175 tcph_t *tcph; 2176 2177 /* do a reverse lookup */ 2178 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2179 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2180 TCPS_LISTEN); 2181 break; 2182 } 2183 case IPPROTO_UDP: 2184 { 2185 uint32_t dstport, srcport; 2186 2187 ((uint16_t *)&ports)[0] = up[1]; 2188 ((uint16_t *)&ports)[1] = up[0]; 2189 2190 /* Extract ports in net byte order */ 2191 dstport = htons(ntohl(ports) & 0xFFFF); 2192 srcport = htons(ntohl(ports) >> 16); 2193 2194 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 2195 mutex_enter(&connfp->connf_lock); 2196 connp = connfp->connf_head; 2197 2198 /* do a reverse lookup */ 2199 while ((connp != NULL) && 2200 (!IPCL_UDP_MATCH(connp, dstport, 2201 ipha->ipha_src, srcport, ipha->ipha_dst) || 2202 connp->conn_zoneid != zoneid)) { 2203 connp = connp->conn_next; 2204 } 2205 if (connp != NULL) 2206 CONN_INC_REF(connp); 2207 mutex_exit(&connfp->connf_lock); 2208 break; 2209 } 2210 case IPPROTO_SCTP: 2211 { 2212 in6_addr_t map_src, map_dst; 2213 2214 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2215 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2216 ((uint16_t *)&ports)[0] = up[1]; 2217 ((uint16_t *)&ports)[1] = up[0]; 2218 2219 if ((connp = sctp_find_conn(&map_src, &map_dst, ports, 2220 0, zoneid)) == NULL) { 2221 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2222 zoneid, ports, ipha); 2223 } else { 2224 CONN_INC_REF(connp); 2225 SCTP_REFRELE(CONN2SCTP(connp)); 2226 } 2227 break; 2228 } 2229 default: 2230 { 2231 ipha_t ripha; 2232 2233 ripha.ipha_src = ipha->ipha_dst; 2234 ripha.ipha_dst = ipha->ipha_src; 2235 ripha.ipha_protocol = ipha->ipha_protocol; 2236 2237 connfp = &ipcl_proto_fanout[ipha->ipha_protocol]; 2238 mutex_enter(&connfp->connf_lock); 2239 connp = connfp->connf_head; 2240 for (connp = connfp->connf_head; connp != NULL; 2241 connp = connp->conn_next) { 2242 if (IPCL_PROTO_MATCH(connp, 2243 ipha->ipha_protocol, &ripha, ill, 2244 0, zoneid)) { 2245 CONN_INC_REF(connp); 2246 break; 2247 } 2248 } 2249 mutex_exit(&connfp->connf_lock); 2250 } 2251 } 2252 if (connp != NULL) { 2253 if (connp->conn_nexthop_set) 2254 nexthop_addr = connp->conn_nexthop_v4; 2255 CONN_DEC_REF(connp); 2256 } 2257 return (nexthop_addr); 2258 } 2259 2260 /* Table from RFC 1191 */ 2261 static int icmp_frag_size_table[] = 2262 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2263 2264 /* 2265 * Process received ICMP Packet too big. 2266 * After updating any IRE it does the fanout to any matching transport streams. 2267 * Assumes the message has been pulled up till the IP header that caused 2268 * the error. 2269 * 2270 * Returns B_FALSE on failure and B_TRUE on success. 2271 */ 2272 static boolean_t 2273 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2274 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length) 2275 { 2276 ire_t *ire, *first_ire; 2277 int mtu; 2278 int hdr_length; 2279 ipaddr_t nexthop_addr; 2280 2281 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2282 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2283 2284 hdr_length = IPH_HDR_LENGTH(ipha); 2285 2286 /* Drop if the original packet contained a source route */ 2287 if (ip_source_route_included(ipha)) { 2288 return (B_FALSE); 2289 } 2290 /* 2291 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2292 * header. 2293 */ 2294 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2295 mp->b_wptr) { 2296 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2297 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2298 BUMP_MIB(&ip_mib, ipInDiscards); 2299 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2300 return (B_FALSE); 2301 } 2302 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2303 ipha = (ipha_t *)&icmph[1]; 2304 } 2305 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2306 if (nexthop_addr != INADDR_ANY) { 2307 /* nexthop set */ 2308 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2309 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2310 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW); 2311 } else { 2312 /* nexthop not set */ 2313 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2314 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2315 } 2316 2317 if (!first_ire) { 2318 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2319 ntohl(ipha->ipha_dst))); 2320 return (B_FALSE); 2321 } 2322 /* Check for MTU discovery advice as described in RFC 1191 */ 2323 mtu = ntohs(icmph->icmph_du_mtu); 2324 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2325 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2326 ire = ire->ire_next) { 2327 /* 2328 * Look for the connection to which this ICMP message is 2329 * directed. If it has the IP_NEXTHOP option set, then the 2330 * search is limited to IREs with the MATCH_IRE_PRIVATE 2331 * option. Else the search is limited to regular IREs. 2332 */ 2333 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2334 (nexthop_addr != ire->ire_gateway_addr)) || 2335 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2336 (nexthop_addr != INADDR_ANY))) 2337 continue; 2338 2339 mutex_enter(&ire->ire_lock); 2340 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2341 /* Reduce the IRE max frag value as advised. */ 2342 ip1dbg(("Received mtu from router: %d (was %d)\n", 2343 mtu, ire->ire_max_frag)); 2344 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2345 } else { 2346 uint32_t length; 2347 int i; 2348 2349 /* 2350 * Use the table from RFC 1191 to figure out 2351 * the next "plateau" based on the length in 2352 * the original IP packet. 2353 */ 2354 length = ntohs(ipha->ipha_length); 2355 if (ire->ire_max_frag <= length && 2356 ire->ire_max_frag >= length - hdr_length) { 2357 /* 2358 * Handle broken BSD 4.2 systems that 2359 * return the wrong iph_length in ICMP 2360 * errors. 2361 */ 2362 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2363 length, ire->ire_max_frag)); 2364 length -= hdr_length; 2365 } 2366 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2367 if (length > icmp_frag_size_table[i]) 2368 break; 2369 } 2370 if (i == A_CNT(icmp_frag_size_table)) { 2371 /* Smaller than 68! */ 2372 ip1dbg(("Too big for packet size %d\n", 2373 length)); 2374 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2375 ire->ire_frag_flag = 0; 2376 } else { 2377 mtu = icmp_frag_size_table[i]; 2378 ip1dbg(("Calculated mtu %d, packet size %d, " 2379 "before %d", mtu, length, 2380 ire->ire_max_frag)); 2381 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2382 ip1dbg((", after %d\n", ire->ire_max_frag)); 2383 } 2384 /* Record the new max frag size for the ULP. */ 2385 icmph->icmph_du_zero = 0; 2386 icmph->icmph_du_mtu = 2387 htons((uint16_t)ire->ire_max_frag); 2388 } 2389 mutex_exit(&ire->ire_lock); 2390 } 2391 rw_exit(&first_ire->ire_bucket->irb_lock); 2392 ire_refrele(first_ire); 2393 return (B_TRUE); 2394 } 2395 2396 /* 2397 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2398 * calls this function. 2399 */ 2400 static mblk_t * 2401 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2402 { 2403 ipha_t *ipha; 2404 icmph_t *icmph; 2405 ipha_t *in_ipha; 2406 int length; 2407 2408 ASSERT(mp->b_datap->db_type == M_DATA); 2409 2410 /* 2411 * For Self-encapsulated packets, we added an extra IP header 2412 * without the options. Inner IP header is the one from which 2413 * the outer IP header was formed. Thus, we need to remove the 2414 * outer IP header. To do this, we pullup the whole message 2415 * and overlay whatever follows the outer IP header over the 2416 * outer IP header. 2417 */ 2418 2419 if (!pullupmsg(mp, -1)) { 2420 BUMP_MIB(&ip_mib, ipInDiscards); 2421 return (NULL); 2422 } 2423 2424 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2425 ipha = (ipha_t *)&icmph[1]; 2426 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2427 2428 /* 2429 * The length that we want to overlay is following the inner 2430 * IP header. Subtracting the IP header + icmp header + outer 2431 * IP header's length should give us the length that we want to 2432 * overlay. 2433 */ 2434 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2435 hdr_length; 2436 /* 2437 * Overlay whatever follows the inner header over the 2438 * outer header. 2439 */ 2440 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2441 2442 /* Set the wptr to account for the outer header */ 2443 mp->b_wptr -= hdr_length; 2444 return (mp); 2445 } 2446 2447 /* 2448 * Try to pass the ICMP message upstream in case the ULP cares. 2449 * 2450 * If the packet that caused the ICMP error is secure, we send 2451 * it to AH/ESP to make sure that the attached packet has a 2452 * valid association. ipha in the code below points to the 2453 * IP header of the packet that caused the error. 2454 * 2455 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2456 * in the context of IPSEC. Normally we tell the upper layer 2457 * whenever we send the ire (including ip_bind), the IPSEC header 2458 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2459 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2460 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2461 * same thing. As TCP has the IPSEC options size that needs to be 2462 * adjusted, we just pass the MTU unchanged. 2463 * 2464 * IFN could have been generated locally or by some router. 2465 * 2466 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2467 * This happens because IP adjusted its value of MTU on an 2468 * earlier IFN message and could not tell the upper layer, 2469 * the new adjusted value of MTU e.g. Packet was encrypted 2470 * or there was not enough information to fanout to upper 2471 * layers. Thus on the next outbound datagram, ip_wput_ire 2472 * generates the IFN, where IPSEC processing has *not* been 2473 * done. 2474 * 2475 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2476 * could have generated this. This happens because ire_max_frag 2477 * value in IP was set to a new value, while the IPSEC processing 2478 * was being done and after we made the fragmentation check in 2479 * ip_wput_ire. Thus on return from IPSEC processing, 2480 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2481 * and generates the IFN. As IPSEC processing is over, we fanout 2482 * to AH/ESP to remove the header. 2483 * 2484 * In both these cases, ipsec_in_loopback will be set indicating 2485 * that IFN was generated locally. 2486 * 2487 * ROUTER : IFN could be secure or non-secure. 2488 * 2489 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2490 * packet in error has AH/ESP headers to validate the AH/ESP 2491 * headers. AH/ESP will verify whether there is a valid SA or 2492 * not and send it back. We will fanout again if we have more 2493 * data in the packet. 2494 * 2495 * If the packet in error does not have AH/ESP, we handle it 2496 * like any other case. 2497 * 2498 * * NON_SECURE : If the packet in error has AH/ESP headers, 2499 * we attach a dummy ipsec_in and send it up to AH/ESP 2500 * for validation. AH/ESP will verify whether there is a 2501 * valid SA or not and send it back. We will fanout again if 2502 * we have more data in the packet. 2503 * 2504 * If the packet in error does not have AH/ESP, we handle it 2505 * like any other case. 2506 */ 2507 static void 2508 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2509 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2510 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2511 zoneid_t zoneid) 2512 { 2513 uint16_t *up; /* Pointer to ports in ULP header */ 2514 uint32_t ports; /* reversed ports for fanout */ 2515 ipha_t ripha; /* With reversed addresses */ 2516 mblk_t *first_mp; 2517 ipsec_in_t *ii; 2518 tcph_t *tcph; 2519 conn_t *connp; 2520 2521 first_mp = mp; 2522 if (mctl_present) { 2523 mp = first_mp->b_cont; 2524 ASSERT(mp != NULL); 2525 2526 ii = (ipsec_in_t *)first_mp->b_rptr; 2527 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2528 } else { 2529 ii = NULL; 2530 } 2531 2532 switch (ipha->ipha_protocol) { 2533 case IPPROTO_UDP: 2534 /* 2535 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2536 * transport header. 2537 */ 2538 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2539 mp->b_wptr) { 2540 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2541 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2542 BUMP_MIB(&ip_mib, ipInDiscards); 2543 goto drop_pkt; 2544 } 2545 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2546 ipha = (ipha_t *)&icmph[1]; 2547 } 2548 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2549 2550 /* 2551 * Attempt to find a client stream based on port. 2552 * Note that we do a reverse lookup since the header is 2553 * in the form we sent it out. 2554 * The ripha header is only used for the IP_UDP_MATCH and we 2555 * only set the src and dst addresses and protocol. 2556 */ 2557 ripha.ipha_src = ipha->ipha_dst; 2558 ripha.ipha_dst = ipha->ipha_src; 2559 ripha.ipha_protocol = ipha->ipha_protocol; 2560 ((uint16_t *)&ports)[0] = up[1]; 2561 ((uint16_t *)&ports)[1] = up[0]; 2562 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2563 ntohl(ipha->ipha_src), ntohs(up[0]), 2564 ntohl(ipha->ipha_dst), ntohs(up[1]), 2565 icmph->icmph_type, icmph->icmph_code)); 2566 2567 /* Have to change db_type after any pullupmsg */ 2568 DB_TYPE(mp) = M_CTL; 2569 2570 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2571 mctl_present, ip_policy, recv_ill, zoneid); 2572 return; 2573 2574 case IPPROTO_TCP: 2575 /* 2576 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2577 * transport header. 2578 */ 2579 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2580 mp->b_wptr) { 2581 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2582 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2583 BUMP_MIB(&ip_mib, ipInDiscards); 2584 goto drop_pkt; 2585 } 2586 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2587 ipha = (ipha_t *)&icmph[1]; 2588 } 2589 /* 2590 * Find a TCP client stream for this packet. 2591 * Note that we do a reverse lookup since the header is 2592 * in the form we sent it out. 2593 */ 2594 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2595 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN); 2596 if (connp == NULL) { 2597 BUMP_MIB(&ip_mib, ipInDiscards); 2598 goto drop_pkt; 2599 } 2600 2601 /* Have to change db_type after any pullupmsg */ 2602 DB_TYPE(mp) = M_CTL; 2603 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2604 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2605 return; 2606 2607 case IPPROTO_SCTP: 2608 /* 2609 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2610 * transport header. 2611 */ 2612 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2613 mp->b_wptr) { 2614 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2615 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2616 BUMP_MIB(&ip_mib, ipInDiscards); 2617 goto drop_pkt; 2618 } 2619 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2620 ipha = (ipha_t *)&icmph[1]; 2621 } 2622 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2623 /* 2624 * Find a SCTP client stream for this packet. 2625 * Note that we do a reverse lookup since the header is 2626 * in the form we sent it out. 2627 * The ripha header is only used for the matching and we 2628 * only set the src and dst addresses, protocol, and version. 2629 */ 2630 ripha.ipha_src = ipha->ipha_dst; 2631 ripha.ipha_dst = ipha->ipha_src; 2632 ripha.ipha_protocol = ipha->ipha_protocol; 2633 ripha.ipha_version_and_hdr_length = 2634 ipha->ipha_version_and_hdr_length; 2635 ((uint16_t *)&ports)[0] = up[1]; 2636 ((uint16_t *)&ports)[1] = up[0]; 2637 2638 /* Have to change db_type after any pullupmsg */ 2639 DB_TYPE(mp) = M_CTL; 2640 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2641 mctl_present, ip_policy, 0, zoneid); 2642 return; 2643 2644 case IPPROTO_ESP: 2645 case IPPROTO_AH: { 2646 int ipsec_rc; 2647 2648 /* 2649 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2650 * We will re-use the IPSEC_IN if it is already present as 2651 * AH/ESP will not affect any fields in the IPSEC_IN for 2652 * ICMP errors. If there is no IPSEC_IN, allocate a new 2653 * one and attach it in the front. 2654 */ 2655 if (ii != NULL) { 2656 /* 2657 * ip_fanout_proto_again converts the ICMP errors 2658 * that come back from AH/ESP to M_DATA so that 2659 * if it is non-AH/ESP and we do a pullupmsg in 2660 * this function, it would work. Convert it back 2661 * to M_CTL before we send up as this is a ICMP 2662 * error. This could have been generated locally or 2663 * by some router. Validate the inner IPSEC 2664 * headers. 2665 * 2666 * NOTE : ill_index is used by ip_fanout_proto_again 2667 * to locate the ill. 2668 */ 2669 ASSERT(ill != NULL); 2670 ii->ipsec_in_ill_index = 2671 ill->ill_phyint->phyint_ifindex; 2672 ii->ipsec_in_rill_index = 2673 recv_ill->ill_phyint->phyint_ifindex; 2674 DB_TYPE(first_mp->b_cont) = M_CTL; 2675 } else { 2676 /* 2677 * IPSEC_IN is not present. We attach a ipsec_in 2678 * message and send up to IPSEC for validating 2679 * and removing the IPSEC headers. Clear 2680 * ipsec_in_secure so that when we return 2681 * from IPSEC, we don't mistakenly think that this 2682 * is a secure packet came from the network. 2683 * 2684 * NOTE : ill_index is used by ip_fanout_proto_again 2685 * to locate the ill. 2686 */ 2687 ASSERT(first_mp == mp); 2688 first_mp = ipsec_in_alloc(B_TRUE); 2689 if (first_mp == NULL) { 2690 freemsg(mp); 2691 BUMP_MIB(&ip_mib, ipInDiscards); 2692 return; 2693 } 2694 ii = (ipsec_in_t *)first_mp->b_rptr; 2695 2696 /* This is not a secure packet */ 2697 ii->ipsec_in_secure = B_FALSE; 2698 first_mp->b_cont = mp; 2699 DB_TYPE(mp) = M_CTL; 2700 ASSERT(ill != NULL); 2701 ii->ipsec_in_ill_index = 2702 ill->ill_phyint->phyint_ifindex; 2703 ii->ipsec_in_rill_index = 2704 recv_ill->ill_phyint->phyint_ifindex; 2705 } 2706 ip2dbg(("icmp_inbound_error: ipsec\n")); 2707 2708 if (!ipsec_loaded()) { 2709 ip_proto_not_sup(q, first_mp, 0, zoneid); 2710 return; 2711 } 2712 2713 if (ipha->ipha_protocol == IPPROTO_ESP) 2714 ipsec_rc = ipsecesp_icmp_error(first_mp); 2715 else 2716 ipsec_rc = ipsecah_icmp_error(first_mp); 2717 if (ipsec_rc == IPSEC_STATUS_FAILED) 2718 return; 2719 2720 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2721 return; 2722 } 2723 default: 2724 /* 2725 * The ripha header is only used for the lookup and we 2726 * only set the src and dst addresses and protocol. 2727 */ 2728 ripha.ipha_src = ipha->ipha_dst; 2729 ripha.ipha_dst = ipha->ipha_src; 2730 ripha.ipha_protocol = ipha->ipha_protocol; 2731 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2732 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2733 ntohl(ipha->ipha_dst), 2734 icmph->icmph_type, icmph->icmph_code)); 2735 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2736 ipha_t *in_ipha; 2737 2738 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2739 mp->b_wptr) { 2740 if (!pullupmsg(mp, (uchar_t *)ipha + 2741 hdr_length + sizeof (ipha_t) - 2742 mp->b_rptr)) { 2743 2744 BUMP_MIB(&ip_mib, ipInDiscards); 2745 goto drop_pkt; 2746 } 2747 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2748 ipha = (ipha_t *)&icmph[1]; 2749 } 2750 /* 2751 * Caller has verified that length has to be 2752 * at least the size of IP header. 2753 */ 2754 ASSERT(hdr_length >= sizeof (ipha_t)); 2755 /* 2756 * Check the sanity of the inner IP header like 2757 * we did for the outer header. 2758 */ 2759 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2760 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2761 BUMP_MIB(&ip_mib, ipInDiscards); 2762 goto drop_pkt; 2763 } 2764 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2765 BUMP_MIB(&ip_mib, ipInDiscards); 2766 goto drop_pkt; 2767 } 2768 /* Check for Self-encapsulated tunnels */ 2769 if (in_ipha->ipha_src == ipha->ipha_src && 2770 in_ipha->ipha_dst == ipha->ipha_dst) { 2771 2772 mp = icmp_inbound_self_encap_error(mp, 2773 iph_hdr_length, hdr_length); 2774 if (mp == NULL) 2775 goto drop_pkt; 2776 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2777 ipha = (ipha_t *)&icmph[1]; 2778 hdr_length = IPH_HDR_LENGTH(ipha); 2779 /* 2780 * The packet in error is self-encapsualted. 2781 * And we are finding it further encapsulated 2782 * which we could not have possibly generated. 2783 */ 2784 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2785 BUMP_MIB(&ip_mib, ipInDiscards); 2786 goto drop_pkt; 2787 } 2788 icmp_inbound_error_fanout(q, ill, first_mp, 2789 icmph, ipha, iph_hdr_length, hdr_length, 2790 mctl_present, ip_policy, recv_ill, zoneid); 2791 return; 2792 } 2793 } 2794 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2795 ipha->ipha_protocol == IPPROTO_IPV6) && 2796 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2797 ii != NULL && 2798 ii->ipsec_in_loopback && 2799 ii->ipsec_in_secure) { 2800 /* 2801 * For IP tunnels that get a looped-back 2802 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2803 * reported new MTU to take into account the IPsec 2804 * headers protecting this configured tunnel. 2805 * 2806 * This allows the tunnel module (tun.c) to blindly 2807 * accept the MTU reported in an ICMP "too big" 2808 * message. 2809 * 2810 * Non-looped back ICMP messages will just be 2811 * handled by the security protocols (if needed), 2812 * and the first subsequent packet will hit this 2813 * path. 2814 */ 2815 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2816 ipsec_in_extra_length(first_mp)); 2817 } 2818 /* Have to change db_type after any pullupmsg */ 2819 DB_TYPE(mp) = M_CTL; 2820 2821 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2822 ip_policy, recv_ill, zoneid); 2823 return; 2824 } 2825 /* NOTREACHED */ 2826 drop_pkt:; 2827 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2828 freemsg(first_mp); 2829 } 2830 2831 /* 2832 * Common IP options parser. 2833 * 2834 * Setup routine: fill in *optp with options-parsing state, then 2835 * tail-call ipoptp_next to return the first option. 2836 */ 2837 uint8_t 2838 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2839 { 2840 uint32_t totallen; /* total length of all options */ 2841 2842 totallen = ipha->ipha_version_and_hdr_length - 2843 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2844 totallen <<= 2; 2845 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2846 optp->ipoptp_end = optp->ipoptp_next + totallen; 2847 optp->ipoptp_flags = 0; 2848 return (ipoptp_next(optp)); 2849 } 2850 2851 /* 2852 * Common IP options parser: extract next option. 2853 */ 2854 uint8_t 2855 ipoptp_next(ipoptp_t *optp) 2856 { 2857 uint8_t *end = optp->ipoptp_end; 2858 uint8_t *cur = optp->ipoptp_next; 2859 uint8_t opt, len, pointer; 2860 2861 /* 2862 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2863 * has been corrupted. 2864 */ 2865 ASSERT(cur <= end); 2866 2867 if (cur == end) 2868 return (IPOPT_EOL); 2869 2870 opt = cur[IPOPT_OPTVAL]; 2871 2872 /* 2873 * Skip any NOP options. 2874 */ 2875 while (opt == IPOPT_NOP) { 2876 cur++; 2877 if (cur == end) 2878 return (IPOPT_EOL); 2879 opt = cur[IPOPT_OPTVAL]; 2880 } 2881 2882 if (opt == IPOPT_EOL) 2883 return (IPOPT_EOL); 2884 2885 /* 2886 * Option requiring a length. 2887 */ 2888 if ((cur + 1) >= end) { 2889 optp->ipoptp_flags |= IPOPTP_ERROR; 2890 return (IPOPT_EOL); 2891 } 2892 len = cur[IPOPT_OLEN]; 2893 if (len < 2) { 2894 optp->ipoptp_flags |= IPOPTP_ERROR; 2895 return (IPOPT_EOL); 2896 } 2897 optp->ipoptp_cur = cur; 2898 optp->ipoptp_len = len; 2899 optp->ipoptp_next = cur + len; 2900 if (cur + len > end) { 2901 optp->ipoptp_flags |= IPOPTP_ERROR; 2902 return (IPOPT_EOL); 2903 } 2904 2905 /* 2906 * For the options which require a pointer field, make sure 2907 * its there, and make sure it points to either something 2908 * inside this option, or the end of the option. 2909 */ 2910 switch (opt) { 2911 case IPOPT_RR: 2912 case IPOPT_TS: 2913 case IPOPT_LSRR: 2914 case IPOPT_SSRR: 2915 if (len <= IPOPT_OFFSET) { 2916 optp->ipoptp_flags |= IPOPTP_ERROR; 2917 return (opt); 2918 } 2919 pointer = cur[IPOPT_OFFSET]; 2920 if (pointer - 1 > len) { 2921 optp->ipoptp_flags |= IPOPTP_ERROR; 2922 return (opt); 2923 } 2924 break; 2925 } 2926 2927 /* 2928 * Sanity check the pointer field based on the type of the 2929 * option. 2930 */ 2931 switch (opt) { 2932 case IPOPT_RR: 2933 case IPOPT_SSRR: 2934 case IPOPT_LSRR: 2935 if (pointer < IPOPT_MINOFF_SR) 2936 optp->ipoptp_flags |= IPOPTP_ERROR; 2937 break; 2938 case IPOPT_TS: 2939 if (pointer < IPOPT_MINOFF_IT) 2940 optp->ipoptp_flags |= IPOPTP_ERROR; 2941 /* 2942 * Note that the Internet Timestamp option also 2943 * contains two four bit fields (the Overflow field, 2944 * and the Flag field), which follow the pointer 2945 * field. We don't need to check that these fields 2946 * fall within the length of the option because this 2947 * was implicitely done above. We've checked that the 2948 * pointer value is at least IPOPT_MINOFF_IT, and that 2949 * it falls within the option. Since IPOPT_MINOFF_IT > 2950 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2951 */ 2952 ASSERT(len > IPOPT_POS_OV_FLG); 2953 break; 2954 } 2955 2956 return (opt); 2957 } 2958 2959 /* 2960 * Use the outgoing IP header to create an IP_OPTIONS option the way 2961 * it was passed down from the application. 2962 */ 2963 int 2964 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2965 { 2966 ipoptp_t opts; 2967 const uchar_t *opt; 2968 uint8_t optval; 2969 uint8_t optlen; 2970 uint32_t len = 0; 2971 uchar_t *buf1 = buf; 2972 2973 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2974 len += IP_ADDR_LEN; 2975 bzero(buf1, IP_ADDR_LEN); 2976 2977 /* 2978 * OK to cast away const here, as we don't store through the returned 2979 * opts.ipoptp_cur pointer. 2980 */ 2981 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2982 optval != IPOPT_EOL; 2983 optval = ipoptp_next(&opts)) { 2984 int off; 2985 2986 opt = opts.ipoptp_cur; 2987 optlen = opts.ipoptp_len; 2988 switch (optval) { 2989 case IPOPT_SSRR: 2990 case IPOPT_LSRR: 2991 2992 /* 2993 * Insert ipha_dst as the first entry in the source 2994 * route and move down the entries on step. 2995 * The last entry gets placed at buf1. 2996 */ 2997 buf[IPOPT_OPTVAL] = optval; 2998 buf[IPOPT_OLEN] = optlen; 2999 buf[IPOPT_OFFSET] = optlen; 3000 3001 off = optlen - IP_ADDR_LEN; 3002 if (off < 0) { 3003 /* No entries in source route */ 3004 break; 3005 } 3006 /* Last entry in source route */ 3007 bcopy(opt + off, buf1, IP_ADDR_LEN); 3008 off -= IP_ADDR_LEN; 3009 3010 while (off > 0) { 3011 bcopy(opt + off, 3012 buf + off + IP_ADDR_LEN, 3013 IP_ADDR_LEN); 3014 off -= IP_ADDR_LEN; 3015 } 3016 /* ipha_dst into first slot */ 3017 bcopy(&ipha->ipha_dst, 3018 buf + off + IP_ADDR_LEN, 3019 IP_ADDR_LEN); 3020 buf += optlen; 3021 len += optlen; 3022 break; 3023 3024 case IPOPT_COMSEC: 3025 case IPOPT_SECURITY: 3026 /* if passing up a label is not ok, then remove */ 3027 if (is_system_labeled()) 3028 break; 3029 /* FALLTHROUGH */ 3030 default: 3031 bcopy(opt, buf, optlen); 3032 buf += optlen; 3033 len += optlen; 3034 break; 3035 } 3036 } 3037 done: 3038 /* Pad the resulting options */ 3039 while (len & 0x3) { 3040 *buf++ = IPOPT_EOL; 3041 len++; 3042 } 3043 return (len); 3044 } 3045 3046 /* 3047 * Update any record route or timestamp options to include this host. 3048 * Reverse any source route option. 3049 * This routine assumes that the options are well formed i.e. that they 3050 * have already been checked. 3051 */ 3052 static void 3053 icmp_options_update(ipha_t *ipha) 3054 { 3055 ipoptp_t opts; 3056 uchar_t *opt; 3057 uint8_t optval; 3058 ipaddr_t src; /* Our local address */ 3059 ipaddr_t dst; 3060 3061 ip2dbg(("icmp_options_update\n")); 3062 src = ipha->ipha_src; 3063 dst = ipha->ipha_dst; 3064 3065 for (optval = ipoptp_first(&opts, ipha); 3066 optval != IPOPT_EOL; 3067 optval = ipoptp_next(&opts)) { 3068 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3069 opt = opts.ipoptp_cur; 3070 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3071 optval, opts.ipoptp_len)); 3072 switch (optval) { 3073 int off1, off2; 3074 case IPOPT_SSRR: 3075 case IPOPT_LSRR: 3076 /* 3077 * Reverse the source route. The first entry 3078 * should be the next to last one in the current 3079 * source route (the last entry is our address). 3080 * The last entry should be the final destination. 3081 */ 3082 off1 = IPOPT_MINOFF_SR - 1; 3083 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3084 if (off2 < 0) { 3085 /* No entries in source route */ 3086 ip1dbg(( 3087 "icmp_options_update: bad src route\n")); 3088 break; 3089 } 3090 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3091 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3092 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3093 off2 -= IP_ADDR_LEN; 3094 3095 while (off1 < off2) { 3096 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3097 bcopy((char *)opt + off2, (char *)opt + off1, 3098 IP_ADDR_LEN); 3099 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3100 off1 += IP_ADDR_LEN; 3101 off2 -= IP_ADDR_LEN; 3102 } 3103 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3104 break; 3105 } 3106 } 3107 } 3108 3109 /* 3110 * Process received ICMP Redirect messages. 3111 */ 3112 /* ARGSUSED */ 3113 static void 3114 icmp_redirect(mblk_t *mp) 3115 { 3116 ipha_t *ipha; 3117 int iph_hdr_length; 3118 icmph_t *icmph; 3119 ipha_t *ipha_err; 3120 ire_t *ire; 3121 ire_t *prev_ire; 3122 ire_t *save_ire; 3123 ipaddr_t src, dst, gateway; 3124 iulp_t ulp_info = { 0 }; 3125 int error; 3126 3127 ipha = (ipha_t *)mp->b_rptr; 3128 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3129 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3130 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3131 BUMP_MIB(&icmp_mib, icmpInErrors); 3132 freemsg(mp); 3133 return; 3134 } 3135 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3136 ipha_err = (ipha_t *)&icmph[1]; 3137 src = ipha->ipha_src; 3138 dst = ipha_err->ipha_dst; 3139 gateway = icmph->icmph_rd_gateway; 3140 /* Make sure the new gateway is reachable somehow. */ 3141 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3142 ALL_ZONES, NULL, MATCH_IRE_TYPE); 3143 /* 3144 * Make sure we had a route for the dest in question and that 3145 * that route was pointing to the old gateway (the source of the 3146 * redirect packet.) 3147 */ 3148 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3149 NULL, MATCH_IRE_GW); 3150 /* 3151 * Check that 3152 * the redirect was not from ourselves 3153 * the new gateway and the old gateway are directly reachable 3154 */ 3155 if (!prev_ire || 3156 !ire || 3157 ire->ire_type == IRE_LOCAL) { 3158 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3159 freemsg(mp); 3160 if (ire != NULL) 3161 ire_refrele(ire); 3162 if (prev_ire != NULL) 3163 ire_refrele(prev_ire); 3164 return; 3165 } 3166 3167 /* 3168 * Should we use the old ULP info to create the new gateway? From 3169 * a user's perspective, we should inherit the info so that it 3170 * is a "smooth" transition. If we do not do that, then new 3171 * connections going thru the new gateway will have no route metrics, 3172 * which is counter-intuitive to user. From a network point of 3173 * view, this may or may not make sense even though the new gateway 3174 * is still directly connected to us so the route metrics should not 3175 * change much. 3176 * 3177 * But if the old ire_uinfo is not initialized, we do another 3178 * recursive lookup on the dest using the new gateway. There may 3179 * be a route to that. If so, use it to initialize the redirect 3180 * route. 3181 */ 3182 if (prev_ire->ire_uinfo.iulp_set) { 3183 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3184 } else { 3185 ire_t *tmp_ire; 3186 ire_t *sire; 3187 3188 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3189 ALL_ZONES, 0, NULL, 3190 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT)); 3191 if (sire != NULL) { 3192 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3193 /* 3194 * If sire != NULL, ire_ftable_lookup() should not 3195 * return a NULL value. 3196 */ 3197 ASSERT(tmp_ire != NULL); 3198 ire_refrele(tmp_ire); 3199 ire_refrele(sire); 3200 } else if (tmp_ire != NULL) { 3201 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3202 sizeof (iulp_t)); 3203 ire_refrele(tmp_ire); 3204 } 3205 } 3206 if (prev_ire->ire_type == IRE_CACHE) 3207 ire_delete(prev_ire); 3208 ire_refrele(prev_ire); 3209 /* 3210 * TODO: more precise handling for cases 0, 2, 3, the latter two 3211 * require TOS routing 3212 */ 3213 switch (icmph->icmph_code) { 3214 case 0: 3215 case 1: 3216 /* TODO: TOS specificity for cases 2 and 3 */ 3217 case 2: 3218 case 3: 3219 break; 3220 default: 3221 freemsg(mp); 3222 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3223 ire_refrele(ire); 3224 return; 3225 } 3226 /* 3227 * Create a Route Association. This will allow us to remember that 3228 * someone we believe told us to use the particular gateway. 3229 */ 3230 save_ire = ire; 3231 ire = ire_create( 3232 (uchar_t *)&dst, /* dest addr */ 3233 (uchar_t *)&ip_g_all_ones, /* mask */ 3234 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3235 (uchar_t *)&gateway, /* gateway addr */ 3236 NULL, /* no in_srcaddr */ 3237 &save_ire->ire_max_frag, /* max frag */ 3238 NULL, /* Fast Path header */ 3239 NULL, /* no rfq */ 3240 NULL, /* no stq */ 3241 IRE_HOST_REDIRECT, 3242 NULL, 3243 NULL, 3244 NULL, 3245 0, 3246 0, 3247 0, 3248 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3249 &ulp_info, 3250 NULL, 3251 NULL); 3252 3253 if (ire == NULL) { 3254 freemsg(mp); 3255 ire_refrele(save_ire); 3256 return; 3257 } 3258 error = ire_add(&ire, NULL, NULL, NULL); 3259 ire_refrele(save_ire); 3260 if (error == 0) { 3261 ire_refrele(ire); /* Held in ire_add_v4 */ 3262 /* tell routing sockets that we received a redirect */ 3263 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3264 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3265 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR)); 3266 } 3267 3268 /* 3269 * Delete any existing IRE_HOST_REDIRECT for this destination. 3270 * This together with the added IRE has the effect of 3271 * modifying an existing redirect. 3272 */ 3273 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST_REDIRECT, NULL, NULL, 3274 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE)); 3275 if (prev_ire) { 3276 ire_delete(prev_ire); 3277 ire_refrele(prev_ire); 3278 } 3279 3280 freemsg(mp); 3281 } 3282 3283 /* 3284 * Generate an ICMP parameter problem message. 3285 */ 3286 static void 3287 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr) 3288 { 3289 icmph_t icmph; 3290 boolean_t mctl_present; 3291 mblk_t *first_mp; 3292 3293 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3294 3295 if (!(mp = icmp_pkt_err_ok(mp))) { 3296 if (mctl_present) 3297 freeb(first_mp); 3298 return; 3299 } 3300 3301 bzero(&icmph, sizeof (icmph_t)); 3302 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3303 icmph.icmph_pp_ptr = ptr; 3304 BUMP_MIB(&icmp_mib, icmpOutParmProbs); 3305 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 3306 } 3307 3308 /* 3309 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3310 * the ICMP header pointed to by "stuff". (May be called as writer.) 3311 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3312 * an icmp error packet can be sent. 3313 * Assigns an appropriate source address to the packet. If ipha_dst is 3314 * one of our addresses use it for source. Otherwise pick a source based 3315 * on a route lookup back to ipha_src. 3316 * Note that ipha_src must be set here since the 3317 * packet is likely to arrive on an ill queue in ip_wput() which will 3318 * not set a source address. 3319 */ 3320 static void 3321 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3322 boolean_t mctl_present) 3323 { 3324 ipaddr_t dst; 3325 icmph_t *icmph; 3326 ipha_t *ipha; 3327 uint_t len_needed; 3328 size_t msg_len; 3329 mblk_t *mp1; 3330 ipaddr_t src; 3331 ire_t *ire; 3332 mblk_t *ipsec_mp; 3333 ipsec_out_t *io = NULL; 3334 boolean_t xmit_if_on = B_FALSE; 3335 zoneid_t zoneid; 3336 3337 if (mctl_present) { 3338 /* 3339 * If it is : 3340 * 3341 * 1) a IPSEC_OUT, then this is caused by outbound 3342 * datagram originating on this host. IPSEC processing 3343 * may or may not have been done. Refer to comments above 3344 * icmp_inbound_error_fanout for details. 3345 * 3346 * 2) a IPSEC_IN if we are generating a icmp_message 3347 * for an incoming datagram destined for us i.e called 3348 * from ip_fanout_send_icmp. 3349 */ 3350 ipsec_info_t *in; 3351 ipsec_mp = mp; 3352 mp = ipsec_mp->b_cont; 3353 3354 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3355 ipha = (ipha_t *)mp->b_rptr; 3356 3357 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3358 in->ipsec_info_type == IPSEC_IN); 3359 3360 if (in->ipsec_info_type == IPSEC_IN) { 3361 /* 3362 * Convert the IPSEC_IN to IPSEC_OUT. 3363 */ 3364 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3365 BUMP_MIB(&ip_mib, ipOutDiscards); 3366 return; 3367 } 3368 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3369 } else { 3370 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3371 io = (ipsec_out_t *)in; 3372 if (io->ipsec_out_xmit_if) 3373 xmit_if_on = B_TRUE; 3374 /* 3375 * Clear out ipsec_out_proc_begin, so we do a fresh 3376 * ire lookup. 3377 */ 3378 io->ipsec_out_proc_begin = B_FALSE; 3379 } 3380 zoneid = io->ipsec_out_zoneid; 3381 ASSERT(zoneid != ALL_ZONES); 3382 } else { 3383 /* 3384 * This is in clear. The icmp message we are building 3385 * here should go out in clear. 3386 * 3387 * Pardon the convolution of it all, but it's easier to 3388 * allocate a "use cleartext" IPSEC_IN message and convert 3389 * it than it is to allocate a new one. 3390 */ 3391 ipsec_in_t *ii; 3392 ASSERT(DB_TYPE(mp) == M_DATA); 3393 if ((ipsec_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 3394 freemsg(mp); 3395 BUMP_MIB(&ip_mib, ipOutDiscards); 3396 return; 3397 } 3398 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3399 3400 /* This is not a secure packet */ 3401 ii->ipsec_in_secure = B_FALSE; 3402 if (CONN_Q(q)) { 3403 zoneid = Q_TO_CONN(q)->conn_zoneid; 3404 } else { 3405 zoneid = GLOBAL_ZONEID; 3406 } 3407 ii->ipsec_in_zoneid = zoneid; 3408 ASSERT(zoneid != ALL_ZONES); 3409 ipsec_mp->b_cont = mp; 3410 ipha = (ipha_t *)mp->b_rptr; 3411 /* 3412 * Convert the IPSEC_IN to IPSEC_OUT. 3413 */ 3414 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3415 BUMP_MIB(&ip_mib, ipOutDiscards); 3416 return; 3417 } 3418 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3419 } 3420 3421 /* Remember our eventual destination */ 3422 dst = ipha->ipha_src; 3423 3424 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3425 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE); 3426 if (ire != NULL && 3427 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3428 src = ipha->ipha_dst; 3429 } else if (!xmit_if_on) { 3430 if (ire != NULL) 3431 ire_refrele(ire); 3432 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3433 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY)); 3434 if (ire == NULL) { 3435 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3436 freemsg(ipsec_mp); 3437 return; 3438 } 3439 src = ire->ire_src_addr; 3440 } else { 3441 ipif_t *ipif = NULL; 3442 ill_t *ill; 3443 /* 3444 * This must be an ICMP error coming from 3445 * ip_mrtun_forward(). The src addr should 3446 * be equal to the IP-addr of the outgoing 3447 * interface. 3448 */ 3449 if (io == NULL) { 3450 /* This is not a IPSEC_OUT type control msg */ 3451 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3452 freemsg(ipsec_mp); 3453 return; 3454 } 3455 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3456 NULL, NULL, NULL, NULL); 3457 if (ill != NULL) { 3458 ipif = ipif_get_next_ipif(NULL, ill); 3459 ill_refrele(ill); 3460 } 3461 if (ipif == NULL) { 3462 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3463 freemsg(ipsec_mp); 3464 return; 3465 } 3466 src = ipif->ipif_src_addr; 3467 ipif_refrele(ipif); 3468 } 3469 3470 if (ire != NULL) 3471 ire_refrele(ire); 3472 3473 /* 3474 * Check if we can send back more then 8 bytes in addition 3475 * to the IP header. We will include as much as 64 bytes. 3476 */ 3477 len_needed = IPH_HDR_LENGTH(ipha); 3478 if (ipha->ipha_protocol == IPPROTO_ENCAP && 3479 (uchar_t *)ipha + len_needed + 1 <= mp->b_wptr) { 3480 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + len_needed)); 3481 } 3482 len_needed += ip_icmp_return; 3483 msg_len = msgdsize(mp); 3484 if (msg_len > len_needed) { 3485 (void) adjmsg(mp, len_needed - msg_len); 3486 msg_len = len_needed; 3487 } 3488 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3489 if (mp1 == NULL) { 3490 BUMP_MIB(&icmp_mib, icmpOutErrors); 3491 freemsg(ipsec_mp); 3492 return; 3493 } 3494 /* 3495 * On an unlabeled system, dblks don't necessarily have creds. 3496 */ 3497 ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL); 3498 if (DB_CRED(mp) != NULL) 3499 mblk_setcred(mp1, DB_CRED(mp)); 3500 mp1->b_cont = mp; 3501 mp = mp1; 3502 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3503 ipsec_mp->b_rptr == (uint8_t *)io && 3504 io->ipsec_out_type == IPSEC_OUT); 3505 ipsec_mp->b_cont = mp; 3506 3507 /* 3508 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3509 * node generates be accepted in peace by all on-host destinations. 3510 * If we do NOT assume that all on-host destinations trust 3511 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3512 * (Look for ipsec_out_icmp_loopback). 3513 */ 3514 io->ipsec_out_icmp_loopback = B_TRUE; 3515 3516 ipha = (ipha_t *)mp->b_rptr; 3517 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3518 *ipha = icmp_ipha; 3519 ipha->ipha_src = src; 3520 ipha->ipha_dst = dst; 3521 ipha->ipha_ttl = ip_def_ttl; 3522 msg_len += sizeof (icmp_ipha) + len; 3523 if (msg_len > IP_MAXPACKET) { 3524 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3525 msg_len = IP_MAXPACKET; 3526 } 3527 ipha->ipha_length = htons((uint16_t)msg_len); 3528 icmph = (icmph_t *)&ipha[1]; 3529 bcopy(stuff, icmph, len); 3530 icmph->icmph_checksum = 0; 3531 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3532 if (icmph->icmph_checksum == 0) 3533 icmph->icmph_checksum = 0xFFFF; 3534 BUMP_MIB(&icmp_mib, icmpOutMsgs); 3535 put(q, ipsec_mp); 3536 } 3537 3538 /* 3539 * Determine if an ICMP error packet can be sent given the rate limit. 3540 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3541 * in milliseconds) and a burst size. Burst size number of packets can 3542 * be sent arbitrarely closely spaced. 3543 * The state is tracked using two variables to implement an approximate 3544 * token bucket filter: 3545 * icmp_pkt_err_last - lbolt value when the last burst started 3546 * icmp_pkt_err_sent - number of packets sent in current burst 3547 */ 3548 boolean_t 3549 icmp_err_rate_limit(void) 3550 { 3551 clock_t now = TICK_TO_MSEC(lbolt); 3552 uint_t refilled; /* Number of packets refilled in tbf since last */ 3553 uint_t err_interval = ip_icmp_err_interval; /* Guard against changes */ 3554 3555 if (err_interval == 0) 3556 return (B_FALSE); 3557 3558 if (icmp_pkt_err_last > now) { 3559 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3560 icmp_pkt_err_last = 0; 3561 icmp_pkt_err_sent = 0; 3562 } 3563 /* 3564 * If we are in a burst update the token bucket filter. 3565 * Update the "last" time to be close to "now" but make sure 3566 * we don't loose precision. 3567 */ 3568 if (icmp_pkt_err_sent != 0) { 3569 refilled = (now - icmp_pkt_err_last)/err_interval; 3570 if (refilled > icmp_pkt_err_sent) { 3571 icmp_pkt_err_sent = 0; 3572 } else { 3573 icmp_pkt_err_sent -= refilled; 3574 icmp_pkt_err_last += refilled * err_interval; 3575 } 3576 } 3577 if (icmp_pkt_err_sent == 0) { 3578 /* Start of new burst */ 3579 icmp_pkt_err_last = now; 3580 } 3581 if (icmp_pkt_err_sent < ip_icmp_err_burst) { 3582 icmp_pkt_err_sent++; 3583 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3584 icmp_pkt_err_sent)); 3585 return (B_FALSE); 3586 } 3587 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3588 return (B_TRUE); 3589 } 3590 3591 /* 3592 * Check if it is ok to send an IPv4 ICMP error packet in 3593 * response to the IPv4 packet in mp. 3594 * Free the message and return null if no 3595 * ICMP error packet should be sent. 3596 */ 3597 static mblk_t * 3598 icmp_pkt_err_ok(mblk_t *mp) 3599 { 3600 icmph_t *icmph; 3601 ipha_t *ipha; 3602 uint_t len_needed; 3603 ire_t *src_ire; 3604 ire_t *dst_ire; 3605 3606 if (!mp) 3607 return (NULL); 3608 ipha = (ipha_t *)mp->b_rptr; 3609 if (ip_csum_hdr(ipha)) { 3610 BUMP_MIB(&ip_mib, ipInCksumErrs); 3611 freemsg(mp); 3612 return (NULL); 3613 } 3614 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3615 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3616 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3617 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3618 if (src_ire != NULL || dst_ire != NULL || 3619 CLASSD(ipha->ipha_dst) || 3620 CLASSD(ipha->ipha_src) || 3621 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3622 /* Note: only errors to the fragment with offset 0 */ 3623 BUMP_MIB(&icmp_mib, icmpOutDrops); 3624 freemsg(mp); 3625 if (src_ire != NULL) 3626 ire_refrele(src_ire); 3627 if (dst_ire != NULL) 3628 ire_refrele(dst_ire); 3629 return (NULL); 3630 } 3631 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3632 /* 3633 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3634 * errors in response to any ICMP errors. 3635 */ 3636 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3637 if (mp->b_wptr - mp->b_rptr < len_needed) { 3638 if (!pullupmsg(mp, len_needed)) { 3639 BUMP_MIB(&icmp_mib, icmpInErrors); 3640 freemsg(mp); 3641 return (NULL); 3642 } 3643 ipha = (ipha_t *)mp->b_rptr; 3644 } 3645 icmph = (icmph_t *) 3646 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3647 switch (icmph->icmph_type) { 3648 case ICMP_DEST_UNREACHABLE: 3649 case ICMP_SOURCE_QUENCH: 3650 case ICMP_TIME_EXCEEDED: 3651 case ICMP_PARAM_PROBLEM: 3652 case ICMP_REDIRECT: 3653 BUMP_MIB(&icmp_mib, icmpOutDrops); 3654 freemsg(mp); 3655 return (NULL); 3656 default: 3657 break; 3658 } 3659 } 3660 /* 3661 * If this is a labeled system, then check to see if we're allowed to 3662 * send a response to this particular sender. If not, then just drop. 3663 */ 3664 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3665 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3666 BUMP_MIB(&icmp_mib, icmpOutDrops); 3667 freemsg(mp); 3668 return (NULL); 3669 } 3670 if (icmp_err_rate_limit()) { 3671 /* 3672 * Only send ICMP error packets every so often. 3673 * This should be done on a per port/source basis, 3674 * but for now this will suffice. 3675 */ 3676 freemsg(mp); 3677 return (NULL); 3678 } 3679 return (mp); 3680 } 3681 3682 /* 3683 * Generate an ICMP redirect message. 3684 */ 3685 static void 3686 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway) 3687 { 3688 icmph_t icmph; 3689 3690 /* 3691 * We are called from ip_rput where we could 3692 * not have attached an IPSEC_IN. 3693 */ 3694 ASSERT(mp->b_datap->db_type == M_DATA); 3695 3696 if (!(mp = icmp_pkt_err_ok(mp))) { 3697 return; 3698 } 3699 3700 bzero(&icmph, sizeof (icmph_t)); 3701 icmph.icmph_type = ICMP_REDIRECT; 3702 icmph.icmph_code = 1; 3703 icmph.icmph_rd_gateway = gateway; 3704 BUMP_MIB(&icmp_mib, icmpOutRedirects); 3705 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE); 3706 } 3707 3708 /* 3709 * Generate an ICMP time exceeded message. 3710 */ 3711 void 3712 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code) 3713 { 3714 icmph_t icmph; 3715 boolean_t mctl_present; 3716 mblk_t *first_mp; 3717 3718 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3719 3720 if (!(mp = icmp_pkt_err_ok(mp))) { 3721 if (mctl_present) 3722 freeb(first_mp); 3723 return; 3724 } 3725 3726 bzero(&icmph, sizeof (icmph_t)); 3727 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3728 icmph.icmph_code = code; 3729 BUMP_MIB(&icmp_mib, icmpOutTimeExcds); 3730 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 3731 } 3732 3733 /* 3734 * Generate an ICMP unreachable message. 3735 */ 3736 void 3737 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code) 3738 { 3739 icmph_t icmph; 3740 mblk_t *first_mp; 3741 boolean_t mctl_present; 3742 3743 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3744 3745 if (!(mp = icmp_pkt_err_ok(mp))) { 3746 if (mctl_present) 3747 freeb(first_mp); 3748 return; 3749 } 3750 3751 bzero(&icmph, sizeof (icmph_t)); 3752 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3753 icmph.icmph_code = code; 3754 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 3755 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3756 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present); 3757 } 3758 3759 /* 3760 * News from ARP. ARP sends notification of interesting events down 3761 * to its clients using M_CTL messages with the interesting ARP packet 3762 * attached via b_cont. 3763 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3764 * queue as opposed to ARP sending the message to all the clients, i.e. all 3765 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3766 * table if a cache IRE is found to delete all the entries for the address in 3767 * the packet. 3768 */ 3769 static void 3770 ip_arp_news(queue_t *q, mblk_t *mp) 3771 { 3772 arcn_t *arcn; 3773 arh_t *arh; 3774 char *cp1; 3775 uchar_t *cp2; 3776 ire_t *ire = NULL; 3777 int i1; 3778 char hbuf[128]; 3779 char sbuf[16]; 3780 ipaddr_t src; 3781 in6_addr_t v6src; 3782 boolean_t isv6 = B_FALSE; 3783 3784 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3785 if (q->q_next) { 3786 putnext(q, mp); 3787 } else 3788 freemsg(mp); 3789 return; 3790 } 3791 arh = (arh_t *)mp->b_cont->b_rptr; 3792 /* Is it one we are interested in? */ 3793 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3794 isv6 = B_TRUE; 3795 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3796 IPV6_ADDR_LEN); 3797 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3798 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3799 IP_ADDR_LEN); 3800 } else { 3801 freemsg(mp); 3802 return; 3803 } 3804 3805 arcn = (arcn_t *)mp->b_rptr; 3806 switch (arcn->arcn_code) { 3807 case AR_CN_BOGON: 3808 /* 3809 * Someone is sending ARP packets with a source protocol 3810 * address which we have published. Either they are 3811 * pretending to be us, or we have been asked to proxy 3812 * for a machine that can do fine for itself, or two 3813 * different machines are providing proxy service for the 3814 * same protocol address, or something. We try and do 3815 * something appropriate here. 3816 */ 3817 cp2 = (uchar_t *)&arh[1]; 3818 cp1 = hbuf; 3819 *cp1 = '\0'; 3820 for (i1 = arh->arh_hlen; i1--; cp1 += 3) 3821 (void) sprintf(cp1, "%02x:", *cp2++ & 0xff); 3822 if (cp1 != hbuf) 3823 cp1[-1] = '\0'; 3824 (void) ip_dot_addr(src, sbuf); 3825 if (isv6) 3826 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL); 3827 else 3828 ire = ire_cache_lookup(src, ALL_ZONES, NULL); 3829 3830 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3831 cmn_err(CE_WARN, 3832 "IP: Hardware address '%s' trying" 3833 " to be our address %s!", 3834 hbuf, sbuf); 3835 } else { 3836 cmn_err(CE_WARN, 3837 "IP: Proxy ARP problem? " 3838 "Hardware address '%s' thinks it is %s", 3839 hbuf, sbuf); 3840 } 3841 if (ire != NULL) 3842 ire_refrele(ire); 3843 break; 3844 case AR_CN_ANNOUNCE: 3845 if (isv6) { 3846 /* 3847 * For XRESOLV interfaces. 3848 * Delete the IRE cache entry and NCE for this 3849 * v6 address 3850 */ 3851 ip_ire_clookup_and_delete_v6(&v6src); 3852 /* 3853 * If v6src is a non-zero, it's a router address 3854 * as below. Do the same sort of thing to clean 3855 * out off-net IRE_CACHE entries that go through 3856 * the router. 3857 */ 3858 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 3859 ire_walk_v6(ire_delete_cache_gw_v6, 3860 (char *)&v6src, ALL_ZONES); 3861 } 3862 break; 3863 } 3864 /* 3865 * ARP gives us a copy of any broadcast packet with identical 3866 * sender and receiver protocol address, in 3867 * case we want to intuit something from it. Such a packet 3868 * usually means that a machine has just come up on the net. 3869 * If we have an IRE_CACHE, we blow it away. This way we will 3870 * immediately pick up the rare case of a host changing 3871 * hardware address. ip_ire_clookup_and_delete achieves this. 3872 * 3873 * The address in "src" may be an entry for a router. 3874 * (Default router, or non-default router.) If 3875 * that's true, then any off-net IRE_CACHE entries 3876 * that go through the router with address "src" 3877 * must be clobbered. Use ire_walk to achieve this 3878 * goal. 3879 * 3880 * It should be possible to determine if the address 3881 * in src is or is not for a router. This way, 3882 * the ire_walk() isn't called all of the time here. 3883 * Do not pass 'src' value of 0 to ire_delete_cache_gw, 3884 * as it would remove all IRE_CACHE entries for onlink 3885 * destinations. All onlink destinations have 3886 * ire_gateway_addr == 0. 3887 */ 3888 if ((ip_ire_clookup_and_delete(src, NULL) || 3889 (ire = ire_ftable_lookup(src, 0, 0, 0, NULL, NULL, NULL, 3890 0, NULL, MATCH_IRE_DSTONLY)) != NULL) && src != 0) { 3891 ire_walk_v4(ire_delete_cache_gw, (char *)&src, 3892 ALL_ZONES); 3893 } 3894 /* From ire_ftable_lookup */ 3895 if (ire != NULL) 3896 ire_refrele(ire); 3897 break; 3898 default: 3899 if (ire != NULL) 3900 ire_refrele(ire); 3901 break; 3902 } 3903 freemsg(mp); 3904 } 3905 3906 /* 3907 * Create a mblk suitable for carrying the interface index and/or source link 3908 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 3909 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 3910 * application. 3911 */ 3912 mblk_t * 3913 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags) 3914 { 3915 mblk_t *mp; 3916 in_pktinfo_t *pinfo; 3917 ipha_t *ipha; 3918 struct ether_header *pether; 3919 3920 mp = allocb(sizeof (in_pktinfo_t), BPRI_MED); 3921 if (mp == NULL) { 3922 ip1dbg(("ip_add_info: allocation failure.\n")); 3923 return (data_mp); 3924 } 3925 3926 ipha = (ipha_t *)data_mp->b_rptr; 3927 pinfo = (in_pktinfo_t *)mp->b_rptr; 3928 bzero(pinfo, sizeof (in_pktinfo_t)); 3929 pinfo->in_pkt_flags = (uchar_t)flags; 3930 pinfo->in_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 3931 3932 if (flags & IPF_RECVIF) 3933 pinfo->in_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 3934 3935 pether = (struct ether_header *)((char *)ipha 3936 - sizeof (struct ether_header)); 3937 /* 3938 * Make sure the interface is an ethernet type, since this option 3939 * is currently supported only on this type of interface. Also make 3940 * sure we are pointing correctly above db_base. 3941 */ 3942 3943 if ((flags & IPF_RECVSLLA) && 3944 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 3945 (ill->ill_type == IFT_ETHER) && 3946 (ill->ill_net_type == IRE_IF_RESOLVER)) { 3947 3948 pinfo->in_pkt_slla.sdl_type = IFT_ETHER; 3949 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 3950 (uchar_t *)pinfo->in_pkt_slla.sdl_data, ETHERADDRL); 3951 } else { 3952 /* 3953 * Clear the bit. Indicate to upper layer that IP is not 3954 * sending this ancillary info. 3955 */ 3956 pinfo->in_pkt_flags = pinfo->in_pkt_flags & ~IPF_RECVSLLA; 3957 } 3958 3959 mp->b_datap->db_type = M_CTL; 3960 mp->b_wptr += sizeof (in_pktinfo_t); 3961 mp->b_cont = data_mp; 3962 3963 return (mp); 3964 } 3965 3966 /* 3967 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 3968 * part of the bind request. 3969 */ 3970 3971 boolean_t 3972 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 3973 { 3974 ipsec_in_t *ii; 3975 3976 ASSERT(policy_mp != NULL); 3977 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 3978 3979 ii = (ipsec_in_t *)policy_mp->b_rptr; 3980 ASSERT(ii->ipsec_in_type == IPSEC_IN); 3981 3982 connp->conn_policy = ii->ipsec_in_policy; 3983 ii->ipsec_in_policy = NULL; 3984 3985 if (ii->ipsec_in_action != NULL) { 3986 if (connp->conn_latch == NULL) { 3987 connp->conn_latch = iplatch_create(); 3988 if (connp->conn_latch == NULL) 3989 return (B_FALSE); 3990 } 3991 ipsec_latch_inbound(connp->conn_latch, ii); 3992 } 3993 return (B_TRUE); 3994 } 3995 3996 /* 3997 * Upper level protocols (ULP) pass through bind requests to IP for inspection 3998 * and to arrange for power-fanout assist. The ULP is identified by 3999 * adding a single byte at the end of the original bind message. 4000 * A ULP other than UDP or TCP that wishes to be recognized passes 4001 * down a bind with a zero length address. 4002 * 4003 * The binding works as follows: 4004 * - A zero byte address means just bind to the protocol. 4005 * - A four byte address is treated as a request to validate 4006 * that the address is a valid local address, appropriate for 4007 * an application to bind to. This does not affect any fanout 4008 * information in IP. 4009 * - A sizeof sin_t byte address is used to bind to only the local address 4010 * and port. 4011 * - A sizeof ipa_conn_t byte address contains complete fanout information 4012 * consisting of local and remote addresses and ports. In 4013 * this case, the addresses are both validated as appropriate 4014 * for this operation, and, if so, the information is retained 4015 * for use in the inbound fanout. 4016 * 4017 * The ULP (except in the zero-length bind) can append an 4018 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4019 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4020 * a copy of the source or destination IRE (source for local bind; 4021 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4022 * policy information contained should be copied on to the conn. 4023 * 4024 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4025 */ 4026 mblk_t * 4027 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4028 { 4029 ssize_t len; 4030 struct T_bind_req *tbr; 4031 sin_t *sin; 4032 ipa_conn_t *ac; 4033 uchar_t *ucp; 4034 mblk_t *mp1; 4035 boolean_t ire_requested; 4036 boolean_t ipsec_policy_set = B_FALSE; 4037 int error = 0; 4038 int protocol; 4039 ipa_conn_x_t *acx; 4040 4041 ASSERT(!connp->conn_af_isv6); 4042 connp->conn_pkt_isv6 = B_FALSE; 4043 4044 len = MBLKL(mp); 4045 if (len < (sizeof (*tbr) + 1)) { 4046 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4047 "ip_bind: bogus msg, len %ld", len); 4048 /* XXX: Need to return something better */ 4049 goto bad_addr; 4050 } 4051 /* Back up and extract the protocol identifier. */ 4052 mp->b_wptr--; 4053 protocol = *mp->b_wptr & 0xFF; 4054 tbr = (struct T_bind_req *)mp->b_rptr; 4055 /* Reset the message type in preparation for shipping it back. */ 4056 DB_TYPE(mp) = M_PCPROTO; 4057 4058 connp->conn_ulp = (uint8_t)protocol; 4059 4060 /* 4061 * Check for a zero length address. This is from a protocol that 4062 * wants to register to receive all packets of its type. 4063 */ 4064 if (tbr->ADDR_length == 0) { 4065 /* 4066 * These protocols are now intercepted in ip_bind_v6(). 4067 * Reject protocol-level binds here for now. 4068 * 4069 * For SCTP raw socket, ICMP sends down a bind with sin_t 4070 * so that the protocol type cannot be SCTP. 4071 */ 4072 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4073 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4074 goto bad_addr; 4075 } 4076 4077 /* 4078 * 4079 * The udp module never sends down a zero-length address, 4080 * and allowing this on a labeled system will break MLP 4081 * functionality. 4082 */ 4083 if (is_system_labeled() && protocol == IPPROTO_UDP) 4084 goto bad_addr; 4085 4086 if (connp->conn_mac_exempt) 4087 goto bad_addr; 4088 4089 /* No hash here really. The table is big enough. */ 4090 connp->conn_srcv6 = ipv6_all_zeros; 4091 4092 ipcl_proto_insert(connp, protocol); 4093 4094 tbr->PRIM_type = T_BIND_ACK; 4095 return (mp); 4096 } 4097 4098 /* Extract the address pointer from the message. */ 4099 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4100 tbr->ADDR_length); 4101 if (ucp == NULL) { 4102 ip1dbg(("ip_bind: no address\n")); 4103 goto bad_addr; 4104 } 4105 if (!OK_32PTR(ucp)) { 4106 ip1dbg(("ip_bind: unaligned address\n")); 4107 goto bad_addr; 4108 } 4109 /* 4110 * Check for trailing mps. 4111 */ 4112 4113 mp1 = mp->b_cont; 4114 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4115 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4116 4117 switch (tbr->ADDR_length) { 4118 default: 4119 ip1dbg(("ip_bind: bad address length %d\n", 4120 (int)tbr->ADDR_length)); 4121 goto bad_addr; 4122 4123 case IP_ADDR_LEN: 4124 /* Verification of local address only */ 4125 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4126 ire_requested, ipsec_policy_set, B_FALSE); 4127 break; 4128 4129 case sizeof (sin_t): 4130 sin = (sin_t *)ucp; 4131 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4132 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4133 if (protocol == IPPROTO_TCP) 4134 connp->conn_recv = tcp_conn_request; 4135 break; 4136 4137 case sizeof (ipa_conn_t): 4138 ac = (ipa_conn_t *)ucp; 4139 /* For raw socket, the local port is not set. */ 4140 if (ac->ac_lport == 0) 4141 ac->ac_lport = connp->conn_lport; 4142 /* Always verify destination reachability. */ 4143 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4144 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4145 ipsec_policy_set, B_TRUE, B_TRUE); 4146 if (protocol == IPPROTO_TCP) 4147 connp->conn_recv = tcp_input; 4148 break; 4149 4150 case sizeof (ipa_conn_x_t): 4151 acx = (ipa_conn_x_t *)ucp; 4152 /* 4153 * Whether or not to verify destination reachability depends 4154 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4155 */ 4156 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4157 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4158 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4159 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4160 if (protocol == IPPROTO_TCP) 4161 connp->conn_recv = tcp_input; 4162 break; 4163 } 4164 if (error == EINPROGRESS) 4165 return (NULL); 4166 else if (error != 0) 4167 goto bad_addr; 4168 /* 4169 * Pass the IPSEC headers size in ire_ipsec_overhead. 4170 * We can't do this in ip_bind_insert_ire because the policy 4171 * may not have been inherited at that point in time and hence 4172 * conn_out_enforce_policy may not be set. 4173 */ 4174 mp1 = mp->b_cont; 4175 if (ire_requested && connp->conn_out_enforce_policy && 4176 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4177 ire_t *ire = (ire_t *)mp1->b_rptr; 4178 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4179 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4180 } 4181 4182 /* Send it home. */ 4183 mp->b_datap->db_type = M_PCPROTO; 4184 tbr->PRIM_type = T_BIND_ACK; 4185 return (mp); 4186 4187 bad_addr: 4188 /* 4189 * If error = -1 then we generate a TBADADDR - otherwise error is 4190 * a unix errno. 4191 */ 4192 if (error > 0) 4193 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4194 else 4195 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4196 return (mp); 4197 } 4198 4199 /* 4200 * Here address is verified to be a valid local address. 4201 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4202 * address is also considered a valid local address. 4203 * In the case of a broadcast/multicast address, however, the 4204 * upper protocol is expected to reset the src address 4205 * to 0 if it sees a IRE_BROADCAST type returned so that 4206 * no packets are emitted with broadcast/multicast address as 4207 * source address (that violates hosts requirements RFC1122) 4208 * The addresses valid for bind are: 4209 * (1) - INADDR_ANY (0) 4210 * (2) - IP address of an UP interface 4211 * (3) - IP address of a DOWN interface 4212 * (4) - valid local IP broadcast addresses. In this case 4213 * the conn will only receive packets destined to 4214 * the specified broadcast address. 4215 * (5) - a multicast address. In this case 4216 * the conn will only receive packets destined to 4217 * the specified multicast address. Note: the 4218 * application still has to issue an 4219 * IP_ADD_MEMBERSHIP socket option. 4220 * 4221 * On error, return -1 for TBADADDR otherwise pass the 4222 * errno with TSYSERR reply. 4223 * 4224 * In all the above cases, the bound address must be valid in the current zone. 4225 * When the address is loopback, multicast or broadcast, there might be many 4226 * matching IREs so bind has to look up based on the zone. 4227 * 4228 * Note: lport is in network byte order. 4229 */ 4230 int 4231 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4232 boolean_t ire_requested, boolean_t ipsec_policy_set, 4233 boolean_t fanout_insert) 4234 { 4235 int error = 0; 4236 ire_t *src_ire; 4237 mblk_t *policy_mp; 4238 ipif_t *ipif; 4239 zoneid_t zoneid; 4240 4241 if (ipsec_policy_set) { 4242 policy_mp = mp->b_cont; 4243 } 4244 4245 /* 4246 * If it was previously connected, conn_fully_bound would have 4247 * been set. 4248 */ 4249 connp->conn_fully_bound = B_FALSE; 4250 4251 src_ire = NULL; 4252 ipif = NULL; 4253 4254 zoneid = IPCL_ZONEID(connp); 4255 4256 if (src_addr) { 4257 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4258 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 4259 /* 4260 * If an address other than 0.0.0.0 is requested, 4261 * we verify that it is a valid address for bind 4262 * Note: Following code is in if-else-if form for 4263 * readability compared to a condition check. 4264 */ 4265 /* LINTED - statement has no consequent */ 4266 if (IRE_IS_LOCAL(src_ire)) { 4267 /* 4268 * (2) Bind to address of local UP interface 4269 */ 4270 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4271 /* 4272 * (4) Bind to broadcast address 4273 * Note: permitted only from transports that 4274 * request IRE 4275 */ 4276 if (!ire_requested) 4277 error = EADDRNOTAVAIL; 4278 } else { 4279 /* 4280 * (3) Bind to address of local DOWN interface 4281 * (ipif_lookup_addr() looks up all interfaces 4282 * but we do not get here for UP interfaces 4283 * - case (2) above) 4284 * We put the protocol byte back into the mblk 4285 * since we may come back via ip_wput_nondata() 4286 * later with this mblk if ipif_lookup_addr chooses 4287 * to defer processing. 4288 */ 4289 *mp->b_wptr++ = (char)connp->conn_ulp; 4290 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4291 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4292 &error)) != NULL) { 4293 ipif_refrele(ipif); 4294 } else if (error == EINPROGRESS) { 4295 if (src_ire != NULL) 4296 ire_refrele(src_ire); 4297 return (EINPROGRESS); 4298 } else if (CLASSD(src_addr)) { 4299 error = 0; 4300 if (src_ire != NULL) 4301 ire_refrele(src_ire); 4302 /* 4303 * (5) bind to multicast address. 4304 * Fake out the IRE returned to upper 4305 * layer to be a broadcast IRE. 4306 */ 4307 src_ire = ire_ctable_lookup( 4308 INADDR_BROADCAST, INADDR_ANY, 4309 IRE_BROADCAST, NULL, zoneid, NULL, 4310 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY)); 4311 if (src_ire == NULL || !ire_requested) 4312 error = EADDRNOTAVAIL; 4313 } else { 4314 /* 4315 * Not a valid address for bind 4316 */ 4317 error = EADDRNOTAVAIL; 4318 } 4319 /* 4320 * Just to keep it consistent with the processing in 4321 * ip_bind_v4() 4322 */ 4323 mp->b_wptr--; 4324 } 4325 if (error) { 4326 /* Red Alert! Attempting to be a bogon! */ 4327 ip1dbg(("ip_bind: bad src address 0x%x\n", 4328 ntohl(src_addr))); 4329 goto bad_addr; 4330 } 4331 } 4332 4333 /* 4334 * Allow setting new policies. For example, disconnects come 4335 * down as ipa_t bind. As we would have set conn_policy_cached 4336 * to B_TRUE before, we should set it to B_FALSE, so that policy 4337 * can change after the disconnect. 4338 */ 4339 connp->conn_policy_cached = B_FALSE; 4340 4341 /* 4342 * If not fanout_insert this was just an address verification 4343 */ 4344 if (fanout_insert) { 4345 /* 4346 * The addresses have been verified. Time to insert in 4347 * the correct fanout list. 4348 */ 4349 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4350 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4351 connp->conn_lport = lport; 4352 connp->conn_fport = 0; 4353 /* 4354 * Do we need to add a check to reject Multicast packets 4355 */ 4356 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4357 } 4358 4359 if (error == 0) { 4360 if (ire_requested) { 4361 if (!ip_bind_insert_ire(mp, src_ire, NULL)) { 4362 error = -1; 4363 /* Falls through to bad_addr */ 4364 } 4365 } else if (ipsec_policy_set) { 4366 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4367 error = -1; 4368 /* Falls through to bad_addr */ 4369 } 4370 } 4371 } 4372 bad_addr: 4373 if (error != 0) { 4374 if (connp->conn_anon_port) { 4375 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4376 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4377 B_FALSE); 4378 } 4379 connp->conn_mlp_type = mlptSingle; 4380 } 4381 if (src_ire != NULL) 4382 IRE_REFRELE(src_ire); 4383 if (ipsec_policy_set) { 4384 ASSERT(policy_mp == mp->b_cont); 4385 ASSERT(policy_mp != NULL); 4386 freeb(policy_mp); 4387 /* 4388 * As of now assume that nothing else accompanies 4389 * IPSEC_POLICY_SET. 4390 */ 4391 mp->b_cont = NULL; 4392 } 4393 return (error); 4394 } 4395 4396 /* 4397 * Verify that both the source and destination addresses 4398 * are valid. If verify_dst is false, then the destination address may be 4399 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4400 * destination reachability, while tunnels do not. 4401 * Note that we allow connect to broadcast and multicast 4402 * addresses when ire_requested is set. Thus the ULP 4403 * has to check for IRE_BROADCAST and multicast. 4404 * 4405 * Returns zero if ok. 4406 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4407 * (for use with TSYSERR reply). 4408 * 4409 * Note: lport and fport are in network byte order. 4410 */ 4411 int 4412 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4413 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4414 boolean_t ire_requested, boolean_t ipsec_policy_set, 4415 boolean_t fanout_insert, boolean_t verify_dst) 4416 { 4417 ire_t *src_ire; 4418 ire_t *dst_ire; 4419 int error = 0; 4420 int protocol; 4421 mblk_t *policy_mp; 4422 ire_t *sire = NULL; 4423 ire_t *md_dst_ire = NULL; 4424 ill_t *md_ill = NULL; 4425 zoneid_t zoneid; 4426 ipaddr_t src_addr = *src_addrp; 4427 4428 src_ire = dst_ire = NULL; 4429 protocol = *mp->b_wptr & 0xFF; 4430 4431 /* 4432 * If we never got a disconnect before, clear it now. 4433 */ 4434 connp->conn_fully_bound = B_FALSE; 4435 4436 if (ipsec_policy_set) { 4437 policy_mp = mp->b_cont; 4438 } 4439 4440 zoneid = IPCL_ZONEID(connp); 4441 4442 if (CLASSD(dst_addr)) { 4443 /* Pick up an IRE_BROADCAST */ 4444 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4445 NULL, zoneid, MBLK_GETLABEL(mp), 4446 (MATCH_IRE_RECURSIVE | 4447 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4448 MATCH_IRE_SECATTR)); 4449 } else { 4450 /* 4451 * If conn_dontroute is set or if conn_nexthop_set is set, 4452 * and onlink ipif is not found set ENETUNREACH error. 4453 */ 4454 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4455 ipif_t *ipif; 4456 4457 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4458 dst_addr : connp->conn_nexthop_v4, zoneid); 4459 if (ipif == NULL) { 4460 error = ENETUNREACH; 4461 goto bad_addr; 4462 } 4463 ipif_refrele(ipif); 4464 } 4465 4466 if (connp->conn_nexthop_set) { 4467 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4468 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4469 MATCH_IRE_SECATTR); 4470 } else { 4471 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4472 &sire, zoneid, MBLK_GETLABEL(mp), 4473 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4474 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4475 MATCH_IRE_SECATTR)); 4476 } 4477 } 4478 /* 4479 * dst_ire can't be a broadcast when not ire_requested. 4480 * We also prevent ire's with src address INADDR_ANY to 4481 * be used, which are created temporarily for 4482 * sending out packets from endpoints that have 4483 * conn_unspec_src set. If verify_dst is true, the destination must be 4484 * reachable. If verify_dst is false, the destination needn't be 4485 * reachable. 4486 * 4487 * If we match on a reject or black hole, then we've got a 4488 * local failure. May as well fail out the connect() attempt, 4489 * since it's never going to succeed. 4490 */ 4491 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4492 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4493 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4494 /* 4495 * If we're verifying destination reachability, we always want 4496 * to complain here. 4497 * 4498 * If we're not verifying destination reachability but the 4499 * destination has a route, we still want to fail on the 4500 * temporary address and broadcast address tests. 4501 */ 4502 if (verify_dst || (dst_ire != NULL)) { 4503 if (ip_debug > 2) { 4504 pr_addr_dbg("ip_bind_connected: bad connected " 4505 "dst %s\n", AF_INET, &dst_addr); 4506 } 4507 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4508 error = ENETUNREACH; 4509 else 4510 error = EHOSTUNREACH; 4511 goto bad_addr; 4512 } 4513 } 4514 4515 /* 4516 * We now know that routing will allow us to reach the destination. 4517 * Check whether Trusted Solaris policy allows communication with this 4518 * host, and pretend that the destination is unreachable if not. 4519 * 4520 * This is never a problem for TCP, since that transport is known to 4521 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4522 * handling. If the remote is unreachable, it will be detected at that 4523 * point, so there's no reason to check it here. 4524 * 4525 * Note that for sendto (and other datagram-oriented friends), this 4526 * check is done as part of the data path label computation instead. 4527 * The check here is just to make non-TCP connect() report the right 4528 * error. 4529 */ 4530 if (dst_ire != NULL && is_system_labeled() && 4531 !IPCL_IS_TCP(connp) && 4532 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4533 connp->conn_mac_exempt) != 0) { 4534 error = EHOSTUNREACH; 4535 if (ip_debug > 2) { 4536 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4537 AF_INET, &dst_addr); 4538 } 4539 goto bad_addr; 4540 } 4541 4542 /* 4543 * If the app does a connect(), it means that it will most likely 4544 * send more than 1 packet to the destination. It makes sense 4545 * to clear the temporary flag. 4546 */ 4547 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4548 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4549 irb_t *irb = dst_ire->ire_bucket; 4550 4551 rw_enter(&irb->irb_lock, RW_WRITER); 4552 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4553 irb->irb_tmp_ire_cnt--; 4554 rw_exit(&irb->irb_lock); 4555 } 4556 4557 /* 4558 * See if we should notify ULP about MDT; we do this whether or not 4559 * ire_requested is TRUE, in order to handle active connects; MDT 4560 * eligibility tests for passive connects are handled separately 4561 * through tcp_adapt_ire(). We do this before the source address 4562 * selection, because dst_ire may change after a call to 4563 * ipif_select_source(). This is a best-effort check, as the 4564 * packet for this connection may not actually go through 4565 * dst_ire->ire_stq, and the exact IRE can only be known after 4566 * calling ip_newroute(). This is why we further check on the 4567 * IRE during Multidata packet transmission in tcp_multisend(). 4568 */ 4569 if (ip_multidata_outbound && !ipsec_policy_set && dst_ire != NULL && 4570 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4571 (md_ill = ire_to_ill(dst_ire), md_ill != NULL) && 4572 ILL_MDT_CAPABLE(md_ill)) { 4573 md_dst_ire = dst_ire; 4574 IRE_REFHOLD(md_dst_ire); 4575 } 4576 4577 if (dst_ire != NULL && 4578 dst_ire->ire_type == IRE_LOCAL && 4579 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4580 /* 4581 * If the IRE belongs to a different zone, look for a matching 4582 * route in the forwarding table and use the source address from 4583 * that route. 4584 */ 4585 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4586 zoneid, 0, NULL, 4587 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4588 MATCH_IRE_RJ_BHOLE); 4589 if (src_ire == NULL) { 4590 error = EHOSTUNREACH; 4591 goto bad_addr; 4592 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4593 if (!(src_ire->ire_type & IRE_HOST)) 4594 error = ENETUNREACH; 4595 else 4596 error = EHOSTUNREACH; 4597 goto bad_addr; 4598 } 4599 if (src_addr == INADDR_ANY) 4600 src_addr = src_ire->ire_src_addr; 4601 ire_refrele(src_ire); 4602 src_ire = NULL; 4603 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4604 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4605 src_addr = sire->ire_src_addr; 4606 ire_refrele(dst_ire); 4607 dst_ire = sire; 4608 sire = NULL; 4609 } else { 4610 /* 4611 * Pick a source address so that a proper inbound 4612 * load spreading would happen. 4613 */ 4614 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4615 ipif_t *src_ipif = NULL; 4616 ire_t *ipif_ire; 4617 4618 /* 4619 * Supply a local source address such that inbound 4620 * load spreading happens. 4621 * 4622 * Determine the best source address on this ill for 4623 * the destination. 4624 * 4625 * 1) For broadcast, we should return a broadcast ire 4626 * found above so that upper layers know that the 4627 * destination address is a broadcast address. 4628 * 4629 * 2) If this is part of a group, select a better 4630 * source address so that better inbound load 4631 * balancing happens. Do the same if the ipif 4632 * is DEPRECATED. 4633 * 4634 * 3) If the outgoing interface is part of a usesrc 4635 * group, then try selecting a source address from 4636 * the usesrc ILL. 4637 */ 4638 if ((dst_ire->ire_zoneid != zoneid && 4639 dst_ire->ire_zoneid != ALL_ZONES) || 4640 (!(dst_ire->ire_type & IRE_BROADCAST) && 4641 ((dst_ill->ill_group != NULL) || 4642 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4643 (dst_ill->ill_usesrc_ifindex != 0)))) { 4644 /* 4645 * If the destination is reachable via a 4646 * given gateway, the selected source address 4647 * should be in the same subnet as the gateway. 4648 * Otherwise, the destination is not reachable. 4649 * 4650 * If there are no interfaces on the same subnet 4651 * as the destination, ipif_select_source gives 4652 * first non-deprecated interface which might be 4653 * on a different subnet than the gateway. 4654 * This is not desirable. Hence pass the dst_ire 4655 * source address to ipif_select_source. 4656 * It is sure that the destination is reachable 4657 * with the dst_ire source address subnet. 4658 * So passing dst_ire source address to 4659 * ipif_select_source will make sure that the 4660 * selected source will be on the same subnet 4661 * as dst_ire source address. 4662 */ 4663 ipaddr_t saddr = 4664 dst_ire->ire_ipif->ipif_src_addr; 4665 src_ipif = ipif_select_source(dst_ill, 4666 saddr, zoneid); 4667 if (src_ipif != NULL) { 4668 if (IS_VNI(src_ipif->ipif_ill)) { 4669 /* 4670 * For VNI there is no 4671 * interface route 4672 */ 4673 src_addr = 4674 src_ipif->ipif_src_addr; 4675 } else { 4676 ipif_ire = 4677 ipif_to_ire(src_ipif); 4678 if (ipif_ire != NULL) { 4679 IRE_REFRELE(dst_ire); 4680 dst_ire = ipif_ire; 4681 } 4682 src_addr = 4683 dst_ire->ire_src_addr; 4684 } 4685 ipif_refrele(src_ipif); 4686 } else { 4687 src_addr = dst_ire->ire_src_addr; 4688 } 4689 } else { 4690 src_addr = dst_ire->ire_src_addr; 4691 } 4692 } 4693 } 4694 4695 /* 4696 * We do ire_route_lookup() here (and not 4697 * interface lookup as we assert that 4698 * src_addr should only come from an 4699 * UP interface for hard binding. 4700 */ 4701 ASSERT(src_ire == NULL); 4702 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 4703 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 4704 /* src_ire must be a local|loopback */ 4705 if (!IRE_IS_LOCAL(src_ire)) { 4706 if (ip_debug > 2) { 4707 pr_addr_dbg("ip_bind_connected: bad connected " 4708 "src %s\n", AF_INET, &src_addr); 4709 } 4710 error = EADDRNOTAVAIL; 4711 goto bad_addr; 4712 } 4713 4714 /* 4715 * If the source address is a loopback address, the 4716 * destination had best be local or multicast. 4717 * The transports that can't handle multicast will reject 4718 * those addresses. 4719 */ 4720 if (src_ire->ire_type == IRE_LOOPBACK && 4721 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 4722 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 4723 error = -1; 4724 goto bad_addr; 4725 } 4726 4727 /* 4728 * Allow setting new policies. For example, disconnects come 4729 * down as ipa_t bind. As we would have set conn_policy_cached 4730 * to B_TRUE before, we should set it to B_FALSE, so that policy 4731 * can change after the disconnect. 4732 */ 4733 connp->conn_policy_cached = B_FALSE; 4734 4735 /* 4736 * Set the conn addresses/ports immediately, so the IPsec policy calls 4737 * can handle their passed-in conn's. 4738 */ 4739 4740 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4741 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 4742 connp->conn_lport = lport; 4743 connp->conn_fport = fport; 4744 *src_addrp = src_addr; 4745 4746 ASSERT(!(ipsec_policy_set && ire_requested)); 4747 if (ire_requested) { 4748 iulp_t *ulp_info = NULL; 4749 4750 /* 4751 * Note that sire will not be NULL if this is an off-link 4752 * connection and there is not cache for that dest yet. 4753 * 4754 * XXX Because of an existing bug, if there are multiple 4755 * default routes, the IRE returned now may not be the actual 4756 * default route used (default routes are chosen in a 4757 * round robin fashion). So if the metrics for different 4758 * default routes are different, we may return the wrong 4759 * metrics. This will not be a problem if the existing 4760 * bug is fixed. 4761 */ 4762 if (sire != NULL) { 4763 ulp_info = &(sire->ire_uinfo); 4764 } 4765 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info)) { 4766 error = -1; 4767 goto bad_addr; 4768 } 4769 } else if (ipsec_policy_set) { 4770 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4771 error = -1; 4772 goto bad_addr; 4773 } 4774 } 4775 4776 /* 4777 * Cache IPsec policy in this conn. If we have per-socket policy, 4778 * we'll cache that. If we don't, we'll inherit global policy. 4779 * 4780 * We can't insert until the conn reflects the policy. Note that 4781 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 4782 * connections where we don't have a policy. This is to prevent 4783 * global policy lookups in the inbound path. 4784 * 4785 * If we insert before we set conn_policy_cached, 4786 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 4787 * because global policy cound be non-empty. We normally call 4788 * ipsec_check_policy() for conn_policy_cached connections only if 4789 * ipc_in_enforce_policy is set. But in this case, 4790 * conn_policy_cached can get set anytime since we made the 4791 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 4792 * called, which will make the above assumption false. Thus, we 4793 * need to insert after we set conn_policy_cached. 4794 */ 4795 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 4796 goto bad_addr; 4797 4798 if (fanout_insert) { 4799 /* 4800 * The addresses have been verified. Time to insert in 4801 * the correct fanout list. 4802 */ 4803 error = ipcl_conn_insert(connp, protocol, src_addr, 4804 dst_addr, connp->conn_ports); 4805 } 4806 4807 if (error == 0) { 4808 connp->conn_fully_bound = B_TRUE; 4809 /* 4810 * Our initial checks for MDT have passed; the IRE is not 4811 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 4812 * be supporting MDT. Pass the IRE, IPC and ILL into 4813 * ip_mdinfo_return(), which performs further checks 4814 * against them and upon success, returns the MDT info 4815 * mblk which we will attach to the bind acknowledgment. 4816 */ 4817 if (md_dst_ire != NULL) { 4818 mblk_t *mdinfo_mp; 4819 4820 ASSERT(md_ill != NULL); 4821 ASSERT(md_ill->ill_mdt_capab != NULL); 4822 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 4823 md_ill->ill_name, md_ill->ill_mdt_capab)) != NULL) 4824 linkb(mp, mdinfo_mp); 4825 } 4826 } 4827 bad_addr: 4828 if (ipsec_policy_set) { 4829 ASSERT(policy_mp == mp->b_cont); 4830 ASSERT(policy_mp != NULL); 4831 freeb(policy_mp); 4832 /* 4833 * As of now assume that nothing else accompanies 4834 * IPSEC_POLICY_SET. 4835 */ 4836 mp->b_cont = NULL; 4837 } 4838 if (src_ire != NULL) 4839 IRE_REFRELE(src_ire); 4840 if (dst_ire != NULL) 4841 IRE_REFRELE(dst_ire); 4842 if (sire != NULL) 4843 IRE_REFRELE(sire); 4844 if (md_dst_ire != NULL) 4845 IRE_REFRELE(md_dst_ire); 4846 return (error); 4847 } 4848 4849 /* 4850 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 4851 * Prefers dst_ire over src_ire. 4852 */ 4853 static boolean_t 4854 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info) 4855 { 4856 mblk_t *mp1; 4857 ire_t *ret_ire = NULL; 4858 4859 mp1 = mp->b_cont; 4860 ASSERT(mp1 != NULL); 4861 4862 if (ire != NULL) { 4863 /* 4864 * mp1 initialized above to IRE_DB_REQ_TYPE 4865 * appended mblk. Its <upper protocol>'s 4866 * job to make sure there is room. 4867 */ 4868 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 4869 return (0); 4870 4871 mp1->b_datap->db_type = IRE_DB_TYPE; 4872 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 4873 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 4874 ret_ire = (ire_t *)mp1->b_rptr; 4875 /* 4876 * Pass the latest setting of the ip_path_mtu_discovery and 4877 * copy the ulp info if any. 4878 */ 4879 ret_ire->ire_frag_flag |= (ip_path_mtu_discovery) ? 4880 IPH_DF : 0; 4881 if (ulp_info != NULL) { 4882 bcopy(ulp_info, &(ret_ire->ire_uinfo), 4883 sizeof (iulp_t)); 4884 } 4885 ret_ire->ire_mp = mp1; 4886 } else { 4887 /* 4888 * No IRE was found. Remove IRE mblk. 4889 */ 4890 mp->b_cont = mp1->b_cont; 4891 freeb(mp1); 4892 } 4893 4894 return (1); 4895 } 4896 4897 /* 4898 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 4899 * the final piece where we don't. Return a pointer to the first mblk in the 4900 * result, and update the pointer to the next mblk to chew on. If anything 4901 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 4902 * NULL pointer. 4903 */ 4904 mblk_t * 4905 ip_carve_mp(mblk_t **mpp, ssize_t len) 4906 { 4907 mblk_t *mp0; 4908 mblk_t *mp1; 4909 mblk_t *mp2; 4910 4911 if (!len || !mpp || !(mp0 = *mpp)) 4912 return (NULL); 4913 /* If we aren't going to consume the first mblk, we need a dup. */ 4914 if (mp0->b_wptr - mp0->b_rptr > len) { 4915 mp1 = dupb(mp0); 4916 if (mp1) { 4917 /* Partition the data between the two mblks. */ 4918 mp1->b_wptr = mp1->b_rptr + len; 4919 mp0->b_rptr = mp1->b_wptr; 4920 /* 4921 * after adjustments if mblk not consumed is now 4922 * unaligned, try to align it. If this fails free 4923 * all messages and let upper layer recover. 4924 */ 4925 if (!OK_32PTR(mp0->b_rptr)) { 4926 if (!pullupmsg(mp0, -1)) { 4927 freemsg(mp0); 4928 freemsg(mp1); 4929 *mpp = NULL; 4930 return (NULL); 4931 } 4932 } 4933 } 4934 return (mp1); 4935 } 4936 /* Eat through as many mblks as we need to get len bytes. */ 4937 len -= mp0->b_wptr - mp0->b_rptr; 4938 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 4939 if (mp2->b_wptr - mp2->b_rptr > len) { 4940 /* 4941 * We won't consume the entire last mblk. Like 4942 * above, dup and partition it. 4943 */ 4944 mp1->b_cont = dupb(mp2); 4945 mp1 = mp1->b_cont; 4946 if (!mp1) { 4947 /* 4948 * Trouble. Rather than go to a lot of 4949 * trouble to clean up, we free the messages. 4950 * This won't be any worse than losing it on 4951 * the wire. 4952 */ 4953 freemsg(mp0); 4954 freemsg(mp2); 4955 *mpp = NULL; 4956 return (NULL); 4957 } 4958 mp1->b_wptr = mp1->b_rptr + len; 4959 mp2->b_rptr = mp1->b_wptr; 4960 /* 4961 * after adjustments if mblk not consumed is now 4962 * unaligned, try to align it. If this fails free 4963 * all messages and let upper layer recover. 4964 */ 4965 if (!OK_32PTR(mp2->b_rptr)) { 4966 if (!pullupmsg(mp2, -1)) { 4967 freemsg(mp0); 4968 freemsg(mp2); 4969 *mpp = NULL; 4970 return (NULL); 4971 } 4972 } 4973 *mpp = mp2; 4974 return (mp0); 4975 } 4976 /* Decrement len by the amount we just got. */ 4977 len -= mp2->b_wptr - mp2->b_rptr; 4978 } 4979 /* 4980 * len should be reduced to zero now. If not our caller has 4981 * screwed up. 4982 */ 4983 if (len) { 4984 /* Shouldn't happen! */ 4985 freemsg(mp0); 4986 *mpp = NULL; 4987 return (NULL); 4988 } 4989 /* 4990 * We consumed up to exactly the end of an mblk. Detach the part 4991 * we are returning from the rest of the chain. 4992 */ 4993 mp1->b_cont = NULL; 4994 *mpp = mp2; 4995 return (mp0); 4996 } 4997 4998 /* The ill stream is being unplumbed. Called from ip_close */ 4999 int 5000 ip_modclose(ill_t *ill) 5001 { 5002 5003 boolean_t success; 5004 ipsq_t *ipsq; 5005 ipif_t *ipif; 5006 queue_t *q = ill->ill_rq; 5007 5008 /* 5009 * Forcibly enter the ipsq after some delay. This is to take 5010 * care of the case when some ioctl does not complete because 5011 * we sent a control message to the driver and it did not 5012 * send us a reply. We want to be able to at least unplumb 5013 * and replumb rather than force the user to reboot the system. 5014 */ 5015 success = ipsq_enter(ill, B_FALSE); 5016 5017 /* 5018 * Open/close/push/pop is guaranteed to be single threaded 5019 * per stream by STREAMS. FS guarantees that all references 5020 * from top are gone before close is called. So there can't 5021 * be another close thread that has set CONDEMNED on this ill. 5022 * and cause ipsq_enter to return failure. 5023 */ 5024 ASSERT(success); 5025 ipsq = ill->ill_phyint->phyint_ipsq; 5026 5027 /* 5028 * Mark it condemned. No new reference will be made to this ill. 5029 * Lookup functions will return an error. Threads that try to 5030 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5031 * that the refcnt will drop down to zero. 5032 */ 5033 mutex_enter(&ill->ill_lock); 5034 ill->ill_state_flags |= ILL_CONDEMNED; 5035 for (ipif = ill->ill_ipif; ipif != NULL; 5036 ipif = ipif->ipif_next) { 5037 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5038 } 5039 /* 5040 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5041 * returns error if ILL_CONDEMNED is set 5042 */ 5043 cv_broadcast(&ill->ill_cv); 5044 mutex_exit(&ill->ill_lock); 5045 5046 /* 5047 * Shut down fragmentation reassembly. 5048 * ill_frag_timer won't start a timer again. 5049 * Now cancel any existing timer 5050 */ 5051 (void) untimeout(ill->ill_frag_timer_id); 5052 (void) ill_frag_timeout(ill, 0); 5053 5054 /* 5055 * If MOVE was in progress, clear the 5056 * move_in_progress fields also. 5057 */ 5058 if (ill->ill_move_in_progress) { 5059 ILL_CLEAR_MOVE(ill); 5060 } 5061 5062 /* 5063 * Call ill_delete to bring down the ipifs, ilms and ill on 5064 * this ill. Then wait for the refcnts to drop to zero. 5065 * ill_is_quiescent checks whether the ill is really quiescent. 5066 * Then make sure that threads that are waiting to enter the 5067 * ipsq have seen the error returned by ipsq_enter and have 5068 * gone away. Then we call ill_delete_tail which does the 5069 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff. 5070 */ 5071 ill_delete(ill); 5072 mutex_enter(&ill->ill_lock); 5073 while (!ill_is_quiescent(ill)) 5074 cv_wait(&ill->ill_cv, &ill->ill_lock); 5075 while (ill->ill_waiters) 5076 cv_wait(&ill->ill_cv, &ill->ill_lock); 5077 5078 mutex_exit(&ill->ill_lock); 5079 5080 /* qprocsoff is called in ill_delete_tail */ 5081 ill_delete_tail(ill); 5082 5083 /* 5084 * Walk through all upper (conn) streams and qenable 5085 * those that have queued data. 5086 * close synchronization needs this to 5087 * be done to ensure that all upper layers blocked 5088 * due to flow control to the closing device 5089 * get unblocked. 5090 */ 5091 ip1dbg(("ip_wsrv: walking\n")); 5092 conn_walk_drain(); 5093 5094 mutex_enter(&ip_mi_lock); 5095 mi_close_unlink(&ip_g_head, (IDP)ill); 5096 mutex_exit(&ip_mi_lock); 5097 5098 /* 5099 * credp could be null if the open didn't succeed and ip_modopen 5100 * itself calls ip_close. 5101 */ 5102 if (ill->ill_credp != NULL) 5103 crfree(ill->ill_credp); 5104 5105 mi_close_free((IDP)ill); 5106 q->q_ptr = WR(q)->q_ptr = NULL; 5107 5108 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5109 5110 return (0); 5111 } 5112 5113 /* 5114 * This is called as part of close() for both IP and UDP 5115 * in order to quiesce the conn. 5116 */ 5117 void 5118 ip_quiesce_conn(conn_t *connp) 5119 { 5120 boolean_t drain_cleanup_reqd = B_FALSE; 5121 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5122 boolean_t ilg_cleanup_reqd = B_FALSE; 5123 5124 ASSERT(!IPCL_IS_TCP(connp)); 5125 5126 /* 5127 * Mark the conn as closing, and this conn must not be 5128 * inserted in future into any list. Eg. conn_drain_insert(), 5129 * won't insert this conn into the conn_drain_list. 5130 * Similarly ill_pending_mp_add() will not add any mp to 5131 * the pending mp list, after this conn has started closing. 5132 * 5133 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5134 * cannot get set henceforth. 5135 */ 5136 mutex_enter(&connp->conn_lock); 5137 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5138 connp->conn_state_flags |= CONN_CLOSING; 5139 if (connp->conn_idl != NULL) 5140 drain_cleanup_reqd = B_TRUE; 5141 if (connp->conn_oper_pending_ill != NULL) 5142 conn_ioctl_cleanup_reqd = B_TRUE; 5143 if (connp->conn_ilg_inuse != 0) 5144 ilg_cleanup_reqd = B_TRUE; 5145 mutex_exit(&connp->conn_lock); 5146 5147 if (IPCL_IS_UDP(connp)) 5148 udp_quiesce_conn(connp); 5149 5150 if (conn_ioctl_cleanup_reqd) 5151 conn_ioctl_cleanup(connp); 5152 5153 if (is_system_labeled() && connp->conn_anon_port) { 5154 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5155 connp->conn_mlp_type, connp->conn_ulp, 5156 ntohs(connp->conn_lport), B_FALSE); 5157 connp->conn_anon_port = 0; 5158 } 5159 connp->conn_mlp_type = mlptSingle; 5160 5161 /* 5162 * Remove this conn from any fanout list it is on. 5163 * and then wait for any threads currently operating 5164 * on this endpoint to finish 5165 */ 5166 ipcl_hash_remove(connp); 5167 5168 /* 5169 * Remove this conn from the drain list, and do 5170 * any other cleanup that may be required. 5171 * (Only non-tcp streams may have a non-null conn_idl. 5172 * TCP streams are never flow controlled, and 5173 * conn_idl will be null) 5174 */ 5175 if (drain_cleanup_reqd) 5176 conn_drain_tail(connp, B_TRUE); 5177 5178 if (connp->conn_rq == ip_g_mrouter || connp->conn_wq == ip_g_mrouter) 5179 (void) ip_mrouter_done(NULL); 5180 5181 if (ilg_cleanup_reqd) 5182 ilg_delete_all(connp); 5183 5184 conn_delete_ire(connp, NULL); 5185 5186 /* 5187 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5188 * callers from write side can't be there now because close 5189 * is in progress. The only other caller is ipcl_walk 5190 * which checks for the condemned flag. 5191 */ 5192 mutex_enter(&connp->conn_lock); 5193 connp->conn_state_flags |= CONN_CONDEMNED; 5194 while (connp->conn_ref != 1) 5195 cv_wait(&connp->conn_cv, &connp->conn_lock); 5196 connp->conn_state_flags |= CONN_QUIESCED; 5197 mutex_exit(&connp->conn_lock); 5198 } 5199 5200 /* ARGSUSED */ 5201 int 5202 ip_close(queue_t *q, int flags) 5203 { 5204 conn_t *connp; 5205 5206 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5207 5208 /* 5209 * Call the appropriate delete routine depending on whether this is 5210 * a module or device. 5211 */ 5212 if (WR(q)->q_next != NULL) { 5213 /* This is a module close */ 5214 return (ip_modclose((ill_t *)q->q_ptr)); 5215 } 5216 5217 connp = q->q_ptr; 5218 ip_quiesce_conn(connp); 5219 5220 qprocsoff(q); 5221 5222 /* 5223 * Now we are truly single threaded on this stream, and can 5224 * delete the things hanging off the connp, and finally the connp. 5225 * We removed this connp from the fanout list, it cannot be 5226 * accessed thru the fanouts, and we already waited for the 5227 * conn_ref to drop to 0. We are already in close, so 5228 * there cannot be any other thread from the top. qprocsoff 5229 * has completed, and service has completed or won't run in 5230 * future. 5231 */ 5232 ASSERT(connp->conn_ref == 1); 5233 5234 /* 5235 * A conn which was previously marked as IPCL_UDP cannot 5236 * retain the flag because it would have been cleared by 5237 * udp_close(). 5238 */ 5239 ASSERT(!IPCL_IS_UDP(connp)); 5240 5241 if (connp->conn_latch != NULL) { 5242 IPLATCH_REFRELE(connp->conn_latch); 5243 connp->conn_latch = NULL; 5244 } 5245 if (connp->conn_policy != NULL) { 5246 IPPH_REFRELE(connp->conn_policy); 5247 connp->conn_policy = NULL; 5248 } 5249 if (connp->conn_ipsec_opt_mp != NULL) { 5250 freemsg(connp->conn_ipsec_opt_mp); 5251 connp->conn_ipsec_opt_mp = NULL; 5252 } 5253 5254 inet_minor_free(ip_minor_arena, connp->conn_dev); 5255 5256 connp->conn_ref--; 5257 ipcl_conn_destroy(connp); 5258 5259 q->q_ptr = WR(q)->q_ptr = NULL; 5260 return (0); 5261 } 5262 5263 int 5264 ip_snmpmod_close(queue_t *q) 5265 { 5266 conn_t *connp = Q_TO_CONN(q); 5267 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5268 5269 qprocsoff(q); 5270 5271 if (connp->conn_flags & IPCL_UDPMOD) 5272 udp_close_free(connp); 5273 5274 if (connp->conn_cred != NULL) { 5275 crfree(connp->conn_cred); 5276 connp->conn_cred = NULL; 5277 } 5278 CONN_DEC_REF(connp); 5279 q->q_ptr = WR(q)->q_ptr = NULL; 5280 return (0); 5281 } 5282 5283 /* 5284 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5285 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5286 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5287 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5288 * queues as we never enqueue messages there and we don't handle any ioctls. 5289 * Everything else is freed. 5290 */ 5291 void 5292 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5293 { 5294 conn_t *connp = q->q_ptr; 5295 pfi_t setfn; 5296 pfi_t getfn; 5297 5298 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5299 5300 switch (DB_TYPE(mp)) { 5301 case M_PROTO: 5302 case M_PCPROTO: 5303 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5304 ((((union T_primitives *)mp->b_rptr)->type == 5305 T_SVR4_OPTMGMT_REQ) || 5306 (((union T_primitives *)mp->b_rptr)->type == 5307 T_OPTMGMT_REQ))) { 5308 /* 5309 * This is the only TPI primitive supported. Its 5310 * handling does not require tcp_t, but it does require 5311 * conn_t to check permissions. 5312 */ 5313 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5314 5315 if (connp->conn_flags & IPCL_TCPMOD) { 5316 setfn = tcp_snmp_set; 5317 getfn = tcp_snmp_get; 5318 } else { 5319 setfn = udp_snmp_set; 5320 getfn = udp_snmp_get; 5321 } 5322 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5323 freemsg(mp); 5324 return; 5325 } 5326 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5327 != NULL) 5328 qreply(q, mp); 5329 break; 5330 case M_FLUSH: 5331 case M_IOCTL: 5332 putnext(q, mp); 5333 break; 5334 default: 5335 freemsg(mp); 5336 break; 5337 } 5338 } 5339 5340 /* Return the IP checksum for the IP header at "iph". */ 5341 uint16_t 5342 ip_csum_hdr(ipha_t *ipha) 5343 { 5344 uint16_t *uph; 5345 uint32_t sum; 5346 int opt_len; 5347 5348 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5349 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5350 uph = (uint16_t *)ipha; 5351 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5352 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5353 if (opt_len > 0) { 5354 do { 5355 sum += uph[10]; 5356 sum += uph[11]; 5357 uph += 2; 5358 } while (--opt_len); 5359 } 5360 sum = (sum & 0xFFFF) + (sum >> 16); 5361 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5362 if (sum == 0xffff) 5363 sum = 0; 5364 return ((uint16_t)sum); 5365 } 5366 5367 void 5368 ip_ddi_destroy(void) 5369 { 5370 tnet_fini(); 5371 tcp_ddi_destroy(); 5372 sctp_ddi_destroy(); 5373 ipsec_loader_destroy(); 5374 ipsec_policy_destroy(); 5375 ipsec_kstat_destroy(); 5376 nd_free(&ip_g_nd); 5377 mutex_destroy(&igmp_timer_lock); 5378 mutex_destroy(&mld_timer_lock); 5379 mutex_destroy(&igmp_slowtimeout_lock); 5380 mutex_destroy(&mld_slowtimeout_lock); 5381 mutex_destroy(&ip_mi_lock); 5382 mutex_destroy(&rts_clients.connf_lock); 5383 ip_ire_fini(); 5384 ip6_asp_free(); 5385 conn_drain_fini(); 5386 ipcl_destroy(); 5387 inet_minor_destroy(ip_minor_arena); 5388 icmp_kstat_fini(); 5389 ip_kstat_fini(); 5390 rw_destroy(&ipsec_capab_ills_lock); 5391 rw_destroy(&ill_g_usesrc_lock); 5392 ip_drop_unregister(&ip_dropper); 5393 } 5394 5395 5396 void 5397 ip_ddi_init(void) 5398 { 5399 TCP6_MAJ = ddi_name_to_major(TCP6); 5400 TCP_MAJ = ddi_name_to_major(TCP); 5401 SCTP_MAJ = ddi_name_to_major(SCTP); 5402 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5403 5404 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5405 5406 /* IP's IPsec code calls the packet dropper */ 5407 ip_drop_register(&ip_dropper, "IP IPsec processing"); 5408 5409 if (!ip_g_nd) { 5410 if (!ip_param_register(lcl_param_arr, A_CNT(lcl_param_arr), 5411 lcl_ndp_arr, A_CNT(lcl_ndp_arr))) { 5412 nd_free(&ip_g_nd); 5413 } 5414 } 5415 5416 ipsec_loader_init(); 5417 ipsec_policy_init(); 5418 ipsec_kstat_init(); 5419 rw_init(&ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5420 mutex_init(&igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5421 mutex_init(&mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5422 mutex_init(&igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5423 mutex_init(&mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5424 mutex_init(&ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5425 mutex_init(&ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5426 rw_init(&ill_g_lock, NULL, RW_DEFAULT, NULL); 5427 rw_init(&ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5428 rw_init(&ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5429 5430 /* 5431 * For IP and TCP the minor numbers should start from 2 since we have 4 5432 * initial devices: ip, ip6, tcp, tcp6. 5433 */ 5434 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5435 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5436 cmn_err(CE_PANIC, 5437 "ip_ddi_init: ip_minor_arena creation failed\n"); 5438 } 5439 5440 ipcl_init(); 5441 mutex_init(&rts_clients.connf_lock, NULL, MUTEX_DEFAULT, NULL); 5442 ip_ire_init(); 5443 ip6_asp_init(); 5444 ipif_init(); 5445 conn_drain_init(); 5446 tcp_ddi_init(); 5447 sctp_ddi_init(); 5448 5449 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5450 5451 if ((ip_kstat = kstat_create("ip", 0, "ipstat", 5452 "net", KSTAT_TYPE_NAMED, 5453 sizeof (ip_statistics) / sizeof (kstat_named_t), 5454 KSTAT_FLAG_VIRTUAL)) != NULL) { 5455 ip_kstat->ks_data = &ip_statistics; 5456 kstat_install(ip_kstat); 5457 } 5458 ip_kstat_init(); 5459 ip6_kstat_init(); 5460 icmp_kstat_init(); 5461 ipsec_loader_start(); 5462 tnet_init(); 5463 } 5464 5465 /* 5466 * Allocate and initialize a DLPI template of the specified length. (May be 5467 * called as writer.) 5468 */ 5469 mblk_t * 5470 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 5471 { 5472 mblk_t *mp; 5473 5474 mp = allocb(len, BPRI_MED); 5475 if (!mp) 5476 return (NULL); 5477 5478 /* 5479 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 5480 * of which we don't seem to use) are sent with M_PCPROTO, and 5481 * that other DLPI are M_PROTO. 5482 */ 5483 if (prim == DL_INFO_REQ) { 5484 mp->b_datap->db_type = M_PCPROTO; 5485 } else { 5486 mp->b_datap->db_type = M_PROTO; 5487 } 5488 5489 mp->b_wptr = mp->b_rptr + len; 5490 bzero(mp->b_rptr, len); 5491 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 5492 return (mp); 5493 } 5494 5495 const char * 5496 dlpi_prim_str(int prim) 5497 { 5498 switch (prim) { 5499 case DL_INFO_REQ: return ("DL_INFO_REQ"); 5500 case DL_INFO_ACK: return ("DL_INFO_ACK"); 5501 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 5502 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 5503 case DL_BIND_REQ: return ("DL_BIND_REQ"); 5504 case DL_BIND_ACK: return ("DL_BIND_ACK"); 5505 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 5506 case DL_OK_ACK: return ("DL_OK_ACK"); 5507 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 5508 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 5509 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 5510 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 5511 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 5512 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 5513 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 5514 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 5515 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 5516 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 5517 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 5518 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 5519 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 5520 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 5521 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 5522 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 5523 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 5524 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 5525 default: return ("<unknown primitive>"); 5526 } 5527 } 5528 5529 const char * 5530 dlpi_err_str(int err) 5531 { 5532 switch (err) { 5533 case DL_ACCESS: return ("DL_ACCESS"); 5534 case DL_BADADDR: return ("DL_BADADDR"); 5535 case DL_BADCORR: return ("DL_BADCORR"); 5536 case DL_BADDATA: return ("DL_BADDATA"); 5537 case DL_BADPPA: return ("DL_BADPPA"); 5538 case DL_BADPRIM: return ("DL_BADPRIM"); 5539 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 5540 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 5541 case DL_BADSAP: return ("DL_BADSAP"); 5542 case DL_BADTOKEN: return ("DL_BADTOKEN"); 5543 case DL_BOUND: return ("DL_BOUND"); 5544 case DL_INITFAILED: return ("DL_INITFAILED"); 5545 case DL_NOADDR: return ("DL_NOADDR"); 5546 case DL_NOTINIT: return ("DL_NOTINIT"); 5547 case DL_OUTSTATE: return ("DL_OUTSTATE"); 5548 case DL_SYSERR: return ("DL_SYSERR"); 5549 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 5550 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 5551 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 5552 case DL_TOOMANY: return ("DL_TOOMANY"); 5553 case DL_NOTENAB: return ("DL_NOTENAB"); 5554 case DL_BUSY: return ("DL_BUSY"); 5555 case DL_NOAUTO: return ("DL_NOAUTO"); 5556 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 5557 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 5558 case DL_XIDAUTO: return ("DL_XIDAUTO"); 5559 case DL_TESTAUTO: return ("DL_TESTAUTO"); 5560 case DL_PENDING: return ("DL_PENDING"); 5561 default: return ("<unknown error>"); 5562 } 5563 } 5564 5565 /* 5566 * Debug formatting routine. Returns a character string representation of the 5567 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5568 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 5569 */ 5570 char * 5571 ip_dot_addr(ipaddr_t addr, char *buf) 5572 { 5573 return (ip_dot_saddr((uchar_t *)&addr, buf)); 5574 } 5575 5576 /* 5577 * Debug formatting routine. Returns a character string representation of the 5578 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5579 * as a pointer. The "xxx" parts including left zero padding so the final 5580 * string will fit easily in tables. It would be nice to take a padding 5581 * length argument instead. 5582 */ 5583 static char * 5584 ip_dot_saddr(uchar_t *addr, char *buf) 5585 { 5586 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 5587 addr[0] & 0xFF, addr[1] & 0xFF, addr[2] & 0xFF, addr[3] & 0xFF); 5588 return (buf); 5589 } 5590 5591 /* 5592 * Send an ICMP error after patching up the packet appropriately. Returns 5593 * non-zero if the appropriate MIB should be bumped; zero otherwise. 5594 */ 5595 static boolean_t 5596 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 5597 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, zoneid_t zoneid) 5598 { 5599 ipha_t *ipha; 5600 mblk_t *first_mp; 5601 boolean_t secure; 5602 unsigned char db_type; 5603 5604 first_mp = mp; 5605 if (mctl_present) { 5606 mp = mp->b_cont; 5607 secure = ipsec_in_is_secure(first_mp); 5608 ASSERT(mp != NULL); 5609 } else { 5610 /* 5611 * If this is an ICMP error being reported - which goes 5612 * up as M_CTLs, we need to convert them to M_DATA till 5613 * we finish checking with global policy because 5614 * ipsec_check_global_policy() assumes M_DATA as clear 5615 * and M_CTL as secure. 5616 */ 5617 db_type = DB_TYPE(mp); 5618 DB_TYPE(mp) = M_DATA; 5619 secure = B_FALSE; 5620 } 5621 /* 5622 * We are generating an icmp error for some inbound packet. 5623 * Called from all ip_fanout_(udp, tcp, proto) functions. 5624 * Before we generate an error, check with global policy 5625 * to see whether this is allowed to enter the system. As 5626 * there is no "conn", we are checking with global policy. 5627 */ 5628 ipha = (ipha_t *)mp->b_rptr; 5629 if (secure || ipsec_inbound_v4_policy_present) { 5630 first_mp = ipsec_check_global_policy(first_mp, NULL, 5631 ipha, NULL, mctl_present); 5632 if (first_mp == NULL) 5633 return (B_FALSE); 5634 } 5635 5636 if (!mctl_present) 5637 DB_TYPE(mp) = db_type; 5638 5639 if (flags & IP_FF_SEND_ICMP) { 5640 if (flags & IP_FF_HDR_COMPLETE) { 5641 if (ip_hdr_complete(ipha, zoneid)) { 5642 freemsg(first_mp); 5643 return (B_TRUE); 5644 } 5645 } 5646 if (flags & IP_FF_CKSUM) { 5647 /* 5648 * Have to correct checksum since 5649 * the packet might have been 5650 * fragmented and the reassembly code in ip_rput 5651 * does not restore the IP checksum. 5652 */ 5653 ipha->ipha_hdr_checksum = 0; 5654 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 5655 } 5656 switch (icmp_type) { 5657 case ICMP_DEST_UNREACHABLE: 5658 icmp_unreachable(WR(q), first_mp, icmp_code); 5659 break; 5660 default: 5661 freemsg(first_mp); 5662 break; 5663 } 5664 } else { 5665 freemsg(first_mp); 5666 return (B_FALSE); 5667 } 5668 5669 return (B_TRUE); 5670 } 5671 5672 /* 5673 * Used to send an ICMP error message when a packet is received for 5674 * a protocol that is not supported. The mblk passed as argument 5675 * is consumed by this function. 5676 */ 5677 void 5678 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid) 5679 { 5680 mblk_t *mp; 5681 ipha_t *ipha; 5682 ill_t *ill; 5683 ipsec_in_t *ii; 5684 5685 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5686 ASSERT(ii->ipsec_in_type == IPSEC_IN); 5687 5688 mp = ipsec_mp->b_cont; 5689 ipsec_mp->b_cont = NULL; 5690 ipha = (ipha_t *)mp->b_rptr; 5691 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 5692 if (ip_fanout_send_icmp(q, mp, flags, ICMP_DEST_UNREACHABLE, 5693 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid)) { 5694 BUMP_MIB(&ip_mib, ipInUnknownProtos); 5695 } 5696 } else { 5697 /* Get ill from index in ipsec_in_t. */ 5698 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 5699 B_TRUE, NULL, NULL, NULL, NULL); 5700 if (ill != NULL) { 5701 if (ip_fanout_send_icmp_v6(q, mp, flags, 5702 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 5703 0, B_FALSE, zoneid)) { 5704 BUMP_MIB(ill->ill_ip6_mib, ipv6InUnknownProtos); 5705 } 5706 5707 ill_refrele(ill); 5708 } else { /* re-link for the freemsg() below. */ 5709 ipsec_mp->b_cont = mp; 5710 } 5711 } 5712 5713 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 5714 freemsg(ipsec_mp); 5715 } 5716 5717 /* 5718 * See if the inbound datagram has had IPsec processing applied to it. 5719 */ 5720 boolean_t 5721 ipsec_in_is_secure(mblk_t *ipsec_mp) 5722 { 5723 ipsec_in_t *ii; 5724 5725 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5726 ASSERT(ii->ipsec_in_type == IPSEC_IN); 5727 5728 if (ii->ipsec_in_loopback) { 5729 return (ii->ipsec_in_secure); 5730 } else { 5731 return (ii->ipsec_in_ah_sa != NULL || 5732 ii->ipsec_in_esp_sa != NULL || 5733 ii->ipsec_in_decaps); 5734 } 5735 } 5736 5737 /* 5738 * Handle protocols with which IP is less intimate. There 5739 * can be more than one stream bound to a particular 5740 * protocol. When this is the case, normally each one gets a copy 5741 * of any incoming packets. 5742 * 5743 * IPSEC NOTE : 5744 * 5745 * Don't allow a secure packet going up a non-secure connection. 5746 * We don't allow this because 5747 * 5748 * 1) Reply might go out in clear which will be dropped at 5749 * the sending side. 5750 * 2) If the reply goes out in clear it will give the 5751 * adversary enough information for getting the key in 5752 * most of the cases. 5753 * 5754 * Moreover getting a secure packet when we expect clear 5755 * implies that SA's were added without checking for 5756 * policy on both ends. This should not happen once ISAKMP 5757 * is used to negotiate SAs as SAs will be added only after 5758 * verifying the policy. 5759 * 5760 * NOTE : If the packet was tunneled and not multicast we only send 5761 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 5762 * back to delivering packets to AF_INET6 raw sockets. 5763 * 5764 * IPQoS Notes: 5765 * Once we have determined the client, invoke IPPF processing. 5766 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 5767 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 5768 * ip_policy will be false. 5769 * 5770 * Zones notes: 5771 * Currently only applications in the global zone can create raw sockets for 5772 * protocols other than ICMP. So unlike the broadcast / multicast case of 5773 * ip_fanout_udp(), we only send a copy of the packet to streams in the 5774 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 5775 */ 5776 static void 5777 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 5778 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 5779 zoneid_t zoneid) 5780 { 5781 queue_t *rq; 5782 mblk_t *mp1, *first_mp1; 5783 uint_t protocol = ipha->ipha_protocol; 5784 ipaddr_t dst; 5785 boolean_t one_only; 5786 mblk_t *first_mp = mp; 5787 boolean_t secure; 5788 uint32_t ill_index; 5789 conn_t *connp, *first_connp, *next_connp; 5790 connf_t *connfp; 5791 boolean_t shared_addr; 5792 5793 if (mctl_present) { 5794 mp = first_mp->b_cont; 5795 secure = ipsec_in_is_secure(first_mp); 5796 ASSERT(mp != NULL); 5797 } else { 5798 secure = B_FALSE; 5799 } 5800 dst = ipha->ipha_dst; 5801 /* 5802 * If the packet was tunneled and not multicast we only send to it 5803 * the first match. 5804 */ 5805 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 5806 !CLASSD(dst)); 5807 5808 shared_addr = (zoneid == ALL_ZONES); 5809 if (shared_addr) { 5810 /* 5811 * We don't allow multilevel ports for raw IP, so no need to 5812 * check for that here. 5813 */ 5814 zoneid = tsol_packet_to_zoneid(mp); 5815 } 5816 5817 connfp = &ipcl_proto_fanout[protocol]; 5818 mutex_enter(&connfp->connf_lock); 5819 connp = connfp->connf_head; 5820 for (connp = connfp->connf_head; connp != NULL; 5821 connp = connp->conn_next) { 5822 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 5823 zoneid) && 5824 (!is_system_labeled() || 5825 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 5826 connp))) 5827 break; 5828 } 5829 5830 if (connp == NULL || connp->conn_upq == NULL) { 5831 /* 5832 * No one bound to these addresses. Is 5833 * there a client that wants all 5834 * unclaimed datagrams? 5835 */ 5836 mutex_exit(&connfp->connf_lock); 5837 /* 5838 * Check for IPPROTO_ENCAP... 5839 */ 5840 if (protocol == IPPROTO_ENCAP && ip_g_mrouter) { 5841 /* 5842 * XXX If an IPsec mblk is here on a multicast 5843 * tunnel (using ip_mroute stuff), what should 5844 * I do? 5845 * 5846 * For now, just free the IPsec mblk before 5847 * passing it up to the multicast routing 5848 * stuff. 5849 * 5850 * BTW, If I match a configured IP-in-IP 5851 * tunnel, ip_mroute_decap will never be 5852 * called. 5853 */ 5854 if (mp != first_mp) 5855 freeb(first_mp); 5856 ip_mroute_decap(q, mp); 5857 } else { 5858 /* 5859 * Otherwise send an ICMP protocol unreachable. 5860 */ 5861 if (ip_fanout_send_icmp(q, first_mp, flags, 5862 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 5863 mctl_present, zoneid)) { 5864 BUMP_MIB(&ip_mib, ipInUnknownProtos); 5865 } 5866 } 5867 return; 5868 } 5869 CONN_INC_REF(connp); 5870 first_connp = connp; 5871 5872 /* 5873 * Only send message to one tunnel driver by immediately 5874 * terminating the loop. 5875 */ 5876 connp = one_only ? NULL : connp->conn_next; 5877 5878 for (;;) { 5879 while (connp != NULL) { 5880 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 5881 flags, zoneid) && 5882 (!is_system_labeled() || 5883 tsol_receive_local(mp, &dst, IPV4_VERSION, 5884 shared_addr, connp))) 5885 break; 5886 connp = connp->conn_next; 5887 } 5888 5889 /* 5890 * Copy the packet. 5891 */ 5892 if (connp == NULL || connp->conn_upq == NULL || 5893 (((first_mp1 = dupmsg(first_mp)) == NULL) && 5894 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 5895 /* 5896 * No more interested clients or memory 5897 * allocation failed 5898 */ 5899 connp = first_connp; 5900 break; 5901 } 5902 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 5903 CONN_INC_REF(connp); 5904 mutex_exit(&connfp->connf_lock); 5905 rq = connp->conn_rq; 5906 if (!canputnext(rq)) { 5907 if (flags & IP_FF_RAWIP) { 5908 BUMP_MIB(&ip_mib, rawipInOverflows); 5909 } else { 5910 BUMP_MIB(&icmp_mib, icmpInOverflows); 5911 } 5912 5913 freemsg(first_mp1); 5914 } else { 5915 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5916 first_mp1 = ipsec_check_inbound_policy 5917 (first_mp1, connp, ipha, NULL, 5918 mctl_present); 5919 } 5920 if (first_mp1 != NULL) { 5921 /* 5922 * ip_fanout_proto also gets called from 5923 * icmp_inbound_error_fanout, in which case 5924 * the msg type is M_CTL. Don't add info 5925 * in this case for the time being. In future 5926 * when there is a need for knowing the 5927 * inbound iface index for ICMP error msgs, 5928 * then this can be changed. 5929 */ 5930 if ((connp->conn_recvif != 0) && 5931 (mp->b_datap->db_type != M_CTL)) { 5932 /* 5933 * the actual data will be 5934 * contained in b_cont upon 5935 * successful return of the 5936 * following call else 5937 * original mblk is returned 5938 */ 5939 ASSERT(recv_ill != NULL); 5940 mp1 = ip_add_info(mp1, recv_ill, 5941 IPF_RECVIF); 5942 } 5943 BUMP_MIB(&ip_mib, ipInDelivers); 5944 if (mctl_present) 5945 freeb(first_mp1); 5946 putnext(rq, mp1); 5947 } 5948 } 5949 mutex_enter(&connfp->connf_lock); 5950 /* Follow the next pointer before releasing the conn. */ 5951 next_connp = connp->conn_next; 5952 CONN_DEC_REF(connp); 5953 connp = next_connp; 5954 } 5955 5956 /* Last one. Send it upstream. */ 5957 mutex_exit(&connfp->connf_lock); 5958 5959 /* 5960 * If this packet is coming from icmp_inbound_error_fanout ip_policy 5961 * will be set to false. 5962 */ 5963 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5964 ill_index = ill->ill_phyint->phyint_ifindex; 5965 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5966 if (mp == NULL) { 5967 CONN_DEC_REF(connp); 5968 if (mctl_present) { 5969 freeb(first_mp); 5970 } 5971 return; 5972 } 5973 } 5974 5975 rq = connp->conn_rq; 5976 if (!canputnext(rq)) { 5977 if (flags & IP_FF_RAWIP) { 5978 BUMP_MIB(&ip_mib, rawipInOverflows); 5979 } else { 5980 BUMP_MIB(&icmp_mib, icmpInOverflows); 5981 } 5982 5983 freemsg(first_mp); 5984 } else { 5985 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5986 first_mp = ipsec_check_inbound_policy(first_mp, connp, 5987 ipha, NULL, mctl_present); 5988 } 5989 if (first_mp != NULL) { 5990 /* 5991 * ip_fanout_proto also gets called 5992 * from icmp_inbound_error_fanout, in 5993 * which case the msg type is M_CTL. 5994 * Don't add info in this case for time 5995 * being. In future when there is a 5996 * need for knowing the inbound iface 5997 * index for ICMP error msgs, then this 5998 * can be changed 5999 */ 6000 if ((connp->conn_recvif != 0) && 6001 (mp->b_datap->db_type != M_CTL)) { 6002 /* 6003 * the actual data will be contained in 6004 * b_cont upon successful return 6005 * of the following call else original 6006 * mblk is returned 6007 */ 6008 ASSERT(recv_ill != NULL); 6009 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6010 } 6011 BUMP_MIB(&ip_mib, ipInDelivers); 6012 putnext(rq, mp); 6013 if (mctl_present) 6014 freeb(first_mp); 6015 } 6016 } 6017 CONN_DEC_REF(connp); 6018 } 6019 6020 /* 6021 * Fanout for TCP packets 6022 * The caller puts <fport, lport> in the ports parameter. 6023 * 6024 * IPQoS Notes 6025 * Before sending it to the client, invoke IPPF processing. 6026 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6027 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6028 * ip_policy is false. 6029 */ 6030 static void 6031 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6032 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6033 { 6034 mblk_t *first_mp; 6035 boolean_t secure; 6036 uint32_t ill_index; 6037 int ip_hdr_len; 6038 tcph_t *tcph; 6039 boolean_t syn_present = B_FALSE; 6040 conn_t *connp; 6041 6042 first_mp = mp; 6043 if (mctl_present) { 6044 ASSERT(first_mp->b_datap->db_type == M_CTL); 6045 mp = first_mp->b_cont; 6046 secure = ipsec_in_is_secure(first_mp); 6047 ASSERT(mp != NULL); 6048 } else { 6049 secure = B_FALSE; 6050 } 6051 6052 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6053 6054 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 6055 NULL) { 6056 /* 6057 * No connected connection or listener. Send a 6058 * TH_RST via tcp_xmit_listeners_reset. 6059 */ 6060 6061 /* Initiate IPPf processing, if needed. */ 6062 if (IPP_ENABLED(IPP_LOCAL_IN)) { 6063 uint32_t ill_index; 6064 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6065 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6066 if (first_mp == NULL) 6067 return; 6068 } 6069 BUMP_MIB(&ip_mib, ipInDelivers); 6070 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6071 zoneid)); 6072 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 6073 return; 6074 } 6075 6076 /* 6077 * Allocate the SYN for the TCP connection here itself 6078 */ 6079 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6080 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6081 if (IPCL_IS_TCP(connp)) { 6082 squeue_t *sqp; 6083 6084 /* 6085 * For fused tcp loopback, assign the eager's 6086 * squeue to be that of the active connect's. 6087 * Note that we don't check for IP_FF_LOOPBACK 6088 * here since this routine gets called only 6089 * for loopback (unlike the IPv6 counterpart). 6090 */ 6091 ASSERT(Q_TO_CONN(q) != NULL); 6092 if (do_tcp_fusion && 6093 !CONN_INBOUND_POLICY_PRESENT(connp) && !secure && 6094 !IPP_ENABLED(IPP_LOCAL_IN) && !ip_policy && 6095 IPCL_IS_TCP(Q_TO_CONN(q))) { 6096 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6097 sqp = Q_TO_CONN(q)->conn_sqp; 6098 } else { 6099 sqp = IP_SQUEUE_GET(lbolt); 6100 } 6101 6102 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6103 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6104 syn_present = B_TRUE; 6105 } 6106 } 6107 6108 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6109 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6110 if ((flags & TH_RST) || (flags & TH_URG)) { 6111 CONN_DEC_REF(connp); 6112 freemsg(first_mp); 6113 return; 6114 } 6115 if (flags & TH_ACK) { 6116 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 6117 CONN_DEC_REF(connp); 6118 return; 6119 } 6120 6121 CONN_DEC_REF(connp); 6122 freemsg(first_mp); 6123 return; 6124 } 6125 6126 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6127 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6128 NULL, mctl_present); 6129 if (first_mp == NULL) { 6130 CONN_DEC_REF(connp); 6131 return; 6132 } 6133 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6134 ASSERT(syn_present); 6135 if (mctl_present) { 6136 ASSERT(first_mp != mp); 6137 first_mp->b_datap->db_struioflag |= 6138 STRUIO_POLICY; 6139 } else { 6140 ASSERT(first_mp == mp); 6141 mp->b_datap->db_struioflag &= 6142 ~STRUIO_EAGER; 6143 mp->b_datap->db_struioflag |= 6144 STRUIO_POLICY; 6145 } 6146 } else { 6147 /* 6148 * Discard first_mp early since we're dealing with a 6149 * fully-connected conn_t and tcp doesn't do policy in 6150 * this case. 6151 */ 6152 if (mctl_present) { 6153 freeb(first_mp); 6154 mctl_present = B_FALSE; 6155 } 6156 first_mp = mp; 6157 } 6158 } 6159 6160 /* 6161 * Initiate policy processing here if needed. If we get here from 6162 * icmp_inbound_error_fanout, ip_policy is false. 6163 */ 6164 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6165 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6166 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6167 if (mp == NULL) { 6168 CONN_DEC_REF(connp); 6169 if (mctl_present) 6170 freeb(first_mp); 6171 return; 6172 } else if (mctl_present) { 6173 ASSERT(first_mp != mp); 6174 first_mp->b_cont = mp; 6175 } else { 6176 first_mp = mp; 6177 } 6178 } 6179 6180 6181 6182 /* Handle IPv6 socket options. */ 6183 if (!syn_present && 6184 connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) { 6185 /* Add header */ 6186 ASSERT(recv_ill != NULL); 6187 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6188 if (mp == NULL) { 6189 CONN_DEC_REF(connp); 6190 if (mctl_present) 6191 freeb(first_mp); 6192 return; 6193 } else if (mctl_present) { 6194 /* 6195 * ip_add_info might return a new mp. 6196 */ 6197 ASSERT(first_mp != mp); 6198 first_mp->b_cont = mp; 6199 } else { 6200 first_mp = mp; 6201 } 6202 } 6203 6204 BUMP_MIB(&ip_mib, ipInDelivers); 6205 if (IPCL_IS_TCP(connp)) { 6206 (*ip_input_proc)(connp->conn_sqp, first_mp, 6207 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6208 } else { 6209 putnext(connp->conn_rq, first_mp); 6210 CONN_DEC_REF(connp); 6211 } 6212 } 6213 6214 /* 6215 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6216 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6217 * Caller is responsible for dropping references to the conn, and freeing 6218 * first_mp. 6219 * 6220 * IPQoS Notes 6221 * Before sending it to the client, invoke IPPF processing. Policy processing 6222 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6223 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6224 * ip_wput_local, ip_policy is false. 6225 */ 6226 static void 6227 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6228 boolean_t secure, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6229 boolean_t ip_policy) 6230 { 6231 boolean_t mctl_present = (first_mp != NULL); 6232 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6233 uint32_t ill_index; 6234 6235 if (mctl_present) 6236 first_mp->b_cont = mp; 6237 else 6238 first_mp = mp; 6239 6240 if (CONN_UDP_FLOWCTLD(connp)) { 6241 BUMP_MIB(&ip_mib, udpInOverflows); 6242 freemsg(first_mp); 6243 return; 6244 } 6245 6246 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6247 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6248 NULL, mctl_present); 6249 if (first_mp == NULL) 6250 return; /* Freed by ipsec_check_inbound_policy(). */ 6251 } 6252 if (mctl_present) 6253 freeb(first_mp); 6254 6255 if (connp->conn_recvif) 6256 in_flags = IPF_RECVIF; 6257 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 6258 in_flags |= IPF_RECVSLLA; 6259 6260 /* Handle IPv6 options. */ 6261 if (connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) 6262 in_flags |= IPF_RECVIF; 6263 6264 /* 6265 * Initiate IPPF processing here, if needed. Note first_mp won't be 6266 * freed if the packet is dropped. The caller will do so. 6267 */ 6268 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6269 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6270 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6271 if (mp == NULL) { 6272 return; 6273 } 6274 } 6275 if ((in_flags != 0) && 6276 (mp->b_datap->db_type != M_CTL)) { 6277 /* 6278 * The actual data will be contained in b_cont 6279 * upon successful return of the following call 6280 * else original mblk is returned 6281 */ 6282 ASSERT(recv_ill != NULL); 6283 mp = ip_add_info(mp, recv_ill, in_flags); 6284 } 6285 BUMP_MIB(&ip_mib, ipInDelivers); 6286 6287 /* Send it upstream */ 6288 CONN_UDP_RECV(connp, mp); 6289 } 6290 6291 /* 6292 * Fanout for UDP packets. 6293 * The caller puts <fport, lport> in the ports parameter. 6294 * 6295 * If SO_REUSEADDR is set all multicast and broadcast packets 6296 * will be delivered to all streams bound to the same port. 6297 * 6298 * Zones notes: 6299 * Multicast and broadcast packets will be distributed to streams in all zones. 6300 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 6301 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 6302 * packets. To maintain this behavior with multiple zones, the conns are grouped 6303 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 6304 * each zone. If unset, all the following conns in the same zone are skipped. 6305 */ 6306 static void 6307 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 6308 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 6309 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 6310 { 6311 uint32_t dstport, srcport; 6312 ipaddr_t dst; 6313 mblk_t *first_mp; 6314 boolean_t secure; 6315 in6_addr_t v6src; 6316 conn_t *connp; 6317 connf_t *connfp; 6318 conn_t *first_connp; 6319 conn_t *next_connp; 6320 mblk_t *mp1, *first_mp1; 6321 ipaddr_t src; 6322 zoneid_t last_zoneid; 6323 boolean_t reuseaddr; 6324 boolean_t shared_addr; 6325 6326 first_mp = mp; 6327 if (mctl_present) { 6328 mp = first_mp->b_cont; 6329 first_mp->b_cont = NULL; 6330 secure = ipsec_in_is_secure(first_mp); 6331 ASSERT(mp != NULL); 6332 } else { 6333 first_mp = NULL; 6334 secure = B_FALSE; 6335 } 6336 6337 /* Extract ports in net byte order */ 6338 dstport = htons(ntohl(ports) & 0xFFFF); 6339 srcport = htons(ntohl(ports) >> 16); 6340 dst = ipha->ipha_dst; 6341 src = ipha->ipha_src; 6342 6343 shared_addr = (zoneid == ALL_ZONES); 6344 if (shared_addr) { 6345 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 6346 if (zoneid == ALL_ZONES) 6347 zoneid = tsol_packet_to_zoneid(mp); 6348 } 6349 6350 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6351 mutex_enter(&connfp->connf_lock); 6352 connp = connfp->connf_head; 6353 if (!broadcast && !CLASSD(dst)) { 6354 /* 6355 * Not broadcast or multicast. Send to the one (first) 6356 * client we find. No need to check conn_wantpacket() 6357 * since IP_BOUND_IF/conn_incoming_ill does not apply to 6358 * IPv4 unicast packets. 6359 */ 6360 while ((connp != NULL) && 6361 (!IPCL_UDP_MATCH(connp, dstport, dst, 6362 srcport, src) || 6363 (connp->conn_zoneid != zoneid && !connp->conn_allzones))) { 6364 connp = connp->conn_next; 6365 } 6366 6367 if (connp == NULL || connp->conn_upq == NULL) 6368 goto notfound; 6369 6370 if (is_system_labeled() && 6371 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6372 connp)) 6373 goto notfound; 6374 6375 CONN_INC_REF(connp); 6376 mutex_exit(&connfp->connf_lock); 6377 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6378 recv_ill, ip_policy); 6379 IP_STAT(ip_udp_fannorm); 6380 CONN_DEC_REF(connp); 6381 return; 6382 } 6383 6384 /* 6385 * Broadcast and multicast case 6386 * 6387 * Need to check conn_wantpacket(). 6388 * If SO_REUSEADDR has been set on the first we send the 6389 * packet to all clients that have joined the group and 6390 * match the port. 6391 */ 6392 6393 while (connp != NULL) { 6394 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 6395 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6396 (!is_system_labeled() || 6397 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6398 connp))) 6399 break; 6400 connp = connp->conn_next; 6401 } 6402 6403 if (connp == NULL || connp->conn_upq == NULL) 6404 goto notfound; 6405 6406 first_connp = connp; 6407 /* 6408 * When SO_REUSEADDR is not set, send the packet only to the first 6409 * matching connection in its zone by keeping track of the zoneid. 6410 */ 6411 reuseaddr = first_connp->conn_reuseaddr; 6412 last_zoneid = first_connp->conn_zoneid; 6413 6414 CONN_INC_REF(connp); 6415 connp = connp->conn_next; 6416 for (;;) { 6417 while (connp != NULL) { 6418 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 6419 (reuseaddr || connp->conn_zoneid != last_zoneid) && 6420 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6421 (!is_system_labeled() || 6422 tsol_receive_local(mp, &dst, IPV4_VERSION, 6423 shared_addr, connp))) 6424 break; 6425 connp = connp->conn_next; 6426 } 6427 /* 6428 * Just copy the data part alone. The mctl part is 6429 * needed just for verifying policy and it is never 6430 * sent up. 6431 */ 6432 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6433 ((mp1 = copymsg(mp)) == NULL))) { 6434 /* 6435 * No more interested clients or memory 6436 * allocation failed 6437 */ 6438 connp = first_connp; 6439 break; 6440 } 6441 if (connp->conn_zoneid != last_zoneid) { 6442 /* 6443 * Update the zoneid so that the packet isn't sent to 6444 * any more conns in the same zone unless SO_REUSEADDR 6445 * is set. 6446 */ 6447 reuseaddr = connp->conn_reuseaddr; 6448 last_zoneid = connp->conn_zoneid; 6449 } 6450 if (first_mp != NULL) { 6451 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6452 ipsec_info_type == IPSEC_IN); 6453 first_mp1 = ipsec_in_tag(first_mp, NULL); 6454 if (first_mp1 == NULL) { 6455 freemsg(mp1); 6456 connp = first_connp; 6457 break; 6458 } 6459 } else { 6460 first_mp1 = NULL; 6461 } 6462 CONN_INC_REF(connp); 6463 mutex_exit(&connfp->connf_lock); 6464 /* 6465 * IPQoS notes: We don't send the packet for policy 6466 * processing here, will do it for the last one (below). 6467 * i.e. we do it per-packet now, but if we do policy 6468 * processing per-conn, then we would need to do it 6469 * here too. 6470 */ 6471 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6472 ipha, flags, recv_ill, B_FALSE); 6473 mutex_enter(&connfp->connf_lock); 6474 /* Follow the next pointer before releasing the conn. */ 6475 next_connp = connp->conn_next; 6476 IP_STAT(ip_udp_fanmb); 6477 CONN_DEC_REF(connp); 6478 connp = next_connp; 6479 } 6480 6481 /* Last one. Send it upstream. */ 6482 mutex_exit(&connfp->connf_lock); 6483 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6484 ip_policy); 6485 IP_STAT(ip_udp_fanmb); 6486 CONN_DEC_REF(connp); 6487 return; 6488 6489 notfound: 6490 6491 mutex_exit(&connfp->connf_lock); 6492 IP_STAT(ip_udp_fanothers); 6493 /* 6494 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 6495 * have already been matched above, since they live in the IPv4 6496 * fanout tables. This implies we only need to 6497 * check for IPv6 in6addr_any endpoints here. 6498 * Thus we compare using ipv6_all_zeros instead of the destination 6499 * address, except for the multicast group membership lookup which 6500 * uses the IPv4 destination. 6501 */ 6502 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 6503 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6504 mutex_enter(&connfp->connf_lock); 6505 connp = connfp->connf_head; 6506 if (!broadcast && !CLASSD(dst)) { 6507 while (connp != NULL) { 6508 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6509 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 6510 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6511 !connp->conn_ipv6_v6only) 6512 break; 6513 connp = connp->conn_next; 6514 } 6515 6516 if (connp != NULL && is_system_labeled() && 6517 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6518 connp)) 6519 connp = NULL; 6520 6521 if (connp == NULL || connp->conn_upq == NULL) { 6522 /* 6523 * No one bound to this port. Is 6524 * there a client that wants all 6525 * unclaimed datagrams? 6526 */ 6527 mutex_exit(&connfp->connf_lock); 6528 6529 if (mctl_present) 6530 first_mp->b_cont = mp; 6531 else 6532 first_mp = mp; 6533 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6534 ip_fanout_proto(q, first_mp, ill, ipha, 6535 flags | IP_FF_RAWIP, mctl_present, 6536 ip_policy, recv_ill, zoneid); 6537 } else { 6538 if (ip_fanout_send_icmp(q, first_mp, flags, 6539 ICMP_DEST_UNREACHABLE, 6540 ICMP_PORT_UNREACHABLE, 6541 mctl_present, zoneid)) { 6542 BUMP_MIB(&ip_mib, udpNoPorts); 6543 } 6544 } 6545 return; 6546 } 6547 6548 CONN_INC_REF(connp); 6549 mutex_exit(&connfp->connf_lock); 6550 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6551 recv_ill, ip_policy); 6552 CONN_DEC_REF(connp); 6553 return; 6554 } 6555 /* 6556 * IPv4 multicast packet being delivered to an AF_INET6 6557 * in6addr_any endpoint. 6558 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 6559 * and not conn_wantpacket_v6() since any multicast membership is 6560 * for an IPv4-mapped multicast address. 6561 * The packet is sent to all clients in all zones that have joined the 6562 * group and match the port. 6563 */ 6564 while (connp != NULL) { 6565 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6566 srcport, v6src) && 6567 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6568 (!is_system_labeled() || 6569 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6570 connp))) 6571 break; 6572 connp = connp->conn_next; 6573 } 6574 6575 if (connp == NULL || connp->conn_upq == NULL) { 6576 /* 6577 * No one bound to this port. Is 6578 * there a client that wants all 6579 * unclaimed datagrams? 6580 */ 6581 mutex_exit(&connfp->connf_lock); 6582 6583 if (mctl_present) 6584 first_mp->b_cont = mp; 6585 else 6586 first_mp = mp; 6587 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6588 ip_fanout_proto(q, first_mp, ill, ipha, 6589 flags | IP_FF_RAWIP, mctl_present, ip_policy, 6590 recv_ill, zoneid); 6591 } else { 6592 /* 6593 * We used to attempt to send an icmp error here, but 6594 * since this is known to be a multicast packet 6595 * and we don't send icmp errors in response to 6596 * multicast, just drop the packet and give up sooner. 6597 */ 6598 BUMP_MIB(&ip_mib, udpNoPorts); 6599 freemsg(first_mp); 6600 } 6601 return; 6602 } 6603 6604 first_connp = connp; 6605 6606 CONN_INC_REF(connp); 6607 connp = connp->conn_next; 6608 for (;;) { 6609 while (connp != NULL) { 6610 if (IPCL_UDP_MATCH_V6(connp, dstport, 6611 ipv6_all_zeros, srcport, v6src) && 6612 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6613 (!is_system_labeled() || 6614 tsol_receive_local(mp, &dst, IPV4_VERSION, 6615 shared_addr, connp))) 6616 break; 6617 connp = connp->conn_next; 6618 } 6619 /* 6620 * Just copy the data part alone. The mctl part is 6621 * needed just for verifying policy and it is never 6622 * sent up. 6623 */ 6624 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6625 ((mp1 = copymsg(mp)) == NULL))) { 6626 /* 6627 * No more intested clients or memory 6628 * allocation failed 6629 */ 6630 connp = first_connp; 6631 break; 6632 } 6633 if (first_mp != NULL) { 6634 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6635 ipsec_info_type == IPSEC_IN); 6636 first_mp1 = ipsec_in_tag(first_mp, NULL); 6637 if (first_mp1 == NULL) { 6638 freemsg(mp1); 6639 connp = first_connp; 6640 break; 6641 } 6642 } else { 6643 first_mp1 = NULL; 6644 } 6645 CONN_INC_REF(connp); 6646 mutex_exit(&connfp->connf_lock); 6647 /* 6648 * IPQoS notes: We don't send the packet for policy 6649 * processing here, will do it for the last one (below). 6650 * i.e. we do it per-packet now, but if we do policy 6651 * processing per-conn, then we would need to do it 6652 * here too. 6653 */ 6654 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6655 ipha, flags, recv_ill, B_FALSE); 6656 mutex_enter(&connfp->connf_lock); 6657 /* Follow the next pointer before releasing the conn. */ 6658 next_connp = connp->conn_next; 6659 CONN_DEC_REF(connp); 6660 connp = next_connp; 6661 } 6662 6663 /* Last one. Send it upstream. */ 6664 mutex_exit(&connfp->connf_lock); 6665 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6666 ip_policy); 6667 CONN_DEC_REF(connp); 6668 } 6669 6670 /* 6671 * Complete the ip_wput header so that it 6672 * is possible to generate ICMP 6673 * errors. 6674 */ 6675 static int 6676 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid) 6677 { 6678 ire_t *ire; 6679 6680 if (ipha->ipha_src == INADDR_ANY) { 6681 ire = ire_lookup_local(zoneid); 6682 if (ire == NULL) { 6683 ip1dbg(("ip_hdr_complete: no source IRE\n")); 6684 return (1); 6685 } 6686 ipha->ipha_src = ire->ire_addr; 6687 ire_refrele(ire); 6688 } 6689 ipha->ipha_ttl = ip_def_ttl; 6690 ipha->ipha_hdr_checksum = 0; 6691 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6692 return (0); 6693 } 6694 6695 /* 6696 * Nobody should be sending 6697 * packets up this stream 6698 */ 6699 static void 6700 ip_lrput(queue_t *q, mblk_t *mp) 6701 { 6702 mblk_t *mp1; 6703 6704 switch (mp->b_datap->db_type) { 6705 case M_FLUSH: 6706 /* Turn around */ 6707 if (*mp->b_rptr & FLUSHW) { 6708 *mp->b_rptr &= ~FLUSHR; 6709 qreply(q, mp); 6710 return; 6711 } 6712 break; 6713 } 6714 /* Could receive messages that passed through ar_rput */ 6715 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 6716 mp1->b_prev = mp1->b_next = NULL; 6717 freemsg(mp); 6718 } 6719 6720 /* Nobody should be sending packets down this stream */ 6721 /* ARGSUSED */ 6722 void 6723 ip_lwput(queue_t *q, mblk_t *mp) 6724 { 6725 freemsg(mp); 6726 } 6727 6728 /* 6729 * Move the first hop in any source route to ipha_dst and remove that part of 6730 * the source route. Called by other protocols. Errors in option formatting 6731 * are ignored - will be handled by ip_wput_options Return the final 6732 * destination (either ipha_dst or the last entry in a source route.) 6733 */ 6734 ipaddr_t 6735 ip_massage_options(ipha_t *ipha) 6736 { 6737 ipoptp_t opts; 6738 uchar_t *opt; 6739 uint8_t optval; 6740 uint8_t optlen; 6741 ipaddr_t dst; 6742 int i; 6743 ire_t *ire; 6744 6745 ip2dbg(("ip_massage_options\n")); 6746 dst = ipha->ipha_dst; 6747 for (optval = ipoptp_first(&opts, ipha); 6748 optval != IPOPT_EOL; 6749 optval = ipoptp_next(&opts)) { 6750 opt = opts.ipoptp_cur; 6751 switch (optval) { 6752 uint8_t off; 6753 case IPOPT_SSRR: 6754 case IPOPT_LSRR: 6755 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 6756 ip1dbg(("ip_massage_options: bad src route\n")); 6757 break; 6758 } 6759 optlen = opts.ipoptp_len; 6760 off = opt[IPOPT_OFFSET]; 6761 off--; 6762 redo_srr: 6763 if (optlen < IP_ADDR_LEN || 6764 off > optlen - IP_ADDR_LEN) { 6765 /* End of source route */ 6766 ip1dbg(("ip_massage_options: end of SR\n")); 6767 break; 6768 } 6769 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 6770 ip1dbg(("ip_massage_options: next hop 0x%x\n", 6771 ntohl(dst))); 6772 /* 6773 * Check if our address is present more than 6774 * once as consecutive hops in source route. 6775 * XXX verify per-interface ip_forwarding 6776 * for source route? 6777 */ 6778 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 6779 ALL_ZONES, NULL, MATCH_IRE_TYPE); 6780 if (ire != NULL) { 6781 ire_refrele(ire); 6782 off += IP_ADDR_LEN; 6783 goto redo_srr; 6784 } 6785 if (dst == htonl(INADDR_LOOPBACK)) { 6786 ip1dbg(("ip_massage_options: loopback addr in " 6787 "source route!\n")); 6788 break; 6789 } 6790 /* 6791 * Update ipha_dst to be the first hop and remove the 6792 * first hop from the source route (by overwriting 6793 * part of the option with NOP options). 6794 */ 6795 ipha->ipha_dst = dst; 6796 /* Put the last entry in dst */ 6797 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 6798 3; 6799 bcopy(&opt[off], &dst, IP_ADDR_LEN); 6800 6801 ip1dbg(("ip_massage_options: last hop 0x%x\n", 6802 ntohl(dst))); 6803 /* Move down and overwrite */ 6804 opt[IP_ADDR_LEN] = opt[0]; 6805 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 6806 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 6807 for (i = 0; i < IP_ADDR_LEN; i++) 6808 opt[i] = IPOPT_NOP; 6809 break; 6810 } 6811 } 6812 return (dst); 6813 } 6814 6815 /* 6816 * This function's job is to forward data to the reverse tunnel (FA->HA) 6817 * after doing a few checks. It is assumed that the incoming interface 6818 * of the packet is always different than the outgoing interface and the 6819 * ire_type of the found ire has to be a non-resolver type. 6820 * 6821 * IPQoS notes 6822 * IP policy is invoked twice for a forwarded packet, once on the read side 6823 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 6824 * enabled. 6825 */ 6826 static void 6827 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 6828 { 6829 ipha_t *ipha; 6830 queue_t *q; 6831 uint32_t pkt_len; 6832 #define rptr ((uchar_t *)ipha) 6833 uint32_t sum; 6834 uint32_t max_frag; 6835 mblk_t *first_mp; 6836 uint32_t ill_index; 6837 6838 ASSERT(ire != NULL); 6839 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 6840 ASSERT(ire->ire_stq != NULL); 6841 6842 /* Initiate read side IPPF processing */ 6843 if (IPP_ENABLED(IPP_FWD_IN)) { 6844 ill_index = in_ill->ill_phyint->phyint_ifindex; 6845 ip_process(IPP_FWD_IN, &mp, ill_index); 6846 if (mp == NULL) { 6847 ip2dbg(("ip_mrtun_forward: inbound pkt " 6848 "dropped during IPPF processing\n")); 6849 return; 6850 } 6851 } 6852 6853 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 6854 ILLF_ROUTER) == 0) || 6855 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 6856 BUMP_MIB(&ip_mib, ipForwProhibits); 6857 ip0dbg(("ip_mrtun_forward: Can't forward :" 6858 "forwarding is not turned on\n")); 6859 goto drop_pkt; 6860 } 6861 6862 /* 6863 * Don't forward if the interface is down 6864 */ 6865 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 6866 BUMP_MIB(&ip_mib, ipInDiscards); 6867 goto drop_pkt; 6868 } 6869 6870 ipha = (ipha_t *)mp->b_rptr; 6871 pkt_len = ntohs(ipha->ipha_length); 6872 /* Adjust the checksum to reflect the ttl decrement. */ 6873 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 6874 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 6875 if (ipha->ipha_ttl-- <= 1) { 6876 if (ip_csum_hdr(ipha)) { 6877 BUMP_MIB(&ip_mib, ipInCksumErrs); 6878 goto drop_pkt; 6879 } 6880 q = ire->ire_stq; 6881 if ((first_mp = allocb(sizeof (ipsec_info_t), 6882 BPRI_HI)) == NULL) { 6883 goto drop_pkt; 6884 } 6885 ip_ipsec_out_prepend(first_mp, mp, in_ill); 6886 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED); 6887 6888 return; 6889 } 6890 6891 /* Get the ill_index of the ILL */ 6892 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 6893 6894 /* 6895 * ip_mrtun_forward is only used by foreign agent to reverse 6896 * tunnel the incoming packet. So it does not do any option 6897 * processing for source routing. 6898 */ 6899 max_frag = ire->ire_max_frag; 6900 if (pkt_len > max_frag) { 6901 /* 6902 * It needs fragging on its way out. We haven't 6903 * verified the header checksum yet. Since we 6904 * are going to put a surely good checksum in the 6905 * outgoing header, we have to make sure that it 6906 * was good coming in. 6907 */ 6908 if (ip_csum_hdr(ipha)) { 6909 BUMP_MIB(&ip_mib, ipInCksumErrs); 6910 goto drop_pkt; 6911 } 6912 6913 /* Initiate write side IPPF processing */ 6914 if (IPP_ENABLED(IPP_FWD_OUT)) { 6915 ip_process(IPP_FWD_OUT, &mp, ill_index); 6916 if (mp == NULL) { 6917 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 6918 "dropped/deferred during ip policy "\ 6919 "processing\n")); 6920 return; 6921 } 6922 } 6923 if ((first_mp = allocb(sizeof (ipsec_info_t), 6924 BPRI_HI)) == NULL) { 6925 goto drop_pkt; 6926 } 6927 ip_ipsec_out_prepend(first_mp, mp, in_ill); 6928 mp = first_mp; 6929 6930 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0); 6931 return; 6932 } 6933 6934 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 6935 6936 ASSERT(ire->ire_ipif != NULL); 6937 6938 mp = ip_wput_attach_llhdr(mp, ire, IPP_FWD_OUT, ill_index); 6939 if (mp == NULL) { 6940 BUMP_MIB(&ip_mib, ipInDiscards); 6941 return; 6942 } 6943 6944 /* Now send the packet to the tunnel interface */ 6945 q = ire->ire_stq; 6946 UPDATE_IB_PKT_COUNT(ire); 6947 ire->ire_last_used_time = lbolt; 6948 BUMP_MIB(&ip_mib, ipForwDatagrams); 6949 putnext(q, mp); 6950 ip2dbg(("ip_mrtun_forward: sent packet to ill %p\n", q->q_ptr)); 6951 return; 6952 6953 drop_pkt:; 6954 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 6955 freemsg(mp); 6956 #undef rptr 6957 } 6958 6959 /* 6960 * Fills the ipsec_out_t data structure with appropriate fields and 6961 * prepends it to mp which contains the IP hdr + data that was meant 6962 * to be forwarded. Please note that ipsec_out_info data structure 6963 * is used here to communicate the outgoing ill path at ip_wput() 6964 * for the ICMP error packet. This has nothing to do with ipsec IP 6965 * security. ipsec_out_t is really used to pass the info to the module 6966 * IP where this information cannot be extracted from conn. 6967 * This functions is called by ip_mrtun_forward(). 6968 */ 6969 void 6970 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 6971 { 6972 ipsec_out_t *io; 6973 6974 ASSERT(xmit_ill != NULL); 6975 first_mp->b_datap->db_type = M_CTL; 6976 first_mp->b_wptr += sizeof (ipsec_info_t); 6977 /* 6978 * This is to pass info to ip_wput in absence of conn. 6979 * ipsec_out_secure will be B_FALSE because of this. 6980 * Thus ipsec_out_secure being B_FALSE indicates that 6981 * this is not IPSEC security related information. 6982 */ 6983 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 6984 io = (ipsec_out_t *)first_mp->b_rptr; 6985 io->ipsec_out_type = IPSEC_OUT; 6986 io->ipsec_out_len = sizeof (ipsec_out_t); 6987 first_mp->b_cont = mp; 6988 io->ipsec_out_ill_index = 6989 xmit_ill->ill_phyint->phyint_ifindex; 6990 io->ipsec_out_xmit_if = B_TRUE; 6991 } 6992 6993 /* 6994 * Return the network mask 6995 * associated with the specified address. 6996 */ 6997 ipaddr_t 6998 ip_net_mask(ipaddr_t addr) 6999 { 7000 uchar_t *up = (uchar_t *)&addr; 7001 ipaddr_t mask = 0; 7002 uchar_t *maskp = (uchar_t *)&mask; 7003 7004 #if defined(__i386) || defined(__amd64) 7005 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7006 #endif 7007 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7008 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7009 #endif 7010 if (CLASSD(addr)) { 7011 maskp[0] = 0xF0; 7012 return (mask); 7013 } 7014 if (addr == 0) 7015 return (0); 7016 maskp[0] = 0xFF; 7017 if ((up[0] & 0x80) == 0) 7018 return (mask); 7019 7020 maskp[1] = 0xFF; 7021 if ((up[0] & 0xC0) == 0x80) 7022 return (mask); 7023 7024 maskp[2] = 0xFF; 7025 if ((up[0] & 0xE0) == 0xC0) 7026 return (mask); 7027 7028 /* Must be experimental or multicast, indicate as much */ 7029 return ((ipaddr_t)0); 7030 } 7031 7032 /* 7033 * Select an ill for the packet by considering load spreading across 7034 * a different ill in the group if dst_ill is part of some group. 7035 */ 7036 static ill_t * 7037 ip_newroute_get_dst_ill(ill_t *dst_ill) 7038 { 7039 ill_t *ill; 7040 7041 /* 7042 * We schedule irrespective of whether the source address is 7043 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7044 */ 7045 ill = illgrp_scheduler(dst_ill); 7046 if (ill == NULL) 7047 return (NULL); 7048 7049 /* 7050 * For groups with names ip_sioctl_groupname ensures that all 7051 * ills are of same type. For groups without names, ifgrp_insert 7052 * ensures this. 7053 */ 7054 ASSERT(dst_ill->ill_type == ill->ill_type); 7055 7056 return (ill); 7057 } 7058 7059 /* 7060 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7061 */ 7062 ill_t * 7063 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6) 7064 { 7065 ill_t *ret_ill; 7066 7067 ASSERT(ifindex != 0); 7068 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 7069 if (ret_ill == NULL || 7070 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7071 if (isv6) { 7072 if (ill != NULL) { 7073 BUMP_MIB(ill->ill_ip6_mib, ipv6OutDiscards); 7074 } else { 7075 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 7076 } 7077 ip1dbg(("ip_grab_attach_ill (IPv6): " 7078 "bad ifindex %d.\n", ifindex)); 7079 } else { 7080 BUMP_MIB(&ip_mib, ipOutDiscards); 7081 ip1dbg(("ip_grab_attach_ill (IPv4): " 7082 "bad ifindex %d.\n", ifindex)); 7083 } 7084 if (ret_ill != NULL) 7085 ill_refrele(ret_ill); 7086 freemsg(first_mp); 7087 return (NULL); 7088 } 7089 7090 return (ret_ill); 7091 } 7092 7093 /* 7094 * IPv4 - 7095 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7096 * out a packet to a destination address for which we do not have specific 7097 * (or sufficient) routing information. 7098 * 7099 * NOTE : These are the scopes of some of the variables that point at IRE, 7100 * which needs to be followed while making any future modifications 7101 * to avoid memory leaks. 7102 * 7103 * - ire and sire are the entries looked up initially by 7104 * ire_ftable_lookup. 7105 * - ipif_ire is used to hold the interface ire associated with 7106 * the new cache ire. But it's scope is limited, so we always REFRELE 7107 * it before branching out to error paths. 7108 * - save_ire is initialized before ire_create, so that ire returned 7109 * by ire_create will not over-write the ire. We REFRELE save_ire 7110 * before breaking out of the switch. 7111 * 7112 * Thus on failures, we have to REFRELE only ire and sire, if they 7113 * are not NULL. 7114 */ 7115 void 7116 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp) 7117 { 7118 areq_t *areq; 7119 ipaddr_t gw = 0; 7120 ire_t *ire = NULL; 7121 mblk_t *res_mp; 7122 ipaddr_t *addrp; 7123 ipaddr_t nexthop_addr; 7124 ipif_t *src_ipif = NULL; 7125 ill_t *dst_ill = NULL; 7126 ipha_t *ipha; 7127 ire_t *sire = NULL; 7128 mblk_t *first_mp; 7129 ire_t *save_ire; 7130 mblk_t *dlureq_mp; 7131 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7132 ushort_t ire_marks = 0; 7133 boolean_t mctl_present; 7134 ipsec_out_t *io; 7135 mblk_t *saved_mp; 7136 ire_t *first_sire = NULL; 7137 mblk_t *copy_mp = NULL; 7138 mblk_t *xmit_mp = NULL; 7139 ipaddr_t save_dst; 7140 uint32_t multirt_flags = 7141 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7142 boolean_t multirt_is_resolvable; 7143 boolean_t multirt_resolve_next; 7144 boolean_t do_attach_ill = B_FALSE; 7145 boolean_t ip_nexthop = B_FALSE; 7146 zoneid_t zoneid; 7147 tsol_ire_gw_secattr_t *attrp = NULL; 7148 tsol_gcgrp_t *gcgrp = NULL; 7149 tsol_gcgrp_addr_t ga; 7150 7151 if (ip_debug > 2) { 7152 /* ip1dbg */ 7153 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7154 } 7155 7156 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7157 if (mctl_present) { 7158 io = (ipsec_out_t *)first_mp->b_rptr; 7159 zoneid = io->ipsec_out_zoneid; 7160 ASSERT(zoneid != ALL_ZONES); 7161 } else if (connp != NULL) { 7162 zoneid = connp->conn_zoneid; 7163 } else { 7164 zoneid = GLOBAL_ZONEID; 7165 } 7166 7167 ipha = (ipha_t *)mp->b_rptr; 7168 7169 /* All multicast lookups come through ip_newroute_ipif() */ 7170 if (CLASSD(dst)) { 7171 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7172 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7173 freemsg(first_mp); 7174 return; 7175 } 7176 7177 if (ip_loopback_src_or_dst(ipha, NULL)) { 7178 goto icmp_err_ret; 7179 } 7180 7181 if (mctl_present && io->ipsec_out_attach_if) { 7182 /* ip_grab_attach_ill returns a held ill */ 7183 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7184 io->ipsec_out_ill_index, B_FALSE); 7185 7186 /* Failure case frees things for us. */ 7187 if (attach_ill == NULL) 7188 return; 7189 7190 /* 7191 * Check if we need an ire that will not be 7192 * looked up by anybody else i.e. HIDDEN. 7193 */ 7194 if (ill_is_probeonly(attach_ill)) 7195 ire_marks = IRE_MARK_HIDDEN; 7196 } 7197 if (mctl_present && io->ipsec_out_ip_nexthop) { 7198 ip_nexthop = B_TRUE; 7199 nexthop_addr = io->ipsec_out_nexthop_addr; 7200 } 7201 /* 7202 * If this IRE is created for forwarding or it is not for 7203 * traffic for congestion controlled protocols, mark it as temporary. 7204 */ 7205 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7206 ire_marks |= IRE_MARK_TEMPORARY; 7207 7208 /* 7209 * Get what we can from ire_ftable_lookup which will follow an IRE 7210 * chain until it gets the most specific information available. 7211 * For example, we know that there is no IRE_CACHE for this dest, 7212 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7213 * ire_ftable_lookup will look up the gateway, etc. 7214 * Check if in_ill != NULL. If it is true, the packet must be 7215 * from an incoming interface where RTA_SRCIFP is set. 7216 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7217 * to the destination, of equal netmask length in the forward table, 7218 * will be recursively explored. If no information is available 7219 * for the final gateway of that route, we force the returned ire 7220 * to be equal to sire using MATCH_IRE_PARENT. 7221 * At least, in this case we have a starting point (in the buckets) 7222 * to look for other routes to the destination in the forward table. 7223 * This is actually used only for multirouting, where a list 7224 * of routes has to be processed in sequence. 7225 */ 7226 if (in_ill != NULL) { 7227 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 7228 in_ill, MATCH_IRE_TYPE); 7229 } else if (ip_nexthop) { 7230 /* 7231 * The first time we come here, we look for an IRE_INTERFACE 7232 * entry for the specified nexthop, set the dst to be the 7233 * nexthop address and create an IRE_CACHE entry for the 7234 * nexthop. The next time around, we are able to find an 7235 * IRE_CACHE entry for the nexthop, set the gateway to be the 7236 * nexthop address and create an IRE_CACHE entry for the 7237 * destination address via the specified nexthop. 7238 */ 7239 ire = ire_cache_lookup(nexthop_addr, zoneid, 7240 MBLK_GETLABEL(mp)); 7241 if (ire != NULL) { 7242 gw = nexthop_addr; 7243 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7244 } else { 7245 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7246 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7247 MBLK_GETLABEL(mp), 7248 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 7249 if (ire != NULL) { 7250 dst = nexthop_addr; 7251 } 7252 } 7253 } else if (attach_ill == NULL) { 7254 ire = ire_ftable_lookup(dst, 0, 0, 0, 7255 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7256 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7257 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7258 MATCH_IRE_SECATTR); 7259 } else { 7260 /* 7261 * attach_ill is set only for communicating with 7262 * on-link hosts. So, don't look for DEFAULT. 7263 */ 7264 ipif_t *attach_ipif; 7265 7266 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7267 if (attach_ipif == NULL) { 7268 ill_refrele(attach_ill); 7269 goto icmp_err_ret; 7270 } 7271 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7272 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7273 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7274 MATCH_IRE_SECATTR); 7275 ipif_refrele(attach_ipif); 7276 } 7277 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7278 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7279 7280 /* 7281 * This loop is run only once in most cases. 7282 * We loop to resolve further routes only when the destination 7283 * can be reached through multiple RTF_MULTIRT-flagged ires. 7284 */ 7285 do { 7286 /* Clear the previous iteration's values */ 7287 if (src_ipif != NULL) { 7288 ipif_refrele(src_ipif); 7289 src_ipif = NULL; 7290 } 7291 if (dst_ill != NULL) { 7292 ill_refrele(dst_ill); 7293 dst_ill = NULL; 7294 } 7295 7296 multirt_resolve_next = B_FALSE; 7297 /* 7298 * We check if packets have to be multirouted. 7299 * In this case, given the current <ire, sire> couple, 7300 * we look for the next suitable <ire, sire>. 7301 * This check is done in ire_multirt_lookup(), 7302 * which applies various criteria to find the next route 7303 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7304 * unchanged if it detects it has not been tried yet. 7305 */ 7306 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7307 ip3dbg(("ip_newroute: starting next_resolution " 7308 "with first_mp %p, tag %d\n", 7309 (void *)first_mp, 7310 MULTIRT_DEBUG_TAGGED(first_mp))); 7311 7312 ASSERT(sire != NULL); 7313 multirt_is_resolvable = 7314 ire_multirt_lookup(&ire, &sire, multirt_flags, 7315 MBLK_GETLABEL(mp)); 7316 7317 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7318 "ire %p, sire %p\n", 7319 multirt_is_resolvable, 7320 (void *)ire, (void *)sire)); 7321 7322 if (!multirt_is_resolvable) { 7323 /* 7324 * No more multirt route to resolve; give up 7325 * (all routes resolved or no more 7326 * resolvable routes). 7327 */ 7328 if (ire != NULL) { 7329 ire_refrele(ire); 7330 ire = NULL; 7331 } 7332 } else { 7333 ASSERT(sire != NULL); 7334 ASSERT(ire != NULL); 7335 /* 7336 * We simply use first_sire as a flag that 7337 * indicates if a resolvable multirt route 7338 * has already been found. 7339 * If it is not the case, we may have to send 7340 * an ICMP error to report that the 7341 * destination is unreachable. 7342 * We do not IRE_REFHOLD first_sire. 7343 */ 7344 if (first_sire == NULL) { 7345 first_sire = sire; 7346 } 7347 } 7348 } 7349 if (ire == NULL) { 7350 if (ip_debug > 3) { 7351 /* ip2dbg */ 7352 pr_addr_dbg("ip_newroute: " 7353 "can't resolve %s\n", AF_INET, &dst); 7354 } 7355 ip3dbg(("ip_newroute: " 7356 "ire %p, sire %p, first_sire %p\n", 7357 (void *)ire, (void *)sire, (void *)first_sire)); 7358 7359 if (sire != NULL) { 7360 ire_refrele(sire); 7361 sire = NULL; 7362 } 7363 7364 if (first_sire != NULL) { 7365 /* 7366 * At least one multirt route has been found 7367 * in the same call to ip_newroute(); 7368 * there is no need to report an ICMP error. 7369 * first_sire was not IRE_REFHOLDed. 7370 */ 7371 MULTIRT_DEBUG_UNTAG(first_mp); 7372 freemsg(first_mp); 7373 return; 7374 } 7375 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 7376 RTA_DST); 7377 if (attach_ill != NULL) 7378 ill_refrele(attach_ill); 7379 goto icmp_err_ret; 7380 } 7381 7382 /* 7383 * When RTA_SRCIFP is used to add a route, then an interface 7384 * route is added in the source interface's routing table. 7385 * If the outgoing interface of this route is of type 7386 * IRE_IF_RESOLVER, then upon creation of the ire, 7387 * ire_dlureq_mp is set to NULL. Later, when this route is 7388 * first used for forwarding packet, ip_newroute() is called 7389 * to resolve the hardware address of the outgoing ipif. 7390 * We do not come here for IRE_IF_NORESOLVER entries in the 7391 * source interface based table. We only come here if the 7392 * outgoing interface is a resolver interface and we don't 7393 * have the ire_dlureq_mp information yet. 7394 * If in_ill is not null that means it is called from 7395 * ip_rput. 7396 */ 7397 7398 ASSERT(ire->ire_in_ill == NULL || 7399 (ire->ire_type == IRE_IF_RESOLVER && 7400 ire->ire_dlureq_mp == NULL)); 7401 7402 /* 7403 * Verify that the returned IRE does not have either 7404 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 7405 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 7406 */ 7407 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 7408 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 7409 if (attach_ill != NULL) 7410 ill_refrele(attach_ill); 7411 goto icmp_err_ret; 7412 } 7413 /* 7414 * Increment the ire_ob_pkt_count field for ire if it is an 7415 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 7416 * increment the same for the parent IRE, sire, if it is some 7417 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST 7418 * and HOST_REDIRECT). 7419 */ 7420 if ((ire->ire_type & IRE_INTERFACE) != 0) { 7421 UPDATE_OB_PKT_COUNT(ire); 7422 ire->ire_last_used_time = lbolt; 7423 } 7424 7425 if (sire != NULL) { 7426 gw = sire->ire_gateway_addr; 7427 ASSERT((sire->ire_type & (IRE_CACHETABLE | 7428 IRE_INTERFACE)) == 0); 7429 UPDATE_OB_PKT_COUNT(sire); 7430 sire->ire_last_used_time = lbolt; 7431 } 7432 /* 7433 * We have a route to reach the destination. 7434 * 7435 * 1) If the interface is part of ill group, try to get a new 7436 * ill taking load spreading into account. 7437 * 7438 * 2) After selecting the ill, get a source address that 7439 * might create good inbound load spreading. 7440 * ipif_select_source does this for us. 7441 * 7442 * If the application specified the ill (ifindex), we still 7443 * load spread. Only if the packets needs to go out 7444 * specifically on a given ill e.g. binding to 7445 * IPIF_NOFAILOVER address, then we don't try to use a 7446 * different ill for load spreading. 7447 */ 7448 if (attach_ill == NULL) { 7449 /* 7450 * Don't perform outbound load spreading in the 7451 * case of an RTF_MULTIRT route, as we actually 7452 * typically want to replicate outgoing packets 7453 * through particular interfaces. 7454 */ 7455 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7456 dst_ill = ire->ire_ipif->ipif_ill; 7457 /* for uniformity */ 7458 ill_refhold(dst_ill); 7459 } else { 7460 /* 7461 * If we are here trying to create an IRE_CACHE 7462 * for an offlink destination and have the 7463 * IRE_CACHE for the next hop and the latter is 7464 * using virtual IP source address selection i.e 7465 * it's ire->ire_ipif is pointing to a virtual 7466 * network interface (vni) then 7467 * ip_newroute_get_dst_ll() will return the vni 7468 * interface as the dst_ill. Since the vni is 7469 * virtual i.e not associated with any physical 7470 * interface, it cannot be the dst_ill, hence 7471 * in such a case call ip_newroute_get_dst_ll() 7472 * with the stq_ill instead of the ire_ipif ILL. 7473 * The function returns a refheld ill. 7474 */ 7475 if ((ire->ire_type == IRE_CACHE) && 7476 IS_VNI(ire->ire_ipif->ipif_ill)) 7477 dst_ill = ip_newroute_get_dst_ill( 7478 ire->ire_stq->q_ptr); 7479 else 7480 dst_ill = ip_newroute_get_dst_ill( 7481 ire->ire_ipif->ipif_ill); 7482 } 7483 if (dst_ill == NULL) { 7484 if (ip_debug > 2) { 7485 pr_addr_dbg("ip_newroute: " 7486 "no dst ill for dst" 7487 " %s\n", AF_INET, &dst); 7488 } 7489 goto icmp_err_ret; 7490 } 7491 } else { 7492 dst_ill = ire->ire_ipif->ipif_ill; 7493 /* for uniformity */ 7494 ill_refhold(dst_ill); 7495 /* 7496 * We should have found a route matching ill as we 7497 * called ire_ftable_lookup with MATCH_IRE_ILL. 7498 * Rather than asserting, when there is a mismatch, 7499 * we just drop the packet. 7500 */ 7501 if (dst_ill != attach_ill) { 7502 ip0dbg(("ip_newroute: Packet dropped as " 7503 "IPIF_NOFAILOVER ill is %s, " 7504 "ire->ire_ipif->ipif_ill is %s\n", 7505 attach_ill->ill_name, 7506 dst_ill->ill_name)); 7507 ill_refrele(attach_ill); 7508 goto icmp_err_ret; 7509 } 7510 } 7511 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 7512 if (attach_ill != NULL) { 7513 ill_refrele(attach_ill); 7514 attach_ill = NULL; 7515 do_attach_ill = B_TRUE; 7516 } 7517 ASSERT(dst_ill != NULL); 7518 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 7519 7520 /* 7521 * Pick the best source address from dst_ill. 7522 * 7523 * 1) If it is part of a multipathing group, we would 7524 * like to spread the inbound packets across different 7525 * interfaces. ipif_select_source picks a random source 7526 * across the different ills in the group. 7527 * 7528 * 2) If it is not part of a multipathing group, we try 7529 * to pick the source address from the destination 7530 * route. Clustering assumes that when we have multiple 7531 * prefixes hosted on an interface, the prefix of the 7532 * source address matches the prefix of the destination 7533 * route. We do this only if the address is not 7534 * DEPRECATED. 7535 * 7536 * 3) If the conn is in a different zone than the ire, we 7537 * need to pick a source address from the right zone. 7538 * 7539 * NOTE : If we hit case (1) above, the prefix of the source 7540 * address picked may not match the prefix of the 7541 * destination routes prefix as ipif_select_source 7542 * does not look at "dst" while picking a source 7543 * address. 7544 * If we want the same behavior as (2), we will need 7545 * to change the behavior of ipif_select_source. 7546 */ 7547 ASSERT(src_ipif == NULL); 7548 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 7549 /* 7550 * The RTF_SETSRC flag is set in the parent ire (sire). 7551 * Check that the ipif matching the requested source 7552 * address still exists. 7553 */ 7554 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 7555 zoneid, NULL, NULL, NULL, NULL); 7556 } 7557 if (src_ipif == NULL) { 7558 ire_marks |= IRE_MARK_USESRC_CHECK; 7559 if ((dst_ill->ill_group != NULL) || 7560 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 7561 (connp != NULL && ire->ire_zoneid != zoneid && 7562 ire->ire_zoneid != ALL_ZONES) || 7563 (dst_ill->ill_usesrc_ifindex != 0)) { 7564 /* 7565 * If the destination is reachable via a 7566 * given gateway, the selected source address 7567 * should be in the same subnet as the gateway. 7568 * Otherwise, the destination is not reachable. 7569 * 7570 * If there are no interfaces on the same subnet 7571 * as the destination, ipif_select_source gives 7572 * first non-deprecated interface which might be 7573 * on a different subnet than the gateway. 7574 * This is not desirable. Hence pass the dst_ire 7575 * source address to ipif_select_source. 7576 * It is sure that the destination is reachable 7577 * with the dst_ire source address subnet. 7578 * So passing dst_ire source address to 7579 * ipif_select_source will make sure that the 7580 * selected source will be on the same subnet 7581 * as dst_ire source address. 7582 */ 7583 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 7584 src_ipif = ipif_select_source(dst_ill, saddr, 7585 zoneid); 7586 if (src_ipif == NULL) { 7587 if (ip_debug > 2) { 7588 pr_addr_dbg("ip_newroute: " 7589 "no src for dst %s ", 7590 AF_INET, &dst); 7591 printf("through interface %s\n", 7592 dst_ill->ill_name); 7593 } 7594 goto icmp_err_ret; 7595 } 7596 } else { 7597 src_ipif = ire->ire_ipif; 7598 ASSERT(src_ipif != NULL); 7599 /* hold src_ipif for uniformity */ 7600 ipif_refhold(src_ipif); 7601 } 7602 } 7603 7604 /* 7605 * Assign a source address while we have the conn. 7606 * We can't have ip_wput_ire pick a source address when the 7607 * packet returns from arp since we need to look at 7608 * conn_unspec_src and conn_zoneid, and we lose the conn when 7609 * going through arp. 7610 * 7611 * NOTE : ip_newroute_v6 does not have this piece of code as 7612 * it uses ip6i to store this information. 7613 */ 7614 if (ipha->ipha_src == INADDR_ANY && 7615 (connp == NULL || !connp->conn_unspec_src)) { 7616 ipha->ipha_src = src_ipif->ipif_src_addr; 7617 } 7618 if (ip_debug > 3) { 7619 /* ip2dbg */ 7620 pr_addr_dbg("ip_newroute: first hop %s\n", 7621 AF_INET, &gw); 7622 } 7623 ip2dbg(("\tire type %s (%d)\n", 7624 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 7625 7626 /* 7627 * The TTL of multirouted packets is bounded by the 7628 * ip_multirt_ttl ndd variable. 7629 */ 7630 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7631 /* Force TTL of multirouted packets */ 7632 if ((ip_multirt_ttl > 0) && 7633 (ipha->ipha_ttl > ip_multirt_ttl)) { 7634 ip2dbg(("ip_newroute: forcing multirt TTL " 7635 "to %d (was %d), dst 0x%08x\n", 7636 ip_multirt_ttl, ipha->ipha_ttl, 7637 ntohl(sire->ire_addr))); 7638 ipha->ipha_ttl = ip_multirt_ttl; 7639 } 7640 } 7641 /* 7642 * At this point in ip_newroute(), ire is either the 7643 * IRE_CACHE of the next-hop gateway for an off-subnet 7644 * destination or an IRE_INTERFACE type that should be used 7645 * to resolve an on-subnet destination or an on-subnet 7646 * next-hop gateway. 7647 * 7648 * In the IRE_CACHE case, we have the following : 7649 * 7650 * 1) src_ipif - used for getting a source address. 7651 * 7652 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 7653 * means packets using this IRE_CACHE will go out on 7654 * dst_ill. 7655 * 7656 * 3) The IRE sire will point to the prefix that is the 7657 * longest matching route for the destination. These 7658 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST, 7659 * and IRE_HOST_REDIRECT. 7660 * 7661 * The newly created IRE_CACHE entry for the off-subnet 7662 * destination is tied to both the prefix route and the 7663 * interface route used to resolve the next-hop gateway 7664 * via the ire_phandle and ire_ihandle fields, 7665 * respectively. 7666 * 7667 * In the IRE_INTERFACE case, we have the following : 7668 * 7669 * 1) src_ipif - used for getting a source address. 7670 * 7671 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 7672 * means packets using the IRE_CACHE that we will build 7673 * here will go out on dst_ill. 7674 * 7675 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 7676 * to be created will only be tied to the IRE_INTERFACE 7677 * that was derived from the ire_ihandle field. 7678 * 7679 * If sire is non-NULL, it means the destination is 7680 * off-link and we will first create the IRE_CACHE for the 7681 * gateway. Next time through ip_newroute, we will create 7682 * the IRE_CACHE for the final destination as described 7683 * above. 7684 * 7685 * In both cases, after the current resolution has been 7686 * completed (or possibly initialised, in the IRE_INTERFACE 7687 * case), the loop may be re-entered to attempt the resolution 7688 * of another RTF_MULTIRT route. 7689 * 7690 * When an IRE_CACHE entry for the off-subnet destination is 7691 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 7692 * for further processing in emission loops. 7693 */ 7694 save_ire = ire; 7695 switch (ire->ire_type) { 7696 case IRE_CACHE: { 7697 ire_t *ipif_ire; 7698 mblk_t *ire_fp_mp; 7699 7700 if (gw == 0) 7701 gw = ire->ire_gateway_addr; 7702 /* 7703 * We need 3 ire's to create a new cache ire for an 7704 * off-link destination from the cache ire of the 7705 * gateway. 7706 * 7707 * 1. The prefix ire 'sire' (Note that this does 7708 * not apply to the conn_nexthop_set case) 7709 * 2. The cache ire of the gateway 'ire' 7710 * 3. The interface ire 'ipif_ire' 7711 * 7712 * We have (1) and (2). We lookup (3) below. 7713 * 7714 * If there is no interface route to the gateway, 7715 * it is a race condition, where we found the cache 7716 * but the interface route has been deleted. 7717 */ 7718 if (ip_nexthop) { 7719 ipif_ire = ire_ihandle_lookup_onlink(ire); 7720 } else { 7721 ipif_ire = 7722 ire_ihandle_lookup_offlink(ire, sire); 7723 } 7724 if (ipif_ire == NULL) { 7725 ip1dbg(("ip_newroute: " 7726 "ire_ihandle_lookup_offlink failed\n")); 7727 goto icmp_err_ret; 7728 } 7729 /* 7730 * XXX We are using the same dlureq_mp 7731 * (DL_UNITDATA_REQ) though the save_ire is not 7732 * pointing at the same ill. 7733 * This is incorrect. We need to send it up to the 7734 * resolver to get the right dlureq_mp. For ethernets 7735 * this may be okay (ill_type == DL_ETHER). 7736 */ 7737 dlureq_mp = save_ire->ire_dlureq_mp; 7738 ire_fp_mp = NULL; 7739 /* 7740 * save_ire's ire_fp_mp can't change since it is 7741 * not an IRE_MIPRTUN or IRE_BROADCAST 7742 * LOCK_IRE_FP_MP does not do any useful work in 7743 * the case of IRE_CACHE. So we don't use it below. 7744 */ 7745 if (save_ire->ire_stq == dst_ill->ill_wq) 7746 ire_fp_mp = save_ire->ire_fp_mp; 7747 7748 /* 7749 * Check cached gateway IRE for any security 7750 * attributes; if found, associate the gateway 7751 * credentials group to the destination IRE. 7752 */ 7753 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 7754 mutex_enter(&attrp->igsa_lock); 7755 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 7756 GCGRP_REFHOLD(gcgrp); 7757 mutex_exit(&attrp->igsa_lock); 7758 } 7759 7760 ire = ire_create( 7761 (uchar_t *)&dst, /* dest address */ 7762 (uchar_t *)&ip_g_all_ones, /* mask */ 7763 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7764 (uchar_t *)&gw, /* gateway address */ 7765 NULL, 7766 &save_ire->ire_max_frag, 7767 ire_fp_mp, /* Fast Path header */ 7768 dst_ill->ill_rq, /* recv-from queue */ 7769 dst_ill->ill_wq, /* send-to queue */ 7770 IRE_CACHE, /* IRE type */ 7771 save_ire->ire_dlureq_mp, 7772 src_ipif, 7773 in_ill, /* incoming ill */ 7774 (sire != NULL) ? 7775 sire->ire_mask : 0, /* Parent mask */ 7776 (sire != NULL) ? 7777 sire->ire_phandle : 0, /* Parent handle */ 7778 ipif_ire->ire_ihandle, /* Interface handle */ 7779 (sire != NULL) ? (sire->ire_flags & 7780 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 7781 (sire != NULL) ? 7782 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 7783 NULL, 7784 gcgrp); 7785 7786 if (ire == NULL) { 7787 if (gcgrp != NULL) { 7788 GCGRP_REFRELE(gcgrp); 7789 gcgrp = NULL; 7790 } 7791 ire_refrele(ipif_ire); 7792 ire_refrele(save_ire); 7793 break; 7794 } 7795 7796 /* reference now held by IRE */ 7797 gcgrp = NULL; 7798 7799 ire->ire_marks |= ire_marks; 7800 7801 /* 7802 * Prevent sire and ipif_ire from getting deleted. 7803 * The newly created ire is tied to both of them via 7804 * the phandle and ihandle respectively. 7805 */ 7806 if (sire != NULL) { 7807 IRB_REFHOLD(sire->ire_bucket); 7808 /* Has it been removed already ? */ 7809 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 7810 IRB_REFRELE(sire->ire_bucket); 7811 ire_refrele(ipif_ire); 7812 ire_refrele(save_ire); 7813 break; 7814 } 7815 } 7816 7817 IRB_REFHOLD(ipif_ire->ire_bucket); 7818 /* Has it been removed already ? */ 7819 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 7820 IRB_REFRELE(ipif_ire->ire_bucket); 7821 if (sire != NULL) 7822 IRB_REFRELE(sire->ire_bucket); 7823 ire_refrele(ipif_ire); 7824 ire_refrele(save_ire); 7825 break; 7826 } 7827 7828 xmit_mp = first_mp; 7829 /* 7830 * In the case of multirouting, a copy 7831 * of the packet is done before its sending. 7832 * The copy is used to attempt another 7833 * route resolution, in a next loop. 7834 */ 7835 if (ire->ire_flags & RTF_MULTIRT) { 7836 copy_mp = copymsg(first_mp); 7837 if (copy_mp != NULL) { 7838 xmit_mp = copy_mp; 7839 MULTIRT_DEBUG_TAG(first_mp); 7840 } 7841 } 7842 ire_add_then_send(q, ire, xmit_mp); 7843 ire_refrele(save_ire); 7844 7845 /* Assert that sire is not deleted yet. */ 7846 if (sire != NULL) { 7847 ASSERT(sire->ire_ptpn != NULL); 7848 IRB_REFRELE(sire->ire_bucket); 7849 } 7850 7851 /* Assert that ipif_ire is not deleted yet. */ 7852 ASSERT(ipif_ire->ire_ptpn != NULL); 7853 IRB_REFRELE(ipif_ire->ire_bucket); 7854 ire_refrele(ipif_ire); 7855 7856 /* 7857 * If copy_mp is not NULL, multirouting was 7858 * requested. We loop to initiate a next 7859 * route resolution attempt, starting from sire. 7860 */ 7861 if (copy_mp != NULL) { 7862 /* 7863 * Search for the next unresolved 7864 * multirt route. 7865 */ 7866 copy_mp = NULL; 7867 ipif_ire = NULL; 7868 ire = NULL; 7869 multirt_resolve_next = B_TRUE; 7870 continue; 7871 } 7872 if (sire != NULL) 7873 ire_refrele(sire); 7874 ipif_refrele(src_ipif); 7875 ill_refrele(dst_ill); 7876 return; 7877 } 7878 case IRE_IF_NORESOLVER: { 7879 /* 7880 * We have what we need to build an IRE_CACHE. 7881 * 7882 * Create a new dlureq_mp with the IP gateway address 7883 * in destination address in the DLPI hdr if the 7884 * physical length is exactly 4 bytes. 7885 */ 7886 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 7887 uchar_t *addr; 7888 7889 if (gw) 7890 addr = (uchar_t *)&gw; 7891 else 7892 addr = (uchar_t *)&dst; 7893 7894 dlureq_mp = ill_dlur_gen(addr, 7895 dst_ill->ill_phys_addr_length, 7896 dst_ill->ill_sap, 7897 dst_ill->ill_sap_length); 7898 } else { 7899 dlureq_mp = ire->ire_dlureq_mp; 7900 } 7901 7902 if (dlureq_mp == NULL) { 7903 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 7904 break; 7905 } 7906 7907 /* 7908 * TSol note: We are creating the ire cache for the 7909 * destination 'dst'. If 'dst' is offlink, going 7910 * through the first hop 'gw', the security attributes 7911 * of 'dst' must be set to point to the gateway 7912 * credentials of gateway 'gw'. If 'dst' is onlink, it 7913 * is possible that 'dst' is a potential gateway that is 7914 * referenced by some route that has some security 7915 * attributes. Thus in the former case, we need to do a 7916 * gcgrp_lookup of 'gw' while in the latter case we 7917 * need to do gcgrp_lookup of 'dst' itself. 7918 */ 7919 ga.ga_af = AF_INET; 7920 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 7921 &ga.ga_addr); 7922 gcgrp = gcgrp_lookup(&ga, B_FALSE); 7923 7924 ire = ire_create( 7925 (uchar_t *)&dst, /* dest address */ 7926 (uchar_t *)&ip_g_all_ones, /* mask */ 7927 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7928 (uchar_t *)&gw, /* gateway address */ 7929 NULL, 7930 &save_ire->ire_max_frag, 7931 NULL, /* Fast Path header */ 7932 dst_ill->ill_rq, /* recv-from queue */ 7933 dst_ill->ill_wq, /* send-to queue */ 7934 IRE_CACHE, 7935 dlureq_mp, 7936 src_ipif, 7937 in_ill, /* Incoming ill */ 7938 save_ire->ire_mask, /* Parent mask */ 7939 (sire != NULL) ? /* Parent handle */ 7940 sire->ire_phandle : 0, 7941 save_ire->ire_ihandle, /* Interface handle */ 7942 (sire != NULL) ? sire->ire_flags & 7943 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 7944 &(save_ire->ire_uinfo), 7945 NULL, 7946 gcgrp); 7947 7948 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 7949 freeb(dlureq_mp); 7950 7951 if (ire == NULL) { 7952 if (gcgrp != NULL) { 7953 GCGRP_REFRELE(gcgrp); 7954 gcgrp = NULL; 7955 } 7956 ire_refrele(save_ire); 7957 break; 7958 } 7959 7960 /* reference now held by IRE */ 7961 gcgrp = NULL; 7962 7963 ire->ire_marks |= ire_marks; 7964 7965 /* Prevent save_ire from getting deleted */ 7966 IRB_REFHOLD(save_ire->ire_bucket); 7967 /* Has it been removed already ? */ 7968 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 7969 IRB_REFRELE(save_ire->ire_bucket); 7970 ire_refrele(save_ire); 7971 break; 7972 } 7973 7974 /* 7975 * In the case of multirouting, a copy 7976 * of the packet is made before it is sent. 7977 * The copy is used in the next 7978 * loop to attempt another resolution. 7979 */ 7980 xmit_mp = first_mp; 7981 if ((sire != NULL) && 7982 (sire->ire_flags & RTF_MULTIRT)) { 7983 copy_mp = copymsg(first_mp); 7984 if (copy_mp != NULL) { 7985 xmit_mp = copy_mp; 7986 MULTIRT_DEBUG_TAG(first_mp); 7987 } 7988 } 7989 ire_add_then_send(q, ire, xmit_mp); 7990 7991 /* Assert that it is not deleted yet. */ 7992 ASSERT(save_ire->ire_ptpn != NULL); 7993 IRB_REFRELE(save_ire->ire_bucket); 7994 ire_refrele(save_ire); 7995 7996 if (copy_mp != NULL) { 7997 /* 7998 * If we found a (no)resolver, we ignore any 7999 * trailing top priority IRE_CACHE in further 8000 * loops. This ensures that we do not omit any 8001 * (no)resolver. 8002 * This IRE_CACHE, if any, will be processed 8003 * by another thread entering ip_newroute(). 8004 * IRE_CACHE entries, if any, will be processed 8005 * by another thread entering ip_newroute(), 8006 * (upon resolver response, for instance). 8007 * This aims to force parallel multirt 8008 * resolutions as soon as a packet must be sent. 8009 * In the best case, after the tx of only one 8010 * packet, all reachable routes are resolved. 8011 * Otherwise, the resolution of all RTF_MULTIRT 8012 * routes would require several emissions. 8013 */ 8014 multirt_flags &= ~MULTIRT_CACHEGW; 8015 8016 /* 8017 * Search for the next unresolved multirt 8018 * route. 8019 */ 8020 copy_mp = NULL; 8021 save_ire = NULL; 8022 ire = NULL; 8023 multirt_resolve_next = B_TRUE; 8024 continue; 8025 } 8026 8027 /* 8028 * Don't need sire anymore 8029 */ 8030 if (sire != NULL) 8031 ire_refrele(sire); 8032 8033 ipif_refrele(src_ipif); 8034 ill_refrele(dst_ill); 8035 return; 8036 } 8037 case IRE_IF_RESOLVER: 8038 /* 8039 * We can't build an IRE_CACHE yet, but at least we 8040 * found a resolver that can help. 8041 */ 8042 res_mp = dst_ill->ill_resolver_mp; 8043 if (!OK_RESOLVER_MP(res_mp)) 8044 break; 8045 8046 /* 8047 * To be at this point in the code with a non-zero gw 8048 * means that dst is reachable through a gateway that 8049 * we have never resolved. By changing dst to the gw 8050 * addr we resolve the gateway first. 8051 * When ire_add_then_send() tries to put the IP dg 8052 * to dst, it will reenter ip_newroute() at which 8053 * time we will find the IRE_CACHE for the gw and 8054 * create another IRE_CACHE in case IRE_CACHE above. 8055 */ 8056 if (gw != INADDR_ANY) { 8057 /* 8058 * The source ipif that was determined above was 8059 * relative to the destination address, not the 8060 * gateway's. If src_ipif was not taken out of 8061 * the IRE_IF_RESOLVER entry, we'll need to call 8062 * ipif_select_source() again. 8063 */ 8064 if (src_ipif != ire->ire_ipif) { 8065 ipif_refrele(src_ipif); 8066 src_ipif = ipif_select_source(dst_ill, 8067 gw, zoneid); 8068 if (src_ipif == NULL) { 8069 if (ip_debug > 2) { 8070 pr_addr_dbg( 8071 "ip_newroute: no " 8072 "src for gw %s ", 8073 AF_INET, &gw); 8074 printf("through " 8075 "interface %s\n", 8076 dst_ill->ill_name); 8077 } 8078 goto icmp_err_ret; 8079 } 8080 } 8081 save_dst = dst; 8082 dst = gw; 8083 gw = INADDR_ANY; 8084 } 8085 8086 /* 8087 * TSol note: Please see the corresponding note 8088 * of the IRE_IF_NORESOLVER case 8089 */ 8090 ga.ga_af = AF_INET; 8091 IN6_IPADDR_TO_V4MAPPED(dst, &ga.ga_addr); 8092 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8093 8094 /* 8095 * We obtain a partial IRE_CACHE which we will pass 8096 * along with the resolver query. When the response 8097 * comes back it will be there ready for us to add. 8098 * The ire_max_frag is atomically set under the 8099 * irebucket lock in ire_add_v[46]. 8100 */ 8101 ire = ire_create_mp( 8102 (uchar_t *)&dst, /* dest address */ 8103 (uchar_t *)&ip_g_all_ones, /* mask */ 8104 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8105 (uchar_t *)&gw, /* gateway address */ 8106 NULL, /* no in_src_addr */ 8107 NULL, /* ire_max_frag */ 8108 NULL, /* Fast Path header */ 8109 dst_ill->ill_rq, /* recv-from queue */ 8110 dst_ill->ill_wq, /* send-to queue */ 8111 IRE_CACHE, 8112 res_mp, 8113 src_ipif, /* Interface ipif */ 8114 in_ill, /* Incoming ILL */ 8115 save_ire->ire_mask, /* Parent mask */ 8116 0, 8117 save_ire->ire_ihandle, /* Interface handle */ 8118 0, /* flags if any */ 8119 &(save_ire->ire_uinfo), 8120 NULL, 8121 gcgrp); 8122 8123 if (ire == NULL) { 8124 ire_refrele(save_ire); 8125 if (gcgrp != NULL) { 8126 GCGRP_REFRELE(gcgrp); 8127 gcgrp = NULL; 8128 } 8129 break; 8130 } 8131 8132 /* reference now held by IRE */ 8133 gcgrp = NULL; 8134 8135 if ((sire != NULL) && 8136 (sire->ire_flags & RTF_MULTIRT)) { 8137 copy_mp = copymsg(first_mp); 8138 if (copy_mp != NULL) 8139 MULTIRT_DEBUG_TAG(copy_mp); 8140 } 8141 8142 ire->ire_marks |= ire_marks; 8143 8144 /* 8145 * Construct message chain for the resolver 8146 * of the form: 8147 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8148 * Packet could contain a IPSEC_OUT mp. 8149 * 8150 * NOTE : ire will be added later when the response 8151 * comes back from ARP. If the response does not 8152 * come back, ARP frees the packet. For this reason, 8153 * we can't REFHOLD the bucket of save_ire to prevent 8154 * deletions. We may not be able to REFRELE the bucket 8155 * if the response never comes back. Thus, before 8156 * adding the ire, ire_add_v4 will make sure that the 8157 * interface route does not get deleted. This is the 8158 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8159 * where we can always prevent deletions because of 8160 * the synchronous nature of adding IRES i.e 8161 * ire_add_then_send is called after creating the IRE. 8162 */ 8163 ASSERT(ire->ire_mp != NULL); 8164 ire->ire_mp->b_cont = first_mp; 8165 /* Have saved_mp handy, for cleanup if canput fails */ 8166 saved_mp = mp; 8167 mp = ire->ire_dlureq_mp; 8168 ASSERT(mp != NULL); 8169 ire->ire_dlureq_mp = NULL; 8170 linkb(mp, ire->ire_mp); 8171 8172 8173 /* 8174 * Fill in the source and dest addrs for the resolver. 8175 * NOTE: this depends on memory layouts imposed by 8176 * ill_init(). 8177 */ 8178 areq = (areq_t *)mp->b_rptr; 8179 addrp = (ipaddr_t *)((char *)areq + 8180 areq->areq_sender_addr_offset); 8181 if (do_attach_ill) { 8182 /* 8183 * This is bind to no failover case. 8184 * arp packet also must go out on attach_ill. 8185 */ 8186 ASSERT(ipha->ipha_src != NULL); 8187 *addrp = ipha->ipha_src; 8188 } else { 8189 *addrp = save_ire->ire_src_addr; 8190 } 8191 8192 ire_refrele(save_ire); 8193 addrp = (ipaddr_t *)((char *)areq + 8194 areq->areq_target_addr_offset); 8195 *addrp = dst; 8196 /* Up to the resolver. */ 8197 if (canputnext(dst_ill->ill_rq)) { 8198 putnext(dst_ill->ill_rq, mp); 8199 ire = NULL; 8200 if (copy_mp != NULL) { 8201 /* 8202 * If we found a resolver, we ignore 8203 * any trailing top priority IRE_CACHE 8204 * in the further loops. This ensures 8205 * that we do not omit any resolver. 8206 * IRE_CACHE entries, if any, will be 8207 * processed next time we enter 8208 * ip_newroute(). 8209 */ 8210 multirt_flags &= ~MULTIRT_CACHEGW; 8211 /* 8212 * Search for the next unresolved 8213 * multirt route. 8214 */ 8215 first_mp = copy_mp; 8216 copy_mp = NULL; 8217 /* Prepare the next resolution loop. */ 8218 mp = first_mp; 8219 EXTRACT_PKT_MP(mp, first_mp, 8220 mctl_present); 8221 if (mctl_present) 8222 io = (ipsec_out_t *) 8223 first_mp->b_rptr; 8224 ipha = (ipha_t *)mp->b_rptr; 8225 8226 ASSERT(sire != NULL); 8227 8228 dst = save_dst; 8229 multirt_resolve_next = B_TRUE; 8230 continue; 8231 } 8232 8233 if (sire != NULL) 8234 ire_refrele(sire); 8235 8236 /* 8237 * The response will come back in ip_wput 8238 * with db_type IRE_DB_TYPE. 8239 */ 8240 ipif_refrele(src_ipif); 8241 ill_refrele(dst_ill); 8242 return; 8243 } else { 8244 /* Prepare for cleanup */ 8245 ire->ire_dlureq_mp = mp; 8246 mp->b_cont = NULL; 8247 ire_delete(ire); 8248 mp = saved_mp; 8249 ire = NULL; 8250 if (copy_mp != NULL) { 8251 MULTIRT_DEBUG_UNTAG(copy_mp); 8252 freemsg(copy_mp); 8253 copy_mp = NULL; 8254 } 8255 break; 8256 } 8257 default: 8258 break; 8259 } 8260 } while (multirt_resolve_next); 8261 8262 ip1dbg(("ip_newroute: dropped\n")); 8263 /* Did this packet originate externally? */ 8264 if (mp->b_prev) { 8265 mp->b_next = NULL; 8266 mp->b_prev = NULL; 8267 BUMP_MIB(&ip_mib, ipInDiscards); 8268 } else { 8269 BUMP_MIB(&ip_mib, ipOutDiscards); 8270 } 8271 ASSERT(copy_mp == NULL); 8272 MULTIRT_DEBUG_UNTAG(first_mp); 8273 freemsg(first_mp); 8274 if (ire != NULL) 8275 ire_refrele(ire); 8276 if (sire != NULL) 8277 ire_refrele(sire); 8278 if (src_ipif != NULL) 8279 ipif_refrele(src_ipif); 8280 if (dst_ill != NULL) 8281 ill_refrele(dst_ill); 8282 return; 8283 8284 icmp_err_ret: 8285 ip1dbg(("ip_newroute: no route\n")); 8286 if (src_ipif != NULL) 8287 ipif_refrele(src_ipif); 8288 if (dst_ill != NULL) 8289 ill_refrele(dst_ill); 8290 if (sire != NULL) 8291 ire_refrele(sire); 8292 /* Did this packet originate externally? */ 8293 if (mp->b_prev) { 8294 mp->b_next = NULL; 8295 mp->b_prev = NULL; 8296 /* XXX ipInNoRoutes */ 8297 q = WR(q); 8298 } else { 8299 /* 8300 * Since ip_wput() isn't close to finished, we fill 8301 * in enough of the header for credible error reporting. 8302 */ 8303 if (ip_hdr_complete(ipha, zoneid)) { 8304 /* Failed */ 8305 MULTIRT_DEBUG_UNTAG(first_mp); 8306 freemsg(first_mp); 8307 if (ire != NULL) 8308 ire_refrele(ire); 8309 return; 8310 } 8311 } 8312 BUMP_MIB(&ip_mib, ipOutNoRoutes); 8313 8314 /* 8315 * At this point we will have ire only if RTF_BLACKHOLE 8316 * or RTF_REJECT flags are set on the IRE. It will not 8317 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8318 */ 8319 if (ire != NULL) { 8320 if (ire->ire_flags & RTF_BLACKHOLE) { 8321 ire_refrele(ire); 8322 MULTIRT_DEBUG_UNTAG(first_mp); 8323 freemsg(first_mp); 8324 return; 8325 } 8326 ire_refrele(ire); 8327 } 8328 if (ip_source_routed(ipha)) { 8329 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED); 8330 return; 8331 } 8332 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE); 8333 } 8334 8335 /* 8336 * IPv4 - 8337 * ip_newroute_ipif is called by ip_wput_multicast and 8338 * ip_rput_forward_multicast whenever we need to send 8339 * out a packet to a destination address for which we do not have specific 8340 * routing information. It is used when the packet will be sent out 8341 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 8342 * socket option is set or icmp error message wants to go out on a particular 8343 * interface for a unicast packet. 8344 * 8345 * In most cases, the destination address is resolved thanks to the ipif 8346 * intrinsic resolver. However, there are some cases where the call to 8347 * ip_newroute_ipif must take into account the potential presence of 8348 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8349 * that uses the interface. This is specified through flags, 8350 * which can be a combination of: 8351 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8352 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8353 * and flags. Additionally, the packet source address has to be set to 8354 * the specified address. The caller is thus expected to set this flag 8355 * if the packet has no specific source address yet. 8356 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8357 * flag, the resulting ire will inherit the flag. All unresolved routes 8358 * to the destination must be explored in the same call to 8359 * ip_newroute_ipif(). 8360 */ 8361 static void 8362 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8363 conn_t *connp, uint32_t flags) 8364 { 8365 areq_t *areq; 8366 ire_t *ire = NULL; 8367 mblk_t *res_mp; 8368 ipaddr_t *addrp; 8369 mblk_t *first_mp; 8370 ire_t *save_ire = NULL; 8371 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8372 ipif_t *src_ipif = NULL; 8373 ushort_t ire_marks = 0; 8374 ill_t *dst_ill = NULL; 8375 boolean_t mctl_present; 8376 ipsec_out_t *io; 8377 ipha_t *ipha; 8378 int ihandle = 0; 8379 mblk_t *saved_mp; 8380 ire_t *fire = NULL; 8381 mblk_t *copy_mp = NULL; 8382 boolean_t multirt_resolve_next; 8383 ipaddr_t ipha_dst; 8384 zoneid_t zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 8385 8386 /* 8387 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 8388 * here for uniformity 8389 */ 8390 ipif_refhold(ipif); 8391 8392 /* 8393 * This loop is run only once in most cases. 8394 * We loop to resolve further routes only when the destination 8395 * can be reached through multiple RTF_MULTIRT-flagged ires. 8396 */ 8397 do { 8398 if (dst_ill != NULL) { 8399 ill_refrele(dst_ill); 8400 dst_ill = NULL; 8401 } 8402 if (src_ipif != NULL) { 8403 ipif_refrele(src_ipif); 8404 src_ipif = NULL; 8405 } 8406 multirt_resolve_next = B_FALSE; 8407 8408 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 8409 ipif->ipif_ill->ill_name)); 8410 8411 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 8412 if (mctl_present) 8413 io = (ipsec_out_t *)first_mp->b_rptr; 8414 8415 ipha = (ipha_t *)mp->b_rptr; 8416 8417 /* 8418 * Save the packet destination address, we may need it after 8419 * the packet has been consumed. 8420 */ 8421 ipha_dst = ipha->ipha_dst; 8422 8423 /* 8424 * If the interface is a pt-pt interface we look for an 8425 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 8426 * local_address and the pt-pt destination address. Otherwise 8427 * we just match the local address. 8428 * NOTE: dst could be different than ipha->ipha_dst in case 8429 * of sending igmp multicast packets over a point-to-point 8430 * connection. 8431 * Thus we must be careful enough to check ipha_dst to be a 8432 * multicast address, otherwise it will take xmit_if path for 8433 * multicast packets resulting into kernel stack overflow by 8434 * repeated calls to ip_newroute_ipif from ire_send(). 8435 */ 8436 if (CLASSD(ipha_dst) && 8437 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 8438 goto err_ret; 8439 } 8440 8441 /* 8442 * We check if an IRE_OFFSUBNET for the addr that goes through 8443 * ipif exists. We need it to determine if the RTF_SETSRC and/or 8444 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 8445 * propagate its flags to the new ire. 8446 */ 8447 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 8448 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 8449 ip2dbg(("ip_newroute_ipif: " 8450 "ipif_lookup_multi_ire(" 8451 "ipif %p, dst %08x) = fire %p\n", 8452 (void *)ipif, ntohl(dst), (void *)fire)); 8453 } 8454 8455 if (mctl_present && io->ipsec_out_attach_if) { 8456 attach_ill = ip_grab_attach_ill(NULL, first_mp, 8457 io->ipsec_out_ill_index, B_FALSE); 8458 8459 /* Failure case frees things for us. */ 8460 if (attach_ill == NULL) { 8461 ipif_refrele(ipif); 8462 if (fire != NULL) 8463 ire_refrele(fire); 8464 return; 8465 } 8466 8467 /* 8468 * Check if we need an ire that will not be 8469 * looked up by anybody else i.e. HIDDEN. 8470 */ 8471 if (ill_is_probeonly(attach_ill)) { 8472 ire_marks = IRE_MARK_HIDDEN; 8473 } 8474 /* 8475 * ip_wput passes the right ipif for IPIF_NOFAILOVER 8476 * case. 8477 */ 8478 dst_ill = ipif->ipif_ill; 8479 /* attach_ill has been refheld by ip_grab_attach_ill */ 8480 ASSERT(dst_ill == attach_ill); 8481 } else { 8482 /* 8483 * If this is set by IP_XMIT_IF, then make sure that 8484 * ipif is pointing to the same ill as the IP_XMIT_IF 8485 * specified ill. 8486 */ 8487 ASSERT((connp == NULL) || 8488 (connp->conn_xmit_if_ill == NULL) || 8489 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 8490 /* 8491 * If the interface belongs to an interface group, 8492 * make sure the next possible interface in the group 8493 * is used. This encourages load spreading among 8494 * peers in an interface group. 8495 * Note: load spreading is disabled for RTF_MULTIRT 8496 * routes. 8497 */ 8498 if ((flags & RTF_MULTIRT) && (fire != NULL) && 8499 (fire->ire_flags & RTF_MULTIRT)) { 8500 /* 8501 * Don't perform outbound load spreading 8502 * in the case of an RTF_MULTIRT issued route, 8503 * we actually typically want to replicate 8504 * outgoing packets through particular 8505 * interfaces. 8506 */ 8507 dst_ill = ipif->ipif_ill; 8508 ill_refhold(dst_ill); 8509 } else { 8510 dst_ill = ip_newroute_get_dst_ill( 8511 ipif->ipif_ill); 8512 } 8513 if (dst_ill == NULL) { 8514 if (ip_debug > 2) { 8515 pr_addr_dbg("ip_newroute_ipif: " 8516 "no dst ill for dst %s\n", 8517 AF_INET, &dst); 8518 } 8519 goto err_ret; 8520 } 8521 } 8522 8523 /* 8524 * Pick a source address preferring non-deprecated ones. 8525 * Unlike ip_newroute, we don't do any source address 8526 * selection here since for multicast it really does not help 8527 * in inbound load spreading as in the unicast case. 8528 */ 8529 if ((flags & RTF_SETSRC) && (fire != NULL) && 8530 (fire->ire_flags & RTF_SETSRC)) { 8531 /* 8532 * As requested by flags, an IRE_OFFSUBNET was looked up 8533 * on that interface. This ire has RTF_SETSRC flag, so 8534 * the source address of the packet must be changed. 8535 * Check that the ipif matching the requested source 8536 * address still exists. 8537 */ 8538 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 8539 zoneid, NULL, NULL, NULL, NULL); 8540 } 8541 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 8542 (connp != NULL && ipif->ipif_zoneid != zoneid && 8543 ipif->ipif_zoneid != ALL_ZONES)) && 8544 (src_ipif == NULL)) { 8545 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 8546 if (src_ipif == NULL) { 8547 if (ip_debug > 2) { 8548 /* ip1dbg */ 8549 pr_addr_dbg("ip_newroute_ipif: " 8550 "no src for dst %s", 8551 AF_INET, &dst); 8552 } 8553 ip1dbg((" through interface %s\n", 8554 dst_ill->ill_name)); 8555 goto err_ret; 8556 } 8557 ipif_refrele(ipif); 8558 ipif = src_ipif; 8559 ipif_refhold(ipif); 8560 } 8561 if (src_ipif == NULL) { 8562 src_ipif = ipif; 8563 ipif_refhold(src_ipif); 8564 } 8565 8566 /* 8567 * Assign a source address while we have the conn. 8568 * We can't have ip_wput_ire pick a source address when the 8569 * packet returns from arp since conn_unspec_src might be set 8570 * and we loose the conn when going through arp. 8571 */ 8572 if (ipha->ipha_src == INADDR_ANY && 8573 (connp == NULL || !connp->conn_unspec_src)) { 8574 ipha->ipha_src = src_ipif->ipif_src_addr; 8575 } 8576 8577 /* 8578 * In case of IP_XMIT_IF, it is possible that the outgoing 8579 * interface does not have an interface ire. 8580 * Example: Thousands of mobileip PPP interfaces to mobile 8581 * nodes. We don't want to create interface ires because 8582 * packets from other mobile nodes must not take the route 8583 * via interface ires to the visiting mobile node without 8584 * going through the home agent, in absence of mobileip 8585 * route optimization. 8586 */ 8587 if (CLASSD(ipha_dst) && (connp == NULL || 8588 connp->conn_xmit_if_ill == NULL)) { 8589 /* ipif_to_ire returns an held ire */ 8590 ire = ipif_to_ire(ipif); 8591 if (ire == NULL) 8592 goto err_ret; 8593 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 8594 goto err_ret; 8595 /* 8596 * ihandle is needed when the ire is added to 8597 * cache table. 8598 */ 8599 save_ire = ire; 8600 ihandle = save_ire->ire_ihandle; 8601 8602 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 8603 "flags %04x\n", 8604 (void *)ire, (void *)ipif, flags)); 8605 if ((flags & RTF_MULTIRT) && (fire != NULL) && 8606 (fire->ire_flags & RTF_MULTIRT)) { 8607 /* 8608 * As requested by flags, an IRE_OFFSUBNET was 8609 * looked up on that interface. This ire has 8610 * RTF_MULTIRT flag, so the resolution loop will 8611 * be re-entered to resolve additional routes on 8612 * other interfaces. For that purpose, a copy of 8613 * the packet is performed at this point. 8614 */ 8615 fire->ire_last_used_time = lbolt; 8616 copy_mp = copymsg(first_mp); 8617 if (copy_mp) { 8618 MULTIRT_DEBUG_TAG(copy_mp); 8619 } 8620 } 8621 if ((flags & RTF_SETSRC) && (fire != NULL) && 8622 (fire->ire_flags & RTF_SETSRC)) { 8623 /* 8624 * As requested by flags, an IRE_OFFSUBET was 8625 * looked up on that interface. This ire has 8626 * RTF_SETSRC flag, so the source address of the 8627 * packet must be changed. 8628 */ 8629 ipha->ipha_src = fire->ire_src_addr; 8630 } 8631 } else { 8632 ASSERT((connp == NULL) || 8633 (connp->conn_xmit_if_ill != NULL) || 8634 (connp->conn_dontroute)); 8635 /* 8636 * The only ways we can come here are: 8637 * 1) IP_XMIT_IF socket option is set 8638 * 2) ICMP error message generated from 8639 * ip_mrtun_forward() routine and it needs 8640 * to go through the specified ill. 8641 * 3) SO_DONTROUTE socket option is set 8642 * In all cases, the new ire will not be added 8643 * into cache table. 8644 */ 8645 ire_marks |= IRE_MARK_NOADD; 8646 } 8647 8648 switch (ipif->ipif_net_type) { 8649 case IRE_IF_NORESOLVER: { 8650 /* We have what we need to build an IRE_CACHE. */ 8651 mblk_t *dlureq_mp; 8652 8653 /* 8654 * Create a new dlureq_mp with the 8655 * IP gateway address as destination address in the 8656 * DLPI hdr if the physical length is exactly 4 bytes. 8657 */ 8658 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8659 dlureq_mp = ill_dlur_gen((uchar_t *)&dst, 8660 dst_ill->ill_phys_addr_length, 8661 dst_ill->ill_sap, 8662 dst_ill->ill_sap_length); 8663 } else { 8664 /* use the value set in ip_ll_subnet_defaults */ 8665 dlureq_mp = ill_dlur_gen(NULL, 8666 dst_ill->ill_phys_addr_length, 8667 dst_ill->ill_sap, 8668 dst_ill->ill_sap_length); 8669 } 8670 8671 if (dlureq_mp == NULL) 8672 break; 8673 /* 8674 * The new ire inherits the IRE_OFFSUBNET flags 8675 * and source address, if this was requested. 8676 */ 8677 ire = ire_create( 8678 (uchar_t *)&dst, /* dest address */ 8679 (uchar_t *)&ip_g_all_ones, /* mask */ 8680 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8681 NULL, /* gateway address */ 8682 NULL, 8683 &ipif->ipif_mtu, 8684 NULL, /* Fast Path header */ 8685 dst_ill->ill_rq, /* recv-from queue */ 8686 dst_ill->ill_wq, /* send-to queue */ 8687 IRE_CACHE, 8688 dlureq_mp, 8689 src_ipif, 8690 NULL, 8691 (save_ire != NULL ? save_ire->ire_mask : 0), 8692 (fire != NULL) ? /* Parent handle */ 8693 fire->ire_phandle : 0, 8694 ihandle, /* Interface handle */ 8695 (fire != NULL) ? 8696 (fire->ire_flags & 8697 (RTF_SETSRC | RTF_MULTIRT)) : 0, 8698 (save_ire == NULL ? &ire_uinfo_null : 8699 &save_ire->ire_uinfo), 8700 NULL, 8701 NULL); 8702 8703 freeb(dlureq_mp); 8704 8705 if (ire == NULL) { 8706 if (save_ire != NULL) 8707 ire_refrele(save_ire); 8708 break; 8709 } 8710 8711 ire->ire_marks |= ire_marks; 8712 8713 /* 8714 * If IRE_MARK_NOADD is set then we need to convert 8715 * the max_fragp to a useable value now. This is 8716 * normally done in ire_add_v[46]. 8717 */ 8718 if (ire->ire_marks & IRE_MARK_NOADD) { 8719 uint_t max_frag; 8720 8721 max_frag = *ire->ire_max_fragp; 8722 ire->ire_max_fragp = NULL; 8723 ire->ire_max_frag = max_frag; 8724 } 8725 8726 /* Prevent save_ire from getting deleted */ 8727 if (save_ire != NULL) { 8728 IRB_REFHOLD(save_ire->ire_bucket); 8729 /* Has it been removed already ? */ 8730 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8731 IRB_REFRELE(save_ire->ire_bucket); 8732 ire_refrele(save_ire); 8733 break; 8734 } 8735 } 8736 8737 ire_add_then_send(q, ire, first_mp); 8738 8739 /* Assert that save_ire is not deleted yet. */ 8740 if (save_ire != NULL) { 8741 ASSERT(save_ire->ire_ptpn != NULL); 8742 IRB_REFRELE(save_ire->ire_bucket); 8743 ire_refrele(save_ire); 8744 save_ire = NULL; 8745 } 8746 if (fire != NULL) { 8747 ire_refrele(fire); 8748 fire = NULL; 8749 } 8750 8751 /* 8752 * the resolution loop is re-entered if this 8753 * was requested through flags and if we 8754 * actually are in a multirouting case. 8755 */ 8756 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 8757 boolean_t need_resolve = 8758 ire_multirt_need_resolve(ipha_dst, 8759 MBLK_GETLABEL(copy_mp)); 8760 if (!need_resolve) { 8761 MULTIRT_DEBUG_UNTAG(copy_mp); 8762 freemsg(copy_mp); 8763 copy_mp = NULL; 8764 } else { 8765 /* 8766 * ipif_lookup_group() calls 8767 * ire_lookup_multi() that uses 8768 * ire_ftable_lookup() to find 8769 * an IRE_INTERFACE for the group. 8770 * In the multirt case, 8771 * ire_lookup_multi() then invokes 8772 * ire_multirt_lookup() to find 8773 * the next resolvable ire. 8774 * As a result, we obtain an new 8775 * interface, derived from the 8776 * next ire. 8777 */ 8778 ipif_refrele(ipif); 8779 ipif = ipif_lookup_group(ipha_dst, 8780 zoneid); 8781 ip2dbg(("ip_newroute_ipif: " 8782 "multirt dst %08x, ipif %p\n", 8783 htonl(dst), (void *)ipif)); 8784 if (ipif != NULL) { 8785 mp = copy_mp; 8786 copy_mp = NULL; 8787 multirt_resolve_next = B_TRUE; 8788 continue; 8789 } else { 8790 freemsg(copy_mp); 8791 } 8792 } 8793 } 8794 if (ipif != NULL) 8795 ipif_refrele(ipif); 8796 ill_refrele(dst_ill); 8797 ipif_refrele(src_ipif); 8798 return; 8799 } 8800 case IRE_IF_RESOLVER: 8801 /* 8802 * We can't build an IRE_CACHE yet, but at least 8803 * we found a resolver that can help. 8804 */ 8805 res_mp = dst_ill->ill_resolver_mp; 8806 if (!OK_RESOLVER_MP(res_mp)) 8807 break; 8808 8809 /* 8810 * We obtain a partial IRE_CACHE which we will pass 8811 * along with the resolver query. When the response 8812 * comes back it will be there ready for us to add. 8813 * The new ire inherits the IRE_OFFSUBNET flags 8814 * and source address, if this was requested. 8815 * The ire_max_frag is atomically set under the 8816 * irebucket lock in ire_add_v[46]. Only in the 8817 * case of IRE_MARK_NOADD, we set it here itself. 8818 */ 8819 ire = ire_create_mp( 8820 (uchar_t *)&dst, /* dest address */ 8821 (uchar_t *)&ip_g_all_ones, /* mask */ 8822 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8823 NULL, /* gateway address */ 8824 NULL, /* no in_src_addr */ 8825 (ire_marks & IRE_MARK_NOADD) ? 8826 ipif->ipif_mtu : 0, /* max_frag */ 8827 NULL, /* Fast path header */ 8828 dst_ill->ill_rq, /* recv-from queue */ 8829 dst_ill->ill_wq, /* send-to queue */ 8830 IRE_CACHE, 8831 res_mp, 8832 src_ipif, 8833 NULL, 8834 (save_ire != NULL ? save_ire->ire_mask : 0), 8835 (fire != NULL) ? /* Parent handle */ 8836 fire->ire_phandle : 0, 8837 ihandle, /* Interface handle */ 8838 (fire != NULL) ? /* flags if any */ 8839 (fire->ire_flags & 8840 (RTF_SETSRC | RTF_MULTIRT)) : 0, 8841 (save_ire == NULL ? &ire_uinfo_null : 8842 &save_ire->ire_uinfo), 8843 NULL, 8844 NULL); 8845 8846 if (save_ire != NULL) { 8847 ire_refrele(save_ire); 8848 save_ire = NULL; 8849 } 8850 if (ire == NULL) 8851 break; 8852 8853 ire->ire_marks |= ire_marks; 8854 /* 8855 * Construct message chain for the resolver of the 8856 * form: 8857 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8858 * 8859 * NOTE : ire will be added later when the response 8860 * comes back from ARP. If the response does not 8861 * come back, ARP frees the packet. For this reason, 8862 * we can't REFHOLD the bucket of save_ire to prevent 8863 * deletions. We may not be able to REFRELE the 8864 * bucket if the response never comes back. 8865 * Thus, before adding the ire, ire_add_v4 will make 8866 * sure that the interface route does not get deleted. 8867 * This is the only case unlike ip_newroute_v6, 8868 * ip_newroute_ipif_v6 where we can always prevent 8869 * deletions because ire_add_then_send is called after 8870 * creating the IRE. 8871 * If IRE_MARK_NOADD is set, then ire_add_then_send 8872 * does not add this IRE into the IRE CACHE. 8873 */ 8874 ASSERT(ire->ire_mp != NULL); 8875 ire->ire_mp->b_cont = first_mp; 8876 /* Have saved_mp handy, for cleanup if canput fails */ 8877 saved_mp = mp; 8878 mp = ire->ire_dlureq_mp; 8879 ASSERT(mp != NULL); 8880 ire->ire_dlureq_mp = NULL; 8881 linkb(mp, ire->ire_mp); 8882 8883 /* 8884 * Fill in the source and dest addrs for the resolver. 8885 * NOTE: this depends on memory layouts imposed by 8886 * ill_init(). 8887 */ 8888 areq = (areq_t *)mp->b_rptr; 8889 addrp = (ipaddr_t *)((char *)areq + 8890 areq->areq_sender_addr_offset); 8891 *addrp = ire->ire_src_addr; 8892 addrp = (ipaddr_t *)((char *)areq + 8893 areq->areq_target_addr_offset); 8894 *addrp = dst; 8895 /* Up to the resolver. */ 8896 if (canputnext(dst_ill->ill_rq)) { 8897 putnext(dst_ill->ill_rq, mp); 8898 /* 8899 * The response will come back in ip_wput 8900 * with db_type IRE_DB_TYPE. 8901 */ 8902 } else { 8903 ire->ire_dlureq_mp = mp; 8904 mp->b_cont = NULL; 8905 ire_delete(ire); 8906 saved_mp->b_next = NULL; 8907 saved_mp->b_prev = NULL; 8908 freemsg(first_mp); 8909 ip2dbg(("ip_newroute_ipif: dropped\n")); 8910 } 8911 8912 if (fire != NULL) { 8913 ire_refrele(fire); 8914 fire = NULL; 8915 } 8916 8917 8918 /* 8919 * The resolution loop is re-entered if this was 8920 * requested through flags and we actually are 8921 * in a multirouting case. 8922 */ 8923 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 8924 boolean_t need_resolve = 8925 ire_multirt_need_resolve(ipha_dst, 8926 MBLK_GETLABEL(copy_mp)); 8927 if (!need_resolve) { 8928 MULTIRT_DEBUG_UNTAG(copy_mp); 8929 freemsg(copy_mp); 8930 copy_mp = NULL; 8931 } else { 8932 /* 8933 * ipif_lookup_group() calls 8934 * ire_lookup_multi() that uses 8935 * ire_ftable_lookup() to find 8936 * an IRE_INTERFACE for the group. 8937 * In the multirt case, 8938 * ire_lookup_multi() then invokes 8939 * ire_multirt_lookup() to find 8940 * the next resolvable ire. 8941 * As a result, we obtain an new 8942 * interface, derived from the 8943 * next ire. 8944 */ 8945 ipif_refrele(ipif); 8946 ipif = ipif_lookup_group(ipha_dst, 8947 zoneid); 8948 if (ipif != NULL) { 8949 mp = copy_mp; 8950 copy_mp = NULL; 8951 multirt_resolve_next = B_TRUE; 8952 continue; 8953 } else { 8954 freemsg(copy_mp); 8955 } 8956 } 8957 } 8958 if (ipif != NULL) 8959 ipif_refrele(ipif); 8960 ill_refrele(dst_ill); 8961 ipif_refrele(src_ipif); 8962 return; 8963 default: 8964 break; 8965 } 8966 } while (multirt_resolve_next); 8967 8968 err_ret: 8969 ip2dbg(("ip_newroute_ipif: dropped\n")); 8970 if (fire != NULL) 8971 ire_refrele(fire); 8972 ipif_refrele(ipif); 8973 /* Did this packet originate externally? */ 8974 if (dst_ill != NULL) 8975 ill_refrele(dst_ill); 8976 if (src_ipif != NULL) 8977 ipif_refrele(src_ipif); 8978 if (mp->b_prev || mp->b_next) { 8979 mp->b_next = NULL; 8980 mp->b_prev = NULL; 8981 } else { 8982 /* 8983 * Since ip_wput() isn't close to finished, we fill 8984 * in enough of the header for credible error reporting. 8985 */ 8986 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 8987 /* Failed */ 8988 freemsg(first_mp); 8989 if (ire != NULL) 8990 ire_refrele(ire); 8991 return; 8992 } 8993 } 8994 /* 8995 * At this point we will have ire only if RTF_BLACKHOLE 8996 * or RTF_REJECT flags are set on the IRE. It will not 8997 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8998 */ 8999 if (ire != NULL) { 9000 if (ire->ire_flags & RTF_BLACKHOLE) { 9001 ire_refrele(ire); 9002 freemsg(first_mp); 9003 return; 9004 } 9005 ire_refrele(ire); 9006 } 9007 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE); 9008 } 9009 9010 /* Name/Value Table Lookup Routine */ 9011 char * 9012 ip_nv_lookup(nv_t *nv, int value) 9013 { 9014 if (!nv) 9015 return (NULL); 9016 for (; nv->nv_name; nv++) { 9017 if (nv->nv_value == value) 9018 return (nv->nv_name); 9019 } 9020 return ("unknown"); 9021 } 9022 9023 /* 9024 * one day it can be patched to 1 from /etc/system for machines that have few 9025 * fast network interfaces feeding multiple cpus. 9026 */ 9027 int ill_stream_putlocks = 0; 9028 9029 /* 9030 * This is a module open, i.e. this is a control stream for access 9031 * to a DLPI device. We allocate an ill_t as the instance data in 9032 * this case. 9033 */ 9034 int 9035 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9036 { 9037 uint32_t mem_cnt; 9038 uint32_t cpu_cnt; 9039 uint32_t min_cnt; 9040 pgcnt_t mem_avail; 9041 extern uint32_t ip_cache_table_size, ip6_cache_table_size; 9042 ill_t *ill; 9043 int err; 9044 9045 /* 9046 * Prevent unprivileged processes from pushing IP so that 9047 * they can't send raw IP. 9048 */ 9049 if (secpolicy_net_rawaccess(credp) != 0) 9050 return (EPERM); 9051 9052 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9053 q->q_ptr = WR(q)->q_ptr = ill; 9054 9055 /* 9056 * ill_init initializes the ill fields and then sends down 9057 * down a DL_INFO_REQ after calling qprocson. 9058 */ 9059 err = ill_init(q, ill); 9060 if (err != 0) { 9061 mi_free(ill); 9062 q->q_ptr = NULL; 9063 WR(q)->q_ptr = NULL; 9064 return (err); 9065 } 9066 9067 /* ill_init initializes the ipsq marking this thread as writer */ 9068 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9069 /* Wait for the DL_INFO_ACK */ 9070 mutex_enter(&ill->ill_lock); 9071 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9072 /* 9073 * Return value of 0 indicates a pending signal. 9074 */ 9075 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9076 if (err == 0) { 9077 mutex_exit(&ill->ill_lock); 9078 (void) ip_close(q, 0); 9079 return (EINTR); 9080 } 9081 } 9082 mutex_exit(&ill->ill_lock); 9083 9084 /* 9085 * ip_rput_other could have set an error in ill_error on 9086 * receipt of M_ERROR. 9087 */ 9088 9089 err = ill->ill_error; 9090 if (err != 0) { 9091 (void) ip_close(q, 0); 9092 return (err); 9093 } 9094 9095 /* 9096 * ip_ire_max_bucket_cnt is sized below based on the memory 9097 * size and the cpu speed of the machine. This is upper 9098 * bounded by the compile time value of ip_ire_max_bucket_cnt 9099 * and is lower bounded by the compile time value of 9100 * ip_ire_min_bucket_cnt. Similar logic applies to 9101 * ip6_ire_max_bucket_cnt. 9102 */ 9103 mem_avail = kmem_avail(); 9104 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9105 ip_cache_table_size / sizeof (ire_t); 9106 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 9107 9108 min_cnt = MIN(cpu_cnt, mem_cnt); 9109 if (min_cnt < ip_ire_min_bucket_cnt) 9110 min_cnt = ip_ire_min_bucket_cnt; 9111 if (ip_ire_max_bucket_cnt > min_cnt) { 9112 ip_ire_max_bucket_cnt = min_cnt; 9113 } 9114 9115 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9116 ip6_cache_table_size / sizeof (ire_t); 9117 min_cnt = MIN(cpu_cnt, mem_cnt); 9118 if (min_cnt < ip6_ire_min_bucket_cnt) 9119 min_cnt = ip6_ire_min_bucket_cnt; 9120 if (ip6_ire_max_bucket_cnt > min_cnt) { 9121 ip6_ire_max_bucket_cnt = min_cnt; 9122 } 9123 9124 ill->ill_credp = credp; 9125 crhold(credp); 9126 9127 mutex_enter(&ip_mi_lock); 9128 err = mi_open_link(&ip_g_head, (IDP)ill, devp, flag, sflag, credp); 9129 mutex_exit(&ip_mi_lock); 9130 if (err) { 9131 (void) ip_close(q, 0); 9132 return (err); 9133 } 9134 return (0); 9135 } 9136 9137 /* IP open routine. */ 9138 int 9139 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9140 { 9141 conn_t *connp; 9142 major_t maj; 9143 9144 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9145 9146 /* Allow reopen. */ 9147 if (q->q_ptr != NULL) 9148 return (0); 9149 9150 if (sflag & MODOPEN) { 9151 /* This is a module open */ 9152 return (ip_modopen(q, devp, flag, sflag, credp)); 9153 } 9154 9155 /* 9156 * We are opening as a device. This is an IP client stream, and we 9157 * allocate an conn_t as the instance data. 9158 */ 9159 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP); 9160 connp->conn_upq = q; 9161 q->q_ptr = WR(q)->q_ptr = connp; 9162 9163 if (flag & SO_SOCKSTR) 9164 connp->conn_flags |= IPCL_SOCKET; 9165 9166 /* Minor tells us which /dev entry was opened */ 9167 if (geteminor(*devp) == IPV6_MINOR) { 9168 connp->conn_flags |= IPCL_ISV6; 9169 connp->conn_af_isv6 = B_TRUE; 9170 ip_setqinfo(q, geteminor(*devp), B_FALSE); 9171 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9172 } else { 9173 connp->conn_af_isv6 = B_FALSE; 9174 connp->conn_pkt_isv6 = B_FALSE; 9175 } 9176 9177 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9178 q->q_ptr = WR(q)->q_ptr = NULL; 9179 CONN_DEC_REF(connp); 9180 return (EBUSY); 9181 } 9182 9183 maj = getemajor(*devp); 9184 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9185 9186 /* 9187 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9188 */ 9189 connp->conn_cred = credp; 9190 crhold(connp->conn_cred); 9191 9192 /* 9193 * If the caller has the process-wide flag set, then default to MAC 9194 * exempt mode. This allows read-down to unlabeled hosts. 9195 */ 9196 if (getpflags(NET_MAC_AWARE, credp) != 0) 9197 connp->conn_mac_exempt = B_TRUE; 9198 9199 connp->conn_zoneid = getzoneid(); 9200 9201 /* 9202 * This should only happen for ndd, netstat, raw socket or other SCTP 9203 * administrative ops. In these cases, we just need a normal conn_t 9204 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 9205 * an error will be returned. 9206 */ 9207 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 9208 connp->conn_rq = q; 9209 connp->conn_wq = WR(q); 9210 } else { 9211 connp->conn_ulp = IPPROTO_SCTP; 9212 connp->conn_rq = connp->conn_wq = NULL; 9213 } 9214 /* Non-zero default values */ 9215 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9216 9217 /* 9218 * Make the conn globally visible to walkers 9219 */ 9220 mutex_enter(&connp->conn_lock); 9221 connp->conn_state_flags &= ~CONN_INCIPIENT; 9222 mutex_exit(&connp->conn_lock); 9223 ASSERT(connp->conn_ref == 1); 9224 9225 qprocson(q); 9226 9227 return (0); 9228 } 9229 9230 /* 9231 * Change q_qinfo based on the value of isv6. 9232 * This can not called on an ill queue. 9233 * Note that there is no race since either q_qinfo works for conn queues - it 9234 * is just an optimization to enter the best wput routine directly. 9235 */ 9236 void 9237 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib) 9238 { 9239 ASSERT(q->q_flag & QREADR); 9240 ASSERT(WR(q)->q_next == NULL); 9241 ASSERT(q->q_ptr != NULL); 9242 9243 if (minor == IPV6_MINOR) { 9244 if (bump_mib) 9245 BUMP_MIB(&ip6_mib, ipv6OutSwitchIPv4); 9246 q->q_qinfo = &rinit_ipv6; 9247 WR(q)->q_qinfo = &winit_ipv6; 9248 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 9249 } else { 9250 if (bump_mib) 9251 BUMP_MIB(&ip_mib, ipOutSwitchIPv6); 9252 q->q_qinfo = &rinit; 9253 WR(q)->q_qinfo = &winit; 9254 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 9255 } 9256 9257 } 9258 9259 /* 9260 * See if IPsec needs loading because of the options in mp. 9261 */ 9262 static boolean_t 9263 ipsec_opt_present(mblk_t *mp) 9264 { 9265 uint8_t *optcp, *next_optcp, *opt_endcp; 9266 struct opthdr *opt; 9267 struct T_opthdr *topt; 9268 int opthdr_len; 9269 t_uscalar_t optname, optlevel; 9270 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9271 ipsec_req_t *ipsr; 9272 9273 /* 9274 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9275 * return TRUE. 9276 */ 9277 9278 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9279 opt_endcp = optcp + tor->OPT_length; 9280 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9281 opthdr_len = sizeof (struct T_opthdr); 9282 } else { /* O_OPTMGMT_REQ */ 9283 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9284 opthdr_len = sizeof (struct opthdr); 9285 } 9286 for (; optcp < opt_endcp; optcp = next_optcp) { 9287 if (optcp + opthdr_len > opt_endcp) 9288 return (B_FALSE); /* Not enough option header. */ 9289 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9290 topt = (struct T_opthdr *)optcp; 9291 optlevel = topt->level; 9292 optname = topt->name; 9293 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9294 } else { 9295 opt = (struct opthdr *)optcp; 9296 optlevel = opt->level; 9297 optname = opt->name; 9298 next_optcp = optcp + opthdr_len + 9299 _TPI_ALIGN_OPT(opt->len); 9300 } 9301 if ((next_optcp < optcp) || /* wraparound pointer space */ 9302 ((next_optcp >= opt_endcp) && /* last option bad len */ 9303 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9304 return (B_FALSE); /* bad option buffer */ 9305 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9306 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9307 /* 9308 * Check to see if it's an all-bypass or all-zeroes 9309 * IPsec request. Don't bother loading IPsec if 9310 * the socket doesn't want to use it. (A good example 9311 * is a bypass request.) 9312 * 9313 * Basically, if any of the non-NEVER bits are set, 9314 * load IPsec. 9315 */ 9316 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9317 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9318 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9319 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9320 != 0) 9321 return (B_TRUE); 9322 } 9323 } 9324 return (B_FALSE); 9325 } 9326 9327 /* 9328 * If conn is is waiting for ipsec to finish loading, kick it. 9329 */ 9330 /* ARGSUSED */ 9331 static void 9332 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9333 { 9334 t_scalar_t optreq_prim; 9335 mblk_t *mp; 9336 cred_t *cr; 9337 int err = 0; 9338 9339 /* 9340 * This function is called, after ipsec loading is complete. 9341 * Since IP checks exclusively and atomically (i.e it prevents 9342 * ipsec load from completing until ip_optcom_req completes) 9343 * whether ipsec load is complete, there cannot be a race with IP 9344 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9345 */ 9346 mutex_enter(&connp->conn_lock); 9347 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9348 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9349 mp = connp->conn_ipsec_opt_mp; 9350 connp->conn_ipsec_opt_mp = NULL; 9351 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9352 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 9353 mutex_exit(&connp->conn_lock); 9354 9355 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9356 9357 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9358 if (optreq_prim == T_OPTMGMT_REQ) { 9359 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9360 &ip_opt_obj); 9361 } else { 9362 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 9363 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9364 &ip_opt_obj); 9365 } 9366 if (err != EINPROGRESS) 9367 CONN_OPER_PENDING_DONE(connp); 9368 return; 9369 } 9370 mutex_exit(&connp->conn_lock); 9371 } 9372 9373 /* 9374 * Called from the ipsec_loader thread, outside any perimeter, to tell 9375 * ip qenable any of the queues waiting for the ipsec loader to 9376 * complete. 9377 * 9378 * Use ip_mi_lock to be safe here: all modifications of the mi lists 9379 * are done with this lock held, so it's guaranteed that none of the 9380 * links will change along the way. 9381 */ 9382 void 9383 ip_ipsec_load_complete() 9384 { 9385 ipcl_walk(conn_restart_ipsec_waiter, NULL); 9386 } 9387 9388 /* 9389 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 9390 * determines the grp on which it has to become exclusive, queues the mp 9391 * and sq draining restarts the optmgmt 9392 */ 9393 static boolean_t 9394 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 9395 { 9396 conn_t *connp; 9397 9398 /* 9399 * Take IPsec requests and treat them special. 9400 */ 9401 if (ipsec_opt_present(mp)) { 9402 /* First check if IPsec is loaded. */ 9403 mutex_enter(&ipsec_loader_lock); 9404 if (ipsec_loader_state != IPSEC_LOADER_WAIT) { 9405 mutex_exit(&ipsec_loader_lock); 9406 return (B_FALSE); 9407 } 9408 connp = Q_TO_CONN(q); 9409 mutex_enter(&connp->conn_lock); 9410 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 9411 9412 ASSERT(connp->conn_ipsec_opt_mp == NULL); 9413 connp->conn_ipsec_opt_mp = mp; 9414 mutex_exit(&connp->conn_lock); 9415 mutex_exit(&ipsec_loader_lock); 9416 9417 ipsec_loader_loadnow(); 9418 return (B_TRUE); 9419 } 9420 return (B_FALSE); 9421 } 9422 9423 /* 9424 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 9425 * all of them are copied to the conn_t. If the req is "zero", the policy is 9426 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 9427 * fields. 9428 * We keep only the latest setting of the policy and thus policy setting 9429 * is not incremental/cumulative. 9430 * 9431 * Requests to set policies with multiple alternative actions will 9432 * go through a different API. 9433 */ 9434 int 9435 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 9436 { 9437 uint_t ah_req = 0; 9438 uint_t esp_req = 0; 9439 uint_t se_req = 0; 9440 ipsec_selkey_t sel; 9441 ipsec_act_t *actp = NULL; 9442 uint_t nact; 9443 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 9444 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 9445 ipsec_policy_root_t *pr; 9446 ipsec_policy_head_t *ph; 9447 int fam; 9448 boolean_t is_pol_reset; 9449 int error = 0; 9450 9451 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 9452 9453 /* 9454 * The IP_SEC_OPT option does not allow variable length parameters, 9455 * hence a request cannot be NULL. 9456 */ 9457 if (req == NULL) 9458 return (EINVAL); 9459 9460 ah_req = req->ipsr_ah_req; 9461 esp_req = req->ipsr_esp_req; 9462 se_req = req->ipsr_self_encap_req; 9463 9464 /* 9465 * Are we dealing with a request to reset the policy (i.e. 9466 * zero requests). 9467 */ 9468 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 9469 (esp_req & REQ_MASK) == 0 && 9470 (se_req & REQ_MASK) == 0); 9471 9472 if (!is_pol_reset) { 9473 /* 9474 * If we couldn't load IPsec, fail with "protocol 9475 * not supported". 9476 * IPsec may not have been loaded for a request with zero 9477 * policies, so we don't fail in this case. 9478 */ 9479 mutex_enter(&ipsec_loader_lock); 9480 if (ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 9481 mutex_exit(&ipsec_loader_lock); 9482 return (EPROTONOSUPPORT); 9483 } 9484 mutex_exit(&ipsec_loader_lock); 9485 9486 /* 9487 * Test for valid requests. Invalid algorithms 9488 * need to be tested by IPSEC code because new 9489 * algorithms can be added dynamically. 9490 */ 9491 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 9492 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 9493 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 9494 return (EINVAL); 9495 } 9496 9497 /* 9498 * Only privileged users can issue these 9499 * requests. 9500 */ 9501 if (((ah_req & IPSEC_PREF_NEVER) || 9502 (esp_req & IPSEC_PREF_NEVER) || 9503 (se_req & IPSEC_PREF_NEVER)) && 9504 secpolicy_net_config(cr, B_FALSE) != 0) { 9505 return (EPERM); 9506 } 9507 9508 /* 9509 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 9510 * are mutually exclusive. 9511 */ 9512 if (((ah_req & REQ_MASK) == REQ_MASK) || 9513 ((esp_req & REQ_MASK) == REQ_MASK) || 9514 ((se_req & REQ_MASK) == REQ_MASK)) { 9515 /* Both of them are set */ 9516 return (EINVAL); 9517 } 9518 } 9519 9520 mutex_enter(&connp->conn_lock); 9521 9522 /* 9523 * If we have already cached policies in ip_bind_connected*(), don't 9524 * let them change now. We cache policies for connections 9525 * whose src,dst [addr, port] is known. The exception to this is 9526 * tunnels. Tunnels are allowed to change policies after having 9527 * become fully bound. 9528 */ 9529 if (connp->conn_policy_cached && !IPCL_IS_IPTUN(connp)) { 9530 mutex_exit(&connp->conn_lock); 9531 return (EINVAL); 9532 } 9533 9534 /* 9535 * We have a zero policies, reset the connection policy if already 9536 * set. This will cause the connection to inherit the 9537 * global policy, if any. 9538 */ 9539 if (is_pol_reset) { 9540 if (connp->conn_policy != NULL) { 9541 IPPH_REFRELE(connp->conn_policy); 9542 connp->conn_policy = NULL; 9543 } 9544 connp->conn_flags &= ~IPCL_CHECK_POLICY; 9545 connp->conn_in_enforce_policy = B_FALSE; 9546 connp->conn_out_enforce_policy = B_FALSE; 9547 mutex_exit(&connp->conn_lock); 9548 return (0); 9549 } 9550 9551 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy); 9552 if (ph == NULL) 9553 goto enomem; 9554 9555 ipsec_actvec_from_req(req, &actp, &nact); 9556 if (actp == NULL) 9557 goto enomem; 9558 9559 /* 9560 * Always allocate IPv4 policy entries, since they can also 9561 * apply to ipv6 sockets being used in ipv4-compat mode. 9562 */ 9563 bzero(&sel, sizeof (sel)); 9564 sel.ipsl_valid = IPSL_IPV4; 9565 9566 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 9567 if (pin4 == NULL) 9568 goto enomem; 9569 9570 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 9571 if (pout4 == NULL) 9572 goto enomem; 9573 9574 if (connp->conn_pkt_isv6) { 9575 /* 9576 * We're looking at a v6 socket, also allocate the 9577 * v6-specific entries... 9578 */ 9579 sel.ipsl_valid = IPSL_IPV6; 9580 pin6 = ipsec_policy_create(&sel, actp, nact, 9581 IPSEC_PRIO_SOCKET); 9582 if (pin6 == NULL) 9583 goto enomem; 9584 9585 pout6 = ipsec_policy_create(&sel, actp, nact, 9586 IPSEC_PRIO_SOCKET); 9587 if (pout6 == NULL) 9588 goto enomem; 9589 9590 /* 9591 * .. and file them away in the right place. 9592 */ 9593 fam = IPSEC_AF_V6; 9594 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 9595 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 9596 ipsec_insert_always(&ph->iph_rulebyid, pin6); 9597 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 9598 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 9599 ipsec_insert_always(&ph->iph_rulebyid, pout6); 9600 } 9601 9602 ipsec_actvec_free(actp, nact); 9603 9604 /* 9605 * File the v4 policies. 9606 */ 9607 fam = IPSEC_AF_V4; 9608 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 9609 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 9610 ipsec_insert_always(&ph->iph_rulebyid, pin4); 9611 9612 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 9613 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 9614 ipsec_insert_always(&ph->iph_rulebyid, pout4); 9615 9616 /* 9617 * If the requests need security, set enforce_policy. 9618 * If the requests are IPSEC_PREF_NEVER, one should 9619 * still set conn_out_enforce_policy so that an ipsec_out 9620 * gets attached in ip_wput. This is needed so that 9621 * for connections that we don't cache policy in ip_bind, 9622 * if global policy matches in ip_wput_attach_policy, we 9623 * don't wrongly inherit global policy. Similarly, we need 9624 * to set conn_in_enforce_policy also so that we don't verify 9625 * policy wrongly. 9626 */ 9627 if ((ah_req & REQ_MASK) != 0 || 9628 (esp_req & REQ_MASK) != 0 || 9629 (se_req & REQ_MASK) != 0) { 9630 connp->conn_in_enforce_policy = B_TRUE; 9631 connp->conn_out_enforce_policy = B_TRUE; 9632 connp->conn_flags |= IPCL_CHECK_POLICY; 9633 } 9634 9635 /* 9636 * Tunnels are allowed to set policy after having been fully bound. 9637 * If that's the case, cache policy here. 9638 */ 9639 if (IPCL_IS_IPTUN(connp) && connp->conn_fully_bound) 9640 error = ipsec_conn_cache_policy(connp, !connp->conn_af_isv6); 9641 9642 mutex_exit(&connp->conn_lock); 9643 return (error); 9644 #undef REQ_MASK 9645 9646 /* 9647 * Common memory-allocation-failure exit path. 9648 */ 9649 enomem: 9650 mutex_exit(&connp->conn_lock); 9651 if (actp != NULL) 9652 ipsec_actvec_free(actp, nact); 9653 if (pin4 != NULL) 9654 IPPOL_REFRELE(pin4); 9655 if (pout4 != NULL) 9656 IPPOL_REFRELE(pout4); 9657 if (pin6 != NULL) 9658 IPPOL_REFRELE(pin6); 9659 if (pout6 != NULL) 9660 IPPOL_REFRELE(pout6); 9661 return (ENOMEM); 9662 } 9663 9664 /* 9665 * Only for options that pass in an IP addr. Currently only V4 options 9666 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 9667 * So this function assumes level is IPPROTO_IP 9668 */ 9669 int 9670 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 9671 mblk_t *first_mp) 9672 { 9673 ipif_t *ipif = NULL; 9674 int error; 9675 ill_t *ill; 9676 int zoneid; 9677 9678 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 9679 9680 if (addr != INADDR_ANY || checkonly) { 9681 ASSERT(connp != NULL); 9682 zoneid = IPCL_ZONEID(connp); 9683 if (option == IP_NEXTHOP) { 9684 ipif = ipif_lookup_onlink_addr(addr, zoneid); 9685 } else { 9686 ipif = ipif_lookup_addr(addr, NULL, zoneid, 9687 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 9688 &error); 9689 } 9690 if (ipif == NULL) { 9691 if (error == EINPROGRESS) 9692 return (error); 9693 else if ((option == IP_MULTICAST_IF) || 9694 (option == IP_NEXTHOP)) 9695 return (EHOSTUNREACH); 9696 else 9697 return (EINVAL); 9698 } else if (checkonly) { 9699 if (option == IP_MULTICAST_IF) { 9700 ill = ipif->ipif_ill; 9701 /* not supported by the virtual network iface */ 9702 if (IS_VNI(ill)) { 9703 ipif_refrele(ipif); 9704 return (EINVAL); 9705 } 9706 } 9707 ipif_refrele(ipif); 9708 return (0); 9709 } 9710 ill = ipif->ipif_ill; 9711 mutex_enter(&connp->conn_lock); 9712 mutex_enter(&ill->ill_lock); 9713 if ((ill->ill_state_flags & ILL_CONDEMNED) || 9714 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 9715 mutex_exit(&ill->ill_lock); 9716 mutex_exit(&connp->conn_lock); 9717 ipif_refrele(ipif); 9718 return (option == IP_MULTICAST_IF ? 9719 EHOSTUNREACH : EINVAL); 9720 } 9721 } else { 9722 mutex_enter(&connp->conn_lock); 9723 } 9724 9725 /* None of the options below are supported on the VNI */ 9726 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 9727 mutex_exit(&ill->ill_lock); 9728 mutex_exit(&connp->conn_lock); 9729 ipif_refrele(ipif); 9730 return (EINVAL); 9731 } 9732 9733 switch (option) { 9734 case IP_DONTFAILOVER_IF: 9735 /* 9736 * This option is used by in.mpathd to ensure 9737 * that IPMP probe packets only go out on the 9738 * test interfaces. in.mpathd sets this option 9739 * on the non-failover interfaces. 9740 * For backward compatibility, this option 9741 * implicitly sets IP_MULTICAST_IF, as used 9742 * be done in bind(), so that ip_wput gets 9743 * this ipif to send mcast packets. 9744 */ 9745 if (ipif != NULL) { 9746 ASSERT(addr != INADDR_ANY); 9747 connp->conn_nofailover_ill = ipif->ipif_ill; 9748 connp->conn_multicast_ipif = ipif; 9749 } else { 9750 ASSERT(addr == INADDR_ANY); 9751 connp->conn_nofailover_ill = NULL; 9752 connp->conn_multicast_ipif = NULL; 9753 } 9754 break; 9755 9756 case IP_MULTICAST_IF: 9757 connp->conn_multicast_ipif = ipif; 9758 break; 9759 case IP_NEXTHOP: 9760 connp->conn_nexthop_v4 = addr; 9761 connp->conn_nexthop_set = B_TRUE; 9762 break; 9763 } 9764 9765 if (ipif != NULL) { 9766 mutex_exit(&ill->ill_lock); 9767 mutex_exit(&connp->conn_lock); 9768 ipif_refrele(ipif); 9769 return (0); 9770 } 9771 mutex_exit(&connp->conn_lock); 9772 /* We succeded in cleared the option */ 9773 return (0); 9774 } 9775 9776 /* 9777 * For options that pass in an ifindex specifying the ill. V6 options always 9778 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 9779 */ 9780 int 9781 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 9782 int level, int option, mblk_t *first_mp) 9783 { 9784 ill_t *ill = NULL; 9785 int error = 0; 9786 9787 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 9788 if (ifindex != 0) { 9789 ASSERT(connp != NULL); 9790 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 9791 first_mp, ip_restart_optmgmt, &error); 9792 if (ill != NULL) { 9793 if (checkonly) { 9794 /* not supported by the virtual network iface */ 9795 if (IS_VNI(ill)) { 9796 ill_refrele(ill); 9797 return (EINVAL); 9798 } 9799 ill_refrele(ill); 9800 return (0); 9801 } 9802 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 9803 0, NULL)) { 9804 ill_refrele(ill); 9805 ill = NULL; 9806 mutex_enter(&connp->conn_lock); 9807 goto setit; 9808 } 9809 mutex_enter(&connp->conn_lock); 9810 mutex_enter(&ill->ill_lock); 9811 if (ill->ill_state_flags & ILL_CONDEMNED) { 9812 mutex_exit(&ill->ill_lock); 9813 mutex_exit(&connp->conn_lock); 9814 ill_refrele(ill); 9815 ill = NULL; 9816 mutex_enter(&connp->conn_lock); 9817 } 9818 goto setit; 9819 } else if (error == EINPROGRESS) { 9820 return (error); 9821 } else { 9822 error = 0; 9823 } 9824 } 9825 mutex_enter(&connp->conn_lock); 9826 setit: 9827 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 9828 9829 /* 9830 * The options below assume that the ILL (if any) transmits and/or 9831 * receives traffic. Neither of which is true for the virtual network 9832 * interface, so fail setting these on a VNI. 9833 */ 9834 if (IS_VNI(ill)) { 9835 ASSERT(ill != NULL); 9836 mutex_exit(&ill->ill_lock); 9837 mutex_exit(&connp->conn_lock); 9838 ill_refrele(ill); 9839 return (EINVAL); 9840 } 9841 9842 if (level == IPPROTO_IP) { 9843 switch (option) { 9844 case IP_BOUND_IF: 9845 connp->conn_incoming_ill = ill; 9846 connp->conn_outgoing_ill = ill; 9847 connp->conn_orig_bound_ifindex = (ill == NULL) ? 9848 0 : ifindex; 9849 break; 9850 9851 case IP_XMIT_IF: 9852 /* 9853 * Similar to IP_BOUND_IF, but this only 9854 * determines the outgoing interface for 9855 * unicast packets. Also no IRE_CACHE entry 9856 * is added for the destination of the 9857 * outgoing packets. This feature is needed 9858 * for mobile IP. 9859 */ 9860 connp->conn_xmit_if_ill = ill; 9861 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 9862 0 : ifindex; 9863 break; 9864 9865 case IP_MULTICAST_IF: 9866 /* 9867 * This option is an internal special. The socket 9868 * level IP_MULTICAST_IF specifies an 'ipaddr' and 9869 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 9870 * specifies an ifindex and we try first on V6 ill's. 9871 * If we don't find one, we they try using on v4 ill's 9872 * intenally and we come here. 9873 */ 9874 if (!checkonly && ill != NULL) { 9875 ipif_t *ipif; 9876 ipif = ill->ill_ipif; 9877 9878 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 9879 mutex_exit(&ill->ill_lock); 9880 mutex_exit(&connp->conn_lock); 9881 ill_refrele(ill); 9882 ill = NULL; 9883 mutex_enter(&connp->conn_lock); 9884 } else { 9885 connp->conn_multicast_ipif = ipif; 9886 } 9887 } 9888 break; 9889 } 9890 } else { 9891 switch (option) { 9892 case IPV6_BOUND_IF: 9893 connp->conn_incoming_ill = ill; 9894 connp->conn_outgoing_ill = ill; 9895 connp->conn_orig_bound_ifindex = (ill == NULL) ? 9896 0 : ifindex; 9897 break; 9898 9899 case IPV6_BOUND_PIF: 9900 /* 9901 * Limit all transmit to this ill. 9902 * Unlike IPV6_BOUND_IF, using this option 9903 * prevents load spreading and failover from 9904 * happening when the interface is part of the 9905 * group. That's why we don't need to remember 9906 * the ifindex in orig_bound_ifindex as in 9907 * IPV6_BOUND_IF. 9908 */ 9909 connp->conn_outgoing_pill = ill; 9910 break; 9911 9912 case IPV6_DONTFAILOVER_IF: 9913 /* 9914 * This option is used by in.mpathd to ensure 9915 * that IPMP probe packets only go out on the 9916 * test interfaces. in.mpathd sets this option 9917 * on the non-failover interfaces. 9918 */ 9919 connp->conn_nofailover_ill = ill; 9920 /* 9921 * For backward compatibility, this option 9922 * implicitly sets ip_multicast_ill as used in 9923 * IP_MULTICAST_IF so that ip_wput gets 9924 * this ipif to send mcast packets. 9925 */ 9926 connp->conn_multicast_ill = ill; 9927 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 9928 0 : ifindex; 9929 break; 9930 9931 case IPV6_MULTICAST_IF: 9932 /* 9933 * Set conn_multicast_ill to be the IPv6 ill. 9934 * Set conn_multicast_ipif to be an IPv4 ipif 9935 * for ifindex to make IPv4 mapped addresses 9936 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 9937 * Even if no IPv6 ill exists for the ifindex 9938 * we need to check for an IPv4 ifindex in order 9939 * for this to work with mapped addresses. In that 9940 * case only set conn_multicast_ipif. 9941 */ 9942 if (!checkonly) { 9943 if (ifindex == 0) { 9944 connp->conn_multicast_ill = NULL; 9945 connp->conn_orig_multicast_ifindex = 0; 9946 connp->conn_multicast_ipif = NULL; 9947 } else if (ill != NULL) { 9948 connp->conn_multicast_ill = ill; 9949 connp->conn_orig_multicast_ifindex = 9950 ifindex; 9951 } 9952 } 9953 break; 9954 } 9955 } 9956 9957 if (ill != NULL) { 9958 mutex_exit(&ill->ill_lock); 9959 mutex_exit(&connp->conn_lock); 9960 ill_refrele(ill); 9961 return (0); 9962 } 9963 mutex_exit(&connp->conn_lock); 9964 /* 9965 * We succeeded in clearing the option (ifindex == 0) or failed to 9966 * locate the ill and could not set the option (ifindex != 0) 9967 */ 9968 return (ifindex == 0 ? 0 : EINVAL); 9969 } 9970 9971 /* This routine sets socket options. */ 9972 /* ARGSUSED */ 9973 int 9974 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 9975 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9976 void *dummy, cred_t *cr, mblk_t *first_mp) 9977 { 9978 int *i1 = (int *)invalp; 9979 conn_t *connp = Q_TO_CONN(q); 9980 int error = 0; 9981 boolean_t checkonly; 9982 ire_t *ire; 9983 boolean_t found; 9984 9985 switch (optset_context) { 9986 9987 case SETFN_OPTCOM_CHECKONLY: 9988 checkonly = B_TRUE; 9989 /* 9990 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9991 * inlen != 0 implies value supplied and 9992 * we have to "pretend" to set it. 9993 * inlen == 0 implies that there is no 9994 * value part in T_CHECK request and just validation 9995 * done elsewhere should be enough, we just return here. 9996 */ 9997 if (inlen == 0) { 9998 *outlenp = 0; 9999 return (0); 10000 } 10001 break; 10002 case SETFN_OPTCOM_NEGOTIATE: 10003 case SETFN_UD_NEGOTIATE: 10004 case SETFN_CONN_NEGOTIATE: 10005 checkonly = B_FALSE; 10006 break; 10007 default: 10008 /* 10009 * We should never get here 10010 */ 10011 *outlenp = 0; 10012 return (EINVAL); 10013 } 10014 10015 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10016 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10017 10018 /* 10019 * For fixed length options, no sanity check 10020 * of passed in length is done. It is assumed *_optcom_req() 10021 * routines do the right thing. 10022 */ 10023 10024 switch (level) { 10025 case SOL_SOCKET: 10026 /* 10027 * conn_lock protects the bitfields, and is used to 10028 * set the fields atomically. 10029 */ 10030 switch (name) { 10031 case SO_BROADCAST: 10032 if (!checkonly) { 10033 /* TODO: use value someplace? */ 10034 mutex_enter(&connp->conn_lock); 10035 connp->conn_broadcast = *i1 ? 1 : 0; 10036 mutex_exit(&connp->conn_lock); 10037 } 10038 break; /* goto sizeof (int) option return */ 10039 case SO_USELOOPBACK: 10040 if (!checkonly) { 10041 /* TODO: use value someplace? */ 10042 mutex_enter(&connp->conn_lock); 10043 connp->conn_loopback = *i1 ? 1 : 0; 10044 mutex_exit(&connp->conn_lock); 10045 } 10046 break; /* goto sizeof (int) option return */ 10047 case SO_DONTROUTE: 10048 if (!checkonly) { 10049 mutex_enter(&connp->conn_lock); 10050 connp->conn_dontroute = *i1 ? 1 : 0; 10051 mutex_exit(&connp->conn_lock); 10052 } 10053 break; /* goto sizeof (int) option return */ 10054 case SO_REUSEADDR: 10055 if (!checkonly) { 10056 mutex_enter(&connp->conn_lock); 10057 connp->conn_reuseaddr = *i1 ? 1 : 0; 10058 mutex_exit(&connp->conn_lock); 10059 } 10060 break; /* goto sizeof (int) option return */ 10061 case SO_PROTOTYPE: 10062 if (!checkonly) { 10063 mutex_enter(&connp->conn_lock); 10064 connp->conn_proto = *i1; 10065 mutex_exit(&connp->conn_lock); 10066 } 10067 break; /* goto sizeof (int) option return */ 10068 case SO_ALLZONES: 10069 if (!checkonly) { 10070 mutex_enter(&connp->conn_lock); 10071 if (IPCL_IS_BOUND(connp)) { 10072 mutex_exit(&connp->conn_lock); 10073 return (EINVAL); 10074 } 10075 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10076 mutex_exit(&connp->conn_lock); 10077 } 10078 break; /* goto sizeof (int) option return */ 10079 case SO_ANON_MLP: 10080 if (!checkonly) { 10081 mutex_enter(&connp->conn_lock); 10082 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10083 mutex_exit(&connp->conn_lock); 10084 } 10085 break; /* goto sizeof (int) option return */ 10086 case SO_MAC_EXEMPT: 10087 if (secpolicy_net_mac_aware(cr) != 0 || 10088 IPCL_IS_BOUND(connp)) 10089 return (EACCES); 10090 if (!checkonly) { 10091 mutex_enter(&connp->conn_lock); 10092 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10093 mutex_exit(&connp->conn_lock); 10094 } 10095 break; /* goto sizeof (int) option return */ 10096 default: 10097 /* 10098 * "soft" error (negative) 10099 * option not handled at this level 10100 * Note: Do not modify *outlenp 10101 */ 10102 return (-EINVAL); 10103 } 10104 break; 10105 case IPPROTO_IP: 10106 switch (name) { 10107 case IP_NEXTHOP: 10108 case IP_MULTICAST_IF: 10109 case IP_DONTFAILOVER_IF: { 10110 ipaddr_t addr = *i1; 10111 10112 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10113 first_mp); 10114 if (error != 0) 10115 return (error); 10116 break; /* goto sizeof (int) option return */ 10117 } 10118 10119 case IP_MULTICAST_TTL: 10120 /* Recorded in transport above IP */ 10121 *outvalp = *invalp; 10122 *outlenp = sizeof (uchar_t); 10123 return (0); 10124 case IP_MULTICAST_LOOP: 10125 if (!checkonly) { 10126 mutex_enter(&connp->conn_lock); 10127 connp->conn_multicast_loop = *invalp ? 1 : 0; 10128 mutex_exit(&connp->conn_lock); 10129 } 10130 *outvalp = *invalp; 10131 *outlenp = sizeof (uchar_t); 10132 return (0); 10133 case IP_ADD_MEMBERSHIP: 10134 case MCAST_JOIN_GROUP: 10135 case IP_DROP_MEMBERSHIP: 10136 case MCAST_LEAVE_GROUP: { 10137 struct ip_mreq *mreqp; 10138 struct group_req *greqp; 10139 ire_t *ire; 10140 boolean_t done = B_FALSE; 10141 ipaddr_t group, ifaddr; 10142 struct sockaddr_in *sin; 10143 uint32_t *ifindexp; 10144 boolean_t mcast_opt = B_TRUE; 10145 mcast_record_t fmode; 10146 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10147 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10148 10149 switch (name) { 10150 case IP_ADD_MEMBERSHIP: 10151 mcast_opt = B_FALSE; 10152 /* FALLTHRU */ 10153 case MCAST_JOIN_GROUP: 10154 fmode = MODE_IS_EXCLUDE; 10155 optfn = ip_opt_add_group; 10156 break; 10157 10158 case IP_DROP_MEMBERSHIP: 10159 mcast_opt = B_FALSE; 10160 /* FALLTHRU */ 10161 case MCAST_LEAVE_GROUP: 10162 fmode = MODE_IS_INCLUDE; 10163 optfn = ip_opt_delete_group; 10164 break; 10165 } 10166 10167 if (mcast_opt) { 10168 greqp = (struct group_req *)i1; 10169 sin = (struct sockaddr_in *)&greqp->gr_group; 10170 if (sin->sin_family != AF_INET) { 10171 *outlenp = 0; 10172 return (ENOPROTOOPT); 10173 } 10174 group = (ipaddr_t)sin->sin_addr.s_addr; 10175 ifaddr = INADDR_ANY; 10176 ifindexp = &greqp->gr_interface; 10177 } else { 10178 mreqp = (struct ip_mreq *)i1; 10179 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10180 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10181 ifindexp = NULL; 10182 } 10183 10184 /* 10185 * In the multirouting case, we need to replicate 10186 * the request on all interfaces that will take part 10187 * in replication. We do so because multirouting is 10188 * reflective, thus we will probably receive multi- 10189 * casts on those interfaces. 10190 * The ip_multirt_apply_membership() succeeds if the 10191 * operation succeeds on at least one interface. 10192 */ 10193 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10194 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10195 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10196 if (ire != NULL) { 10197 if (ire->ire_flags & RTF_MULTIRT) { 10198 error = ip_multirt_apply_membership( 10199 optfn, ire, connp, checkonly, group, 10200 fmode, INADDR_ANY, first_mp); 10201 done = B_TRUE; 10202 } 10203 ire_refrele(ire); 10204 } 10205 if (!done) { 10206 error = optfn(connp, checkonly, group, ifaddr, 10207 ifindexp, fmode, INADDR_ANY, first_mp); 10208 } 10209 if (error) { 10210 /* 10211 * EINPROGRESS is a soft error, needs retry 10212 * so don't make *outlenp zero. 10213 */ 10214 if (error != EINPROGRESS) 10215 *outlenp = 0; 10216 return (error); 10217 } 10218 /* OK return - copy input buffer into output buffer */ 10219 if (invalp != outvalp) { 10220 /* don't trust bcopy for identical src/dst */ 10221 bcopy(invalp, outvalp, inlen); 10222 } 10223 *outlenp = inlen; 10224 return (0); 10225 } 10226 case IP_BLOCK_SOURCE: 10227 case IP_UNBLOCK_SOURCE: 10228 case IP_ADD_SOURCE_MEMBERSHIP: 10229 case IP_DROP_SOURCE_MEMBERSHIP: 10230 case MCAST_BLOCK_SOURCE: 10231 case MCAST_UNBLOCK_SOURCE: 10232 case MCAST_JOIN_SOURCE_GROUP: 10233 case MCAST_LEAVE_SOURCE_GROUP: { 10234 struct ip_mreq_source *imreqp; 10235 struct group_source_req *gsreqp; 10236 in_addr_t grp, src, ifaddr = INADDR_ANY; 10237 uint32_t ifindex = 0; 10238 mcast_record_t fmode; 10239 struct sockaddr_in *sin; 10240 ire_t *ire; 10241 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10242 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10243 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10244 10245 switch (name) { 10246 case IP_BLOCK_SOURCE: 10247 mcast_opt = B_FALSE; 10248 /* FALLTHRU */ 10249 case MCAST_BLOCK_SOURCE: 10250 fmode = MODE_IS_EXCLUDE; 10251 optfn = ip_opt_add_group; 10252 break; 10253 10254 case IP_UNBLOCK_SOURCE: 10255 mcast_opt = B_FALSE; 10256 /* FALLTHRU */ 10257 case MCAST_UNBLOCK_SOURCE: 10258 fmode = MODE_IS_EXCLUDE; 10259 optfn = ip_opt_delete_group; 10260 break; 10261 10262 case IP_ADD_SOURCE_MEMBERSHIP: 10263 mcast_opt = B_FALSE; 10264 /* FALLTHRU */ 10265 case MCAST_JOIN_SOURCE_GROUP: 10266 fmode = MODE_IS_INCLUDE; 10267 optfn = ip_opt_add_group; 10268 break; 10269 10270 case IP_DROP_SOURCE_MEMBERSHIP: 10271 mcast_opt = B_FALSE; 10272 /* FALLTHRU */ 10273 case MCAST_LEAVE_SOURCE_GROUP: 10274 fmode = MODE_IS_INCLUDE; 10275 optfn = ip_opt_delete_group; 10276 break; 10277 } 10278 10279 if (mcast_opt) { 10280 gsreqp = (struct group_source_req *)i1; 10281 if (gsreqp->gsr_group.ss_family != AF_INET) { 10282 *outlenp = 0; 10283 return (ENOPROTOOPT); 10284 } 10285 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10286 grp = (ipaddr_t)sin->sin_addr.s_addr; 10287 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10288 src = (ipaddr_t)sin->sin_addr.s_addr; 10289 ifindex = gsreqp->gsr_interface; 10290 } else { 10291 imreqp = (struct ip_mreq_source *)i1; 10292 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10293 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10294 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10295 } 10296 10297 /* 10298 * In the multirouting case, we need to replicate 10299 * the request as noted in the mcast cases above. 10300 */ 10301 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10302 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10303 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10304 if (ire != NULL) { 10305 if (ire->ire_flags & RTF_MULTIRT) { 10306 error = ip_multirt_apply_membership( 10307 optfn, ire, connp, checkonly, grp, 10308 fmode, src, first_mp); 10309 done = B_TRUE; 10310 } 10311 ire_refrele(ire); 10312 } 10313 if (!done) { 10314 error = optfn(connp, checkonly, grp, ifaddr, 10315 &ifindex, fmode, src, first_mp); 10316 } 10317 if (error != 0) { 10318 /* 10319 * EINPROGRESS is a soft error, needs retry 10320 * so don't make *outlenp zero. 10321 */ 10322 if (error != EINPROGRESS) 10323 *outlenp = 0; 10324 return (error); 10325 } 10326 /* OK return - copy input buffer into output buffer */ 10327 if (invalp != outvalp) { 10328 bcopy(invalp, outvalp, inlen); 10329 } 10330 *outlenp = inlen; 10331 return (0); 10332 } 10333 case IP_SEC_OPT: 10334 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10335 if (error != 0) { 10336 *outlenp = 0; 10337 return (error); 10338 } 10339 break; 10340 case IP_HDRINCL: 10341 case IP_OPTIONS: 10342 case T_IP_OPTIONS: 10343 case IP_TOS: 10344 case T_IP_TOS: 10345 case IP_TTL: 10346 case IP_RECVDSTADDR: 10347 case IP_RECVOPTS: 10348 /* OK return - copy input buffer into output buffer */ 10349 if (invalp != outvalp) { 10350 /* don't trust bcopy for identical src/dst */ 10351 bcopy(invalp, outvalp, inlen); 10352 } 10353 *outlenp = inlen; 10354 return (0); 10355 case IP_RECVIF: 10356 /* Retrieve the inbound interface index */ 10357 if (!checkonly) { 10358 mutex_enter(&connp->conn_lock); 10359 connp->conn_recvif = *i1 ? 1 : 0; 10360 mutex_exit(&connp->conn_lock); 10361 } 10362 break; /* goto sizeof (int) option return */ 10363 case IP_RECVSLLA: 10364 /* Retrieve the source link layer address */ 10365 if (!checkonly) { 10366 mutex_enter(&connp->conn_lock); 10367 connp->conn_recvslla = *i1 ? 1 : 0; 10368 mutex_exit(&connp->conn_lock); 10369 } 10370 break; /* goto sizeof (int) option return */ 10371 case MRT_INIT: 10372 case MRT_DONE: 10373 case MRT_ADD_VIF: 10374 case MRT_DEL_VIF: 10375 case MRT_ADD_MFC: 10376 case MRT_DEL_MFC: 10377 case MRT_ASSERT: 10378 if ((error = secpolicy_net_config(cr, B_FALSE)) != 0) { 10379 *outlenp = 0; 10380 return (error); 10381 } 10382 error = ip_mrouter_set((int)name, q, checkonly, 10383 (uchar_t *)invalp, inlen, first_mp); 10384 if (error) { 10385 *outlenp = 0; 10386 return (error); 10387 } 10388 /* OK return - copy input buffer into output buffer */ 10389 if (invalp != outvalp) { 10390 /* don't trust bcopy for identical src/dst */ 10391 bcopy(invalp, outvalp, inlen); 10392 } 10393 *outlenp = inlen; 10394 return (0); 10395 case IP_BOUND_IF: 10396 case IP_XMIT_IF: 10397 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10398 level, name, first_mp); 10399 if (error != 0) 10400 return (error); 10401 break; /* goto sizeof (int) option return */ 10402 10403 case IP_UNSPEC_SRC: 10404 /* Allow sending with a zero source address */ 10405 if (!checkonly) { 10406 mutex_enter(&connp->conn_lock); 10407 connp->conn_unspec_src = *i1 ? 1 : 0; 10408 mutex_exit(&connp->conn_lock); 10409 } 10410 break; /* goto sizeof (int) option return */ 10411 default: 10412 /* 10413 * "soft" error (negative) 10414 * option not handled at this level 10415 * Note: Do not modify *outlenp 10416 */ 10417 return (-EINVAL); 10418 } 10419 break; 10420 case IPPROTO_IPV6: 10421 switch (name) { 10422 case IPV6_BOUND_IF: 10423 case IPV6_BOUND_PIF: 10424 case IPV6_DONTFAILOVER_IF: 10425 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10426 level, name, first_mp); 10427 if (error != 0) 10428 return (error); 10429 break; /* goto sizeof (int) option return */ 10430 10431 case IPV6_MULTICAST_IF: 10432 /* 10433 * The only possible errors are EINPROGRESS and 10434 * EINVAL. EINPROGRESS will be restarted and is not 10435 * a hard error. We call this option on both V4 and V6 10436 * If both return EINVAL, then this call returns 10437 * EINVAL. If at least one of them succeeds we 10438 * return success. 10439 */ 10440 found = B_FALSE; 10441 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10442 level, name, first_mp); 10443 if (error == EINPROGRESS) 10444 return (error); 10445 if (error == 0) 10446 found = B_TRUE; 10447 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10448 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 10449 if (error == 0) 10450 found = B_TRUE; 10451 if (!found) 10452 return (error); 10453 break; /* goto sizeof (int) option return */ 10454 10455 case IPV6_MULTICAST_HOPS: 10456 /* Recorded in transport above IP */ 10457 break; /* goto sizeof (int) option return */ 10458 case IPV6_MULTICAST_LOOP: 10459 if (!checkonly) { 10460 mutex_enter(&connp->conn_lock); 10461 connp->conn_multicast_loop = *i1; 10462 mutex_exit(&connp->conn_lock); 10463 } 10464 break; /* goto sizeof (int) option return */ 10465 case IPV6_JOIN_GROUP: 10466 case MCAST_JOIN_GROUP: 10467 case IPV6_LEAVE_GROUP: 10468 case MCAST_LEAVE_GROUP: { 10469 struct ipv6_mreq *ip_mreqp; 10470 struct group_req *greqp; 10471 ire_t *ire; 10472 boolean_t done = B_FALSE; 10473 in6_addr_t groupv6; 10474 uint32_t ifindex; 10475 boolean_t mcast_opt = B_TRUE; 10476 mcast_record_t fmode; 10477 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 10478 int, mcast_record_t, const in6_addr_t *, mblk_t *); 10479 10480 switch (name) { 10481 case IPV6_JOIN_GROUP: 10482 mcast_opt = B_FALSE; 10483 /* FALLTHRU */ 10484 case MCAST_JOIN_GROUP: 10485 fmode = MODE_IS_EXCLUDE; 10486 optfn = ip_opt_add_group_v6; 10487 break; 10488 10489 case IPV6_LEAVE_GROUP: 10490 mcast_opt = B_FALSE; 10491 /* FALLTHRU */ 10492 case MCAST_LEAVE_GROUP: 10493 fmode = MODE_IS_INCLUDE; 10494 optfn = ip_opt_delete_group_v6; 10495 break; 10496 } 10497 10498 if (mcast_opt) { 10499 struct sockaddr_in *sin; 10500 struct sockaddr_in6 *sin6; 10501 greqp = (struct group_req *)i1; 10502 if (greqp->gr_group.ss_family == AF_INET) { 10503 sin = (struct sockaddr_in *) 10504 &(greqp->gr_group); 10505 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 10506 &groupv6); 10507 } else { 10508 sin6 = (struct sockaddr_in6 *) 10509 &(greqp->gr_group); 10510 groupv6 = sin6->sin6_addr; 10511 } 10512 ifindex = greqp->gr_interface; 10513 } else { 10514 ip_mreqp = (struct ipv6_mreq *)i1; 10515 groupv6 = ip_mreqp->ipv6mr_multiaddr; 10516 ifindex = ip_mreqp->ipv6mr_interface; 10517 } 10518 /* 10519 * In the multirouting case, we need to replicate 10520 * the request on all interfaces that will take part 10521 * in replication. We do so because multirouting is 10522 * reflective, thus we will probably receive multi- 10523 * casts on those interfaces. 10524 * The ip_multirt_apply_membership_v6() succeeds if 10525 * the operation succeeds on at least one interface. 10526 */ 10527 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 10528 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10529 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10530 if (ire != NULL) { 10531 if (ire->ire_flags & RTF_MULTIRT) { 10532 error = ip_multirt_apply_membership_v6( 10533 optfn, ire, connp, checkonly, 10534 &groupv6, fmode, &ipv6_all_zeros, 10535 first_mp); 10536 done = B_TRUE; 10537 } 10538 ire_refrele(ire); 10539 } 10540 if (!done) { 10541 error = optfn(connp, checkonly, &groupv6, 10542 ifindex, fmode, &ipv6_all_zeros, first_mp); 10543 } 10544 if (error) { 10545 /* 10546 * EINPROGRESS is a soft error, needs retry 10547 * so don't make *outlenp zero. 10548 */ 10549 if (error != EINPROGRESS) 10550 *outlenp = 0; 10551 return (error); 10552 } 10553 /* OK return - copy input buffer into output buffer */ 10554 if (invalp != outvalp) { 10555 /* don't trust bcopy for identical src/dst */ 10556 bcopy(invalp, outvalp, inlen); 10557 } 10558 *outlenp = inlen; 10559 return (0); 10560 } 10561 case MCAST_BLOCK_SOURCE: 10562 case MCAST_UNBLOCK_SOURCE: 10563 case MCAST_JOIN_SOURCE_GROUP: 10564 case MCAST_LEAVE_SOURCE_GROUP: { 10565 struct group_source_req *gsreqp; 10566 in6_addr_t v6grp, v6src; 10567 uint32_t ifindex; 10568 mcast_record_t fmode; 10569 ire_t *ire; 10570 boolean_t done = B_FALSE; 10571 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 10572 int, mcast_record_t, const in6_addr_t *, mblk_t *); 10573 10574 switch (name) { 10575 case MCAST_BLOCK_SOURCE: 10576 fmode = MODE_IS_EXCLUDE; 10577 optfn = ip_opt_add_group_v6; 10578 break; 10579 case MCAST_UNBLOCK_SOURCE: 10580 fmode = MODE_IS_EXCLUDE; 10581 optfn = ip_opt_delete_group_v6; 10582 break; 10583 case MCAST_JOIN_SOURCE_GROUP: 10584 fmode = MODE_IS_INCLUDE; 10585 optfn = ip_opt_add_group_v6; 10586 break; 10587 case MCAST_LEAVE_SOURCE_GROUP: 10588 fmode = MODE_IS_INCLUDE; 10589 optfn = ip_opt_delete_group_v6; 10590 break; 10591 } 10592 10593 gsreqp = (struct group_source_req *)i1; 10594 ifindex = gsreqp->gsr_interface; 10595 if (gsreqp->gsr_group.ss_family == AF_INET) { 10596 struct sockaddr_in *s; 10597 s = (struct sockaddr_in *)&gsreqp->gsr_group; 10598 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 10599 s = (struct sockaddr_in *)&gsreqp->gsr_source; 10600 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 10601 } else { 10602 struct sockaddr_in6 *s6; 10603 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 10604 v6grp = s6->sin6_addr; 10605 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 10606 v6src = s6->sin6_addr; 10607 } 10608 10609 /* 10610 * In the multirouting case, we need to replicate 10611 * the request as noted in the mcast cases above. 10612 */ 10613 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 10614 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10615 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10616 if (ire != NULL) { 10617 if (ire->ire_flags & RTF_MULTIRT) { 10618 error = ip_multirt_apply_membership_v6( 10619 optfn, ire, connp, checkonly, 10620 &v6grp, fmode, &v6src, first_mp); 10621 done = B_TRUE; 10622 } 10623 ire_refrele(ire); 10624 } 10625 if (!done) { 10626 error = optfn(connp, checkonly, &v6grp, 10627 ifindex, fmode, &v6src, first_mp); 10628 } 10629 if (error != 0) { 10630 /* 10631 * EINPROGRESS is a soft error, needs retry 10632 * so don't make *outlenp zero. 10633 */ 10634 if (error != EINPROGRESS) 10635 *outlenp = 0; 10636 return (error); 10637 } 10638 /* OK return - copy input buffer into output buffer */ 10639 if (invalp != outvalp) { 10640 bcopy(invalp, outvalp, inlen); 10641 } 10642 *outlenp = inlen; 10643 return (0); 10644 } 10645 case IPV6_UNICAST_HOPS: 10646 /* Recorded in transport above IP */ 10647 break; /* goto sizeof (int) option return */ 10648 case IPV6_UNSPEC_SRC: 10649 /* Allow sending with a zero source address */ 10650 if (!checkonly) { 10651 mutex_enter(&connp->conn_lock); 10652 connp->conn_unspec_src = *i1 ? 1 : 0; 10653 mutex_exit(&connp->conn_lock); 10654 } 10655 break; /* goto sizeof (int) option return */ 10656 case IPV6_RECVPKTINFO: 10657 if (!checkonly) { 10658 mutex_enter(&connp->conn_lock); 10659 connp->conn_ipv6_recvpktinfo = *i1 ? 1 : 0; 10660 mutex_exit(&connp->conn_lock); 10661 } 10662 break; /* goto sizeof (int) option return */ 10663 case IPV6_RECVTCLASS: 10664 if (!checkonly) { 10665 if (*i1 < 0 || *i1 > 1) { 10666 return (EINVAL); 10667 } 10668 mutex_enter(&connp->conn_lock); 10669 connp->conn_ipv6_recvtclass = *i1; 10670 mutex_exit(&connp->conn_lock); 10671 } 10672 break; 10673 case IPV6_RECVPATHMTU: 10674 if (!checkonly) { 10675 if (*i1 < 0 || *i1 > 1) { 10676 return (EINVAL); 10677 } 10678 mutex_enter(&connp->conn_lock); 10679 connp->conn_ipv6_recvpathmtu = *i1; 10680 mutex_exit(&connp->conn_lock); 10681 } 10682 break; 10683 case IPV6_RECVHOPLIMIT: 10684 if (!checkonly) { 10685 mutex_enter(&connp->conn_lock); 10686 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 10687 mutex_exit(&connp->conn_lock); 10688 } 10689 break; /* goto sizeof (int) option return */ 10690 case IPV6_RECVHOPOPTS: 10691 if (!checkonly) { 10692 mutex_enter(&connp->conn_lock); 10693 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 10694 mutex_exit(&connp->conn_lock); 10695 } 10696 break; /* goto sizeof (int) option return */ 10697 case IPV6_RECVDSTOPTS: 10698 if (!checkonly) { 10699 mutex_enter(&connp->conn_lock); 10700 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 10701 mutex_exit(&connp->conn_lock); 10702 } 10703 break; /* goto sizeof (int) option return */ 10704 case IPV6_RECVRTHDR: 10705 if (!checkonly) { 10706 mutex_enter(&connp->conn_lock); 10707 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 10708 mutex_exit(&connp->conn_lock); 10709 } 10710 break; /* goto sizeof (int) option return */ 10711 case IPV6_RECVRTHDRDSTOPTS: 10712 if (!checkonly) { 10713 mutex_enter(&connp->conn_lock); 10714 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 10715 mutex_exit(&connp->conn_lock); 10716 } 10717 break; /* goto sizeof (int) option return */ 10718 case IPV6_PKTINFO: 10719 if (inlen == 0) 10720 return (-EINVAL); /* clearing option */ 10721 error = ip6_set_pktinfo(cr, connp, 10722 (struct in6_pktinfo *)invalp, first_mp); 10723 if (error != 0) 10724 *outlenp = 0; 10725 else 10726 *outlenp = inlen; 10727 return (error); 10728 case IPV6_NEXTHOP: { 10729 struct sockaddr_in6 *sin6; 10730 10731 /* Verify that the nexthop is reachable */ 10732 if (inlen == 0) 10733 return (-EINVAL); /* clearing option */ 10734 10735 sin6 = (struct sockaddr_in6 *)invalp; 10736 ire = ire_route_lookup_v6(&sin6->sin6_addr, 10737 0, 0, 0, NULL, NULL, connp->conn_zoneid, 10738 NULL, MATCH_IRE_DEFAULT); 10739 10740 if (ire == NULL) { 10741 *outlenp = 0; 10742 return (EHOSTUNREACH); 10743 } 10744 ire_refrele(ire); 10745 return (-EINVAL); 10746 } 10747 case IPV6_SEC_OPT: 10748 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10749 if (error != 0) { 10750 *outlenp = 0; 10751 return (error); 10752 } 10753 break; 10754 case IPV6_SRC_PREFERENCES: { 10755 /* 10756 * This is implemented strictly in the ip module 10757 * (here and in tcp_opt_*() to accomodate tcp 10758 * sockets). Modules above ip pass this option 10759 * down here since ip is the only one that needs to 10760 * be aware of source address preferences. 10761 * 10762 * This socket option only affects connected 10763 * sockets that haven't already bound to a specific 10764 * IPv6 address. In other words, sockets that 10765 * don't call bind() with an address other than the 10766 * unspecified address and that call connect(). 10767 * ip_bind_connected_v6() passes these preferences 10768 * to the ipif_select_source_v6() function. 10769 */ 10770 if (inlen != sizeof (uint32_t)) 10771 return (EINVAL); 10772 error = ip6_set_src_preferences(connp, 10773 *(uint32_t *)invalp); 10774 if (error != 0) { 10775 *outlenp = 0; 10776 return (error); 10777 } else { 10778 *outlenp = sizeof (uint32_t); 10779 } 10780 break; 10781 } 10782 case IPV6_V6ONLY: 10783 if (*i1 < 0 || *i1 > 1) { 10784 return (EINVAL); 10785 } 10786 mutex_enter(&connp->conn_lock); 10787 connp->conn_ipv6_v6only = *i1; 10788 mutex_exit(&connp->conn_lock); 10789 break; 10790 default: 10791 return (-EINVAL); 10792 } 10793 break; 10794 default: 10795 /* 10796 * "soft" error (negative) 10797 * option not handled at this level 10798 * Note: Do not modify *outlenp 10799 */ 10800 return (-EINVAL); 10801 } 10802 /* 10803 * Common case of return from an option that is sizeof (int) 10804 */ 10805 *(int *)outvalp = *i1; 10806 *outlenp = sizeof (int); 10807 return (0); 10808 } 10809 10810 /* 10811 * This routine gets default values of certain options whose default 10812 * values are maintained by protocol specific code 10813 */ 10814 /* ARGSUSED */ 10815 int 10816 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 10817 { 10818 int *i1 = (int *)ptr; 10819 10820 switch (level) { 10821 case IPPROTO_IP: 10822 switch (name) { 10823 case IP_MULTICAST_TTL: 10824 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 10825 return (sizeof (uchar_t)); 10826 case IP_MULTICAST_LOOP: 10827 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 10828 return (sizeof (uchar_t)); 10829 default: 10830 return (-1); 10831 } 10832 case IPPROTO_IPV6: 10833 switch (name) { 10834 case IPV6_UNICAST_HOPS: 10835 *i1 = ipv6_def_hops; 10836 return (sizeof (int)); 10837 case IPV6_MULTICAST_HOPS: 10838 *i1 = IP_DEFAULT_MULTICAST_TTL; 10839 return (sizeof (int)); 10840 case IPV6_MULTICAST_LOOP: 10841 *i1 = IP_DEFAULT_MULTICAST_LOOP; 10842 return (sizeof (int)); 10843 case IPV6_V6ONLY: 10844 *i1 = 1; 10845 return (sizeof (int)); 10846 default: 10847 return (-1); 10848 } 10849 default: 10850 return (-1); 10851 } 10852 /* NOTREACHED */ 10853 } 10854 10855 /* 10856 * Given a destination address and a pointer to where to put the information 10857 * this routine fills in the mtuinfo. 10858 */ 10859 int 10860 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 10861 struct ip6_mtuinfo *mtuinfo) 10862 { 10863 ire_t *ire; 10864 10865 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 10866 return (-1); 10867 10868 bzero(mtuinfo, sizeof (*mtuinfo)); 10869 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 10870 mtuinfo->ip6m_addr.sin6_port = port; 10871 mtuinfo->ip6m_addr.sin6_addr = *in6; 10872 10873 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL); 10874 if (ire != NULL) { 10875 mtuinfo->ip6m_mtu = ire->ire_max_frag; 10876 ire_refrele(ire); 10877 } else { 10878 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 10879 } 10880 return (sizeof (struct ip6_mtuinfo)); 10881 } 10882 10883 /* 10884 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 10885 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 10886 * isn't. This doesn't matter as the error checking is done properly for the 10887 * other MRT options coming in through ip_opt_set. 10888 */ 10889 int 10890 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 10891 { 10892 conn_t *connp = Q_TO_CONN(q); 10893 ipsec_req_t *req = (ipsec_req_t *)ptr; 10894 10895 switch (level) { 10896 case IPPROTO_IP: 10897 switch (name) { 10898 case MRT_VERSION: 10899 case MRT_ASSERT: 10900 (void) ip_mrouter_get(name, q, ptr); 10901 return (sizeof (int)); 10902 case IP_SEC_OPT: 10903 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 10904 case IP_NEXTHOP: 10905 if (connp->conn_nexthop_set) { 10906 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 10907 return (sizeof (ipaddr_t)); 10908 } else 10909 return (0); 10910 default: 10911 break; 10912 } 10913 break; 10914 case IPPROTO_IPV6: 10915 switch (name) { 10916 case IPV6_SEC_OPT: 10917 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 10918 case IPV6_SRC_PREFERENCES: { 10919 return (ip6_get_src_preferences(connp, 10920 (uint32_t *)ptr)); 10921 } 10922 case IPV6_V6ONLY: 10923 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 10924 return (sizeof (int)); 10925 case IPV6_PATHMTU: 10926 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 10927 (struct ip6_mtuinfo *)ptr)); 10928 default: 10929 break; 10930 } 10931 break; 10932 default: 10933 break; 10934 } 10935 return (-1); 10936 } 10937 10938 /* Named Dispatch routine to get a current value out of our parameter table. */ 10939 /* ARGSUSED */ 10940 static int 10941 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 10942 { 10943 ipparam_t *ippa = (ipparam_t *)cp; 10944 10945 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 10946 return (0); 10947 } 10948 10949 /* ARGSUSED */ 10950 static int 10951 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 10952 { 10953 10954 (void) mi_mpprintf(mp, "%d", *(int *)cp); 10955 return (0); 10956 } 10957 10958 /* 10959 * Set ip{,6}_forwarding values. This means walking through all of the 10960 * ill's and toggling their forwarding values. 10961 */ 10962 /* ARGSUSED */ 10963 static int 10964 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 10965 { 10966 long new_value; 10967 int *forwarding_value = (int *)cp; 10968 ill_t *walker; 10969 boolean_t isv6 = (forwarding_value == &ipv6_forward); 10970 ill_walk_context_t ctx; 10971 10972 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10973 new_value < 0 || new_value > 1) { 10974 return (EINVAL); 10975 } 10976 10977 *forwarding_value = new_value; 10978 10979 /* 10980 * Regardless of the current value of ip_forwarding, set all per-ill 10981 * values of ip_forwarding to the value being set. 10982 * 10983 * Bring all the ill's up to date with the new global value. 10984 */ 10985 rw_enter(&ill_g_lock, RW_READER); 10986 10987 if (isv6) 10988 walker = ILL_START_WALK_V6(&ctx); 10989 else 10990 walker = ILL_START_WALK_V4(&ctx); 10991 for (; walker != NULL; walker = ill_next(&ctx, walker)) { 10992 (void) ill_forward_set(q, mp, (new_value != 0), 10993 (caddr_t)walker); 10994 } 10995 rw_exit(&ill_g_lock); 10996 10997 return (0); 10998 } 10999 11000 /* 11001 * Walk through the param array specified registering each element with the 11002 * Named Dispatch handler. This is called only during init. So it is ok 11003 * not to acquire any locks 11004 */ 11005 static boolean_t 11006 ip_param_register(ipparam_t *ippa, size_t ippa_cnt, 11007 ipndp_t *ipnd, size_t ipnd_cnt) 11008 { 11009 for (; ippa_cnt-- > 0; ippa++) { 11010 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11011 if (!nd_load(&ip_g_nd, ippa->ip_param_name, 11012 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11013 nd_free(&ip_g_nd); 11014 return (B_FALSE); 11015 } 11016 } 11017 } 11018 11019 for (; ipnd_cnt-- > 0; ipnd++) { 11020 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11021 if (!nd_load(&ip_g_nd, ipnd->ip_ndp_name, 11022 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11023 ipnd->ip_ndp_data)) { 11024 nd_free(&ip_g_nd); 11025 return (B_FALSE); 11026 } 11027 } 11028 } 11029 11030 return (B_TRUE); 11031 } 11032 11033 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11034 /* ARGSUSED */ 11035 static int 11036 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11037 { 11038 long new_value; 11039 ipparam_t *ippa = (ipparam_t *)cp; 11040 11041 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11042 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11043 return (EINVAL); 11044 } 11045 ippa->ip_param_value = new_value; 11046 return (0); 11047 } 11048 11049 /* 11050 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11051 * When an ipf is passed here for the first time, if 11052 * we already have in-order fragments on the queue, we convert from the fast- 11053 * path reassembly scheme to the hard-case scheme. From then on, additional 11054 * fragments are reassembled here. We keep track of the start and end offsets 11055 * of each piece, and the number of holes in the chain. When the hole count 11056 * goes to zero, we are done! 11057 * 11058 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11059 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11060 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11061 * after the call to ip_reassemble(). 11062 */ 11063 int 11064 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11065 size_t msg_len) 11066 { 11067 uint_t end; 11068 mblk_t *next_mp; 11069 mblk_t *mp1; 11070 uint_t offset; 11071 boolean_t incr_dups = B_TRUE; 11072 boolean_t offset_zero_seen = B_FALSE; 11073 boolean_t pkt_boundary_checked = B_FALSE; 11074 11075 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11076 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11077 11078 /* Add in byte count */ 11079 ipf->ipf_count += msg_len; 11080 if (ipf->ipf_end) { 11081 /* 11082 * We were part way through in-order reassembly, but now there 11083 * is a hole. We walk through messages already queued, and 11084 * mark them for hard case reassembly. We know that up till 11085 * now they were in order starting from offset zero. 11086 */ 11087 offset = 0; 11088 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11089 IP_REASS_SET_START(mp1, offset); 11090 if (offset == 0) { 11091 ASSERT(ipf->ipf_nf_hdr_len != 0); 11092 offset = -ipf->ipf_nf_hdr_len; 11093 } 11094 offset += mp1->b_wptr - mp1->b_rptr; 11095 IP_REASS_SET_END(mp1, offset); 11096 } 11097 /* One hole at the end. */ 11098 ipf->ipf_hole_cnt = 1; 11099 /* Brand it as a hard case, forever. */ 11100 ipf->ipf_end = 0; 11101 } 11102 /* Walk through all the new pieces. */ 11103 do { 11104 end = start + (mp->b_wptr - mp->b_rptr); 11105 /* 11106 * If start is 0, decrease 'end' only for the first mblk of 11107 * the fragment. Otherwise 'end' can get wrong value in the 11108 * second pass of the loop if first mblk is exactly the 11109 * size of ipf_nf_hdr_len. 11110 */ 11111 if (start == 0 && !offset_zero_seen) { 11112 /* First segment */ 11113 ASSERT(ipf->ipf_nf_hdr_len != 0); 11114 end -= ipf->ipf_nf_hdr_len; 11115 offset_zero_seen = B_TRUE; 11116 } 11117 next_mp = mp->b_cont; 11118 /* 11119 * We are checking to see if there is any interesing data 11120 * to process. If there isn't and the mblk isn't the 11121 * one which carries the unfragmentable header then we 11122 * drop it. It's possible to have just the unfragmentable 11123 * header come through without any data. That needs to be 11124 * saved. 11125 * 11126 * If the assert at the top of this function holds then the 11127 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11128 * is infrequently traveled enough that the test is left in 11129 * to protect against future code changes which break that 11130 * invariant. 11131 */ 11132 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11133 /* Empty. Blast it. */ 11134 IP_REASS_SET_START(mp, 0); 11135 IP_REASS_SET_END(mp, 0); 11136 /* 11137 * If the ipf points to the mblk we are about to free, 11138 * update ipf to point to the next mblk (or NULL 11139 * if none). 11140 */ 11141 if (ipf->ipf_mp->b_cont == mp) 11142 ipf->ipf_mp->b_cont = next_mp; 11143 freeb(mp); 11144 continue; 11145 } 11146 mp->b_cont = NULL; 11147 IP_REASS_SET_START(mp, start); 11148 IP_REASS_SET_END(mp, end); 11149 if (!ipf->ipf_tail_mp) { 11150 ipf->ipf_tail_mp = mp; 11151 ipf->ipf_mp->b_cont = mp; 11152 if (start == 0 || !more) { 11153 ipf->ipf_hole_cnt = 1; 11154 /* 11155 * if the first fragment comes in more than one 11156 * mblk, this loop will be executed for each 11157 * mblk. Need to adjust hole count so exiting 11158 * this routine will leave hole count at 1. 11159 */ 11160 if (next_mp) 11161 ipf->ipf_hole_cnt++; 11162 } else 11163 ipf->ipf_hole_cnt = 2; 11164 continue; 11165 } else if (ipf->ipf_last_frag_seen && !more && 11166 !pkt_boundary_checked) { 11167 /* 11168 * We check datagram boundary only if this fragment 11169 * claims to be the last fragment and we have seen a 11170 * last fragment in the past too. We do this only 11171 * once for a given fragment. 11172 * 11173 * start cannot be 0 here as fragments with start=0 11174 * and MF=0 gets handled as a complete packet. These 11175 * fragments should not reach here. 11176 */ 11177 11178 if (start + msgdsize(mp) != 11179 IP_REASS_END(ipf->ipf_tail_mp)) { 11180 /* 11181 * We have two fragments both of which claim 11182 * to be the last fragment but gives conflicting 11183 * information about the whole datagram size. 11184 * Something fishy is going on. Drop the 11185 * fragment and free up the reassembly list. 11186 */ 11187 return (IP_REASS_FAILED); 11188 } 11189 11190 /* 11191 * We shouldn't come to this code block again for this 11192 * particular fragment. 11193 */ 11194 pkt_boundary_checked = B_TRUE; 11195 } 11196 11197 /* New stuff at or beyond tail? */ 11198 offset = IP_REASS_END(ipf->ipf_tail_mp); 11199 if (start >= offset) { 11200 if (ipf->ipf_last_frag_seen) { 11201 /* current fragment is beyond last fragment */ 11202 return (IP_REASS_FAILED); 11203 } 11204 /* Link it on end. */ 11205 ipf->ipf_tail_mp->b_cont = mp; 11206 ipf->ipf_tail_mp = mp; 11207 if (more) { 11208 if (start != offset) 11209 ipf->ipf_hole_cnt++; 11210 } else if (start == offset && next_mp == NULL) 11211 ipf->ipf_hole_cnt--; 11212 continue; 11213 } 11214 mp1 = ipf->ipf_mp->b_cont; 11215 offset = IP_REASS_START(mp1); 11216 /* New stuff at the front? */ 11217 if (start < offset) { 11218 if (start == 0) { 11219 if (end >= offset) { 11220 /* Nailed the hole at the begining. */ 11221 ipf->ipf_hole_cnt--; 11222 } 11223 } else if (end < offset) { 11224 /* 11225 * A hole, stuff, and a hole where there used 11226 * to be just a hole. 11227 */ 11228 ipf->ipf_hole_cnt++; 11229 } 11230 mp->b_cont = mp1; 11231 /* Check for overlap. */ 11232 while (end > offset) { 11233 if (end < IP_REASS_END(mp1)) { 11234 mp->b_wptr -= end - offset; 11235 IP_REASS_SET_END(mp, offset); 11236 if (ill->ill_isv6) { 11237 BUMP_MIB(ill->ill_ip6_mib, 11238 ipv6ReasmPartDups); 11239 } else { 11240 BUMP_MIB(&ip_mib, 11241 ipReasmPartDups); 11242 } 11243 break; 11244 } 11245 /* Did we cover another hole? */ 11246 if ((mp1->b_cont && 11247 IP_REASS_END(mp1) != 11248 IP_REASS_START(mp1->b_cont) && 11249 end >= IP_REASS_START(mp1->b_cont)) || 11250 (!ipf->ipf_last_frag_seen && !more)) { 11251 ipf->ipf_hole_cnt--; 11252 } 11253 /* Clip out mp1. */ 11254 if ((mp->b_cont = mp1->b_cont) == NULL) { 11255 /* 11256 * After clipping out mp1, this guy 11257 * is now hanging off the end. 11258 */ 11259 ipf->ipf_tail_mp = mp; 11260 } 11261 IP_REASS_SET_START(mp1, 0); 11262 IP_REASS_SET_END(mp1, 0); 11263 /* Subtract byte count */ 11264 ipf->ipf_count -= mp1->b_datap->db_lim - 11265 mp1->b_datap->db_base; 11266 freeb(mp1); 11267 if (ill->ill_isv6) { 11268 BUMP_MIB(ill->ill_ip6_mib, 11269 ipv6ReasmPartDups); 11270 } else { 11271 BUMP_MIB(&ip_mib, ipReasmPartDups); 11272 } 11273 mp1 = mp->b_cont; 11274 if (!mp1) 11275 break; 11276 offset = IP_REASS_START(mp1); 11277 } 11278 ipf->ipf_mp->b_cont = mp; 11279 continue; 11280 } 11281 /* 11282 * The new piece starts somewhere between the start of the head 11283 * and before the end of the tail. 11284 */ 11285 for (; mp1; mp1 = mp1->b_cont) { 11286 offset = IP_REASS_END(mp1); 11287 if (start < offset) { 11288 if (end <= offset) { 11289 /* Nothing new. */ 11290 IP_REASS_SET_START(mp, 0); 11291 IP_REASS_SET_END(mp, 0); 11292 /* Subtract byte count */ 11293 ipf->ipf_count -= mp->b_datap->db_lim - 11294 mp->b_datap->db_base; 11295 if (incr_dups) { 11296 ipf->ipf_num_dups++; 11297 incr_dups = B_FALSE; 11298 } 11299 freeb(mp); 11300 if (ill->ill_isv6) { 11301 BUMP_MIB(ill->ill_ip6_mib, 11302 ipv6ReasmDuplicates); 11303 } else { 11304 BUMP_MIB(&ip_mib, 11305 ipReasmDuplicates); 11306 } 11307 break; 11308 } 11309 /* 11310 * Trim redundant stuff off beginning of new 11311 * piece. 11312 */ 11313 IP_REASS_SET_START(mp, offset); 11314 mp->b_rptr += offset - start; 11315 if (ill->ill_isv6) { 11316 BUMP_MIB(ill->ill_ip6_mib, 11317 ipv6ReasmPartDups); 11318 } else { 11319 BUMP_MIB(&ip_mib, ipReasmPartDups); 11320 } 11321 start = offset; 11322 if (!mp1->b_cont) { 11323 /* 11324 * After trimming, this guy is now 11325 * hanging off the end. 11326 */ 11327 mp1->b_cont = mp; 11328 ipf->ipf_tail_mp = mp; 11329 if (!more) { 11330 ipf->ipf_hole_cnt--; 11331 } 11332 break; 11333 } 11334 } 11335 if (start >= IP_REASS_START(mp1->b_cont)) 11336 continue; 11337 /* Fill a hole */ 11338 if (start > offset) 11339 ipf->ipf_hole_cnt++; 11340 mp->b_cont = mp1->b_cont; 11341 mp1->b_cont = mp; 11342 mp1 = mp->b_cont; 11343 offset = IP_REASS_START(mp1); 11344 if (end >= offset) { 11345 ipf->ipf_hole_cnt--; 11346 /* Check for overlap. */ 11347 while (end > offset) { 11348 if (end < IP_REASS_END(mp1)) { 11349 mp->b_wptr -= end - offset; 11350 IP_REASS_SET_END(mp, offset); 11351 /* 11352 * TODO we might bump 11353 * this up twice if there is 11354 * overlap at both ends. 11355 */ 11356 if (ill->ill_isv6) { 11357 BUMP_MIB( 11358 ill->ill_ip6_mib, 11359 ipv6ReasmPartDups); 11360 } else { 11361 BUMP_MIB(&ip_mib, 11362 ipReasmPartDups); 11363 } 11364 break; 11365 } 11366 /* Did we cover another hole? */ 11367 if ((mp1->b_cont && 11368 IP_REASS_END(mp1) 11369 != IP_REASS_START(mp1->b_cont) && 11370 end >= 11371 IP_REASS_START(mp1->b_cont)) || 11372 (!ipf->ipf_last_frag_seen && 11373 !more)) { 11374 ipf->ipf_hole_cnt--; 11375 } 11376 /* Clip out mp1. */ 11377 if ((mp->b_cont = mp1->b_cont) == 11378 NULL) { 11379 /* 11380 * After clipping out mp1, 11381 * this guy is now hanging 11382 * off the end. 11383 */ 11384 ipf->ipf_tail_mp = mp; 11385 } 11386 IP_REASS_SET_START(mp1, 0); 11387 IP_REASS_SET_END(mp1, 0); 11388 /* Subtract byte count */ 11389 ipf->ipf_count -= 11390 mp1->b_datap->db_lim - 11391 mp1->b_datap->db_base; 11392 freeb(mp1); 11393 if (ill->ill_isv6) { 11394 BUMP_MIB(ill->ill_ip6_mib, 11395 ipv6ReasmPartDups); 11396 } else { 11397 BUMP_MIB(&ip_mib, 11398 ipReasmPartDups); 11399 } 11400 mp1 = mp->b_cont; 11401 if (!mp1) 11402 break; 11403 offset = IP_REASS_START(mp1); 11404 } 11405 } 11406 break; 11407 } 11408 } while (start = end, mp = next_mp); 11409 11410 /* Fragment just processed could be the last one. Remember this fact */ 11411 if (!more) 11412 ipf->ipf_last_frag_seen = B_TRUE; 11413 11414 /* Still got holes? */ 11415 if (ipf->ipf_hole_cnt) 11416 return (IP_REASS_PARTIAL); 11417 /* Clean up overloaded fields to avoid upstream disasters. */ 11418 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11419 IP_REASS_SET_START(mp1, 0); 11420 IP_REASS_SET_END(mp1, 0); 11421 } 11422 return (IP_REASS_COMPLETE); 11423 } 11424 11425 /* 11426 * ipsec processing for the fast path, used for input UDP Packets 11427 */ 11428 static boolean_t 11429 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 11430 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 11431 { 11432 uint32_t ill_index; 11433 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 11434 11435 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11436 /* The ill_index of the incoming ILL */ 11437 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 11438 11439 /* pass packet up to the transport */ 11440 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 11441 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 11442 NULL, mctl_present); 11443 if (*first_mpp == NULL) { 11444 return (B_FALSE); 11445 } 11446 } 11447 11448 /* Initiate IPPF processing for fastpath UDP */ 11449 if (IPP_ENABLED(IPP_LOCAL_IN)) { 11450 ip_process(IPP_LOCAL_IN, mpp, ill_index); 11451 if (*mpp == NULL) { 11452 ip2dbg(("ip_input_ipsec_process: UDP pkt " 11453 "deferred/dropped during IPPF processing\n")); 11454 return (B_FALSE); 11455 } 11456 } 11457 /* 11458 * We make the checks as below since we are in the fast path 11459 * and want to minimize the number of checks if the IP_RECVIF and/or 11460 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 11461 */ 11462 if (connp->conn_recvif || connp->conn_recvslla || 11463 connp->conn_ipv6_recvpktinfo) { 11464 if (connp->conn_recvif || 11465 connp->conn_ipv6_recvpktinfo) { 11466 in_flags = IPF_RECVIF; 11467 } 11468 if (connp->conn_recvslla) { 11469 in_flags |= IPF_RECVSLLA; 11470 } 11471 /* 11472 * since in_flags are being set ill will be 11473 * referenced in ip_add_info, so it better not 11474 * be NULL. 11475 */ 11476 /* 11477 * the actual data will be contained in b_cont 11478 * upon successful return of the following call. 11479 * If the call fails then the original mblk is 11480 * returned. 11481 */ 11482 *mpp = ip_add_info(*mpp, ill, in_flags); 11483 } 11484 11485 return (B_TRUE); 11486 } 11487 11488 /* 11489 * Fragmentation reassembly. Each ILL has a hash table for 11490 * queuing packets undergoing reassembly for all IPIFs 11491 * associated with the ILL. The hash is based on the packet 11492 * IP ident field. The ILL frag hash table was allocated 11493 * as a timer block at the time the ILL was created. Whenever 11494 * there is anything on the reassembly queue, the timer will 11495 * be running. Returns B_TRUE if successful else B_FALSE; 11496 * frees mp on failure. 11497 */ 11498 static boolean_t 11499 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 11500 uint32_t *cksum_val, uint16_t *cksum_flags) 11501 { 11502 uint32_t frag_offset_flags; 11503 ill_t *ill = (ill_t *)q->q_ptr; 11504 mblk_t *mp = *mpp; 11505 mblk_t *t_mp; 11506 ipaddr_t dst; 11507 uint8_t proto = ipha->ipha_protocol; 11508 uint32_t sum_val; 11509 uint16_t sum_flags; 11510 ipf_t *ipf; 11511 ipf_t **ipfp; 11512 ipfb_t *ipfb; 11513 uint16_t ident; 11514 uint32_t offset; 11515 ipaddr_t src; 11516 uint_t hdr_length; 11517 uint32_t end; 11518 mblk_t *mp1; 11519 mblk_t *tail_mp; 11520 size_t count; 11521 size_t msg_len; 11522 uint8_t ecn_info = 0; 11523 uint32_t packet_size; 11524 boolean_t pruned = B_FALSE; 11525 11526 if (cksum_val != NULL) 11527 *cksum_val = 0; 11528 if (cksum_flags != NULL) 11529 *cksum_flags = 0; 11530 11531 /* 11532 * Drop the fragmented as early as possible, if 11533 * we don't have resource(s) to re-assemble. 11534 */ 11535 if (ip_reass_queue_bytes == 0) { 11536 freemsg(mp); 11537 return (B_FALSE); 11538 } 11539 11540 /* Check for fragmentation offset; return if there's none */ 11541 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 11542 (IPH_MF | IPH_OFFSET)) == 0) 11543 return (B_TRUE); 11544 11545 /* 11546 * We utilize hardware computed checksum info only for UDP since 11547 * IP fragmentation is a normal occurence for the protocol. In 11548 * addition, checksum offload support for IP fragments carrying 11549 * UDP payload is commonly implemented across network adapters. 11550 */ 11551 ASSERT(ill != NULL); 11552 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 11553 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 11554 mblk_t *mp1 = mp->b_cont; 11555 int32_t len; 11556 11557 /* Record checksum information from the packet */ 11558 sum_val = (uint32_t)DB_CKSUM16(mp); 11559 sum_flags = DB_CKSUMFLAGS(mp); 11560 11561 /* IP payload offset from beginning of mblk */ 11562 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 11563 11564 if ((sum_flags & HCK_PARTIALCKSUM) && 11565 (mp1 == NULL || mp1->b_cont == NULL) && 11566 offset >= DB_CKSUMSTART(mp) && 11567 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 11568 uint32_t adj; 11569 /* 11570 * Partial checksum has been calculated by hardware 11571 * and attached to the packet; in addition, any 11572 * prepended extraneous data is even byte aligned. 11573 * If any such data exists, we adjust the checksum; 11574 * this would also handle any postpended data. 11575 */ 11576 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 11577 mp, mp1, len, adj); 11578 11579 /* One's complement subtract extraneous checksum */ 11580 if (adj >= sum_val) 11581 sum_val = ~(adj - sum_val) & 0xFFFF; 11582 else 11583 sum_val -= adj; 11584 } 11585 } else { 11586 sum_val = 0; 11587 sum_flags = 0; 11588 } 11589 11590 /* Clear hardware checksumming flag */ 11591 DB_CKSUMFLAGS(mp) = 0; 11592 11593 ident = ipha->ipha_ident; 11594 offset = (frag_offset_flags << 3) & 0xFFFF; 11595 src = ipha->ipha_src; 11596 dst = ipha->ipha_dst; 11597 hdr_length = IPH_HDR_LENGTH(ipha); 11598 end = ntohs(ipha->ipha_length) - hdr_length; 11599 11600 /* If end == 0 then we have a packet with no data, so just free it */ 11601 if (end == 0) { 11602 freemsg(mp); 11603 return (B_FALSE); 11604 } 11605 11606 /* Record the ECN field info. */ 11607 ecn_info = (ipha->ipha_type_of_service & 0x3); 11608 if (offset != 0) { 11609 /* 11610 * If this isn't the first piece, strip the header, and 11611 * add the offset to the end value. 11612 */ 11613 mp->b_rptr += hdr_length; 11614 end += offset; 11615 } 11616 11617 msg_len = MBLKSIZE(mp); 11618 tail_mp = mp; 11619 while (tail_mp->b_cont != NULL) { 11620 tail_mp = tail_mp->b_cont; 11621 msg_len += MBLKSIZE(tail_mp); 11622 } 11623 11624 /* If the reassembly list for this ILL will get too big, prune it */ 11625 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 11626 ip_reass_queue_bytes) { 11627 ill_frag_prune(ill, 11628 (ip_reass_queue_bytes < msg_len) ? 0 : 11629 (ip_reass_queue_bytes - msg_len)); 11630 pruned = B_TRUE; 11631 } 11632 11633 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 11634 mutex_enter(&ipfb->ipfb_lock); 11635 11636 ipfp = &ipfb->ipfb_ipf; 11637 /* Try to find an existing fragment queue for this packet. */ 11638 for (;;) { 11639 ipf = ipfp[0]; 11640 if (ipf != NULL) { 11641 /* 11642 * It has to match on ident and src/dst address. 11643 */ 11644 if (ipf->ipf_ident == ident && 11645 ipf->ipf_src == src && 11646 ipf->ipf_dst == dst && 11647 ipf->ipf_protocol == proto) { 11648 /* 11649 * If we have received too many 11650 * duplicate fragments for this packet 11651 * free it. 11652 */ 11653 if (ipf->ipf_num_dups > ip_max_frag_dups) { 11654 ill_frag_free_pkts(ill, ipfb, ipf, 1); 11655 freemsg(mp); 11656 mutex_exit(&ipfb->ipfb_lock); 11657 return (B_FALSE); 11658 } 11659 /* Found it. */ 11660 break; 11661 } 11662 ipfp = &ipf->ipf_hash_next; 11663 continue; 11664 } 11665 11666 /* 11667 * If we pruned the list, do we want to store this new 11668 * fragment?. We apply an optimization here based on the 11669 * fact that most fragments will be received in order. 11670 * So if the offset of this incoming fragment is zero, 11671 * it is the first fragment of a new packet. We will 11672 * keep it. Otherwise drop the fragment, as we have 11673 * probably pruned the packet already (since the 11674 * packet cannot be found). 11675 */ 11676 if (pruned && offset != 0) { 11677 mutex_exit(&ipfb->ipfb_lock); 11678 freemsg(mp); 11679 return (B_FALSE); 11680 } 11681 11682 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS) { 11683 /* 11684 * Too many fragmented packets in this hash 11685 * bucket. Free the oldest. 11686 */ 11687 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 11688 } 11689 11690 /* New guy. Allocate a frag message. */ 11691 mp1 = allocb(sizeof (*ipf), BPRI_MED); 11692 if (mp1 == NULL) { 11693 BUMP_MIB(&ip_mib, ipInDiscards); 11694 freemsg(mp); 11695 reass_done: 11696 mutex_exit(&ipfb->ipfb_lock); 11697 return (B_FALSE); 11698 } 11699 11700 11701 BUMP_MIB(&ip_mib, ipReasmReqds); 11702 mp1->b_cont = mp; 11703 11704 /* Initialize the fragment header. */ 11705 ipf = (ipf_t *)mp1->b_rptr; 11706 ipf->ipf_mp = mp1; 11707 ipf->ipf_ptphn = ipfp; 11708 ipfp[0] = ipf; 11709 ipf->ipf_hash_next = NULL; 11710 ipf->ipf_ident = ident; 11711 ipf->ipf_protocol = proto; 11712 ipf->ipf_src = src; 11713 ipf->ipf_dst = dst; 11714 ipf->ipf_nf_hdr_len = 0; 11715 /* Record reassembly start time. */ 11716 ipf->ipf_timestamp = gethrestime_sec(); 11717 /* Record ipf generation and account for frag header */ 11718 ipf->ipf_gen = ill->ill_ipf_gen++; 11719 ipf->ipf_count = MBLKSIZE(mp1); 11720 ipf->ipf_last_frag_seen = B_FALSE; 11721 ipf->ipf_ecn = ecn_info; 11722 ipf->ipf_num_dups = 0; 11723 ipfb->ipfb_frag_pkts++; 11724 ipf->ipf_checksum = 0; 11725 ipf->ipf_checksum_flags = 0; 11726 11727 /* Store checksum value in fragment header */ 11728 if (sum_flags != 0) { 11729 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11730 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11731 ipf->ipf_checksum = sum_val; 11732 ipf->ipf_checksum_flags = sum_flags; 11733 } 11734 11735 /* 11736 * We handle reassembly two ways. In the easy case, 11737 * where all the fragments show up in order, we do 11738 * minimal bookkeeping, and just clip new pieces on 11739 * the end. If we ever see a hole, then we go off 11740 * to ip_reassemble which has to mark the pieces and 11741 * keep track of the number of holes, etc. Obviously, 11742 * the point of having both mechanisms is so we can 11743 * handle the easy case as efficiently as possible. 11744 */ 11745 if (offset == 0) { 11746 /* Easy case, in-order reassembly so far. */ 11747 ipf->ipf_count += msg_len; 11748 ipf->ipf_tail_mp = tail_mp; 11749 /* 11750 * Keep track of next expected offset in 11751 * ipf_end. 11752 */ 11753 ipf->ipf_end = end; 11754 ipf->ipf_nf_hdr_len = hdr_length; 11755 } else { 11756 /* Hard case, hole at the beginning. */ 11757 ipf->ipf_tail_mp = NULL; 11758 /* 11759 * ipf_end == 0 means that we have given up 11760 * on easy reassembly. 11761 */ 11762 ipf->ipf_end = 0; 11763 11764 /* Forget checksum offload from now on */ 11765 ipf->ipf_checksum_flags = 0; 11766 11767 /* 11768 * ipf_hole_cnt is set by ip_reassemble. 11769 * ipf_count is updated by ip_reassemble. 11770 * No need to check for return value here 11771 * as we don't expect reassembly to complete 11772 * or fail for the first fragment itself. 11773 */ 11774 (void) ip_reassemble(mp, ipf, 11775 (frag_offset_flags & IPH_OFFSET) << 3, 11776 (frag_offset_flags & IPH_MF), ill, msg_len); 11777 } 11778 /* Update per ipfb and ill byte counts */ 11779 ipfb->ipfb_count += ipf->ipf_count; 11780 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11781 ill->ill_frag_count += ipf->ipf_count; 11782 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 11783 /* If the frag timer wasn't already going, start it. */ 11784 mutex_enter(&ill->ill_lock); 11785 ill_frag_timer_start(ill); 11786 mutex_exit(&ill->ill_lock); 11787 goto reass_done; 11788 } 11789 11790 /* 11791 * If the packet's flag has changed (it could be coming up 11792 * from an interface different than the previous, therefore 11793 * possibly different checksum capability), then forget about 11794 * any stored checksum states. Otherwise add the value to 11795 * the existing one stored in the fragment header. 11796 */ 11797 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 11798 sum_val += ipf->ipf_checksum; 11799 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11800 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11801 ipf->ipf_checksum = sum_val; 11802 } else if (ipf->ipf_checksum_flags != 0) { 11803 /* Forget checksum offload from now on */ 11804 ipf->ipf_checksum_flags = 0; 11805 } 11806 11807 /* 11808 * We have a new piece of a datagram which is already being 11809 * reassembled. Update the ECN info if all IP fragments 11810 * are ECN capable. If there is one which is not, clear 11811 * all the info. If there is at least one which has CE 11812 * code point, IP needs to report that up to transport. 11813 */ 11814 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 11815 if (ecn_info == IPH_ECN_CE) 11816 ipf->ipf_ecn = IPH_ECN_CE; 11817 } else { 11818 ipf->ipf_ecn = IPH_ECN_NECT; 11819 } 11820 if (offset && ipf->ipf_end == offset) { 11821 /* The new fragment fits at the end */ 11822 ipf->ipf_tail_mp->b_cont = mp; 11823 /* Update the byte count */ 11824 ipf->ipf_count += msg_len; 11825 /* Update per ipfb and ill byte counts */ 11826 ipfb->ipfb_count += msg_len; 11827 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11828 ill->ill_frag_count += msg_len; 11829 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 11830 if (frag_offset_flags & IPH_MF) { 11831 /* More to come. */ 11832 ipf->ipf_end = end; 11833 ipf->ipf_tail_mp = tail_mp; 11834 goto reass_done; 11835 } 11836 } else { 11837 /* Go do the hard cases. */ 11838 int ret; 11839 11840 if (offset == 0) 11841 ipf->ipf_nf_hdr_len = hdr_length; 11842 11843 /* Save current byte count */ 11844 count = ipf->ipf_count; 11845 ret = ip_reassemble(mp, ipf, 11846 (frag_offset_flags & IPH_OFFSET) << 3, 11847 (frag_offset_flags & IPH_MF), ill, msg_len); 11848 /* Count of bytes added and subtracted (freeb()ed) */ 11849 count = ipf->ipf_count - count; 11850 if (count) { 11851 /* Update per ipfb and ill byte counts */ 11852 ipfb->ipfb_count += count; 11853 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11854 ill->ill_frag_count += count; 11855 ASSERT(ill->ill_frag_count > 0); 11856 } 11857 if (ret == IP_REASS_PARTIAL) { 11858 goto reass_done; 11859 } else if (ret == IP_REASS_FAILED) { 11860 /* Reassembly failed. Free up all resources */ 11861 ill_frag_free_pkts(ill, ipfb, ipf, 1); 11862 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 11863 IP_REASS_SET_START(t_mp, 0); 11864 IP_REASS_SET_END(t_mp, 0); 11865 } 11866 freemsg(mp); 11867 goto reass_done; 11868 } 11869 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 11870 } 11871 /* 11872 * We have completed reassembly. Unhook the frag header from 11873 * the reassembly list. 11874 * 11875 * Before we free the frag header, record the ECN info 11876 * to report back to the transport. 11877 */ 11878 ecn_info = ipf->ipf_ecn; 11879 BUMP_MIB(&ip_mib, ipReasmOKs); 11880 ipfp = ipf->ipf_ptphn; 11881 11882 /* We need to supply these to caller */ 11883 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 11884 sum_val = ipf->ipf_checksum; 11885 else 11886 sum_val = 0; 11887 11888 mp1 = ipf->ipf_mp; 11889 count = ipf->ipf_count; 11890 ipf = ipf->ipf_hash_next; 11891 if (ipf != NULL) 11892 ipf->ipf_ptphn = ipfp; 11893 ipfp[0] = ipf; 11894 ill->ill_frag_count -= count; 11895 ASSERT(ipfb->ipfb_count >= count); 11896 ipfb->ipfb_count -= count; 11897 ipfb->ipfb_frag_pkts--; 11898 mutex_exit(&ipfb->ipfb_lock); 11899 /* Ditch the frag header. */ 11900 mp = mp1->b_cont; 11901 11902 freeb(mp1); 11903 11904 /* Restore original IP length in header. */ 11905 packet_size = (uint32_t)msgdsize(mp); 11906 if (packet_size > IP_MAXPACKET) { 11907 freemsg(mp); 11908 BUMP_MIB(&ip_mib, ipInHdrErrors); 11909 return (B_FALSE); 11910 } 11911 11912 if (DB_REF(mp) > 1) { 11913 mblk_t *mp2 = copymsg(mp); 11914 11915 freemsg(mp); 11916 if (mp2 == NULL) { 11917 BUMP_MIB(&ip_mib, ipInDiscards); 11918 return (B_FALSE); 11919 } 11920 mp = mp2; 11921 } 11922 ipha = (ipha_t *)mp->b_rptr; 11923 11924 ipha->ipha_length = htons((uint16_t)packet_size); 11925 /* We're now complete, zip the frag state */ 11926 ipha->ipha_fragment_offset_and_flags = 0; 11927 /* Record the ECN info. */ 11928 ipha->ipha_type_of_service &= 0xFC; 11929 ipha->ipha_type_of_service |= ecn_info; 11930 *mpp = mp; 11931 11932 /* Reassembly is successful; return checksum information if needed */ 11933 if (cksum_val != NULL) 11934 *cksum_val = sum_val; 11935 if (cksum_flags != NULL) 11936 *cksum_flags = sum_flags; 11937 11938 return (B_TRUE); 11939 } 11940 11941 /* 11942 * Perform ip header check sum update local options. 11943 * return B_TRUE if all is well, else return B_FALSE and release 11944 * the mp. caller is responsible for decrementing ire ref cnt. 11945 */ 11946 static boolean_t 11947 ip_options_cksum(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 11948 { 11949 mblk_t *first_mp; 11950 boolean_t mctl_present; 11951 uint16_t sum; 11952 11953 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 11954 /* 11955 * Don't do the checksum if it has gone through AH/ESP 11956 * processing. 11957 */ 11958 if (!mctl_present) { 11959 sum = ip_csum_hdr(ipha); 11960 if (sum != 0) { 11961 BUMP_MIB(&ip_mib, ipInCksumErrs); 11962 freemsg(first_mp); 11963 return (B_FALSE); 11964 } 11965 } 11966 11967 if (!ip_rput_local_options(q, mp, ipha, ire)) { 11968 if (mctl_present) 11969 freeb(first_mp); 11970 return (B_FALSE); 11971 } 11972 11973 return (B_TRUE); 11974 } 11975 11976 /* 11977 * All udp packet are delivered to the local host via this routine. 11978 */ 11979 void 11980 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 11981 ill_t *recv_ill) 11982 { 11983 uint32_t sum; 11984 uint32_t u1; 11985 boolean_t mctl_present; 11986 conn_t *connp; 11987 mblk_t *first_mp; 11988 uint16_t *up; 11989 ill_t *ill = (ill_t *)q->q_ptr; 11990 uint16_t reass_hck_flags = 0; 11991 11992 #define rptr ((uchar_t *)ipha) 11993 11994 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 11995 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 11996 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11997 11998 /* 11999 * FAST PATH for udp packets 12000 */ 12001 12002 /* u1 is # words of IP options */ 12003 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12004 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12005 12006 /* IP options present */ 12007 if (u1 != 0) 12008 goto ipoptions; 12009 12010 /* Check the IP header checksum. */ 12011 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12012 /* Clear the IP header h/w cksum flag */ 12013 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12014 } else { 12015 #define uph ((uint16_t *)ipha) 12016 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12017 uph[6] + uph[7] + uph[8] + uph[9]; 12018 #undef uph 12019 /* finish doing IP checksum */ 12020 sum = (sum & 0xFFFF) + (sum >> 16); 12021 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12022 /* 12023 * Don't verify header checksum if this packet is coming 12024 * back from AH/ESP as we already did it. 12025 */ 12026 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 12027 BUMP_MIB(&ip_mib, ipInCksumErrs); 12028 freemsg(first_mp); 12029 return; 12030 } 12031 } 12032 12033 /* 12034 * Count for SNMP of inbound packets for ire. 12035 * if mctl is present this might be a secure packet and 12036 * has already been counted for in ip_proto_input(). 12037 */ 12038 if (!mctl_present) { 12039 UPDATE_IB_PKT_COUNT(ire); 12040 ire->ire_last_used_time = lbolt; 12041 } 12042 12043 /* packet part of fragmented IP packet? */ 12044 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12045 if (u1 & (IPH_MF | IPH_OFFSET)) { 12046 goto fragmented; 12047 } 12048 12049 /* u1 = IP header length (20 bytes) */ 12050 u1 = IP_SIMPLE_HDR_LENGTH; 12051 12052 /* packet does not contain complete IP & UDP headers */ 12053 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12054 goto udppullup; 12055 12056 /* up points to UDP header */ 12057 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12058 #define iphs ((uint16_t *)ipha) 12059 12060 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12061 if (up[3] != 0) { 12062 mblk_t *mp1 = mp->b_cont; 12063 boolean_t cksum_err; 12064 uint16_t hck_flags = 0; 12065 12066 /* Pseudo-header checksum */ 12067 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12068 iphs[9] + up[2]; 12069 12070 /* 12071 * Revert to software checksum calculation if the interface 12072 * isn't capable of checksum offload or if IPsec is present. 12073 */ 12074 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12075 hck_flags = DB_CKSUMFLAGS(mp); 12076 12077 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12078 IP_STAT(ip_in_sw_cksum); 12079 12080 IP_CKSUM_RECV(hck_flags, u1, 12081 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12082 (int32_t)((uchar_t *)up - rptr), 12083 mp, mp1, cksum_err); 12084 12085 if (cksum_err) { 12086 BUMP_MIB(&ip_mib, udpInCksumErrs); 12087 12088 if (hck_flags & HCK_FULLCKSUM) 12089 IP_STAT(ip_udp_in_full_hw_cksum_err); 12090 else if (hck_flags & HCK_PARTIALCKSUM) 12091 IP_STAT(ip_udp_in_part_hw_cksum_err); 12092 else 12093 IP_STAT(ip_udp_in_sw_cksum_err); 12094 12095 freemsg(first_mp); 12096 return; 12097 } 12098 } 12099 12100 /* Non-fragmented broadcast or multicast packet? */ 12101 if (ire->ire_type == IRE_BROADCAST) 12102 goto udpslowpath; 12103 12104 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12105 ire->ire_zoneid)) != NULL) { 12106 ASSERT(connp->conn_upq != NULL); 12107 IP_STAT(ip_udp_fast_path); 12108 12109 if (CONN_UDP_FLOWCTLD(connp)) { 12110 freemsg(mp); 12111 BUMP_MIB(&ip_mib, udpInOverflows); 12112 } else { 12113 if (!mctl_present) { 12114 BUMP_MIB(&ip_mib, ipInDelivers); 12115 } 12116 /* 12117 * mp and first_mp can change. 12118 */ 12119 if (ip_udp_check(q, connp, recv_ill, 12120 ipha, &mp, &first_mp, mctl_present)) { 12121 /* Send it upstream */ 12122 CONN_UDP_RECV(connp, mp); 12123 } 12124 } 12125 /* 12126 * freeb() cannot deal with null mblk being passed 12127 * in and first_mp can be set to null in the call 12128 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12129 */ 12130 if (mctl_present && first_mp != NULL) { 12131 freeb(first_mp); 12132 } 12133 CONN_DEC_REF(connp); 12134 return; 12135 } 12136 12137 /* 12138 * if we got here we know the packet is not fragmented and 12139 * has no options. The classifier could not find a conn_t and 12140 * most likely its an icmp packet so send it through slow path. 12141 */ 12142 12143 goto udpslowpath; 12144 12145 ipoptions: 12146 if (!ip_options_cksum(q, mp, ipha, ire)) { 12147 goto slow_done; 12148 } 12149 12150 UPDATE_IB_PKT_COUNT(ire); 12151 ire->ire_last_used_time = lbolt; 12152 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12153 if (u1 & (IPH_MF | IPH_OFFSET)) { 12154 fragmented: 12155 /* 12156 * "sum" and "reass_hck_flags" are non-zero if the 12157 * reassembled packet has a valid hardware computed 12158 * checksum information associated with it. 12159 */ 12160 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12161 goto slow_done; 12162 /* 12163 * Make sure that first_mp points back to mp as 12164 * the mp we came in with could have changed in 12165 * ip_rput_fragment(). 12166 */ 12167 ASSERT(!mctl_present); 12168 ipha = (ipha_t *)mp->b_rptr; 12169 first_mp = mp; 12170 } 12171 12172 /* Now we have a complete datagram, destined for this machine. */ 12173 u1 = IPH_HDR_LENGTH(ipha); 12174 /* Pull up the UDP header, if necessary. */ 12175 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12176 udppullup: 12177 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12178 BUMP_MIB(&ip_mib, ipInDiscards); 12179 freemsg(first_mp); 12180 goto slow_done; 12181 } 12182 ipha = (ipha_t *)mp->b_rptr; 12183 } 12184 12185 /* 12186 * Validate the checksum for the reassembled packet; for the 12187 * pullup case we calculate the payload checksum in software. 12188 */ 12189 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12190 if (up[3] != 0) { 12191 boolean_t cksum_err; 12192 12193 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12194 IP_STAT(ip_in_sw_cksum); 12195 12196 IP_CKSUM_RECV_REASS(reass_hck_flags, 12197 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12198 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12199 iphs[9] + up[2], sum, cksum_err); 12200 12201 if (cksum_err) { 12202 BUMP_MIB(&ip_mib, udpInCksumErrs); 12203 12204 if (reass_hck_flags & HCK_FULLCKSUM) 12205 IP_STAT(ip_udp_in_full_hw_cksum_err); 12206 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12207 IP_STAT(ip_udp_in_part_hw_cksum_err); 12208 else 12209 IP_STAT(ip_udp_in_sw_cksum_err); 12210 12211 freemsg(first_mp); 12212 goto slow_done; 12213 } 12214 } 12215 udpslowpath: 12216 12217 /* Clear hardware checksum flag to be safe */ 12218 DB_CKSUMFLAGS(mp) = 0; 12219 12220 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12221 (ire->ire_type == IRE_BROADCAST), 12222 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IP6INFO, 12223 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12224 12225 slow_done: 12226 IP_STAT(ip_udp_slow_path); 12227 return; 12228 12229 #undef iphs 12230 #undef rptr 12231 } 12232 12233 /* ARGSUSED */ 12234 static mblk_t * 12235 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12236 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12237 ill_rx_ring_t *ill_ring) 12238 { 12239 conn_t *connp; 12240 uint32_t sum; 12241 uint32_t u1; 12242 uint16_t *up; 12243 int offset; 12244 ssize_t len; 12245 mblk_t *mp1; 12246 boolean_t syn_present = B_FALSE; 12247 tcph_t *tcph; 12248 uint_t ip_hdr_len; 12249 ill_t *ill = (ill_t *)q->q_ptr; 12250 zoneid_t zoneid = ire->ire_zoneid; 12251 boolean_t cksum_err; 12252 uint16_t hck_flags = 0; 12253 12254 #define rptr ((uchar_t *)ipha) 12255 12256 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12257 12258 /* 12259 * FAST PATH for tcp packets 12260 */ 12261 12262 /* u1 is # words of IP options */ 12263 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12264 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12265 12266 /* IP options present */ 12267 if (u1) { 12268 goto ipoptions; 12269 } else { 12270 /* Check the IP header checksum. */ 12271 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12272 /* Clear the IP header h/w cksum flag */ 12273 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12274 } else { 12275 #define uph ((uint16_t *)ipha) 12276 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12277 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12278 #undef uph 12279 /* finish doing IP checksum */ 12280 sum = (sum & 0xFFFF) + (sum >> 16); 12281 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12282 /* 12283 * Don't verify header checksum if this packet 12284 * is coming back from AH/ESP as we already did it. 12285 */ 12286 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 12287 BUMP_MIB(&ip_mib, ipInCksumErrs); 12288 goto error; 12289 } 12290 } 12291 } 12292 12293 if (!mctl_present) { 12294 UPDATE_IB_PKT_COUNT(ire); 12295 ire->ire_last_used_time = lbolt; 12296 } 12297 12298 /* packet part of fragmented IP packet? */ 12299 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12300 if (u1 & (IPH_MF | IPH_OFFSET)) { 12301 goto fragmented; 12302 } 12303 12304 /* u1 = IP header length (20 bytes) */ 12305 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12306 12307 /* does packet contain IP+TCP headers? */ 12308 len = mp->b_wptr - rptr; 12309 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12310 IP_STAT(ip_tcppullup); 12311 goto tcppullup; 12312 } 12313 12314 /* TCP options present? */ 12315 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12316 12317 /* 12318 * If options need to be pulled up, then goto tcpoptions. 12319 * otherwise we are still in the fast path 12320 */ 12321 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12322 IP_STAT(ip_tcpoptions); 12323 goto tcpoptions; 12324 } 12325 12326 /* multiple mblks of tcp data? */ 12327 if ((mp1 = mp->b_cont) != NULL) { 12328 /* more then two? */ 12329 if (mp1->b_cont != NULL) { 12330 IP_STAT(ip_multipkttcp); 12331 goto multipkttcp; 12332 } 12333 len += mp1->b_wptr - mp1->b_rptr; 12334 } 12335 12336 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 12337 12338 /* part of pseudo checksum */ 12339 12340 /* TCP datagram length */ 12341 u1 = len - IP_SIMPLE_HDR_LENGTH; 12342 12343 #define iphs ((uint16_t *)ipha) 12344 12345 #ifdef _BIG_ENDIAN 12346 u1 += IPPROTO_TCP; 12347 #else 12348 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12349 #endif 12350 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12351 12352 /* 12353 * Revert to software checksum calculation if the interface 12354 * isn't capable of checksum offload or if IPsec is present. 12355 */ 12356 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12357 hck_flags = DB_CKSUMFLAGS(mp); 12358 12359 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12360 IP_STAT(ip_in_sw_cksum); 12361 12362 IP_CKSUM_RECV(hck_flags, u1, 12363 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12364 (int32_t)((uchar_t *)up - rptr), 12365 mp, mp1, cksum_err); 12366 12367 if (cksum_err) { 12368 BUMP_MIB(&ip_mib, tcpInErrs); 12369 12370 if (hck_flags & HCK_FULLCKSUM) 12371 IP_STAT(ip_tcp_in_full_hw_cksum_err); 12372 else if (hck_flags & HCK_PARTIALCKSUM) 12373 IP_STAT(ip_tcp_in_part_hw_cksum_err); 12374 else 12375 IP_STAT(ip_tcp_in_sw_cksum_err); 12376 12377 goto error; 12378 } 12379 12380 try_again: 12381 12382 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 12383 NULL) { 12384 /* Send the TH_RST */ 12385 goto no_conn; 12386 } 12387 12388 /* 12389 * TCP FAST PATH for AF_INET socket. 12390 * 12391 * TCP fast path to avoid extra work. An AF_INET socket type 12392 * does not have facility to receive extra information via 12393 * ip_process or ip_add_info. Also, when the connection was 12394 * established, we made a check if this connection is impacted 12395 * by any global IPSec policy or per connection policy (a 12396 * policy that comes in effect later will not apply to this 12397 * connection). Since all this can be determined at the 12398 * connection establishment time, a quick check of flags 12399 * can avoid extra work. 12400 */ 12401 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 12402 !IPP_ENABLED(IPP_LOCAL_IN)) { 12403 ASSERT(first_mp == mp); 12404 SET_SQUEUE(mp, tcp_rput_data, connp); 12405 return (mp); 12406 } 12407 12408 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 12409 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 12410 if (IPCL_IS_TCP(connp)) { 12411 mp->b_datap->db_struioflag |= STRUIO_EAGER; 12412 DB_CKSUMSTART(mp) = 12413 (intptr_t)ip_squeue_get(ill_ring); 12414 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 12415 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12416 SET_SQUEUE(mp, connp->conn_recv, connp); 12417 return (mp); 12418 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 12419 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12420 ip_squeue_enter_unbound++; 12421 SET_SQUEUE(mp, tcp_conn_request_unbound, 12422 connp); 12423 return (mp); 12424 } 12425 syn_present = B_TRUE; 12426 } 12427 12428 } 12429 12430 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 12431 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12432 12433 /* No need to send this packet to TCP */ 12434 if ((flags & TH_RST) || (flags & TH_URG)) { 12435 CONN_DEC_REF(connp); 12436 freemsg(first_mp); 12437 return (NULL); 12438 } 12439 if (flags & TH_ACK) { 12440 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 12441 CONN_DEC_REF(connp); 12442 return (NULL); 12443 } 12444 12445 CONN_DEC_REF(connp); 12446 freemsg(first_mp); 12447 return (NULL); 12448 } 12449 12450 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 12451 first_mp = ipsec_check_inbound_policy(first_mp, connp, 12452 ipha, NULL, mctl_present); 12453 if (first_mp == NULL) { 12454 CONN_DEC_REF(connp); 12455 return (NULL); 12456 } 12457 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 12458 ASSERT(syn_present); 12459 if (mctl_present) { 12460 ASSERT(first_mp != mp); 12461 first_mp->b_datap->db_struioflag |= 12462 STRUIO_POLICY; 12463 } else { 12464 ASSERT(first_mp == mp); 12465 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 12466 mp->b_datap->db_struioflag |= STRUIO_POLICY; 12467 } 12468 } else { 12469 /* 12470 * Discard first_mp early since we're dealing with a 12471 * fully-connected conn_t and tcp doesn't do policy in 12472 * this case. 12473 */ 12474 if (mctl_present) { 12475 freeb(first_mp); 12476 mctl_present = B_FALSE; 12477 } 12478 first_mp = mp; 12479 } 12480 } 12481 12482 /* Initiate IPPF processing for fastpath */ 12483 if (IPP_ENABLED(IPP_LOCAL_IN)) { 12484 uint32_t ill_index; 12485 12486 ill_index = recv_ill->ill_phyint->phyint_ifindex; 12487 ip_process(IPP_LOCAL_IN, &mp, ill_index); 12488 if (mp == NULL) { 12489 ip2dbg(("ip_input_ipsec_process: TCP pkt " 12490 "deferred/dropped during IPPF processing\n")); 12491 CONN_DEC_REF(connp); 12492 if (mctl_present) 12493 freeb(first_mp); 12494 return (NULL); 12495 } else if (mctl_present) { 12496 /* 12497 * ip_process might return a new mp. 12498 */ 12499 ASSERT(first_mp != mp); 12500 first_mp->b_cont = mp; 12501 } else { 12502 first_mp = mp; 12503 } 12504 12505 } 12506 12507 if (!syn_present && connp->conn_ipv6_recvpktinfo) { 12508 mp = ip_add_info(mp, recv_ill, flags); 12509 if (mp == NULL) { 12510 CONN_DEC_REF(connp); 12511 if (mctl_present) 12512 freeb(first_mp); 12513 return (NULL); 12514 } else if (mctl_present) { 12515 /* 12516 * ip_add_info might return a new mp. 12517 */ 12518 ASSERT(first_mp != mp); 12519 first_mp->b_cont = mp; 12520 } else { 12521 first_mp = mp; 12522 } 12523 } 12524 12525 if (IPCL_IS_TCP(connp)) { 12526 SET_SQUEUE(first_mp, connp->conn_recv, connp); 12527 return (first_mp); 12528 } else { 12529 putnext(connp->conn_rq, first_mp); 12530 CONN_DEC_REF(connp); 12531 return (NULL); 12532 } 12533 12534 no_conn: 12535 /* Initiate IPPf processing, if needed. */ 12536 if (IPP_ENABLED(IPP_LOCAL_IN)) { 12537 uint32_t ill_index; 12538 ill_index = recv_ill->ill_phyint->phyint_ifindex; 12539 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 12540 if (first_mp == NULL) { 12541 return (NULL); 12542 } 12543 } 12544 BUMP_MIB(&ip_mib, ipInDelivers); 12545 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr)); 12546 return (NULL); 12547 ipoptions: 12548 if (!ip_options_cksum(q, first_mp, ipha, ire)) { 12549 goto slow_done; 12550 } 12551 12552 UPDATE_IB_PKT_COUNT(ire); 12553 ire->ire_last_used_time = lbolt; 12554 12555 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12556 if (u1 & (IPH_MF | IPH_OFFSET)) { 12557 fragmented: 12558 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 12559 if (mctl_present) 12560 freeb(first_mp); 12561 goto slow_done; 12562 } 12563 /* 12564 * Make sure that first_mp points back to mp as 12565 * the mp we came in with could have changed in 12566 * ip_rput_fragment(). 12567 */ 12568 ASSERT(!mctl_present); 12569 ipha = (ipha_t *)mp->b_rptr; 12570 first_mp = mp; 12571 } 12572 12573 /* Now we have a complete datagram, destined for this machine. */ 12574 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 12575 12576 len = mp->b_wptr - mp->b_rptr; 12577 /* Pull up a minimal TCP header, if necessary. */ 12578 if (len < (u1 + 20)) { 12579 tcppullup: 12580 if (!pullupmsg(mp, u1 + 20)) { 12581 BUMP_MIB(&ip_mib, ipInDiscards); 12582 goto error; 12583 } 12584 ipha = (ipha_t *)mp->b_rptr; 12585 len = mp->b_wptr - mp->b_rptr; 12586 } 12587 12588 /* 12589 * Extract the offset field from the TCP header. As usual, we 12590 * try to help the compiler more than the reader. 12591 */ 12592 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 12593 if (offset != 5) { 12594 tcpoptions: 12595 if (offset < 5) { 12596 BUMP_MIB(&ip_mib, ipInDiscards); 12597 goto error; 12598 } 12599 /* 12600 * There must be TCP options. 12601 * Make sure we can grab them. 12602 */ 12603 offset <<= 2; 12604 offset += u1; 12605 if (len < offset) { 12606 if (!pullupmsg(mp, offset)) { 12607 BUMP_MIB(&ip_mib, ipInDiscards); 12608 goto error; 12609 } 12610 ipha = (ipha_t *)mp->b_rptr; 12611 len = mp->b_wptr - rptr; 12612 } 12613 } 12614 12615 /* Get the total packet length in len, including headers. */ 12616 if (mp->b_cont) { 12617 multipkttcp: 12618 len = msgdsize(mp); 12619 } 12620 12621 /* 12622 * Check the TCP checksum by pulling together the pseudo- 12623 * header checksum, and passing it to ip_csum to be added in 12624 * with the TCP datagram. 12625 * 12626 * Since we are not using the hwcksum if available we must 12627 * clear the flag. We may come here via tcppullup or tcpoptions. 12628 * If either of these fails along the way the mblk is freed. 12629 * If this logic ever changes and mblk is reused to say send 12630 * ICMP's back, then this flag may need to be cleared in 12631 * other places as well. 12632 */ 12633 DB_CKSUMFLAGS(mp) = 0; 12634 12635 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 12636 12637 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 12638 #ifdef _BIG_ENDIAN 12639 u1 += IPPROTO_TCP; 12640 #else 12641 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12642 #endif 12643 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12644 /* 12645 * Not M_DATA mblk or its a dup, so do the checksum now. 12646 */ 12647 IP_STAT(ip_in_sw_cksum); 12648 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 12649 BUMP_MIB(&ip_mib, tcpInErrs); 12650 goto error; 12651 } 12652 12653 IP_STAT(ip_tcp_slow_path); 12654 goto try_again; 12655 #undef iphs 12656 #undef rptr 12657 12658 error: 12659 freemsg(first_mp); 12660 slow_done: 12661 return (NULL); 12662 } 12663 12664 /* ARGSUSED */ 12665 static void 12666 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12667 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 12668 { 12669 conn_t *connp; 12670 uint32_t sum; 12671 uint32_t u1; 12672 ssize_t len; 12673 sctp_hdr_t *sctph; 12674 zoneid_t zoneid = ire->ire_zoneid; 12675 uint32_t pktsum; 12676 uint32_t calcsum; 12677 uint32_t ports; 12678 uint_t ipif_seqid; 12679 in6_addr_t map_src, map_dst; 12680 ill_t *ill = (ill_t *)q->q_ptr; 12681 12682 #define rptr ((uchar_t *)ipha) 12683 12684 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 12685 12686 /* u1 is # words of IP options */ 12687 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12688 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12689 12690 /* IP options present */ 12691 if (u1 > 0) { 12692 goto ipoptions; 12693 } else { 12694 /* Check the IP header checksum. */ 12695 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12696 #define uph ((uint16_t *)ipha) 12697 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12698 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12699 #undef uph 12700 /* finish doing IP checksum */ 12701 sum = (sum & 0xFFFF) + (sum >> 16); 12702 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12703 /* 12704 * Don't verify header checksum if this packet 12705 * is coming back from AH/ESP as we already did it. 12706 */ 12707 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 12708 BUMP_MIB(&ip_mib, ipInCksumErrs); 12709 goto error; 12710 } 12711 } 12712 /* 12713 * Since there is no SCTP h/w cksum support yet, just 12714 * clear the flag. 12715 */ 12716 DB_CKSUMFLAGS(mp) = 0; 12717 } 12718 12719 /* 12720 * Don't verify header checksum if this packet is coming 12721 * back from AH/ESP as we already did it. 12722 */ 12723 if (!mctl_present) { 12724 UPDATE_IB_PKT_COUNT(ire); 12725 ire->ire_last_used_time = lbolt; 12726 } 12727 12728 /* packet part of fragmented IP packet? */ 12729 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12730 if (u1 & (IPH_MF | IPH_OFFSET)) 12731 goto fragmented; 12732 12733 /* u1 = IP header length (20 bytes) */ 12734 u1 = IP_SIMPLE_HDR_LENGTH; 12735 12736 find_sctp_client: 12737 /* Pullup if we don't have the sctp common header. */ 12738 len = MBLKL(mp); 12739 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 12740 if (mp->b_cont == NULL || 12741 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 12742 BUMP_MIB(&ip_mib, ipInDiscards); 12743 goto error; 12744 } 12745 ipha = (ipha_t *)mp->b_rptr; 12746 len = MBLKL(mp); 12747 } 12748 12749 sctph = (sctp_hdr_t *)(rptr + u1); 12750 #ifdef DEBUG 12751 if (!skip_sctp_cksum) { 12752 #endif 12753 pktsum = sctph->sh_chksum; 12754 sctph->sh_chksum = 0; 12755 calcsum = sctp_cksum(mp, u1); 12756 if (calcsum != pktsum) { 12757 BUMP_MIB(&sctp_mib, sctpChecksumError); 12758 goto error; 12759 } 12760 sctph->sh_chksum = pktsum; 12761 #ifdef DEBUG /* skip_sctp_cksum */ 12762 } 12763 #endif 12764 /* get the ports */ 12765 ports = *(uint32_t *)&sctph->sh_sport; 12766 12767 ipif_seqid = ire->ire_ipif->ipif_seqid; 12768 IRE_REFRELE(ire); 12769 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 12770 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 12771 if ((connp = sctp_fanout(&map_src, &map_dst, ports, ipif_seqid, zoneid, 12772 mp)) == NULL) { 12773 /* Check for raw socket or OOTB handling */ 12774 goto no_conn; 12775 } 12776 12777 /* Found a client; up it goes */ 12778 BUMP_MIB(&ip_mib, ipInDelivers); 12779 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 12780 return; 12781 12782 no_conn: 12783 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 12784 ports, mctl_present, flags, B_TRUE, ipif_seqid, zoneid); 12785 return; 12786 12787 ipoptions: 12788 DB_CKSUMFLAGS(mp) = 0; 12789 if (!ip_options_cksum(q, first_mp, ipha, ire)) 12790 goto slow_done; 12791 12792 UPDATE_IB_PKT_COUNT(ire); 12793 ire->ire_last_used_time = lbolt; 12794 12795 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12796 if (u1 & (IPH_MF | IPH_OFFSET)) { 12797 fragmented: 12798 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 12799 goto slow_done; 12800 /* 12801 * Make sure that first_mp points back to mp as 12802 * the mp we came in with could have changed in 12803 * ip_rput_fragment(). 12804 */ 12805 ASSERT(!mctl_present); 12806 ipha = (ipha_t *)mp->b_rptr; 12807 first_mp = mp; 12808 } 12809 12810 /* Now we have a complete datagram, destined for this machine. */ 12811 u1 = IPH_HDR_LENGTH(ipha); 12812 goto find_sctp_client; 12813 #undef iphs 12814 #undef rptr 12815 12816 error: 12817 freemsg(first_mp); 12818 slow_done: 12819 IRE_REFRELE(ire); 12820 } 12821 12822 #define VER_BITS 0xF0 12823 #define VERSION_6 0x60 12824 12825 static boolean_t 12826 ip_rput_multimblk_ipoptions(queue_t *q, mblk_t *mp, ipha_t **iphapp, 12827 ipaddr_t *dstp) 12828 { 12829 uint_t opt_len; 12830 ipha_t *ipha; 12831 ssize_t len; 12832 uint_t pkt_len; 12833 12834 IP_STAT(ip_ipoptions); 12835 ipha = *iphapp; 12836 12837 #define rptr ((uchar_t *)ipha) 12838 /* Assume no IPv6 packets arrive over the IPv4 queue */ 12839 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 12840 BUMP_MIB(&ip_mib, ipInIPv6); 12841 freemsg(mp); 12842 return (B_FALSE); 12843 } 12844 12845 /* multiple mblk or too short */ 12846 pkt_len = ntohs(ipha->ipha_length); 12847 12848 /* Get the number of words of IP options in the IP header. */ 12849 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 12850 if (opt_len) { 12851 /* IP Options present! Validate and process. */ 12852 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 12853 BUMP_MIB(&ip_mib, ipInHdrErrors); 12854 goto done; 12855 } 12856 /* 12857 * Recompute complete header length and make sure we 12858 * have access to all of it. 12859 */ 12860 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 12861 if (len > (mp->b_wptr - rptr)) { 12862 if (len > pkt_len) { 12863 BUMP_MIB(&ip_mib, ipInHdrErrors); 12864 goto done; 12865 } 12866 if (!pullupmsg(mp, len)) { 12867 BUMP_MIB(&ip_mib, ipInDiscards); 12868 goto done; 12869 } 12870 ipha = (ipha_t *)mp->b_rptr; 12871 } 12872 /* 12873 * Go off to ip_rput_options which returns the next hop 12874 * destination address, which may have been affected 12875 * by source routing. 12876 */ 12877 IP_STAT(ip_opt); 12878 if (ip_rput_options(q, mp, ipha, dstp) == -1) { 12879 return (B_FALSE); 12880 } 12881 } 12882 *iphapp = ipha; 12883 return (B_TRUE); 12884 done: 12885 /* clear b_prev - used by ip_mroute_decap */ 12886 mp->b_prev = NULL; 12887 freemsg(mp); 12888 return (B_FALSE); 12889 #undef rptr 12890 } 12891 12892 /* 12893 * Deal with the fact that there is no ire for the destination. 12894 * The incoming ill (in_ill) is passed in to ip_newroute only 12895 * in the case of packets coming from mobile ip forward tunnel. 12896 * It must be null otherwise. 12897 */ 12898 static void 12899 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 12900 ipaddr_t dst) 12901 { 12902 ipha_t *ipha; 12903 ill_t *ill; 12904 12905 ipha = (ipha_t *)mp->b_rptr; 12906 ill = (ill_t *)q->q_ptr; 12907 12908 ASSERT(ill != NULL); 12909 /* 12910 * No IRE for this destination, so it can't be for us. 12911 * Unless we are forwarding, drop the packet. 12912 * We have to let source routed packets through 12913 * since we don't yet know if they are 'ping -l' 12914 * packets i.e. if they will go out over the 12915 * same interface as they came in on. 12916 */ 12917 if (ll_multicast) { 12918 freemsg(mp); 12919 return; 12920 } 12921 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha)) { 12922 BUMP_MIB(&ip_mib, ipForwProhibits); 12923 freemsg(mp); 12924 return; 12925 } 12926 12927 /* Check for Martian addresses */ 12928 if ((in_ill == NULL) && (ip_no_forward(ipha, ill))) { 12929 freemsg(mp); 12930 return; 12931 } 12932 12933 /* Mark this packet as having originated externally */ 12934 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 12935 12936 /* 12937 * Clear the indication that this may have a hardware checksum 12938 * as we are not using it 12939 */ 12940 DB_CKSUMFLAGS(mp) = 0; 12941 12942 /* 12943 * Now hand the packet to ip_newroute. 12944 */ 12945 ip_newroute(q, mp, dst, in_ill, NULL); 12946 } 12947 12948 /* 12949 * check ip header length and align it. 12950 */ 12951 static boolean_t 12952 ip_check_and_align_header(queue_t *q, mblk_t *mp) 12953 { 12954 ssize_t len; 12955 ill_t *ill; 12956 ipha_t *ipha; 12957 12958 len = MBLKL(mp); 12959 12960 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 12961 if (!OK_32PTR(mp->b_rptr)) 12962 IP_STAT(ip_notaligned1); 12963 else 12964 IP_STAT(ip_notaligned2); 12965 /* Guard against bogus device drivers */ 12966 if (len < 0) { 12967 /* clear b_prev - used by ip_mroute_decap */ 12968 mp->b_prev = NULL; 12969 BUMP_MIB(&ip_mib, ipInHdrErrors); 12970 freemsg(mp); 12971 return (B_FALSE); 12972 } 12973 12974 if (ip_rput_pullups++ == 0) { 12975 ill = (ill_t *)q->q_ptr; 12976 ipha = (ipha_t *)mp->b_rptr; 12977 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12978 "ip_check_and_align_header: %s forced us to " 12979 " pullup pkt, hdr len %ld, hdr addr %p", 12980 ill->ill_name, len, ipha); 12981 } 12982 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 12983 /* clear b_prev - used by ip_mroute_decap */ 12984 mp->b_prev = NULL; 12985 BUMP_MIB(&ip_mib, ipInDiscards); 12986 freemsg(mp); 12987 return (B_FALSE); 12988 } 12989 } 12990 return (B_TRUE); 12991 } 12992 12993 static boolean_t 12994 ip_rput_notforus(queue_t **qp, mblk_t *mp, ire_t *ire, ill_t *ill) 12995 { 12996 ill_group_t *ill_group; 12997 ill_group_t *ire_group; 12998 queue_t *q; 12999 ill_t *ire_ill; 13000 uint_t ill_ifindex; 13001 13002 q = *qp; 13003 /* 13004 * We need to check to make sure the packet came in 13005 * on the queue associated with the destination IRE. 13006 * Note that for multicast packets and broadcast packets sent to 13007 * a broadcast address which is shared between multiple interfaces 13008 * we should not do this since we just got a random broadcast ire. 13009 */ 13010 if (ire->ire_rfq && ire->ire_type != IRE_BROADCAST) { 13011 boolean_t check_multi = B_TRUE; 13012 13013 /* 13014 * This packet came in on an interface other than the 13015 * one associated with the destination address. 13016 * "Gateway" it to the appropriate interface here. 13017 * As long as the ills belong to the same group, 13018 * we don't consider them to arriving on the wrong 13019 * interface. Thus, when the switch is doing inbound 13020 * load spreading, we won't drop packets when we 13021 * are doing strict multihoming checks. Note, the 13022 * same holds true for 'usesrc groups' where the 13023 * destination address may belong to another interface 13024 * to allow multipathing to happen 13025 */ 13026 ill_group = ill->ill_group; 13027 ire_ill = (ill_t *)(ire->ire_rfq)->q_ptr; 13028 ill_ifindex = ill->ill_usesrc_ifindex; 13029 ire_group = ire_ill->ill_group; 13030 13031 /* 13032 * If it's part of the same IPMP group, or if it's a legal 13033 * address on the 'usesrc' interface, then bypass strict 13034 * checks. 13035 */ 13036 if (ill_group != NULL && ill_group == ire_group) { 13037 check_multi = B_FALSE; 13038 } else if (ill_ifindex != 0 && 13039 ill_ifindex == ire_ill->ill_phyint->phyint_ifindex) { 13040 check_multi = B_FALSE; 13041 } 13042 13043 if (check_multi && 13044 ip_strict_dst_multihoming && 13045 ((ill->ill_flags & 13046 ire->ire_ipif->ipif_ill->ill_flags & 13047 ILLF_ROUTER) == 0)) { 13048 /* Drop packet */ 13049 BUMP_MIB(&ip_mib, ipForwProhibits); 13050 freemsg(mp); 13051 ire_refrele(ire); 13052 return (B_TRUE); 13053 } 13054 13055 /* 13056 * Change the queue (for non-virtual destination network 13057 * interfaces) and ip_rput_local will be called with the right 13058 * queue 13059 */ 13060 q = ire->ire_rfq; 13061 } 13062 /* Must be broadcast. We'll take it. */ 13063 *qp = q; 13064 return (B_FALSE); 13065 } 13066 13067 static void 13068 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13069 ill_t *ill, int ll_multicast) 13070 { 13071 ill_group_t *ill_group; 13072 ill_group_t *ire_group; 13073 queue_t *dev_q; 13074 13075 ASSERT(ire->ire_stq != NULL); 13076 if (ll_multicast != 0) 13077 goto drop_pkt; 13078 13079 if (ip_no_forward(ipha, ill)) 13080 goto drop_pkt; 13081 13082 ill_group = ill->ill_group; 13083 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 13084 /* 13085 * Check if we want to forward this one at this time. 13086 * We allow source routed packets on a host provided that 13087 * they go out the same interface or same interface group 13088 * as they came in on. 13089 * 13090 * XXX To be quicker, we may wish to not chase pointers to 13091 * get the ILLF_ROUTER flag and instead store the 13092 * forwarding policy in the ire. An unfortunate 13093 * side-effect of that would be requiring an ire flush 13094 * whenever the ILLF_ROUTER flag changes. 13095 */ 13096 if (((ill->ill_flags & 13097 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 13098 ILLF_ROUTER) == 0) && 13099 !(ip_source_routed(ipha) && (ire->ire_rfq == q || 13100 (ill_group != NULL && ill_group == ire_group)))) { 13101 BUMP_MIB(&ip_mib, ipForwProhibits); 13102 if (ip_source_routed(ipha)) { 13103 q = WR(q); 13104 /* 13105 * Clear the indication that this may have 13106 * hardware checksum as we are not using it. 13107 */ 13108 DB_CKSUMFLAGS(mp) = 0; 13109 icmp_unreachable(q, mp, 13110 ICMP_SOURCE_ROUTE_FAILED); 13111 ire_refrele(ire); 13112 return; 13113 } 13114 goto drop_pkt; 13115 } 13116 13117 /* Packet is being forwarded. Turning off hwcksum flag. */ 13118 DB_CKSUMFLAGS(mp) = 0; 13119 if (ip_g_send_redirects) { 13120 /* 13121 * Check whether the incoming interface and outgoing 13122 * interface is part of the same group. If so, 13123 * send redirects. 13124 * 13125 * Check the source address to see if it originated 13126 * on the same logical subnet it is going back out on. 13127 * If so, we should be able to send it a redirect. 13128 * Avoid sending a redirect if the destination 13129 * is directly connected (gw_addr == 0), 13130 * or if the packet was source routed out this 13131 * interface. 13132 */ 13133 ipaddr_t src; 13134 mblk_t *mp1; 13135 ire_t *src_ire = NULL; 13136 13137 /* 13138 * Check whether ire_rfq and q are from the same ill 13139 * or if they are not same, they at least belong 13140 * to the same group. If so, send redirects. 13141 */ 13142 if ((ire->ire_rfq == q || 13143 (ill_group != NULL && ill_group == ire_group)) && 13144 (ire->ire_gateway_addr != 0) && 13145 !ip_source_routed(ipha)) { 13146 13147 src = ipha->ipha_src; 13148 src_ire = ire_ftable_lookup(src, 0, 0, 13149 IRE_INTERFACE, ire->ire_ipif, NULL, ALL_ZONES, 13150 0, NULL, MATCH_IRE_IPIF | MATCH_IRE_TYPE); 13151 13152 if (src_ire != NULL) { 13153 /* 13154 * The source is directly connected. 13155 * Just copy the ip header (which is 13156 * in the first mblk) 13157 */ 13158 mp1 = copyb(mp); 13159 if (mp1 != NULL) { 13160 icmp_send_redirect(WR(q), mp1, 13161 ire->ire_gateway_addr); 13162 } 13163 ire_refrele(src_ire); 13164 } 13165 } 13166 } 13167 13168 dev_q = ire->ire_stq->q_next; 13169 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 13170 BUMP_MIB(&ip_mib, ipInDiscards); 13171 freemsg(mp); 13172 ire_refrele(ire); 13173 return; 13174 } 13175 13176 ip_rput_forward(ire, ipha, mp, ill); 13177 IRE_REFRELE(ire); 13178 return; 13179 13180 drop_pkt: 13181 ire_refrele(ire); 13182 ip2dbg(("ip_rput_forward: drop pkt\n")); 13183 freemsg(mp); 13184 } 13185 13186 static boolean_t 13187 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t **irep, ipha_t *ipha, 13188 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 13189 { 13190 queue_t *q; 13191 ire_t *ire; 13192 uint16_t hcksumflags; 13193 13194 q = *qp; 13195 ire = *irep; 13196 13197 /* 13198 * Clear the indication that this may have hardware 13199 * checksum as we are not using it for forwarding. 13200 */ 13201 hcksumflags = DB_CKSUMFLAGS(mp); 13202 DB_CKSUMFLAGS(mp) = 0; 13203 13204 /* 13205 * Directed broadcast forwarding: if the packet came in over a 13206 * different interface then it is routed out over we can forward it. 13207 */ 13208 if (ipha->ipha_protocol == IPPROTO_TCP) { 13209 ire_refrele(ire); 13210 freemsg(mp); 13211 BUMP_MIB(&ip_mib, ipInDiscards); 13212 return (B_TRUE); 13213 } 13214 /* 13215 * For multicast we have set dst to be INADDR_BROADCAST 13216 * for delivering to all STREAMS. IRE_MARK_NORECV is really 13217 * only for broadcast packets. 13218 */ 13219 if (!CLASSD(ipha->ipha_dst)) { 13220 ire_t *new_ire; 13221 ipif_t *ipif; 13222 /* 13223 * For ill groups, as the switch duplicates broadcasts 13224 * across all the ports, we need to filter out and 13225 * send up only one copy. There is one copy for every 13226 * broadcast address on each ill. Thus, we look for a 13227 * specific IRE on this ill and look at IRE_MARK_NORECV 13228 * later to see whether this ill is eligible to receive 13229 * them or not. ill_nominate_bcast_rcv() nominates only 13230 * one set of IREs for receiving. 13231 */ 13232 13233 ipif = ipif_get_next_ipif(NULL, ill); 13234 if (ipif == NULL) { 13235 ire_refrele(ire); 13236 freemsg(mp); 13237 BUMP_MIB(&ip_mib, ipInDiscards); 13238 return (B_TRUE); 13239 } 13240 new_ire = ire_ctable_lookup(dst, 0, 0, 13241 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL); 13242 ipif_refrele(ipif); 13243 13244 if (new_ire != NULL) { 13245 if (new_ire->ire_marks & IRE_MARK_NORECV) { 13246 ire_refrele(ire); 13247 ire_refrele(new_ire); 13248 freemsg(mp); 13249 BUMP_MIB(&ip_mib, ipInDiscards); 13250 return (B_TRUE); 13251 } 13252 /* 13253 * In the special case of multirouted broadcast 13254 * packets, we unconditionally need to "gateway" 13255 * them to the appropriate interface here. 13256 * In the normal case, this cannot happen, because 13257 * there is no broadcast IRE tagged with the 13258 * RTF_MULTIRT flag. 13259 */ 13260 if (new_ire->ire_flags & RTF_MULTIRT) { 13261 ire_refrele(new_ire); 13262 if (ire->ire_rfq != NULL) { 13263 q = ire->ire_rfq; 13264 *qp = q; 13265 } 13266 } else { 13267 ire_refrele(ire); 13268 ire = new_ire; 13269 } 13270 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 13271 if (!ip_g_forward_directed_bcast) { 13272 /* 13273 * Free the message if 13274 * ip_g_forward_directed_bcast is turned 13275 * off for non-local broadcast. 13276 */ 13277 ire_refrele(ire); 13278 freemsg(mp); 13279 BUMP_MIB(&ip_mib, ipInDiscards); 13280 return (B_TRUE); 13281 } 13282 } else { 13283 /* 13284 * This CGTP packet successfully passed the 13285 * CGTP filter, but the related CGTP 13286 * broadcast IRE has not been found, 13287 * meaning that the redundant ipif is 13288 * probably down. However, if we discarded 13289 * this packet, its duplicate would be 13290 * filtered out by the CGTP filter so none 13291 * of them would get through. So we keep 13292 * going with this one. 13293 */ 13294 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 13295 if (ire->ire_rfq != NULL) { 13296 q = ire->ire_rfq; 13297 *qp = q; 13298 } 13299 } 13300 } 13301 if (ip_g_forward_directed_bcast && ll_multicast == 0) { 13302 /* 13303 * Verify that there are not more then one 13304 * IRE_BROADCAST with this broadcast address which 13305 * has ire_stq set. 13306 * TODO: simplify, loop over all IRE's 13307 */ 13308 ire_t *ire1; 13309 int num_stq = 0; 13310 mblk_t *mp1; 13311 13312 /* Find the first one with ire_stq set */ 13313 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 13314 for (ire1 = ire; ire1 && 13315 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 13316 ire1 = ire1->ire_next) 13317 ; 13318 if (ire1) { 13319 ire_refrele(ire); 13320 ire = ire1; 13321 IRE_REFHOLD(ire); 13322 } 13323 13324 /* Check if there are additional ones with stq set */ 13325 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 13326 if (ire->ire_addr != ire1->ire_addr) 13327 break; 13328 if (ire1->ire_stq) { 13329 num_stq++; 13330 break; 13331 } 13332 } 13333 rw_exit(&ire->ire_bucket->irb_lock); 13334 if (num_stq == 1 && ire->ire_stq != NULL) { 13335 ip1dbg(("ip_rput_process_broadcast: directed " 13336 "broadcast to 0x%x\n", 13337 ntohl(ire->ire_addr))); 13338 mp1 = copymsg(mp); 13339 if (mp1) { 13340 switch (ipha->ipha_protocol) { 13341 case IPPROTO_UDP: 13342 ip_udp_input(q, mp1, ipha, ire, ill); 13343 break; 13344 default: 13345 ip_proto_input(q, mp1, ipha, ire, ill); 13346 break; 13347 } 13348 } 13349 /* 13350 * Adjust ttl to 2 (1+1 - the forward engine 13351 * will decrement it by one. 13352 */ 13353 if (ip_csum_hdr(ipha)) { 13354 BUMP_MIB(&ip_mib, ipInCksumErrs); 13355 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 13356 freemsg(mp); 13357 ire_refrele(ire); 13358 return (B_TRUE); 13359 } 13360 ipha->ipha_ttl = ip_broadcast_ttl + 1; 13361 ipha->ipha_hdr_checksum = 0; 13362 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 13363 ip_rput_process_forward(q, mp, ire, ipha, 13364 ill, ll_multicast); 13365 return (B_TRUE); 13366 } 13367 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 13368 ntohl(ire->ire_addr))); 13369 } 13370 13371 *irep = ire; 13372 13373 /* Restore any hardware checksum flags */ 13374 DB_CKSUMFLAGS(mp) = hcksumflags; 13375 return (B_FALSE); 13376 } 13377 13378 /* ARGSUSED */ 13379 static boolean_t 13380 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 13381 int *ll_multicast, ipaddr_t *dstp) 13382 { 13383 /* 13384 * Forward packets only if we have joined the allmulti 13385 * group on this interface. 13386 */ 13387 if (ip_g_mrouter && ill->ill_join_allmulti) { 13388 int retval; 13389 13390 /* 13391 * Clear the indication that this may have hardware 13392 * checksum as we are not using it. 13393 */ 13394 DB_CKSUMFLAGS(mp) = 0; 13395 retval = ip_mforward(ill, ipha, mp); 13396 /* ip_mforward updates mib variables if needed */ 13397 /* clear b_prev - used by ip_mroute_decap */ 13398 mp->b_prev = NULL; 13399 13400 switch (retval) { 13401 case 0: 13402 /* 13403 * pkt is okay and arrived on phyint. 13404 * 13405 * If we are running as a multicast router 13406 * we need to see all IGMP and/or PIM packets. 13407 */ 13408 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 13409 (ipha->ipha_protocol == IPPROTO_PIM)) { 13410 goto done; 13411 } 13412 break; 13413 case -1: 13414 /* pkt is mal-formed, toss it */ 13415 goto drop_pkt; 13416 case 1: 13417 /* pkt is okay and arrived on a tunnel */ 13418 /* 13419 * If we are running a multicast router 13420 * we need to see all igmp packets. 13421 */ 13422 if (ipha->ipha_protocol == IPPROTO_IGMP) { 13423 *dstp = INADDR_BROADCAST; 13424 *ll_multicast = 1; 13425 return (B_FALSE); 13426 } 13427 13428 goto drop_pkt; 13429 } 13430 } 13431 13432 ILM_WALKER_HOLD(ill); 13433 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 13434 /* 13435 * This might just be caused by the fact that 13436 * multiple IP Multicast addresses map to the same 13437 * link layer multicast - no need to increment counter! 13438 */ 13439 ILM_WALKER_RELE(ill); 13440 freemsg(mp); 13441 return (B_TRUE); 13442 } 13443 ILM_WALKER_RELE(ill); 13444 done: 13445 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 13446 /* 13447 * This assumes the we deliver to all streams for multicast 13448 * and broadcast packets. 13449 */ 13450 *dstp = INADDR_BROADCAST; 13451 *ll_multicast = 1; 13452 return (B_FALSE); 13453 drop_pkt: 13454 ip2dbg(("ip_rput: drop pkt\n")); 13455 freemsg(mp); 13456 return (B_TRUE); 13457 } 13458 13459 static boolean_t 13460 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 13461 int *ll_multicast, mblk_t **mpp) 13462 { 13463 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 13464 boolean_t must_copy = B_FALSE; 13465 struct iocblk *iocp; 13466 ipha_t *ipha; 13467 13468 #define rptr ((uchar_t *)ipha) 13469 13470 first_mp = *first_mpp; 13471 mp = *mpp; 13472 13473 ASSERT(first_mp == mp); 13474 13475 /* 13476 * if db_ref > 1 then copymsg and free original. Packet may be 13477 * changed and do not want other entity who has a reference to this 13478 * message to trip over the changes. This is a blind change because 13479 * trying to catch all places that might change packet is too 13480 * difficult (since it may be a module above this one) 13481 * 13482 * This corresponds to the non-fast path case. We walk down the full 13483 * chain in this case, and check the db_ref count of all the dblks, 13484 * and do a copymsg if required. It is possible that the db_ref counts 13485 * of the data blocks in the mblk chain can be different. 13486 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 13487 * count of 1, followed by a M_DATA block with a ref count of 2, if 13488 * 'snoop' is running. 13489 */ 13490 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 13491 if (mp1->b_datap->db_ref > 1) { 13492 must_copy = B_TRUE; 13493 break; 13494 } 13495 } 13496 13497 if (must_copy) { 13498 mp1 = copymsg(mp); 13499 if (mp1 == NULL) { 13500 for (mp1 = mp; mp1 != NULL; 13501 mp1 = mp1->b_cont) { 13502 mp1->b_next = NULL; 13503 mp1->b_prev = NULL; 13504 } 13505 freemsg(mp); 13506 BUMP_MIB(&ip_mib, ipInDiscards); 13507 return (B_TRUE); 13508 } 13509 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 13510 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 13511 /* Copy b_next - used in M_BREAK messages */ 13512 to_mp->b_next = from_mp->b_next; 13513 from_mp->b_next = NULL; 13514 /* Copy b_prev - used by ip_mroute_decap */ 13515 to_mp->b_prev = from_mp->b_prev; 13516 from_mp->b_prev = NULL; 13517 } 13518 *first_mpp = first_mp = mp1; 13519 freemsg(mp); 13520 mp = mp1; 13521 *mpp = mp1; 13522 } 13523 13524 ipha = (ipha_t *)mp->b_rptr; 13525 13526 /* 13527 * previous code has a case for M_DATA. 13528 * We want to check how that happens. 13529 */ 13530 ASSERT(first_mp->b_datap->db_type != M_DATA); 13531 switch (first_mp->b_datap->db_type) { 13532 case M_PROTO: 13533 case M_PCPROTO: 13534 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 13535 DL_UNITDATA_IND) { 13536 /* Go handle anything other than data elsewhere. */ 13537 ip_rput_dlpi(q, mp); 13538 return (B_TRUE); 13539 } 13540 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 13541 /* Ditch the DLPI header. */ 13542 mp1 = mp->b_cont; 13543 ASSERT(first_mp == mp); 13544 *first_mpp = mp1; 13545 freeb(mp); 13546 *mpp = mp1; 13547 return (B_FALSE); 13548 case M_BREAK: 13549 /* 13550 * A packet arrives as M_BREAK following a cycle through 13551 * ip_rput, ip_newroute, ... and finally ire_add_then_send. 13552 * This is an IP datagram sans lower level header. 13553 * M_BREAK are also used to pass back in multicast packets 13554 * that are encapsulated with a source route. 13555 */ 13556 /* Ditch the M_BREAK mblk */ 13557 mp1 = mp->b_cont; 13558 ASSERT(first_mp == mp); 13559 *first_mpp = mp1; 13560 freeb(mp); 13561 mp = mp1; 13562 mp->b_next = NULL; 13563 *mpp = mp; 13564 *ll_multicast = 0; 13565 return (B_FALSE); 13566 case M_IOCACK: 13567 ip1dbg(("got iocack ")); 13568 iocp = (struct iocblk *)mp->b_rptr; 13569 switch (iocp->ioc_cmd) { 13570 case DL_IOC_HDR_INFO: 13571 ill = (ill_t *)q->q_ptr; 13572 ill_fastpath_ack(ill, mp); 13573 return (B_TRUE); 13574 case SIOCSTUNPARAM: 13575 case OSIOCSTUNPARAM: 13576 /* Go through qwriter_ip */ 13577 break; 13578 case SIOCGTUNPARAM: 13579 case OSIOCGTUNPARAM: 13580 ip_rput_other(NULL, q, mp, NULL); 13581 return (B_TRUE); 13582 default: 13583 putnext(q, mp); 13584 return (B_TRUE); 13585 } 13586 /* FALLTHRU */ 13587 case M_ERROR: 13588 case M_HANGUP: 13589 /* 13590 * Since this is on the ill stream we unconditionally 13591 * bump up the refcount 13592 */ 13593 ill_refhold(ill); 13594 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP, 13595 B_FALSE); 13596 return (B_TRUE); 13597 case M_CTL: 13598 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 13599 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 13600 IPHADA_M_CTL)) { 13601 /* 13602 * It's an IPsec accelerated packet. 13603 * Make sure that the ill from which we received the 13604 * packet has enabled IPsec hardware acceleration. 13605 */ 13606 if (!(ill->ill_capabilities & 13607 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 13608 /* IPsec kstats: bean counter */ 13609 freemsg(mp); 13610 return (B_TRUE); 13611 } 13612 13613 /* 13614 * Make mp point to the mblk following the M_CTL, 13615 * then process according to type of mp. 13616 * After this processing, first_mp will point to 13617 * the data-attributes and mp to the pkt following 13618 * the M_CTL. 13619 */ 13620 mp = first_mp->b_cont; 13621 if (mp == NULL) { 13622 freemsg(first_mp); 13623 return (B_TRUE); 13624 } 13625 /* 13626 * A Hardware Accelerated packet can only be M_DATA 13627 * ESP or AH packet. 13628 */ 13629 if (mp->b_datap->db_type != M_DATA) { 13630 /* non-M_DATA IPsec accelerated packet */ 13631 IPSECHW_DEBUG(IPSECHW_PKT, 13632 ("non-M_DATA IPsec accelerated pkt\n")); 13633 freemsg(first_mp); 13634 return (B_TRUE); 13635 } 13636 ipha = (ipha_t *)mp->b_rptr; 13637 if (ipha->ipha_protocol != IPPROTO_AH && 13638 ipha->ipha_protocol != IPPROTO_ESP) { 13639 IPSECHW_DEBUG(IPSECHW_PKT, 13640 ("non-M_DATA IPsec accelerated pkt\n")); 13641 freemsg(first_mp); 13642 return (B_TRUE); 13643 } 13644 *mpp = mp; 13645 return (B_FALSE); 13646 } 13647 putnext(q, mp); 13648 return (B_TRUE); 13649 case M_FLUSH: 13650 if (*mp->b_rptr & FLUSHW) { 13651 *mp->b_rptr &= ~FLUSHR; 13652 qreply(q, mp); 13653 return (B_TRUE); 13654 } 13655 freemsg(mp); 13656 return (B_TRUE); 13657 case M_IOCNAK: 13658 ip1dbg(("got iocnak ")); 13659 iocp = (struct iocblk *)mp->b_rptr; 13660 switch (iocp->ioc_cmd) { 13661 case DL_IOC_HDR_INFO: 13662 case SIOCSTUNPARAM: 13663 case OSIOCSTUNPARAM: 13664 /* 13665 * Since this is on the ill stream we unconditionally 13666 * bump up the refcount 13667 */ 13668 ill_refhold(ill); 13669 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, 13670 CUR_OP, B_FALSE); 13671 return (B_TRUE); 13672 case SIOCGTUNPARAM: 13673 case OSIOCGTUNPARAM: 13674 ip_rput_other(NULL, q, mp, NULL); 13675 return (B_TRUE); 13676 default: 13677 break; 13678 } 13679 /* FALLTHRU */ 13680 default: 13681 putnext(q, mp); 13682 return (B_TRUE); 13683 } 13684 } 13685 13686 /* Read side put procedure. Packets coming from the wire arrive here. */ 13687 void 13688 ip_rput(queue_t *q, mblk_t *mp) 13689 { 13690 ill_t *ill; 13691 13692 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 13693 13694 ill = (ill_t *)q->q_ptr; 13695 13696 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 13697 union DL_primitives *dl; 13698 13699 /* 13700 * Things are opening or closing. Only accept DLPI control 13701 * messages. In the open case, the ill->ill_ipif has not yet 13702 * been created. In the close case, things hanging off the 13703 * ill could have been freed already. In either case it 13704 * may not be safe to proceed further. 13705 */ 13706 13707 dl = (union DL_primitives *)mp->b_rptr; 13708 if ((mp->b_datap->db_type != M_PCPROTO) || 13709 (dl->dl_primitive == DL_UNITDATA_IND)) { 13710 /* 13711 * Also SIOC[GS]TUN* ioctls can come here. 13712 */ 13713 inet_freemsg(mp); 13714 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13715 "ip_input_end: q %p (%S)", q, "uninit"); 13716 return; 13717 } 13718 } 13719 13720 /* 13721 * if db_ref > 1 then copymsg and free original. Packet may be 13722 * changed and we do not want the other entity who has a reference to 13723 * this message to trip over the changes. This is a blind change because 13724 * trying to catch all places that might change the packet is too 13725 * difficult. 13726 * 13727 * This corresponds to the fast path case, where we have a chain of 13728 * M_DATA mblks. We check the db_ref count of only the 1st data block 13729 * in the mblk chain. There doesn't seem to be a reason why a device 13730 * driver would send up data with varying db_ref counts in the mblk 13731 * chain. In any case the Fast path is a private interface, and our 13732 * drivers don't do such a thing. Given the above assumption, there is 13733 * no need to walk down the entire mblk chain (which could have a 13734 * potential performance problem) 13735 */ 13736 if (mp->b_datap->db_ref > 1) { 13737 mblk_t *mp1; 13738 boolean_t adjusted = B_FALSE; 13739 IP_STAT(ip_db_ref); 13740 13741 /* 13742 * The IP_RECVSLLA option depends on having the link layer 13743 * header. First check that: 13744 * a> the underlying device is of type ether, since this 13745 * option is currently supported only over ethernet. 13746 * b> there is enough room to copy over the link layer header. 13747 * 13748 * Once the checks are done, adjust rptr so that the link layer 13749 * header will be copied via copymsg. Note that, IFT_ETHER may 13750 * be returned by some non-ethernet drivers but in this case the 13751 * second check will fail. 13752 */ 13753 if (ill->ill_type == IFT_ETHER && 13754 (mp->b_rptr - mp->b_datap->db_base) >= 13755 sizeof (struct ether_header)) { 13756 mp->b_rptr -= sizeof (struct ether_header); 13757 adjusted = B_TRUE; 13758 } 13759 mp1 = copymsg(mp); 13760 if (mp1 == NULL) { 13761 /* Clear b_next - used in M_BREAK messages */ 13762 mp->b_next = NULL; 13763 /* clear b_prev - used by ip_mroute_decap */ 13764 mp->b_prev = NULL; 13765 freemsg(mp); 13766 BUMP_MIB(&ip_mib, ipInDiscards); 13767 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13768 "ip_rput_end: q %p (%S)", q, "copymsg"); 13769 return; 13770 } 13771 if (adjusted) { 13772 /* 13773 * Copy is done. Restore the pointer in the _new_ mblk 13774 */ 13775 mp1->b_rptr += sizeof (struct ether_header); 13776 } 13777 /* Copy b_next - used in M_BREAK messages */ 13778 mp1->b_next = mp->b_next; 13779 mp->b_next = NULL; 13780 /* Copy b_prev - used by ip_mroute_decap */ 13781 mp1->b_prev = mp->b_prev; 13782 mp->b_prev = NULL; 13783 freemsg(mp); 13784 mp = mp1; 13785 } 13786 13787 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13788 "ip_rput_end: q %p (%S)", q, "end"); 13789 13790 ip_input(ill, NULL, mp, 0); 13791 } 13792 13793 /* 13794 * Direct read side procedure capable of dealing with chains. GLDv3 based 13795 * drivers call this function directly with mblk chains while STREAMS 13796 * read side procedure ip_rput() calls this for single packet with ip_ring 13797 * set to NULL to process one packet at a time. 13798 * 13799 * The ill will always be valid if this function is called directly from 13800 * the driver. 13801 */ 13802 /*ARGSUSED*/ 13803 void 13804 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, size_t hdrlen) 13805 { 13806 ipaddr_t dst; 13807 ire_t *ire; 13808 ipha_t *ipha; 13809 uint_t pkt_len; 13810 ssize_t len; 13811 uint_t opt_len; 13812 int ll_multicast; 13813 int cgtp_flt_pkt; 13814 queue_t *q = ill->ill_rq; 13815 squeue_t *curr_sqp = NULL; 13816 mblk_t *head = NULL; 13817 mblk_t *tail = NULL; 13818 mblk_t *first_mp; 13819 mblk_t *mp; 13820 int cnt = 0; 13821 13822 ASSERT(mp_chain != NULL); 13823 ASSERT(ill != NULL); 13824 13825 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 13826 13827 #define rptr ((uchar_t *)ipha) 13828 13829 while (mp_chain != NULL) { 13830 first_mp = mp = mp_chain; 13831 mp_chain = mp_chain->b_next; 13832 mp->b_next = NULL; 13833 ll_multicast = 0; 13834 ire = NULL; 13835 13836 /* 13837 * ip_input fast path 13838 */ 13839 13840 /* mblk type is not M_DATA */ 13841 if (mp->b_datap->db_type != M_DATA) { 13842 if (ip_rput_process_notdata(q, &first_mp, ill, 13843 &ll_multicast, &mp)) 13844 continue; 13845 } 13846 13847 ASSERT(mp->b_datap->db_type == M_DATA); 13848 ASSERT(mp->b_datap->db_ref == 1); 13849 13850 13851 ipha = (ipha_t *)mp->b_rptr; 13852 len = mp->b_wptr - rptr; 13853 13854 BUMP_MIB(&ip_mib, ipInReceives); 13855 13856 /* 13857 * IP header ptr not aligned? 13858 * OR IP header not complete in first mblk 13859 */ 13860 if (!OK_32PTR(rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13861 if (!ip_check_and_align_header(q, mp)) 13862 continue; 13863 ipha = (ipha_t *)mp->b_rptr; 13864 len = mp->b_wptr - rptr; 13865 } 13866 13867 /* multiple mblk or too short */ 13868 pkt_len = ntohs(ipha->ipha_length); 13869 len -= pkt_len; 13870 if (len != 0) { 13871 /* 13872 * Make sure we have data length consistent 13873 * with the IP header. 13874 */ 13875 if (mp->b_cont == NULL) { 13876 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 13877 BUMP_MIB(&ip_mib, ipInHdrErrors); 13878 ip2dbg(("ip_input: drop pkt\n")); 13879 freemsg(mp); 13880 continue; 13881 } 13882 mp->b_wptr = rptr + pkt_len; 13883 } else if (len += msgdsize(mp->b_cont)) { 13884 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 13885 BUMP_MIB(&ip_mib, ipInHdrErrors); 13886 ip2dbg(("ip_input: drop pkt\n")); 13887 freemsg(mp); 13888 continue; 13889 } 13890 (void) adjmsg(mp, -len); 13891 IP_STAT(ip_multimblk3); 13892 } 13893 } 13894 13895 if (ip_loopback_src_or_dst(ipha, ill)) { 13896 ip2dbg(("ip_input: drop pkt\n")); 13897 freemsg(mp); 13898 continue; 13899 } 13900 13901 /* 13902 * Attach any necessary label information to this packet. 13903 */ 13904 if (is_system_labeled() && 13905 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 13906 BUMP_MIB(&ip_mib, ipInDiscards); 13907 freemsg(mp); 13908 continue; 13909 } 13910 13911 opt_len = ipha->ipha_version_and_hdr_length - 13912 IP_SIMPLE_HDR_VERSION; 13913 /* IP version bad or there are IP options */ 13914 if (opt_len) { 13915 if (len != 0) 13916 IP_STAT(ip_multimblk4); 13917 else 13918 IP_STAT(ip_ipoptions); 13919 if (!ip_rput_multimblk_ipoptions(q, mp, &ipha, &dst)) 13920 continue; 13921 } else { 13922 dst = ipha->ipha_dst; 13923 } 13924 13925 /* 13926 * Invoke the CGTP (multirouting) filtering module to process 13927 * the incoming packet. Packets identified as duplicates 13928 * must be discarded. Filtering is active only if the 13929 * the ip_cgtp_filter ndd variable is non-zero. 13930 */ 13931 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 13932 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL)) { 13933 cgtp_flt_pkt = 13934 ip_cgtp_filter_ops->cfo_filter(q, mp); 13935 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 13936 freemsg(first_mp); 13937 continue; 13938 } 13939 } 13940 13941 /* 13942 * If rsvpd is running, let RSVP daemon handle its processing 13943 * and forwarding of RSVP multicast/unicast packets. 13944 * If rsvpd is not running but mrouted is running, RSVP 13945 * multicast packets are forwarded as multicast traffic 13946 * and RSVP unicast packets are forwarded by unicast router. 13947 * If neither rsvpd nor mrouted is running, RSVP multicast 13948 * packets are not forwarded, but the unicast packets are 13949 * forwarded like unicast traffic. 13950 */ 13951 if (ipha->ipha_protocol == IPPROTO_RSVP && 13952 ipcl_proto_search(IPPROTO_RSVP) != NULL) { 13953 /* RSVP packet and rsvpd running. Treat as ours */ 13954 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 13955 /* 13956 * This assumes that we deliver to all streams for 13957 * multicast and broadcast packets. 13958 * We have to force ll_multicast to 1 to handle the 13959 * M_DATA messages passed in from ip_mroute_decap. 13960 */ 13961 dst = INADDR_BROADCAST; 13962 ll_multicast = 1; 13963 } else if (CLASSD(dst)) { 13964 /* packet is multicast */ 13965 mp->b_next = NULL; 13966 if (ip_rput_process_multicast(q, mp, ill, ipha, 13967 &ll_multicast, &dst)) 13968 continue; 13969 } 13970 13971 13972 /* 13973 * Check if the packet is coming from the Mobile IP 13974 * forward tunnel interface 13975 */ 13976 if (ill->ill_srcif_refcnt > 0) { 13977 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 13978 NULL, ill, MATCH_IRE_TYPE); 13979 if (ire != NULL && ire->ire_dlureq_mp == NULL && 13980 ire->ire_ipif->ipif_net_type == 13981 IRE_IF_RESOLVER) { 13982 /* We need to resolve the link layer info */ 13983 ire_refrele(ire); 13984 ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 13985 ll_multicast, dst); 13986 continue; 13987 } 13988 } 13989 13990 if (ire == NULL) { 13991 ire = ire_cache_lookup(dst, ALL_ZONES, 13992 MBLK_GETLABEL(mp)); 13993 } 13994 13995 /* 13996 * If mipagent is running and reverse tunnel is created as per 13997 * mobile node request, then any packet coming through the 13998 * incoming interface from the mobile-node, should be reverse 13999 * tunneled to it's home agent except those that are destined 14000 * to foreign agent only. 14001 * This needs source address based ire lookup. The routing 14002 * entries for source address based lookup are only created by 14003 * mipagent program only when a reverse tunnel is created. 14004 * Reference : RFC2002, RFC2344 14005 */ 14006 if (ill->ill_mrtun_refcnt > 0) { 14007 ipaddr_t srcaddr; 14008 ire_t *tmp_ire; 14009 14010 tmp_ire = ire; /* Save, we might need it later */ 14011 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 14012 ire->ire_type != IRE_BROADCAST)) { 14013 srcaddr = ipha->ipha_src; 14014 ire = ire_mrtun_lookup(srcaddr, ill); 14015 if (ire != NULL) { 14016 /* 14017 * Should not be getting iphada packet 14018 * here. we should only get those for 14019 * IRE_LOCAL traffic, excluded above. 14020 * Fail-safe (drop packet) in the event 14021 * hardware is misbehaving. 14022 */ 14023 if (first_mp != mp) { 14024 /* IPsec KSTATS: beancount me */ 14025 freemsg(first_mp); 14026 } else { 14027 /* 14028 * This packet must be forwarded 14029 * to Reverse Tunnel 14030 */ 14031 ip_mrtun_forward(ire, ill, mp); 14032 } 14033 ire_refrele(ire); 14034 if (tmp_ire != NULL) 14035 ire_refrele(tmp_ire); 14036 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14037 "ip_input_end: q %p (%S)", 14038 q, "uninit"); 14039 continue; 14040 } 14041 } 14042 /* 14043 * If this packet is from a non-mobilenode or a 14044 * mobile-node which does not request reverse 14045 * tunnel service 14046 */ 14047 ire = tmp_ire; 14048 } 14049 14050 14051 /* 14052 * If we reach here that means the incoming packet satisfies 14053 * one of the following conditions: 14054 * - packet is from a mobile node which does not request 14055 * reverse tunnel 14056 * - packet is from a non-mobile node, which is the most 14057 * common case 14058 * - packet is from a reverse tunnel enabled mobile node 14059 * and destined to foreign agent only 14060 */ 14061 14062 if (ire == NULL) { 14063 /* 14064 * No IRE for this destination, so it can't be for us. 14065 * Unless we are forwarding, drop the packet. 14066 * We have to let source routed packets through 14067 * since we don't yet know if they are 'ping -l' 14068 * packets i.e. if they will go out over the 14069 * same interface as they came in on. 14070 */ 14071 ip_rput_noire(q, NULL, mp, ll_multicast, dst); 14072 continue; 14073 } 14074 14075 /* 14076 * Broadcast IRE may indicate either broadcast or 14077 * multicast packet 14078 */ 14079 if (ire->ire_type == IRE_BROADCAST) { 14080 /* 14081 * Skip broadcast checks if packet is UDP multicast; 14082 * we'd rather not enter ip_rput_process_broadcast() 14083 * unless the packet is broadcast for real, since 14084 * that routine is a no-op for multicast. 14085 */ 14086 if ((ipha->ipha_protocol != IPPROTO_UDP || 14087 !CLASSD(ipha->ipha_dst)) && 14088 ip_rput_process_broadcast(&q, mp, &ire, ipha, ill, 14089 dst, cgtp_flt_pkt, ll_multicast)) { 14090 continue; 14091 } 14092 } else if (ire->ire_stq != NULL) { 14093 /* fowarding? */ 14094 ip_rput_process_forward(q, mp, ire, ipha, ill, 14095 ll_multicast); 14096 continue; 14097 } 14098 14099 /* packet not for us */ 14100 if (ire->ire_rfq != q) { 14101 if (ip_rput_notforus(&q, mp, ire, ill)) { 14102 continue; 14103 } 14104 } 14105 14106 switch (ipha->ipha_protocol) { 14107 case IPPROTO_TCP: 14108 ASSERT(first_mp == mp); 14109 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 14110 mp, 0, q, ip_ring)) != NULL) { 14111 if (curr_sqp == NULL) { 14112 curr_sqp = GET_SQUEUE(mp); 14113 ASSERT(cnt == 0); 14114 cnt++; 14115 head = tail = mp; 14116 } else if (curr_sqp == GET_SQUEUE(mp)) { 14117 ASSERT(tail != NULL); 14118 cnt++; 14119 tail->b_next = mp; 14120 tail = mp; 14121 } else { 14122 /* 14123 * A different squeue. Send the 14124 * chain for the previous squeue on 14125 * its way. This shouldn't happen 14126 * often unless interrupt binding 14127 * changes. 14128 */ 14129 IP_STAT(ip_input_multi_squeue); 14130 squeue_enter_chain(curr_sqp, head, 14131 tail, cnt, SQTAG_IP_INPUT); 14132 curr_sqp = GET_SQUEUE(mp); 14133 head = mp; 14134 tail = mp; 14135 cnt = 1; 14136 } 14137 } 14138 IRE_REFRELE(ire); 14139 continue; 14140 case IPPROTO_UDP: 14141 ASSERT(first_mp == mp); 14142 ip_udp_input(q, mp, ipha, ire, ill); 14143 IRE_REFRELE(ire); 14144 continue; 14145 case IPPROTO_SCTP: 14146 ASSERT(first_mp == mp); 14147 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 14148 q, dst); 14149 continue; 14150 default: 14151 ip_proto_input(q, first_mp, ipha, ire, ill); 14152 IRE_REFRELE(ire); 14153 continue; 14154 } 14155 } 14156 14157 if (head != NULL) 14158 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 14159 14160 /* 14161 * This code is there just to make netperf/ttcp look good. 14162 * 14163 * Its possible that after being in polling mode (and having cleared 14164 * the backlog), squeues have turned the interrupt frequency higher 14165 * to improve latency at the expense of more CPU utilization (less 14166 * packets per interrupts or more number of interrupts). Workloads 14167 * like ttcp/netperf do manage to tickle polling once in a while 14168 * but for the remaining time, stay in higher interrupt mode since 14169 * their packet arrival rate is pretty uniform and this shows up 14170 * as higher CPU utilization. Since people care about CPU utilization 14171 * while running netperf/ttcp, turn the interrupt frequency back to 14172 * normal/default if polling has not been used in ip_poll_normal_ticks. 14173 */ 14174 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 14175 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 14176 ip_ring->rr_poll_state &= ~ILL_POLLING; 14177 ip_ring->rr_blank(ip_ring->rr_handle, 14178 ip_ring->rr_normal_blank_time, 14179 ip_ring->rr_normal_pkt_cnt); 14180 } 14181 } 14182 14183 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14184 "ip_input_end: q %p (%S)", q, "end"); 14185 #undef rptr 14186 } 14187 14188 static void 14189 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 14190 t_uscalar_t err) 14191 { 14192 if (dl_err == DL_SYSERR) { 14193 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14194 "%s: %s failed: DL_SYSERR (errno %u)\n", 14195 ill->ill_name, dlpi_prim_str(prim), err); 14196 return; 14197 } 14198 14199 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14200 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 14201 dlpi_err_str(dl_err)); 14202 } 14203 14204 /* 14205 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 14206 * than DL_UNITDATA_IND messages. If we need to process this message 14207 * exclusively, we call qwriter_ip, in which case we also need to call 14208 * ill_refhold before that, since qwriter_ip does an ill_refrele. 14209 */ 14210 void 14211 ip_rput_dlpi(queue_t *q, mblk_t *mp) 14212 { 14213 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 14214 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 14215 ill_t *ill; 14216 14217 ip1dbg(("ip_rput_dlpi")); 14218 ill = (ill_t *)q->q_ptr; 14219 switch (dloa->dl_primitive) { 14220 case DL_ERROR_ACK: 14221 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 14222 "%s (0x%x), unix %u\n", ill->ill_name, 14223 dlpi_prim_str(dlea->dl_error_primitive), 14224 dlea->dl_error_primitive, 14225 dlpi_err_str(dlea->dl_errno), 14226 dlea->dl_errno, 14227 dlea->dl_unix_errno)); 14228 switch (dlea->dl_error_primitive) { 14229 case DL_UNBIND_REQ: 14230 mutex_enter(&ill->ill_lock); 14231 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 14232 cv_signal(&ill->ill_cv); 14233 mutex_exit(&ill->ill_lock); 14234 /* FALLTHRU */ 14235 case DL_NOTIFY_REQ: 14236 case DL_ATTACH_REQ: 14237 case DL_DETACH_REQ: 14238 case DL_INFO_REQ: 14239 case DL_BIND_REQ: 14240 case DL_ENABMULTI_REQ: 14241 case DL_PHYS_ADDR_REQ: 14242 case DL_CAPABILITY_REQ: 14243 case DL_CONTROL_REQ: 14244 /* 14245 * Refhold the ill to match qwriter_ip which does a 14246 * refrele. Since this is on the ill stream we 14247 * unconditionally bump up the refcount without 14248 * checking for ILL_CAN_LOOKUP 14249 */ 14250 ill_refhold(ill); 14251 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14252 CUR_OP, B_FALSE); 14253 return; 14254 case DL_DISABMULTI_REQ: 14255 freemsg(mp); /* Don't want to pass this up */ 14256 return; 14257 default: 14258 break; 14259 } 14260 ip_dlpi_error(ill, dlea->dl_error_primitive, 14261 dlea->dl_errno, dlea->dl_unix_errno); 14262 freemsg(mp); 14263 return; 14264 case DL_INFO_ACK: 14265 case DL_BIND_ACK: 14266 case DL_PHYS_ADDR_ACK: 14267 case DL_NOTIFY_ACK: 14268 case DL_CAPABILITY_ACK: 14269 case DL_CONTROL_ACK: 14270 /* 14271 * Refhold the ill to match qwriter_ip which does a refrele 14272 * Since this is on the ill stream we unconditionally 14273 * bump up the refcount without doing ILL_CAN_LOOKUP. 14274 */ 14275 ill_refhold(ill); 14276 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14277 CUR_OP, B_FALSE); 14278 return; 14279 case DL_NOTIFY_IND: 14280 ill_refhold(ill); 14281 /* 14282 * The DL_NOTIFY_IND is an asynchronous message that has no 14283 * relation to the current ioctl in progress (if any). Hence we 14284 * pass in NEW_OP in this case. 14285 */ 14286 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14287 NEW_OP, B_FALSE); 14288 return; 14289 case DL_OK_ACK: 14290 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 14291 dlpi_prim_str((int)dloa->dl_correct_primitive))); 14292 switch (dloa->dl_correct_primitive) { 14293 case DL_UNBIND_REQ: 14294 mutex_enter(&ill->ill_lock); 14295 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 14296 cv_signal(&ill->ill_cv); 14297 mutex_exit(&ill->ill_lock); 14298 /* FALLTHRU */ 14299 case DL_ATTACH_REQ: 14300 case DL_DETACH_REQ: 14301 /* 14302 * Refhold the ill to match qwriter_ip which does a 14303 * refrele. Since this is on the ill stream we 14304 * unconditionally bump up the refcount 14305 */ 14306 ill_refhold(ill); 14307 qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14308 CUR_OP, B_FALSE); 14309 return; 14310 case DL_ENABMULTI_REQ: 14311 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 14312 ill->ill_dlpi_multicast_state = IDMS_OK; 14313 break; 14314 14315 } 14316 break; 14317 default: 14318 break; 14319 } 14320 freemsg(mp); 14321 } 14322 14323 /* 14324 * Handling of DLPI messages that require exclusive access to the ipsq. 14325 * 14326 * Need to do ill_pending_mp_release on ioctl completion, which could 14327 * happen here. (along with mi_copy_done) 14328 */ 14329 /* ARGSUSED */ 14330 static void 14331 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 14332 { 14333 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 14334 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 14335 int err = 0; 14336 ill_t *ill; 14337 ipif_t *ipif = NULL; 14338 mblk_t *mp1 = NULL; 14339 conn_t *connp = NULL; 14340 t_uscalar_t physaddr_req; 14341 mblk_t *mp_hw; 14342 union DL_primitives *dlp; 14343 boolean_t success; 14344 boolean_t ioctl_aborted = B_FALSE; 14345 boolean_t log = B_TRUE; 14346 14347 ip1dbg(("ip_rput_dlpi_writer ..")); 14348 ill = (ill_t *)q->q_ptr; 14349 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 14350 14351 ASSERT(IAM_WRITER_ILL(ill)); 14352 14353 /* 14354 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 14355 * both are null or non-null. However we can assert that only 14356 * after grabbing the ipsq_lock. So we don't make any assertion 14357 * here and in other places in the code. 14358 */ 14359 ipif = ipsq->ipsq_pending_ipif; 14360 /* 14361 * The current ioctl could have been aborted by the user and a new 14362 * ioctl to bring up another ill could have started. We could still 14363 * get a response from the driver later. 14364 */ 14365 if (ipif != NULL && ipif->ipif_ill != ill) 14366 ioctl_aborted = B_TRUE; 14367 14368 switch (dloa->dl_primitive) { 14369 case DL_ERROR_ACK: 14370 switch (dlea->dl_error_primitive) { 14371 case DL_UNBIND_REQ: 14372 case DL_ATTACH_REQ: 14373 case DL_DETACH_REQ: 14374 case DL_INFO_REQ: 14375 ill_dlpi_done(ill, dlea->dl_error_primitive); 14376 break; 14377 case DL_NOTIFY_REQ: 14378 ill_dlpi_done(ill, DL_NOTIFY_REQ); 14379 log = B_FALSE; 14380 break; 14381 case DL_PHYS_ADDR_REQ: 14382 /* 14383 * For IPv6 only, there are two additional 14384 * phys_addr_req's sent to the driver to get the 14385 * IPv6 token and lla. This allows IP to acquire 14386 * the hardware address format for a given interface 14387 * without having built in knowledge of the hardware 14388 * address. ill_phys_addr_pend keeps track of the last 14389 * DL_PAR sent so we know which response we are 14390 * dealing with. ill_dlpi_done will update 14391 * ill_phys_addr_pend when it sends the next req. 14392 * We don't complete the IOCTL until all three DL_PARs 14393 * have been attempted, so set *_len to 0 and break. 14394 */ 14395 physaddr_req = ill->ill_phys_addr_pend; 14396 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 14397 if (physaddr_req == DL_IPV6_TOKEN) { 14398 ill->ill_token_length = 0; 14399 log = B_FALSE; 14400 break; 14401 } else if (physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 14402 ill->ill_nd_lla_len = 0; 14403 log = B_FALSE; 14404 break; 14405 } 14406 /* 14407 * Something went wrong with the DL_PHYS_ADDR_REQ. 14408 * We presumably have an IOCTL hanging out waiting 14409 * for completion. Find it and complete the IOCTL 14410 * with the error noted. 14411 * However, ill_dl_phys was called on an ill queue 14412 * (from SIOCSLIFNAME), thus conn_pending_ill is not 14413 * set. But the ioctl is known to be pending on ill_wq. 14414 */ 14415 if (!ill->ill_ifname_pending) 14416 break; 14417 ill->ill_ifname_pending = 0; 14418 if (!ioctl_aborted) 14419 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14420 if (mp1 != NULL) { 14421 /* 14422 * This operation (SIOCSLIFNAME) must have 14423 * happened on the ill. Assert there is no conn 14424 */ 14425 ASSERT(connp == NULL); 14426 q = ill->ill_wq; 14427 } 14428 break; 14429 case DL_BIND_REQ: 14430 ill_dlpi_done(ill, DL_BIND_REQ); 14431 if (ill->ill_ifname_pending) 14432 break; 14433 /* 14434 * Something went wrong with the bind. We presumably 14435 * have an IOCTL hanging out waiting for completion. 14436 * Find it, take down the interface that was coming 14437 * up, and complete the IOCTL with the error noted. 14438 */ 14439 if (!ioctl_aborted) 14440 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14441 if (mp1 != NULL) { 14442 /* 14443 * This operation (SIOCSLIFFLAGS) must have 14444 * happened from a conn. 14445 */ 14446 ASSERT(connp != NULL); 14447 q = CONNP_TO_WQ(connp); 14448 if (ill->ill_move_in_progress) { 14449 ILL_CLEAR_MOVE(ill); 14450 } 14451 (void) ipif_down(ipif, NULL, NULL); 14452 /* error is set below the switch */ 14453 } 14454 break; 14455 case DL_ENABMULTI_REQ: 14456 ip1dbg(("DL_ERROR_ACK to enabmulti\n")); 14457 14458 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 14459 ill->ill_dlpi_multicast_state = IDMS_FAILED; 14460 if (ill->ill_dlpi_multicast_state == IDMS_FAILED) { 14461 ipif_t *ipif; 14462 14463 log = B_FALSE; 14464 printf("ip: joining multicasts failed (%d)" 14465 " on %s - will use link layer " 14466 "broadcasts for multicast\n", 14467 dlea->dl_errno, ill->ill_name); 14468 14469 /* 14470 * Set up the multicast mapping alone. 14471 * writer, so ok to access ill->ill_ipif 14472 * without any lock. 14473 */ 14474 ipif = ill->ill_ipif; 14475 mutex_enter(&ill->ill_phyint->phyint_lock); 14476 ill->ill_phyint->phyint_flags |= 14477 PHYI_MULTI_BCAST; 14478 mutex_exit(&ill->ill_phyint->phyint_lock); 14479 14480 if (!ill->ill_isv6) { 14481 (void) ipif_arp_setup_multicast(ipif, 14482 NULL); 14483 } else { 14484 (void) ipif_ndp_setup_multicast(ipif, 14485 NULL); 14486 } 14487 } 14488 freemsg(mp); /* Don't want to pass this up */ 14489 return; 14490 case DL_CAPABILITY_REQ: 14491 case DL_CONTROL_REQ: 14492 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 14493 "DL_CAPABILITY/CONTROL REQ\n")); 14494 ill_dlpi_done(ill, dlea->dl_error_primitive); 14495 ill->ill_capab_state = IDMS_FAILED; 14496 freemsg(mp); 14497 return; 14498 } 14499 /* 14500 * Note the error for IOCTL completion (mp1 is set when 14501 * ready to complete ioctl). If ill_ifname_pending_err is 14502 * set, an error occured during plumbing (ill_ifname_pending), 14503 * so we want to report that error. 14504 * 14505 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 14506 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 14507 * expected to get errack'd if the driver doesn't support 14508 * these flags (e.g. ethernet). log will be set to B_FALSE 14509 * if these error conditions are encountered. 14510 */ 14511 if (mp1 != NULL) { 14512 if (ill->ill_ifname_pending_err != 0) { 14513 err = ill->ill_ifname_pending_err; 14514 ill->ill_ifname_pending_err = 0; 14515 } else { 14516 err = dlea->dl_unix_errno ? 14517 dlea->dl_unix_errno : ENXIO; 14518 } 14519 /* 14520 * If we're plumbing an interface and an error hasn't already 14521 * been saved, set ill_ifname_pending_err to the error passed 14522 * up. Ignore the error if log is B_FALSE (see comment above). 14523 */ 14524 } else if (log && ill->ill_ifname_pending && 14525 ill->ill_ifname_pending_err == 0) { 14526 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 14527 dlea->dl_unix_errno : ENXIO; 14528 } 14529 14530 if (log) 14531 ip_dlpi_error(ill, dlea->dl_error_primitive, 14532 dlea->dl_errno, dlea->dl_unix_errno); 14533 break; 14534 case DL_CAPABILITY_ACK: { 14535 boolean_t reneg_flag = B_FALSE; 14536 /* Call a routine to handle this one. */ 14537 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 14538 /* 14539 * Check if the ACK is due to renegotiation case since we 14540 * will need to send a new CAPABILITY_REQ later. 14541 */ 14542 if (ill->ill_capab_state == IDMS_RENEG) { 14543 /* This is the ack for a renogiation case */ 14544 reneg_flag = B_TRUE; 14545 ill->ill_capab_state = IDMS_UNKNOWN; 14546 } 14547 ill_capability_ack(ill, mp); 14548 if (reneg_flag) 14549 ill_capability_probe(ill); 14550 break; 14551 } 14552 case DL_CONTROL_ACK: 14553 /* We treat all of these as "fire and forget" */ 14554 ill_dlpi_done(ill, DL_CONTROL_REQ); 14555 break; 14556 case DL_INFO_ACK: 14557 /* Call a routine to handle this one. */ 14558 ill_dlpi_done(ill, DL_INFO_REQ); 14559 ip_ll_subnet_defaults(ill, mp); 14560 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 14561 return; 14562 case DL_BIND_ACK: 14563 /* 14564 * We should have an IOCTL waiting on this unless 14565 * sent by ill_dl_phys, in which case just return 14566 */ 14567 ill_dlpi_done(ill, DL_BIND_REQ); 14568 if (ill->ill_ifname_pending) 14569 break; 14570 14571 if (!ioctl_aborted) 14572 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14573 if (mp1 == NULL) 14574 break; 14575 ASSERT(connp != NULL); 14576 q = CONNP_TO_WQ(connp); 14577 14578 /* 14579 * We are exclusive. So nothing can change even after 14580 * we get the pending mp. If need be we can put it back 14581 * and restart, as in calling ipif_arp_up() below. 14582 */ 14583 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 14584 14585 mutex_enter(&ill->ill_lock); 14586 ill->ill_dl_up = 1; 14587 mutex_exit(&ill->ill_lock); 14588 14589 /* 14590 * Now bring up the resolver, when that is 14591 * done we'll create IREs and we are done. 14592 */ 14593 if (ill->ill_isv6) { 14594 /* 14595 * v6 interfaces. 14596 * Unlike ARP which has to do another bind 14597 * and attach, once we get here we are 14598 * done withh NDP. Except in the case of 14599 * ILLF_XRESOLV, in which case we send an 14600 * AR_INTERFACE_UP to the external resolver. 14601 * If all goes well, the ioctl will complete 14602 * in ip_rput(). If there's an error, we 14603 * complete it here. 14604 */ 14605 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 14606 B_FALSE); 14607 if (err == 0) { 14608 if (ill->ill_flags & ILLF_XRESOLV) { 14609 mutex_enter(&connp->conn_lock); 14610 mutex_enter(&ill->ill_lock); 14611 success = ipsq_pending_mp_add( 14612 connp, ipif, q, mp1, 0); 14613 mutex_exit(&ill->ill_lock); 14614 mutex_exit(&connp->conn_lock); 14615 if (success) { 14616 err = ipif_resolver_up(ipif, 14617 B_FALSE); 14618 if (err == EINPROGRESS) { 14619 freemsg(mp); 14620 return; 14621 } 14622 ASSERT(err != 0); 14623 mp1 = ipsq_pending_mp_get(ipsq, 14624 &connp); 14625 ASSERT(mp1 != NULL); 14626 } else { 14627 /* conn has started closing */ 14628 err = EINTR; 14629 } 14630 } else { /* Non XRESOLV interface */ 14631 err = ipif_up_done_v6(ipif); 14632 } 14633 } 14634 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 14635 /* 14636 * ARP and other v4 external resolvers. 14637 * Leave the pending mblk intact so that 14638 * the ioctl completes in ip_rput(). 14639 */ 14640 mutex_enter(&connp->conn_lock); 14641 mutex_enter(&ill->ill_lock); 14642 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 14643 mutex_exit(&ill->ill_lock); 14644 mutex_exit(&connp->conn_lock); 14645 if (success) { 14646 err = ipif_resolver_up(ipif, B_FALSE); 14647 if (err == EINPROGRESS) { 14648 freemsg(mp); 14649 return; 14650 } 14651 ASSERT(err != 0); 14652 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14653 } else { 14654 /* The conn has started closing */ 14655 err = EINTR; 14656 } 14657 } else { 14658 /* 14659 * This one is complete. Reply to pending ioctl. 14660 */ 14661 err = ipif_up_done(ipif); 14662 } 14663 14664 if ((err == 0) && (ill->ill_up_ipifs)) { 14665 err = ill_up_ipifs(ill, q, mp1); 14666 if (err == EINPROGRESS) { 14667 freemsg(mp); 14668 return; 14669 } 14670 } 14671 14672 if (ill->ill_up_ipifs) { 14673 ill_group_cleanup(ill); 14674 } 14675 14676 break; 14677 case DL_NOTIFY_IND: { 14678 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 14679 ire_t *ire; 14680 boolean_t need_ire_walk_v4 = B_FALSE; 14681 boolean_t need_ire_walk_v6 = B_FALSE; 14682 14683 /* 14684 * Change the address everywhere we need to. 14685 * What we're getting here is a link-level addr or phys addr. 14686 * The new addr is at notify + notify->dl_addr_offset 14687 * The address length is notify->dl_addr_length; 14688 */ 14689 switch (notify->dl_notification) { 14690 case DL_NOTE_PHYS_ADDR: 14691 mp_hw = copyb(mp); 14692 if (mp_hw == NULL) { 14693 err = ENOMEM; 14694 break; 14695 } 14696 dlp = (union DL_primitives *)mp_hw->b_rptr; 14697 /* 14698 * We currently don't support changing 14699 * the token via DL_NOTIFY_IND. 14700 * When we do support it, we have to consider 14701 * what the implications are with respect to 14702 * the token and the link local address. 14703 */ 14704 mutex_enter(&ill->ill_lock); 14705 if (dlp->notify_ind.dl_data == 14706 DL_IPV6_LINK_LAYER_ADDR) { 14707 if (ill->ill_nd_lla_mp != NULL) 14708 freemsg(ill->ill_nd_lla_mp); 14709 ill->ill_nd_lla_mp = mp_hw; 14710 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 14711 dlp->notify_ind.dl_addr_offset; 14712 ill->ill_nd_lla_len = 14713 dlp->notify_ind.dl_addr_length - 14714 ABS(ill->ill_sap_length); 14715 mutex_exit(&ill->ill_lock); 14716 break; 14717 } else if (dlp->notify_ind.dl_data == 14718 DL_CURR_PHYS_ADDR) { 14719 if (ill->ill_phys_addr_mp != NULL) 14720 freemsg(ill->ill_phys_addr_mp); 14721 ill->ill_phys_addr_mp = mp_hw; 14722 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 14723 dlp->notify_ind.dl_addr_offset; 14724 ill->ill_phys_addr_length = 14725 dlp->notify_ind.dl_addr_length - 14726 ABS(ill->ill_sap_length); 14727 if (ill->ill_isv6 && 14728 !(ill->ill_flags & ILLF_XRESOLV)) { 14729 if (ill->ill_nd_lla_mp != NULL) 14730 freemsg(ill->ill_nd_lla_mp); 14731 ill->ill_nd_lla_mp = copyb(mp_hw); 14732 ill->ill_nd_lla = (uchar_t *) 14733 ill->ill_nd_lla_mp->b_rptr + 14734 dlp->notify_ind.dl_addr_offset; 14735 ill->ill_nd_lla_len = 14736 ill->ill_phys_addr_length; 14737 } 14738 } 14739 mutex_exit(&ill->ill_lock); 14740 /* 14741 * Send out gratuitous arp request for our new 14742 * hardware address. 14743 */ 14744 for (ipif = ill->ill_ipif; ipif != NULL; 14745 ipif = ipif->ipif_next) { 14746 if (!(ipif->ipif_flags & IPIF_UP)) 14747 continue; 14748 if (ill->ill_isv6) { 14749 ipif_ndp_down(ipif); 14750 /* 14751 * Set B_TRUE to enable 14752 * ipif_ndp_up() to send out 14753 * unsolicited advertisements. 14754 */ 14755 err = ipif_ndp_up(ipif, 14756 &ipif->ipif_v6lcl_addr, 14757 B_TRUE); 14758 if (err) { 14759 ip1dbg(( 14760 "ip_rput_dlpi_writer: " 14761 "Failed to update ndp " 14762 "err %d\n", err)); 14763 } 14764 } else { 14765 /* 14766 * IPv4 ARP case 14767 * 14768 * Set B_TRUE, as we only want 14769 * ipif_resolver_up to send an 14770 * AR_ENTRY_ADD request up to 14771 * ARP. 14772 */ 14773 err = ipif_resolver_up(ipif, 14774 B_TRUE); 14775 if (err) { 14776 ip1dbg(( 14777 "ip_rput_dlpi_writer: " 14778 "Failed to update arp " 14779 "err %d\n", err)); 14780 } 14781 } 14782 } 14783 /* 14784 * Allow "fall through" to the DL_NOTE_FASTPATH_FLUSH 14785 * case so that all old fastpath information can be 14786 * purged from IRE caches. 14787 */ 14788 /* FALLTHRU */ 14789 case DL_NOTE_FASTPATH_FLUSH: 14790 /* 14791 * Any fastpath probe sent henceforth will get the 14792 * new fp mp. So we first delete any ires that are 14793 * waiting for the fastpath. Then walk all ires and 14794 * delete the ire or delete the fp mp. In the case of 14795 * IRE_MIPRTUN and IRE_BROADCAST it is difficult to 14796 * recreate the ire's without going through a complex 14797 * ipif up/down dance. So we don't delete the ire 14798 * itself, but just the ire_fp_mp for these 2 ire's 14799 * In the case of the other ire's we delete the ire's 14800 * themselves. Access to ire_fp_mp is completely 14801 * protected by ire_lock for IRE_MIPRTUN and 14802 * IRE_BROADCAST. Deleting the ire is preferable in the 14803 * other cases for performance. 14804 */ 14805 if (ill->ill_isv6) { 14806 nce_fastpath_list_dispatch(ill, NULL, NULL); 14807 ndp_walk(ill, (pfi_t)ndp_fastpath_flush, 14808 NULL); 14809 } else { 14810 ire_fastpath_list_dispatch(ill, NULL, NULL); 14811 ire_walk_ill_v4(MATCH_IRE_WQ | MATCH_IRE_TYPE, 14812 IRE_CACHE | IRE_BROADCAST, 14813 ire_fastpath_flush, NULL, ill); 14814 mutex_enter(&ire_mrtun_lock); 14815 if (ire_mrtun_count != 0) { 14816 mutex_exit(&ire_mrtun_lock); 14817 ire_walk_ill_mrtun(MATCH_IRE_WQ, 14818 IRE_MIPRTUN, ire_fastpath_flush, 14819 NULL, ill); 14820 } else { 14821 mutex_exit(&ire_mrtun_lock); 14822 } 14823 } 14824 break; 14825 case DL_NOTE_SDU_SIZE: 14826 /* 14827 * Change the MTU size of the interface, of all 14828 * attached ipif's, and of all relevant ire's. The 14829 * new value's a uint32_t at notify->dl_data. 14830 * Mtu change Vs. new ire creation - protocol below. 14831 * 14832 * a Mark the ipif as IPIF_CHANGING. 14833 * b Set the new mtu in the ipif. 14834 * c Change the ire_max_frag on all affected ires 14835 * d Unmark the IPIF_CHANGING 14836 * 14837 * To see how the protocol works, assume an interface 14838 * route is also being added simultaneously by 14839 * ip_rt_add and let 'ipif' be the ipif referenced by 14840 * the ire. If the ire is created before step a, 14841 * it will be cleaned up by step c. If the ire is 14842 * created after step d, it will see the new value of 14843 * ipif_mtu. Any attempt to create the ire between 14844 * steps a to d will fail because of the IPIF_CHANGING 14845 * flag. Note that ire_create() is passed a pointer to 14846 * the ipif_mtu, and not the value. During ire_add 14847 * under the bucket lock, the ire_max_frag of the 14848 * new ire being created is set from the ipif/ire from 14849 * which it is being derived. 14850 */ 14851 mutex_enter(&ill->ill_lock); 14852 ill->ill_max_frag = (uint_t)notify->dl_data; 14853 14854 /* 14855 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 14856 * leave it alone 14857 */ 14858 if (ill->ill_mtu_userspecified) { 14859 mutex_exit(&ill->ill_lock); 14860 break; 14861 } 14862 ill->ill_max_mtu = ill->ill_max_frag; 14863 if (ill->ill_isv6) { 14864 if (ill->ill_max_mtu < IPV6_MIN_MTU) 14865 ill->ill_max_mtu = IPV6_MIN_MTU; 14866 } else { 14867 if (ill->ill_max_mtu < IP_MIN_MTU) 14868 ill->ill_max_mtu = IP_MIN_MTU; 14869 } 14870 for (ipif = ill->ill_ipif; ipif != NULL; 14871 ipif = ipif->ipif_next) { 14872 /* 14873 * Don't override the mtu if the user 14874 * has explicitly set it. 14875 */ 14876 if (ipif->ipif_flags & IPIF_FIXEDMTU) 14877 continue; 14878 ipif->ipif_mtu = (uint_t)notify->dl_data; 14879 if (ipif->ipif_isv6) 14880 ire = ipif_to_ire_v6(ipif); 14881 else 14882 ire = ipif_to_ire(ipif); 14883 if (ire != NULL) { 14884 ire->ire_max_frag = ipif->ipif_mtu; 14885 ire_refrele(ire); 14886 } 14887 if (ipif->ipif_flags & IPIF_UP) { 14888 if (ill->ill_isv6) 14889 need_ire_walk_v6 = B_TRUE; 14890 else 14891 need_ire_walk_v4 = B_TRUE; 14892 } 14893 } 14894 mutex_exit(&ill->ill_lock); 14895 if (need_ire_walk_v4) 14896 ire_walk_v4(ill_mtu_change, (char *)ill, 14897 ALL_ZONES); 14898 if (need_ire_walk_v6) 14899 ire_walk_v6(ill_mtu_change, (char *)ill, 14900 ALL_ZONES); 14901 break; 14902 case DL_NOTE_LINK_UP: 14903 case DL_NOTE_LINK_DOWN: { 14904 /* 14905 * We are writer. ill / phyint / ipsq assocs stable. 14906 * The RUNNING flag reflects the state of the link. 14907 */ 14908 phyint_t *phyint = ill->ill_phyint; 14909 uint64_t new_phyint_flags; 14910 boolean_t changed = B_FALSE; 14911 14912 mutex_enter(&phyint->phyint_lock); 14913 new_phyint_flags = 14914 (notify->dl_notification == DL_NOTE_LINK_UP) ? 14915 phyint->phyint_flags | PHYI_RUNNING : 14916 phyint->phyint_flags & ~PHYI_RUNNING; 14917 if (new_phyint_flags != phyint->phyint_flags) { 14918 phyint->phyint_flags = new_phyint_flags; 14919 changed = B_TRUE; 14920 } 14921 mutex_exit(&phyint->phyint_lock); 14922 /* 14923 * If the flags have changed, send a message to 14924 * the routing socket. 14925 */ 14926 if (changed) { 14927 if (phyint->phyint_illv4 != NULL) { 14928 ip_rts_ifmsg( 14929 phyint->phyint_illv4->ill_ipif); 14930 } 14931 if (phyint->phyint_illv6 != NULL) { 14932 ip_rts_ifmsg( 14933 phyint->phyint_illv6->ill_ipif); 14934 } 14935 } 14936 break; 14937 } 14938 case DL_NOTE_PROMISC_ON_PHYS: 14939 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 14940 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 14941 mutex_enter(&ill->ill_lock); 14942 ill->ill_promisc_on_phys = B_TRUE; 14943 mutex_exit(&ill->ill_lock); 14944 break; 14945 case DL_NOTE_PROMISC_OFF_PHYS: 14946 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 14947 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 14948 mutex_enter(&ill->ill_lock); 14949 ill->ill_promisc_on_phys = B_FALSE; 14950 mutex_exit(&ill->ill_lock); 14951 break; 14952 case DL_NOTE_CAPAB_RENEG: 14953 /* 14954 * Something changed on the driver side. 14955 * It wants us to renegotiate the capabilities 14956 * on this ill. The most likely cause is the 14957 * aggregation interface under us where a 14958 * port got added or went away. 14959 * 14960 * We reset the capabilities and set the 14961 * state to IDMS_RENG so that when the ack 14962 * comes back, we can start the 14963 * renegotiation process. 14964 */ 14965 ill_capability_reset(ill); 14966 ill->ill_capab_state = IDMS_RENEG; 14967 break; 14968 default: 14969 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 14970 "type 0x%x for DL_NOTIFY_IND\n", 14971 notify->dl_notification)); 14972 break; 14973 } 14974 14975 /* 14976 * As this is an asynchronous operation, we 14977 * should not call ill_dlpi_done 14978 */ 14979 break; 14980 } 14981 case DL_NOTIFY_ACK: 14982 /* 14983 * Don't really need to check for what notifications 14984 * are supported; we'll process what gets sent upstream, 14985 * and we know it'll be something we support changing 14986 * based on our DL_NOTIFY_REQ. 14987 */ 14988 ill_dlpi_done(ill, DL_NOTIFY_REQ); 14989 break; 14990 case DL_PHYS_ADDR_ACK: { 14991 /* 14992 * We should have an IOCTL waiting on this when request 14993 * sent by ill_dl_phys. 14994 * However, ill_dl_phys was called on an ill queue (from 14995 * SIOCSLIFNAME), thus conn_pending_ill is not set. But the 14996 * ioctl is known to be pending on ill_wq. 14997 * There are two additional phys_addr_req's sent to the 14998 * driver to get the token and lla. ill_phys_addr_pend 14999 * keeps track of the last one sent so we know which 15000 * response we are dealing with. ill_dlpi_done will 15001 * update ill_phys_addr_pend when it sends the next req. 15002 * We don't complete the IOCTL until all three DL_PARs 15003 * have been attempted. 15004 * 15005 * We don't need any lock to update ill_nd_lla* fields, 15006 * since the ill is not yet up, We grab the lock just 15007 * for uniformity with other code that accesses ill_nd_lla. 15008 */ 15009 physaddr_req = ill->ill_phys_addr_pend; 15010 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15011 if (physaddr_req == DL_IPV6_TOKEN || 15012 physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 15013 if (physaddr_req == DL_IPV6_TOKEN) { 15014 /* 15015 * bcopy to low-order bits of ill_token 15016 * 15017 * XXX Temporary hack - currently, 15018 * all known tokens are 64 bits, 15019 * so I'll cheat for the moment. 15020 */ 15021 dlp = (union DL_primitives *)mp->b_rptr; 15022 15023 mutex_enter(&ill->ill_lock); 15024 bcopy((uchar_t *)(mp->b_rptr + 15025 dlp->physaddr_ack.dl_addr_offset), 15026 (void *)&ill->ill_token.s6_addr32[2], 15027 dlp->physaddr_ack.dl_addr_length); 15028 ill->ill_token_length = 15029 dlp->physaddr_ack.dl_addr_length; 15030 mutex_exit(&ill->ill_lock); 15031 } else { 15032 ASSERT(ill->ill_nd_lla_mp == NULL); 15033 mp_hw = copyb(mp); 15034 if (mp_hw == NULL) { 15035 err = ENOMEM; 15036 break; 15037 } 15038 dlp = (union DL_primitives *)mp_hw->b_rptr; 15039 mutex_enter(&ill->ill_lock); 15040 ill->ill_nd_lla_mp = mp_hw; 15041 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 15042 dlp->physaddr_ack.dl_addr_offset; 15043 ill->ill_nd_lla_len = 15044 dlp->physaddr_ack.dl_addr_length; 15045 mutex_exit(&ill->ill_lock); 15046 } 15047 break; 15048 } 15049 ASSERT(physaddr_req == DL_CURR_PHYS_ADDR); 15050 ASSERT(ill->ill_phys_addr_mp == NULL); 15051 if (!ill->ill_ifname_pending) 15052 break; 15053 ill->ill_ifname_pending = 0; 15054 if (!ioctl_aborted) 15055 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15056 if (mp1 != NULL) { 15057 ASSERT(connp == NULL); 15058 q = ill->ill_wq; 15059 } 15060 /* 15061 * If any error acks received during the plumbing sequence, 15062 * ill_ifname_pending_err will be set. Break out and send up 15063 * the error to the pending ioctl. 15064 */ 15065 if (ill->ill_ifname_pending_err != 0) { 15066 err = ill->ill_ifname_pending_err; 15067 ill->ill_ifname_pending_err = 0; 15068 break; 15069 } 15070 /* 15071 * Get the interface token. If the zeroth interface 15072 * address is zero then set the address to the link local 15073 * address 15074 */ 15075 mp_hw = copyb(mp); 15076 if (mp_hw == NULL) { 15077 err = ENOMEM; 15078 break; 15079 } 15080 dlp = (union DL_primitives *)mp_hw->b_rptr; 15081 ill->ill_phys_addr_mp = mp_hw; 15082 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 15083 dlp->physaddr_ack.dl_addr_offset; 15084 if (dlp->physaddr_ack.dl_addr_length == 0 || 15085 ill->ill_phys_addr_length == 0 || 15086 ill->ill_phys_addr_length == IP_ADDR_LEN) { 15087 /* 15088 * Compatibility: atun driver returns a length of 0. 15089 * ipdptp has an ill_phys_addr_length of zero(from 15090 * DL_BIND_ACK) but a non-zero length here. 15091 * ipd has an ill_phys_addr_length of 4(from 15092 * DL_BIND_ACK) but a non-zero length here. 15093 */ 15094 ill->ill_phys_addr = NULL; 15095 } else if (dlp->physaddr_ack.dl_addr_length != 15096 ill->ill_phys_addr_length) { 15097 ip0dbg(("DL_PHYS_ADDR_ACK: " 15098 "Address length mismatch %d %d\n", 15099 dlp->physaddr_ack.dl_addr_length, 15100 ill->ill_phys_addr_length)); 15101 err = EINVAL; 15102 break; 15103 } 15104 mutex_enter(&ill->ill_lock); 15105 if (ill->ill_nd_lla_mp == NULL) { 15106 ill->ill_nd_lla_mp = copyb(mp_hw); 15107 if (ill->ill_nd_lla_mp == NULL) { 15108 err = ENOMEM; 15109 mutex_exit(&ill->ill_lock); 15110 break; 15111 } 15112 ill->ill_nd_lla = 15113 (uchar_t *)ill->ill_nd_lla_mp->b_rptr + 15114 dlp->physaddr_ack.dl_addr_offset; 15115 ill->ill_nd_lla_len = ill->ill_phys_addr_length; 15116 } 15117 mutex_exit(&ill->ill_lock); 15118 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 15119 (void) ill_setdefaulttoken(ill); 15120 15121 /* 15122 * If the ill zero interface has a zero address assign 15123 * it the proper link local address. 15124 */ 15125 ASSERT(ill->ill_ipif->ipif_id == 0); 15126 if (ipif != NULL && 15127 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 15128 (void) ipif_setlinklocal(ipif); 15129 break; 15130 } 15131 case DL_OK_ACK: 15132 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 15133 dlpi_prim_str((int)dloa->dl_correct_primitive), 15134 dloa->dl_correct_primitive)); 15135 switch (dloa->dl_correct_primitive) { 15136 case DL_UNBIND_REQ: 15137 case DL_ATTACH_REQ: 15138 case DL_DETACH_REQ: 15139 ill_dlpi_done(ill, dloa->dl_correct_primitive); 15140 break; 15141 } 15142 break; 15143 default: 15144 break; 15145 } 15146 15147 freemsg(mp); 15148 if (mp1) { 15149 struct iocblk *iocp; 15150 int mode; 15151 15152 /* 15153 * Complete the waiting IOCTL. For SIOCLIFADDIF or 15154 * SIOCSLIFNAME do a copyout. 15155 */ 15156 iocp = (struct iocblk *)mp1->b_rptr; 15157 15158 if (iocp->ioc_cmd == SIOCLIFADDIF || 15159 iocp->ioc_cmd == SIOCSLIFNAME) 15160 mode = COPYOUT; 15161 else 15162 mode = NO_COPYOUT; 15163 /* 15164 * The ioctl must complete now without EINPROGRESS 15165 * since ipsq_pending_mp_get has removed the ioctl mblk 15166 * from ipsq_pending_mp. Otherwise the ioctl will be 15167 * stuck for ever in the ipsq. 15168 */ 15169 ASSERT(err != EINPROGRESS); 15170 ip_ioctl_finish(q, mp1, err, mode, ipif, ipsq); 15171 15172 } 15173 } 15174 15175 /* 15176 * ip_rput_other is called by ip_rput to handle messages modifying the global 15177 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 15178 */ 15179 /* ARGSUSED */ 15180 void 15181 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15182 { 15183 ill_t *ill; 15184 struct iocblk *iocp; 15185 mblk_t *mp1; 15186 conn_t *connp = NULL; 15187 15188 ip1dbg(("ip_rput_other ")); 15189 ill = (ill_t *)q->q_ptr; 15190 /* 15191 * This routine is not a writer in the case of SIOCGTUNPARAM 15192 * in which case ipsq is NULL. 15193 */ 15194 if (ipsq != NULL) { 15195 ASSERT(IAM_WRITER_IPSQ(ipsq)); 15196 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15197 } 15198 15199 switch (mp->b_datap->db_type) { 15200 case M_ERROR: 15201 case M_HANGUP: 15202 /* 15203 * The device has a problem. We force the ILL down. It can 15204 * be brought up again manually using SIOCSIFFLAGS (via 15205 * ifconfig or equivalent). 15206 */ 15207 ASSERT(ipsq != NULL); 15208 if (mp->b_rptr < mp->b_wptr) 15209 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 15210 if (ill->ill_error == 0) 15211 ill->ill_error = ENXIO; 15212 if (!ill_down_start(q, mp)) 15213 return; 15214 ipif_all_down_tail(ipsq, q, mp, NULL); 15215 break; 15216 case M_IOCACK: 15217 iocp = (struct iocblk *)mp->b_rptr; 15218 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 15219 switch (iocp->ioc_cmd) { 15220 case SIOCSTUNPARAM: 15221 case OSIOCSTUNPARAM: 15222 ASSERT(ipsq != NULL); 15223 /* 15224 * Finish socket ioctl passed through to tun. 15225 * We should have an IOCTL waiting on this. 15226 */ 15227 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15228 if (ill->ill_isv6) { 15229 struct iftun_req *ta; 15230 15231 /* 15232 * if a source or destination is 15233 * being set, try and set the link 15234 * local address for the tunnel 15235 */ 15236 ta = (struct iftun_req *)mp->b_cont-> 15237 b_cont->b_rptr; 15238 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 15239 ipif_set_tun_llink(ill, ta); 15240 } 15241 15242 } 15243 if (mp1 != NULL) { 15244 /* 15245 * Now copy back the b_next/b_prev used by 15246 * mi code for the mi_copy* functions. 15247 * See ip_sioctl_tunparam() for the reason. 15248 * Also protect against missing b_cont. 15249 */ 15250 if (mp->b_cont != NULL) { 15251 mp->b_cont->b_next = 15252 mp1->b_cont->b_next; 15253 mp->b_cont->b_prev = 15254 mp1->b_cont->b_prev; 15255 } 15256 inet_freemsg(mp1); 15257 ASSERT(ipsq->ipsq_current_ipif != NULL); 15258 ASSERT(connp != NULL); 15259 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 15260 iocp->ioc_error, NO_COPYOUT, 15261 ipsq->ipsq_current_ipif, ipsq); 15262 } else { 15263 ASSERT(connp == NULL); 15264 putnext(q, mp); 15265 } 15266 break; 15267 case SIOCGTUNPARAM: 15268 case OSIOCGTUNPARAM: 15269 /* 15270 * This is really M_IOCDATA from the tunnel driver. 15271 * convert back and complete the ioctl. 15272 * We should have an IOCTL waiting on this. 15273 */ 15274 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 15275 if (mp1) { 15276 /* 15277 * Now copy back the b_next/b_prev used by 15278 * mi code for the mi_copy* functions. 15279 * See ip_sioctl_tunparam() for the reason. 15280 * Also protect against missing b_cont. 15281 */ 15282 if (mp->b_cont != NULL) { 15283 mp->b_cont->b_next = 15284 mp1->b_cont->b_next; 15285 mp->b_cont->b_prev = 15286 mp1->b_cont->b_prev; 15287 } 15288 inet_freemsg(mp1); 15289 if (iocp->ioc_error == 0) 15290 mp->b_datap->db_type = M_IOCDATA; 15291 ASSERT(connp != NULL); 15292 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 15293 iocp->ioc_error, COPYOUT, NULL, NULL); 15294 } else { 15295 ASSERT(connp == NULL); 15296 putnext(q, mp); 15297 } 15298 break; 15299 default: 15300 break; 15301 } 15302 break; 15303 case M_IOCNAK: 15304 iocp = (struct iocblk *)mp->b_rptr; 15305 15306 switch (iocp->ioc_cmd) { 15307 int mode; 15308 ipif_t *ipif; 15309 15310 case DL_IOC_HDR_INFO: 15311 /* 15312 * If this was the first attempt turn of the 15313 * fastpath probing. 15314 */ 15315 mutex_enter(&ill->ill_lock); 15316 if (ill->ill_dlpi_fastpath_state == IDMS_INPROGRESS) { 15317 ill->ill_dlpi_fastpath_state = IDMS_FAILED; 15318 mutex_exit(&ill->ill_lock); 15319 ill_fastpath_nack(ill); 15320 ip1dbg(("ip_rput: DLPI fastpath off on " 15321 "interface %s\n", 15322 ill->ill_name)); 15323 } else { 15324 mutex_exit(&ill->ill_lock); 15325 } 15326 freemsg(mp); 15327 break; 15328 case SIOCSTUNPARAM: 15329 case OSIOCSTUNPARAM: 15330 ASSERT(ipsq != NULL); 15331 /* 15332 * Finish socket ioctl passed through to tun 15333 * We should have an IOCTL waiting on this. 15334 */ 15335 /* FALLTHRU */ 15336 case SIOCGTUNPARAM: 15337 case OSIOCGTUNPARAM: 15338 /* 15339 * This is really M_IOCDATA from the tunnel driver. 15340 * convert back and complete the ioctl. 15341 * We should have an IOCTL waiting on this. 15342 */ 15343 if (iocp->ioc_cmd == SIOCGTUNPARAM || 15344 iocp->ioc_cmd == OSIOCGTUNPARAM) { 15345 mp1 = ill_pending_mp_get(ill, &connp, 15346 iocp->ioc_id); 15347 mode = COPYOUT; 15348 ipsq = NULL; 15349 ipif = NULL; 15350 } else { 15351 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15352 mode = NO_COPYOUT; 15353 ASSERT(ipsq->ipsq_current_ipif != NULL); 15354 ipif = ipsq->ipsq_current_ipif; 15355 } 15356 if (mp1 != NULL) { 15357 /* 15358 * Now copy back the b_next/b_prev used by 15359 * mi code for the mi_copy* functions. 15360 * See ip_sioctl_tunparam() for the reason. 15361 * Also protect against missing b_cont. 15362 */ 15363 if (mp->b_cont != NULL) { 15364 mp->b_cont->b_next = 15365 mp1->b_cont->b_next; 15366 mp->b_cont->b_prev = 15367 mp1->b_cont->b_prev; 15368 } 15369 inet_freemsg(mp1); 15370 if (iocp->ioc_error == 0) 15371 iocp->ioc_error = EINVAL; 15372 ASSERT(connp != NULL); 15373 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 15374 iocp->ioc_error, mode, ipif, ipsq); 15375 } else { 15376 ASSERT(connp == NULL); 15377 putnext(q, mp); 15378 } 15379 break; 15380 default: 15381 break; 15382 } 15383 default: 15384 break; 15385 } 15386 } 15387 15388 /* 15389 * NOTE : This function does not ire_refrele the ire argument passed in. 15390 * 15391 * IPQoS notes 15392 * IP policy is invoked twice for a forwarded packet, once on the read side 15393 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 15394 * enabled. An additional parameter, in_ill, has been added for this purpose. 15395 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 15396 * because ip_mroute drops this information. 15397 * 15398 */ 15399 void 15400 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 15401 { 15402 uint32_t pkt_len; 15403 queue_t *q; 15404 uint32_t sum; 15405 #define rptr ((uchar_t *)ipha) 15406 uint32_t max_frag; 15407 uint32_t ill_index; 15408 15409 /* Get the ill_index of the incoming ILL */ 15410 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 15411 15412 /* Initiate Read side IPPF processing */ 15413 if (IPP_ENABLED(IPP_FWD_IN)) { 15414 ip_process(IPP_FWD_IN, &mp, ill_index); 15415 if (mp == NULL) { 15416 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 15417 "during IPPF processing\n")); 15418 return; 15419 } 15420 } 15421 pkt_len = ntohs(ipha->ipha_length); 15422 15423 /* Adjust the checksum to reflect the ttl decrement. */ 15424 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 15425 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 15426 15427 if (ipha->ipha_ttl-- <= 1) { 15428 if (ip_csum_hdr(ipha)) { 15429 BUMP_MIB(&ip_mib, ipInCksumErrs); 15430 goto drop_pkt; 15431 } 15432 /* 15433 * Note: ire_stq this will be NULL for multicast 15434 * datagrams using the long path through arp (the IRE 15435 * is not an IRE_CACHE). This should not cause 15436 * problems since we don't generate ICMP errors for 15437 * multicast packets. 15438 */ 15439 q = ire->ire_stq; 15440 if (q) 15441 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED); 15442 else 15443 freemsg(mp); 15444 return; 15445 } 15446 15447 /* 15448 * Don't forward if the interface is down 15449 */ 15450 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 15451 BUMP_MIB(&ip_mib, ipInDiscards); 15452 goto drop_pkt; 15453 } 15454 15455 /* Get the ill_index of the outgoing ILL */ 15456 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 15457 15458 if (is_system_labeled()) { 15459 mblk_t *mp1; 15460 15461 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 15462 BUMP_MIB(&ip_mib, ipForwProhibits); 15463 goto drop_pkt; 15464 } 15465 /* Size may have changed */ 15466 mp = mp1; 15467 ipha = (ipha_t *)mp->b_rptr; 15468 pkt_len = ntohs(ipha->ipha_length); 15469 } 15470 15471 /* Check if there are options to update */ 15472 if (!IS_SIMPLE_IPH(ipha)) { 15473 if (ip_csum_hdr(ipha)) { 15474 BUMP_MIB(&ip_mib, ipInCksumErrs); 15475 goto drop_pkt; 15476 } 15477 if (ip_rput_forward_options(mp, ipha, ire)) { 15478 return; 15479 } 15480 15481 ipha->ipha_hdr_checksum = 0; 15482 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 15483 } 15484 max_frag = ire->ire_max_frag; 15485 if (pkt_len > max_frag) { 15486 /* 15487 * It needs fragging on its way out. We haven't 15488 * verified the header checksum yet. Since we 15489 * are going to put a surely good checksum in the 15490 * outgoing header, we have to make sure that it 15491 * was good coming in. 15492 */ 15493 if (ip_csum_hdr(ipha)) { 15494 BUMP_MIB(&ip_mib, ipInCksumErrs); 15495 goto drop_pkt; 15496 } 15497 /* Initiate Write side IPPF processing */ 15498 if (IPP_ENABLED(IPP_FWD_OUT)) { 15499 ip_process(IPP_FWD_OUT, &mp, ill_index); 15500 if (mp == NULL) { 15501 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 15502 " during IPPF processing\n")); 15503 return; 15504 } 15505 } 15506 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0); 15507 return; 15508 } 15509 15510 mp = ip_wput_attach_llhdr(mp, ire, IPP_FWD_OUT, ill_index); 15511 if (mp == NULL) { 15512 BUMP_MIB(&ip_mib, ipInDiscards); 15513 return; 15514 } 15515 15516 q = ire->ire_stq; 15517 UPDATE_IB_PKT_COUNT(ire); 15518 ire->ire_last_used_time = lbolt; 15519 BUMP_MIB(&ip_mib, ipForwDatagrams); 15520 putnext(q, mp); 15521 return; 15522 15523 drop_pkt:; 15524 ip1dbg(("ip_rput_forward: drop pkt\n")); 15525 freemsg(mp); 15526 #undef rptr 15527 } 15528 15529 void 15530 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 15531 { 15532 ire_t *ire; 15533 15534 ASSERT(!ipif->ipif_isv6); 15535 /* 15536 * Find an IRE which matches the destination and the outgoing 15537 * queue in the cache table. All we need is an IRE_CACHE which 15538 * is pointing at ipif->ipif_ill. If it is part of some ill group, 15539 * then it is enough to have some IRE_CACHE in the group. 15540 */ 15541 if (ipif->ipif_flags & IPIF_POINTOPOINT) 15542 dst = ipif->ipif_pp_dst_addr; 15543 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 15544 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR); 15545 if (ire == NULL) { 15546 /* 15547 * Mark this packet to make it be delivered to 15548 * ip_rput_forward after the new ire has been 15549 * created. 15550 */ 15551 mp->b_prev = NULL; 15552 mp->b_next = mp; 15553 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 15554 NULL, 0); 15555 } else { 15556 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 15557 IRE_REFRELE(ire); 15558 } 15559 } 15560 15561 /* Update any source route, record route or timestamp options */ 15562 static int 15563 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire) 15564 { 15565 ipoptp_t opts; 15566 uchar_t *opt; 15567 uint8_t optval; 15568 uint8_t optlen; 15569 ipaddr_t dst; 15570 uint32_t ts; 15571 ire_t *dst_ire = NULL; 15572 ire_t *tmp_ire = NULL; 15573 timestruc_t now; 15574 15575 ip2dbg(("ip_rput_forward_options\n")); 15576 dst = ipha->ipha_dst; 15577 for (optval = ipoptp_first(&opts, ipha); 15578 optval != IPOPT_EOL; 15579 optval = ipoptp_next(&opts)) { 15580 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 15581 opt = opts.ipoptp_cur; 15582 optlen = opts.ipoptp_len; 15583 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 15584 optval, opts.ipoptp_len)); 15585 switch (optval) { 15586 uint32_t off; 15587 case IPOPT_SSRR: 15588 case IPOPT_LSRR: 15589 /* Check if adminstratively disabled */ 15590 if (!ip_forward_src_routed) { 15591 BUMP_MIB(&ip_mib, ipForwProhibits); 15592 if (ire->ire_stq) 15593 icmp_unreachable(ire->ire_stq, mp, 15594 ICMP_SOURCE_ROUTE_FAILED); 15595 else { 15596 ip0dbg(("ip_rput_forward_options: " 15597 "unable to send unreach\n")); 15598 freemsg(mp); 15599 } 15600 return (-1); 15601 } 15602 15603 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 15604 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 15605 if (dst_ire == NULL) { 15606 /* 15607 * Must be partial since ip_rput_options 15608 * checked for strict. 15609 */ 15610 break; 15611 } 15612 off = opt[IPOPT_OFFSET]; 15613 off--; 15614 redo_srr: 15615 if (optlen < IP_ADDR_LEN || 15616 off > optlen - IP_ADDR_LEN) { 15617 /* End of source route */ 15618 ip1dbg(( 15619 "ip_rput_forward_options: end of SR\n")); 15620 ire_refrele(dst_ire); 15621 break; 15622 } 15623 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 15624 bcopy(&ire->ire_src_addr, (char *)opt + off, 15625 IP_ADDR_LEN); 15626 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 15627 ntohl(dst))); 15628 15629 /* 15630 * Check if our address is present more than 15631 * once as consecutive hops in source route. 15632 */ 15633 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 15634 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 15635 if (tmp_ire != NULL) { 15636 ire_refrele(tmp_ire); 15637 off += IP_ADDR_LEN; 15638 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15639 goto redo_srr; 15640 } 15641 ipha->ipha_dst = dst; 15642 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15643 ire_refrele(dst_ire); 15644 break; 15645 case IPOPT_RR: 15646 off = opt[IPOPT_OFFSET]; 15647 off--; 15648 if (optlen < IP_ADDR_LEN || 15649 off > optlen - IP_ADDR_LEN) { 15650 /* No more room - ignore */ 15651 ip1dbg(( 15652 "ip_rput_forward_options: end of RR\n")); 15653 break; 15654 } 15655 bcopy(&ire->ire_src_addr, (char *)opt + off, 15656 IP_ADDR_LEN); 15657 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15658 break; 15659 case IPOPT_TS: 15660 /* Insert timestamp if there is room */ 15661 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15662 case IPOPT_TS_TSONLY: 15663 off = IPOPT_TS_TIMELEN; 15664 break; 15665 case IPOPT_TS_PRESPEC: 15666 case IPOPT_TS_PRESPEC_RFC791: 15667 /* Verify that the address matched */ 15668 off = opt[IPOPT_OFFSET] - 1; 15669 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 15670 dst_ire = ire_ctable_lookup(dst, 0, 15671 IRE_LOCAL, NULL, ALL_ZONES, NULL, 15672 MATCH_IRE_TYPE); 15673 15674 if (dst_ire == NULL) { 15675 /* Not for us */ 15676 break; 15677 } 15678 ire_refrele(dst_ire); 15679 /* FALLTHRU */ 15680 case IPOPT_TS_TSANDADDR: 15681 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 15682 break; 15683 default: 15684 /* 15685 * ip_*put_options should have already 15686 * dropped this packet. 15687 */ 15688 cmn_err(CE_PANIC, "ip_rput_forward_options: " 15689 "unknown IT - bug in ip_rput_options?\n"); 15690 return (0); /* Keep "lint" happy */ 15691 } 15692 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 15693 /* Increase overflow counter */ 15694 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 15695 opt[IPOPT_POS_OV_FLG] = 15696 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 15697 (off << 4)); 15698 break; 15699 } 15700 off = opt[IPOPT_OFFSET] - 1; 15701 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15702 case IPOPT_TS_PRESPEC: 15703 case IPOPT_TS_PRESPEC_RFC791: 15704 case IPOPT_TS_TSANDADDR: 15705 bcopy(&ire->ire_src_addr, 15706 (char *)opt + off, IP_ADDR_LEN); 15707 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15708 /* FALLTHRU */ 15709 case IPOPT_TS_TSONLY: 15710 off = opt[IPOPT_OFFSET] - 1; 15711 /* Compute # of milliseconds since midnight */ 15712 gethrestime(&now); 15713 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 15714 now.tv_nsec / (NANOSEC / MILLISEC); 15715 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 15716 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 15717 break; 15718 } 15719 break; 15720 } 15721 } 15722 return (0); 15723 } 15724 15725 /* 15726 * This is called after processing at least one of AH/ESP headers. 15727 * 15728 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 15729 * the actual, physical interface on which the packet was received, 15730 * but, when ip_strict_dst_multihoming is set to 1, could be the 15731 * interface which had the ipha_dst configured when the packet went 15732 * through ip_rput. The ill_index corresponding to the recv_ill 15733 * is saved in ipsec_in_rill_index 15734 */ 15735 void 15736 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 15737 { 15738 mblk_t *mp; 15739 ipaddr_t dst; 15740 in6_addr_t *v6dstp; 15741 ipha_t *ipha; 15742 ip6_t *ip6h; 15743 ipsec_in_t *ii; 15744 boolean_t ill_need_rele = B_FALSE; 15745 boolean_t rill_need_rele = B_FALSE; 15746 boolean_t ire_need_rele = B_FALSE; 15747 15748 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 15749 ASSERT(ii->ipsec_in_ill_index != 0); 15750 15751 mp = ipsec_mp->b_cont; 15752 ASSERT(mp != NULL); 15753 15754 15755 if (ill == NULL) { 15756 ASSERT(recv_ill == NULL); 15757 /* 15758 * We need to get the original queue on which ip_rput_local 15759 * or ip_rput_data_v6 was called. 15760 */ 15761 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 15762 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL); 15763 ill_need_rele = B_TRUE; 15764 15765 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 15766 recv_ill = ill_lookup_on_ifindex( 15767 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 15768 NULL, NULL, NULL, NULL); 15769 rill_need_rele = B_TRUE; 15770 } else { 15771 recv_ill = ill; 15772 } 15773 15774 if ((ill == NULL) || (recv_ill == NULL)) { 15775 ip0dbg(("ip_fanout_proto_again: interface " 15776 "disappeared\n")); 15777 if (ill != NULL) 15778 ill_refrele(ill); 15779 if (recv_ill != NULL) 15780 ill_refrele(recv_ill); 15781 freemsg(ipsec_mp); 15782 return; 15783 } 15784 } 15785 15786 ASSERT(ill != NULL && recv_ill != NULL); 15787 15788 if (mp->b_datap->db_type == M_CTL) { 15789 /* 15790 * AH/ESP is returning the ICMP message after 15791 * removing their headers. Fanout again till 15792 * it gets to the right protocol. 15793 */ 15794 if (ii->ipsec_in_v4) { 15795 icmph_t *icmph; 15796 int iph_hdr_length; 15797 int hdr_length; 15798 15799 ipha = (ipha_t *)mp->b_rptr; 15800 iph_hdr_length = IPH_HDR_LENGTH(ipha); 15801 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 15802 ipha = (ipha_t *)&icmph[1]; 15803 hdr_length = IPH_HDR_LENGTH(ipha); 15804 /* 15805 * icmp_inbound_error_fanout may need to do pullupmsg. 15806 * Reset the type to M_DATA. 15807 */ 15808 mp->b_datap->db_type = M_DATA; 15809 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 15810 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 15811 B_FALSE, ill, ii->ipsec_in_zoneid); 15812 } else { 15813 icmp6_t *icmp6; 15814 int hdr_length; 15815 15816 ip6h = (ip6_t *)mp->b_rptr; 15817 /* Don't call hdr_length_v6() unless you have to. */ 15818 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 15819 hdr_length = ip_hdr_length_v6(mp, ip6h); 15820 else 15821 hdr_length = IPV6_HDR_LEN; 15822 15823 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 15824 /* 15825 * icmp_inbound_error_fanout_v6 may need to do 15826 * pullupmsg. Reset the type to M_DATA. 15827 */ 15828 mp->b_datap->db_type = M_DATA; 15829 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 15830 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 15831 } 15832 if (ill_need_rele) 15833 ill_refrele(ill); 15834 if (rill_need_rele) 15835 ill_refrele(recv_ill); 15836 return; 15837 } 15838 15839 if (ii->ipsec_in_v4) { 15840 ipha = (ipha_t *)mp->b_rptr; 15841 dst = ipha->ipha_dst; 15842 if (CLASSD(dst)) { 15843 /* 15844 * Multicast has to be delivered to all streams. 15845 */ 15846 dst = INADDR_BROADCAST; 15847 } 15848 15849 if (ire == NULL) { 15850 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 15851 MBLK_GETLABEL(mp)); 15852 if (ire == NULL) { 15853 if (ill_need_rele) 15854 ill_refrele(ill); 15855 if (rill_need_rele) 15856 ill_refrele(recv_ill); 15857 ip1dbg(("ip_fanout_proto_again: " 15858 "IRE not found")); 15859 freemsg(ipsec_mp); 15860 return; 15861 } 15862 ire_need_rele = B_TRUE; 15863 } 15864 15865 switch (ipha->ipha_protocol) { 15866 case IPPROTO_UDP: 15867 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 15868 recv_ill); 15869 if (ire_need_rele) 15870 ire_refrele(ire); 15871 break; 15872 case IPPROTO_TCP: 15873 if (!ire_need_rele) 15874 IRE_REFHOLD(ire); 15875 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 15876 ire, ipsec_mp, 0, ill->ill_rq, NULL); 15877 IRE_REFRELE(ire); 15878 if (mp != NULL) 15879 squeue_enter_chain(GET_SQUEUE(mp), mp, 15880 mp, 1, SQTAG_IP_PROTO_AGAIN); 15881 break; 15882 case IPPROTO_SCTP: 15883 if (!ire_need_rele) 15884 IRE_REFHOLD(ire); 15885 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 15886 ipsec_mp, 0, ill->ill_rq, dst); 15887 break; 15888 default: 15889 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 15890 recv_ill); 15891 if (ire_need_rele) 15892 ire_refrele(ire); 15893 break; 15894 } 15895 } else { 15896 uint32_t rput_flags = 0; 15897 15898 ip6h = (ip6_t *)mp->b_rptr; 15899 v6dstp = &ip6h->ip6_dst; 15900 /* 15901 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 15902 * address. 15903 * 15904 * Currently, we don't store that state in the IPSEC_IN 15905 * message, and we may need to. 15906 */ 15907 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 15908 IP6_IN_LLMCAST : 0); 15909 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 15910 NULL); 15911 } 15912 if (ill_need_rele) 15913 ill_refrele(ill); 15914 if (rill_need_rele) 15915 ill_refrele(recv_ill); 15916 } 15917 15918 /* 15919 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 15920 * returns 'true' if there are still fragments left on the queue, in 15921 * which case we restart the timer. 15922 */ 15923 void 15924 ill_frag_timer(void *arg) 15925 { 15926 ill_t *ill = (ill_t *)arg; 15927 boolean_t frag_pending; 15928 15929 mutex_enter(&ill->ill_lock); 15930 ASSERT(!ill->ill_fragtimer_executing); 15931 if (ill->ill_state_flags & ILL_CONDEMNED) { 15932 ill->ill_frag_timer_id = 0; 15933 mutex_exit(&ill->ill_lock); 15934 return; 15935 } 15936 ill->ill_fragtimer_executing = 1; 15937 mutex_exit(&ill->ill_lock); 15938 15939 frag_pending = ill_frag_timeout(ill, ip_g_frag_timeout); 15940 15941 /* 15942 * Restart the timer, if we have fragments pending or if someone 15943 * wanted us to be scheduled again. 15944 */ 15945 mutex_enter(&ill->ill_lock); 15946 ill->ill_fragtimer_executing = 0; 15947 ill->ill_frag_timer_id = 0; 15948 if (frag_pending || ill->ill_fragtimer_needrestart) 15949 ill_frag_timer_start(ill); 15950 mutex_exit(&ill->ill_lock); 15951 } 15952 15953 void 15954 ill_frag_timer_start(ill_t *ill) 15955 { 15956 ASSERT(MUTEX_HELD(&ill->ill_lock)); 15957 15958 /* If the ill is closing or opening don't proceed */ 15959 if (ill->ill_state_flags & ILL_CONDEMNED) 15960 return; 15961 15962 if (ill->ill_fragtimer_executing) { 15963 /* 15964 * ill_frag_timer is currently executing. Just record the 15965 * the fact that we want the timer to be restarted. 15966 * ill_frag_timer will post a timeout before it returns, 15967 * ensuring it will be called again. 15968 */ 15969 ill->ill_fragtimer_needrestart = 1; 15970 return; 15971 } 15972 15973 if (ill->ill_frag_timer_id == 0) { 15974 /* 15975 * The timer is neither running nor is the timeout handler 15976 * executing. Post a timeout so that ill_frag_timer will be 15977 * called 15978 */ 15979 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 15980 MSEC_TO_TICK(ip_g_frag_timo_ms >> 1)); 15981 ill->ill_fragtimer_needrestart = 0; 15982 } 15983 } 15984 15985 /* 15986 * This routine is needed for loopback when forwarding multicasts. 15987 * 15988 * IPQoS Notes: 15989 * IPPF processing is done in fanout routines. 15990 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 15991 * processing for IPSec packets is done when it comes back in clear. 15992 * NOTE : The callers of this function need to do the ire_refrele for the 15993 * ire that is being passed in. 15994 */ 15995 void 15996 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 15997 ill_t *recv_ill) 15998 { 15999 ill_t *ill = (ill_t *)q->q_ptr; 16000 uint32_t sum; 16001 uint32_t u1; 16002 uint32_t u2; 16003 int hdr_length; 16004 boolean_t mctl_present; 16005 mblk_t *first_mp = mp; 16006 mblk_t *hada_mp = NULL; 16007 ipha_t *inner_ipha; 16008 16009 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 16010 "ip_rput_locl_start: q %p", q); 16011 16012 ASSERT(ire->ire_ipversion == IPV4_VERSION); 16013 16014 16015 #define rptr ((uchar_t *)ipha) 16016 #define iphs ((uint16_t *)ipha) 16017 16018 /* 16019 * no UDP or TCP packet should come here anymore. 16020 */ 16021 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 16022 (ipha->ipha_protocol != IPPROTO_UDP)); 16023 16024 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 16025 if (mctl_present && 16026 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 16027 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 16028 16029 /* 16030 * It's an IPsec accelerated packet. 16031 * Keep a pointer to the data attributes around until 16032 * we allocate the ipsec_info_t. 16033 */ 16034 IPSECHW_DEBUG(IPSECHW_PKT, 16035 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 16036 hada_mp = first_mp; 16037 hada_mp->b_cont = NULL; 16038 /* 16039 * Since it is accelerated, it comes directly from 16040 * the ill and the data attributes is followed by 16041 * the packet data. 16042 */ 16043 ASSERT(mp->b_datap->db_type != M_CTL); 16044 first_mp = mp; 16045 mctl_present = B_FALSE; 16046 } 16047 16048 /* 16049 * IF M_CTL is not present, then ipsec_in_is_secure 16050 * should return B_TRUE. There is a case where loopback 16051 * packets has an M_CTL in the front with all the 16052 * IPSEC options set to IPSEC_PREF_NEVER - which means 16053 * ipsec_in_is_secure will return B_FALSE. As loopback 16054 * packets never comes here, it is safe to ASSERT the 16055 * following. 16056 */ 16057 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 16058 16059 16060 /* u1 is # words of IP options */ 16061 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 16062 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 16063 16064 if (u1) { 16065 if (!ip_options_cksum(q, mp, ipha, ire)) { 16066 if (hada_mp != NULL) 16067 freemsg(hada_mp); 16068 return; 16069 } 16070 } else { 16071 /* Check the IP header checksum. */ 16072 #define uph ((uint16_t *)ipha) 16073 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 16074 uph[6] + uph[7] + uph[8] + uph[9]; 16075 #undef uph 16076 /* finish doing IP checksum */ 16077 sum = (sum & 0xFFFF) + (sum >> 16); 16078 sum = ~(sum + (sum >> 16)) & 0xFFFF; 16079 /* 16080 * Don't verify header checksum if this packet is coming 16081 * back from AH/ESP as we already did it. 16082 */ 16083 if (!mctl_present && (sum && sum != 0xFFFF)) { 16084 BUMP_MIB(&ip_mib, ipInCksumErrs); 16085 goto drop_pkt; 16086 } 16087 } 16088 16089 /* 16090 * Count for SNMP of inbound packets for ire. As ip_proto_input 16091 * might be called more than once for secure packets, count only 16092 * the first time. 16093 */ 16094 if (!mctl_present) { 16095 UPDATE_IB_PKT_COUNT(ire); 16096 ire->ire_last_used_time = lbolt; 16097 } 16098 16099 /* Check for fragmentation offset. */ 16100 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 16101 u1 = u2 & (IPH_MF | IPH_OFFSET); 16102 if (u1) { 16103 /* 16104 * We re-assemble fragments before we do the AH/ESP 16105 * processing. Thus, M_CTL should not be present 16106 * while we are re-assembling. 16107 */ 16108 ASSERT(!mctl_present); 16109 ASSERT(first_mp == mp); 16110 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 16111 return; 16112 } 16113 /* 16114 * Make sure that first_mp points back to mp as 16115 * the mp we came in with could have changed in 16116 * ip_rput_fragment(). 16117 */ 16118 ipha = (ipha_t *)mp->b_rptr; 16119 first_mp = mp; 16120 } 16121 16122 /* 16123 * Clear hardware checksumming flag as it is currently only 16124 * used by TCP and UDP. 16125 */ 16126 DB_CKSUMFLAGS(mp) = 0; 16127 16128 /* Now we have a complete datagram, destined for this machine. */ 16129 u1 = IPH_HDR_LENGTH(ipha); 16130 switch (ipha->ipha_protocol) { 16131 case IPPROTO_ICMP: { 16132 ire_t *ire_zone; 16133 ilm_t *ilm; 16134 mblk_t *mp1; 16135 zoneid_t last_zoneid; 16136 16137 if (CLASSD(ipha->ipha_dst) && 16138 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 16139 ASSERT(ire->ire_type == IRE_BROADCAST); 16140 /* 16141 * In the multicast case, applications may have joined 16142 * the group from different zones, so we need to deliver 16143 * the packet to each of them. Loop through the 16144 * multicast memberships structures (ilm) on the receive 16145 * ill and send a copy of the packet up each matching 16146 * one. However, we don't do this for multicasts sent on 16147 * the loopback interface (PHYI_LOOPBACK flag set) as 16148 * they must stay in the sender's zone. 16149 * 16150 * ilm_add_v6() ensures that ilms in the same zone are 16151 * contiguous in the ill_ilm list. We use this property 16152 * to avoid sending duplicates needed when two 16153 * applications in the same zone join the same group on 16154 * different logical interfaces: we ignore the ilm if 16155 * its zoneid is the same as the last matching one. 16156 * In addition, the sending of the packet for 16157 * ire_zoneid is delayed until all of the other ilms 16158 * have been exhausted. 16159 */ 16160 last_zoneid = -1; 16161 ILM_WALKER_HOLD(recv_ill); 16162 for (ilm = recv_ill->ill_ilm; ilm != NULL; 16163 ilm = ilm->ilm_next) { 16164 if ((ilm->ilm_flags & ILM_DELETED) || 16165 ipha->ipha_dst != ilm->ilm_addr || 16166 ilm->ilm_zoneid == last_zoneid || 16167 ilm->ilm_zoneid == ire->ire_zoneid || 16168 ilm->ilm_zoneid == ALL_ZONES || 16169 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 16170 continue; 16171 mp1 = ip_copymsg(first_mp); 16172 if (mp1 == NULL) 16173 continue; 16174 icmp_inbound(q, mp1, B_TRUE, ill, 16175 0, sum, mctl_present, B_TRUE, 16176 recv_ill, ilm->ilm_zoneid); 16177 last_zoneid = ilm->ilm_zoneid; 16178 } 16179 ILM_WALKER_RELE(recv_ill); 16180 } else if (ire->ire_type == IRE_BROADCAST) { 16181 /* 16182 * In the broadcast case, there may be many zones 16183 * which need a copy of the packet delivered to them. 16184 * There is one IRE_BROADCAST per broadcast address 16185 * and per zone; we walk those using a helper function. 16186 * In addition, the sending of the packet for ire is 16187 * delayed until all of the other ires have been 16188 * processed. 16189 */ 16190 IRB_REFHOLD(ire->ire_bucket); 16191 ire_zone = NULL; 16192 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 16193 ire)) != NULL) { 16194 mp1 = ip_copymsg(first_mp); 16195 if (mp1 == NULL) 16196 continue; 16197 16198 UPDATE_IB_PKT_COUNT(ire_zone); 16199 ire_zone->ire_last_used_time = lbolt; 16200 icmp_inbound(q, mp1, B_TRUE, ill, 16201 0, sum, mctl_present, B_TRUE, 16202 recv_ill, ire_zone->ire_zoneid); 16203 } 16204 IRB_REFRELE(ire->ire_bucket); 16205 } 16206 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 16207 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 16208 ire->ire_zoneid); 16209 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16210 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 16211 return; 16212 } 16213 case IPPROTO_IGMP: 16214 /* 16215 * If we are not willing to accept IGMP packets in clear, 16216 * then check with global policy. 16217 */ 16218 if (igmp_accept_clear_messages == 0) { 16219 first_mp = ipsec_check_global_policy(first_mp, NULL, 16220 ipha, NULL, mctl_present); 16221 if (first_mp == NULL) 16222 return; 16223 } 16224 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 16225 freemsg(first_mp); 16226 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 16227 BUMP_MIB(&ip_mib, ipInDiscards); 16228 return; 16229 } 16230 if (igmp_input(q, mp, ill)) { 16231 /* Bad packet - discarded by igmp_input */ 16232 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16233 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 16234 if (mctl_present) 16235 freeb(first_mp); 16236 return; 16237 } 16238 /* 16239 * igmp_input() may have pulled up the message so ipha needs to 16240 * be reinitialized. 16241 */ 16242 ipha = (ipha_t *)mp->b_rptr; 16243 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 16244 /* No user-level listener for IGMP packets */ 16245 goto drop_pkt; 16246 } 16247 /* deliver to local raw users */ 16248 break; 16249 case IPPROTO_PIM: 16250 /* 16251 * If we are not willing to accept PIM packets in clear, 16252 * then check with global policy. 16253 */ 16254 if (pim_accept_clear_messages == 0) { 16255 first_mp = ipsec_check_global_policy(first_mp, NULL, 16256 ipha, NULL, mctl_present); 16257 if (first_mp == NULL) 16258 return; 16259 } 16260 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 16261 freemsg(first_mp); 16262 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 16263 BUMP_MIB(&ip_mib, ipInDiscards); 16264 return; 16265 } 16266 if (pim_input(q, mp) != 0) { 16267 /* Bad packet - discarded by pim_input */ 16268 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16269 "ip_rput_locl_end: q %p (%S)", q, "pim"); 16270 if (mctl_present) 16271 freeb(first_mp); 16272 return; 16273 } 16274 16275 /* 16276 * pim_input() may have pulled up the message so ipha needs to 16277 * be reinitialized. 16278 */ 16279 ipha = (ipha_t *)mp->b_rptr; 16280 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 16281 /* No user-level listener for PIM packets */ 16282 goto drop_pkt; 16283 } 16284 /* deliver to local raw users */ 16285 break; 16286 case IPPROTO_ENCAP: 16287 /* 16288 * Handle self-encapsulated packets (IP-in-IP where 16289 * the inner addresses == the outer addresses). 16290 */ 16291 hdr_length = IPH_HDR_LENGTH(ipha); 16292 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 16293 mp->b_wptr) { 16294 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 16295 sizeof (ipha_t) - mp->b_rptr)) { 16296 BUMP_MIB(&ip_mib, ipInDiscards); 16297 freemsg(first_mp); 16298 return; 16299 } 16300 ipha = (ipha_t *)mp->b_rptr; 16301 } 16302 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 16303 /* 16304 * Check the sanity of the inner IP header. 16305 */ 16306 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 16307 BUMP_MIB(&ip_mib, ipInDiscards); 16308 freemsg(first_mp); 16309 return; 16310 } 16311 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 16312 BUMP_MIB(&ip_mib, ipInDiscards); 16313 freemsg(first_mp); 16314 return; 16315 } 16316 if (inner_ipha->ipha_src == ipha->ipha_src && 16317 inner_ipha->ipha_dst == ipha->ipha_dst) { 16318 ipsec_in_t *ii; 16319 16320 /* 16321 * Self-encapsulated tunnel packet. Remove 16322 * the outer IP header and fanout again. 16323 * We also need to make sure that the inner 16324 * header is pulled up until options. 16325 */ 16326 mp->b_rptr = (uchar_t *)inner_ipha; 16327 ipha = inner_ipha; 16328 hdr_length = IPH_HDR_LENGTH(ipha); 16329 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 16330 if (!pullupmsg(mp, (uchar_t *)ipha + 16331 + hdr_length - mp->b_rptr)) { 16332 freemsg(first_mp); 16333 return; 16334 } 16335 ipha = (ipha_t *)mp->b_rptr; 16336 } 16337 if (!mctl_present) { 16338 ASSERT(first_mp == mp); 16339 /* 16340 * This means that somebody is sending 16341 * Self-encapsualted packets without AH/ESP. 16342 * If AH/ESP was present, we would have already 16343 * allocated the first_mp. 16344 */ 16345 if ((first_mp = ipsec_in_alloc(B_TRUE)) == 16346 NULL) { 16347 ip1dbg(("ip_proto_input: IPSEC_IN " 16348 "allocation failure.\n")); 16349 BUMP_MIB(&ip_mib, ipInDiscards); 16350 freemsg(mp); 16351 return; 16352 } 16353 first_mp->b_cont = mp; 16354 } 16355 /* 16356 * We generally store the ill_index if we need to 16357 * do IPSEC processing as we lose the ill queue when 16358 * we come back. But in this case, we never should 16359 * have to store the ill_index here as it should have 16360 * been stored previously when we processed the 16361 * AH/ESP header in this routine or for non-ipsec 16362 * cases, we still have the queue. But for some bad 16363 * packets from the wire, we can get to IPSEC after 16364 * this and we better store the index for that case. 16365 */ 16366 ill = (ill_t *)q->q_ptr; 16367 ii = (ipsec_in_t *)first_mp->b_rptr; 16368 ii->ipsec_in_ill_index = 16369 ill->ill_phyint->phyint_ifindex; 16370 ii->ipsec_in_rill_index = 16371 recv_ill->ill_phyint->phyint_ifindex; 16372 if (ii->ipsec_in_decaps) { 16373 /* 16374 * This packet is self-encapsulated multiple 16375 * times. We don't want to recurse infinitely. 16376 * To keep it simple, drop the packet. 16377 */ 16378 BUMP_MIB(&ip_mib, ipInDiscards); 16379 freemsg(first_mp); 16380 return; 16381 } 16382 ii->ipsec_in_decaps = B_TRUE; 16383 ip_proto_input(q, first_mp, ipha, ire, recv_ill); 16384 return; 16385 } 16386 break; 16387 case IPPROTO_AH: 16388 case IPPROTO_ESP: { 16389 /* 16390 * Fast path for AH/ESP. If this is the first time 16391 * we are sending a datagram to AH/ESP, allocate 16392 * a IPSEC_IN message and prepend it. Otherwise, 16393 * just fanout. 16394 */ 16395 16396 int ipsec_rc; 16397 ipsec_in_t *ii; 16398 16399 IP_STAT(ipsec_proto_ahesp); 16400 if (!mctl_present) { 16401 ASSERT(first_mp == mp); 16402 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 16403 ip1dbg(("ip_proto_input: IPSEC_IN " 16404 "allocation failure.\n")); 16405 freemsg(hada_mp); /* okay ifnull */ 16406 BUMP_MIB(&ip_mib, ipInDiscards); 16407 freemsg(mp); 16408 return; 16409 } 16410 /* 16411 * Store the ill_index so that when we come back 16412 * from IPSEC we ride on the same queue. 16413 */ 16414 ill = (ill_t *)q->q_ptr; 16415 ii = (ipsec_in_t *)first_mp->b_rptr; 16416 ii->ipsec_in_ill_index = 16417 ill->ill_phyint->phyint_ifindex; 16418 ii->ipsec_in_rill_index = 16419 recv_ill->ill_phyint->phyint_ifindex; 16420 first_mp->b_cont = mp; 16421 /* 16422 * Cache hardware acceleration info. 16423 */ 16424 if (hada_mp != NULL) { 16425 IPSECHW_DEBUG(IPSECHW_PKT, 16426 ("ip_rput_local: caching data attr.\n")); 16427 ii->ipsec_in_accelerated = B_TRUE; 16428 ii->ipsec_in_da = hada_mp; 16429 hada_mp = NULL; 16430 } 16431 } else { 16432 ii = (ipsec_in_t *)first_mp->b_rptr; 16433 } 16434 16435 if (!ipsec_loaded()) { 16436 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 16437 ire->ire_zoneid); 16438 return; 16439 } 16440 16441 /* select inbound SA and have IPsec process the pkt */ 16442 if (ipha->ipha_protocol == IPPROTO_ESP) { 16443 esph_t *esph = ipsec_inbound_esp_sa(first_mp); 16444 if (esph == NULL) 16445 return; 16446 ASSERT(ii->ipsec_in_esp_sa != NULL); 16447 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 16448 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 16449 first_mp, esph); 16450 } else { 16451 ah_t *ah = ipsec_inbound_ah_sa(first_mp); 16452 if (ah == NULL) 16453 return; 16454 ASSERT(ii->ipsec_in_ah_sa != NULL); 16455 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 16456 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 16457 first_mp, ah); 16458 } 16459 16460 switch (ipsec_rc) { 16461 case IPSEC_STATUS_SUCCESS: 16462 break; 16463 case IPSEC_STATUS_FAILED: 16464 BUMP_MIB(&ip_mib, ipInDiscards); 16465 /* FALLTHRU */ 16466 case IPSEC_STATUS_PENDING: 16467 return; 16468 } 16469 /* we're done with IPsec processing, send it up */ 16470 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 16471 return; 16472 } 16473 default: 16474 break; 16475 } 16476 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 16477 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 16478 ire->ire_zoneid)); 16479 goto drop_pkt; 16480 } 16481 /* 16482 * Handle protocols with which IP is less intimate. There 16483 * can be more than one stream bound to a particular 16484 * protocol. When this is the case, each one gets a copy 16485 * of any incoming packets. 16486 */ 16487 ip_fanout_proto(q, first_mp, ill, ipha, 16488 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 16489 B_TRUE, recv_ill, ire->ire_zoneid); 16490 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16491 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 16492 return; 16493 16494 drop_pkt: 16495 freemsg(first_mp); 16496 if (hada_mp != NULL) 16497 freeb(hada_mp); 16498 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16499 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 16500 #undef rptr 16501 #undef iphs 16502 16503 } 16504 16505 /* 16506 * Update any source route, record route or timestamp options. 16507 * Check that we are at end of strict source route. 16508 * The options have already been checked for sanity in ip_rput_options(). 16509 */ 16510 static boolean_t 16511 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 16512 { 16513 ipoptp_t opts; 16514 uchar_t *opt; 16515 uint8_t optval; 16516 uint8_t optlen; 16517 ipaddr_t dst; 16518 uint32_t ts; 16519 ire_t *dst_ire; 16520 timestruc_t now; 16521 16522 ASSERT(ire->ire_ipversion == IPV4_VERSION); 16523 16524 ip2dbg(("ip_rput_local_options\n")); 16525 16526 for (optval = ipoptp_first(&opts, ipha); 16527 optval != IPOPT_EOL; 16528 optval = ipoptp_next(&opts)) { 16529 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16530 opt = opts.ipoptp_cur; 16531 optlen = opts.ipoptp_len; 16532 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 16533 optval, optlen)); 16534 switch (optval) { 16535 uint32_t off; 16536 case IPOPT_SSRR: 16537 case IPOPT_LSRR: 16538 off = opt[IPOPT_OFFSET]; 16539 off--; 16540 if (optlen < IP_ADDR_LEN || 16541 off > optlen - IP_ADDR_LEN) { 16542 /* End of source route */ 16543 ip1dbg(("ip_rput_local_options: end of SR\n")); 16544 break; 16545 } 16546 /* 16547 * This will only happen if two consecutive entries 16548 * in the source route contains our address or if 16549 * it is a packet with a loose source route which 16550 * reaches us before consuming the whole source route 16551 */ 16552 ip1dbg(("ip_rput_local_options: not end of SR\n")); 16553 if (optval == IPOPT_SSRR) { 16554 goto bad_src_route; 16555 } 16556 /* 16557 * Hack: instead of dropping the packet truncate the 16558 * source route to what has been used by filling the 16559 * rest with IPOPT_NOP. 16560 */ 16561 opt[IPOPT_OLEN] = (uint8_t)off; 16562 while (off < optlen) { 16563 opt[off++] = IPOPT_NOP; 16564 } 16565 break; 16566 case IPOPT_RR: 16567 off = opt[IPOPT_OFFSET]; 16568 off--; 16569 if (optlen < IP_ADDR_LEN || 16570 off > optlen - IP_ADDR_LEN) { 16571 /* No more room - ignore */ 16572 ip1dbg(( 16573 "ip_rput_local_options: end of RR\n")); 16574 break; 16575 } 16576 bcopy(&ire->ire_src_addr, (char *)opt + off, 16577 IP_ADDR_LEN); 16578 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16579 break; 16580 case IPOPT_TS: 16581 /* Insert timestamp if there is romm */ 16582 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16583 case IPOPT_TS_TSONLY: 16584 off = IPOPT_TS_TIMELEN; 16585 break; 16586 case IPOPT_TS_PRESPEC: 16587 case IPOPT_TS_PRESPEC_RFC791: 16588 /* Verify that the address matched */ 16589 off = opt[IPOPT_OFFSET] - 1; 16590 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16591 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16592 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 16593 if (dst_ire == NULL) { 16594 /* Not for us */ 16595 break; 16596 } 16597 ire_refrele(dst_ire); 16598 /* FALLTHRU */ 16599 case IPOPT_TS_TSANDADDR: 16600 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16601 break; 16602 default: 16603 /* 16604 * ip_*put_options should have already 16605 * dropped this packet. 16606 */ 16607 cmn_err(CE_PANIC, "ip_rput_local_options: " 16608 "unknown IT - bug in ip_rput_options?\n"); 16609 return (B_TRUE); /* Keep "lint" happy */ 16610 } 16611 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16612 /* Increase overflow counter */ 16613 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16614 opt[IPOPT_POS_OV_FLG] = 16615 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16616 (off << 4)); 16617 break; 16618 } 16619 off = opt[IPOPT_OFFSET] - 1; 16620 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16621 case IPOPT_TS_PRESPEC: 16622 case IPOPT_TS_PRESPEC_RFC791: 16623 case IPOPT_TS_TSANDADDR: 16624 bcopy(&ire->ire_src_addr, (char *)opt + off, 16625 IP_ADDR_LEN); 16626 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16627 /* FALLTHRU */ 16628 case IPOPT_TS_TSONLY: 16629 off = opt[IPOPT_OFFSET] - 1; 16630 /* Compute # of milliseconds since midnight */ 16631 gethrestime(&now); 16632 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16633 now.tv_nsec / (NANOSEC / MILLISEC); 16634 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16635 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16636 break; 16637 } 16638 break; 16639 } 16640 } 16641 return (B_TRUE); 16642 16643 bad_src_route: 16644 q = WR(q); 16645 /* make sure we clear any indication of a hardware checksum */ 16646 DB_CKSUMFLAGS(mp) = 0; 16647 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 16648 return (B_FALSE); 16649 16650 } 16651 16652 /* 16653 * Process IP options in an inbound packet. If an option affects the 16654 * effective destination address, return the next hop address via dstp. 16655 * Returns -1 if something fails in which case an ICMP error has been sent 16656 * and mp freed. 16657 */ 16658 static int 16659 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp) 16660 { 16661 ipoptp_t opts; 16662 uchar_t *opt; 16663 uint8_t optval; 16664 uint8_t optlen; 16665 ipaddr_t dst; 16666 intptr_t code = 0; 16667 ire_t *ire = NULL; 16668 16669 ip2dbg(("ip_rput_options\n")); 16670 dst = ipha->ipha_dst; 16671 for (optval = ipoptp_first(&opts, ipha); 16672 optval != IPOPT_EOL; 16673 optval = ipoptp_next(&opts)) { 16674 opt = opts.ipoptp_cur; 16675 optlen = opts.ipoptp_len; 16676 ip2dbg(("ip_rput_options: opt %d, len %d\n", 16677 optval, optlen)); 16678 /* 16679 * Note: we need to verify the checksum before we 16680 * modify anything thus this routine only extracts the next 16681 * hop dst from any source route. 16682 */ 16683 switch (optval) { 16684 uint32_t off; 16685 case IPOPT_SSRR: 16686 case IPOPT_LSRR: 16687 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 16688 ALL_ZONES, NULL, MATCH_IRE_TYPE); 16689 if (ire == NULL) { 16690 if (optval == IPOPT_SSRR) { 16691 ip1dbg(("ip_rput_options: not next" 16692 " strict source route 0x%x\n", 16693 ntohl(dst))); 16694 code = (char *)&ipha->ipha_dst - 16695 (char *)ipha; 16696 goto param_prob; /* RouterReq's */ 16697 } 16698 ip2dbg(("ip_rput_options: " 16699 "not next source route 0x%x\n", 16700 ntohl(dst))); 16701 break; 16702 } 16703 ire_refrele(ire); 16704 16705 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 16706 ip1dbg(( 16707 "ip_rput_options: bad option offset\n")); 16708 code = (char *)&opt[IPOPT_OLEN] - 16709 (char *)ipha; 16710 goto param_prob; 16711 } 16712 off = opt[IPOPT_OFFSET]; 16713 off--; 16714 redo_srr: 16715 if (optlen < IP_ADDR_LEN || 16716 off > optlen - IP_ADDR_LEN) { 16717 /* End of source route */ 16718 ip1dbg(("ip_rput_options: end of SR\n")); 16719 break; 16720 } 16721 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16722 ip1dbg(("ip_rput_options: next hop 0x%x\n", 16723 ntohl(dst))); 16724 16725 /* 16726 * Check if our address is present more than 16727 * once as consecutive hops in source route. 16728 * XXX verify per-interface ip_forwarding 16729 * for source route? 16730 */ 16731 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 16732 ALL_ZONES, NULL, MATCH_IRE_TYPE); 16733 16734 if (ire != NULL) { 16735 ire_refrele(ire); 16736 off += IP_ADDR_LEN; 16737 goto redo_srr; 16738 } 16739 16740 if (dst == htonl(INADDR_LOOPBACK)) { 16741 ip1dbg(("ip_rput_options: loopback addr in " 16742 "source route!\n")); 16743 goto bad_src_route; 16744 } 16745 /* 16746 * For strict: verify that dst is directly 16747 * reachable. 16748 */ 16749 if (optval == IPOPT_SSRR) { 16750 ire = ire_ftable_lookup(dst, 0, 0, 16751 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 16752 MBLK_GETLABEL(mp), 16753 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 16754 if (ire == NULL) { 16755 ip1dbg(("ip_rput_options: SSRR not " 16756 "directly reachable: 0x%x\n", 16757 ntohl(dst))); 16758 goto bad_src_route; 16759 } 16760 ire_refrele(ire); 16761 } 16762 /* 16763 * Defer update of the offset and the record route 16764 * until the packet is forwarded. 16765 */ 16766 break; 16767 case IPOPT_RR: 16768 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 16769 ip1dbg(( 16770 "ip_rput_options: bad option offset\n")); 16771 code = (char *)&opt[IPOPT_OLEN] - 16772 (char *)ipha; 16773 goto param_prob; 16774 } 16775 break; 16776 case IPOPT_TS: 16777 /* 16778 * Verify that length >= 5 and that there is either 16779 * room for another timestamp or that the overflow 16780 * counter is not maxed out. 16781 */ 16782 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 16783 if (optlen < IPOPT_MINLEN_IT) { 16784 goto param_prob; 16785 } 16786 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 16787 ip1dbg(( 16788 "ip_rput_options: bad option offset\n")); 16789 code = (char *)&opt[IPOPT_OFFSET] - 16790 (char *)ipha; 16791 goto param_prob; 16792 } 16793 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16794 case IPOPT_TS_TSONLY: 16795 off = IPOPT_TS_TIMELEN; 16796 break; 16797 case IPOPT_TS_TSANDADDR: 16798 case IPOPT_TS_PRESPEC: 16799 case IPOPT_TS_PRESPEC_RFC791: 16800 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16801 break; 16802 default: 16803 code = (char *)&opt[IPOPT_POS_OV_FLG] - 16804 (char *)ipha; 16805 goto param_prob; 16806 } 16807 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 16808 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 16809 /* 16810 * No room and the overflow counter is 15 16811 * already. 16812 */ 16813 goto param_prob; 16814 } 16815 break; 16816 } 16817 } 16818 16819 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 16820 *dstp = dst; 16821 return (0); 16822 } 16823 16824 ip1dbg(("ip_rput_options: error processing IP options.")); 16825 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 16826 16827 param_prob: 16828 q = WR(q); 16829 /* make sure we clear any indication of a hardware checksum */ 16830 DB_CKSUMFLAGS(mp) = 0; 16831 icmp_param_problem(q, mp, (uint8_t)code); 16832 return (-1); 16833 16834 bad_src_route: 16835 q = WR(q); 16836 /* make sure we clear any indication of a hardware checksum */ 16837 DB_CKSUMFLAGS(mp) = 0; 16838 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 16839 return (-1); 16840 } 16841 16842 /* 16843 * IP & ICMP info in >=14 msg's ... 16844 * - ip fixed part (mib2_ip_t) 16845 * - icmp fixed part (mib2_icmp_t) 16846 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 16847 * - ipRouteEntryTable (ip 21) all IPv4 IREs 16848 * - ipNetToMediaEntryTable (ip 22) IPv4 IREs for on-link destinations 16849 * - ipRouteAttributeTable (ip 102) labeled routes 16850 * - ip multicast membership (ip_member_t) 16851 * - ip multicast source filtering (ip_grpsrc_t) 16852 * - igmp fixed part (struct igmpstat) 16853 * - multicast routing stats (struct mrtstat) 16854 * - multicast routing vifs (array of struct vifctl) 16855 * - multicast routing routes (array of struct mfcctl) 16856 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 16857 * One per ill plus one generic 16858 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 16859 * One per ill plus one generic 16860 * - ipv6RouteEntry all IPv6 IREs 16861 * - ipv6RouteAttributeTable (ip6 102) labeled routes 16862 * - ipv6NetToMediaEntry all Neighbor Cache entries 16863 * - ipv6AddrEntry all IPv6 ipifs 16864 * - ipv6 multicast membership (ipv6_member_t) 16865 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 16866 * 16867 * IP_ROUTE and IP_MEDIA are augmented in arp to include arp cache entries not 16868 * already present. 16869 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 16870 * already filled in by the caller. 16871 * Return value of 0 indicates that no messages were sent and caller 16872 * should free mpctl. 16873 */ 16874 int 16875 ip_snmp_get(queue_t *q, mblk_t *mpctl) 16876 { 16877 16878 if (mpctl == NULL || mpctl->b_cont == NULL) { 16879 return (0); 16880 } 16881 16882 if ((mpctl = ip_snmp_get_mib2_ip(q, mpctl)) == NULL) { 16883 return (1); 16884 } 16885 16886 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl)) == NULL) { 16887 return (1); 16888 } 16889 16890 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl)) == NULL) { 16891 return (1); 16892 } 16893 16894 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl)) == NULL) { 16895 return (1); 16896 } 16897 16898 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl)) == NULL) { 16899 return (1); 16900 } 16901 16902 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl)) == NULL) { 16903 return (1); 16904 } 16905 16906 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl)) == NULL) { 16907 return (1); 16908 } 16909 16910 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl)) == NULL) { 16911 return (1); 16912 } 16913 16914 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl)) == NULL) { 16915 return (1); 16916 } 16917 16918 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl)) == NULL) { 16919 return (1); 16920 } 16921 16922 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl)) == NULL) { 16923 return (1); 16924 } 16925 16926 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl)) == NULL) { 16927 return (1); 16928 } 16929 16930 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl)) == NULL) { 16931 return (1); 16932 } 16933 16934 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl)) == NULL) { 16935 return (1); 16936 } 16937 16938 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl)) == NULL) { 16939 return (1); 16940 } 16941 16942 if ((mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl)) == NULL) { 16943 return (1); 16944 } 16945 16946 if ((mpctl = sctp_snmp_get_mib2(q, mpctl)) == NULL) { 16947 return (1); 16948 } 16949 freemsg(mpctl); 16950 return (1); 16951 } 16952 16953 16954 /* Get global IPv4 statistics */ 16955 static mblk_t * 16956 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl) 16957 { 16958 struct opthdr *optp; 16959 mblk_t *mp2ctl; 16960 16961 /* 16962 * make a copy of the original message 16963 */ 16964 mp2ctl = copymsg(mpctl); 16965 16966 /* fixed length IP structure... */ 16967 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16968 optp->level = MIB2_IP; 16969 optp->name = 0; 16970 SET_MIB(ip_mib.ipForwarding, 16971 (WE_ARE_FORWARDING ? 1 : 2)); 16972 SET_MIB(ip_mib.ipDefaultTTL, 16973 (uint32_t)ip_def_ttl); 16974 SET_MIB(ip_mib.ipReasmTimeout, 16975 ip_g_frag_timeout); 16976 SET_MIB(ip_mib.ipAddrEntrySize, 16977 sizeof (mib2_ipAddrEntry_t)); 16978 SET_MIB(ip_mib.ipRouteEntrySize, 16979 sizeof (mib2_ipRouteEntry_t)); 16980 SET_MIB(ip_mib.ipNetToMediaEntrySize, 16981 sizeof (mib2_ipNetToMediaEntry_t)); 16982 SET_MIB(ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 16983 SET_MIB(ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 16984 SET_MIB(ip_mib.ipRouteAttributeSize, sizeof (mib2_ipAttributeEntry_t)); 16985 SET_MIB(ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 16986 if (!snmp_append_data(mpctl->b_cont, (char *)&ip_mib, 16987 (int)sizeof (ip_mib))) { 16988 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 16989 (uint_t)sizeof (ip_mib))); 16990 } 16991 16992 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16993 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 16994 (int)optp->level, (int)optp->name, (int)optp->len)); 16995 qreply(q, mpctl); 16996 return (mp2ctl); 16997 } 16998 16999 /* Global IPv4 ICMP statistics */ 17000 static mblk_t * 17001 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl) 17002 { 17003 struct opthdr *optp; 17004 mblk_t *mp2ctl; 17005 17006 /* 17007 * Make a copy of the original message 17008 */ 17009 mp2ctl = copymsg(mpctl); 17010 17011 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17012 optp->level = MIB2_ICMP; 17013 optp->name = 0; 17014 if (!snmp_append_data(mpctl->b_cont, (char *)&icmp_mib, 17015 (int)sizeof (icmp_mib))) { 17016 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 17017 (uint_t)sizeof (icmp_mib))); 17018 } 17019 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17020 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 17021 (int)optp->level, (int)optp->name, (int)optp->len)); 17022 qreply(q, mpctl); 17023 return (mp2ctl); 17024 } 17025 17026 /* Global IPv4 IGMP statistics */ 17027 static mblk_t * 17028 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl) 17029 { 17030 struct opthdr *optp; 17031 mblk_t *mp2ctl; 17032 17033 /* 17034 * make a copy of the original message 17035 */ 17036 mp2ctl = copymsg(mpctl); 17037 17038 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17039 optp->level = EXPER_IGMP; 17040 optp->name = 0; 17041 if (!snmp_append_data(mpctl->b_cont, (char *)&igmpstat, 17042 (int)sizeof (igmpstat))) { 17043 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 17044 (uint_t)sizeof (igmpstat))); 17045 } 17046 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17047 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 17048 (int)optp->level, (int)optp->name, (int)optp->len)); 17049 qreply(q, mpctl); 17050 return (mp2ctl); 17051 } 17052 17053 /* Global IPv4 Multicast Routing statistics */ 17054 static mblk_t * 17055 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl) 17056 { 17057 struct opthdr *optp; 17058 mblk_t *mp2ctl; 17059 17060 /* 17061 * make a copy of the original message 17062 */ 17063 mp2ctl = copymsg(mpctl); 17064 17065 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17066 optp->level = EXPER_DVMRP; 17067 optp->name = 0; 17068 if (!ip_mroute_stats(mpctl->b_cont)) { 17069 ip0dbg(("ip_mroute_stats: failed\n")); 17070 } 17071 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17072 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 17073 (int)optp->level, (int)optp->name, (int)optp->len)); 17074 qreply(q, mpctl); 17075 return (mp2ctl); 17076 } 17077 17078 /* IPv4 address information */ 17079 static mblk_t * 17080 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl) 17081 { 17082 struct opthdr *optp; 17083 mblk_t *mp2ctl; 17084 mblk_t *mp_tail = NULL; 17085 ill_t *ill; 17086 ipif_t *ipif; 17087 uint_t bitval; 17088 mib2_ipAddrEntry_t mae; 17089 zoneid_t zoneid; 17090 ill_walk_context_t ctx; 17091 17092 /* 17093 * make a copy of the original message 17094 */ 17095 mp2ctl = copymsg(mpctl); 17096 17097 /* ipAddrEntryTable */ 17098 17099 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17100 optp->level = MIB2_IP; 17101 optp->name = MIB2_IP_ADDR; 17102 zoneid = Q_TO_CONN(q)->conn_zoneid; 17103 17104 rw_enter(&ill_g_lock, RW_READER); 17105 ill = ILL_START_WALK_V4(&ctx); 17106 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17107 for (ipif = ill->ill_ipif; ipif != NULL; 17108 ipif = ipif->ipif_next) { 17109 if (ipif->ipif_zoneid != zoneid && 17110 ipif->ipif_zoneid != ALL_ZONES) 17111 continue; 17112 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 17113 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 17114 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 17115 17116 (void) ipif_get_name(ipif, 17117 mae.ipAdEntIfIndex.o_bytes, 17118 OCTET_LENGTH); 17119 mae.ipAdEntIfIndex.o_length = 17120 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 17121 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 17122 mae.ipAdEntNetMask = ipif->ipif_net_mask; 17123 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 17124 mae.ipAdEntInfo.ae_subnet_len = 17125 ip_mask_to_plen(ipif->ipif_net_mask); 17126 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 17127 for (bitval = 1; 17128 bitval && 17129 !(bitval & ipif->ipif_brd_addr); 17130 bitval <<= 1) 17131 noop; 17132 mae.ipAdEntBcastAddr = bitval; 17133 mae.ipAdEntReasmMaxSize = 65535; 17134 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 17135 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 17136 mae.ipAdEntInfo.ae_broadcast_addr = 17137 ipif->ipif_brd_addr; 17138 mae.ipAdEntInfo.ae_pp_dst_addr = 17139 ipif->ipif_pp_dst_addr; 17140 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 17141 ill->ill_flags | ill->ill_phyint->phyint_flags; 17142 17143 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17144 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 17145 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 17146 "allocate %u bytes\n", 17147 (uint_t)sizeof (mib2_ipAddrEntry_t))); 17148 } 17149 } 17150 } 17151 rw_exit(&ill_g_lock); 17152 17153 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17154 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 17155 (int)optp->level, (int)optp->name, (int)optp->len)); 17156 qreply(q, mpctl); 17157 return (mp2ctl); 17158 } 17159 17160 /* IPv6 address information */ 17161 static mblk_t * 17162 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl) 17163 { 17164 struct opthdr *optp; 17165 mblk_t *mp2ctl; 17166 mblk_t *mp_tail = NULL; 17167 ill_t *ill; 17168 ipif_t *ipif; 17169 mib2_ipv6AddrEntry_t mae6; 17170 zoneid_t zoneid; 17171 ill_walk_context_t ctx; 17172 17173 /* 17174 * make a copy of the original message 17175 */ 17176 mp2ctl = copymsg(mpctl); 17177 17178 /* ipv6AddrEntryTable */ 17179 17180 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17181 optp->level = MIB2_IP6; 17182 optp->name = MIB2_IP6_ADDR; 17183 zoneid = Q_TO_CONN(q)->conn_zoneid; 17184 17185 rw_enter(&ill_g_lock, RW_READER); 17186 ill = ILL_START_WALK_V6(&ctx); 17187 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17188 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 17189 if (ipif->ipif_zoneid != zoneid && 17190 ipif->ipif_zoneid != ALL_ZONES) 17191 continue; 17192 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 17193 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 17194 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 17195 17196 (void) ipif_get_name(ipif, 17197 mae6.ipv6AddrIfIndex.o_bytes, 17198 OCTET_LENGTH); 17199 mae6.ipv6AddrIfIndex.o_length = 17200 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 17201 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 17202 mae6.ipv6AddrPfxLength = 17203 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 17204 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 17205 mae6.ipv6AddrInfo.ae_subnet_len = 17206 mae6.ipv6AddrPfxLength; 17207 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 17208 17209 /* Type: stateless(1), stateful(2), unknown(3) */ 17210 if (ipif->ipif_flags & IPIF_ADDRCONF) 17211 mae6.ipv6AddrType = 1; 17212 else 17213 mae6.ipv6AddrType = 2; 17214 /* Anycast: true(1), false(2) */ 17215 if (ipif->ipif_flags & IPIF_ANYCAST) 17216 mae6.ipv6AddrAnycastFlag = 1; 17217 else 17218 mae6.ipv6AddrAnycastFlag = 2; 17219 17220 /* 17221 * Address status: preferred(1), deprecated(2), 17222 * invalid(3), inaccessible(4), unknown(5) 17223 */ 17224 if (ipif->ipif_flags & IPIF_NOLOCAL) 17225 mae6.ipv6AddrStatus = 3; 17226 else if (ipif->ipif_flags & IPIF_DEPRECATED) 17227 mae6.ipv6AddrStatus = 2; 17228 else 17229 mae6.ipv6AddrStatus = 1; 17230 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 17231 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 17232 mae6.ipv6AddrInfo.ae_pp_dst_addr = 17233 ipif->ipif_v6pp_dst_addr; 17234 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 17235 ill->ill_flags | ill->ill_phyint->phyint_flags; 17236 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17237 (char *)&mae6, 17238 (int)sizeof (mib2_ipv6AddrEntry_t))) { 17239 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 17240 "allocate %u bytes\n", 17241 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 17242 } 17243 } 17244 } 17245 rw_exit(&ill_g_lock); 17246 17247 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17248 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 17249 (int)optp->level, (int)optp->name, (int)optp->len)); 17250 qreply(q, mpctl); 17251 return (mp2ctl); 17252 } 17253 17254 /* IPv4 multicast group membership. */ 17255 static mblk_t * 17256 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl) 17257 { 17258 struct opthdr *optp; 17259 mblk_t *mp2ctl; 17260 ill_t *ill; 17261 ipif_t *ipif; 17262 ilm_t *ilm; 17263 ip_member_t ipm; 17264 mblk_t *mp_tail = NULL; 17265 ill_walk_context_t ctx; 17266 zoneid_t zoneid; 17267 17268 /* 17269 * make a copy of the original message 17270 */ 17271 mp2ctl = copymsg(mpctl); 17272 zoneid = Q_TO_CONN(q)->conn_zoneid; 17273 17274 /* ipGroupMember table */ 17275 optp = (struct opthdr *)&mpctl->b_rptr[ 17276 sizeof (struct T_optmgmt_ack)]; 17277 optp->level = MIB2_IP; 17278 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 17279 17280 rw_enter(&ill_g_lock, RW_READER); 17281 ill = ILL_START_WALK_V4(&ctx); 17282 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17283 ILM_WALKER_HOLD(ill); 17284 for (ipif = ill->ill_ipif; ipif != NULL; 17285 ipif = ipif->ipif_next) { 17286 if (ipif->ipif_zoneid != zoneid && 17287 ipif->ipif_zoneid != ALL_ZONES) 17288 continue; /* not this zone */ 17289 (void) ipif_get_name(ipif, 17290 ipm.ipGroupMemberIfIndex.o_bytes, 17291 OCTET_LENGTH); 17292 ipm.ipGroupMemberIfIndex.o_length = 17293 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 17294 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 17295 ASSERT(ilm->ilm_ipif != NULL); 17296 ASSERT(ilm->ilm_ill == NULL); 17297 if (ilm->ilm_ipif != ipif) 17298 continue; 17299 ipm.ipGroupMemberAddress = ilm->ilm_addr; 17300 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 17301 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 17302 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17303 (char *)&ipm, (int)sizeof (ipm))) { 17304 ip1dbg(("ip_snmp_get_mib2_ip_group: " 17305 "failed to allocate %u bytes\n", 17306 (uint_t)sizeof (ipm))); 17307 } 17308 } 17309 } 17310 ILM_WALKER_RELE(ill); 17311 } 17312 rw_exit(&ill_g_lock); 17313 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17314 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 17315 (int)optp->level, (int)optp->name, (int)optp->len)); 17316 qreply(q, mpctl); 17317 return (mp2ctl); 17318 } 17319 17320 /* IPv6 multicast group membership. */ 17321 static mblk_t * 17322 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl) 17323 { 17324 struct opthdr *optp; 17325 mblk_t *mp2ctl; 17326 ill_t *ill; 17327 ilm_t *ilm; 17328 ipv6_member_t ipm6; 17329 mblk_t *mp_tail = NULL; 17330 ill_walk_context_t ctx; 17331 zoneid_t zoneid; 17332 17333 /* 17334 * make a copy of the original message 17335 */ 17336 mp2ctl = copymsg(mpctl); 17337 zoneid = Q_TO_CONN(q)->conn_zoneid; 17338 17339 /* ip6GroupMember table */ 17340 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17341 optp->level = MIB2_IP6; 17342 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 17343 17344 rw_enter(&ill_g_lock, RW_READER); 17345 ill = ILL_START_WALK_V6(&ctx); 17346 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17347 ILM_WALKER_HOLD(ill); 17348 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 17349 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 17350 ASSERT(ilm->ilm_ipif == NULL); 17351 ASSERT(ilm->ilm_ill != NULL); 17352 if (ilm->ilm_zoneid != zoneid) 17353 continue; /* not this zone */ 17354 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 17355 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 17356 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 17357 if (!snmp_append_data2(mpctl->b_cont, 17358 &mp_tail, 17359 (char *)&ipm6, (int)sizeof (ipm6))) { 17360 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 17361 "failed to allocate %u bytes\n", 17362 (uint_t)sizeof (ipm6))); 17363 } 17364 } 17365 ILM_WALKER_RELE(ill); 17366 } 17367 rw_exit(&ill_g_lock); 17368 17369 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17370 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 17371 (int)optp->level, (int)optp->name, (int)optp->len)); 17372 qreply(q, mpctl); 17373 return (mp2ctl); 17374 } 17375 17376 /* IP multicast filtered sources */ 17377 static mblk_t * 17378 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl) 17379 { 17380 struct opthdr *optp; 17381 mblk_t *mp2ctl; 17382 ill_t *ill; 17383 ipif_t *ipif; 17384 ilm_t *ilm; 17385 ip_grpsrc_t ips; 17386 mblk_t *mp_tail = NULL; 17387 ill_walk_context_t ctx; 17388 zoneid_t zoneid; 17389 int i; 17390 slist_t *sl; 17391 17392 /* 17393 * make a copy of the original message 17394 */ 17395 mp2ctl = copymsg(mpctl); 17396 zoneid = Q_TO_CONN(q)->conn_zoneid; 17397 17398 /* ipGroupSource table */ 17399 optp = (struct opthdr *)&mpctl->b_rptr[ 17400 sizeof (struct T_optmgmt_ack)]; 17401 optp->level = MIB2_IP; 17402 optp->name = EXPER_IP_GROUP_SOURCES; 17403 17404 rw_enter(&ill_g_lock, RW_READER); 17405 ill = ILL_START_WALK_V4(&ctx); 17406 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17407 ILM_WALKER_HOLD(ill); 17408 for (ipif = ill->ill_ipif; ipif != NULL; 17409 ipif = ipif->ipif_next) { 17410 if (ipif->ipif_zoneid != zoneid) 17411 continue; /* not this zone */ 17412 (void) ipif_get_name(ipif, 17413 ips.ipGroupSourceIfIndex.o_bytes, 17414 OCTET_LENGTH); 17415 ips.ipGroupSourceIfIndex.o_length = 17416 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 17417 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 17418 ASSERT(ilm->ilm_ipif != NULL); 17419 ASSERT(ilm->ilm_ill == NULL); 17420 sl = ilm->ilm_filter; 17421 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 17422 continue; 17423 ips.ipGroupSourceGroup = ilm->ilm_addr; 17424 for (i = 0; i < sl->sl_numsrc; i++) { 17425 if (!IN6_IS_ADDR_V4MAPPED( 17426 &sl->sl_addr[i])) 17427 continue; 17428 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 17429 ips.ipGroupSourceAddress); 17430 if (snmp_append_data2(mpctl->b_cont, 17431 &mp_tail, (char *)&ips, 17432 (int)sizeof (ips)) == 0) { 17433 ip1dbg(("ip_snmp_get_mib2_" 17434 "ip_group_src: failed to " 17435 "allocate %u bytes\n", 17436 (uint_t)sizeof (ips))); 17437 } 17438 } 17439 } 17440 } 17441 ILM_WALKER_RELE(ill); 17442 } 17443 rw_exit(&ill_g_lock); 17444 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17445 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 17446 (int)optp->level, (int)optp->name, (int)optp->len)); 17447 qreply(q, mpctl); 17448 return (mp2ctl); 17449 } 17450 17451 /* IPv6 multicast filtered sources. */ 17452 static mblk_t * 17453 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl) 17454 { 17455 struct opthdr *optp; 17456 mblk_t *mp2ctl; 17457 ill_t *ill; 17458 ilm_t *ilm; 17459 ipv6_grpsrc_t ips6; 17460 mblk_t *mp_tail = NULL; 17461 ill_walk_context_t ctx; 17462 zoneid_t zoneid; 17463 int i; 17464 slist_t *sl; 17465 17466 /* 17467 * make a copy of the original message 17468 */ 17469 mp2ctl = copymsg(mpctl); 17470 zoneid = Q_TO_CONN(q)->conn_zoneid; 17471 17472 /* ip6GroupMember table */ 17473 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17474 optp->level = MIB2_IP6; 17475 optp->name = EXPER_IP6_GROUP_SOURCES; 17476 17477 rw_enter(&ill_g_lock, RW_READER); 17478 ill = ILL_START_WALK_V6(&ctx); 17479 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17480 ILM_WALKER_HOLD(ill); 17481 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 17482 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 17483 ASSERT(ilm->ilm_ipif == NULL); 17484 ASSERT(ilm->ilm_ill != NULL); 17485 sl = ilm->ilm_filter; 17486 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 17487 continue; 17488 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 17489 for (i = 0; i < sl->sl_numsrc; i++) { 17490 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 17491 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17492 (char *)&ips6, (int)sizeof (ips6))) { 17493 ip1dbg(("ip_snmp_get_mib2_ip6_" 17494 "group_src: failed to allocate " 17495 "%u bytes\n", 17496 (uint_t)sizeof (ips6))); 17497 } 17498 } 17499 } 17500 ILM_WALKER_RELE(ill); 17501 } 17502 rw_exit(&ill_g_lock); 17503 17504 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17505 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 17506 (int)optp->level, (int)optp->name, (int)optp->len)); 17507 qreply(q, mpctl); 17508 return (mp2ctl); 17509 } 17510 17511 /* Multicast routing virtual interface table. */ 17512 static mblk_t * 17513 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl) 17514 { 17515 struct opthdr *optp; 17516 mblk_t *mp2ctl; 17517 17518 /* 17519 * make a copy of the original message 17520 */ 17521 mp2ctl = copymsg(mpctl); 17522 17523 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17524 optp->level = EXPER_DVMRP; 17525 optp->name = EXPER_DVMRP_VIF; 17526 if (!ip_mroute_vif(mpctl->b_cont)) { 17527 ip0dbg(("ip_mroute_vif: failed\n")); 17528 } 17529 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17530 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 17531 (int)optp->level, (int)optp->name, (int)optp->len)); 17532 qreply(q, mpctl); 17533 return (mp2ctl); 17534 } 17535 17536 /* Multicast routing table. */ 17537 static mblk_t * 17538 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl) 17539 { 17540 struct opthdr *optp; 17541 mblk_t *mp2ctl; 17542 17543 /* 17544 * make a copy of the original message 17545 */ 17546 mp2ctl = copymsg(mpctl); 17547 17548 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17549 optp->level = EXPER_DVMRP; 17550 optp->name = EXPER_DVMRP_MRT; 17551 if (!ip_mroute_mrt(mpctl->b_cont)) { 17552 ip0dbg(("ip_mroute_mrt: failed\n")); 17553 } 17554 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17555 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 17556 (int)optp->level, (int)optp->name, (int)optp->len)); 17557 qreply(q, mpctl); 17558 return (mp2ctl); 17559 } 17560 17561 /* 17562 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 17563 * in one IRE walk. 17564 */ 17565 static mblk_t * 17566 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl) 17567 { 17568 struct opthdr *optp; 17569 mblk_t *mp2ctl; /* Returned */ 17570 mblk_t *mp3ctl; /* nettomedia */ 17571 mblk_t *mp4ctl; /* routeattrs */ 17572 iproutedata_t ird; 17573 zoneid_t zoneid; 17574 17575 /* 17576 * make copies of the original message 17577 * - mp2ctl is returned unchanged to the caller for his use 17578 * - mpctl is sent upstream as ipRouteEntryTable 17579 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 17580 * - mp4ctl is sent upstream as ipRouteAttributeTable 17581 */ 17582 mp2ctl = copymsg(mpctl); 17583 mp3ctl = copymsg(mpctl); 17584 mp4ctl = copymsg(mpctl); 17585 if (mp3ctl == NULL || mp4ctl == NULL) { 17586 freemsg(mp4ctl); 17587 freemsg(mp3ctl); 17588 freemsg(mp2ctl); 17589 freemsg(mpctl); 17590 return (NULL); 17591 } 17592 17593 bzero(&ird, sizeof (ird)); 17594 17595 ird.ird_route.lp_head = mpctl->b_cont; 17596 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 17597 ird.ird_attrs.lp_head = mp4ctl->b_cont; 17598 17599 zoneid = Q_TO_CONN(q)->conn_zoneid; 17600 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid); 17601 if (zoneid == GLOBAL_ZONEID) { 17602 /* 17603 * Those IREs are used by Mobile-IP; since mipagent(1M) requires 17604 * the sys_net_config privilege, it can only run in the global 17605 * zone, so we don't display these IREs in the other zones. 17606 */ 17607 ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird); 17608 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL); 17609 } 17610 17611 /* ipRouteEntryTable in mpctl */ 17612 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17613 optp->level = MIB2_IP; 17614 optp->name = MIB2_IP_ROUTE; 17615 optp->len = msgdsize(ird.ird_route.lp_head); 17616 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 17617 (int)optp->level, (int)optp->name, (int)optp->len)); 17618 qreply(q, mpctl); 17619 17620 /* ipNetToMediaEntryTable in mp3ctl */ 17621 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17622 optp->level = MIB2_IP; 17623 optp->name = MIB2_IP_MEDIA; 17624 optp->len = msgdsize(ird.ird_netmedia.lp_head); 17625 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 17626 (int)optp->level, (int)optp->name, (int)optp->len)); 17627 qreply(q, mp3ctl); 17628 17629 /* ipRouteAttributeTable in mp4ctl */ 17630 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17631 optp->level = MIB2_IP; 17632 optp->name = EXPER_IP_RTATTR; 17633 optp->len = msgdsize(ird.ird_attrs.lp_head); 17634 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 17635 (int)optp->level, (int)optp->name, (int)optp->len)); 17636 if (optp->len == 0) 17637 freemsg(mp4ctl); 17638 else 17639 qreply(q, mp4ctl); 17640 17641 return (mp2ctl); 17642 } 17643 17644 /* 17645 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 17646 * ipv6NetToMediaEntryTable in an NDP walk. 17647 */ 17648 static mblk_t * 17649 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl) 17650 { 17651 struct opthdr *optp; 17652 mblk_t *mp2ctl; /* Returned */ 17653 mblk_t *mp3ctl; /* nettomedia */ 17654 mblk_t *mp4ctl; /* routeattrs */ 17655 iproutedata_t ird; 17656 zoneid_t zoneid; 17657 17658 /* 17659 * make copies of the original message 17660 * - mp2ctl is returned unchanged to the caller for his use 17661 * - mpctl is sent upstream as ipv6RouteEntryTable 17662 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 17663 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 17664 */ 17665 mp2ctl = copymsg(mpctl); 17666 mp3ctl = copymsg(mpctl); 17667 mp4ctl = copymsg(mpctl); 17668 if (mp3ctl == NULL || mp4ctl == NULL) { 17669 freemsg(mp4ctl); 17670 freemsg(mp3ctl); 17671 freemsg(mp2ctl); 17672 freemsg(mpctl); 17673 return (NULL); 17674 } 17675 17676 bzero(&ird, sizeof (ird)); 17677 17678 ird.ird_route.lp_head = mpctl->b_cont; 17679 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 17680 ird.ird_attrs.lp_head = mp4ctl->b_cont; 17681 17682 zoneid = Q_TO_CONN(q)->conn_zoneid; 17683 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid); 17684 17685 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17686 optp->level = MIB2_IP6; 17687 optp->name = MIB2_IP6_ROUTE; 17688 optp->len = msgdsize(ird.ird_route.lp_head); 17689 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 17690 (int)optp->level, (int)optp->name, (int)optp->len)); 17691 qreply(q, mpctl); 17692 17693 /* ipv6NetToMediaEntryTable in mp3ctl */ 17694 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird); 17695 17696 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17697 optp->level = MIB2_IP6; 17698 optp->name = MIB2_IP6_MEDIA; 17699 optp->len = msgdsize(ird.ird_netmedia.lp_head); 17700 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 17701 (int)optp->level, (int)optp->name, (int)optp->len)); 17702 qreply(q, mp3ctl); 17703 17704 /* ipv6RouteAttributeTable in mp4ctl */ 17705 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17706 optp->level = MIB2_IP6; 17707 optp->name = EXPER_IP_RTATTR; 17708 optp->len = msgdsize(ird.ird_attrs.lp_head); 17709 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 17710 (int)optp->level, (int)optp->name, (int)optp->len)); 17711 if (optp->len == 0) 17712 freemsg(mp4ctl); 17713 else 17714 qreply(q, mp4ctl); 17715 17716 return (mp2ctl); 17717 } 17718 17719 /* 17720 * ICMPv6 mib: One per ill 17721 */ 17722 static mblk_t * 17723 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl) 17724 { 17725 struct opthdr *optp; 17726 mblk_t *mp2ctl; 17727 ill_t *ill; 17728 ill_walk_context_t ctx; 17729 mblk_t *mp_tail = NULL; 17730 17731 /* 17732 * Make a copy of the original message 17733 */ 17734 mp2ctl = copymsg(mpctl); 17735 17736 /* fixed length IPv6 structure ... */ 17737 17738 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17739 optp->level = MIB2_IP6; 17740 optp->name = 0; 17741 /* Include "unknown interface" ip6_mib */ 17742 ip6_mib.ipv6IfIndex = 0; /* Flag to netstat */ 17743 SET_MIB(ip6_mib.ipv6Forwarding, ipv6_forward ? 1 : 2); 17744 SET_MIB(ip6_mib.ipv6DefaultHopLimit, ipv6_def_hops); 17745 SET_MIB(ip6_mib.ipv6IfStatsEntrySize, 17746 sizeof (mib2_ipv6IfStatsEntry_t)); 17747 SET_MIB(ip6_mib.ipv6AddrEntrySize, sizeof (mib2_ipv6AddrEntry_t)); 17748 SET_MIB(ip6_mib.ipv6RouteEntrySize, sizeof (mib2_ipv6RouteEntry_t)); 17749 SET_MIB(ip6_mib.ipv6NetToMediaEntrySize, 17750 sizeof (mib2_ipv6NetToMediaEntry_t)); 17751 SET_MIB(ip6_mib.ipv6MemberEntrySize, sizeof (ipv6_member_t)); 17752 SET_MIB(ip6_mib.ipv6GroupSourceEntrySize, sizeof (ipv6_grpsrc_t)); 17753 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&ip6_mib, 17754 (int)sizeof (ip6_mib))) { 17755 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 17756 (uint_t)sizeof (ip6_mib))); 17757 } 17758 17759 rw_enter(&ill_g_lock, RW_READER); 17760 ill = ILL_START_WALK_V6(&ctx); 17761 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17762 ill->ill_ip6_mib->ipv6IfIndex = 17763 ill->ill_phyint->phyint_ifindex; 17764 SET_MIB(ill->ill_ip6_mib->ipv6Forwarding, 17765 ipv6_forward ? 1 : 2); 17766 SET_MIB(ill->ill_ip6_mib->ipv6DefaultHopLimit, 17767 ill->ill_max_hops); 17768 SET_MIB(ill->ill_ip6_mib->ipv6IfStatsEntrySize, 17769 sizeof (mib2_ipv6IfStatsEntry_t)); 17770 SET_MIB(ill->ill_ip6_mib->ipv6AddrEntrySize, 17771 sizeof (mib2_ipv6AddrEntry_t)); 17772 SET_MIB(ill->ill_ip6_mib->ipv6RouteEntrySize, 17773 sizeof (mib2_ipv6RouteEntry_t)); 17774 SET_MIB(ill->ill_ip6_mib->ipv6NetToMediaEntrySize, 17775 sizeof (mib2_ipv6NetToMediaEntry_t)); 17776 SET_MIB(ill->ill_ip6_mib->ipv6MemberEntrySize, 17777 sizeof (ipv6_member_t)); 17778 17779 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17780 (char *)ill->ill_ip6_mib, 17781 (int)sizeof (*ill->ill_ip6_mib))) { 17782 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 17783 "%u bytes\n", 17784 (uint_t)sizeof (*ill->ill_ip6_mib))); 17785 } 17786 } 17787 rw_exit(&ill_g_lock); 17788 17789 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17790 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 17791 (int)optp->level, (int)optp->name, (int)optp->len)); 17792 qreply(q, mpctl); 17793 return (mp2ctl); 17794 } 17795 17796 /* 17797 * ICMPv6 mib: One per ill 17798 */ 17799 static mblk_t * 17800 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl) 17801 { 17802 struct opthdr *optp; 17803 mblk_t *mp2ctl; 17804 ill_t *ill; 17805 ill_walk_context_t ctx; 17806 mblk_t *mp_tail = NULL; 17807 /* 17808 * Make a copy of the original message 17809 */ 17810 mp2ctl = copymsg(mpctl); 17811 17812 /* fixed length ICMPv6 structure ... */ 17813 17814 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17815 optp->level = MIB2_ICMP6; 17816 optp->name = 0; 17817 /* Include "unknown interface" icmp6_mib */ 17818 icmp6_mib.ipv6IfIcmpIfIndex = 0; /* Flag to netstat */ 17819 icmp6_mib.ipv6IfIcmpEntrySize = sizeof (mib2_ipv6IfIcmpEntry_t); 17820 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&icmp6_mib, 17821 (int)sizeof (icmp6_mib))) { 17822 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 17823 (uint_t)sizeof (icmp6_mib))); 17824 } 17825 17826 rw_enter(&ill_g_lock, RW_READER); 17827 ill = ILL_START_WALK_V6(&ctx); 17828 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17829 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 17830 ill->ill_phyint->phyint_ifindex; 17831 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 17832 sizeof (mib2_ipv6IfIcmpEntry_t); 17833 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17834 (char *)ill->ill_icmp6_mib, 17835 (int)sizeof (*ill->ill_icmp6_mib))) { 17836 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 17837 "%u bytes\n", 17838 (uint_t)sizeof (*ill->ill_icmp6_mib))); 17839 } 17840 } 17841 rw_exit(&ill_g_lock); 17842 17843 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17844 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 17845 (int)optp->level, (int)optp->name, (int)optp->len)); 17846 qreply(q, mpctl); 17847 return (mp2ctl); 17848 } 17849 17850 /* 17851 * ire_walk routine to create both ipRouteEntryTable and 17852 * ipNetToMediaEntryTable in one IRE walk 17853 */ 17854 static void 17855 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 17856 { 17857 ill_t *ill; 17858 ipif_t *ipif; 17859 mblk_t *llmp; 17860 dl_unitdata_req_t *dlup; 17861 mib2_ipRouteEntry_t *re; 17862 mib2_ipNetToMediaEntry_t ntme; 17863 mib2_ipAttributeEntry_t *iae, *iaeptr; 17864 ipaddr_t gw_addr; 17865 tsol_ire_gw_secattr_t *attrp; 17866 tsol_gc_t *gc = NULL; 17867 tsol_gcgrp_t *gcgrp = NULL; 17868 uint_t sacnt = 0; 17869 int i; 17870 17871 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17872 17873 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 17874 return; 17875 17876 if ((attrp = ire->ire_gw_secattr) != NULL) { 17877 mutex_enter(&attrp->igsa_lock); 17878 if ((gc = attrp->igsa_gc) != NULL) { 17879 gcgrp = gc->gc_grp; 17880 ASSERT(gcgrp != NULL); 17881 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 17882 sacnt = 1; 17883 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 17884 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 17885 gc = gcgrp->gcgrp_head; 17886 sacnt = gcgrp->gcgrp_count; 17887 } 17888 mutex_exit(&attrp->igsa_lock); 17889 17890 /* do nothing if there's no gc to report */ 17891 if (gc == NULL) { 17892 ASSERT(sacnt == 0); 17893 if (gcgrp != NULL) { 17894 /* we might as well drop the lock now */ 17895 rw_exit(&gcgrp->gcgrp_rwlock); 17896 gcgrp = NULL; 17897 } 17898 attrp = NULL; 17899 } 17900 17901 ASSERT(gc == NULL || (gcgrp != NULL && 17902 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 17903 } 17904 ASSERT(sacnt == 0 || gc != NULL); 17905 17906 if (sacnt != 0 && 17907 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 17908 kmem_free(re, sizeof (*re)); 17909 rw_exit(&gcgrp->gcgrp_rwlock); 17910 return; 17911 } 17912 17913 /* 17914 * Return all IRE types for route table... let caller pick and choose 17915 */ 17916 re->ipRouteDest = ire->ire_addr; 17917 ipif = ire->ire_ipif; 17918 re->ipRouteIfIndex.o_length = 0; 17919 if (ire->ire_type == IRE_CACHE) { 17920 ill = (ill_t *)ire->ire_stq->q_ptr; 17921 re->ipRouteIfIndex.o_length = 17922 ill->ill_name_length == 0 ? 0 : 17923 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17924 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 17925 re->ipRouteIfIndex.o_length); 17926 } else if (ipif != NULL) { 17927 (void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, 17928 OCTET_LENGTH); 17929 re->ipRouteIfIndex.o_length = 17930 mi_strlen(re->ipRouteIfIndex.o_bytes); 17931 } 17932 re->ipRouteMetric1 = -1; 17933 re->ipRouteMetric2 = -1; 17934 re->ipRouteMetric3 = -1; 17935 re->ipRouteMetric4 = -1; 17936 17937 gw_addr = ire->ire_gateway_addr; 17938 17939 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 17940 re->ipRouteNextHop = ire->ire_src_addr; 17941 else 17942 re->ipRouteNextHop = gw_addr; 17943 /* indirect(4), direct(3), or invalid(2) */ 17944 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 17945 re->ipRouteType = 2; 17946 else 17947 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 17948 re->ipRouteProto = -1; 17949 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 17950 re->ipRouteMask = ire->ire_mask; 17951 re->ipRouteMetric5 = -1; 17952 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 17953 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 17954 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 17955 llmp = ire->ire_dlureq_mp; 17956 re->ipRouteInfo.re_ref = ire->ire_refcnt; 17957 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 17958 re->ipRouteInfo.re_ire_type = ire->ire_type; 17959 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 17960 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 17961 re->ipRouteInfo.re_flags = ire->ire_flags; 17962 re->ipRouteInfo.re_in_ill.o_length = 0; 17963 if (ire->ire_in_ill != NULL) { 17964 re->ipRouteInfo.re_in_ill.o_length = 17965 ire->ire_in_ill->ill_name_length == 0 ? 0 : 17966 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 17967 bcopy(ire->ire_in_ill->ill_name, 17968 re->ipRouteInfo.re_in_ill.o_bytes, 17969 re->ipRouteInfo.re_in_ill.o_length); 17970 } 17971 re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 17972 17973 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 17974 (char *)re, (int)sizeof (*re))) { 17975 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 17976 (uint_t)sizeof (*re))); 17977 } 17978 17979 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 17980 iaeptr->iae_routeidx = ird->ird_idx; 17981 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 17982 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 17983 } 17984 17985 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 17986 (char *)iae, sacnt * sizeof (*iae))) { 17987 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 17988 (unsigned)(sacnt * sizeof (*iae)))); 17989 } 17990 17991 if (ire->ire_type != IRE_CACHE || gw_addr != 0) 17992 goto done; 17993 /* 17994 * only IRE_CACHE entries that are for a directly connected subnet 17995 * get appended to net -> phys addr table 17996 * (others in arp) 17997 */ 17998 ntme.ipNetToMediaIfIndex.o_length = 0; 17999 ill = ire_to_ill(ire); 18000 ASSERT(ill != NULL); 18001 ntme.ipNetToMediaIfIndex.o_length = 18002 ill->ill_name_length == 0 ? 0 : 18003 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18004 bcopy(ill->ill_name, ntme.ipNetToMediaIfIndex.o_bytes, 18005 ntme.ipNetToMediaIfIndex.o_length); 18006 18007 ntme.ipNetToMediaPhysAddress.o_length = 0; 18008 if (llmp) { 18009 uchar_t *addr; 18010 18011 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 18012 /* Remove sap from address */ 18013 if (ill->ill_sap_length < 0) 18014 addr = llmp->b_rptr + dlup->dl_dest_addr_offset; 18015 else 18016 addr = llmp->b_rptr + dlup->dl_dest_addr_offset + 18017 ill->ill_sap_length; 18018 18019 ntme.ipNetToMediaPhysAddress.o_length = 18020 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 18021 bcopy(addr, ntme.ipNetToMediaPhysAddress.o_bytes, 18022 ntme.ipNetToMediaPhysAddress.o_length); 18023 } 18024 ntme.ipNetToMediaNetAddress = ire->ire_addr; 18025 /* assume dynamic (may be changed in arp) */ 18026 ntme.ipNetToMediaType = 3; 18027 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (uint32_t); 18028 bcopy(&ire->ire_mask, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 18029 ntme.ipNetToMediaInfo.ntm_mask.o_length); 18030 ntme.ipNetToMediaInfo.ntm_flags = ACE_F_RESOLVED; 18031 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 18032 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 18033 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18034 (uint_t)sizeof (ntme))); 18035 } 18036 done: 18037 /* bump route index for next pass */ 18038 ird->ird_idx++; 18039 18040 kmem_free(re, sizeof (*re)); 18041 if (sacnt != 0) 18042 kmem_free(iae, sacnt * sizeof (*iae)); 18043 18044 if (gcgrp != NULL) 18045 rw_exit(&gcgrp->gcgrp_rwlock); 18046 } 18047 18048 /* 18049 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 18050 */ 18051 static void 18052 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 18053 { 18054 ill_t *ill; 18055 ipif_t *ipif; 18056 mib2_ipv6RouteEntry_t *re; 18057 mib2_ipAttributeEntry_t *iae, *iaeptr; 18058 in6_addr_t gw_addr_v6; 18059 tsol_ire_gw_secattr_t *attrp; 18060 tsol_gc_t *gc = NULL; 18061 tsol_gcgrp_t *gcgrp = NULL; 18062 uint_t sacnt = 0; 18063 int i; 18064 18065 ASSERT(ire->ire_ipversion == IPV6_VERSION); 18066 18067 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 18068 return; 18069 18070 if ((attrp = ire->ire_gw_secattr) != NULL) { 18071 mutex_enter(&attrp->igsa_lock); 18072 if ((gc = attrp->igsa_gc) != NULL) { 18073 gcgrp = gc->gc_grp; 18074 ASSERT(gcgrp != NULL); 18075 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18076 sacnt = 1; 18077 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 18078 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18079 gc = gcgrp->gcgrp_head; 18080 sacnt = gcgrp->gcgrp_count; 18081 } 18082 mutex_exit(&attrp->igsa_lock); 18083 18084 /* do nothing if there's no gc to report */ 18085 if (gc == NULL) { 18086 ASSERT(sacnt == 0); 18087 if (gcgrp != NULL) { 18088 /* we might as well drop the lock now */ 18089 rw_exit(&gcgrp->gcgrp_rwlock); 18090 gcgrp = NULL; 18091 } 18092 attrp = NULL; 18093 } 18094 18095 ASSERT(gc == NULL || (gcgrp != NULL && 18096 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 18097 } 18098 ASSERT(sacnt == 0 || gc != NULL); 18099 18100 if (sacnt != 0 && 18101 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 18102 kmem_free(re, sizeof (*re)); 18103 rw_exit(&gcgrp->gcgrp_rwlock); 18104 return; 18105 } 18106 18107 /* 18108 * Return all IRE types for route table... let caller pick and choose 18109 */ 18110 re->ipv6RouteDest = ire->ire_addr_v6; 18111 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 18112 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 18113 re->ipv6RouteIfIndex.o_length = 0; 18114 ipif = ire->ire_ipif; 18115 if (ire->ire_type == IRE_CACHE) { 18116 ill = (ill_t *)ire->ire_stq->q_ptr; 18117 re->ipv6RouteIfIndex.o_length = 18118 ill->ill_name_length == 0 ? 0 : 18119 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18120 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 18121 re->ipv6RouteIfIndex.o_length); 18122 } else if (ipif != NULL) { 18123 (void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, 18124 OCTET_LENGTH); 18125 re->ipv6RouteIfIndex.o_length = 18126 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 18127 } 18128 18129 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 18130 18131 mutex_enter(&ire->ire_lock); 18132 gw_addr_v6 = ire->ire_gateway_addr_v6; 18133 mutex_exit(&ire->ire_lock); 18134 18135 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 18136 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 18137 else 18138 re->ipv6RouteNextHop = gw_addr_v6; 18139 18140 /* remote(4), local(3), or discard(2) */ 18141 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 18142 re->ipv6RouteType = 2; 18143 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 18144 re->ipv6RouteType = 3; 18145 else 18146 re->ipv6RouteType = 4; 18147 18148 re->ipv6RouteProtocol = -1; 18149 re->ipv6RoutePolicy = 0; 18150 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 18151 re->ipv6RouteNextHopRDI = 0; 18152 re->ipv6RouteWeight = 0; 18153 re->ipv6RouteMetric = 0; 18154 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 18155 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 18156 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 18157 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 18158 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 18159 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 18160 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 18161 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 18162 re->ipv6RouteInfo.re_flags = ire->ire_flags; 18163 18164 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 18165 (char *)re, (int)sizeof (*re))) { 18166 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 18167 (uint_t)sizeof (*re))); 18168 } 18169 18170 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 18171 iaeptr->iae_routeidx = ird->ird_idx; 18172 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 18173 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 18174 } 18175 18176 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 18177 (char *)iae, sacnt * sizeof (*iae))) { 18178 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 18179 (unsigned)(sacnt * sizeof (*iae)))); 18180 } 18181 18182 /* bump route index for next pass */ 18183 ird->ird_idx++; 18184 18185 kmem_free(re, sizeof (*re)); 18186 if (sacnt != 0) 18187 kmem_free(iae, sacnt * sizeof (*iae)); 18188 18189 if (gcgrp != NULL) 18190 rw_exit(&gcgrp->gcgrp_rwlock); 18191 } 18192 18193 /* 18194 * ndp_walk routine to create ipv6NetToMediaEntryTable 18195 */ 18196 static int 18197 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 18198 { 18199 ill_t *ill; 18200 mib2_ipv6NetToMediaEntry_t ntme; 18201 dl_unitdata_req_t *dl; 18202 18203 ill = nce->nce_ill; 18204 ASSERT(ill->ill_isv6); 18205 18206 /* 18207 * Neighbor cache entry attached to IRE with on-link 18208 * destination. 18209 */ 18210 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 18211 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 18212 if ((ill->ill_flags & ILLF_XRESOLV) && 18213 (nce->nce_res_mp != NULL)) { 18214 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 18215 ntme.ipv6NetToMediaPhysAddress.o_length = 18216 dl->dl_dest_addr_length; 18217 } else { 18218 ntme.ipv6NetToMediaPhysAddress.o_length = 18219 ill->ill_phys_addr_length; 18220 } 18221 if (nce->nce_res_mp != NULL) { 18222 bcopy((char *)nce->nce_res_mp->b_rptr + 18223 NCE_LL_ADDR_OFFSET(ill), 18224 ntme.ipv6NetToMediaPhysAddress.o_bytes, 18225 ntme.ipv6NetToMediaPhysAddress.o_length); 18226 } else { 18227 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 18228 ill->ill_phys_addr_length); 18229 } 18230 /* 18231 * Note: Returns ND_* states. Should be: 18232 * reachable(1), stale(2), delay(3), probe(4), 18233 * invalid(5), unknown(6) 18234 */ 18235 ntme.ipv6NetToMediaState = nce->nce_state; 18236 ntme.ipv6NetToMediaLastUpdated = 0; 18237 18238 /* other(1), dynamic(2), static(3), local(4) */ 18239 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 18240 ntme.ipv6NetToMediaType = 4; 18241 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 18242 ntme.ipv6NetToMediaType = 1; 18243 } else { 18244 ntme.ipv6NetToMediaType = 2; 18245 } 18246 18247 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 18248 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 18249 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 18250 (uint_t)sizeof (ntme))); 18251 } 18252 return (0); 18253 } 18254 18255 /* 18256 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 18257 */ 18258 /* ARGSUSED */ 18259 int 18260 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 18261 { 18262 switch (level) { 18263 case MIB2_IP: 18264 case MIB2_ICMP: 18265 switch (name) { 18266 default: 18267 break; 18268 } 18269 return (1); 18270 default: 18271 return (1); 18272 } 18273 } 18274 18275 /* 18276 * Called before the options are updated to check if this packet will 18277 * be source routed from here. 18278 * This routine assumes that the options are well formed i.e. that they 18279 * have already been checked. 18280 */ 18281 static boolean_t 18282 ip_source_routed(ipha_t *ipha) 18283 { 18284 ipoptp_t opts; 18285 uchar_t *opt; 18286 uint8_t optval; 18287 uint8_t optlen; 18288 ipaddr_t dst; 18289 ire_t *ire; 18290 18291 if (IS_SIMPLE_IPH(ipha)) { 18292 ip2dbg(("not source routed\n")); 18293 return (B_FALSE); 18294 } 18295 dst = ipha->ipha_dst; 18296 for (optval = ipoptp_first(&opts, ipha); 18297 optval != IPOPT_EOL; 18298 optval = ipoptp_next(&opts)) { 18299 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 18300 opt = opts.ipoptp_cur; 18301 optlen = opts.ipoptp_len; 18302 ip2dbg(("ip_source_routed: opt %d, len %d\n", 18303 optval, optlen)); 18304 switch (optval) { 18305 uint32_t off; 18306 case IPOPT_SSRR: 18307 case IPOPT_LSRR: 18308 /* 18309 * If dst is one of our addresses and there are some 18310 * entries left in the source route return (true). 18311 */ 18312 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18313 ALL_ZONES, NULL, MATCH_IRE_TYPE); 18314 if (ire == NULL) { 18315 ip2dbg(("ip_source_routed: not next" 18316 " source route 0x%x\n", 18317 ntohl(dst))); 18318 return (B_FALSE); 18319 } 18320 ire_refrele(ire); 18321 off = opt[IPOPT_OFFSET]; 18322 off--; 18323 if (optlen < IP_ADDR_LEN || 18324 off > optlen - IP_ADDR_LEN) { 18325 /* End of source route */ 18326 ip1dbg(("ip_source_routed: end of SR\n")); 18327 return (B_FALSE); 18328 } 18329 return (B_TRUE); 18330 } 18331 } 18332 ip2dbg(("not source routed\n")); 18333 return (B_FALSE); 18334 } 18335 18336 /* 18337 * Check if the packet contains any source route. 18338 */ 18339 static boolean_t 18340 ip_source_route_included(ipha_t *ipha) 18341 { 18342 ipoptp_t opts; 18343 uint8_t optval; 18344 18345 if (IS_SIMPLE_IPH(ipha)) 18346 return (B_FALSE); 18347 for (optval = ipoptp_first(&opts, ipha); 18348 optval != IPOPT_EOL; 18349 optval = ipoptp_next(&opts)) { 18350 switch (optval) { 18351 case IPOPT_SSRR: 18352 case IPOPT_LSRR: 18353 return (B_TRUE); 18354 } 18355 } 18356 return (B_FALSE); 18357 } 18358 18359 /* 18360 * Called when the IRE expiration timer fires. 18361 */ 18362 /* ARGSUSED */ 18363 void 18364 ip_trash_timer_expire(void *args) 18365 { 18366 int flush_flag = 0; 18367 18368 /* 18369 * ip_ire_expire_id is protected by ip_trash_timer_lock. 18370 * This lock makes sure that a new invocation of this function 18371 * that occurs due to an almost immediate timer firing will not 18372 * progress beyond this point until the current invocation is done 18373 */ 18374 mutex_enter(&ip_trash_timer_lock); 18375 ip_ire_expire_id = 0; 18376 mutex_exit(&ip_trash_timer_lock); 18377 18378 /* Periodic timer */ 18379 if (ip_ire_arp_time_elapsed >= ip_ire_arp_interval) { 18380 /* 18381 * Remove all IRE_CACHE entries since they might 18382 * contain arp information. 18383 */ 18384 flush_flag |= FLUSH_ARP_TIME; 18385 ip_ire_arp_time_elapsed = 0; 18386 IP_STAT(ip_ire_arp_timer_expired); 18387 } 18388 if (ip_ire_rd_time_elapsed >= ip_ire_redir_interval) { 18389 /* Remove all redirects */ 18390 flush_flag |= FLUSH_REDIRECT_TIME; 18391 ip_ire_rd_time_elapsed = 0; 18392 IP_STAT(ip_ire_redirect_timer_expired); 18393 } 18394 if (ip_ire_pmtu_time_elapsed >= ip_ire_pathmtu_interval) { 18395 /* Increase path mtu */ 18396 flush_flag |= FLUSH_MTU_TIME; 18397 ip_ire_pmtu_time_elapsed = 0; 18398 IP_STAT(ip_ire_pmtu_timer_expired); 18399 } 18400 if (flush_flag != 0) { 18401 /* Walk all IPv4 IRE's and update them */ 18402 ire_walk_v4(ire_expire, (char *)(uintptr_t)flush_flag, 18403 ALL_ZONES); 18404 } 18405 if (flush_flag & FLUSH_MTU_TIME) { 18406 /* 18407 * Walk all IPv6 IRE's and update them 18408 * Note that ARP and redirect timers are not 18409 * needed since NUD handles stale entries. 18410 */ 18411 flush_flag = FLUSH_MTU_TIME; 18412 ire_walk_v6(ire_expire, (char *)(uintptr_t)flush_flag, 18413 ALL_ZONES); 18414 } 18415 18416 ip_ire_arp_time_elapsed += ip_timer_interval; 18417 ip_ire_rd_time_elapsed += ip_timer_interval; 18418 ip_ire_pmtu_time_elapsed += ip_timer_interval; 18419 18420 /* 18421 * Hold the lock to serialize timeout calls and prevent 18422 * stale values in ip_ire_expire_id. Otherwise it is possible 18423 * for the timer to fire and a new invocation of this function 18424 * to start before the return value of timeout has been stored 18425 * in ip_ire_expire_id by the current invocation. 18426 */ 18427 mutex_enter(&ip_trash_timer_lock); 18428 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 18429 MSEC_TO_TICK(ip_timer_interval)); 18430 mutex_exit(&ip_trash_timer_lock); 18431 } 18432 18433 /* 18434 * Called by the memory allocator subsystem directly, when the system 18435 * is running low on memory. 18436 */ 18437 /* ARGSUSED */ 18438 void 18439 ip_trash_ire_reclaim(void *args) 18440 { 18441 ire_cache_count_t icc; 18442 ire_cache_reclaim_t icr; 18443 ncc_cache_count_t ncc; 18444 nce_cache_reclaim_t ncr; 18445 uint_t delete_cnt; 18446 /* 18447 * Memory reclaim call back. 18448 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 18449 * Then, with a target of freeing 1/Nth of IRE_CACHE 18450 * entries, determine what fraction to free for 18451 * each category of IRE_CACHE entries giving absolute priority 18452 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 18453 * entry will be freed unless all offlink entries are freed). 18454 */ 18455 icc.icc_total = 0; 18456 icc.icc_unused = 0; 18457 icc.icc_offlink = 0; 18458 icc.icc_pmtu = 0; 18459 icc.icc_onlink = 0; 18460 ire_walk(ire_cache_count, (char *)&icc); 18461 18462 /* 18463 * Free NCEs for IPv6 like the onlink ires. 18464 */ 18465 ncc.ncc_total = 0; 18466 ncc.ncc_host = 0; 18467 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc); 18468 18469 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 18470 icc.icc_pmtu + icc.icc_onlink); 18471 delete_cnt = icc.icc_total/ip_ire_reclaim_fraction; 18472 IP_STAT(ip_trash_ire_reclaim_calls); 18473 if (delete_cnt == 0) 18474 return; 18475 IP_STAT(ip_trash_ire_reclaim_success); 18476 /* Always delete all unused offlink entries */ 18477 icr.icr_unused = 1; 18478 if (delete_cnt <= icc.icc_unused) { 18479 /* 18480 * Only need to free unused entries. In other words, 18481 * there are enough unused entries to free to meet our 18482 * target number of freed ire cache entries. 18483 */ 18484 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 18485 ncr.ncr_host = 0; 18486 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 18487 /* 18488 * Only need to free unused entries, plus a fraction of offlink 18489 * entries. It follows from the first if statement that 18490 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 18491 */ 18492 delete_cnt -= icc.icc_unused; 18493 /* Round up # deleted by truncating fraction */ 18494 icr.icr_offlink = icc.icc_offlink / delete_cnt; 18495 icr.icr_pmtu = icr.icr_onlink = 0; 18496 ncr.ncr_host = 0; 18497 } else if (delete_cnt <= 18498 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 18499 /* 18500 * Free all unused and offlink entries, plus a fraction of 18501 * pmtu entries. It follows from the previous if statement 18502 * that icc_pmtu is non-zero, and that 18503 * delete_cnt != icc_unused + icc_offlink. 18504 */ 18505 icr.icr_offlink = 1; 18506 delete_cnt -= icc.icc_unused + icc.icc_offlink; 18507 /* Round up # deleted by truncating fraction */ 18508 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 18509 icr.icr_onlink = 0; 18510 ncr.ncr_host = 0; 18511 } else { 18512 /* 18513 * Free all unused, offlink, and pmtu entries, plus a fraction 18514 * of onlink entries. If we're here, then we know that 18515 * icc_onlink is non-zero, and that 18516 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 18517 */ 18518 icr.icr_offlink = icr.icr_pmtu = 1; 18519 delete_cnt -= icc.icc_unused + icc.icc_offlink + 18520 icc.icc_pmtu; 18521 /* Round up # deleted by truncating fraction */ 18522 icr.icr_onlink = icc.icc_onlink / delete_cnt; 18523 /* Using the same delete fraction as for onlink IREs */ 18524 ncr.ncr_host = ncc.ncc_host / delete_cnt; 18525 } 18526 #ifdef DEBUG 18527 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 18528 "fractions %d/%d/%d/%d\n", 18529 icc.icc_total/ip_ire_reclaim_fraction, icc.icc_total, 18530 icc.icc_unused, icc.icc_offlink, 18531 icc.icc_pmtu, icc.icc_onlink, 18532 icr.icr_unused, icr.icr_offlink, 18533 icr.icr_pmtu, icr.icr_onlink)); 18534 #endif 18535 ire_walk(ire_cache_reclaim, (char *)&icr); 18536 if (ncr.ncr_host != 0) 18537 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 18538 (uchar_t *)&ncr); 18539 #ifdef DEBUG 18540 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 18541 icc.icc_pmtu = 0; icc.icc_onlink = 0; 18542 ire_walk(ire_cache_count, (char *)&icc); 18543 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 18544 icc.icc_total, icc.icc_unused, icc.icc_offlink, 18545 icc.icc_pmtu, icc.icc_onlink)); 18546 #endif 18547 } 18548 18549 /* 18550 * ip_unbind is called when a copy of an unbind request is received from the 18551 * upper level protocol. We remove this conn from any fanout hash list it is 18552 * on, and zero out the bind information. No reply is expected up above. 18553 */ 18554 mblk_t * 18555 ip_unbind(queue_t *q, mblk_t *mp) 18556 { 18557 conn_t *connp = Q_TO_CONN(q); 18558 18559 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 18560 18561 if (is_system_labeled() && connp->conn_anon_port) { 18562 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 18563 connp->conn_mlp_type, connp->conn_ulp, 18564 ntohs(connp->conn_lport), B_FALSE); 18565 connp->conn_anon_port = 0; 18566 } 18567 connp->conn_mlp_type = mlptSingle; 18568 18569 ipcl_hash_remove(connp); 18570 18571 ASSERT(mp->b_cont == NULL); 18572 /* 18573 * Convert mp into a T_OK_ACK 18574 */ 18575 mp = mi_tpi_ok_ack_alloc(mp); 18576 18577 /* 18578 * should not happen in practice... T_OK_ACK is smaller than the 18579 * original message. 18580 */ 18581 if (mp == NULL) 18582 return (NULL); 18583 18584 /* 18585 * Don't bzero the ports if its TCP since TCP still needs the 18586 * lport to remove it from its own bind hash. TCP will do the 18587 * cleanup. 18588 */ 18589 if (!IPCL_IS_TCP(connp)) 18590 bzero(&connp->u_port, sizeof (connp->u_port)); 18591 18592 return (mp); 18593 } 18594 18595 /* 18596 * Write side put procedure. Outbound data, IOCTLs, responses from 18597 * resolvers, etc, come down through here. 18598 */ 18599 void 18600 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 18601 { 18602 conn_t *connp = NULL; 18603 queue_t *q = (queue_t *)arg2; 18604 ipha_t *ipha; 18605 #define rptr ((uchar_t *)ipha) 18606 ire_t *ire = NULL; 18607 ire_t *sctp_ire = NULL; 18608 uint32_t v_hlen_tos_len; 18609 ipaddr_t dst; 18610 mblk_t *first_mp = NULL; 18611 boolean_t mctl_present; 18612 ipsec_out_t *io; 18613 int match_flags; 18614 ill_t *attach_ill = NULL; 18615 /* Bind to IPIF_NOFAILOVER ill etc. */ 18616 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 18617 ipif_t *dst_ipif; 18618 boolean_t multirt_need_resolve = B_FALSE; 18619 mblk_t *copy_mp = NULL; 18620 int err; 18621 zoneid_t zoneid; 18622 int adjust; 18623 uint16_t iplen; 18624 boolean_t need_decref = B_FALSE; 18625 boolean_t ignore_dontroute = B_FALSE; 18626 boolean_t ignore_nexthop = B_FALSE; 18627 boolean_t ip_nexthop = B_FALSE; 18628 ipaddr_t nexthop_addr; 18629 18630 #ifdef _BIG_ENDIAN 18631 #define V_HLEN (v_hlen_tos_len >> 24) 18632 #else 18633 #define V_HLEN (v_hlen_tos_len & 0xFF) 18634 #endif 18635 18636 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 18637 "ip_wput_start: q %p", q); 18638 18639 /* 18640 * ip_wput fast path 18641 */ 18642 18643 /* is packet from ARP ? */ 18644 if (q->q_next != NULL) 18645 goto qnext; 18646 18647 connp = (conn_t *)arg; 18648 zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 18649 18650 /* is queue flow controlled? */ 18651 if ((q->q_first != NULL || connp->conn_draining) && 18652 (caller == IP_WPUT)) { 18653 ASSERT(!need_decref); 18654 (void) putq(q, mp); 18655 return; 18656 } 18657 18658 /* Multidata transmit? */ 18659 if (DB_TYPE(mp) == M_MULTIDATA) { 18660 /* 18661 * We should never get here, since all Multidata messages 18662 * originating from tcp should have been directed over to 18663 * tcp_multisend() in the first place. 18664 */ 18665 BUMP_MIB(&ip_mib, ipOutDiscards); 18666 freemsg(mp); 18667 return; 18668 } else if (DB_TYPE(mp) != M_DATA) 18669 goto notdata; 18670 18671 if (mp->b_flag & MSGHASREF) { 18672 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 18673 mp->b_flag &= ~MSGHASREF; 18674 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 18675 need_decref = B_TRUE; 18676 } 18677 ipha = (ipha_t *)mp->b_rptr; 18678 18679 /* is IP header non-aligned or mblk smaller than basic IP header */ 18680 #ifndef SAFETY_BEFORE_SPEED 18681 if (!OK_32PTR(rptr) || 18682 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 18683 goto hdrtoosmall; 18684 #endif 18685 18686 ASSERT(OK_32PTR(ipha)); 18687 18688 /* 18689 * This function assumes that mp points to an IPv4 packet. If it's the 18690 * wrong version, we'll catch it again in ip_output_v6. 18691 * 18692 * Note that this is *only* locally-generated output here, and never 18693 * forwarded data, and that we need to deal only with transports that 18694 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 18695 * label.) 18696 */ 18697 if (is_system_labeled() && 18698 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 18699 !connp->conn_ulp_labeled) { 18700 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 18701 connp->conn_mac_exempt); 18702 ipha = (ipha_t *)mp->b_rptr; 18703 if (err != 0) { 18704 first_mp = mp; 18705 if (err == EINVAL) 18706 goto icmp_parameter_problem; 18707 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 18708 goto drop_pkt; 18709 } 18710 iplen = ntohs(ipha->ipha_length) + adjust; 18711 ipha->ipha_length = htons(iplen); 18712 } 18713 18714 /* 18715 * If there is a policy, try to attach an ipsec_out in 18716 * the front. At the end, first_mp either points to a 18717 * M_DATA message or IPSEC_OUT message linked to a 18718 * M_DATA message. We have to do it now as we might 18719 * lose the "conn" if we go through ip_newroute. 18720 */ 18721 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 18722 if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL, 18723 ipha->ipha_protocol)) == NULL)) { 18724 if (need_decref) 18725 CONN_DEC_REF(connp); 18726 return; 18727 } else { 18728 ASSERT(mp->b_datap->db_type == M_CTL); 18729 first_mp = mp; 18730 mp = mp->b_cont; 18731 mctl_present = B_TRUE; 18732 } 18733 } else { 18734 first_mp = mp; 18735 mctl_present = B_FALSE; 18736 } 18737 18738 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 18739 18740 /* is wrong version or IP options present */ 18741 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 18742 goto version_hdrlen_check; 18743 dst = ipha->ipha_dst; 18744 18745 if (connp->conn_nofailover_ill != NULL) { 18746 attach_ill = conn_get_held_ill(connp, 18747 &connp->conn_nofailover_ill, &err); 18748 if (err == ILL_LOOKUP_FAILED) { 18749 if (need_decref) 18750 CONN_DEC_REF(connp); 18751 freemsg(first_mp); 18752 return; 18753 } 18754 } 18755 18756 /* is packet multicast? */ 18757 if (CLASSD(dst)) 18758 goto multicast; 18759 18760 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 18761 (connp->conn_nexthop_set)) { 18762 /* 18763 * If the destination is a broadcast or a loopback 18764 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 18765 * through the standard path. But in the case of local 18766 * destination only SO_DONTROUTE and IP_NEXTHOP go through 18767 * the standard path not IP_XMIT_IF. 18768 */ 18769 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 18770 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 18771 (ire->ire_type != IRE_LOOPBACK))) { 18772 if ((connp->conn_dontroute || 18773 connp->conn_nexthop_set) && (ire != NULL) && 18774 (ire->ire_type == IRE_LOCAL)) 18775 goto standard_path; 18776 18777 if (ire != NULL) { 18778 ire_refrele(ire); 18779 /* No more access to ire */ 18780 ire = NULL; 18781 } 18782 /* 18783 * bypass routing checks and go directly to 18784 * interface. 18785 */ 18786 if (connp->conn_dontroute) { 18787 goto dontroute; 18788 } else if (connp->conn_nexthop_set) { 18789 ip_nexthop = B_TRUE; 18790 nexthop_addr = connp->conn_nexthop_v4; 18791 goto send_from_ill; 18792 } 18793 18794 /* 18795 * If IP_XMIT_IF socket option is set, 18796 * then we allow unicast and multicast 18797 * packets to go through the ill. It is 18798 * quite possible that the destination 18799 * is not in the ire cache table and we 18800 * do not want to go to ip_newroute() 18801 * instead we call ip_newroute_ipif. 18802 */ 18803 xmit_ill = conn_get_held_ill(connp, 18804 &connp->conn_xmit_if_ill, &err); 18805 if (err == ILL_LOOKUP_FAILED) { 18806 if (attach_ill != NULL) 18807 ill_refrele(attach_ill); 18808 if (need_decref) 18809 CONN_DEC_REF(connp); 18810 freemsg(first_mp); 18811 return; 18812 } 18813 goto send_from_ill; 18814 } 18815 standard_path: 18816 /* Must be a broadcast, a loopback or a local ire */ 18817 if (ire != NULL) { 18818 ire_refrele(ire); 18819 /* No more access to ire */ 18820 ire = NULL; 18821 } 18822 } 18823 18824 if (attach_ill != NULL) 18825 goto send_from_ill; 18826 18827 /* 18828 * We cache IRE_CACHEs to avoid lookups. We don't do 18829 * this for the tcp global queue and listen end point 18830 * as it does not really have a real destination to 18831 * talk to. This is also true for SCTP. 18832 */ 18833 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 18834 !connp->conn_fully_bound) { 18835 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 18836 if (ire == NULL) 18837 goto noirefound; 18838 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18839 "ip_wput_end: q %p (%S)", q, "end"); 18840 18841 /* 18842 * Check if the ire has the RTF_MULTIRT flag, inherited 18843 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 18844 */ 18845 if (ire->ire_flags & RTF_MULTIRT) { 18846 18847 /* 18848 * Force the TTL of multirouted packets if required. 18849 * The TTL of such packets is bounded by the 18850 * ip_multirt_ttl ndd variable. 18851 */ 18852 if ((ip_multirt_ttl > 0) && 18853 (ipha->ipha_ttl > ip_multirt_ttl)) { 18854 ip2dbg(("ip_wput: forcing multirt TTL to %d " 18855 "(was %d), dst 0x%08x\n", 18856 ip_multirt_ttl, ipha->ipha_ttl, 18857 ntohl(ire->ire_addr))); 18858 ipha->ipha_ttl = ip_multirt_ttl; 18859 } 18860 /* 18861 * We look at this point if there are pending 18862 * unresolved routes. ire_multirt_resolvable() 18863 * checks in O(n) that all IRE_OFFSUBNET ire 18864 * entries for the packet's destination and 18865 * flagged RTF_MULTIRT are currently resolved. 18866 * If some remain unresolved, we make a copy 18867 * of the current message. It will be used 18868 * to initiate additional route resolutions. 18869 */ 18870 multirt_need_resolve = 18871 ire_multirt_need_resolve(ire->ire_addr, 18872 MBLK_GETLABEL(first_mp)); 18873 ip2dbg(("ip_wput[TCP]: ire %p, " 18874 "multirt_need_resolve %d, first_mp %p\n", 18875 (void *)ire, multirt_need_resolve, 18876 (void *)first_mp)); 18877 if (multirt_need_resolve) { 18878 copy_mp = copymsg(first_mp); 18879 if (copy_mp != NULL) { 18880 MULTIRT_DEBUG_TAG(copy_mp); 18881 } 18882 } 18883 } 18884 18885 ip_wput_ire(q, first_mp, ire, connp, caller); 18886 18887 /* 18888 * Try to resolve another multiroute if 18889 * ire_multirt_need_resolve() deemed it necessary. 18890 */ 18891 if (copy_mp != NULL) { 18892 ip_newroute(q, copy_mp, dst, NULL, connp); 18893 } 18894 if (need_decref) 18895 CONN_DEC_REF(connp); 18896 return; 18897 } 18898 18899 /* 18900 * Access to conn_ire_cache. (protected by conn_lock) 18901 * 18902 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 18903 * the ire bucket lock here to check for CONDEMNED as it is okay to 18904 * send a packet or two with the IRE_CACHE that is going away. 18905 * Access to the ire requires an ire refhold on the ire prior to 18906 * its use since an interface unplumb thread may delete the cached 18907 * ire and release the refhold at any time. 18908 * 18909 * Caching an ire in the conn_ire_cache 18910 * 18911 * o Caching an ire pointer in the conn requires a strict check for 18912 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 18913 * ires before cleaning up the conns. So the caching of an ire pointer 18914 * in the conn is done after making sure under the bucket lock that the 18915 * ire has not yet been marked CONDEMNED. Otherwise we will end up 18916 * caching an ire after the unplumb thread has cleaned up the conn. 18917 * If the conn does not send a packet subsequently the unplumb thread 18918 * will be hanging waiting for the ire count to drop to zero. 18919 * 18920 * o We also need to atomically test for a null conn_ire_cache and 18921 * set the conn_ire_cache under the the protection of the conn_lock 18922 * to avoid races among concurrent threads trying to simultaneously 18923 * cache an ire in the conn_ire_cache. 18924 */ 18925 mutex_enter(&connp->conn_lock); 18926 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 18927 18928 if (ire != NULL && ire->ire_addr == dst && 18929 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18930 18931 IRE_REFHOLD(ire); 18932 mutex_exit(&connp->conn_lock); 18933 18934 } else { 18935 boolean_t cached = B_FALSE; 18936 connp->conn_ire_cache = NULL; 18937 mutex_exit(&connp->conn_lock); 18938 /* Release the old ire */ 18939 if (ire != NULL && sctp_ire == NULL) 18940 IRE_REFRELE_NOTR(ire); 18941 18942 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 18943 if (ire == NULL) 18944 goto noirefound; 18945 IRE_REFHOLD_NOTR(ire); 18946 18947 mutex_enter(&connp->conn_lock); 18948 if (!(connp->conn_state_flags & CONN_CLOSING) && 18949 connp->conn_ire_cache == NULL) { 18950 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18951 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18952 connp->conn_ire_cache = ire; 18953 cached = B_TRUE; 18954 } 18955 rw_exit(&ire->ire_bucket->irb_lock); 18956 } 18957 mutex_exit(&connp->conn_lock); 18958 18959 /* 18960 * We can continue to use the ire but since it was 18961 * not cached, we should drop the extra reference. 18962 */ 18963 if (!cached) 18964 IRE_REFRELE_NOTR(ire); 18965 } 18966 18967 18968 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18969 "ip_wput_end: q %p (%S)", q, "end"); 18970 18971 /* 18972 * Check if the ire has the RTF_MULTIRT flag, inherited 18973 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 18974 */ 18975 if (ire->ire_flags & RTF_MULTIRT) { 18976 18977 /* 18978 * Force the TTL of multirouted packets if required. 18979 * The TTL of such packets is bounded by the 18980 * ip_multirt_ttl ndd variable. 18981 */ 18982 if ((ip_multirt_ttl > 0) && 18983 (ipha->ipha_ttl > ip_multirt_ttl)) { 18984 ip2dbg(("ip_wput: forcing multirt TTL to %d " 18985 "(was %d), dst 0x%08x\n", 18986 ip_multirt_ttl, ipha->ipha_ttl, 18987 ntohl(ire->ire_addr))); 18988 ipha->ipha_ttl = ip_multirt_ttl; 18989 } 18990 18991 /* 18992 * At this point, we check to see if there are any pending 18993 * unresolved routes. ire_multirt_resolvable() 18994 * checks in O(n) that all IRE_OFFSUBNET ire 18995 * entries for the packet's destination and 18996 * flagged RTF_MULTIRT are currently resolved. 18997 * If some remain unresolved, we make a copy 18998 * of the current message. It will be used 18999 * to initiate additional route resolutions. 19000 */ 19001 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 19002 MBLK_GETLABEL(first_mp)); 19003 ip2dbg(("ip_wput[not TCP]: ire %p, " 19004 "multirt_need_resolve %d, first_mp %p\n", 19005 (void *)ire, multirt_need_resolve, (void *)first_mp)); 19006 if (multirt_need_resolve) { 19007 copy_mp = copymsg(first_mp); 19008 if (copy_mp != NULL) { 19009 MULTIRT_DEBUG_TAG(copy_mp); 19010 } 19011 } 19012 } 19013 19014 ip_wput_ire(q, first_mp, ire, connp, caller); 19015 19016 /* 19017 * Try to resolve another multiroute if 19018 * ire_multirt_resolvable() deemed it necessary 19019 */ 19020 if (copy_mp != NULL) { 19021 ip_newroute(q, copy_mp, dst, NULL, connp); 19022 } 19023 if (need_decref) 19024 CONN_DEC_REF(connp); 19025 return; 19026 19027 qnext: 19028 /* 19029 * Upper Level Protocols pass down complete IP datagrams 19030 * as M_DATA messages. Everything else is a sideshow. 19031 * 19032 * 1) We could be re-entering ip_wput because of ip_neworute 19033 * in which case we could have a IPSEC_OUT message. We 19034 * need to pass through ip_wput like other datagrams and 19035 * hence cannot branch to ip_wput_nondata. 19036 * 19037 * 2) ARP, AH, ESP, and other clients who are on the module 19038 * instance of IP stream, give us something to deal with. 19039 * We will handle AH and ESP here and rest in ip_wput_nondata. 19040 * 19041 * 3) ICMP replies also could come here. 19042 */ 19043 if (DB_TYPE(mp) != M_DATA) { 19044 notdata: 19045 if (DB_TYPE(mp) == M_CTL) { 19046 /* 19047 * M_CTL messages are used by ARP, AH and ESP to 19048 * communicate with IP. We deal with IPSEC_IN and 19049 * IPSEC_OUT here. ip_wput_nondata handles other 19050 * cases. 19051 */ 19052 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 19053 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 19054 first_mp = mp->b_cont; 19055 first_mp->b_flag &= ~MSGHASREF; 19056 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 19057 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 19058 CONN_DEC_REF(connp); 19059 connp = NULL; 19060 } 19061 if (ii->ipsec_info_type == IPSEC_IN) { 19062 /* 19063 * Either this message goes back to 19064 * IPSEC for further processing or to 19065 * ULP after policy checks. 19066 */ 19067 ip_fanout_proto_again(mp, NULL, NULL, NULL); 19068 return; 19069 } else if (ii->ipsec_info_type == IPSEC_OUT) { 19070 io = (ipsec_out_t *)ii; 19071 if (io->ipsec_out_proc_begin) { 19072 /* 19073 * IPSEC processing has already started. 19074 * Complete it. 19075 * IPQoS notes: We don't care what is 19076 * in ipsec_out_ill_index since this 19077 * won't be processed for IPQoS policies 19078 * in ipsec_out_process. 19079 */ 19080 ipsec_out_process(q, mp, NULL, 19081 io->ipsec_out_ill_index); 19082 return; 19083 } else { 19084 connp = (q->q_next != NULL) ? 19085 NULL : Q_TO_CONN(q); 19086 first_mp = mp; 19087 mp = mp->b_cont; 19088 mctl_present = B_TRUE; 19089 } 19090 zoneid = io->ipsec_out_zoneid; 19091 ASSERT(zoneid != ALL_ZONES); 19092 } else if (ii->ipsec_info_type == IPSEC_CTL) { 19093 /* 19094 * It's an IPsec control message requesting 19095 * an SADB update to be sent to the IPsec 19096 * hardware acceleration capable ills. 19097 */ 19098 ipsec_ctl_t *ipsec_ctl = 19099 (ipsec_ctl_t *)mp->b_rptr; 19100 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 19101 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 19102 mblk_t *cmp = mp->b_cont; 19103 19104 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 19105 ASSERT(cmp != NULL); 19106 19107 freeb(mp); 19108 ill_ipsec_capab_send_all(satype, cmp, sa); 19109 return; 19110 } else { 19111 /* 19112 * This must be ARP or special TSOL signaling. 19113 */ 19114 ip_wput_nondata(NULL, q, mp, NULL); 19115 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19116 "ip_wput_end: q %p (%S)", q, "nondata"); 19117 return; 19118 } 19119 } else { 19120 /* 19121 * This must be non-(ARP/AH/ESP) messages. 19122 */ 19123 ASSERT(!need_decref); 19124 ip_wput_nondata(NULL, q, mp, NULL); 19125 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19126 "ip_wput_end: q %p (%S)", q, "nondata"); 19127 return; 19128 } 19129 } else { 19130 first_mp = mp; 19131 mctl_present = B_FALSE; 19132 } 19133 19134 ASSERT(first_mp != NULL); 19135 /* 19136 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 19137 * to make sure that this packet goes out on the same interface it 19138 * came in. We handle that here. 19139 */ 19140 if (mctl_present) { 19141 uint_t ifindex; 19142 19143 io = (ipsec_out_t *)first_mp->b_rptr; 19144 if (io->ipsec_out_attach_if || 19145 io->ipsec_out_xmit_if || 19146 io->ipsec_out_ip_nexthop) { 19147 ill_t *ill; 19148 19149 /* 19150 * We may have lost the conn context if we are 19151 * coming here from ip_newroute(). Copy the 19152 * nexthop information. 19153 */ 19154 if (io->ipsec_out_ip_nexthop) { 19155 ip_nexthop = B_TRUE; 19156 nexthop_addr = io->ipsec_out_nexthop_addr; 19157 19158 ipha = (ipha_t *)mp->b_rptr; 19159 dst = ipha->ipha_dst; 19160 goto send_from_ill; 19161 } else { 19162 ASSERT(io->ipsec_out_ill_index != 0); 19163 ifindex = io->ipsec_out_ill_index; 19164 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 19165 NULL, NULL, NULL, NULL); 19166 /* 19167 * ipsec_out_xmit_if bit is used to tell 19168 * ip_wput to use the ill to send outgoing data 19169 * as we have no conn when data comes from ICMP 19170 * error msg routines. Currently this feature is 19171 * only used by ip_mrtun_forward routine. 19172 */ 19173 if (io->ipsec_out_xmit_if) { 19174 xmit_ill = ill; 19175 if (xmit_ill == NULL) { 19176 ip1dbg(("ip_output:bad ifindex " 19177 "for xmit_ill %d\n", 19178 ifindex)); 19179 freemsg(first_mp); 19180 BUMP_MIB(&ip_mib, 19181 ipOutDiscards); 19182 ASSERT(!need_decref); 19183 return; 19184 } 19185 /* Free up the ipsec_out_t mblk */ 19186 ASSERT(first_mp->b_cont == mp); 19187 first_mp->b_cont = NULL; 19188 freeb(first_mp); 19189 /* Just send the IP header+ICMP+data */ 19190 first_mp = mp; 19191 ipha = (ipha_t *)mp->b_rptr; 19192 dst = ipha->ipha_dst; 19193 goto send_from_ill; 19194 } else { 19195 attach_ill = ill; 19196 } 19197 19198 if (attach_ill == NULL) { 19199 ASSERT(xmit_ill == NULL); 19200 ip1dbg(("ip_output: bad ifindex for " 19201 "(BIND TO IPIF_NOFAILOVER) %d\n", 19202 ifindex)); 19203 freemsg(first_mp); 19204 BUMP_MIB(&ip_mib, ipOutDiscards); 19205 ASSERT(!need_decref); 19206 return; 19207 } 19208 } 19209 } 19210 } 19211 19212 ASSERT(xmit_ill == NULL); 19213 19214 /* We have a complete IP datagram heading outbound. */ 19215 ipha = (ipha_t *)mp->b_rptr; 19216 19217 #ifndef SPEED_BEFORE_SAFETY 19218 /* 19219 * Make sure we have a full-word aligned message and that at least 19220 * a simple IP header is accessible in the first message. If not, 19221 * try a pullup. 19222 */ 19223 if (!OK_32PTR(rptr) || 19224 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 19225 hdrtoosmall: 19226 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 19227 BUMP_MIB(&ip_mib, ipOutDiscards); 19228 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19229 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 19230 if (first_mp == NULL) 19231 first_mp = mp; 19232 goto drop_pkt; 19233 } 19234 19235 /* This function assumes that mp points to an IPv4 packet. */ 19236 if (is_system_labeled() && q->q_next == NULL && 19237 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 19238 !connp->conn_ulp_labeled) { 19239 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 19240 &adjust, connp->conn_mac_exempt); 19241 ipha = (ipha_t *)mp->b_rptr; 19242 if (first_mp != NULL) 19243 first_mp->b_cont = mp; 19244 if (err != 0) { 19245 if (first_mp == NULL) 19246 first_mp = mp; 19247 if (err == EINVAL) 19248 goto icmp_parameter_problem; 19249 ip2dbg(("ip_wput: label check failed (%d)\n", 19250 err)); 19251 goto drop_pkt; 19252 } 19253 iplen = ntohs(ipha->ipha_length) + adjust; 19254 ipha->ipha_length = htons(iplen); 19255 } 19256 19257 ipha = (ipha_t *)mp->b_rptr; 19258 if (first_mp == NULL) { 19259 ASSERT(attach_ill == NULL && xmit_ill == NULL); 19260 /* 19261 * If we got here because of "goto hdrtoosmall" 19262 * We need to attach a IPSEC_OUT. 19263 */ 19264 if (connp->conn_out_enforce_policy) { 19265 if (((mp = ipsec_attach_ipsec_out(mp, connp, 19266 NULL, ipha->ipha_protocol)) == NULL)) { 19267 if (need_decref) 19268 CONN_DEC_REF(connp); 19269 return; 19270 } else { 19271 ASSERT(mp->b_datap->db_type == M_CTL); 19272 first_mp = mp; 19273 mp = mp->b_cont; 19274 mctl_present = B_TRUE; 19275 } 19276 } else { 19277 first_mp = mp; 19278 mctl_present = B_FALSE; 19279 } 19280 } 19281 } 19282 #endif 19283 19284 /* Most of the code below is written for speed, not readability */ 19285 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19286 19287 /* 19288 * If ip_newroute() fails, we're going to need a full 19289 * header for the icmp wraparound. 19290 */ 19291 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 19292 uint_t v_hlen; 19293 version_hdrlen_check: 19294 ASSERT(first_mp != NULL); 19295 v_hlen = V_HLEN; 19296 /* 19297 * siphon off IPv6 packets coming down from transport 19298 * layer modules here. 19299 * Note: high-order bit carries NUD reachability confirmation 19300 */ 19301 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 19302 /* 19303 * XXX implement a IPv4 and IPv6 packet counter per 19304 * conn and switch when ratio exceeds e.g. 10:1 19305 */ 19306 #ifdef notyet 19307 if (q->q_next == NULL) /* Avoid ill queue */ 19308 ip_setqinfo(RD(q), B_TRUE, B_TRUE); 19309 #endif 19310 BUMP_MIB(&ip_mib, ipOutIPv6); 19311 ASSERT(xmit_ill == NULL); 19312 if (attach_ill != NULL) 19313 ill_refrele(attach_ill); 19314 if (need_decref) 19315 mp->b_flag |= MSGHASREF; 19316 (void) ip_output_v6(connp, first_mp, q, caller); 19317 return; 19318 } 19319 19320 if ((v_hlen >> 4) != IP_VERSION) { 19321 BUMP_MIB(&ip_mib, ipOutDiscards); 19322 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19323 "ip_wput_end: q %p (%S)", q, "badvers"); 19324 goto drop_pkt; 19325 } 19326 /* 19327 * Is the header length at least 20 bytes? 19328 * 19329 * Are there enough bytes accessible in the header? If 19330 * not, try a pullup. 19331 */ 19332 v_hlen &= 0xF; 19333 v_hlen <<= 2; 19334 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 19335 BUMP_MIB(&ip_mib, ipOutDiscards); 19336 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19337 "ip_wput_end: q %p (%S)", q, "badlen"); 19338 goto drop_pkt; 19339 } 19340 if (v_hlen > (mp->b_wptr - rptr)) { 19341 if (!pullupmsg(mp, v_hlen)) { 19342 BUMP_MIB(&ip_mib, ipOutDiscards); 19343 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19344 "ip_wput_end: q %p (%S)", q, "badpullup2"); 19345 goto drop_pkt; 19346 } 19347 ipha = (ipha_t *)mp->b_rptr; 19348 } 19349 /* 19350 * Move first entry from any source route into ipha_dst and 19351 * verify the options 19352 */ 19353 if (ip_wput_options(q, first_mp, ipha, mctl_present, zoneid)) { 19354 ASSERT(xmit_ill == NULL); 19355 if (attach_ill != NULL) 19356 ill_refrele(attach_ill); 19357 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19358 "ip_wput_end: q %p (%S)", q, "badopts"); 19359 if (need_decref) 19360 CONN_DEC_REF(connp); 19361 return; 19362 } 19363 } 19364 dst = ipha->ipha_dst; 19365 19366 /* 19367 * Try to get an IRE_CACHE for the destination address. If we can't, 19368 * we have to run the packet through ip_newroute which will take 19369 * the appropriate action to arrange for an IRE_CACHE, such as querying 19370 * a resolver, or assigning a default gateway, etc. 19371 */ 19372 if (CLASSD(dst)) { 19373 ipif_t *ipif; 19374 uint32_t setsrc = 0; 19375 19376 multicast: 19377 ASSERT(first_mp != NULL); 19378 ASSERT(xmit_ill == NULL); 19379 ip2dbg(("ip_wput: CLASSD\n")); 19380 if (connp == NULL) { 19381 /* 19382 * Use the first good ipif on the ill. 19383 * XXX Should this ever happen? (Appears 19384 * to show up with just ppp and no ethernet due 19385 * to in.rdisc.) 19386 * However, ire_send should be able to 19387 * call ip_wput_ire directly. 19388 * 19389 * XXX Also, this can happen for ICMP and other packets 19390 * with multicast source addresses. Perhaps we should 19391 * fix things so that we drop the packet in question, 19392 * but for now, just run with it. 19393 */ 19394 ill_t *ill = (ill_t *)q->q_ptr; 19395 19396 /* 19397 * Don't honor attach_if for this case. If ill 19398 * is part of the group, ipif could belong to 19399 * any ill and we cannot maintain attach_ill 19400 * and ipif_ill same anymore and the assert 19401 * below would fail. 19402 */ 19403 if (mctl_present) { 19404 io->ipsec_out_ill_index = 0; 19405 io->ipsec_out_attach_if = B_FALSE; 19406 ASSERT(attach_ill != NULL); 19407 ill_refrele(attach_ill); 19408 attach_ill = NULL; 19409 } 19410 19411 ASSERT(attach_ill == NULL); 19412 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 19413 if (ipif == NULL) { 19414 if (need_decref) 19415 CONN_DEC_REF(connp); 19416 freemsg(first_mp); 19417 return; 19418 } 19419 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 19420 ntohl(dst), ill->ill_name)); 19421 } else { 19422 /* 19423 * If both IP_MULTICAST_IF and IP_XMIT_IF are set, 19424 * IP_XMIT_IF is honoured. 19425 * Block comment above this function explains the 19426 * locking mechanism used here 19427 */ 19428 xmit_ill = conn_get_held_ill(connp, 19429 &connp->conn_xmit_if_ill, &err); 19430 if (err == ILL_LOOKUP_FAILED) { 19431 ip1dbg(("ip_wput: No ill for IP_XMIT_IF\n")); 19432 goto drop_pkt; 19433 } 19434 if (xmit_ill == NULL) { 19435 ipif = conn_get_held_ipif(connp, 19436 &connp->conn_multicast_ipif, &err); 19437 if (err == IPIF_LOOKUP_FAILED) { 19438 ip1dbg(("ip_wput: No ipif for " 19439 "multicast\n")); 19440 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19441 goto drop_pkt; 19442 } 19443 } 19444 if (xmit_ill != NULL) { 19445 ipif = ipif_get_next_ipif(NULL, xmit_ill); 19446 if (ipif == NULL) { 19447 ip1dbg(("ip_wput: No ipif for " 19448 "IP_XMIT_IF\n")); 19449 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19450 goto drop_pkt; 19451 } 19452 } else if (ipif == NULL || ipif->ipif_isv6) { 19453 /* 19454 * We must do this ipif determination here 19455 * else we could pass through ip_newroute 19456 * and come back here without the conn context. 19457 * 19458 * Note: we do late binding i.e. we bind to 19459 * the interface when the first packet is sent. 19460 * For performance reasons we do not rebind on 19461 * each packet but keep the binding until the 19462 * next IP_MULTICAST_IF option. 19463 * 19464 * conn_multicast_{ipif,ill} are shared between 19465 * IPv4 and IPv6 and AF_INET6 sockets can 19466 * send both IPv4 and IPv6 packets. Hence 19467 * we have to check that "isv6" matches above. 19468 */ 19469 if (ipif != NULL) 19470 ipif_refrele(ipif); 19471 ipif = ipif_lookup_group(dst, zoneid); 19472 if (ipif == NULL) { 19473 ip1dbg(("ip_wput: No ipif for " 19474 "multicast\n")); 19475 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19476 goto drop_pkt; 19477 } 19478 err = conn_set_held_ipif(connp, 19479 &connp->conn_multicast_ipif, ipif); 19480 if (err == IPIF_LOOKUP_FAILED) { 19481 ipif_refrele(ipif); 19482 ip1dbg(("ip_wput: No ipif for " 19483 "multicast\n")); 19484 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19485 goto drop_pkt; 19486 } 19487 } 19488 } 19489 ASSERT(!ipif->ipif_isv6); 19490 /* 19491 * As we may lose the conn by the time we reach ip_wput_ire, 19492 * we copy conn_multicast_loop and conn_dontroute on to an 19493 * ipsec_out. In case if this datagram goes out secure, 19494 * we need the ill_index also. Copy that also into the 19495 * ipsec_out. 19496 */ 19497 if (mctl_present) { 19498 io = (ipsec_out_t *)first_mp->b_rptr; 19499 ASSERT(first_mp->b_datap->db_type == M_CTL); 19500 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19501 } else { 19502 ASSERT(mp == first_mp); 19503 if ((first_mp = allocb(sizeof (ipsec_info_t), 19504 BPRI_HI)) == NULL) { 19505 ipif_refrele(ipif); 19506 first_mp = mp; 19507 goto drop_pkt; 19508 } 19509 first_mp->b_datap->db_type = M_CTL; 19510 first_mp->b_wptr += sizeof (ipsec_info_t); 19511 /* ipsec_out_secure is B_FALSE now */ 19512 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 19513 io = (ipsec_out_t *)first_mp->b_rptr; 19514 io->ipsec_out_type = IPSEC_OUT; 19515 io->ipsec_out_len = sizeof (ipsec_out_t); 19516 io->ipsec_out_use_global_policy = B_TRUE; 19517 first_mp->b_cont = mp; 19518 mctl_present = B_TRUE; 19519 } 19520 if (attach_ill != NULL) { 19521 ASSERT(attach_ill == ipif->ipif_ill); 19522 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 19523 19524 /* 19525 * Check if we need an ire that will not be 19526 * looked up by anybody else i.e. HIDDEN. 19527 */ 19528 if (ill_is_probeonly(attach_ill)) { 19529 match_flags |= MATCH_IRE_MARK_HIDDEN; 19530 } 19531 io->ipsec_out_ill_index = 19532 attach_ill->ill_phyint->phyint_ifindex; 19533 io->ipsec_out_attach_if = B_TRUE; 19534 } else { 19535 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 19536 io->ipsec_out_ill_index = 19537 ipif->ipif_ill->ill_phyint->phyint_ifindex; 19538 } 19539 if (connp != NULL) { 19540 io->ipsec_out_multicast_loop = 19541 connp->conn_multicast_loop; 19542 io->ipsec_out_dontroute = connp->conn_dontroute; 19543 io->ipsec_out_zoneid = connp->conn_zoneid; 19544 } 19545 /* 19546 * If the application uses IP_MULTICAST_IF with 19547 * different logical addresses of the same ILL, we 19548 * need to make sure that the soruce address of 19549 * the packet matches the logical IP address used 19550 * in the option. We do it by initializing ipha_src 19551 * here. This should keep IPSEC also happy as 19552 * when we return from IPSEC processing, we don't 19553 * have to worry about getting the right address on 19554 * the packet. Thus it is sufficient to look for 19555 * IRE_CACHE using MATCH_IRE_ILL rathen than 19556 * MATCH_IRE_IPIF. 19557 * 19558 * NOTE : We need to do it for non-secure case also as 19559 * this might go out secure if there is a global policy 19560 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 19561 * address, the source should be initialized already and 19562 * hence we won't be initializing here. 19563 * 19564 * As we do not have the ire yet, it is possible that 19565 * we set the source address here and then later discover 19566 * that the ire implies the source address to be assigned 19567 * through the RTF_SETSRC flag. 19568 * In that case, the setsrc variable will remind us 19569 * that overwritting the source address by the one 19570 * of the RTF_SETSRC-flagged ire is allowed. 19571 */ 19572 if (ipha->ipha_src == INADDR_ANY && 19573 (connp == NULL || !connp->conn_unspec_src)) { 19574 ipha->ipha_src = ipif->ipif_src_addr; 19575 setsrc = RTF_SETSRC; 19576 } 19577 /* 19578 * Find an IRE which matches the destination and the outgoing 19579 * queue (i.e. the outgoing interface.) 19580 * For loopback use a unicast IP address for 19581 * the ire lookup. 19582 */ 19583 if (ipif->ipif_ill->ill_phyint->phyint_flags & 19584 PHYI_LOOPBACK) { 19585 dst = ipif->ipif_lcl_addr; 19586 } 19587 /* 19588 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 19589 * We don't need to lookup ire in ctable as the packet 19590 * needs to be sent to the destination through the specified 19591 * ill irrespective of ires in the cache table. 19592 */ 19593 ire = NULL; 19594 if (xmit_ill == NULL) { 19595 ire = ire_ctable_lookup(dst, 0, 0, ipif, 19596 zoneid, MBLK_GETLABEL(mp), match_flags); 19597 } 19598 19599 /* 19600 * refrele attach_ill as its not needed anymore. 19601 */ 19602 if (attach_ill != NULL) { 19603 ill_refrele(attach_ill); 19604 attach_ill = NULL; 19605 } 19606 19607 if (ire == NULL) { 19608 /* 19609 * Multicast loopback and multicast forwarding is 19610 * done in ip_wput_ire. 19611 * 19612 * Mark this packet to make it be delivered to 19613 * ip_wput_ire after the new ire has been 19614 * created. 19615 * 19616 * The call to ip_newroute_ipif takes into account 19617 * the setsrc reminder. In any case, we take care 19618 * of the RTF_MULTIRT flag. 19619 */ 19620 mp->b_prev = mp->b_next = NULL; 19621 if (xmit_ill == NULL || 19622 xmit_ill->ill_ipif_up_count > 0) { 19623 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 19624 setsrc | RTF_MULTIRT); 19625 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19626 "ip_wput_end: q %p (%S)", q, "noire"); 19627 } else { 19628 freemsg(first_mp); 19629 } 19630 ipif_refrele(ipif); 19631 if (xmit_ill != NULL) 19632 ill_refrele(xmit_ill); 19633 if (need_decref) 19634 CONN_DEC_REF(connp); 19635 return; 19636 } 19637 19638 ipif_refrele(ipif); 19639 ipif = NULL; 19640 ASSERT(xmit_ill == NULL); 19641 19642 /* 19643 * Honor the RTF_SETSRC flag for multicast packets, 19644 * if allowed by the setsrc reminder. 19645 */ 19646 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 19647 ipha->ipha_src = ire->ire_src_addr; 19648 } 19649 19650 /* 19651 * Unconditionally force the TTL to 1 for 19652 * multirouted multicast packets: 19653 * multirouted multicast should not cross 19654 * multicast routers. 19655 */ 19656 if (ire->ire_flags & RTF_MULTIRT) { 19657 if (ipha->ipha_ttl > 1) { 19658 ip2dbg(("ip_wput: forcing multicast " 19659 "multirt TTL to 1 (was %d), dst 0x%08x\n", 19660 ipha->ipha_ttl, ntohl(ire->ire_addr))); 19661 ipha->ipha_ttl = 1; 19662 } 19663 } 19664 } else { 19665 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19666 if ((ire != NULL) && (ire->ire_type & 19667 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 19668 ignore_dontroute = B_TRUE; 19669 ignore_nexthop = B_TRUE; 19670 } 19671 if (ire != NULL) { 19672 ire_refrele(ire); 19673 ire = NULL; 19674 } 19675 /* 19676 * Guard against coming in from arp in which case conn is NULL. 19677 * Also guard against non M_DATA with dontroute set but 19678 * destined to local, loopback or broadcast addresses. 19679 */ 19680 if (connp != NULL && connp->conn_dontroute && 19681 !ignore_dontroute) { 19682 dontroute: 19683 /* 19684 * Set TTL to 1 if SO_DONTROUTE is set to prevent 19685 * routing protocols from seeing false direct 19686 * connectivity. 19687 */ 19688 ipha->ipha_ttl = 1; 19689 /* 19690 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 19691 * along with SO_DONTROUTE, higher precedence is 19692 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 19693 */ 19694 if (connp->conn_xmit_if_ill == NULL) { 19695 /* If suitable ipif not found, drop packet */ 19696 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid); 19697 if (dst_ipif == NULL) { 19698 ip1dbg(("ip_wput: no route for " 19699 "dst using SO_DONTROUTE\n")); 19700 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19701 mp->b_prev = mp->b_next = NULL; 19702 if (first_mp == NULL) 19703 first_mp = mp; 19704 goto drop_pkt; 19705 } else { 19706 /* 19707 * If suitable ipif has been found, set 19708 * xmit_ill to the corresponding 19709 * ipif_ill because we'll be following 19710 * the IP_XMIT_IF logic. 19711 */ 19712 ASSERT(xmit_ill == NULL); 19713 xmit_ill = dst_ipif->ipif_ill; 19714 mutex_enter(&xmit_ill->ill_lock); 19715 if (!ILL_CAN_LOOKUP(xmit_ill)) { 19716 mutex_exit(&xmit_ill->ill_lock); 19717 xmit_ill = NULL; 19718 ipif_refrele(dst_ipif); 19719 ip1dbg(("ip_wput: no route for" 19720 " dst using" 19721 " SO_DONTROUTE\n")); 19722 BUMP_MIB(&ip_mib, 19723 ipOutNoRoutes); 19724 mp->b_prev = mp->b_next = NULL; 19725 if (first_mp == NULL) 19726 first_mp = mp; 19727 goto drop_pkt; 19728 } 19729 ill_refhold_locked(xmit_ill); 19730 mutex_exit(&xmit_ill->ill_lock); 19731 ipif_refrele(dst_ipif); 19732 } 19733 } 19734 19735 } 19736 /* 19737 * If we are bound to IPIF_NOFAILOVER address, look for 19738 * an IRE_CACHE matching the ill. 19739 */ 19740 send_from_ill: 19741 if (attach_ill != NULL) { 19742 ipif_t *attach_ipif; 19743 19744 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 19745 19746 /* 19747 * Check if we need an ire that will not be 19748 * looked up by anybody else i.e. HIDDEN. 19749 */ 19750 if (ill_is_probeonly(attach_ill)) { 19751 match_flags |= MATCH_IRE_MARK_HIDDEN; 19752 } 19753 19754 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 19755 if (attach_ipif == NULL) { 19756 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 19757 goto drop_pkt; 19758 } 19759 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 19760 zoneid, MBLK_GETLABEL(mp), match_flags); 19761 ipif_refrele(attach_ipif); 19762 } else if (xmit_ill != NULL || (connp != NULL && 19763 connp->conn_xmit_if_ill != NULL)) { 19764 /* 19765 * Mark this packet as originated locally 19766 */ 19767 mp->b_prev = mp->b_next = NULL; 19768 /* 19769 * xmit_ill could be NULL if SO_DONTROUTE 19770 * is also set. 19771 */ 19772 if (xmit_ill == NULL) { 19773 xmit_ill = conn_get_held_ill(connp, 19774 &connp->conn_xmit_if_ill, &err); 19775 if (err == ILL_LOOKUP_FAILED) { 19776 if (need_decref) 19777 CONN_DEC_REF(connp); 19778 freemsg(first_mp); 19779 return; 19780 } 19781 if (xmit_ill == NULL) { 19782 if (connp->conn_dontroute) 19783 goto dontroute; 19784 goto send_from_ill; 19785 } 19786 } 19787 /* 19788 * could be SO_DONTROUTE case also. 19789 * check at least one interface is UP as 19790 * spcified by this ILL, and then call 19791 * ip_newroute_ipif() 19792 */ 19793 if (xmit_ill->ill_ipif_up_count > 0) { 19794 ipif_t *ipif; 19795 19796 ipif = ipif_get_next_ipif(NULL, xmit_ill); 19797 if (ipif != NULL) { 19798 ip_newroute_ipif(q, first_mp, ipif, 19799 dst, connp, 0); 19800 ipif_refrele(ipif); 19801 ip1dbg(("ip_wput: ip_unicast_if\n")); 19802 } 19803 } else { 19804 freemsg(first_mp); 19805 } 19806 ill_refrele(xmit_ill); 19807 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19808 "ip_wput_end: q %p (%S)", q, "unicast_if"); 19809 if (need_decref) 19810 CONN_DEC_REF(connp); 19811 return; 19812 } else if (ip_nexthop || (connp != NULL && 19813 (connp->conn_nexthop_set)) && !ignore_nexthop) { 19814 if (!ip_nexthop) { 19815 ip_nexthop = B_TRUE; 19816 nexthop_addr = connp->conn_nexthop_v4; 19817 } 19818 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 19819 MATCH_IRE_GW; 19820 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 19821 NULL, zoneid, MBLK_GETLABEL(mp), match_flags); 19822 } else { 19823 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19824 } 19825 if (!ire) { 19826 /* 19827 * Make sure we don't load spread if this 19828 * is IPIF_NOFAILOVER case. 19829 */ 19830 if ((attach_ill != NULL) || 19831 (ip_nexthop && !ignore_nexthop)) { 19832 if (mctl_present) { 19833 io = (ipsec_out_t *)first_mp->b_rptr; 19834 ASSERT(first_mp->b_datap->db_type == 19835 M_CTL); 19836 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19837 } else { 19838 ASSERT(mp == first_mp); 19839 first_mp = allocb( 19840 sizeof (ipsec_info_t), BPRI_HI); 19841 if (first_mp == NULL) { 19842 first_mp = mp; 19843 goto drop_pkt; 19844 } 19845 first_mp->b_datap->db_type = M_CTL; 19846 first_mp->b_wptr += 19847 sizeof (ipsec_info_t); 19848 /* ipsec_out_secure is B_FALSE now */ 19849 bzero(first_mp->b_rptr, 19850 sizeof (ipsec_info_t)); 19851 io = (ipsec_out_t *)first_mp->b_rptr; 19852 io->ipsec_out_type = IPSEC_OUT; 19853 io->ipsec_out_len = 19854 sizeof (ipsec_out_t); 19855 io->ipsec_out_use_global_policy = 19856 B_TRUE; 19857 first_mp->b_cont = mp; 19858 mctl_present = B_TRUE; 19859 } 19860 if (attach_ill != NULL) { 19861 io->ipsec_out_ill_index = attach_ill-> 19862 ill_phyint->phyint_ifindex; 19863 io->ipsec_out_attach_if = B_TRUE; 19864 } else { 19865 io->ipsec_out_ip_nexthop = ip_nexthop; 19866 io->ipsec_out_nexthop_addr = 19867 nexthop_addr; 19868 } 19869 } 19870 noirefound: 19871 /* 19872 * Mark this packet as having originated on 19873 * this machine. This will be noted in 19874 * ire_add_then_send, which needs to know 19875 * whether to run it back through ip_wput or 19876 * ip_rput following successful resolution. 19877 */ 19878 mp->b_prev = NULL; 19879 mp->b_next = NULL; 19880 ip_newroute(q, first_mp, dst, NULL, connp); 19881 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19882 "ip_wput_end: q %p (%S)", q, "newroute"); 19883 if (attach_ill != NULL) 19884 ill_refrele(attach_ill); 19885 if (xmit_ill != NULL) 19886 ill_refrele(xmit_ill); 19887 if (need_decref) 19888 CONN_DEC_REF(connp); 19889 return; 19890 } 19891 } 19892 19893 /* We now know where we are going with it. */ 19894 19895 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19896 "ip_wput_end: q %p (%S)", q, "end"); 19897 19898 /* 19899 * Check if the ire has the RTF_MULTIRT flag, inherited 19900 * from an IRE_OFFSUBNET ire entry in ip_newroute. 19901 */ 19902 if (ire->ire_flags & RTF_MULTIRT) { 19903 /* 19904 * Force the TTL of multirouted packets if required. 19905 * The TTL of such packets is bounded by the 19906 * ip_multirt_ttl ndd variable. 19907 */ 19908 if ((ip_multirt_ttl > 0) && 19909 (ipha->ipha_ttl > ip_multirt_ttl)) { 19910 ip2dbg(("ip_wput: forcing multirt TTL to %d " 19911 "(was %d), dst 0x%08x\n", 19912 ip_multirt_ttl, ipha->ipha_ttl, 19913 ntohl(ire->ire_addr))); 19914 ipha->ipha_ttl = ip_multirt_ttl; 19915 } 19916 /* 19917 * At this point, we check to see if there are any pending 19918 * unresolved routes. ire_multirt_resolvable() 19919 * checks in O(n) that all IRE_OFFSUBNET ire 19920 * entries for the packet's destination and 19921 * flagged RTF_MULTIRT are currently resolved. 19922 * If some remain unresolved, we make a copy 19923 * of the current message. It will be used 19924 * to initiate additional route resolutions. 19925 */ 19926 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 19927 MBLK_GETLABEL(first_mp)); 19928 ip2dbg(("ip_wput[noirefound]: ire %p, " 19929 "multirt_need_resolve %d, first_mp %p\n", 19930 (void *)ire, multirt_need_resolve, (void *)first_mp)); 19931 if (multirt_need_resolve) { 19932 copy_mp = copymsg(first_mp); 19933 if (copy_mp != NULL) { 19934 MULTIRT_DEBUG_TAG(copy_mp); 19935 } 19936 } 19937 } 19938 19939 ip_wput_ire(q, first_mp, ire, connp, caller); 19940 /* 19941 * Try to resolve another multiroute if 19942 * ire_multirt_resolvable() deemed it necessary. 19943 * At this point, we need to distinguish 19944 * multicasts from other packets. For multicasts, 19945 * we call ip_newroute_ipif() and request that both 19946 * multirouting and setsrc flags are checked. 19947 */ 19948 if (copy_mp != NULL) { 19949 if (CLASSD(dst)) { 19950 ipif_t *ipif = ipif_lookup_group(dst, zoneid); 19951 if (ipif) { 19952 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 19953 RTF_SETSRC | RTF_MULTIRT); 19954 ipif_refrele(ipif); 19955 } else { 19956 MULTIRT_DEBUG_UNTAG(copy_mp); 19957 freemsg(copy_mp); 19958 copy_mp = NULL; 19959 } 19960 } else { 19961 ip_newroute(q, copy_mp, dst, NULL, connp); 19962 } 19963 } 19964 if (attach_ill != NULL) 19965 ill_refrele(attach_ill); 19966 if (xmit_ill != NULL) 19967 ill_refrele(xmit_ill); 19968 if (need_decref) 19969 CONN_DEC_REF(connp); 19970 return; 19971 19972 icmp_parameter_problem: 19973 /* could not have originated externally */ 19974 ASSERT(mp->b_prev == NULL); 19975 if (ip_hdr_complete(ipha, zoneid) == 0) { 19976 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19977 /* it's the IP header length that's in trouble */ 19978 icmp_param_problem(q, first_mp, 0); 19979 first_mp = NULL; 19980 } 19981 19982 drop_pkt: 19983 ip1dbg(("ip_wput: dropped packet\n")); 19984 if (ire != NULL) 19985 ire_refrele(ire); 19986 if (need_decref) 19987 CONN_DEC_REF(connp); 19988 freemsg(first_mp); 19989 if (attach_ill != NULL) 19990 ill_refrele(attach_ill); 19991 if (xmit_ill != NULL) 19992 ill_refrele(xmit_ill); 19993 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19994 "ip_wput_end: q %p (%S)", q, "droppkt"); 19995 } 19996 19997 void 19998 ip_wput(queue_t *q, mblk_t *mp) 19999 { 20000 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 20001 } 20002 20003 /* 20004 * 20005 * The following rules must be observed when accessing any ipif or ill 20006 * that has been cached in the conn. Typically conn_nofailover_ill, 20007 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 20008 * 20009 * Access: The ipif or ill pointed to from the conn can be accessed under 20010 * the protection of the conn_lock or after it has been refheld under the 20011 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 20012 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 20013 * The reason for this is that a concurrent unplumb could actually be 20014 * cleaning up these cached pointers by walking the conns and might have 20015 * finished cleaning up the conn in question. The macros check that an 20016 * unplumb has not yet started on the ipif or ill. 20017 * 20018 * Caching: An ipif or ill pointer may be cached in the conn only after 20019 * making sure that an unplumb has not started. So the caching is done 20020 * while holding both the conn_lock and the ill_lock and after using the 20021 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 20022 * flag before starting the cleanup of conns. 20023 * 20024 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 20025 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 20026 * or a reference to the ipif or a reference to an ire that references the 20027 * ipif. An ipif does not change its ill except for failover/failback. Since 20028 * failover/failback happens only after bringing down the ipif and making sure 20029 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 20030 * the above holds. 20031 */ 20032 ipif_t * 20033 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 20034 { 20035 ipif_t *ipif; 20036 ill_t *ill; 20037 20038 *err = 0; 20039 rw_enter(&ill_g_lock, RW_READER); 20040 mutex_enter(&connp->conn_lock); 20041 ipif = *ipifp; 20042 if (ipif != NULL) { 20043 ill = ipif->ipif_ill; 20044 mutex_enter(&ill->ill_lock); 20045 if (IPIF_CAN_LOOKUP(ipif)) { 20046 ipif_refhold_locked(ipif); 20047 mutex_exit(&ill->ill_lock); 20048 mutex_exit(&connp->conn_lock); 20049 rw_exit(&ill_g_lock); 20050 return (ipif); 20051 } else { 20052 *err = IPIF_LOOKUP_FAILED; 20053 } 20054 mutex_exit(&ill->ill_lock); 20055 } 20056 mutex_exit(&connp->conn_lock); 20057 rw_exit(&ill_g_lock); 20058 return (NULL); 20059 } 20060 20061 ill_t * 20062 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 20063 { 20064 ill_t *ill; 20065 20066 *err = 0; 20067 mutex_enter(&connp->conn_lock); 20068 ill = *illp; 20069 if (ill != NULL) { 20070 mutex_enter(&ill->ill_lock); 20071 if (ILL_CAN_LOOKUP(ill)) { 20072 ill_refhold_locked(ill); 20073 mutex_exit(&ill->ill_lock); 20074 mutex_exit(&connp->conn_lock); 20075 return (ill); 20076 } else { 20077 *err = ILL_LOOKUP_FAILED; 20078 } 20079 mutex_exit(&ill->ill_lock); 20080 } 20081 mutex_exit(&connp->conn_lock); 20082 return (NULL); 20083 } 20084 20085 static int 20086 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 20087 { 20088 ill_t *ill; 20089 20090 ill = ipif->ipif_ill; 20091 mutex_enter(&connp->conn_lock); 20092 mutex_enter(&ill->ill_lock); 20093 if (IPIF_CAN_LOOKUP(ipif)) { 20094 *ipifp = ipif; 20095 mutex_exit(&ill->ill_lock); 20096 mutex_exit(&connp->conn_lock); 20097 return (0); 20098 } 20099 mutex_exit(&ill->ill_lock); 20100 mutex_exit(&connp->conn_lock); 20101 return (IPIF_LOOKUP_FAILED); 20102 } 20103 20104 /* 20105 * This is called if the outbound datagram needs fragmentation. 20106 * 20107 * NOTE : This function does not ire_refrele the ire argument passed in. 20108 */ 20109 static void 20110 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire) 20111 { 20112 ipha_t *ipha; 20113 mblk_t *mp; 20114 uint32_t v_hlen_tos_len; 20115 uint32_t max_frag; 20116 uint32_t frag_flag; 20117 boolean_t dont_use; 20118 20119 if (ipsec_mp->b_datap->db_type == M_CTL) { 20120 mp = ipsec_mp->b_cont; 20121 } else { 20122 mp = ipsec_mp; 20123 } 20124 20125 ipha = (ipha_t *)mp->b_rptr; 20126 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20127 20128 #ifdef _BIG_ENDIAN 20129 #define V_HLEN (v_hlen_tos_len >> 24) 20130 #define LENGTH (v_hlen_tos_len & 0xFFFF) 20131 #else 20132 #define V_HLEN (v_hlen_tos_len & 0xFF) 20133 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 20134 #endif 20135 20136 #ifndef SPEED_BEFORE_SAFETY 20137 /* 20138 * Check that ipha_length is consistent with 20139 * the mblk length 20140 */ 20141 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 20142 ip0dbg(("Packet length mismatch: %d, %ld\n", 20143 LENGTH, msgdsize(mp))); 20144 freemsg(ipsec_mp); 20145 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20146 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 20147 "packet length mismatch"); 20148 return; 20149 } 20150 #endif 20151 /* 20152 * Don't use frag_flag if pre-built packet or source 20153 * routed or if multicast (since multicast packets do not solicit 20154 * ICMP "packet too big" messages). Get the values of 20155 * max_frag and frag_flag atomically by acquiring the 20156 * ire_lock. 20157 */ 20158 mutex_enter(&ire->ire_lock); 20159 max_frag = ire->ire_max_frag; 20160 frag_flag = ire->ire_frag_flag; 20161 mutex_exit(&ire->ire_lock); 20162 20163 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 20164 (V_HLEN != IP_SIMPLE_HDR_VERSION && 20165 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 20166 20167 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 20168 (dont_use ? 0 : frag_flag)); 20169 } 20170 20171 /* 20172 * Used for deciding the MSS size for the upper layer. Thus 20173 * we need to check the outbound policy values in the conn. 20174 */ 20175 int 20176 conn_ipsec_length(conn_t *connp) 20177 { 20178 ipsec_latch_t *ipl; 20179 20180 ipl = connp->conn_latch; 20181 if (ipl == NULL) 20182 return (0); 20183 20184 if (ipl->ipl_out_policy == NULL) 20185 return (0); 20186 20187 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 20188 } 20189 20190 /* 20191 * Returns an estimate of the IPSEC headers size. This is used if 20192 * we don't want to call into IPSEC to get the exact size. 20193 */ 20194 int 20195 ipsec_out_extra_length(mblk_t *ipsec_mp) 20196 { 20197 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 20198 ipsec_action_t *a; 20199 20200 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20201 if (!io->ipsec_out_secure) 20202 return (0); 20203 20204 a = io->ipsec_out_act; 20205 20206 if (a == NULL) { 20207 ASSERT(io->ipsec_out_policy != NULL); 20208 a = io->ipsec_out_policy->ipsp_act; 20209 } 20210 ASSERT(a != NULL); 20211 20212 return (a->ipa_ovhd); 20213 } 20214 20215 /* 20216 * Returns an estimate of the IPSEC headers size. This is used if 20217 * we don't want to call into IPSEC to get the exact size. 20218 */ 20219 int 20220 ipsec_in_extra_length(mblk_t *ipsec_mp) 20221 { 20222 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 20223 ipsec_action_t *a; 20224 20225 ASSERT(ii->ipsec_in_type == IPSEC_IN); 20226 20227 a = ii->ipsec_in_action; 20228 return (a == NULL ? 0 : a->ipa_ovhd); 20229 } 20230 20231 /* 20232 * If there are any source route options, return the true final 20233 * destination. Otherwise, return the destination. 20234 */ 20235 ipaddr_t 20236 ip_get_dst(ipha_t *ipha) 20237 { 20238 ipoptp_t opts; 20239 uchar_t *opt; 20240 uint8_t optval; 20241 uint8_t optlen; 20242 ipaddr_t dst; 20243 uint32_t off; 20244 20245 dst = ipha->ipha_dst; 20246 20247 if (IS_SIMPLE_IPH(ipha)) 20248 return (dst); 20249 20250 for (optval = ipoptp_first(&opts, ipha); 20251 optval != IPOPT_EOL; 20252 optval = ipoptp_next(&opts)) { 20253 opt = opts.ipoptp_cur; 20254 optlen = opts.ipoptp_len; 20255 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 20256 switch (optval) { 20257 case IPOPT_SSRR: 20258 case IPOPT_LSRR: 20259 off = opt[IPOPT_OFFSET]; 20260 /* 20261 * If one of the conditions is true, it means 20262 * end of options and dst already has the right 20263 * value. 20264 */ 20265 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 20266 off = optlen - IP_ADDR_LEN; 20267 bcopy(&opt[off], &dst, IP_ADDR_LEN); 20268 } 20269 return (dst); 20270 default: 20271 break; 20272 } 20273 } 20274 20275 return (dst); 20276 } 20277 20278 mblk_t * 20279 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 20280 conn_t *connp, boolean_t unspec_src) 20281 { 20282 ipsec_out_t *io; 20283 mblk_t *first_mp; 20284 boolean_t policy_present; 20285 20286 first_mp = mp; 20287 if (mp->b_datap->db_type == M_CTL) { 20288 io = (ipsec_out_t *)first_mp->b_rptr; 20289 /* 20290 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 20291 * 20292 * 1) There is per-socket policy (including cached global 20293 * policy). 20294 * 2) There is no per-socket policy, but it is 20295 * a multicast packet that needs to go out 20296 * on a specific interface. This is the case 20297 * where (ip_wput and ip_wput_multicast) attaches 20298 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 20299 * 20300 * In case (2) we check with global policy to 20301 * see if there is a match and set the ill_index 20302 * appropriately so that we can lookup the ire 20303 * properly in ip_wput_ipsec_out. 20304 */ 20305 20306 /* 20307 * ipsec_out_use_global_policy is set to B_FALSE 20308 * in ipsec_in_to_out(). Refer to that function for 20309 * details. 20310 */ 20311 if ((io->ipsec_out_latch == NULL) && 20312 (io->ipsec_out_use_global_policy)) { 20313 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 20314 ire, connp, unspec_src)); 20315 } 20316 if (!io->ipsec_out_secure) { 20317 /* 20318 * If this is not a secure packet, drop 20319 * the IPSEC_OUT mp and treat it as a clear 20320 * packet. This happens when we are sending 20321 * a ICMP reply back to a clear packet. See 20322 * ipsec_in_to_out() for details. 20323 */ 20324 mp = first_mp->b_cont; 20325 freeb(first_mp); 20326 } 20327 return (mp); 20328 } 20329 /* 20330 * See whether we need to attach a global policy here. We 20331 * don't depend on the conn (as it could be null) for deciding 20332 * what policy this datagram should go through because it 20333 * should have happened in ip_wput if there was some 20334 * policy. This normally happens for connections which are not 20335 * fully bound preventing us from caching policies in 20336 * ip_bind. Packets coming from the TCP listener/global queue 20337 * - which are non-hard_bound - could also be affected by 20338 * applying policy here. 20339 * 20340 * If this packet is coming from tcp global queue or listener, 20341 * we will be applying policy here. This may not be *right* 20342 * if these packets are coming from the detached connection as 20343 * it could have gone in clear before. This happens only if a 20344 * TCP connection started when there is no policy and somebody 20345 * added policy before it became detached. Thus packets of the 20346 * detached connection could go out secure and the other end 20347 * would drop it because it will be expecting in clear. The 20348 * converse is not true i.e if somebody starts a TCP 20349 * connection and deletes the policy, all the packets will 20350 * still go out with the policy that existed before deleting 20351 * because ip_unbind sends up policy information which is used 20352 * by TCP on subsequent ip_wputs. The right solution is to fix 20353 * TCP to attach a dummy IPSEC_OUT and set 20354 * ipsec_out_use_global_policy to B_FALSE. As this might 20355 * affect performance for normal cases, we are not doing it. 20356 * Thus, set policy before starting any TCP connections. 20357 * 20358 * NOTE - We might apply policy even for a hard bound connection 20359 * - for which we cached policy in ip_bind - if somebody added 20360 * global policy after we inherited the policy in ip_bind. 20361 * This means that the packets that were going out in clear 20362 * previously would start going secure and hence get dropped 20363 * on the other side. To fix this, TCP attaches a dummy 20364 * ipsec_out and make sure that we don't apply global policy. 20365 */ 20366 if (ipha != NULL) 20367 policy_present = ipsec_outbound_v4_policy_present; 20368 else 20369 policy_present = ipsec_outbound_v6_policy_present; 20370 if (!policy_present) 20371 return (mp); 20372 20373 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src)); 20374 } 20375 20376 ire_t * 20377 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 20378 { 20379 ipaddr_t addr; 20380 ire_t *save_ire; 20381 irb_t *irb; 20382 ill_group_t *illgrp; 20383 int err; 20384 20385 save_ire = ire; 20386 addr = ire->ire_addr; 20387 20388 ASSERT(ire->ire_type == IRE_BROADCAST); 20389 20390 illgrp = connp->conn_outgoing_ill->ill_group; 20391 if (illgrp == NULL) { 20392 *conn_outgoing_ill = conn_get_held_ill(connp, 20393 &connp->conn_outgoing_ill, &err); 20394 if (err == ILL_LOOKUP_FAILED) { 20395 ire_refrele(save_ire); 20396 return (NULL); 20397 } 20398 return (save_ire); 20399 } 20400 /* 20401 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 20402 * If it is part of the group, we need to send on the ire 20403 * that has been cleared of IRE_MARK_NORECV and that belongs 20404 * to this group. This is okay as IP_BOUND_IF really means 20405 * any ill in the group. We depend on the fact that the 20406 * first ire in the group is always cleared of IRE_MARK_NORECV 20407 * if such an ire exists. This is possible only if you have 20408 * at least one ill in the group that has not failed. 20409 * 20410 * First get to the ire that matches the address and group. 20411 * 20412 * We don't look for an ire with a matching zoneid because a given zone 20413 * won't always have broadcast ires on all ills in the group. 20414 */ 20415 irb = ire->ire_bucket; 20416 rw_enter(&irb->irb_lock, RW_READER); 20417 if (ire->ire_marks & IRE_MARK_NORECV) { 20418 /* 20419 * If the current zone only has an ire broadcast for this 20420 * address marked NORECV, the ire we want is ahead in the 20421 * bucket, so we look it up deliberately ignoring the zoneid. 20422 */ 20423 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 20424 if (ire->ire_addr != addr) 20425 continue; 20426 /* skip over deleted ires */ 20427 if (ire->ire_marks & IRE_MARK_CONDEMNED) 20428 continue; 20429 } 20430 } 20431 while (ire != NULL) { 20432 /* 20433 * If a new interface is coming up, we could end up 20434 * seeing the loopback ire and the non-loopback ire 20435 * may not have been added yet. So check for ire_stq 20436 */ 20437 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 20438 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 20439 break; 20440 } 20441 ire = ire->ire_next; 20442 } 20443 if (ire != NULL && ire->ire_addr == addr && 20444 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 20445 IRE_REFHOLD(ire); 20446 rw_exit(&irb->irb_lock); 20447 ire_refrele(save_ire); 20448 *conn_outgoing_ill = ire_to_ill(ire); 20449 /* 20450 * Refhold the ill to make the conn_outgoing_ill 20451 * independent of the ire. ip_wput_ire goes in a loop 20452 * and may refrele the ire. Since we have an ire at this 20453 * point we don't need to use ILL_CAN_LOOKUP on the ill. 20454 */ 20455 ill_refhold(*conn_outgoing_ill); 20456 return (ire); 20457 } 20458 rw_exit(&irb->irb_lock); 20459 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 20460 /* 20461 * If we can't find a suitable ire, return the original ire. 20462 */ 20463 return (save_ire); 20464 } 20465 20466 /* 20467 * This function does the ire_refrele of the ire passed in as the 20468 * argument. As this function looks up more ires i.e broadcast ires, 20469 * it needs to REFRELE them. Currently, for simplicity we don't 20470 * differentiate the one passed in and looked up here. We always 20471 * REFRELE. 20472 * IPQoS Notes: 20473 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 20474 * IPSec packets are done in ipsec_out_process. 20475 * 20476 */ 20477 void 20478 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller) 20479 { 20480 ipha_t *ipha; 20481 #define rptr ((uchar_t *)ipha) 20482 mblk_t *mp1; 20483 queue_t *stq; 20484 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 20485 uint32_t v_hlen_tos_len; 20486 uint32_t ttl_protocol; 20487 ipaddr_t src; 20488 ipaddr_t dst; 20489 uint32_t cksum; 20490 ipaddr_t orig_src; 20491 ire_t *ire1; 20492 mblk_t *next_mp; 20493 uint_t hlen; 20494 uint16_t *up; 20495 uint32_t max_frag = ire->ire_max_frag; 20496 ill_t *ill = ire_to_ill(ire); 20497 int clusterwide; 20498 uint16_t ip_hdr_included; /* IP header included by ULP? */ 20499 int ipsec_len; 20500 mblk_t *first_mp; 20501 ipsec_out_t *io; 20502 boolean_t conn_dontroute; /* conn value for multicast */ 20503 boolean_t conn_multicast_loop; /* conn value for multicast */ 20504 boolean_t multicast_forward; /* Should we forward ? */ 20505 boolean_t unspec_src; 20506 ill_t *conn_outgoing_ill = NULL; 20507 ill_t *ire_ill; 20508 ill_t *ire1_ill; 20509 uint32_t ill_index = 0; 20510 boolean_t multirt_send = B_FALSE; 20511 int err; 20512 zoneid_t zoneid; 20513 20514 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 20515 "ip_wput_ire_start: q %p", q); 20516 20517 multicast_forward = B_FALSE; 20518 unspec_src = (connp != NULL && connp->conn_unspec_src); 20519 20520 if (ire->ire_flags & RTF_MULTIRT) { 20521 /* 20522 * Multirouting case. The bucket where ire is stored 20523 * probably holds other RTF_MULTIRT flagged ire 20524 * to the destination. In this call to ip_wput_ire, 20525 * we attempt to send the packet through all 20526 * those ires. Thus, we first ensure that ire is the 20527 * first RTF_MULTIRT ire in the bucket, 20528 * before walking the ire list. 20529 */ 20530 ire_t *first_ire; 20531 irb_t *irb = ire->ire_bucket; 20532 ASSERT(irb != NULL); 20533 20534 /* Make sure we do not omit any multiroute ire. */ 20535 IRB_REFHOLD(irb); 20536 for (first_ire = irb->irb_ire; 20537 first_ire != NULL; 20538 first_ire = first_ire->ire_next) { 20539 if ((first_ire->ire_flags & RTF_MULTIRT) && 20540 (first_ire->ire_addr == ire->ire_addr) && 20541 !(first_ire->ire_marks & 20542 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 20543 break; 20544 } 20545 20546 if ((first_ire != NULL) && (first_ire != ire)) { 20547 IRE_REFHOLD(first_ire); 20548 ire_refrele(ire); 20549 ire = first_ire; 20550 ill = ire_to_ill(ire); 20551 } 20552 IRB_REFRELE(irb); 20553 } 20554 20555 /* 20556 * conn_outgoing_ill is used only in the broadcast loop. 20557 * for performance we don't grab the mutexs in the fastpath 20558 */ 20559 if ((connp != NULL) && 20560 (connp->conn_xmit_if_ill == NULL) && 20561 (ire->ire_type == IRE_BROADCAST) && 20562 ((connp->conn_nofailover_ill != NULL) || 20563 (connp->conn_outgoing_ill != NULL))) { 20564 /* 20565 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 20566 * option. So, see if this endpoint is bound to a 20567 * IPIF_NOFAILOVER address. If so, honor it. This implies 20568 * that if the interface is failed, we will still send 20569 * the packet on the same ill which is what we want. 20570 */ 20571 conn_outgoing_ill = conn_get_held_ill(connp, 20572 &connp->conn_nofailover_ill, &err); 20573 if (err == ILL_LOOKUP_FAILED) { 20574 ire_refrele(ire); 20575 freemsg(mp); 20576 return; 20577 } 20578 if (conn_outgoing_ill == NULL) { 20579 /* 20580 * Choose a good ill in the group to send the 20581 * packets on. 20582 */ 20583 ire = conn_set_outgoing_ill(connp, ire, 20584 &conn_outgoing_ill); 20585 if (ire == NULL) { 20586 freemsg(mp); 20587 return; 20588 } 20589 } 20590 } 20591 20592 if (mp->b_datap->db_type != M_CTL) { 20593 ipha = (ipha_t *)mp->b_rptr; 20594 zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 20595 } else { 20596 io = (ipsec_out_t *)mp->b_rptr; 20597 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20598 zoneid = io->ipsec_out_zoneid; 20599 ASSERT(zoneid != ALL_ZONES); 20600 ipha = (ipha_t *)mp->b_cont->b_rptr; 20601 dst = ipha->ipha_dst; 20602 /* 20603 * For the multicast case, ipsec_out carries conn_dontroute and 20604 * conn_multicast_loop as conn may not be available here. We 20605 * need this for multicast loopback and forwarding which is done 20606 * later in the code. 20607 */ 20608 if (CLASSD(dst)) { 20609 conn_dontroute = io->ipsec_out_dontroute; 20610 conn_multicast_loop = io->ipsec_out_multicast_loop; 20611 /* 20612 * If conn_dontroute is not set or conn_multicast_loop 20613 * is set, we need to do forwarding/loopback. For 20614 * datagrams from ip_wput_multicast, conn_dontroute is 20615 * set to B_TRUE and conn_multicast_loop is set to 20616 * B_FALSE so that we neither do forwarding nor 20617 * loopback. 20618 */ 20619 if (!conn_dontroute || conn_multicast_loop) 20620 multicast_forward = B_TRUE; 20621 } 20622 } 20623 20624 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 20625 ire->ire_zoneid != ALL_ZONES) { 20626 /* 20627 * When a zone sends a packet to another zone, we try to deliver 20628 * the packet under the same conditions as if the destination 20629 * was a real node on the network. To do so, we look for a 20630 * matching route in the forwarding table. 20631 * RTF_REJECT and RTF_BLACKHOLE are handled just like 20632 * ip_newroute() does. 20633 */ 20634 ire_t *src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 20635 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 20636 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE)); 20637 if (src_ire != NULL && 20638 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))) { 20639 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 20640 ipha->ipha_src = src_ire->ire_src_addr; 20641 ire_refrele(src_ire); 20642 } else { 20643 ire_refrele(ire); 20644 if (conn_outgoing_ill != NULL) 20645 ill_refrele(conn_outgoing_ill); 20646 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20647 if (src_ire != NULL) { 20648 if (src_ire->ire_flags & RTF_BLACKHOLE) { 20649 ire_refrele(src_ire); 20650 freemsg(mp); 20651 return; 20652 } 20653 ire_refrele(src_ire); 20654 } 20655 if (ip_hdr_complete(ipha, zoneid)) { 20656 /* Failed */ 20657 freemsg(mp); 20658 return; 20659 } 20660 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE); 20661 return; 20662 } 20663 } 20664 20665 if (mp->b_datap->db_type == M_CTL || 20666 ipsec_outbound_v4_policy_present) { 20667 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 20668 unspec_src); 20669 if (mp == NULL) { 20670 ire_refrele(ire); 20671 if (conn_outgoing_ill != NULL) 20672 ill_refrele(conn_outgoing_ill); 20673 return; 20674 } 20675 } 20676 20677 first_mp = mp; 20678 ipsec_len = 0; 20679 20680 if (first_mp->b_datap->db_type == M_CTL) { 20681 io = (ipsec_out_t *)first_mp->b_rptr; 20682 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20683 mp = first_mp->b_cont; 20684 ipsec_len = ipsec_out_extra_length(first_mp); 20685 ASSERT(ipsec_len >= 0); 20686 zoneid = io->ipsec_out_zoneid; 20687 ASSERT(zoneid != ALL_ZONES); 20688 20689 /* 20690 * Drop M_CTL here if IPsec processing is not needed. 20691 * (Non-IPsec use of M_CTL extracted any information it 20692 * needed above). 20693 */ 20694 if (ipsec_len == 0) { 20695 freeb(first_mp); 20696 first_mp = mp; 20697 } 20698 } 20699 20700 /* 20701 * Fast path for ip_wput_ire 20702 */ 20703 20704 ipha = (ipha_t *)mp->b_rptr; 20705 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20706 dst = ipha->ipha_dst; 20707 20708 /* 20709 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 20710 * if the socket is a SOCK_RAW type. The transport checksum should 20711 * be provided in the pre-built packet, so we don't need to compute it. 20712 * Also, other application set flags, like DF, should not be altered. 20713 * Other transport MUST pass down zero. 20714 */ 20715 ip_hdr_included = ipha->ipha_ident; 20716 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 20717 20718 if (CLASSD(dst)) { 20719 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 20720 ntohl(dst), 20721 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 20722 ntohl(ire->ire_addr))); 20723 } 20724 20725 /* Macros to extract header fields from data already in registers */ 20726 #ifdef _BIG_ENDIAN 20727 #define V_HLEN (v_hlen_tos_len >> 24) 20728 #define LENGTH (v_hlen_tos_len & 0xFFFF) 20729 #define PROTO (ttl_protocol & 0xFF) 20730 #else 20731 #define V_HLEN (v_hlen_tos_len & 0xFF) 20732 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 20733 #define PROTO (ttl_protocol >> 8) 20734 #endif 20735 20736 20737 orig_src = src = ipha->ipha_src; 20738 /* (The loop back to "another" is explained down below.) */ 20739 another:; 20740 /* 20741 * Assign an ident value for this packet. We assign idents on 20742 * a per destination basis out of the IRE. There could be 20743 * other threads targeting the same destination, so we have to 20744 * arrange for a atomic increment. Note that we use a 32-bit 20745 * atomic add because it has better performance than its 20746 * 16-bit sibling. 20747 * 20748 * If running in cluster mode and if the source address 20749 * belongs to a replicated service then vector through 20750 * cl_inet_ipident vector to allocate ip identifier 20751 * NOTE: This is a contract private interface with the 20752 * clustering group. 20753 */ 20754 clusterwide = 0; 20755 if (cl_inet_ipident) { 20756 ASSERT(cl_inet_isclusterwide); 20757 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 20758 AF_INET, (uint8_t *)(uintptr_t)src)) { 20759 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 20760 AF_INET, (uint8_t *)(uintptr_t)src, 20761 (uint8_t *)(uintptr_t)dst); 20762 clusterwide = 1; 20763 } 20764 } 20765 if (!clusterwide) { 20766 ipha->ipha_ident = 20767 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 20768 } 20769 20770 #ifndef _BIG_ENDIAN 20771 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 20772 #endif 20773 20774 /* 20775 * Set source address unless sent on an ill or conn_unspec_src is set. 20776 * This is needed to obey conn_unspec_src when packets go through 20777 * ip_newroute + arp. 20778 * Assumes ip_newroute{,_multi} sets the source address as well. 20779 */ 20780 if (src == INADDR_ANY && !unspec_src) { 20781 /* 20782 * Assign the appropriate source address from the IRE if none 20783 * was specified. 20784 */ 20785 ASSERT(ire->ire_ipversion == IPV4_VERSION); 20786 20787 /* 20788 * With IP multipathing, broadcast packets are sent on the ire 20789 * that has been cleared of IRE_MARK_NORECV and that belongs to 20790 * the group. However, this ire might not be in the same zone so 20791 * we can't always use its source address. We look for a 20792 * broadcast ire in the same group and in the right zone. 20793 */ 20794 if (ire->ire_type == IRE_BROADCAST && 20795 ire->ire_zoneid != zoneid) { 20796 ire_t *src_ire = ire_ctable_lookup(dst, 0, 20797 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 20798 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 20799 if (src_ire != NULL) { 20800 src = src_ire->ire_src_addr; 20801 ire_refrele(src_ire); 20802 } else { 20803 ire_refrele(ire); 20804 if (conn_outgoing_ill != NULL) 20805 ill_refrele(conn_outgoing_ill); 20806 freemsg(first_mp); 20807 BUMP_MIB(&ip_mib, ipOutDiscards); 20808 return; 20809 } 20810 } else { 20811 src = ire->ire_src_addr; 20812 } 20813 20814 if (connp == NULL) { 20815 ip1dbg(("ip_wput_ire: no connp and no src " 20816 "address for dst 0x%x, using src 0x%x\n", 20817 ntohl(dst), 20818 ntohl(src))); 20819 } 20820 ipha->ipha_src = src; 20821 } 20822 stq = ire->ire_stq; 20823 20824 /* 20825 * We only allow ire chains for broadcasts since there will 20826 * be multiple IRE_CACHE entries for the same multicast 20827 * address (one per ipif). 20828 */ 20829 next_mp = NULL; 20830 20831 /* broadcast packet */ 20832 if (ire->ire_type == IRE_BROADCAST) 20833 goto broadcast; 20834 20835 /* loopback ? */ 20836 if (stq == NULL) 20837 goto nullstq; 20838 20839 /* The ill_index for outbound ILL */ 20840 ill_index = Q_TO_INDEX(stq); 20841 20842 BUMP_MIB(&ip_mib, ipOutRequests); 20843 ttl_protocol = ((uint16_t *)ipha)[4]; 20844 20845 /* pseudo checksum (do it in parts for IP header checksum) */ 20846 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 20847 20848 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 20849 queue_t *dev_q = stq->q_next; 20850 20851 /* flow controlled */ 20852 if ((dev_q->q_next || dev_q->q_first) && 20853 !canput(dev_q)) 20854 goto blocked; 20855 if ((PROTO == IPPROTO_UDP) && 20856 (ip_hdr_included != IP_HDR_INCLUDED)) { 20857 hlen = (V_HLEN & 0xF) << 2; 20858 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 20859 if (*up != 0) { 20860 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 20861 hlen, LENGTH, max_frag, ipsec_len, cksum); 20862 /* Software checksum? */ 20863 if (DB_CKSUMFLAGS(mp) == 0) { 20864 IP_STAT(ip_out_sw_cksum); 20865 IP_STAT_UPDATE( 20866 ip_udp_out_sw_cksum_bytes, 20867 LENGTH - hlen); 20868 } 20869 } 20870 } 20871 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 20872 hlen = (V_HLEN & 0xF) << 2; 20873 if (PROTO == IPPROTO_TCP) { 20874 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 20875 /* 20876 * The packet header is processed once and for all, even 20877 * in the multirouting case. We disable hardware 20878 * checksum if the packet is multirouted, as it will be 20879 * replicated via several interfaces, and not all of 20880 * them may have this capability. 20881 */ 20882 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 20883 LENGTH, max_frag, ipsec_len, cksum); 20884 /* Software checksum? */ 20885 if (DB_CKSUMFLAGS(mp) == 0) { 20886 IP_STAT(ip_out_sw_cksum); 20887 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 20888 LENGTH - hlen); 20889 } 20890 } else { 20891 sctp_hdr_t *sctph; 20892 20893 ASSERT(PROTO == IPPROTO_SCTP); 20894 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 20895 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 20896 /* 20897 * Zero out the checksum field to ensure proper 20898 * checksum calculation. 20899 */ 20900 sctph->sh_chksum = 0; 20901 #ifdef DEBUG 20902 if (!skip_sctp_cksum) 20903 #endif 20904 sctph->sh_chksum = sctp_cksum(mp, hlen); 20905 } 20906 } 20907 20908 /* 20909 * If this is a multicast packet and originated from ip_wput 20910 * we need to do loopback and forwarding checks. If it comes 20911 * from ip_wput_multicast, we SHOULD not do this. 20912 */ 20913 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 20914 20915 /* checksum */ 20916 cksum += ttl_protocol; 20917 20918 /* fragment the packet */ 20919 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 20920 goto fragmentit; 20921 /* 20922 * Don't use frag_flag if packet is pre-built or source 20923 * routed or if multicast (since multicast packets do 20924 * not solicit ICMP "packet too big" messages). 20925 */ 20926 if ((ip_hdr_included != IP_HDR_INCLUDED) && 20927 (V_HLEN == IP_SIMPLE_HDR_VERSION || 20928 !ip_source_route_included(ipha)) && 20929 !CLASSD(ipha->ipha_dst)) 20930 ipha->ipha_fragment_offset_and_flags |= 20931 htons(ire->ire_frag_flag); 20932 20933 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 20934 /* calculate IP header checksum */ 20935 cksum += ipha->ipha_ident; 20936 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 20937 cksum += ipha->ipha_fragment_offset_and_flags; 20938 20939 /* IP options present */ 20940 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 20941 if (hlen) 20942 goto checksumoptions; 20943 20944 /* calculate hdr checksum */ 20945 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 20946 cksum = ~(cksum + (cksum >> 16)); 20947 ipha->ipha_hdr_checksum = (uint16_t)cksum; 20948 } 20949 if (ipsec_len != 0) { 20950 /* 20951 * We will do the rest of the processing after 20952 * we come back from IPSEC in ip_wput_ipsec_out(). 20953 */ 20954 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 20955 20956 io = (ipsec_out_t *)first_mp->b_rptr; 20957 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 20958 ill_phyint->phyint_ifindex; 20959 20960 ipsec_out_process(q, first_mp, ire, ill_index); 20961 ire_refrele(ire); 20962 if (conn_outgoing_ill != NULL) 20963 ill_refrele(conn_outgoing_ill); 20964 return; 20965 } 20966 20967 /* 20968 * In most cases, the emission loop below is entered only 20969 * once. Only in the case where the ire holds the 20970 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 20971 * flagged ires in the bucket, and send the packet 20972 * through all crossed RTF_MULTIRT routes. 20973 */ 20974 if (ire->ire_flags & RTF_MULTIRT) { 20975 multirt_send = B_TRUE; 20976 } 20977 do { 20978 if (multirt_send) { 20979 irb_t *irb; 20980 /* 20981 * We are in a multiple send case, need to get 20982 * the next ire and make a duplicate of the packet. 20983 * ire1 holds here the next ire to process in the 20984 * bucket. If multirouting is expected, 20985 * any non-RTF_MULTIRT ire that has the 20986 * right destination address is ignored. 20987 */ 20988 irb = ire->ire_bucket; 20989 ASSERT(irb != NULL); 20990 20991 IRB_REFHOLD(irb); 20992 for (ire1 = ire->ire_next; 20993 ire1 != NULL; 20994 ire1 = ire1->ire_next) { 20995 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 20996 continue; 20997 if (ire1->ire_addr != ire->ire_addr) 20998 continue; 20999 if (ire1->ire_marks & 21000 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 21001 continue; 21002 21003 /* Got one */ 21004 IRE_REFHOLD(ire1); 21005 break; 21006 } 21007 IRB_REFRELE(irb); 21008 21009 if (ire1 != NULL) { 21010 next_mp = copyb(mp); 21011 if ((next_mp == NULL) || 21012 ((mp->b_cont != NULL) && 21013 ((next_mp->b_cont = 21014 dupmsg(mp->b_cont)) == NULL))) { 21015 freemsg(next_mp); 21016 next_mp = NULL; 21017 ire_refrele(ire1); 21018 ire1 = NULL; 21019 } 21020 } 21021 21022 /* Last multiroute ire; don't loop anymore. */ 21023 if (ire1 == NULL) { 21024 multirt_send = B_FALSE; 21025 } 21026 } 21027 mp = ip_wput_attach_llhdr(mp, ire, IPP_LOCAL_OUT, ill_index); 21028 if (mp == NULL) { 21029 BUMP_MIB(&ip_mib, ipOutDiscards); 21030 ip2dbg(("ip_wput_ire: fastpath wput pkt dropped "\ 21031 "during IPPF processing\n")); 21032 ire_refrele(ire); 21033 if (next_mp != NULL) { 21034 freemsg(next_mp); 21035 ire_refrele(ire1); 21036 } 21037 if (conn_outgoing_ill != NULL) 21038 ill_refrele(conn_outgoing_ill); 21039 return; 21040 } 21041 UPDATE_OB_PKT_COUNT(ire); 21042 ire->ire_last_used_time = lbolt; 21043 21044 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21045 "ip_wput_ire_end: q %p (%S)", 21046 q, "last copy out"); 21047 putnext(stq, mp); 21048 IRE_REFRELE(ire); 21049 21050 if (multirt_send) { 21051 ASSERT(ire1); 21052 /* 21053 * Proceed with the next RTF_MULTIRT ire, 21054 * Also set up the send-to queue accordingly. 21055 */ 21056 ire = ire1; 21057 ire1 = NULL; 21058 stq = ire->ire_stq; 21059 mp = next_mp; 21060 next_mp = NULL; 21061 ipha = (ipha_t *)mp->b_rptr; 21062 ill_index = Q_TO_INDEX(stq); 21063 } 21064 } while (multirt_send); 21065 if (conn_outgoing_ill != NULL) 21066 ill_refrele(conn_outgoing_ill); 21067 return; 21068 21069 /* 21070 * ire->ire_type == IRE_BROADCAST (minimize diffs) 21071 */ 21072 broadcast: 21073 { 21074 /* 21075 * Avoid broadcast storms by setting the ttl to 1 21076 * for broadcasts. This parameter can be set 21077 * via ndd, so make sure that for the SO_DONTROUTE 21078 * case that ipha_ttl is always set to 1. 21079 * In the event that we are replying to incoming 21080 * ICMP packets, conn could be NULL. 21081 */ 21082 if ((connp != NULL) && connp->conn_dontroute) 21083 ipha->ipha_ttl = 1; 21084 else 21085 ipha->ipha_ttl = ip_broadcast_ttl; 21086 21087 /* 21088 * Note that we are not doing a IRB_REFHOLD here. 21089 * Actually we don't care if the list changes i.e 21090 * if somebody deletes an IRE from the list while 21091 * we drop the lock, the next time we come around 21092 * ire_next will be NULL and hence we won't send 21093 * out multiple copies which is fine. 21094 */ 21095 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 21096 ire1 = ire->ire_next; 21097 if (conn_outgoing_ill != NULL) { 21098 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 21099 ASSERT(ire1 == ire->ire_next); 21100 if (ire1 != NULL && ire1->ire_addr == dst) { 21101 ire_refrele(ire); 21102 ire = ire1; 21103 IRE_REFHOLD(ire); 21104 ire1 = ire->ire_next; 21105 continue; 21106 } 21107 rw_exit(&ire->ire_bucket->irb_lock); 21108 /* Did not find a matching ill */ 21109 ip1dbg(("ip_wput_ire: broadcast with no " 21110 "matching IP_BOUND_IF ill %s\n", 21111 conn_outgoing_ill->ill_name)); 21112 freemsg(first_mp); 21113 if (ire != NULL) 21114 ire_refrele(ire); 21115 ill_refrele(conn_outgoing_ill); 21116 return; 21117 } 21118 } else if (ire1 != NULL && ire1->ire_addr == dst) { 21119 /* 21120 * If the next IRE has the same address and is not one 21121 * of the two copies that we need to send, try to see 21122 * whether this copy should be sent at all. This 21123 * assumes that we insert loopbacks first and then 21124 * non-loopbacks. This is acheived by inserting the 21125 * loopback always before non-loopback. 21126 * This is used to send a single copy of a broadcast 21127 * packet out all physical interfaces that have an 21128 * matching IRE_BROADCAST while also looping 21129 * back one copy (to ip_wput_local) for each 21130 * matching physical interface. However, we avoid 21131 * sending packets out different logical that match by 21132 * having ipif_up/ipif_down supress duplicate 21133 * IRE_BROADCASTS. 21134 * 21135 * This feature is currently used to get broadcasts 21136 * sent to multiple interfaces, when the broadcast 21137 * address being used applies to multiple interfaces. 21138 * For example, a whole net broadcast will be 21139 * replicated on every connected subnet of 21140 * the target net. 21141 * 21142 * Each zone has its own set of IRE_BROADCASTs, so that 21143 * we're able to distribute inbound packets to multiple 21144 * zones who share a broadcast address. We avoid looping 21145 * back outbound packets in different zones but on the 21146 * same ill, as the application would see duplicates. 21147 * 21148 * If the interfaces are part of the same group, 21149 * we would want to send only one copy out for 21150 * whole group. 21151 * 21152 * This logic assumes that ire_add_v4() groups the 21153 * IRE_BROADCAST entries so that those with the same 21154 * ire_addr and ill_group are kept together. 21155 */ 21156 ire_ill = ire->ire_ipif->ipif_ill; 21157 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 21158 if (ire_ill->ill_group != NULL && 21159 (ire->ire_marks & IRE_MARK_NORECV)) { 21160 /* 21161 * If the current zone only has an ire 21162 * broadcast for this address marked 21163 * NORECV, the ire we want is ahead in 21164 * the bucket, so we look it up 21165 * deliberately ignoring the zoneid. 21166 */ 21167 for (ire1 = ire->ire_bucket->irb_ire; 21168 ire1 != NULL; 21169 ire1 = ire1->ire_next) { 21170 ire1_ill = 21171 ire1->ire_ipif->ipif_ill; 21172 if (ire1->ire_addr != dst) 21173 continue; 21174 /* skip over the current ire */ 21175 if (ire1 == ire) 21176 continue; 21177 /* skip over deleted ires */ 21178 if (ire1->ire_marks & 21179 IRE_MARK_CONDEMNED) 21180 continue; 21181 /* 21182 * non-loopback ire in our 21183 * group: use it for the next 21184 * pass in the loop 21185 */ 21186 if (ire1->ire_stq != NULL && 21187 ire1_ill->ill_group == 21188 ire_ill->ill_group) 21189 break; 21190 } 21191 } 21192 } else { 21193 while (ire1 != NULL && ire1->ire_addr == dst) { 21194 ire1_ill = ire1->ire_ipif->ipif_ill; 21195 /* 21196 * We can have two broadcast ires on the 21197 * same ill in different zones; here 21198 * we'll send a copy of the packet on 21199 * each ill and the fanout code will 21200 * call conn_wantpacket() to check that 21201 * the zone has the broadcast address 21202 * configured on the ill. If the two 21203 * ires are in the same group we only 21204 * send one copy up. 21205 */ 21206 if (ire1_ill != ire_ill && 21207 (ire1_ill->ill_group == NULL || 21208 ire_ill->ill_group == NULL || 21209 ire1_ill->ill_group != 21210 ire_ill->ill_group)) { 21211 break; 21212 } 21213 ire1 = ire1->ire_next; 21214 } 21215 } 21216 } 21217 ASSERT(multirt_send == B_FALSE); 21218 if (ire1 != NULL && ire1->ire_addr == dst) { 21219 if ((ire->ire_flags & RTF_MULTIRT) && 21220 (ire1->ire_flags & RTF_MULTIRT)) { 21221 /* 21222 * We are in the multirouting case. 21223 * The message must be sent at least 21224 * on both ires. These ires have been 21225 * inserted AFTER the standard ones 21226 * in ip_rt_add(). There are thus no 21227 * other ire entries for the destination 21228 * address in the rest of the bucket 21229 * that do not have the RTF_MULTIRT 21230 * flag. We don't process a copy 21231 * of the message here. This will be 21232 * done in the final sending loop. 21233 */ 21234 multirt_send = B_TRUE; 21235 } else { 21236 next_mp = ip_copymsg(first_mp); 21237 if (next_mp != NULL) 21238 IRE_REFHOLD(ire1); 21239 } 21240 } 21241 rw_exit(&ire->ire_bucket->irb_lock); 21242 } 21243 21244 if (stq) { 21245 /* 21246 * A non-NULL send-to queue means this packet is going 21247 * out of this machine. 21248 */ 21249 21250 BUMP_MIB(&ip_mib, ipOutRequests); 21251 ttl_protocol = ((uint16_t *)ipha)[4]; 21252 /* 21253 * We accumulate the pseudo header checksum in cksum. 21254 * This is pretty hairy code, so watch close. One 21255 * thing to keep in mind is that UDP and TCP have 21256 * stored their respective datagram lengths in their 21257 * checksum fields. This lines things up real nice. 21258 */ 21259 cksum = (dst >> 16) + (dst & 0xFFFF) + 21260 (src >> 16) + (src & 0xFFFF); 21261 /* 21262 * We assume the udp checksum field contains the 21263 * length, so to compute the pseudo header checksum, 21264 * all we need is the protocol number and src/dst. 21265 */ 21266 /* Provide the checksums for UDP and TCP. */ 21267 if ((PROTO == IPPROTO_TCP) && 21268 (ip_hdr_included != IP_HDR_INCLUDED)) { 21269 /* hlen gets the number of uchar_ts in the IP header */ 21270 hlen = (V_HLEN & 0xF) << 2; 21271 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 21272 IP_STAT(ip_out_sw_cksum); 21273 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 21274 LENGTH - hlen); 21275 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 21276 if (*up == 0) 21277 *up = 0xFFFF; 21278 } else if (PROTO == IPPROTO_SCTP && 21279 (ip_hdr_included != IP_HDR_INCLUDED)) { 21280 sctp_hdr_t *sctph; 21281 21282 hlen = (V_HLEN & 0xF) << 2; 21283 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 21284 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 21285 sctph->sh_chksum = 0; 21286 #ifdef DEBUG 21287 if (!skip_sctp_cksum) 21288 #endif 21289 sctph->sh_chksum = sctp_cksum(mp, hlen); 21290 } else { 21291 queue_t *dev_q = stq->q_next; 21292 21293 if ((dev_q->q_next || dev_q->q_first) && 21294 !canput(dev_q)) { 21295 blocked: 21296 ipha->ipha_ident = ip_hdr_included; 21297 /* 21298 * If we don't have a conn to apply 21299 * backpressure, free the message. 21300 * In the ire_send path, we don't know 21301 * the position to requeue the packet. Rather 21302 * than reorder packets, we just drop this 21303 * packet. 21304 */ 21305 if (ip_output_queue && connp != NULL && 21306 caller != IRE_SEND) { 21307 if (caller == IP_WSRV) { 21308 connp->conn_did_putbq = 1; 21309 (void) putbq(connp->conn_wq, 21310 first_mp); 21311 conn_drain_insert(connp); 21312 /* 21313 * This is the service thread, 21314 * and the queue is already 21315 * noenabled. The check for 21316 * canput and the putbq is not 21317 * atomic. So we need to check 21318 * again. 21319 */ 21320 if (canput(stq->q_next)) 21321 connp->conn_did_putbq 21322 = 0; 21323 IP_STAT(ip_conn_flputbq); 21324 } else { 21325 /* 21326 * We are not the service proc. 21327 * ip_wsrv will be scheduled or 21328 * is already running. 21329 */ 21330 (void) putq(connp->conn_wq, 21331 first_mp); 21332 } 21333 } else { 21334 BUMP_MIB(&ip_mib, ipOutDiscards); 21335 freemsg(first_mp); 21336 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21337 "ip_wput_ire_end: q %p (%S)", 21338 q, "discard"); 21339 } 21340 ire_refrele(ire); 21341 if (next_mp) { 21342 ire_refrele(ire1); 21343 freemsg(next_mp); 21344 } 21345 if (conn_outgoing_ill != NULL) 21346 ill_refrele(conn_outgoing_ill); 21347 return; 21348 } 21349 if ((PROTO == IPPROTO_UDP) && 21350 (ip_hdr_included != IP_HDR_INCLUDED)) { 21351 /* 21352 * hlen gets the number of uchar_ts in the 21353 * IP header 21354 */ 21355 hlen = (V_HLEN & 0xF) << 2; 21356 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 21357 max_frag = ire->ire_max_frag; 21358 if (*up != 0) { 21359 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 21360 up, PROTO, hlen, LENGTH, max_frag, 21361 ipsec_len, cksum); 21362 /* Software checksum? */ 21363 if (DB_CKSUMFLAGS(mp) == 0) { 21364 IP_STAT(ip_out_sw_cksum); 21365 IP_STAT_UPDATE( 21366 ip_udp_out_sw_cksum_bytes, 21367 LENGTH - hlen); 21368 } 21369 } 21370 } 21371 } 21372 /* 21373 * Need to do this even when fragmenting. The local 21374 * loopback can be done without computing checksums 21375 * but forwarding out other interface must be done 21376 * after the IP checksum (and ULP checksums) have been 21377 * computed. 21378 * 21379 * NOTE : multicast_forward is set only if this packet 21380 * originated from ip_wput. For packets originating from 21381 * ip_wput_multicast, it is not set. 21382 */ 21383 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 21384 multi_loopback: 21385 ip2dbg(("ip_wput: multicast, loop %d\n", 21386 conn_multicast_loop)); 21387 21388 /* Forget header checksum offload */ 21389 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 21390 21391 /* 21392 * Local loopback of multicasts? Check the 21393 * ill. 21394 * 21395 * Note that the loopback function will not come 21396 * in through ip_rput - it will only do the 21397 * client fanout thus we need to do an mforward 21398 * as well. The is different from the BSD 21399 * logic. 21400 */ 21401 if (ill != NULL) { 21402 ilm_t *ilm; 21403 21404 ILM_WALKER_HOLD(ill); 21405 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 21406 ALL_ZONES); 21407 ILM_WALKER_RELE(ill); 21408 if (ilm != NULL) { 21409 /* 21410 * Pass along the virtual output q. 21411 * ip_wput_local() will distribute the 21412 * packet to all the matching zones, 21413 * except the sending zone when 21414 * IP_MULTICAST_LOOP is false. 21415 */ 21416 ip_multicast_loopback(q, ill, first_mp, 21417 conn_multicast_loop ? 0 : 21418 IP_FF_NO_MCAST_LOOP, zoneid); 21419 } 21420 } 21421 if (ipha->ipha_ttl == 0) { 21422 /* 21423 * 0 => only to this host i.e. we are 21424 * done. We are also done if this was the 21425 * loopback interface since it is sufficient 21426 * to loopback one copy of a multicast packet. 21427 */ 21428 freemsg(first_mp); 21429 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21430 "ip_wput_ire_end: q %p (%S)", 21431 q, "loopback"); 21432 ire_refrele(ire); 21433 if (conn_outgoing_ill != NULL) 21434 ill_refrele(conn_outgoing_ill); 21435 return; 21436 } 21437 /* 21438 * ILLF_MULTICAST is checked in ip_newroute 21439 * i.e. we don't need to check it here since 21440 * all IRE_CACHEs come from ip_newroute. 21441 * For multicast traffic, SO_DONTROUTE is interpreted 21442 * to mean only send the packet out the interface 21443 * (optionally specified with IP_MULTICAST_IF) 21444 * and do not forward it out additional interfaces. 21445 * RSVP and the rsvp daemon is an example of a 21446 * protocol and user level process that 21447 * handles it's own routing. Hence, it uses the 21448 * SO_DONTROUTE option to accomplish this. 21449 */ 21450 21451 if (ip_g_mrouter && !conn_dontroute && ill != NULL) { 21452 /* Unconditionally redo the checksum */ 21453 ipha->ipha_hdr_checksum = 0; 21454 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21455 21456 /* 21457 * If this needs to go out secure, we need 21458 * to wait till we finish the IPSEC 21459 * processing. 21460 */ 21461 if (ipsec_len == 0 && 21462 ip_mforward(ill, ipha, mp)) { 21463 freemsg(first_mp); 21464 ip1dbg(("ip_wput: mforward failed\n")); 21465 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21466 "ip_wput_ire_end: q %p (%S)", 21467 q, "mforward failed"); 21468 ire_refrele(ire); 21469 if (conn_outgoing_ill != NULL) 21470 ill_refrele(conn_outgoing_ill); 21471 return; 21472 } 21473 } 21474 } 21475 max_frag = ire->ire_max_frag; 21476 cksum += ttl_protocol; 21477 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 21478 /* No fragmentation required for this one. */ 21479 /* 21480 * Don't use frag_flag if packet is pre-built or source 21481 * routed or if multicast (since multicast packets do 21482 * not solicit ICMP "packet too big" messages). 21483 */ 21484 if ((ip_hdr_included != IP_HDR_INCLUDED) && 21485 (V_HLEN == IP_SIMPLE_HDR_VERSION || 21486 !ip_source_route_included(ipha)) && 21487 !CLASSD(ipha->ipha_dst)) 21488 ipha->ipha_fragment_offset_and_flags |= 21489 htons(ire->ire_frag_flag); 21490 21491 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 21492 /* Complete the IP header checksum. */ 21493 cksum += ipha->ipha_ident; 21494 cksum += (v_hlen_tos_len >> 16)+ 21495 (v_hlen_tos_len & 0xFFFF); 21496 cksum += ipha->ipha_fragment_offset_and_flags; 21497 hlen = (V_HLEN & 0xF) - 21498 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 21499 if (hlen) { 21500 checksumoptions: 21501 /* 21502 * Account for the IP Options in the IP 21503 * header checksum. 21504 */ 21505 up = (uint16_t *)(rptr+ 21506 IP_SIMPLE_HDR_LENGTH); 21507 do { 21508 cksum += up[0]; 21509 cksum += up[1]; 21510 up += 2; 21511 } while (--hlen); 21512 } 21513 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 21514 cksum = ~(cksum + (cksum >> 16)); 21515 ipha->ipha_hdr_checksum = (uint16_t)cksum; 21516 } 21517 if (ipsec_len != 0) { 21518 ipsec_out_process(q, first_mp, ire, ill_index); 21519 if (!next_mp) { 21520 ire_refrele(ire); 21521 if (conn_outgoing_ill != NULL) 21522 ill_refrele(conn_outgoing_ill); 21523 return; 21524 } 21525 goto next; 21526 } 21527 21528 /* 21529 * multirt_send has already been handled 21530 * for broadcast, but not yet for multicast 21531 * or IP options. 21532 */ 21533 if (next_mp == NULL) { 21534 if (ire->ire_flags & RTF_MULTIRT) { 21535 multirt_send = B_TRUE; 21536 } 21537 } 21538 21539 /* 21540 * In most cases, the emission loop below is 21541 * entered only once. Only in the case where 21542 * the ire holds the RTF_MULTIRT flag, do we loop 21543 * to process all RTF_MULTIRT ires in the bucket, 21544 * and send the packet through all crossed 21545 * RTF_MULTIRT routes. 21546 */ 21547 do { 21548 if (multirt_send) { 21549 irb_t *irb; 21550 21551 irb = ire->ire_bucket; 21552 ASSERT(irb != NULL); 21553 /* 21554 * We are in a multiple send case, 21555 * need to get the next IRE and make 21556 * a duplicate of the packet. 21557 */ 21558 IRB_REFHOLD(irb); 21559 for (ire1 = ire->ire_next; 21560 ire1 != NULL; 21561 ire1 = ire1->ire_next) { 21562 if (!(ire1->ire_flags & 21563 RTF_MULTIRT)) 21564 continue; 21565 if (ire1->ire_addr != 21566 ire->ire_addr) 21567 continue; 21568 if (ire1->ire_marks & 21569 (IRE_MARK_CONDEMNED| 21570 IRE_MARK_HIDDEN)) 21571 continue; 21572 21573 /* Got one */ 21574 IRE_REFHOLD(ire1); 21575 break; 21576 } 21577 IRB_REFRELE(irb); 21578 21579 if (ire1 != NULL) { 21580 next_mp = copyb(mp); 21581 if ((next_mp == NULL) || 21582 ((mp->b_cont != NULL) && 21583 ((next_mp->b_cont = 21584 dupmsg(mp->b_cont)) 21585 == NULL))) { 21586 freemsg(next_mp); 21587 next_mp = NULL; 21588 ire_refrele(ire1); 21589 ire1 = NULL; 21590 } 21591 } 21592 21593 /* 21594 * Last multiroute ire; don't loop 21595 * anymore. The emission is over 21596 * and next_mp is NULL. 21597 */ 21598 if (ire1 == NULL) { 21599 multirt_send = B_FALSE; 21600 } 21601 } 21602 21603 ASSERT(ipsec_len == 0); 21604 mp1 = ip_wput_attach_llhdr(mp, ire, 21605 IPP_LOCAL_OUT, ill_index); 21606 if (mp1 == NULL) { 21607 BUMP_MIB(&ip_mib, ipOutDiscards); 21608 if (next_mp) { 21609 freemsg(next_mp); 21610 ire_refrele(ire1); 21611 } 21612 ire_refrele(ire); 21613 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21614 "ip_wput_ire_end: q %p (%S)", 21615 q, "discard MDATA"); 21616 if (conn_outgoing_ill != NULL) 21617 ill_refrele(conn_outgoing_ill); 21618 return; 21619 } 21620 UPDATE_OB_PKT_COUNT(ire); 21621 ire->ire_last_used_time = lbolt; 21622 21623 if (multirt_send) { 21624 /* 21625 * We are in a multiple send case, 21626 * need to re-enter the sending loop 21627 * using the next ire. 21628 */ 21629 putnext(stq, mp1); 21630 ire_refrele(ire); 21631 ire = ire1; 21632 stq = ire->ire_stq; 21633 mp = next_mp; 21634 next_mp = NULL; 21635 ipha = (ipha_t *)mp->b_rptr; 21636 ill_index = Q_TO_INDEX(stq); 21637 } 21638 } while (multirt_send); 21639 21640 if (!next_mp) { 21641 /* 21642 * Last copy going out (the ultra-common 21643 * case). Note that we intentionally replicate 21644 * the putnext rather than calling it before 21645 * the next_mp check in hopes of a little 21646 * tail-call action out of the compiler. 21647 */ 21648 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21649 "ip_wput_ire_end: q %p (%S)", 21650 q, "last copy out(1)"); 21651 putnext(stq, mp1); 21652 ire_refrele(ire); 21653 if (conn_outgoing_ill != NULL) 21654 ill_refrele(conn_outgoing_ill); 21655 return; 21656 } 21657 /* More copies going out below. */ 21658 putnext(stq, mp1); 21659 } else { 21660 int offset; 21661 fragmentit: 21662 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 21663 /* 21664 * If this would generate a icmp_frag_needed message, 21665 * we need to handle it before we do the IPSEC 21666 * processing. Otherwise, we need to strip the IPSEC 21667 * headers before we send up the message to the ULPs 21668 * which becomes messy and difficult. 21669 */ 21670 if (ipsec_len != 0) { 21671 if ((max_frag < (unsigned int)(LENGTH + 21672 ipsec_len)) && (offset & IPH_DF)) { 21673 21674 BUMP_MIB(&ip_mib, ipFragFails); 21675 ipha->ipha_hdr_checksum = 0; 21676 ipha->ipha_hdr_checksum = 21677 (uint16_t)ip_csum_hdr(ipha); 21678 icmp_frag_needed(ire->ire_stq, first_mp, 21679 max_frag); 21680 if (!next_mp) { 21681 ire_refrele(ire); 21682 if (conn_outgoing_ill != NULL) { 21683 ill_refrele( 21684 conn_outgoing_ill); 21685 } 21686 return; 21687 } 21688 } else { 21689 /* 21690 * This won't cause a icmp_frag_needed 21691 * message. to be gnerated. Send it on 21692 * the wire. Note that this could still 21693 * cause fragmentation and all we 21694 * do is the generation of the message 21695 * to the ULP if needed before IPSEC. 21696 */ 21697 if (!next_mp) { 21698 ipsec_out_process(q, first_mp, 21699 ire, ill_index); 21700 TRACE_2(TR_FAC_IP, 21701 TR_IP_WPUT_IRE_END, 21702 "ip_wput_ire_end: q %p " 21703 "(%S)", q, 21704 "last ipsec_out_process"); 21705 ire_refrele(ire); 21706 if (conn_outgoing_ill != NULL) { 21707 ill_refrele( 21708 conn_outgoing_ill); 21709 } 21710 return; 21711 } 21712 ipsec_out_process(q, first_mp, 21713 ire, ill_index); 21714 } 21715 } else { 21716 /* Initiate IPPF processing */ 21717 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 21718 ip_process(IPP_LOCAL_OUT, &mp, 21719 ill_index); 21720 if (mp == NULL) { 21721 BUMP_MIB(&ip_mib, 21722 ipOutDiscards); 21723 if (next_mp != NULL) { 21724 freemsg(next_mp); 21725 ire_refrele(ire1); 21726 } 21727 ire_refrele(ire); 21728 TRACE_2(TR_FAC_IP, 21729 TR_IP_WPUT_IRE_END, 21730 "ip_wput_ire: q %p (%S)", 21731 q, "discard MDATA"); 21732 if (conn_outgoing_ill != NULL) { 21733 ill_refrele( 21734 conn_outgoing_ill); 21735 } 21736 return; 21737 } 21738 } 21739 if (!next_mp) { 21740 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21741 "ip_wput_ire_end: q %p (%S)", 21742 q, "last fragmentation"); 21743 ip_wput_ire_fragmentit(mp, ire); 21744 ire_refrele(ire); 21745 if (conn_outgoing_ill != NULL) 21746 ill_refrele(conn_outgoing_ill); 21747 return; 21748 } 21749 ip_wput_ire_fragmentit(mp, ire); 21750 } 21751 } 21752 } else { 21753 nullstq: 21754 /* A NULL stq means the destination address is local. */ 21755 UPDATE_OB_PKT_COUNT(ire); 21756 ire->ire_last_used_time = lbolt; 21757 ASSERT(ire->ire_ipif != NULL); 21758 if (!next_mp) { 21759 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21760 "ip_wput_ire_end: q %p (%S)", 21761 q, "local address"); 21762 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, 21763 first_mp, ire, 0, ire->ire_zoneid); 21764 ire_refrele(ire); 21765 if (conn_outgoing_ill != NULL) 21766 ill_refrele(conn_outgoing_ill); 21767 return; 21768 } 21769 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, first_mp, 21770 ire, 0, ire->ire_zoneid); 21771 } 21772 next: 21773 /* 21774 * More copies going out to additional interfaces. 21775 * ire1 has already been held. We don't need the 21776 * "ire" anymore. 21777 */ 21778 ire_refrele(ire); 21779 ire = ire1; 21780 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 21781 mp = next_mp; 21782 ASSERT(ire->ire_ipversion == IPV4_VERSION); 21783 ill = ire_to_ill(ire); 21784 first_mp = mp; 21785 if (ipsec_len != 0) { 21786 ASSERT(first_mp->b_datap->db_type == M_CTL); 21787 mp = mp->b_cont; 21788 } 21789 dst = ire->ire_addr; 21790 ipha = (ipha_t *)mp->b_rptr; 21791 /* 21792 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 21793 * Restore ipha_ident "no checksum" flag. 21794 */ 21795 src = orig_src; 21796 ipha->ipha_ident = ip_hdr_included; 21797 goto another; 21798 21799 #undef rptr 21800 #undef Q_TO_INDEX 21801 } 21802 21803 /* 21804 * Routine to allocate a message that is used to notify the ULP about MDT. 21805 * The caller may provide a pointer to the link-layer MDT capabilities, 21806 * or NULL if MDT is to be disabled on the stream. 21807 */ 21808 mblk_t * 21809 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 21810 { 21811 mblk_t *mp; 21812 ip_mdt_info_t *mdti; 21813 ill_mdt_capab_t *idst; 21814 21815 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 21816 DB_TYPE(mp) = M_CTL; 21817 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 21818 mdti = (ip_mdt_info_t *)mp->b_rptr; 21819 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 21820 idst = &(mdti->mdt_capab); 21821 21822 /* 21823 * If the caller provides us with the capability, copy 21824 * it over into our notification message; otherwise 21825 * we zero out the capability portion. 21826 */ 21827 if (isrc != NULL) 21828 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 21829 else 21830 bzero((caddr_t)idst, sizeof (*idst)); 21831 } 21832 return (mp); 21833 } 21834 21835 /* 21836 * Routine which determines whether MDT can be enabled on the destination 21837 * IRE and IPC combination, and if so, allocates and returns the MDT 21838 * notification mblk that may be used by ULP. We also check if we need to 21839 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 21840 * MDT usage in the past have been lifted. This gets called during IP 21841 * and ULP binding. 21842 */ 21843 mblk_t * 21844 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 21845 ill_mdt_capab_t *mdt_cap) 21846 { 21847 mblk_t *mp; 21848 boolean_t rc = B_FALSE; 21849 21850 ASSERT(dst_ire != NULL); 21851 ASSERT(connp != NULL); 21852 ASSERT(mdt_cap != NULL); 21853 21854 /* 21855 * Currently, we only support simple TCP/{IPv4,IPv6} with 21856 * Multidata, which is handled in tcp_multisend(). This 21857 * is the reason why we do all these checks here, to ensure 21858 * that we don't enable Multidata for the cases which we 21859 * can't handle at the moment. 21860 */ 21861 do { 21862 /* Only do TCP at the moment */ 21863 if (connp->conn_ulp != IPPROTO_TCP) 21864 break; 21865 21866 /* 21867 * IPSEC outbound policy present? Note that we get here 21868 * after calling ipsec_conn_cache_policy() where the global 21869 * policy checking is performed. conn_latch will be 21870 * non-NULL as long as there's a policy defined, 21871 * i.e. conn_out_enforce_policy may be NULL in such case 21872 * when the connection is non-secure, and hence we check 21873 * further if the latch refers to an outbound policy. 21874 */ 21875 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 21876 break; 21877 21878 /* CGTP (multiroute) is enabled? */ 21879 if (dst_ire->ire_flags & RTF_MULTIRT) 21880 break; 21881 21882 /* Outbound IPQoS enabled? */ 21883 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 21884 /* 21885 * In this case, we disable MDT for this and all 21886 * future connections going over the interface. 21887 */ 21888 mdt_cap->ill_mdt_on = 0; 21889 break; 21890 } 21891 21892 /* socket option(s) present? */ 21893 if (!CONN_IS_MD_FASTPATH(connp)) 21894 break; 21895 21896 rc = B_TRUE; 21897 /* CONSTCOND */ 21898 } while (0); 21899 21900 /* Remember the result */ 21901 connp->conn_mdt_ok = rc; 21902 21903 if (!rc) 21904 return (NULL); 21905 else if (!mdt_cap->ill_mdt_on) { 21906 /* 21907 * If MDT has been previously turned off in the past, and we 21908 * currently can do MDT (due to IPQoS policy removal, etc.) 21909 * then enable it for this interface. 21910 */ 21911 mdt_cap->ill_mdt_on = 1; 21912 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 21913 "interface %s\n", ill_name)); 21914 } 21915 21916 /* Allocate the MDT info mblk */ 21917 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 21918 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 21919 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 21920 return (NULL); 21921 } 21922 return (mp); 21923 } 21924 21925 /* 21926 * Create destination address attribute, and fill it with the physical 21927 * destination address and SAP taken from the template DL_UNITDATA_REQ 21928 * message block. 21929 */ 21930 boolean_t 21931 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 21932 { 21933 dl_unitdata_req_t *dlurp; 21934 pattr_t *pa; 21935 pattrinfo_t pa_info; 21936 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 21937 uint_t das_len, das_off; 21938 21939 ASSERT(dlmp != NULL); 21940 21941 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 21942 das_len = dlurp->dl_dest_addr_length; 21943 das_off = dlurp->dl_dest_addr_offset; 21944 21945 pa_info.type = PATTR_DSTADDRSAP; 21946 pa_info.len = sizeof (**das) + das_len - 1; 21947 21948 /* create and associate the attribute */ 21949 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 21950 if (pa != NULL) { 21951 ASSERT(*das != NULL); 21952 (*das)->addr_is_group = 0; 21953 (*das)->addr_len = (uint8_t)das_len; 21954 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 21955 } 21956 21957 return (pa != NULL); 21958 } 21959 21960 /* 21961 * Create hardware checksum attribute and fill it with the values passed. 21962 */ 21963 boolean_t 21964 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 21965 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 21966 { 21967 pattr_t *pa; 21968 pattrinfo_t pa_info; 21969 21970 ASSERT(mmd != NULL); 21971 21972 pa_info.type = PATTR_HCKSUM; 21973 pa_info.len = sizeof (pattr_hcksum_t); 21974 21975 /* create and associate the attribute */ 21976 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 21977 if (pa != NULL) { 21978 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 21979 21980 hck->hcksum_start_offset = start_offset; 21981 hck->hcksum_stuff_offset = stuff_offset; 21982 hck->hcksum_end_offset = end_offset; 21983 hck->hcksum_flags = flags; 21984 } 21985 return (pa != NULL); 21986 } 21987 21988 /* 21989 * Create zerocopy attribute and fill it with the specified flags 21990 */ 21991 boolean_t 21992 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 21993 { 21994 pattr_t *pa; 21995 pattrinfo_t pa_info; 21996 21997 ASSERT(mmd != NULL); 21998 pa_info.type = PATTR_ZCOPY; 21999 pa_info.len = sizeof (pattr_zcopy_t); 22000 22001 /* create and associate the attribute */ 22002 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 22003 if (pa != NULL) { 22004 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 22005 22006 zcopy->zcopy_flags = flags; 22007 } 22008 return (pa != NULL); 22009 } 22010 22011 /* 22012 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 22013 * block chain. We could rewrite to handle arbitrary message block chains but 22014 * that would make the code complicated and slow. Right now there three 22015 * restrictions: 22016 * 22017 * 1. The first message block must contain the complete IP header and 22018 * at least 1 byte of payload data. 22019 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 22020 * so that we can use a single Multidata message. 22021 * 3. No frag must be distributed over two or more message blocks so 22022 * that we don't need more than two packet descriptors per frag. 22023 * 22024 * The above restrictions allow us to support userland applications (which 22025 * will send down a single message block) and NFS over UDP (which will 22026 * send down a chain of at most three message blocks). 22027 * 22028 * We also don't use MDT for payloads with less than or equal to 22029 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 22030 */ 22031 boolean_t 22032 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 22033 { 22034 int blocks; 22035 ssize_t total, missing, size; 22036 22037 ASSERT(mp != NULL); 22038 ASSERT(hdr_len > 0); 22039 22040 size = MBLKL(mp) - hdr_len; 22041 if (size <= 0) 22042 return (B_FALSE); 22043 22044 /* The first mblk contains the header and some payload. */ 22045 blocks = 1; 22046 total = size; 22047 size %= len; 22048 missing = (size == 0) ? 0 : (len - size); 22049 mp = mp->b_cont; 22050 22051 while (mp != NULL) { 22052 /* 22053 * Give up if we encounter a zero length message block. 22054 * In practice, this should rarely happen and therefore 22055 * not worth the trouble of freeing and re-linking the 22056 * mblk from the chain to handle such case. 22057 */ 22058 if ((size = MBLKL(mp)) == 0) 22059 return (B_FALSE); 22060 22061 /* Too many payload buffers for a single Multidata message? */ 22062 if (++blocks > MULTIDATA_MAX_PBUFS) 22063 return (B_FALSE); 22064 22065 total += size; 22066 /* Is a frag distributed over two or more message blocks? */ 22067 if (missing > size) 22068 return (B_FALSE); 22069 size -= missing; 22070 22071 size %= len; 22072 missing = (size == 0) ? 0 : (len - size); 22073 22074 mp = mp->b_cont; 22075 } 22076 22077 return (total > ip_wput_frag_mdt_min); 22078 } 22079 22080 /* 22081 * Outbound IPv4 fragmentation routine using MDT. 22082 */ 22083 static void 22084 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 22085 uint32_t frag_flag, int offset) 22086 { 22087 ipha_t *ipha_orig; 22088 int i1, ip_data_end; 22089 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 22090 mblk_t *hdr_mp, *md_mp = NULL; 22091 unsigned char *hdr_ptr, *pld_ptr; 22092 multidata_t *mmd; 22093 ip_pdescinfo_t pdi; 22094 22095 ASSERT(DB_TYPE(mp) == M_DATA); 22096 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 22097 22098 ipha_orig = (ipha_t *)mp->b_rptr; 22099 mp->b_rptr += sizeof (ipha_t); 22100 22101 /* Calculate how many packets we will send out */ 22102 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 22103 pkts = (i1 + len - 1) / len; 22104 ASSERT(pkts > 1); 22105 22106 /* Allocate a message block which will hold all the IP Headers. */ 22107 wroff = ip_wroff_extra; 22108 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 22109 22110 i1 = pkts * hdr_chunk_len; 22111 /* 22112 * Create the header buffer, Multidata and destination address 22113 * and SAP attribute that should be associated with it. 22114 */ 22115 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 22116 ((hdr_mp->b_wptr += i1), 22117 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 22118 !ip_md_addr_attr(mmd, NULL, ire->ire_dlureq_mp)) { 22119 freemsg(mp); 22120 if (md_mp == NULL) { 22121 freemsg(hdr_mp); 22122 } else { 22123 free_mmd: IP_STAT(ip_frag_mdt_discarded); 22124 freemsg(md_mp); 22125 } 22126 IP_STAT(ip_frag_mdt_allocfail); 22127 UPDATE_MIB(&ip_mib, ipOutDiscards, pkts); 22128 return; 22129 } 22130 IP_STAT(ip_frag_mdt_allocd); 22131 22132 /* 22133 * Add a payload buffer to the Multidata; this operation must not 22134 * fail, or otherwise our logic in this routine is broken. There 22135 * is no memory allocation done by the routine, so any returned 22136 * failure simply tells us that we've done something wrong. 22137 * 22138 * A failure tells us that either we're adding the same payload 22139 * buffer more than once, or we're trying to add more buffers than 22140 * allowed. None of the above cases should happen, and we panic 22141 * because either there's horrible heap corruption, and/or 22142 * programming mistake. 22143 */ 22144 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 22145 goto pbuf_panic; 22146 22147 hdr_ptr = hdr_mp->b_rptr; 22148 pld_ptr = mp->b_rptr; 22149 22150 /* Establish the ending byte offset, based on the starting offset. */ 22151 offset <<= 3; 22152 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 22153 IP_SIMPLE_HDR_LENGTH; 22154 22155 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 22156 22157 while (pld_ptr < mp->b_wptr) { 22158 ipha_t *ipha; 22159 uint16_t offset_and_flags; 22160 uint16_t ip_len; 22161 int error; 22162 22163 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 22164 ipha = (ipha_t *)(hdr_ptr + wroff); 22165 ASSERT(OK_32PTR(ipha)); 22166 *ipha = *ipha_orig; 22167 22168 if (ip_data_end - offset > len) { 22169 offset_and_flags = IPH_MF; 22170 } else { 22171 /* 22172 * Last frag. Set len to the length of this last piece. 22173 */ 22174 len = ip_data_end - offset; 22175 /* A frag of a frag might have IPH_MF non-zero */ 22176 offset_and_flags = 22177 ntohs(ipha->ipha_fragment_offset_and_flags) & 22178 IPH_MF; 22179 } 22180 offset_and_flags |= (uint16_t)(offset >> 3); 22181 offset_and_flags |= (uint16_t)frag_flag; 22182 /* Store the offset and flags in the IP header. */ 22183 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 22184 22185 /* Store the length in the IP header. */ 22186 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 22187 ipha->ipha_length = htons(ip_len); 22188 22189 /* 22190 * Set the IP header checksum. Note that mp is just 22191 * the header, so this is easy to pass to ip_csum. 22192 */ 22193 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22194 22195 /* 22196 * Record offset and size of header and data of the next packet 22197 * in the multidata message. 22198 */ 22199 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 22200 PDESC_PLD_INIT(&pdi); 22201 i1 = MIN(mp->b_wptr - pld_ptr, len); 22202 ASSERT(i1 > 0); 22203 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 22204 if (i1 == len) { 22205 pld_ptr += len; 22206 } else { 22207 i1 = len - i1; 22208 mp = mp->b_cont; 22209 ASSERT(mp != NULL); 22210 ASSERT(MBLKL(mp) >= i1); 22211 /* 22212 * Attach the next payload message block to the 22213 * multidata message. 22214 */ 22215 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 22216 goto pbuf_panic; 22217 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 22218 pld_ptr = mp->b_rptr + i1; 22219 } 22220 22221 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 22222 KM_NOSLEEP)) == NULL) { 22223 /* 22224 * Any failure other than ENOMEM indicates that we 22225 * have passed in invalid pdesc info or parameters 22226 * to mmd_addpdesc, which must not happen. 22227 * 22228 * EINVAL is a result of failure on boundary checks 22229 * against the pdesc info contents. It should not 22230 * happen, and we panic because either there's 22231 * horrible heap corruption, and/or programming 22232 * mistake. 22233 */ 22234 if (error != ENOMEM) { 22235 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 22236 "pdesc logic error detected for " 22237 "mmd %p pinfo %p (%d)\n", 22238 (void *)mmd, (void *)&pdi, error); 22239 /* NOTREACHED */ 22240 } 22241 IP_STAT(ip_frag_mdt_addpdescfail); 22242 /* Free unattached payload message blocks as well */ 22243 md_mp->b_cont = mp->b_cont; 22244 goto free_mmd; 22245 } 22246 22247 /* Advance fragment offset. */ 22248 offset += len; 22249 22250 /* Advance to location for next header in the buffer. */ 22251 hdr_ptr += hdr_chunk_len; 22252 22253 /* Did we reach the next payload message block? */ 22254 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 22255 mp = mp->b_cont; 22256 /* 22257 * Attach the next message block with payload 22258 * data to the multidata message. 22259 */ 22260 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 22261 goto pbuf_panic; 22262 pld_ptr = mp->b_rptr; 22263 } 22264 } 22265 22266 ASSERT(hdr_mp->b_wptr == hdr_ptr); 22267 ASSERT(mp->b_wptr == pld_ptr); 22268 22269 /* Update IP statistics */ 22270 UPDATE_MIB(&ip_mib, ipFragCreates, pkts); 22271 BUMP_MIB(&ip_mib, ipFragOKs); 22272 IP_STAT_UPDATE(ip_frag_mdt_pkt_out, pkts); 22273 22274 if (pkt_type == OB_PKT) { 22275 ire->ire_ob_pkt_count += pkts; 22276 if (ire->ire_ipif != NULL) 22277 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 22278 } else { 22279 /* 22280 * The type is IB_PKT in the forwarding path and in 22281 * the mobile IP case when the packet is being reverse- 22282 * tunneled to the home agent. 22283 */ 22284 ire->ire_ib_pkt_count += pkts; 22285 ASSERT(!IRE_IS_LOCAL(ire)); 22286 if (ire->ire_type & IRE_BROADCAST) 22287 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 22288 else 22289 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 22290 } 22291 ire->ire_last_used_time = lbolt; 22292 /* Send it down */ 22293 putnext(ire->ire_stq, md_mp); 22294 return; 22295 22296 pbuf_panic: 22297 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 22298 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 22299 pbuf_idx); 22300 /* NOTREACHED */ 22301 } 22302 22303 /* 22304 * Outbound IP fragmentation routine. 22305 * 22306 * NOTE : This routine does not ire_refrele the ire that is passed in 22307 * as the argument. 22308 */ 22309 static void 22310 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 22311 uint32_t frag_flag) 22312 { 22313 int i1; 22314 mblk_t *ll_hdr_mp; 22315 int ll_hdr_len; 22316 int hdr_len; 22317 mblk_t *hdr_mp; 22318 ipha_t *ipha; 22319 int ip_data_end; 22320 int len; 22321 mblk_t *mp = mp_orig; 22322 int offset; 22323 queue_t *q; 22324 uint32_t v_hlen_tos_len; 22325 mblk_t *first_mp; 22326 boolean_t mctl_present; 22327 ill_t *ill; 22328 mblk_t *xmit_mp; 22329 mblk_t *carve_mp; 22330 ire_t *ire1 = NULL; 22331 ire_t *save_ire = NULL; 22332 mblk_t *next_mp = NULL; 22333 boolean_t last_frag = B_FALSE; 22334 boolean_t multirt_send = B_FALSE; 22335 ire_t *first_ire = NULL; 22336 irb_t *irb = NULL; 22337 22338 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 22339 "ip_wput_frag_start:"); 22340 22341 if (mp->b_datap->db_type == M_CTL) { 22342 first_mp = mp; 22343 mp_orig = mp = mp->b_cont; 22344 mctl_present = B_TRUE; 22345 } else { 22346 first_mp = mp; 22347 mctl_present = B_FALSE; 22348 } 22349 22350 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 22351 ipha = (ipha_t *)mp->b_rptr; 22352 22353 /* 22354 * If the Don't Fragment flag is on, generate an ICMP destination 22355 * unreachable, fragmentation needed. 22356 */ 22357 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 22358 if (offset & IPH_DF) { 22359 BUMP_MIB(&ip_mib, ipFragFails); 22360 /* 22361 * Need to compute hdr checksum if called from ip_wput_ire. 22362 * Note that ip_rput_forward verifies the checksum before 22363 * calling this routine so in that case this is a noop. 22364 */ 22365 ipha->ipha_hdr_checksum = 0; 22366 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22367 icmp_frag_needed(ire->ire_stq, first_mp, max_frag); 22368 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22369 "ip_wput_frag_end:(%S)", 22370 "don't fragment"); 22371 return; 22372 } 22373 if (mctl_present) 22374 freeb(first_mp); 22375 /* 22376 * Establish the starting offset. May not be zero if we are fragging 22377 * a fragment that is being forwarded. 22378 */ 22379 offset = offset & IPH_OFFSET; 22380 22381 /* TODO why is this test needed? */ 22382 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22383 if (((max_frag - LENGTH) & ~7) < 8) { 22384 /* TODO: notify ulp somehow */ 22385 BUMP_MIB(&ip_mib, ipFragFails); 22386 freemsg(mp); 22387 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22388 "ip_wput_frag_end:(%S)", 22389 "len < 8"); 22390 return; 22391 } 22392 22393 hdr_len = (V_HLEN & 0xF) << 2; 22394 22395 ipha->ipha_hdr_checksum = 0; 22396 22397 /* 22398 * Establish the number of bytes maximum per frag, after putting 22399 * in the header. 22400 */ 22401 len = (max_frag - hdr_len) & ~7; 22402 22403 /* Check if we can use MDT to send out the frags. */ 22404 ASSERT(!IRE_IS_LOCAL(ire)); 22405 if (hdr_len == IP_SIMPLE_HDR_LENGTH && ip_multidata_outbound && 22406 !(ire->ire_flags & RTF_MULTIRT) && !IPP_ENABLED(IPP_LOCAL_OUT) && 22407 (ill = ire_to_ill(ire)) != NULL && ILL_MDT_CAPABLE(ill) && 22408 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 22409 ASSERT(ill->ill_mdt_capab != NULL); 22410 if (!ill->ill_mdt_capab->ill_mdt_on) { 22411 /* 22412 * If MDT has been previously turned off in the past, 22413 * and we currently can do MDT (due to IPQoS policy 22414 * removal, etc.) then enable it for this interface. 22415 */ 22416 ill->ill_mdt_capab->ill_mdt_on = 1; 22417 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 22418 ill->ill_name)); 22419 } 22420 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 22421 offset); 22422 return; 22423 } 22424 22425 /* Get a copy of the header for the trailing frags */ 22426 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset); 22427 if (!hdr_mp) { 22428 BUMP_MIB(&ip_mib, ipOutDiscards); 22429 freemsg(mp); 22430 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22431 "ip_wput_frag_end:(%S)", 22432 "couldn't copy hdr"); 22433 return; 22434 } 22435 if (DB_CRED(mp) != NULL) 22436 mblk_setcred(hdr_mp, DB_CRED(mp)); 22437 22438 /* Store the starting offset, with the MoreFrags flag. */ 22439 i1 = offset | IPH_MF | frag_flag; 22440 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 22441 22442 /* Establish the ending byte offset, based on the starting offset. */ 22443 offset <<= 3; 22444 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 22445 22446 /* Store the length of the first fragment in the IP header. */ 22447 i1 = len + hdr_len; 22448 ASSERT(i1 <= IP_MAXPACKET); 22449 ipha->ipha_length = htons((uint16_t)i1); 22450 22451 /* 22452 * Compute the IP header checksum for the first frag. We have to 22453 * watch out that we stop at the end of the header. 22454 */ 22455 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22456 22457 /* 22458 * Now carve off the first frag. Note that this will include the 22459 * original IP header. 22460 */ 22461 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 22462 BUMP_MIB(&ip_mib, ipOutDiscards); 22463 freeb(hdr_mp); 22464 freemsg(mp_orig); 22465 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22466 "ip_wput_frag_end:(%S)", 22467 "couldn't carve first"); 22468 return; 22469 } 22470 22471 /* 22472 * Multirouting case. Each fragment is replicated 22473 * via all non-condemned RTF_MULTIRT routes 22474 * currently resolved. 22475 * We ensure that first_ire is the first RTF_MULTIRT 22476 * ire in the bucket. 22477 */ 22478 if (ire->ire_flags & RTF_MULTIRT) { 22479 irb = ire->ire_bucket; 22480 ASSERT(irb != NULL); 22481 22482 multirt_send = B_TRUE; 22483 22484 /* Make sure we do not omit any multiroute ire. */ 22485 IRB_REFHOLD(irb); 22486 for (first_ire = irb->irb_ire; 22487 first_ire != NULL; 22488 first_ire = first_ire->ire_next) { 22489 if ((first_ire->ire_flags & RTF_MULTIRT) && 22490 (first_ire->ire_addr == ire->ire_addr) && 22491 !(first_ire->ire_marks & 22492 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 22493 break; 22494 } 22495 22496 if (first_ire != NULL) { 22497 if (first_ire != ire) { 22498 IRE_REFHOLD(first_ire); 22499 /* 22500 * Do not release the ire passed in 22501 * as the argument. 22502 */ 22503 ire = first_ire; 22504 } else { 22505 first_ire = NULL; 22506 } 22507 } 22508 IRB_REFRELE(irb); 22509 22510 /* 22511 * Save the first ire; we will need to restore it 22512 * for the trailing frags. 22513 * We REFHOLD save_ire, as each iterated ire will be 22514 * REFRELEd. 22515 */ 22516 save_ire = ire; 22517 IRE_REFHOLD(save_ire); 22518 } 22519 22520 /* 22521 * First fragment emission loop. 22522 * In most cases, the emission loop below is entered only 22523 * once. Only in the case where the ire holds the RTF_MULTIRT 22524 * flag, do we loop to process all RTF_MULTIRT ires in the 22525 * bucket, and send the fragment through all crossed 22526 * RTF_MULTIRT routes. 22527 */ 22528 do { 22529 if (ire->ire_flags & RTF_MULTIRT) { 22530 /* 22531 * We are in a multiple send case, need to get 22532 * the next ire and make a copy of the packet. 22533 * ire1 holds here the next ire to process in the 22534 * bucket. If multirouting is expected, 22535 * any non-RTF_MULTIRT ire that has the 22536 * right destination address is ignored. 22537 * 22538 * We have to take into account the MTU of 22539 * each walked ire. max_frag is set by the 22540 * the caller and generally refers to 22541 * the primary ire entry. Here we ensure that 22542 * no route with a lower MTU will be used, as 22543 * fragments are carved once for all ires, 22544 * then replicated. 22545 */ 22546 ASSERT(irb != NULL); 22547 IRB_REFHOLD(irb); 22548 for (ire1 = ire->ire_next; 22549 ire1 != NULL; 22550 ire1 = ire1->ire_next) { 22551 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22552 continue; 22553 if (ire1->ire_addr != ire->ire_addr) 22554 continue; 22555 if (ire1->ire_marks & 22556 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22557 continue; 22558 /* 22559 * Ensure we do not exceed the MTU 22560 * of the next route. 22561 */ 22562 if (ire1->ire_max_frag < max_frag) { 22563 ip_multirt_bad_mtu(ire1, max_frag); 22564 continue; 22565 } 22566 22567 /* Got one. */ 22568 IRE_REFHOLD(ire1); 22569 break; 22570 } 22571 IRB_REFRELE(irb); 22572 22573 if (ire1 != NULL) { 22574 next_mp = copyb(mp); 22575 if ((next_mp == NULL) || 22576 ((mp->b_cont != NULL) && 22577 ((next_mp->b_cont = 22578 dupmsg(mp->b_cont)) == NULL))) { 22579 freemsg(next_mp); 22580 next_mp = NULL; 22581 ire_refrele(ire1); 22582 ire1 = NULL; 22583 } 22584 } 22585 22586 /* Last multiroute ire; don't loop anymore. */ 22587 if (ire1 == NULL) { 22588 multirt_send = B_FALSE; 22589 } 22590 } 22591 22592 ll_hdr_len = 0; 22593 LOCK_IRE_FP_MP(ire); 22594 ll_hdr_mp = ire->ire_fp_mp; 22595 if (ll_hdr_mp != NULL) { 22596 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 22597 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 22598 } else { 22599 ll_hdr_mp = ire->ire_dlureq_mp; 22600 } 22601 22602 /* If there is a transmit header, get a copy for this frag. */ 22603 /* 22604 * TODO: should check db_ref before calling ip_carve_mp since 22605 * it might give us a dup. 22606 */ 22607 if (!ll_hdr_mp) { 22608 /* No xmit header. */ 22609 xmit_mp = mp; 22610 } else if (mp->b_datap->db_ref == 1 && 22611 ll_hdr_len != 0 && 22612 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 22613 /* M_DATA fastpath */ 22614 mp->b_rptr -= ll_hdr_len; 22615 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 22616 xmit_mp = mp; 22617 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 22618 UNLOCK_IRE_FP_MP(ire); 22619 BUMP_MIB(&ip_mib, ipOutDiscards); 22620 freeb(hdr_mp); 22621 freemsg(mp); 22622 freemsg(mp_orig); 22623 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22624 "ip_wput_frag_end:(%S)", 22625 "discard"); 22626 22627 if (multirt_send) { 22628 ASSERT(ire1); 22629 ASSERT(next_mp); 22630 22631 freemsg(next_mp); 22632 ire_refrele(ire1); 22633 } 22634 if (save_ire != NULL) 22635 IRE_REFRELE(save_ire); 22636 22637 if (first_ire != NULL) 22638 ire_refrele(first_ire); 22639 return; 22640 } else { 22641 xmit_mp->b_cont = mp; 22642 if (DB_CRED(mp) != NULL) 22643 mblk_setcred(xmit_mp, DB_CRED(mp)); 22644 /* Get priority marking, if any. */ 22645 if (DB_TYPE(xmit_mp) == M_DATA) 22646 xmit_mp->b_band = mp->b_band; 22647 } 22648 UNLOCK_IRE_FP_MP(ire); 22649 q = ire->ire_stq; 22650 BUMP_MIB(&ip_mib, ipFragCreates); 22651 putnext(q, xmit_mp); 22652 if (pkt_type != OB_PKT) { 22653 /* 22654 * Update the packet count of trailing 22655 * RTF_MULTIRT ires. 22656 */ 22657 UPDATE_OB_PKT_COUNT(ire); 22658 } 22659 22660 if (multirt_send) { 22661 /* 22662 * We are in a multiple send case; look for 22663 * the next ire and re-enter the loop. 22664 */ 22665 ASSERT(ire1); 22666 ASSERT(next_mp); 22667 /* REFRELE the current ire before looping */ 22668 ire_refrele(ire); 22669 ire = ire1; 22670 ire1 = NULL; 22671 mp = next_mp; 22672 next_mp = NULL; 22673 } 22674 } while (multirt_send); 22675 22676 ASSERT(ire1 == NULL); 22677 22678 /* Restore the original ire; we need it for the trailing frags */ 22679 if (save_ire != NULL) { 22680 /* REFRELE the last iterated ire */ 22681 ire_refrele(ire); 22682 /* save_ire has been REFHOLDed */ 22683 ire = save_ire; 22684 save_ire = NULL; 22685 q = ire->ire_stq; 22686 } 22687 22688 if (pkt_type == OB_PKT) { 22689 UPDATE_OB_PKT_COUNT(ire); 22690 } else { 22691 UPDATE_IB_PKT_COUNT(ire); 22692 } 22693 22694 /* Advance the offset to the second frag starting point. */ 22695 offset += len; 22696 /* 22697 * Update hdr_len from the copied header - there might be less options 22698 * in the later fragments. 22699 */ 22700 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 22701 /* Loop until done. */ 22702 for (;;) { 22703 uint16_t offset_and_flags; 22704 uint16_t ip_len; 22705 22706 if (ip_data_end - offset > len) { 22707 /* 22708 * Carve off the appropriate amount from the original 22709 * datagram. 22710 */ 22711 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 22712 mp = NULL; 22713 break; 22714 } 22715 /* 22716 * More frags after this one. Get another copy 22717 * of the header. 22718 */ 22719 if (carve_mp->b_datap->db_ref == 1 && 22720 hdr_mp->b_wptr - hdr_mp->b_rptr < 22721 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 22722 /* Inline IP header */ 22723 carve_mp->b_rptr -= hdr_mp->b_wptr - 22724 hdr_mp->b_rptr; 22725 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 22726 hdr_mp->b_wptr - hdr_mp->b_rptr); 22727 mp = carve_mp; 22728 } else { 22729 if (!(mp = copyb(hdr_mp))) { 22730 freemsg(carve_mp); 22731 break; 22732 } 22733 /* Get priority marking, if any. */ 22734 mp->b_band = carve_mp->b_band; 22735 mp->b_cont = carve_mp; 22736 } 22737 ipha = (ipha_t *)mp->b_rptr; 22738 offset_and_flags = IPH_MF; 22739 } else { 22740 /* 22741 * Last frag. Consume the header. Set len to 22742 * the length of this last piece. 22743 */ 22744 len = ip_data_end - offset; 22745 22746 /* 22747 * Carve off the appropriate amount from the original 22748 * datagram. 22749 */ 22750 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 22751 mp = NULL; 22752 break; 22753 } 22754 if (carve_mp->b_datap->db_ref == 1 && 22755 hdr_mp->b_wptr - hdr_mp->b_rptr < 22756 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 22757 /* Inline IP header */ 22758 carve_mp->b_rptr -= hdr_mp->b_wptr - 22759 hdr_mp->b_rptr; 22760 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 22761 hdr_mp->b_wptr - hdr_mp->b_rptr); 22762 mp = carve_mp; 22763 freeb(hdr_mp); 22764 hdr_mp = mp; 22765 } else { 22766 mp = hdr_mp; 22767 /* Get priority marking, if any. */ 22768 mp->b_band = carve_mp->b_band; 22769 mp->b_cont = carve_mp; 22770 } 22771 ipha = (ipha_t *)mp->b_rptr; 22772 /* A frag of a frag might have IPH_MF non-zero */ 22773 offset_and_flags = 22774 ntohs(ipha->ipha_fragment_offset_and_flags) & 22775 IPH_MF; 22776 } 22777 offset_and_flags |= (uint16_t)(offset >> 3); 22778 offset_and_flags |= (uint16_t)frag_flag; 22779 /* Store the offset and flags in the IP header. */ 22780 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 22781 22782 /* Store the length in the IP header. */ 22783 ip_len = (uint16_t)(len + hdr_len); 22784 ipha->ipha_length = htons(ip_len); 22785 22786 /* 22787 * Set the IP header checksum. Note that mp is just 22788 * the header, so this is easy to pass to ip_csum. 22789 */ 22790 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22791 22792 /* Attach a transmit header, if any, and ship it. */ 22793 if (pkt_type == OB_PKT) { 22794 UPDATE_OB_PKT_COUNT(ire); 22795 } else { 22796 UPDATE_IB_PKT_COUNT(ire); 22797 } 22798 22799 if (ire->ire_flags & RTF_MULTIRT) { 22800 irb = ire->ire_bucket; 22801 ASSERT(irb != NULL); 22802 22803 multirt_send = B_TRUE; 22804 22805 /* 22806 * Save the original ire; we will need to restore it 22807 * for the tailing frags. 22808 */ 22809 save_ire = ire; 22810 IRE_REFHOLD(save_ire); 22811 } 22812 /* 22813 * Emission loop for this fragment, similar 22814 * to what is done for the first fragment. 22815 */ 22816 do { 22817 if (multirt_send) { 22818 /* 22819 * We are in a multiple send case, need to get 22820 * the next ire and make a copy of the packet. 22821 */ 22822 ASSERT(irb != NULL); 22823 IRB_REFHOLD(irb); 22824 for (ire1 = ire->ire_next; 22825 ire1 != NULL; 22826 ire1 = ire1->ire_next) { 22827 if (!(ire1->ire_flags & RTF_MULTIRT)) 22828 continue; 22829 if (ire1->ire_addr != ire->ire_addr) 22830 continue; 22831 if (ire1->ire_marks & 22832 (IRE_MARK_CONDEMNED| 22833 IRE_MARK_HIDDEN)) 22834 continue; 22835 /* 22836 * Ensure we do not exceed the MTU 22837 * of the next route. 22838 */ 22839 if (ire1->ire_max_frag < max_frag) { 22840 ip_multirt_bad_mtu(ire1, 22841 max_frag); 22842 continue; 22843 } 22844 22845 /* Got one. */ 22846 IRE_REFHOLD(ire1); 22847 break; 22848 } 22849 IRB_REFRELE(irb); 22850 22851 if (ire1 != NULL) { 22852 next_mp = copyb(mp); 22853 if ((next_mp == NULL) || 22854 ((mp->b_cont != NULL) && 22855 ((next_mp->b_cont = 22856 dupmsg(mp->b_cont)) == NULL))) { 22857 freemsg(next_mp); 22858 next_mp = NULL; 22859 ire_refrele(ire1); 22860 ire1 = NULL; 22861 } 22862 } 22863 22864 /* Last multiroute ire; don't loop anymore. */ 22865 if (ire1 == NULL) { 22866 multirt_send = B_FALSE; 22867 } 22868 } 22869 22870 /* Update transmit header */ 22871 ll_hdr_len = 0; 22872 LOCK_IRE_FP_MP(ire); 22873 ll_hdr_mp = ire->ire_fp_mp; 22874 if (ll_hdr_mp != NULL) { 22875 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 22876 ll_hdr_len = MBLKL(ll_hdr_mp); 22877 } else { 22878 ll_hdr_mp = ire->ire_dlureq_mp; 22879 } 22880 22881 if (!ll_hdr_mp) { 22882 xmit_mp = mp; 22883 } else if (mp->b_datap->db_ref == 1 && 22884 ll_hdr_len != 0 && 22885 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 22886 /* M_DATA fastpath */ 22887 mp->b_rptr -= ll_hdr_len; 22888 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 22889 ll_hdr_len); 22890 xmit_mp = mp; 22891 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 22892 xmit_mp->b_cont = mp; 22893 if (DB_CRED(mp) != NULL) 22894 mblk_setcred(xmit_mp, DB_CRED(mp)); 22895 /* Get priority marking, if any. */ 22896 if (DB_TYPE(xmit_mp) == M_DATA) 22897 xmit_mp->b_band = mp->b_band; 22898 } else { 22899 /* 22900 * Exit both the replication and 22901 * fragmentation loops. 22902 */ 22903 UNLOCK_IRE_FP_MP(ire); 22904 goto drop_pkt; 22905 } 22906 UNLOCK_IRE_FP_MP(ire); 22907 BUMP_MIB(&ip_mib, ipFragCreates); 22908 putnext(q, xmit_mp); 22909 22910 if (pkt_type != OB_PKT) { 22911 /* 22912 * Update the packet count of trailing 22913 * RTF_MULTIRT ires. 22914 */ 22915 UPDATE_OB_PKT_COUNT(ire); 22916 } 22917 22918 /* All done if we just consumed the hdr_mp. */ 22919 if (mp == hdr_mp) { 22920 last_frag = B_TRUE; 22921 } 22922 22923 if (multirt_send) { 22924 /* 22925 * We are in a multiple send case; look for 22926 * the next ire and re-enter the loop. 22927 */ 22928 ASSERT(ire1); 22929 ASSERT(next_mp); 22930 /* REFRELE the current ire before looping */ 22931 ire_refrele(ire); 22932 ire = ire1; 22933 ire1 = NULL; 22934 q = ire->ire_stq; 22935 mp = next_mp; 22936 next_mp = NULL; 22937 } 22938 } while (multirt_send); 22939 /* 22940 * Restore the original ire; we need it for the 22941 * trailing frags 22942 */ 22943 if (save_ire != NULL) { 22944 ASSERT(ire1 == NULL); 22945 /* REFRELE the last iterated ire */ 22946 ire_refrele(ire); 22947 /* save_ire has been REFHOLDed */ 22948 ire = save_ire; 22949 q = ire->ire_stq; 22950 save_ire = NULL; 22951 } 22952 22953 if (last_frag) { 22954 BUMP_MIB(&ip_mib, ipFragOKs); 22955 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22956 "ip_wput_frag_end:(%S)", 22957 "consumed hdr_mp"); 22958 22959 if (first_ire != NULL) 22960 ire_refrele(first_ire); 22961 return; 22962 } 22963 /* Otherwise, advance and loop. */ 22964 offset += len; 22965 } 22966 22967 drop_pkt: 22968 /* Clean up following allocation failure. */ 22969 BUMP_MIB(&ip_mib, ipOutDiscards); 22970 freemsg(mp); 22971 if (mp != hdr_mp) 22972 freeb(hdr_mp); 22973 if (mp != mp_orig) 22974 freemsg(mp_orig); 22975 22976 if (save_ire != NULL) 22977 IRE_REFRELE(save_ire); 22978 if (first_ire != NULL) 22979 ire_refrele(first_ire); 22980 22981 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22982 "ip_wput_frag_end:(%S)", 22983 "end--alloc failure"); 22984 } 22985 22986 /* 22987 * Copy the header plus those options which have the copy bit set 22988 */ 22989 static mblk_t * 22990 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset) 22991 { 22992 mblk_t *mp; 22993 uchar_t *up; 22994 22995 /* 22996 * Quick check if we need to look for options without the copy bit 22997 * set 22998 */ 22999 mp = allocb(ip_wroff_extra + hdr_len, BPRI_HI); 23000 if (!mp) 23001 return (mp); 23002 mp->b_rptr += ip_wroff_extra; 23003 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 23004 bcopy(rptr, mp->b_rptr, hdr_len); 23005 mp->b_wptr += hdr_len + ip_wroff_extra; 23006 return (mp); 23007 } 23008 up = mp->b_rptr; 23009 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 23010 up += IP_SIMPLE_HDR_LENGTH; 23011 rptr += IP_SIMPLE_HDR_LENGTH; 23012 hdr_len -= IP_SIMPLE_HDR_LENGTH; 23013 while (hdr_len > 0) { 23014 uint32_t optval; 23015 uint32_t optlen; 23016 23017 optval = *rptr; 23018 if (optval == IPOPT_EOL) 23019 break; 23020 if (optval == IPOPT_NOP) 23021 optlen = 1; 23022 else 23023 optlen = rptr[1]; 23024 if (optval & IPOPT_COPY) { 23025 bcopy(rptr, up, optlen); 23026 up += optlen; 23027 } 23028 rptr += optlen; 23029 hdr_len -= optlen; 23030 } 23031 /* 23032 * Make sure that we drop an even number of words by filling 23033 * with EOL to the next word boundary. 23034 */ 23035 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 23036 hdr_len & 0x3; hdr_len++) 23037 *up++ = IPOPT_EOL; 23038 mp->b_wptr = up; 23039 /* Update header length */ 23040 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 23041 return (mp); 23042 } 23043 23044 /* 23045 * Delivery to local recipients including fanout to multiple recipients. 23046 * Does not do checksumming of UDP/TCP. 23047 * Note: q should be the read side queue for either the ill or conn. 23048 * Note: rq should be the read side q for the lower (ill) stream. 23049 * We don't send packets to IPPF processing, thus the last argument 23050 * to all the fanout calls are B_FALSE. 23051 */ 23052 void 23053 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 23054 int fanout_flags, zoneid_t zoneid) 23055 { 23056 uint32_t protocol; 23057 mblk_t *first_mp; 23058 boolean_t mctl_present; 23059 int ire_type; 23060 #define rptr ((uchar_t *)ipha) 23061 23062 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 23063 "ip_wput_local_start: q %p", q); 23064 23065 if (ire != NULL) { 23066 ire_type = ire->ire_type; 23067 } else { 23068 /* 23069 * Only ip_multicast_loopback() calls us with a NULL ire. If the 23070 * packet is not multicast, we can't tell the ire type. 23071 */ 23072 ASSERT(CLASSD(ipha->ipha_dst)); 23073 ire_type = IRE_BROADCAST; 23074 } 23075 23076 first_mp = mp; 23077 if (first_mp->b_datap->db_type == M_CTL) { 23078 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 23079 if (!io->ipsec_out_secure) { 23080 /* 23081 * This ipsec_out_t was allocated in ip_wput 23082 * for multicast packets to store the ill_index. 23083 * As this is being delivered locally, we don't 23084 * need this anymore. 23085 */ 23086 mp = first_mp->b_cont; 23087 freeb(first_mp); 23088 first_mp = mp; 23089 mctl_present = B_FALSE; 23090 } else { 23091 mctl_present = B_TRUE; 23092 mp = first_mp->b_cont; 23093 ASSERT(mp != NULL); 23094 ipsec_out_to_in(first_mp); 23095 } 23096 } else { 23097 mctl_present = B_FALSE; 23098 } 23099 23100 loopback_packets++; 23101 23102 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 23103 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 23104 if (!IS_SIMPLE_IPH(ipha)) { 23105 ip_wput_local_options(ipha); 23106 } 23107 23108 protocol = ipha->ipha_protocol; 23109 switch (protocol) { 23110 case IPPROTO_ICMP: { 23111 ire_t *ire_zone; 23112 ilm_t *ilm; 23113 mblk_t *mp1; 23114 zoneid_t last_zoneid; 23115 23116 if (CLASSD(ipha->ipha_dst) && 23117 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 23118 ASSERT(ire_type == IRE_BROADCAST); 23119 /* 23120 * In the multicast case, applications may have joined 23121 * the group from different zones, so we need to deliver 23122 * the packet to each of them. Loop through the 23123 * multicast memberships structures (ilm) on the receive 23124 * ill and send a copy of the packet up each matching 23125 * one. However, we don't do this for multicasts sent on 23126 * the loopback interface (PHYI_LOOPBACK flag set) as 23127 * they must stay in the sender's zone. 23128 * 23129 * ilm_add_v6() ensures that ilms in the same zone are 23130 * contiguous in the ill_ilm list. We use this property 23131 * to avoid sending duplicates needed when two 23132 * applications in the same zone join the same group on 23133 * different logical interfaces: we ignore the ilm if 23134 * its zoneid is the same as the last matching one. 23135 * In addition, the sending of the packet for 23136 * ire_zoneid is delayed until all of the other ilms 23137 * have been exhausted. 23138 */ 23139 last_zoneid = -1; 23140 ILM_WALKER_HOLD(ill); 23141 for (ilm = ill->ill_ilm; ilm != NULL; 23142 ilm = ilm->ilm_next) { 23143 if ((ilm->ilm_flags & ILM_DELETED) || 23144 ipha->ipha_dst != ilm->ilm_addr || 23145 ilm->ilm_zoneid == last_zoneid || 23146 ilm->ilm_zoneid == zoneid || 23147 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 23148 continue; 23149 mp1 = ip_copymsg(first_mp); 23150 if (mp1 == NULL) 23151 continue; 23152 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 23153 mctl_present, B_FALSE, ill, 23154 ilm->ilm_zoneid); 23155 last_zoneid = ilm->ilm_zoneid; 23156 } 23157 ILM_WALKER_RELE(ill); 23158 /* 23159 * Loopback case: the sending endpoint has 23160 * IP_MULTICAST_LOOP disabled, therefore we don't 23161 * dispatch the multicast packet to the sending zone. 23162 */ 23163 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 23164 freemsg(first_mp); 23165 return; 23166 } 23167 } else if (ire_type == IRE_BROADCAST) { 23168 /* 23169 * In the broadcast case, there may be many zones 23170 * which need a copy of the packet delivered to them. 23171 * There is one IRE_BROADCAST per broadcast address 23172 * and per zone; we walk those using a helper function. 23173 * In addition, the sending of the packet for zoneid is 23174 * delayed until all of the other ires have been 23175 * processed. 23176 */ 23177 IRB_REFHOLD(ire->ire_bucket); 23178 ire_zone = NULL; 23179 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 23180 ire)) != NULL) { 23181 mp1 = ip_copymsg(first_mp); 23182 if (mp1 == NULL) 23183 continue; 23184 23185 UPDATE_IB_PKT_COUNT(ire_zone); 23186 ire_zone->ire_last_used_time = lbolt; 23187 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 23188 mctl_present, B_FALSE, ill, 23189 ire_zone->ire_zoneid); 23190 } 23191 IRB_REFRELE(ire->ire_bucket); 23192 } 23193 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 23194 0, mctl_present, B_FALSE, ill, zoneid); 23195 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23196 "ip_wput_local_end: q %p (%S)", 23197 q, "icmp"); 23198 return; 23199 } 23200 case IPPROTO_IGMP: 23201 if (igmp_input(q, mp, ill)) { 23202 /* Bad packet - discarded by igmp_input */ 23203 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23204 "ip_wput_local_end: q %p (%S)", 23205 q, "igmp_input--bad packet"); 23206 if (mctl_present) 23207 freeb(first_mp); 23208 return; 23209 } 23210 /* 23211 * igmp_input() may have pulled up the message so ipha needs to 23212 * be reinitialized. 23213 */ 23214 ipha = (ipha_t *)mp->b_rptr; 23215 /* deliver to local raw users */ 23216 break; 23217 case IPPROTO_ENCAP: 23218 /* 23219 * This case is covered by either ip_fanout_proto, or by 23220 * the above security processing for self-tunneled packets. 23221 */ 23222 break; 23223 case IPPROTO_UDP: { 23224 uint16_t *up; 23225 uint32_t ports; 23226 23227 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 23228 UDP_PORTS_OFFSET); 23229 /* Force a 'valid' checksum. */ 23230 up[3] = 0; 23231 23232 ports = *(uint32_t *)up; 23233 ip_fanout_udp(q, first_mp, ill, ipha, ports, 23234 (ire_type == IRE_BROADCAST), 23235 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 23236 IP_FF_SEND_SLLA | IP_FF_IP6INFO, mctl_present, B_FALSE, 23237 ill, zoneid); 23238 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23239 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 23240 return; 23241 } 23242 case IPPROTO_TCP: { 23243 23244 /* 23245 * For TCP, discard broadcast packets. 23246 */ 23247 if ((ushort_t)ire_type == IRE_BROADCAST) { 23248 freemsg(first_mp); 23249 BUMP_MIB(&ip_mib, ipInDiscards); 23250 ip2dbg(("ip_wput_local: discard broadcast\n")); 23251 return; 23252 } 23253 23254 if (mp->b_datap->db_type == M_DATA) { 23255 /* 23256 * M_DATA mblk, so init mblk (chain) for no struio(). 23257 */ 23258 mblk_t *mp1 = mp; 23259 23260 do 23261 mp1->b_datap->db_struioflag = 0; 23262 while ((mp1 = mp1->b_cont) != NULL); 23263 } 23264 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 23265 <= mp->b_wptr); 23266 ip_fanout_tcp(q, first_mp, ill, ipha, 23267 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 23268 IP_FF_SYN_ADDIRE | IP_FF_IP6INFO, 23269 mctl_present, B_FALSE, zoneid); 23270 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23271 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 23272 return; 23273 } 23274 case IPPROTO_SCTP: 23275 { 23276 uint32_t ports; 23277 23278 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 23279 ip_fanout_sctp(first_mp, ill, ipha, ports, 23280 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 23281 IP_FF_IP6INFO, 23282 mctl_present, B_FALSE, 0, zoneid); 23283 return; 23284 } 23285 23286 default: 23287 break; 23288 } 23289 /* 23290 * Find a client for some other protocol. We give 23291 * copies to multiple clients, if more than one is 23292 * bound. 23293 */ 23294 ip_fanout_proto(q, first_mp, ill, ipha, 23295 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 23296 mctl_present, B_FALSE, ill, zoneid); 23297 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23298 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 23299 #undef rptr 23300 } 23301 23302 /* 23303 * Update any source route, record route, or timestamp options. 23304 * Check that we are at end of strict source route. 23305 * The options have been sanity checked by ip_wput_options(). 23306 */ 23307 static void 23308 ip_wput_local_options(ipha_t *ipha) 23309 { 23310 ipoptp_t opts; 23311 uchar_t *opt; 23312 uint8_t optval; 23313 uint8_t optlen; 23314 ipaddr_t dst; 23315 uint32_t ts; 23316 ire_t *ire; 23317 timestruc_t now; 23318 23319 ip2dbg(("ip_wput_local_options\n")); 23320 for (optval = ipoptp_first(&opts, ipha); 23321 optval != IPOPT_EOL; 23322 optval = ipoptp_next(&opts)) { 23323 opt = opts.ipoptp_cur; 23324 optlen = opts.ipoptp_len; 23325 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 23326 switch (optval) { 23327 uint32_t off; 23328 case IPOPT_SSRR: 23329 case IPOPT_LSRR: 23330 off = opt[IPOPT_OFFSET]; 23331 off--; 23332 if (optlen < IP_ADDR_LEN || 23333 off > optlen - IP_ADDR_LEN) { 23334 /* End of source route */ 23335 break; 23336 } 23337 /* 23338 * This will only happen if two consecutive entries 23339 * in the source route contains our address or if 23340 * it is a packet with a loose source route which 23341 * reaches us before consuming the whole source route 23342 */ 23343 ip1dbg(("ip_wput_local_options: not end of SR\n")); 23344 if (optval == IPOPT_SSRR) { 23345 return; 23346 } 23347 /* 23348 * Hack: instead of dropping the packet truncate the 23349 * source route to what has been used by filling the 23350 * rest with IPOPT_NOP. 23351 */ 23352 opt[IPOPT_OLEN] = (uint8_t)off; 23353 while (off < optlen) { 23354 opt[off++] = IPOPT_NOP; 23355 } 23356 break; 23357 case IPOPT_RR: 23358 off = opt[IPOPT_OFFSET]; 23359 off--; 23360 if (optlen < IP_ADDR_LEN || 23361 off > optlen - IP_ADDR_LEN) { 23362 /* No more room - ignore */ 23363 ip1dbg(( 23364 "ip_wput_forward_options: end of RR\n")); 23365 break; 23366 } 23367 dst = htonl(INADDR_LOOPBACK); 23368 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 23369 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 23370 break; 23371 case IPOPT_TS: 23372 /* Insert timestamp if there is romm */ 23373 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 23374 case IPOPT_TS_TSONLY: 23375 off = IPOPT_TS_TIMELEN; 23376 break; 23377 case IPOPT_TS_PRESPEC: 23378 case IPOPT_TS_PRESPEC_RFC791: 23379 /* Verify that the address matched */ 23380 off = opt[IPOPT_OFFSET] - 1; 23381 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 23382 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 23383 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 23384 if (ire == NULL) { 23385 /* Not for us */ 23386 break; 23387 } 23388 ire_refrele(ire); 23389 /* FALLTHRU */ 23390 case IPOPT_TS_TSANDADDR: 23391 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 23392 break; 23393 default: 23394 /* 23395 * ip_*put_options should have already 23396 * dropped this packet. 23397 */ 23398 cmn_err(CE_PANIC, "ip_wput_local_options: " 23399 "unknown IT - bug in ip_wput_options?\n"); 23400 return; /* Keep "lint" happy */ 23401 } 23402 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 23403 /* Increase overflow counter */ 23404 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 23405 opt[IPOPT_POS_OV_FLG] = (uint8_t) 23406 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 23407 (off << 4); 23408 break; 23409 } 23410 off = opt[IPOPT_OFFSET] - 1; 23411 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 23412 case IPOPT_TS_PRESPEC: 23413 case IPOPT_TS_PRESPEC_RFC791: 23414 case IPOPT_TS_TSANDADDR: 23415 dst = htonl(INADDR_LOOPBACK); 23416 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 23417 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 23418 /* FALLTHRU */ 23419 case IPOPT_TS_TSONLY: 23420 off = opt[IPOPT_OFFSET] - 1; 23421 /* Compute # of milliseconds since midnight */ 23422 gethrestime(&now); 23423 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 23424 now.tv_nsec / (NANOSEC / MILLISEC); 23425 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 23426 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 23427 break; 23428 } 23429 break; 23430 } 23431 } 23432 } 23433 23434 /* 23435 * Send out a multicast packet on interface ipif. 23436 * The sender does not have an conn. 23437 * Caller verifies that this isn't a PHYI_LOOPBACK. 23438 */ 23439 void 23440 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif) 23441 { 23442 ipha_t *ipha; 23443 ire_t *ire; 23444 ipaddr_t dst; 23445 mblk_t *first_mp; 23446 23447 /* igmp_sendpkt always allocates a ipsec_out_t */ 23448 ASSERT(mp->b_datap->db_type == M_CTL); 23449 ASSERT(!ipif->ipif_isv6); 23450 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 23451 23452 first_mp = mp; 23453 mp = first_mp->b_cont; 23454 ASSERT(mp->b_datap->db_type == M_DATA); 23455 ipha = (ipha_t *)mp->b_rptr; 23456 23457 /* 23458 * Find an IRE which matches the destination and the outgoing 23459 * queue (i.e. the outgoing interface.) 23460 */ 23461 if (ipif->ipif_flags & IPIF_POINTOPOINT) 23462 dst = ipif->ipif_pp_dst_addr; 23463 else 23464 dst = ipha->ipha_dst; 23465 /* 23466 * The source address has already been initialized by the 23467 * caller and hence matching on ILL (MATCH_IRE_ILL) would 23468 * be sufficient rather than MATCH_IRE_IPIF. 23469 * 23470 * This function is used for sending IGMP packets. We need 23471 * to make sure that we send the packet out of the interface 23472 * (ipif->ipif_ill) where we joined the group. This is to 23473 * prevent from switches doing IGMP snooping to send us multicast 23474 * packets for a given group on the interface we have joined. 23475 * If we can't find an ire, igmp_sendpkt has already initialized 23476 * ipsec_out_attach_if so that this will not be load spread in 23477 * ip_newroute_ipif. 23478 */ 23479 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, NULL, 23480 MATCH_IRE_ILL); 23481 if (!ire) { 23482 /* 23483 * Mark this packet to make it be delivered to 23484 * ip_wput_ire after the new ire has been 23485 * created. 23486 */ 23487 mp->b_prev = NULL; 23488 mp->b_next = NULL; 23489 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC); 23490 return; 23491 } 23492 23493 /* 23494 * Honor the RTF_SETSRC flag; this is the only case 23495 * where we force this addr whatever the current src addr is, 23496 * because this address is set by igmp_sendpkt(), and 23497 * cannot be specified by any user. 23498 */ 23499 if (ire->ire_flags & RTF_SETSRC) { 23500 ipha->ipha_src = ire->ire_src_addr; 23501 } 23502 23503 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE); 23504 } 23505 23506 /* 23507 * NOTE : This function does not ire_refrele the ire argument passed in. 23508 * 23509 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 23510 * failure. The ire_fp_mp can vanish any time in the case of IRE_MIPRTUN 23511 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 23512 * the ire_lock to access the ire_fp_mp in this case. 23513 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 23514 * prepending a fastpath message IPQoS processing must precede it, we also set 23515 * the b_band of the fastpath message to that of the mblk returned by IPQoS 23516 * (IPQoS might have set the b_band for CoS marking). 23517 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 23518 * must follow it so that IPQoS can mark the dl_priority field for CoS 23519 * marking, if needed. 23520 */ 23521 static mblk_t * 23522 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 23523 { 23524 uint_t hlen; 23525 ipha_t *ipha; 23526 mblk_t *mp1; 23527 boolean_t qos_done = B_FALSE; 23528 uchar_t *ll_hdr; 23529 23530 #define rptr ((uchar_t *)ipha) 23531 23532 ipha = (ipha_t *)mp->b_rptr; 23533 hlen = 0; 23534 LOCK_IRE_FP_MP(ire); 23535 if ((mp1 = ire->ire_fp_mp) != NULL) { 23536 ASSERT(DB_TYPE(mp1) == M_DATA); 23537 /* Initiate IPPF processing */ 23538 if ((proc != 0) && IPP_ENABLED(proc)) { 23539 UNLOCK_IRE_FP_MP(ire); 23540 ip_process(proc, &mp, ill_index); 23541 if (mp == NULL) 23542 return (NULL); 23543 23544 ipha = (ipha_t *)mp->b_rptr; 23545 LOCK_IRE_FP_MP(ire); 23546 if ((mp1 = ire->ire_fp_mp) == NULL) { 23547 qos_done = B_TRUE; 23548 goto no_fp_mp; 23549 } 23550 ASSERT(DB_TYPE(mp1) == M_DATA); 23551 } 23552 hlen = MBLKL(mp1); 23553 /* 23554 * Check if we have enough room to prepend fastpath 23555 * header 23556 */ 23557 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 23558 ll_hdr = rptr - hlen; 23559 bcopy(mp1->b_rptr, ll_hdr, hlen); 23560 /* XXX ipha is not aligned here */ 23561 ipha = (ipha_t *)(rptr - hlen); 23562 /* 23563 * Set the b_rptr to the start of the link layer 23564 * header 23565 */ 23566 mp->b_rptr = rptr; 23567 mp1 = mp; 23568 } else { 23569 mp1 = copyb(mp1); 23570 if (mp1 == NULL) 23571 goto unlock_err; 23572 mp1->b_band = mp->b_band; 23573 mp1->b_cont = mp; 23574 /* 23575 * certain system generated traffic may not 23576 * have cred/label in ip header block. This 23577 * is true even for a labeled system. But for 23578 * labeled traffic, inherit the label in the 23579 * new header. 23580 */ 23581 if (DB_CRED(mp) != NULL) 23582 mblk_setcred(mp1, DB_CRED(mp)); 23583 /* 23584 * XXX disable ICK_VALID and compute checksum 23585 * here; can happen if ire_fp_mp changes and 23586 * it can't be copied now due to insufficient 23587 * space. (unlikely, fp mp can change, but it 23588 * does not increase in length) 23589 */ 23590 } 23591 UNLOCK_IRE_FP_MP(ire); 23592 } else { 23593 no_fp_mp: 23594 mp1 = copyb(ire->ire_dlureq_mp); 23595 if (mp1 == NULL) { 23596 unlock_err: 23597 UNLOCK_IRE_FP_MP(ire); 23598 freemsg(mp); 23599 return (NULL); 23600 } 23601 UNLOCK_IRE_FP_MP(ire); 23602 mp1->b_cont = mp; 23603 /* 23604 * certain system generated traffic may not 23605 * have cred/label in ip header block. This 23606 * is true even for a labeled system. But for 23607 * labeled traffic, inherit the label in the 23608 * new header. 23609 */ 23610 if (DB_CRED(mp) != NULL) 23611 mblk_setcred(mp1, DB_CRED(mp)); 23612 if (!qos_done && (proc != 0) && IPP_ENABLED(proc)) { 23613 ip_process(proc, &mp1, ill_index); 23614 if (mp1 == NULL) 23615 return (NULL); 23616 } 23617 } 23618 return (mp1); 23619 #undef rptr 23620 } 23621 23622 /* 23623 * Finish the outbound IPsec processing for an IPv6 packet. This function 23624 * is called from ipsec_out_process() if the IPsec packet was processed 23625 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 23626 * asynchronously. 23627 */ 23628 void 23629 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 23630 ire_t *ire_arg) 23631 { 23632 in6_addr_t *v6dstp; 23633 ire_t *ire; 23634 mblk_t *mp; 23635 uint_t ill_index; 23636 ipsec_out_t *io; 23637 boolean_t attach_if, hwaccel; 23638 uint32_t flags = IP6_NO_IPPOLICY; 23639 int match_flags; 23640 zoneid_t zoneid; 23641 boolean_t ill_need_rele = B_FALSE; 23642 boolean_t ire_need_rele = B_FALSE; 23643 23644 mp = ipsec_mp->b_cont; 23645 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23646 ill_index = io->ipsec_out_ill_index; 23647 if (io->ipsec_out_reachable) { 23648 flags |= IPV6_REACHABILITY_CONFIRMATION; 23649 } 23650 attach_if = io->ipsec_out_attach_if; 23651 hwaccel = io->ipsec_out_accelerated; 23652 zoneid = io->ipsec_out_zoneid; 23653 ASSERT(zoneid != ALL_ZONES); 23654 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 23655 /* Multicast addresses should have non-zero ill_index. */ 23656 v6dstp = &ip6h->ip6_dst; 23657 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 23658 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 23659 ASSERT(!attach_if || ill_index != 0); 23660 if (ill_index != 0) { 23661 if (ill == NULL) { 23662 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 23663 B_TRUE); 23664 23665 /* Failure case frees things for us. */ 23666 if (ill == NULL) 23667 return; 23668 23669 ill_need_rele = B_TRUE; 23670 } 23671 /* 23672 * If this packet needs to go out on a particular interface 23673 * honor it. 23674 */ 23675 if (attach_if) { 23676 match_flags = MATCH_IRE_ILL; 23677 23678 /* 23679 * Check if we need an ire that will not be 23680 * looked up by anybody else i.e. HIDDEN. 23681 */ 23682 if (ill_is_probeonly(ill)) { 23683 match_flags |= MATCH_IRE_MARK_HIDDEN; 23684 } 23685 } 23686 } 23687 ASSERT(mp != NULL); 23688 23689 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 23690 boolean_t unspec_src; 23691 ipif_t *ipif; 23692 23693 /* 23694 * Use the ill_index to get the right ill. 23695 */ 23696 unspec_src = io->ipsec_out_unspec_src; 23697 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 23698 if (ipif == NULL) { 23699 if (ill_need_rele) 23700 ill_refrele(ill); 23701 freemsg(ipsec_mp); 23702 return; 23703 } 23704 23705 if (ire_arg != NULL) { 23706 ire = ire_arg; 23707 } else { 23708 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 23709 zoneid, MBLK_GETLABEL(mp), match_flags); 23710 ire_need_rele = B_TRUE; 23711 } 23712 if (ire != NULL) { 23713 ipif_refrele(ipif); 23714 /* 23715 * XXX Do the multicast forwarding now, as the IPSEC 23716 * processing has been done. 23717 */ 23718 goto send; 23719 } 23720 23721 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 23722 mp->b_prev = NULL; 23723 mp->b_next = NULL; 23724 23725 /* 23726 * If the IPsec packet was processed asynchronously, 23727 * drop it now. 23728 */ 23729 if (q == NULL) { 23730 if (ill_need_rele) 23731 ill_refrele(ill); 23732 freemsg(ipsec_mp); 23733 return; 23734 } 23735 23736 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 23737 unspec_src, zoneid); 23738 ipif_refrele(ipif); 23739 } else { 23740 if (attach_if) { 23741 ipif_t *ipif; 23742 23743 ipif = ipif_get_next_ipif(NULL, ill); 23744 if (ipif == NULL) { 23745 if (ill_need_rele) 23746 ill_refrele(ill); 23747 freemsg(ipsec_mp); 23748 return; 23749 } 23750 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 23751 zoneid, MBLK_GETLABEL(mp), match_flags); 23752 ire_need_rele = B_TRUE; 23753 ipif_refrele(ipif); 23754 } else { 23755 if (ire_arg != NULL) { 23756 ire = ire_arg; 23757 } else { 23758 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL); 23759 ire_need_rele = B_TRUE; 23760 } 23761 } 23762 if (ire != NULL) 23763 goto send; 23764 /* 23765 * ire disappeared underneath. 23766 * 23767 * What we need to do here is the ip_newroute 23768 * logic to get the ire without doing the IPSEC 23769 * processing. Follow the same old path. But this 23770 * time, ip_wput or ire_add_then_send will call us 23771 * directly as all the IPSEC operations are done. 23772 */ 23773 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 23774 mp->b_prev = NULL; 23775 mp->b_next = NULL; 23776 23777 /* 23778 * If the IPsec packet was processed asynchronously, 23779 * drop it now. 23780 */ 23781 if (q == NULL) { 23782 if (ill_need_rele) 23783 ill_refrele(ill); 23784 freemsg(ipsec_mp); 23785 return; 23786 } 23787 23788 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 23789 zoneid); 23790 } 23791 if (ill != NULL && ill_need_rele) 23792 ill_refrele(ill); 23793 return; 23794 send: 23795 if (ill != NULL && ill_need_rele) 23796 ill_refrele(ill); 23797 23798 /* Local delivery */ 23799 if (ire->ire_stq == NULL) { 23800 ASSERT(q != NULL); 23801 ip_wput_local_v6(RD(q), ire->ire_ipif->ipif_ill, ip6h, ipsec_mp, 23802 ire, 0); 23803 if (ire_need_rele) 23804 ire_refrele(ire); 23805 return; 23806 } 23807 /* 23808 * Everything is done. Send it out on the wire. 23809 * We force the insertion of a fragment header using the 23810 * IPH_FRAG_HDR flag in two cases: 23811 * - after reception of an ICMPv6 "packet too big" message 23812 * with a MTU < 1280 (cf. RFC 2460 section 5) 23813 * - for multirouted IPv6 packets, so that the receiver can 23814 * discard duplicates according to their fragment identifier 23815 */ 23816 /* XXX fix flow control problems. */ 23817 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 23818 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 23819 if (hwaccel) { 23820 /* 23821 * hardware acceleration does not handle these 23822 * "slow path" cases. 23823 */ 23824 /* IPsec KSTATS: should bump bean counter here. */ 23825 if (ire_need_rele) 23826 ire_refrele(ire); 23827 freemsg(ipsec_mp); 23828 return; 23829 } 23830 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 23831 (mp->b_cont ? msgdsize(mp) : 23832 mp->b_wptr - (uchar_t *)ip6h)) { 23833 /* IPsec KSTATS: should bump bean counter here. */ 23834 ip0dbg(("Packet length mismatch: %d, %ld\n", 23835 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 23836 msgdsize(mp))); 23837 if (ire_need_rele) 23838 ire_refrele(ire); 23839 freemsg(ipsec_mp); 23840 return; 23841 } 23842 ASSERT(mp->b_prev == NULL); 23843 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 23844 ntohs(ip6h->ip6_plen) + 23845 IPV6_HDR_LEN, ire->ire_max_frag)); 23846 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 23847 ire->ire_max_frag); 23848 } else { 23849 UPDATE_OB_PKT_COUNT(ire); 23850 ire->ire_last_used_time = lbolt; 23851 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 23852 } 23853 if (ire_need_rele) 23854 ire_refrele(ire); 23855 freeb(ipsec_mp); 23856 } 23857 23858 void 23859 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 23860 { 23861 mblk_t *hada_mp; /* attributes M_CTL mblk */ 23862 da_ipsec_t *hada; /* data attributes */ 23863 ill_t *ill = (ill_t *)q->q_ptr; 23864 23865 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 23866 23867 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 23868 /* IPsec KSTATS: Bump lose counter here! */ 23869 freemsg(mp); 23870 return; 23871 } 23872 23873 /* 23874 * It's an IPsec packet that must be 23875 * accelerated by the Provider, and the 23876 * outbound ill is IPsec acceleration capable. 23877 * Prepends the mblk with an IPHADA_M_CTL, and ship it 23878 * to the ill. 23879 * IPsec KSTATS: should bump packet counter here. 23880 */ 23881 23882 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 23883 if (hada_mp == NULL) { 23884 /* IPsec KSTATS: should bump packet counter here. */ 23885 freemsg(mp); 23886 return; 23887 } 23888 23889 hada_mp->b_datap->db_type = M_CTL; 23890 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 23891 hada_mp->b_cont = mp; 23892 23893 hada = (da_ipsec_t *)hada_mp->b_rptr; 23894 bzero(hada, sizeof (da_ipsec_t)); 23895 hada->da_type = IPHADA_M_CTL; 23896 23897 putnext(q, hada_mp); 23898 } 23899 23900 /* 23901 * Finish the outbound IPsec processing. This function is called from 23902 * ipsec_out_process() if the IPsec packet was processed 23903 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 23904 * asynchronously. 23905 */ 23906 void 23907 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 23908 ire_t *ire_arg) 23909 { 23910 uint32_t v_hlen_tos_len; 23911 ipaddr_t dst; 23912 ipif_t *ipif = NULL; 23913 ire_t *ire; 23914 ire_t *ire1 = NULL; 23915 mblk_t *next_mp = NULL; 23916 uint32_t max_frag; 23917 boolean_t multirt_send = B_FALSE; 23918 mblk_t *mp; 23919 mblk_t *mp1; 23920 uint_t ill_index; 23921 ipsec_out_t *io; 23922 boolean_t attach_if; 23923 int match_flags, offset; 23924 irb_t *irb = NULL; 23925 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 23926 zoneid_t zoneid; 23927 uint32_t cksum; 23928 uint16_t *up; 23929 #ifdef _BIG_ENDIAN 23930 #define LENGTH (v_hlen_tos_len & 0xFFFF) 23931 #else 23932 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 23933 #endif 23934 23935 mp = ipsec_mp->b_cont; 23936 ASSERT(mp != NULL); 23937 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 23938 dst = ipha->ipha_dst; 23939 23940 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23941 ill_index = io->ipsec_out_ill_index; 23942 attach_if = io->ipsec_out_attach_if; 23943 zoneid = io->ipsec_out_zoneid; 23944 ASSERT(zoneid != ALL_ZONES); 23945 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 23946 if (ill_index != 0) { 23947 if (ill == NULL) { 23948 ill = ip_grab_attach_ill(NULL, ipsec_mp, 23949 ill_index, B_FALSE); 23950 23951 /* Failure case frees things for us. */ 23952 if (ill == NULL) 23953 return; 23954 23955 ill_need_rele = B_TRUE; 23956 } 23957 /* 23958 * If this packet needs to go out on a particular interface 23959 * honor it. 23960 */ 23961 if (attach_if) { 23962 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 23963 23964 /* 23965 * Check if we need an ire that will not be 23966 * looked up by anybody else i.e. HIDDEN. 23967 */ 23968 if (ill_is_probeonly(ill)) { 23969 match_flags |= MATCH_IRE_MARK_HIDDEN; 23970 } 23971 } 23972 } 23973 23974 if (CLASSD(dst)) { 23975 boolean_t conn_dontroute; 23976 /* 23977 * Use the ill_index to get the right ipif. 23978 */ 23979 conn_dontroute = io->ipsec_out_dontroute; 23980 if (ill_index == 0) 23981 ipif = ipif_lookup_group(dst, zoneid); 23982 else 23983 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 23984 if (ipif == NULL) { 23985 ip1dbg(("ip_wput_ipsec_out: No ipif for" 23986 " multicast\n")); 23987 BUMP_MIB(&ip_mib, ipOutNoRoutes); 23988 freemsg(ipsec_mp); 23989 goto done; 23990 } 23991 /* 23992 * ipha_src has already been intialized with the 23993 * value of the ipif in ip_wput. All we need now is 23994 * an ire to send this downstream. 23995 */ 23996 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 23997 MBLK_GETLABEL(mp), match_flags); 23998 if (ire != NULL) { 23999 ill_t *ill1; 24000 /* 24001 * Do the multicast forwarding now, as the IPSEC 24002 * processing has been done. 24003 */ 24004 if (ip_g_mrouter && !conn_dontroute && 24005 (ill1 = ire_to_ill(ire))) { 24006 if (ip_mforward(ill1, ipha, mp)) { 24007 freemsg(ipsec_mp); 24008 ip1dbg(("ip_wput_ipsec_out: mforward " 24009 "failed\n")); 24010 ire_refrele(ire); 24011 goto done; 24012 } 24013 } 24014 goto send; 24015 } 24016 24017 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 24018 mp->b_prev = NULL; 24019 mp->b_next = NULL; 24020 24021 /* 24022 * If the IPsec packet was processed asynchronously, 24023 * drop it now. 24024 */ 24025 if (q == NULL) { 24026 freemsg(ipsec_mp); 24027 goto done; 24028 } 24029 24030 /* 24031 * We may be using a wrong ipif to create the ire. 24032 * But it is okay as the source address is assigned 24033 * for the packet already. Next outbound packet would 24034 * create the IRE with the right IPIF in ip_wput. 24035 * 24036 * Also handle RTF_MULTIRT routes. 24037 */ 24038 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT); 24039 } else { 24040 if (attach_if) { 24041 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 24042 zoneid, MBLK_GETLABEL(mp), match_flags); 24043 } else { 24044 if (ire_arg != NULL) { 24045 ire = ire_arg; 24046 ire_need_rele = B_FALSE; 24047 } else { 24048 ire = ire_cache_lookup(dst, zoneid, 24049 MBLK_GETLABEL(mp)); 24050 } 24051 } 24052 if (ire != NULL) { 24053 goto send; 24054 } 24055 24056 /* 24057 * ire disappeared underneath. 24058 * 24059 * What we need to do here is the ip_newroute 24060 * logic to get the ire without doing the IPSEC 24061 * processing. Follow the same old path. But this 24062 * time, ip_wput or ire_add_then_put will call us 24063 * directly as all the IPSEC operations are done. 24064 */ 24065 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 24066 mp->b_prev = NULL; 24067 mp->b_next = NULL; 24068 24069 /* 24070 * If the IPsec packet was processed asynchronously, 24071 * drop it now. 24072 */ 24073 if (q == NULL) { 24074 freemsg(ipsec_mp); 24075 goto done; 24076 } 24077 24078 /* 24079 * Since we're going through ip_newroute() again, we 24080 * need to make sure we don't: 24081 * 24082 * 1.) Trigger the ASSERT() with the ipha_ident 24083 * overloading. 24084 * 2.) Redo transport-layer checksumming, since we've 24085 * already done all that to get this far. 24086 * 24087 * The easiest way not do either of the above is to set 24088 * the ipha_ident field to IP_HDR_INCLUDED. 24089 */ 24090 ipha->ipha_ident = IP_HDR_INCLUDED; 24091 ip_newroute(q, ipsec_mp, dst, NULL, 24092 (CONN_Q(q) ? Q_TO_CONN(q) : NULL)); 24093 } 24094 goto done; 24095 send: 24096 if (ipha->ipha_protocol == IPPROTO_UDP && udp_compute_checksum()) { 24097 /* 24098 * ESP NAT-Traversal packet. 24099 * 24100 * Just do software checksum for now. 24101 */ 24102 24103 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 24104 IP_STAT(ip_out_sw_cksum); 24105 IP_STAT_UPDATE(ip_udp_out_sw_cksum_bytes, 24106 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 24107 #define iphs ((uint16_t *)ipha) 24108 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 24109 iphs[9] + ntohs(htons(ipha->ipha_length) - 24110 IP_SIMPLE_HDR_LENGTH); 24111 #undef iphs 24112 if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0) 24113 cksum = 0xFFFF; 24114 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 24115 if (mp1->b_wptr - mp1->b_rptr >= 24116 offset + sizeof (uint16_t)) { 24117 up = (uint16_t *)(mp1->b_rptr + offset); 24118 *up = cksum; 24119 break; /* out of for loop */ 24120 } else { 24121 offset -= (mp->b_wptr - mp->b_rptr); 24122 } 24123 } /* Otherwise, just keep the all-zero checksum. */ 24124 24125 if (ire->ire_stq == NULL) { 24126 /* 24127 * Loopbacks go through ip_wput_local except for one case. 24128 * We come here if we generate a icmp_frag_needed message 24129 * after IPSEC processing is over. When this function calls 24130 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 24131 * icmp_frag_needed. The message generated comes back here 24132 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 24133 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 24134 * source address as it is usually set in ip_wput_ire. As 24135 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 24136 * and we end up here. We can't enter ip_wput_ire once the 24137 * IPSEC processing is over and hence we need to do it here. 24138 */ 24139 ASSERT(q != NULL); 24140 UPDATE_OB_PKT_COUNT(ire); 24141 ire->ire_last_used_time = lbolt; 24142 if (ipha->ipha_src == 0) 24143 ipha->ipha_src = ire->ire_src_addr; 24144 ip_wput_local(RD(q), ire->ire_ipif->ipif_ill, ipha, ipsec_mp, 24145 ire, 0, zoneid); 24146 if (ire_need_rele) 24147 ire_refrele(ire); 24148 goto done; 24149 } 24150 24151 if (ire->ire_max_frag < (unsigned int)LENGTH) { 24152 /* 24153 * We are through with IPSEC processing. 24154 * Fragment this and send it on the wire. 24155 */ 24156 if (io->ipsec_out_accelerated) { 24157 /* 24158 * The packet has been accelerated but must 24159 * be fragmented. This should not happen 24160 * since AH and ESP must not accelerate 24161 * packets that need fragmentation, however 24162 * the configuration could have changed 24163 * since the AH or ESP processing. 24164 * Drop packet. 24165 * IPsec KSTATS: bump bean counter here. 24166 */ 24167 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 24168 "fragmented accelerated packet!\n")); 24169 freemsg(ipsec_mp); 24170 } else { 24171 ip_wput_ire_fragmentit(ipsec_mp, ire); 24172 } 24173 if (ire_need_rele) 24174 ire_refrele(ire); 24175 goto done; 24176 } 24177 24178 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 24179 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 24180 (void *)ire->ire_ipif, (void *)ipif)); 24181 24182 /* 24183 * Multiroute the secured packet, unless IPsec really 24184 * requires the packet to go out only through a particular 24185 * interface. 24186 */ 24187 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 24188 ire_t *first_ire; 24189 irb = ire->ire_bucket; 24190 ASSERT(irb != NULL); 24191 /* 24192 * This ire has been looked up as the one that 24193 * goes through the given ipif; 24194 * make sure we do not omit any other multiroute ire 24195 * that may be present in the bucket before this one. 24196 */ 24197 IRB_REFHOLD(irb); 24198 for (first_ire = irb->irb_ire; 24199 first_ire != NULL; 24200 first_ire = first_ire->ire_next) { 24201 if ((first_ire->ire_flags & RTF_MULTIRT) && 24202 (first_ire->ire_addr == ire->ire_addr) && 24203 !(first_ire->ire_marks & 24204 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 24205 break; 24206 } 24207 24208 if ((first_ire != NULL) && (first_ire != ire)) { 24209 /* 24210 * Don't change the ire if the packet must 24211 * be fragmented if sent via this new one. 24212 */ 24213 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 24214 IRE_REFHOLD(first_ire); 24215 if (ire_need_rele) 24216 ire_refrele(ire); 24217 else 24218 ire_need_rele = B_TRUE; 24219 ire = first_ire; 24220 } 24221 } 24222 IRB_REFRELE(irb); 24223 24224 multirt_send = B_TRUE; 24225 max_frag = ire->ire_max_frag; 24226 } else { 24227 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 24228 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 24229 "flag, attach_if %d\n", attach_if)); 24230 } 24231 } 24232 24233 /* 24234 * In most cases, the emission loop below is entered only once. 24235 * Only in the case where the ire holds the RTF_MULTIRT 24236 * flag, we loop to process all RTF_MULTIRT ires in the 24237 * bucket, and send the packet through all crossed 24238 * RTF_MULTIRT routes. 24239 */ 24240 do { 24241 if (multirt_send) { 24242 /* 24243 * ire1 holds here the next ire to process in the 24244 * bucket. If multirouting is expected, 24245 * any non-RTF_MULTIRT ire that has the 24246 * right destination address is ignored. 24247 */ 24248 ASSERT(irb != NULL); 24249 IRB_REFHOLD(irb); 24250 for (ire1 = ire->ire_next; 24251 ire1 != NULL; 24252 ire1 = ire1->ire_next) { 24253 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24254 continue; 24255 if (ire1->ire_addr != ire->ire_addr) 24256 continue; 24257 if (ire1->ire_marks & 24258 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24259 continue; 24260 /* No loopback here */ 24261 if (ire1->ire_stq == NULL) 24262 continue; 24263 /* 24264 * Ensure we do not exceed the MTU 24265 * of the next route. 24266 */ 24267 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 24268 ip_multirt_bad_mtu(ire1, max_frag); 24269 continue; 24270 } 24271 24272 IRE_REFHOLD(ire1); 24273 break; 24274 } 24275 IRB_REFRELE(irb); 24276 if (ire1 != NULL) { 24277 /* 24278 * We are in a multiple send case, need to 24279 * make a copy of the packet. 24280 */ 24281 next_mp = copymsg(ipsec_mp); 24282 if (next_mp == NULL) { 24283 ire_refrele(ire1); 24284 ire1 = NULL; 24285 } 24286 } 24287 } 24288 24289 /* Everything is done. Send it out on the wire */ 24290 mp1 = ip_wput_attach_llhdr(mp, ire, 0, 0); 24291 if (mp1 == NULL) { 24292 BUMP_MIB(&ip_mib, ipOutDiscards); 24293 freemsg(ipsec_mp); 24294 if (ire_need_rele) 24295 ire_refrele(ire); 24296 if (ire1 != NULL) { 24297 ire_refrele(ire1); 24298 freemsg(next_mp); 24299 } 24300 goto done; 24301 } 24302 UPDATE_OB_PKT_COUNT(ire); 24303 ire->ire_last_used_time = lbolt; 24304 if (!io->ipsec_out_accelerated) { 24305 putnext(ire->ire_stq, mp1); 24306 } else { 24307 /* 24308 * Safety Pup says: make sure this is going to 24309 * the right interface! 24310 */ 24311 ill_t *ill1 = (ill_t *)ire->ire_stq->q_ptr; 24312 int ifindex = ill1->ill_phyint->phyint_ifindex; 24313 24314 if (ifindex != io->ipsec_out_capab_ill_index) { 24315 /* IPsec kstats: bump lose counter */ 24316 freemsg(mp1); 24317 } else { 24318 ipsec_hw_putnext(ire->ire_stq, mp1); 24319 } 24320 } 24321 24322 freeb(ipsec_mp); 24323 if (ire_need_rele) 24324 ire_refrele(ire); 24325 24326 if (ire1 != NULL) { 24327 ire = ire1; 24328 ire_need_rele = B_TRUE; 24329 ASSERT(next_mp); 24330 ipsec_mp = next_mp; 24331 mp = ipsec_mp->b_cont; 24332 ire1 = NULL; 24333 next_mp = NULL; 24334 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24335 } else { 24336 multirt_send = B_FALSE; 24337 } 24338 } while (multirt_send); 24339 done: 24340 if (ill != NULL && ill_need_rele) 24341 ill_refrele(ill); 24342 if (ipif != NULL) 24343 ipif_refrele(ipif); 24344 } 24345 24346 /* 24347 * Get the ill corresponding to the specified ire, and compare its 24348 * capabilities with the protocol and algorithms specified by the 24349 * the SA obtained from ipsec_out. If they match, annotate the 24350 * ipsec_out structure to indicate that the packet needs acceleration. 24351 * 24352 * 24353 * A packet is eligible for outbound hardware acceleration if the 24354 * following conditions are satisfied: 24355 * 24356 * 1. the packet will not be fragmented 24357 * 2. the provider supports the algorithm 24358 * 3. there is no pending control message being exchanged 24359 * 4. snoop is not attached 24360 * 5. the destination address is not a broadcast or multicast address. 24361 * 24362 * Rationale: 24363 * - Hardware drivers do not support fragmentation with 24364 * the current interface. 24365 * - snoop, multicast, and broadcast may result in exposure of 24366 * a cleartext datagram. 24367 * We check all five of these conditions here. 24368 * 24369 * XXX would like to nuke "ire_t *" parameter here; problem is that 24370 * IRE is only way to figure out if a v4 address is a broadcast and 24371 * thus ineligible for acceleration... 24372 */ 24373 static void 24374 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 24375 { 24376 ipsec_out_t *io; 24377 mblk_t *data_mp; 24378 uint_t plen, overhead; 24379 24380 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 24381 return; 24382 24383 if (ill == NULL) 24384 return; 24385 24386 /* 24387 * Destination address is a broadcast or multicast. Punt. 24388 */ 24389 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 24390 IRE_LOCAL))) 24391 return; 24392 24393 data_mp = ipsec_mp->b_cont; 24394 24395 if (ill->ill_isv6) { 24396 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 24397 24398 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 24399 return; 24400 24401 plen = ip6h->ip6_plen; 24402 } else { 24403 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 24404 24405 if (CLASSD(ipha->ipha_dst)) 24406 return; 24407 24408 plen = ipha->ipha_length; 24409 } 24410 /* 24411 * Is there a pending DLPI control message being exchanged 24412 * between IP/IPsec and the DLS Provider? If there is, it 24413 * could be a SADB update, and the state of the DLS Provider 24414 * SADB might not be in sync with the SADB maintained by 24415 * IPsec. To avoid dropping packets or using the wrong keying 24416 * material, we do not accelerate this packet. 24417 */ 24418 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 24419 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 24420 "ill_dlpi_pending! don't accelerate packet\n")); 24421 return; 24422 } 24423 24424 /* 24425 * Is the Provider in promiscous mode? If it does, we don't 24426 * accelerate the packet since it will bounce back up to the 24427 * listeners in the clear. 24428 */ 24429 if (ill->ill_promisc_on_phys) { 24430 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 24431 "ill in promiscous mode, don't accelerate packet\n")); 24432 return; 24433 } 24434 24435 /* 24436 * Will the packet require fragmentation? 24437 */ 24438 24439 /* 24440 * IPsec ESP note: this is a pessimistic estimate, but the same 24441 * as is used elsewhere. 24442 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 24443 * + 2-byte trailer 24444 */ 24445 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 24446 IPSEC_BASE_ESP_HDR_SIZE(sa); 24447 24448 if ((plen + overhead) > ill->ill_max_mtu) 24449 return; 24450 24451 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24452 24453 /* 24454 * Can the ill accelerate this IPsec protocol and algorithm 24455 * specified by the SA? 24456 */ 24457 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 24458 ill->ill_isv6, sa)) { 24459 return; 24460 } 24461 24462 /* 24463 * Tell AH or ESP that the outbound ill is capable of 24464 * accelerating this packet. 24465 */ 24466 io->ipsec_out_is_capab_ill = B_TRUE; 24467 } 24468 24469 /* 24470 * Select which AH & ESP SA's to use (if any) for the outbound packet. 24471 * 24472 * If this function returns B_TRUE, the requested SA's have been filled 24473 * into the ipsec_out_*_sa pointers. 24474 * 24475 * If the function returns B_FALSE, the packet has been "consumed", most 24476 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 24477 * 24478 * The SA references created by the protocol-specific "select" 24479 * function will be released when the ipsec_mp is freed, thanks to the 24480 * ipsec_out_free destructor -- see spd.c. 24481 */ 24482 static boolean_t 24483 ipsec_out_select_sa(mblk_t *ipsec_mp) 24484 { 24485 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 24486 ipsec_out_t *io; 24487 ipsec_policy_t *pp; 24488 ipsec_action_t *ap; 24489 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24490 ASSERT(io->ipsec_out_type == IPSEC_OUT); 24491 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 24492 24493 if (!io->ipsec_out_secure) { 24494 /* 24495 * We came here by mistake. 24496 * Don't bother with ipsec processing 24497 * We should "discourage" this path in the future. 24498 */ 24499 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 24500 return (B_FALSE); 24501 } 24502 ASSERT(io->ipsec_out_need_policy == B_FALSE); 24503 ASSERT((io->ipsec_out_policy != NULL) || 24504 (io->ipsec_out_act != NULL)); 24505 24506 ASSERT(io->ipsec_out_failed == B_FALSE); 24507 24508 /* 24509 * IPSEC processing has started. 24510 */ 24511 io->ipsec_out_proc_begin = B_TRUE; 24512 ap = io->ipsec_out_act; 24513 if (ap == NULL) { 24514 pp = io->ipsec_out_policy; 24515 ASSERT(pp != NULL); 24516 ap = pp->ipsp_act; 24517 ASSERT(ap != NULL); 24518 } 24519 24520 /* 24521 * We have an action. now, let's select SA's. 24522 * (In the future, we can cache this in the conn_t..) 24523 */ 24524 if (ap->ipa_want_esp) { 24525 if (io->ipsec_out_esp_sa == NULL) { 24526 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 24527 IPPROTO_ESP); 24528 } 24529 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 24530 } 24531 24532 if (ap->ipa_want_ah) { 24533 if (io->ipsec_out_ah_sa == NULL) { 24534 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 24535 IPPROTO_AH); 24536 } 24537 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 24538 /* 24539 * The ESP and AH processing order needs to be preserved 24540 * when both protocols are required (ESP should be applied 24541 * before AH for an outbound packet). Force an ESP ACQUIRE 24542 * when both ESP and AH are required, and an AH ACQUIRE 24543 * is needed. 24544 */ 24545 if (ap->ipa_want_esp && need_ah_acquire) 24546 need_esp_acquire = B_TRUE; 24547 } 24548 24549 /* 24550 * Send an ACQUIRE (extended, regular, or both) if we need one. 24551 * Release SAs that got referenced, but will not be used until we 24552 * acquire _all_ of the SAs we need. 24553 */ 24554 if (need_ah_acquire || need_esp_acquire) { 24555 if (io->ipsec_out_ah_sa != NULL) { 24556 IPSA_REFRELE(io->ipsec_out_ah_sa); 24557 io->ipsec_out_ah_sa = NULL; 24558 } 24559 if (io->ipsec_out_esp_sa != NULL) { 24560 IPSA_REFRELE(io->ipsec_out_esp_sa); 24561 io->ipsec_out_esp_sa = NULL; 24562 } 24563 24564 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 24565 return (B_FALSE); 24566 } 24567 24568 return (B_TRUE); 24569 } 24570 24571 /* 24572 * Process an IPSEC_OUT message and see what you can 24573 * do with it. 24574 * IPQoS Notes: 24575 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 24576 * IPSec. 24577 * XXX would like to nuke ire_t. 24578 * XXX ill_index better be "real" 24579 */ 24580 void 24581 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 24582 { 24583 ipsec_out_t *io; 24584 ipsec_policy_t *pp; 24585 ipsec_action_t *ap; 24586 ipha_t *ipha; 24587 ip6_t *ip6h; 24588 mblk_t *mp; 24589 ill_t *ill; 24590 zoneid_t zoneid; 24591 ipsec_status_t ipsec_rc; 24592 boolean_t ill_need_rele = B_FALSE; 24593 24594 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24595 ASSERT(io->ipsec_out_type == IPSEC_OUT); 24596 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 24597 mp = ipsec_mp->b_cont; 24598 24599 /* 24600 * Initiate IPPF processing. We do it here to account for packets 24601 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 24602 * We can check for ipsec_out_proc_begin even for such packets, as 24603 * they will always be false (asserted below). 24604 */ 24605 if (IPP_ENABLED(IPP_LOCAL_OUT) && !io->ipsec_out_proc_begin) { 24606 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 24607 io->ipsec_out_ill_index : ill_index); 24608 if (mp == NULL) { 24609 ip2dbg(("ipsec_out_process: packet dropped "\ 24610 "during IPPF processing\n")); 24611 freeb(ipsec_mp); 24612 BUMP_MIB(&ip_mib, ipOutDiscards); 24613 return; 24614 } 24615 } 24616 24617 if (!io->ipsec_out_secure) { 24618 /* 24619 * We came here by mistake. 24620 * Don't bother with ipsec processing 24621 * Should "discourage" this path in the future. 24622 */ 24623 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 24624 goto done; 24625 } 24626 ASSERT(io->ipsec_out_need_policy == B_FALSE); 24627 ASSERT((io->ipsec_out_policy != NULL) || 24628 (io->ipsec_out_act != NULL)); 24629 ASSERT(io->ipsec_out_failed == B_FALSE); 24630 24631 if (!ipsec_loaded()) { 24632 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 24633 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 24634 BUMP_MIB(&ip_mib, ipOutDiscards); 24635 } else { 24636 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 24637 } 24638 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 24639 &ipdrops_ip_ipsec_not_loaded, &ip_dropper); 24640 return; 24641 } 24642 24643 /* 24644 * IPSEC processing has started. 24645 */ 24646 io->ipsec_out_proc_begin = B_TRUE; 24647 ap = io->ipsec_out_act; 24648 if (ap == NULL) { 24649 pp = io->ipsec_out_policy; 24650 ASSERT(pp != NULL); 24651 ap = pp->ipsp_act; 24652 ASSERT(ap != NULL); 24653 } 24654 24655 /* 24656 * Save the outbound ill index. When the packet comes back 24657 * from IPsec, we make sure the ill hasn't changed or disappeared 24658 * before sending it the accelerated packet. 24659 */ 24660 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 24661 int ifindex; 24662 ill = ire_to_ill(ire); 24663 ifindex = ill->ill_phyint->phyint_ifindex; 24664 io->ipsec_out_capab_ill_index = ifindex; 24665 } 24666 24667 /* 24668 * The order of processing is first insert a IP header if needed. 24669 * Then insert the ESP header and then the AH header. 24670 */ 24671 if ((io->ipsec_out_se_done == B_FALSE) && 24672 (ap->ipa_want_se)) { 24673 /* 24674 * First get the outer IP header before sending 24675 * it to ESP. 24676 */ 24677 ipha_t *oipha, *iipha; 24678 mblk_t *outer_mp, *inner_mp; 24679 24680 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 24681 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 24682 "ipsec_out_process: " 24683 "Self-Encapsulation failed: Out of memory\n"); 24684 freemsg(ipsec_mp); 24685 BUMP_MIB(&ip_mib, ipOutDiscards); 24686 return; 24687 } 24688 inner_mp = ipsec_mp->b_cont; 24689 ASSERT(inner_mp->b_datap->db_type == M_DATA); 24690 oipha = (ipha_t *)outer_mp->b_rptr; 24691 iipha = (ipha_t *)inner_mp->b_rptr; 24692 *oipha = *iipha; 24693 outer_mp->b_wptr += sizeof (ipha_t); 24694 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 24695 sizeof (ipha_t)); 24696 oipha->ipha_protocol = IPPROTO_ENCAP; 24697 oipha->ipha_version_and_hdr_length = 24698 IP_SIMPLE_HDR_VERSION; 24699 oipha->ipha_hdr_checksum = 0; 24700 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 24701 outer_mp->b_cont = inner_mp; 24702 ipsec_mp->b_cont = outer_mp; 24703 24704 io->ipsec_out_se_done = B_TRUE; 24705 io->ipsec_out_encaps = B_TRUE; 24706 } 24707 24708 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 24709 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 24710 !ipsec_out_select_sa(ipsec_mp)) 24711 return; 24712 24713 /* 24714 * By now, we know what SA's to use. Toss over to ESP & AH 24715 * to do the heavy lifting. 24716 */ 24717 zoneid = io->ipsec_out_zoneid; 24718 ASSERT(zoneid != ALL_ZONES); 24719 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 24720 ASSERT(io->ipsec_out_esp_sa != NULL); 24721 io->ipsec_out_esp_done = B_TRUE; 24722 /* 24723 * Note that since hw accel can only apply one transform, 24724 * not two, we skip hw accel for ESP if we also have AH 24725 * This is an design limitation of the interface 24726 * which should be revisited. 24727 */ 24728 ASSERT(ire != NULL); 24729 if (io->ipsec_out_ah_sa == NULL) { 24730 ill = (ill_t *)ire->ire_stq->q_ptr; 24731 ipsec_out_is_accelerated(ipsec_mp, 24732 io->ipsec_out_esp_sa, ill, ire); 24733 } 24734 24735 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 24736 switch (ipsec_rc) { 24737 case IPSEC_STATUS_SUCCESS: 24738 break; 24739 case IPSEC_STATUS_FAILED: 24740 BUMP_MIB(&ip_mib, ipOutDiscards); 24741 /* FALLTHRU */ 24742 case IPSEC_STATUS_PENDING: 24743 return; 24744 } 24745 } 24746 24747 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 24748 ASSERT(io->ipsec_out_ah_sa != NULL); 24749 io->ipsec_out_ah_done = B_TRUE; 24750 if (ire == NULL) { 24751 int idx = io->ipsec_out_capab_ill_index; 24752 ill = ill_lookup_on_ifindex(idx, B_FALSE, 24753 NULL, NULL, NULL, NULL); 24754 ill_need_rele = B_TRUE; 24755 } else { 24756 ill = (ill_t *)ire->ire_stq->q_ptr; 24757 } 24758 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 24759 ire); 24760 24761 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 24762 switch (ipsec_rc) { 24763 case IPSEC_STATUS_SUCCESS: 24764 break; 24765 case IPSEC_STATUS_FAILED: 24766 BUMP_MIB(&ip_mib, ipOutDiscards); 24767 /* FALLTHRU */ 24768 case IPSEC_STATUS_PENDING: 24769 if (ill != NULL && ill_need_rele) 24770 ill_refrele(ill); 24771 return; 24772 } 24773 } 24774 /* 24775 * We are done with IPSEC processing. Send it over 24776 * the wire. 24777 */ 24778 done: 24779 mp = ipsec_mp->b_cont; 24780 ipha = (ipha_t *)mp->b_rptr; 24781 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 24782 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 24783 } else { 24784 ip6h = (ip6_t *)ipha; 24785 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 24786 } 24787 if (ill != NULL && ill_need_rele) 24788 ill_refrele(ill); 24789 } 24790 24791 /* ARGSUSED */ 24792 void 24793 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 24794 { 24795 opt_restart_t *or; 24796 int err; 24797 conn_t *connp; 24798 24799 ASSERT(CONN_Q(q)); 24800 connp = Q_TO_CONN(q); 24801 24802 ASSERT(first_mp->b_datap->db_type == M_CTL); 24803 or = (opt_restart_t *)first_mp->b_rptr; 24804 /* 24805 * We don't need to pass any credentials here since this is just 24806 * a restart. The credentials are passed in when svr4_optcom_req 24807 * is called the first time (from ip_wput_nondata). 24808 */ 24809 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 24810 err = svr4_optcom_req(q, first_mp, NULL, 24811 &ip_opt_obj); 24812 } else { 24813 ASSERT(or->or_type == T_OPTMGMT_REQ); 24814 err = tpi_optcom_req(q, first_mp, NULL, 24815 &ip_opt_obj); 24816 } 24817 if (err != EINPROGRESS) { 24818 /* operation is done */ 24819 CONN_OPER_PENDING_DONE(connp); 24820 } 24821 } 24822 24823 /* 24824 * ioctls that go through a down/up sequence may need to wait for the down 24825 * to complete. This involves waiting for the ire and ipif refcnts to go down 24826 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 24827 */ 24828 /* ARGSUSED */ 24829 void 24830 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 24831 { 24832 struct iocblk *iocp; 24833 mblk_t *mp1; 24834 ipif_t *ipif; 24835 ip_ioctl_cmd_t *ipip; 24836 int err; 24837 sin_t *sin; 24838 struct lifreq *lifr; 24839 struct ifreq *ifr; 24840 24841 iocp = (struct iocblk *)mp->b_rptr; 24842 ASSERT(ipsq != NULL); 24843 /* Existence of mp1 verified in ip_wput_nondata */ 24844 mp1 = mp->b_cont->b_cont; 24845 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 24846 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 24847 ill_t *ill; 24848 /* 24849 * Special case where ipsq_current_ipif may not be set. 24850 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 24851 * ill could also have become part of a ipmp group in the 24852 * process, we are here as were not able to complete the 24853 * operation in ipif_set_values because we could not become 24854 * exclusive on the new ipsq, In such a case ipsq_current_ipif 24855 * will not be set so we need to set it. 24856 */ 24857 ill = (ill_t *)q->q_ptr; 24858 ipsq->ipsq_current_ipif = ill->ill_ipif; 24859 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 24860 } 24861 24862 ipif = ipsq->ipsq_current_ipif; 24863 ASSERT(ipif != NULL); 24864 if (ipip->ipi_cmd_type == IF_CMD) { 24865 /* This a old style SIOC[GS]IF* command */ 24866 ifr = (struct ifreq *)mp1->b_rptr; 24867 sin = (sin_t *)&ifr->ifr_addr; 24868 } else if (ipip->ipi_cmd_type == LIF_CMD) { 24869 /* This a new style SIOC[GS]LIF* command */ 24870 lifr = (struct lifreq *)mp1->b_rptr; 24871 sin = (sin_t *)&lifr->lifr_addr; 24872 } else { 24873 sin = NULL; 24874 } 24875 24876 err = (*ipip->ipi_func_restart)(ipif, sin, q, mp, ipip, 24877 (void *)mp1->b_rptr); 24878 24879 /* SIOCLIFREMOVEIF could have removed the ipif */ 24880 ip_ioctl_finish(q, mp, err, 24881 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 24882 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ipif, ipsq); 24883 } 24884 24885 /* 24886 * ioctl processing 24887 * 24888 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 24889 * the ioctl command in the ioctl tables and determines the copyin data size 24890 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 24891 * size. 24892 * 24893 * ioctl processing then continues when the M_IOCDATA makes its way down. 24894 * Now the ioctl is looked up again in the ioctl table, and its properties are 24895 * extracted. The associated 'conn' is then refheld till the end of the ioctl 24896 * and the general ioctl processing function ip_process_ioctl is called. 24897 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 24898 * so goes thru the serialization primitive ipsq_try_enter. Then the 24899 * appropriate function to handle the ioctl is called based on the entry in 24900 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 24901 * which also refreleases the 'conn' that was refheld at the start of the 24902 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 24903 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 24904 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 24905 * 24906 * Many exclusive ioctls go thru an internal down up sequence as part of 24907 * the operation. For example an attempt to change the IP address of an 24908 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 24909 * does all the cleanup such as deleting all ires that use this address. 24910 * Then we need to wait till all references to the interface go away. 24911 */ 24912 void 24913 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 24914 { 24915 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 24916 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 24917 cmd_info_t ci; 24918 int err; 24919 boolean_t entered_ipsq = B_FALSE; 24920 24921 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 24922 24923 if (ipip == NULL) 24924 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 24925 24926 /* 24927 * SIOCLIFADDIF needs to go thru a special path since the 24928 * ill may not exist yet. This happens in the case of lo0 24929 * which is created using this ioctl. 24930 */ 24931 if (ipip->ipi_cmd == SIOCLIFADDIF) { 24932 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 24933 ip_ioctl_finish(q, mp, err, 24934 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 24935 NULL, NULL); 24936 return; 24937 } 24938 24939 ci.ci_ipif = NULL; 24940 switch (ipip->ipi_cmd_type) { 24941 case IF_CMD: 24942 case LIF_CMD: 24943 /* 24944 * ioctls that pass in a [l]ifreq appear here. 24945 * ip_extract_lifreq_cmn returns a refheld ipif in 24946 * ci.ci_ipif 24947 */ 24948 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 24949 ipip->ipi_flags, &ci, ip_process_ioctl); 24950 if (err != 0) { 24951 ip_ioctl_finish(q, mp, err, 24952 ipip->ipi_flags & IPI_GET_CMD ? 24953 COPYOUT : NO_COPYOUT, NULL, NULL); 24954 return; 24955 } 24956 ASSERT(ci.ci_ipif != NULL); 24957 break; 24958 24959 case TUN_CMD: 24960 /* 24961 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 24962 * a refheld ipif in ci.ci_ipif 24963 */ 24964 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 24965 if (err != 0) { 24966 ip_ioctl_finish(q, mp, err, 24967 ipip->ipi_flags & IPI_GET_CMD ? 24968 COPYOUT : NO_COPYOUT, NULL, NULL); 24969 return; 24970 } 24971 ASSERT(ci.ci_ipif != NULL); 24972 break; 24973 24974 case MISC_CMD: 24975 /* 24976 * ioctls that neither pass in [l]ifreq or iftun_req come here 24977 * For eg. SIOCGLIFCONF will appear here. 24978 */ 24979 switch (ipip->ipi_cmd) { 24980 case IF_UNITSEL: 24981 /* ioctl comes down the ill */ 24982 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 24983 ipif_refhold(ci.ci_ipif); 24984 break; 24985 case SIOCGMSFILTER: 24986 case SIOCSMSFILTER: 24987 case SIOCGIPMSFILTER: 24988 case SIOCSIPMSFILTER: 24989 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 24990 ip_process_ioctl); 24991 if (err != 0) { 24992 ip_ioctl_finish(q, mp, err, 24993 ipip->ipi_flags & IPI_GET_CMD ? 24994 COPYOUT : NO_COPYOUT, NULL, NULL); 24995 return; 24996 } 24997 break; 24998 } 24999 err = 0; 25000 ci.ci_sin = NULL; 25001 ci.ci_sin6 = NULL; 25002 ci.ci_lifr = NULL; 25003 break; 25004 } 25005 25006 /* 25007 * If ipsq is non-null, we are already being called exclusively 25008 */ 25009 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 25010 if (!(ipip->ipi_flags & IPI_WR)) { 25011 /* 25012 * A return value of EINPROGRESS means the ioctl is 25013 * either queued and waiting for some reason or has 25014 * already completed. 25015 */ 25016 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 25017 ci.ci_lifr); 25018 if (ci.ci_ipif != NULL) 25019 ipif_refrele(ci.ci_ipif); 25020 ip_ioctl_finish(q, mp, err, 25021 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 25022 NULL, NULL); 25023 return; 25024 } 25025 25026 ASSERT(ci.ci_ipif != NULL); 25027 25028 if (ipsq == NULL) { 25029 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 25030 ip_process_ioctl, NEW_OP, B_TRUE); 25031 entered_ipsq = B_TRUE; 25032 } 25033 /* 25034 * Release the ipif so that ipif_down and friends that wait for 25035 * references to go away are not misled about the current ipif_refcnt 25036 * values. We are writer so we can access the ipif even after releasing 25037 * the ipif. 25038 */ 25039 ipif_refrele(ci.ci_ipif); 25040 if (ipsq == NULL) 25041 return; 25042 25043 mutex_enter(&ipsq->ipsq_lock); 25044 ASSERT(ipsq->ipsq_current_ipif == NULL); 25045 ipsq->ipsq_current_ipif = ci.ci_ipif; 25046 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 25047 mutex_exit(&ipsq->ipsq_lock); 25048 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 25049 /* 25050 * For most set ioctls that come here, this serves as a single point 25051 * where we set the IPIF_CHANGING flag. This ensures that there won't 25052 * be any new references to the ipif. This helps functions that go 25053 * through this path and end up trying to wait for the refcnts 25054 * associated with the ipif to go down to zero. Some exceptions are 25055 * Failover, Failback, and Groupname commands that operate on more than 25056 * just the ci.ci_ipif. These commands internally determine the 25057 * set of ipif's they operate on and set and clear the IPIF_CHANGING 25058 * flags on that set. Another exception is the Removeif command that 25059 * sets the IPIF_CONDEMNED flag internally after identifying the right 25060 * ipif to operate on. 25061 */ 25062 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 25063 ipip->ipi_cmd != SIOCLIFFAILOVER && 25064 ipip->ipi_cmd != SIOCLIFFAILBACK && 25065 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 25066 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 25067 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 25068 25069 /* 25070 * A return value of EINPROGRESS means the ioctl is 25071 * either queued and waiting for some reason or has 25072 * already completed. 25073 */ 25074 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 25075 ci.ci_lifr); 25076 25077 /* SIOCLIFREMOVEIF could have removed the ipif */ 25078 ip_ioctl_finish(q, mp, err, 25079 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 25080 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ci.ci_ipif, ipsq); 25081 25082 if (entered_ipsq) 25083 ipsq_exit(ipsq, B_TRUE, B_TRUE); 25084 } 25085 25086 /* 25087 * Complete the ioctl. Typically ioctls use the mi package and need to 25088 * do mi_copyout/mi_copy_done. 25089 */ 25090 void 25091 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, 25092 ipif_t *ipif, ipsq_t *ipsq) 25093 { 25094 conn_t *connp = NULL; 25095 25096 if (err == EINPROGRESS) 25097 return; 25098 25099 if (CONN_Q(q)) { 25100 connp = Q_TO_CONN(q); 25101 ASSERT(connp->conn_ref >= 2); 25102 } 25103 25104 switch (mode) { 25105 case COPYOUT: 25106 if (err == 0) 25107 mi_copyout(q, mp); 25108 else 25109 mi_copy_done(q, mp, err); 25110 break; 25111 25112 case NO_COPYOUT: 25113 mi_copy_done(q, mp, err); 25114 break; 25115 25116 default: 25117 /* An ioctl aborted through a conn close would take this path */ 25118 break; 25119 } 25120 25121 /* 25122 * The refhold placed at the start of the ioctl is released here. 25123 */ 25124 if (connp != NULL) 25125 CONN_OPER_PENDING_DONE(connp); 25126 25127 /* 25128 * If the ioctl were an exclusive ioctl it would have set 25129 * IPIF_CHANGING at the start of the ioctl which is undone here. 25130 */ 25131 if (ipif != NULL) { 25132 mutex_enter(&(ipif)->ipif_ill->ill_lock); 25133 ipif->ipif_state_flags &= ~IPIF_CHANGING; 25134 mutex_exit(&(ipif)->ipif_ill->ill_lock); 25135 } 25136 25137 /* 25138 * Clear the current ipif in the ipsq at the completion of the ioctl. 25139 * Note that a non-null ipsq_current_ipif prevents new ioctls from 25140 * entering the ipsq 25141 */ 25142 if (ipsq != NULL) { 25143 mutex_enter(&ipsq->ipsq_lock); 25144 ipsq->ipsq_current_ipif = NULL; 25145 mutex_exit(&ipsq->ipsq_lock); 25146 } 25147 } 25148 25149 /* 25150 * This is called from ip_wput_nondata to resume a deferred TCP bind. 25151 */ 25152 /* ARGSUSED */ 25153 void 25154 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 25155 { 25156 conn_t *connp = arg; 25157 tcp_t *tcp; 25158 25159 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 25160 tcp = connp->conn_tcp; 25161 25162 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 25163 freemsg(mp); 25164 else 25165 tcp_rput_other(tcp, mp); 25166 CONN_OPER_PENDING_DONE(connp); 25167 } 25168 25169 /* Called from ip_wput for all non data messages */ 25170 /* ARGSUSED */ 25171 void 25172 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 25173 { 25174 mblk_t *mp1; 25175 ire_t *ire; 25176 ill_t *ill; 25177 struct iocblk *iocp; 25178 ip_ioctl_cmd_t *ipip; 25179 cred_t *cr; 25180 conn_t *connp = NULL; 25181 int cmd, err; 25182 25183 if (CONN_Q(q)) 25184 connp = Q_TO_CONN(q); 25185 25186 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 25187 25188 /* Check if it is a queue to /dev/sctp. */ 25189 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 25190 connp->conn_rq == NULL) { 25191 sctp_wput(q, mp); 25192 return; 25193 } 25194 25195 switch (DB_TYPE(mp)) { 25196 case M_IOCTL: 25197 /* 25198 * IOCTL processing begins in ip_sioctl_copyin_setup which 25199 * will arrange to copy in associated control structures. 25200 */ 25201 ip_sioctl_copyin_setup(q, mp); 25202 return; 25203 case M_IOCDATA: 25204 /* 25205 * Ensure that this is associated with one of our trans- 25206 * parent ioctls. If it's not ours, discard it if we're 25207 * running as a driver, or pass it on if we're a module. 25208 */ 25209 iocp = (struct iocblk *)mp->b_rptr; 25210 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 25211 if (ipip == NULL) { 25212 if (q->q_next == NULL) { 25213 goto nak; 25214 } else { 25215 putnext(q, mp); 25216 } 25217 return; 25218 } else if ((q->q_next != NULL) && 25219 !(ipip->ipi_flags & IPI_MODOK)) { 25220 /* 25221 * the ioctl is one we recognise, but is not 25222 * consumed by IP as a module, pass M_IOCDATA 25223 * for processing downstream, but only for 25224 * common Streams ioctls. 25225 */ 25226 if (ipip->ipi_flags & IPI_PASS_DOWN) { 25227 putnext(q, mp); 25228 return; 25229 } else { 25230 goto nak; 25231 } 25232 } 25233 25234 /* IOCTL continuation following copyin or copyout. */ 25235 if (mi_copy_state(q, mp, NULL) == -1) { 25236 /* 25237 * The copy operation failed. mi_copy_state already 25238 * cleaned up, so we're out of here. 25239 */ 25240 return; 25241 } 25242 /* 25243 * If we just completed a copy in, we become writer and 25244 * continue processing in ip_sioctl_copyin_done. If it 25245 * was a copy out, we call mi_copyout again. If there is 25246 * nothing more to copy out, it will complete the IOCTL. 25247 */ 25248 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 25249 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 25250 mi_copy_done(q, mp, EPROTO); 25251 return; 25252 } 25253 /* 25254 * Check for cases that need more copying. A return 25255 * value of 0 means a second copyin has been started, 25256 * so we return; a return value of 1 means no more 25257 * copying is needed, so we continue. 25258 */ 25259 cmd = iocp->ioc_cmd; 25260 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 25261 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 25262 MI_COPY_COUNT(mp) == 1) { 25263 if (ip_copyin_msfilter(q, mp) == 0) 25264 return; 25265 } 25266 /* 25267 * Refhold the conn, till the ioctl completes. This is 25268 * needed in case the ioctl ends up in the pending mp 25269 * list. Every mp in the ill_pending_mp list and 25270 * the ipsq_pending_mp must have a refhold on the conn 25271 * to resume processing. The refhold is released when 25272 * the ioctl completes. (normally or abnormally) 25273 * In all cases ip_ioctl_finish is called to finish 25274 * the ioctl. 25275 */ 25276 if (connp != NULL) { 25277 /* This is not a reentry */ 25278 ASSERT(ipsq == NULL); 25279 CONN_INC_REF(connp); 25280 } else { 25281 if (!(ipip->ipi_flags & IPI_MODOK)) { 25282 mi_copy_done(q, mp, EINVAL); 25283 return; 25284 } 25285 } 25286 25287 ip_process_ioctl(ipsq, q, mp, ipip); 25288 25289 } else { 25290 mi_copyout(q, mp); 25291 } 25292 return; 25293 nak: 25294 iocp->ioc_error = EINVAL; 25295 mp->b_datap->db_type = M_IOCNAK; 25296 iocp->ioc_count = 0; 25297 qreply(q, mp); 25298 return; 25299 25300 case M_IOCNAK: 25301 /* 25302 * The only way we could get here is if a resolver didn't like 25303 * an IOCTL we sent it. This shouldn't happen. 25304 */ 25305 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 25306 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 25307 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 25308 freemsg(mp); 25309 return; 25310 case M_IOCACK: 25311 /* Finish socket ioctls passed through to ARP. */ 25312 ip_sioctl_iocack(q, mp); 25313 return; 25314 case M_FLUSH: 25315 if (*mp->b_rptr & FLUSHW) 25316 flushq(q, FLUSHALL); 25317 if (q->q_next) { 25318 /* 25319 * M_FLUSH is sent up to IP by some drivers during 25320 * unbind. ip_rput has already replied to it. We are 25321 * here for the M_FLUSH that we originated in IP 25322 * before sending the unbind request to the driver. 25323 * Just free it as we don't queue packets in IP 25324 * on the write side of the device instance. 25325 */ 25326 freemsg(mp); 25327 return; 25328 } 25329 if (*mp->b_rptr & FLUSHR) { 25330 *mp->b_rptr &= ~FLUSHW; 25331 qreply(q, mp); 25332 return; 25333 } 25334 freemsg(mp); 25335 return; 25336 case IRE_DB_REQ_TYPE: 25337 /* An Upper Level Protocol wants a copy of an IRE. */ 25338 ip_ire_req(q, mp); 25339 return; 25340 case M_CTL: 25341 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 25342 break; 25343 25344 if (connp != NULL && *(uint32_t *)mp->b_rptr == 25345 IP_ULP_OUT_LABELED) { 25346 out_labeled_t *olp; 25347 25348 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 25349 break; 25350 olp = (out_labeled_t *)mp->b_rptr; 25351 connp->conn_ulp_labeled = olp->out_qnext == q; 25352 freemsg(mp); 25353 return; 25354 } 25355 25356 /* M_CTL messages are used by ARP to tell us things. */ 25357 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 25358 break; 25359 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 25360 case AR_ENTRY_SQUERY: 25361 ip_wput_ctl(q, mp); 25362 return; 25363 case AR_CLIENT_NOTIFY: 25364 ip_arp_news(q, mp); 25365 return; 25366 case AR_DLPIOP_DONE: 25367 ASSERT(q->q_next != NULL); 25368 ill = (ill_t *)q->q_ptr; 25369 /* qwriter_ip releases the refhold */ 25370 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 25371 ill_refhold(ill); 25372 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_done, 25373 CUR_OP, B_FALSE); 25374 return; 25375 case AR_ARP_CLOSING: 25376 /* 25377 * ARP (above us) is closing. If no ARP bringup is 25378 * currently pending, ack the message so that ARP 25379 * can complete its close. Also mark ill_arp_closing 25380 * so that new ARP bringups will fail. If any 25381 * ARP bringup is currently in progress, we will 25382 * ack this when the current ARP bringup completes. 25383 */ 25384 ASSERT(q->q_next != NULL); 25385 ill = (ill_t *)q->q_ptr; 25386 mutex_enter(&ill->ill_lock); 25387 ill->ill_arp_closing = 1; 25388 if (!ill->ill_arp_bringup_pending) { 25389 mutex_exit(&ill->ill_lock); 25390 qreply(q, mp); 25391 } else { 25392 mutex_exit(&ill->ill_lock); 25393 freemsg(mp); 25394 } 25395 return; 25396 default: 25397 break; 25398 } 25399 break; 25400 case M_PROTO: 25401 case M_PCPROTO: 25402 /* 25403 * The only PROTO messages we expect are ULP binds and 25404 * copies of option negotiation acknowledgements. 25405 */ 25406 switch (((union T_primitives *)mp->b_rptr)->type) { 25407 case O_T_BIND_REQ: 25408 case T_BIND_REQ: { 25409 /* Request can get queued in bind */ 25410 ASSERT(connp != NULL); 25411 /* 25412 * Both TCP and UDP call ip_bind_{v4,v6}() directly 25413 * instead of going through this path. We only get 25414 * here in the following cases: 25415 * 25416 * a. Bind retries, where ipsq is non-NULL. 25417 * b. T_BIND_REQ is issued from non TCP/UDP 25418 * transport, e.g. icmp for raw socket, 25419 * in which case ipsq will be NULL. 25420 */ 25421 ASSERT(ipsq != NULL || 25422 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 25423 25424 /* Don't increment refcnt if this is a re-entry */ 25425 if (ipsq == NULL) 25426 CONN_INC_REF(connp); 25427 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 25428 connp, NULL) : ip_bind_v4(q, mp, connp); 25429 if (mp == NULL) 25430 return; 25431 if (IPCL_IS_TCP(connp)) { 25432 /* 25433 * In the case of TCP endpoint we 25434 * come here only for bind retries 25435 */ 25436 ASSERT(ipsq != NULL); 25437 CONN_INC_REF(connp); 25438 squeue_fill(connp->conn_sqp, mp, 25439 ip_resume_tcp_bind, connp, 25440 SQTAG_BIND_RETRY); 25441 return; 25442 } else if (IPCL_IS_UDP(connp)) { 25443 /* 25444 * In the case of UDP endpoint we 25445 * come here only for bind retries 25446 */ 25447 ASSERT(ipsq != NULL); 25448 udp_resume_bind(connp, mp); 25449 return; 25450 } 25451 qreply(q, mp); 25452 CONN_OPER_PENDING_DONE(connp); 25453 return; 25454 } 25455 case T_SVR4_OPTMGMT_REQ: 25456 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 25457 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 25458 25459 ASSERT(connp != NULL); 25460 if (!snmpcom_req(q, mp, ip_snmp_set, 25461 ip_snmp_get, cr)) { 25462 /* 25463 * Call svr4_optcom_req so that it can 25464 * generate the ack. We don't come here 25465 * if this operation is being restarted. 25466 * ip_restart_optmgmt will drop the conn ref. 25467 * In the case of ipsec option after the ipsec 25468 * load is complete conn_restart_ipsec_waiter 25469 * drops the conn ref. 25470 */ 25471 ASSERT(ipsq == NULL); 25472 CONN_INC_REF(connp); 25473 if (ip_check_for_ipsec_opt(q, mp)) 25474 return; 25475 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 25476 if (err != EINPROGRESS) { 25477 /* Operation is done */ 25478 CONN_OPER_PENDING_DONE(connp); 25479 } 25480 } 25481 return; 25482 case T_OPTMGMT_REQ: 25483 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 25484 /* 25485 * Note: No snmpcom_req support through new 25486 * T_OPTMGMT_REQ. 25487 * Call tpi_optcom_req so that it can 25488 * generate the ack. 25489 */ 25490 ASSERT(connp != NULL); 25491 ASSERT(ipsq == NULL); 25492 /* 25493 * We don't come here for restart. ip_restart_optmgmt 25494 * will drop the conn ref. In the case of ipsec option 25495 * after the ipsec load is complete 25496 * conn_restart_ipsec_waiter drops the conn ref. 25497 */ 25498 CONN_INC_REF(connp); 25499 if (ip_check_for_ipsec_opt(q, mp)) 25500 return; 25501 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 25502 if (err != EINPROGRESS) { 25503 /* Operation is done */ 25504 CONN_OPER_PENDING_DONE(connp); 25505 } 25506 return; 25507 case T_UNBIND_REQ: 25508 mp = ip_unbind(q, mp); 25509 qreply(q, mp); 25510 return; 25511 default: 25512 /* 25513 * Have to drop any DLPI messages coming down from 25514 * arp (such as an info_req which would cause ip 25515 * to receive an extra info_ack if it was passed 25516 * through. 25517 */ 25518 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 25519 (int)*(uint_t *)mp->b_rptr)); 25520 freemsg(mp); 25521 return; 25522 } 25523 /* NOTREACHED */ 25524 case IRE_DB_TYPE: { 25525 nce_t *nce; 25526 ill_t *ill; 25527 in6_addr_t gw_addr_v6; 25528 25529 25530 /* 25531 * This is a response back from a resolver. It 25532 * consists of a message chain containing: 25533 * IRE_MBLK-->LL_HDR_MBLK->pkt 25534 * The IRE_MBLK is the one we allocated in ip_newroute. 25535 * The LL_HDR_MBLK is the DLPI header to use to get 25536 * the attached packet, and subsequent ones for the 25537 * same destination, transmitted. 25538 */ 25539 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 25540 break; 25541 /* 25542 * First, check to make sure the resolution succeeded. 25543 * If it failed, the second mblk will be empty. 25544 * If it is, free the chain, dropping the packet. 25545 * (We must ire_delete the ire; that frees the ire mblk) 25546 * We're doing this now to support PVCs for ATM; it's 25547 * a partial xresolv implementation. When we fully implement 25548 * xresolv interfaces, instead of freeing everything here 25549 * we'll initiate neighbor discovery. 25550 * 25551 * For v4 (ARP and other external resolvers) the resolver 25552 * frees the message, so no check is needed. This check 25553 * is required, though, for a full xresolve implementation. 25554 * Including this code here now both shows how external 25555 * resolvers can NACK a resolution request using an 25556 * existing design that has no specific provisions for NACKs, 25557 * and also takes into account that the current non-ARP 25558 * external resolver has been coded to use this method of 25559 * NACKing for all IPv6 (xresolv) cases, 25560 * whether our xresolv implementation is complete or not. 25561 * 25562 */ 25563 ire = (ire_t *)mp->b_rptr; 25564 ill = ire_to_ill(ire); 25565 mp1 = mp->b_cont; /* dl_unitdata_req */ 25566 if (mp1->b_rptr == mp1->b_wptr) { 25567 if (ire->ire_ipversion == IPV6_VERSION) { 25568 /* 25569 * XRESOLV interface. 25570 */ 25571 ASSERT(ill->ill_flags & ILLF_XRESOLV); 25572 mutex_enter(&ire->ire_lock); 25573 gw_addr_v6 = ire->ire_gateway_addr_v6; 25574 mutex_exit(&ire->ire_lock); 25575 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 25576 nce = ndp_lookup(ill, 25577 &ire->ire_addr_v6, B_FALSE); 25578 } else { 25579 nce = ndp_lookup(ill, &gw_addr_v6, 25580 B_FALSE); 25581 } 25582 if (nce != NULL) { 25583 nce_resolv_failed(nce); 25584 ndp_delete(nce); 25585 NCE_REFRELE(nce); 25586 } 25587 } 25588 mp->b_cont = NULL; 25589 freemsg(mp1); /* frees the pkt as well */ 25590 ire_delete((ire_t *)mp->b_rptr); 25591 return; 25592 } 25593 /* 25594 * Split them into IRE_MBLK and pkt and feed it into 25595 * ire_add_then_send. Then in ire_add_then_send 25596 * the IRE will be added, and then the packet will be 25597 * run back through ip_wput. This time it will make 25598 * it to the wire. 25599 */ 25600 mp->b_cont = NULL; 25601 mp = mp1->b_cont; /* now, mp points to pkt */ 25602 mp1->b_cont = NULL; 25603 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 25604 if (ire->ire_ipversion == IPV6_VERSION) { 25605 /* 25606 * XRESOLV interface. Find the nce and put a copy 25607 * of the dl_unitdata_req in nce_res_mp 25608 */ 25609 ASSERT(ill->ill_flags & ILLF_XRESOLV); 25610 mutex_enter(&ire->ire_lock); 25611 gw_addr_v6 = ire->ire_gateway_addr_v6; 25612 mutex_exit(&ire->ire_lock); 25613 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 25614 nce = ndp_lookup(ill, &ire->ire_addr_v6, 25615 B_FALSE); 25616 } else { 25617 nce = ndp_lookup(ill, &gw_addr_v6, B_FALSE); 25618 } 25619 if (nce != NULL) { 25620 /* 25621 * We have to protect nce_res_mp here 25622 * from being accessed by other threads 25623 * while we change the mblk pointer. 25624 * Other functions will also lock the nce when 25625 * accessing nce_res_mp. 25626 * 25627 * The reason we change the mblk pointer 25628 * here rather than copying the resolved address 25629 * into the template is that, unlike with 25630 * ethernet, we have no guarantee that the 25631 * resolved address length will be 25632 * smaller than or equal to the lla length 25633 * with which the template was allocated, 25634 * (for ethernet, they're equal) 25635 * so we have to use the actual resolved 25636 * address mblk - which holds the real 25637 * dl_unitdata_req with the resolved address. 25638 * 25639 * Doing this is the same behavior as was 25640 * previously used in the v4 ARP case. 25641 */ 25642 mutex_enter(&nce->nce_lock); 25643 if (nce->nce_res_mp != NULL) 25644 freemsg(nce->nce_res_mp); 25645 nce->nce_res_mp = mp1; 25646 mutex_exit(&nce->nce_lock); 25647 /* 25648 * We do a fastpath probe here because 25649 * we have resolved the address without 25650 * using Neighbor Discovery. 25651 * In the non-XRESOLV v6 case, the fastpath 25652 * probe is done right after neighbor 25653 * discovery completes. 25654 */ 25655 if (nce->nce_res_mp != NULL) { 25656 int res; 25657 nce_fastpath_list_add(nce); 25658 res = ill_fastpath_probe(ill, 25659 nce->nce_res_mp); 25660 if (res != 0 && res != EAGAIN) 25661 nce_fastpath_list_delete(nce); 25662 } 25663 25664 ire_add_then_send(q, ire, mp); 25665 /* 25666 * Now we have to clean out any packets 25667 * that may have been queued on the nce 25668 * while it was waiting for address resolution 25669 * to complete. 25670 */ 25671 mutex_enter(&nce->nce_lock); 25672 mp1 = nce->nce_qd_mp; 25673 nce->nce_qd_mp = NULL; 25674 mutex_exit(&nce->nce_lock); 25675 while (mp1 != NULL) { 25676 mblk_t *nxt_mp; 25677 queue_t *fwdq = NULL; 25678 ill_t *inbound_ill; 25679 uint_t ifindex; 25680 25681 nxt_mp = mp1->b_next; 25682 mp1->b_next = NULL; 25683 /* 25684 * Retrieve ifindex stored in 25685 * ip_rput_data_v6() 25686 */ 25687 ifindex = 25688 (uint_t)(uintptr_t)mp1->b_prev; 25689 inbound_ill = 25690 ill_lookup_on_ifindex(ifindex, 25691 B_TRUE, NULL, NULL, NULL, 25692 NULL); 25693 mp1->b_prev = NULL; 25694 if (inbound_ill != NULL) 25695 fwdq = inbound_ill->ill_rq; 25696 25697 if (fwdq != NULL) { 25698 put(fwdq, mp1); 25699 ill_refrele(inbound_ill); 25700 } else 25701 put(WR(ill->ill_rq), mp1); 25702 mp1 = nxt_mp; 25703 } 25704 NCE_REFRELE(nce); 25705 } else { /* nce is NULL; clean up */ 25706 ire_delete(ire); 25707 freemsg(mp); 25708 freemsg(mp1); 25709 return; 25710 } 25711 } else { 25712 ire->ire_dlureq_mp = mp1; 25713 ire_add_then_send(q, ire, mp); 25714 } 25715 return; /* All is well, the packet has been sent. */ 25716 } 25717 default: 25718 break; 25719 } 25720 if (q->q_next) { 25721 putnext(q, mp); 25722 } else 25723 freemsg(mp); 25724 } 25725 25726 /* 25727 * Process IP options in an outbound packet. Modify the destination if there 25728 * is a source route option. 25729 * Returns non-zero if something fails in which case an ICMP error has been 25730 * sent and mp freed. 25731 */ 25732 static int 25733 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 25734 boolean_t mctl_present, zoneid_t zoneid) 25735 { 25736 ipoptp_t opts; 25737 uchar_t *opt; 25738 uint8_t optval; 25739 uint8_t optlen; 25740 ipaddr_t dst; 25741 intptr_t code = 0; 25742 mblk_t *mp; 25743 ire_t *ire = NULL; 25744 25745 ip2dbg(("ip_wput_options\n")); 25746 mp = ipsec_mp; 25747 if (mctl_present) { 25748 mp = ipsec_mp->b_cont; 25749 } 25750 25751 dst = ipha->ipha_dst; 25752 for (optval = ipoptp_first(&opts, ipha); 25753 optval != IPOPT_EOL; 25754 optval = ipoptp_next(&opts)) { 25755 opt = opts.ipoptp_cur; 25756 optlen = opts.ipoptp_len; 25757 ip2dbg(("ip_wput_options: opt %d, len %d\n", 25758 optval, optlen)); 25759 switch (optval) { 25760 uint32_t off; 25761 case IPOPT_SSRR: 25762 case IPOPT_LSRR: 25763 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 25764 ip1dbg(( 25765 "ip_wput_options: bad option offset\n")); 25766 code = (char *)&opt[IPOPT_OLEN] - 25767 (char *)ipha; 25768 goto param_prob; 25769 } 25770 off = opt[IPOPT_OFFSET]; 25771 ip1dbg(("ip_wput_options: next hop 0x%x\n", 25772 ntohl(dst))); 25773 /* 25774 * For strict: verify that dst is directly 25775 * reachable. 25776 */ 25777 if (optval == IPOPT_SSRR) { 25778 ire = ire_ftable_lookup(dst, 0, 0, 25779 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 25780 MBLK_GETLABEL(mp), 25781 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 25782 if (ire == NULL) { 25783 ip1dbg(("ip_wput_options: SSRR not" 25784 " directly reachable: 0x%x\n", 25785 ntohl(dst))); 25786 goto bad_src_route; 25787 } 25788 ire_refrele(ire); 25789 } 25790 break; 25791 case IPOPT_RR: 25792 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 25793 ip1dbg(( 25794 "ip_wput_options: bad option offset\n")); 25795 code = (char *)&opt[IPOPT_OLEN] - 25796 (char *)ipha; 25797 goto param_prob; 25798 } 25799 break; 25800 case IPOPT_TS: 25801 /* 25802 * Verify that length >=5 and that there is either 25803 * room for another timestamp or that the overflow 25804 * counter is not maxed out. 25805 */ 25806 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 25807 if (optlen < IPOPT_MINLEN_IT) { 25808 goto param_prob; 25809 } 25810 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 25811 ip1dbg(( 25812 "ip_wput_options: bad option offset\n")); 25813 code = (char *)&opt[IPOPT_OFFSET] - 25814 (char *)ipha; 25815 goto param_prob; 25816 } 25817 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25818 case IPOPT_TS_TSONLY: 25819 off = IPOPT_TS_TIMELEN; 25820 break; 25821 case IPOPT_TS_TSANDADDR: 25822 case IPOPT_TS_PRESPEC: 25823 case IPOPT_TS_PRESPEC_RFC791: 25824 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25825 break; 25826 default: 25827 code = (char *)&opt[IPOPT_POS_OV_FLG] - 25828 (char *)ipha; 25829 goto param_prob; 25830 } 25831 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 25832 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 25833 /* 25834 * No room and the overflow counter is 15 25835 * already. 25836 */ 25837 goto param_prob; 25838 } 25839 break; 25840 } 25841 } 25842 25843 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 25844 return (0); 25845 25846 ip1dbg(("ip_wput_options: error processing IP options.")); 25847 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 25848 25849 param_prob: 25850 /* 25851 * Since ip_wput() isn't close to finished, we fill 25852 * in enough of the header for credible error reporting. 25853 */ 25854 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 25855 /* Failed */ 25856 freemsg(ipsec_mp); 25857 return (-1); 25858 } 25859 icmp_param_problem(q, ipsec_mp, (uint8_t)code); 25860 return (-1); 25861 25862 bad_src_route: 25863 /* 25864 * Since ip_wput() isn't close to finished, we fill 25865 * in enough of the header for credible error reporting. 25866 */ 25867 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 25868 /* Failed */ 25869 freemsg(ipsec_mp); 25870 return (-1); 25871 } 25872 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED); 25873 return (-1); 25874 } 25875 25876 /* 25877 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 25878 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 25879 * thru /etc/system. 25880 */ 25881 #define CONN_MAXDRAINCNT 64 25882 25883 static void 25884 conn_drain_init(void) 25885 { 25886 int i; 25887 25888 conn_drain_list_cnt = conn_drain_nthreads; 25889 25890 if ((conn_drain_list_cnt == 0) || 25891 (conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 25892 /* 25893 * Default value of the number of drainers is the 25894 * number of cpus, subject to maximum of 8 drainers. 25895 */ 25896 if (boot_max_ncpus != -1) 25897 conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 25898 else 25899 conn_drain_list_cnt = MIN(max_ncpus, 8); 25900 } 25901 25902 conn_drain_list = kmem_zalloc(conn_drain_list_cnt * sizeof (idl_t), 25903 KM_SLEEP); 25904 25905 for (i = 0; i < conn_drain_list_cnt; i++) { 25906 mutex_init(&conn_drain_list[i].idl_lock, NULL, 25907 MUTEX_DEFAULT, NULL); 25908 } 25909 } 25910 25911 static void 25912 conn_drain_fini(void) 25913 { 25914 int i; 25915 25916 for (i = 0; i < conn_drain_list_cnt; i++) 25917 mutex_destroy(&conn_drain_list[i].idl_lock); 25918 kmem_free(conn_drain_list, conn_drain_list_cnt * sizeof (idl_t)); 25919 conn_drain_list = NULL; 25920 } 25921 25922 /* 25923 * Note: For an overview of how flowcontrol is handled in IP please see the 25924 * IP Flowcontrol notes at the top of this file. 25925 * 25926 * Flow control has blocked us from proceeding. Insert the given conn in one 25927 * of the conn drain lists. These conn wq's will be qenabled later on when 25928 * STREAMS flow control does a backenable. conn_walk_drain will enable 25929 * the first conn in each of these drain lists. Each of these qenabled conns 25930 * in turn enables the next in the list, after it runs, or when it closes, 25931 * thus sustaining the drain process. 25932 * 25933 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 25934 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 25935 * running at any time, on a given conn, since there can be only 1 service proc 25936 * running on a queue at any time. 25937 */ 25938 void 25939 conn_drain_insert(conn_t *connp) 25940 { 25941 idl_t *idl; 25942 uint_t index; 25943 25944 mutex_enter(&connp->conn_lock); 25945 if (connp->conn_state_flags & CONN_CLOSING) { 25946 /* 25947 * The conn is closing as a result of which CONN_CLOSING 25948 * is set. Return. 25949 */ 25950 mutex_exit(&connp->conn_lock); 25951 return; 25952 } else if (connp->conn_idl == NULL) { 25953 /* 25954 * Assign the next drain list round robin. We dont' use 25955 * a lock, and thus it may not be strictly round robin. 25956 * Atomicity of load/stores is enough to make sure that 25957 * conn_drain_list_index is always within bounds. 25958 */ 25959 index = conn_drain_list_index; 25960 ASSERT(index < conn_drain_list_cnt); 25961 connp->conn_idl = &conn_drain_list[index]; 25962 index++; 25963 if (index == conn_drain_list_cnt) 25964 index = 0; 25965 conn_drain_list_index = index; 25966 } 25967 mutex_exit(&connp->conn_lock); 25968 25969 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 25970 if ((connp->conn_drain_prev != NULL) || 25971 (connp->conn_state_flags & CONN_CLOSING)) { 25972 /* 25973 * The conn is already in the drain list, OR 25974 * the conn is closing. We need to check again for 25975 * the closing case again since close can happen 25976 * after we drop the conn_lock, and before we 25977 * acquire the CONN_DRAIN_LIST_LOCK. 25978 */ 25979 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 25980 return; 25981 } else { 25982 idl = connp->conn_idl; 25983 } 25984 25985 /* 25986 * The conn is not in the drain list. Insert it at the 25987 * tail of the drain list. The drain list is circular 25988 * and doubly linked. idl_conn points to the 1st element 25989 * in the list. 25990 */ 25991 if (idl->idl_conn == NULL) { 25992 idl->idl_conn = connp; 25993 connp->conn_drain_next = connp; 25994 connp->conn_drain_prev = connp; 25995 } else { 25996 conn_t *head = idl->idl_conn; 25997 25998 connp->conn_drain_next = head; 25999 connp->conn_drain_prev = head->conn_drain_prev; 26000 head->conn_drain_prev->conn_drain_next = connp; 26001 head->conn_drain_prev = connp; 26002 } 26003 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 26004 } 26005 26006 /* 26007 * This conn is closing, and we are called from ip_close. OR 26008 * This conn has been serviced by ip_wsrv, and we need to do the tail 26009 * processing. 26010 * If this conn is part of the drain list, we may need to sustain the drain 26011 * process by qenabling the next conn in the drain list. We may also need to 26012 * remove this conn from the list, if it is done. 26013 */ 26014 static void 26015 conn_drain_tail(conn_t *connp, boolean_t closing) 26016 { 26017 idl_t *idl; 26018 26019 /* 26020 * connp->conn_idl is stable at this point, and no lock is needed 26021 * to check it. If we are called from ip_close, close has already 26022 * set CONN_CLOSING, thus freezing the value of conn_idl, and 26023 * called us only because conn_idl is non-null. If we are called thru 26024 * service, conn_idl could be null, but it cannot change because 26025 * service is single-threaded per queue, and there cannot be another 26026 * instance of service trying to call conn_drain_insert on this conn 26027 * now. 26028 */ 26029 ASSERT(!closing || (connp->conn_idl != NULL)); 26030 26031 /* 26032 * If connp->conn_idl is null, the conn has not been inserted into any 26033 * drain list even once since creation of the conn. Just return. 26034 */ 26035 if (connp->conn_idl == NULL) 26036 return; 26037 26038 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 26039 26040 if (connp->conn_drain_prev == NULL) { 26041 /* This conn is currently not in the drain list. */ 26042 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 26043 return; 26044 } 26045 idl = connp->conn_idl; 26046 if (idl->idl_conn_draining == connp) { 26047 /* 26048 * This conn is the current drainer. If this is the last conn 26049 * in the drain list, we need to do more checks, in the 'if' 26050 * below. Otherwwise we need to just qenable the next conn, 26051 * to sustain the draining, and is handled in the 'else' 26052 * below. 26053 */ 26054 if (connp->conn_drain_next == idl->idl_conn) { 26055 /* 26056 * This conn is the last in this list. This round 26057 * of draining is complete. If idl_repeat is set, 26058 * it means another flow enabling has happened from 26059 * the driver/streams and we need to another round 26060 * of draining. 26061 * If there are more than 2 conns in the drain list, 26062 * do a left rotate by 1, so that all conns except the 26063 * conn at the head move towards the head by 1, and the 26064 * the conn at the head goes to the tail. This attempts 26065 * a more even share for all queues that are being 26066 * drained. 26067 */ 26068 if ((connp->conn_drain_next != connp) && 26069 (idl->idl_conn->conn_drain_next != connp)) { 26070 idl->idl_conn = idl->idl_conn->conn_drain_next; 26071 } 26072 if (idl->idl_repeat) { 26073 qenable(idl->idl_conn->conn_wq); 26074 idl->idl_conn_draining = idl->idl_conn; 26075 idl->idl_repeat = 0; 26076 } else { 26077 idl->idl_conn_draining = NULL; 26078 } 26079 } else { 26080 /* 26081 * If the next queue that we are now qenable'ing, 26082 * is closing, it will remove itself from this list 26083 * and qenable the subsequent queue in ip_close(). 26084 * Serialization is acheived thru idl_lock. 26085 */ 26086 qenable(connp->conn_drain_next->conn_wq); 26087 idl->idl_conn_draining = connp->conn_drain_next; 26088 } 26089 } 26090 if (!connp->conn_did_putbq || closing) { 26091 /* 26092 * Remove ourself from the drain list, if we did not do 26093 * a putbq, or if the conn is closing. 26094 * Note: It is possible that q->q_first is non-null. It means 26095 * that these messages landed after we did a enableok() in 26096 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 26097 * service them. 26098 */ 26099 if (connp->conn_drain_next == connp) { 26100 /* Singleton in the list */ 26101 ASSERT(connp->conn_drain_prev == connp); 26102 idl->idl_conn = NULL; 26103 idl->idl_conn_draining = NULL; 26104 } else { 26105 connp->conn_drain_prev->conn_drain_next = 26106 connp->conn_drain_next; 26107 connp->conn_drain_next->conn_drain_prev = 26108 connp->conn_drain_prev; 26109 if (idl->idl_conn == connp) 26110 idl->idl_conn = connp->conn_drain_next; 26111 ASSERT(idl->idl_conn_draining != connp); 26112 26113 } 26114 connp->conn_drain_next = NULL; 26115 connp->conn_drain_prev = NULL; 26116 } 26117 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 26118 } 26119 26120 /* 26121 * Write service routine. Shared perimeter entry point. 26122 * ip_wsrv can be called in any of the following ways. 26123 * 1. The device queue's messages has fallen below the low water mark 26124 * and STREAMS has backenabled the ill_wq. We walk thru all the 26125 * the drain lists and backenable the first conn in each list. 26126 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 26127 * qenabled non-tcp upper layers. We start dequeing messages and call 26128 * ip_wput for each message. 26129 */ 26130 26131 void 26132 ip_wsrv(queue_t *q) 26133 { 26134 conn_t *connp; 26135 ill_t *ill; 26136 mblk_t *mp; 26137 26138 if (q->q_next) { 26139 ill = (ill_t *)q->q_ptr; 26140 if (ill->ill_state_flags == 0) { 26141 /* 26142 * The device flow control has opened up. 26143 * Walk through conn drain lists and qenable the 26144 * first conn in each list. This makes sense only 26145 * if the stream is fully plumbed and setup. 26146 * Hence the if check above. 26147 */ 26148 ip1dbg(("ip_wsrv: walking\n")); 26149 conn_walk_drain(); 26150 } 26151 return; 26152 } 26153 26154 connp = Q_TO_CONN(q); 26155 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 26156 26157 /* 26158 * 1. Set conn_draining flag to signal that service is active. 26159 * 26160 * 2. ip_output determines whether it has been called from service, 26161 * based on the last parameter. If it is IP_WSRV it concludes it 26162 * has been called from service. 26163 * 26164 * 3. Message ordering is preserved by the following logic. 26165 * i. A directly called ip_output (i.e. not thru service) will queue 26166 * the message at the tail, if conn_draining is set (i.e. service 26167 * is running) or if q->q_first is non-null. 26168 * 26169 * ii. If ip_output is called from service, and if ip_output cannot 26170 * putnext due to flow control, it does a putbq. 26171 * 26172 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 26173 * (causing an infinite loop). 26174 */ 26175 ASSERT(!connp->conn_did_putbq); 26176 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 26177 connp->conn_draining = 1; 26178 noenable(q); 26179 while ((mp = getq(q)) != NULL) { 26180 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 26181 if (connp->conn_did_putbq) { 26182 /* ip_wput did a putbq */ 26183 break; 26184 } 26185 } 26186 /* 26187 * At this point, a thread coming down from top, calling 26188 * ip_wput, may end up queueing the message. We have not yet 26189 * enabled the queue, so ip_wsrv won't be called again. 26190 * To avoid this race, check q->q_first again (in the loop) 26191 * If the other thread queued the message before we call 26192 * enableok(), we will catch it in the q->q_first check. 26193 * If the other thread queues the message after we call 26194 * enableok(), ip_wsrv will be called again by STREAMS. 26195 */ 26196 connp->conn_draining = 0; 26197 enableok(q); 26198 } 26199 26200 /* Enable the next conn for draining */ 26201 conn_drain_tail(connp, B_FALSE); 26202 26203 connp->conn_did_putbq = 0; 26204 } 26205 26206 /* 26207 * Walk the list of all conn's calling the function provided with the 26208 * specified argument for each. Note that this only walks conn's that 26209 * have been bound. 26210 * Applies to both IPv4 and IPv6. 26211 */ 26212 static void 26213 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid) 26214 { 26215 conn_walk_fanout_table(ipcl_udp_fanout, ipcl_udp_fanout_size, 26216 func, arg, zoneid); 26217 conn_walk_fanout_table(ipcl_conn_fanout, ipcl_conn_fanout_size, 26218 func, arg, zoneid); 26219 conn_walk_fanout_table(ipcl_bind_fanout, ipcl_bind_fanout_size, 26220 func, arg, zoneid); 26221 conn_walk_fanout_table(ipcl_proto_fanout, 26222 A_CNT(ipcl_proto_fanout), func, arg, zoneid); 26223 conn_walk_fanout_table(ipcl_proto_fanout_v6, 26224 A_CNT(ipcl_proto_fanout_v6), func, arg, zoneid); 26225 } 26226 26227 /* 26228 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 26229 * of conns that need to be drained, check if drain is already in progress. 26230 * If so set the idl_repeat bit, indicating that the last conn in the list 26231 * needs to reinitiate the drain once again, for the list. If drain is not 26232 * in progress for the list, initiate the draining, by qenabling the 1st 26233 * conn in the list. The drain is self-sustaining, each qenabled conn will 26234 * in turn qenable the next conn, when it is done/blocked/closing. 26235 */ 26236 static void 26237 conn_walk_drain(void) 26238 { 26239 int i; 26240 idl_t *idl; 26241 26242 IP_STAT(ip_conn_walk_drain); 26243 26244 for (i = 0; i < conn_drain_list_cnt; i++) { 26245 idl = &conn_drain_list[i]; 26246 mutex_enter(&idl->idl_lock); 26247 if (idl->idl_conn == NULL) { 26248 mutex_exit(&idl->idl_lock); 26249 continue; 26250 } 26251 /* 26252 * If this list is not being drained currently by 26253 * an ip_wsrv thread, start the process. 26254 */ 26255 if (idl->idl_conn_draining == NULL) { 26256 ASSERT(idl->idl_repeat == 0); 26257 qenable(idl->idl_conn->conn_wq); 26258 idl->idl_conn_draining = idl->idl_conn; 26259 } else { 26260 idl->idl_repeat = 1; 26261 } 26262 mutex_exit(&idl->idl_lock); 26263 } 26264 } 26265 26266 /* 26267 * Walk an conn hash table of `count' buckets, calling func for each entry. 26268 */ 26269 static void 26270 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 26271 zoneid_t zoneid) 26272 { 26273 conn_t *connp; 26274 26275 while (count-- > 0) { 26276 mutex_enter(&connfp->connf_lock); 26277 for (connp = connfp->connf_head; connp != NULL; 26278 connp = connp->conn_next) { 26279 if (zoneid == GLOBAL_ZONEID || 26280 zoneid == connp->conn_zoneid) { 26281 CONN_INC_REF(connp); 26282 mutex_exit(&connfp->connf_lock); 26283 (*func)(connp, arg); 26284 mutex_enter(&connfp->connf_lock); 26285 CONN_DEC_REF(connp); 26286 } 26287 } 26288 mutex_exit(&connfp->connf_lock); 26289 connfp++; 26290 } 26291 } 26292 26293 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 26294 static void 26295 conn_report1(conn_t *connp, void *mp) 26296 { 26297 char buf1[INET6_ADDRSTRLEN]; 26298 char buf2[INET6_ADDRSTRLEN]; 26299 uint_t print_len, buf_len; 26300 26301 ASSERT(connp != NULL); 26302 26303 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 26304 if (buf_len <= 0) 26305 return; 26306 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 26307 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 26308 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 26309 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 26310 "%5d %s/%05d %s/%05d\n", 26311 (void *)connp, (void *)CONNP_TO_RQ(connp), 26312 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 26313 buf1, connp->conn_lport, 26314 buf2, connp->conn_fport); 26315 if (print_len < buf_len) { 26316 ((mblk_t *)mp)->b_wptr += print_len; 26317 } else { 26318 ((mblk_t *)mp)->b_wptr += buf_len; 26319 } 26320 } 26321 26322 /* 26323 * Named Dispatch routine to produce a formatted report on all conns 26324 * that are listed in one of the fanout tables. 26325 * This report is accessed by using the ndd utility to "get" ND variable 26326 * "ip_conn_status". 26327 */ 26328 /* ARGSUSED */ 26329 static int 26330 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 26331 { 26332 (void) mi_mpprintf(mp, 26333 "CONN " MI_COL_HDRPAD_STR 26334 "rfq " MI_COL_HDRPAD_STR 26335 "stq " MI_COL_HDRPAD_STR 26336 " zone local remote"); 26337 26338 /* 26339 * Because of the ndd constraint, at most we can have 64K buffer 26340 * to put in all conn info. So to be more efficient, just 26341 * allocate a 64K buffer here, assuming we need that large buffer. 26342 * This should be OK as only privileged processes can do ndd /dev/ip. 26343 */ 26344 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 26345 /* The following may work even if we cannot get a large buf. */ 26346 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 26347 return (0); 26348 } 26349 26350 conn_walk_fanout(conn_report1, mp->b_cont, Q_TO_CONN(q)->conn_zoneid); 26351 return (0); 26352 } 26353 26354 /* 26355 * Determine if the ill and multicast aspects of that packets 26356 * "matches" the conn. 26357 */ 26358 boolean_t 26359 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 26360 zoneid_t zoneid) 26361 { 26362 ill_t *in_ill; 26363 boolean_t found; 26364 ipif_t *ipif; 26365 ire_t *ire; 26366 ipaddr_t dst, src; 26367 26368 dst = ipha->ipha_dst; 26369 src = ipha->ipha_src; 26370 26371 /* 26372 * conn_incoming_ill is set by IP_BOUND_IF which limits 26373 * unicast, broadcast and multicast reception to 26374 * conn_incoming_ill. conn_wantpacket itself is called 26375 * only for BROADCAST and multicast. 26376 * 26377 * 1) ip_rput supresses duplicate broadcasts if the ill 26378 * is part of a group. Hence, we should be receiving 26379 * just one copy of broadcast for the whole group. 26380 * Thus, if it is part of the group the packet could 26381 * come on any ill of the group and hence we need a 26382 * match on the group. Otherwise, match on ill should 26383 * be sufficient. 26384 * 26385 * 2) ip_rput does not suppress duplicate multicast packets. 26386 * If there are two interfaces in a ill group and we have 26387 * 2 applications (conns) joined a multicast group G on 26388 * both the interfaces, ilm_lookup_ill filter in ip_rput 26389 * will give us two packets because we join G on both the 26390 * interfaces rather than nominating just one interface 26391 * for receiving multicast like broadcast above. So, 26392 * we have to call ilg_lookup_ill to filter out duplicate 26393 * copies, if ill is part of a group. 26394 */ 26395 in_ill = connp->conn_incoming_ill; 26396 if (in_ill != NULL) { 26397 if (in_ill->ill_group == NULL) { 26398 if (in_ill != ill) 26399 return (B_FALSE); 26400 } else if (in_ill->ill_group != ill->ill_group) { 26401 return (B_FALSE); 26402 } 26403 } 26404 26405 if (!CLASSD(dst)) { 26406 if (IPCL_ZONE_MATCH(connp, zoneid)) 26407 return (B_TRUE); 26408 /* 26409 * The conn is in a different zone; we need to check that this 26410 * broadcast address is configured in the application's zone and 26411 * on one ill in the group. 26412 */ 26413 ipif = ipif_get_next_ipif(NULL, ill); 26414 if (ipif == NULL) 26415 return (B_FALSE); 26416 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 26417 connp->conn_zoneid, NULL, 26418 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 26419 ipif_refrele(ipif); 26420 if (ire != NULL) { 26421 ire_refrele(ire); 26422 return (B_TRUE); 26423 } else { 26424 return (B_FALSE); 26425 } 26426 } 26427 26428 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 26429 connp->conn_zoneid == zoneid) { 26430 /* 26431 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 26432 * disabled, therefore we don't dispatch the multicast packet to 26433 * the sending zone. 26434 */ 26435 return (B_FALSE); 26436 } 26437 26438 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 26439 connp->conn_zoneid != zoneid) { 26440 /* 26441 * Multicast packet on the loopback interface: we only match 26442 * conns who joined the group in the specified zone. 26443 */ 26444 return (B_FALSE); 26445 } 26446 26447 if (connp->conn_multi_router) { 26448 /* multicast packet and multicast router socket: send up */ 26449 return (B_TRUE); 26450 } 26451 26452 mutex_enter(&connp->conn_lock); 26453 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 26454 mutex_exit(&connp->conn_lock); 26455 return (found); 26456 } 26457 26458 /* 26459 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 26460 */ 26461 /* ARGSUSED */ 26462 static void 26463 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 26464 { 26465 ill_t *ill = (ill_t *)q->q_ptr; 26466 mblk_t *mp1, *mp2; 26467 ipif_t *ipif; 26468 int err = 0; 26469 conn_t *connp = NULL; 26470 ipsq_t *ipsq; 26471 arc_t *arc; 26472 26473 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 26474 26475 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 26476 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 26477 26478 ASSERT(IAM_WRITER_ILL(ill)); 26479 mp2 = mp->b_cont; 26480 mp->b_cont = NULL; 26481 26482 /* 26483 * We have now received the arp bringup completion message 26484 * from ARP. Mark the arp bringup as done. Also if the arp 26485 * stream has already started closing, send up the AR_ARP_CLOSING 26486 * ack now since ARP is waiting in close for this ack. 26487 */ 26488 mutex_enter(&ill->ill_lock); 26489 ill->ill_arp_bringup_pending = 0; 26490 if (ill->ill_arp_closing) { 26491 mutex_exit(&ill->ill_lock); 26492 /* Let's reuse the mp for sending the ack */ 26493 arc = (arc_t *)mp->b_rptr; 26494 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 26495 arc->arc_cmd = AR_ARP_CLOSING; 26496 qreply(q, mp); 26497 } else { 26498 mutex_exit(&ill->ill_lock); 26499 freeb(mp); 26500 } 26501 26502 /* We should have an IOCTL waiting on this. */ 26503 ipsq = ill->ill_phyint->phyint_ipsq; 26504 ipif = ipsq->ipsq_pending_ipif; 26505 mp1 = ipsq_pending_mp_get(ipsq, &connp); 26506 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 26507 if (mp1 == NULL) { 26508 /* bringup was aborted by the user */ 26509 freemsg(mp2); 26510 return; 26511 } 26512 ASSERT(connp != NULL); 26513 q = CONNP_TO_WQ(connp); 26514 /* 26515 * If the DL_BIND_REQ fails, it is noted 26516 * in arc_name_offset. 26517 */ 26518 err = *((int *)mp2->b_rptr); 26519 if (err == 0) { 26520 if (ipif->ipif_isv6) { 26521 if ((err = ipif_up_done_v6(ipif)) != 0) 26522 ip0dbg(("ip_arp_done: init failed\n")); 26523 } else { 26524 if ((err = ipif_up_done(ipif)) != 0) 26525 ip0dbg(("ip_arp_done: init failed\n")); 26526 } 26527 } else { 26528 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 26529 } 26530 26531 freemsg(mp2); 26532 26533 if ((err == 0) && (ill->ill_up_ipifs)) { 26534 err = ill_up_ipifs(ill, q, mp1); 26535 if (err == EINPROGRESS) 26536 return; 26537 } 26538 26539 if (ill->ill_up_ipifs) { 26540 ill_group_cleanup(ill); 26541 } 26542 26543 /* 26544 * The ioctl must complete now without EINPROGRESS 26545 * since ipsq_pending_mp_get has removed the ioctl mblk 26546 * from ipsq_pending_mp. Otherwise the ioctl will be 26547 * stuck for ever in the ipsq. 26548 */ 26549 ASSERT(err != EINPROGRESS); 26550 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipif, ipsq); 26551 } 26552 26553 /* Allocate the private structure */ 26554 static int 26555 ip_priv_alloc(void **bufp) 26556 { 26557 void *buf; 26558 26559 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 26560 return (ENOMEM); 26561 26562 *bufp = buf; 26563 return (0); 26564 } 26565 26566 /* Function to delete the private structure */ 26567 void 26568 ip_priv_free(void *buf) 26569 { 26570 ASSERT(buf != NULL); 26571 kmem_free(buf, sizeof (ip_priv_t)); 26572 } 26573 26574 /* 26575 * The entry point for IPPF processing. 26576 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 26577 * routine just returns. 26578 * 26579 * When called, ip_process generates an ipp_packet_t structure 26580 * which holds the state information for this packet and invokes the 26581 * the classifier (via ipp_packet_process). The classification, depending on 26582 * configured filters, results in a list of actions for this packet. Invoking 26583 * an action may cause the packet to be dropped, in which case the resulting 26584 * mblk (*mpp) is NULL. proc indicates the callout position for 26585 * this packet and ill_index is the interface this packet on or will leave 26586 * on (inbound and outbound resp.). 26587 */ 26588 void 26589 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 26590 { 26591 mblk_t *mp; 26592 ip_priv_t *priv; 26593 ipp_action_id_t aid; 26594 int rc = 0; 26595 ipp_packet_t *pp; 26596 #define IP_CLASS "ip" 26597 26598 /* If the classifier is not loaded, return */ 26599 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 26600 return; 26601 } 26602 26603 mp = *mpp; 26604 ASSERT(mp != NULL); 26605 26606 /* Allocate the packet structure */ 26607 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 26608 if (rc != 0) { 26609 *mpp = NULL; 26610 freemsg(mp); 26611 return; 26612 } 26613 26614 /* Allocate the private structure */ 26615 rc = ip_priv_alloc((void **)&priv); 26616 if (rc != 0) { 26617 *mpp = NULL; 26618 freemsg(mp); 26619 ipp_packet_free(pp); 26620 return; 26621 } 26622 priv->proc = proc; 26623 priv->ill_index = ill_index; 26624 ipp_packet_set_private(pp, priv, ip_priv_free); 26625 ipp_packet_set_data(pp, mp); 26626 26627 /* Invoke the classifier */ 26628 rc = ipp_packet_process(&pp); 26629 if (pp != NULL) { 26630 mp = ipp_packet_get_data(pp); 26631 ipp_packet_free(pp); 26632 if (rc != 0) { 26633 freemsg(mp); 26634 *mpp = NULL; 26635 } 26636 } else { 26637 *mpp = NULL; 26638 } 26639 #undef IP_CLASS 26640 } 26641 26642 /* 26643 * Propagate a multicast group membership operation (add/drop) on 26644 * all the interfaces crossed by the related multirt routes. 26645 * The call is considered successful if the operation succeeds 26646 * on at least one interface. 26647 */ 26648 static int 26649 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 26650 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 26651 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 26652 mblk_t *first_mp) 26653 { 26654 ire_t *ire_gw; 26655 irb_t *irb; 26656 int error = 0; 26657 opt_restart_t *or; 26658 26659 irb = ire->ire_bucket; 26660 ASSERT(irb != NULL); 26661 26662 ASSERT(DB_TYPE(first_mp) == M_CTL); 26663 26664 or = (opt_restart_t *)first_mp->b_rptr; 26665 IRB_REFHOLD(irb); 26666 for (; ire != NULL; ire = ire->ire_next) { 26667 if ((ire->ire_flags & RTF_MULTIRT) == 0) 26668 continue; 26669 if (ire->ire_addr != group) 26670 continue; 26671 26672 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 26673 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 26674 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE); 26675 /* No resolver exists for the gateway; skip this ire. */ 26676 if (ire_gw == NULL) 26677 continue; 26678 26679 /* 26680 * This function can return EINPROGRESS. If so the operation 26681 * will be restarted from ip_restart_optmgmt which will 26682 * call ip_opt_set and option processing will restart for 26683 * this option. So we may end up calling 'fn' more than once. 26684 * This requires that 'fn' is idempotent except for the 26685 * return value. The operation is considered a success if 26686 * it succeeds at least once on any one interface. 26687 */ 26688 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 26689 NULL, fmode, src, first_mp); 26690 if (error == 0) 26691 or->or_private = CGTP_MCAST_SUCCESS; 26692 26693 if (ip_debug > 0) { 26694 ulong_t off; 26695 char *ksym; 26696 ksym = kobj_getsymname((uintptr_t)fn, &off); 26697 ip2dbg(("ip_multirt_apply_membership: " 26698 "called %s, multirt group 0x%08x via itf 0x%08x, " 26699 "error %d [success %u]\n", 26700 ksym ? ksym : "?", 26701 ntohl(group), ntohl(ire_gw->ire_src_addr), 26702 error, or->or_private)); 26703 } 26704 26705 ire_refrele(ire_gw); 26706 if (error == EINPROGRESS) { 26707 IRB_REFRELE(irb); 26708 return (error); 26709 } 26710 } 26711 IRB_REFRELE(irb); 26712 /* 26713 * Consider the call as successful if we succeeded on at least 26714 * one interface. Otherwise, return the last encountered error. 26715 */ 26716 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 26717 } 26718 26719 26720 /* 26721 * Issue a warning regarding a route crossing an interface with an 26722 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 26723 * amount of time is logged. 26724 */ 26725 static void 26726 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 26727 { 26728 hrtime_t current = gethrtime(); 26729 char buf[16]; 26730 26731 /* Convert interval in ms to hrtime in ns */ 26732 if (multirt_bad_mtu_last_time + 26733 ((hrtime_t)ip_multirt_log_interval * (hrtime_t)1000000) <= 26734 current) { 26735 cmn_err(CE_WARN, "ip: ignoring multiroute " 26736 "to %s, incorrect MTU %u (expected %u)\n", 26737 ip_dot_addr(ire->ire_addr, buf), 26738 ire->ire_max_frag, max_frag); 26739 26740 multirt_bad_mtu_last_time = current; 26741 } 26742 } 26743 26744 26745 /* 26746 * Get the CGTP (multirouting) filtering status. 26747 * If 0, the CGTP hooks are transparent. 26748 */ 26749 /* ARGSUSED */ 26750 static int 26751 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 26752 { 26753 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 26754 26755 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 26756 return (0); 26757 } 26758 26759 26760 /* 26761 * Set the CGTP (multirouting) filtering status. 26762 * If the status is changed from active to transparent 26763 * or from transparent to active, forward the new status 26764 * to the filtering module (if loaded). 26765 */ 26766 /* ARGSUSED */ 26767 static int 26768 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 26769 cred_t *ioc_cr) 26770 { 26771 long new_value; 26772 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 26773 26774 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 26775 new_value < 0 || new_value > 1) { 26776 return (EINVAL); 26777 } 26778 26779 /* 26780 * Do not enable CGTP filtering - thus preventing the hooks 26781 * from being invoked - if the version number of the 26782 * filtering module hooks does not match. 26783 */ 26784 if ((ip_cgtp_filter_ops != NULL) && 26785 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 26786 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 26787 "(module hooks version %d, expecting %d)\n", 26788 ip_cgtp_filter_ops->cfo_filter_rev, CGTP_FILTER_REV); 26789 return (ENOTSUP); 26790 } 26791 26792 if ((!*ip_cgtp_filter_value) && new_value) { 26793 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 26794 ip_cgtp_filter_ops == NULL ? 26795 " (module not loaded)" : ""); 26796 } 26797 if (*ip_cgtp_filter_value && (!new_value)) { 26798 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 26799 ip_cgtp_filter_ops == NULL ? 26800 " (module not loaded)" : ""); 26801 } 26802 26803 if (ip_cgtp_filter_ops != NULL) { 26804 int res; 26805 if ((res = ip_cgtp_filter_ops->cfo_change_state(new_value))) { 26806 return (res); 26807 } 26808 } 26809 26810 *ip_cgtp_filter_value = (boolean_t)new_value; 26811 26812 return (0); 26813 } 26814 26815 26816 /* 26817 * Return the expected CGTP hooks version number. 26818 */ 26819 int 26820 ip_cgtp_filter_supported(void) 26821 { 26822 return (ip_cgtp_filter_rev); 26823 } 26824 26825 26826 /* 26827 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 26828 * or by invoking this function. In the first case, the version number 26829 * of the registered structure is checked at hooks activation time 26830 * in ip_cgtp_filter_set(). 26831 */ 26832 int 26833 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 26834 { 26835 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 26836 return (ENOTSUP); 26837 26838 ip_cgtp_filter_ops = ops; 26839 return (0); 26840 } 26841 26842 static squeue_func_t 26843 ip_squeue_switch(int val) 26844 { 26845 squeue_func_t rval = squeue_fill; 26846 26847 switch (val) { 26848 case IP_SQUEUE_ENTER_NODRAIN: 26849 rval = squeue_enter_nodrain; 26850 break; 26851 case IP_SQUEUE_ENTER: 26852 rval = squeue_enter; 26853 break; 26854 default: 26855 break; 26856 } 26857 return (rval); 26858 } 26859 26860 /* ARGSUSED */ 26861 static int 26862 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 26863 caddr_t addr, cred_t *cr) 26864 { 26865 int *v = (int *)addr; 26866 long new_value; 26867 26868 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 26869 return (EINVAL); 26870 26871 ip_input_proc = ip_squeue_switch(new_value); 26872 *v = new_value; 26873 return (0); 26874 } 26875 26876 /* ARGSUSED */ 26877 static int 26878 ip_int_set(queue_t *q, mblk_t *mp, char *value, 26879 caddr_t addr, cred_t *cr) 26880 { 26881 int *v = (int *)addr; 26882 long new_value; 26883 26884 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 26885 return (EINVAL); 26886 26887 *v = new_value; 26888 return (0); 26889 } 26890 26891 static void 26892 ip_kstat_init(void) 26893 { 26894 ip_named_kstat_t template = { 26895 { "forwarding", KSTAT_DATA_UINT32, 0 }, 26896 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 26897 { "inReceives", KSTAT_DATA_UINT32, 0 }, 26898 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 26899 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 26900 { "forwDatagrams", KSTAT_DATA_UINT32, 0 }, 26901 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 26902 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 26903 { "inDelivers", KSTAT_DATA_UINT32, 0 }, 26904 { "outRequests", KSTAT_DATA_UINT32, 0 }, 26905 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 26906 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 26907 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 26908 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 26909 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 26910 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 26911 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 26912 { "fragFails", KSTAT_DATA_UINT32, 0 }, 26913 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 26914 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 26915 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 26916 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 26917 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 26918 { "inErrs", KSTAT_DATA_UINT32, 0 }, 26919 { "noPorts", KSTAT_DATA_UINT32, 0 }, 26920 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 26921 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 26922 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 26923 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 26924 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 26925 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 26926 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 26927 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 26928 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 26929 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 26930 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 26931 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 26932 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 26933 }; 26934 26935 ip_mibkp = kstat_create("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 26936 NUM_OF_FIELDS(ip_named_kstat_t), 26937 0); 26938 if (!ip_mibkp) 26939 return; 26940 26941 template.forwarding.value.ui32 = WE_ARE_FORWARDING ? 1:2; 26942 template.defaultTTL.value.ui32 = (uint32_t)ip_def_ttl; 26943 template.reasmTimeout.value.ui32 = ip_g_frag_timeout; 26944 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 26945 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 26946 26947 template.netToMediaEntrySize.value.i32 = 26948 sizeof (mib2_ipNetToMediaEntry_t); 26949 26950 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 26951 26952 bcopy(&template, ip_mibkp->ks_data, sizeof (template)); 26953 26954 ip_mibkp->ks_update = ip_kstat_update; 26955 26956 kstat_install(ip_mibkp); 26957 } 26958 26959 static void 26960 ip_kstat_fini(void) 26961 { 26962 26963 if (ip_mibkp != NULL) { 26964 kstat_delete(ip_mibkp); 26965 ip_mibkp = NULL; 26966 } 26967 } 26968 26969 static int 26970 ip_kstat_update(kstat_t *kp, int rw) 26971 { 26972 ip_named_kstat_t *ipkp; 26973 26974 if (!kp || !kp->ks_data) 26975 return (EIO); 26976 26977 if (rw == KSTAT_WRITE) 26978 return (EACCES); 26979 26980 ipkp = (ip_named_kstat_t *)kp->ks_data; 26981 26982 ipkp->forwarding.value.ui32 = ip_mib.ipForwarding; 26983 ipkp->defaultTTL.value.ui32 = ip_mib.ipDefaultTTL; 26984 ipkp->inReceives.value.ui32 = ip_mib.ipInReceives; 26985 ipkp->inHdrErrors.value.ui32 = ip_mib.ipInHdrErrors; 26986 ipkp->inAddrErrors.value.ui32 = ip_mib.ipInAddrErrors; 26987 ipkp->forwDatagrams.value.ui32 = ip_mib.ipForwDatagrams; 26988 ipkp->inUnknownProtos.value.ui32 = ip_mib.ipInUnknownProtos; 26989 ipkp->inDiscards.value.ui32 = ip_mib.ipInDiscards; 26990 ipkp->inDelivers.value.ui32 = ip_mib.ipInDelivers; 26991 ipkp->outRequests.value.ui32 = ip_mib.ipOutRequests; 26992 ipkp->outDiscards.value.ui32 = ip_mib.ipOutDiscards; 26993 ipkp->outNoRoutes.value.ui32 = ip_mib.ipOutNoRoutes; 26994 ipkp->reasmTimeout.value.ui32 = ip_mib.ipReasmTimeout; 26995 ipkp->reasmReqds.value.ui32 = ip_mib.ipReasmReqds; 26996 ipkp->reasmOKs.value.ui32 = ip_mib.ipReasmOKs; 26997 ipkp->reasmFails.value.ui32 = ip_mib.ipReasmFails; 26998 ipkp->fragOKs.value.ui32 = ip_mib.ipFragOKs; 26999 ipkp->fragFails.value.ui32 = ip_mib.ipFragFails; 27000 ipkp->fragCreates.value.ui32 = ip_mib.ipFragCreates; 27001 27002 ipkp->routingDiscards.value.ui32 = ip_mib.ipRoutingDiscards; 27003 ipkp->inErrs.value.ui32 = ip_mib.tcpInErrs; 27004 ipkp->noPorts.value.ui32 = ip_mib.udpNoPorts; 27005 ipkp->inCksumErrs.value.ui32 = ip_mib.ipInCksumErrs; 27006 ipkp->reasmDuplicates.value.ui32 = ip_mib.ipReasmDuplicates; 27007 ipkp->reasmPartDups.value.ui32 = ip_mib.ipReasmPartDups; 27008 ipkp->forwProhibits.value.ui32 = ip_mib.ipForwProhibits; 27009 ipkp->udpInCksumErrs.value.ui32 = ip_mib.udpInCksumErrs; 27010 ipkp->udpInOverflows.value.ui32 = ip_mib.udpInOverflows; 27011 ipkp->rawipInOverflows.value.ui32 = ip_mib.rawipInOverflows; 27012 ipkp->ipsecInSucceeded.value.ui32 = ip_mib.ipsecInSucceeded; 27013 ipkp->ipsecInFailed.value.i32 = ip_mib.ipsecInFailed; 27014 27015 ipkp->inIPv6.value.ui32 = ip_mib.ipInIPv6; 27016 ipkp->outIPv6.value.ui32 = ip_mib.ipOutIPv6; 27017 ipkp->outSwitchIPv6.value.ui32 = ip_mib.ipOutSwitchIPv6; 27018 27019 return (0); 27020 } 27021 27022 static void 27023 icmp_kstat_init(void) 27024 { 27025 icmp_named_kstat_t template = { 27026 { "inMsgs", KSTAT_DATA_UINT32 }, 27027 { "inErrors", KSTAT_DATA_UINT32 }, 27028 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 27029 { "inTimeExcds", KSTAT_DATA_UINT32 }, 27030 { "inParmProbs", KSTAT_DATA_UINT32 }, 27031 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 27032 { "inRedirects", KSTAT_DATA_UINT32 }, 27033 { "inEchos", KSTAT_DATA_UINT32 }, 27034 { "inEchoReps", KSTAT_DATA_UINT32 }, 27035 { "inTimestamps", KSTAT_DATA_UINT32 }, 27036 { "inTimestampReps", KSTAT_DATA_UINT32 }, 27037 { "inAddrMasks", KSTAT_DATA_UINT32 }, 27038 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 27039 { "outMsgs", KSTAT_DATA_UINT32 }, 27040 { "outErrors", KSTAT_DATA_UINT32 }, 27041 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 27042 { "outTimeExcds", KSTAT_DATA_UINT32 }, 27043 { "outParmProbs", KSTAT_DATA_UINT32 }, 27044 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 27045 { "outRedirects", KSTAT_DATA_UINT32 }, 27046 { "outEchos", KSTAT_DATA_UINT32 }, 27047 { "outEchoReps", KSTAT_DATA_UINT32 }, 27048 { "outTimestamps", KSTAT_DATA_UINT32 }, 27049 { "outTimestampReps", KSTAT_DATA_UINT32 }, 27050 { "outAddrMasks", KSTAT_DATA_UINT32 }, 27051 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 27052 { "inChksumErrs", KSTAT_DATA_UINT32 }, 27053 { "inUnknowns", KSTAT_DATA_UINT32 }, 27054 { "inFragNeeded", KSTAT_DATA_UINT32 }, 27055 { "outFragNeeded", KSTAT_DATA_UINT32 }, 27056 { "outDrops", KSTAT_DATA_UINT32 }, 27057 { "inOverFlows", KSTAT_DATA_UINT32 }, 27058 { "inBadRedirects", KSTAT_DATA_UINT32 }, 27059 }; 27060 27061 icmp_mibkp = kstat_create("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 27062 NUM_OF_FIELDS(icmp_named_kstat_t), 27063 0); 27064 if (icmp_mibkp == NULL) 27065 return; 27066 27067 bcopy(&template, icmp_mibkp->ks_data, sizeof (template)); 27068 27069 icmp_mibkp->ks_update = icmp_kstat_update; 27070 27071 kstat_install(icmp_mibkp); 27072 } 27073 27074 static void 27075 icmp_kstat_fini(void) 27076 { 27077 27078 if (icmp_mibkp != NULL) { 27079 kstat_delete(icmp_mibkp); 27080 icmp_mibkp = NULL; 27081 } 27082 } 27083 27084 static int 27085 icmp_kstat_update(kstat_t *kp, int rw) 27086 { 27087 icmp_named_kstat_t *icmpkp; 27088 27089 if ((kp == NULL) || (kp->ks_data == NULL)) 27090 return (EIO); 27091 27092 if (rw == KSTAT_WRITE) 27093 return (EACCES); 27094 27095 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 27096 27097 icmpkp->inMsgs.value.ui32 = icmp_mib.icmpInMsgs; 27098 icmpkp->inErrors.value.ui32 = icmp_mib.icmpInErrors; 27099 icmpkp->inDestUnreachs.value.ui32 = icmp_mib.icmpInDestUnreachs; 27100 icmpkp->inTimeExcds.value.ui32 = icmp_mib.icmpInTimeExcds; 27101 icmpkp->inParmProbs.value.ui32 = icmp_mib.icmpInParmProbs; 27102 icmpkp->inSrcQuenchs.value.ui32 = icmp_mib.icmpInSrcQuenchs; 27103 icmpkp->inRedirects.value.ui32 = icmp_mib.icmpInRedirects; 27104 icmpkp->inEchos.value.ui32 = icmp_mib.icmpInEchos; 27105 icmpkp->inEchoReps.value.ui32 = icmp_mib.icmpInEchoReps; 27106 icmpkp->inTimestamps.value.ui32 = icmp_mib.icmpInTimestamps; 27107 icmpkp->inTimestampReps.value.ui32 = icmp_mib.icmpInTimestampReps; 27108 icmpkp->inAddrMasks.value.ui32 = icmp_mib.icmpInAddrMasks; 27109 icmpkp->inAddrMaskReps.value.ui32 = icmp_mib.icmpInAddrMaskReps; 27110 icmpkp->outMsgs.value.ui32 = icmp_mib.icmpOutMsgs; 27111 icmpkp->outErrors.value.ui32 = icmp_mib.icmpOutErrors; 27112 icmpkp->outDestUnreachs.value.ui32 = icmp_mib.icmpOutDestUnreachs; 27113 icmpkp->outTimeExcds.value.ui32 = icmp_mib.icmpOutTimeExcds; 27114 icmpkp->outParmProbs.value.ui32 = icmp_mib.icmpOutParmProbs; 27115 icmpkp->outSrcQuenchs.value.ui32 = icmp_mib.icmpOutSrcQuenchs; 27116 icmpkp->outRedirects.value.ui32 = icmp_mib.icmpOutRedirects; 27117 icmpkp->outEchos.value.ui32 = icmp_mib.icmpOutEchos; 27118 icmpkp->outEchoReps.value.ui32 = icmp_mib.icmpOutEchoReps; 27119 icmpkp->outTimestamps.value.ui32 = icmp_mib.icmpOutTimestamps; 27120 icmpkp->outTimestampReps.value.ui32 = icmp_mib.icmpOutTimestampReps; 27121 icmpkp->outAddrMasks.value.ui32 = icmp_mib.icmpOutAddrMasks; 27122 icmpkp->outAddrMaskReps.value.ui32 = icmp_mib.icmpOutAddrMaskReps; 27123 icmpkp->inCksumErrs.value.ui32 = icmp_mib.icmpInCksumErrs; 27124 icmpkp->inUnknowns.value.ui32 = icmp_mib.icmpInUnknowns; 27125 icmpkp->inFragNeeded.value.ui32 = icmp_mib.icmpInFragNeeded; 27126 icmpkp->outFragNeeded.value.ui32 = icmp_mib.icmpOutFragNeeded; 27127 icmpkp->outDrops.value.ui32 = icmp_mib.icmpOutDrops; 27128 icmpkp->inOverflows.value.ui32 = icmp_mib.icmpInOverflows; 27129 icmpkp->inBadRedirects.value.ui32 = icmp_mib.icmpInBadRedirects; 27130 27131 return (0); 27132 } 27133 27134 /* 27135 * This is the fanout function for raw socket opened for SCTP. Note 27136 * that it is called after SCTP checks that there is no socket which 27137 * wants a packet. Then before SCTP handles this out of the blue packet, 27138 * this function is called to see if there is any raw socket for SCTP. 27139 * If there is and it is bound to the correct address, the packet will 27140 * be sent to that socket. Note that only one raw socket can be bound to 27141 * a port. This is assured in ipcl_sctp_hash_insert(); 27142 */ 27143 void 27144 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 27145 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 27146 uint_t ipif_seqid, zoneid_t zoneid) 27147 { 27148 conn_t *connp; 27149 queue_t *rq; 27150 mblk_t *first_mp; 27151 boolean_t secure; 27152 ip6_t *ip6h; 27153 27154 first_mp = mp; 27155 if (mctl_present) { 27156 mp = first_mp->b_cont; 27157 secure = ipsec_in_is_secure(first_mp); 27158 ASSERT(mp != NULL); 27159 } else { 27160 secure = B_FALSE; 27161 } 27162 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 27163 27164 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha); 27165 if (connp == NULL) { 27166 sctp_ootb_input(first_mp, recv_ill, ipif_seqid, zoneid, 27167 mctl_present); 27168 return; 27169 } 27170 rq = connp->conn_rq; 27171 if (!canputnext(rq)) { 27172 CONN_DEC_REF(connp); 27173 BUMP_MIB(&ip_mib, rawipInOverflows); 27174 freemsg(first_mp); 27175 return; 27176 } 27177 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp) : 27178 CONN_INBOUND_POLICY_PRESENT_V6(connp)) || secure) { 27179 first_mp = ipsec_check_inbound_policy(first_mp, connp, 27180 (isv4 ? ipha : NULL), ip6h, mctl_present); 27181 if (first_mp == NULL) { 27182 CONN_DEC_REF(connp); 27183 return; 27184 } 27185 } 27186 /* 27187 * We probably should not send M_CTL message up to 27188 * raw socket. 27189 */ 27190 if (mctl_present) 27191 freeb(first_mp); 27192 27193 /* Initiate IPPF processing here if needed. */ 27194 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) || 27195 (!isv4 && IP6_IN_IPP(flags))) { 27196 ip_process(IPP_LOCAL_IN, &mp, 27197 recv_ill->ill_phyint->phyint_ifindex); 27198 if (mp == NULL) { 27199 CONN_DEC_REF(connp); 27200 return; 27201 } 27202 } 27203 27204 if (connp->conn_recvif || connp->conn_recvslla || 27205 ((connp->conn_ipv6_recvpktinfo || 27206 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 27207 (flags & IP_FF_IP6INFO))) { 27208 int in_flags = 0; 27209 27210 if (connp->conn_recvif || connp->conn_ipv6_recvpktinfo) { 27211 in_flags = IPF_RECVIF; 27212 } 27213 if (connp->conn_recvslla) { 27214 in_flags |= IPF_RECVSLLA; 27215 } 27216 if (isv4) { 27217 mp = ip_add_info(mp, recv_ill, in_flags); 27218 } else { 27219 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 27220 if (mp == NULL) { 27221 CONN_DEC_REF(connp); 27222 return; 27223 } 27224 } 27225 } 27226 27227 BUMP_MIB(&ip_mib, ipInDelivers); 27228 /* 27229 * We are sending the IPSEC_IN message also up. Refer 27230 * to comments above this function. 27231 */ 27232 putnext(rq, mp); 27233 CONN_DEC_REF(connp); 27234 } 27235 27236 /* 27237 * Martian Address Filtering [RFC 1812, Section 5.3.7] 27238 */ 27239 static boolean_t 27240 ip_no_forward(ipha_t *ipha, ill_t *ill) 27241 { 27242 ipaddr_t ip_src, ip_dst; 27243 ire_t *src_ire = NULL; 27244 27245 ip_src = ntohl(ipha->ipha_src); 27246 ip_dst = ntohl(ipha->ipha_dst); 27247 27248 if (ip_dst == INADDR_ANY) 27249 goto dont_forward; 27250 27251 if (IN_CLASSD(ip_src)) 27252 goto dont_forward; 27253 27254 if ((ip_src >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 27255 goto dont_forward; 27256 27257 if (IN_BADCLASS(ip_dst)) 27258 goto dont_forward; 27259 27260 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 27261 ALL_ZONES, NULL, MATCH_IRE_TYPE); 27262 if (src_ire != NULL) { 27263 ire_refrele(src_ire); 27264 goto dont_forward; 27265 } 27266 27267 return (B_FALSE); 27268 27269 dont_forward: 27270 if (ip_debug > 2) { 27271 printf("ip_no_forward: dropping packet received on %s\n", 27272 ill->ill_name); 27273 pr_addr_dbg("ip_no_forward: from src %s\n", 27274 AF_INET, &ipha->ipha_src); 27275 pr_addr_dbg("ip_no_forward: to dst %s\n", 27276 AF_INET, &ipha->ipha_dst); 27277 } 27278 BUMP_MIB(&ip_mib, ipForwProhibits); 27279 return (B_TRUE); 27280 } 27281 27282 static boolean_t 27283 ip_loopback_src_or_dst(ipha_t *ipha, ill_t *ill) 27284 { 27285 if (((ntohl(ipha->ipha_src) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) || 27286 ((ntohl(ipha->ipha_dst) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)) { 27287 if (ip_debug > 2) { 27288 if (ill != NULL) { 27289 printf("ip_loopback_src_or_dst: " 27290 "dropping packet received on %s\n", 27291 ill->ill_name); 27292 } else { 27293 printf("ip_loopback_src_or_dst: " 27294 "dropping packet\n"); 27295 } 27296 27297 pr_addr_dbg( 27298 "ip_loopback_src_or_dst: from src %s\n", 27299 AF_INET, &ipha->ipha_src); 27300 pr_addr_dbg( 27301 "ip_loopback_src_or_dst: to dst %s\n", 27302 AF_INET, &ipha->ipha_dst); 27303 } 27304 27305 BUMP_MIB(&ip_mib, ipInAddrErrors); 27306 return (B_TRUE); 27307 } 27308 return (B_FALSE); 27309 } 27310 27311 /* 27312 * Return B_TRUE if the buffers differ in length or content. 27313 * This is used for comparing extension header buffers. 27314 * Note that an extension header would be declared different 27315 * even if all that changed was the next header value in that header i.e. 27316 * what really changed is the next extension header. 27317 */ 27318 boolean_t 27319 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 27320 uint_t blen) 27321 { 27322 if (!b_valid) 27323 blen = 0; 27324 27325 if (alen != blen) 27326 return (B_TRUE); 27327 if (alen == 0) 27328 return (B_FALSE); /* Both zero length */ 27329 return (bcmp(abuf, bbuf, alen)); 27330 } 27331 27332 /* 27333 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 27334 * Return B_FALSE if memory allocation fails - don't change any state! 27335 */ 27336 boolean_t 27337 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 27338 const void *src, uint_t srclen) 27339 { 27340 void *dst; 27341 27342 if (!src_valid) 27343 srclen = 0; 27344 27345 ASSERT(*dstlenp == 0); 27346 if (src != NULL && srclen != 0) { 27347 dst = mi_alloc(srclen, BPRI_MED); 27348 if (dst == NULL) 27349 return (B_FALSE); 27350 } else { 27351 dst = NULL; 27352 } 27353 if (*dstp != NULL) 27354 mi_free(*dstp); 27355 *dstp = dst; 27356 *dstlenp = dst == NULL ? 0 : srclen; 27357 return (B_TRUE); 27358 } 27359 27360 /* 27361 * Replace what is in *dst, *dstlen with the source. 27362 * Assumes ip_allocbuf has already been called. 27363 */ 27364 void 27365 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 27366 const void *src, uint_t srclen) 27367 { 27368 if (!src_valid) 27369 srclen = 0; 27370 27371 ASSERT(*dstlenp == srclen); 27372 if (src != NULL && srclen != 0) 27373 bcopy(src, *dstp, srclen); 27374 } 27375 27376 /* 27377 * Free the storage pointed to by the members of an ip6_pkt_t. 27378 */ 27379 void 27380 ip6_pkt_free(ip6_pkt_t *ipp) 27381 { 27382 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 27383 27384 if (ipp->ipp_fields & IPPF_HOPOPTS) { 27385 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 27386 ipp->ipp_hopopts = NULL; 27387 ipp->ipp_hopoptslen = 0; 27388 } 27389 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 27390 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 27391 ipp->ipp_rtdstopts = NULL; 27392 ipp->ipp_rtdstoptslen = 0; 27393 } 27394 if (ipp->ipp_fields & IPPF_DSTOPTS) { 27395 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 27396 ipp->ipp_dstopts = NULL; 27397 ipp->ipp_dstoptslen = 0; 27398 } 27399 if (ipp->ipp_fields & IPPF_RTHDR) { 27400 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 27401 ipp->ipp_rthdr = NULL; 27402 ipp->ipp_rthdrlen = 0; 27403 } 27404 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 27405 IPPF_RTHDR); 27406 } 27407