1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/optcom.h> 73 #include <inet/kstatcom.h> 74 75 #include <netinet/igmp_var.h> 76 #include <netinet/ip6.h> 77 #include <netinet/icmp6.h> 78 #include <netinet/sctp.h> 79 80 #include <inet/ip.h> 81 #include <inet/ip_impl.h> 82 #include <inet/ip6.h> 83 #include <inet/ip6_asp.h> 84 #include <inet/tcp.h> 85 #include <inet/tcp_impl.h> 86 #include <inet/ip_multi.h> 87 #include <inet/ip_if.h> 88 #include <inet/ip_ire.h> 89 #include <inet/ip_ftable.h> 90 #include <inet/ip_rts.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/ipsec_info.h> 99 #include <inet/sadb.h> 100 #include <inet/ipsec_impl.h> 101 #include <sys/iphada.h> 102 #include <inet/tun.h> 103 #include <inet/ipdrop.h> 104 #include <inet/ip_netinfo.h> 105 106 #include <sys/ethernet.h> 107 #include <net/if_types.h> 108 #include <sys/cpuvar.h> 109 110 #include <ipp/ipp.h> 111 #include <ipp/ipp_impl.h> 112 #include <ipp/ipgpc/ipgpc.h> 113 114 #include <sys/multidata.h> 115 #include <sys/pattr.h> 116 117 #include <inet/ipclassifier.h> 118 #include <inet/sctp_ip.h> 119 #include <inet/sctp/sctp_impl.h> 120 #include <inet/udp_impl.h> 121 #include <inet/rawip_impl.h> 122 #include <inet/rts_impl.h> 123 #include <sys/sunddi.h> 124 125 #include <sys/tsol/label.h> 126 #include <sys/tsol/tnet.h> 127 128 #include <rpc/pmap_prot.h> 129 130 /* 131 * Values for squeue switch: 132 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 133 * IP_SQUEUE_ENTER: squeue_enter 134 * IP_SQUEUE_FILL: squeue_fill 135 */ 136 int ip_squeue_enter = 2; /* Setable in /etc/system */ 137 138 squeue_func_t ip_input_proc; 139 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 140 141 /* 142 * Setable in /etc/system 143 */ 144 int ip_poll_normal_ms = 100; 145 int ip_poll_normal_ticks = 0; 146 int ip_modclose_ackwait_ms = 3000; 147 148 /* 149 * It would be nice to have these present only in DEBUG systems, but the 150 * current design of the global symbol checking logic requires them to be 151 * unconditionally present. 152 */ 153 uint_t ip_thread_data; /* TSD key for debug support */ 154 krwlock_t ip_thread_rwlock; 155 list_t ip_thread_list; 156 157 /* 158 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 159 */ 160 161 struct listptr_s { 162 mblk_t *lp_head; /* pointer to the head of the list */ 163 mblk_t *lp_tail; /* pointer to the tail of the list */ 164 }; 165 166 typedef struct listptr_s listptr_t; 167 168 /* 169 * This is used by ip_snmp_get_mib2_ip_route_media and 170 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 171 */ 172 typedef struct iproutedata_s { 173 uint_t ird_idx; 174 listptr_t ird_route; /* ipRouteEntryTable */ 175 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 176 listptr_t ird_attrs; /* ipRouteAttributeTable */ 177 } iproutedata_t; 178 179 /* 180 * Cluster specific hooks. These should be NULL when booted as a non-cluster 181 */ 182 183 /* 184 * Hook functions to enable cluster networking 185 * On non-clustered systems these vectors must always be NULL. 186 * 187 * Hook function to Check ip specified ip address is a shared ip address 188 * in the cluster 189 * 190 */ 191 int (*cl_inet_isclusterwide)(uint8_t protocol, 192 sa_family_t addr_family, uint8_t *laddrp) = NULL; 193 194 /* 195 * Hook function to generate cluster wide ip fragment identifier 196 */ 197 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 198 uint8_t *laddrp, uint8_t *faddrp) = NULL; 199 200 /* 201 * Synchronization notes: 202 * 203 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 204 * MT level protection given by STREAMS. IP uses a combination of its own 205 * internal serialization mechanism and standard Solaris locking techniques. 206 * The internal serialization is per phyint (no IPMP) or per IPMP group. 207 * This is used to serialize plumbing operations, IPMP operations, certain 208 * multicast operations, most set ioctls, igmp/mld timers etc. 209 * 210 * Plumbing is a long sequence of operations involving message 211 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 212 * involved in plumbing operations. A natural model is to serialize these 213 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 214 * parallel without any interference. But various set ioctls on hme0 are best 215 * serialized. However if the system uses IPMP, the operations are easier if 216 * they are serialized on a per IPMP group basis since IPMP operations 217 * happen across ill's of a group. Thus the lowest common denominator is to 218 * serialize most set ioctls, multicast join/leave operations, IPMP operations 219 * igmp/mld timer operations, and processing of DLPI control messages received 220 * from drivers on a per IPMP group basis. If the system does not employ 221 * IPMP the serialization is on a per phyint basis. This serialization is 222 * provided by the ipsq_t and primitives operating on this. Details can 223 * be found in ip_if.c above the core primitives operating on ipsq_t. 224 * 225 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 226 * Simiarly lookup of an ire by a thread also returns a refheld ire. 227 * In addition ipif's and ill's referenced by the ire are also indirectly 228 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 229 * the ipif's address or netmask change as long as an ipif is refheld 230 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 231 * address of an ipif has to go through the ipsq_t. This ensures that only 232 * 1 such exclusive operation proceeds at any time on the ipif. It then 233 * deletes all ires associated with this ipif, and waits for all refcnts 234 * associated with this ipif to come down to zero. The address is changed 235 * only after the ipif has been quiesced. Then the ipif is brought up again. 236 * More details are described above the comment in ip_sioctl_flags. 237 * 238 * Packet processing is based mostly on IREs and are fully multi-threaded 239 * using standard Solaris MT techniques. 240 * 241 * There are explicit locks in IP to handle: 242 * - The ip_g_head list maintained by mi_open_link() and friends. 243 * 244 * - The reassembly data structures (one lock per hash bucket) 245 * 246 * - conn_lock is meant to protect conn_t fields. The fields actually 247 * protected by conn_lock are documented in the conn_t definition. 248 * 249 * - ire_lock to protect some of the fields of the ire, IRE tables 250 * (one lock per hash bucket). Refer to ip_ire.c for details. 251 * 252 * - ndp_g_lock and nce_lock for protecting NCEs. 253 * 254 * - ill_lock protects fields of the ill and ipif. Details in ip.h 255 * 256 * - ill_g_lock: This is a global reader/writer lock. Protects the following 257 * * The AVL tree based global multi list of all ills. 258 * * The linked list of all ipifs of an ill 259 * * The <ill-ipsq> mapping 260 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 261 * * The illgroup list threaded by ill_group_next. 262 * * <ill-phyint> association 263 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 264 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 265 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 266 * will all have to hold the ill_g_lock as writer for the actual duration 267 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 268 * may be found in the IPMP section. 269 * 270 * - ill_lock: This is a per ill mutex. 271 * It protects some members of the ill and is documented below. 272 * It also protects the <ill-ipsq> mapping 273 * It also protects the illgroup list threaded by ill_group_next. 274 * It also protects the <ill-phyint> assoc. 275 * It also protects the list of ipifs hanging off the ill. 276 * 277 * - ipsq_lock: This is a per ipsq_t mutex lock. 278 * This protects all the other members of the ipsq struct except 279 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 280 * 281 * - illgrp_lock: This is a per ill_group mutex lock. 282 * The only thing it protects is the illgrp_ill_schednext member of ill_group 283 * which dictates which is the next ill in an ill_group that is to be chosen 284 * for sending outgoing packets, through creation of an IRE_CACHE that 285 * references this ill. 286 * 287 * - phyint_lock: This is a per phyint mutex lock. Protects just the 288 * phyint_flags 289 * 290 * - ip_g_nd_lock: This is a global reader/writer lock. 291 * Any call to nd_load to load a new parameter to the ND table must hold the 292 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 293 * as reader. 294 * 295 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 296 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 297 * uniqueness check also done atomically. 298 * 299 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 300 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 301 * as a writer when adding or deleting elements from these lists, and 302 * as a reader when walking these lists to send a SADB update to the 303 * IPsec capable ills. 304 * 305 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 306 * group list linked by ill_usesrc_grp_next. It also protects the 307 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 308 * group is being added or deleted. This lock is taken as a reader when 309 * walking the list/group(eg: to get the number of members in a usesrc group). 310 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 311 * field is changing state i.e from NULL to non-NULL or vice-versa. For 312 * example, it is not necessary to take this lock in the initial portion 313 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 314 * ip_sioctl_flags since the these operations are executed exclusively and 315 * that ensures that the "usesrc group state" cannot change. The "usesrc 316 * group state" change can happen only in the latter part of 317 * ip_sioctl_slifusesrc and in ill_delete. 318 * 319 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 320 * 321 * To change the <ill-phyint> association, the ill_g_lock must be held 322 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 323 * must be held. 324 * 325 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 326 * and the ill_lock of the ill in question must be held. 327 * 328 * To change the <ill-illgroup> association the ill_g_lock must be held as 329 * writer and the ill_lock of the ill in question must be held. 330 * 331 * To add or delete an ipif from the list of ipifs hanging off the ill, 332 * ill_g_lock (writer) and ill_lock must be held and the thread must be 333 * a writer on the associated ipsq,. 334 * 335 * To add or delete an ill to the system, the ill_g_lock must be held as 336 * writer and the thread must be a writer on the associated ipsq. 337 * 338 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 339 * must be a writer on the associated ipsq. 340 * 341 * Lock hierarchy 342 * 343 * Some lock hierarchy scenarios are listed below. 344 * 345 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 346 * ill_g_lock -> illgrp_lock -> ill_lock 347 * ill_g_lock -> ill_lock(s) -> phyint_lock 348 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 349 * ill_g_lock -> ip_addr_avail_lock 350 * conn_lock -> irb_lock -> ill_lock -> ire_lock 351 * ill_g_lock -> ip_g_nd_lock 352 * 353 * When more than 1 ill lock is needed to be held, all ill lock addresses 354 * are sorted on address and locked starting from highest addressed lock 355 * downward. 356 * 357 * IPsec scenarios 358 * 359 * ipsa_lock -> ill_g_lock -> ill_lock 360 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 361 * ipsec_capab_ills_lock -> ipsa_lock 362 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 363 * 364 * Trusted Solaris scenarios 365 * 366 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 367 * igsa_lock -> gcdb_lock 368 * gcgrp_rwlock -> ire_lock 369 * gcgrp_rwlock -> gcdb_lock 370 * 371 * 372 * Routing/forwarding table locking notes: 373 * 374 * Lock acquisition order: Radix tree lock, irb_lock. 375 * Requirements: 376 * i. Walker must not hold any locks during the walker callback. 377 * ii Walker must not see a truncated tree during the walk because of any node 378 * deletion. 379 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 380 * in many places in the code to walk the irb list. Thus even if all the 381 * ires in a bucket have been deleted, we still can't free the radix node 382 * until the ires have actually been inactive'd (freed). 383 * 384 * Tree traversal - Need to hold the global tree lock in read mode. 385 * Before dropping the global tree lock, need to either increment the ire_refcnt 386 * to ensure that the radix node can't be deleted. 387 * 388 * Tree add - Need to hold the global tree lock in write mode to add a 389 * radix node. To prevent the node from being deleted, increment the 390 * irb_refcnt, after the node is added to the tree. The ire itself is 391 * added later while holding the irb_lock, but not the tree lock. 392 * 393 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 394 * All associated ires must be inactive (i.e. freed), and irb_refcnt 395 * must be zero. 396 * 397 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 398 * global tree lock (read mode) for traversal. 399 * 400 * IPsec notes : 401 * 402 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 403 * in front of the actual packet. For outbound datagrams, the M_CTL 404 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 405 * information used by the IPsec code for applying the right level of 406 * protection. The information initialized by IP in the ipsec_out_t 407 * is determined by the per-socket policy or global policy in the system. 408 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 409 * ipsec_info.h) which starts out with nothing in it. It gets filled 410 * with the right information if it goes through the AH/ESP code, which 411 * happens if the incoming packet is secure. The information initialized 412 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 413 * the policy requirements needed by per-socket policy or global policy 414 * is met or not. 415 * 416 * If there is both per-socket policy (set using setsockopt) and there 417 * is also global policy match for the 5 tuples of the socket, 418 * ipsec_override_policy() makes the decision of which one to use. 419 * 420 * For fully connected sockets i.e dst, src [addr, port] is known, 421 * conn_policy_cached is set indicating that policy has been cached. 422 * conn_in_enforce_policy may or may not be set depending on whether 423 * there is a global policy match or per-socket policy match. 424 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 425 * Once the right policy is set on the conn_t, policy cannot change for 426 * this socket. This makes life simpler for TCP (UDP ?) where 427 * re-transmissions go out with the same policy. For symmetry, policy 428 * is cached for fully connected UDP sockets also. Thus if policy is cached, 429 * it also implies that policy is latched i.e policy cannot change 430 * on these sockets. As we have the right policy on the conn, we don't 431 * have to lookup global policy for every outbound and inbound datagram 432 * and thus serving as an optimization. Note that a global policy change 433 * does not affect fully connected sockets if they have policy. If fully 434 * connected sockets did not have any policy associated with it, global 435 * policy change may affect them. 436 * 437 * IP Flow control notes: 438 * 439 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 440 * cannot be sent down to the driver by IP, because of a canput failure, IP 441 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 442 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 443 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 444 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 445 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 446 * the queued messages, and removes the conn from the drain list, if all 447 * messages were drained. It also qenables the next conn in the drain list to 448 * continue the drain process. 449 * 450 * In reality the drain list is not a single list, but a configurable number 451 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 452 * list. If the ip_wsrv of the next qenabled conn does not run, because the 453 * stream closes, ip_close takes responsibility to qenable the next conn in 454 * the drain list. The directly called ip_wput path always does a putq, if 455 * it cannot putnext. Thus synchronization problems are handled between 456 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 457 * functions that manipulate this drain list. Furthermore conn_drain_insert 458 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 459 * running on a queue at any time. conn_drain_tail can be simultaneously called 460 * from both ip_wsrv and ip_close. 461 * 462 * IPQOS notes: 463 * 464 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 465 * and IPQoS modules. IPPF includes hooks in IP at different control points 466 * (callout positions) which direct packets to IPQoS modules for policy 467 * processing. Policies, if present, are global. 468 * 469 * The callout positions are located in the following paths: 470 * o local_in (packets destined for this host) 471 * o local_out (packets orginating from this host ) 472 * o fwd_in (packets forwarded by this m/c - inbound) 473 * o fwd_out (packets forwarded by this m/c - outbound) 474 * Hooks at these callout points can be enabled/disabled using the ndd variable 475 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 476 * By default all the callout positions are enabled. 477 * 478 * Outbound (local_out) 479 * Hooks are placed in ip_wput_ire and ipsec_out_process. 480 * 481 * Inbound (local_in) 482 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 483 * TCP and UDP fanout routines. 484 * 485 * Forwarding (in and out) 486 * Hooks are placed in ip_rput_forward. 487 * 488 * IP Policy Framework processing (IPPF processing) 489 * Policy processing for a packet is initiated by ip_process, which ascertains 490 * that the classifier (ipgpc) is loaded and configured, failing which the 491 * packet resumes normal processing in IP. If the clasifier is present, the 492 * packet is acted upon by one or more IPQoS modules (action instances), per 493 * filters configured in ipgpc and resumes normal IP processing thereafter. 494 * An action instance can drop a packet in course of its processing. 495 * 496 * A boolean variable, ip_policy, is used in all the fanout routines that can 497 * invoke ip_process for a packet. This variable indicates if the packet should 498 * to be sent for policy processing. The variable is set to B_TRUE by default, 499 * i.e. when the routines are invoked in the normal ip procesing path for a 500 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 501 * ip_policy is set to B_FALSE for all the routines called in these two 502 * functions because, in the former case, we don't process loopback traffic 503 * currently while in the latter, the packets have already been processed in 504 * icmp_inbound. 505 * 506 * Zones notes: 507 * 508 * The partitioning rules for networking are as follows: 509 * 1) Packets coming from a zone must have a source address belonging to that 510 * zone. 511 * 2) Packets coming from a zone can only be sent on a physical interface on 512 * which the zone has an IP address. 513 * 3) Between two zones on the same machine, packet delivery is only allowed if 514 * there's a matching route for the destination and zone in the forwarding 515 * table. 516 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 517 * different zones can bind to the same port with the wildcard address 518 * (INADDR_ANY). 519 * 520 * The granularity of interface partitioning is at the logical interface level. 521 * Therefore, every zone has its own IP addresses, and incoming packets can be 522 * attributed to a zone unambiguously. A logical interface is placed into a zone 523 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 524 * structure. Rule (1) is implemented by modifying the source address selection 525 * algorithm so that the list of eligible addresses is filtered based on the 526 * sending process zone. 527 * 528 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 529 * across all zones, depending on their type. Here is the break-up: 530 * 531 * IRE type Shared/exclusive 532 * -------- ---------------- 533 * IRE_BROADCAST Exclusive 534 * IRE_DEFAULT (default routes) Shared (*) 535 * IRE_LOCAL Exclusive (x) 536 * IRE_LOOPBACK Exclusive 537 * IRE_PREFIX (net routes) Shared (*) 538 * IRE_CACHE Exclusive 539 * IRE_IF_NORESOLVER (interface routes) Exclusive 540 * IRE_IF_RESOLVER (interface routes) Exclusive 541 * IRE_HOST (host routes) Shared (*) 542 * 543 * (*) A zone can only use a default or off-subnet route if the gateway is 544 * directly reachable from the zone, that is, if the gateway's address matches 545 * one of the zone's logical interfaces. 546 * 547 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 548 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 549 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 550 * address of the zone itself (the destination). Since IRE_LOCAL is used 551 * for communication between zones, ip_wput_ire has special logic to set 552 * the right source address when sending using an IRE_LOCAL. 553 * 554 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 555 * ire_cache_lookup restricts loopback using an IRE_LOCAL 556 * between zone to the case when L2 would have conceptually looped the packet 557 * back, i.e. the loopback which is required since neither Ethernet drivers 558 * nor Ethernet hardware loops them back. This is the case when the normal 559 * routes (ignoring IREs with different zoneids) would send out the packet on 560 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 561 * associated. 562 * 563 * Multiple zones can share a common broadcast address; typically all zones 564 * share the 255.255.255.255 address. Incoming as well as locally originated 565 * broadcast packets must be dispatched to all the zones on the broadcast 566 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 567 * since some zones may not be on the 10.16.72/24 network. To handle this, each 568 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 569 * sent to every zone that has an IRE_BROADCAST entry for the destination 570 * address on the input ill, see conn_wantpacket(). 571 * 572 * Applications in different zones can join the same multicast group address. 573 * For IPv4, group memberships are per-logical interface, so they're already 574 * inherently part of a zone. For IPv6, group memberships are per-physical 575 * interface, so we distinguish IPv6 group memberships based on group address, 576 * interface and zoneid. In both cases, received multicast packets are sent to 577 * every zone for which a group membership entry exists. On IPv6 we need to 578 * check that the target zone still has an address on the receiving physical 579 * interface; it could have been removed since the application issued the 580 * IPV6_JOIN_GROUP. 581 */ 582 583 /* 584 * Squeue Fanout flags: 585 * 0: No fanout. 586 * 1: Fanout across all squeues 587 */ 588 boolean_t ip_squeue_fanout = 0; 589 590 /* 591 * Maximum dups allowed per packet. 592 */ 593 uint_t ip_max_frag_dups = 10; 594 595 #define IS_SIMPLE_IPH(ipha) \ 596 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 597 598 /* RFC1122 Conformance */ 599 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 600 601 #define ILL_MAX_NAMELEN LIFNAMSIZ 602 603 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 604 605 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 606 cred_t *credp, boolean_t isv6); 607 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 608 609 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 610 ip_stack_t *); 611 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 612 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 613 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 614 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 615 mblk_t *, int, ip_stack_t *); 616 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 617 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 618 ill_t *, zoneid_t); 619 static void icmp_options_update(ipha_t *); 620 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 621 ip_stack_t *); 622 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 623 zoneid_t zoneid, ip_stack_t *); 624 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 625 static void icmp_redirect(ill_t *, mblk_t *); 626 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 627 ip_stack_t *); 628 629 static void ip_arp_news(queue_t *, mblk_t *); 630 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 631 ip_stack_t *); 632 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 633 char *ip_dot_addr(ipaddr_t, char *); 634 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 635 int ip_close(queue_t *, int); 636 static char *ip_dot_saddr(uchar_t *, char *); 637 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 638 boolean_t, boolean_t, ill_t *, zoneid_t); 639 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 640 boolean_t, boolean_t, zoneid_t); 641 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 642 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 643 static void ip_lrput(queue_t *, mblk_t *); 644 ipaddr_t ip_net_mask(ipaddr_t); 645 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 646 ip_stack_t *); 647 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 648 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 649 char *ip_nv_lookup(nv_t *, int); 650 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 651 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 652 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 653 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 654 ipndp_t *, size_t); 655 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 656 void ip_rput(queue_t *, mblk_t *); 657 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 658 void *dummy_arg); 659 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 660 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 661 ip_stack_t *); 662 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 663 ire_t *, ip_stack_t *); 664 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 665 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 666 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 667 ip_stack_t *); 668 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 669 uint16_t *); 670 int ip_snmp_get(queue_t *, mblk_t *, int); 671 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 672 mib2_ipIfStatsEntry_t *, ip_stack_t *); 673 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 674 ip_stack_t *); 675 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 676 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 677 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 678 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 679 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 680 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 681 ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 683 ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 685 ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 701 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 702 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 703 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 704 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 705 static boolean_t ip_source_route_included(ipha_t *); 706 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 707 708 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 709 zoneid_t, ip_stack_t *); 710 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 711 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 712 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 713 zoneid_t, ip_stack_t *); 714 715 static void conn_drain_init(ip_stack_t *); 716 static void conn_drain_fini(ip_stack_t *); 717 static void conn_drain_tail(conn_t *connp, boolean_t closing); 718 719 static void conn_walk_drain(ip_stack_t *); 720 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 721 zoneid_t); 722 723 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 724 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 725 static void ip_stack_fini(netstackid_t stackid, void *arg); 726 727 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 728 zoneid_t); 729 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 730 void *dummy_arg); 731 732 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 733 734 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 735 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 736 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 737 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 738 739 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 740 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 741 caddr_t, cred_t *); 742 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 743 caddr_t cp, cred_t *cr); 744 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 745 cred_t *); 746 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 747 caddr_t cp, cred_t *cr); 748 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 749 cred_t *); 750 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 751 cred_t *); 752 static squeue_func_t ip_squeue_switch(int); 753 754 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 755 static void ip_kstat_fini(netstackid_t, kstat_t *); 756 static int ip_kstat_update(kstat_t *kp, int rw); 757 static void *icmp_kstat_init(netstackid_t); 758 static void icmp_kstat_fini(netstackid_t, kstat_t *); 759 static int icmp_kstat_update(kstat_t *kp, int rw); 760 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 761 static void ip_kstat2_fini(netstackid_t, kstat_t *); 762 763 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 764 765 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 766 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 767 768 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 769 ipha_t *, ill_t *, boolean_t); 770 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 771 772 /* How long, in seconds, we allow frags to hang around. */ 773 #define IP_FRAG_TIMEOUT 60 774 775 /* 776 * Threshold which determines whether MDT should be used when 777 * generating IP fragments; payload size must be greater than 778 * this threshold for MDT to take place. 779 */ 780 #define IP_WPUT_FRAG_MDT_MIN 32768 781 782 /* Setable in /etc/system only */ 783 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 784 785 static long ip_rput_pullups; 786 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 787 788 vmem_t *ip_minor_arena; 789 790 int ip_debug; 791 792 #ifdef DEBUG 793 uint32_t ipsechw_debug = 0; 794 #endif 795 796 /* 797 * Multirouting/CGTP stuff 798 */ 799 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 800 801 /* 802 * XXX following really should only be in a header. Would need more 803 * header and .c clean up first. 804 */ 805 extern optdb_obj_t ip_opt_obj; 806 807 ulong_t ip_squeue_enter_unbound = 0; 808 809 /* 810 * Named Dispatch Parameter Table. 811 * All of these are alterable, within the min/max values given, at run time. 812 */ 813 static ipparam_t lcl_param_arr[] = { 814 /* min max value name */ 815 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 816 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 817 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 818 { 0, 1, 0, "ip_respond_to_timestamp"}, 819 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 820 { 0, 1, 1, "ip_send_redirects"}, 821 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 822 { 0, 10, 0, "ip_mrtdebug"}, 823 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 824 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 825 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 826 { 1, 255, 255, "ip_def_ttl" }, 827 { 0, 1, 0, "ip_forward_src_routed"}, 828 { 0, 256, 32, "ip_wroff_extra" }, 829 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 830 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 831 { 0, 1, 1, "ip_path_mtu_discovery" }, 832 { 0, 240, 30, "ip_ignore_delete_time" }, 833 { 0, 1, 0, "ip_ignore_redirect" }, 834 { 0, 1, 1, "ip_output_queue" }, 835 { 1, 254, 1, "ip_broadcast_ttl" }, 836 { 0, 99999, 100, "ip_icmp_err_interval" }, 837 { 1, 99999, 10, "ip_icmp_err_burst" }, 838 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 839 { 0, 1, 0, "ip_strict_dst_multihoming" }, 840 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 841 { 0, 1, 0, "ipsec_override_persocket_policy" }, 842 { 0, 1, 1, "icmp_accept_clear_messages" }, 843 { 0, 1, 1, "igmp_accept_clear_messages" }, 844 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 845 "ip_ndp_delay_first_probe_time"}, 846 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 847 "ip_ndp_max_unicast_solicit"}, 848 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 849 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 850 { 0, 1, 0, "ip6_forward_src_routed"}, 851 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 852 { 0, 1, 1, "ip6_send_redirects"}, 853 { 0, 1, 0, "ip6_ignore_redirect" }, 854 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 855 856 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 857 858 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 859 860 { 0, 1, 1, "pim_accept_clear_messages" }, 861 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 862 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 863 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 864 { 0, 15, 0, "ip_policy_mask" }, 865 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 866 { 0, 255, 1, "ip_multirt_ttl" }, 867 { 0, 1, 1, "ip_multidata_outbound" }, 868 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 869 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 870 { 0, 1000, 1, "ip_max_temp_defend" }, 871 { 0, 1000, 3, "ip_max_defend" }, 872 { 0, 999999, 30, "ip_defend_interval" }, 873 { 0, 3600000, 300000, "ip_dup_recovery" }, 874 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 875 { 0, 1, 1, "ip_lso_outbound" }, 876 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 877 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 878 #ifdef DEBUG 879 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 880 #else 881 { 0, 0, 0, "" }, 882 #endif 883 }; 884 885 /* 886 * Extended NDP table 887 * The addresses for the first two are filled in to be ips_ip_g_forward 888 * and ips_ipv6_forward at init time. 889 */ 890 static ipndp_t lcl_ndp_arr[] = { 891 /* getf setf data name */ 892 #define IPNDP_IP_FORWARDING_OFFSET 0 893 { ip_param_generic_get, ip_forward_set, NULL, 894 "ip_forwarding" }, 895 #define IPNDP_IP6_FORWARDING_OFFSET 1 896 { ip_param_generic_get, ip_forward_set, NULL, 897 "ip6_forwarding" }, 898 { ip_ill_report, NULL, NULL, 899 "ip_ill_status" }, 900 { ip_ipif_report, NULL, NULL, 901 "ip_ipif_status" }, 902 { ip_ire_report, NULL, NULL, 903 "ipv4_ire_status" }, 904 { ip_ire_report_v6, NULL, NULL, 905 "ipv6_ire_status" }, 906 { ip_conn_report, NULL, NULL, 907 "ip_conn_status" }, 908 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 909 "ip_rput_pullups" }, 910 { ndp_report, NULL, NULL, 911 "ip_ndp_cache_report" }, 912 { ip_srcid_report, NULL, NULL, 913 "ip_srcid_status" }, 914 { ip_param_generic_get, ip_squeue_profile_set, 915 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 916 { ip_param_generic_get, ip_squeue_bind_set, 917 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 918 { ip_param_generic_get, ip_input_proc_set, 919 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 920 { ip_param_generic_get, ip_int_set, 921 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 922 #define IPNDP_CGTP_FILTER_OFFSET 14 923 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 924 "ip_cgtp_filter" }, 925 { ip_param_generic_get, ip_int_set, 926 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 927 #define IPNDP_IPMP_HOOK_OFFSET 16 928 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 929 "ipmp_hook_emulation" }, 930 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 931 "ip_debug" }, 932 }; 933 934 /* 935 * Table of IP ioctls encoding the various properties of the ioctl and 936 * indexed based on the last byte of the ioctl command. Occasionally there 937 * is a clash, and there is more than 1 ioctl with the same last byte. 938 * In such a case 1 ioctl is encoded in the ndx table and the remaining 939 * ioctls are encoded in the misc table. An entry in the ndx table is 940 * retrieved by indexing on the last byte of the ioctl command and comparing 941 * the ioctl command with the value in the ndx table. In the event of a 942 * mismatch the misc table is then searched sequentially for the desired 943 * ioctl command. 944 * 945 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 946 */ 947 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 948 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 949 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 950 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 951 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 952 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 953 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 954 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 955 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 956 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 957 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 958 959 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 960 MISC_CMD, ip_siocaddrt, NULL }, 961 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 962 MISC_CMD, ip_siocdelrt, NULL }, 963 964 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 965 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 966 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 967 IF_CMD, ip_sioctl_get_addr, NULL }, 968 969 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 970 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 971 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 972 IPI_GET_CMD | IPI_REPL, 973 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 974 975 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 976 IPI_PRIV | IPI_WR | IPI_REPL, 977 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 978 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 979 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 980 IF_CMD, ip_sioctl_get_flags, NULL }, 981 982 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 983 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 984 985 /* copyin size cannot be coded for SIOCGIFCONF */ 986 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 987 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 988 989 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 990 IF_CMD, ip_sioctl_mtu, NULL }, 991 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 992 IF_CMD, ip_sioctl_get_mtu, NULL }, 993 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 994 IPI_GET_CMD | IPI_REPL, 995 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 996 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 997 IF_CMD, ip_sioctl_brdaddr, NULL }, 998 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 999 IPI_GET_CMD | IPI_REPL, 1000 IF_CMD, ip_sioctl_get_netmask, NULL }, 1001 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1002 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1003 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1004 IPI_GET_CMD | IPI_REPL, 1005 IF_CMD, ip_sioctl_get_metric, NULL }, 1006 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1007 IF_CMD, ip_sioctl_metric, NULL }, 1008 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1009 1010 /* See 166-168 below for extended SIOC*XARP ioctls */ 1011 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1012 ARP_CMD, ip_sioctl_arp, NULL }, 1013 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1014 ARP_CMD, ip_sioctl_arp, NULL }, 1015 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1016 ARP_CMD, ip_sioctl_arp, NULL }, 1017 1018 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1019 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1020 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 1040 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1041 MISC_CMD, if_unitsel, if_unitsel_restart }, 1042 1043 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1061 1062 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1063 IPI_PRIV | IPI_WR | IPI_MODOK, 1064 IF_CMD, ip_sioctl_sifname, NULL }, 1065 1066 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 1080 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1081 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1082 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1083 IF_CMD, ip_sioctl_get_muxid, NULL }, 1084 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1085 IPI_PRIV | IPI_WR | IPI_REPL, 1086 IF_CMD, ip_sioctl_muxid, NULL }, 1087 1088 /* Both if and lif variants share same func */ 1089 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1090 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1091 /* Both if and lif variants share same func */ 1092 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1093 IPI_PRIV | IPI_WR | IPI_REPL, 1094 IF_CMD, ip_sioctl_slifindex, NULL }, 1095 1096 /* copyin size cannot be coded for SIOCGIFCONF */ 1097 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1098 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1099 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 1117 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1118 IPI_PRIV | IPI_WR | IPI_REPL, 1119 LIF_CMD, ip_sioctl_removeif, 1120 ip_sioctl_removeif_restart }, 1121 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1122 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1123 LIF_CMD, ip_sioctl_addif, NULL }, 1124 #define SIOCLIFADDR_NDX 112 1125 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1126 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1127 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1128 IPI_GET_CMD | IPI_REPL, 1129 LIF_CMD, ip_sioctl_get_addr, NULL }, 1130 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1131 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1132 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1133 IPI_GET_CMD | IPI_REPL, 1134 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1135 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1136 IPI_PRIV | IPI_WR | IPI_REPL, 1137 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1138 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1139 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1140 LIF_CMD, ip_sioctl_get_flags, NULL }, 1141 1142 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 1145 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1146 ip_sioctl_get_lifconf, NULL }, 1147 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1148 LIF_CMD, ip_sioctl_mtu, NULL }, 1149 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1150 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1151 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1152 IPI_GET_CMD | IPI_REPL, 1153 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1154 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1155 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1156 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1157 IPI_GET_CMD | IPI_REPL, 1158 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1159 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1160 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1161 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1162 IPI_GET_CMD | IPI_REPL, 1163 LIF_CMD, ip_sioctl_get_metric, NULL }, 1164 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1165 LIF_CMD, ip_sioctl_metric, NULL }, 1166 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1167 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1168 LIF_CMD, ip_sioctl_slifname, 1169 ip_sioctl_slifname_restart }, 1170 1171 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1172 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1173 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1174 IPI_GET_CMD | IPI_REPL, 1175 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1176 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1177 IPI_PRIV | IPI_WR | IPI_REPL, 1178 LIF_CMD, ip_sioctl_muxid, NULL }, 1179 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1180 IPI_GET_CMD | IPI_REPL, 1181 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1182 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1183 IPI_PRIV | IPI_WR | IPI_REPL, 1184 LIF_CMD, ip_sioctl_slifindex, 0 }, 1185 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1186 LIF_CMD, ip_sioctl_token, NULL }, 1187 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1188 IPI_GET_CMD | IPI_REPL, 1189 LIF_CMD, ip_sioctl_get_token, NULL }, 1190 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1191 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1192 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1193 IPI_GET_CMD | IPI_REPL, 1194 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1195 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1196 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1197 1198 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1199 IPI_GET_CMD | IPI_REPL, 1200 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1201 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1202 LIF_CMD, ip_siocdelndp_v6, NULL }, 1203 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1204 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1205 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1206 LIF_CMD, ip_siocsetndp_v6, NULL }, 1207 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1208 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1209 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1210 MISC_CMD, ip_sioctl_tonlink, NULL }, 1211 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1212 MISC_CMD, ip_sioctl_tmysite, NULL }, 1213 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1214 TUN_CMD, ip_sioctl_tunparam, NULL }, 1215 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1216 IPI_PRIV | IPI_WR, 1217 TUN_CMD, ip_sioctl_tunparam, NULL }, 1218 1219 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1220 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1221 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1222 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1223 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1224 1225 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1226 IPI_PRIV | IPI_WR | IPI_REPL, 1227 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1228 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1229 IPI_PRIV | IPI_WR | IPI_REPL, 1230 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1231 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1232 IPI_PRIV | IPI_WR, 1233 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1234 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1235 IPI_GET_CMD | IPI_REPL, 1236 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1237 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1238 IPI_GET_CMD | IPI_REPL, 1239 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1240 1241 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1242 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1243 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1244 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1245 1246 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1247 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1248 1249 /* These are handled in ip_sioctl_copyin_setup itself */ 1250 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1251 MISC_CMD, NULL, NULL }, 1252 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1253 MISC_CMD, NULL, NULL }, 1254 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1255 1256 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1257 ip_sioctl_get_lifconf, NULL }, 1258 1259 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1260 XARP_CMD, ip_sioctl_arp, NULL }, 1261 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1262 XARP_CMD, ip_sioctl_arp, NULL }, 1263 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1264 XARP_CMD, ip_sioctl_arp, NULL }, 1265 1266 /* SIOCPOPSOCKFS is not handled by IP */ 1267 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1268 1269 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1270 IPI_GET_CMD | IPI_REPL, 1271 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1272 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1273 IPI_PRIV | IPI_WR | IPI_REPL, 1274 LIF_CMD, ip_sioctl_slifzone, 1275 ip_sioctl_slifzone_restart }, 1276 /* 172-174 are SCTP ioctls and not handled by IP */ 1277 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1278 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1279 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1280 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1281 IPI_GET_CMD, LIF_CMD, 1282 ip_sioctl_get_lifusesrc, 0 }, 1283 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1284 IPI_PRIV | IPI_WR, 1285 LIF_CMD, ip_sioctl_slifusesrc, 1286 NULL }, 1287 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1288 ip_sioctl_get_lifsrcof, NULL }, 1289 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1290 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1291 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1292 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1293 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1294 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1295 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1296 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1297 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1298 ip_sioctl_set_ipmpfailback, NULL }, 1299 /* SIOCSENABLESDP is handled by SDP */ 1300 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1301 }; 1302 1303 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1304 1305 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1306 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1307 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1308 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1309 TUN_CMD, ip_sioctl_tunparam, NULL }, 1310 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1311 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1312 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1313 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1314 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1315 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1316 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1317 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1318 MISC_CMD, mrt_ioctl}, 1319 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1320 MISC_CMD, mrt_ioctl}, 1321 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1322 MISC_CMD, mrt_ioctl} 1323 }; 1324 1325 int ip_misc_ioctl_count = 1326 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1327 1328 int conn_drain_nthreads; /* Number of drainers reqd. */ 1329 /* Settable in /etc/system */ 1330 /* Defined in ip_ire.c */ 1331 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1332 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1333 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1334 1335 static nv_t ire_nv_arr[] = { 1336 { IRE_BROADCAST, "BROADCAST" }, 1337 { IRE_LOCAL, "LOCAL" }, 1338 { IRE_LOOPBACK, "LOOPBACK" }, 1339 { IRE_CACHE, "CACHE" }, 1340 { IRE_DEFAULT, "DEFAULT" }, 1341 { IRE_PREFIX, "PREFIX" }, 1342 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1343 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1344 { IRE_HOST, "HOST" }, 1345 { 0 } 1346 }; 1347 1348 nv_t *ire_nv_tbl = ire_nv_arr; 1349 1350 /* Defined in ip_netinfo.c */ 1351 extern ddi_taskq_t *eventq_queue_nic; 1352 1353 /* Simple ICMP IP Header Template */ 1354 static ipha_t icmp_ipha = { 1355 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1356 }; 1357 1358 struct module_info ip_mod_info = { 1359 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1360 }; 1361 1362 /* 1363 * Duplicate static symbols within a module confuses mdb; so we avoid the 1364 * problem by making the symbols here distinct from those in udp.c. 1365 */ 1366 1367 /* 1368 * Entry points for IP as a device and as a module. 1369 * FIXME: down the road we might want a separate module and driver qinit. 1370 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1371 */ 1372 static struct qinit iprinitv4 = { 1373 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1374 &ip_mod_info 1375 }; 1376 1377 struct qinit iprinitv6 = { 1378 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1379 &ip_mod_info 1380 }; 1381 1382 static struct qinit ipwinitv4 = { 1383 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1384 &ip_mod_info 1385 }; 1386 1387 struct qinit ipwinitv6 = { 1388 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1389 &ip_mod_info 1390 }; 1391 1392 static struct qinit iplrinit = { 1393 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1394 &ip_mod_info 1395 }; 1396 1397 static struct qinit iplwinit = { 1398 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1399 &ip_mod_info 1400 }; 1401 1402 /* For AF_INET aka /dev/ip */ 1403 struct streamtab ipinfov4 = { 1404 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1405 }; 1406 1407 /* For AF_INET6 aka /dev/ip6 */ 1408 struct streamtab ipinfov6 = { 1409 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1410 }; 1411 1412 #ifdef DEBUG 1413 static boolean_t skip_sctp_cksum = B_FALSE; 1414 #endif 1415 1416 /* 1417 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1418 * ip_rput_v6(), ip_output(), etc. If the message 1419 * block already has a M_CTL at the front of it, then simply set the zoneid 1420 * appropriately. 1421 */ 1422 mblk_t * 1423 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1424 { 1425 mblk_t *first_mp; 1426 ipsec_out_t *io; 1427 1428 ASSERT(zoneid != ALL_ZONES); 1429 if (mp->b_datap->db_type == M_CTL) { 1430 io = (ipsec_out_t *)mp->b_rptr; 1431 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1432 io->ipsec_out_zoneid = zoneid; 1433 return (mp); 1434 } 1435 1436 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1437 if (first_mp == NULL) 1438 return (NULL); 1439 io = (ipsec_out_t *)first_mp->b_rptr; 1440 /* This is not a secure packet */ 1441 io->ipsec_out_secure = B_FALSE; 1442 io->ipsec_out_zoneid = zoneid; 1443 first_mp->b_cont = mp; 1444 return (first_mp); 1445 } 1446 1447 /* 1448 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1449 */ 1450 mblk_t * 1451 ip_copymsg(mblk_t *mp) 1452 { 1453 mblk_t *nmp; 1454 ipsec_info_t *in; 1455 1456 if (mp->b_datap->db_type != M_CTL) 1457 return (copymsg(mp)); 1458 1459 in = (ipsec_info_t *)mp->b_rptr; 1460 1461 /* 1462 * Note that M_CTL is also used for delivering ICMP error messages 1463 * upstream to transport layers. 1464 */ 1465 if (in->ipsec_info_type != IPSEC_OUT && 1466 in->ipsec_info_type != IPSEC_IN) 1467 return (copymsg(mp)); 1468 1469 nmp = copymsg(mp->b_cont); 1470 1471 if (in->ipsec_info_type == IPSEC_OUT) { 1472 return (ipsec_out_tag(mp, nmp, 1473 ((ipsec_out_t *)in)->ipsec_out_ns)); 1474 } else { 1475 return (ipsec_in_tag(mp, nmp, 1476 ((ipsec_in_t *)in)->ipsec_in_ns)); 1477 } 1478 } 1479 1480 /* Generate an ICMP fragmentation needed message. */ 1481 static void 1482 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1483 ip_stack_t *ipst) 1484 { 1485 icmph_t icmph; 1486 mblk_t *first_mp; 1487 boolean_t mctl_present; 1488 1489 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1490 1491 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1492 if (mctl_present) 1493 freeb(first_mp); 1494 return; 1495 } 1496 1497 bzero(&icmph, sizeof (icmph_t)); 1498 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1499 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1500 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1501 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1502 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1503 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1504 ipst); 1505 } 1506 1507 /* 1508 * icmp_inbound deals with ICMP messages in the following ways. 1509 * 1510 * 1) It needs to send a reply back and possibly delivering it 1511 * to the "interested" upper clients. 1512 * 2) It needs to send it to the upper clients only. 1513 * 3) It needs to change some values in IP only. 1514 * 4) It needs to change some values in IP and upper layers e.g TCP. 1515 * 1516 * We need to accomodate icmp messages coming in clear until we get 1517 * everything secure from the wire. If icmp_accept_clear_messages 1518 * is zero we check with the global policy and act accordingly. If 1519 * it is non-zero, we accept the message without any checks. But 1520 * *this does not mean* that this will be delivered to the upper 1521 * clients. By accepting we might send replies back, change our MTU 1522 * value etc. but delivery to the ULP/clients depends on their policy 1523 * dispositions. 1524 * 1525 * We handle the above 4 cases in the context of IPsec in the 1526 * following way : 1527 * 1528 * 1) Send the reply back in the same way as the request came in. 1529 * If it came in encrypted, it goes out encrypted. If it came in 1530 * clear, it goes out in clear. Thus, this will prevent chosen 1531 * plain text attack. 1532 * 2) The client may or may not expect things to come in secure. 1533 * If it comes in secure, the policy constraints are checked 1534 * before delivering it to the upper layers. If it comes in 1535 * clear, ipsec_inbound_accept_clear will decide whether to 1536 * accept this in clear or not. In both the cases, if the returned 1537 * message (IP header + 8 bytes) that caused the icmp message has 1538 * AH/ESP headers, it is sent up to AH/ESP for validation before 1539 * sending up. If there are only 8 bytes of returned message, then 1540 * upper client will not be notified. 1541 * 3) Check with global policy to see whether it matches the constaints. 1542 * But this will be done only if icmp_accept_messages_in_clear is 1543 * zero. 1544 * 4) If we need to change both in IP and ULP, then the decision taken 1545 * while affecting the values in IP and while delivering up to TCP 1546 * should be the same. 1547 * 1548 * There are two cases. 1549 * 1550 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1551 * failed), we will not deliver it to the ULP, even though they 1552 * are *willing* to accept in *clear*. This is fine as our global 1553 * disposition to icmp messages asks us reject the datagram. 1554 * 1555 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1556 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1557 * to deliver it to ULP (policy failed), it can lead to 1558 * consistency problems. The cases known at this time are 1559 * ICMP_DESTINATION_UNREACHABLE messages with following code 1560 * values : 1561 * 1562 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1563 * and Upper layer rejects. Then the communication will 1564 * come to a stop. This is solved by making similar decisions 1565 * at both levels. Currently, when we are unable to deliver 1566 * to the Upper Layer (due to policy failures) while IP has 1567 * adjusted ire_max_frag, the next outbound datagram would 1568 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1569 * will be with the right level of protection. Thus the right 1570 * value will be communicated even if we are not able to 1571 * communicate when we get from the wire initially. But this 1572 * assumes there would be at least one outbound datagram after 1573 * IP has adjusted its ire_max_frag value. To make things 1574 * simpler, we accept in clear after the validation of 1575 * AH/ESP headers. 1576 * 1577 * - Other ICMP ERRORS : We may not be able to deliver it to the 1578 * upper layer depending on the level of protection the upper 1579 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1580 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1581 * should be accepted in clear when the Upper layer expects secure. 1582 * Thus the communication may get aborted by some bad ICMP 1583 * packets. 1584 * 1585 * IPQoS Notes: 1586 * The only instance when a packet is sent for processing is when there 1587 * isn't an ICMP client and if we are interested in it. 1588 * If there is a client, IPPF processing will take place in the 1589 * ip_fanout_proto routine. 1590 * 1591 * Zones notes: 1592 * The packet is only processed in the context of the specified zone: typically 1593 * only this zone will reply to an echo request, and only interested clients in 1594 * this zone will receive a copy of the packet. This means that the caller must 1595 * call icmp_inbound() for each relevant zone. 1596 */ 1597 static void 1598 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1599 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1600 ill_t *recv_ill, zoneid_t zoneid) 1601 { 1602 icmph_t *icmph; 1603 ipha_t *ipha; 1604 int iph_hdr_length; 1605 int hdr_length; 1606 boolean_t interested; 1607 uint32_t ts; 1608 uchar_t *wptr; 1609 ipif_t *ipif; 1610 mblk_t *first_mp; 1611 ipsec_in_t *ii; 1612 ire_t *src_ire; 1613 boolean_t onlink; 1614 timestruc_t now; 1615 uint32_t ill_index; 1616 ip_stack_t *ipst; 1617 1618 ASSERT(ill != NULL); 1619 ipst = ill->ill_ipst; 1620 1621 first_mp = mp; 1622 if (mctl_present) { 1623 mp = first_mp->b_cont; 1624 ASSERT(mp != NULL); 1625 } 1626 1627 ipha = (ipha_t *)mp->b_rptr; 1628 if (ipst->ips_icmp_accept_clear_messages == 0) { 1629 first_mp = ipsec_check_global_policy(first_mp, NULL, 1630 ipha, NULL, mctl_present, ipst->ips_netstack); 1631 if (first_mp == NULL) 1632 return; 1633 } 1634 1635 /* 1636 * On a labeled system, we have to check whether the zone itself is 1637 * permitted to receive raw traffic. 1638 */ 1639 if (is_system_labeled()) { 1640 if (zoneid == ALL_ZONES) 1641 zoneid = tsol_packet_to_zoneid(mp); 1642 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1643 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1644 zoneid)); 1645 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1646 freemsg(first_mp); 1647 return; 1648 } 1649 } 1650 1651 /* 1652 * We have accepted the ICMP message. It means that we will 1653 * respond to the packet if needed. It may not be delivered 1654 * to the upper client depending on the policy constraints 1655 * and the disposition in ipsec_inbound_accept_clear. 1656 */ 1657 1658 ASSERT(ill != NULL); 1659 1660 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1661 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1662 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1663 /* Last chance to get real. */ 1664 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1665 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1666 freemsg(first_mp); 1667 return; 1668 } 1669 /* Refresh iph following the pullup. */ 1670 ipha = (ipha_t *)mp->b_rptr; 1671 } 1672 /* ICMP header checksum, including checksum field, should be zero. */ 1673 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1674 IP_CSUM(mp, iph_hdr_length, 0)) { 1675 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1676 freemsg(first_mp); 1677 return; 1678 } 1679 /* The IP header will always be a multiple of four bytes */ 1680 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1681 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1682 icmph->icmph_code)); 1683 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1684 /* We will set "interested" to "true" if we want a copy */ 1685 interested = B_FALSE; 1686 switch (icmph->icmph_type) { 1687 case ICMP_ECHO_REPLY: 1688 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1689 break; 1690 case ICMP_DEST_UNREACHABLE: 1691 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1692 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1693 interested = B_TRUE; /* Pass up to transport */ 1694 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1695 break; 1696 case ICMP_SOURCE_QUENCH: 1697 interested = B_TRUE; /* Pass up to transport */ 1698 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1699 break; 1700 case ICMP_REDIRECT: 1701 if (!ipst->ips_ip_ignore_redirect) 1702 interested = B_TRUE; 1703 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1704 break; 1705 case ICMP_ECHO_REQUEST: 1706 /* 1707 * Whether to respond to echo requests that come in as IP 1708 * broadcasts or as IP multicast is subject to debate 1709 * (what isn't?). We aim to please, you pick it. 1710 * Default is do it. 1711 */ 1712 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1713 /* unicast: always respond */ 1714 interested = B_TRUE; 1715 } else if (CLASSD(ipha->ipha_dst)) { 1716 /* multicast: respond based on tunable */ 1717 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1718 } else if (broadcast) { 1719 /* broadcast: respond based on tunable */ 1720 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1721 } 1722 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1723 break; 1724 case ICMP_ROUTER_ADVERTISEMENT: 1725 case ICMP_ROUTER_SOLICITATION: 1726 break; 1727 case ICMP_TIME_EXCEEDED: 1728 interested = B_TRUE; /* Pass up to transport */ 1729 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1730 break; 1731 case ICMP_PARAM_PROBLEM: 1732 interested = B_TRUE; /* Pass up to transport */ 1733 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1734 break; 1735 case ICMP_TIME_STAMP_REQUEST: 1736 /* Response to Time Stamp Requests is local policy. */ 1737 if (ipst->ips_ip_g_resp_to_timestamp && 1738 /* So is whether to respond if it was an IP broadcast. */ 1739 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1740 int tstamp_len = 3 * sizeof (uint32_t); 1741 1742 if (wptr + tstamp_len > mp->b_wptr) { 1743 if (!pullupmsg(mp, wptr + tstamp_len - 1744 mp->b_rptr)) { 1745 BUMP_MIB(ill->ill_ip_mib, 1746 ipIfStatsInDiscards); 1747 freemsg(first_mp); 1748 return; 1749 } 1750 /* Refresh ipha following the pullup. */ 1751 ipha = (ipha_t *)mp->b_rptr; 1752 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1753 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1754 } 1755 interested = B_TRUE; 1756 } 1757 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1758 break; 1759 case ICMP_TIME_STAMP_REPLY: 1760 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1761 break; 1762 case ICMP_INFO_REQUEST: 1763 /* Per RFC 1122 3.2.2.7, ignore this. */ 1764 case ICMP_INFO_REPLY: 1765 break; 1766 case ICMP_ADDRESS_MASK_REQUEST: 1767 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1768 !broadcast) && 1769 /* TODO m_pullup of complete header? */ 1770 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1771 interested = B_TRUE; 1772 } 1773 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1774 break; 1775 case ICMP_ADDRESS_MASK_REPLY: 1776 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1777 break; 1778 default: 1779 interested = B_TRUE; /* Pass up to transport */ 1780 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1781 break; 1782 } 1783 /* See if there is an ICMP client. */ 1784 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1785 /* If there is an ICMP client and we want one too, copy it. */ 1786 mblk_t *first_mp1; 1787 1788 if (!interested) { 1789 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1790 ip_policy, recv_ill, zoneid); 1791 return; 1792 } 1793 first_mp1 = ip_copymsg(first_mp); 1794 if (first_mp1 != NULL) { 1795 ip_fanout_proto(q, first_mp1, ill, ipha, 1796 0, mctl_present, ip_policy, recv_ill, zoneid); 1797 } 1798 } else if (!interested) { 1799 freemsg(first_mp); 1800 return; 1801 } else { 1802 /* 1803 * Initiate policy processing for this packet if ip_policy 1804 * is true. 1805 */ 1806 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1807 ill_index = ill->ill_phyint->phyint_ifindex; 1808 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1809 if (mp == NULL) { 1810 if (mctl_present) { 1811 freeb(first_mp); 1812 } 1813 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1814 return; 1815 } 1816 } 1817 } 1818 /* We want to do something with it. */ 1819 /* Check db_ref to make sure we can modify the packet. */ 1820 if (mp->b_datap->db_ref > 1) { 1821 mblk_t *first_mp1; 1822 1823 first_mp1 = ip_copymsg(first_mp); 1824 freemsg(first_mp); 1825 if (!first_mp1) { 1826 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1827 return; 1828 } 1829 first_mp = first_mp1; 1830 if (mctl_present) { 1831 mp = first_mp->b_cont; 1832 ASSERT(mp != NULL); 1833 } else { 1834 mp = first_mp; 1835 } 1836 ipha = (ipha_t *)mp->b_rptr; 1837 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1838 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1839 } 1840 switch (icmph->icmph_type) { 1841 case ICMP_ADDRESS_MASK_REQUEST: 1842 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1843 if (ipif == NULL) { 1844 freemsg(first_mp); 1845 return; 1846 } 1847 /* 1848 * outging interface must be IPv4 1849 */ 1850 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1851 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1852 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1853 ipif_refrele(ipif); 1854 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1855 break; 1856 case ICMP_ECHO_REQUEST: 1857 icmph->icmph_type = ICMP_ECHO_REPLY; 1858 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1859 break; 1860 case ICMP_TIME_STAMP_REQUEST: { 1861 uint32_t *tsp; 1862 1863 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1864 tsp = (uint32_t *)wptr; 1865 tsp++; /* Skip past 'originate time' */ 1866 /* Compute # of milliseconds since midnight */ 1867 gethrestime(&now); 1868 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1869 now.tv_nsec / (NANOSEC / MILLISEC); 1870 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1871 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1872 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1873 break; 1874 } 1875 default: 1876 ipha = (ipha_t *)&icmph[1]; 1877 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1878 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1879 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1880 freemsg(first_mp); 1881 return; 1882 } 1883 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1884 ipha = (ipha_t *)&icmph[1]; 1885 } 1886 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1887 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1888 freemsg(first_mp); 1889 return; 1890 } 1891 hdr_length = IPH_HDR_LENGTH(ipha); 1892 if (hdr_length < sizeof (ipha_t)) { 1893 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1894 freemsg(first_mp); 1895 return; 1896 } 1897 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1898 if (!pullupmsg(mp, 1899 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1900 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1901 freemsg(first_mp); 1902 return; 1903 } 1904 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1905 ipha = (ipha_t *)&icmph[1]; 1906 } 1907 switch (icmph->icmph_type) { 1908 case ICMP_REDIRECT: 1909 /* 1910 * As there is no upper client to deliver, we don't 1911 * need the first_mp any more. 1912 */ 1913 if (mctl_present) { 1914 freeb(first_mp); 1915 } 1916 icmp_redirect(ill, mp); 1917 return; 1918 case ICMP_DEST_UNREACHABLE: 1919 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1920 if (!icmp_inbound_too_big(icmph, ipha, ill, 1921 zoneid, mp, iph_hdr_length, ipst)) { 1922 freemsg(first_mp); 1923 return; 1924 } 1925 /* 1926 * icmp_inbound_too_big() may alter mp. 1927 * Resynch ipha and icmph accordingly. 1928 */ 1929 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1930 ipha = (ipha_t *)&icmph[1]; 1931 } 1932 /* FALLTHRU */ 1933 default : 1934 /* 1935 * IPQoS notes: Since we have already done IPQoS 1936 * processing we don't want to do it again in 1937 * the fanout routines called by 1938 * icmp_inbound_error_fanout, hence the last 1939 * argument, ip_policy, is B_FALSE. 1940 */ 1941 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1942 ipha, iph_hdr_length, hdr_length, mctl_present, 1943 B_FALSE, recv_ill, zoneid); 1944 } 1945 return; 1946 } 1947 /* Send out an ICMP packet */ 1948 icmph->icmph_checksum = 0; 1949 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1950 if (broadcast || CLASSD(ipha->ipha_dst)) { 1951 ipif_t *ipif_chosen; 1952 /* 1953 * Make it look like it was directed to us, so we don't look 1954 * like a fool with a broadcast or multicast source address. 1955 */ 1956 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1957 /* 1958 * Make sure that we haven't grabbed an interface that's DOWN. 1959 */ 1960 if (ipif != NULL) { 1961 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1962 ipha->ipha_src, zoneid); 1963 if (ipif_chosen != NULL) { 1964 ipif_refrele(ipif); 1965 ipif = ipif_chosen; 1966 } 1967 } 1968 if (ipif == NULL) { 1969 ip0dbg(("icmp_inbound: " 1970 "No source for broadcast/multicast:\n" 1971 "\tsrc 0x%x dst 0x%x ill %p " 1972 "ipif_lcl_addr 0x%x\n", 1973 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1974 (void *)ill, 1975 ill->ill_ipif->ipif_lcl_addr)); 1976 freemsg(first_mp); 1977 return; 1978 } 1979 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1980 ipha->ipha_dst = ipif->ipif_src_addr; 1981 ipif_refrele(ipif); 1982 } 1983 /* Reset time to live. */ 1984 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1985 { 1986 /* Swap source and destination addresses */ 1987 ipaddr_t tmp; 1988 1989 tmp = ipha->ipha_src; 1990 ipha->ipha_src = ipha->ipha_dst; 1991 ipha->ipha_dst = tmp; 1992 } 1993 ipha->ipha_ident = 0; 1994 if (!IS_SIMPLE_IPH(ipha)) 1995 icmp_options_update(ipha); 1996 1997 /* 1998 * ICMP echo replies should go out on the same interface 1999 * the request came on as probes used by in.mpathd for detecting 2000 * NIC failures are ECHO packets. We turn-off load spreading 2001 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2002 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2003 * function. This is in turn handled by ip_wput and ip_newroute 2004 * to make sure that the packet goes out on the interface it came 2005 * in on. If we don't turnoff load spreading, the packets might get 2006 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2007 * to go out and in.mpathd would wrongly detect a failure or 2008 * mis-detect a NIC failure for link failure. As load spreading 2009 * can happen only if ill_group is not NULL, we do only for 2010 * that case and this does not affect the normal case. 2011 * 2012 * We turn off load spreading only on echo packets that came from 2013 * on-link hosts. If the interface route has been deleted, this will 2014 * not be enforced as we can't do much. For off-link hosts, as the 2015 * default routes in IPv4 does not typically have an ire_ipif 2016 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2017 * Moreover, expecting a default route through this interface may 2018 * not be correct. We use ipha_dst because of the swap above. 2019 */ 2020 onlink = B_FALSE; 2021 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2022 /* 2023 * First, we need to make sure that it is not one of our 2024 * local addresses. If we set onlink when it is one of 2025 * our local addresses, we will end up creating IRE_CACHES 2026 * for one of our local addresses. Then, we will never 2027 * accept packets for them afterwards. 2028 */ 2029 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2030 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2031 if (src_ire == NULL) { 2032 ipif = ipif_get_next_ipif(NULL, ill); 2033 if (ipif == NULL) { 2034 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2035 freemsg(mp); 2036 return; 2037 } 2038 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2039 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2040 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2041 ipif_refrele(ipif); 2042 if (src_ire != NULL) { 2043 onlink = B_TRUE; 2044 ire_refrele(src_ire); 2045 } 2046 } else { 2047 ire_refrele(src_ire); 2048 } 2049 } 2050 if (!mctl_present) { 2051 /* 2052 * This packet should go out the same way as it 2053 * came in i.e in clear. To make sure that global 2054 * policy will not be applied to this in ip_wput_ire, 2055 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2056 */ 2057 ASSERT(first_mp == mp); 2058 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2059 if (first_mp == NULL) { 2060 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2061 freemsg(mp); 2062 return; 2063 } 2064 ii = (ipsec_in_t *)first_mp->b_rptr; 2065 2066 /* This is not a secure packet */ 2067 ii->ipsec_in_secure = B_FALSE; 2068 if (onlink) { 2069 ii->ipsec_in_attach_if = B_TRUE; 2070 ii->ipsec_in_ill_index = 2071 ill->ill_phyint->phyint_ifindex; 2072 ii->ipsec_in_rill_index = 2073 recv_ill->ill_phyint->phyint_ifindex; 2074 } 2075 first_mp->b_cont = mp; 2076 } else if (onlink) { 2077 ii = (ipsec_in_t *)first_mp->b_rptr; 2078 ii->ipsec_in_attach_if = B_TRUE; 2079 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2080 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2081 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2082 } else { 2083 ii = (ipsec_in_t *)first_mp->b_rptr; 2084 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2085 } 2086 ii->ipsec_in_zoneid = zoneid; 2087 ASSERT(zoneid != ALL_ZONES); 2088 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2089 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2090 return; 2091 } 2092 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2093 put(WR(q), first_mp); 2094 } 2095 2096 static ipaddr_t 2097 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2098 { 2099 conn_t *connp; 2100 connf_t *connfp; 2101 ipaddr_t nexthop_addr = INADDR_ANY; 2102 int hdr_length = IPH_HDR_LENGTH(ipha); 2103 uint16_t *up; 2104 uint32_t ports; 2105 ip_stack_t *ipst = ill->ill_ipst; 2106 2107 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2108 switch (ipha->ipha_protocol) { 2109 case IPPROTO_TCP: 2110 { 2111 tcph_t *tcph; 2112 2113 /* do a reverse lookup */ 2114 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2115 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2116 TCPS_LISTEN, ipst); 2117 break; 2118 } 2119 case IPPROTO_UDP: 2120 { 2121 uint32_t dstport, srcport; 2122 2123 ((uint16_t *)&ports)[0] = up[1]; 2124 ((uint16_t *)&ports)[1] = up[0]; 2125 2126 /* Extract ports in net byte order */ 2127 dstport = htons(ntohl(ports) & 0xFFFF); 2128 srcport = htons(ntohl(ports) >> 16); 2129 2130 connfp = &ipst->ips_ipcl_udp_fanout[ 2131 IPCL_UDP_HASH(dstport, ipst)]; 2132 mutex_enter(&connfp->connf_lock); 2133 connp = connfp->connf_head; 2134 2135 /* do a reverse lookup */ 2136 while ((connp != NULL) && 2137 (!IPCL_UDP_MATCH(connp, dstport, 2138 ipha->ipha_src, srcport, ipha->ipha_dst) || 2139 !IPCL_ZONE_MATCH(connp, zoneid))) { 2140 connp = connp->conn_next; 2141 } 2142 if (connp != NULL) 2143 CONN_INC_REF(connp); 2144 mutex_exit(&connfp->connf_lock); 2145 break; 2146 } 2147 case IPPROTO_SCTP: 2148 { 2149 in6_addr_t map_src, map_dst; 2150 2151 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2152 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2153 ((uint16_t *)&ports)[0] = up[1]; 2154 ((uint16_t *)&ports)[1] = up[0]; 2155 2156 connp = sctp_find_conn(&map_src, &map_dst, ports, 2157 zoneid, ipst->ips_netstack->netstack_sctp); 2158 if (connp == NULL) { 2159 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2160 zoneid, ports, ipha, ipst); 2161 } else { 2162 CONN_INC_REF(connp); 2163 SCTP_REFRELE(CONN2SCTP(connp)); 2164 } 2165 break; 2166 } 2167 default: 2168 { 2169 ipha_t ripha; 2170 2171 ripha.ipha_src = ipha->ipha_dst; 2172 ripha.ipha_dst = ipha->ipha_src; 2173 ripha.ipha_protocol = ipha->ipha_protocol; 2174 2175 connfp = &ipst->ips_ipcl_proto_fanout[ 2176 ipha->ipha_protocol]; 2177 mutex_enter(&connfp->connf_lock); 2178 connp = connfp->connf_head; 2179 for (connp = connfp->connf_head; connp != NULL; 2180 connp = connp->conn_next) { 2181 if (IPCL_PROTO_MATCH(connp, 2182 ipha->ipha_protocol, &ripha, ill, 2183 0, zoneid)) { 2184 CONN_INC_REF(connp); 2185 break; 2186 } 2187 } 2188 mutex_exit(&connfp->connf_lock); 2189 } 2190 } 2191 if (connp != NULL) { 2192 if (connp->conn_nexthop_set) 2193 nexthop_addr = connp->conn_nexthop_v4; 2194 CONN_DEC_REF(connp); 2195 } 2196 return (nexthop_addr); 2197 } 2198 2199 /* Table from RFC 1191 */ 2200 static int icmp_frag_size_table[] = 2201 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2202 2203 /* 2204 * Process received ICMP Packet too big. 2205 * After updating any IRE it does the fanout to any matching transport streams. 2206 * Assumes the message has been pulled up till the IP header that caused 2207 * the error. 2208 * 2209 * Returns B_FALSE on failure and B_TRUE on success. 2210 */ 2211 static boolean_t 2212 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2213 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2214 ip_stack_t *ipst) 2215 { 2216 ire_t *ire, *first_ire; 2217 int mtu; 2218 int hdr_length; 2219 ipaddr_t nexthop_addr; 2220 2221 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2222 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2223 ASSERT(ill != NULL); 2224 2225 hdr_length = IPH_HDR_LENGTH(ipha); 2226 2227 /* Drop if the original packet contained a source route */ 2228 if (ip_source_route_included(ipha)) { 2229 return (B_FALSE); 2230 } 2231 /* 2232 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2233 * header. 2234 */ 2235 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2236 mp->b_wptr) { 2237 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2238 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2239 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2240 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2241 return (B_FALSE); 2242 } 2243 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2244 ipha = (ipha_t *)&icmph[1]; 2245 } 2246 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2247 if (nexthop_addr != INADDR_ANY) { 2248 /* nexthop set */ 2249 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2250 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2251 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2252 } else { 2253 /* nexthop not set */ 2254 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2255 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2256 } 2257 2258 if (!first_ire) { 2259 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2260 ntohl(ipha->ipha_dst))); 2261 return (B_FALSE); 2262 } 2263 /* Check for MTU discovery advice as described in RFC 1191 */ 2264 mtu = ntohs(icmph->icmph_du_mtu); 2265 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2266 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2267 ire = ire->ire_next) { 2268 /* 2269 * Look for the connection to which this ICMP message is 2270 * directed. If it has the IP_NEXTHOP option set, then the 2271 * search is limited to IREs with the MATCH_IRE_PRIVATE 2272 * option. Else the search is limited to regular IREs. 2273 */ 2274 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2275 (nexthop_addr != ire->ire_gateway_addr)) || 2276 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2277 (nexthop_addr != INADDR_ANY))) 2278 continue; 2279 2280 mutex_enter(&ire->ire_lock); 2281 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2282 /* Reduce the IRE max frag value as advised. */ 2283 ip1dbg(("Received mtu from router: %d (was %d)\n", 2284 mtu, ire->ire_max_frag)); 2285 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2286 } else { 2287 uint32_t length; 2288 int i; 2289 2290 /* 2291 * Use the table from RFC 1191 to figure out 2292 * the next "plateau" based on the length in 2293 * the original IP packet. 2294 */ 2295 length = ntohs(ipha->ipha_length); 2296 if (ire->ire_max_frag <= length && 2297 ire->ire_max_frag >= length - hdr_length) { 2298 /* 2299 * Handle broken BSD 4.2 systems that 2300 * return the wrong iph_length in ICMP 2301 * errors. 2302 */ 2303 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2304 length, ire->ire_max_frag)); 2305 length -= hdr_length; 2306 } 2307 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2308 if (length > icmp_frag_size_table[i]) 2309 break; 2310 } 2311 if (i == A_CNT(icmp_frag_size_table)) { 2312 /* Smaller than 68! */ 2313 ip1dbg(("Too big for packet size %d\n", 2314 length)); 2315 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2316 ire->ire_frag_flag = 0; 2317 } else { 2318 mtu = icmp_frag_size_table[i]; 2319 ip1dbg(("Calculated mtu %d, packet size %d, " 2320 "before %d", mtu, length, 2321 ire->ire_max_frag)); 2322 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2323 ip1dbg((", after %d\n", ire->ire_max_frag)); 2324 } 2325 /* Record the new max frag size for the ULP. */ 2326 icmph->icmph_du_zero = 0; 2327 icmph->icmph_du_mtu = 2328 htons((uint16_t)ire->ire_max_frag); 2329 } 2330 mutex_exit(&ire->ire_lock); 2331 } 2332 rw_exit(&first_ire->ire_bucket->irb_lock); 2333 ire_refrele(first_ire); 2334 return (B_TRUE); 2335 } 2336 2337 /* 2338 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2339 * calls this function. 2340 */ 2341 static mblk_t * 2342 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2343 { 2344 ipha_t *ipha; 2345 icmph_t *icmph; 2346 ipha_t *in_ipha; 2347 int length; 2348 2349 ASSERT(mp->b_datap->db_type == M_DATA); 2350 2351 /* 2352 * For Self-encapsulated packets, we added an extra IP header 2353 * without the options. Inner IP header is the one from which 2354 * the outer IP header was formed. Thus, we need to remove the 2355 * outer IP header. To do this, we pullup the whole message 2356 * and overlay whatever follows the outer IP header over the 2357 * outer IP header. 2358 */ 2359 2360 if (!pullupmsg(mp, -1)) 2361 return (NULL); 2362 2363 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2364 ipha = (ipha_t *)&icmph[1]; 2365 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2366 2367 /* 2368 * The length that we want to overlay is following the inner 2369 * IP header. Subtracting the IP header + icmp header + outer 2370 * IP header's length should give us the length that we want to 2371 * overlay. 2372 */ 2373 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2374 hdr_length; 2375 /* 2376 * Overlay whatever follows the inner header over the 2377 * outer header. 2378 */ 2379 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2380 2381 /* Set the wptr to account for the outer header */ 2382 mp->b_wptr -= hdr_length; 2383 return (mp); 2384 } 2385 2386 /* 2387 * Try to pass the ICMP message upstream in case the ULP cares. 2388 * 2389 * If the packet that caused the ICMP error is secure, we send 2390 * it to AH/ESP to make sure that the attached packet has a 2391 * valid association. ipha in the code below points to the 2392 * IP header of the packet that caused the error. 2393 * 2394 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2395 * in the context of IPsec. Normally we tell the upper layer 2396 * whenever we send the ire (including ip_bind), the IPsec header 2397 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2398 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2399 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2400 * same thing. As TCP has the IPsec options size that needs to be 2401 * adjusted, we just pass the MTU unchanged. 2402 * 2403 * IFN could have been generated locally or by some router. 2404 * 2405 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2406 * This happens because IP adjusted its value of MTU on an 2407 * earlier IFN message and could not tell the upper layer, 2408 * the new adjusted value of MTU e.g. Packet was encrypted 2409 * or there was not enough information to fanout to upper 2410 * layers. Thus on the next outbound datagram, ip_wput_ire 2411 * generates the IFN, where IPsec processing has *not* been 2412 * done. 2413 * 2414 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2415 * could have generated this. This happens because ire_max_frag 2416 * value in IP was set to a new value, while the IPsec processing 2417 * was being done and after we made the fragmentation check in 2418 * ip_wput_ire. Thus on return from IPsec processing, 2419 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2420 * and generates the IFN. As IPsec processing is over, we fanout 2421 * to AH/ESP to remove the header. 2422 * 2423 * In both these cases, ipsec_in_loopback will be set indicating 2424 * that IFN was generated locally. 2425 * 2426 * ROUTER : IFN could be secure or non-secure. 2427 * 2428 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2429 * packet in error has AH/ESP headers to validate the AH/ESP 2430 * headers. AH/ESP will verify whether there is a valid SA or 2431 * not and send it back. We will fanout again if we have more 2432 * data in the packet. 2433 * 2434 * If the packet in error does not have AH/ESP, we handle it 2435 * like any other case. 2436 * 2437 * * NON_SECURE : If the packet in error has AH/ESP headers, 2438 * we attach a dummy ipsec_in and send it up to AH/ESP 2439 * for validation. AH/ESP will verify whether there is a 2440 * valid SA or not and send it back. We will fanout again if 2441 * we have more data in the packet. 2442 * 2443 * If the packet in error does not have AH/ESP, we handle it 2444 * like any other case. 2445 */ 2446 static void 2447 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2448 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2449 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2450 zoneid_t zoneid) 2451 { 2452 uint16_t *up; /* Pointer to ports in ULP header */ 2453 uint32_t ports; /* reversed ports for fanout */ 2454 ipha_t ripha; /* With reversed addresses */ 2455 mblk_t *first_mp; 2456 ipsec_in_t *ii; 2457 tcph_t *tcph; 2458 conn_t *connp; 2459 ip_stack_t *ipst; 2460 2461 ASSERT(ill != NULL); 2462 2463 ASSERT(recv_ill != NULL); 2464 ipst = recv_ill->ill_ipst; 2465 2466 first_mp = mp; 2467 if (mctl_present) { 2468 mp = first_mp->b_cont; 2469 ASSERT(mp != NULL); 2470 2471 ii = (ipsec_in_t *)first_mp->b_rptr; 2472 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2473 } else { 2474 ii = NULL; 2475 } 2476 2477 switch (ipha->ipha_protocol) { 2478 case IPPROTO_UDP: 2479 /* 2480 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2481 * transport header. 2482 */ 2483 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2484 mp->b_wptr) { 2485 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2486 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2487 goto discard_pkt; 2488 } 2489 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2490 ipha = (ipha_t *)&icmph[1]; 2491 } 2492 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2493 2494 /* 2495 * Attempt to find a client stream based on port. 2496 * Note that we do a reverse lookup since the header is 2497 * in the form we sent it out. 2498 * The ripha header is only used for the IP_UDP_MATCH and we 2499 * only set the src and dst addresses and protocol. 2500 */ 2501 ripha.ipha_src = ipha->ipha_dst; 2502 ripha.ipha_dst = ipha->ipha_src; 2503 ripha.ipha_protocol = ipha->ipha_protocol; 2504 ((uint16_t *)&ports)[0] = up[1]; 2505 ((uint16_t *)&ports)[1] = up[0]; 2506 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2507 ntohl(ipha->ipha_src), ntohs(up[0]), 2508 ntohl(ipha->ipha_dst), ntohs(up[1]), 2509 icmph->icmph_type, icmph->icmph_code)); 2510 2511 /* Have to change db_type after any pullupmsg */ 2512 DB_TYPE(mp) = M_CTL; 2513 2514 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2515 mctl_present, ip_policy, recv_ill, zoneid); 2516 return; 2517 2518 case IPPROTO_TCP: 2519 /* 2520 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2521 * transport header. 2522 */ 2523 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2524 mp->b_wptr) { 2525 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2526 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2527 goto discard_pkt; 2528 } 2529 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2530 ipha = (ipha_t *)&icmph[1]; 2531 } 2532 /* 2533 * Find a TCP client stream for this packet. 2534 * Note that we do a reverse lookup since the header is 2535 * in the form we sent it out. 2536 */ 2537 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2538 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2539 ipst); 2540 if (connp == NULL) 2541 goto discard_pkt; 2542 2543 /* Have to change db_type after any pullupmsg */ 2544 DB_TYPE(mp) = M_CTL; 2545 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2546 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2547 return; 2548 2549 case IPPROTO_SCTP: 2550 /* 2551 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2552 * transport header. 2553 */ 2554 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2555 mp->b_wptr) { 2556 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2557 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2558 goto discard_pkt; 2559 } 2560 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2561 ipha = (ipha_t *)&icmph[1]; 2562 } 2563 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2564 /* 2565 * Find a SCTP client stream for this packet. 2566 * Note that we do a reverse lookup since the header is 2567 * in the form we sent it out. 2568 * The ripha header is only used for the matching and we 2569 * only set the src and dst addresses, protocol, and version. 2570 */ 2571 ripha.ipha_src = ipha->ipha_dst; 2572 ripha.ipha_dst = ipha->ipha_src; 2573 ripha.ipha_protocol = ipha->ipha_protocol; 2574 ripha.ipha_version_and_hdr_length = 2575 ipha->ipha_version_and_hdr_length; 2576 ((uint16_t *)&ports)[0] = up[1]; 2577 ((uint16_t *)&ports)[1] = up[0]; 2578 2579 /* Have to change db_type after any pullupmsg */ 2580 DB_TYPE(mp) = M_CTL; 2581 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2582 mctl_present, ip_policy, zoneid); 2583 return; 2584 2585 case IPPROTO_ESP: 2586 case IPPROTO_AH: { 2587 int ipsec_rc; 2588 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2589 2590 /* 2591 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2592 * We will re-use the IPSEC_IN if it is already present as 2593 * AH/ESP will not affect any fields in the IPSEC_IN for 2594 * ICMP errors. If there is no IPSEC_IN, allocate a new 2595 * one and attach it in the front. 2596 */ 2597 if (ii != NULL) { 2598 /* 2599 * ip_fanout_proto_again converts the ICMP errors 2600 * that come back from AH/ESP to M_DATA so that 2601 * if it is non-AH/ESP and we do a pullupmsg in 2602 * this function, it would work. Convert it back 2603 * to M_CTL before we send up as this is a ICMP 2604 * error. This could have been generated locally or 2605 * by some router. Validate the inner IPsec 2606 * headers. 2607 * 2608 * NOTE : ill_index is used by ip_fanout_proto_again 2609 * to locate the ill. 2610 */ 2611 ASSERT(ill != NULL); 2612 ii->ipsec_in_ill_index = 2613 ill->ill_phyint->phyint_ifindex; 2614 ii->ipsec_in_rill_index = 2615 recv_ill->ill_phyint->phyint_ifindex; 2616 DB_TYPE(first_mp->b_cont) = M_CTL; 2617 } else { 2618 /* 2619 * IPSEC_IN is not present. We attach a ipsec_in 2620 * message and send up to IPsec for validating 2621 * and removing the IPsec headers. Clear 2622 * ipsec_in_secure so that when we return 2623 * from IPsec, we don't mistakenly think that this 2624 * is a secure packet came from the network. 2625 * 2626 * NOTE : ill_index is used by ip_fanout_proto_again 2627 * to locate the ill. 2628 */ 2629 ASSERT(first_mp == mp); 2630 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2631 if (first_mp == NULL) { 2632 freemsg(mp); 2633 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2634 return; 2635 } 2636 ii = (ipsec_in_t *)first_mp->b_rptr; 2637 2638 /* This is not a secure packet */ 2639 ii->ipsec_in_secure = B_FALSE; 2640 first_mp->b_cont = mp; 2641 DB_TYPE(mp) = M_CTL; 2642 ASSERT(ill != NULL); 2643 ii->ipsec_in_ill_index = 2644 ill->ill_phyint->phyint_ifindex; 2645 ii->ipsec_in_rill_index = 2646 recv_ill->ill_phyint->phyint_ifindex; 2647 } 2648 ip2dbg(("icmp_inbound_error: ipsec\n")); 2649 2650 if (!ipsec_loaded(ipss)) { 2651 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2652 return; 2653 } 2654 2655 if (ipha->ipha_protocol == IPPROTO_ESP) 2656 ipsec_rc = ipsecesp_icmp_error(first_mp); 2657 else 2658 ipsec_rc = ipsecah_icmp_error(first_mp); 2659 if (ipsec_rc == IPSEC_STATUS_FAILED) 2660 return; 2661 2662 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2663 return; 2664 } 2665 default: 2666 /* 2667 * The ripha header is only used for the lookup and we 2668 * only set the src and dst addresses and protocol. 2669 */ 2670 ripha.ipha_src = ipha->ipha_dst; 2671 ripha.ipha_dst = ipha->ipha_src; 2672 ripha.ipha_protocol = ipha->ipha_protocol; 2673 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2674 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2675 ntohl(ipha->ipha_dst), 2676 icmph->icmph_type, icmph->icmph_code)); 2677 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2678 ipha_t *in_ipha; 2679 2680 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2681 mp->b_wptr) { 2682 if (!pullupmsg(mp, (uchar_t *)ipha + 2683 hdr_length + sizeof (ipha_t) - 2684 mp->b_rptr)) { 2685 goto discard_pkt; 2686 } 2687 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2688 ipha = (ipha_t *)&icmph[1]; 2689 } 2690 /* 2691 * Caller has verified that length has to be 2692 * at least the size of IP header. 2693 */ 2694 ASSERT(hdr_length >= sizeof (ipha_t)); 2695 /* 2696 * Check the sanity of the inner IP header like 2697 * we did for the outer header. 2698 */ 2699 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2700 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2701 goto discard_pkt; 2702 } 2703 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2704 goto discard_pkt; 2705 } 2706 /* Check for Self-encapsulated tunnels */ 2707 if (in_ipha->ipha_src == ipha->ipha_src && 2708 in_ipha->ipha_dst == ipha->ipha_dst) { 2709 2710 mp = icmp_inbound_self_encap_error(mp, 2711 iph_hdr_length, hdr_length); 2712 if (mp == NULL) 2713 goto discard_pkt; 2714 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2715 ipha = (ipha_t *)&icmph[1]; 2716 hdr_length = IPH_HDR_LENGTH(ipha); 2717 /* 2718 * The packet in error is self-encapsualted. 2719 * And we are finding it further encapsulated 2720 * which we could not have possibly generated. 2721 */ 2722 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2723 goto discard_pkt; 2724 } 2725 icmp_inbound_error_fanout(q, ill, first_mp, 2726 icmph, ipha, iph_hdr_length, hdr_length, 2727 mctl_present, ip_policy, recv_ill, zoneid); 2728 return; 2729 } 2730 } 2731 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2732 ipha->ipha_protocol == IPPROTO_IPV6) && 2733 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2734 ii != NULL && 2735 ii->ipsec_in_loopback && 2736 ii->ipsec_in_secure) { 2737 /* 2738 * For IP tunnels that get a looped-back 2739 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2740 * reported new MTU to take into account the IPsec 2741 * headers protecting this configured tunnel. 2742 * 2743 * This allows the tunnel module (tun.c) to blindly 2744 * accept the MTU reported in an ICMP "too big" 2745 * message. 2746 * 2747 * Non-looped back ICMP messages will just be 2748 * handled by the security protocols (if needed), 2749 * and the first subsequent packet will hit this 2750 * path. 2751 */ 2752 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2753 ipsec_in_extra_length(first_mp)); 2754 } 2755 /* Have to change db_type after any pullupmsg */ 2756 DB_TYPE(mp) = M_CTL; 2757 2758 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2759 ip_policy, recv_ill, zoneid); 2760 return; 2761 } 2762 /* NOTREACHED */ 2763 discard_pkt: 2764 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2765 drop_pkt:; 2766 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2767 freemsg(first_mp); 2768 } 2769 2770 /* 2771 * Common IP options parser. 2772 * 2773 * Setup routine: fill in *optp with options-parsing state, then 2774 * tail-call ipoptp_next to return the first option. 2775 */ 2776 uint8_t 2777 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2778 { 2779 uint32_t totallen; /* total length of all options */ 2780 2781 totallen = ipha->ipha_version_and_hdr_length - 2782 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2783 totallen <<= 2; 2784 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2785 optp->ipoptp_end = optp->ipoptp_next + totallen; 2786 optp->ipoptp_flags = 0; 2787 return (ipoptp_next(optp)); 2788 } 2789 2790 /* 2791 * Common IP options parser: extract next option. 2792 */ 2793 uint8_t 2794 ipoptp_next(ipoptp_t *optp) 2795 { 2796 uint8_t *end = optp->ipoptp_end; 2797 uint8_t *cur = optp->ipoptp_next; 2798 uint8_t opt, len, pointer; 2799 2800 /* 2801 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2802 * has been corrupted. 2803 */ 2804 ASSERT(cur <= end); 2805 2806 if (cur == end) 2807 return (IPOPT_EOL); 2808 2809 opt = cur[IPOPT_OPTVAL]; 2810 2811 /* 2812 * Skip any NOP options. 2813 */ 2814 while (opt == IPOPT_NOP) { 2815 cur++; 2816 if (cur == end) 2817 return (IPOPT_EOL); 2818 opt = cur[IPOPT_OPTVAL]; 2819 } 2820 2821 if (opt == IPOPT_EOL) 2822 return (IPOPT_EOL); 2823 2824 /* 2825 * Option requiring a length. 2826 */ 2827 if ((cur + 1) >= end) { 2828 optp->ipoptp_flags |= IPOPTP_ERROR; 2829 return (IPOPT_EOL); 2830 } 2831 len = cur[IPOPT_OLEN]; 2832 if (len < 2) { 2833 optp->ipoptp_flags |= IPOPTP_ERROR; 2834 return (IPOPT_EOL); 2835 } 2836 optp->ipoptp_cur = cur; 2837 optp->ipoptp_len = len; 2838 optp->ipoptp_next = cur + len; 2839 if (cur + len > end) { 2840 optp->ipoptp_flags |= IPOPTP_ERROR; 2841 return (IPOPT_EOL); 2842 } 2843 2844 /* 2845 * For the options which require a pointer field, make sure 2846 * its there, and make sure it points to either something 2847 * inside this option, or the end of the option. 2848 */ 2849 switch (opt) { 2850 case IPOPT_RR: 2851 case IPOPT_TS: 2852 case IPOPT_LSRR: 2853 case IPOPT_SSRR: 2854 if (len <= IPOPT_OFFSET) { 2855 optp->ipoptp_flags |= IPOPTP_ERROR; 2856 return (opt); 2857 } 2858 pointer = cur[IPOPT_OFFSET]; 2859 if (pointer - 1 > len) { 2860 optp->ipoptp_flags |= IPOPTP_ERROR; 2861 return (opt); 2862 } 2863 break; 2864 } 2865 2866 /* 2867 * Sanity check the pointer field based on the type of the 2868 * option. 2869 */ 2870 switch (opt) { 2871 case IPOPT_RR: 2872 case IPOPT_SSRR: 2873 case IPOPT_LSRR: 2874 if (pointer < IPOPT_MINOFF_SR) 2875 optp->ipoptp_flags |= IPOPTP_ERROR; 2876 break; 2877 case IPOPT_TS: 2878 if (pointer < IPOPT_MINOFF_IT) 2879 optp->ipoptp_flags |= IPOPTP_ERROR; 2880 /* 2881 * Note that the Internet Timestamp option also 2882 * contains two four bit fields (the Overflow field, 2883 * and the Flag field), which follow the pointer 2884 * field. We don't need to check that these fields 2885 * fall within the length of the option because this 2886 * was implicitely done above. We've checked that the 2887 * pointer value is at least IPOPT_MINOFF_IT, and that 2888 * it falls within the option. Since IPOPT_MINOFF_IT > 2889 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2890 */ 2891 ASSERT(len > IPOPT_POS_OV_FLG); 2892 break; 2893 } 2894 2895 return (opt); 2896 } 2897 2898 /* 2899 * Use the outgoing IP header to create an IP_OPTIONS option the way 2900 * it was passed down from the application. 2901 */ 2902 int 2903 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2904 { 2905 ipoptp_t opts; 2906 const uchar_t *opt; 2907 uint8_t optval; 2908 uint8_t optlen; 2909 uint32_t len = 0; 2910 uchar_t *buf1 = buf; 2911 2912 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2913 len += IP_ADDR_LEN; 2914 bzero(buf1, IP_ADDR_LEN); 2915 2916 /* 2917 * OK to cast away const here, as we don't store through the returned 2918 * opts.ipoptp_cur pointer. 2919 */ 2920 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2921 optval != IPOPT_EOL; 2922 optval = ipoptp_next(&opts)) { 2923 int off; 2924 2925 opt = opts.ipoptp_cur; 2926 optlen = opts.ipoptp_len; 2927 switch (optval) { 2928 case IPOPT_SSRR: 2929 case IPOPT_LSRR: 2930 2931 /* 2932 * Insert ipha_dst as the first entry in the source 2933 * route and move down the entries on step. 2934 * The last entry gets placed at buf1. 2935 */ 2936 buf[IPOPT_OPTVAL] = optval; 2937 buf[IPOPT_OLEN] = optlen; 2938 buf[IPOPT_OFFSET] = optlen; 2939 2940 off = optlen - IP_ADDR_LEN; 2941 if (off < 0) { 2942 /* No entries in source route */ 2943 break; 2944 } 2945 /* Last entry in source route */ 2946 bcopy(opt + off, buf1, IP_ADDR_LEN); 2947 off -= IP_ADDR_LEN; 2948 2949 while (off > 0) { 2950 bcopy(opt + off, 2951 buf + off + IP_ADDR_LEN, 2952 IP_ADDR_LEN); 2953 off -= IP_ADDR_LEN; 2954 } 2955 /* ipha_dst into first slot */ 2956 bcopy(&ipha->ipha_dst, 2957 buf + off + IP_ADDR_LEN, 2958 IP_ADDR_LEN); 2959 buf += optlen; 2960 len += optlen; 2961 break; 2962 2963 case IPOPT_COMSEC: 2964 case IPOPT_SECURITY: 2965 /* if passing up a label is not ok, then remove */ 2966 if (is_system_labeled()) 2967 break; 2968 /* FALLTHROUGH */ 2969 default: 2970 bcopy(opt, buf, optlen); 2971 buf += optlen; 2972 len += optlen; 2973 break; 2974 } 2975 } 2976 done: 2977 /* Pad the resulting options */ 2978 while (len & 0x3) { 2979 *buf++ = IPOPT_EOL; 2980 len++; 2981 } 2982 return (len); 2983 } 2984 2985 /* 2986 * Update any record route or timestamp options to include this host. 2987 * Reverse any source route option. 2988 * This routine assumes that the options are well formed i.e. that they 2989 * have already been checked. 2990 */ 2991 static void 2992 icmp_options_update(ipha_t *ipha) 2993 { 2994 ipoptp_t opts; 2995 uchar_t *opt; 2996 uint8_t optval; 2997 ipaddr_t src; /* Our local address */ 2998 ipaddr_t dst; 2999 3000 ip2dbg(("icmp_options_update\n")); 3001 src = ipha->ipha_src; 3002 dst = ipha->ipha_dst; 3003 3004 for (optval = ipoptp_first(&opts, ipha); 3005 optval != IPOPT_EOL; 3006 optval = ipoptp_next(&opts)) { 3007 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3008 opt = opts.ipoptp_cur; 3009 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3010 optval, opts.ipoptp_len)); 3011 switch (optval) { 3012 int off1, off2; 3013 case IPOPT_SSRR: 3014 case IPOPT_LSRR: 3015 /* 3016 * Reverse the source route. The first entry 3017 * should be the next to last one in the current 3018 * source route (the last entry is our address). 3019 * The last entry should be the final destination. 3020 */ 3021 off1 = IPOPT_MINOFF_SR - 1; 3022 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3023 if (off2 < 0) { 3024 /* No entries in source route */ 3025 ip1dbg(( 3026 "icmp_options_update: bad src route\n")); 3027 break; 3028 } 3029 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3030 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3031 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3032 off2 -= IP_ADDR_LEN; 3033 3034 while (off1 < off2) { 3035 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3036 bcopy((char *)opt + off2, (char *)opt + off1, 3037 IP_ADDR_LEN); 3038 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3039 off1 += IP_ADDR_LEN; 3040 off2 -= IP_ADDR_LEN; 3041 } 3042 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3043 break; 3044 } 3045 } 3046 } 3047 3048 /* 3049 * Process received ICMP Redirect messages. 3050 */ 3051 static void 3052 icmp_redirect(ill_t *ill, mblk_t *mp) 3053 { 3054 ipha_t *ipha; 3055 int iph_hdr_length; 3056 icmph_t *icmph; 3057 ipha_t *ipha_err; 3058 ire_t *ire; 3059 ire_t *prev_ire; 3060 ire_t *save_ire; 3061 ipaddr_t src, dst, gateway; 3062 iulp_t ulp_info = { 0 }; 3063 int error; 3064 ip_stack_t *ipst; 3065 3066 ASSERT(ill != NULL); 3067 ipst = ill->ill_ipst; 3068 3069 ipha = (ipha_t *)mp->b_rptr; 3070 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3071 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3072 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3073 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3074 freemsg(mp); 3075 return; 3076 } 3077 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3078 ipha_err = (ipha_t *)&icmph[1]; 3079 src = ipha->ipha_src; 3080 dst = ipha_err->ipha_dst; 3081 gateway = icmph->icmph_rd_gateway; 3082 /* Make sure the new gateway is reachable somehow. */ 3083 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3084 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3085 /* 3086 * Make sure we had a route for the dest in question and that 3087 * that route was pointing to the old gateway (the source of the 3088 * redirect packet.) 3089 */ 3090 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3091 NULL, MATCH_IRE_GW, ipst); 3092 /* 3093 * Check that 3094 * the redirect was not from ourselves 3095 * the new gateway and the old gateway are directly reachable 3096 */ 3097 if (!prev_ire || 3098 !ire || 3099 ire->ire_type == IRE_LOCAL) { 3100 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3101 freemsg(mp); 3102 if (ire != NULL) 3103 ire_refrele(ire); 3104 if (prev_ire != NULL) 3105 ire_refrele(prev_ire); 3106 return; 3107 } 3108 3109 /* 3110 * Should we use the old ULP info to create the new gateway? From 3111 * a user's perspective, we should inherit the info so that it 3112 * is a "smooth" transition. If we do not do that, then new 3113 * connections going thru the new gateway will have no route metrics, 3114 * which is counter-intuitive to user. From a network point of 3115 * view, this may or may not make sense even though the new gateway 3116 * is still directly connected to us so the route metrics should not 3117 * change much. 3118 * 3119 * But if the old ire_uinfo is not initialized, we do another 3120 * recursive lookup on the dest using the new gateway. There may 3121 * be a route to that. If so, use it to initialize the redirect 3122 * route. 3123 */ 3124 if (prev_ire->ire_uinfo.iulp_set) { 3125 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3126 } else { 3127 ire_t *tmp_ire; 3128 ire_t *sire; 3129 3130 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3131 ALL_ZONES, 0, NULL, 3132 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3133 ipst); 3134 if (sire != NULL) { 3135 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3136 /* 3137 * If sire != NULL, ire_ftable_lookup() should not 3138 * return a NULL value. 3139 */ 3140 ASSERT(tmp_ire != NULL); 3141 ire_refrele(tmp_ire); 3142 ire_refrele(sire); 3143 } else if (tmp_ire != NULL) { 3144 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3145 sizeof (iulp_t)); 3146 ire_refrele(tmp_ire); 3147 } 3148 } 3149 if (prev_ire->ire_type == IRE_CACHE) 3150 ire_delete(prev_ire); 3151 ire_refrele(prev_ire); 3152 /* 3153 * TODO: more precise handling for cases 0, 2, 3, the latter two 3154 * require TOS routing 3155 */ 3156 switch (icmph->icmph_code) { 3157 case 0: 3158 case 1: 3159 /* TODO: TOS specificity for cases 2 and 3 */ 3160 case 2: 3161 case 3: 3162 break; 3163 default: 3164 freemsg(mp); 3165 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3166 ire_refrele(ire); 3167 return; 3168 } 3169 /* 3170 * Create a Route Association. This will allow us to remember that 3171 * someone we believe told us to use the particular gateway. 3172 */ 3173 save_ire = ire; 3174 ire = ire_create( 3175 (uchar_t *)&dst, /* dest addr */ 3176 (uchar_t *)&ip_g_all_ones, /* mask */ 3177 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3178 (uchar_t *)&gateway, /* gateway addr */ 3179 &save_ire->ire_max_frag, /* max frag */ 3180 NULL, /* no src nce */ 3181 NULL, /* no rfq */ 3182 NULL, /* no stq */ 3183 IRE_HOST, 3184 NULL, /* ipif */ 3185 0, /* cmask */ 3186 0, /* phandle */ 3187 0, /* ihandle */ 3188 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3189 &ulp_info, 3190 NULL, /* tsol_gc_t */ 3191 NULL, /* gcgrp */ 3192 ipst); 3193 3194 if (ire == NULL) { 3195 freemsg(mp); 3196 ire_refrele(save_ire); 3197 return; 3198 } 3199 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3200 ire_refrele(save_ire); 3201 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3202 3203 if (error == 0) { 3204 ire_refrele(ire); /* Held in ire_add_v4 */ 3205 /* tell routing sockets that we received a redirect */ 3206 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3207 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3208 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3209 } 3210 3211 /* 3212 * Delete any existing IRE_HOST type redirect ires for this destination. 3213 * This together with the added IRE has the effect of 3214 * modifying an existing redirect. 3215 */ 3216 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3217 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3218 if (prev_ire != NULL) { 3219 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3220 ire_delete(prev_ire); 3221 ire_refrele(prev_ire); 3222 } 3223 3224 freemsg(mp); 3225 } 3226 3227 /* 3228 * Generate an ICMP parameter problem message. 3229 */ 3230 static void 3231 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3232 ip_stack_t *ipst) 3233 { 3234 icmph_t icmph; 3235 boolean_t mctl_present; 3236 mblk_t *first_mp; 3237 3238 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3239 3240 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3241 if (mctl_present) 3242 freeb(first_mp); 3243 return; 3244 } 3245 3246 bzero(&icmph, sizeof (icmph_t)); 3247 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3248 icmph.icmph_pp_ptr = ptr; 3249 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3250 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3251 ipst); 3252 } 3253 3254 /* 3255 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3256 * the ICMP header pointed to by "stuff". (May be called as writer.) 3257 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3258 * an icmp error packet can be sent. 3259 * Assigns an appropriate source address to the packet. If ipha_dst is 3260 * one of our addresses use it for source. Otherwise pick a source based 3261 * on a route lookup back to ipha_src. 3262 * Note that ipha_src must be set here since the 3263 * packet is likely to arrive on an ill queue in ip_wput() which will 3264 * not set a source address. 3265 */ 3266 static void 3267 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3268 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3269 { 3270 ipaddr_t dst; 3271 icmph_t *icmph; 3272 ipha_t *ipha; 3273 uint_t len_needed; 3274 size_t msg_len; 3275 mblk_t *mp1; 3276 ipaddr_t src; 3277 ire_t *ire; 3278 mblk_t *ipsec_mp; 3279 ipsec_out_t *io = NULL; 3280 3281 if (mctl_present) { 3282 /* 3283 * If it is : 3284 * 3285 * 1) a IPSEC_OUT, then this is caused by outbound 3286 * datagram originating on this host. IPsec processing 3287 * may or may not have been done. Refer to comments above 3288 * icmp_inbound_error_fanout for details. 3289 * 3290 * 2) a IPSEC_IN if we are generating a icmp_message 3291 * for an incoming datagram destined for us i.e called 3292 * from ip_fanout_send_icmp. 3293 */ 3294 ipsec_info_t *in; 3295 ipsec_mp = mp; 3296 mp = ipsec_mp->b_cont; 3297 3298 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3299 ipha = (ipha_t *)mp->b_rptr; 3300 3301 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3302 in->ipsec_info_type == IPSEC_IN); 3303 3304 if (in->ipsec_info_type == IPSEC_IN) { 3305 /* 3306 * Convert the IPSEC_IN to IPSEC_OUT. 3307 */ 3308 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3309 BUMP_MIB(&ipst->ips_ip_mib, 3310 ipIfStatsOutDiscards); 3311 return; 3312 } 3313 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3314 } else { 3315 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3316 io = (ipsec_out_t *)in; 3317 /* 3318 * Clear out ipsec_out_proc_begin, so we do a fresh 3319 * ire lookup. 3320 */ 3321 io->ipsec_out_proc_begin = B_FALSE; 3322 } 3323 ASSERT(zoneid == io->ipsec_out_zoneid); 3324 ASSERT(zoneid != ALL_ZONES); 3325 } else { 3326 /* 3327 * This is in clear. The icmp message we are building 3328 * here should go out in clear. 3329 * 3330 * Pardon the convolution of it all, but it's easier to 3331 * allocate a "use cleartext" IPSEC_IN message and convert 3332 * it than it is to allocate a new one. 3333 */ 3334 ipsec_in_t *ii; 3335 ASSERT(DB_TYPE(mp) == M_DATA); 3336 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3337 if (ipsec_mp == NULL) { 3338 freemsg(mp); 3339 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3340 return; 3341 } 3342 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3343 3344 /* This is not a secure packet */ 3345 ii->ipsec_in_secure = B_FALSE; 3346 /* 3347 * For trusted extensions using a shared IP address we can 3348 * send using any zoneid. 3349 */ 3350 if (zoneid == ALL_ZONES) 3351 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3352 else 3353 ii->ipsec_in_zoneid = zoneid; 3354 ipsec_mp->b_cont = mp; 3355 ipha = (ipha_t *)mp->b_rptr; 3356 /* 3357 * Convert the IPSEC_IN to IPSEC_OUT. 3358 */ 3359 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3360 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3361 return; 3362 } 3363 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3364 } 3365 3366 /* Remember our eventual destination */ 3367 dst = ipha->ipha_src; 3368 3369 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3370 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3371 if (ire != NULL && 3372 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3373 src = ipha->ipha_dst; 3374 } else { 3375 if (ire != NULL) 3376 ire_refrele(ire); 3377 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3378 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3379 ipst); 3380 if (ire == NULL) { 3381 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3382 freemsg(ipsec_mp); 3383 return; 3384 } 3385 src = ire->ire_src_addr; 3386 } 3387 3388 if (ire != NULL) 3389 ire_refrele(ire); 3390 3391 /* 3392 * Check if we can send back more then 8 bytes in addition to 3393 * the IP header. We try to send 64 bytes of data and the internal 3394 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3395 */ 3396 len_needed = IPH_HDR_LENGTH(ipha); 3397 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3398 ipha->ipha_protocol == IPPROTO_IPV6) { 3399 3400 if (!pullupmsg(mp, -1)) { 3401 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3402 freemsg(ipsec_mp); 3403 return; 3404 } 3405 ipha = (ipha_t *)mp->b_rptr; 3406 3407 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3408 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3409 len_needed)); 3410 } else { 3411 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3412 3413 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3414 len_needed += ip_hdr_length_v6(mp, ip6h); 3415 } 3416 } 3417 len_needed += ipst->ips_ip_icmp_return; 3418 msg_len = msgdsize(mp); 3419 if (msg_len > len_needed) { 3420 (void) adjmsg(mp, len_needed - msg_len); 3421 msg_len = len_needed; 3422 } 3423 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3424 if (mp1 == NULL) { 3425 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3426 freemsg(ipsec_mp); 3427 return; 3428 } 3429 mp1->b_cont = mp; 3430 mp = mp1; 3431 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3432 ipsec_mp->b_rptr == (uint8_t *)io && 3433 io->ipsec_out_type == IPSEC_OUT); 3434 ipsec_mp->b_cont = mp; 3435 3436 /* 3437 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3438 * node generates be accepted in peace by all on-host destinations. 3439 * If we do NOT assume that all on-host destinations trust 3440 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3441 * (Look for ipsec_out_icmp_loopback). 3442 */ 3443 io->ipsec_out_icmp_loopback = B_TRUE; 3444 3445 ipha = (ipha_t *)mp->b_rptr; 3446 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3447 *ipha = icmp_ipha; 3448 ipha->ipha_src = src; 3449 ipha->ipha_dst = dst; 3450 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3451 msg_len += sizeof (icmp_ipha) + len; 3452 if (msg_len > IP_MAXPACKET) { 3453 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3454 msg_len = IP_MAXPACKET; 3455 } 3456 ipha->ipha_length = htons((uint16_t)msg_len); 3457 icmph = (icmph_t *)&ipha[1]; 3458 bcopy(stuff, icmph, len); 3459 icmph->icmph_checksum = 0; 3460 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3461 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3462 put(q, ipsec_mp); 3463 } 3464 3465 /* 3466 * Determine if an ICMP error packet can be sent given the rate limit. 3467 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3468 * in milliseconds) and a burst size. Burst size number of packets can 3469 * be sent arbitrarely closely spaced. 3470 * The state is tracked using two variables to implement an approximate 3471 * token bucket filter: 3472 * icmp_pkt_err_last - lbolt value when the last burst started 3473 * icmp_pkt_err_sent - number of packets sent in current burst 3474 */ 3475 boolean_t 3476 icmp_err_rate_limit(ip_stack_t *ipst) 3477 { 3478 clock_t now = TICK_TO_MSEC(lbolt); 3479 uint_t refilled; /* Number of packets refilled in tbf since last */ 3480 /* Guard against changes by loading into local variable */ 3481 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3482 3483 if (err_interval == 0) 3484 return (B_FALSE); 3485 3486 if (ipst->ips_icmp_pkt_err_last > now) { 3487 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3488 ipst->ips_icmp_pkt_err_last = 0; 3489 ipst->ips_icmp_pkt_err_sent = 0; 3490 } 3491 /* 3492 * If we are in a burst update the token bucket filter. 3493 * Update the "last" time to be close to "now" but make sure 3494 * we don't loose precision. 3495 */ 3496 if (ipst->ips_icmp_pkt_err_sent != 0) { 3497 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3498 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3499 ipst->ips_icmp_pkt_err_sent = 0; 3500 } else { 3501 ipst->ips_icmp_pkt_err_sent -= refilled; 3502 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3503 } 3504 } 3505 if (ipst->ips_icmp_pkt_err_sent == 0) { 3506 /* Start of new burst */ 3507 ipst->ips_icmp_pkt_err_last = now; 3508 } 3509 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3510 ipst->ips_icmp_pkt_err_sent++; 3511 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3512 ipst->ips_icmp_pkt_err_sent)); 3513 return (B_FALSE); 3514 } 3515 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3516 return (B_TRUE); 3517 } 3518 3519 /* 3520 * Check if it is ok to send an IPv4 ICMP error packet in 3521 * response to the IPv4 packet in mp. 3522 * Free the message and return null if no 3523 * ICMP error packet should be sent. 3524 */ 3525 static mblk_t * 3526 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3527 { 3528 icmph_t *icmph; 3529 ipha_t *ipha; 3530 uint_t len_needed; 3531 ire_t *src_ire; 3532 ire_t *dst_ire; 3533 3534 if (!mp) 3535 return (NULL); 3536 ipha = (ipha_t *)mp->b_rptr; 3537 if (ip_csum_hdr(ipha)) { 3538 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3539 freemsg(mp); 3540 return (NULL); 3541 } 3542 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3543 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3544 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3545 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3546 if (src_ire != NULL || dst_ire != NULL || 3547 CLASSD(ipha->ipha_dst) || 3548 CLASSD(ipha->ipha_src) || 3549 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3550 /* Note: only errors to the fragment with offset 0 */ 3551 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3552 freemsg(mp); 3553 if (src_ire != NULL) 3554 ire_refrele(src_ire); 3555 if (dst_ire != NULL) 3556 ire_refrele(dst_ire); 3557 return (NULL); 3558 } 3559 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3560 /* 3561 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3562 * errors in response to any ICMP errors. 3563 */ 3564 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3565 if (mp->b_wptr - mp->b_rptr < len_needed) { 3566 if (!pullupmsg(mp, len_needed)) { 3567 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3568 freemsg(mp); 3569 return (NULL); 3570 } 3571 ipha = (ipha_t *)mp->b_rptr; 3572 } 3573 icmph = (icmph_t *) 3574 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3575 switch (icmph->icmph_type) { 3576 case ICMP_DEST_UNREACHABLE: 3577 case ICMP_SOURCE_QUENCH: 3578 case ICMP_TIME_EXCEEDED: 3579 case ICMP_PARAM_PROBLEM: 3580 case ICMP_REDIRECT: 3581 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3582 freemsg(mp); 3583 return (NULL); 3584 default: 3585 break; 3586 } 3587 } 3588 /* 3589 * If this is a labeled system, then check to see if we're allowed to 3590 * send a response to this particular sender. If not, then just drop. 3591 */ 3592 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3593 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3594 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3595 freemsg(mp); 3596 return (NULL); 3597 } 3598 if (icmp_err_rate_limit(ipst)) { 3599 /* 3600 * Only send ICMP error packets every so often. 3601 * This should be done on a per port/source basis, 3602 * but for now this will suffice. 3603 */ 3604 freemsg(mp); 3605 return (NULL); 3606 } 3607 return (mp); 3608 } 3609 3610 /* 3611 * Generate an ICMP redirect message. 3612 */ 3613 static void 3614 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3615 { 3616 icmph_t icmph; 3617 3618 /* 3619 * We are called from ip_rput where we could 3620 * not have attached an IPSEC_IN. 3621 */ 3622 ASSERT(mp->b_datap->db_type == M_DATA); 3623 3624 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3625 return; 3626 } 3627 3628 bzero(&icmph, sizeof (icmph_t)); 3629 icmph.icmph_type = ICMP_REDIRECT; 3630 icmph.icmph_code = 1; 3631 icmph.icmph_rd_gateway = gateway; 3632 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3633 /* Redirects sent by router, and router is global zone */ 3634 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3635 } 3636 3637 /* 3638 * Generate an ICMP time exceeded message. 3639 */ 3640 void 3641 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3642 ip_stack_t *ipst) 3643 { 3644 icmph_t icmph; 3645 boolean_t mctl_present; 3646 mblk_t *first_mp; 3647 3648 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3649 3650 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3651 if (mctl_present) 3652 freeb(first_mp); 3653 return; 3654 } 3655 3656 bzero(&icmph, sizeof (icmph_t)); 3657 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3658 icmph.icmph_code = code; 3659 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3660 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3661 ipst); 3662 } 3663 3664 /* 3665 * Generate an ICMP unreachable message. 3666 */ 3667 void 3668 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3669 ip_stack_t *ipst) 3670 { 3671 icmph_t icmph; 3672 mblk_t *first_mp; 3673 boolean_t mctl_present; 3674 3675 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3676 3677 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3678 if (mctl_present) 3679 freeb(first_mp); 3680 return; 3681 } 3682 3683 bzero(&icmph, sizeof (icmph_t)); 3684 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3685 icmph.icmph_code = code; 3686 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3687 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3688 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3689 zoneid, ipst); 3690 } 3691 3692 /* 3693 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3694 * duplicate. As long as someone else holds the address, the interface will 3695 * stay down. When that conflict goes away, the interface is brought back up. 3696 * This is done so that accidental shutdowns of addresses aren't made 3697 * permanent. Your server will recover from a failure. 3698 * 3699 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3700 * user space process (dhcpagent). 3701 * 3702 * Recovery completes if ARP reports that the address is now ours (via 3703 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3704 * 3705 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3706 */ 3707 static void 3708 ipif_dup_recovery(void *arg) 3709 { 3710 ipif_t *ipif = arg; 3711 ill_t *ill = ipif->ipif_ill; 3712 mblk_t *arp_add_mp; 3713 mblk_t *arp_del_mp; 3714 area_t *area; 3715 ip_stack_t *ipst = ill->ill_ipst; 3716 3717 ipif->ipif_recovery_id = 0; 3718 3719 /* 3720 * No lock needed for moving or condemned check, as this is just an 3721 * optimization. 3722 */ 3723 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3724 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3725 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3726 /* No reason to try to bring this address back. */ 3727 return; 3728 } 3729 3730 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3731 goto alloc_fail; 3732 3733 if (ipif->ipif_arp_del_mp == NULL) { 3734 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3735 goto alloc_fail; 3736 ipif->ipif_arp_del_mp = arp_del_mp; 3737 } 3738 3739 /* Setting the 'unverified' flag restarts DAD */ 3740 area = (area_t *)arp_add_mp->b_rptr; 3741 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3742 ACE_F_UNVERIFIED; 3743 putnext(ill->ill_rq, arp_add_mp); 3744 return; 3745 3746 alloc_fail: 3747 /* 3748 * On allocation failure, just restart the timer. Note that the ipif 3749 * is down here, so no other thread could be trying to start a recovery 3750 * timer. The ill_lock protects the condemned flag and the recovery 3751 * timer ID. 3752 */ 3753 freemsg(arp_add_mp); 3754 mutex_enter(&ill->ill_lock); 3755 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3756 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3757 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3758 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3759 } 3760 mutex_exit(&ill->ill_lock); 3761 } 3762 3763 /* 3764 * This is for exclusive changes due to ARP. Either tear down an interface due 3765 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3766 */ 3767 /* ARGSUSED */ 3768 static void 3769 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3770 { 3771 ill_t *ill = rq->q_ptr; 3772 arh_t *arh; 3773 ipaddr_t src; 3774 ipif_t *ipif; 3775 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3776 char hbuf[MAC_STR_LEN]; 3777 char sbuf[INET_ADDRSTRLEN]; 3778 const char *failtype; 3779 boolean_t bring_up; 3780 ip_stack_t *ipst = ill->ill_ipst; 3781 3782 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3783 case AR_CN_READY: 3784 failtype = NULL; 3785 bring_up = B_TRUE; 3786 break; 3787 case AR_CN_FAILED: 3788 failtype = "in use"; 3789 bring_up = B_FALSE; 3790 break; 3791 default: 3792 failtype = "claimed"; 3793 bring_up = B_FALSE; 3794 break; 3795 } 3796 3797 arh = (arh_t *)mp->b_cont->b_rptr; 3798 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3799 3800 /* Handle failures due to probes */ 3801 if (src == 0) { 3802 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3803 IP_ADDR_LEN); 3804 } 3805 3806 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3807 sizeof (hbuf)); 3808 (void) ip_dot_addr(src, sbuf); 3809 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3810 3811 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3812 ipif->ipif_lcl_addr != src) { 3813 continue; 3814 } 3815 3816 /* 3817 * If we failed on a recovery probe, then restart the timer to 3818 * try again later. 3819 */ 3820 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3821 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3822 ill->ill_net_type == IRE_IF_RESOLVER && 3823 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3824 ipst->ips_ip_dup_recovery > 0 && 3825 ipif->ipif_recovery_id == 0) { 3826 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3827 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3828 continue; 3829 } 3830 3831 /* 3832 * If what we're trying to do has already been done, then do 3833 * nothing. 3834 */ 3835 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3836 continue; 3837 3838 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3839 3840 if (failtype == NULL) { 3841 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3842 ibuf); 3843 } else { 3844 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3845 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3846 } 3847 3848 if (bring_up) { 3849 ASSERT(ill->ill_dl_up); 3850 /* 3851 * Free up the ARP delete message so we can allocate 3852 * a fresh one through the normal path. 3853 */ 3854 freemsg(ipif->ipif_arp_del_mp); 3855 ipif->ipif_arp_del_mp = NULL; 3856 if (ipif_resolver_up(ipif, Res_act_initial) != 3857 EINPROGRESS) { 3858 ipif->ipif_addr_ready = 1; 3859 (void) ipif_up_done(ipif); 3860 } 3861 continue; 3862 } 3863 3864 mutex_enter(&ill->ill_lock); 3865 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3866 ipif->ipif_flags |= IPIF_DUPLICATE; 3867 ill->ill_ipif_dup_count++; 3868 mutex_exit(&ill->ill_lock); 3869 /* 3870 * Already exclusive on the ill; no need to handle deferred 3871 * processing here. 3872 */ 3873 (void) ipif_down(ipif, NULL, NULL); 3874 ipif_down_tail(ipif); 3875 mutex_enter(&ill->ill_lock); 3876 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3877 ill->ill_net_type == IRE_IF_RESOLVER && 3878 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3879 ipst->ips_ip_dup_recovery > 0) { 3880 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3881 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3882 } 3883 mutex_exit(&ill->ill_lock); 3884 } 3885 freemsg(mp); 3886 } 3887 3888 /* ARGSUSED */ 3889 static void 3890 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3891 { 3892 ill_t *ill = rq->q_ptr; 3893 arh_t *arh; 3894 ipaddr_t src; 3895 ipif_t *ipif; 3896 3897 arh = (arh_t *)mp->b_cont->b_rptr; 3898 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3899 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3900 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3901 (void) ipif_resolver_up(ipif, Res_act_defend); 3902 } 3903 freemsg(mp); 3904 } 3905 3906 /* 3907 * News from ARP. ARP sends notification of interesting events down 3908 * to its clients using M_CTL messages with the interesting ARP packet 3909 * attached via b_cont. 3910 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3911 * queue as opposed to ARP sending the message to all the clients, i.e. all 3912 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3913 * table if a cache IRE is found to delete all the entries for the address in 3914 * the packet. 3915 */ 3916 static void 3917 ip_arp_news(queue_t *q, mblk_t *mp) 3918 { 3919 arcn_t *arcn; 3920 arh_t *arh; 3921 ire_t *ire = NULL; 3922 char hbuf[MAC_STR_LEN]; 3923 char sbuf[INET_ADDRSTRLEN]; 3924 ipaddr_t src; 3925 in6_addr_t v6src; 3926 boolean_t isv6 = B_FALSE; 3927 ipif_t *ipif; 3928 ill_t *ill; 3929 ip_stack_t *ipst; 3930 3931 if (CONN_Q(q)) { 3932 conn_t *connp = Q_TO_CONN(q); 3933 3934 ipst = connp->conn_netstack->netstack_ip; 3935 } else { 3936 ill_t *ill = (ill_t *)q->q_ptr; 3937 3938 ipst = ill->ill_ipst; 3939 } 3940 3941 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3942 if (q->q_next) { 3943 putnext(q, mp); 3944 } else 3945 freemsg(mp); 3946 return; 3947 } 3948 arh = (arh_t *)mp->b_cont->b_rptr; 3949 /* Is it one we are interested in? */ 3950 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3951 isv6 = B_TRUE; 3952 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3953 IPV6_ADDR_LEN); 3954 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3955 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3956 IP_ADDR_LEN); 3957 } else { 3958 freemsg(mp); 3959 return; 3960 } 3961 3962 ill = q->q_ptr; 3963 3964 arcn = (arcn_t *)mp->b_rptr; 3965 switch (arcn->arcn_code) { 3966 case AR_CN_BOGON: 3967 /* 3968 * Someone is sending ARP packets with a source protocol 3969 * address that we have published and for which we believe our 3970 * entry is authoritative and (when ill_arp_extend is set) 3971 * verified to be unique on the network. 3972 * 3973 * The ARP module internally handles the cases where the sender 3974 * is just probing (for DAD) and where the hardware address of 3975 * a non-authoritative entry has changed. Thus, these are the 3976 * real conflicts, and we have to do resolution. 3977 * 3978 * We back away quickly from the address if it's from DHCP or 3979 * otherwise temporary and hasn't been used recently (or at 3980 * all). We'd like to include "deprecated" addresses here as 3981 * well (as there's no real reason to defend something we're 3982 * discarding), but IPMP "reuses" this flag to mean something 3983 * other than the standard meaning. 3984 * 3985 * If the ARP module above is not extended (meaning that it 3986 * doesn't know how to defend the address), then we just log 3987 * the problem as we always did and continue on. It's not 3988 * right, but there's little else we can do, and those old ATM 3989 * users are going away anyway. 3990 */ 3991 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3992 hbuf, sizeof (hbuf)); 3993 (void) ip_dot_addr(src, sbuf); 3994 if (isv6) { 3995 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3996 ipst); 3997 } else { 3998 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3999 } 4000 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4001 uint32_t now; 4002 uint32_t maxage; 4003 clock_t lused; 4004 uint_t maxdefense; 4005 uint_t defs; 4006 4007 /* 4008 * First, figure out if this address hasn't been used 4009 * in a while. If it hasn't, then it's a better 4010 * candidate for abandoning. 4011 */ 4012 ipif = ire->ire_ipif; 4013 ASSERT(ipif != NULL); 4014 now = gethrestime_sec(); 4015 maxage = now - ire->ire_create_time; 4016 if (maxage > ipst->ips_ip_max_temp_idle) 4017 maxage = ipst->ips_ip_max_temp_idle; 4018 lused = drv_hztousec(ddi_get_lbolt() - 4019 ire->ire_last_used_time) / MICROSEC + 1; 4020 if (lused >= maxage && (ipif->ipif_flags & 4021 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4022 maxdefense = ipst->ips_ip_max_temp_defend; 4023 else 4024 maxdefense = ipst->ips_ip_max_defend; 4025 4026 /* 4027 * Now figure out how many times we've defended 4028 * ourselves. Ignore defenses that happened long in 4029 * the past. 4030 */ 4031 mutex_enter(&ire->ire_lock); 4032 if ((defs = ire->ire_defense_count) > 0 && 4033 now - ire->ire_defense_time > 4034 ipst->ips_ip_defend_interval) { 4035 ire->ire_defense_count = defs = 0; 4036 } 4037 ire->ire_defense_count++; 4038 ire->ire_defense_time = now; 4039 mutex_exit(&ire->ire_lock); 4040 ill_refhold(ill); 4041 ire_refrele(ire); 4042 4043 /* 4044 * If we've defended ourselves too many times already, 4045 * then give up and tear down the interface(s) using 4046 * this address. Otherwise, defend by sending out a 4047 * gratuitous ARP. 4048 */ 4049 if (defs >= maxdefense && ill->ill_arp_extend) { 4050 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4051 B_FALSE); 4052 } else { 4053 cmn_err(CE_WARN, 4054 "node %s is using our IP address %s on %s", 4055 hbuf, sbuf, ill->ill_name); 4056 /* 4057 * If this is an old (ATM) ARP module, then 4058 * don't try to defend the address. Remain 4059 * compatible with the old behavior. Defend 4060 * only with new ARP. 4061 */ 4062 if (ill->ill_arp_extend) { 4063 qwriter_ip(ill, q, mp, ip_arp_defend, 4064 NEW_OP, B_FALSE); 4065 } else { 4066 ill_refrele(ill); 4067 } 4068 } 4069 return; 4070 } 4071 cmn_err(CE_WARN, 4072 "proxy ARP problem? Node '%s' is using %s on %s", 4073 hbuf, sbuf, ill->ill_name); 4074 if (ire != NULL) 4075 ire_refrele(ire); 4076 break; 4077 case AR_CN_ANNOUNCE: 4078 if (isv6) { 4079 /* 4080 * For XRESOLV interfaces. 4081 * Delete the IRE cache entry and NCE for this 4082 * v6 address 4083 */ 4084 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4085 /* 4086 * If v6src is a non-zero, it's a router address 4087 * as below. Do the same sort of thing to clean 4088 * out off-net IRE_CACHE entries that go through 4089 * the router. 4090 */ 4091 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4092 ire_walk_v6(ire_delete_cache_gw_v6, 4093 (char *)&v6src, ALL_ZONES, ipst); 4094 } 4095 } else { 4096 nce_hw_map_t hwm; 4097 4098 /* 4099 * ARP gives us a copy of any packet where it thinks 4100 * the address has changed, so that we can update our 4101 * caches. We're responsible for caching known answers 4102 * in the current design. We check whether the 4103 * hardware address really has changed in all of our 4104 * entries that have cached this mapping, and if so, we 4105 * blow them away. This way we will immediately pick 4106 * up the rare case of a host changing hardware 4107 * address. 4108 */ 4109 if (src == 0) 4110 break; 4111 hwm.hwm_addr = src; 4112 hwm.hwm_hwlen = arh->arh_hlen; 4113 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4114 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4115 ndp_walk_common(ipst->ips_ndp4, NULL, 4116 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4117 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4118 } 4119 break; 4120 case AR_CN_READY: 4121 /* No external v6 resolver has a contract to use this */ 4122 if (isv6) 4123 break; 4124 /* If the link is down, we'll retry this later */ 4125 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4126 break; 4127 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4128 NULL, NULL, ipst); 4129 if (ipif != NULL) { 4130 /* 4131 * If this is a duplicate recovery, then we now need to 4132 * go exclusive to bring this thing back up. 4133 */ 4134 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4135 IPIF_DUPLICATE) { 4136 ipif_refrele(ipif); 4137 ill_refhold(ill); 4138 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4139 B_FALSE); 4140 return; 4141 } 4142 /* 4143 * If this is the first notice that this address is 4144 * ready, then let the user know now. 4145 */ 4146 if ((ipif->ipif_flags & IPIF_UP) && 4147 !ipif->ipif_addr_ready) { 4148 ipif_mask_reply(ipif); 4149 ip_rts_ifmsg(ipif); 4150 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4151 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4152 } 4153 ipif->ipif_addr_ready = 1; 4154 ipif_refrele(ipif); 4155 } 4156 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4157 if (ire != NULL) { 4158 ire->ire_defense_count = 0; 4159 ire_refrele(ire); 4160 } 4161 break; 4162 case AR_CN_FAILED: 4163 /* No external v6 resolver has a contract to use this */ 4164 if (isv6) 4165 break; 4166 ill_refhold(ill); 4167 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4168 return; 4169 } 4170 freemsg(mp); 4171 } 4172 4173 /* 4174 * Create a mblk suitable for carrying the interface index and/or source link 4175 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4176 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4177 * application. 4178 */ 4179 mblk_t * 4180 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4181 ip_stack_t *ipst) 4182 { 4183 mblk_t *mp; 4184 ip_pktinfo_t *pinfo; 4185 ipha_t *ipha; 4186 struct ether_header *pether; 4187 4188 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4189 if (mp == NULL) { 4190 ip1dbg(("ip_add_info: allocation failure.\n")); 4191 return (data_mp); 4192 } 4193 4194 ipha = (ipha_t *)data_mp->b_rptr; 4195 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4196 bzero(pinfo, sizeof (ip_pktinfo_t)); 4197 pinfo->ip_pkt_flags = (uchar_t)flags; 4198 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4199 4200 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4201 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4202 if (flags & IPF_RECVADDR) { 4203 ipif_t *ipif; 4204 ire_t *ire; 4205 4206 /* 4207 * Only valid for V4 4208 */ 4209 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4210 (IPV4_VERSION << 4)); 4211 4212 ipif = ipif_get_next_ipif(NULL, ill); 4213 if (ipif != NULL) { 4214 /* 4215 * Since a decision has already been made to deliver the 4216 * packet, there is no need to test for SECATTR and 4217 * ZONEONLY. 4218 * When a multicast packet is transmitted 4219 * a cache entry is created for the multicast address. 4220 * When delivering a copy of the packet or when new 4221 * packets are received we do not want to match on the 4222 * cached entry so explicitly match on 4223 * IRE_LOCAL and IRE_LOOPBACK 4224 */ 4225 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4226 IRE_LOCAL | IRE_LOOPBACK, 4227 ipif, zoneid, NULL, 4228 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4229 if (ire == NULL) { 4230 /* 4231 * packet must have come on a different 4232 * interface. 4233 * Since a decision has already been made to 4234 * deliver the packet, there is no need to test 4235 * for SECATTR and ZONEONLY. 4236 * Only match on local and broadcast ire's. 4237 * See detailed comment above. 4238 */ 4239 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4240 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4241 NULL, MATCH_IRE_TYPE, ipst); 4242 } 4243 4244 if (ire == NULL) { 4245 /* 4246 * This is either a multicast packet or 4247 * the address has been removed since 4248 * the packet was received. 4249 * Return INADDR_ANY so that normal source 4250 * selection occurs for the response. 4251 */ 4252 4253 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4254 } else { 4255 pinfo->ip_pkt_match_addr.s_addr = 4256 ire->ire_src_addr; 4257 ire_refrele(ire); 4258 } 4259 ipif_refrele(ipif); 4260 } else { 4261 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4262 } 4263 } 4264 4265 pether = (struct ether_header *)((char *)ipha 4266 - sizeof (struct ether_header)); 4267 /* 4268 * Make sure the interface is an ethernet type, since this option 4269 * is currently supported only on this type of interface. Also make 4270 * sure we are pointing correctly above db_base. 4271 */ 4272 4273 if ((flags & IPF_RECVSLLA) && 4274 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4275 (ill->ill_type == IFT_ETHER) && 4276 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4277 4278 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4279 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4280 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4281 } else { 4282 /* 4283 * Clear the bit. Indicate to upper layer that IP is not 4284 * sending this ancillary info. 4285 */ 4286 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4287 } 4288 4289 mp->b_datap->db_type = M_CTL; 4290 mp->b_wptr += sizeof (ip_pktinfo_t); 4291 mp->b_cont = data_mp; 4292 4293 return (mp); 4294 } 4295 4296 /* 4297 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4298 * part of the bind request. 4299 */ 4300 4301 boolean_t 4302 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4303 { 4304 ipsec_in_t *ii; 4305 4306 ASSERT(policy_mp != NULL); 4307 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4308 4309 ii = (ipsec_in_t *)policy_mp->b_rptr; 4310 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4311 4312 connp->conn_policy = ii->ipsec_in_policy; 4313 ii->ipsec_in_policy = NULL; 4314 4315 if (ii->ipsec_in_action != NULL) { 4316 if (connp->conn_latch == NULL) { 4317 connp->conn_latch = iplatch_create(); 4318 if (connp->conn_latch == NULL) 4319 return (B_FALSE); 4320 } 4321 ipsec_latch_inbound(connp->conn_latch, ii); 4322 } 4323 return (B_TRUE); 4324 } 4325 4326 /* 4327 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4328 * and to arrange for power-fanout assist. The ULP is identified by 4329 * adding a single byte at the end of the original bind message. 4330 * A ULP other than UDP or TCP that wishes to be recognized passes 4331 * down a bind with a zero length address. 4332 * 4333 * The binding works as follows: 4334 * - A zero byte address means just bind to the protocol. 4335 * - A four byte address is treated as a request to validate 4336 * that the address is a valid local address, appropriate for 4337 * an application to bind to. This does not affect any fanout 4338 * information in IP. 4339 * - A sizeof sin_t byte address is used to bind to only the local address 4340 * and port. 4341 * - A sizeof ipa_conn_t byte address contains complete fanout information 4342 * consisting of local and remote addresses and ports. In 4343 * this case, the addresses are both validated as appropriate 4344 * for this operation, and, if so, the information is retained 4345 * for use in the inbound fanout. 4346 * 4347 * The ULP (except in the zero-length bind) can append an 4348 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4349 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4350 * a copy of the source or destination IRE (source for local bind; 4351 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4352 * policy information contained should be copied on to the conn. 4353 * 4354 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4355 */ 4356 mblk_t * 4357 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4358 { 4359 ssize_t len; 4360 struct T_bind_req *tbr; 4361 sin_t *sin; 4362 ipa_conn_t *ac; 4363 uchar_t *ucp; 4364 mblk_t *mp1; 4365 boolean_t ire_requested; 4366 boolean_t ipsec_policy_set = B_FALSE; 4367 int error = 0; 4368 int protocol; 4369 ipa_conn_x_t *acx; 4370 4371 ASSERT(!connp->conn_af_isv6); 4372 connp->conn_pkt_isv6 = B_FALSE; 4373 4374 len = MBLKL(mp); 4375 if (len < (sizeof (*tbr) + 1)) { 4376 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4377 "ip_bind: bogus msg, len %ld", len); 4378 /* XXX: Need to return something better */ 4379 goto bad_addr; 4380 } 4381 /* Back up and extract the protocol identifier. */ 4382 mp->b_wptr--; 4383 protocol = *mp->b_wptr & 0xFF; 4384 tbr = (struct T_bind_req *)mp->b_rptr; 4385 /* Reset the message type in preparation for shipping it back. */ 4386 DB_TYPE(mp) = M_PCPROTO; 4387 4388 connp->conn_ulp = (uint8_t)protocol; 4389 4390 /* 4391 * Check for a zero length address. This is from a protocol that 4392 * wants to register to receive all packets of its type. 4393 */ 4394 if (tbr->ADDR_length == 0) { 4395 /* 4396 * These protocols are now intercepted in ip_bind_v6(). 4397 * Reject protocol-level binds here for now. 4398 * 4399 * For SCTP raw socket, ICMP sends down a bind with sin_t 4400 * so that the protocol type cannot be SCTP. 4401 */ 4402 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4403 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4404 goto bad_addr; 4405 } 4406 4407 /* 4408 * 4409 * The udp module never sends down a zero-length address, 4410 * and allowing this on a labeled system will break MLP 4411 * functionality. 4412 */ 4413 if (is_system_labeled() && protocol == IPPROTO_UDP) 4414 goto bad_addr; 4415 4416 if (connp->conn_mac_exempt) 4417 goto bad_addr; 4418 4419 /* No hash here really. The table is big enough. */ 4420 connp->conn_srcv6 = ipv6_all_zeros; 4421 4422 ipcl_proto_insert(connp, protocol); 4423 4424 tbr->PRIM_type = T_BIND_ACK; 4425 return (mp); 4426 } 4427 4428 /* Extract the address pointer from the message. */ 4429 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4430 tbr->ADDR_length); 4431 if (ucp == NULL) { 4432 ip1dbg(("ip_bind: no address\n")); 4433 goto bad_addr; 4434 } 4435 if (!OK_32PTR(ucp)) { 4436 ip1dbg(("ip_bind: unaligned address\n")); 4437 goto bad_addr; 4438 } 4439 /* 4440 * Check for trailing mps. 4441 */ 4442 4443 mp1 = mp->b_cont; 4444 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4445 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4446 4447 switch (tbr->ADDR_length) { 4448 default: 4449 ip1dbg(("ip_bind: bad address length %d\n", 4450 (int)tbr->ADDR_length)); 4451 goto bad_addr; 4452 4453 case IP_ADDR_LEN: 4454 /* Verification of local address only */ 4455 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4456 ire_requested, ipsec_policy_set, B_FALSE); 4457 break; 4458 4459 case sizeof (sin_t): 4460 sin = (sin_t *)ucp; 4461 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4462 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4463 break; 4464 4465 case sizeof (ipa_conn_t): 4466 ac = (ipa_conn_t *)ucp; 4467 /* For raw socket, the local port is not set. */ 4468 if (ac->ac_lport == 0) 4469 ac->ac_lport = connp->conn_lport; 4470 /* Always verify destination reachability. */ 4471 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4472 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4473 ipsec_policy_set, B_TRUE, B_TRUE); 4474 break; 4475 4476 case sizeof (ipa_conn_x_t): 4477 acx = (ipa_conn_x_t *)ucp; 4478 /* 4479 * Whether or not to verify destination reachability depends 4480 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4481 */ 4482 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4483 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4484 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4485 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4486 break; 4487 } 4488 if (error == EINPROGRESS) 4489 return (NULL); 4490 else if (error != 0) 4491 goto bad_addr; 4492 /* 4493 * Pass the IPsec headers size in ire_ipsec_overhead. 4494 * We can't do this in ip_bind_insert_ire because the policy 4495 * may not have been inherited at that point in time and hence 4496 * conn_out_enforce_policy may not be set. 4497 */ 4498 mp1 = mp->b_cont; 4499 if (ire_requested && connp->conn_out_enforce_policy && 4500 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4501 ire_t *ire = (ire_t *)mp1->b_rptr; 4502 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4503 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4504 } 4505 4506 /* Send it home. */ 4507 mp->b_datap->db_type = M_PCPROTO; 4508 tbr->PRIM_type = T_BIND_ACK; 4509 return (mp); 4510 4511 bad_addr: 4512 /* 4513 * If error = -1 then we generate a TBADADDR - otherwise error is 4514 * a unix errno. 4515 */ 4516 if (error > 0) 4517 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4518 else 4519 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4520 return (mp); 4521 } 4522 4523 /* 4524 * Here address is verified to be a valid local address. 4525 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4526 * address is also considered a valid local address. 4527 * In the case of a broadcast/multicast address, however, the 4528 * upper protocol is expected to reset the src address 4529 * to 0 if it sees a IRE_BROADCAST type returned so that 4530 * no packets are emitted with broadcast/multicast address as 4531 * source address (that violates hosts requirements RFC1122) 4532 * The addresses valid for bind are: 4533 * (1) - INADDR_ANY (0) 4534 * (2) - IP address of an UP interface 4535 * (3) - IP address of a DOWN interface 4536 * (4) - valid local IP broadcast addresses. In this case 4537 * the conn will only receive packets destined to 4538 * the specified broadcast address. 4539 * (5) - a multicast address. In this case 4540 * the conn will only receive packets destined to 4541 * the specified multicast address. Note: the 4542 * application still has to issue an 4543 * IP_ADD_MEMBERSHIP socket option. 4544 * 4545 * On error, return -1 for TBADADDR otherwise pass the 4546 * errno with TSYSERR reply. 4547 * 4548 * In all the above cases, the bound address must be valid in the current zone. 4549 * When the address is loopback, multicast or broadcast, there might be many 4550 * matching IREs so bind has to look up based on the zone. 4551 * 4552 * Note: lport is in network byte order. 4553 */ 4554 int 4555 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4556 boolean_t ire_requested, boolean_t ipsec_policy_set, 4557 boolean_t fanout_insert) 4558 { 4559 int error = 0; 4560 ire_t *src_ire; 4561 mblk_t *policy_mp; 4562 ipif_t *ipif; 4563 zoneid_t zoneid; 4564 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4565 4566 if (ipsec_policy_set) { 4567 policy_mp = mp->b_cont; 4568 } 4569 4570 /* 4571 * If it was previously connected, conn_fully_bound would have 4572 * been set. 4573 */ 4574 connp->conn_fully_bound = B_FALSE; 4575 4576 src_ire = NULL; 4577 ipif = NULL; 4578 4579 zoneid = IPCL_ZONEID(connp); 4580 4581 if (src_addr) { 4582 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4583 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4584 /* 4585 * If an address other than 0.0.0.0 is requested, 4586 * we verify that it is a valid address for bind 4587 * Note: Following code is in if-else-if form for 4588 * readability compared to a condition check. 4589 */ 4590 /* LINTED - statement has no consequent */ 4591 if (IRE_IS_LOCAL(src_ire)) { 4592 /* 4593 * (2) Bind to address of local UP interface 4594 */ 4595 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4596 /* 4597 * (4) Bind to broadcast address 4598 * Note: permitted only from transports that 4599 * request IRE 4600 */ 4601 if (!ire_requested) 4602 error = EADDRNOTAVAIL; 4603 } else { 4604 /* 4605 * (3) Bind to address of local DOWN interface 4606 * (ipif_lookup_addr() looks up all interfaces 4607 * but we do not get here for UP interfaces 4608 * - case (2) above) 4609 * We put the protocol byte back into the mblk 4610 * since we may come back via ip_wput_nondata() 4611 * later with this mblk if ipif_lookup_addr chooses 4612 * to defer processing. 4613 */ 4614 *mp->b_wptr++ = (char)connp->conn_ulp; 4615 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4616 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4617 &error, ipst)) != NULL) { 4618 ipif_refrele(ipif); 4619 } else if (error == EINPROGRESS) { 4620 if (src_ire != NULL) 4621 ire_refrele(src_ire); 4622 return (EINPROGRESS); 4623 } else if (CLASSD(src_addr)) { 4624 error = 0; 4625 if (src_ire != NULL) 4626 ire_refrele(src_ire); 4627 /* 4628 * (5) bind to multicast address. 4629 * Fake out the IRE returned to upper 4630 * layer to be a broadcast IRE. 4631 */ 4632 src_ire = ire_ctable_lookup( 4633 INADDR_BROADCAST, INADDR_ANY, 4634 IRE_BROADCAST, NULL, zoneid, NULL, 4635 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4636 ipst); 4637 if (src_ire == NULL || !ire_requested) 4638 error = EADDRNOTAVAIL; 4639 } else { 4640 /* 4641 * Not a valid address for bind 4642 */ 4643 error = EADDRNOTAVAIL; 4644 } 4645 /* 4646 * Just to keep it consistent with the processing in 4647 * ip_bind_v4() 4648 */ 4649 mp->b_wptr--; 4650 } 4651 if (error) { 4652 /* Red Alert! Attempting to be a bogon! */ 4653 ip1dbg(("ip_bind: bad src address 0x%x\n", 4654 ntohl(src_addr))); 4655 goto bad_addr; 4656 } 4657 } 4658 4659 /* 4660 * Allow setting new policies. For example, disconnects come 4661 * down as ipa_t bind. As we would have set conn_policy_cached 4662 * to B_TRUE before, we should set it to B_FALSE, so that policy 4663 * can change after the disconnect. 4664 */ 4665 connp->conn_policy_cached = B_FALSE; 4666 4667 /* 4668 * If not fanout_insert this was just an address verification 4669 */ 4670 if (fanout_insert) { 4671 /* 4672 * The addresses have been verified. Time to insert in 4673 * the correct fanout list. 4674 */ 4675 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4676 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4677 connp->conn_lport = lport; 4678 connp->conn_fport = 0; 4679 /* 4680 * Do we need to add a check to reject Multicast packets 4681 */ 4682 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4683 } 4684 4685 if (error == 0) { 4686 if (ire_requested) { 4687 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4688 error = -1; 4689 /* Falls through to bad_addr */ 4690 } 4691 } else if (ipsec_policy_set) { 4692 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4693 error = -1; 4694 /* Falls through to bad_addr */ 4695 } 4696 } 4697 } 4698 bad_addr: 4699 if (error != 0) { 4700 if (connp->conn_anon_port) { 4701 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4702 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4703 B_FALSE); 4704 } 4705 connp->conn_mlp_type = mlptSingle; 4706 } 4707 if (src_ire != NULL) 4708 IRE_REFRELE(src_ire); 4709 if (ipsec_policy_set) { 4710 ASSERT(policy_mp == mp->b_cont); 4711 ASSERT(policy_mp != NULL); 4712 freeb(policy_mp); 4713 /* 4714 * As of now assume that nothing else accompanies 4715 * IPSEC_POLICY_SET. 4716 */ 4717 mp->b_cont = NULL; 4718 } 4719 return (error); 4720 } 4721 4722 /* 4723 * Verify that both the source and destination addresses 4724 * are valid. If verify_dst is false, then the destination address may be 4725 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4726 * destination reachability, while tunnels do not. 4727 * Note that we allow connect to broadcast and multicast 4728 * addresses when ire_requested is set. Thus the ULP 4729 * has to check for IRE_BROADCAST and multicast. 4730 * 4731 * Returns zero if ok. 4732 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4733 * (for use with TSYSERR reply). 4734 * 4735 * Note: lport and fport are in network byte order. 4736 */ 4737 int 4738 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4739 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4740 boolean_t ire_requested, boolean_t ipsec_policy_set, 4741 boolean_t fanout_insert, boolean_t verify_dst) 4742 { 4743 ire_t *src_ire; 4744 ire_t *dst_ire; 4745 int error = 0; 4746 int protocol; 4747 mblk_t *policy_mp; 4748 ire_t *sire = NULL; 4749 ire_t *md_dst_ire = NULL; 4750 ire_t *lso_dst_ire = NULL; 4751 ill_t *ill = NULL; 4752 zoneid_t zoneid; 4753 ipaddr_t src_addr = *src_addrp; 4754 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4755 4756 src_ire = dst_ire = NULL; 4757 protocol = *mp->b_wptr & 0xFF; 4758 4759 /* 4760 * If we never got a disconnect before, clear it now. 4761 */ 4762 connp->conn_fully_bound = B_FALSE; 4763 4764 if (ipsec_policy_set) { 4765 policy_mp = mp->b_cont; 4766 } 4767 4768 zoneid = IPCL_ZONEID(connp); 4769 4770 if (CLASSD(dst_addr)) { 4771 /* Pick up an IRE_BROADCAST */ 4772 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4773 NULL, zoneid, MBLK_GETLABEL(mp), 4774 (MATCH_IRE_RECURSIVE | 4775 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4776 MATCH_IRE_SECATTR), ipst); 4777 } else { 4778 /* 4779 * If conn_dontroute is set or if conn_nexthop_set is set, 4780 * and onlink ipif is not found set ENETUNREACH error. 4781 */ 4782 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4783 ipif_t *ipif; 4784 4785 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4786 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4787 if (ipif == NULL) { 4788 error = ENETUNREACH; 4789 goto bad_addr; 4790 } 4791 ipif_refrele(ipif); 4792 } 4793 4794 if (connp->conn_nexthop_set) { 4795 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4796 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4797 MATCH_IRE_SECATTR, ipst); 4798 } else { 4799 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4800 &sire, zoneid, MBLK_GETLABEL(mp), 4801 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4802 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4803 MATCH_IRE_SECATTR), ipst); 4804 } 4805 } 4806 /* 4807 * dst_ire can't be a broadcast when not ire_requested. 4808 * We also prevent ire's with src address INADDR_ANY to 4809 * be used, which are created temporarily for 4810 * sending out packets from endpoints that have 4811 * conn_unspec_src set. If verify_dst is true, the destination must be 4812 * reachable. If verify_dst is false, the destination needn't be 4813 * reachable. 4814 * 4815 * If we match on a reject or black hole, then we've got a 4816 * local failure. May as well fail out the connect() attempt, 4817 * since it's never going to succeed. 4818 */ 4819 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4820 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4821 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4822 /* 4823 * If we're verifying destination reachability, we always want 4824 * to complain here. 4825 * 4826 * If we're not verifying destination reachability but the 4827 * destination has a route, we still want to fail on the 4828 * temporary address and broadcast address tests. 4829 */ 4830 if (verify_dst || (dst_ire != NULL)) { 4831 if (ip_debug > 2) { 4832 pr_addr_dbg("ip_bind_connected: bad connected " 4833 "dst %s\n", AF_INET, &dst_addr); 4834 } 4835 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4836 error = ENETUNREACH; 4837 else 4838 error = EHOSTUNREACH; 4839 goto bad_addr; 4840 } 4841 } 4842 4843 /* 4844 * We now know that routing will allow us to reach the destination. 4845 * Check whether Trusted Solaris policy allows communication with this 4846 * host, and pretend that the destination is unreachable if not. 4847 * 4848 * This is never a problem for TCP, since that transport is known to 4849 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4850 * handling. If the remote is unreachable, it will be detected at that 4851 * point, so there's no reason to check it here. 4852 * 4853 * Note that for sendto (and other datagram-oriented friends), this 4854 * check is done as part of the data path label computation instead. 4855 * The check here is just to make non-TCP connect() report the right 4856 * error. 4857 */ 4858 if (dst_ire != NULL && is_system_labeled() && 4859 !IPCL_IS_TCP(connp) && 4860 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4861 connp->conn_mac_exempt, ipst) != 0) { 4862 error = EHOSTUNREACH; 4863 if (ip_debug > 2) { 4864 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4865 AF_INET, &dst_addr); 4866 } 4867 goto bad_addr; 4868 } 4869 4870 /* 4871 * If the app does a connect(), it means that it will most likely 4872 * send more than 1 packet to the destination. It makes sense 4873 * to clear the temporary flag. 4874 */ 4875 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4876 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4877 irb_t *irb = dst_ire->ire_bucket; 4878 4879 rw_enter(&irb->irb_lock, RW_WRITER); 4880 /* 4881 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4882 * the lock to guarantee irb_tmp_ire_cnt. 4883 */ 4884 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4885 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4886 irb->irb_tmp_ire_cnt--; 4887 } 4888 rw_exit(&irb->irb_lock); 4889 } 4890 4891 /* 4892 * See if we should notify ULP about LSO/MDT; we do this whether or not 4893 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4894 * eligibility tests for passive connects are handled separately 4895 * through tcp_adapt_ire(). We do this before the source address 4896 * selection, because dst_ire may change after a call to 4897 * ipif_select_source(). This is a best-effort check, as the 4898 * packet for this connection may not actually go through 4899 * dst_ire->ire_stq, and the exact IRE can only be known after 4900 * calling ip_newroute(). This is why we further check on the 4901 * IRE during LSO/Multidata packet transmission in 4902 * tcp_lsosend()/tcp_multisend(). 4903 */ 4904 if (!ipsec_policy_set && dst_ire != NULL && 4905 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4906 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4907 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4908 lso_dst_ire = dst_ire; 4909 IRE_REFHOLD(lso_dst_ire); 4910 } else if (ipst->ips_ip_multidata_outbound && 4911 ILL_MDT_CAPABLE(ill)) { 4912 md_dst_ire = dst_ire; 4913 IRE_REFHOLD(md_dst_ire); 4914 } 4915 } 4916 4917 if (dst_ire != NULL && 4918 dst_ire->ire_type == IRE_LOCAL && 4919 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4920 /* 4921 * If the IRE belongs to a different zone, look for a matching 4922 * route in the forwarding table and use the source address from 4923 * that route. 4924 */ 4925 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4926 zoneid, 0, NULL, 4927 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4928 MATCH_IRE_RJ_BHOLE, ipst); 4929 if (src_ire == NULL) { 4930 error = EHOSTUNREACH; 4931 goto bad_addr; 4932 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4933 if (!(src_ire->ire_type & IRE_HOST)) 4934 error = ENETUNREACH; 4935 else 4936 error = EHOSTUNREACH; 4937 goto bad_addr; 4938 } 4939 if (src_addr == INADDR_ANY) 4940 src_addr = src_ire->ire_src_addr; 4941 ire_refrele(src_ire); 4942 src_ire = NULL; 4943 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4944 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4945 src_addr = sire->ire_src_addr; 4946 ire_refrele(dst_ire); 4947 dst_ire = sire; 4948 sire = NULL; 4949 } else { 4950 /* 4951 * Pick a source address so that a proper inbound 4952 * load spreading would happen. 4953 */ 4954 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4955 ipif_t *src_ipif = NULL; 4956 ire_t *ipif_ire; 4957 4958 /* 4959 * Supply a local source address such that inbound 4960 * load spreading happens. 4961 * 4962 * Determine the best source address on this ill for 4963 * the destination. 4964 * 4965 * 1) For broadcast, we should return a broadcast ire 4966 * found above so that upper layers know that the 4967 * destination address is a broadcast address. 4968 * 4969 * 2) If this is part of a group, select a better 4970 * source address so that better inbound load 4971 * balancing happens. Do the same if the ipif 4972 * is DEPRECATED. 4973 * 4974 * 3) If the outgoing interface is part of a usesrc 4975 * group, then try selecting a source address from 4976 * the usesrc ILL. 4977 */ 4978 if ((dst_ire->ire_zoneid != zoneid && 4979 dst_ire->ire_zoneid != ALL_ZONES) || 4980 (!(dst_ire->ire_type & IRE_BROADCAST) && 4981 ((dst_ill->ill_group != NULL) || 4982 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4983 (dst_ill->ill_usesrc_ifindex != 0)))) { 4984 /* 4985 * If the destination is reachable via a 4986 * given gateway, the selected source address 4987 * should be in the same subnet as the gateway. 4988 * Otherwise, the destination is not reachable. 4989 * 4990 * If there are no interfaces on the same subnet 4991 * as the destination, ipif_select_source gives 4992 * first non-deprecated interface which might be 4993 * on a different subnet than the gateway. 4994 * This is not desirable. Hence pass the dst_ire 4995 * source address to ipif_select_source. 4996 * It is sure that the destination is reachable 4997 * with the dst_ire source address subnet. 4998 * So passing dst_ire source address to 4999 * ipif_select_source will make sure that the 5000 * selected source will be on the same subnet 5001 * as dst_ire source address. 5002 */ 5003 ipaddr_t saddr = 5004 dst_ire->ire_ipif->ipif_src_addr; 5005 src_ipif = ipif_select_source(dst_ill, 5006 saddr, zoneid); 5007 if (src_ipif != NULL) { 5008 if (IS_VNI(src_ipif->ipif_ill)) { 5009 /* 5010 * For VNI there is no 5011 * interface route 5012 */ 5013 src_addr = 5014 src_ipif->ipif_src_addr; 5015 } else { 5016 ipif_ire = 5017 ipif_to_ire(src_ipif); 5018 if (ipif_ire != NULL) { 5019 IRE_REFRELE(dst_ire); 5020 dst_ire = ipif_ire; 5021 } 5022 src_addr = 5023 dst_ire->ire_src_addr; 5024 } 5025 ipif_refrele(src_ipif); 5026 } else { 5027 src_addr = dst_ire->ire_src_addr; 5028 } 5029 } else { 5030 src_addr = dst_ire->ire_src_addr; 5031 } 5032 } 5033 } 5034 5035 /* 5036 * We do ire_route_lookup() here (and not 5037 * interface lookup as we assert that 5038 * src_addr should only come from an 5039 * UP interface for hard binding. 5040 */ 5041 ASSERT(src_ire == NULL); 5042 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5043 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5044 /* src_ire must be a local|loopback */ 5045 if (!IRE_IS_LOCAL(src_ire)) { 5046 if (ip_debug > 2) { 5047 pr_addr_dbg("ip_bind_connected: bad connected " 5048 "src %s\n", AF_INET, &src_addr); 5049 } 5050 error = EADDRNOTAVAIL; 5051 goto bad_addr; 5052 } 5053 5054 /* 5055 * If the source address is a loopback address, the 5056 * destination had best be local or multicast. 5057 * The transports that can't handle multicast will reject 5058 * those addresses. 5059 */ 5060 if (src_ire->ire_type == IRE_LOOPBACK && 5061 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5062 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5063 error = -1; 5064 goto bad_addr; 5065 } 5066 5067 /* 5068 * Allow setting new policies. For example, disconnects come 5069 * down as ipa_t bind. As we would have set conn_policy_cached 5070 * to B_TRUE before, we should set it to B_FALSE, so that policy 5071 * can change after the disconnect. 5072 */ 5073 connp->conn_policy_cached = B_FALSE; 5074 5075 /* 5076 * Set the conn addresses/ports immediately, so the IPsec policy calls 5077 * can handle their passed-in conn's. 5078 */ 5079 5080 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5081 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5082 connp->conn_lport = lport; 5083 connp->conn_fport = fport; 5084 *src_addrp = src_addr; 5085 5086 ASSERT(!(ipsec_policy_set && ire_requested)); 5087 if (ire_requested) { 5088 iulp_t *ulp_info = NULL; 5089 5090 /* 5091 * Note that sire will not be NULL if this is an off-link 5092 * connection and there is not cache for that dest yet. 5093 * 5094 * XXX Because of an existing bug, if there are multiple 5095 * default routes, the IRE returned now may not be the actual 5096 * default route used (default routes are chosen in a 5097 * round robin fashion). So if the metrics for different 5098 * default routes are different, we may return the wrong 5099 * metrics. This will not be a problem if the existing 5100 * bug is fixed. 5101 */ 5102 if (sire != NULL) { 5103 ulp_info = &(sire->ire_uinfo); 5104 } 5105 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5106 error = -1; 5107 goto bad_addr; 5108 } 5109 } else if (ipsec_policy_set) { 5110 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5111 error = -1; 5112 goto bad_addr; 5113 } 5114 } 5115 5116 /* 5117 * Cache IPsec policy in this conn. If we have per-socket policy, 5118 * we'll cache that. If we don't, we'll inherit global policy. 5119 * 5120 * We can't insert until the conn reflects the policy. Note that 5121 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5122 * connections where we don't have a policy. This is to prevent 5123 * global policy lookups in the inbound path. 5124 * 5125 * If we insert before we set conn_policy_cached, 5126 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5127 * because global policy cound be non-empty. We normally call 5128 * ipsec_check_policy() for conn_policy_cached connections only if 5129 * ipc_in_enforce_policy is set. But in this case, 5130 * conn_policy_cached can get set anytime since we made the 5131 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5132 * called, which will make the above assumption false. Thus, we 5133 * need to insert after we set conn_policy_cached. 5134 */ 5135 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5136 goto bad_addr; 5137 5138 if (fanout_insert) { 5139 /* 5140 * The addresses have been verified. Time to insert in 5141 * the correct fanout list. 5142 */ 5143 error = ipcl_conn_insert(connp, protocol, src_addr, 5144 dst_addr, connp->conn_ports); 5145 } 5146 5147 if (error == 0) { 5148 connp->conn_fully_bound = B_TRUE; 5149 /* 5150 * Our initial checks for LSO/MDT have passed; the IRE is not 5151 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5152 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5153 * ip_xxinfo_return(), which performs further checks 5154 * against them and upon success, returns the LSO/MDT info 5155 * mblk which we will attach to the bind acknowledgment. 5156 */ 5157 if (lso_dst_ire != NULL) { 5158 mblk_t *lsoinfo_mp; 5159 5160 ASSERT(ill->ill_lso_capab != NULL); 5161 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5162 ill->ill_name, ill->ill_lso_capab)) != NULL) 5163 linkb(mp, lsoinfo_mp); 5164 } else if (md_dst_ire != NULL) { 5165 mblk_t *mdinfo_mp; 5166 5167 ASSERT(ill->ill_mdt_capab != NULL); 5168 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5169 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5170 linkb(mp, mdinfo_mp); 5171 } 5172 } 5173 bad_addr: 5174 if (ipsec_policy_set) { 5175 ASSERT(policy_mp == mp->b_cont); 5176 ASSERT(policy_mp != NULL); 5177 freeb(policy_mp); 5178 /* 5179 * As of now assume that nothing else accompanies 5180 * IPSEC_POLICY_SET. 5181 */ 5182 mp->b_cont = NULL; 5183 } 5184 if (src_ire != NULL) 5185 IRE_REFRELE(src_ire); 5186 if (dst_ire != NULL) 5187 IRE_REFRELE(dst_ire); 5188 if (sire != NULL) 5189 IRE_REFRELE(sire); 5190 if (md_dst_ire != NULL) 5191 IRE_REFRELE(md_dst_ire); 5192 if (lso_dst_ire != NULL) 5193 IRE_REFRELE(lso_dst_ire); 5194 return (error); 5195 } 5196 5197 /* 5198 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5199 * Prefers dst_ire over src_ire. 5200 */ 5201 static boolean_t 5202 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5203 { 5204 mblk_t *mp1; 5205 ire_t *ret_ire = NULL; 5206 5207 mp1 = mp->b_cont; 5208 ASSERT(mp1 != NULL); 5209 5210 if (ire != NULL) { 5211 /* 5212 * mp1 initialized above to IRE_DB_REQ_TYPE 5213 * appended mblk. Its <upper protocol>'s 5214 * job to make sure there is room. 5215 */ 5216 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5217 return (0); 5218 5219 mp1->b_datap->db_type = IRE_DB_TYPE; 5220 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5221 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5222 ret_ire = (ire_t *)mp1->b_rptr; 5223 /* 5224 * Pass the latest setting of the ip_path_mtu_discovery and 5225 * copy the ulp info if any. 5226 */ 5227 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5228 IPH_DF : 0; 5229 if (ulp_info != NULL) { 5230 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5231 sizeof (iulp_t)); 5232 } 5233 ret_ire->ire_mp = mp1; 5234 } else { 5235 /* 5236 * No IRE was found. Remove IRE mblk. 5237 */ 5238 mp->b_cont = mp1->b_cont; 5239 freeb(mp1); 5240 } 5241 5242 return (1); 5243 } 5244 5245 /* 5246 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5247 * the final piece where we don't. Return a pointer to the first mblk in the 5248 * result, and update the pointer to the next mblk to chew on. If anything 5249 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5250 * NULL pointer. 5251 */ 5252 mblk_t * 5253 ip_carve_mp(mblk_t **mpp, ssize_t len) 5254 { 5255 mblk_t *mp0; 5256 mblk_t *mp1; 5257 mblk_t *mp2; 5258 5259 if (!len || !mpp || !(mp0 = *mpp)) 5260 return (NULL); 5261 /* If we aren't going to consume the first mblk, we need a dup. */ 5262 if (mp0->b_wptr - mp0->b_rptr > len) { 5263 mp1 = dupb(mp0); 5264 if (mp1) { 5265 /* Partition the data between the two mblks. */ 5266 mp1->b_wptr = mp1->b_rptr + len; 5267 mp0->b_rptr = mp1->b_wptr; 5268 /* 5269 * after adjustments if mblk not consumed is now 5270 * unaligned, try to align it. If this fails free 5271 * all messages and let upper layer recover. 5272 */ 5273 if (!OK_32PTR(mp0->b_rptr)) { 5274 if (!pullupmsg(mp0, -1)) { 5275 freemsg(mp0); 5276 freemsg(mp1); 5277 *mpp = NULL; 5278 return (NULL); 5279 } 5280 } 5281 } 5282 return (mp1); 5283 } 5284 /* Eat through as many mblks as we need to get len bytes. */ 5285 len -= mp0->b_wptr - mp0->b_rptr; 5286 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5287 if (mp2->b_wptr - mp2->b_rptr > len) { 5288 /* 5289 * We won't consume the entire last mblk. Like 5290 * above, dup and partition it. 5291 */ 5292 mp1->b_cont = dupb(mp2); 5293 mp1 = mp1->b_cont; 5294 if (!mp1) { 5295 /* 5296 * Trouble. Rather than go to a lot of 5297 * trouble to clean up, we free the messages. 5298 * This won't be any worse than losing it on 5299 * the wire. 5300 */ 5301 freemsg(mp0); 5302 freemsg(mp2); 5303 *mpp = NULL; 5304 return (NULL); 5305 } 5306 mp1->b_wptr = mp1->b_rptr + len; 5307 mp2->b_rptr = mp1->b_wptr; 5308 /* 5309 * after adjustments if mblk not consumed is now 5310 * unaligned, try to align it. If this fails free 5311 * all messages and let upper layer recover. 5312 */ 5313 if (!OK_32PTR(mp2->b_rptr)) { 5314 if (!pullupmsg(mp2, -1)) { 5315 freemsg(mp0); 5316 freemsg(mp2); 5317 *mpp = NULL; 5318 return (NULL); 5319 } 5320 } 5321 *mpp = mp2; 5322 return (mp0); 5323 } 5324 /* Decrement len by the amount we just got. */ 5325 len -= mp2->b_wptr - mp2->b_rptr; 5326 } 5327 /* 5328 * len should be reduced to zero now. If not our caller has 5329 * screwed up. 5330 */ 5331 if (len) { 5332 /* Shouldn't happen! */ 5333 freemsg(mp0); 5334 *mpp = NULL; 5335 return (NULL); 5336 } 5337 /* 5338 * We consumed up to exactly the end of an mblk. Detach the part 5339 * we are returning from the rest of the chain. 5340 */ 5341 mp1->b_cont = NULL; 5342 *mpp = mp2; 5343 return (mp0); 5344 } 5345 5346 /* The ill stream is being unplumbed. Called from ip_close */ 5347 int 5348 ip_modclose(ill_t *ill) 5349 { 5350 boolean_t success; 5351 ipsq_t *ipsq; 5352 ipif_t *ipif; 5353 queue_t *q = ill->ill_rq; 5354 ip_stack_t *ipst = ill->ill_ipst; 5355 clock_t timeout; 5356 5357 /* 5358 * Wait for the ACKs of all deferred control messages to be processed. 5359 * In particular, we wait for a potential capability reset initiated 5360 * in ip_sioctl_plink() to complete before proceeding. 5361 * 5362 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5363 * in case the driver never replies. 5364 */ 5365 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5366 mutex_enter(&ill->ill_lock); 5367 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5368 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5369 /* Timeout */ 5370 break; 5371 } 5372 } 5373 mutex_exit(&ill->ill_lock); 5374 5375 /* 5376 * Forcibly enter the ipsq after some delay. This is to take 5377 * care of the case when some ioctl does not complete because 5378 * we sent a control message to the driver and it did not 5379 * send us a reply. We want to be able to at least unplumb 5380 * and replumb rather than force the user to reboot the system. 5381 */ 5382 success = ipsq_enter(ill, B_FALSE); 5383 5384 /* 5385 * Open/close/push/pop is guaranteed to be single threaded 5386 * per stream by STREAMS. FS guarantees that all references 5387 * from top are gone before close is called. So there can't 5388 * be another close thread that has set CONDEMNED on this ill. 5389 * and cause ipsq_enter to return failure. 5390 */ 5391 ASSERT(success); 5392 ipsq = ill->ill_phyint->phyint_ipsq; 5393 5394 /* 5395 * Mark it condemned. No new reference will be made to this ill. 5396 * Lookup functions will return an error. Threads that try to 5397 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5398 * that the refcnt will drop down to zero. 5399 */ 5400 mutex_enter(&ill->ill_lock); 5401 ill->ill_state_flags |= ILL_CONDEMNED; 5402 for (ipif = ill->ill_ipif; ipif != NULL; 5403 ipif = ipif->ipif_next) { 5404 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5405 } 5406 /* 5407 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5408 * returns error if ILL_CONDEMNED is set 5409 */ 5410 cv_broadcast(&ill->ill_cv); 5411 mutex_exit(&ill->ill_lock); 5412 5413 /* 5414 * Send all the deferred DLPI messages downstream which came in 5415 * during the small window right before ipsq_enter(). We do this 5416 * without waiting for the ACKs because all the ACKs for M_PROTO 5417 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5418 */ 5419 ill_dlpi_send_deferred(ill); 5420 5421 /* 5422 * Shut down fragmentation reassembly. 5423 * ill_frag_timer won't start a timer again. 5424 * Now cancel any existing timer 5425 */ 5426 (void) untimeout(ill->ill_frag_timer_id); 5427 (void) ill_frag_timeout(ill, 0); 5428 5429 /* 5430 * If MOVE was in progress, clear the 5431 * move_in_progress fields also. 5432 */ 5433 if (ill->ill_move_in_progress) { 5434 ILL_CLEAR_MOVE(ill); 5435 } 5436 5437 /* 5438 * Call ill_delete to bring down the ipifs, ilms and ill on 5439 * this ill. Then wait for the refcnts to drop to zero. 5440 * ill_is_quiescent checks whether the ill is really quiescent. 5441 * Then make sure that threads that are waiting to enter the 5442 * ipsq have seen the error returned by ipsq_enter and have 5443 * gone away. Then we call ill_delete_tail which does the 5444 * DL_UNBIND_REQ with the driver and then qprocsoff. 5445 */ 5446 ill_delete(ill); 5447 mutex_enter(&ill->ill_lock); 5448 while (!ill_is_quiescent(ill)) 5449 cv_wait(&ill->ill_cv, &ill->ill_lock); 5450 while (ill->ill_waiters) 5451 cv_wait(&ill->ill_cv, &ill->ill_lock); 5452 5453 mutex_exit(&ill->ill_lock); 5454 5455 /* 5456 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5457 * it held until the end of the function since the cleanup 5458 * below needs to be able to use the ip_stack_t. 5459 */ 5460 netstack_hold(ipst->ips_netstack); 5461 5462 /* qprocsoff is called in ill_delete_tail */ 5463 ill_delete_tail(ill); 5464 ASSERT(ill->ill_ipst == NULL); 5465 5466 /* 5467 * Walk through all upper (conn) streams and qenable 5468 * those that have queued data. 5469 * close synchronization needs this to 5470 * be done to ensure that all upper layers blocked 5471 * due to flow control to the closing device 5472 * get unblocked. 5473 */ 5474 ip1dbg(("ip_wsrv: walking\n")); 5475 conn_walk_drain(ipst); 5476 5477 mutex_enter(&ipst->ips_ip_mi_lock); 5478 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5479 mutex_exit(&ipst->ips_ip_mi_lock); 5480 5481 /* 5482 * credp could be null if the open didn't succeed and ip_modopen 5483 * itself calls ip_close. 5484 */ 5485 if (ill->ill_credp != NULL) 5486 crfree(ill->ill_credp); 5487 5488 mutex_enter(&ill->ill_lock); 5489 ill_nic_info_dispatch(ill); 5490 mutex_exit(&ill->ill_lock); 5491 5492 /* 5493 * Now we are done with the module close pieces that 5494 * need the netstack_t. 5495 */ 5496 netstack_rele(ipst->ips_netstack); 5497 5498 mi_close_free((IDP)ill); 5499 q->q_ptr = WR(q)->q_ptr = NULL; 5500 5501 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5502 5503 return (0); 5504 } 5505 5506 /* 5507 * This is called as part of close() for IP, UDP, ICMP, and RTS 5508 * in order to quiesce the conn. 5509 */ 5510 void 5511 ip_quiesce_conn(conn_t *connp) 5512 { 5513 boolean_t drain_cleanup_reqd = B_FALSE; 5514 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5515 boolean_t ilg_cleanup_reqd = B_FALSE; 5516 ip_stack_t *ipst; 5517 5518 ASSERT(!IPCL_IS_TCP(connp)); 5519 ipst = connp->conn_netstack->netstack_ip; 5520 5521 /* 5522 * Mark the conn as closing, and this conn must not be 5523 * inserted in future into any list. Eg. conn_drain_insert(), 5524 * won't insert this conn into the conn_drain_list. 5525 * Similarly ill_pending_mp_add() will not add any mp to 5526 * the pending mp list, after this conn has started closing. 5527 * 5528 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5529 * cannot get set henceforth. 5530 */ 5531 mutex_enter(&connp->conn_lock); 5532 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5533 connp->conn_state_flags |= CONN_CLOSING; 5534 if (connp->conn_idl != NULL) 5535 drain_cleanup_reqd = B_TRUE; 5536 if (connp->conn_oper_pending_ill != NULL) 5537 conn_ioctl_cleanup_reqd = B_TRUE; 5538 if (connp->conn_dhcpinit_ill != NULL) { 5539 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5540 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5541 connp->conn_dhcpinit_ill = NULL; 5542 } 5543 if (connp->conn_ilg_inuse != 0) 5544 ilg_cleanup_reqd = B_TRUE; 5545 mutex_exit(&connp->conn_lock); 5546 5547 if (conn_ioctl_cleanup_reqd) 5548 conn_ioctl_cleanup(connp); 5549 5550 if (is_system_labeled() && connp->conn_anon_port) { 5551 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5552 connp->conn_mlp_type, connp->conn_ulp, 5553 ntohs(connp->conn_lport), B_FALSE); 5554 connp->conn_anon_port = 0; 5555 } 5556 connp->conn_mlp_type = mlptSingle; 5557 5558 /* 5559 * Remove this conn from any fanout list it is on. 5560 * and then wait for any threads currently operating 5561 * on this endpoint to finish 5562 */ 5563 ipcl_hash_remove(connp); 5564 5565 /* 5566 * Remove this conn from the drain list, and do 5567 * any other cleanup that may be required. 5568 * (Only non-tcp streams may have a non-null conn_idl. 5569 * TCP streams are never flow controlled, and 5570 * conn_idl will be null) 5571 */ 5572 if (drain_cleanup_reqd) 5573 conn_drain_tail(connp, B_TRUE); 5574 5575 if (connp == ipst->ips_ip_g_mrouter) 5576 (void) ip_mrouter_done(NULL, ipst); 5577 5578 if (ilg_cleanup_reqd) 5579 ilg_delete_all(connp); 5580 5581 conn_delete_ire(connp, NULL); 5582 5583 /* 5584 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5585 * callers from write side can't be there now because close 5586 * is in progress. The only other caller is ipcl_walk 5587 * which checks for the condemned flag. 5588 */ 5589 mutex_enter(&connp->conn_lock); 5590 connp->conn_state_flags |= CONN_CONDEMNED; 5591 while (connp->conn_ref != 1) 5592 cv_wait(&connp->conn_cv, &connp->conn_lock); 5593 connp->conn_state_flags |= CONN_QUIESCED; 5594 mutex_exit(&connp->conn_lock); 5595 } 5596 5597 /* ARGSUSED */ 5598 int 5599 ip_close(queue_t *q, int flags) 5600 { 5601 conn_t *connp; 5602 5603 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5604 5605 /* 5606 * Call the appropriate delete routine depending on whether this is 5607 * a module or device. 5608 */ 5609 if (WR(q)->q_next != NULL) { 5610 /* This is a module close */ 5611 return (ip_modclose((ill_t *)q->q_ptr)); 5612 } 5613 5614 connp = q->q_ptr; 5615 ip_quiesce_conn(connp); 5616 5617 qprocsoff(q); 5618 5619 /* 5620 * Now we are truly single threaded on this stream, and can 5621 * delete the things hanging off the connp, and finally the connp. 5622 * We removed this connp from the fanout list, it cannot be 5623 * accessed thru the fanouts, and we already waited for the 5624 * conn_ref to drop to 0. We are already in close, so 5625 * there cannot be any other thread from the top. qprocsoff 5626 * has completed, and service has completed or won't run in 5627 * future. 5628 */ 5629 ASSERT(connp->conn_ref == 1); 5630 5631 inet_minor_free(ip_minor_arena, connp->conn_dev); 5632 5633 connp->conn_ref--; 5634 ipcl_conn_destroy(connp); 5635 5636 q->q_ptr = WR(q)->q_ptr = NULL; 5637 return (0); 5638 } 5639 5640 /* 5641 * Wapper around putnext() so that ip_rts_request can merely use 5642 * conn_recv. 5643 */ 5644 /*ARGSUSED2*/ 5645 static void 5646 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5647 { 5648 conn_t *connp = (conn_t *)arg1; 5649 5650 putnext(connp->conn_rq, mp); 5651 } 5652 5653 /* Return the IP checksum for the IP header at "iph". */ 5654 uint16_t 5655 ip_csum_hdr(ipha_t *ipha) 5656 { 5657 uint16_t *uph; 5658 uint32_t sum; 5659 int opt_len; 5660 5661 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5662 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5663 uph = (uint16_t *)ipha; 5664 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5665 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5666 if (opt_len > 0) { 5667 do { 5668 sum += uph[10]; 5669 sum += uph[11]; 5670 uph += 2; 5671 } while (--opt_len); 5672 } 5673 sum = (sum & 0xFFFF) + (sum >> 16); 5674 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5675 if (sum == 0xffff) 5676 sum = 0; 5677 return ((uint16_t)sum); 5678 } 5679 5680 /* 5681 * Called when the module is about to be unloaded 5682 */ 5683 void 5684 ip_ddi_destroy(void) 5685 { 5686 tnet_fini(); 5687 5688 icmp_ddi_destroy(); 5689 rts_ddi_destroy(); 5690 udp_ddi_destroy(); 5691 sctp_ddi_g_destroy(); 5692 tcp_ddi_g_destroy(); 5693 ipsec_policy_g_destroy(); 5694 ipcl_g_destroy(); 5695 ip_net_g_destroy(); 5696 ip_ire_g_fini(); 5697 inet_minor_destroy(ip_minor_arena); 5698 5699 #ifdef DEBUG 5700 list_destroy(&ip_thread_list); 5701 rw_destroy(&ip_thread_rwlock); 5702 tsd_destroy(&ip_thread_data); 5703 #endif 5704 5705 netstack_unregister(NS_IP); 5706 } 5707 5708 /* 5709 * First step in cleanup. 5710 */ 5711 /* ARGSUSED */ 5712 static void 5713 ip_stack_shutdown(netstackid_t stackid, void *arg) 5714 { 5715 ip_stack_t *ipst = (ip_stack_t *)arg; 5716 5717 #ifdef NS_DEBUG 5718 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5719 #endif 5720 5721 /* Get rid of loopback interfaces and their IREs */ 5722 ip_loopback_cleanup(ipst); 5723 } 5724 5725 /* 5726 * Free the IP stack instance. 5727 */ 5728 static void 5729 ip_stack_fini(netstackid_t stackid, void *arg) 5730 { 5731 ip_stack_t *ipst = (ip_stack_t *)arg; 5732 int ret; 5733 5734 #ifdef NS_DEBUG 5735 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5736 #endif 5737 ipv4_hook_destroy(ipst); 5738 ipv6_hook_destroy(ipst); 5739 ip_net_destroy(ipst); 5740 5741 rw_destroy(&ipst->ips_srcid_lock); 5742 5743 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5744 ipst->ips_ip_mibkp = NULL; 5745 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5746 ipst->ips_icmp_mibkp = NULL; 5747 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5748 ipst->ips_ip_kstat = NULL; 5749 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5750 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5751 ipst->ips_ip6_kstat = NULL; 5752 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5753 5754 nd_free(&ipst->ips_ip_g_nd); 5755 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5756 ipst->ips_param_arr = NULL; 5757 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5758 ipst->ips_ndp_arr = NULL; 5759 5760 ip_mrouter_stack_destroy(ipst); 5761 5762 mutex_destroy(&ipst->ips_ip_mi_lock); 5763 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5764 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5765 rw_destroy(&ipst->ips_ip_g_nd_lock); 5766 5767 ret = untimeout(ipst->ips_igmp_timeout_id); 5768 if (ret == -1) { 5769 ASSERT(ipst->ips_igmp_timeout_id == 0); 5770 } else { 5771 ASSERT(ipst->ips_igmp_timeout_id != 0); 5772 ipst->ips_igmp_timeout_id = 0; 5773 } 5774 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5775 if (ret == -1) { 5776 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5777 } else { 5778 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5779 ipst->ips_igmp_slowtimeout_id = 0; 5780 } 5781 ret = untimeout(ipst->ips_mld_timeout_id); 5782 if (ret == -1) { 5783 ASSERT(ipst->ips_mld_timeout_id == 0); 5784 } else { 5785 ASSERT(ipst->ips_mld_timeout_id != 0); 5786 ipst->ips_mld_timeout_id = 0; 5787 } 5788 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5789 if (ret == -1) { 5790 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5791 } else { 5792 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5793 ipst->ips_mld_slowtimeout_id = 0; 5794 } 5795 ret = untimeout(ipst->ips_ip_ire_expire_id); 5796 if (ret == -1) { 5797 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5798 } else { 5799 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5800 ipst->ips_ip_ire_expire_id = 0; 5801 } 5802 5803 mutex_destroy(&ipst->ips_igmp_timer_lock); 5804 mutex_destroy(&ipst->ips_mld_timer_lock); 5805 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5806 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5807 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5808 rw_destroy(&ipst->ips_ill_g_lock); 5809 5810 ip_ire_fini(ipst); 5811 ip6_asp_free(ipst); 5812 conn_drain_fini(ipst); 5813 ipcl_destroy(ipst); 5814 5815 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5816 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5817 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5818 ipst->ips_ndp4 = NULL; 5819 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5820 ipst->ips_ndp6 = NULL; 5821 5822 if (ipst->ips_loopback_ksp != NULL) { 5823 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5824 ipst->ips_loopback_ksp = NULL; 5825 } 5826 5827 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5828 ipst->ips_phyint_g_list = NULL; 5829 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5830 ipst->ips_ill_g_heads = NULL; 5831 5832 kmem_free(ipst, sizeof (*ipst)); 5833 } 5834 5835 /* 5836 * This function is called from the TSD destructor, and is used to debug 5837 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5838 * details. 5839 */ 5840 static void 5841 ip_thread_exit(void *phash) 5842 { 5843 th_hash_t *thh = phash; 5844 5845 rw_enter(&ip_thread_rwlock, RW_WRITER); 5846 list_remove(&ip_thread_list, thh); 5847 rw_exit(&ip_thread_rwlock); 5848 mod_hash_destroy_hash(thh->thh_hash); 5849 kmem_free(thh, sizeof (*thh)); 5850 } 5851 5852 /* 5853 * Called when the IP kernel module is loaded into the kernel 5854 */ 5855 void 5856 ip_ddi_init(void) 5857 { 5858 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5859 5860 /* 5861 * For IP and TCP the minor numbers should start from 2 since we have 4 5862 * initial devices: ip, ip6, tcp, tcp6. 5863 */ 5864 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5865 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5866 cmn_err(CE_PANIC, 5867 "ip_ddi_init: ip_minor_arena creation failed\n"); 5868 } 5869 5870 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5871 5872 ipcl_g_init(); 5873 ip_ire_g_init(); 5874 ip_net_g_init(); 5875 5876 #ifdef DEBUG 5877 tsd_create(&ip_thread_data, ip_thread_exit); 5878 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5879 list_create(&ip_thread_list, sizeof (th_hash_t), 5880 offsetof(th_hash_t, thh_link)); 5881 #endif 5882 5883 /* 5884 * We want to be informed each time a stack is created or 5885 * destroyed in the kernel, so we can maintain the 5886 * set of udp_stack_t's. 5887 */ 5888 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5889 ip_stack_fini); 5890 5891 ipsec_policy_g_init(); 5892 tcp_ddi_g_init(); 5893 sctp_ddi_g_init(); 5894 5895 tnet_init(); 5896 5897 udp_ddi_init(); 5898 rts_ddi_init(); 5899 icmp_ddi_init(); 5900 } 5901 5902 /* 5903 * Initialize the IP stack instance. 5904 */ 5905 static void * 5906 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5907 { 5908 ip_stack_t *ipst; 5909 ipparam_t *pa; 5910 ipndp_t *na; 5911 5912 #ifdef NS_DEBUG 5913 printf("ip_stack_init(stack %d)\n", stackid); 5914 #endif 5915 5916 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5917 ipst->ips_netstack = ns; 5918 5919 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5920 KM_SLEEP); 5921 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5922 KM_SLEEP); 5923 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5924 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5925 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5926 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5927 5928 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5929 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5930 ipst->ips_igmp_deferred_next = INFINITY; 5931 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5932 ipst->ips_mld_deferred_next = INFINITY; 5933 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5934 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5935 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5936 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5937 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5938 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5939 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5940 5941 ipcl_init(ipst); 5942 ip_ire_init(ipst); 5943 ip6_asp_init(ipst); 5944 ipif_init(ipst); 5945 conn_drain_init(ipst); 5946 ip_mrouter_stack_init(ipst); 5947 5948 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5949 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5950 5951 ipst->ips_ip_multirt_log_interval = 1000; 5952 5953 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5954 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5955 ipst->ips_ill_index = 1; 5956 5957 ipst->ips_saved_ip_g_forward = -1; 5958 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 5959 5960 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 5961 ipst->ips_param_arr = pa; 5962 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 5963 5964 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 5965 ipst->ips_ndp_arr = na; 5966 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5967 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 5968 (caddr_t)&ipst->ips_ip_g_forward; 5969 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 5970 (caddr_t)&ipst->ips_ipv6_forward; 5971 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 5972 "ip_cgtp_filter") == 0); 5973 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 5974 (caddr_t)&ipst->ips_ip_cgtp_filter; 5975 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 5976 "ipmp_hook_emulation") == 0); 5977 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 5978 (caddr_t)&ipst->ips_ipmp_hook_emulation; 5979 5980 (void) ip_param_register(&ipst->ips_ip_g_nd, 5981 ipst->ips_param_arr, A_CNT(lcl_param_arr), 5982 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 5983 5984 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 5985 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 5986 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 5987 ipst->ips_ip6_kstat = 5988 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 5989 5990 ipst->ips_ipmp_enable_failback = B_TRUE; 5991 5992 ipst->ips_ip_src_id = 1; 5993 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 5994 5995 ip_net_init(ipst, ns); 5996 ipv4_hook_init(ipst); 5997 ipv6_hook_init(ipst); 5998 5999 return (ipst); 6000 } 6001 6002 /* 6003 * Allocate and initialize a DLPI template of the specified length. (May be 6004 * called as writer.) 6005 */ 6006 mblk_t * 6007 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6008 { 6009 mblk_t *mp; 6010 6011 mp = allocb(len, BPRI_MED); 6012 if (!mp) 6013 return (NULL); 6014 6015 /* 6016 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6017 * of which we don't seem to use) are sent with M_PCPROTO, and 6018 * that other DLPI are M_PROTO. 6019 */ 6020 if (prim == DL_INFO_REQ) { 6021 mp->b_datap->db_type = M_PCPROTO; 6022 } else { 6023 mp->b_datap->db_type = M_PROTO; 6024 } 6025 6026 mp->b_wptr = mp->b_rptr + len; 6027 bzero(mp->b_rptr, len); 6028 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6029 return (mp); 6030 } 6031 6032 const char * 6033 dlpi_prim_str(int prim) 6034 { 6035 switch (prim) { 6036 case DL_INFO_REQ: return ("DL_INFO_REQ"); 6037 case DL_INFO_ACK: return ("DL_INFO_ACK"); 6038 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 6039 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 6040 case DL_BIND_REQ: return ("DL_BIND_REQ"); 6041 case DL_BIND_ACK: return ("DL_BIND_ACK"); 6042 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 6043 case DL_OK_ACK: return ("DL_OK_ACK"); 6044 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 6045 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 6046 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 6047 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 6048 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 6049 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 6050 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 6051 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 6052 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 6053 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 6054 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 6055 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 6056 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 6057 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 6058 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 6059 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 6060 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 6061 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 6062 default: return ("<unknown primitive>"); 6063 } 6064 } 6065 6066 const char * 6067 dlpi_err_str(int err) 6068 { 6069 switch (err) { 6070 case DL_ACCESS: return ("DL_ACCESS"); 6071 case DL_BADADDR: return ("DL_BADADDR"); 6072 case DL_BADCORR: return ("DL_BADCORR"); 6073 case DL_BADDATA: return ("DL_BADDATA"); 6074 case DL_BADPPA: return ("DL_BADPPA"); 6075 case DL_BADPRIM: return ("DL_BADPRIM"); 6076 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 6077 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 6078 case DL_BADSAP: return ("DL_BADSAP"); 6079 case DL_BADTOKEN: return ("DL_BADTOKEN"); 6080 case DL_BOUND: return ("DL_BOUND"); 6081 case DL_INITFAILED: return ("DL_INITFAILED"); 6082 case DL_NOADDR: return ("DL_NOADDR"); 6083 case DL_NOTINIT: return ("DL_NOTINIT"); 6084 case DL_OUTSTATE: return ("DL_OUTSTATE"); 6085 case DL_SYSERR: return ("DL_SYSERR"); 6086 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 6087 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 6088 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 6089 case DL_TOOMANY: return ("DL_TOOMANY"); 6090 case DL_NOTENAB: return ("DL_NOTENAB"); 6091 case DL_BUSY: return ("DL_BUSY"); 6092 case DL_NOAUTO: return ("DL_NOAUTO"); 6093 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 6094 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 6095 case DL_XIDAUTO: return ("DL_XIDAUTO"); 6096 case DL_TESTAUTO: return ("DL_TESTAUTO"); 6097 case DL_PENDING: return ("DL_PENDING"); 6098 default: return ("<unknown error>"); 6099 } 6100 } 6101 6102 /* 6103 * Debug formatting routine. Returns a character string representation of the 6104 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6105 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6106 * 6107 * Once the ndd table-printing interfaces are removed, this can be changed to 6108 * standard dotted-decimal form. 6109 */ 6110 char * 6111 ip_dot_addr(ipaddr_t addr, char *buf) 6112 { 6113 uint8_t *ap = (uint8_t *)&addr; 6114 6115 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6116 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6117 return (buf); 6118 } 6119 6120 /* 6121 * Write the given MAC address as a printable string in the usual colon- 6122 * separated format. 6123 */ 6124 const char * 6125 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6126 { 6127 char *bp; 6128 6129 if (alen == 0 || buflen < 4) 6130 return ("?"); 6131 bp = buf; 6132 for (;;) { 6133 /* 6134 * If there are more MAC address bytes available, but we won't 6135 * have any room to print them, then add "..." to the string 6136 * instead. See below for the 'magic number' explanation. 6137 */ 6138 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6139 (void) strcpy(bp, "..."); 6140 break; 6141 } 6142 (void) sprintf(bp, "%02x", *addr++); 6143 bp += 2; 6144 if (--alen == 0) 6145 break; 6146 *bp++ = ':'; 6147 buflen -= 3; 6148 /* 6149 * At this point, based on the first 'if' statement above, 6150 * either alen == 1 and buflen >= 3, or alen > 1 and 6151 * buflen >= 4. The first case leaves room for the final "xx" 6152 * number and trailing NUL byte. The second leaves room for at 6153 * least "...". Thus the apparently 'magic' numbers chosen for 6154 * that statement. 6155 */ 6156 } 6157 return (buf); 6158 } 6159 6160 /* 6161 * Send an ICMP error after patching up the packet appropriately. Returns 6162 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6163 */ 6164 static boolean_t 6165 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6166 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6167 zoneid_t zoneid, ip_stack_t *ipst) 6168 { 6169 ipha_t *ipha; 6170 mblk_t *first_mp; 6171 boolean_t secure; 6172 unsigned char db_type; 6173 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6174 6175 first_mp = mp; 6176 if (mctl_present) { 6177 mp = mp->b_cont; 6178 secure = ipsec_in_is_secure(first_mp); 6179 ASSERT(mp != NULL); 6180 } else { 6181 /* 6182 * If this is an ICMP error being reported - which goes 6183 * up as M_CTLs, we need to convert them to M_DATA till 6184 * we finish checking with global policy because 6185 * ipsec_check_global_policy() assumes M_DATA as clear 6186 * and M_CTL as secure. 6187 */ 6188 db_type = DB_TYPE(mp); 6189 DB_TYPE(mp) = M_DATA; 6190 secure = B_FALSE; 6191 } 6192 /* 6193 * We are generating an icmp error for some inbound packet. 6194 * Called from all ip_fanout_(udp, tcp, proto) functions. 6195 * Before we generate an error, check with global policy 6196 * to see whether this is allowed to enter the system. As 6197 * there is no "conn", we are checking with global policy. 6198 */ 6199 ipha = (ipha_t *)mp->b_rptr; 6200 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6201 first_mp = ipsec_check_global_policy(first_mp, NULL, 6202 ipha, NULL, mctl_present, ipst->ips_netstack); 6203 if (first_mp == NULL) 6204 return (B_FALSE); 6205 } 6206 6207 if (!mctl_present) 6208 DB_TYPE(mp) = db_type; 6209 6210 if (flags & IP_FF_SEND_ICMP) { 6211 if (flags & IP_FF_HDR_COMPLETE) { 6212 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6213 freemsg(first_mp); 6214 return (B_TRUE); 6215 } 6216 } 6217 if (flags & IP_FF_CKSUM) { 6218 /* 6219 * Have to correct checksum since 6220 * the packet might have been 6221 * fragmented and the reassembly code in ip_rput 6222 * does not restore the IP checksum. 6223 */ 6224 ipha->ipha_hdr_checksum = 0; 6225 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6226 } 6227 switch (icmp_type) { 6228 case ICMP_DEST_UNREACHABLE: 6229 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6230 ipst); 6231 break; 6232 default: 6233 freemsg(first_mp); 6234 break; 6235 } 6236 } else { 6237 freemsg(first_mp); 6238 return (B_FALSE); 6239 } 6240 6241 return (B_TRUE); 6242 } 6243 6244 /* 6245 * Used to send an ICMP error message when a packet is received for 6246 * a protocol that is not supported. The mblk passed as argument 6247 * is consumed by this function. 6248 */ 6249 void 6250 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6251 ip_stack_t *ipst) 6252 { 6253 mblk_t *mp; 6254 ipha_t *ipha; 6255 ill_t *ill; 6256 ipsec_in_t *ii; 6257 6258 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6259 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6260 6261 mp = ipsec_mp->b_cont; 6262 ipsec_mp->b_cont = NULL; 6263 ipha = (ipha_t *)mp->b_rptr; 6264 /* Get ill from index in ipsec_in_t. */ 6265 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6266 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6267 ipst); 6268 if (ill != NULL) { 6269 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6270 if (ip_fanout_send_icmp(q, mp, flags, 6271 ICMP_DEST_UNREACHABLE, 6272 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6273 BUMP_MIB(ill->ill_ip_mib, 6274 ipIfStatsInUnknownProtos); 6275 } 6276 } else { 6277 if (ip_fanout_send_icmp_v6(q, mp, flags, 6278 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6279 0, B_FALSE, zoneid, ipst)) { 6280 BUMP_MIB(ill->ill_ip_mib, 6281 ipIfStatsInUnknownProtos); 6282 } 6283 } 6284 ill_refrele(ill); 6285 } else { /* re-link for the freemsg() below. */ 6286 ipsec_mp->b_cont = mp; 6287 } 6288 6289 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6290 freemsg(ipsec_mp); 6291 } 6292 6293 /* 6294 * See if the inbound datagram has had IPsec processing applied to it. 6295 */ 6296 boolean_t 6297 ipsec_in_is_secure(mblk_t *ipsec_mp) 6298 { 6299 ipsec_in_t *ii; 6300 6301 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6302 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6303 6304 if (ii->ipsec_in_loopback) { 6305 return (ii->ipsec_in_secure); 6306 } else { 6307 return (ii->ipsec_in_ah_sa != NULL || 6308 ii->ipsec_in_esp_sa != NULL || 6309 ii->ipsec_in_decaps); 6310 } 6311 } 6312 6313 /* 6314 * Handle protocols with which IP is less intimate. There 6315 * can be more than one stream bound to a particular 6316 * protocol. When this is the case, normally each one gets a copy 6317 * of any incoming packets. 6318 * 6319 * IPsec NOTE : 6320 * 6321 * Don't allow a secure packet going up a non-secure connection. 6322 * We don't allow this because 6323 * 6324 * 1) Reply might go out in clear which will be dropped at 6325 * the sending side. 6326 * 2) If the reply goes out in clear it will give the 6327 * adversary enough information for getting the key in 6328 * most of the cases. 6329 * 6330 * Moreover getting a secure packet when we expect clear 6331 * implies that SA's were added without checking for 6332 * policy on both ends. This should not happen once ISAKMP 6333 * is used to negotiate SAs as SAs will be added only after 6334 * verifying the policy. 6335 * 6336 * NOTE : If the packet was tunneled and not multicast we only send 6337 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6338 * back to delivering packets to AF_INET6 raw sockets. 6339 * 6340 * IPQoS Notes: 6341 * Once we have determined the client, invoke IPPF processing. 6342 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6343 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6344 * ip_policy will be false. 6345 * 6346 * Zones notes: 6347 * Currently only applications in the global zone can create raw sockets for 6348 * protocols other than ICMP. So unlike the broadcast / multicast case of 6349 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6350 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6351 */ 6352 static void 6353 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6354 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6355 zoneid_t zoneid) 6356 { 6357 queue_t *rq; 6358 mblk_t *mp1, *first_mp1; 6359 uint_t protocol = ipha->ipha_protocol; 6360 ipaddr_t dst; 6361 boolean_t one_only; 6362 mblk_t *first_mp = mp; 6363 boolean_t secure; 6364 uint32_t ill_index; 6365 conn_t *connp, *first_connp, *next_connp; 6366 connf_t *connfp; 6367 boolean_t shared_addr; 6368 mib2_ipIfStatsEntry_t *mibptr; 6369 ip_stack_t *ipst = recv_ill->ill_ipst; 6370 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6371 6372 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6373 if (mctl_present) { 6374 mp = first_mp->b_cont; 6375 secure = ipsec_in_is_secure(first_mp); 6376 ASSERT(mp != NULL); 6377 } else { 6378 secure = B_FALSE; 6379 } 6380 dst = ipha->ipha_dst; 6381 /* 6382 * If the packet was tunneled and not multicast we only send to it 6383 * the first match. 6384 */ 6385 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6386 !CLASSD(dst)); 6387 6388 shared_addr = (zoneid == ALL_ZONES); 6389 if (shared_addr) { 6390 /* 6391 * We don't allow multilevel ports for raw IP, so no need to 6392 * check for that here. 6393 */ 6394 zoneid = tsol_packet_to_zoneid(mp); 6395 } 6396 6397 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6398 mutex_enter(&connfp->connf_lock); 6399 connp = connfp->connf_head; 6400 for (connp = connfp->connf_head; connp != NULL; 6401 connp = connp->conn_next) { 6402 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6403 zoneid) && 6404 (!is_system_labeled() || 6405 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6406 connp))) { 6407 break; 6408 } 6409 } 6410 6411 if (connp == NULL || connp->conn_upq == NULL) { 6412 /* 6413 * No one bound to these addresses. Is 6414 * there a client that wants all 6415 * unclaimed datagrams? 6416 */ 6417 mutex_exit(&connfp->connf_lock); 6418 /* 6419 * Check for IPPROTO_ENCAP... 6420 */ 6421 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6422 /* 6423 * If an IPsec mblk is here on a multicast 6424 * tunnel (using ip_mroute stuff), check policy here, 6425 * THEN ship off to ip_mroute_decap(). 6426 * 6427 * BTW, If I match a configured IP-in-IP 6428 * tunnel, this path will not be reached, and 6429 * ip_mroute_decap will never be called. 6430 */ 6431 first_mp = ipsec_check_global_policy(first_mp, connp, 6432 ipha, NULL, mctl_present, ipst->ips_netstack); 6433 if (first_mp != NULL) { 6434 if (mctl_present) 6435 freeb(first_mp); 6436 ip_mroute_decap(q, mp, ill); 6437 } /* Else we already freed everything! */ 6438 } else { 6439 /* 6440 * Otherwise send an ICMP protocol unreachable. 6441 */ 6442 if (ip_fanout_send_icmp(q, first_mp, flags, 6443 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6444 mctl_present, zoneid, ipst)) { 6445 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6446 } 6447 } 6448 return; 6449 } 6450 CONN_INC_REF(connp); 6451 first_connp = connp; 6452 6453 /* 6454 * Only send message to one tunnel driver by immediately 6455 * terminating the loop. 6456 */ 6457 connp = one_only ? NULL : connp->conn_next; 6458 6459 for (;;) { 6460 while (connp != NULL) { 6461 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6462 flags, zoneid) && 6463 (!is_system_labeled() || 6464 tsol_receive_local(mp, &dst, IPV4_VERSION, 6465 shared_addr, connp))) 6466 break; 6467 connp = connp->conn_next; 6468 } 6469 6470 /* 6471 * Copy the packet. 6472 */ 6473 if (connp == NULL || connp->conn_upq == NULL || 6474 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6475 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6476 /* 6477 * No more interested clients or memory 6478 * allocation failed 6479 */ 6480 connp = first_connp; 6481 break; 6482 } 6483 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6484 CONN_INC_REF(connp); 6485 mutex_exit(&connfp->connf_lock); 6486 rq = connp->conn_rq; 6487 if (!canputnext(rq)) { 6488 if (flags & IP_FF_RAWIP) { 6489 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6490 } else { 6491 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6492 } 6493 6494 freemsg(first_mp1); 6495 } else { 6496 /* 6497 * Don't enforce here if we're an actual tunnel - 6498 * let "tun" do it instead. 6499 */ 6500 if (!IPCL_IS_IPTUN(connp) && 6501 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6502 secure)) { 6503 first_mp1 = ipsec_check_inbound_policy 6504 (first_mp1, connp, ipha, NULL, 6505 mctl_present); 6506 } 6507 if (first_mp1 != NULL) { 6508 int in_flags = 0; 6509 /* 6510 * ip_fanout_proto also gets called from 6511 * icmp_inbound_error_fanout, in which case 6512 * the msg type is M_CTL. Don't add info 6513 * in this case for the time being. In future 6514 * when there is a need for knowing the 6515 * inbound iface index for ICMP error msgs, 6516 * then this can be changed. 6517 */ 6518 if (connp->conn_recvif) 6519 in_flags = IPF_RECVIF; 6520 /* 6521 * The ULP may support IP_RECVPKTINFO for both 6522 * IP v4 and v6 so pass the appropriate argument 6523 * based on conn IP version. 6524 */ 6525 if (connp->conn_ip_recvpktinfo) { 6526 if (connp->conn_af_isv6) { 6527 /* 6528 * V6 only needs index 6529 */ 6530 in_flags |= IPF_RECVIF; 6531 } else { 6532 /* 6533 * V4 needs index + 6534 * matching address. 6535 */ 6536 in_flags |= IPF_RECVADDR; 6537 } 6538 } 6539 if ((in_flags != 0) && 6540 (mp->b_datap->db_type != M_CTL)) { 6541 /* 6542 * the actual data will be 6543 * contained in b_cont upon 6544 * successful return of the 6545 * following call else 6546 * original mblk is returned 6547 */ 6548 ASSERT(recv_ill != NULL); 6549 mp1 = ip_add_info(mp1, recv_ill, 6550 in_flags, IPCL_ZONEID(connp), ipst); 6551 } 6552 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6553 if (mctl_present) 6554 freeb(first_mp1); 6555 (connp->conn_recv)(connp, mp1, NULL); 6556 } 6557 } 6558 mutex_enter(&connfp->connf_lock); 6559 /* Follow the next pointer before releasing the conn. */ 6560 next_connp = connp->conn_next; 6561 CONN_DEC_REF(connp); 6562 connp = next_connp; 6563 } 6564 6565 /* Last one. Send it upstream. */ 6566 mutex_exit(&connfp->connf_lock); 6567 6568 /* 6569 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6570 * will be set to false. 6571 */ 6572 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6573 ill_index = ill->ill_phyint->phyint_ifindex; 6574 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6575 if (mp == NULL) { 6576 CONN_DEC_REF(connp); 6577 if (mctl_present) { 6578 freeb(first_mp); 6579 } 6580 return; 6581 } 6582 } 6583 6584 rq = connp->conn_rq; 6585 if (!canputnext(rq)) { 6586 if (flags & IP_FF_RAWIP) { 6587 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6588 } else { 6589 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6590 } 6591 6592 freemsg(first_mp); 6593 } else { 6594 if (IPCL_IS_IPTUN(connp)) { 6595 /* 6596 * Tunneled packet. We enforce policy in the tunnel 6597 * module itself. 6598 * 6599 * Send the WHOLE packet up (incl. IPSEC_IN) without 6600 * a policy check. 6601 * FIXME to use conn_recv for tun later. 6602 */ 6603 putnext(rq, first_mp); 6604 CONN_DEC_REF(connp); 6605 return; 6606 } 6607 6608 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6609 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6610 ipha, NULL, mctl_present); 6611 } 6612 6613 if (first_mp != NULL) { 6614 int in_flags = 0; 6615 6616 /* 6617 * ip_fanout_proto also gets called 6618 * from icmp_inbound_error_fanout, in 6619 * which case the msg type is M_CTL. 6620 * Don't add info in this case for time 6621 * being. In future when there is a 6622 * need for knowing the inbound iface 6623 * index for ICMP error msgs, then this 6624 * can be changed 6625 */ 6626 if (connp->conn_recvif) 6627 in_flags = IPF_RECVIF; 6628 if (connp->conn_ip_recvpktinfo) { 6629 if (connp->conn_af_isv6) { 6630 /* 6631 * V6 only needs index 6632 */ 6633 in_flags |= IPF_RECVIF; 6634 } else { 6635 /* 6636 * V4 needs index + 6637 * matching address. 6638 */ 6639 in_flags |= IPF_RECVADDR; 6640 } 6641 } 6642 if ((in_flags != 0) && 6643 (mp->b_datap->db_type != M_CTL)) { 6644 6645 /* 6646 * the actual data will be contained in 6647 * b_cont upon successful return 6648 * of the following call else original 6649 * mblk is returned 6650 */ 6651 ASSERT(recv_ill != NULL); 6652 mp = ip_add_info(mp, recv_ill, 6653 in_flags, IPCL_ZONEID(connp), ipst); 6654 } 6655 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6656 (connp->conn_recv)(connp, mp, NULL); 6657 if (mctl_present) 6658 freeb(first_mp); 6659 } 6660 } 6661 CONN_DEC_REF(connp); 6662 } 6663 6664 /* 6665 * Fanout for TCP packets 6666 * The caller puts <fport, lport> in the ports parameter. 6667 * 6668 * IPQoS Notes 6669 * Before sending it to the client, invoke IPPF processing. 6670 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6671 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6672 * ip_policy is false. 6673 */ 6674 static void 6675 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6676 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6677 { 6678 mblk_t *first_mp; 6679 boolean_t secure; 6680 uint32_t ill_index; 6681 int ip_hdr_len; 6682 tcph_t *tcph; 6683 boolean_t syn_present = B_FALSE; 6684 conn_t *connp; 6685 ip_stack_t *ipst = recv_ill->ill_ipst; 6686 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6687 6688 ASSERT(recv_ill != NULL); 6689 6690 first_mp = mp; 6691 if (mctl_present) { 6692 ASSERT(first_mp->b_datap->db_type == M_CTL); 6693 mp = first_mp->b_cont; 6694 secure = ipsec_in_is_secure(first_mp); 6695 ASSERT(mp != NULL); 6696 } else { 6697 secure = B_FALSE; 6698 } 6699 6700 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6701 6702 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6703 zoneid, ipst)) == NULL) { 6704 /* 6705 * No connected connection or listener. Send a 6706 * TH_RST via tcp_xmit_listeners_reset. 6707 */ 6708 6709 /* Initiate IPPf processing, if needed. */ 6710 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6711 uint32_t ill_index; 6712 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6713 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6714 if (first_mp == NULL) 6715 return; 6716 } 6717 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6718 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6719 zoneid)); 6720 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6721 ipst->ips_netstack->netstack_tcp, NULL); 6722 return; 6723 } 6724 6725 /* 6726 * Allocate the SYN for the TCP connection here itself 6727 */ 6728 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6729 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6730 if (IPCL_IS_TCP(connp)) { 6731 squeue_t *sqp; 6732 6733 /* 6734 * For fused tcp loopback, assign the eager's 6735 * squeue to be that of the active connect's. 6736 * Note that we don't check for IP_FF_LOOPBACK 6737 * here since this routine gets called only 6738 * for loopback (unlike the IPv6 counterpart). 6739 */ 6740 ASSERT(Q_TO_CONN(q) != NULL); 6741 if (do_tcp_fusion && 6742 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6743 !secure && 6744 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6745 IPCL_IS_TCP(Q_TO_CONN(q))) { 6746 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6747 sqp = Q_TO_CONN(q)->conn_sqp; 6748 } else { 6749 sqp = IP_SQUEUE_GET(lbolt); 6750 } 6751 6752 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6753 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6754 syn_present = B_TRUE; 6755 } 6756 } 6757 6758 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6759 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6760 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6761 if ((flags & TH_RST) || (flags & TH_URG)) { 6762 CONN_DEC_REF(connp); 6763 freemsg(first_mp); 6764 return; 6765 } 6766 if (flags & TH_ACK) { 6767 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6768 ipst->ips_netstack->netstack_tcp, connp); 6769 CONN_DEC_REF(connp); 6770 return; 6771 } 6772 6773 CONN_DEC_REF(connp); 6774 freemsg(first_mp); 6775 return; 6776 } 6777 6778 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6779 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6780 NULL, mctl_present); 6781 if (first_mp == NULL) { 6782 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6783 CONN_DEC_REF(connp); 6784 return; 6785 } 6786 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6787 ASSERT(syn_present); 6788 if (mctl_present) { 6789 ASSERT(first_mp != mp); 6790 first_mp->b_datap->db_struioflag |= 6791 STRUIO_POLICY; 6792 } else { 6793 ASSERT(first_mp == mp); 6794 mp->b_datap->db_struioflag &= 6795 ~STRUIO_EAGER; 6796 mp->b_datap->db_struioflag |= 6797 STRUIO_POLICY; 6798 } 6799 } else { 6800 /* 6801 * Discard first_mp early since we're dealing with a 6802 * fully-connected conn_t and tcp doesn't do policy in 6803 * this case. 6804 */ 6805 if (mctl_present) { 6806 freeb(first_mp); 6807 mctl_present = B_FALSE; 6808 } 6809 first_mp = mp; 6810 } 6811 } 6812 6813 /* 6814 * Initiate policy processing here if needed. If we get here from 6815 * icmp_inbound_error_fanout, ip_policy is false. 6816 */ 6817 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6818 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6819 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6820 if (mp == NULL) { 6821 CONN_DEC_REF(connp); 6822 if (mctl_present) 6823 freeb(first_mp); 6824 return; 6825 } else if (mctl_present) { 6826 ASSERT(first_mp != mp); 6827 first_mp->b_cont = mp; 6828 } else { 6829 first_mp = mp; 6830 } 6831 } 6832 6833 6834 6835 /* Handle socket options. */ 6836 if (!syn_present && 6837 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6838 /* Add header */ 6839 ASSERT(recv_ill != NULL); 6840 /* 6841 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6842 * IPF_RECVIF. 6843 */ 6844 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6845 ipst); 6846 if (mp == NULL) { 6847 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6848 CONN_DEC_REF(connp); 6849 if (mctl_present) 6850 freeb(first_mp); 6851 return; 6852 } else if (mctl_present) { 6853 /* 6854 * ip_add_info might return a new mp. 6855 */ 6856 ASSERT(first_mp != mp); 6857 first_mp->b_cont = mp; 6858 } else { 6859 first_mp = mp; 6860 } 6861 } 6862 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6863 if (IPCL_IS_TCP(connp)) { 6864 /* do not drain, certain use cases can blow the stack */ 6865 squeue_enter_nodrain(connp->conn_sqp, first_mp, 6866 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6867 } else { 6868 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6869 (connp->conn_recv)(connp, first_mp, NULL); 6870 CONN_DEC_REF(connp); 6871 } 6872 } 6873 6874 /* 6875 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6876 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6877 * is not consumed. 6878 * 6879 * One of four things can happen, all of which affect the passed-in mblk: 6880 * 6881 * 1.) ICMP messages that go through here just get returned TRUE. 6882 * 6883 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6884 * 6885 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6886 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6887 * 6888 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6889 */ 6890 static boolean_t 6891 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6892 ipsec_stack_t *ipss) 6893 { 6894 int shift, plen, iph_len; 6895 ipha_t *ipha; 6896 udpha_t *udpha; 6897 uint32_t *spi; 6898 uint8_t *orptr; 6899 boolean_t udp_pkt, free_ire; 6900 6901 if (DB_TYPE(mp) == M_CTL) { 6902 /* 6903 * ICMP message with UDP inside. Don't bother stripping, just 6904 * send it up. 6905 * 6906 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6907 * to ignore errors set by ICMP anyway ('cause they might be 6908 * forged), but that's the app's decision, not ours. 6909 */ 6910 6911 /* Bunch of reality checks for DEBUG kernels... */ 6912 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6913 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6914 6915 return (B_TRUE); 6916 } 6917 6918 ipha = (ipha_t *)mp->b_rptr; 6919 iph_len = IPH_HDR_LENGTH(ipha); 6920 plen = ntohs(ipha->ipha_length); 6921 6922 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6923 /* 6924 * Most likely a keepalive for the benefit of an intervening 6925 * NAT. These aren't for us, per se, so drop it. 6926 * 6927 * RFC 3947/8 doesn't say for sure what to do for 2-3 6928 * byte packets (keepalives are 1-byte), but we'll drop them 6929 * also. 6930 */ 6931 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6932 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6933 return (B_FALSE); 6934 } 6935 6936 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6937 /* might as well pull it all up - it might be ESP. */ 6938 if (!pullupmsg(mp, -1)) { 6939 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6940 DROPPER(ipss, ipds_esp_nomem), 6941 &ipss->ipsec_dropper); 6942 return (B_FALSE); 6943 } 6944 6945 ipha = (ipha_t *)mp->b_rptr; 6946 } 6947 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6948 if (*spi == 0) { 6949 /* UDP packet - remove 0-spi. */ 6950 shift = sizeof (uint32_t); 6951 } else { 6952 /* ESP-in-UDP packet - reduce to ESP. */ 6953 ipha->ipha_protocol = IPPROTO_ESP; 6954 shift = sizeof (udpha_t); 6955 } 6956 6957 /* Fix IP header */ 6958 ipha->ipha_length = htons(plen - shift); 6959 ipha->ipha_hdr_checksum = 0; 6960 6961 orptr = mp->b_rptr; 6962 mp->b_rptr += shift; 6963 6964 if (*spi == 0) { 6965 ASSERT((uint8_t *)ipha == orptr); 6966 udpha = (udpha_t *)(orptr + iph_len); 6967 udpha->uha_length = htons(plen - shift - iph_len); 6968 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 6969 udp_pkt = B_TRUE; 6970 } else { 6971 udp_pkt = B_FALSE; 6972 } 6973 ovbcopy(orptr, orptr + shift, iph_len); 6974 if (!udp_pkt) /* Punt up for ESP processing. */ { 6975 ipha = (ipha_t *)(orptr + shift); 6976 6977 free_ire = (ire == NULL); 6978 if (free_ire) { 6979 /* Re-acquire ire. */ 6980 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 6981 ipss->ipsec_netstack->netstack_ip); 6982 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 6983 if (ire != NULL) 6984 ire_refrele(ire); 6985 /* 6986 * Do a regular freemsg(), as this is an IP 6987 * error (no local route) not an IPsec one. 6988 */ 6989 freemsg(mp); 6990 } 6991 } 6992 6993 ip_proto_input(q, mp, ipha, ire, recv_ill, B_TRUE); 6994 if (free_ire) 6995 ire_refrele(ire); 6996 } 6997 6998 return (udp_pkt); 6999 } 7000 7001 /* 7002 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 7003 * We are responsible for disposing of mp, such as by freemsg() or putnext() 7004 * Caller is responsible for dropping references to the conn, and freeing 7005 * first_mp. 7006 * 7007 * IPQoS Notes 7008 * Before sending it to the client, invoke IPPF processing. Policy processing 7009 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 7010 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 7011 * ip_wput_local, ip_policy is false. 7012 */ 7013 static void 7014 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 7015 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 7016 boolean_t ip_policy) 7017 { 7018 boolean_t mctl_present = (first_mp != NULL); 7019 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 7020 uint32_t ill_index; 7021 ip_stack_t *ipst = recv_ill->ill_ipst; 7022 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 7023 7024 ASSERT(ill != NULL); 7025 7026 if (mctl_present) 7027 first_mp->b_cont = mp; 7028 else 7029 first_mp = mp; 7030 7031 if (CONN_UDP_FLOWCTLD(connp)) { 7032 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7033 freemsg(first_mp); 7034 return; 7035 } 7036 7037 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7038 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7039 NULL, mctl_present); 7040 if (first_mp == NULL) { 7041 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7042 return; /* Freed by ipsec_check_inbound_policy(). */ 7043 } 7044 } 7045 if (mctl_present) 7046 freeb(first_mp); 7047 7048 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7049 if (connp->conn_udp->udp_nat_t_endpoint) { 7050 if (mctl_present) { 7051 /* mctl_present *shouldn't* happen. */ 7052 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7053 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7054 &ipss->ipsec_dropper); 7055 return; 7056 } 7057 7058 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7059 return; 7060 } 7061 7062 /* Handle options. */ 7063 if (connp->conn_recvif) 7064 in_flags = IPF_RECVIF; 7065 /* 7066 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7067 * passed to ip_add_info is based on IP version of connp. 7068 */ 7069 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7070 if (connp->conn_af_isv6) { 7071 /* 7072 * V6 only needs index 7073 */ 7074 in_flags |= IPF_RECVIF; 7075 } else { 7076 /* 7077 * V4 needs index + matching address. 7078 */ 7079 in_flags |= IPF_RECVADDR; 7080 } 7081 } 7082 7083 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7084 in_flags |= IPF_RECVSLLA; 7085 7086 /* 7087 * Initiate IPPF processing here, if needed. Note first_mp won't be 7088 * freed if the packet is dropped. The caller will do so. 7089 */ 7090 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7091 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7092 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7093 if (mp == NULL) { 7094 return; 7095 } 7096 } 7097 if ((in_flags != 0) && 7098 (mp->b_datap->db_type != M_CTL)) { 7099 /* 7100 * The actual data will be contained in b_cont 7101 * upon successful return of the following call 7102 * else original mblk is returned 7103 */ 7104 ASSERT(recv_ill != NULL); 7105 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7106 ipst); 7107 } 7108 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7109 /* Send it upstream */ 7110 (connp->conn_recv)(connp, mp, NULL); 7111 } 7112 7113 /* 7114 * Fanout for UDP packets. 7115 * The caller puts <fport, lport> in the ports parameter. 7116 * 7117 * If SO_REUSEADDR is set all multicast and broadcast packets 7118 * will be delivered to all streams bound to the same port. 7119 * 7120 * Zones notes: 7121 * Multicast and broadcast packets will be distributed to streams in all zones. 7122 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7123 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7124 * packets. To maintain this behavior with multiple zones, the conns are grouped 7125 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7126 * each zone. If unset, all the following conns in the same zone are skipped. 7127 */ 7128 static void 7129 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7130 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7131 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7132 { 7133 uint32_t dstport, srcport; 7134 ipaddr_t dst; 7135 mblk_t *first_mp; 7136 boolean_t secure; 7137 in6_addr_t v6src; 7138 conn_t *connp; 7139 connf_t *connfp; 7140 conn_t *first_connp; 7141 conn_t *next_connp; 7142 mblk_t *mp1, *first_mp1; 7143 ipaddr_t src; 7144 zoneid_t last_zoneid; 7145 boolean_t reuseaddr; 7146 boolean_t shared_addr; 7147 ip_stack_t *ipst; 7148 7149 ASSERT(recv_ill != NULL); 7150 ipst = recv_ill->ill_ipst; 7151 7152 first_mp = mp; 7153 if (mctl_present) { 7154 mp = first_mp->b_cont; 7155 first_mp->b_cont = NULL; 7156 secure = ipsec_in_is_secure(first_mp); 7157 ASSERT(mp != NULL); 7158 } else { 7159 first_mp = NULL; 7160 secure = B_FALSE; 7161 } 7162 7163 /* Extract ports in net byte order */ 7164 dstport = htons(ntohl(ports) & 0xFFFF); 7165 srcport = htons(ntohl(ports) >> 16); 7166 dst = ipha->ipha_dst; 7167 src = ipha->ipha_src; 7168 7169 shared_addr = (zoneid == ALL_ZONES); 7170 if (shared_addr) { 7171 /* 7172 * No need to handle exclusive-stack zones since ALL_ZONES 7173 * only applies to the shared stack. 7174 */ 7175 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7176 if (zoneid == ALL_ZONES) 7177 zoneid = tsol_packet_to_zoneid(mp); 7178 } 7179 7180 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7181 mutex_enter(&connfp->connf_lock); 7182 connp = connfp->connf_head; 7183 if (!broadcast && !CLASSD(dst)) { 7184 /* 7185 * Not broadcast or multicast. Send to the one (first) 7186 * client we find. No need to check conn_wantpacket() 7187 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7188 * IPv4 unicast packets. 7189 */ 7190 while ((connp != NULL) && 7191 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7192 !IPCL_ZONE_MATCH(connp, zoneid))) { 7193 connp = connp->conn_next; 7194 } 7195 7196 if (connp == NULL || connp->conn_upq == NULL) 7197 goto notfound; 7198 7199 if (is_system_labeled() && 7200 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7201 connp)) 7202 goto notfound; 7203 7204 CONN_INC_REF(connp); 7205 mutex_exit(&connfp->connf_lock); 7206 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7207 flags, recv_ill, ip_policy); 7208 IP_STAT(ipst, ip_udp_fannorm); 7209 CONN_DEC_REF(connp); 7210 return; 7211 } 7212 7213 /* 7214 * Broadcast and multicast case 7215 * 7216 * Need to check conn_wantpacket(). 7217 * If SO_REUSEADDR has been set on the first we send the 7218 * packet to all clients that have joined the group and 7219 * match the port. 7220 */ 7221 7222 while (connp != NULL) { 7223 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7224 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7225 (!is_system_labeled() || 7226 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7227 connp))) 7228 break; 7229 connp = connp->conn_next; 7230 } 7231 7232 if (connp == NULL || connp->conn_upq == NULL) 7233 goto notfound; 7234 7235 first_connp = connp; 7236 /* 7237 * When SO_REUSEADDR is not set, send the packet only to the first 7238 * matching connection in its zone by keeping track of the zoneid. 7239 */ 7240 reuseaddr = first_connp->conn_reuseaddr; 7241 last_zoneid = first_connp->conn_zoneid; 7242 7243 CONN_INC_REF(connp); 7244 connp = connp->conn_next; 7245 for (;;) { 7246 while (connp != NULL) { 7247 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7248 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7249 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7250 (!is_system_labeled() || 7251 tsol_receive_local(mp, &dst, IPV4_VERSION, 7252 shared_addr, connp))) 7253 break; 7254 connp = connp->conn_next; 7255 } 7256 /* 7257 * Just copy the data part alone. The mctl part is 7258 * needed just for verifying policy and it is never 7259 * sent up. 7260 */ 7261 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7262 ((mp1 = copymsg(mp)) == NULL))) { 7263 /* 7264 * No more interested clients or memory 7265 * allocation failed 7266 */ 7267 connp = first_connp; 7268 break; 7269 } 7270 if (connp->conn_zoneid != last_zoneid) { 7271 /* 7272 * Update the zoneid so that the packet isn't sent to 7273 * any more conns in the same zone unless SO_REUSEADDR 7274 * is set. 7275 */ 7276 reuseaddr = connp->conn_reuseaddr; 7277 last_zoneid = connp->conn_zoneid; 7278 } 7279 if (first_mp != NULL) { 7280 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7281 ipsec_info_type == IPSEC_IN); 7282 first_mp1 = ipsec_in_tag(first_mp, NULL, 7283 ipst->ips_netstack); 7284 if (first_mp1 == NULL) { 7285 freemsg(mp1); 7286 connp = first_connp; 7287 break; 7288 } 7289 } else { 7290 first_mp1 = NULL; 7291 } 7292 CONN_INC_REF(connp); 7293 mutex_exit(&connfp->connf_lock); 7294 /* 7295 * IPQoS notes: We don't send the packet for policy 7296 * processing here, will do it for the last one (below). 7297 * i.e. we do it per-packet now, but if we do policy 7298 * processing per-conn, then we would need to do it 7299 * here too. 7300 */ 7301 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7302 ipha, flags, recv_ill, B_FALSE); 7303 mutex_enter(&connfp->connf_lock); 7304 /* Follow the next pointer before releasing the conn. */ 7305 next_connp = connp->conn_next; 7306 IP_STAT(ipst, ip_udp_fanmb); 7307 CONN_DEC_REF(connp); 7308 connp = next_connp; 7309 } 7310 7311 /* Last one. Send it upstream. */ 7312 mutex_exit(&connfp->connf_lock); 7313 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7314 recv_ill, ip_policy); 7315 IP_STAT(ipst, ip_udp_fanmb); 7316 CONN_DEC_REF(connp); 7317 return; 7318 7319 notfound: 7320 7321 mutex_exit(&connfp->connf_lock); 7322 IP_STAT(ipst, ip_udp_fanothers); 7323 /* 7324 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7325 * have already been matched above, since they live in the IPv4 7326 * fanout tables. This implies we only need to 7327 * check for IPv6 in6addr_any endpoints here. 7328 * Thus we compare using ipv6_all_zeros instead of the destination 7329 * address, except for the multicast group membership lookup which 7330 * uses the IPv4 destination. 7331 */ 7332 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7333 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7334 mutex_enter(&connfp->connf_lock); 7335 connp = connfp->connf_head; 7336 if (!broadcast && !CLASSD(dst)) { 7337 while (connp != NULL) { 7338 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7339 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7340 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7341 !connp->conn_ipv6_v6only) 7342 break; 7343 connp = connp->conn_next; 7344 } 7345 7346 if (connp != NULL && is_system_labeled() && 7347 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7348 connp)) 7349 connp = NULL; 7350 7351 if (connp == NULL || connp->conn_upq == NULL) { 7352 /* 7353 * No one bound to this port. Is 7354 * there a client that wants all 7355 * unclaimed datagrams? 7356 */ 7357 mutex_exit(&connfp->connf_lock); 7358 7359 if (mctl_present) 7360 first_mp->b_cont = mp; 7361 else 7362 first_mp = mp; 7363 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7364 connf_head != NULL) { 7365 ip_fanout_proto(q, first_mp, ill, ipha, 7366 flags | IP_FF_RAWIP, mctl_present, 7367 ip_policy, recv_ill, zoneid); 7368 } else { 7369 if (ip_fanout_send_icmp(q, first_mp, flags, 7370 ICMP_DEST_UNREACHABLE, 7371 ICMP_PORT_UNREACHABLE, 7372 mctl_present, zoneid, ipst)) { 7373 BUMP_MIB(ill->ill_ip_mib, 7374 udpIfStatsNoPorts); 7375 } 7376 } 7377 return; 7378 } 7379 7380 CONN_INC_REF(connp); 7381 mutex_exit(&connfp->connf_lock); 7382 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7383 flags, recv_ill, ip_policy); 7384 CONN_DEC_REF(connp); 7385 return; 7386 } 7387 /* 7388 * IPv4 multicast packet being delivered to an AF_INET6 7389 * in6addr_any endpoint. 7390 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7391 * and not conn_wantpacket_v6() since any multicast membership is 7392 * for an IPv4-mapped multicast address. 7393 * The packet is sent to all clients in all zones that have joined the 7394 * group and match the port. 7395 */ 7396 while (connp != NULL) { 7397 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7398 srcport, v6src) && 7399 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7400 (!is_system_labeled() || 7401 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7402 connp))) 7403 break; 7404 connp = connp->conn_next; 7405 } 7406 7407 if (connp == NULL || connp->conn_upq == NULL) { 7408 /* 7409 * No one bound to this port. Is 7410 * there a client that wants all 7411 * unclaimed datagrams? 7412 */ 7413 mutex_exit(&connfp->connf_lock); 7414 7415 if (mctl_present) 7416 first_mp->b_cont = mp; 7417 else 7418 first_mp = mp; 7419 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7420 NULL) { 7421 ip_fanout_proto(q, first_mp, ill, ipha, 7422 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7423 recv_ill, zoneid); 7424 } else { 7425 /* 7426 * We used to attempt to send an icmp error here, but 7427 * since this is known to be a multicast packet 7428 * and we don't send icmp errors in response to 7429 * multicast, just drop the packet and give up sooner. 7430 */ 7431 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7432 freemsg(first_mp); 7433 } 7434 return; 7435 } 7436 7437 first_connp = connp; 7438 7439 CONN_INC_REF(connp); 7440 connp = connp->conn_next; 7441 for (;;) { 7442 while (connp != NULL) { 7443 if (IPCL_UDP_MATCH_V6(connp, dstport, 7444 ipv6_all_zeros, srcport, v6src) && 7445 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7446 (!is_system_labeled() || 7447 tsol_receive_local(mp, &dst, IPV4_VERSION, 7448 shared_addr, connp))) 7449 break; 7450 connp = connp->conn_next; 7451 } 7452 /* 7453 * Just copy the data part alone. The mctl part is 7454 * needed just for verifying policy and it is never 7455 * sent up. 7456 */ 7457 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7458 ((mp1 = copymsg(mp)) == NULL))) { 7459 /* 7460 * No more intested clients or memory 7461 * allocation failed 7462 */ 7463 connp = first_connp; 7464 break; 7465 } 7466 if (first_mp != NULL) { 7467 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7468 ipsec_info_type == IPSEC_IN); 7469 first_mp1 = ipsec_in_tag(first_mp, NULL, 7470 ipst->ips_netstack); 7471 if (first_mp1 == NULL) { 7472 freemsg(mp1); 7473 connp = first_connp; 7474 break; 7475 } 7476 } else { 7477 first_mp1 = NULL; 7478 } 7479 CONN_INC_REF(connp); 7480 mutex_exit(&connfp->connf_lock); 7481 /* 7482 * IPQoS notes: We don't send the packet for policy 7483 * processing here, will do it for the last one (below). 7484 * i.e. we do it per-packet now, but if we do policy 7485 * processing per-conn, then we would need to do it 7486 * here too. 7487 */ 7488 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7489 ipha, flags, recv_ill, B_FALSE); 7490 mutex_enter(&connfp->connf_lock); 7491 /* Follow the next pointer before releasing the conn. */ 7492 next_connp = connp->conn_next; 7493 CONN_DEC_REF(connp); 7494 connp = next_connp; 7495 } 7496 7497 /* Last one. Send it upstream. */ 7498 mutex_exit(&connfp->connf_lock); 7499 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7500 recv_ill, ip_policy); 7501 CONN_DEC_REF(connp); 7502 } 7503 7504 /* 7505 * Complete the ip_wput header so that it 7506 * is possible to generate ICMP 7507 * errors. 7508 */ 7509 int 7510 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7511 { 7512 ire_t *ire; 7513 7514 if (ipha->ipha_src == INADDR_ANY) { 7515 ire = ire_lookup_local(zoneid, ipst); 7516 if (ire == NULL) { 7517 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7518 return (1); 7519 } 7520 ipha->ipha_src = ire->ire_addr; 7521 ire_refrele(ire); 7522 } 7523 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7524 ipha->ipha_hdr_checksum = 0; 7525 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7526 return (0); 7527 } 7528 7529 /* 7530 * Nobody should be sending 7531 * packets up this stream 7532 */ 7533 static void 7534 ip_lrput(queue_t *q, mblk_t *mp) 7535 { 7536 mblk_t *mp1; 7537 7538 switch (mp->b_datap->db_type) { 7539 case M_FLUSH: 7540 /* Turn around */ 7541 if (*mp->b_rptr & FLUSHW) { 7542 *mp->b_rptr &= ~FLUSHR; 7543 qreply(q, mp); 7544 return; 7545 } 7546 break; 7547 } 7548 /* Could receive messages that passed through ar_rput */ 7549 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7550 mp1->b_prev = mp1->b_next = NULL; 7551 freemsg(mp); 7552 } 7553 7554 /* Nobody should be sending packets down this stream */ 7555 /* ARGSUSED */ 7556 void 7557 ip_lwput(queue_t *q, mblk_t *mp) 7558 { 7559 freemsg(mp); 7560 } 7561 7562 /* 7563 * Move the first hop in any source route to ipha_dst and remove that part of 7564 * the source route. Called by other protocols. Errors in option formatting 7565 * are ignored - will be handled by ip_wput_options Return the final 7566 * destination (either ipha_dst or the last entry in a source route.) 7567 */ 7568 ipaddr_t 7569 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7570 { 7571 ipoptp_t opts; 7572 uchar_t *opt; 7573 uint8_t optval; 7574 uint8_t optlen; 7575 ipaddr_t dst; 7576 int i; 7577 ire_t *ire; 7578 ip_stack_t *ipst = ns->netstack_ip; 7579 7580 ip2dbg(("ip_massage_options\n")); 7581 dst = ipha->ipha_dst; 7582 for (optval = ipoptp_first(&opts, ipha); 7583 optval != IPOPT_EOL; 7584 optval = ipoptp_next(&opts)) { 7585 opt = opts.ipoptp_cur; 7586 switch (optval) { 7587 uint8_t off; 7588 case IPOPT_SSRR: 7589 case IPOPT_LSRR: 7590 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7591 ip1dbg(("ip_massage_options: bad src route\n")); 7592 break; 7593 } 7594 optlen = opts.ipoptp_len; 7595 off = opt[IPOPT_OFFSET]; 7596 off--; 7597 redo_srr: 7598 if (optlen < IP_ADDR_LEN || 7599 off > optlen - IP_ADDR_LEN) { 7600 /* End of source route */ 7601 ip1dbg(("ip_massage_options: end of SR\n")); 7602 break; 7603 } 7604 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7605 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7606 ntohl(dst))); 7607 /* 7608 * Check if our address is present more than 7609 * once as consecutive hops in source route. 7610 * XXX verify per-interface ip_forwarding 7611 * for source route? 7612 */ 7613 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7614 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7615 if (ire != NULL) { 7616 ire_refrele(ire); 7617 off += IP_ADDR_LEN; 7618 goto redo_srr; 7619 } 7620 if (dst == htonl(INADDR_LOOPBACK)) { 7621 ip1dbg(("ip_massage_options: loopback addr in " 7622 "source route!\n")); 7623 break; 7624 } 7625 /* 7626 * Update ipha_dst to be the first hop and remove the 7627 * first hop from the source route (by overwriting 7628 * part of the option with NOP options). 7629 */ 7630 ipha->ipha_dst = dst; 7631 /* Put the last entry in dst */ 7632 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7633 3; 7634 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7635 7636 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7637 ntohl(dst))); 7638 /* Move down and overwrite */ 7639 opt[IP_ADDR_LEN] = opt[0]; 7640 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7641 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7642 for (i = 0; i < IP_ADDR_LEN; i++) 7643 opt[i] = IPOPT_NOP; 7644 break; 7645 } 7646 } 7647 return (dst); 7648 } 7649 7650 /* 7651 * Return the network mask 7652 * associated with the specified address. 7653 */ 7654 ipaddr_t 7655 ip_net_mask(ipaddr_t addr) 7656 { 7657 uchar_t *up = (uchar_t *)&addr; 7658 ipaddr_t mask = 0; 7659 uchar_t *maskp = (uchar_t *)&mask; 7660 7661 #if defined(__i386) || defined(__amd64) 7662 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7663 #endif 7664 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7665 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7666 #endif 7667 if (CLASSD(addr)) { 7668 maskp[0] = 0xF0; 7669 return (mask); 7670 } 7671 7672 /* We assume Class E default netmask to be 32 */ 7673 if (CLASSE(addr)) 7674 return (0xffffffffU); 7675 7676 if (addr == 0) 7677 return (0); 7678 maskp[0] = 0xFF; 7679 if ((up[0] & 0x80) == 0) 7680 return (mask); 7681 7682 maskp[1] = 0xFF; 7683 if ((up[0] & 0xC0) == 0x80) 7684 return (mask); 7685 7686 maskp[2] = 0xFF; 7687 if ((up[0] & 0xE0) == 0xC0) 7688 return (mask); 7689 7690 /* Otherwise return no mask */ 7691 return ((ipaddr_t)0); 7692 } 7693 7694 /* 7695 * Select an ill for the packet by considering load spreading across 7696 * a different ill in the group if dst_ill is part of some group. 7697 */ 7698 ill_t * 7699 ip_newroute_get_dst_ill(ill_t *dst_ill) 7700 { 7701 ill_t *ill; 7702 7703 /* 7704 * We schedule irrespective of whether the source address is 7705 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7706 */ 7707 ill = illgrp_scheduler(dst_ill); 7708 if (ill == NULL) 7709 return (NULL); 7710 7711 /* 7712 * For groups with names ip_sioctl_groupname ensures that all 7713 * ills are of same type. For groups without names, ifgrp_insert 7714 * ensures this. 7715 */ 7716 ASSERT(dst_ill->ill_type == ill->ill_type); 7717 7718 return (ill); 7719 } 7720 7721 /* 7722 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7723 */ 7724 ill_t * 7725 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7726 ip_stack_t *ipst) 7727 { 7728 ill_t *ret_ill; 7729 7730 ASSERT(ifindex != 0); 7731 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7732 ipst); 7733 if (ret_ill == NULL || 7734 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7735 if (isv6) { 7736 if (ill != NULL) { 7737 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7738 } else { 7739 BUMP_MIB(&ipst->ips_ip6_mib, 7740 ipIfStatsOutDiscards); 7741 } 7742 ip1dbg(("ip_grab_attach_ill (IPv6): " 7743 "bad ifindex %d.\n", ifindex)); 7744 } else { 7745 if (ill != NULL) { 7746 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7747 } else { 7748 BUMP_MIB(&ipst->ips_ip_mib, 7749 ipIfStatsOutDiscards); 7750 } 7751 ip1dbg(("ip_grab_attach_ill (IPv4): " 7752 "bad ifindex %d.\n", ifindex)); 7753 } 7754 if (ret_ill != NULL) 7755 ill_refrele(ret_ill); 7756 freemsg(first_mp); 7757 return (NULL); 7758 } 7759 7760 return (ret_ill); 7761 } 7762 7763 /* 7764 * IPv4 - 7765 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7766 * out a packet to a destination address for which we do not have specific 7767 * (or sufficient) routing information. 7768 * 7769 * NOTE : These are the scopes of some of the variables that point at IRE, 7770 * which needs to be followed while making any future modifications 7771 * to avoid memory leaks. 7772 * 7773 * - ire and sire are the entries looked up initially by 7774 * ire_ftable_lookup. 7775 * - ipif_ire is used to hold the interface ire associated with 7776 * the new cache ire. But it's scope is limited, so we always REFRELE 7777 * it before branching out to error paths. 7778 * - save_ire is initialized before ire_create, so that ire returned 7779 * by ire_create will not over-write the ire. We REFRELE save_ire 7780 * before breaking out of the switch. 7781 * 7782 * Thus on failures, we have to REFRELE only ire and sire, if they 7783 * are not NULL. 7784 */ 7785 void 7786 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7787 zoneid_t zoneid, ip_stack_t *ipst) 7788 { 7789 areq_t *areq; 7790 ipaddr_t gw = 0; 7791 ire_t *ire = NULL; 7792 mblk_t *res_mp; 7793 ipaddr_t *addrp; 7794 ipaddr_t nexthop_addr; 7795 ipif_t *src_ipif = NULL; 7796 ill_t *dst_ill = NULL; 7797 ipha_t *ipha; 7798 ire_t *sire = NULL; 7799 mblk_t *first_mp; 7800 ire_t *save_ire; 7801 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7802 ushort_t ire_marks = 0; 7803 boolean_t mctl_present; 7804 ipsec_out_t *io; 7805 mblk_t *saved_mp; 7806 ire_t *first_sire = NULL; 7807 mblk_t *copy_mp = NULL; 7808 mblk_t *xmit_mp = NULL; 7809 ipaddr_t save_dst; 7810 uint32_t multirt_flags = 7811 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7812 boolean_t multirt_is_resolvable; 7813 boolean_t multirt_resolve_next; 7814 boolean_t unspec_src; 7815 boolean_t do_attach_ill = B_FALSE; 7816 boolean_t ip_nexthop = B_FALSE; 7817 tsol_ire_gw_secattr_t *attrp = NULL; 7818 tsol_gcgrp_t *gcgrp = NULL; 7819 tsol_gcgrp_addr_t ga; 7820 7821 if (ip_debug > 2) { 7822 /* ip1dbg */ 7823 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7824 } 7825 7826 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7827 if (mctl_present) { 7828 io = (ipsec_out_t *)first_mp->b_rptr; 7829 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7830 ASSERT(zoneid == io->ipsec_out_zoneid); 7831 ASSERT(zoneid != ALL_ZONES); 7832 } 7833 7834 ipha = (ipha_t *)mp->b_rptr; 7835 7836 /* All multicast lookups come through ip_newroute_ipif() */ 7837 if (CLASSD(dst)) { 7838 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7839 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7840 freemsg(first_mp); 7841 return; 7842 } 7843 7844 if (mctl_present && io->ipsec_out_attach_if) { 7845 /* ip_grab_attach_ill returns a held ill */ 7846 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7847 io->ipsec_out_ill_index, B_FALSE, ipst); 7848 7849 /* Failure case frees things for us. */ 7850 if (attach_ill == NULL) 7851 return; 7852 7853 /* 7854 * Check if we need an ire that will not be 7855 * looked up by anybody else i.e. HIDDEN. 7856 */ 7857 if (ill_is_probeonly(attach_ill)) 7858 ire_marks = IRE_MARK_HIDDEN; 7859 } 7860 if (mctl_present && io->ipsec_out_ip_nexthop) { 7861 ip_nexthop = B_TRUE; 7862 nexthop_addr = io->ipsec_out_nexthop_addr; 7863 } 7864 /* 7865 * If this IRE is created for forwarding or it is not for 7866 * traffic for congestion controlled protocols, mark it as temporary. 7867 */ 7868 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7869 ire_marks |= IRE_MARK_TEMPORARY; 7870 7871 /* 7872 * Get what we can from ire_ftable_lookup which will follow an IRE 7873 * chain until it gets the most specific information available. 7874 * For example, we know that there is no IRE_CACHE for this dest, 7875 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7876 * ire_ftable_lookup will look up the gateway, etc. 7877 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7878 * to the destination, of equal netmask length in the forward table, 7879 * will be recursively explored. If no information is available 7880 * for the final gateway of that route, we force the returned ire 7881 * to be equal to sire using MATCH_IRE_PARENT. 7882 * At least, in this case we have a starting point (in the buckets) 7883 * to look for other routes to the destination in the forward table. 7884 * This is actually used only for multirouting, where a list 7885 * of routes has to be processed in sequence. 7886 * 7887 * In the process of coming up with the most specific information, 7888 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7889 * for the gateway (i.e., one for which the ire_nce->nce_state is 7890 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7891 * Two caveats when handling incomplete ire's in ip_newroute: 7892 * - we should be careful when accessing its ire_nce (specifically 7893 * the nce_res_mp) ast it might change underneath our feet, and, 7894 * - not all legacy code path callers are prepared to handle 7895 * incomplete ire's, so we should not create/add incomplete 7896 * ire_cache entries here. (See discussion about temporary solution 7897 * further below). 7898 * 7899 * In order to minimize packet dropping, and to preserve existing 7900 * behavior, we treat this case as if there were no IRE_CACHE for the 7901 * gateway, and instead use the IF_RESOLVER ire to send out 7902 * another request to ARP (this is achieved by passing the 7903 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7904 * arp response comes back in ip_wput_nondata, we will create 7905 * a per-dst ire_cache that has an ND_COMPLETE ire. 7906 * 7907 * Note that this is a temporary solution; the correct solution is 7908 * to create an incomplete per-dst ire_cache entry, and send the 7909 * packet out when the gw's nce is resolved. In order to achieve this, 7910 * all packet processing must have been completed prior to calling 7911 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7912 * to be modified to accomodate this solution. 7913 */ 7914 if (ip_nexthop) { 7915 /* 7916 * The first time we come here, we look for an IRE_INTERFACE 7917 * entry for the specified nexthop, set the dst to be the 7918 * nexthop address and create an IRE_CACHE entry for the 7919 * nexthop. The next time around, we are able to find an 7920 * IRE_CACHE entry for the nexthop, set the gateway to be the 7921 * nexthop address and create an IRE_CACHE entry for the 7922 * destination address via the specified nexthop. 7923 */ 7924 ire = ire_cache_lookup(nexthop_addr, zoneid, 7925 MBLK_GETLABEL(mp), ipst); 7926 if (ire != NULL) { 7927 gw = nexthop_addr; 7928 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7929 } else { 7930 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7931 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7932 MBLK_GETLABEL(mp), 7933 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7934 ipst); 7935 if (ire != NULL) { 7936 dst = nexthop_addr; 7937 } 7938 } 7939 } else if (attach_ill == NULL) { 7940 ire = ire_ftable_lookup(dst, 0, 0, 0, 7941 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7942 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7943 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7944 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7945 ipst); 7946 } else { 7947 /* 7948 * attach_ill is set only for communicating with 7949 * on-link hosts. So, don't look for DEFAULT. 7950 */ 7951 ipif_t *attach_ipif; 7952 7953 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7954 if (attach_ipif == NULL) { 7955 ill_refrele(attach_ill); 7956 goto icmp_err_ret; 7957 } 7958 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7959 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7960 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7961 MATCH_IRE_SECATTR, ipst); 7962 ipif_refrele(attach_ipif); 7963 } 7964 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7965 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7966 7967 /* 7968 * This loop is run only once in most cases. 7969 * We loop to resolve further routes only when the destination 7970 * can be reached through multiple RTF_MULTIRT-flagged ires. 7971 */ 7972 do { 7973 /* Clear the previous iteration's values */ 7974 if (src_ipif != NULL) { 7975 ipif_refrele(src_ipif); 7976 src_ipif = NULL; 7977 } 7978 if (dst_ill != NULL) { 7979 ill_refrele(dst_ill); 7980 dst_ill = NULL; 7981 } 7982 7983 multirt_resolve_next = B_FALSE; 7984 /* 7985 * We check if packets have to be multirouted. 7986 * In this case, given the current <ire, sire> couple, 7987 * we look for the next suitable <ire, sire>. 7988 * This check is done in ire_multirt_lookup(), 7989 * which applies various criteria to find the next route 7990 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7991 * unchanged if it detects it has not been tried yet. 7992 */ 7993 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7994 ip3dbg(("ip_newroute: starting next_resolution " 7995 "with first_mp %p, tag %d\n", 7996 (void *)first_mp, 7997 MULTIRT_DEBUG_TAGGED(first_mp))); 7998 7999 ASSERT(sire != NULL); 8000 multirt_is_resolvable = 8001 ire_multirt_lookup(&ire, &sire, multirt_flags, 8002 MBLK_GETLABEL(mp), ipst); 8003 8004 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8005 "ire %p, sire %p\n", 8006 multirt_is_resolvable, 8007 (void *)ire, (void *)sire)); 8008 8009 if (!multirt_is_resolvable) { 8010 /* 8011 * No more multirt route to resolve; give up 8012 * (all routes resolved or no more 8013 * resolvable routes). 8014 */ 8015 if (ire != NULL) { 8016 ire_refrele(ire); 8017 ire = NULL; 8018 } 8019 } else { 8020 ASSERT(sire != NULL); 8021 ASSERT(ire != NULL); 8022 /* 8023 * We simply use first_sire as a flag that 8024 * indicates if a resolvable multirt route 8025 * has already been found. 8026 * If it is not the case, we may have to send 8027 * an ICMP error to report that the 8028 * destination is unreachable. 8029 * We do not IRE_REFHOLD first_sire. 8030 */ 8031 if (first_sire == NULL) { 8032 first_sire = sire; 8033 } 8034 } 8035 } 8036 if (ire == NULL) { 8037 if (ip_debug > 3) { 8038 /* ip2dbg */ 8039 pr_addr_dbg("ip_newroute: " 8040 "can't resolve %s\n", AF_INET, &dst); 8041 } 8042 ip3dbg(("ip_newroute: " 8043 "ire %p, sire %p, first_sire %p\n", 8044 (void *)ire, (void *)sire, (void *)first_sire)); 8045 8046 if (sire != NULL) { 8047 ire_refrele(sire); 8048 sire = NULL; 8049 } 8050 8051 if (first_sire != NULL) { 8052 /* 8053 * At least one multirt route has been found 8054 * in the same call to ip_newroute(); 8055 * there is no need to report an ICMP error. 8056 * first_sire was not IRE_REFHOLDed. 8057 */ 8058 MULTIRT_DEBUG_UNTAG(first_mp); 8059 freemsg(first_mp); 8060 return; 8061 } 8062 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8063 RTA_DST, ipst); 8064 if (attach_ill != NULL) 8065 ill_refrele(attach_ill); 8066 goto icmp_err_ret; 8067 } 8068 8069 /* 8070 * Verify that the returned IRE does not have either 8071 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8072 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8073 */ 8074 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8075 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8076 if (attach_ill != NULL) 8077 ill_refrele(attach_ill); 8078 goto icmp_err_ret; 8079 } 8080 /* 8081 * Increment the ire_ob_pkt_count field for ire if it is an 8082 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8083 * increment the same for the parent IRE, sire, if it is some 8084 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8085 */ 8086 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8087 UPDATE_OB_PKT_COUNT(ire); 8088 ire->ire_last_used_time = lbolt; 8089 } 8090 8091 if (sire != NULL) { 8092 gw = sire->ire_gateway_addr; 8093 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8094 IRE_INTERFACE)) == 0); 8095 UPDATE_OB_PKT_COUNT(sire); 8096 sire->ire_last_used_time = lbolt; 8097 } 8098 /* 8099 * We have a route to reach the destination. 8100 * 8101 * 1) If the interface is part of ill group, try to get a new 8102 * ill taking load spreading into account. 8103 * 8104 * 2) After selecting the ill, get a source address that 8105 * might create good inbound load spreading. 8106 * ipif_select_source does this for us. 8107 * 8108 * If the application specified the ill (ifindex), we still 8109 * load spread. Only if the packets needs to go out 8110 * specifically on a given ill e.g. binding to 8111 * IPIF_NOFAILOVER address, then we don't try to use a 8112 * different ill for load spreading. 8113 */ 8114 if (attach_ill == NULL) { 8115 /* 8116 * Don't perform outbound load spreading in the 8117 * case of an RTF_MULTIRT route, as we actually 8118 * typically want to replicate outgoing packets 8119 * through particular interfaces. 8120 */ 8121 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8122 dst_ill = ire->ire_ipif->ipif_ill; 8123 /* for uniformity */ 8124 ill_refhold(dst_ill); 8125 } else { 8126 /* 8127 * If we are here trying to create an IRE_CACHE 8128 * for an offlink destination and have the 8129 * IRE_CACHE for the next hop and the latter is 8130 * using virtual IP source address selection i.e 8131 * it's ire->ire_ipif is pointing to a virtual 8132 * network interface (vni) then 8133 * ip_newroute_get_dst_ll() will return the vni 8134 * interface as the dst_ill. Since the vni is 8135 * virtual i.e not associated with any physical 8136 * interface, it cannot be the dst_ill, hence 8137 * in such a case call ip_newroute_get_dst_ll() 8138 * with the stq_ill instead of the ire_ipif ILL. 8139 * The function returns a refheld ill. 8140 */ 8141 if ((ire->ire_type == IRE_CACHE) && 8142 IS_VNI(ire->ire_ipif->ipif_ill)) 8143 dst_ill = ip_newroute_get_dst_ill( 8144 ire->ire_stq->q_ptr); 8145 else 8146 dst_ill = ip_newroute_get_dst_ill( 8147 ire->ire_ipif->ipif_ill); 8148 } 8149 if (dst_ill == NULL) { 8150 if (ip_debug > 2) { 8151 pr_addr_dbg("ip_newroute: " 8152 "no dst ill for dst" 8153 " %s\n", AF_INET, &dst); 8154 } 8155 goto icmp_err_ret; 8156 } 8157 } else { 8158 dst_ill = ire->ire_ipif->ipif_ill; 8159 /* for uniformity */ 8160 ill_refhold(dst_ill); 8161 /* 8162 * We should have found a route matching ill as we 8163 * called ire_ftable_lookup with MATCH_IRE_ILL. 8164 * Rather than asserting, when there is a mismatch, 8165 * we just drop the packet. 8166 */ 8167 if (dst_ill != attach_ill) { 8168 ip0dbg(("ip_newroute: Packet dropped as " 8169 "IPIF_NOFAILOVER ill is %s, " 8170 "ire->ire_ipif->ipif_ill is %s\n", 8171 attach_ill->ill_name, 8172 dst_ill->ill_name)); 8173 ill_refrele(attach_ill); 8174 goto icmp_err_ret; 8175 } 8176 } 8177 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8178 if (attach_ill != NULL) { 8179 ill_refrele(attach_ill); 8180 attach_ill = NULL; 8181 do_attach_ill = B_TRUE; 8182 } 8183 ASSERT(dst_ill != NULL); 8184 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8185 8186 /* 8187 * Pick the best source address from dst_ill. 8188 * 8189 * 1) If it is part of a multipathing group, we would 8190 * like to spread the inbound packets across different 8191 * interfaces. ipif_select_source picks a random source 8192 * across the different ills in the group. 8193 * 8194 * 2) If it is not part of a multipathing group, we try 8195 * to pick the source address from the destination 8196 * route. Clustering assumes that when we have multiple 8197 * prefixes hosted on an interface, the prefix of the 8198 * source address matches the prefix of the destination 8199 * route. We do this only if the address is not 8200 * DEPRECATED. 8201 * 8202 * 3) If the conn is in a different zone than the ire, we 8203 * need to pick a source address from the right zone. 8204 * 8205 * NOTE : If we hit case (1) above, the prefix of the source 8206 * address picked may not match the prefix of the 8207 * destination routes prefix as ipif_select_source 8208 * does not look at "dst" while picking a source 8209 * address. 8210 * If we want the same behavior as (2), we will need 8211 * to change the behavior of ipif_select_source. 8212 */ 8213 ASSERT(src_ipif == NULL); 8214 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8215 /* 8216 * The RTF_SETSRC flag is set in the parent ire (sire). 8217 * Check that the ipif matching the requested source 8218 * address still exists. 8219 */ 8220 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8221 zoneid, NULL, NULL, NULL, NULL, ipst); 8222 } 8223 8224 unspec_src = (connp != NULL && connp->conn_unspec_src); 8225 8226 if (src_ipif == NULL && 8227 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8228 ire_marks |= IRE_MARK_USESRC_CHECK; 8229 if ((dst_ill->ill_group != NULL) || 8230 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8231 (connp != NULL && ire->ire_zoneid != zoneid && 8232 ire->ire_zoneid != ALL_ZONES) || 8233 (dst_ill->ill_usesrc_ifindex != 0)) { 8234 /* 8235 * If the destination is reachable via a 8236 * given gateway, the selected source address 8237 * should be in the same subnet as the gateway. 8238 * Otherwise, the destination is not reachable. 8239 * 8240 * If there are no interfaces on the same subnet 8241 * as the destination, ipif_select_source gives 8242 * first non-deprecated interface which might be 8243 * on a different subnet than the gateway. 8244 * This is not desirable. Hence pass the dst_ire 8245 * source address to ipif_select_source. 8246 * It is sure that the destination is reachable 8247 * with the dst_ire source address subnet. 8248 * So passing dst_ire source address to 8249 * ipif_select_source will make sure that the 8250 * selected source will be on the same subnet 8251 * as dst_ire source address. 8252 */ 8253 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8254 src_ipif = ipif_select_source(dst_ill, saddr, 8255 zoneid); 8256 if (src_ipif == NULL) { 8257 if (ip_debug > 2) { 8258 pr_addr_dbg("ip_newroute: " 8259 "no src for dst %s ", 8260 AF_INET, &dst); 8261 printf("through interface %s\n", 8262 dst_ill->ill_name); 8263 } 8264 goto icmp_err_ret; 8265 } 8266 } else { 8267 src_ipif = ire->ire_ipif; 8268 ASSERT(src_ipif != NULL); 8269 /* hold src_ipif for uniformity */ 8270 ipif_refhold(src_ipif); 8271 } 8272 } 8273 8274 /* 8275 * Assign a source address while we have the conn. 8276 * We can't have ip_wput_ire pick a source address when the 8277 * packet returns from arp since we need to look at 8278 * conn_unspec_src and conn_zoneid, and we lose the conn when 8279 * going through arp. 8280 * 8281 * NOTE : ip_newroute_v6 does not have this piece of code as 8282 * it uses ip6i to store this information. 8283 */ 8284 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8285 ipha->ipha_src = src_ipif->ipif_src_addr; 8286 8287 if (ip_debug > 3) { 8288 /* ip2dbg */ 8289 pr_addr_dbg("ip_newroute: first hop %s\n", 8290 AF_INET, &gw); 8291 } 8292 ip2dbg(("\tire type %s (%d)\n", 8293 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8294 8295 /* 8296 * The TTL of multirouted packets is bounded by the 8297 * ip_multirt_ttl ndd variable. 8298 */ 8299 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8300 /* Force TTL of multirouted packets */ 8301 if ((ipst->ips_ip_multirt_ttl > 0) && 8302 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8303 ip2dbg(("ip_newroute: forcing multirt TTL " 8304 "to %d (was %d), dst 0x%08x\n", 8305 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8306 ntohl(sire->ire_addr))); 8307 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8308 } 8309 } 8310 /* 8311 * At this point in ip_newroute(), ire is either the 8312 * IRE_CACHE of the next-hop gateway for an off-subnet 8313 * destination or an IRE_INTERFACE type that should be used 8314 * to resolve an on-subnet destination or an on-subnet 8315 * next-hop gateway. 8316 * 8317 * In the IRE_CACHE case, we have the following : 8318 * 8319 * 1) src_ipif - used for getting a source address. 8320 * 8321 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8322 * means packets using this IRE_CACHE will go out on 8323 * dst_ill. 8324 * 8325 * 3) The IRE sire will point to the prefix that is the 8326 * longest matching route for the destination. These 8327 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8328 * 8329 * The newly created IRE_CACHE entry for the off-subnet 8330 * destination is tied to both the prefix route and the 8331 * interface route used to resolve the next-hop gateway 8332 * via the ire_phandle and ire_ihandle fields, 8333 * respectively. 8334 * 8335 * In the IRE_INTERFACE case, we have the following : 8336 * 8337 * 1) src_ipif - used for getting a source address. 8338 * 8339 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8340 * means packets using the IRE_CACHE that we will build 8341 * here will go out on dst_ill. 8342 * 8343 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8344 * to be created will only be tied to the IRE_INTERFACE 8345 * that was derived from the ire_ihandle field. 8346 * 8347 * If sire is non-NULL, it means the destination is 8348 * off-link and we will first create the IRE_CACHE for the 8349 * gateway. Next time through ip_newroute, we will create 8350 * the IRE_CACHE for the final destination as described 8351 * above. 8352 * 8353 * In both cases, after the current resolution has been 8354 * completed (or possibly initialised, in the IRE_INTERFACE 8355 * case), the loop may be re-entered to attempt the resolution 8356 * of another RTF_MULTIRT route. 8357 * 8358 * When an IRE_CACHE entry for the off-subnet destination is 8359 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8360 * for further processing in emission loops. 8361 */ 8362 save_ire = ire; 8363 switch (ire->ire_type) { 8364 case IRE_CACHE: { 8365 ire_t *ipif_ire; 8366 8367 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8368 if (gw == 0) 8369 gw = ire->ire_gateway_addr; 8370 /* 8371 * We need 3 ire's to create a new cache ire for an 8372 * off-link destination from the cache ire of the 8373 * gateway. 8374 * 8375 * 1. The prefix ire 'sire' (Note that this does 8376 * not apply to the conn_nexthop_set case) 8377 * 2. The cache ire of the gateway 'ire' 8378 * 3. The interface ire 'ipif_ire' 8379 * 8380 * We have (1) and (2). We lookup (3) below. 8381 * 8382 * If there is no interface route to the gateway, 8383 * it is a race condition, where we found the cache 8384 * but the interface route has been deleted. 8385 */ 8386 if (ip_nexthop) { 8387 ipif_ire = ire_ihandle_lookup_onlink(ire); 8388 } else { 8389 ipif_ire = 8390 ire_ihandle_lookup_offlink(ire, sire); 8391 } 8392 if (ipif_ire == NULL) { 8393 ip1dbg(("ip_newroute: " 8394 "ire_ihandle_lookup_offlink failed\n")); 8395 goto icmp_err_ret; 8396 } 8397 8398 /* 8399 * Check cached gateway IRE for any security 8400 * attributes; if found, associate the gateway 8401 * credentials group to the destination IRE. 8402 */ 8403 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8404 mutex_enter(&attrp->igsa_lock); 8405 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8406 GCGRP_REFHOLD(gcgrp); 8407 mutex_exit(&attrp->igsa_lock); 8408 } 8409 8410 /* 8411 * XXX For the source of the resolver mp, 8412 * we are using the same DL_UNITDATA_REQ 8413 * (from save_ire->ire_nce->nce_res_mp) 8414 * though the save_ire is not pointing at the same ill. 8415 * This is incorrect. We need to send it up to the 8416 * resolver to get the right res_mp. For ethernets 8417 * this may be okay (ill_type == DL_ETHER). 8418 */ 8419 8420 ire = ire_create( 8421 (uchar_t *)&dst, /* dest address */ 8422 (uchar_t *)&ip_g_all_ones, /* mask */ 8423 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8424 (uchar_t *)&gw, /* gateway address */ 8425 &save_ire->ire_max_frag, 8426 save_ire->ire_nce, /* src nce */ 8427 dst_ill->ill_rq, /* recv-from queue */ 8428 dst_ill->ill_wq, /* send-to queue */ 8429 IRE_CACHE, /* IRE type */ 8430 src_ipif, 8431 (sire != NULL) ? 8432 sire->ire_mask : 0, /* Parent mask */ 8433 (sire != NULL) ? 8434 sire->ire_phandle : 0, /* Parent handle */ 8435 ipif_ire->ire_ihandle, /* Interface handle */ 8436 (sire != NULL) ? (sire->ire_flags & 8437 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8438 (sire != NULL) ? 8439 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8440 NULL, 8441 gcgrp, 8442 ipst); 8443 8444 if (ire == NULL) { 8445 if (gcgrp != NULL) { 8446 GCGRP_REFRELE(gcgrp); 8447 gcgrp = NULL; 8448 } 8449 ire_refrele(ipif_ire); 8450 ire_refrele(save_ire); 8451 break; 8452 } 8453 8454 /* reference now held by IRE */ 8455 gcgrp = NULL; 8456 8457 ire->ire_marks |= ire_marks; 8458 8459 /* 8460 * Prevent sire and ipif_ire from getting deleted. 8461 * The newly created ire is tied to both of them via 8462 * the phandle and ihandle respectively. 8463 */ 8464 if (sire != NULL) { 8465 IRB_REFHOLD(sire->ire_bucket); 8466 /* Has it been removed already ? */ 8467 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8468 IRB_REFRELE(sire->ire_bucket); 8469 ire_refrele(ipif_ire); 8470 ire_refrele(save_ire); 8471 break; 8472 } 8473 } 8474 8475 IRB_REFHOLD(ipif_ire->ire_bucket); 8476 /* Has it been removed already ? */ 8477 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8478 IRB_REFRELE(ipif_ire->ire_bucket); 8479 if (sire != NULL) 8480 IRB_REFRELE(sire->ire_bucket); 8481 ire_refrele(ipif_ire); 8482 ire_refrele(save_ire); 8483 break; 8484 } 8485 8486 xmit_mp = first_mp; 8487 /* 8488 * In the case of multirouting, a copy 8489 * of the packet is done before its sending. 8490 * The copy is used to attempt another 8491 * route resolution, in a next loop. 8492 */ 8493 if (ire->ire_flags & RTF_MULTIRT) { 8494 copy_mp = copymsg(first_mp); 8495 if (copy_mp != NULL) { 8496 xmit_mp = copy_mp; 8497 MULTIRT_DEBUG_TAG(first_mp); 8498 } 8499 } 8500 ire_add_then_send(q, ire, xmit_mp); 8501 ire_refrele(save_ire); 8502 8503 /* Assert that sire is not deleted yet. */ 8504 if (sire != NULL) { 8505 ASSERT(sire->ire_ptpn != NULL); 8506 IRB_REFRELE(sire->ire_bucket); 8507 } 8508 8509 /* Assert that ipif_ire is not deleted yet. */ 8510 ASSERT(ipif_ire->ire_ptpn != NULL); 8511 IRB_REFRELE(ipif_ire->ire_bucket); 8512 ire_refrele(ipif_ire); 8513 8514 /* 8515 * If copy_mp is not NULL, multirouting was 8516 * requested. We loop to initiate a next 8517 * route resolution attempt, starting from sire. 8518 */ 8519 if (copy_mp != NULL) { 8520 /* 8521 * Search for the next unresolved 8522 * multirt route. 8523 */ 8524 copy_mp = NULL; 8525 ipif_ire = NULL; 8526 ire = NULL; 8527 multirt_resolve_next = B_TRUE; 8528 continue; 8529 } 8530 if (sire != NULL) 8531 ire_refrele(sire); 8532 ipif_refrele(src_ipif); 8533 ill_refrele(dst_ill); 8534 return; 8535 } 8536 case IRE_IF_NORESOLVER: { 8537 8538 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8539 dst_ill->ill_resolver_mp == NULL) { 8540 ip1dbg(("ip_newroute: dst_ill %p " 8541 "for IRE_IF_NORESOLVER ire %p has " 8542 "no ill_resolver_mp\n", 8543 (void *)dst_ill, (void *)ire)); 8544 break; 8545 } 8546 8547 /* 8548 * TSol note: We are creating the ire cache for the 8549 * destination 'dst'. If 'dst' is offlink, going 8550 * through the first hop 'gw', the security attributes 8551 * of 'dst' must be set to point to the gateway 8552 * credentials of gateway 'gw'. If 'dst' is onlink, it 8553 * is possible that 'dst' is a potential gateway that is 8554 * referenced by some route that has some security 8555 * attributes. Thus in the former case, we need to do a 8556 * gcgrp_lookup of 'gw' while in the latter case we 8557 * need to do gcgrp_lookup of 'dst' itself. 8558 */ 8559 ga.ga_af = AF_INET; 8560 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8561 &ga.ga_addr); 8562 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8563 8564 ire = ire_create( 8565 (uchar_t *)&dst, /* dest address */ 8566 (uchar_t *)&ip_g_all_ones, /* mask */ 8567 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8568 (uchar_t *)&gw, /* gateway address */ 8569 &save_ire->ire_max_frag, 8570 NULL, /* no src nce */ 8571 dst_ill->ill_rq, /* recv-from queue */ 8572 dst_ill->ill_wq, /* send-to queue */ 8573 IRE_CACHE, 8574 src_ipif, 8575 save_ire->ire_mask, /* Parent mask */ 8576 (sire != NULL) ? /* Parent handle */ 8577 sire->ire_phandle : 0, 8578 save_ire->ire_ihandle, /* Interface handle */ 8579 (sire != NULL) ? sire->ire_flags & 8580 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8581 &(save_ire->ire_uinfo), 8582 NULL, 8583 gcgrp, 8584 ipst); 8585 8586 if (ire == NULL) { 8587 if (gcgrp != NULL) { 8588 GCGRP_REFRELE(gcgrp); 8589 gcgrp = NULL; 8590 } 8591 ire_refrele(save_ire); 8592 break; 8593 } 8594 8595 /* reference now held by IRE */ 8596 gcgrp = NULL; 8597 8598 ire->ire_marks |= ire_marks; 8599 8600 /* Prevent save_ire from getting deleted */ 8601 IRB_REFHOLD(save_ire->ire_bucket); 8602 /* Has it been removed already ? */ 8603 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8604 IRB_REFRELE(save_ire->ire_bucket); 8605 ire_refrele(save_ire); 8606 break; 8607 } 8608 8609 /* 8610 * In the case of multirouting, a copy 8611 * of the packet is made before it is sent. 8612 * The copy is used in the next 8613 * loop to attempt another resolution. 8614 */ 8615 xmit_mp = first_mp; 8616 if ((sire != NULL) && 8617 (sire->ire_flags & RTF_MULTIRT)) { 8618 copy_mp = copymsg(first_mp); 8619 if (copy_mp != NULL) { 8620 xmit_mp = copy_mp; 8621 MULTIRT_DEBUG_TAG(first_mp); 8622 } 8623 } 8624 ire_add_then_send(q, ire, xmit_mp); 8625 8626 /* Assert that it is not deleted yet. */ 8627 ASSERT(save_ire->ire_ptpn != NULL); 8628 IRB_REFRELE(save_ire->ire_bucket); 8629 ire_refrele(save_ire); 8630 8631 if (copy_mp != NULL) { 8632 /* 8633 * If we found a (no)resolver, we ignore any 8634 * trailing top priority IRE_CACHE in further 8635 * loops. This ensures that we do not omit any 8636 * (no)resolver. 8637 * This IRE_CACHE, if any, will be processed 8638 * by another thread entering ip_newroute(). 8639 * IRE_CACHE entries, if any, will be processed 8640 * by another thread entering ip_newroute(), 8641 * (upon resolver response, for instance). 8642 * This aims to force parallel multirt 8643 * resolutions as soon as a packet must be sent. 8644 * In the best case, after the tx of only one 8645 * packet, all reachable routes are resolved. 8646 * Otherwise, the resolution of all RTF_MULTIRT 8647 * routes would require several emissions. 8648 */ 8649 multirt_flags &= ~MULTIRT_CACHEGW; 8650 8651 /* 8652 * Search for the next unresolved multirt 8653 * route. 8654 */ 8655 copy_mp = NULL; 8656 save_ire = NULL; 8657 ire = NULL; 8658 multirt_resolve_next = B_TRUE; 8659 continue; 8660 } 8661 8662 /* 8663 * Don't need sire anymore 8664 */ 8665 if (sire != NULL) 8666 ire_refrele(sire); 8667 8668 ipif_refrele(src_ipif); 8669 ill_refrele(dst_ill); 8670 return; 8671 } 8672 case IRE_IF_RESOLVER: 8673 /* 8674 * We can't build an IRE_CACHE yet, but at least we 8675 * found a resolver that can help. 8676 */ 8677 res_mp = dst_ill->ill_resolver_mp; 8678 if (!OK_RESOLVER_MP(res_mp)) 8679 break; 8680 8681 /* 8682 * To be at this point in the code with a non-zero gw 8683 * means that dst is reachable through a gateway that 8684 * we have never resolved. By changing dst to the gw 8685 * addr we resolve the gateway first. 8686 * When ire_add_then_send() tries to put the IP dg 8687 * to dst, it will reenter ip_newroute() at which 8688 * time we will find the IRE_CACHE for the gw and 8689 * create another IRE_CACHE in case IRE_CACHE above. 8690 */ 8691 if (gw != INADDR_ANY) { 8692 /* 8693 * The source ipif that was determined above was 8694 * relative to the destination address, not the 8695 * gateway's. If src_ipif was not taken out of 8696 * the IRE_IF_RESOLVER entry, we'll need to call 8697 * ipif_select_source() again. 8698 */ 8699 if (src_ipif != ire->ire_ipif) { 8700 ipif_refrele(src_ipif); 8701 src_ipif = ipif_select_source(dst_ill, 8702 gw, zoneid); 8703 if (src_ipif == NULL) { 8704 if (ip_debug > 2) { 8705 pr_addr_dbg( 8706 "ip_newroute: no " 8707 "src for gw %s ", 8708 AF_INET, &gw); 8709 printf("through " 8710 "interface %s\n", 8711 dst_ill->ill_name); 8712 } 8713 goto icmp_err_ret; 8714 } 8715 } 8716 save_dst = dst; 8717 dst = gw; 8718 gw = INADDR_ANY; 8719 } 8720 8721 /* 8722 * We obtain a partial IRE_CACHE which we will pass 8723 * along with the resolver query. When the response 8724 * comes back it will be there ready for us to add. 8725 * The ire_max_frag is atomically set under the 8726 * irebucket lock in ire_add_v[46]. 8727 */ 8728 8729 ire = ire_create_mp( 8730 (uchar_t *)&dst, /* dest address */ 8731 (uchar_t *)&ip_g_all_ones, /* mask */ 8732 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8733 (uchar_t *)&gw, /* gateway address */ 8734 NULL, /* ire_max_frag */ 8735 NULL, /* no src nce */ 8736 dst_ill->ill_rq, /* recv-from queue */ 8737 dst_ill->ill_wq, /* send-to queue */ 8738 IRE_CACHE, 8739 src_ipif, /* Interface ipif */ 8740 save_ire->ire_mask, /* Parent mask */ 8741 0, 8742 save_ire->ire_ihandle, /* Interface handle */ 8743 0, /* flags if any */ 8744 &(save_ire->ire_uinfo), 8745 NULL, 8746 NULL, 8747 ipst); 8748 8749 if (ire == NULL) { 8750 ire_refrele(save_ire); 8751 break; 8752 } 8753 8754 if ((sire != NULL) && 8755 (sire->ire_flags & RTF_MULTIRT)) { 8756 copy_mp = copymsg(first_mp); 8757 if (copy_mp != NULL) 8758 MULTIRT_DEBUG_TAG(copy_mp); 8759 } 8760 8761 ire->ire_marks |= ire_marks; 8762 8763 /* 8764 * Construct message chain for the resolver 8765 * of the form: 8766 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8767 * Packet could contain a IPSEC_OUT mp. 8768 * 8769 * NOTE : ire will be added later when the response 8770 * comes back from ARP. If the response does not 8771 * come back, ARP frees the packet. For this reason, 8772 * we can't REFHOLD the bucket of save_ire to prevent 8773 * deletions. We may not be able to REFRELE the bucket 8774 * if the response never comes back. Thus, before 8775 * adding the ire, ire_add_v4 will make sure that the 8776 * interface route does not get deleted. This is the 8777 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8778 * where we can always prevent deletions because of 8779 * the synchronous nature of adding IRES i.e 8780 * ire_add_then_send is called after creating the IRE. 8781 */ 8782 ASSERT(ire->ire_mp != NULL); 8783 ire->ire_mp->b_cont = first_mp; 8784 /* Have saved_mp handy, for cleanup if canput fails */ 8785 saved_mp = mp; 8786 mp = copyb(res_mp); 8787 if (mp == NULL) { 8788 /* Prepare for cleanup */ 8789 mp = saved_mp; /* pkt */ 8790 ire_delete(ire); /* ire_mp */ 8791 ire = NULL; 8792 ire_refrele(save_ire); 8793 if (copy_mp != NULL) { 8794 MULTIRT_DEBUG_UNTAG(copy_mp); 8795 freemsg(copy_mp); 8796 copy_mp = NULL; 8797 } 8798 break; 8799 } 8800 linkb(mp, ire->ire_mp); 8801 8802 /* 8803 * Fill in the source and dest addrs for the resolver. 8804 * NOTE: this depends on memory layouts imposed by 8805 * ill_init(). 8806 */ 8807 areq = (areq_t *)mp->b_rptr; 8808 addrp = (ipaddr_t *)((char *)areq + 8809 areq->areq_sender_addr_offset); 8810 if (do_attach_ill) { 8811 /* 8812 * This is bind to no failover case. 8813 * arp packet also must go out on attach_ill. 8814 */ 8815 ASSERT(ipha->ipha_src != NULL); 8816 *addrp = ipha->ipha_src; 8817 } else { 8818 *addrp = save_ire->ire_src_addr; 8819 } 8820 8821 ire_refrele(save_ire); 8822 addrp = (ipaddr_t *)((char *)areq + 8823 areq->areq_target_addr_offset); 8824 *addrp = dst; 8825 /* Up to the resolver. */ 8826 if (canputnext(dst_ill->ill_rq) && 8827 !(dst_ill->ill_arp_closing)) { 8828 putnext(dst_ill->ill_rq, mp); 8829 ire = NULL; 8830 if (copy_mp != NULL) { 8831 /* 8832 * If we found a resolver, we ignore 8833 * any trailing top priority IRE_CACHE 8834 * in the further loops. This ensures 8835 * that we do not omit any resolver. 8836 * IRE_CACHE entries, if any, will be 8837 * processed next time we enter 8838 * ip_newroute(). 8839 */ 8840 multirt_flags &= ~MULTIRT_CACHEGW; 8841 /* 8842 * Search for the next unresolved 8843 * multirt route. 8844 */ 8845 first_mp = copy_mp; 8846 copy_mp = NULL; 8847 /* Prepare the next resolution loop. */ 8848 mp = first_mp; 8849 EXTRACT_PKT_MP(mp, first_mp, 8850 mctl_present); 8851 if (mctl_present) 8852 io = (ipsec_out_t *) 8853 first_mp->b_rptr; 8854 ipha = (ipha_t *)mp->b_rptr; 8855 8856 ASSERT(sire != NULL); 8857 8858 dst = save_dst; 8859 multirt_resolve_next = B_TRUE; 8860 continue; 8861 } 8862 8863 if (sire != NULL) 8864 ire_refrele(sire); 8865 8866 /* 8867 * The response will come back in ip_wput 8868 * with db_type IRE_DB_TYPE. 8869 */ 8870 ipif_refrele(src_ipif); 8871 ill_refrele(dst_ill); 8872 return; 8873 } else { 8874 /* Prepare for cleanup */ 8875 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8876 mp); 8877 mp->b_cont = NULL; 8878 freeb(mp); /* areq */ 8879 /* 8880 * this is an ire that is not added to the 8881 * cache. ire_freemblk will handle the release 8882 * of any resources associated with the ire. 8883 */ 8884 ire_delete(ire); /* ire_mp */ 8885 mp = saved_mp; /* pkt */ 8886 ire = NULL; 8887 if (copy_mp != NULL) { 8888 MULTIRT_DEBUG_UNTAG(copy_mp); 8889 freemsg(copy_mp); 8890 copy_mp = NULL; 8891 } 8892 break; 8893 } 8894 default: 8895 break; 8896 } 8897 } while (multirt_resolve_next); 8898 8899 ip1dbg(("ip_newroute: dropped\n")); 8900 /* Did this packet originate externally? */ 8901 if (mp->b_prev) { 8902 mp->b_next = NULL; 8903 mp->b_prev = NULL; 8904 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8905 } else { 8906 if (dst_ill != NULL) { 8907 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8908 } else { 8909 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8910 } 8911 } 8912 ASSERT(copy_mp == NULL); 8913 MULTIRT_DEBUG_UNTAG(first_mp); 8914 freemsg(first_mp); 8915 if (ire != NULL) 8916 ire_refrele(ire); 8917 if (sire != NULL) 8918 ire_refrele(sire); 8919 if (src_ipif != NULL) 8920 ipif_refrele(src_ipif); 8921 if (dst_ill != NULL) 8922 ill_refrele(dst_ill); 8923 return; 8924 8925 icmp_err_ret: 8926 ip1dbg(("ip_newroute: no route\n")); 8927 if (src_ipif != NULL) 8928 ipif_refrele(src_ipif); 8929 if (dst_ill != NULL) 8930 ill_refrele(dst_ill); 8931 if (sire != NULL) 8932 ire_refrele(sire); 8933 /* Did this packet originate externally? */ 8934 if (mp->b_prev) { 8935 mp->b_next = NULL; 8936 mp->b_prev = NULL; 8937 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8938 q = WR(q); 8939 } else { 8940 /* 8941 * There is no outgoing ill, so just increment the 8942 * system MIB. 8943 */ 8944 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8945 /* 8946 * Since ip_wput() isn't close to finished, we fill 8947 * in enough of the header for credible error reporting. 8948 */ 8949 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8950 /* Failed */ 8951 MULTIRT_DEBUG_UNTAG(first_mp); 8952 freemsg(first_mp); 8953 if (ire != NULL) 8954 ire_refrele(ire); 8955 return; 8956 } 8957 } 8958 8959 /* 8960 * At this point we will have ire only if RTF_BLACKHOLE 8961 * or RTF_REJECT flags are set on the IRE. It will not 8962 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8963 */ 8964 if (ire != NULL) { 8965 if (ire->ire_flags & RTF_BLACKHOLE) { 8966 ire_refrele(ire); 8967 MULTIRT_DEBUG_UNTAG(first_mp); 8968 freemsg(first_mp); 8969 return; 8970 } 8971 ire_refrele(ire); 8972 } 8973 if (ip_source_routed(ipha, ipst)) { 8974 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8975 zoneid, ipst); 8976 return; 8977 } 8978 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8979 } 8980 8981 ip_opt_info_t zero_info; 8982 8983 /* 8984 * IPv4 - 8985 * ip_newroute_ipif is called by ip_wput_multicast and 8986 * ip_rput_forward_multicast whenever we need to send 8987 * out a packet to a destination address for which we do not have specific 8988 * routing information. It is used when the packet will be sent out 8989 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8990 * socket option is set or icmp error message wants to go out on a particular 8991 * interface for a unicast packet. 8992 * 8993 * In most cases, the destination address is resolved thanks to the ipif 8994 * intrinsic resolver. However, there are some cases where the call to 8995 * ip_newroute_ipif must take into account the potential presence of 8996 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8997 * that uses the interface. This is specified through flags, 8998 * which can be a combination of: 8999 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 9000 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9001 * and flags. Additionally, the packet source address has to be set to 9002 * the specified address. The caller is thus expected to set this flag 9003 * if the packet has no specific source address yet. 9004 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9005 * flag, the resulting ire will inherit the flag. All unresolved routes 9006 * to the destination must be explored in the same call to 9007 * ip_newroute_ipif(). 9008 */ 9009 static void 9010 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9011 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9012 { 9013 areq_t *areq; 9014 ire_t *ire = NULL; 9015 mblk_t *res_mp; 9016 ipaddr_t *addrp; 9017 mblk_t *first_mp; 9018 ire_t *save_ire = NULL; 9019 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 9020 ipif_t *src_ipif = NULL; 9021 ushort_t ire_marks = 0; 9022 ill_t *dst_ill = NULL; 9023 boolean_t mctl_present; 9024 ipsec_out_t *io; 9025 ipha_t *ipha; 9026 int ihandle = 0; 9027 mblk_t *saved_mp; 9028 ire_t *fire = NULL; 9029 mblk_t *copy_mp = NULL; 9030 boolean_t multirt_resolve_next; 9031 boolean_t unspec_src; 9032 ipaddr_t ipha_dst; 9033 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9034 9035 /* 9036 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9037 * here for uniformity 9038 */ 9039 ipif_refhold(ipif); 9040 9041 /* 9042 * This loop is run only once in most cases. 9043 * We loop to resolve further routes only when the destination 9044 * can be reached through multiple RTF_MULTIRT-flagged ires. 9045 */ 9046 do { 9047 if (dst_ill != NULL) { 9048 ill_refrele(dst_ill); 9049 dst_ill = NULL; 9050 } 9051 if (src_ipif != NULL) { 9052 ipif_refrele(src_ipif); 9053 src_ipif = NULL; 9054 } 9055 multirt_resolve_next = B_FALSE; 9056 9057 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9058 ipif->ipif_ill->ill_name)); 9059 9060 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9061 if (mctl_present) 9062 io = (ipsec_out_t *)first_mp->b_rptr; 9063 9064 ipha = (ipha_t *)mp->b_rptr; 9065 9066 /* 9067 * Save the packet destination address, we may need it after 9068 * the packet has been consumed. 9069 */ 9070 ipha_dst = ipha->ipha_dst; 9071 9072 /* 9073 * If the interface is a pt-pt interface we look for an 9074 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9075 * local_address and the pt-pt destination address. Otherwise 9076 * we just match the local address. 9077 * NOTE: dst could be different than ipha->ipha_dst in case 9078 * of sending igmp multicast packets over a point-to-point 9079 * connection. 9080 * Thus we must be careful enough to check ipha_dst to be a 9081 * multicast address, otherwise it will take xmit_if path for 9082 * multicast packets resulting into kernel stack overflow by 9083 * repeated calls to ip_newroute_ipif from ire_send(). 9084 */ 9085 if (CLASSD(ipha_dst) && 9086 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9087 goto err_ret; 9088 } 9089 9090 /* 9091 * We check if an IRE_OFFSUBNET for the addr that goes through 9092 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9093 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9094 * propagate its flags to the new ire. 9095 */ 9096 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9097 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9098 ip2dbg(("ip_newroute_ipif: " 9099 "ipif_lookup_multi_ire(" 9100 "ipif %p, dst %08x) = fire %p\n", 9101 (void *)ipif, ntohl(dst), (void *)fire)); 9102 } 9103 9104 if (mctl_present && io->ipsec_out_attach_if) { 9105 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9106 io->ipsec_out_ill_index, B_FALSE, ipst); 9107 9108 /* Failure case frees things for us. */ 9109 if (attach_ill == NULL) { 9110 ipif_refrele(ipif); 9111 if (fire != NULL) 9112 ire_refrele(fire); 9113 return; 9114 } 9115 9116 /* 9117 * Check if we need an ire that will not be 9118 * looked up by anybody else i.e. HIDDEN. 9119 */ 9120 if (ill_is_probeonly(attach_ill)) { 9121 ire_marks = IRE_MARK_HIDDEN; 9122 } 9123 /* 9124 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9125 * case. 9126 */ 9127 dst_ill = ipif->ipif_ill; 9128 /* attach_ill has been refheld by ip_grab_attach_ill */ 9129 ASSERT(dst_ill == attach_ill); 9130 } else { 9131 /* 9132 * If the interface belongs to an interface group, 9133 * make sure the next possible interface in the group 9134 * is used. This encourages load spreading among 9135 * peers in an interface group. 9136 * Note: load spreading is disabled for RTF_MULTIRT 9137 * routes. 9138 */ 9139 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9140 (fire->ire_flags & RTF_MULTIRT)) { 9141 /* 9142 * Don't perform outbound load spreading 9143 * in the case of an RTF_MULTIRT issued route, 9144 * we actually typically want to replicate 9145 * outgoing packets through particular 9146 * interfaces. 9147 */ 9148 dst_ill = ipif->ipif_ill; 9149 ill_refhold(dst_ill); 9150 } else { 9151 dst_ill = ip_newroute_get_dst_ill( 9152 ipif->ipif_ill); 9153 } 9154 if (dst_ill == NULL) { 9155 if (ip_debug > 2) { 9156 pr_addr_dbg("ip_newroute_ipif: " 9157 "no dst ill for dst %s\n", 9158 AF_INET, &dst); 9159 } 9160 goto err_ret; 9161 } 9162 } 9163 9164 /* 9165 * Pick a source address preferring non-deprecated ones. 9166 * Unlike ip_newroute, we don't do any source address 9167 * selection here since for multicast it really does not help 9168 * in inbound load spreading as in the unicast case. 9169 */ 9170 if ((flags & RTF_SETSRC) && (fire != NULL) && 9171 (fire->ire_flags & RTF_SETSRC)) { 9172 /* 9173 * As requested by flags, an IRE_OFFSUBNET was looked up 9174 * on that interface. This ire has RTF_SETSRC flag, so 9175 * the source address of the packet must be changed. 9176 * Check that the ipif matching the requested source 9177 * address still exists. 9178 */ 9179 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9180 zoneid, NULL, NULL, NULL, NULL, ipst); 9181 } 9182 9183 unspec_src = (connp != NULL && connp->conn_unspec_src); 9184 9185 if (((!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9186 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9187 (connp != NULL && ipif->ipif_zoneid != zoneid && 9188 ipif->ipif_zoneid != ALL_ZONES)) && 9189 (src_ipif == NULL) && 9190 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9191 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9192 if (src_ipif == NULL) { 9193 if (ip_debug > 2) { 9194 /* ip1dbg */ 9195 pr_addr_dbg("ip_newroute_ipif: " 9196 "no src for dst %s", 9197 AF_INET, &dst); 9198 } 9199 ip1dbg((" through interface %s\n", 9200 dst_ill->ill_name)); 9201 goto err_ret; 9202 } 9203 ipif_refrele(ipif); 9204 ipif = src_ipif; 9205 ipif_refhold(ipif); 9206 } 9207 if (src_ipif == NULL) { 9208 src_ipif = ipif; 9209 ipif_refhold(src_ipif); 9210 } 9211 9212 /* 9213 * Assign a source address while we have the conn. 9214 * We can't have ip_wput_ire pick a source address when the 9215 * packet returns from arp since conn_unspec_src might be set 9216 * and we lose the conn when going through arp. 9217 */ 9218 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9219 ipha->ipha_src = src_ipif->ipif_src_addr; 9220 9221 /* 9222 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9223 * that the outgoing interface does not have an interface ire. 9224 */ 9225 if (CLASSD(ipha_dst) && (connp == NULL || 9226 connp->conn_outgoing_ill == NULL) && 9227 infop->ip_opt_ill_index == 0) { 9228 /* ipif_to_ire returns an held ire */ 9229 ire = ipif_to_ire(ipif); 9230 if (ire == NULL) 9231 goto err_ret; 9232 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9233 goto err_ret; 9234 /* 9235 * ihandle is needed when the ire is added to 9236 * cache table. 9237 */ 9238 save_ire = ire; 9239 ihandle = save_ire->ire_ihandle; 9240 9241 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9242 "flags %04x\n", 9243 (void *)ire, (void *)ipif, flags)); 9244 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9245 (fire->ire_flags & RTF_MULTIRT)) { 9246 /* 9247 * As requested by flags, an IRE_OFFSUBNET was 9248 * looked up on that interface. This ire has 9249 * RTF_MULTIRT flag, so the resolution loop will 9250 * be re-entered to resolve additional routes on 9251 * other interfaces. For that purpose, a copy of 9252 * the packet is performed at this point. 9253 */ 9254 fire->ire_last_used_time = lbolt; 9255 copy_mp = copymsg(first_mp); 9256 if (copy_mp) { 9257 MULTIRT_DEBUG_TAG(copy_mp); 9258 } 9259 } 9260 if ((flags & RTF_SETSRC) && (fire != NULL) && 9261 (fire->ire_flags & RTF_SETSRC)) { 9262 /* 9263 * As requested by flags, an IRE_OFFSUBET was 9264 * looked up on that interface. This ire has 9265 * RTF_SETSRC flag, so the source address of the 9266 * packet must be changed. 9267 */ 9268 ipha->ipha_src = fire->ire_src_addr; 9269 } 9270 } else { 9271 ASSERT((connp == NULL) || 9272 (connp->conn_outgoing_ill != NULL) || 9273 (connp->conn_dontroute) || 9274 infop->ip_opt_ill_index != 0); 9275 /* 9276 * The only ways we can come here are: 9277 * 1) IP_BOUND_IF socket option is set 9278 * 2) SO_DONTROUTE socket option is set 9279 * 3) IP_PKTINFO option is passed in as ancillary data. 9280 * In all cases, the new ire will not be added 9281 * into cache table. 9282 */ 9283 ire_marks |= IRE_MARK_NOADD; 9284 } 9285 9286 switch (ipif->ipif_net_type) { 9287 case IRE_IF_NORESOLVER: { 9288 /* We have what we need to build an IRE_CACHE. */ 9289 9290 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9291 (dst_ill->ill_resolver_mp == NULL)) { 9292 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9293 "for IRE_IF_NORESOLVER ire %p has " 9294 "no ill_resolver_mp\n", 9295 (void *)dst_ill, (void *)ire)); 9296 break; 9297 } 9298 9299 /* 9300 * The new ire inherits the IRE_OFFSUBNET flags 9301 * and source address, if this was requested. 9302 */ 9303 ire = ire_create( 9304 (uchar_t *)&dst, /* dest address */ 9305 (uchar_t *)&ip_g_all_ones, /* mask */ 9306 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9307 NULL, /* gateway address */ 9308 &ipif->ipif_mtu, 9309 NULL, /* no src nce */ 9310 dst_ill->ill_rq, /* recv-from queue */ 9311 dst_ill->ill_wq, /* send-to queue */ 9312 IRE_CACHE, 9313 src_ipif, 9314 (save_ire != NULL ? save_ire->ire_mask : 0), 9315 (fire != NULL) ? /* Parent handle */ 9316 fire->ire_phandle : 0, 9317 ihandle, /* Interface handle */ 9318 (fire != NULL) ? 9319 (fire->ire_flags & 9320 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9321 (save_ire == NULL ? &ire_uinfo_null : 9322 &save_ire->ire_uinfo), 9323 NULL, 9324 NULL, 9325 ipst); 9326 9327 if (ire == NULL) { 9328 if (save_ire != NULL) 9329 ire_refrele(save_ire); 9330 break; 9331 } 9332 9333 ire->ire_marks |= ire_marks; 9334 9335 /* 9336 * If IRE_MARK_NOADD is set then we need to convert 9337 * the max_fragp to a useable value now. This is 9338 * normally done in ire_add_v[46]. We also need to 9339 * associate the ire with an nce (normally would be 9340 * done in ip_wput_nondata()). 9341 * 9342 * Note that IRE_MARK_NOADD packets created here 9343 * do not have a non-null ire_mp pointer. The null 9344 * value of ire_bucket indicates that they were 9345 * never added. 9346 */ 9347 if (ire->ire_marks & IRE_MARK_NOADD) { 9348 uint_t max_frag; 9349 9350 max_frag = *ire->ire_max_fragp; 9351 ire->ire_max_fragp = NULL; 9352 ire->ire_max_frag = max_frag; 9353 9354 if ((ire->ire_nce = ndp_lookup_v4( 9355 ire_to_ill(ire), 9356 (ire->ire_gateway_addr != INADDR_ANY ? 9357 &ire->ire_gateway_addr : &ire->ire_addr), 9358 B_FALSE)) == NULL) { 9359 if (save_ire != NULL) 9360 ire_refrele(save_ire); 9361 break; 9362 } 9363 ASSERT(ire->ire_nce->nce_state == 9364 ND_REACHABLE); 9365 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9366 } 9367 9368 /* Prevent save_ire from getting deleted */ 9369 if (save_ire != NULL) { 9370 IRB_REFHOLD(save_ire->ire_bucket); 9371 /* Has it been removed already ? */ 9372 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9373 IRB_REFRELE(save_ire->ire_bucket); 9374 ire_refrele(save_ire); 9375 break; 9376 } 9377 } 9378 9379 ire_add_then_send(q, ire, first_mp); 9380 9381 /* Assert that save_ire is not deleted yet. */ 9382 if (save_ire != NULL) { 9383 ASSERT(save_ire->ire_ptpn != NULL); 9384 IRB_REFRELE(save_ire->ire_bucket); 9385 ire_refrele(save_ire); 9386 save_ire = NULL; 9387 } 9388 if (fire != NULL) { 9389 ire_refrele(fire); 9390 fire = NULL; 9391 } 9392 9393 /* 9394 * the resolution loop is re-entered if this 9395 * was requested through flags and if we 9396 * actually are in a multirouting case. 9397 */ 9398 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9399 boolean_t need_resolve = 9400 ire_multirt_need_resolve(ipha_dst, 9401 MBLK_GETLABEL(copy_mp), ipst); 9402 if (!need_resolve) { 9403 MULTIRT_DEBUG_UNTAG(copy_mp); 9404 freemsg(copy_mp); 9405 copy_mp = NULL; 9406 } else { 9407 /* 9408 * ipif_lookup_group() calls 9409 * ire_lookup_multi() that uses 9410 * ire_ftable_lookup() to find 9411 * an IRE_INTERFACE for the group. 9412 * In the multirt case, 9413 * ire_lookup_multi() then invokes 9414 * ire_multirt_lookup() to find 9415 * the next resolvable ire. 9416 * As a result, we obtain an new 9417 * interface, derived from the 9418 * next ire. 9419 */ 9420 ipif_refrele(ipif); 9421 ipif = ipif_lookup_group(ipha_dst, 9422 zoneid, ipst); 9423 ip2dbg(("ip_newroute_ipif: " 9424 "multirt dst %08x, ipif %p\n", 9425 htonl(dst), (void *)ipif)); 9426 if (ipif != NULL) { 9427 mp = copy_mp; 9428 copy_mp = NULL; 9429 multirt_resolve_next = B_TRUE; 9430 continue; 9431 } else { 9432 freemsg(copy_mp); 9433 } 9434 } 9435 } 9436 if (ipif != NULL) 9437 ipif_refrele(ipif); 9438 ill_refrele(dst_ill); 9439 ipif_refrele(src_ipif); 9440 return; 9441 } 9442 case IRE_IF_RESOLVER: 9443 /* 9444 * We can't build an IRE_CACHE yet, but at least 9445 * we found a resolver that can help. 9446 */ 9447 res_mp = dst_ill->ill_resolver_mp; 9448 if (!OK_RESOLVER_MP(res_mp)) 9449 break; 9450 9451 /* 9452 * We obtain a partial IRE_CACHE which we will pass 9453 * along with the resolver query. When the response 9454 * comes back it will be there ready for us to add. 9455 * The new ire inherits the IRE_OFFSUBNET flags 9456 * and source address, if this was requested. 9457 * The ire_max_frag is atomically set under the 9458 * irebucket lock in ire_add_v[46]. Only in the 9459 * case of IRE_MARK_NOADD, we set it here itself. 9460 */ 9461 ire = ire_create_mp( 9462 (uchar_t *)&dst, /* dest address */ 9463 (uchar_t *)&ip_g_all_ones, /* mask */ 9464 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9465 NULL, /* gateway address */ 9466 (ire_marks & IRE_MARK_NOADD) ? 9467 ipif->ipif_mtu : 0, /* max_frag */ 9468 NULL, /* no src nce */ 9469 dst_ill->ill_rq, /* recv-from queue */ 9470 dst_ill->ill_wq, /* send-to queue */ 9471 IRE_CACHE, 9472 src_ipif, 9473 (save_ire != NULL ? save_ire->ire_mask : 0), 9474 (fire != NULL) ? /* Parent handle */ 9475 fire->ire_phandle : 0, 9476 ihandle, /* Interface handle */ 9477 (fire != NULL) ? /* flags if any */ 9478 (fire->ire_flags & 9479 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9480 (save_ire == NULL ? &ire_uinfo_null : 9481 &save_ire->ire_uinfo), 9482 NULL, 9483 NULL, 9484 ipst); 9485 9486 if (save_ire != NULL) { 9487 ire_refrele(save_ire); 9488 save_ire = NULL; 9489 } 9490 if (ire == NULL) 9491 break; 9492 9493 ire->ire_marks |= ire_marks; 9494 /* 9495 * Construct message chain for the resolver of the 9496 * form: 9497 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9498 * 9499 * NOTE : ire will be added later when the response 9500 * comes back from ARP. If the response does not 9501 * come back, ARP frees the packet. For this reason, 9502 * we can't REFHOLD the bucket of save_ire to prevent 9503 * deletions. We may not be able to REFRELE the 9504 * bucket if the response never comes back. 9505 * Thus, before adding the ire, ire_add_v4 will make 9506 * sure that the interface route does not get deleted. 9507 * This is the only case unlike ip_newroute_v6, 9508 * ip_newroute_ipif_v6 where we can always prevent 9509 * deletions because ire_add_then_send is called after 9510 * creating the IRE. 9511 * If IRE_MARK_NOADD is set, then ire_add_then_send 9512 * does not add this IRE into the IRE CACHE. 9513 */ 9514 ASSERT(ire->ire_mp != NULL); 9515 ire->ire_mp->b_cont = first_mp; 9516 /* Have saved_mp handy, for cleanup if canput fails */ 9517 saved_mp = mp; 9518 mp = copyb(res_mp); 9519 if (mp == NULL) { 9520 /* Prepare for cleanup */ 9521 mp = saved_mp; /* pkt */ 9522 ire_delete(ire); /* ire_mp */ 9523 ire = NULL; 9524 if (copy_mp != NULL) { 9525 MULTIRT_DEBUG_UNTAG(copy_mp); 9526 freemsg(copy_mp); 9527 copy_mp = NULL; 9528 } 9529 break; 9530 } 9531 linkb(mp, ire->ire_mp); 9532 9533 /* 9534 * Fill in the source and dest addrs for the resolver. 9535 * NOTE: this depends on memory layouts imposed by 9536 * ill_init(). 9537 */ 9538 areq = (areq_t *)mp->b_rptr; 9539 addrp = (ipaddr_t *)((char *)areq + 9540 areq->areq_sender_addr_offset); 9541 *addrp = ire->ire_src_addr; 9542 addrp = (ipaddr_t *)((char *)areq + 9543 areq->areq_target_addr_offset); 9544 *addrp = dst; 9545 /* Up to the resolver. */ 9546 if (canputnext(dst_ill->ill_rq) && 9547 !(dst_ill->ill_arp_closing)) { 9548 putnext(dst_ill->ill_rq, mp); 9549 /* 9550 * The response will come back in ip_wput 9551 * with db_type IRE_DB_TYPE. 9552 */ 9553 } else { 9554 mp->b_cont = NULL; 9555 freeb(mp); /* areq */ 9556 ire_delete(ire); /* ire_mp */ 9557 saved_mp->b_next = NULL; 9558 saved_mp->b_prev = NULL; 9559 freemsg(first_mp); /* pkt */ 9560 ip2dbg(("ip_newroute_ipif: dropped\n")); 9561 } 9562 9563 if (fire != NULL) { 9564 ire_refrele(fire); 9565 fire = NULL; 9566 } 9567 9568 9569 /* 9570 * The resolution loop is re-entered if this was 9571 * requested through flags and we actually are 9572 * in a multirouting case. 9573 */ 9574 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9575 boolean_t need_resolve = 9576 ire_multirt_need_resolve(ipha_dst, 9577 MBLK_GETLABEL(copy_mp), ipst); 9578 if (!need_resolve) { 9579 MULTIRT_DEBUG_UNTAG(copy_mp); 9580 freemsg(copy_mp); 9581 copy_mp = NULL; 9582 } else { 9583 /* 9584 * ipif_lookup_group() calls 9585 * ire_lookup_multi() that uses 9586 * ire_ftable_lookup() to find 9587 * an IRE_INTERFACE for the group. 9588 * In the multirt case, 9589 * ire_lookup_multi() then invokes 9590 * ire_multirt_lookup() to find 9591 * the next resolvable ire. 9592 * As a result, we obtain an new 9593 * interface, derived from the 9594 * next ire. 9595 */ 9596 ipif_refrele(ipif); 9597 ipif = ipif_lookup_group(ipha_dst, 9598 zoneid, ipst); 9599 if (ipif != NULL) { 9600 mp = copy_mp; 9601 copy_mp = NULL; 9602 multirt_resolve_next = B_TRUE; 9603 continue; 9604 } else { 9605 freemsg(copy_mp); 9606 } 9607 } 9608 } 9609 if (ipif != NULL) 9610 ipif_refrele(ipif); 9611 ill_refrele(dst_ill); 9612 ipif_refrele(src_ipif); 9613 return; 9614 default: 9615 break; 9616 } 9617 } while (multirt_resolve_next); 9618 9619 err_ret: 9620 ip2dbg(("ip_newroute_ipif: dropped\n")); 9621 if (fire != NULL) 9622 ire_refrele(fire); 9623 ipif_refrele(ipif); 9624 /* Did this packet originate externally? */ 9625 if (dst_ill != NULL) 9626 ill_refrele(dst_ill); 9627 if (src_ipif != NULL) 9628 ipif_refrele(src_ipif); 9629 if (mp->b_prev || mp->b_next) { 9630 mp->b_next = NULL; 9631 mp->b_prev = NULL; 9632 } else { 9633 /* 9634 * Since ip_wput() isn't close to finished, we fill 9635 * in enough of the header for credible error reporting. 9636 */ 9637 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9638 /* Failed */ 9639 freemsg(first_mp); 9640 if (ire != NULL) 9641 ire_refrele(ire); 9642 return; 9643 } 9644 } 9645 /* 9646 * At this point we will have ire only if RTF_BLACKHOLE 9647 * or RTF_REJECT flags are set on the IRE. It will not 9648 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9649 */ 9650 if (ire != NULL) { 9651 if (ire->ire_flags & RTF_BLACKHOLE) { 9652 ire_refrele(ire); 9653 freemsg(first_mp); 9654 return; 9655 } 9656 ire_refrele(ire); 9657 } 9658 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9659 } 9660 9661 /* Name/Value Table Lookup Routine */ 9662 char * 9663 ip_nv_lookup(nv_t *nv, int value) 9664 { 9665 if (!nv) 9666 return (NULL); 9667 for (; nv->nv_name; nv++) { 9668 if (nv->nv_value == value) 9669 return (nv->nv_name); 9670 } 9671 return ("unknown"); 9672 } 9673 9674 /* 9675 * This is a module open, i.e. this is a control stream for access 9676 * to a DLPI device. We allocate an ill_t as the instance data in 9677 * this case. 9678 */ 9679 int 9680 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9681 { 9682 ill_t *ill; 9683 int err; 9684 zoneid_t zoneid; 9685 netstack_t *ns; 9686 ip_stack_t *ipst; 9687 9688 /* 9689 * Prevent unprivileged processes from pushing IP so that 9690 * they can't send raw IP. 9691 */ 9692 if (secpolicy_net_rawaccess(credp) != 0) 9693 return (EPERM); 9694 9695 ns = netstack_find_by_cred(credp); 9696 ASSERT(ns != NULL); 9697 ipst = ns->netstack_ip; 9698 ASSERT(ipst != NULL); 9699 9700 /* 9701 * For exclusive stacks we set the zoneid to zero 9702 * to make IP operate as if in the global zone. 9703 */ 9704 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9705 zoneid = GLOBAL_ZONEID; 9706 else 9707 zoneid = crgetzoneid(credp); 9708 9709 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9710 q->q_ptr = WR(q)->q_ptr = ill; 9711 ill->ill_ipst = ipst; 9712 ill->ill_zoneid = zoneid; 9713 9714 /* 9715 * ill_init initializes the ill fields and then sends down 9716 * down a DL_INFO_REQ after calling qprocson. 9717 */ 9718 err = ill_init(q, ill); 9719 if (err != 0) { 9720 mi_free(ill); 9721 netstack_rele(ipst->ips_netstack); 9722 q->q_ptr = NULL; 9723 WR(q)->q_ptr = NULL; 9724 return (err); 9725 } 9726 9727 /* ill_init initializes the ipsq marking this thread as writer */ 9728 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9729 /* Wait for the DL_INFO_ACK */ 9730 mutex_enter(&ill->ill_lock); 9731 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9732 /* 9733 * Return value of 0 indicates a pending signal. 9734 */ 9735 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9736 if (err == 0) { 9737 mutex_exit(&ill->ill_lock); 9738 (void) ip_close(q, 0); 9739 return (EINTR); 9740 } 9741 } 9742 mutex_exit(&ill->ill_lock); 9743 9744 /* 9745 * ip_rput_other could have set an error in ill_error on 9746 * receipt of M_ERROR. 9747 */ 9748 9749 err = ill->ill_error; 9750 if (err != 0) { 9751 (void) ip_close(q, 0); 9752 return (err); 9753 } 9754 9755 ill->ill_credp = credp; 9756 crhold(credp); 9757 9758 mutex_enter(&ipst->ips_ip_mi_lock); 9759 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9760 credp); 9761 mutex_exit(&ipst->ips_ip_mi_lock); 9762 if (err) { 9763 (void) ip_close(q, 0); 9764 return (err); 9765 } 9766 return (0); 9767 } 9768 9769 /* For /dev/ip aka AF_INET open */ 9770 int 9771 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9772 { 9773 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9774 } 9775 9776 /* For /dev/ip6 aka AF_INET6 open */ 9777 int 9778 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9779 { 9780 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9781 } 9782 9783 /* IP open routine. */ 9784 int 9785 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9786 boolean_t isv6) 9787 { 9788 conn_t *connp; 9789 major_t maj; 9790 zoneid_t zoneid; 9791 netstack_t *ns; 9792 ip_stack_t *ipst; 9793 9794 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9795 9796 /* Allow reopen. */ 9797 if (q->q_ptr != NULL) 9798 return (0); 9799 9800 if (sflag & MODOPEN) { 9801 /* This is a module open */ 9802 return (ip_modopen(q, devp, flag, sflag, credp)); 9803 } 9804 9805 ns = netstack_find_by_cred(credp); 9806 ASSERT(ns != NULL); 9807 ipst = ns->netstack_ip; 9808 ASSERT(ipst != NULL); 9809 9810 /* 9811 * For exclusive stacks we set the zoneid to zero 9812 * to make IP operate as if in the global zone. 9813 */ 9814 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9815 zoneid = GLOBAL_ZONEID; 9816 else 9817 zoneid = crgetzoneid(credp); 9818 9819 /* 9820 * We are opening as a device. This is an IP client stream, and we 9821 * allocate an conn_t as the instance data. 9822 */ 9823 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9824 9825 /* 9826 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9827 * done by netstack_find_by_cred() 9828 */ 9829 netstack_rele(ipst->ips_netstack); 9830 9831 connp->conn_zoneid = zoneid; 9832 9833 connp->conn_upq = q; 9834 q->q_ptr = WR(q)->q_ptr = connp; 9835 9836 if (flag & SO_SOCKSTR) 9837 connp->conn_flags |= IPCL_SOCKET; 9838 9839 /* Minor tells us which /dev entry was opened */ 9840 if (isv6) { 9841 connp->conn_flags |= IPCL_ISV6; 9842 connp->conn_af_isv6 = B_TRUE; 9843 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9844 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9845 } else { 9846 connp->conn_af_isv6 = B_FALSE; 9847 connp->conn_pkt_isv6 = B_FALSE; 9848 } 9849 9850 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9851 /* CONN_DEC_REF takes care of netstack_rele() */ 9852 q->q_ptr = WR(q)->q_ptr = NULL; 9853 CONN_DEC_REF(connp); 9854 return (EBUSY); 9855 } 9856 9857 maj = getemajor(*devp); 9858 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9859 9860 /* 9861 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9862 */ 9863 connp->conn_cred = credp; 9864 9865 /* 9866 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9867 */ 9868 connp->conn_recv = ip_conn_input; 9869 9870 crhold(connp->conn_cred); 9871 9872 /* 9873 * If the caller has the process-wide flag set, then default to MAC 9874 * exempt mode. This allows read-down to unlabeled hosts. 9875 */ 9876 if (getpflags(NET_MAC_AWARE, credp) != 0) 9877 connp->conn_mac_exempt = B_TRUE; 9878 9879 connp->conn_rq = q; 9880 connp->conn_wq = WR(q); 9881 9882 /* Non-zero default values */ 9883 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9884 9885 /* 9886 * Make the conn globally visible to walkers 9887 */ 9888 ASSERT(connp->conn_ref == 1); 9889 mutex_enter(&connp->conn_lock); 9890 connp->conn_state_flags &= ~CONN_INCIPIENT; 9891 mutex_exit(&connp->conn_lock); 9892 9893 qprocson(q); 9894 9895 return (0); 9896 } 9897 9898 /* 9899 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9900 * Note that there is no race since either ip_output function works - it 9901 * is just an optimization to enter the best ip_output routine directly. 9902 */ 9903 void 9904 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9905 ip_stack_t *ipst) 9906 { 9907 if (isv6) { 9908 if (bump_mib) { 9909 BUMP_MIB(&ipst->ips_ip6_mib, 9910 ipIfStatsOutSwitchIPVersion); 9911 } 9912 connp->conn_send = ip_output_v6; 9913 connp->conn_pkt_isv6 = B_TRUE; 9914 } else { 9915 if (bump_mib) { 9916 BUMP_MIB(&ipst->ips_ip_mib, 9917 ipIfStatsOutSwitchIPVersion); 9918 } 9919 connp->conn_send = ip_output; 9920 connp->conn_pkt_isv6 = B_FALSE; 9921 } 9922 9923 } 9924 9925 /* 9926 * See if IPsec needs loading because of the options in mp. 9927 */ 9928 static boolean_t 9929 ipsec_opt_present(mblk_t *mp) 9930 { 9931 uint8_t *optcp, *next_optcp, *opt_endcp; 9932 struct opthdr *opt; 9933 struct T_opthdr *topt; 9934 int opthdr_len; 9935 t_uscalar_t optname, optlevel; 9936 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9937 ipsec_req_t *ipsr; 9938 9939 /* 9940 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9941 * return TRUE. 9942 */ 9943 9944 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9945 opt_endcp = optcp + tor->OPT_length; 9946 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9947 opthdr_len = sizeof (struct T_opthdr); 9948 } else { /* O_OPTMGMT_REQ */ 9949 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9950 opthdr_len = sizeof (struct opthdr); 9951 } 9952 for (; optcp < opt_endcp; optcp = next_optcp) { 9953 if (optcp + opthdr_len > opt_endcp) 9954 return (B_FALSE); /* Not enough option header. */ 9955 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9956 topt = (struct T_opthdr *)optcp; 9957 optlevel = topt->level; 9958 optname = topt->name; 9959 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9960 } else { 9961 opt = (struct opthdr *)optcp; 9962 optlevel = opt->level; 9963 optname = opt->name; 9964 next_optcp = optcp + opthdr_len + 9965 _TPI_ALIGN_OPT(opt->len); 9966 } 9967 if ((next_optcp < optcp) || /* wraparound pointer space */ 9968 ((next_optcp >= opt_endcp) && /* last option bad len */ 9969 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9970 return (B_FALSE); /* bad option buffer */ 9971 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9972 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9973 /* 9974 * Check to see if it's an all-bypass or all-zeroes 9975 * IPsec request. Don't bother loading IPsec if 9976 * the socket doesn't want to use it. (A good example 9977 * is a bypass request.) 9978 * 9979 * Basically, if any of the non-NEVER bits are set, 9980 * load IPsec. 9981 */ 9982 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9983 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9984 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9985 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9986 != 0) 9987 return (B_TRUE); 9988 } 9989 } 9990 return (B_FALSE); 9991 } 9992 9993 /* 9994 * If conn is is waiting for ipsec to finish loading, kick it. 9995 */ 9996 /* ARGSUSED */ 9997 static void 9998 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9999 { 10000 t_scalar_t optreq_prim; 10001 mblk_t *mp; 10002 cred_t *cr; 10003 int err = 0; 10004 10005 /* 10006 * This function is called, after ipsec loading is complete. 10007 * Since IP checks exclusively and atomically (i.e it prevents 10008 * ipsec load from completing until ip_optcom_req completes) 10009 * whether ipsec load is complete, there cannot be a race with IP 10010 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10011 */ 10012 mutex_enter(&connp->conn_lock); 10013 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10014 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10015 mp = connp->conn_ipsec_opt_mp; 10016 connp->conn_ipsec_opt_mp = NULL; 10017 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10018 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10019 mutex_exit(&connp->conn_lock); 10020 10021 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10022 10023 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10024 if (optreq_prim == T_OPTMGMT_REQ) { 10025 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10026 &ip_opt_obj, B_FALSE); 10027 } else { 10028 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10029 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10030 &ip_opt_obj, B_FALSE); 10031 } 10032 if (err != EINPROGRESS) 10033 CONN_OPER_PENDING_DONE(connp); 10034 return; 10035 } 10036 mutex_exit(&connp->conn_lock); 10037 } 10038 10039 /* 10040 * Called from the ipsec_loader thread, outside any perimeter, to tell 10041 * ip qenable any of the queues waiting for the ipsec loader to 10042 * complete. 10043 */ 10044 void 10045 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10046 { 10047 netstack_t *ns = ipss->ipsec_netstack; 10048 10049 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10050 } 10051 10052 /* 10053 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10054 * determines the grp on which it has to become exclusive, queues the mp 10055 * and sq draining restarts the optmgmt 10056 */ 10057 static boolean_t 10058 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10059 { 10060 conn_t *connp = Q_TO_CONN(q); 10061 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10062 10063 /* 10064 * Take IPsec requests and treat them special. 10065 */ 10066 if (ipsec_opt_present(mp)) { 10067 /* First check if IPsec is loaded. */ 10068 mutex_enter(&ipss->ipsec_loader_lock); 10069 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10070 mutex_exit(&ipss->ipsec_loader_lock); 10071 return (B_FALSE); 10072 } 10073 mutex_enter(&connp->conn_lock); 10074 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10075 10076 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10077 connp->conn_ipsec_opt_mp = mp; 10078 mutex_exit(&connp->conn_lock); 10079 mutex_exit(&ipss->ipsec_loader_lock); 10080 10081 ipsec_loader_loadnow(ipss); 10082 return (B_TRUE); 10083 } 10084 return (B_FALSE); 10085 } 10086 10087 /* 10088 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10089 * all of them are copied to the conn_t. If the req is "zero", the policy is 10090 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10091 * fields. 10092 * We keep only the latest setting of the policy and thus policy setting 10093 * is not incremental/cumulative. 10094 * 10095 * Requests to set policies with multiple alternative actions will 10096 * go through a different API. 10097 */ 10098 int 10099 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10100 { 10101 uint_t ah_req = 0; 10102 uint_t esp_req = 0; 10103 uint_t se_req = 0; 10104 ipsec_selkey_t sel; 10105 ipsec_act_t *actp = NULL; 10106 uint_t nact; 10107 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10108 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10109 ipsec_policy_root_t *pr; 10110 ipsec_policy_head_t *ph; 10111 int fam; 10112 boolean_t is_pol_reset; 10113 int error = 0; 10114 netstack_t *ns = connp->conn_netstack; 10115 ip_stack_t *ipst = ns->netstack_ip; 10116 ipsec_stack_t *ipss = ns->netstack_ipsec; 10117 10118 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10119 10120 /* 10121 * The IP_SEC_OPT option does not allow variable length parameters, 10122 * hence a request cannot be NULL. 10123 */ 10124 if (req == NULL) 10125 return (EINVAL); 10126 10127 ah_req = req->ipsr_ah_req; 10128 esp_req = req->ipsr_esp_req; 10129 se_req = req->ipsr_self_encap_req; 10130 10131 /* 10132 * Are we dealing with a request to reset the policy (i.e. 10133 * zero requests). 10134 */ 10135 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10136 (esp_req & REQ_MASK) == 0 && 10137 (se_req & REQ_MASK) == 0); 10138 10139 if (!is_pol_reset) { 10140 /* 10141 * If we couldn't load IPsec, fail with "protocol 10142 * not supported". 10143 * IPsec may not have been loaded for a request with zero 10144 * policies, so we don't fail in this case. 10145 */ 10146 mutex_enter(&ipss->ipsec_loader_lock); 10147 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10148 mutex_exit(&ipss->ipsec_loader_lock); 10149 return (EPROTONOSUPPORT); 10150 } 10151 mutex_exit(&ipss->ipsec_loader_lock); 10152 10153 /* 10154 * Test for valid requests. Invalid algorithms 10155 * need to be tested by IPsec code because new 10156 * algorithms can be added dynamically. 10157 */ 10158 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10159 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10160 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10161 return (EINVAL); 10162 } 10163 10164 /* 10165 * Only privileged users can issue these 10166 * requests. 10167 */ 10168 if (((ah_req & IPSEC_PREF_NEVER) || 10169 (esp_req & IPSEC_PREF_NEVER) || 10170 (se_req & IPSEC_PREF_NEVER)) && 10171 secpolicy_ip_config(cr, B_FALSE) != 0) { 10172 return (EPERM); 10173 } 10174 10175 /* 10176 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10177 * are mutually exclusive. 10178 */ 10179 if (((ah_req & REQ_MASK) == REQ_MASK) || 10180 ((esp_req & REQ_MASK) == REQ_MASK) || 10181 ((se_req & REQ_MASK) == REQ_MASK)) { 10182 /* Both of them are set */ 10183 return (EINVAL); 10184 } 10185 } 10186 10187 mutex_enter(&connp->conn_lock); 10188 10189 /* 10190 * If we have already cached policies in ip_bind_connected*(), don't 10191 * let them change now. We cache policies for connections 10192 * whose src,dst [addr, port] is known. 10193 */ 10194 if (connp->conn_policy_cached) { 10195 mutex_exit(&connp->conn_lock); 10196 return (EINVAL); 10197 } 10198 10199 /* 10200 * We have a zero policies, reset the connection policy if already 10201 * set. This will cause the connection to inherit the 10202 * global policy, if any. 10203 */ 10204 if (is_pol_reset) { 10205 if (connp->conn_policy != NULL) { 10206 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10207 connp->conn_policy = NULL; 10208 } 10209 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10210 connp->conn_in_enforce_policy = B_FALSE; 10211 connp->conn_out_enforce_policy = B_FALSE; 10212 mutex_exit(&connp->conn_lock); 10213 return (0); 10214 } 10215 10216 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10217 ipst->ips_netstack); 10218 if (ph == NULL) 10219 goto enomem; 10220 10221 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10222 if (actp == NULL) 10223 goto enomem; 10224 10225 /* 10226 * Always allocate IPv4 policy entries, since they can also 10227 * apply to ipv6 sockets being used in ipv4-compat mode. 10228 */ 10229 bzero(&sel, sizeof (sel)); 10230 sel.ipsl_valid = IPSL_IPV4; 10231 10232 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10233 ipst->ips_netstack); 10234 if (pin4 == NULL) 10235 goto enomem; 10236 10237 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10238 ipst->ips_netstack); 10239 if (pout4 == NULL) 10240 goto enomem; 10241 10242 if (connp->conn_af_isv6) { 10243 /* 10244 * We're looking at a v6 socket, also allocate the 10245 * v6-specific entries... 10246 */ 10247 sel.ipsl_valid = IPSL_IPV6; 10248 pin6 = ipsec_policy_create(&sel, actp, nact, 10249 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10250 if (pin6 == NULL) 10251 goto enomem; 10252 10253 pout6 = ipsec_policy_create(&sel, actp, nact, 10254 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10255 if (pout6 == NULL) 10256 goto enomem; 10257 10258 /* 10259 * .. and file them away in the right place. 10260 */ 10261 fam = IPSEC_AF_V6; 10262 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10263 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10264 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10265 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10266 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10267 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10268 } 10269 10270 ipsec_actvec_free(actp, nact); 10271 10272 /* 10273 * File the v4 policies. 10274 */ 10275 fam = IPSEC_AF_V4; 10276 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10277 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10278 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10279 10280 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10281 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10282 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10283 10284 /* 10285 * If the requests need security, set enforce_policy. 10286 * If the requests are IPSEC_PREF_NEVER, one should 10287 * still set conn_out_enforce_policy so that an ipsec_out 10288 * gets attached in ip_wput. This is needed so that 10289 * for connections that we don't cache policy in ip_bind, 10290 * if global policy matches in ip_wput_attach_policy, we 10291 * don't wrongly inherit global policy. Similarly, we need 10292 * to set conn_in_enforce_policy also so that we don't verify 10293 * policy wrongly. 10294 */ 10295 if ((ah_req & REQ_MASK) != 0 || 10296 (esp_req & REQ_MASK) != 0 || 10297 (se_req & REQ_MASK) != 0) { 10298 connp->conn_in_enforce_policy = B_TRUE; 10299 connp->conn_out_enforce_policy = B_TRUE; 10300 connp->conn_flags |= IPCL_CHECK_POLICY; 10301 } 10302 10303 mutex_exit(&connp->conn_lock); 10304 return (error); 10305 #undef REQ_MASK 10306 10307 /* 10308 * Common memory-allocation-failure exit path. 10309 */ 10310 enomem: 10311 mutex_exit(&connp->conn_lock); 10312 if (actp != NULL) 10313 ipsec_actvec_free(actp, nact); 10314 if (pin4 != NULL) 10315 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10316 if (pout4 != NULL) 10317 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10318 if (pin6 != NULL) 10319 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10320 if (pout6 != NULL) 10321 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10322 return (ENOMEM); 10323 } 10324 10325 /* 10326 * Only for options that pass in an IP addr. Currently only V4 options 10327 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10328 * So this function assumes level is IPPROTO_IP 10329 */ 10330 int 10331 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10332 mblk_t *first_mp) 10333 { 10334 ipif_t *ipif = NULL; 10335 int error; 10336 ill_t *ill; 10337 int zoneid; 10338 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10339 10340 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10341 10342 if (addr != INADDR_ANY || checkonly) { 10343 ASSERT(connp != NULL); 10344 zoneid = IPCL_ZONEID(connp); 10345 if (option == IP_NEXTHOP) { 10346 ipif = ipif_lookup_onlink_addr(addr, 10347 connp->conn_zoneid, ipst); 10348 } else { 10349 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10350 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10351 &error, ipst); 10352 } 10353 if (ipif == NULL) { 10354 if (error == EINPROGRESS) 10355 return (error); 10356 else if ((option == IP_MULTICAST_IF) || 10357 (option == IP_NEXTHOP)) 10358 return (EHOSTUNREACH); 10359 else 10360 return (EINVAL); 10361 } else if (checkonly) { 10362 if (option == IP_MULTICAST_IF) { 10363 ill = ipif->ipif_ill; 10364 /* not supported by the virtual network iface */ 10365 if (IS_VNI(ill)) { 10366 ipif_refrele(ipif); 10367 return (EINVAL); 10368 } 10369 } 10370 ipif_refrele(ipif); 10371 return (0); 10372 } 10373 ill = ipif->ipif_ill; 10374 mutex_enter(&connp->conn_lock); 10375 mutex_enter(&ill->ill_lock); 10376 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10377 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10378 mutex_exit(&ill->ill_lock); 10379 mutex_exit(&connp->conn_lock); 10380 ipif_refrele(ipif); 10381 return (option == IP_MULTICAST_IF ? 10382 EHOSTUNREACH : EINVAL); 10383 } 10384 } else { 10385 mutex_enter(&connp->conn_lock); 10386 } 10387 10388 /* None of the options below are supported on the VNI */ 10389 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10390 mutex_exit(&ill->ill_lock); 10391 mutex_exit(&connp->conn_lock); 10392 ipif_refrele(ipif); 10393 return (EINVAL); 10394 } 10395 10396 switch (option) { 10397 case IP_DONTFAILOVER_IF: 10398 /* 10399 * This option is used by in.mpathd to ensure 10400 * that IPMP probe packets only go out on the 10401 * test interfaces. in.mpathd sets this option 10402 * on the non-failover interfaces. 10403 * For backward compatibility, this option 10404 * implicitly sets IP_MULTICAST_IF, as used 10405 * be done in bind(), so that ip_wput gets 10406 * this ipif to send mcast packets. 10407 */ 10408 if (ipif != NULL) { 10409 ASSERT(addr != INADDR_ANY); 10410 connp->conn_nofailover_ill = ipif->ipif_ill; 10411 connp->conn_multicast_ipif = ipif; 10412 } else { 10413 ASSERT(addr == INADDR_ANY); 10414 connp->conn_nofailover_ill = NULL; 10415 connp->conn_multicast_ipif = NULL; 10416 } 10417 break; 10418 10419 case IP_MULTICAST_IF: 10420 connp->conn_multicast_ipif = ipif; 10421 break; 10422 case IP_NEXTHOP: 10423 connp->conn_nexthop_v4 = addr; 10424 connp->conn_nexthop_set = B_TRUE; 10425 break; 10426 } 10427 10428 if (ipif != NULL) { 10429 mutex_exit(&ill->ill_lock); 10430 mutex_exit(&connp->conn_lock); 10431 ipif_refrele(ipif); 10432 return (0); 10433 } 10434 mutex_exit(&connp->conn_lock); 10435 /* We succeded in cleared the option */ 10436 return (0); 10437 } 10438 10439 /* 10440 * For options that pass in an ifindex specifying the ill. V6 options always 10441 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10442 */ 10443 int 10444 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10445 int level, int option, mblk_t *first_mp) 10446 { 10447 ill_t *ill = NULL; 10448 int error = 0; 10449 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10450 10451 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10452 if (ifindex != 0) { 10453 ASSERT(connp != NULL); 10454 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10455 first_mp, ip_restart_optmgmt, &error, ipst); 10456 if (ill != NULL) { 10457 if (checkonly) { 10458 /* not supported by the virtual network iface */ 10459 if (IS_VNI(ill)) { 10460 ill_refrele(ill); 10461 return (EINVAL); 10462 } 10463 ill_refrele(ill); 10464 return (0); 10465 } 10466 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10467 0, NULL)) { 10468 ill_refrele(ill); 10469 ill = NULL; 10470 mutex_enter(&connp->conn_lock); 10471 goto setit; 10472 } 10473 mutex_enter(&connp->conn_lock); 10474 mutex_enter(&ill->ill_lock); 10475 if (ill->ill_state_flags & ILL_CONDEMNED) { 10476 mutex_exit(&ill->ill_lock); 10477 mutex_exit(&connp->conn_lock); 10478 ill_refrele(ill); 10479 ill = NULL; 10480 mutex_enter(&connp->conn_lock); 10481 } 10482 goto setit; 10483 } else if (error == EINPROGRESS) { 10484 return (error); 10485 } else { 10486 error = 0; 10487 } 10488 } 10489 mutex_enter(&connp->conn_lock); 10490 setit: 10491 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10492 10493 /* 10494 * The options below assume that the ILL (if any) transmits and/or 10495 * receives traffic. Neither of which is true for the virtual network 10496 * interface, so fail setting these on a VNI. 10497 */ 10498 if (IS_VNI(ill)) { 10499 ASSERT(ill != NULL); 10500 mutex_exit(&ill->ill_lock); 10501 mutex_exit(&connp->conn_lock); 10502 ill_refrele(ill); 10503 return (EINVAL); 10504 } 10505 10506 if (level == IPPROTO_IP) { 10507 switch (option) { 10508 case IP_BOUND_IF: 10509 connp->conn_incoming_ill = ill; 10510 connp->conn_outgoing_ill = ill; 10511 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10512 0 : ifindex; 10513 break; 10514 10515 case IP_MULTICAST_IF: 10516 /* 10517 * This option is an internal special. The socket 10518 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10519 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10520 * specifies an ifindex and we try first on V6 ill's. 10521 * If we don't find one, we they try using on v4 ill's 10522 * intenally and we come here. 10523 */ 10524 if (!checkonly && ill != NULL) { 10525 ipif_t *ipif; 10526 ipif = ill->ill_ipif; 10527 10528 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10529 mutex_exit(&ill->ill_lock); 10530 mutex_exit(&connp->conn_lock); 10531 ill_refrele(ill); 10532 ill = NULL; 10533 mutex_enter(&connp->conn_lock); 10534 } else { 10535 connp->conn_multicast_ipif = ipif; 10536 } 10537 } 10538 break; 10539 10540 case IP_DHCPINIT_IF: 10541 if (connp->conn_dhcpinit_ill != NULL) { 10542 /* 10543 * We've locked the conn so conn_cleanup_ill() 10544 * cannot clear conn_dhcpinit_ill -- so it's 10545 * safe to access the ill. 10546 */ 10547 ill_t *oill = connp->conn_dhcpinit_ill; 10548 10549 ASSERT(oill->ill_dhcpinit != 0); 10550 atomic_dec_32(&oill->ill_dhcpinit); 10551 connp->conn_dhcpinit_ill = NULL; 10552 } 10553 10554 if (ill != NULL) { 10555 connp->conn_dhcpinit_ill = ill; 10556 atomic_inc_32(&ill->ill_dhcpinit); 10557 } 10558 break; 10559 } 10560 } else { 10561 switch (option) { 10562 case IPV6_BOUND_IF: 10563 connp->conn_incoming_ill = ill; 10564 connp->conn_outgoing_ill = ill; 10565 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10566 0 : ifindex; 10567 break; 10568 10569 case IPV6_BOUND_PIF: 10570 /* 10571 * Limit all transmit to this ill. 10572 * Unlike IPV6_BOUND_IF, using this option 10573 * prevents load spreading and failover from 10574 * happening when the interface is part of the 10575 * group. That's why we don't need to remember 10576 * the ifindex in orig_bound_ifindex as in 10577 * IPV6_BOUND_IF. 10578 */ 10579 connp->conn_outgoing_pill = ill; 10580 break; 10581 10582 case IPV6_DONTFAILOVER_IF: 10583 /* 10584 * This option is used by in.mpathd to ensure 10585 * that IPMP probe packets only go out on the 10586 * test interfaces. in.mpathd sets this option 10587 * on the non-failover interfaces. 10588 */ 10589 connp->conn_nofailover_ill = ill; 10590 /* 10591 * For backward compatibility, this option 10592 * implicitly sets ip_multicast_ill as used in 10593 * IPV6_MULTICAST_IF so that ip_wput gets 10594 * this ill to send mcast packets. 10595 */ 10596 connp->conn_multicast_ill = ill; 10597 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10598 0 : ifindex; 10599 break; 10600 10601 case IPV6_MULTICAST_IF: 10602 /* 10603 * Set conn_multicast_ill to be the IPv6 ill. 10604 * Set conn_multicast_ipif to be an IPv4 ipif 10605 * for ifindex to make IPv4 mapped addresses 10606 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10607 * Even if no IPv6 ill exists for the ifindex 10608 * we need to check for an IPv4 ifindex in order 10609 * for this to work with mapped addresses. In that 10610 * case only set conn_multicast_ipif. 10611 */ 10612 if (!checkonly) { 10613 if (ifindex == 0) { 10614 connp->conn_multicast_ill = NULL; 10615 connp->conn_orig_multicast_ifindex = 0; 10616 connp->conn_multicast_ipif = NULL; 10617 } else if (ill != NULL) { 10618 connp->conn_multicast_ill = ill; 10619 connp->conn_orig_multicast_ifindex = 10620 ifindex; 10621 } 10622 } 10623 break; 10624 } 10625 } 10626 10627 if (ill != NULL) { 10628 mutex_exit(&ill->ill_lock); 10629 mutex_exit(&connp->conn_lock); 10630 ill_refrele(ill); 10631 return (0); 10632 } 10633 mutex_exit(&connp->conn_lock); 10634 /* 10635 * We succeeded in clearing the option (ifindex == 0) or failed to 10636 * locate the ill and could not set the option (ifindex != 0) 10637 */ 10638 return (ifindex == 0 ? 0 : EINVAL); 10639 } 10640 10641 /* This routine sets socket options. */ 10642 /* ARGSUSED */ 10643 int 10644 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10645 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10646 void *dummy, cred_t *cr, mblk_t *first_mp) 10647 { 10648 int *i1 = (int *)invalp; 10649 conn_t *connp = Q_TO_CONN(q); 10650 int error = 0; 10651 boolean_t checkonly; 10652 ire_t *ire; 10653 boolean_t found; 10654 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10655 10656 switch (optset_context) { 10657 10658 case SETFN_OPTCOM_CHECKONLY: 10659 checkonly = B_TRUE; 10660 /* 10661 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10662 * inlen != 0 implies value supplied and 10663 * we have to "pretend" to set it. 10664 * inlen == 0 implies that there is no 10665 * value part in T_CHECK request and just validation 10666 * done elsewhere should be enough, we just return here. 10667 */ 10668 if (inlen == 0) { 10669 *outlenp = 0; 10670 return (0); 10671 } 10672 break; 10673 case SETFN_OPTCOM_NEGOTIATE: 10674 case SETFN_UD_NEGOTIATE: 10675 case SETFN_CONN_NEGOTIATE: 10676 checkonly = B_FALSE; 10677 break; 10678 default: 10679 /* 10680 * We should never get here 10681 */ 10682 *outlenp = 0; 10683 return (EINVAL); 10684 } 10685 10686 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10687 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10688 10689 /* 10690 * For fixed length options, no sanity check 10691 * of passed in length is done. It is assumed *_optcom_req() 10692 * routines do the right thing. 10693 */ 10694 10695 switch (level) { 10696 case SOL_SOCKET: 10697 /* 10698 * conn_lock protects the bitfields, and is used to 10699 * set the fields atomically. 10700 */ 10701 switch (name) { 10702 case SO_BROADCAST: 10703 if (!checkonly) { 10704 /* TODO: use value someplace? */ 10705 mutex_enter(&connp->conn_lock); 10706 connp->conn_broadcast = *i1 ? 1 : 0; 10707 mutex_exit(&connp->conn_lock); 10708 } 10709 break; /* goto sizeof (int) option return */ 10710 case SO_USELOOPBACK: 10711 if (!checkonly) { 10712 /* TODO: use value someplace? */ 10713 mutex_enter(&connp->conn_lock); 10714 connp->conn_loopback = *i1 ? 1 : 0; 10715 mutex_exit(&connp->conn_lock); 10716 } 10717 break; /* goto sizeof (int) option return */ 10718 case SO_DONTROUTE: 10719 if (!checkonly) { 10720 mutex_enter(&connp->conn_lock); 10721 connp->conn_dontroute = *i1 ? 1 : 0; 10722 mutex_exit(&connp->conn_lock); 10723 } 10724 break; /* goto sizeof (int) option return */ 10725 case SO_REUSEADDR: 10726 if (!checkonly) { 10727 mutex_enter(&connp->conn_lock); 10728 connp->conn_reuseaddr = *i1 ? 1 : 0; 10729 mutex_exit(&connp->conn_lock); 10730 } 10731 break; /* goto sizeof (int) option return */ 10732 case SO_PROTOTYPE: 10733 if (!checkonly) { 10734 mutex_enter(&connp->conn_lock); 10735 connp->conn_proto = *i1; 10736 mutex_exit(&connp->conn_lock); 10737 } 10738 break; /* goto sizeof (int) option return */ 10739 case SO_ALLZONES: 10740 if (!checkonly) { 10741 mutex_enter(&connp->conn_lock); 10742 if (IPCL_IS_BOUND(connp)) { 10743 mutex_exit(&connp->conn_lock); 10744 return (EINVAL); 10745 } 10746 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10747 mutex_exit(&connp->conn_lock); 10748 } 10749 break; /* goto sizeof (int) option return */ 10750 case SO_ANON_MLP: 10751 if (!checkonly) { 10752 mutex_enter(&connp->conn_lock); 10753 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10754 mutex_exit(&connp->conn_lock); 10755 } 10756 break; /* goto sizeof (int) option return */ 10757 case SO_MAC_EXEMPT: 10758 if (secpolicy_net_mac_aware(cr) != 0 || 10759 IPCL_IS_BOUND(connp)) 10760 return (EACCES); 10761 if (!checkonly) { 10762 mutex_enter(&connp->conn_lock); 10763 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10764 mutex_exit(&connp->conn_lock); 10765 } 10766 break; /* goto sizeof (int) option return */ 10767 default: 10768 /* 10769 * "soft" error (negative) 10770 * option not handled at this level 10771 * Note: Do not modify *outlenp 10772 */ 10773 return (-EINVAL); 10774 } 10775 break; 10776 case IPPROTO_IP: 10777 switch (name) { 10778 case IP_NEXTHOP: 10779 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10780 return (EPERM); 10781 /* FALLTHRU */ 10782 case IP_MULTICAST_IF: 10783 case IP_DONTFAILOVER_IF: { 10784 ipaddr_t addr = *i1; 10785 10786 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10787 first_mp); 10788 if (error != 0) 10789 return (error); 10790 break; /* goto sizeof (int) option return */ 10791 } 10792 10793 case IP_MULTICAST_TTL: 10794 /* Recorded in transport above IP */ 10795 *outvalp = *invalp; 10796 *outlenp = sizeof (uchar_t); 10797 return (0); 10798 case IP_MULTICAST_LOOP: 10799 if (!checkonly) { 10800 mutex_enter(&connp->conn_lock); 10801 connp->conn_multicast_loop = *invalp ? 1 : 0; 10802 mutex_exit(&connp->conn_lock); 10803 } 10804 *outvalp = *invalp; 10805 *outlenp = sizeof (uchar_t); 10806 return (0); 10807 case IP_ADD_MEMBERSHIP: 10808 case MCAST_JOIN_GROUP: 10809 case IP_DROP_MEMBERSHIP: 10810 case MCAST_LEAVE_GROUP: { 10811 struct ip_mreq *mreqp; 10812 struct group_req *greqp; 10813 ire_t *ire; 10814 boolean_t done = B_FALSE; 10815 ipaddr_t group, ifaddr; 10816 struct sockaddr_in *sin; 10817 uint32_t *ifindexp; 10818 boolean_t mcast_opt = B_TRUE; 10819 mcast_record_t fmode; 10820 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10821 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10822 10823 switch (name) { 10824 case IP_ADD_MEMBERSHIP: 10825 mcast_opt = B_FALSE; 10826 /* FALLTHRU */ 10827 case MCAST_JOIN_GROUP: 10828 fmode = MODE_IS_EXCLUDE; 10829 optfn = ip_opt_add_group; 10830 break; 10831 10832 case IP_DROP_MEMBERSHIP: 10833 mcast_opt = B_FALSE; 10834 /* FALLTHRU */ 10835 case MCAST_LEAVE_GROUP: 10836 fmode = MODE_IS_INCLUDE; 10837 optfn = ip_opt_delete_group; 10838 break; 10839 } 10840 10841 if (mcast_opt) { 10842 greqp = (struct group_req *)i1; 10843 sin = (struct sockaddr_in *)&greqp->gr_group; 10844 if (sin->sin_family != AF_INET) { 10845 *outlenp = 0; 10846 return (ENOPROTOOPT); 10847 } 10848 group = (ipaddr_t)sin->sin_addr.s_addr; 10849 ifaddr = INADDR_ANY; 10850 ifindexp = &greqp->gr_interface; 10851 } else { 10852 mreqp = (struct ip_mreq *)i1; 10853 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10854 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10855 ifindexp = NULL; 10856 } 10857 10858 /* 10859 * In the multirouting case, we need to replicate 10860 * the request on all interfaces that will take part 10861 * in replication. We do so because multirouting is 10862 * reflective, thus we will probably receive multi- 10863 * casts on those interfaces. 10864 * The ip_multirt_apply_membership() succeeds if the 10865 * operation succeeds on at least one interface. 10866 */ 10867 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10868 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10869 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10870 if (ire != NULL) { 10871 if (ire->ire_flags & RTF_MULTIRT) { 10872 error = ip_multirt_apply_membership( 10873 optfn, ire, connp, checkonly, group, 10874 fmode, INADDR_ANY, first_mp); 10875 done = B_TRUE; 10876 } 10877 ire_refrele(ire); 10878 } 10879 if (!done) { 10880 error = optfn(connp, checkonly, group, ifaddr, 10881 ifindexp, fmode, INADDR_ANY, first_mp); 10882 } 10883 if (error) { 10884 /* 10885 * EINPROGRESS is a soft error, needs retry 10886 * so don't make *outlenp zero. 10887 */ 10888 if (error != EINPROGRESS) 10889 *outlenp = 0; 10890 return (error); 10891 } 10892 /* OK return - copy input buffer into output buffer */ 10893 if (invalp != outvalp) { 10894 /* don't trust bcopy for identical src/dst */ 10895 bcopy(invalp, outvalp, inlen); 10896 } 10897 *outlenp = inlen; 10898 return (0); 10899 } 10900 case IP_BLOCK_SOURCE: 10901 case IP_UNBLOCK_SOURCE: 10902 case IP_ADD_SOURCE_MEMBERSHIP: 10903 case IP_DROP_SOURCE_MEMBERSHIP: 10904 case MCAST_BLOCK_SOURCE: 10905 case MCAST_UNBLOCK_SOURCE: 10906 case MCAST_JOIN_SOURCE_GROUP: 10907 case MCAST_LEAVE_SOURCE_GROUP: { 10908 struct ip_mreq_source *imreqp; 10909 struct group_source_req *gsreqp; 10910 in_addr_t grp, src, ifaddr = INADDR_ANY; 10911 uint32_t ifindex = 0; 10912 mcast_record_t fmode; 10913 struct sockaddr_in *sin; 10914 ire_t *ire; 10915 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10916 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10917 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10918 10919 switch (name) { 10920 case IP_BLOCK_SOURCE: 10921 mcast_opt = B_FALSE; 10922 /* FALLTHRU */ 10923 case MCAST_BLOCK_SOURCE: 10924 fmode = MODE_IS_EXCLUDE; 10925 optfn = ip_opt_add_group; 10926 break; 10927 10928 case IP_UNBLOCK_SOURCE: 10929 mcast_opt = B_FALSE; 10930 /* FALLTHRU */ 10931 case MCAST_UNBLOCK_SOURCE: 10932 fmode = MODE_IS_EXCLUDE; 10933 optfn = ip_opt_delete_group; 10934 break; 10935 10936 case IP_ADD_SOURCE_MEMBERSHIP: 10937 mcast_opt = B_FALSE; 10938 /* FALLTHRU */ 10939 case MCAST_JOIN_SOURCE_GROUP: 10940 fmode = MODE_IS_INCLUDE; 10941 optfn = ip_opt_add_group; 10942 break; 10943 10944 case IP_DROP_SOURCE_MEMBERSHIP: 10945 mcast_opt = B_FALSE; 10946 /* FALLTHRU */ 10947 case MCAST_LEAVE_SOURCE_GROUP: 10948 fmode = MODE_IS_INCLUDE; 10949 optfn = ip_opt_delete_group; 10950 break; 10951 } 10952 10953 if (mcast_opt) { 10954 gsreqp = (struct group_source_req *)i1; 10955 if (gsreqp->gsr_group.ss_family != AF_INET) { 10956 *outlenp = 0; 10957 return (ENOPROTOOPT); 10958 } 10959 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10960 grp = (ipaddr_t)sin->sin_addr.s_addr; 10961 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10962 src = (ipaddr_t)sin->sin_addr.s_addr; 10963 ifindex = gsreqp->gsr_interface; 10964 } else { 10965 imreqp = (struct ip_mreq_source *)i1; 10966 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10967 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10968 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10969 } 10970 10971 /* 10972 * In the multirouting case, we need to replicate 10973 * the request as noted in the mcast cases above. 10974 */ 10975 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10976 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10977 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10978 if (ire != NULL) { 10979 if (ire->ire_flags & RTF_MULTIRT) { 10980 error = ip_multirt_apply_membership( 10981 optfn, ire, connp, checkonly, grp, 10982 fmode, src, first_mp); 10983 done = B_TRUE; 10984 } 10985 ire_refrele(ire); 10986 } 10987 if (!done) { 10988 error = optfn(connp, checkonly, grp, ifaddr, 10989 &ifindex, fmode, src, first_mp); 10990 } 10991 if (error != 0) { 10992 /* 10993 * EINPROGRESS is a soft error, needs retry 10994 * so don't make *outlenp zero. 10995 */ 10996 if (error != EINPROGRESS) 10997 *outlenp = 0; 10998 return (error); 10999 } 11000 /* OK return - copy input buffer into output buffer */ 11001 if (invalp != outvalp) { 11002 bcopy(invalp, outvalp, inlen); 11003 } 11004 *outlenp = inlen; 11005 return (0); 11006 } 11007 case IP_SEC_OPT: 11008 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11009 if (error != 0) { 11010 *outlenp = 0; 11011 return (error); 11012 } 11013 break; 11014 case IP_HDRINCL: 11015 case IP_OPTIONS: 11016 case T_IP_OPTIONS: 11017 case IP_TOS: 11018 case T_IP_TOS: 11019 case IP_TTL: 11020 case IP_RECVDSTADDR: 11021 case IP_RECVOPTS: 11022 /* OK return - copy input buffer into output buffer */ 11023 if (invalp != outvalp) { 11024 /* don't trust bcopy for identical src/dst */ 11025 bcopy(invalp, outvalp, inlen); 11026 } 11027 *outlenp = inlen; 11028 return (0); 11029 case IP_RECVIF: 11030 /* Retrieve the inbound interface index */ 11031 if (!checkonly) { 11032 mutex_enter(&connp->conn_lock); 11033 connp->conn_recvif = *i1 ? 1 : 0; 11034 mutex_exit(&connp->conn_lock); 11035 } 11036 break; /* goto sizeof (int) option return */ 11037 case IP_RECVPKTINFO: 11038 if (!checkonly) { 11039 mutex_enter(&connp->conn_lock); 11040 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11041 mutex_exit(&connp->conn_lock); 11042 } 11043 break; /* goto sizeof (int) option return */ 11044 case IP_RECVSLLA: 11045 /* Retrieve the source link layer address */ 11046 if (!checkonly) { 11047 mutex_enter(&connp->conn_lock); 11048 connp->conn_recvslla = *i1 ? 1 : 0; 11049 mutex_exit(&connp->conn_lock); 11050 } 11051 break; /* goto sizeof (int) option return */ 11052 case MRT_INIT: 11053 case MRT_DONE: 11054 case MRT_ADD_VIF: 11055 case MRT_DEL_VIF: 11056 case MRT_ADD_MFC: 11057 case MRT_DEL_MFC: 11058 case MRT_ASSERT: 11059 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11060 *outlenp = 0; 11061 return (error); 11062 } 11063 error = ip_mrouter_set((int)name, q, checkonly, 11064 (uchar_t *)invalp, inlen, first_mp); 11065 if (error) { 11066 *outlenp = 0; 11067 return (error); 11068 } 11069 /* OK return - copy input buffer into output buffer */ 11070 if (invalp != outvalp) { 11071 /* don't trust bcopy for identical src/dst */ 11072 bcopy(invalp, outvalp, inlen); 11073 } 11074 *outlenp = inlen; 11075 return (0); 11076 case IP_BOUND_IF: 11077 case IP_DHCPINIT_IF: 11078 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11079 level, name, first_mp); 11080 if (error != 0) 11081 return (error); 11082 break; /* goto sizeof (int) option return */ 11083 11084 case IP_UNSPEC_SRC: 11085 /* Allow sending with a zero source address */ 11086 if (!checkonly) { 11087 mutex_enter(&connp->conn_lock); 11088 connp->conn_unspec_src = *i1 ? 1 : 0; 11089 mutex_exit(&connp->conn_lock); 11090 } 11091 break; /* goto sizeof (int) option return */ 11092 default: 11093 /* 11094 * "soft" error (negative) 11095 * option not handled at this level 11096 * Note: Do not modify *outlenp 11097 */ 11098 return (-EINVAL); 11099 } 11100 break; 11101 case IPPROTO_IPV6: 11102 switch (name) { 11103 case IPV6_BOUND_IF: 11104 case IPV6_BOUND_PIF: 11105 case IPV6_DONTFAILOVER_IF: 11106 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11107 level, name, first_mp); 11108 if (error != 0) 11109 return (error); 11110 break; /* goto sizeof (int) option return */ 11111 11112 case IPV6_MULTICAST_IF: 11113 /* 11114 * The only possible errors are EINPROGRESS and 11115 * EINVAL. EINPROGRESS will be restarted and is not 11116 * a hard error. We call this option on both V4 and V6 11117 * If both return EINVAL, then this call returns 11118 * EINVAL. If at least one of them succeeds we 11119 * return success. 11120 */ 11121 found = B_FALSE; 11122 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11123 level, name, first_mp); 11124 if (error == EINPROGRESS) 11125 return (error); 11126 if (error == 0) 11127 found = B_TRUE; 11128 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11129 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11130 if (error == 0) 11131 found = B_TRUE; 11132 if (!found) 11133 return (error); 11134 break; /* goto sizeof (int) option return */ 11135 11136 case IPV6_MULTICAST_HOPS: 11137 /* Recorded in transport above IP */ 11138 break; /* goto sizeof (int) option return */ 11139 case IPV6_MULTICAST_LOOP: 11140 if (!checkonly) { 11141 mutex_enter(&connp->conn_lock); 11142 connp->conn_multicast_loop = *i1; 11143 mutex_exit(&connp->conn_lock); 11144 } 11145 break; /* goto sizeof (int) option return */ 11146 case IPV6_JOIN_GROUP: 11147 case MCAST_JOIN_GROUP: 11148 case IPV6_LEAVE_GROUP: 11149 case MCAST_LEAVE_GROUP: { 11150 struct ipv6_mreq *ip_mreqp; 11151 struct group_req *greqp; 11152 ire_t *ire; 11153 boolean_t done = B_FALSE; 11154 in6_addr_t groupv6; 11155 uint32_t ifindex; 11156 boolean_t mcast_opt = B_TRUE; 11157 mcast_record_t fmode; 11158 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11159 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11160 11161 switch (name) { 11162 case IPV6_JOIN_GROUP: 11163 mcast_opt = B_FALSE; 11164 /* FALLTHRU */ 11165 case MCAST_JOIN_GROUP: 11166 fmode = MODE_IS_EXCLUDE; 11167 optfn = ip_opt_add_group_v6; 11168 break; 11169 11170 case IPV6_LEAVE_GROUP: 11171 mcast_opt = B_FALSE; 11172 /* FALLTHRU */ 11173 case MCAST_LEAVE_GROUP: 11174 fmode = MODE_IS_INCLUDE; 11175 optfn = ip_opt_delete_group_v6; 11176 break; 11177 } 11178 11179 if (mcast_opt) { 11180 struct sockaddr_in *sin; 11181 struct sockaddr_in6 *sin6; 11182 greqp = (struct group_req *)i1; 11183 if (greqp->gr_group.ss_family == AF_INET) { 11184 sin = (struct sockaddr_in *) 11185 &(greqp->gr_group); 11186 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11187 &groupv6); 11188 } else { 11189 sin6 = (struct sockaddr_in6 *) 11190 &(greqp->gr_group); 11191 groupv6 = sin6->sin6_addr; 11192 } 11193 ifindex = greqp->gr_interface; 11194 } else { 11195 ip_mreqp = (struct ipv6_mreq *)i1; 11196 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11197 ifindex = ip_mreqp->ipv6mr_interface; 11198 } 11199 /* 11200 * In the multirouting case, we need to replicate 11201 * the request on all interfaces that will take part 11202 * in replication. We do so because multirouting is 11203 * reflective, thus we will probably receive multi- 11204 * casts on those interfaces. 11205 * The ip_multirt_apply_membership_v6() succeeds if 11206 * the operation succeeds on at least one interface. 11207 */ 11208 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11209 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11210 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11211 if (ire != NULL) { 11212 if (ire->ire_flags & RTF_MULTIRT) { 11213 error = ip_multirt_apply_membership_v6( 11214 optfn, ire, connp, checkonly, 11215 &groupv6, fmode, &ipv6_all_zeros, 11216 first_mp); 11217 done = B_TRUE; 11218 } 11219 ire_refrele(ire); 11220 } 11221 if (!done) { 11222 error = optfn(connp, checkonly, &groupv6, 11223 ifindex, fmode, &ipv6_all_zeros, first_mp); 11224 } 11225 if (error) { 11226 /* 11227 * EINPROGRESS is a soft error, needs retry 11228 * so don't make *outlenp zero. 11229 */ 11230 if (error != EINPROGRESS) 11231 *outlenp = 0; 11232 return (error); 11233 } 11234 /* OK return - copy input buffer into output buffer */ 11235 if (invalp != outvalp) { 11236 /* don't trust bcopy for identical src/dst */ 11237 bcopy(invalp, outvalp, inlen); 11238 } 11239 *outlenp = inlen; 11240 return (0); 11241 } 11242 case MCAST_BLOCK_SOURCE: 11243 case MCAST_UNBLOCK_SOURCE: 11244 case MCAST_JOIN_SOURCE_GROUP: 11245 case MCAST_LEAVE_SOURCE_GROUP: { 11246 struct group_source_req *gsreqp; 11247 in6_addr_t v6grp, v6src; 11248 uint32_t ifindex; 11249 mcast_record_t fmode; 11250 ire_t *ire; 11251 boolean_t done = B_FALSE; 11252 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11253 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11254 11255 switch (name) { 11256 case MCAST_BLOCK_SOURCE: 11257 fmode = MODE_IS_EXCLUDE; 11258 optfn = ip_opt_add_group_v6; 11259 break; 11260 case MCAST_UNBLOCK_SOURCE: 11261 fmode = MODE_IS_EXCLUDE; 11262 optfn = ip_opt_delete_group_v6; 11263 break; 11264 case MCAST_JOIN_SOURCE_GROUP: 11265 fmode = MODE_IS_INCLUDE; 11266 optfn = ip_opt_add_group_v6; 11267 break; 11268 case MCAST_LEAVE_SOURCE_GROUP: 11269 fmode = MODE_IS_INCLUDE; 11270 optfn = ip_opt_delete_group_v6; 11271 break; 11272 } 11273 11274 gsreqp = (struct group_source_req *)i1; 11275 ifindex = gsreqp->gsr_interface; 11276 if (gsreqp->gsr_group.ss_family == AF_INET) { 11277 struct sockaddr_in *s; 11278 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11279 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11280 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11281 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11282 } else { 11283 struct sockaddr_in6 *s6; 11284 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11285 v6grp = s6->sin6_addr; 11286 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11287 v6src = s6->sin6_addr; 11288 } 11289 11290 /* 11291 * In the multirouting case, we need to replicate 11292 * the request as noted in the mcast cases above. 11293 */ 11294 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11295 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11296 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11297 if (ire != NULL) { 11298 if (ire->ire_flags & RTF_MULTIRT) { 11299 error = ip_multirt_apply_membership_v6( 11300 optfn, ire, connp, checkonly, 11301 &v6grp, fmode, &v6src, first_mp); 11302 done = B_TRUE; 11303 } 11304 ire_refrele(ire); 11305 } 11306 if (!done) { 11307 error = optfn(connp, checkonly, &v6grp, 11308 ifindex, fmode, &v6src, first_mp); 11309 } 11310 if (error != 0) { 11311 /* 11312 * EINPROGRESS is a soft error, needs retry 11313 * so don't make *outlenp zero. 11314 */ 11315 if (error != EINPROGRESS) 11316 *outlenp = 0; 11317 return (error); 11318 } 11319 /* OK return - copy input buffer into output buffer */ 11320 if (invalp != outvalp) { 11321 bcopy(invalp, outvalp, inlen); 11322 } 11323 *outlenp = inlen; 11324 return (0); 11325 } 11326 case IPV6_UNICAST_HOPS: 11327 /* Recorded in transport above IP */ 11328 break; /* goto sizeof (int) option return */ 11329 case IPV6_UNSPEC_SRC: 11330 /* Allow sending with a zero source address */ 11331 if (!checkonly) { 11332 mutex_enter(&connp->conn_lock); 11333 connp->conn_unspec_src = *i1 ? 1 : 0; 11334 mutex_exit(&connp->conn_lock); 11335 } 11336 break; /* goto sizeof (int) option return */ 11337 case IPV6_RECVPKTINFO: 11338 if (!checkonly) { 11339 mutex_enter(&connp->conn_lock); 11340 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11341 mutex_exit(&connp->conn_lock); 11342 } 11343 break; /* goto sizeof (int) option return */ 11344 case IPV6_RECVTCLASS: 11345 if (!checkonly) { 11346 if (*i1 < 0 || *i1 > 1) { 11347 return (EINVAL); 11348 } 11349 mutex_enter(&connp->conn_lock); 11350 connp->conn_ipv6_recvtclass = *i1; 11351 mutex_exit(&connp->conn_lock); 11352 } 11353 break; 11354 case IPV6_RECVPATHMTU: 11355 if (!checkonly) { 11356 if (*i1 < 0 || *i1 > 1) { 11357 return (EINVAL); 11358 } 11359 mutex_enter(&connp->conn_lock); 11360 connp->conn_ipv6_recvpathmtu = *i1; 11361 mutex_exit(&connp->conn_lock); 11362 } 11363 break; 11364 case IPV6_RECVHOPLIMIT: 11365 if (!checkonly) { 11366 mutex_enter(&connp->conn_lock); 11367 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11368 mutex_exit(&connp->conn_lock); 11369 } 11370 break; /* goto sizeof (int) option return */ 11371 case IPV6_RECVHOPOPTS: 11372 if (!checkonly) { 11373 mutex_enter(&connp->conn_lock); 11374 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11375 mutex_exit(&connp->conn_lock); 11376 } 11377 break; /* goto sizeof (int) option return */ 11378 case IPV6_RECVDSTOPTS: 11379 if (!checkonly) { 11380 mutex_enter(&connp->conn_lock); 11381 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11382 mutex_exit(&connp->conn_lock); 11383 } 11384 break; /* goto sizeof (int) option return */ 11385 case IPV6_RECVRTHDR: 11386 if (!checkonly) { 11387 mutex_enter(&connp->conn_lock); 11388 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11389 mutex_exit(&connp->conn_lock); 11390 } 11391 break; /* goto sizeof (int) option return */ 11392 case IPV6_RECVRTHDRDSTOPTS: 11393 if (!checkonly) { 11394 mutex_enter(&connp->conn_lock); 11395 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11396 mutex_exit(&connp->conn_lock); 11397 } 11398 break; /* goto sizeof (int) option return */ 11399 case IPV6_PKTINFO: 11400 if (inlen == 0) 11401 return (-EINVAL); /* clearing option */ 11402 error = ip6_set_pktinfo(cr, connp, 11403 (struct in6_pktinfo *)invalp, first_mp); 11404 if (error != 0) 11405 *outlenp = 0; 11406 else 11407 *outlenp = inlen; 11408 return (error); 11409 case IPV6_NEXTHOP: { 11410 struct sockaddr_in6 *sin6; 11411 11412 /* Verify that the nexthop is reachable */ 11413 if (inlen == 0) 11414 return (-EINVAL); /* clearing option */ 11415 11416 sin6 = (struct sockaddr_in6 *)invalp; 11417 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11418 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11419 NULL, MATCH_IRE_DEFAULT, ipst); 11420 11421 if (ire == NULL) { 11422 *outlenp = 0; 11423 return (EHOSTUNREACH); 11424 } 11425 ire_refrele(ire); 11426 return (-EINVAL); 11427 } 11428 case IPV6_SEC_OPT: 11429 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11430 if (error != 0) { 11431 *outlenp = 0; 11432 return (error); 11433 } 11434 break; 11435 case IPV6_SRC_PREFERENCES: { 11436 /* 11437 * This is implemented strictly in the ip module 11438 * (here and in tcp_opt_*() to accomodate tcp 11439 * sockets). Modules above ip pass this option 11440 * down here since ip is the only one that needs to 11441 * be aware of source address preferences. 11442 * 11443 * This socket option only affects connected 11444 * sockets that haven't already bound to a specific 11445 * IPv6 address. In other words, sockets that 11446 * don't call bind() with an address other than the 11447 * unspecified address and that call connect(). 11448 * ip_bind_connected_v6() passes these preferences 11449 * to the ipif_select_source_v6() function. 11450 */ 11451 if (inlen != sizeof (uint32_t)) 11452 return (EINVAL); 11453 error = ip6_set_src_preferences(connp, 11454 *(uint32_t *)invalp); 11455 if (error != 0) { 11456 *outlenp = 0; 11457 return (error); 11458 } else { 11459 *outlenp = sizeof (uint32_t); 11460 } 11461 break; 11462 } 11463 case IPV6_V6ONLY: 11464 if (*i1 < 0 || *i1 > 1) { 11465 return (EINVAL); 11466 } 11467 mutex_enter(&connp->conn_lock); 11468 connp->conn_ipv6_v6only = *i1; 11469 mutex_exit(&connp->conn_lock); 11470 break; 11471 default: 11472 return (-EINVAL); 11473 } 11474 break; 11475 default: 11476 /* 11477 * "soft" error (negative) 11478 * option not handled at this level 11479 * Note: Do not modify *outlenp 11480 */ 11481 return (-EINVAL); 11482 } 11483 /* 11484 * Common case of return from an option that is sizeof (int) 11485 */ 11486 *(int *)outvalp = *i1; 11487 *outlenp = sizeof (int); 11488 return (0); 11489 } 11490 11491 /* 11492 * This routine gets default values of certain options whose default 11493 * values are maintained by protocol specific code 11494 */ 11495 /* ARGSUSED */ 11496 int 11497 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11498 { 11499 int *i1 = (int *)ptr; 11500 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11501 11502 switch (level) { 11503 case IPPROTO_IP: 11504 switch (name) { 11505 case IP_MULTICAST_TTL: 11506 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11507 return (sizeof (uchar_t)); 11508 case IP_MULTICAST_LOOP: 11509 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11510 return (sizeof (uchar_t)); 11511 default: 11512 return (-1); 11513 } 11514 case IPPROTO_IPV6: 11515 switch (name) { 11516 case IPV6_UNICAST_HOPS: 11517 *i1 = ipst->ips_ipv6_def_hops; 11518 return (sizeof (int)); 11519 case IPV6_MULTICAST_HOPS: 11520 *i1 = IP_DEFAULT_MULTICAST_TTL; 11521 return (sizeof (int)); 11522 case IPV6_MULTICAST_LOOP: 11523 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11524 return (sizeof (int)); 11525 case IPV6_V6ONLY: 11526 *i1 = 1; 11527 return (sizeof (int)); 11528 default: 11529 return (-1); 11530 } 11531 default: 11532 return (-1); 11533 } 11534 /* NOTREACHED */ 11535 } 11536 11537 /* 11538 * Given a destination address and a pointer to where to put the information 11539 * this routine fills in the mtuinfo. 11540 */ 11541 int 11542 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11543 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11544 { 11545 ire_t *ire; 11546 ip_stack_t *ipst = ns->netstack_ip; 11547 11548 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11549 return (-1); 11550 11551 bzero(mtuinfo, sizeof (*mtuinfo)); 11552 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11553 mtuinfo->ip6m_addr.sin6_port = port; 11554 mtuinfo->ip6m_addr.sin6_addr = *in6; 11555 11556 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11557 if (ire != NULL) { 11558 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11559 ire_refrele(ire); 11560 } else { 11561 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11562 } 11563 return (sizeof (struct ip6_mtuinfo)); 11564 } 11565 11566 /* 11567 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11568 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11569 * isn't. This doesn't matter as the error checking is done properly for the 11570 * other MRT options coming in through ip_opt_set. 11571 */ 11572 int 11573 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11574 { 11575 conn_t *connp = Q_TO_CONN(q); 11576 ipsec_req_t *req = (ipsec_req_t *)ptr; 11577 11578 switch (level) { 11579 case IPPROTO_IP: 11580 switch (name) { 11581 case MRT_VERSION: 11582 case MRT_ASSERT: 11583 (void) ip_mrouter_get(name, q, ptr); 11584 return (sizeof (int)); 11585 case IP_SEC_OPT: 11586 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11587 case IP_NEXTHOP: 11588 if (connp->conn_nexthop_set) { 11589 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11590 return (sizeof (ipaddr_t)); 11591 } else 11592 return (0); 11593 case IP_RECVPKTINFO: 11594 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11595 return (sizeof (int)); 11596 default: 11597 break; 11598 } 11599 break; 11600 case IPPROTO_IPV6: 11601 switch (name) { 11602 case IPV6_SEC_OPT: 11603 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11604 case IPV6_SRC_PREFERENCES: { 11605 return (ip6_get_src_preferences(connp, 11606 (uint32_t *)ptr)); 11607 } 11608 case IPV6_V6ONLY: 11609 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11610 return (sizeof (int)); 11611 case IPV6_PATHMTU: 11612 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11613 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11614 default: 11615 break; 11616 } 11617 break; 11618 default: 11619 break; 11620 } 11621 return (-1); 11622 } 11623 11624 /* Named Dispatch routine to get a current value out of our parameter table. */ 11625 /* ARGSUSED */ 11626 static int 11627 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11628 { 11629 ipparam_t *ippa = (ipparam_t *)cp; 11630 11631 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11632 return (0); 11633 } 11634 11635 /* ARGSUSED */ 11636 static int 11637 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11638 { 11639 11640 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11641 return (0); 11642 } 11643 11644 /* 11645 * Set ip{,6}_forwarding values. This means walking through all of the 11646 * ill's and toggling their forwarding values. 11647 */ 11648 /* ARGSUSED */ 11649 static int 11650 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11651 { 11652 long new_value; 11653 int *forwarding_value = (int *)cp; 11654 ill_t *ill; 11655 boolean_t isv6; 11656 ill_walk_context_t ctx; 11657 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11658 11659 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11660 11661 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11662 new_value < 0 || new_value > 1) { 11663 return (EINVAL); 11664 } 11665 11666 *forwarding_value = new_value; 11667 11668 /* 11669 * Regardless of the current value of ip_forwarding, set all per-ill 11670 * values of ip_forwarding to the value being set. 11671 * 11672 * Bring all the ill's up to date with the new global value. 11673 */ 11674 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11675 11676 if (isv6) 11677 ill = ILL_START_WALK_V6(&ctx, ipst); 11678 else 11679 ill = ILL_START_WALK_V4(&ctx, ipst); 11680 11681 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11682 (void) ill_forward_set(ill, new_value != 0); 11683 11684 rw_exit(&ipst->ips_ill_g_lock); 11685 return (0); 11686 } 11687 11688 /* 11689 * Walk through the param array specified registering each element with the 11690 * Named Dispatch handler. This is called only during init. So it is ok 11691 * not to acquire any locks 11692 */ 11693 static boolean_t 11694 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11695 ipndp_t *ipnd, size_t ipnd_cnt) 11696 { 11697 for (; ippa_cnt-- > 0; ippa++) { 11698 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11699 if (!nd_load(ndp, ippa->ip_param_name, 11700 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11701 nd_free(ndp); 11702 return (B_FALSE); 11703 } 11704 } 11705 } 11706 11707 for (; ipnd_cnt-- > 0; ipnd++) { 11708 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11709 if (!nd_load(ndp, ipnd->ip_ndp_name, 11710 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11711 ipnd->ip_ndp_data)) { 11712 nd_free(ndp); 11713 return (B_FALSE); 11714 } 11715 } 11716 } 11717 11718 return (B_TRUE); 11719 } 11720 11721 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11722 /* ARGSUSED */ 11723 static int 11724 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11725 { 11726 long new_value; 11727 ipparam_t *ippa = (ipparam_t *)cp; 11728 11729 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11730 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11731 return (EINVAL); 11732 } 11733 ippa->ip_param_value = new_value; 11734 return (0); 11735 } 11736 11737 /* 11738 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11739 * When an ipf is passed here for the first time, if 11740 * we already have in-order fragments on the queue, we convert from the fast- 11741 * path reassembly scheme to the hard-case scheme. From then on, additional 11742 * fragments are reassembled here. We keep track of the start and end offsets 11743 * of each piece, and the number of holes in the chain. When the hole count 11744 * goes to zero, we are done! 11745 * 11746 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11747 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11748 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11749 * after the call to ip_reassemble(). 11750 */ 11751 int 11752 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11753 size_t msg_len) 11754 { 11755 uint_t end; 11756 mblk_t *next_mp; 11757 mblk_t *mp1; 11758 uint_t offset; 11759 boolean_t incr_dups = B_TRUE; 11760 boolean_t offset_zero_seen = B_FALSE; 11761 boolean_t pkt_boundary_checked = B_FALSE; 11762 11763 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11764 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11765 11766 /* Add in byte count */ 11767 ipf->ipf_count += msg_len; 11768 if (ipf->ipf_end) { 11769 /* 11770 * We were part way through in-order reassembly, but now there 11771 * is a hole. We walk through messages already queued, and 11772 * mark them for hard case reassembly. We know that up till 11773 * now they were in order starting from offset zero. 11774 */ 11775 offset = 0; 11776 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11777 IP_REASS_SET_START(mp1, offset); 11778 if (offset == 0) { 11779 ASSERT(ipf->ipf_nf_hdr_len != 0); 11780 offset = -ipf->ipf_nf_hdr_len; 11781 } 11782 offset += mp1->b_wptr - mp1->b_rptr; 11783 IP_REASS_SET_END(mp1, offset); 11784 } 11785 /* One hole at the end. */ 11786 ipf->ipf_hole_cnt = 1; 11787 /* Brand it as a hard case, forever. */ 11788 ipf->ipf_end = 0; 11789 } 11790 /* Walk through all the new pieces. */ 11791 do { 11792 end = start + (mp->b_wptr - mp->b_rptr); 11793 /* 11794 * If start is 0, decrease 'end' only for the first mblk of 11795 * the fragment. Otherwise 'end' can get wrong value in the 11796 * second pass of the loop if first mblk is exactly the 11797 * size of ipf_nf_hdr_len. 11798 */ 11799 if (start == 0 && !offset_zero_seen) { 11800 /* First segment */ 11801 ASSERT(ipf->ipf_nf_hdr_len != 0); 11802 end -= ipf->ipf_nf_hdr_len; 11803 offset_zero_seen = B_TRUE; 11804 } 11805 next_mp = mp->b_cont; 11806 /* 11807 * We are checking to see if there is any interesing data 11808 * to process. If there isn't and the mblk isn't the 11809 * one which carries the unfragmentable header then we 11810 * drop it. It's possible to have just the unfragmentable 11811 * header come through without any data. That needs to be 11812 * saved. 11813 * 11814 * If the assert at the top of this function holds then the 11815 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11816 * is infrequently traveled enough that the test is left in 11817 * to protect against future code changes which break that 11818 * invariant. 11819 */ 11820 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11821 /* Empty. Blast it. */ 11822 IP_REASS_SET_START(mp, 0); 11823 IP_REASS_SET_END(mp, 0); 11824 /* 11825 * If the ipf points to the mblk we are about to free, 11826 * update ipf to point to the next mblk (or NULL 11827 * if none). 11828 */ 11829 if (ipf->ipf_mp->b_cont == mp) 11830 ipf->ipf_mp->b_cont = next_mp; 11831 freeb(mp); 11832 continue; 11833 } 11834 mp->b_cont = NULL; 11835 IP_REASS_SET_START(mp, start); 11836 IP_REASS_SET_END(mp, end); 11837 if (!ipf->ipf_tail_mp) { 11838 ipf->ipf_tail_mp = mp; 11839 ipf->ipf_mp->b_cont = mp; 11840 if (start == 0 || !more) { 11841 ipf->ipf_hole_cnt = 1; 11842 /* 11843 * if the first fragment comes in more than one 11844 * mblk, this loop will be executed for each 11845 * mblk. Need to adjust hole count so exiting 11846 * this routine will leave hole count at 1. 11847 */ 11848 if (next_mp) 11849 ipf->ipf_hole_cnt++; 11850 } else 11851 ipf->ipf_hole_cnt = 2; 11852 continue; 11853 } else if (ipf->ipf_last_frag_seen && !more && 11854 !pkt_boundary_checked) { 11855 /* 11856 * We check datagram boundary only if this fragment 11857 * claims to be the last fragment and we have seen a 11858 * last fragment in the past too. We do this only 11859 * once for a given fragment. 11860 * 11861 * start cannot be 0 here as fragments with start=0 11862 * and MF=0 gets handled as a complete packet. These 11863 * fragments should not reach here. 11864 */ 11865 11866 if (start + msgdsize(mp) != 11867 IP_REASS_END(ipf->ipf_tail_mp)) { 11868 /* 11869 * We have two fragments both of which claim 11870 * to be the last fragment but gives conflicting 11871 * information about the whole datagram size. 11872 * Something fishy is going on. Drop the 11873 * fragment and free up the reassembly list. 11874 */ 11875 return (IP_REASS_FAILED); 11876 } 11877 11878 /* 11879 * We shouldn't come to this code block again for this 11880 * particular fragment. 11881 */ 11882 pkt_boundary_checked = B_TRUE; 11883 } 11884 11885 /* New stuff at or beyond tail? */ 11886 offset = IP_REASS_END(ipf->ipf_tail_mp); 11887 if (start >= offset) { 11888 if (ipf->ipf_last_frag_seen) { 11889 /* current fragment is beyond last fragment */ 11890 return (IP_REASS_FAILED); 11891 } 11892 /* Link it on end. */ 11893 ipf->ipf_tail_mp->b_cont = mp; 11894 ipf->ipf_tail_mp = mp; 11895 if (more) { 11896 if (start != offset) 11897 ipf->ipf_hole_cnt++; 11898 } else if (start == offset && next_mp == NULL) 11899 ipf->ipf_hole_cnt--; 11900 continue; 11901 } 11902 mp1 = ipf->ipf_mp->b_cont; 11903 offset = IP_REASS_START(mp1); 11904 /* New stuff at the front? */ 11905 if (start < offset) { 11906 if (start == 0) { 11907 if (end >= offset) { 11908 /* Nailed the hole at the begining. */ 11909 ipf->ipf_hole_cnt--; 11910 } 11911 } else if (end < offset) { 11912 /* 11913 * A hole, stuff, and a hole where there used 11914 * to be just a hole. 11915 */ 11916 ipf->ipf_hole_cnt++; 11917 } 11918 mp->b_cont = mp1; 11919 /* Check for overlap. */ 11920 while (end > offset) { 11921 if (end < IP_REASS_END(mp1)) { 11922 mp->b_wptr -= end - offset; 11923 IP_REASS_SET_END(mp, offset); 11924 BUMP_MIB(ill->ill_ip_mib, 11925 ipIfStatsReasmPartDups); 11926 break; 11927 } 11928 /* Did we cover another hole? */ 11929 if ((mp1->b_cont && 11930 IP_REASS_END(mp1) != 11931 IP_REASS_START(mp1->b_cont) && 11932 end >= IP_REASS_START(mp1->b_cont)) || 11933 (!ipf->ipf_last_frag_seen && !more)) { 11934 ipf->ipf_hole_cnt--; 11935 } 11936 /* Clip out mp1. */ 11937 if ((mp->b_cont = mp1->b_cont) == NULL) { 11938 /* 11939 * After clipping out mp1, this guy 11940 * is now hanging off the end. 11941 */ 11942 ipf->ipf_tail_mp = mp; 11943 } 11944 IP_REASS_SET_START(mp1, 0); 11945 IP_REASS_SET_END(mp1, 0); 11946 /* Subtract byte count */ 11947 ipf->ipf_count -= mp1->b_datap->db_lim - 11948 mp1->b_datap->db_base; 11949 freeb(mp1); 11950 BUMP_MIB(ill->ill_ip_mib, 11951 ipIfStatsReasmPartDups); 11952 mp1 = mp->b_cont; 11953 if (!mp1) 11954 break; 11955 offset = IP_REASS_START(mp1); 11956 } 11957 ipf->ipf_mp->b_cont = mp; 11958 continue; 11959 } 11960 /* 11961 * The new piece starts somewhere between the start of the head 11962 * and before the end of the tail. 11963 */ 11964 for (; mp1; mp1 = mp1->b_cont) { 11965 offset = IP_REASS_END(mp1); 11966 if (start < offset) { 11967 if (end <= offset) { 11968 /* Nothing new. */ 11969 IP_REASS_SET_START(mp, 0); 11970 IP_REASS_SET_END(mp, 0); 11971 /* Subtract byte count */ 11972 ipf->ipf_count -= mp->b_datap->db_lim - 11973 mp->b_datap->db_base; 11974 if (incr_dups) { 11975 ipf->ipf_num_dups++; 11976 incr_dups = B_FALSE; 11977 } 11978 freeb(mp); 11979 BUMP_MIB(ill->ill_ip_mib, 11980 ipIfStatsReasmDuplicates); 11981 break; 11982 } 11983 /* 11984 * Trim redundant stuff off beginning of new 11985 * piece. 11986 */ 11987 IP_REASS_SET_START(mp, offset); 11988 mp->b_rptr += offset - start; 11989 BUMP_MIB(ill->ill_ip_mib, 11990 ipIfStatsReasmPartDups); 11991 start = offset; 11992 if (!mp1->b_cont) { 11993 /* 11994 * After trimming, this guy is now 11995 * hanging off the end. 11996 */ 11997 mp1->b_cont = mp; 11998 ipf->ipf_tail_mp = mp; 11999 if (!more) { 12000 ipf->ipf_hole_cnt--; 12001 } 12002 break; 12003 } 12004 } 12005 if (start >= IP_REASS_START(mp1->b_cont)) 12006 continue; 12007 /* Fill a hole */ 12008 if (start > offset) 12009 ipf->ipf_hole_cnt++; 12010 mp->b_cont = mp1->b_cont; 12011 mp1->b_cont = mp; 12012 mp1 = mp->b_cont; 12013 offset = IP_REASS_START(mp1); 12014 if (end >= offset) { 12015 ipf->ipf_hole_cnt--; 12016 /* Check for overlap. */ 12017 while (end > offset) { 12018 if (end < IP_REASS_END(mp1)) { 12019 mp->b_wptr -= end - offset; 12020 IP_REASS_SET_END(mp, offset); 12021 /* 12022 * TODO we might bump 12023 * this up twice if there is 12024 * overlap at both ends. 12025 */ 12026 BUMP_MIB(ill->ill_ip_mib, 12027 ipIfStatsReasmPartDups); 12028 break; 12029 } 12030 /* Did we cover another hole? */ 12031 if ((mp1->b_cont && 12032 IP_REASS_END(mp1) 12033 != IP_REASS_START(mp1->b_cont) && 12034 end >= 12035 IP_REASS_START(mp1->b_cont)) || 12036 (!ipf->ipf_last_frag_seen && 12037 !more)) { 12038 ipf->ipf_hole_cnt--; 12039 } 12040 /* Clip out mp1. */ 12041 if ((mp->b_cont = mp1->b_cont) == 12042 NULL) { 12043 /* 12044 * After clipping out mp1, 12045 * this guy is now hanging 12046 * off the end. 12047 */ 12048 ipf->ipf_tail_mp = mp; 12049 } 12050 IP_REASS_SET_START(mp1, 0); 12051 IP_REASS_SET_END(mp1, 0); 12052 /* Subtract byte count */ 12053 ipf->ipf_count -= 12054 mp1->b_datap->db_lim - 12055 mp1->b_datap->db_base; 12056 freeb(mp1); 12057 BUMP_MIB(ill->ill_ip_mib, 12058 ipIfStatsReasmPartDups); 12059 mp1 = mp->b_cont; 12060 if (!mp1) 12061 break; 12062 offset = IP_REASS_START(mp1); 12063 } 12064 } 12065 break; 12066 } 12067 } while (start = end, mp = next_mp); 12068 12069 /* Fragment just processed could be the last one. Remember this fact */ 12070 if (!more) 12071 ipf->ipf_last_frag_seen = B_TRUE; 12072 12073 /* Still got holes? */ 12074 if (ipf->ipf_hole_cnt) 12075 return (IP_REASS_PARTIAL); 12076 /* Clean up overloaded fields to avoid upstream disasters. */ 12077 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12078 IP_REASS_SET_START(mp1, 0); 12079 IP_REASS_SET_END(mp1, 0); 12080 } 12081 return (IP_REASS_COMPLETE); 12082 } 12083 12084 /* 12085 * ipsec processing for the fast path, used for input UDP Packets 12086 * Returns true if ready for passup to UDP. 12087 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12088 * was an ESP-in-UDP packet, etc.). 12089 */ 12090 static boolean_t 12091 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12092 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12093 { 12094 uint32_t ill_index; 12095 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12096 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12097 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12098 udp_t *udp = connp->conn_udp; 12099 12100 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12101 /* The ill_index of the incoming ILL */ 12102 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12103 12104 /* pass packet up to the transport */ 12105 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12106 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12107 NULL, mctl_present); 12108 if (*first_mpp == NULL) { 12109 return (B_FALSE); 12110 } 12111 } 12112 12113 /* Initiate IPPF processing for fastpath UDP */ 12114 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12115 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12116 if (*mpp == NULL) { 12117 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12118 "deferred/dropped during IPPF processing\n")); 12119 return (B_FALSE); 12120 } 12121 } 12122 /* 12123 * Remove 0-spi if it's 0, or move everything behind 12124 * the UDP header over it and forward to ESP via 12125 * ip_proto_input(). 12126 */ 12127 if (udp->udp_nat_t_endpoint) { 12128 if (mctl_present) { 12129 /* mctl_present *shouldn't* happen. */ 12130 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12131 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12132 &ipss->ipsec_dropper); 12133 *first_mpp = NULL; 12134 return (B_FALSE); 12135 } 12136 12137 /* "ill" is "recv_ill" in actuality. */ 12138 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12139 return (B_FALSE); 12140 12141 /* Else continue like a normal UDP packet. */ 12142 } 12143 12144 /* 12145 * We make the checks as below since we are in the fast path 12146 * and want to minimize the number of checks if the IP_RECVIF and/or 12147 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12148 */ 12149 if (connp->conn_recvif || connp->conn_recvslla || 12150 connp->conn_ip_recvpktinfo) { 12151 if (connp->conn_recvif) { 12152 in_flags = IPF_RECVIF; 12153 } 12154 /* 12155 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12156 * so the flag passed to ip_add_info is based on IP version 12157 * of connp. 12158 */ 12159 if (connp->conn_ip_recvpktinfo) { 12160 if (connp->conn_af_isv6) { 12161 /* 12162 * V6 only needs index 12163 */ 12164 in_flags |= IPF_RECVIF; 12165 } else { 12166 /* 12167 * V4 needs index + matching address. 12168 */ 12169 in_flags |= IPF_RECVADDR; 12170 } 12171 } 12172 if (connp->conn_recvslla) { 12173 in_flags |= IPF_RECVSLLA; 12174 } 12175 /* 12176 * since in_flags are being set ill will be 12177 * referenced in ip_add_info, so it better not 12178 * be NULL. 12179 */ 12180 /* 12181 * the actual data will be contained in b_cont 12182 * upon successful return of the following call. 12183 * If the call fails then the original mblk is 12184 * returned. 12185 */ 12186 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12187 ipst); 12188 } 12189 12190 return (B_TRUE); 12191 } 12192 12193 /* 12194 * Fragmentation reassembly. Each ILL has a hash table for 12195 * queuing packets undergoing reassembly for all IPIFs 12196 * associated with the ILL. The hash is based on the packet 12197 * IP ident field. The ILL frag hash table was allocated 12198 * as a timer block at the time the ILL was created. Whenever 12199 * there is anything on the reassembly queue, the timer will 12200 * be running. Returns B_TRUE if successful else B_FALSE; 12201 * frees mp on failure. 12202 */ 12203 static boolean_t 12204 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12205 uint32_t *cksum_val, uint16_t *cksum_flags) 12206 { 12207 uint32_t frag_offset_flags; 12208 ill_t *ill = (ill_t *)q->q_ptr; 12209 mblk_t *mp = *mpp; 12210 mblk_t *t_mp; 12211 ipaddr_t dst; 12212 uint8_t proto = ipha->ipha_protocol; 12213 uint32_t sum_val; 12214 uint16_t sum_flags; 12215 ipf_t *ipf; 12216 ipf_t **ipfp; 12217 ipfb_t *ipfb; 12218 uint16_t ident; 12219 uint32_t offset; 12220 ipaddr_t src; 12221 uint_t hdr_length; 12222 uint32_t end; 12223 mblk_t *mp1; 12224 mblk_t *tail_mp; 12225 size_t count; 12226 size_t msg_len; 12227 uint8_t ecn_info = 0; 12228 uint32_t packet_size; 12229 boolean_t pruned = B_FALSE; 12230 ip_stack_t *ipst = ill->ill_ipst; 12231 12232 if (cksum_val != NULL) 12233 *cksum_val = 0; 12234 if (cksum_flags != NULL) 12235 *cksum_flags = 0; 12236 12237 /* 12238 * Drop the fragmented as early as possible, if 12239 * we don't have resource(s) to re-assemble. 12240 */ 12241 if (ipst->ips_ip_reass_queue_bytes == 0) { 12242 freemsg(mp); 12243 return (B_FALSE); 12244 } 12245 12246 /* Check for fragmentation offset; return if there's none */ 12247 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12248 (IPH_MF | IPH_OFFSET)) == 0) 12249 return (B_TRUE); 12250 12251 /* 12252 * We utilize hardware computed checksum info only for UDP since 12253 * IP fragmentation is a normal occurence for the protocol. In 12254 * addition, checksum offload support for IP fragments carrying 12255 * UDP payload is commonly implemented across network adapters. 12256 */ 12257 ASSERT(ill != NULL); 12258 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12259 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12260 mblk_t *mp1 = mp->b_cont; 12261 int32_t len; 12262 12263 /* Record checksum information from the packet */ 12264 sum_val = (uint32_t)DB_CKSUM16(mp); 12265 sum_flags = DB_CKSUMFLAGS(mp); 12266 12267 /* IP payload offset from beginning of mblk */ 12268 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12269 12270 if ((sum_flags & HCK_PARTIALCKSUM) && 12271 (mp1 == NULL || mp1->b_cont == NULL) && 12272 offset >= DB_CKSUMSTART(mp) && 12273 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12274 uint32_t adj; 12275 /* 12276 * Partial checksum has been calculated by hardware 12277 * and attached to the packet; in addition, any 12278 * prepended extraneous data is even byte aligned. 12279 * If any such data exists, we adjust the checksum; 12280 * this would also handle any postpended data. 12281 */ 12282 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12283 mp, mp1, len, adj); 12284 12285 /* One's complement subtract extraneous checksum */ 12286 if (adj >= sum_val) 12287 sum_val = ~(adj - sum_val) & 0xFFFF; 12288 else 12289 sum_val -= adj; 12290 } 12291 } else { 12292 sum_val = 0; 12293 sum_flags = 0; 12294 } 12295 12296 /* Clear hardware checksumming flag */ 12297 DB_CKSUMFLAGS(mp) = 0; 12298 12299 ident = ipha->ipha_ident; 12300 offset = (frag_offset_flags << 3) & 0xFFFF; 12301 src = ipha->ipha_src; 12302 dst = ipha->ipha_dst; 12303 hdr_length = IPH_HDR_LENGTH(ipha); 12304 end = ntohs(ipha->ipha_length) - hdr_length; 12305 12306 /* If end == 0 then we have a packet with no data, so just free it */ 12307 if (end == 0) { 12308 freemsg(mp); 12309 return (B_FALSE); 12310 } 12311 12312 /* Record the ECN field info. */ 12313 ecn_info = (ipha->ipha_type_of_service & 0x3); 12314 if (offset != 0) { 12315 /* 12316 * If this isn't the first piece, strip the header, and 12317 * add the offset to the end value. 12318 */ 12319 mp->b_rptr += hdr_length; 12320 end += offset; 12321 } 12322 12323 msg_len = MBLKSIZE(mp); 12324 tail_mp = mp; 12325 while (tail_mp->b_cont != NULL) { 12326 tail_mp = tail_mp->b_cont; 12327 msg_len += MBLKSIZE(tail_mp); 12328 } 12329 12330 /* If the reassembly list for this ILL will get too big, prune it */ 12331 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12332 ipst->ips_ip_reass_queue_bytes) { 12333 ill_frag_prune(ill, 12334 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12335 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12336 pruned = B_TRUE; 12337 } 12338 12339 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12340 mutex_enter(&ipfb->ipfb_lock); 12341 12342 ipfp = &ipfb->ipfb_ipf; 12343 /* Try to find an existing fragment queue for this packet. */ 12344 for (;;) { 12345 ipf = ipfp[0]; 12346 if (ipf != NULL) { 12347 /* 12348 * It has to match on ident and src/dst address. 12349 */ 12350 if (ipf->ipf_ident == ident && 12351 ipf->ipf_src == src && 12352 ipf->ipf_dst == dst && 12353 ipf->ipf_protocol == proto) { 12354 /* 12355 * If we have received too many 12356 * duplicate fragments for this packet 12357 * free it. 12358 */ 12359 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12360 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12361 freemsg(mp); 12362 mutex_exit(&ipfb->ipfb_lock); 12363 return (B_FALSE); 12364 } 12365 /* Found it. */ 12366 break; 12367 } 12368 ipfp = &ipf->ipf_hash_next; 12369 continue; 12370 } 12371 12372 /* 12373 * If we pruned the list, do we want to store this new 12374 * fragment?. We apply an optimization here based on the 12375 * fact that most fragments will be received in order. 12376 * So if the offset of this incoming fragment is zero, 12377 * it is the first fragment of a new packet. We will 12378 * keep it. Otherwise drop the fragment, as we have 12379 * probably pruned the packet already (since the 12380 * packet cannot be found). 12381 */ 12382 if (pruned && offset != 0) { 12383 mutex_exit(&ipfb->ipfb_lock); 12384 freemsg(mp); 12385 return (B_FALSE); 12386 } 12387 12388 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12389 /* 12390 * Too many fragmented packets in this hash 12391 * bucket. Free the oldest. 12392 */ 12393 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12394 } 12395 12396 /* New guy. Allocate a frag message. */ 12397 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12398 if (mp1 == NULL) { 12399 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12400 freemsg(mp); 12401 reass_done: 12402 mutex_exit(&ipfb->ipfb_lock); 12403 return (B_FALSE); 12404 } 12405 12406 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12407 mp1->b_cont = mp; 12408 12409 /* Initialize the fragment header. */ 12410 ipf = (ipf_t *)mp1->b_rptr; 12411 ipf->ipf_mp = mp1; 12412 ipf->ipf_ptphn = ipfp; 12413 ipfp[0] = ipf; 12414 ipf->ipf_hash_next = NULL; 12415 ipf->ipf_ident = ident; 12416 ipf->ipf_protocol = proto; 12417 ipf->ipf_src = src; 12418 ipf->ipf_dst = dst; 12419 ipf->ipf_nf_hdr_len = 0; 12420 /* Record reassembly start time. */ 12421 ipf->ipf_timestamp = gethrestime_sec(); 12422 /* Record ipf generation and account for frag header */ 12423 ipf->ipf_gen = ill->ill_ipf_gen++; 12424 ipf->ipf_count = MBLKSIZE(mp1); 12425 ipf->ipf_last_frag_seen = B_FALSE; 12426 ipf->ipf_ecn = ecn_info; 12427 ipf->ipf_num_dups = 0; 12428 ipfb->ipfb_frag_pkts++; 12429 ipf->ipf_checksum = 0; 12430 ipf->ipf_checksum_flags = 0; 12431 12432 /* Store checksum value in fragment header */ 12433 if (sum_flags != 0) { 12434 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12435 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12436 ipf->ipf_checksum = sum_val; 12437 ipf->ipf_checksum_flags = sum_flags; 12438 } 12439 12440 /* 12441 * We handle reassembly two ways. In the easy case, 12442 * where all the fragments show up in order, we do 12443 * minimal bookkeeping, and just clip new pieces on 12444 * the end. If we ever see a hole, then we go off 12445 * to ip_reassemble which has to mark the pieces and 12446 * keep track of the number of holes, etc. Obviously, 12447 * the point of having both mechanisms is so we can 12448 * handle the easy case as efficiently as possible. 12449 */ 12450 if (offset == 0) { 12451 /* Easy case, in-order reassembly so far. */ 12452 ipf->ipf_count += msg_len; 12453 ipf->ipf_tail_mp = tail_mp; 12454 /* 12455 * Keep track of next expected offset in 12456 * ipf_end. 12457 */ 12458 ipf->ipf_end = end; 12459 ipf->ipf_nf_hdr_len = hdr_length; 12460 } else { 12461 /* Hard case, hole at the beginning. */ 12462 ipf->ipf_tail_mp = NULL; 12463 /* 12464 * ipf_end == 0 means that we have given up 12465 * on easy reassembly. 12466 */ 12467 ipf->ipf_end = 0; 12468 12469 /* Forget checksum offload from now on */ 12470 ipf->ipf_checksum_flags = 0; 12471 12472 /* 12473 * ipf_hole_cnt is set by ip_reassemble. 12474 * ipf_count is updated by ip_reassemble. 12475 * No need to check for return value here 12476 * as we don't expect reassembly to complete 12477 * or fail for the first fragment itself. 12478 */ 12479 (void) ip_reassemble(mp, ipf, 12480 (frag_offset_flags & IPH_OFFSET) << 3, 12481 (frag_offset_flags & IPH_MF), ill, msg_len); 12482 } 12483 /* Update per ipfb and ill byte counts */ 12484 ipfb->ipfb_count += ipf->ipf_count; 12485 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12486 ill->ill_frag_count += ipf->ipf_count; 12487 /* If the frag timer wasn't already going, start it. */ 12488 mutex_enter(&ill->ill_lock); 12489 ill_frag_timer_start(ill); 12490 mutex_exit(&ill->ill_lock); 12491 goto reass_done; 12492 } 12493 12494 /* 12495 * If the packet's flag has changed (it could be coming up 12496 * from an interface different than the previous, therefore 12497 * possibly different checksum capability), then forget about 12498 * any stored checksum states. Otherwise add the value to 12499 * the existing one stored in the fragment header. 12500 */ 12501 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12502 sum_val += ipf->ipf_checksum; 12503 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12504 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12505 ipf->ipf_checksum = sum_val; 12506 } else if (ipf->ipf_checksum_flags != 0) { 12507 /* Forget checksum offload from now on */ 12508 ipf->ipf_checksum_flags = 0; 12509 } 12510 12511 /* 12512 * We have a new piece of a datagram which is already being 12513 * reassembled. Update the ECN info if all IP fragments 12514 * are ECN capable. If there is one which is not, clear 12515 * all the info. If there is at least one which has CE 12516 * code point, IP needs to report that up to transport. 12517 */ 12518 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12519 if (ecn_info == IPH_ECN_CE) 12520 ipf->ipf_ecn = IPH_ECN_CE; 12521 } else { 12522 ipf->ipf_ecn = IPH_ECN_NECT; 12523 } 12524 if (offset && ipf->ipf_end == offset) { 12525 /* The new fragment fits at the end */ 12526 ipf->ipf_tail_mp->b_cont = mp; 12527 /* Update the byte count */ 12528 ipf->ipf_count += msg_len; 12529 /* Update per ipfb and ill byte counts */ 12530 ipfb->ipfb_count += msg_len; 12531 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12532 ill->ill_frag_count += msg_len; 12533 if (frag_offset_flags & IPH_MF) { 12534 /* More to come. */ 12535 ipf->ipf_end = end; 12536 ipf->ipf_tail_mp = tail_mp; 12537 goto reass_done; 12538 } 12539 } else { 12540 /* Go do the hard cases. */ 12541 int ret; 12542 12543 if (offset == 0) 12544 ipf->ipf_nf_hdr_len = hdr_length; 12545 12546 /* Save current byte count */ 12547 count = ipf->ipf_count; 12548 ret = ip_reassemble(mp, ipf, 12549 (frag_offset_flags & IPH_OFFSET) << 3, 12550 (frag_offset_flags & IPH_MF), ill, msg_len); 12551 /* Count of bytes added and subtracted (freeb()ed) */ 12552 count = ipf->ipf_count - count; 12553 if (count) { 12554 /* Update per ipfb and ill byte counts */ 12555 ipfb->ipfb_count += count; 12556 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12557 ill->ill_frag_count += count; 12558 } 12559 if (ret == IP_REASS_PARTIAL) { 12560 goto reass_done; 12561 } else if (ret == IP_REASS_FAILED) { 12562 /* Reassembly failed. Free up all resources */ 12563 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12564 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12565 IP_REASS_SET_START(t_mp, 0); 12566 IP_REASS_SET_END(t_mp, 0); 12567 } 12568 freemsg(mp); 12569 goto reass_done; 12570 } 12571 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12572 } 12573 /* 12574 * We have completed reassembly. Unhook the frag header from 12575 * the reassembly list. 12576 * 12577 * Before we free the frag header, record the ECN info 12578 * to report back to the transport. 12579 */ 12580 ecn_info = ipf->ipf_ecn; 12581 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12582 ipfp = ipf->ipf_ptphn; 12583 12584 /* We need to supply these to caller */ 12585 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12586 sum_val = ipf->ipf_checksum; 12587 else 12588 sum_val = 0; 12589 12590 mp1 = ipf->ipf_mp; 12591 count = ipf->ipf_count; 12592 ipf = ipf->ipf_hash_next; 12593 if (ipf != NULL) 12594 ipf->ipf_ptphn = ipfp; 12595 ipfp[0] = ipf; 12596 ill->ill_frag_count -= count; 12597 ASSERT(ipfb->ipfb_count >= count); 12598 ipfb->ipfb_count -= count; 12599 ipfb->ipfb_frag_pkts--; 12600 mutex_exit(&ipfb->ipfb_lock); 12601 /* Ditch the frag header. */ 12602 mp = mp1->b_cont; 12603 12604 freeb(mp1); 12605 12606 /* Restore original IP length in header. */ 12607 packet_size = (uint32_t)msgdsize(mp); 12608 if (packet_size > IP_MAXPACKET) { 12609 freemsg(mp); 12610 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12611 return (B_FALSE); 12612 } 12613 12614 if (DB_REF(mp) > 1) { 12615 mblk_t *mp2 = copymsg(mp); 12616 12617 freemsg(mp); 12618 if (mp2 == NULL) { 12619 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12620 return (B_FALSE); 12621 } 12622 mp = mp2; 12623 } 12624 ipha = (ipha_t *)mp->b_rptr; 12625 12626 ipha->ipha_length = htons((uint16_t)packet_size); 12627 /* We're now complete, zip the frag state */ 12628 ipha->ipha_fragment_offset_and_flags = 0; 12629 /* Record the ECN info. */ 12630 ipha->ipha_type_of_service &= 0xFC; 12631 ipha->ipha_type_of_service |= ecn_info; 12632 *mpp = mp; 12633 12634 /* Reassembly is successful; return checksum information if needed */ 12635 if (cksum_val != NULL) 12636 *cksum_val = sum_val; 12637 if (cksum_flags != NULL) 12638 *cksum_flags = sum_flags; 12639 12640 return (B_TRUE); 12641 } 12642 12643 /* 12644 * Perform ip header check sum update local options. 12645 * return B_TRUE if all is well, else return B_FALSE and release 12646 * the mp. caller is responsible for decrementing ire ref cnt. 12647 */ 12648 static boolean_t 12649 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12650 ip_stack_t *ipst) 12651 { 12652 mblk_t *first_mp; 12653 boolean_t mctl_present; 12654 uint16_t sum; 12655 12656 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12657 /* 12658 * Don't do the checksum if it has gone through AH/ESP 12659 * processing. 12660 */ 12661 if (!mctl_present) { 12662 sum = ip_csum_hdr(ipha); 12663 if (sum != 0) { 12664 if (ill != NULL) { 12665 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12666 } else { 12667 BUMP_MIB(&ipst->ips_ip_mib, 12668 ipIfStatsInCksumErrs); 12669 } 12670 freemsg(first_mp); 12671 return (B_FALSE); 12672 } 12673 } 12674 12675 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12676 if (mctl_present) 12677 freeb(first_mp); 12678 return (B_FALSE); 12679 } 12680 12681 return (B_TRUE); 12682 } 12683 12684 /* 12685 * All udp packet are delivered to the local host via this routine. 12686 */ 12687 void 12688 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12689 ill_t *recv_ill) 12690 { 12691 uint32_t sum; 12692 uint32_t u1; 12693 boolean_t mctl_present; 12694 conn_t *connp; 12695 mblk_t *first_mp; 12696 uint16_t *up; 12697 ill_t *ill = (ill_t *)q->q_ptr; 12698 uint16_t reass_hck_flags = 0; 12699 ip_stack_t *ipst; 12700 12701 ASSERT(recv_ill != NULL); 12702 ipst = recv_ill->ill_ipst; 12703 12704 #define rptr ((uchar_t *)ipha) 12705 12706 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12707 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12708 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12709 ASSERT(ill != NULL); 12710 12711 /* 12712 * FAST PATH for udp packets 12713 */ 12714 12715 /* u1 is # words of IP options */ 12716 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12717 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12718 12719 /* IP options present */ 12720 if (u1 != 0) 12721 goto ipoptions; 12722 12723 /* Check the IP header checksum. */ 12724 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12725 /* Clear the IP header h/w cksum flag */ 12726 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12727 } else if (!mctl_present) { 12728 /* 12729 * Don't verify header checksum if this packet is coming 12730 * back from AH/ESP as we already did it. 12731 */ 12732 #define uph ((uint16_t *)ipha) 12733 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12734 uph[6] + uph[7] + uph[8] + uph[9]; 12735 #undef uph 12736 /* finish doing IP checksum */ 12737 sum = (sum & 0xFFFF) + (sum >> 16); 12738 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12739 if (sum != 0 && sum != 0xFFFF) { 12740 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12741 freemsg(first_mp); 12742 return; 12743 } 12744 } 12745 12746 /* 12747 * Count for SNMP of inbound packets for ire. 12748 * if mctl is present this might be a secure packet and 12749 * has already been counted for in ip_proto_input(). 12750 */ 12751 if (!mctl_present) { 12752 UPDATE_IB_PKT_COUNT(ire); 12753 ire->ire_last_used_time = lbolt; 12754 } 12755 12756 /* packet part of fragmented IP packet? */ 12757 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12758 if (u1 & (IPH_MF | IPH_OFFSET)) { 12759 goto fragmented; 12760 } 12761 12762 /* u1 = IP header length (20 bytes) */ 12763 u1 = IP_SIMPLE_HDR_LENGTH; 12764 12765 /* packet does not contain complete IP & UDP headers */ 12766 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12767 goto udppullup; 12768 12769 /* up points to UDP header */ 12770 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12771 #define iphs ((uint16_t *)ipha) 12772 12773 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12774 if (up[3] != 0) { 12775 mblk_t *mp1 = mp->b_cont; 12776 boolean_t cksum_err; 12777 uint16_t hck_flags = 0; 12778 12779 /* Pseudo-header checksum */ 12780 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12781 iphs[9] + up[2]; 12782 12783 /* 12784 * Revert to software checksum calculation if the interface 12785 * isn't capable of checksum offload or if IPsec is present. 12786 */ 12787 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12788 hck_flags = DB_CKSUMFLAGS(mp); 12789 12790 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12791 IP_STAT(ipst, ip_in_sw_cksum); 12792 12793 IP_CKSUM_RECV(hck_flags, u1, 12794 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12795 (int32_t)((uchar_t *)up - rptr), 12796 mp, mp1, cksum_err); 12797 12798 if (cksum_err) { 12799 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12800 if (hck_flags & HCK_FULLCKSUM) 12801 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12802 else if (hck_flags & HCK_PARTIALCKSUM) 12803 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12804 else 12805 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12806 12807 freemsg(first_mp); 12808 return; 12809 } 12810 } 12811 12812 /* Non-fragmented broadcast or multicast packet? */ 12813 if (ire->ire_type == IRE_BROADCAST) 12814 goto udpslowpath; 12815 12816 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12817 ire->ire_zoneid, ipst)) != NULL) { 12818 ASSERT(connp->conn_upq != NULL); 12819 IP_STAT(ipst, ip_udp_fast_path); 12820 12821 if (CONN_UDP_FLOWCTLD(connp)) { 12822 freemsg(mp); 12823 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12824 } else { 12825 if (!mctl_present) { 12826 BUMP_MIB(ill->ill_ip_mib, 12827 ipIfStatsHCInDelivers); 12828 } 12829 /* 12830 * mp and first_mp can change. 12831 */ 12832 if (ip_udp_check(q, connp, recv_ill, 12833 ipha, &mp, &first_mp, mctl_present, ire)) { 12834 /* Send it upstream */ 12835 (connp->conn_recv)(connp, mp, NULL); 12836 } 12837 } 12838 /* 12839 * freeb() cannot deal with null mblk being passed 12840 * in and first_mp can be set to null in the call 12841 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12842 */ 12843 if (mctl_present && first_mp != NULL) { 12844 freeb(first_mp); 12845 } 12846 CONN_DEC_REF(connp); 12847 return; 12848 } 12849 12850 /* 12851 * if we got here we know the packet is not fragmented and 12852 * has no options. The classifier could not find a conn_t and 12853 * most likely its an icmp packet so send it through slow path. 12854 */ 12855 12856 goto udpslowpath; 12857 12858 ipoptions: 12859 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12860 goto slow_done; 12861 } 12862 12863 UPDATE_IB_PKT_COUNT(ire); 12864 ire->ire_last_used_time = lbolt; 12865 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12866 if (u1 & (IPH_MF | IPH_OFFSET)) { 12867 fragmented: 12868 /* 12869 * "sum" and "reass_hck_flags" are non-zero if the 12870 * reassembled packet has a valid hardware computed 12871 * checksum information associated with it. 12872 */ 12873 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12874 goto slow_done; 12875 /* 12876 * Make sure that first_mp points back to mp as 12877 * the mp we came in with could have changed in 12878 * ip_rput_fragment(). 12879 */ 12880 ASSERT(!mctl_present); 12881 ipha = (ipha_t *)mp->b_rptr; 12882 first_mp = mp; 12883 } 12884 12885 /* Now we have a complete datagram, destined for this machine. */ 12886 u1 = IPH_HDR_LENGTH(ipha); 12887 /* Pull up the UDP header, if necessary. */ 12888 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12889 udppullup: 12890 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12891 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12892 freemsg(first_mp); 12893 goto slow_done; 12894 } 12895 ipha = (ipha_t *)mp->b_rptr; 12896 } 12897 12898 /* 12899 * Validate the checksum for the reassembled packet; for the 12900 * pullup case we calculate the payload checksum in software. 12901 */ 12902 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12903 if (up[3] != 0) { 12904 boolean_t cksum_err; 12905 12906 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12907 IP_STAT(ipst, ip_in_sw_cksum); 12908 12909 IP_CKSUM_RECV_REASS(reass_hck_flags, 12910 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12911 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12912 iphs[9] + up[2], sum, cksum_err); 12913 12914 if (cksum_err) { 12915 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12916 12917 if (reass_hck_flags & HCK_FULLCKSUM) 12918 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12919 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12920 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12921 else 12922 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12923 12924 freemsg(first_mp); 12925 goto slow_done; 12926 } 12927 } 12928 udpslowpath: 12929 12930 /* Clear hardware checksum flag to be safe */ 12931 DB_CKSUMFLAGS(mp) = 0; 12932 12933 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12934 (ire->ire_type == IRE_BROADCAST), 12935 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12936 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12937 12938 slow_done: 12939 IP_STAT(ipst, ip_udp_slow_path); 12940 return; 12941 12942 #undef iphs 12943 #undef rptr 12944 } 12945 12946 /* ARGSUSED */ 12947 static mblk_t * 12948 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12949 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12950 ill_rx_ring_t *ill_ring) 12951 { 12952 conn_t *connp; 12953 uint32_t sum; 12954 uint32_t u1; 12955 uint16_t *up; 12956 int offset; 12957 ssize_t len; 12958 mblk_t *mp1; 12959 boolean_t syn_present = B_FALSE; 12960 tcph_t *tcph; 12961 uint_t ip_hdr_len; 12962 ill_t *ill = (ill_t *)q->q_ptr; 12963 zoneid_t zoneid = ire->ire_zoneid; 12964 boolean_t cksum_err; 12965 uint16_t hck_flags = 0; 12966 ip_stack_t *ipst = recv_ill->ill_ipst; 12967 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12968 12969 #define rptr ((uchar_t *)ipha) 12970 12971 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12972 ASSERT(ill != NULL); 12973 12974 /* 12975 * FAST PATH for tcp packets 12976 */ 12977 12978 /* u1 is # words of IP options */ 12979 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12980 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12981 12982 /* IP options present */ 12983 if (u1) { 12984 goto ipoptions; 12985 } else if (!mctl_present) { 12986 /* Check the IP header checksum. */ 12987 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12988 /* Clear the IP header h/w cksum flag */ 12989 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12990 } else if (!mctl_present) { 12991 /* 12992 * Don't verify header checksum if this packet 12993 * is coming back from AH/ESP as we already did it. 12994 */ 12995 #define uph ((uint16_t *)ipha) 12996 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12997 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12998 #undef uph 12999 /* finish doing IP checksum */ 13000 sum = (sum & 0xFFFF) + (sum >> 16); 13001 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13002 if (sum != 0 && sum != 0xFFFF) { 13003 BUMP_MIB(ill->ill_ip_mib, 13004 ipIfStatsInCksumErrs); 13005 goto error; 13006 } 13007 } 13008 } 13009 13010 if (!mctl_present) { 13011 UPDATE_IB_PKT_COUNT(ire); 13012 ire->ire_last_used_time = lbolt; 13013 } 13014 13015 /* packet part of fragmented IP packet? */ 13016 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13017 if (u1 & (IPH_MF | IPH_OFFSET)) { 13018 goto fragmented; 13019 } 13020 13021 /* u1 = IP header length (20 bytes) */ 13022 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13023 13024 /* does packet contain IP+TCP headers? */ 13025 len = mp->b_wptr - rptr; 13026 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13027 IP_STAT(ipst, ip_tcppullup); 13028 goto tcppullup; 13029 } 13030 13031 /* TCP options present? */ 13032 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13033 13034 /* 13035 * If options need to be pulled up, then goto tcpoptions. 13036 * otherwise we are still in the fast path 13037 */ 13038 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13039 IP_STAT(ipst, ip_tcpoptions); 13040 goto tcpoptions; 13041 } 13042 13043 /* multiple mblks of tcp data? */ 13044 if ((mp1 = mp->b_cont) != NULL) { 13045 /* more then two? */ 13046 if (mp1->b_cont != NULL) { 13047 IP_STAT(ipst, ip_multipkttcp); 13048 goto multipkttcp; 13049 } 13050 len += mp1->b_wptr - mp1->b_rptr; 13051 } 13052 13053 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13054 13055 /* part of pseudo checksum */ 13056 13057 /* TCP datagram length */ 13058 u1 = len - IP_SIMPLE_HDR_LENGTH; 13059 13060 #define iphs ((uint16_t *)ipha) 13061 13062 #ifdef _BIG_ENDIAN 13063 u1 += IPPROTO_TCP; 13064 #else 13065 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13066 #endif 13067 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13068 13069 /* 13070 * Revert to software checksum calculation if the interface 13071 * isn't capable of checksum offload or if IPsec is present. 13072 */ 13073 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13074 hck_flags = DB_CKSUMFLAGS(mp); 13075 13076 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13077 IP_STAT(ipst, ip_in_sw_cksum); 13078 13079 IP_CKSUM_RECV(hck_flags, u1, 13080 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13081 (int32_t)((uchar_t *)up - rptr), 13082 mp, mp1, cksum_err); 13083 13084 if (cksum_err) { 13085 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13086 13087 if (hck_flags & HCK_FULLCKSUM) 13088 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13089 else if (hck_flags & HCK_PARTIALCKSUM) 13090 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13091 else 13092 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13093 13094 goto error; 13095 } 13096 13097 try_again: 13098 13099 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13100 zoneid, ipst)) == NULL) { 13101 /* Send the TH_RST */ 13102 goto no_conn; 13103 } 13104 13105 /* 13106 * TCP FAST PATH for AF_INET socket. 13107 * 13108 * TCP fast path to avoid extra work. An AF_INET socket type 13109 * does not have facility to receive extra information via 13110 * ip_process or ip_add_info. Also, when the connection was 13111 * established, we made a check if this connection is impacted 13112 * by any global IPsec policy or per connection policy (a 13113 * policy that comes in effect later will not apply to this 13114 * connection). Since all this can be determined at the 13115 * connection establishment time, a quick check of flags 13116 * can avoid extra work. 13117 */ 13118 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13119 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13120 ASSERT(first_mp == mp); 13121 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13122 SET_SQUEUE(mp, tcp_rput_data, connp); 13123 return (mp); 13124 } 13125 13126 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13127 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13128 if (IPCL_IS_TCP(connp)) { 13129 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13130 DB_CKSUMSTART(mp) = 13131 (intptr_t)ip_squeue_get(ill_ring); 13132 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13133 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13134 BUMP_MIB(ill->ill_ip_mib, 13135 ipIfStatsHCInDelivers); 13136 SET_SQUEUE(mp, connp->conn_recv, connp); 13137 return (mp); 13138 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13139 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13140 BUMP_MIB(ill->ill_ip_mib, 13141 ipIfStatsHCInDelivers); 13142 ip_squeue_enter_unbound++; 13143 SET_SQUEUE(mp, tcp_conn_request_unbound, 13144 connp); 13145 return (mp); 13146 } 13147 syn_present = B_TRUE; 13148 } 13149 13150 } 13151 13152 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13153 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13154 13155 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13156 /* No need to send this packet to TCP */ 13157 if ((flags & TH_RST) || (flags & TH_URG)) { 13158 CONN_DEC_REF(connp); 13159 freemsg(first_mp); 13160 return (NULL); 13161 } 13162 if (flags & TH_ACK) { 13163 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13164 ipst->ips_netstack->netstack_tcp, connp); 13165 CONN_DEC_REF(connp); 13166 return (NULL); 13167 } 13168 13169 CONN_DEC_REF(connp); 13170 freemsg(first_mp); 13171 return (NULL); 13172 } 13173 13174 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13175 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13176 ipha, NULL, mctl_present); 13177 if (first_mp == NULL) { 13178 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13179 CONN_DEC_REF(connp); 13180 return (NULL); 13181 } 13182 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13183 ASSERT(syn_present); 13184 if (mctl_present) { 13185 ASSERT(first_mp != mp); 13186 first_mp->b_datap->db_struioflag |= 13187 STRUIO_POLICY; 13188 } else { 13189 ASSERT(first_mp == mp); 13190 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13191 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13192 } 13193 } else { 13194 /* 13195 * Discard first_mp early since we're dealing with a 13196 * fully-connected conn_t and tcp doesn't do policy in 13197 * this case. 13198 */ 13199 if (mctl_present) { 13200 freeb(first_mp); 13201 mctl_present = B_FALSE; 13202 } 13203 first_mp = mp; 13204 } 13205 } 13206 13207 /* Initiate IPPF processing for fastpath */ 13208 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13209 uint32_t ill_index; 13210 13211 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13212 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13213 if (mp == NULL) { 13214 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13215 "deferred/dropped during IPPF processing\n")); 13216 CONN_DEC_REF(connp); 13217 if (mctl_present) 13218 freeb(first_mp); 13219 return (NULL); 13220 } else if (mctl_present) { 13221 /* 13222 * ip_process might return a new mp. 13223 */ 13224 ASSERT(first_mp != mp); 13225 first_mp->b_cont = mp; 13226 } else { 13227 first_mp = mp; 13228 } 13229 13230 } 13231 13232 if (!syn_present && connp->conn_ip_recvpktinfo) { 13233 /* 13234 * TCP does not support IP_RECVPKTINFO for v4 so lets 13235 * make sure IPF_RECVIF is passed to ip_add_info. 13236 */ 13237 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13238 IPCL_ZONEID(connp), ipst); 13239 if (mp == NULL) { 13240 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13241 CONN_DEC_REF(connp); 13242 if (mctl_present) 13243 freeb(first_mp); 13244 return (NULL); 13245 } else if (mctl_present) { 13246 /* 13247 * ip_add_info might return a new mp. 13248 */ 13249 ASSERT(first_mp != mp); 13250 first_mp->b_cont = mp; 13251 } else { 13252 first_mp = mp; 13253 } 13254 } 13255 13256 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13257 if (IPCL_IS_TCP(connp)) { 13258 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13259 return (first_mp); 13260 } else { 13261 /* SOCK_RAW, IPPROTO_TCP case */ 13262 (connp->conn_recv)(connp, first_mp, NULL); 13263 CONN_DEC_REF(connp); 13264 return (NULL); 13265 } 13266 13267 no_conn: 13268 /* Initiate IPPf processing, if needed. */ 13269 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13270 uint32_t ill_index; 13271 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13272 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13273 if (first_mp == NULL) { 13274 return (NULL); 13275 } 13276 } 13277 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13278 13279 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13280 ipst->ips_netstack->netstack_tcp, NULL); 13281 return (NULL); 13282 ipoptions: 13283 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13284 goto slow_done; 13285 } 13286 13287 UPDATE_IB_PKT_COUNT(ire); 13288 ire->ire_last_used_time = lbolt; 13289 13290 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13291 if (u1 & (IPH_MF | IPH_OFFSET)) { 13292 fragmented: 13293 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13294 if (mctl_present) 13295 freeb(first_mp); 13296 goto slow_done; 13297 } 13298 /* 13299 * Make sure that first_mp points back to mp as 13300 * the mp we came in with could have changed in 13301 * ip_rput_fragment(). 13302 */ 13303 ASSERT(!mctl_present); 13304 ipha = (ipha_t *)mp->b_rptr; 13305 first_mp = mp; 13306 } 13307 13308 /* Now we have a complete datagram, destined for this machine. */ 13309 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13310 13311 len = mp->b_wptr - mp->b_rptr; 13312 /* Pull up a minimal TCP header, if necessary. */ 13313 if (len < (u1 + 20)) { 13314 tcppullup: 13315 if (!pullupmsg(mp, u1 + 20)) { 13316 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13317 goto error; 13318 } 13319 ipha = (ipha_t *)mp->b_rptr; 13320 len = mp->b_wptr - mp->b_rptr; 13321 } 13322 13323 /* 13324 * Extract the offset field from the TCP header. As usual, we 13325 * try to help the compiler more than the reader. 13326 */ 13327 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13328 if (offset != 5) { 13329 tcpoptions: 13330 if (offset < 5) { 13331 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13332 goto error; 13333 } 13334 /* 13335 * There must be TCP options. 13336 * Make sure we can grab them. 13337 */ 13338 offset <<= 2; 13339 offset += u1; 13340 if (len < offset) { 13341 if (!pullupmsg(mp, offset)) { 13342 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13343 goto error; 13344 } 13345 ipha = (ipha_t *)mp->b_rptr; 13346 len = mp->b_wptr - rptr; 13347 } 13348 } 13349 13350 /* Get the total packet length in len, including headers. */ 13351 if (mp->b_cont) { 13352 multipkttcp: 13353 len = msgdsize(mp); 13354 } 13355 13356 /* 13357 * Check the TCP checksum by pulling together the pseudo- 13358 * header checksum, and passing it to ip_csum to be added in 13359 * with the TCP datagram. 13360 * 13361 * Since we are not using the hwcksum if available we must 13362 * clear the flag. We may come here via tcppullup or tcpoptions. 13363 * If either of these fails along the way the mblk is freed. 13364 * If this logic ever changes and mblk is reused to say send 13365 * ICMP's back, then this flag may need to be cleared in 13366 * other places as well. 13367 */ 13368 DB_CKSUMFLAGS(mp) = 0; 13369 13370 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13371 13372 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13373 #ifdef _BIG_ENDIAN 13374 u1 += IPPROTO_TCP; 13375 #else 13376 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13377 #endif 13378 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13379 /* 13380 * Not M_DATA mblk or its a dup, so do the checksum now. 13381 */ 13382 IP_STAT(ipst, ip_in_sw_cksum); 13383 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13384 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13385 goto error; 13386 } 13387 13388 IP_STAT(ipst, ip_tcp_slow_path); 13389 goto try_again; 13390 #undef iphs 13391 #undef rptr 13392 13393 error: 13394 freemsg(first_mp); 13395 slow_done: 13396 return (NULL); 13397 } 13398 13399 /* ARGSUSED */ 13400 static void 13401 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13402 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13403 { 13404 conn_t *connp; 13405 uint32_t sum; 13406 uint32_t u1; 13407 ssize_t len; 13408 sctp_hdr_t *sctph; 13409 zoneid_t zoneid = ire->ire_zoneid; 13410 uint32_t pktsum; 13411 uint32_t calcsum; 13412 uint32_t ports; 13413 in6_addr_t map_src, map_dst; 13414 ill_t *ill = (ill_t *)q->q_ptr; 13415 ip_stack_t *ipst; 13416 sctp_stack_t *sctps; 13417 13418 ASSERT(recv_ill != NULL); 13419 ipst = recv_ill->ill_ipst; 13420 sctps = ipst->ips_netstack->netstack_sctp; 13421 13422 #define rptr ((uchar_t *)ipha) 13423 13424 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13425 ASSERT(ill != NULL); 13426 13427 /* u1 is # words of IP options */ 13428 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13429 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13430 13431 /* IP options present */ 13432 if (u1 > 0) { 13433 goto ipoptions; 13434 } else { 13435 /* Check the IP header checksum. */ 13436 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill) && 13437 !mctl_present) { 13438 #define uph ((uint16_t *)ipha) 13439 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13440 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13441 #undef uph 13442 /* finish doing IP checksum */ 13443 sum = (sum & 0xFFFF) + (sum >> 16); 13444 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13445 /* 13446 * Don't verify header checksum if this packet 13447 * is coming back from AH/ESP as we already did it. 13448 */ 13449 if (sum != 0 && sum != 0xFFFF) { 13450 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13451 goto error; 13452 } 13453 } 13454 /* 13455 * Since there is no SCTP h/w cksum support yet, just 13456 * clear the flag. 13457 */ 13458 DB_CKSUMFLAGS(mp) = 0; 13459 } 13460 13461 /* 13462 * Don't verify header checksum if this packet is coming 13463 * back from AH/ESP as we already did it. 13464 */ 13465 if (!mctl_present) { 13466 UPDATE_IB_PKT_COUNT(ire); 13467 ire->ire_last_used_time = lbolt; 13468 } 13469 13470 /* packet part of fragmented IP packet? */ 13471 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13472 if (u1 & (IPH_MF | IPH_OFFSET)) 13473 goto fragmented; 13474 13475 /* u1 = IP header length (20 bytes) */ 13476 u1 = IP_SIMPLE_HDR_LENGTH; 13477 13478 find_sctp_client: 13479 /* Pullup if we don't have the sctp common header. */ 13480 len = MBLKL(mp); 13481 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13482 if (mp->b_cont == NULL || 13483 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13484 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13485 goto error; 13486 } 13487 ipha = (ipha_t *)mp->b_rptr; 13488 len = MBLKL(mp); 13489 } 13490 13491 sctph = (sctp_hdr_t *)(rptr + u1); 13492 #ifdef DEBUG 13493 if (!skip_sctp_cksum) { 13494 #endif 13495 pktsum = sctph->sh_chksum; 13496 sctph->sh_chksum = 0; 13497 calcsum = sctp_cksum(mp, u1); 13498 if (calcsum != pktsum) { 13499 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 13500 goto error; 13501 } 13502 sctph->sh_chksum = pktsum; 13503 #ifdef DEBUG /* skip_sctp_cksum */ 13504 } 13505 #endif 13506 /* get the ports */ 13507 ports = *(uint32_t *)&sctph->sh_sport; 13508 13509 IRE_REFRELE(ire); 13510 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13511 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13512 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13513 sctps)) == NULL) { 13514 /* Check for raw socket or OOTB handling */ 13515 goto no_conn; 13516 } 13517 13518 /* Found a client; up it goes */ 13519 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13520 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13521 return; 13522 13523 no_conn: 13524 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13525 ports, mctl_present, flags, B_TRUE, zoneid); 13526 return; 13527 13528 ipoptions: 13529 DB_CKSUMFLAGS(mp) = 0; 13530 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13531 goto slow_done; 13532 13533 UPDATE_IB_PKT_COUNT(ire); 13534 ire->ire_last_used_time = lbolt; 13535 13536 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13537 if (u1 & (IPH_MF | IPH_OFFSET)) { 13538 fragmented: 13539 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13540 goto slow_done; 13541 /* 13542 * Make sure that first_mp points back to mp as 13543 * the mp we came in with could have changed in 13544 * ip_rput_fragment(). 13545 */ 13546 ASSERT(!mctl_present); 13547 ipha = (ipha_t *)mp->b_rptr; 13548 first_mp = mp; 13549 } 13550 13551 /* Now we have a complete datagram, destined for this machine. */ 13552 u1 = IPH_HDR_LENGTH(ipha); 13553 goto find_sctp_client; 13554 #undef iphs 13555 #undef rptr 13556 13557 error: 13558 freemsg(first_mp); 13559 slow_done: 13560 IRE_REFRELE(ire); 13561 } 13562 13563 #define VER_BITS 0xF0 13564 #define VERSION_6 0x60 13565 13566 static boolean_t 13567 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13568 ipaddr_t *dstp, ip_stack_t *ipst) 13569 { 13570 uint_t opt_len; 13571 ipha_t *ipha; 13572 ssize_t len; 13573 uint_t pkt_len; 13574 13575 ASSERT(ill != NULL); 13576 IP_STAT(ipst, ip_ipoptions); 13577 ipha = *iphapp; 13578 13579 #define rptr ((uchar_t *)ipha) 13580 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13581 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13582 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13583 freemsg(mp); 13584 return (B_FALSE); 13585 } 13586 13587 /* multiple mblk or too short */ 13588 pkt_len = ntohs(ipha->ipha_length); 13589 13590 /* Get the number of words of IP options in the IP header. */ 13591 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13592 if (opt_len) { 13593 /* IP Options present! Validate and process. */ 13594 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13595 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13596 goto done; 13597 } 13598 /* 13599 * Recompute complete header length and make sure we 13600 * have access to all of it. 13601 */ 13602 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13603 if (len > (mp->b_wptr - rptr)) { 13604 if (len > pkt_len) { 13605 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13606 goto done; 13607 } 13608 if (!pullupmsg(mp, len)) { 13609 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13610 goto done; 13611 } 13612 ipha = (ipha_t *)mp->b_rptr; 13613 } 13614 /* 13615 * Go off to ip_rput_options which returns the next hop 13616 * destination address, which may have been affected 13617 * by source routing. 13618 */ 13619 IP_STAT(ipst, ip_opt); 13620 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13621 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13622 return (B_FALSE); 13623 } 13624 } 13625 *iphapp = ipha; 13626 return (B_TRUE); 13627 done: 13628 /* clear b_prev - used by ip_mroute_decap */ 13629 mp->b_prev = NULL; 13630 freemsg(mp); 13631 return (B_FALSE); 13632 #undef rptr 13633 } 13634 13635 /* 13636 * Deal with the fact that there is no ire for the destination. 13637 */ 13638 static ire_t * 13639 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13640 { 13641 ipha_t *ipha; 13642 ill_t *ill; 13643 ire_t *ire; 13644 boolean_t check_multirt = B_FALSE; 13645 ip_stack_t *ipst; 13646 13647 ipha = (ipha_t *)mp->b_rptr; 13648 ill = (ill_t *)q->q_ptr; 13649 13650 ASSERT(ill != NULL); 13651 ipst = ill->ill_ipst; 13652 13653 /* 13654 * No IRE for this destination, so it can't be for us. 13655 * Unless we are forwarding, drop the packet. 13656 * We have to let source routed packets through 13657 * since we don't yet know if they are 'ping -l' 13658 * packets i.e. if they will go out over the 13659 * same interface as they came in on. 13660 */ 13661 if (ll_multicast) { 13662 freemsg(mp); 13663 return (NULL); 13664 } 13665 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13666 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13667 freemsg(mp); 13668 return (NULL); 13669 } 13670 13671 /* 13672 * Mark this packet as having originated externally. 13673 * 13674 * For non-forwarding code path, ire_send later double 13675 * checks this interface to see if it is still exists 13676 * post-ARP resolution. 13677 * 13678 * Also, IPQOS uses this to differentiate between 13679 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13680 * QOS packet processing in ip_wput_attach_llhdr(). 13681 * The QoS module can mark the b_band for a fastpath message 13682 * or the dl_priority field in a unitdata_req header for 13683 * CoS marking. This info can only be found in 13684 * ip_wput_attach_llhdr(). 13685 */ 13686 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13687 /* 13688 * Clear the indication that this may have a hardware checksum 13689 * as we are not using it 13690 */ 13691 DB_CKSUMFLAGS(mp) = 0; 13692 13693 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13694 MBLK_GETLABEL(mp), ipst); 13695 13696 if (ire == NULL && check_multirt) { 13697 /* Let ip_newroute handle CGTP */ 13698 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13699 return (NULL); 13700 } 13701 13702 if (ire != NULL) 13703 return (ire); 13704 13705 mp->b_prev = mp->b_next = 0; 13706 /* send icmp unreachable */ 13707 q = WR(q); 13708 /* Sent by forwarding path, and router is global zone */ 13709 if (ip_source_routed(ipha, ipst)) { 13710 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13711 GLOBAL_ZONEID, ipst); 13712 } else { 13713 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13714 ipst); 13715 } 13716 13717 return (NULL); 13718 13719 } 13720 13721 /* 13722 * check ip header length and align it. 13723 */ 13724 static boolean_t 13725 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13726 { 13727 ssize_t len; 13728 ill_t *ill; 13729 ipha_t *ipha; 13730 13731 len = MBLKL(mp); 13732 13733 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13734 ill = (ill_t *)q->q_ptr; 13735 13736 if (!OK_32PTR(mp->b_rptr)) 13737 IP_STAT(ipst, ip_notaligned1); 13738 else 13739 IP_STAT(ipst, ip_notaligned2); 13740 /* Guard against bogus device drivers */ 13741 if (len < 0) { 13742 /* clear b_prev - used by ip_mroute_decap */ 13743 mp->b_prev = NULL; 13744 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13745 freemsg(mp); 13746 return (B_FALSE); 13747 } 13748 13749 if (ip_rput_pullups++ == 0) { 13750 ipha = (ipha_t *)mp->b_rptr; 13751 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13752 "ip_check_and_align_header: %s forced us to " 13753 " pullup pkt, hdr len %ld, hdr addr %p", 13754 ill->ill_name, len, ipha); 13755 } 13756 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13757 /* clear b_prev - used by ip_mroute_decap */ 13758 mp->b_prev = NULL; 13759 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13760 freemsg(mp); 13761 return (B_FALSE); 13762 } 13763 } 13764 return (B_TRUE); 13765 } 13766 13767 ire_t * 13768 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13769 { 13770 ire_t *new_ire; 13771 ill_t *ire_ill; 13772 uint_t ifindex; 13773 ip_stack_t *ipst = ill->ill_ipst; 13774 boolean_t strict_check = B_FALSE; 13775 13776 /* 13777 * This packet came in on an interface other than the one associated 13778 * with the first ire we found for the destination address. We do 13779 * another ire lookup here, using the ingress ill, to see if the 13780 * interface is in an interface group. 13781 * As long as the ills belong to the same group, we don't consider 13782 * them to be arriving on the wrong interface. Thus, if the switch 13783 * is doing inbound load spreading, we won't drop packets when the 13784 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13785 * for 'usesrc groups' where the destination address may belong to 13786 * another interface to allow multipathing to happen. 13787 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13788 * where the local address may not be unique. In this case we were 13789 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13790 * actually returned. The new lookup, which is more specific, should 13791 * only find the IRE_LOCAL associated with the ingress ill if one 13792 * exists. 13793 */ 13794 13795 if (ire->ire_ipversion == IPV4_VERSION) { 13796 if (ipst->ips_ip_strict_dst_multihoming) 13797 strict_check = B_TRUE; 13798 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13799 ill->ill_ipif, ALL_ZONES, NULL, 13800 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13801 } else { 13802 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13803 if (ipst->ips_ipv6_strict_dst_multihoming) 13804 strict_check = B_TRUE; 13805 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13806 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13807 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13808 } 13809 /* 13810 * If the same ire that was returned in ip_input() is found then this 13811 * is an indication that interface groups are in use. The packet 13812 * arrived on a different ill in the group than the one associated with 13813 * the destination address. If a different ire was found then the same 13814 * IP address must be hosted on multiple ills. This is possible with 13815 * unnumbered point2point interfaces. We switch to use this new ire in 13816 * order to have accurate interface statistics. 13817 */ 13818 if (new_ire != NULL) { 13819 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13820 ire_refrele(ire); 13821 ire = new_ire; 13822 } else { 13823 ire_refrele(new_ire); 13824 } 13825 return (ire); 13826 } else if ((ire->ire_rfq == NULL) && 13827 (ire->ire_ipversion == IPV4_VERSION)) { 13828 /* 13829 * The best match could have been the original ire which 13830 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13831 * the strict multihoming checks are irrelevant as we consider 13832 * local addresses hosted on lo0 to be interface agnostic. We 13833 * only expect a null ire_rfq on IREs which are associated with 13834 * lo0 hence we can return now. 13835 */ 13836 return (ire); 13837 } 13838 13839 /* 13840 * Chase pointers once and store locally. 13841 */ 13842 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13843 (ill_t *)(ire->ire_rfq->q_ptr); 13844 ifindex = ill->ill_usesrc_ifindex; 13845 13846 /* 13847 * Check if it's a legal address on the 'usesrc' interface. 13848 */ 13849 if ((ifindex != 0) && (ire_ill != NULL) && 13850 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13851 return (ire); 13852 } 13853 13854 /* 13855 * If the ip*_strict_dst_multihoming switch is on then we can 13856 * only accept this packet if the interface is marked as routing. 13857 */ 13858 if (!(strict_check)) 13859 return (ire); 13860 13861 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13862 ILLF_ROUTER) != 0) { 13863 return (ire); 13864 } 13865 13866 ire_refrele(ire); 13867 return (NULL); 13868 } 13869 13870 ire_t * 13871 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13872 { 13873 ipha_t *ipha; 13874 ire_t *src_ire; 13875 ill_t *stq_ill; 13876 uint_t hlen; 13877 uint_t pkt_len; 13878 uint32_t sum; 13879 queue_t *dev_q; 13880 ip_stack_t *ipst = ill->ill_ipst; 13881 mblk_t *fpmp; 13882 13883 ipha = (ipha_t *)mp->b_rptr; 13884 13885 /* 13886 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13887 * The loopback address check for both src and dst has already 13888 * been checked in ip_input 13889 */ 13890 13891 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13892 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13893 goto drop; 13894 } 13895 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13896 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13897 13898 if (src_ire != NULL) { 13899 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13900 ire_refrele(src_ire); 13901 goto drop; 13902 } 13903 13904 13905 /* No ire cache of nexthop. So first create one */ 13906 if (ire == NULL) { 13907 boolean_t check_multirt; 13908 13909 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL, ipst); 13910 /* 13911 * We only come to ip_fast_forward if ip_cgtp_filter is 13912 * is not set. So upon return from ire_forward 13913 * check_multirt should remain as false. 13914 */ 13915 if (ire == NULL) { 13916 /* An attempt was made to forward the packet */ 13917 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13918 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13919 mp->b_prev = mp->b_next = 0; 13920 /* send icmp unreachable */ 13921 /* Sent by forwarding path, and router is global zone */ 13922 if (ip_source_routed(ipha, ipst)) { 13923 icmp_unreachable(ill->ill_wq, mp, 13924 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, 13925 ipst); 13926 } else { 13927 icmp_unreachable(ill->ill_wq, mp, 13928 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13929 ipst); 13930 } 13931 return (ire); 13932 } 13933 } 13934 13935 /* 13936 * Forwarding fastpath exception case: 13937 * If either of the follwoing case is true, we take 13938 * the slowpath 13939 * o forwarding is not enabled 13940 * o incoming and outgoing interface are the same, or the same 13941 * IPMP group 13942 * o corresponding ire is in incomplete state 13943 * o packet needs fragmentation 13944 * o ARP cache is not resolved 13945 * 13946 * The codeflow from here on is thus: 13947 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13948 */ 13949 pkt_len = ntohs(ipha->ipha_length); 13950 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13951 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13952 !(ill->ill_flags & ILLF_ROUTER) || 13953 (ill == stq_ill) || 13954 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 13955 (ire->ire_nce == NULL) || 13956 (pkt_len > ire->ire_max_frag) || 13957 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 13958 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 13959 ipha->ipha_ttl <= 1) { 13960 ip_rput_process_forward(ill->ill_rq, mp, ire, 13961 ipha, ill, B_FALSE); 13962 return (ire); 13963 } 13964 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13965 13966 DTRACE_PROBE4(ip4__forwarding__start, 13967 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13968 13969 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13970 ipst->ips_ipv4firewall_forwarding, 13971 ill, stq_ill, ipha, mp, mp, ipst); 13972 13973 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13974 13975 if (mp == NULL) 13976 goto drop; 13977 13978 mp->b_datap->db_struioun.cksum.flags = 0; 13979 /* Adjust the checksum to reflect the ttl decrement. */ 13980 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13981 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13982 ipha->ipha_ttl--; 13983 13984 /* 13985 * Write the link layer header. We can do this safely here, 13986 * because we have already tested to make sure that the IP 13987 * policy is not set, and that we have a fast path destination 13988 * header. 13989 */ 13990 mp->b_rptr -= hlen; 13991 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 13992 13993 UPDATE_IB_PKT_COUNT(ire); 13994 ire->ire_last_used_time = lbolt; 13995 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 13996 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 13997 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 13998 13999 dev_q = ire->ire_stq->q_next; 14000 if ((dev_q->q_next != NULL || dev_q->q_first != NULL) && 14001 !canputnext(ire->ire_stq)) { 14002 goto indiscard; 14003 } 14004 if (ILL_DLS_CAPABLE(stq_ill)) { 14005 /* 14006 * Send the packet directly to DLD, where it 14007 * may be queued depending on the availability 14008 * of transmit resources at the media layer. 14009 */ 14010 IP_DLS_ILL_TX(stq_ill, ipha, mp, ipst); 14011 } else { 14012 DTRACE_PROBE4(ip4__physical__out__start, 14013 ill_t *, NULL, ill_t *, stq_ill, 14014 ipha_t *, ipha, mblk_t *, mp); 14015 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14016 ipst->ips_ipv4firewall_physical_out, 14017 NULL, stq_ill, ipha, mp, mp, ipst); 14018 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 14019 if (mp == NULL) 14020 goto drop; 14021 putnext(ire->ire_stq, mp); 14022 } 14023 return (ire); 14024 14025 indiscard: 14026 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14027 drop: 14028 if (mp != NULL) 14029 freemsg(mp); 14030 return (ire); 14031 14032 } 14033 14034 /* 14035 * This function is called in the forwarding slowpath, when 14036 * either the ire lacks the link-layer address, or the packet needs 14037 * further processing(eg. fragmentation), before transmission. 14038 */ 14039 14040 static void 14041 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14042 ill_t *ill, boolean_t ll_multicast) 14043 { 14044 ill_group_t *ill_group; 14045 ill_group_t *ire_group; 14046 queue_t *dev_q; 14047 ire_t *src_ire; 14048 ip_stack_t *ipst = ill->ill_ipst; 14049 14050 ASSERT(ire->ire_stq != NULL); 14051 14052 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14053 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14054 14055 if (ll_multicast != 0) { 14056 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14057 goto drop_pkt; 14058 } 14059 14060 /* 14061 * check if ipha_src is a broadcast address. Note that this 14062 * check is redundant when we get here from ip_fast_forward() 14063 * which has already done this check. However, since we can 14064 * also get here from ip_rput_process_broadcast() or, for 14065 * for the slow path through ip_fast_forward(), we perform 14066 * the check again for code-reusability 14067 */ 14068 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14069 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14070 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14071 if (src_ire != NULL) 14072 ire_refrele(src_ire); 14073 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14074 ip2dbg(("ip_rput_process_forward: Received packet with" 14075 " bad src/dst address on %s\n", ill->ill_name)); 14076 goto drop_pkt; 14077 } 14078 14079 ill_group = ill->ill_group; 14080 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14081 /* 14082 * Check if we want to forward this one at this time. 14083 * We allow source routed packets on a host provided that 14084 * they go out the same interface or same interface group 14085 * as they came in on. 14086 * 14087 * XXX To be quicker, we may wish to not chase pointers to 14088 * get the ILLF_ROUTER flag and instead store the 14089 * forwarding policy in the ire. An unfortunate 14090 * side-effect of that would be requiring an ire flush 14091 * whenever the ILLF_ROUTER flag changes. 14092 */ 14093 if (((ill->ill_flags & 14094 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14095 ILLF_ROUTER) == 0) && 14096 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14097 (ill_group != NULL && ill_group == ire_group)))) { 14098 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14099 if (ip_source_routed(ipha, ipst)) { 14100 q = WR(q); 14101 /* 14102 * Clear the indication that this may have 14103 * hardware checksum as we are not using it. 14104 */ 14105 DB_CKSUMFLAGS(mp) = 0; 14106 /* Sent by forwarding path, and router is global zone */ 14107 icmp_unreachable(q, mp, 14108 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14109 return; 14110 } 14111 goto drop_pkt; 14112 } 14113 14114 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14115 14116 /* Packet is being forwarded. Turning off hwcksum flag. */ 14117 DB_CKSUMFLAGS(mp) = 0; 14118 if (ipst->ips_ip_g_send_redirects) { 14119 /* 14120 * Check whether the incoming interface and outgoing 14121 * interface is part of the same group. If so, 14122 * send redirects. 14123 * 14124 * Check the source address to see if it originated 14125 * on the same logical subnet it is going back out on. 14126 * If so, we should be able to send it a redirect. 14127 * Avoid sending a redirect if the destination 14128 * is directly connected (i.e., ipha_dst is the same 14129 * as ire_gateway_addr or the ire_addr of the 14130 * nexthop IRE_CACHE ), or if the packet was source 14131 * routed out this interface. 14132 */ 14133 ipaddr_t src, nhop; 14134 mblk_t *mp1; 14135 ire_t *nhop_ire = NULL; 14136 14137 /* 14138 * Check whether ire_rfq and q are from the same ill 14139 * or if they are not same, they at least belong 14140 * to the same group. If so, send redirects. 14141 */ 14142 if ((ire->ire_rfq == q || 14143 (ill_group != NULL && ill_group == ire_group)) && 14144 !ip_source_routed(ipha, ipst)) { 14145 14146 nhop = (ire->ire_gateway_addr != 0 ? 14147 ire->ire_gateway_addr : ire->ire_addr); 14148 14149 if (ipha->ipha_dst == nhop) { 14150 /* 14151 * We avoid sending a redirect if the 14152 * destination is directly connected 14153 * because it is possible that multiple 14154 * IP subnets may have been configured on 14155 * the link, and the source may not 14156 * be on the same subnet as ip destination, 14157 * even though they are on the same 14158 * physical link. 14159 */ 14160 goto sendit; 14161 } 14162 14163 src = ipha->ipha_src; 14164 14165 /* 14166 * We look up the interface ire for the nexthop, 14167 * to see if ipha_src is in the same subnet 14168 * as the nexthop. 14169 * 14170 * Note that, if, in the future, IRE_CACHE entries 14171 * are obsoleted, this lookup will not be needed, 14172 * as the ire passed to this function will be the 14173 * same as the nhop_ire computed below. 14174 */ 14175 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14176 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14177 0, NULL, MATCH_IRE_TYPE, ipst); 14178 14179 if (nhop_ire != NULL) { 14180 if ((src & nhop_ire->ire_mask) == 14181 (nhop & nhop_ire->ire_mask)) { 14182 /* 14183 * The source is directly connected. 14184 * Just copy the ip header (which is 14185 * in the first mblk) 14186 */ 14187 mp1 = copyb(mp); 14188 if (mp1 != NULL) { 14189 icmp_send_redirect(WR(q), mp1, 14190 nhop, ipst); 14191 } 14192 } 14193 ire_refrele(nhop_ire); 14194 } 14195 } 14196 } 14197 sendit: 14198 dev_q = ire->ire_stq->q_next; 14199 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14200 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14201 freemsg(mp); 14202 return; 14203 } 14204 14205 ip_rput_forward(ire, ipha, mp, ill); 14206 return; 14207 14208 drop_pkt: 14209 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14210 freemsg(mp); 14211 } 14212 14213 ire_t * 14214 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14215 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14216 { 14217 queue_t *q; 14218 uint16_t hcksumflags; 14219 ip_stack_t *ipst = ill->ill_ipst; 14220 14221 q = *qp; 14222 14223 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14224 14225 /* 14226 * Clear the indication that this may have hardware 14227 * checksum as we are not using it for forwarding. 14228 */ 14229 hcksumflags = DB_CKSUMFLAGS(mp); 14230 DB_CKSUMFLAGS(mp) = 0; 14231 14232 /* 14233 * Directed broadcast forwarding: if the packet came in over a 14234 * different interface then it is routed out over we can forward it. 14235 */ 14236 if (ipha->ipha_protocol == IPPROTO_TCP) { 14237 ire_refrele(ire); 14238 freemsg(mp); 14239 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14240 return (NULL); 14241 } 14242 /* 14243 * For multicast we have set dst to be INADDR_BROADCAST 14244 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14245 * only for broadcast packets. 14246 */ 14247 if (!CLASSD(ipha->ipha_dst)) { 14248 ire_t *new_ire; 14249 ipif_t *ipif; 14250 /* 14251 * For ill groups, as the switch duplicates broadcasts 14252 * across all the ports, we need to filter out and 14253 * send up only one copy. There is one copy for every 14254 * broadcast address on each ill. Thus, we look for a 14255 * specific IRE on this ill and look at IRE_MARK_NORECV 14256 * later to see whether this ill is eligible to receive 14257 * them or not. ill_nominate_bcast_rcv() nominates only 14258 * one set of IREs for receiving. 14259 */ 14260 14261 ipif = ipif_get_next_ipif(NULL, ill); 14262 if (ipif == NULL) { 14263 ire_refrele(ire); 14264 freemsg(mp); 14265 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14266 return (NULL); 14267 } 14268 new_ire = ire_ctable_lookup(dst, 0, 0, 14269 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14270 ipif_refrele(ipif); 14271 14272 if (new_ire != NULL) { 14273 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14274 ire_refrele(ire); 14275 ire_refrele(new_ire); 14276 freemsg(mp); 14277 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14278 return (NULL); 14279 } 14280 /* 14281 * In the special case of multirouted broadcast 14282 * packets, we unconditionally need to "gateway" 14283 * them to the appropriate interface here. 14284 * In the normal case, this cannot happen, because 14285 * there is no broadcast IRE tagged with the 14286 * RTF_MULTIRT flag. 14287 */ 14288 if (new_ire->ire_flags & RTF_MULTIRT) { 14289 ire_refrele(new_ire); 14290 if (ire->ire_rfq != NULL) { 14291 q = ire->ire_rfq; 14292 *qp = q; 14293 } 14294 } else { 14295 ire_refrele(ire); 14296 ire = new_ire; 14297 } 14298 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14299 if (!ipst->ips_ip_g_forward_directed_bcast) { 14300 /* 14301 * Free the message if 14302 * ip_g_forward_directed_bcast is turned 14303 * off for non-local broadcast. 14304 */ 14305 ire_refrele(ire); 14306 freemsg(mp); 14307 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14308 return (NULL); 14309 } 14310 } else { 14311 /* 14312 * This CGTP packet successfully passed the 14313 * CGTP filter, but the related CGTP 14314 * broadcast IRE has not been found, 14315 * meaning that the redundant ipif is 14316 * probably down. However, if we discarded 14317 * this packet, its duplicate would be 14318 * filtered out by the CGTP filter so none 14319 * of them would get through. So we keep 14320 * going with this one. 14321 */ 14322 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14323 if (ire->ire_rfq != NULL) { 14324 q = ire->ire_rfq; 14325 *qp = q; 14326 } 14327 } 14328 } 14329 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14330 /* 14331 * Verify that there are not more then one 14332 * IRE_BROADCAST with this broadcast address which 14333 * has ire_stq set. 14334 * TODO: simplify, loop over all IRE's 14335 */ 14336 ire_t *ire1; 14337 int num_stq = 0; 14338 mblk_t *mp1; 14339 14340 /* Find the first one with ire_stq set */ 14341 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14342 for (ire1 = ire; ire1 && 14343 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14344 ire1 = ire1->ire_next) 14345 ; 14346 if (ire1) { 14347 ire_refrele(ire); 14348 ire = ire1; 14349 IRE_REFHOLD(ire); 14350 } 14351 14352 /* Check if there are additional ones with stq set */ 14353 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14354 if (ire->ire_addr != ire1->ire_addr) 14355 break; 14356 if (ire1->ire_stq) { 14357 num_stq++; 14358 break; 14359 } 14360 } 14361 rw_exit(&ire->ire_bucket->irb_lock); 14362 if (num_stq == 1 && ire->ire_stq != NULL) { 14363 ip1dbg(("ip_rput_process_broadcast: directed " 14364 "broadcast to 0x%x\n", 14365 ntohl(ire->ire_addr))); 14366 mp1 = copymsg(mp); 14367 if (mp1) { 14368 switch (ipha->ipha_protocol) { 14369 case IPPROTO_UDP: 14370 ip_udp_input(q, mp1, ipha, ire, ill); 14371 break; 14372 default: 14373 ip_proto_input(q, mp1, ipha, ire, ill, 14374 B_FALSE); 14375 break; 14376 } 14377 } 14378 /* 14379 * Adjust ttl to 2 (1+1 - the forward engine 14380 * will decrement it by one. 14381 */ 14382 if (ip_csum_hdr(ipha)) { 14383 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14384 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14385 freemsg(mp); 14386 ire_refrele(ire); 14387 return (NULL); 14388 } 14389 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14390 ipha->ipha_hdr_checksum = 0; 14391 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14392 ip_rput_process_forward(q, mp, ire, ipha, 14393 ill, ll_multicast); 14394 ire_refrele(ire); 14395 return (NULL); 14396 } 14397 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14398 ntohl(ire->ire_addr))); 14399 } 14400 14401 14402 /* Restore any hardware checksum flags */ 14403 DB_CKSUMFLAGS(mp) = hcksumflags; 14404 return (ire); 14405 } 14406 14407 /* ARGSUSED */ 14408 static boolean_t 14409 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14410 int *ll_multicast, ipaddr_t *dstp) 14411 { 14412 ip_stack_t *ipst = ill->ill_ipst; 14413 14414 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14415 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14416 ntohs(ipha->ipha_length)); 14417 14418 /* 14419 * Forward packets only if we have joined the allmulti 14420 * group on this interface. 14421 */ 14422 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14423 int retval; 14424 14425 /* 14426 * Clear the indication that this may have hardware 14427 * checksum as we are not using it. 14428 */ 14429 DB_CKSUMFLAGS(mp) = 0; 14430 retval = ip_mforward(ill, ipha, mp); 14431 /* ip_mforward updates mib variables if needed */ 14432 /* clear b_prev - used by ip_mroute_decap */ 14433 mp->b_prev = NULL; 14434 14435 switch (retval) { 14436 case 0: 14437 /* 14438 * pkt is okay and arrived on phyint. 14439 * 14440 * If we are running as a multicast router 14441 * we need to see all IGMP and/or PIM packets. 14442 */ 14443 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14444 (ipha->ipha_protocol == IPPROTO_PIM)) { 14445 goto done; 14446 } 14447 break; 14448 case -1: 14449 /* pkt is mal-formed, toss it */ 14450 goto drop_pkt; 14451 case 1: 14452 /* pkt is okay and arrived on a tunnel */ 14453 /* 14454 * If we are running a multicast router 14455 * we need to see all igmp packets. 14456 */ 14457 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14458 *dstp = INADDR_BROADCAST; 14459 *ll_multicast = 1; 14460 return (B_FALSE); 14461 } 14462 14463 goto drop_pkt; 14464 } 14465 } 14466 14467 ILM_WALKER_HOLD(ill); 14468 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14469 /* 14470 * This might just be caused by the fact that 14471 * multiple IP Multicast addresses map to the same 14472 * link layer multicast - no need to increment counter! 14473 */ 14474 ILM_WALKER_RELE(ill); 14475 freemsg(mp); 14476 return (B_TRUE); 14477 } 14478 ILM_WALKER_RELE(ill); 14479 done: 14480 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14481 /* 14482 * This assumes the we deliver to all streams for multicast 14483 * and broadcast packets. 14484 */ 14485 *dstp = INADDR_BROADCAST; 14486 *ll_multicast = 1; 14487 return (B_FALSE); 14488 drop_pkt: 14489 ip2dbg(("ip_rput: drop pkt\n")); 14490 freemsg(mp); 14491 return (B_TRUE); 14492 } 14493 14494 static boolean_t 14495 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14496 int *ll_multicast, mblk_t **mpp) 14497 { 14498 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14499 boolean_t must_copy = B_FALSE; 14500 struct iocblk *iocp; 14501 ipha_t *ipha; 14502 ip_stack_t *ipst = ill->ill_ipst; 14503 14504 #define rptr ((uchar_t *)ipha) 14505 14506 first_mp = *first_mpp; 14507 mp = *mpp; 14508 14509 ASSERT(first_mp == mp); 14510 14511 /* 14512 * if db_ref > 1 then copymsg and free original. Packet may be 14513 * changed and do not want other entity who has a reference to this 14514 * message to trip over the changes. This is a blind change because 14515 * trying to catch all places that might change packet is too 14516 * difficult (since it may be a module above this one) 14517 * 14518 * This corresponds to the non-fast path case. We walk down the full 14519 * chain in this case, and check the db_ref count of all the dblks, 14520 * and do a copymsg if required. It is possible that the db_ref counts 14521 * of the data blocks in the mblk chain can be different. 14522 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14523 * count of 1, followed by a M_DATA block with a ref count of 2, if 14524 * 'snoop' is running. 14525 */ 14526 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14527 if (mp1->b_datap->db_ref > 1) { 14528 must_copy = B_TRUE; 14529 break; 14530 } 14531 } 14532 14533 if (must_copy) { 14534 mp1 = copymsg(mp); 14535 if (mp1 == NULL) { 14536 for (mp1 = mp; mp1 != NULL; 14537 mp1 = mp1->b_cont) { 14538 mp1->b_next = NULL; 14539 mp1->b_prev = NULL; 14540 } 14541 freemsg(mp); 14542 if (ill != NULL) { 14543 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14544 } else { 14545 BUMP_MIB(&ipst->ips_ip_mib, 14546 ipIfStatsInDiscards); 14547 } 14548 return (B_TRUE); 14549 } 14550 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14551 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14552 /* Copy b_prev - used by ip_mroute_decap */ 14553 to_mp->b_prev = from_mp->b_prev; 14554 from_mp->b_prev = NULL; 14555 } 14556 *first_mpp = first_mp = mp1; 14557 freemsg(mp); 14558 mp = mp1; 14559 *mpp = mp1; 14560 } 14561 14562 ipha = (ipha_t *)mp->b_rptr; 14563 14564 /* 14565 * previous code has a case for M_DATA. 14566 * We want to check how that happens. 14567 */ 14568 ASSERT(first_mp->b_datap->db_type != M_DATA); 14569 switch (first_mp->b_datap->db_type) { 14570 case M_PROTO: 14571 case M_PCPROTO: 14572 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14573 DL_UNITDATA_IND) { 14574 /* Go handle anything other than data elsewhere. */ 14575 ip_rput_dlpi(q, mp); 14576 return (B_TRUE); 14577 } 14578 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14579 /* Ditch the DLPI header. */ 14580 mp1 = mp->b_cont; 14581 ASSERT(first_mp == mp); 14582 *first_mpp = mp1; 14583 freeb(mp); 14584 *mpp = mp1; 14585 return (B_FALSE); 14586 case M_IOCACK: 14587 ip1dbg(("got iocack ")); 14588 iocp = (struct iocblk *)mp->b_rptr; 14589 switch (iocp->ioc_cmd) { 14590 case DL_IOC_HDR_INFO: 14591 ill = (ill_t *)q->q_ptr; 14592 ill_fastpath_ack(ill, mp); 14593 return (B_TRUE); 14594 case SIOCSTUNPARAM: 14595 case OSIOCSTUNPARAM: 14596 /* Go through qwriter_ip */ 14597 break; 14598 case SIOCGTUNPARAM: 14599 case OSIOCGTUNPARAM: 14600 ip_rput_other(NULL, q, mp, NULL); 14601 return (B_TRUE); 14602 default: 14603 putnext(q, mp); 14604 return (B_TRUE); 14605 } 14606 /* FALLTHRU */ 14607 case M_ERROR: 14608 case M_HANGUP: 14609 /* 14610 * Since this is on the ill stream we unconditionally 14611 * bump up the refcount 14612 */ 14613 ill_refhold(ill); 14614 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14615 return (B_TRUE); 14616 case M_CTL: 14617 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14618 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14619 IPHADA_M_CTL)) { 14620 /* 14621 * It's an IPsec accelerated packet. 14622 * Make sure that the ill from which we received the 14623 * packet has enabled IPsec hardware acceleration. 14624 */ 14625 if (!(ill->ill_capabilities & 14626 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14627 /* IPsec kstats: bean counter */ 14628 freemsg(mp); 14629 return (B_TRUE); 14630 } 14631 14632 /* 14633 * Make mp point to the mblk following the M_CTL, 14634 * then process according to type of mp. 14635 * After this processing, first_mp will point to 14636 * the data-attributes and mp to the pkt following 14637 * the M_CTL. 14638 */ 14639 mp = first_mp->b_cont; 14640 if (mp == NULL) { 14641 freemsg(first_mp); 14642 return (B_TRUE); 14643 } 14644 /* 14645 * A Hardware Accelerated packet can only be M_DATA 14646 * ESP or AH packet. 14647 */ 14648 if (mp->b_datap->db_type != M_DATA) { 14649 /* non-M_DATA IPsec accelerated packet */ 14650 IPSECHW_DEBUG(IPSECHW_PKT, 14651 ("non-M_DATA IPsec accelerated pkt\n")); 14652 freemsg(first_mp); 14653 return (B_TRUE); 14654 } 14655 ipha = (ipha_t *)mp->b_rptr; 14656 if (ipha->ipha_protocol != IPPROTO_AH && 14657 ipha->ipha_protocol != IPPROTO_ESP) { 14658 IPSECHW_DEBUG(IPSECHW_PKT, 14659 ("non-M_DATA IPsec accelerated pkt\n")); 14660 freemsg(first_mp); 14661 return (B_TRUE); 14662 } 14663 *mpp = mp; 14664 return (B_FALSE); 14665 } 14666 putnext(q, mp); 14667 return (B_TRUE); 14668 case M_IOCNAK: 14669 ip1dbg(("got iocnak ")); 14670 iocp = (struct iocblk *)mp->b_rptr; 14671 switch (iocp->ioc_cmd) { 14672 case SIOCSTUNPARAM: 14673 case OSIOCSTUNPARAM: 14674 /* 14675 * Since this is on the ill stream we unconditionally 14676 * bump up the refcount 14677 */ 14678 ill_refhold(ill); 14679 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14680 return (B_TRUE); 14681 case DL_IOC_HDR_INFO: 14682 case SIOCGTUNPARAM: 14683 case OSIOCGTUNPARAM: 14684 ip_rput_other(NULL, q, mp, NULL); 14685 return (B_TRUE); 14686 default: 14687 break; 14688 } 14689 /* FALLTHRU */ 14690 default: 14691 putnext(q, mp); 14692 return (B_TRUE); 14693 } 14694 } 14695 14696 /* Read side put procedure. Packets coming from the wire arrive here. */ 14697 void 14698 ip_rput(queue_t *q, mblk_t *mp) 14699 { 14700 ill_t *ill; 14701 union DL_primitives *dl; 14702 14703 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14704 14705 ill = (ill_t *)q->q_ptr; 14706 14707 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14708 /* 14709 * If things are opening or closing, only accept high-priority 14710 * DLPI messages. (On open ill->ill_ipif has not yet been 14711 * created; on close, things hanging off the ill may have been 14712 * freed already.) 14713 */ 14714 dl = (union DL_primitives *)mp->b_rptr; 14715 if (DB_TYPE(mp) != M_PCPROTO || 14716 dl->dl_primitive == DL_UNITDATA_IND) { 14717 /* 14718 * SIOC[GS]TUNPARAM ioctls can come here. 14719 */ 14720 inet_freemsg(mp); 14721 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14722 "ip_rput_end: q %p (%S)", q, "uninit"); 14723 return; 14724 } 14725 } 14726 14727 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14728 "ip_rput_end: q %p (%S)", q, "end"); 14729 14730 ip_input(ill, NULL, mp, NULL); 14731 } 14732 14733 static mblk_t * 14734 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14735 { 14736 mblk_t *mp1; 14737 boolean_t adjusted = B_FALSE; 14738 ip_stack_t *ipst = ill->ill_ipst; 14739 14740 IP_STAT(ipst, ip_db_ref); 14741 /* 14742 * The IP_RECVSLLA option depends on having the 14743 * link layer header. First check that: 14744 * a> the underlying device is of type ether, 14745 * since this option is currently supported only 14746 * over ethernet. 14747 * b> there is enough room to copy over the link 14748 * layer header. 14749 * 14750 * Once the checks are done, adjust rptr so that 14751 * the link layer header will be copied via 14752 * copymsg. Note that, IFT_ETHER may be returned 14753 * by some non-ethernet drivers but in this case 14754 * the second check will fail. 14755 */ 14756 if (ill->ill_type == IFT_ETHER && 14757 (mp->b_rptr - mp->b_datap->db_base) >= 14758 sizeof (struct ether_header)) { 14759 mp->b_rptr -= sizeof (struct ether_header); 14760 adjusted = B_TRUE; 14761 } 14762 mp1 = copymsg(mp); 14763 14764 if (mp1 == NULL) { 14765 mp->b_next = NULL; 14766 /* clear b_prev - used by ip_mroute_decap */ 14767 mp->b_prev = NULL; 14768 freemsg(mp); 14769 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14770 return (NULL); 14771 } 14772 14773 if (adjusted) { 14774 /* 14775 * Copy is done. Restore the pointer in 14776 * the _new_ mblk 14777 */ 14778 mp1->b_rptr += sizeof (struct ether_header); 14779 } 14780 14781 /* Copy b_prev - used by ip_mroute_decap */ 14782 mp1->b_prev = mp->b_prev; 14783 mp->b_prev = NULL; 14784 14785 /* preserve the hardware checksum flags and data, if present */ 14786 if (DB_CKSUMFLAGS(mp) != 0) { 14787 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14788 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14789 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14790 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14791 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14792 } 14793 14794 freemsg(mp); 14795 return (mp1); 14796 } 14797 14798 /* 14799 * Direct read side procedure capable of dealing with chains. GLDv3 based 14800 * drivers call this function directly with mblk chains while STREAMS 14801 * read side procedure ip_rput() calls this for single packet with ip_ring 14802 * set to NULL to process one packet at a time. 14803 * 14804 * The ill will always be valid if this function is called directly from 14805 * the driver. 14806 * 14807 * If ip_input() is called from GLDv3: 14808 * 14809 * - This must be a non-VLAN IP stream. 14810 * - 'mp' is either an untagged or a special priority-tagged packet. 14811 * - Any VLAN tag that was in the MAC header has been stripped. 14812 * 14813 * If the IP header in packet is not 32-bit aligned, every message in the 14814 * chain will be aligned before further operations. This is required on SPARC 14815 * platform. 14816 */ 14817 /* ARGSUSED */ 14818 void 14819 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14820 struct mac_header_info_s *mhip) 14821 { 14822 ipaddr_t dst = NULL; 14823 ipaddr_t prev_dst; 14824 ire_t *ire = NULL; 14825 ipha_t *ipha; 14826 uint_t pkt_len; 14827 ssize_t len; 14828 uint_t opt_len; 14829 int ll_multicast; 14830 int cgtp_flt_pkt; 14831 queue_t *q = ill->ill_rq; 14832 squeue_t *curr_sqp = NULL; 14833 mblk_t *head = NULL; 14834 mblk_t *tail = NULL; 14835 mblk_t *first_mp; 14836 mblk_t *mp; 14837 mblk_t *dmp; 14838 int cnt = 0; 14839 ip_stack_t *ipst = ill->ill_ipst; 14840 14841 ASSERT(mp_chain != NULL); 14842 ASSERT(ill != NULL); 14843 14844 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14845 14846 #define rptr ((uchar_t *)ipha) 14847 14848 while (mp_chain != NULL) { 14849 first_mp = mp = mp_chain; 14850 mp_chain = mp_chain->b_next; 14851 mp->b_next = NULL; 14852 ll_multicast = 0; 14853 14854 /* 14855 * We do ire caching from one iteration to 14856 * another. In the event the packet chain contains 14857 * all packets from the same dst, this caching saves 14858 * an ire_cache_lookup for each of the succeeding 14859 * packets in a packet chain. 14860 */ 14861 prev_dst = dst; 14862 14863 /* 14864 * if db_ref > 1 then copymsg and free original. Packet 14865 * may be changed and we do not want the other entity 14866 * who has a reference to this message to trip over the 14867 * changes. This is a blind change because trying to 14868 * catch all places that might change the packet is too 14869 * difficult. 14870 * 14871 * This corresponds to the fast path case, where we have 14872 * a chain of M_DATA mblks. We check the db_ref count 14873 * of only the 1st data block in the mblk chain. There 14874 * doesn't seem to be a reason why a device driver would 14875 * send up data with varying db_ref counts in the mblk 14876 * chain. In any case the Fast path is a private 14877 * interface, and our drivers don't do such a thing. 14878 * Given the above assumption, there is no need to walk 14879 * down the entire mblk chain (which could have a 14880 * potential performance problem) 14881 */ 14882 14883 if (DB_REF(mp) > 1) { 14884 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14885 continue; 14886 } 14887 14888 /* 14889 * Check and align the IP header. 14890 */ 14891 first_mp = mp; 14892 if (DB_TYPE(mp) == M_DATA) { 14893 dmp = mp; 14894 } else if (DB_TYPE(mp) == M_PROTO && 14895 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14896 dmp = mp->b_cont; 14897 } else { 14898 dmp = NULL; 14899 } 14900 if (dmp != NULL) { 14901 /* 14902 * IP header ptr not aligned? 14903 * OR IP header not complete in first mblk 14904 */ 14905 if (!OK_32PTR(dmp->b_rptr) || 14906 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14907 if (!ip_check_and_align_header(q, dmp, ipst)) 14908 continue; 14909 } 14910 } 14911 14912 /* 14913 * ip_input fast path 14914 */ 14915 14916 /* mblk type is not M_DATA */ 14917 if (DB_TYPE(mp) != M_DATA) { 14918 if (ip_rput_process_notdata(q, &first_mp, ill, 14919 &ll_multicast, &mp)) 14920 continue; 14921 14922 /* 14923 * The only way we can get here is if we had a 14924 * packet that was either a DL_UNITDATA_IND or 14925 * an M_CTL for an IPsec accelerated packet. 14926 * 14927 * In either case, the first_mp will point to 14928 * the leading M_PROTO or M_CTL. 14929 */ 14930 ASSERT(first_mp != NULL); 14931 } 14932 14933 /* Make sure its an M_DATA and that its aligned */ 14934 ASSERT(DB_TYPE(mp) == M_DATA); 14935 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 14936 14937 ipha = (ipha_t *)mp->b_rptr; 14938 len = mp->b_wptr - rptr; 14939 pkt_len = ntohs(ipha->ipha_length); 14940 14941 /* 14942 * We must count all incoming packets, even if they end 14943 * up being dropped later on. 14944 */ 14945 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 14946 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 14947 14948 /* multiple mblk or too short */ 14949 len -= pkt_len; 14950 if (len != 0) { 14951 /* 14952 * Make sure we have data length consistent 14953 * with the IP header. 14954 */ 14955 if (mp->b_cont == NULL) { 14956 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14957 BUMP_MIB(ill->ill_ip_mib, 14958 ipIfStatsInHdrErrors); 14959 ip2dbg(("ip_input: drop pkt\n")); 14960 freemsg(mp); 14961 continue; 14962 } 14963 mp->b_wptr = rptr + pkt_len; 14964 } else if ((len += msgdsize(mp->b_cont)) != 0) { 14965 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14966 BUMP_MIB(ill->ill_ip_mib, 14967 ipIfStatsInHdrErrors); 14968 ip2dbg(("ip_input: drop pkt\n")); 14969 freemsg(mp); 14970 continue; 14971 } 14972 (void) adjmsg(mp, -len); 14973 IP_STAT(ipst, ip_multimblk3); 14974 } 14975 } 14976 14977 /* Obtain the dst of the current packet */ 14978 dst = ipha->ipha_dst; 14979 14980 /* 14981 * The following test for loopback is faster than 14982 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 14983 * operations. 14984 * Note that these addresses are always in network byte order 14985 */ 14986 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 14987 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 14988 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 14989 freemsg(mp); 14990 continue; 14991 } 14992 14993 /* 14994 * The event for packets being received from a 'physical' 14995 * interface is placed after validation of the source and/or 14996 * destination address as being local so that packets can be 14997 * redirected to loopback addresses using ipnat. 14998 */ 14999 DTRACE_PROBE4(ip4__physical__in__start, 15000 ill_t *, ill, ill_t *, NULL, 15001 ipha_t *, ipha, mblk_t *, first_mp); 15002 15003 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15004 ipst->ips_ipv4firewall_physical_in, 15005 ill, NULL, ipha, first_mp, mp, ipst); 15006 15007 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15008 15009 if (first_mp == NULL) { 15010 continue; 15011 } 15012 dst = ipha->ipha_dst; 15013 15014 /* 15015 * Attach any necessary label information to 15016 * this packet 15017 */ 15018 if (is_system_labeled() && 15019 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15020 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15021 freemsg(mp); 15022 continue; 15023 } 15024 15025 /* 15026 * Reuse the cached ire only if the ipha_dst of the previous 15027 * packet is the same as the current packet AND it is not 15028 * INADDR_ANY. 15029 */ 15030 if (!(dst == prev_dst && dst != INADDR_ANY) && 15031 (ire != NULL)) { 15032 ire_refrele(ire); 15033 ire = NULL; 15034 } 15035 opt_len = ipha->ipha_version_and_hdr_length - 15036 IP_SIMPLE_HDR_VERSION; 15037 15038 /* 15039 * Check to see if we can take the fastpath. 15040 * That is possible if the following conditions are met 15041 * o Tsol disabled 15042 * o CGTP disabled 15043 * o ipp_action_count is 0 15044 * o no options in the packet 15045 * o not a RSVP packet 15046 * o not a multicast packet 15047 * o ill not in IP_DHCPINIT_IF mode 15048 */ 15049 if (!is_system_labeled() && 15050 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15051 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15052 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15053 if (ire == NULL) 15054 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15055 ipst); 15056 15057 /* incoming packet is for forwarding */ 15058 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15059 ire = ip_fast_forward(ire, dst, ill, mp); 15060 continue; 15061 } 15062 /* incoming packet is for local consumption */ 15063 if (ire->ire_type & IRE_LOCAL) 15064 goto local; 15065 } 15066 15067 /* 15068 * Disable ire caching for anything more complex 15069 * than the simple fast path case we checked for above. 15070 */ 15071 if (ire != NULL) { 15072 ire_refrele(ire); 15073 ire = NULL; 15074 } 15075 15076 /* 15077 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15078 * server to unicast DHCP packets to a DHCP client using the 15079 * IP address it is offering to the client. This can be 15080 * disabled through the "broadcast bit", but not all DHCP 15081 * servers honor that bit. Therefore, to interoperate with as 15082 * many DHCP servers as possible, the DHCP client allows the 15083 * server to unicast, but we treat those packets as broadcast 15084 * here. Note that we don't rewrite the packet itself since 15085 * (a) that would mess up the checksums and (b) the DHCP 15086 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15087 * hand it the packet regardless. 15088 */ 15089 if (ill->ill_dhcpinit != 0 && 15090 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15091 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15092 udpha_t *udpha; 15093 15094 /* 15095 * Reload ipha since pullupmsg() can change b_rptr. 15096 */ 15097 ipha = (ipha_t *)mp->b_rptr; 15098 udpha = (udpha_t *)&ipha[1]; 15099 15100 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15101 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15102 mblk_t *, mp); 15103 dst = INADDR_BROADCAST; 15104 } 15105 } 15106 15107 /* Full-blown slow path */ 15108 if (opt_len != 0) { 15109 if (len != 0) 15110 IP_STAT(ipst, ip_multimblk4); 15111 else 15112 IP_STAT(ipst, ip_ipoptions); 15113 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15114 &dst, ipst)) 15115 continue; 15116 } 15117 15118 /* 15119 * Invoke the CGTP (multirouting) filtering module to process 15120 * the incoming packet. Packets identified as duplicates 15121 * must be discarded. Filtering is active only if the 15122 * the ip_cgtp_filter ndd variable is non-zero. 15123 */ 15124 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15125 if (ipst->ips_ip_cgtp_filter && 15126 ipst->ips_ip_cgtp_filter_ops != NULL) { 15127 netstackid_t stackid; 15128 15129 stackid = ipst->ips_netstack->netstack_stackid; 15130 cgtp_flt_pkt = 15131 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15132 ill->ill_phyint->phyint_ifindex, mp); 15133 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15134 freemsg(first_mp); 15135 continue; 15136 } 15137 } 15138 15139 /* 15140 * If rsvpd is running, let RSVP daemon handle its processing 15141 * and forwarding of RSVP multicast/unicast packets. 15142 * If rsvpd is not running but mrouted is running, RSVP 15143 * multicast packets are forwarded as multicast traffic 15144 * and RSVP unicast packets are forwarded by unicast router. 15145 * If neither rsvpd nor mrouted is running, RSVP multicast 15146 * packets are not forwarded, but the unicast packets are 15147 * forwarded like unicast traffic. 15148 */ 15149 if (ipha->ipha_protocol == IPPROTO_RSVP && 15150 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15151 NULL) { 15152 /* RSVP packet and rsvpd running. Treat as ours */ 15153 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15154 /* 15155 * This assumes that we deliver to all streams for 15156 * multicast and broadcast packets. 15157 * We have to force ll_multicast to 1 to handle the 15158 * M_DATA messages passed in from ip_mroute_decap. 15159 */ 15160 dst = INADDR_BROADCAST; 15161 ll_multicast = 1; 15162 } else if (CLASSD(dst)) { 15163 /* packet is multicast */ 15164 mp->b_next = NULL; 15165 if (ip_rput_process_multicast(q, mp, ill, ipha, 15166 &ll_multicast, &dst)) 15167 continue; 15168 } 15169 15170 if (ire == NULL) { 15171 ire = ire_cache_lookup(dst, ALL_ZONES, 15172 MBLK_GETLABEL(mp), ipst); 15173 } 15174 15175 if (ire == NULL) { 15176 /* 15177 * No IRE for this destination, so it can't be for us. 15178 * Unless we are forwarding, drop the packet. 15179 * We have to let source routed packets through 15180 * since we don't yet know if they are 'ping -l' 15181 * packets i.e. if they will go out over the 15182 * same interface as they came in on. 15183 */ 15184 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15185 if (ire == NULL) 15186 continue; 15187 } 15188 15189 /* 15190 * Broadcast IRE may indicate either broadcast or 15191 * multicast packet 15192 */ 15193 if (ire->ire_type == IRE_BROADCAST) { 15194 /* 15195 * Skip broadcast checks if packet is UDP multicast; 15196 * we'd rather not enter ip_rput_process_broadcast() 15197 * unless the packet is broadcast for real, since 15198 * that routine is a no-op for multicast. 15199 */ 15200 if (ipha->ipha_protocol != IPPROTO_UDP || 15201 !CLASSD(ipha->ipha_dst)) { 15202 ire = ip_rput_process_broadcast(&q, mp, 15203 ire, ipha, ill, dst, cgtp_flt_pkt, 15204 ll_multicast); 15205 if (ire == NULL) 15206 continue; 15207 } 15208 } else if (ire->ire_stq != NULL) { 15209 /* fowarding? */ 15210 ip_rput_process_forward(q, mp, ire, ipha, ill, 15211 ll_multicast); 15212 /* ip_rput_process_forward consumed the packet */ 15213 continue; 15214 } 15215 15216 local: 15217 /* 15218 * If the queue in the ire is different to the ingress queue 15219 * then we need to check to see if we can accept the packet. 15220 * Note that for multicast packets and broadcast packets sent 15221 * to a broadcast address which is shared between multiple 15222 * interfaces we should not do this since we just got a random 15223 * broadcast ire. 15224 */ 15225 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15226 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15227 ill)) == NULL) { 15228 /* Drop packet */ 15229 BUMP_MIB(ill->ill_ip_mib, 15230 ipIfStatsForwProhibits); 15231 freemsg(mp); 15232 continue; 15233 } 15234 if (ire->ire_rfq != NULL) 15235 q = ire->ire_rfq; 15236 } 15237 15238 switch (ipha->ipha_protocol) { 15239 case IPPROTO_TCP: 15240 ASSERT(first_mp == mp); 15241 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15242 mp, 0, q, ip_ring)) != NULL) { 15243 if (curr_sqp == NULL) { 15244 curr_sqp = GET_SQUEUE(mp); 15245 ASSERT(cnt == 0); 15246 cnt++; 15247 head = tail = mp; 15248 } else if (curr_sqp == GET_SQUEUE(mp)) { 15249 ASSERT(tail != NULL); 15250 cnt++; 15251 tail->b_next = mp; 15252 tail = mp; 15253 } else { 15254 /* 15255 * A different squeue. Send the 15256 * chain for the previous squeue on 15257 * its way. This shouldn't happen 15258 * often unless interrupt binding 15259 * changes. 15260 */ 15261 IP_STAT(ipst, ip_input_multi_squeue); 15262 squeue_enter_chain(curr_sqp, head, 15263 tail, cnt, SQTAG_IP_INPUT); 15264 curr_sqp = GET_SQUEUE(mp); 15265 head = mp; 15266 tail = mp; 15267 cnt = 1; 15268 } 15269 } 15270 continue; 15271 case IPPROTO_UDP: 15272 ASSERT(first_mp == mp); 15273 ip_udp_input(q, mp, ipha, ire, ill); 15274 continue; 15275 case IPPROTO_SCTP: 15276 ASSERT(first_mp == mp); 15277 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15278 q, dst); 15279 /* ire has been released by ip_sctp_input */ 15280 ire = NULL; 15281 continue; 15282 default: 15283 ip_proto_input(q, first_mp, ipha, ire, ill, B_FALSE); 15284 continue; 15285 } 15286 } 15287 15288 if (ire != NULL) 15289 ire_refrele(ire); 15290 15291 if (head != NULL) 15292 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15293 15294 /* 15295 * This code is there just to make netperf/ttcp look good. 15296 * 15297 * Its possible that after being in polling mode (and having cleared 15298 * the backlog), squeues have turned the interrupt frequency higher 15299 * to improve latency at the expense of more CPU utilization (less 15300 * packets per interrupts or more number of interrupts). Workloads 15301 * like ttcp/netperf do manage to tickle polling once in a while 15302 * but for the remaining time, stay in higher interrupt mode since 15303 * their packet arrival rate is pretty uniform and this shows up 15304 * as higher CPU utilization. Since people care about CPU utilization 15305 * while running netperf/ttcp, turn the interrupt frequency back to 15306 * normal/default if polling has not been used in ip_poll_normal_ticks. 15307 */ 15308 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15309 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15310 ip_ring->rr_poll_state &= ~ILL_POLLING; 15311 ip_ring->rr_blank(ip_ring->rr_handle, 15312 ip_ring->rr_normal_blank_time, 15313 ip_ring->rr_normal_pkt_cnt); 15314 } 15315 } 15316 15317 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15318 "ip_input_end: q %p (%S)", q, "end"); 15319 #undef rptr 15320 } 15321 15322 static void 15323 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15324 t_uscalar_t err) 15325 { 15326 if (dl_err == DL_SYSERR) { 15327 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15328 "%s: %s failed: DL_SYSERR (errno %u)\n", 15329 ill->ill_name, dlpi_prim_str(prim), err); 15330 return; 15331 } 15332 15333 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15334 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15335 dlpi_err_str(dl_err)); 15336 } 15337 15338 /* 15339 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15340 * than DL_UNITDATA_IND messages. If we need to process this message 15341 * exclusively, we call qwriter_ip, in which case we also need to call 15342 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15343 */ 15344 void 15345 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15346 { 15347 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15348 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15349 ill_t *ill = (ill_t *)q->q_ptr; 15350 boolean_t pending; 15351 15352 ip1dbg(("ip_rput_dlpi")); 15353 if (dloa->dl_primitive == DL_ERROR_ACK) { 15354 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15355 "%s (0x%x), unix %u\n", ill->ill_name, 15356 dlpi_prim_str(dlea->dl_error_primitive), 15357 dlea->dl_error_primitive, 15358 dlpi_err_str(dlea->dl_errno), 15359 dlea->dl_errno, 15360 dlea->dl_unix_errno)); 15361 } 15362 15363 /* 15364 * If we received an ACK but didn't send a request for it, then it 15365 * can't be part of any pending operation; discard up-front. 15366 */ 15367 switch (dloa->dl_primitive) { 15368 case DL_NOTIFY_IND: 15369 pending = B_TRUE; 15370 break; 15371 case DL_ERROR_ACK: 15372 pending = ill_dlpi_pending(ill, dlea->dl_error_primitive); 15373 break; 15374 case DL_OK_ACK: 15375 pending = ill_dlpi_pending(ill, dloa->dl_correct_primitive); 15376 break; 15377 case DL_INFO_ACK: 15378 pending = ill_dlpi_pending(ill, DL_INFO_REQ); 15379 break; 15380 case DL_BIND_ACK: 15381 pending = ill_dlpi_pending(ill, DL_BIND_REQ); 15382 break; 15383 case DL_PHYS_ADDR_ACK: 15384 pending = ill_dlpi_pending(ill, DL_PHYS_ADDR_REQ); 15385 break; 15386 case DL_NOTIFY_ACK: 15387 pending = ill_dlpi_pending(ill, DL_NOTIFY_REQ); 15388 break; 15389 case DL_CONTROL_ACK: 15390 pending = ill_dlpi_pending(ill, DL_CONTROL_REQ); 15391 break; 15392 case DL_CAPABILITY_ACK: 15393 pending = ill_dlpi_pending(ill, DL_CAPABILITY_REQ); 15394 break; 15395 default: 15396 /* Not a DLPI message we support or were expecting */ 15397 freemsg(mp); 15398 return; 15399 } 15400 15401 if (!pending) { 15402 freemsg(mp); 15403 return; 15404 } 15405 15406 switch (dloa->dl_primitive) { 15407 case DL_ERROR_ACK: 15408 if (dlea->dl_error_primitive == DL_UNBIND_REQ) { 15409 mutex_enter(&ill->ill_lock); 15410 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15411 cv_signal(&ill->ill_cv); 15412 mutex_exit(&ill->ill_lock); 15413 } 15414 break; 15415 15416 case DL_OK_ACK: 15417 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15418 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15419 switch (dloa->dl_correct_primitive) { 15420 case DL_UNBIND_REQ: 15421 mutex_enter(&ill->ill_lock); 15422 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15423 cv_signal(&ill->ill_cv); 15424 mutex_exit(&ill->ill_lock); 15425 break; 15426 15427 case DL_ENABMULTI_REQ: 15428 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15429 ill->ill_dlpi_multicast_state = IDS_OK; 15430 break; 15431 } 15432 break; 15433 default: 15434 break; 15435 } 15436 15437 /* 15438 * We know the message is one we're waiting for (or DL_NOTIFY_IND), 15439 * and we need to become writer to continue to process it. If it's not 15440 * a DL_NOTIFY_IND, we assume we're in the middle of an exclusive 15441 * operation and pass CUR_OP. If this isn't true, we'll end up doing 15442 * some work as part of the current exclusive operation that actually 15443 * is not part of it -- which is wrong, but better than the 15444 * alternative of deadlock (if NEW_OP is always used). Someday, we 15445 * should track which DLPI requests have ACKs that we wait on 15446 * synchronously so we can know whether to use CUR_OP or NEW_OP. 15447 * 15448 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15449 * Since this is on the ill stream we unconditionally bump up the 15450 * refcount without doing ILL_CAN_LOOKUP(). 15451 */ 15452 ill_refhold(ill); 15453 if (dloa->dl_primitive == DL_NOTIFY_IND) 15454 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15455 else 15456 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15457 } 15458 15459 /* 15460 * Handling of DLPI messages that require exclusive access to the ipsq. 15461 * 15462 * Need to do ill_pending_mp_release on ioctl completion, which could 15463 * happen here. (along with mi_copy_done) 15464 */ 15465 /* ARGSUSED */ 15466 static void 15467 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15468 { 15469 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15470 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15471 int err = 0; 15472 ill_t *ill; 15473 ipif_t *ipif = NULL; 15474 mblk_t *mp1 = NULL; 15475 conn_t *connp = NULL; 15476 t_uscalar_t paddrreq; 15477 mblk_t *mp_hw; 15478 boolean_t success; 15479 boolean_t ioctl_aborted = B_FALSE; 15480 boolean_t log = B_TRUE; 15481 hook_nic_event_t *info; 15482 ip_stack_t *ipst; 15483 15484 ip1dbg(("ip_rput_dlpi_writer ..")); 15485 ill = (ill_t *)q->q_ptr; 15486 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15487 15488 ASSERT(IAM_WRITER_ILL(ill)); 15489 15490 ipst = ill->ill_ipst; 15491 15492 /* 15493 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15494 * both are null or non-null. However we can assert that only 15495 * after grabbing the ipsq_lock. So we don't make any assertion 15496 * here and in other places in the code. 15497 */ 15498 ipif = ipsq->ipsq_pending_ipif; 15499 /* 15500 * The current ioctl could have been aborted by the user and a new 15501 * ioctl to bring up another ill could have started. We could still 15502 * get a response from the driver later. 15503 */ 15504 if (ipif != NULL && ipif->ipif_ill != ill) 15505 ioctl_aborted = B_TRUE; 15506 15507 switch (dloa->dl_primitive) { 15508 case DL_ERROR_ACK: 15509 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15510 dlpi_prim_str(dlea->dl_error_primitive))); 15511 15512 switch (dlea->dl_error_primitive) { 15513 case DL_PROMISCON_REQ: 15514 case DL_PROMISCOFF_REQ: 15515 case DL_DISABMULTI_REQ: 15516 case DL_UNBIND_REQ: 15517 case DL_ATTACH_REQ: 15518 case DL_INFO_REQ: 15519 ill_dlpi_done(ill, dlea->dl_error_primitive); 15520 break; 15521 case DL_NOTIFY_REQ: 15522 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15523 log = B_FALSE; 15524 break; 15525 case DL_PHYS_ADDR_REQ: 15526 /* 15527 * For IPv6 only, there are two additional 15528 * phys_addr_req's sent to the driver to get the 15529 * IPv6 token and lla. This allows IP to acquire 15530 * the hardware address format for a given interface 15531 * without having built in knowledge of the hardware 15532 * address. ill_phys_addr_pend keeps track of the last 15533 * DL_PAR sent so we know which response we are 15534 * dealing with. ill_dlpi_done will update 15535 * ill_phys_addr_pend when it sends the next req. 15536 * We don't complete the IOCTL until all three DL_PARs 15537 * have been attempted, so set *_len to 0 and break. 15538 */ 15539 paddrreq = ill->ill_phys_addr_pend; 15540 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15541 if (paddrreq == DL_IPV6_TOKEN) { 15542 ill->ill_token_length = 0; 15543 log = B_FALSE; 15544 break; 15545 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15546 ill->ill_nd_lla_len = 0; 15547 log = B_FALSE; 15548 break; 15549 } 15550 /* 15551 * Something went wrong with the DL_PHYS_ADDR_REQ. 15552 * We presumably have an IOCTL hanging out waiting 15553 * for completion. Find it and complete the IOCTL 15554 * with the error noted. 15555 * However, ill_dl_phys was called on an ill queue 15556 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15557 * set. But the ioctl is known to be pending on ill_wq. 15558 */ 15559 if (!ill->ill_ifname_pending) 15560 break; 15561 ill->ill_ifname_pending = 0; 15562 if (!ioctl_aborted) 15563 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15564 if (mp1 != NULL) { 15565 /* 15566 * This operation (SIOCSLIFNAME) must have 15567 * happened on the ill. Assert there is no conn 15568 */ 15569 ASSERT(connp == NULL); 15570 q = ill->ill_wq; 15571 } 15572 break; 15573 case DL_BIND_REQ: 15574 ill_dlpi_done(ill, DL_BIND_REQ); 15575 if (ill->ill_ifname_pending) 15576 break; 15577 /* 15578 * Something went wrong with the bind. We presumably 15579 * have an IOCTL hanging out waiting for completion. 15580 * Find it, take down the interface that was coming 15581 * up, and complete the IOCTL with the error noted. 15582 */ 15583 if (!ioctl_aborted) 15584 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15585 if (mp1 != NULL) { 15586 /* 15587 * This operation (SIOCSLIFFLAGS) must have 15588 * happened from a conn. 15589 */ 15590 ASSERT(connp != NULL); 15591 q = CONNP_TO_WQ(connp); 15592 if (ill->ill_move_in_progress) { 15593 ILL_CLEAR_MOVE(ill); 15594 } 15595 (void) ipif_down(ipif, NULL, NULL); 15596 /* error is set below the switch */ 15597 } 15598 break; 15599 case DL_ENABMULTI_REQ: 15600 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15601 15602 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15603 ill->ill_dlpi_multicast_state = IDS_FAILED; 15604 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15605 ipif_t *ipif; 15606 15607 printf("ip: joining multicasts failed (%d)" 15608 " on %s - will use link layer " 15609 "broadcasts for multicast\n", 15610 dlea->dl_errno, ill->ill_name); 15611 15612 /* 15613 * Set up the multicast mapping alone. 15614 * writer, so ok to access ill->ill_ipif 15615 * without any lock. 15616 */ 15617 ipif = ill->ill_ipif; 15618 mutex_enter(&ill->ill_phyint->phyint_lock); 15619 ill->ill_phyint->phyint_flags |= 15620 PHYI_MULTI_BCAST; 15621 mutex_exit(&ill->ill_phyint->phyint_lock); 15622 15623 if (!ill->ill_isv6) { 15624 (void) ipif_arp_setup_multicast(ipif, 15625 NULL); 15626 } else { 15627 (void) ipif_ndp_setup_multicast(ipif, 15628 NULL); 15629 } 15630 } 15631 freemsg(mp); /* Don't want to pass this up */ 15632 return; 15633 15634 case DL_CAPABILITY_REQ: 15635 case DL_CONTROL_REQ: 15636 ill_dlpi_done(ill, dlea->dl_error_primitive); 15637 ill->ill_dlpi_capab_state = IDS_FAILED; 15638 freemsg(mp); 15639 return; 15640 } 15641 /* 15642 * Note the error for IOCTL completion (mp1 is set when 15643 * ready to complete ioctl). If ill_ifname_pending_err is 15644 * set, an error occured during plumbing (ill_ifname_pending), 15645 * so we want to report that error. 15646 * 15647 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15648 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15649 * expected to get errack'd if the driver doesn't support 15650 * these flags (e.g. ethernet). log will be set to B_FALSE 15651 * if these error conditions are encountered. 15652 */ 15653 if (mp1 != NULL) { 15654 if (ill->ill_ifname_pending_err != 0) { 15655 err = ill->ill_ifname_pending_err; 15656 ill->ill_ifname_pending_err = 0; 15657 } else { 15658 err = dlea->dl_unix_errno ? 15659 dlea->dl_unix_errno : ENXIO; 15660 } 15661 /* 15662 * If we're plumbing an interface and an error hasn't already 15663 * been saved, set ill_ifname_pending_err to the error passed 15664 * up. Ignore the error if log is B_FALSE (see comment above). 15665 */ 15666 } else if (log && ill->ill_ifname_pending && 15667 ill->ill_ifname_pending_err == 0) { 15668 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15669 dlea->dl_unix_errno : ENXIO; 15670 } 15671 15672 if (log) 15673 ip_dlpi_error(ill, dlea->dl_error_primitive, 15674 dlea->dl_errno, dlea->dl_unix_errno); 15675 break; 15676 case DL_CAPABILITY_ACK: 15677 /* Call a routine to handle this one. */ 15678 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15679 ill_capability_ack(ill, mp); 15680 15681 /* 15682 * If the ack is due to renegotiation, we will need to send 15683 * a new CAPABILITY_REQ to start the renegotiation. 15684 */ 15685 if (ill->ill_capab_reneg) { 15686 ill->ill_capab_reneg = B_FALSE; 15687 ill_capability_probe(ill); 15688 } 15689 break; 15690 case DL_CONTROL_ACK: 15691 /* We treat all of these as "fire and forget" */ 15692 ill_dlpi_done(ill, DL_CONTROL_REQ); 15693 break; 15694 case DL_INFO_ACK: 15695 /* Call a routine to handle this one. */ 15696 ill_dlpi_done(ill, DL_INFO_REQ); 15697 ip_ll_subnet_defaults(ill, mp); 15698 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15699 return; 15700 case DL_BIND_ACK: 15701 /* 15702 * We should have an IOCTL waiting on this unless 15703 * sent by ill_dl_phys, in which case just return 15704 */ 15705 ill_dlpi_done(ill, DL_BIND_REQ); 15706 if (ill->ill_ifname_pending) 15707 break; 15708 15709 if (!ioctl_aborted) 15710 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15711 if (mp1 == NULL) 15712 break; 15713 /* 15714 * Because mp1 was added by ill_dl_up(), and it always 15715 * passes a valid connp, connp must be valid here. 15716 */ 15717 ASSERT(connp != NULL); 15718 q = CONNP_TO_WQ(connp); 15719 15720 /* 15721 * We are exclusive. So nothing can change even after 15722 * we get the pending mp. If need be we can put it back 15723 * and restart, as in calling ipif_arp_up() below. 15724 */ 15725 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15726 15727 mutex_enter(&ill->ill_lock); 15728 15729 ill->ill_dl_up = 1; 15730 15731 if ((info = ill->ill_nic_event_info) != NULL) { 15732 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15733 "attached for %s\n", info->hne_event, 15734 ill->ill_name)); 15735 if (info->hne_data != NULL) 15736 kmem_free(info->hne_data, info->hne_datalen); 15737 kmem_free(info, sizeof (hook_nic_event_t)); 15738 } 15739 15740 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15741 if (info != NULL) { 15742 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 15743 info->hne_lif = 0; 15744 info->hne_event = NE_UP; 15745 info->hne_data = NULL; 15746 info->hne_datalen = 0; 15747 info->hne_family = ill->ill_isv6 ? 15748 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 15749 } else 15750 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15751 "event information for %s (ENOMEM)\n", 15752 ill->ill_name)); 15753 15754 ill->ill_nic_event_info = info; 15755 15756 mutex_exit(&ill->ill_lock); 15757 15758 /* 15759 * Now bring up the resolver; when that is complete, we'll 15760 * create IREs. Note that we intentionally mirror what 15761 * ipif_up() would have done, because we got here by way of 15762 * ill_dl_up(), which stopped ipif_up()'s processing. 15763 */ 15764 if (ill->ill_isv6) { 15765 /* 15766 * v6 interfaces. 15767 * Unlike ARP which has to do another bind 15768 * and attach, once we get here we are 15769 * done with NDP. Except in the case of 15770 * ILLF_XRESOLV, in which case we send an 15771 * AR_INTERFACE_UP to the external resolver. 15772 * If all goes well, the ioctl will complete 15773 * in ip_rput(). If there's an error, we 15774 * complete it here. 15775 */ 15776 if ((err = ipif_ndp_up(ipif)) == 0) { 15777 if (ill->ill_flags & ILLF_XRESOLV) { 15778 mutex_enter(&connp->conn_lock); 15779 mutex_enter(&ill->ill_lock); 15780 success = ipsq_pending_mp_add( 15781 connp, ipif, q, mp1, 0); 15782 mutex_exit(&ill->ill_lock); 15783 mutex_exit(&connp->conn_lock); 15784 if (success) { 15785 err = ipif_resolver_up(ipif, 15786 Res_act_initial); 15787 if (err == EINPROGRESS) { 15788 freemsg(mp); 15789 return; 15790 } 15791 ASSERT(err != 0); 15792 mp1 = ipsq_pending_mp_get(ipsq, 15793 &connp); 15794 ASSERT(mp1 != NULL); 15795 } else { 15796 /* conn has started closing */ 15797 err = EINTR; 15798 } 15799 } else { /* Non XRESOLV interface */ 15800 (void) ipif_resolver_up(ipif, 15801 Res_act_initial); 15802 err = ipif_up_done_v6(ipif); 15803 } 15804 } 15805 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15806 /* 15807 * ARP and other v4 external resolvers. 15808 * Leave the pending mblk intact so that 15809 * the ioctl completes in ip_rput(). 15810 */ 15811 mutex_enter(&connp->conn_lock); 15812 mutex_enter(&ill->ill_lock); 15813 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15814 mutex_exit(&ill->ill_lock); 15815 mutex_exit(&connp->conn_lock); 15816 if (success) { 15817 err = ipif_resolver_up(ipif, Res_act_initial); 15818 if (err == EINPROGRESS) { 15819 freemsg(mp); 15820 return; 15821 } 15822 ASSERT(err != 0); 15823 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15824 } else { 15825 /* The conn has started closing */ 15826 err = EINTR; 15827 } 15828 } else { 15829 /* 15830 * This one is complete. Reply to pending ioctl. 15831 */ 15832 (void) ipif_resolver_up(ipif, Res_act_initial); 15833 err = ipif_up_done(ipif); 15834 } 15835 15836 if ((err == 0) && (ill->ill_up_ipifs)) { 15837 err = ill_up_ipifs(ill, q, mp1); 15838 if (err == EINPROGRESS) { 15839 freemsg(mp); 15840 return; 15841 } 15842 } 15843 15844 if (ill->ill_up_ipifs) { 15845 ill_group_cleanup(ill); 15846 } 15847 15848 break; 15849 case DL_NOTIFY_IND: { 15850 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15851 ire_t *ire; 15852 boolean_t need_ire_walk_v4 = B_FALSE; 15853 boolean_t need_ire_walk_v6 = B_FALSE; 15854 15855 switch (notify->dl_notification) { 15856 case DL_NOTE_PHYS_ADDR: 15857 err = ill_set_phys_addr(ill, mp); 15858 break; 15859 15860 case DL_NOTE_FASTPATH_FLUSH: 15861 ill_fastpath_flush(ill); 15862 break; 15863 15864 case DL_NOTE_SDU_SIZE: 15865 /* 15866 * Change the MTU size of the interface, of all 15867 * attached ipif's, and of all relevant ire's. The 15868 * new value's a uint32_t at notify->dl_data. 15869 * Mtu change Vs. new ire creation - protocol below. 15870 * 15871 * a Mark the ipif as IPIF_CHANGING. 15872 * b Set the new mtu in the ipif. 15873 * c Change the ire_max_frag on all affected ires 15874 * d Unmark the IPIF_CHANGING 15875 * 15876 * To see how the protocol works, assume an interface 15877 * route is also being added simultaneously by 15878 * ip_rt_add and let 'ipif' be the ipif referenced by 15879 * the ire. If the ire is created before step a, 15880 * it will be cleaned up by step c. If the ire is 15881 * created after step d, it will see the new value of 15882 * ipif_mtu. Any attempt to create the ire between 15883 * steps a to d will fail because of the IPIF_CHANGING 15884 * flag. Note that ire_create() is passed a pointer to 15885 * the ipif_mtu, and not the value. During ire_add 15886 * under the bucket lock, the ire_max_frag of the 15887 * new ire being created is set from the ipif/ire from 15888 * which it is being derived. 15889 */ 15890 mutex_enter(&ill->ill_lock); 15891 ill->ill_max_frag = (uint_t)notify->dl_data; 15892 15893 /* 15894 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15895 * leave it alone 15896 */ 15897 if (ill->ill_mtu_userspecified) { 15898 mutex_exit(&ill->ill_lock); 15899 break; 15900 } 15901 ill->ill_max_mtu = ill->ill_max_frag; 15902 if (ill->ill_isv6) { 15903 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15904 ill->ill_max_mtu = IPV6_MIN_MTU; 15905 } else { 15906 if (ill->ill_max_mtu < IP_MIN_MTU) 15907 ill->ill_max_mtu = IP_MIN_MTU; 15908 } 15909 for (ipif = ill->ill_ipif; ipif != NULL; 15910 ipif = ipif->ipif_next) { 15911 /* 15912 * Don't override the mtu if the user 15913 * has explicitly set it. 15914 */ 15915 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15916 continue; 15917 ipif->ipif_mtu = (uint_t)notify->dl_data; 15918 if (ipif->ipif_isv6) 15919 ire = ipif_to_ire_v6(ipif); 15920 else 15921 ire = ipif_to_ire(ipif); 15922 if (ire != NULL) { 15923 ire->ire_max_frag = ipif->ipif_mtu; 15924 ire_refrele(ire); 15925 } 15926 if (ipif->ipif_flags & IPIF_UP) { 15927 if (ill->ill_isv6) 15928 need_ire_walk_v6 = B_TRUE; 15929 else 15930 need_ire_walk_v4 = B_TRUE; 15931 } 15932 } 15933 mutex_exit(&ill->ill_lock); 15934 if (need_ire_walk_v4) 15935 ire_walk_v4(ill_mtu_change, (char *)ill, 15936 ALL_ZONES, ipst); 15937 if (need_ire_walk_v6) 15938 ire_walk_v6(ill_mtu_change, (char *)ill, 15939 ALL_ZONES, ipst); 15940 break; 15941 case DL_NOTE_LINK_UP: 15942 case DL_NOTE_LINK_DOWN: { 15943 /* 15944 * We are writer. ill / phyint / ipsq assocs stable. 15945 * The RUNNING flag reflects the state of the link. 15946 */ 15947 phyint_t *phyint = ill->ill_phyint; 15948 uint64_t new_phyint_flags; 15949 boolean_t changed = B_FALSE; 15950 boolean_t went_up; 15951 15952 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 15953 mutex_enter(&phyint->phyint_lock); 15954 new_phyint_flags = went_up ? 15955 phyint->phyint_flags | PHYI_RUNNING : 15956 phyint->phyint_flags & ~PHYI_RUNNING; 15957 if (new_phyint_flags != phyint->phyint_flags) { 15958 phyint->phyint_flags = new_phyint_flags; 15959 changed = B_TRUE; 15960 } 15961 mutex_exit(&phyint->phyint_lock); 15962 /* 15963 * ill_restart_dad handles the DAD restart and routing 15964 * socket notification logic. 15965 */ 15966 if (changed) { 15967 ill_restart_dad(phyint->phyint_illv4, went_up); 15968 ill_restart_dad(phyint->phyint_illv6, went_up); 15969 } 15970 break; 15971 } 15972 case DL_NOTE_PROMISC_ON_PHYS: 15973 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15974 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 15975 mutex_enter(&ill->ill_lock); 15976 ill->ill_promisc_on_phys = B_TRUE; 15977 mutex_exit(&ill->ill_lock); 15978 break; 15979 case DL_NOTE_PROMISC_OFF_PHYS: 15980 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15981 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 15982 mutex_enter(&ill->ill_lock); 15983 ill->ill_promisc_on_phys = B_FALSE; 15984 mutex_exit(&ill->ill_lock); 15985 break; 15986 case DL_NOTE_CAPAB_RENEG: 15987 /* 15988 * Something changed on the driver side. 15989 * It wants us to renegotiate the capabilities 15990 * on this ill. One possible cause is the aggregation 15991 * interface under us where a port got added or 15992 * went away. 15993 * 15994 * If the capability negotiation is already done 15995 * or is in progress, reset the capabilities and 15996 * mark the ill's ill_capab_reneg to be B_TRUE, 15997 * so that when the ack comes back, we can start 15998 * the renegotiation process. 15999 * 16000 * Note that if ill_capab_reneg is already B_TRUE 16001 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16002 * the capability resetting request has been sent 16003 * and the renegotiation has not been started yet; 16004 * nothing needs to be done in this case. 16005 */ 16006 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) { 16007 ill_capability_reset(ill); 16008 ill->ill_capab_reneg = B_TRUE; 16009 } 16010 break; 16011 default: 16012 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16013 "type 0x%x for DL_NOTIFY_IND\n", 16014 notify->dl_notification)); 16015 break; 16016 } 16017 16018 /* 16019 * As this is an asynchronous operation, we 16020 * should not call ill_dlpi_done 16021 */ 16022 break; 16023 } 16024 case DL_NOTIFY_ACK: { 16025 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16026 16027 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16028 ill->ill_note_link = 1; 16029 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16030 break; 16031 } 16032 case DL_PHYS_ADDR_ACK: { 16033 /* 16034 * As part of plumbing the interface via SIOCSLIFNAME, 16035 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16036 * whose answers we receive here. As each answer is received, 16037 * we call ill_dlpi_done() to dispatch the next request as 16038 * we're processing the current one. Once all answers have 16039 * been received, we use ipsq_pending_mp_get() to dequeue the 16040 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16041 * is invoked from an ill queue, conn_oper_pending_ill is not 16042 * available, but we know the ioctl is pending on ill_wq.) 16043 */ 16044 uint_t paddrlen, paddroff; 16045 16046 paddrreq = ill->ill_phys_addr_pend; 16047 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16048 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16049 16050 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16051 if (paddrreq == DL_IPV6_TOKEN) { 16052 /* 16053 * bcopy to low-order bits of ill_token 16054 * 16055 * XXX Temporary hack - currently, all known tokens 16056 * are 64 bits, so I'll cheat for the moment. 16057 */ 16058 bcopy(mp->b_rptr + paddroff, 16059 &ill->ill_token.s6_addr32[2], paddrlen); 16060 ill->ill_token_length = paddrlen; 16061 break; 16062 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16063 ASSERT(ill->ill_nd_lla_mp == NULL); 16064 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16065 mp = NULL; 16066 break; 16067 } 16068 16069 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16070 ASSERT(ill->ill_phys_addr_mp == NULL); 16071 if (!ill->ill_ifname_pending) 16072 break; 16073 ill->ill_ifname_pending = 0; 16074 if (!ioctl_aborted) 16075 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16076 if (mp1 != NULL) { 16077 ASSERT(connp == NULL); 16078 q = ill->ill_wq; 16079 } 16080 /* 16081 * If any error acks received during the plumbing sequence, 16082 * ill_ifname_pending_err will be set. Break out and send up 16083 * the error to the pending ioctl. 16084 */ 16085 if (ill->ill_ifname_pending_err != 0) { 16086 err = ill->ill_ifname_pending_err; 16087 ill->ill_ifname_pending_err = 0; 16088 break; 16089 } 16090 16091 ill->ill_phys_addr_mp = mp; 16092 ill->ill_phys_addr = mp->b_rptr + paddroff; 16093 mp = NULL; 16094 16095 /* 16096 * If paddrlen is zero, the DLPI provider doesn't support 16097 * physical addresses. The other two tests were historical 16098 * workarounds for bugs in our former PPP implementation, but 16099 * now other things have grown dependencies on them -- e.g., 16100 * the tun module specifies a dl_addr_length of zero in its 16101 * DL_BIND_ACK, but then specifies an incorrect value in its 16102 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16103 * but only after careful testing ensures that all dependent 16104 * broken DLPI providers have been fixed. 16105 */ 16106 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16107 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16108 ill->ill_phys_addr = NULL; 16109 } else if (paddrlen != ill->ill_phys_addr_length) { 16110 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16111 paddrlen, ill->ill_phys_addr_length)); 16112 err = EINVAL; 16113 break; 16114 } 16115 16116 if (ill->ill_nd_lla_mp == NULL) { 16117 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16118 err = ENOMEM; 16119 break; 16120 } 16121 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16122 } 16123 16124 /* 16125 * Set the interface token. If the zeroth interface address 16126 * is unspecified, then set it to the link local address. 16127 */ 16128 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16129 (void) ill_setdefaulttoken(ill); 16130 16131 ASSERT(ill->ill_ipif->ipif_id == 0); 16132 if (ipif != NULL && 16133 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16134 (void) ipif_setlinklocal(ipif); 16135 } 16136 break; 16137 } 16138 case DL_OK_ACK: 16139 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16140 dlpi_prim_str((int)dloa->dl_correct_primitive), 16141 dloa->dl_correct_primitive)); 16142 switch (dloa->dl_correct_primitive) { 16143 case DL_PROMISCON_REQ: 16144 case DL_PROMISCOFF_REQ: 16145 case DL_ENABMULTI_REQ: 16146 case DL_DISABMULTI_REQ: 16147 case DL_UNBIND_REQ: 16148 case DL_ATTACH_REQ: 16149 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16150 break; 16151 } 16152 break; 16153 default: 16154 break; 16155 } 16156 16157 freemsg(mp); 16158 if (mp1 != NULL) { 16159 /* 16160 * The operation must complete without EINPROGRESS 16161 * since ipsq_pending_mp_get() has removed the mblk 16162 * from ipsq_pending_mp. Otherwise, the operation 16163 * will be stuck forever in the ipsq. 16164 */ 16165 ASSERT(err != EINPROGRESS); 16166 16167 switch (ipsq->ipsq_current_ioctl) { 16168 case 0: 16169 ipsq_current_finish(ipsq); 16170 break; 16171 16172 case SIOCLIFADDIF: 16173 case SIOCSLIFNAME: 16174 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16175 break; 16176 16177 default: 16178 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16179 break; 16180 } 16181 } 16182 } 16183 16184 /* 16185 * ip_rput_other is called by ip_rput to handle messages modifying the global 16186 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16187 */ 16188 /* ARGSUSED */ 16189 void 16190 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16191 { 16192 ill_t *ill; 16193 struct iocblk *iocp; 16194 mblk_t *mp1; 16195 conn_t *connp = NULL; 16196 16197 ip1dbg(("ip_rput_other ")); 16198 ill = (ill_t *)q->q_ptr; 16199 /* 16200 * This routine is not a writer in the case of SIOCGTUNPARAM 16201 * in which case ipsq is NULL. 16202 */ 16203 if (ipsq != NULL) { 16204 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16205 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16206 } 16207 16208 switch (mp->b_datap->db_type) { 16209 case M_ERROR: 16210 case M_HANGUP: 16211 /* 16212 * The device has a problem. We force the ILL down. It can 16213 * be brought up again manually using SIOCSIFFLAGS (via 16214 * ifconfig or equivalent). 16215 */ 16216 ASSERT(ipsq != NULL); 16217 if (mp->b_rptr < mp->b_wptr) 16218 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16219 if (ill->ill_error == 0) 16220 ill->ill_error = ENXIO; 16221 if (!ill_down_start(q, mp)) 16222 return; 16223 ipif_all_down_tail(ipsq, q, mp, NULL); 16224 break; 16225 case M_IOCACK: 16226 iocp = (struct iocblk *)mp->b_rptr; 16227 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16228 switch (iocp->ioc_cmd) { 16229 case SIOCSTUNPARAM: 16230 case OSIOCSTUNPARAM: 16231 ASSERT(ipsq != NULL); 16232 /* 16233 * Finish socket ioctl passed through to tun. 16234 * We should have an IOCTL waiting on this. 16235 */ 16236 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16237 if (ill->ill_isv6) { 16238 struct iftun_req *ta; 16239 16240 /* 16241 * if a source or destination is 16242 * being set, try and set the link 16243 * local address for the tunnel 16244 */ 16245 ta = (struct iftun_req *)mp->b_cont-> 16246 b_cont->b_rptr; 16247 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16248 ipif_set_tun_llink(ill, ta); 16249 } 16250 16251 } 16252 if (mp1 != NULL) { 16253 /* 16254 * Now copy back the b_next/b_prev used by 16255 * mi code for the mi_copy* functions. 16256 * See ip_sioctl_tunparam() for the reason. 16257 * Also protect against missing b_cont. 16258 */ 16259 if (mp->b_cont != NULL) { 16260 mp->b_cont->b_next = 16261 mp1->b_cont->b_next; 16262 mp->b_cont->b_prev = 16263 mp1->b_cont->b_prev; 16264 } 16265 inet_freemsg(mp1); 16266 ASSERT(connp != NULL); 16267 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16268 iocp->ioc_error, NO_COPYOUT, ipsq); 16269 } else { 16270 ASSERT(connp == NULL); 16271 putnext(q, mp); 16272 } 16273 break; 16274 case SIOCGTUNPARAM: 16275 case OSIOCGTUNPARAM: 16276 /* 16277 * This is really M_IOCDATA from the tunnel driver. 16278 * convert back and complete the ioctl. 16279 * We should have an IOCTL waiting on this. 16280 */ 16281 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16282 if (mp1) { 16283 /* 16284 * Now copy back the b_next/b_prev used by 16285 * mi code for the mi_copy* functions. 16286 * See ip_sioctl_tunparam() for the reason. 16287 * Also protect against missing b_cont. 16288 */ 16289 if (mp->b_cont != NULL) { 16290 mp->b_cont->b_next = 16291 mp1->b_cont->b_next; 16292 mp->b_cont->b_prev = 16293 mp1->b_cont->b_prev; 16294 } 16295 inet_freemsg(mp1); 16296 if (iocp->ioc_error == 0) 16297 mp->b_datap->db_type = M_IOCDATA; 16298 ASSERT(connp != NULL); 16299 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16300 iocp->ioc_error, COPYOUT, NULL); 16301 } else { 16302 ASSERT(connp == NULL); 16303 putnext(q, mp); 16304 } 16305 break; 16306 default: 16307 break; 16308 } 16309 break; 16310 case M_IOCNAK: 16311 iocp = (struct iocblk *)mp->b_rptr; 16312 16313 switch (iocp->ioc_cmd) { 16314 int mode; 16315 16316 case DL_IOC_HDR_INFO: 16317 /* 16318 * If this was the first attempt turn of the 16319 * fastpath probing. 16320 */ 16321 mutex_enter(&ill->ill_lock); 16322 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16323 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16324 mutex_exit(&ill->ill_lock); 16325 ill_fastpath_nack(ill); 16326 ip1dbg(("ip_rput: DLPI fastpath off on " 16327 "interface %s\n", 16328 ill->ill_name)); 16329 } else { 16330 mutex_exit(&ill->ill_lock); 16331 } 16332 freemsg(mp); 16333 break; 16334 case SIOCSTUNPARAM: 16335 case OSIOCSTUNPARAM: 16336 ASSERT(ipsq != NULL); 16337 /* 16338 * Finish socket ioctl passed through to tun 16339 * We should have an IOCTL waiting on this. 16340 */ 16341 /* FALLTHRU */ 16342 case SIOCGTUNPARAM: 16343 case OSIOCGTUNPARAM: 16344 /* 16345 * This is really M_IOCDATA from the tunnel driver. 16346 * convert back and complete the ioctl. 16347 * We should have an IOCTL waiting on this. 16348 */ 16349 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16350 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16351 mp1 = ill_pending_mp_get(ill, &connp, 16352 iocp->ioc_id); 16353 mode = COPYOUT; 16354 ipsq = NULL; 16355 } else { 16356 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16357 mode = NO_COPYOUT; 16358 } 16359 if (mp1 != NULL) { 16360 /* 16361 * Now copy back the b_next/b_prev used by 16362 * mi code for the mi_copy* functions. 16363 * See ip_sioctl_tunparam() for the reason. 16364 * Also protect against missing b_cont. 16365 */ 16366 if (mp->b_cont != NULL) { 16367 mp->b_cont->b_next = 16368 mp1->b_cont->b_next; 16369 mp->b_cont->b_prev = 16370 mp1->b_cont->b_prev; 16371 } 16372 inet_freemsg(mp1); 16373 if (iocp->ioc_error == 0) 16374 iocp->ioc_error = EINVAL; 16375 ASSERT(connp != NULL); 16376 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16377 iocp->ioc_error, mode, ipsq); 16378 } else { 16379 ASSERT(connp == NULL); 16380 putnext(q, mp); 16381 } 16382 break; 16383 default: 16384 break; 16385 } 16386 default: 16387 break; 16388 } 16389 } 16390 16391 /* 16392 * NOTE : This function does not ire_refrele the ire argument passed in. 16393 * 16394 * IPQoS notes 16395 * IP policy is invoked twice for a forwarded packet, once on the read side 16396 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16397 * enabled. An additional parameter, in_ill, has been added for this purpose. 16398 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16399 * because ip_mroute drops this information. 16400 * 16401 */ 16402 void 16403 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16404 { 16405 uint32_t old_pkt_len; 16406 uint32_t pkt_len; 16407 queue_t *q; 16408 uint32_t sum; 16409 #define rptr ((uchar_t *)ipha) 16410 uint32_t max_frag; 16411 uint32_t ill_index; 16412 ill_t *out_ill; 16413 mib2_ipIfStatsEntry_t *mibptr; 16414 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16415 16416 /* Get the ill_index of the incoming ILL */ 16417 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16418 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16419 16420 /* Initiate Read side IPPF processing */ 16421 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16422 ip_process(IPP_FWD_IN, &mp, ill_index); 16423 if (mp == NULL) { 16424 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16425 "during IPPF processing\n")); 16426 return; 16427 } 16428 } 16429 16430 /* Adjust the checksum to reflect the ttl decrement. */ 16431 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16432 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16433 16434 if (ipha->ipha_ttl-- <= 1) { 16435 if (ip_csum_hdr(ipha)) { 16436 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16437 goto drop_pkt; 16438 } 16439 /* 16440 * Note: ire_stq this will be NULL for multicast 16441 * datagrams using the long path through arp (the IRE 16442 * is not an IRE_CACHE). This should not cause 16443 * problems since we don't generate ICMP errors for 16444 * multicast packets. 16445 */ 16446 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16447 q = ire->ire_stq; 16448 if (q != NULL) { 16449 /* Sent by forwarding path, and router is global zone */ 16450 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16451 GLOBAL_ZONEID, ipst); 16452 } else 16453 freemsg(mp); 16454 return; 16455 } 16456 16457 /* 16458 * Don't forward if the interface is down 16459 */ 16460 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16461 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16462 ip2dbg(("ip_rput_forward:interface is down\n")); 16463 goto drop_pkt; 16464 } 16465 16466 /* Get the ill_index of the outgoing ILL */ 16467 out_ill = ire_to_ill(ire); 16468 ill_index = out_ill->ill_phyint->phyint_ifindex; 16469 16470 DTRACE_PROBE4(ip4__forwarding__start, 16471 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16472 16473 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16474 ipst->ips_ipv4firewall_forwarding, 16475 in_ill, out_ill, ipha, mp, mp, ipst); 16476 16477 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16478 16479 if (mp == NULL) 16480 return; 16481 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16482 16483 if (is_system_labeled()) { 16484 mblk_t *mp1; 16485 16486 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16487 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16488 goto drop_pkt; 16489 } 16490 /* Size may have changed */ 16491 mp = mp1; 16492 ipha = (ipha_t *)mp->b_rptr; 16493 pkt_len = ntohs(ipha->ipha_length); 16494 } 16495 16496 /* Check if there are options to update */ 16497 if (!IS_SIMPLE_IPH(ipha)) { 16498 if (ip_csum_hdr(ipha)) { 16499 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16500 goto drop_pkt; 16501 } 16502 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16503 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16504 return; 16505 } 16506 16507 ipha->ipha_hdr_checksum = 0; 16508 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16509 } 16510 max_frag = ire->ire_max_frag; 16511 if (pkt_len > max_frag) { 16512 /* 16513 * It needs fragging on its way out. We haven't 16514 * verified the header checksum yet. Since we 16515 * are going to put a surely good checksum in the 16516 * outgoing header, we have to make sure that it 16517 * was good coming in. 16518 */ 16519 if (ip_csum_hdr(ipha)) { 16520 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16521 goto drop_pkt; 16522 } 16523 /* Initiate Write side IPPF processing */ 16524 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16525 ip_process(IPP_FWD_OUT, &mp, ill_index); 16526 if (mp == NULL) { 16527 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16528 " during IPPF processing\n")); 16529 return; 16530 } 16531 } 16532 /* 16533 * Handle labeled packet resizing. 16534 * 16535 * If we have added a label, inform ip_wput_frag() of its 16536 * effect on the MTU for ICMP messages. 16537 */ 16538 if (pkt_len > old_pkt_len) { 16539 uint32_t secopt_size; 16540 16541 secopt_size = pkt_len - old_pkt_len; 16542 if (secopt_size < max_frag) 16543 max_frag -= secopt_size; 16544 } 16545 16546 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16547 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16548 return; 16549 } 16550 16551 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16552 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16553 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16554 ipst->ips_ipv4firewall_physical_out, 16555 NULL, out_ill, ipha, mp, mp, ipst); 16556 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16557 if (mp == NULL) 16558 return; 16559 16560 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16561 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16562 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16563 /* ip_xmit_v4 always consumes the packet */ 16564 return; 16565 16566 drop_pkt:; 16567 ip1dbg(("ip_rput_forward: drop pkt\n")); 16568 freemsg(mp); 16569 #undef rptr 16570 } 16571 16572 void 16573 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16574 { 16575 ire_t *ire; 16576 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16577 16578 ASSERT(!ipif->ipif_isv6); 16579 /* 16580 * Find an IRE which matches the destination and the outgoing 16581 * queue in the cache table. All we need is an IRE_CACHE which 16582 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16583 * then it is enough to have some IRE_CACHE in the group. 16584 */ 16585 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16586 dst = ipif->ipif_pp_dst_addr; 16587 16588 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16589 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16590 if (ire == NULL) { 16591 /* 16592 * Mark this packet to make it be delivered to 16593 * ip_rput_forward after the new ire has been 16594 * created. 16595 */ 16596 mp->b_prev = NULL; 16597 mp->b_next = mp; 16598 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16599 NULL, 0, GLOBAL_ZONEID, &zero_info); 16600 } else { 16601 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16602 IRE_REFRELE(ire); 16603 } 16604 } 16605 16606 /* Update any source route, record route or timestamp options */ 16607 static int 16608 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16609 { 16610 ipoptp_t opts; 16611 uchar_t *opt; 16612 uint8_t optval; 16613 uint8_t optlen; 16614 ipaddr_t dst; 16615 uint32_t ts; 16616 ire_t *dst_ire = NULL; 16617 ire_t *tmp_ire = NULL; 16618 timestruc_t now; 16619 16620 ip2dbg(("ip_rput_forward_options\n")); 16621 dst = ipha->ipha_dst; 16622 for (optval = ipoptp_first(&opts, ipha); 16623 optval != IPOPT_EOL; 16624 optval = ipoptp_next(&opts)) { 16625 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16626 opt = opts.ipoptp_cur; 16627 optlen = opts.ipoptp_len; 16628 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16629 optval, opts.ipoptp_len)); 16630 switch (optval) { 16631 uint32_t off; 16632 case IPOPT_SSRR: 16633 case IPOPT_LSRR: 16634 /* Check if adminstratively disabled */ 16635 if (!ipst->ips_ip_forward_src_routed) { 16636 if (ire->ire_stq != NULL) { 16637 /* 16638 * Sent by forwarding path, and router 16639 * is global zone 16640 */ 16641 icmp_unreachable(ire->ire_stq, mp, 16642 ICMP_SOURCE_ROUTE_FAILED, 16643 GLOBAL_ZONEID, ipst); 16644 } else { 16645 ip0dbg(("ip_rput_forward_options: " 16646 "unable to send unreach\n")); 16647 freemsg(mp); 16648 } 16649 return (-1); 16650 } 16651 16652 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16653 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16654 if (dst_ire == NULL) { 16655 /* 16656 * Must be partial since ip_rput_options 16657 * checked for strict. 16658 */ 16659 break; 16660 } 16661 off = opt[IPOPT_OFFSET]; 16662 off--; 16663 redo_srr: 16664 if (optlen < IP_ADDR_LEN || 16665 off > optlen - IP_ADDR_LEN) { 16666 /* End of source route */ 16667 ip1dbg(( 16668 "ip_rput_forward_options: end of SR\n")); 16669 ire_refrele(dst_ire); 16670 break; 16671 } 16672 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16673 bcopy(&ire->ire_src_addr, (char *)opt + off, 16674 IP_ADDR_LEN); 16675 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16676 ntohl(dst))); 16677 16678 /* 16679 * Check if our address is present more than 16680 * once as consecutive hops in source route. 16681 */ 16682 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16683 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16684 if (tmp_ire != NULL) { 16685 ire_refrele(tmp_ire); 16686 off += IP_ADDR_LEN; 16687 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16688 goto redo_srr; 16689 } 16690 ipha->ipha_dst = dst; 16691 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16692 ire_refrele(dst_ire); 16693 break; 16694 case IPOPT_RR: 16695 off = opt[IPOPT_OFFSET]; 16696 off--; 16697 if (optlen < IP_ADDR_LEN || 16698 off > optlen - IP_ADDR_LEN) { 16699 /* No more room - ignore */ 16700 ip1dbg(( 16701 "ip_rput_forward_options: end of RR\n")); 16702 break; 16703 } 16704 bcopy(&ire->ire_src_addr, (char *)opt + off, 16705 IP_ADDR_LEN); 16706 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16707 break; 16708 case IPOPT_TS: 16709 /* Insert timestamp if there is room */ 16710 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16711 case IPOPT_TS_TSONLY: 16712 off = IPOPT_TS_TIMELEN; 16713 break; 16714 case IPOPT_TS_PRESPEC: 16715 case IPOPT_TS_PRESPEC_RFC791: 16716 /* Verify that the address matched */ 16717 off = opt[IPOPT_OFFSET] - 1; 16718 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16719 dst_ire = ire_ctable_lookup(dst, 0, 16720 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16721 MATCH_IRE_TYPE, ipst); 16722 if (dst_ire == NULL) { 16723 /* Not for us */ 16724 break; 16725 } 16726 ire_refrele(dst_ire); 16727 /* FALLTHRU */ 16728 case IPOPT_TS_TSANDADDR: 16729 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16730 break; 16731 default: 16732 /* 16733 * ip_*put_options should have already 16734 * dropped this packet. 16735 */ 16736 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16737 "unknown IT - bug in ip_rput_options?\n"); 16738 return (0); /* Keep "lint" happy */ 16739 } 16740 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16741 /* Increase overflow counter */ 16742 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16743 opt[IPOPT_POS_OV_FLG] = 16744 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16745 (off << 4)); 16746 break; 16747 } 16748 off = opt[IPOPT_OFFSET] - 1; 16749 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16750 case IPOPT_TS_PRESPEC: 16751 case IPOPT_TS_PRESPEC_RFC791: 16752 case IPOPT_TS_TSANDADDR: 16753 bcopy(&ire->ire_src_addr, 16754 (char *)opt + off, IP_ADDR_LEN); 16755 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16756 /* FALLTHRU */ 16757 case IPOPT_TS_TSONLY: 16758 off = opt[IPOPT_OFFSET] - 1; 16759 /* Compute # of milliseconds since midnight */ 16760 gethrestime(&now); 16761 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16762 now.tv_nsec / (NANOSEC / MILLISEC); 16763 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16764 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16765 break; 16766 } 16767 break; 16768 } 16769 } 16770 return (0); 16771 } 16772 16773 /* 16774 * This is called after processing at least one of AH/ESP headers. 16775 * 16776 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16777 * the actual, physical interface on which the packet was received, 16778 * but, when ip_strict_dst_multihoming is set to 1, could be the 16779 * interface which had the ipha_dst configured when the packet went 16780 * through ip_rput. The ill_index corresponding to the recv_ill 16781 * is saved in ipsec_in_rill_index 16782 * 16783 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16784 * cannot assume "ire" points to valid data for any IPv6 cases. 16785 */ 16786 void 16787 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16788 { 16789 mblk_t *mp; 16790 ipaddr_t dst; 16791 in6_addr_t *v6dstp; 16792 ipha_t *ipha; 16793 ip6_t *ip6h; 16794 ipsec_in_t *ii; 16795 boolean_t ill_need_rele = B_FALSE; 16796 boolean_t rill_need_rele = B_FALSE; 16797 boolean_t ire_need_rele = B_FALSE; 16798 netstack_t *ns; 16799 ip_stack_t *ipst; 16800 16801 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16802 ASSERT(ii->ipsec_in_ill_index != 0); 16803 ns = ii->ipsec_in_ns; 16804 ASSERT(ii->ipsec_in_ns != NULL); 16805 ipst = ns->netstack_ip; 16806 16807 mp = ipsec_mp->b_cont; 16808 ASSERT(mp != NULL); 16809 16810 16811 if (ill == NULL) { 16812 ASSERT(recv_ill == NULL); 16813 /* 16814 * We need to get the original queue on which ip_rput_local 16815 * or ip_rput_data_v6 was called. 16816 */ 16817 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16818 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16819 ill_need_rele = B_TRUE; 16820 16821 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16822 recv_ill = ill_lookup_on_ifindex( 16823 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16824 NULL, NULL, NULL, NULL, ipst); 16825 rill_need_rele = B_TRUE; 16826 } else { 16827 recv_ill = ill; 16828 } 16829 16830 if ((ill == NULL) || (recv_ill == NULL)) { 16831 ip0dbg(("ip_fanout_proto_again: interface " 16832 "disappeared\n")); 16833 if (ill != NULL) 16834 ill_refrele(ill); 16835 if (recv_ill != NULL) 16836 ill_refrele(recv_ill); 16837 freemsg(ipsec_mp); 16838 return; 16839 } 16840 } 16841 16842 ASSERT(ill != NULL && recv_ill != NULL); 16843 16844 if (mp->b_datap->db_type == M_CTL) { 16845 /* 16846 * AH/ESP is returning the ICMP message after 16847 * removing their headers. Fanout again till 16848 * it gets to the right protocol. 16849 */ 16850 if (ii->ipsec_in_v4) { 16851 icmph_t *icmph; 16852 int iph_hdr_length; 16853 int hdr_length; 16854 16855 ipha = (ipha_t *)mp->b_rptr; 16856 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16857 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16858 ipha = (ipha_t *)&icmph[1]; 16859 hdr_length = IPH_HDR_LENGTH(ipha); 16860 /* 16861 * icmp_inbound_error_fanout may need to do pullupmsg. 16862 * Reset the type to M_DATA. 16863 */ 16864 mp->b_datap->db_type = M_DATA; 16865 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16866 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16867 B_FALSE, ill, ii->ipsec_in_zoneid); 16868 } else { 16869 icmp6_t *icmp6; 16870 int hdr_length; 16871 16872 ip6h = (ip6_t *)mp->b_rptr; 16873 /* Don't call hdr_length_v6() unless you have to. */ 16874 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16875 hdr_length = ip_hdr_length_v6(mp, ip6h); 16876 else 16877 hdr_length = IPV6_HDR_LEN; 16878 16879 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16880 /* 16881 * icmp_inbound_error_fanout_v6 may need to do 16882 * pullupmsg. Reset the type to M_DATA. 16883 */ 16884 mp->b_datap->db_type = M_DATA; 16885 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16886 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16887 } 16888 if (ill_need_rele) 16889 ill_refrele(ill); 16890 if (rill_need_rele) 16891 ill_refrele(recv_ill); 16892 return; 16893 } 16894 16895 if (ii->ipsec_in_v4) { 16896 ipha = (ipha_t *)mp->b_rptr; 16897 dst = ipha->ipha_dst; 16898 if (CLASSD(dst)) { 16899 /* 16900 * Multicast has to be delivered to all streams. 16901 */ 16902 dst = INADDR_BROADCAST; 16903 } 16904 16905 if (ire == NULL) { 16906 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16907 MBLK_GETLABEL(mp), ipst); 16908 if (ire == NULL) { 16909 if (ill_need_rele) 16910 ill_refrele(ill); 16911 if (rill_need_rele) 16912 ill_refrele(recv_ill); 16913 ip1dbg(("ip_fanout_proto_again: " 16914 "IRE not found")); 16915 freemsg(ipsec_mp); 16916 return; 16917 } 16918 ire_need_rele = B_TRUE; 16919 } 16920 16921 switch (ipha->ipha_protocol) { 16922 case IPPROTO_UDP: 16923 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16924 recv_ill); 16925 if (ire_need_rele) 16926 ire_refrele(ire); 16927 break; 16928 case IPPROTO_TCP: 16929 if (!ire_need_rele) 16930 IRE_REFHOLD(ire); 16931 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 16932 ire, ipsec_mp, 0, ill->ill_rq, NULL); 16933 IRE_REFRELE(ire); 16934 if (mp != NULL) 16935 squeue_enter_chain(GET_SQUEUE(mp), mp, 16936 mp, 1, SQTAG_IP_PROTO_AGAIN); 16937 break; 16938 case IPPROTO_SCTP: 16939 if (!ire_need_rele) 16940 IRE_REFHOLD(ire); 16941 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 16942 ipsec_mp, 0, ill->ill_rq, dst); 16943 break; 16944 default: 16945 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 16946 recv_ill, B_FALSE); 16947 if (ire_need_rele) 16948 ire_refrele(ire); 16949 break; 16950 } 16951 } else { 16952 uint32_t rput_flags = 0; 16953 16954 ip6h = (ip6_t *)mp->b_rptr; 16955 v6dstp = &ip6h->ip6_dst; 16956 /* 16957 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 16958 * address. 16959 * 16960 * Currently, we don't store that state in the IPSEC_IN 16961 * message, and we may need to. 16962 */ 16963 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 16964 IP6_IN_LLMCAST : 0); 16965 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 16966 NULL, NULL); 16967 } 16968 if (ill_need_rele) 16969 ill_refrele(ill); 16970 if (rill_need_rele) 16971 ill_refrele(recv_ill); 16972 } 16973 16974 /* 16975 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 16976 * returns 'true' if there are still fragments left on the queue, in 16977 * which case we restart the timer. 16978 */ 16979 void 16980 ill_frag_timer(void *arg) 16981 { 16982 ill_t *ill = (ill_t *)arg; 16983 boolean_t frag_pending; 16984 ip_stack_t *ipst = ill->ill_ipst; 16985 16986 mutex_enter(&ill->ill_lock); 16987 ASSERT(!ill->ill_fragtimer_executing); 16988 if (ill->ill_state_flags & ILL_CONDEMNED) { 16989 ill->ill_frag_timer_id = 0; 16990 mutex_exit(&ill->ill_lock); 16991 return; 16992 } 16993 ill->ill_fragtimer_executing = 1; 16994 mutex_exit(&ill->ill_lock); 16995 16996 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 16997 16998 /* 16999 * Restart the timer, if we have fragments pending or if someone 17000 * wanted us to be scheduled again. 17001 */ 17002 mutex_enter(&ill->ill_lock); 17003 ill->ill_fragtimer_executing = 0; 17004 ill->ill_frag_timer_id = 0; 17005 if (frag_pending || ill->ill_fragtimer_needrestart) 17006 ill_frag_timer_start(ill); 17007 mutex_exit(&ill->ill_lock); 17008 } 17009 17010 void 17011 ill_frag_timer_start(ill_t *ill) 17012 { 17013 ip_stack_t *ipst = ill->ill_ipst; 17014 17015 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17016 17017 /* If the ill is closing or opening don't proceed */ 17018 if (ill->ill_state_flags & ILL_CONDEMNED) 17019 return; 17020 17021 if (ill->ill_fragtimer_executing) { 17022 /* 17023 * ill_frag_timer is currently executing. Just record the 17024 * the fact that we want the timer to be restarted. 17025 * ill_frag_timer will post a timeout before it returns, 17026 * ensuring it will be called again. 17027 */ 17028 ill->ill_fragtimer_needrestart = 1; 17029 return; 17030 } 17031 17032 if (ill->ill_frag_timer_id == 0) { 17033 /* 17034 * The timer is neither running nor is the timeout handler 17035 * executing. Post a timeout so that ill_frag_timer will be 17036 * called 17037 */ 17038 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17039 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17040 ill->ill_fragtimer_needrestart = 0; 17041 } 17042 } 17043 17044 /* 17045 * This routine is needed for loopback when forwarding multicasts. 17046 * 17047 * IPQoS Notes: 17048 * IPPF processing is done in fanout routines. 17049 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17050 * processing for IPsec packets is done when it comes back in clear. 17051 * NOTE : The callers of this function need to do the ire_refrele for the 17052 * ire that is being passed in. 17053 */ 17054 void 17055 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17056 ill_t *recv_ill, boolean_t esp_in_udp_packet) 17057 { 17058 ill_t *ill = (ill_t *)q->q_ptr; 17059 uint32_t sum; 17060 uint32_t u1; 17061 uint32_t u2; 17062 int hdr_length; 17063 boolean_t mctl_present; 17064 mblk_t *first_mp = mp; 17065 mblk_t *hada_mp = NULL; 17066 ipha_t *inner_ipha; 17067 ip_stack_t *ipst; 17068 17069 ASSERT(recv_ill != NULL); 17070 ipst = recv_ill->ill_ipst; 17071 17072 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17073 "ip_rput_locl_start: q %p", q); 17074 17075 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17076 ASSERT(ill != NULL); 17077 17078 17079 #define rptr ((uchar_t *)ipha) 17080 #define iphs ((uint16_t *)ipha) 17081 17082 /* 17083 * no UDP or TCP packet should come here anymore. 17084 */ 17085 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17086 ipha->ipha_protocol != IPPROTO_UDP); 17087 17088 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17089 if (mctl_present && 17090 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17091 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17092 17093 /* 17094 * It's an IPsec accelerated packet. 17095 * Keep a pointer to the data attributes around until 17096 * we allocate the ipsec_info_t. 17097 */ 17098 IPSECHW_DEBUG(IPSECHW_PKT, 17099 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17100 hada_mp = first_mp; 17101 hada_mp->b_cont = NULL; 17102 /* 17103 * Since it is accelerated, it comes directly from 17104 * the ill and the data attributes is followed by 17105 * the packet data. 17106 */ 17107 ASSERT(mp->b_datap->db_type != M_CTL); 17108 first_mp = mp; 17109 mctl_present = B_FALSE; 17110 } 17111 17112 /* 17113 * IF M_CTL is not present, then ipsec_in_is_secure 17114 * should return B_TRUE. There is a case where loopback 17115 * packets has an M_CTL in the front with all the 17116 * IPsec options set to IPSEC_PREF_NEVER - which means 17117 * ipsec_in_is_secure will return B_FALSE. As loopback 17118 * packets never comes here, it is safe to ASSERT the 17119 * following. 17120 */ 17121 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17122 17123 /* 17124 * Also, we should never have an mctl_present if this is an 17125 * ESP-in-UDP packet. 17126 */ 17127 ASSERT(!mctl_present || !esp_in_udp_packet); 17128 17129 17130 /* u1 is # words of IP options */ 17131 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17132 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17133 17134 if (u1 || (!esp_in_udp_packet && !mctl_present)) { 17135 if (u1) { 17136 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17137 if (hada_mp != NULL) 17138 freemsg(hada_mp); 17139 return; 17140 } 17141 } else { 17142 /* Check the IP header checksum. */ 17143 #define uph ((uint16_t *)ipha) 17144 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17145 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17146 #undef uph 17147 /* finish doing IP checksum */ 17148 sum = (sum & 0xFFFF) + (sum >> 16); 17149 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17150 if (sum && sum != 0xFFFF) { 17151 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17152 goto drop_pkt; 17153 } 17154 } 17155 } 17156 17157 /* 17158 * Count for SNMP of inbound packets for ire. As ip_proto_input 17159 * might be called more than once for secure packets, count only 17160 * the first time. 17161 */ 17162 if (!mctl_present) { 17163 UPDATE_IB_PKT_COUNT(ire); 17164 ire->ire_last_used_time = lbolt; 17165 } 17166 17167 /* Check for fragmentation offset. */ 17168 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17169 u1 = u2 & (IPH_MF | IPH_OFFSET); 17170 if (u1) { 17171 /* 17172 * We re-assemble fragments before we do the AH/ESP 17173 * processing. Thus, M_CTL should not be present 17174 * while we are re-assembling. 17175 */ 17176 ASSERT(!mctl_present); 17177 ASSERT(first_mp == mp); 17178 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17179 return; 17180 } 17181 /* 17182 * Make sure that first_mp points back to mp as 17183 * the mp we came in with could have changed in 17184 * ip_rput_fragment(). 17185 */ 17186 ipha = (ipha_t *)mp->b_rptr; 17187 first_mp = mp; 17188 } 17189 17190 /* 17191 * Clear hardware checksumming flag as it is currently only 17192 * used by TCP and UDP. 17193 */ 17194 DB_CKSUMFLAGS(mp) = 0; 17195 17196 /* Now we have a complete datagram, destined for this machine. */ 17197 u1 = IPH_HDR_LENGTH(ipha); 17198 switch (ipha->ipha_protocol) { 17199 case IPPROTO_ICMP: { 17200 ire_t *ire_zone; 17201 ilm_t *ilm; 17202 mblk_t *mp1; 17203 zoneid_t last_zoneid; 17204 17205 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17206 ASSERT(ire->ire_type == IRE_BROADCAST); 17207 /* 17208 * In the multicast case, applications may have joined 17209 * the group from different zones, so we need to deliver 17210 * the packet to each of them. Loop through the 17211 * multicast memberships structures (ilm) on the receive 17212 * ill and send a copy of the packet up each matching 17213 * one. However, we don't do this for multicasts sent on 17214 * the loopback interface (PHYI_LOOPBACK flag set) as 17215 * they must stay in the sender's zone. 17216 * 17217 * ilm_add_v6() ensures that ilms in the same zone are 17218 * contiguous in the ill_ilm list. We use this property 17219 * to avoid sending duplicates needed when two 17220 * applications in the same zone join the same group on 17221 * different logical interfaces: we ignore the ilm if 17222 * its zoneid is the same as the last matching one. 17223 * In addition, the sending of the packet for 17224 * ire_zoneid is delayed until all of the other ilms 17225 * have been exhausted. 17226 */ 17227 last_zoneid = -1; 17228 ILM_WALKER_HOLD(recv_ill); 17229 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17230 ilm = ilm->ilm_next) { 17231 if ((ilm->ilm_flags & ILM_DELETED) || 17232 ipha->ipha_dst != ilm->ilm_addr || 17233 ilm->ilm_zoneid == last_zoneid || 17234 ilm->ilm_zoneid == ire->ire_zoneid || 17235 ilm->ilm_zoneid == ALL_ZONES || 17236 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17237 continue; 17238 mp1 = ip_copymsg(first_mp); 17239 if (mp1 == NULL) 17240 continue; 17241 icmp_inbound(q, mp1, B_TRUE, ill, 17242 0, sum, mctl_present, B_TRUE, 17243 recv_ill, ilm->ilm_zoneid); 17244 last_zoneid = ilm->ilm_zoneid; 17245 } 17246 ILM_WALKER_RELE(recv_ill); 17247 } else if (ire->ire_type == IRE_BROADCAST) { 17248 /* 17249 * In the broadcast case, there may be many zones 17250 * which need a copy of the packet delivered to them. 17251 * There is one IRE_BROADCAST per broadcast address 17252 * and per zone; we walk those using a helper function. 17253 * In addition, the sending of the packet for ire is 17254 * delayed until all of the other ires have been 17255 * processed. 17256 */ 17257 IRB_REFHOLD(ire->ire_bucket); 17258 ire_zone = NULL; 17259 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17260 ire)) != NULL) { 17261 mp1 = ip_copymsg(first_mp); 17262 if (mp1 == NULL) 17263 continue; 17264 17265 UPDATE_IB_PKT_COUNT(ire_zone); 17266 ire_zone->ire_last_used_time = lbolt; 17267 icmp_inbound(q, mp1, B_TRUE, ill, 17268 0, sum, mctl_present, B_TRUE, 17269 recv_ill, ire_zone->ire_zoneid); 17270 } 17271 IRB_REFRELE(ire->ire_bucket); 17272 } 17273 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17274 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17275 ire->ire_zoneid); 17276 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17277 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17278 return; 17279 } 17280 case IPPROTO_IGMP: 17281 /* 17282 * If we are not willing to accept IGMP packets in clear, 17283 * then check with global policy. 17284 */ 17285 if (ipst->ips_igmp_accept_clear_messages == 0) { 17286 first_mp = ipsec_check_global_policy(first_mp, NULL, 17287 ipha, NULL, mctl_present, ipst->ips_netstack); 17288 if (first_mp == NULL) 17289 return; 17290 } 17291 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17292 freemsg(first_mp); 17293 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17294 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17295 return; 17296 } 17297 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17298 /* Bad packet - discarded by igmp_input */ 17299 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17300 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17301 if (mctl_present) 17302 freeb(first_mp); 17303 return; 17304 } 17305 /* 17306 * igmp_input() may have returned the pulled up message. 17307 * So first_mp and ipha need to be reinitialized. 17308 */ 17309 ipha = (ipha_t *)mp->b_rptr; 17310 if (mctl_present) 17311 first_mp->b_cont = mp; 17312 else 17313 first_mp = mp; 17314 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17315 connf_head != NULL) { 17316 /* No user-level listener for IGMP packets */ 17317 goto drop_pkt; 17318 } 17319 /* deliver to local raw users */ 17320 break; 17321 case IPPROTO_PIM: 17322 /* 17323 * If we are not willing to accept PIM packets in clear, 17324 * then check with global policy. 17325 */ 17326 if (ipst->ips_pim_accept_clear_messages == 0) { 17327 first_mp = ipsec_check_global_policy(first_mp, NULL, 17328 ipha, NULL, mctl_present, ipst->ips_netstack); 17329 if (first_mp == NULL) 17330 return; 17331 } 17332 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17333 freemsg(first_mp); 17334 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17335 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17336 return; 17337 } 17338 if (pim_input(q, mp, ill) != 0) { 17339 /* Bad packet - discarded by pim_input */ 17340 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17341 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17342 if (mctl_present) 17343 freeb(first_mp); 17344 return; 17345 } 17346 17347 /* 17348 * pim_input() may have pulled up the message so ipha needs to 17349 * be reinitialized. 17350 */ 17351 ipha = (ipha_t *)mp->b_rptr; 17352 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17353 connf_head != NULL) { 17354 /* No user-level listener for PIM packets */ 17355 goto drop_pkt; 17356 } 17357 /* deliver to local raw users */ 17358 break; 17359 case IPPROTO_ENCAP: 17360 /* 17361 * Handle self-encapsulated packets (IP-in-IP where 17362 * the inner addresses == the outer addresses). 17363 */ 17364 hdr_length = IPH_HDR_LENGTH(ipha); 17365 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17366 mp->b_wptr) { 17367 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17368 sizeof (ipha_t) - mp->b_rptr)) { 17369 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17370 freemsg(first_mp); 17371 return; 17372 } 17373 ipha = (ipha_t *)mp->b_rptr; 17374 } 17375 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17376 /* 17377 * Check the sanity of the inner IP header. 17378 */ 17379 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17380 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17381 freemsg(first_mp); 17382 return; 17383 } 17384 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17385 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17386 freemsg(first_mp); 17387 return; 17388 } 17389 if (inner_ipha->ipha_src == ipha->ipha_src && 17390 inner_ipha->ipha_dst == ipha->ipha_dst) { 17391 ipsec_in_t *ii; 17392 17393 /* 17394 * Self-encapsulated tunnel packet. Remove 17395 * the outer IP header and fanout again. 17396 * We also need to make sure that the inner 17397 * header is pulled up until options. 17398 */ 17399 mp->b_rptr = (uchar_t *)inner_ipha; 17400 ipha = inner_ipha; 17401 hdr_length = IPH_HDR_LENGTH(ipha); 17402 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17403 if (!pullupmsg(mp, (uchar_t *)ipha + 17404 + hdr_length - mp->b_rptr)) { 17405 freemsg(first_mp); 17406 return; 17407 } 17408 ipha = (ipha_t *)mp->b_rptr; 17409 } 17410 if (!mctl_present) { 17411 ASSERT(first_mp == mp); 17412 /* 17413 * This means that somebody is sending 17414 * Self-encapsualted packets without AH/ESP. 17415 * If AH/ESP was present, we would have already 17416 * allocated the first_mp. 17417 */ 17418 first_mp = ipsec_in_alloc(B_TRUE, 17419 ipst->ips_netstack); 17420 if (first_mp == NULL) { 17421 ip1dbg(("ip_proto_input: IPSEC_IN " 17422 "allocation failure.\n")); 17423 BUMP_MIB(ill->ill_ip_mib, 17424 ipIfStatsInDiscards); 17425 freemsg(mp); 17426 return; 17427 } 17428 first_mp->b_cont = mp; 17429 } 17430 /* 17431 * We generally store the ill_index if we need to 17432 * do IPsec processing as we lose the ill queue when 17433 * we come back. But in this case, we never should 17434 * have to store the ill_index here as it should have 17435 * been stored previously when we processed the 17436 * AH/ESP header in this routine or for non-ipsec 17437 * cases, we still have the queue. But for some bad 17438 * packets from the wire, we can get to IPsec after 17439 * this and we better store the index for that case. 17440 */ 17441 ill = (ill_t *)q->q_ptr; 17442 ii = (ipsec_in_t *)first_mp->b_rptr; 17443 ii->ipsec_in_ill_index = 17444 ill->ill_phyint->phyint_ifindex; 17445 ii->ipsec_in_rill_index = 17446 recv_ill->ill_phyint->phyint_ifindex; 17447 if (ii->ipsec_in_decaps) { 17448 /* 17449 * This packet is self-encapsulated multiple 17450 * times. We don't want to recurse infinitely. 17451 * To keep it simple, drop the packet. 17452 */ 17453 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17454 freemsg(first_mp); 17455 return; 17456 } 17457 ii->ipsec_in_decaps = B_TRUE; 17458 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17459 ire); 17460 return; 17461 } 17462 break; 17463 case IPPROTO_AH: 17464 case IPPROTO_ESP: { 17465 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17466 17467 /* 17468 * Fast path for AH/ESP. If this is the first time 17469 * we are sending a datagram to AH/ESP, allocate 17470 * a IPSEC_IN message and prepend it. Otherwise, 17471 * just fanout. 17472 */ 17473 17474 int ipsec_rc; 17475 ipsec_in_t *ii; 17476 netstack_t *ns = ipst->ips_netstack; 17477 17478 IP_STAT(ipst, ipsec_proto_ahesp); 17479 if (!mctl_present) { 17480 ASSERT(first_mp == mp); 17481 first_mp = ipsec_in_alloc(B_TRUE, ns); 17482 if (first_mp == NULL) { 17483 ip1dbg(("ip_proto_input: IPSEC_IN " 17484 "allocation failure.\n")); 17485 freemsg(hada_mp); /* okay ifnull */ 17486 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17487 freemsg(mp); 17488 return; 17489 } 17490 /* 17491 * Store the ill_index so that when we come back 17492 * from IPsec we ride on the same queue. 17493 */ 17494 ill = (ill_t *)q->q_ptr; 17495 ii = (ipsec_in_t *)first_mp->b_rptr; 17496 ii->ipsec_in_ill_index = 17497 ill->ill_phyint->phyint_ifindex; 17498 ii->ipsec_in_rill_index = 17499 recv_ill->ill_phyint->phyint_ifindex; 17500 first_mp->b_cont = mp; 17501 /* 17502 * Cache hardware acceleration info. 17503 */ 17504 if (hada_mp != NULL) { 17505 IPSECHW_DEBUG(IPSECHW_PKT, 17506 ("ip_rput_local: caching data attr.\n")); 17507 ii->ipsec_in_accelerated = B_TRUE; 17508 ii->ipsec_in_da = hada_mp; 17509 hada_mp = NULL; 17510 } 17511 } else { 17512 ii = (ipsec_in_t *)first_mp->b_rptr; 17513 } 17514 17515 if (!ipsec_loaded(ipss)) { 17516 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17517 ire->ire_zoneid, ipst); 17518 return; 17519 } 17520 17521 ns = ipst->ips_netstack; 17522 /* select inbound SA and have IPsec process the pkt */ 17523 if (ipha->ipha_protocol == IPPROTO_ESP) { 17524 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17525 boolean_t esp_in_udp_sa; 17526 if (esph == NULL) 17527 return; 17528 ASSERT(ii->ipsec_in_esp_sa != NULL); 17529 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17530 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17531 IPSA_F_NATT) != 0); 17532 /* 17533 * The following is a fancy, but quick, way of saying: 17534 * ESP-in-UDP SA and Raw ESP packet --> drop 17535 * OR 17536 * ESP SA and ESP-in-UDP packet --> drop 17537 */ 17538 if (esp_in_udp_sa != esp_in_udp_packet) { 17539 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17540 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17541 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17542 &ns->netstack_ipsec->ipsec_dropper); 17543 return; 17544 } 17545 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17546 first_mp, esph); 17547 } else { 17548 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17549 if (ah == NULL) 17550 return; 17551 ASSERT(ii->ipsec_in_ah_sa != NULL); 17552 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17553 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17554 first_mp, ah); 17555 } 17556 17557 switch (ipsec_rc) { 17558 case IPSEC_STATUS_SUCCESS: 17559 break; 17560 case IPSEC_STATUS_FAILED: 17561 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17562 /* FALLTHRU */ 17563 case IPSEC_STATUS_PENDING: 17564 return; 17565 } 17566 /* we're done with IPsec processing, send it up */ 17567 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17568 return; 17569 } 17570 default: 17571 break; 17572 } 17573 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17574 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17575 ire->ire_zoneid)); 17576 goto drop_pkt; 17577 } 17578 /* 17579 * Handle protocols with which IP is less intimate. There 17580 * can be more than one stream bound to a particular 17581 * protocol. When this is the case, each one gets a copy 17582 * of any incoming packets. 17583 */ 17584 ip_fanout_proto(q, first_mp, ill, ipha, 17585 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17586 B_TRUE, recv_ill, ire->ire_zoneid); 17587 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17588 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17589 return; 17590 17591 drop_pkt: 17592 freemsg(first_mp); 17593 if (hada_mp != NULL) 17594 freeb(hada_mp); 17595 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17596 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17597 #undef rptr 17598 #undef iphs 17599 17600 } 17601 17602 /* 17603 * Update any source route, record route or timestamp options. 17604 * Check that we are at end of strict source route. 17605 * The options have already been checked for sanity in ip_rput_options(). 17606 */ 17607 static boolean_t 17608 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17609 ip_stack_t *ipst) 17610 { 17611 ipoptp_t opts; 17612 uchar_t *opt; 17613 uint8_t optval; 17614 uint8_t optlen; 17615 ipaddr_t dst; 17616 uint32_t ts; 17617 ire_t *dst_ire; 17618 timestruc_t now; 17619 zoneid_t zoneid; 17620 ill_t *ill; 17621 17622 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17623 17624 ip2dbg(("ip_rput_local_options\n")); 17625 17626 for (optval = ipoptp_first(&opts, ipha); 17627 optval != IPOPT_EOL; 17628 optval = ipoptp_next(&opts)) { 17629 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17630 opt = opts.ipoptp_cur; 17631 optlen = opts.ipoptp_len; 17632 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17633 optval, optlen)); 17634 switch (optval) { 17635 uint32_t off; 17636 case IPOPT_SSRR: 17637 case IPOPT_LSRR: 17638 off = opt[IPOPT_OFFSET]; 17639 off--; 17640 if (optlen < IP_ADDR_LEN || 17641 off > optlen - IP_ADDR_LEN) { 17642 /* End of source route */ 17643 ip1dbg(("ip_rput_local_options: end of SR\n")); 17644 break; 17645 } 17646 /* 17647 * This will only happen if two consecutive entries 17648 * in the source route contains our address or if 17649 * it is a packet with a loose source route which 17650 * reaches us before consuming the whole source route 17651 */ 17652 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17653 if (optval == IPOPT_SSRR) { 17654 goto bad_src_route; 17655 } 17656 /* 17657 * Hack: instead of dropping the packet truncate the 17658 * source route to what has been used by filling the 17659 * rest with IPOPT_NOP. 17660 */ 17661 opt[IPOPT_OLEN] = (uint8_t)off; 17662 while (off < optlen) { 17663 opt[off++] = IPOPT_NOP; 17664 } 17665 break; 17666 case IPOPT_RR: 17667 off = opt[IPOPT_OFFSET]; 17668 off--; 17669 if (optlen < IP_ADDR_LEN || 17670 off > optlen - IP_ADDR_LEN) { 17671 /* No more room - ignore */ 17672 ip1dbg(( 17673 "ip_rput_local_options: end of RR\n")); 17674 break; 17675 } 17676 bcopy(&ire->ire_src_addr, (char *)opt + off, 17677 IP_ADDR_LEN); 17678 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17679 break; 17680 case IPOPT_TS: 17681 /* Insert timestamp if there is romm */ 17682 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17683 case IPOPT_TS_TSONLY: 17684 off = IPOPT_TS_TIMELEN; 17685 break; 17686 case IPOPT_TS_PRESPEC: 17687 case IPOPT_TS_PRESPEC_RFC791: 17688 /* Verify that the address matched */ 17689 off = opt[IPOPT_OFFSET] - 1; 17690 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17691 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17692 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17693 ipst); 17694 if (dst_ire == NULL) { 17695 /* Not for us */ 17696 break; 17697 } 17698 ire_refrele(dst_ire); 17699 /* FALLTHRU */ 17700 case IPOPT_TS_TSANDADDR: 17701 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17702 break; 17703 default: 17704 /* 17705 * ip_*put_options should have already 17706 * dropped this packet. 17707 */ 17708 cmn_err(CE_PANIC, "ip_rput_local_options: " 17709 "unknown IT - bug in ip_rput_options?\n"); 17710 return (B_TRUE); /* Keep "lint" happy */ 17711 } 17712 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17713 /* Increase overflow counter */ 17714 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17715 opt[IPOPT_POS_OV_FLG] = 17716 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17717 (off << 4)); 17718 break; 17719 } 17720 off = opt[IPOPT_OFFSET] - 1; 17721 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17722 case IPOPT_TS_PRESPEC: 17723 case IPOPT_TS_PRESPEC_RFC791: 17724 case IPOPT_TS_TSANDADDR: 17725 bcopy(&ire->ire_src_addr, (char *)opt + off, 17726 IP_ADDR_LEN); 17727 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17728 /* FALLTHRU */ 17729 case IPOPT_TS_TSONLY: 17730 off = opt[IPOPT_OFFSET] - 1; 17731 /* Compute # of milliseconds since midnight */ 17732 gethrestime(&now); 17733 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17734 now.tv_nsec / (NANOSEC / MILLISEC); 17735 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17736 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17737 break; 17738 } 17739 break; 17740 } 17741 } 17742 return (B_TRUE); 17743 17744 bad_src_route: 17745 q = WR(q); 17746 if (q->q_next != NULL) 17747 ill = q->q_ptr; 17748 else 17749 ill = NULL; 17750 17751 /* make sure we clear any indication of a hardware checksum */ 17752 DB_CKSUMFLAGS(mp) = 0; 17753 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17754 if (zoneid == ALL_ZONES) 17755 freemsg(mp); 17756 else 17757 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17758 return (B_FALSE); 17759 17760 } 17761 17762 /* 17763 * Process IP options in an inbound packet. If an option affects the 17764 * effective destination address, return the next hop address via dstp. 17765 * Returns -1 if something fails in which case an ICMP error has been sent 17766 * and mp freed. 17767 */ 17768 static int 17769 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17770 ip_stack_t *ipst) 17771 { 17772 ipoptp_t opts; 17773 uchar_t *opt; 17774 uint8_t optval; 17775 uint8_t optlen; 17776 ipaddr_t dst; 17777 intptr_t code = 0; 17778 ire_t *ire = NULL; 17779 zoneid_t zoneid; 17780 ill_t *ill; 17781 17782 ip2dbg(("ip_rput_options\n")); 17783 dst = ipha->ipha_dst; 17784 for (optval = ipoptp_first(&opts, ipha); 17785 optval != IPOPT_EOL; 17786 optval = ipoptp_next(&opts)) { 17787 opt = opts.ipoptp_cur; 17788 optlen = opts.ipoptp_len; 17789 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17790 optval, optlen)); 17791 /* 17792 * Note: we need to verify the checksum before we 17793 * modify anything thus this routine only extracts the next 17794 * hop dst from any source route. 17795 */ 17796 switch (optval) { 17797 uint32_t off; 17798 case IPOPT_SSRR: 17799 case IPOPT_LSRR: 17800 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17801 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17802 if (ire == NULL) { 17803 if (optval == IPOPT_SSRR) { 17804 ip1dbg(("ip_rput_options: not next" 17805 " strict source route 0x%x\n", 17806 ntohl(dst))); 17807 code = (char *)&ipha->ipha_dst - 17808 (char *)ipha; 17809 goto param_prob; /* RouterReq's */ 17810 } 17811 ip2dbg(("ip_rput_options: " 17812 "not next source route 0x%x\n", 17813 ntohl(dst))); 17814 break; 17815 } 17816 ire_refrele(ire); 17817 17818 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17819 ip1dbg(( 17820 "ip_rput_options: bad option offset\n")); 17821 code = (char *)&opt[IPOPT_OLEN] - 17822 (char *)ipha; 17823 goto param_prob; 17824 } 17825 off = opt[IPOPT_OFFSET]; 17826 off--; 17827 redo_srr: 17828 if (optlen < IP_ADDR_LEN || 17829 off > optlen - IP_ADDR_LEN) { 17830 /* End of source route */ 17831 ip1dbg(("ip_rput_options: end of SR\n")); 17832 break; 17833 } 17834 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17835 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17836 ntohl(dst))); 17837 17838 /* 17839 * Check if our address is present more than 17840 * once as consecutive hops in source route. 17841 * XXX verify per-interface ip_forwarding 17842 * for source route? 17843 */ 17844 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17845 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17846 17847 if (ire != NULL) { 17848 ire_refrele(ire); 17849 off += IP_ADDR_LEN; 17850 goto redo_srr; 17851 } 17852 17853 if (dst == htonl(INADDR_LOOPBACK)) { 17854 ip1dbg(("ip_rput_options: loopback addr in " 17855 "source route!\n")); 17856 goto bad_src_route; 17857 } 17858 /* 17859 * For strict: verify that dst is directly 17860 * reachable. 17861 */ 17862 if (optval == IPOPT_SSRR) { 17863 ire = ire_ftable_lookup(dst, 0, 0, 17864 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17865 MBLK_GETLABEL(mp), 17866 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 17867 if (ire == NULL) { 17868 ip1dbg(("ip_rput_options: SSRR not " 17869 "directly reachable: 0x%x\n", 17870 ntohl(dst))); 17871 goto bad_src_route; 17872 } 17873 ire_refrele(ire); 17874 } 17875 /* 17876 * Defer update of the offset and the record route 17877 * until the packet is forwarded. 17878 */ 17879 break; 17880 case IPOPT_RR: 17881 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17882 ip1dbg(( 17883 "ip_rput_options: bad option offset\n")); 17884 code = (char *)&opt[IPOPT_OLEN] - 17885 (char *)ipha; 17886 goto param_prob; 17887 } 17888 break; 17889 case IPOPT_TS: 17890 /* 17891 * Verify that length >= 5 and that there is either 17892 * room for another timestamp or that the overflow 17893 * counter is not maxed out. 17894 */ 17895 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17896 if (optlen < IPOPT_MINLEN_IT) { 17897 goto param_prob; 17898 } 17899 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17900 ip1dbg(( 17901 "ip_rput_options: bad option offset\n")); 17902 code = (char *)&opt[IPOPT_OFFSET] - 17903 (char *)ipha; 17904 goto param_prob; 17905 } 17906 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17907 case IPOPT_TS_TSONLY: 17908 off = IPOPT_TS_TIMELEN; 17909 break; 17910 case IPOPT_TS_TSANDADDR: 17911 case IPOPT_TS_PRESPEC: 17912 case IPOPT_TS_PRESPEC_RFC791: 17913 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17914 break; 17915 default: 17916 code = (char *)&opt[IPOPT_POS_OV_FLG] - 17917 (char *)ipha; 17918 goto param_prob; 17919 } 17920 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 17921 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 17922 /* 17923 * No room and the overflow counter is 15 17924 * already. 17925 */ 17926 goto param_prob; 17927 } 17928 break; 17929 } 17930 } 17931 17932 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 17933 *dstp = dst; 17934 return (0); 17935 } 17936 17937 ip1dbg(("ip_rput_options: error processing IP options.")); 17938 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 17939 17940 param_prob: 17941 q = WR(q); 17942 if (q->q_next != NULL) 17943 ill = q->q_ptr; 17944 else 17945 ill = NULL; 17946 17947 /* make sure we clear any indication of a hardware checksum */ 17948 DB_CKSUMFLAGS(mp) = 0; 17949 /* Don't know whether this is for non-global or global/forwarding */ 17950 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 17951 if (zoneid == ALL_ZONES) 17952 freemsg(mp); 17953 else 17954 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 17955 return (-1); 17956 17957 bad_src_route: 17958 q = WR(q); 17959 if (q->q_next != NULL) 17960 ill = q->q_ptr; 17961 else 17962 ill = NULL; 17963 17964 /* make sure we clear any indication of a hardware checksum */ 17965 DB_CKSUMFLAGS(mp) = 0; 17966 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 17967 if (zoneid == ALL_ZONES) 17968 freemsg(mp); 17969 else 17970 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17971 return (-1); 17972 } 17973 17974 /* 17975 * IP & ICMP info in >=14 msg's ... 17976 * - ip fixed part (mib2_ip_t) 17977 * - icmp fixed part (mib2_icmp_t) 17978 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 17979 * - ipRouteEntryTable (ip 21) all IPv4 IREs 17980 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 17981 * - ipRouteAttributeTable (ip 102) labeled routes 17982 * - ip multicast membership (ip_member_t) 17983 * - ip multicast source filtering (ip_grpsrc_t) 17984 * - igmp fixed part (struct igmpstat) 17985 * - multicast routing stats (struct mrtstat) 17986 * - multicast routing vifs (array of struct vifctl) 17987 * - multicast routing routes (array of struct mfcctl) 17988 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 17989 * One per ill plus one generic 17990 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 17991 * One per ill plus one generic 17992 * - ipv6RouteEntry all IPv6 IREs 17993 * - ipv6RouteAttributeTable (ip6 102) labeled routes 17994 * - ipv6NetToMediaEntry all Neighbor Cache entries 17995 * - ipv6AddrEntry all IPv6 ipifs 17996 * - ipv6 multicast membership (ipv6_member_t) 17997 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 17998 * 17999 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18000 * 18001 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18002 * already filled in by the caller. 18003 * Return value of 0 indicates that no messages were sent and caller 18004 * should free mpctl. 18005 */ 18006 int 18007 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18008 { 18009 ip_stack_t *ipst; 18010 sctp_stack_t *sctps; 18011 18012 if (q->q_next != NULL) { 18013 ipst = ILLQ_TO_IPST(q); 18014 } else { 18015 ipst = CONNQ_TO_IPST(q); 18016 } 18017 ASSERT(ipst != NULL); 18018 sctps = ipst->ips_netstack->netstack_sctp; 18019 18020 if (mpctl == NULL || mpctl->b_cont == NULL) { 18021 return (0); 18022 } 18023 18024 /* 18025 * For the purposes of the (broken) packet shell use 18026 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18027 * to make TCP and UDP appear first in the list of mib items. 18028 * TBD: We could expand this and use it in netstat so that 18029 * the kernel doesn't have to produce large tables (connections, 18030 * routes, etc) when netstat only wants the statistics or a particular 18031 * table. 18032 */ 18033 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18034 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18035 return (1); 18036 } 18037 } 18038 18039 if (level != MIB2_TCP) { 18040 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18041 return (1); 18042 } 18043 } 18044 18045 if (level != MIB2_UDP) { 18046 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18047 return (1); 18048 } 18049 } 18050 18051 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18052 ipst)) == NULL) { 18053 return (1); 18054 } 18055 18056 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18057 return (1); 18058 } 18059 18060 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18061 return (1); 18062 } 18063 18064 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18065 return (1); 18066 } 18067 18068 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18069 return (1); 18070 } 18071 18072 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18073 return (1); 18074 } 18075 18076 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18077 return (1); 18078 } 18079 18080 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18081 return (1); 18082 } 18083 18084 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18085 return (1); 18086 } 18087 18088 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18089 return (1); 18090 } 18091 18092 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18093 return (1); 18094 } 18095 18096 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18097 return (1); 18098 } 18099 18100 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18101 return (1); 18102 } 18103 18104 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18105 return (1); 18106 } 18107 18108 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18109 return (1); 18110 } 18111 18112 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18113 if (mpctl == NULL) { 18114 return (1); 18115 } 18116 18117 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18118 return (1); 18119 } 18120 freemsg(mpctl); 18121 return (1); 18122 } 18123 18124 18125 /* Get global (legacy) IPv4 statistics */ 18126 static mblk_t * 18127 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18128 ip_stack_t *ipst) 18129 { 18130 mib2_ip_t old_ip_mib; 18131 struct opthdr *optp; 18132 mblk_t *mp2ctl; 18133 18134 /* 18135 * make a copy of the original message 18136 */ 18137 mp2ctl = copymsg(mpctl); 18138 18139 /* fixed length IP structure... */ 18140 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18141 optp->level = MIB2_IP; 18142 optp->name = 0; 18143 SET_MIB(old_ip_mib.ipForwarding, 18144 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18145 SET_MIB(old_ip_mib.ipDefaultTTL, 18146 (uint32_t)ipst->ips_ip_def_ttl); 18147 SET_MIB(old_ip_mib.ipReasmTimeout, 18148 ipst->ips_ip_g_frag_timeout); 18149 SET_MIB(old_ip_mib.ipAddrEntrySize, 18150 sizeof (mib2_ipAddrEntry_t)); 18151 SET_MIB(old_ip_mib.ipRouteEntrySize, 18152 sizeof (mib2_ipRouteEntry_t)); 18153 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18154 sizeof (mib2_ipNetToMediaEntry_t)); 18155 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18156 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18157 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18158 sizeof (mib2_ipAttributeEntry_t)); 18159 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18160 18161 /* 18162 * Grab the statistics from the new IP MIB 18163 */ 18164 SET_MIB(old_ip_mib.ipInReceives, 18165 (uint32_t)ipmib->ipIfStatsHCInReceives); 18166 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18167 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18168 SET_MIB(old_ip_mib.ipForwDatagrams, 18169 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18170 SET_MIB(old_ip_mib.ipInUnknownProtos, 18171 ipmib->ipIfStatsInUnknownProtos); 18172 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18173 SET_MIB(old_ip_mib.ipInDelivers, 18174 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18175 SET_MIB(old_ip_mib.ipOutRequests, 18176 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18177 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18178 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18179 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18180 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18181 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18182 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18183 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18184 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18185 18186 /* ipRoutingDiscards is not being used */ 18187 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18188 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18189 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18190 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18191 SET_MIB(old_ip_mib.ipReasmDuplicates, 18192 ipmib->ipIfStatsReasmDuplicates); 18193 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18194 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18195 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18196 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18197 SET_MIB(old_ip_mib.rawipInOverflows, 18198 ipmib->rawipIfStatsInOverflows); 18199 18200 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18201 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18202 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18203 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18204 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18205 ipmib->ipIfStatsOutSwitchIPVersion); 18206 18207 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18208 (int)sizeof (old_ip_mib))) { 18209 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18210 (uint_t)sizeof (old_ip_mib))); 18211 } 18212 18213 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18214 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18215 (int)optp->level, (int)optp->name, (int)optp->len)); 18216 qreply(q, mpctl); 18217 return (mp2ctl); 18218 } 18219 18220 /* Per interface IPv4 statistics */ 18221 static mblk_t * 18222 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18223 { 18224 struct opthdr *optp; 18225 mblk_t *mp2ctl; 18226 ill_t *ill; 18227 ill_walk_context_t ctx; 18228 mblk_t *mp_tail = NULL; 18229 mib2_ipIfStatsEntry_t global_ip_mib; 18230 18231 /* 18232 * Make a copy of the original message 18233 */ 18234 mp2ctl = copymsg(mpctl); 18235 18236 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18237 optp->level = MIB2_IP; 18238 optp->name = MIB2_IP_TRAFFIC_STATS; 18239 /* Include "unknown interface" ip_mib */ 18240 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18241 ipst->ips_ip_mib.ipIfStatsIfIndex = 18242 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18243 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18244 (ipst->ips_ip_g_forward ? 1 : 2)); 18245 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18246 (uint32_t)ipst->ips_ip_def_ttl); 18247 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18248 sizeof (mib2_ipIfStatsEntry_t)); 18249 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18250 sizeof (mib2_ipAddrEntry_t)); 18251 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18252 sizeof (mib2_ipRouteEntry_t)); 18253 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18254 sizeof (mib2_ipNetToMediaEntry_t)); 18255 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18256 sizeof (ip_member_t)); 18257 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18258 sizeof (ip_grpsrc_t)); 18259 18260 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18261 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18262 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18263 "failed to allocate %u bytes\n", 18264 (uint_t)sizeof (ipst->ips_ip_mib))); 18265 } 18266 18267 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18268 18269 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18270 ill = ILL_START_WALK_V4(&ctx, ipst); 18271 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18272 ill->ill_ip_mib->ipIfStatsIfIndex = 18273 ill->ill_phyint->phyint_ifindex; 18274 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18275 (ipst->ips_ip_g_forward ? 1 : 2)); 18276 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18277 (uint32_t)ipst->ips_ip_def_ttl); 18278 18279 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18280 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18281 (char *)ill->ill_ip_mib, 18282 (int)sizeof (*ill->ill_ip_mib))) { 18283 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18284 "failed to allocate %u bytes\n", 18285 (uint_t)sizeof (*ill->ill_ip_mib))); 18286 } 18287 } 18288 rw_exit(&ipst->ips_ill_g_lock); 18289 18290 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18291 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18292 "level %d, name %d, len %d\n", 18293 (int)optp->level, (int)optp->name, (int)optp->len)); 18294 qreply(q, mpctl); 18295 18296 if (mp2ctl == NULL) 18297 return (NULL); 18298 18299 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18300 } 18301 18302 /* Global IPv4 ICMP statistics */ 18303 static mblk_t * 18304 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18305 { 18306 struct opthdr *optp; 18307 mblk_t *mp2ctl; 18308 18309 /* 18310 * Make a copy of the original message 18311 */ 18312 mp2ctl = copymsg(mpctl); 18313 18314 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18315 optp->level = MIB2_ICMP; 18316 optp->name = 0; 18317 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18318 (int)sizeof (ipst->ips_icmp_mib))) { 18319 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18320 (uint_t)sizeof (ipst->ips_icmp_mib))); 18321 } 18322 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18323 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18324 (int)optp->level, (int)optp->name, (int)optp->len)); 18325 qreply(q, mpctl); 18326 return (mp2ctl); 18327 } 18328 18329 /* Global IPv4 IGMP statistics */ 18330 static mblk_t * 18331 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18332 { 18333 struct opthdr *optp; 18334 mblk_t *mp2ctl; 18335 18336 /* 18337 * make a copy of the original message 18338 */ 18339 mp2ctl = copymsg(mpctl); 18340 18341 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18342 optp->level = EXPER_IGMP; 18343 optp->name = 0; 18344 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18345 (int)sizeof (ipst->ips_igmpstat))) { 18346 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18347 (uint_t)sizeof (ipst->ips_igmpstat))); 18348 } 18349 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18350 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18351 (int)optp->level, (int)optp->name, (int)optp->len)); 18352 qreply(q, mpctl); 18353 return (mp2ctl); 18354 } 18355 18356 /* Global IPv4 Multicast Routing statistics */ 18357 static mblk_t * 18358 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18359 { 18360 struct opthdr *optp; 18361 mblk_t *mp2ctl; 18362 18363 /* 18364 * make a copy of the original message 18365 */ 18366 mp2ctl = copymsg(mpctl); 18367 18368 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18369 optp->level = EXPER_DVMRP; 18370 optp->name = 0; 18371 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18372 ip0dbg(("ip_mroute_stats: failed\n")); 18373 } 18374 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18375 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18376 (int)optp->level, (int)optp->name, (int)optp->len)); 18377 qreply(q, mpctl); 18378 return (mp2ctl); 18379 } 18380 18381 /* IPv4 address information */ 18382 static mblk_t * 18383 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18384 { 18385 struct opthdr *optp; 18386 mblk_t *mp2ctl; 18387 mblk_t *mp_tail = NULL; 18388 ill_t *ill; 18389 ipif_t *ipif; 18390 uint_t bitval; 18391 mib2_ipAddrEntry_t mae; 18392 zoneid_t zoneid; 18393 ill_walk_context_t ctx; 18394 18395 /* 18396 * make a copy of the original message 18397 */ 18398 mp2ctl = copymsg(mpctl); 18399 18400 /* ipAddrEntryTable */ 18401 18402 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18403 optp->level = MIB2_IP; 18404 optp->name = MIB2_IP_ADDR; 18405 zoneid = Q_TO_CONN(q)->conn_zoneid; 18406 18407 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18408 ill = ILL_START_WALK_V4(&ctx, ipst); 18409 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18410 for (ipif = ill->ill_ipif; ipif != NULL; 18411 ipif = ipif->ipif_next) { 18412 if (ipif->ipif_zoneid != zoneid && 18413 ipif->ipif_zoneid != ALL_ZONES) 18414 continue; 18415 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18416 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18417 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18418 18419 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18420 OCTET_LENGTH); 18421 mae.ipAdEntIfIndex.o_length = 18422 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18423 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18424 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18425 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18426 mae.ipAdEntInfo.ae_subnet_len = 18427 ip_mask_to_plen(ipif->ipif_net_mask); 18428 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18429 for (bitval = 1; 18430 bitval && 18431 !(bitval & ipif->ipif_brd_addr); 18432 bitval <<= 1) 18433 noop; 18434 mae.ipAdEntBcastAddr = bitval; 18435 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18436 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18437 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18438 mae.ipAdEntInfo.ae_broadcast_addr = 18439 ipif->ipif_brd_addr; 18440 mae.ipAdEntInfo.ae_pp_dst_addr = 18441 ipif->ipif_pp_dst_addr; 18442 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18443 ill->ill_flags | ill->ill_phyint->phyint_flags; 18444 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18445 18446 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18447 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18448 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18449 "allocate %u bytes\n", 18450 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18451 } 18452 } 18453 } 18454 rw_exit(&ipst->ips_ill_g_lock); 18455 18456 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18457 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18458 (int)optp->level, (int)optp->name, (int)optp->len)); 18459 qreply(q, mpctl); 18460 return (mp2ctl); 18461 } 18462 18463 /* IPv6 address information */ 18464 static mblk_t * 18465 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18466 { 18467 struct opthdr *optp; 18468 mblk_t *mp2ctl; 18469 mblk_t *mp_tail = NULL; 18470 ill_t *ill; 18471 ipif_t *ipif; 18472 mib2_ipv6AddrEntry_t mae6; 18473 zoneid_t zoneid; 18474 ill_walk_context_t ctx; 18475 18476 /* 18477 * make a copy of the original message 18478 */ 18479 mp2ctl = copymsg(mpctl); 18480 18481 /* ipv6AddrEntryTable */ 18482 18483 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18484 optp->level = MIB2_IP6; 18485 optp->name = MIB2_IP6_ADDR; 18486 zoneid = Q_TO_CONN(q)->conn_zoneid; 18487 18488 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18489 ill = ILL_START_WALK_V6(&ctx, ipst); 18490 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18491 for (ipif = ill->ill_ipif; ipif != NULL; 18492 ipif = ipif->ipif_next) { 18493 if (ipif->ipif_zoneid != zoneid && 18494 ipif->ipif_zoneid != ALL_ZONES) 18495 continue; 18496 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18497 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18498 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18499 18500 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18501 OCTET_LENGTH); 18502 mae6.ipv6AddrIfIndex.o_length = 18503 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18504 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18505 mae6.ipv6AddrPfxLength = 18506 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18507 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18508 mae6.ipv6AddrInfo.ae_subnet_len = 18509 mae6.ipv6AddrPfxLength; 18510 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18511 18512 /* Type: stateless(1), stateful(2), unknown(3) */ 18513 if (ipif->ipif_flags & IPIF_ADDRCONF) 18514 mae6.ipv6AddrType = 1; 18515 else 18516 mae6.ipv6AddrType = 2; 18517 /* Anycast: true(1), false(2) */ 18518 if (ipif->ipif_flags & IPIF_ANYCAST) 18519 mae6.ipv6AddrAnycastFlag = 1; 18520 else 18521 mae6.ipv6AddrAnycastFlag = 2; 18522 18523 /* 18524 * Address status: preferred(1), deprecated(2), 18525 * invalid(3), inaccessible(4), unknown(5) 18526 */ 18527 if (ipif->ipif_flags & IPIF_NOLOCAL) 18528 mae6.ipv6AddrStatus = 3; 18529 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18530 mae6.ipv6AddrStatus = 2; 18531 else 18532 mae6.ipv6AddrStatus = 1; 18533 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18534 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18535 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18536 ipif->ipif_v6pp_dst_addr; 18537 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18538 ill->ill_flags | ill->ill_phyint->phyint_flags; 18539 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18540 mae6.ipv6AddrIdentifier = ill->ill_token; 18541 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18542 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18543 mae6.ipv6AddrRetransmitTime = 18544 ill->ill_reachable_retrans_time; 18545 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18546 (char *)&mae6, 18547 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18548 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18549 "allocate %u bytes\n", 18550 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18551 } 18552 } 18553 } 18554 rw_exit(&ipst->ips_ill_g_lock); 18555 18556 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18557 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18558 (int)optp->level, (int)optp->name, (int)optp->len)); 18559 qreply(q, mpctl); 18560 return (mp2ctl); 18561 } 18562 18563 /* IPv4 multicast group membership. */ 18564 static mblk_t * 18565 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18566 { 18567 struct opthdr *optp; 18568 mblk_t *mp2ctl; 18569 ill_t *ill; 18570 ipif_t *ipif; 18571 ilm_t *ilm; 18572 ip_member_t ipm; 18573 mblk_t *mp_tail = NULL; 18574 ill_walk_context_t ctx; 18575 zoneid_t zoneid; 18576 18577 /* 18578 * make a copy of the original message 18579 */ 18580 mp2ctl = copymsg(mpctl); 18581 zoneid = Q_TO_CONN(q)->conn_zoneid; 18582 18583 /* ipGroupMember table */ 18584 optp = (struct opthdr *)&mpctl->b_rptr[ 18585 sizeof (struct T_optmgmt_ack)]; 18586 optp->level = MIB2_IP; 18587 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18588 18589 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18590 ill = ILL_START_WALK_V4(&ctx, ipst); 18591 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18592 ILM_WALKER_HOLD(ill); 18593 for (ipif = ill->ill_ipif; ipif != NULL; 18594 ipif = ipif->ipif_next) { 18595 if (ipif->ipif_zoneid != zoneid && 18596 ipif->ipif_zoneid != ALL_ZONES) 18597 continue; /* not this zone */ 18598 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18599 OCTET_LENGTH); 18600 ipm.ipGroupMemberIfIndex.o_length = 18601 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18602 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18603 ASSERT(ilm->ilm_ipif != NULL); 18604 ASSERT(ilm->ilm_ill == NULL); 18605 if (ilm->ilm_ipif != ipif) 18606 continue; 18607 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18608 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18609 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18610 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18611 (char *)&ipm, (int)sizeof (ipm))) { 18612 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18613 "failed to allocate %u bytes\n", 18614 (uint_t)sizeof (ipm))); 18615 } 18616 } 18617 } 18618 ILM_WALKER_RELE(ill); 18619 } 18620 rw_exit(&ipst->ips_ill_g_lock); 18621 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18622 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18623 (int)optp->level, (int)optp->name, (int)optp->len)); 18624 qreply(q, mpctl); 18625 return (mp2ctl); 18626 } 18627 18628 /* IPv6 multicast group membership. */ 18629 static mblk_t * 18630 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18631 { 18632 struct opthdr *optp; 18633 mblk_t *mp2ctl; 18634 ill_t *ill; 18635 ilm_t *ilm; 18636 ipv6_member_t ipm6; 18637 mblk_t *mp_tail = NULL; 18638 ill_walk_context_t ctx; 18639 zoneid_t zoneid; 18640 18641 /* 18642 * make a copy of the original message 18643 */ 18644 mp2ctl = copymsg(mpctl); 18645 zoneid = Q_TO_CONN(q)->conn_zoneid; 18646 18647 /* ip6GroupMember table */ 18648 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18649 optp->level = MIB2_IP6; 18650 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18651 18652 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18653 ill = ILL_START_WALK_V6(&ctx, ipst); 18654 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18655 ILM_WALKER_HOLD(ill); 18656 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18657 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18658 ASSERT(ilm->ilm_ipif == NULL); 18659 ASSERT(ilm->ilm_ill != NULL); 18660 if (ilm->ilm_zoneid != zoneid) 18661 continue; /* not this zone */ 18662 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18663 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18664 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18665 if (!snmp_append_data2(mpctl->b_cont, 18666 &mp_tail, 18667 (char *)&ipm6, (int)sizeof (ipm6))) { 18668 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18669 "failed to allocate %u bytes\n", 18670 (uint_t)sizeof (ipm6))); 18671 } 18672 } 18673 ILM_WALKER_RELE(ill); 18674 } 18675 rw_exit(&ipst->ips_ill_g_lock); 18676 18677 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18678 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18679 (int)optp->level, (int)optp->name, (int)optp->len)); 18680 qreply(q, mpctl); 18681 return (mp2ctl); 18682 } 18683 18684 /* IP multicast filtered sources */ 18685 static mblk_t * 18686 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18687 { 18688 struct opthdr *optp; 18689 mblk_t *mp2ctl; 18690 ill_t *ill; 18691 ipif_t *ipif; 18692 ilm_t *ilm; 18693 ip_grpsrc_t ips; 18694 mblk_t *mp_tail = NULL; 18695 ill_walk_context_t ctx; 18696 zoneid_t zoneid; 18697 int i; 18698 slist_t *sl; 18699 18700 /* 18701 * make a copy of the original message 18702 */ 18703 mp2ctl = copymsg(mpctl); 18704 zoneid = Q_TO_CONN(q)->conn_zoneid; 18705 18706 /* ipGroupSource table */ 18707 optp = (struct opthdr *)&mpctl->b_rptr[ 18708 sizeof (struct T_optmgmt_ack)]; 18709 optp->level = MIB2_IP; 18710 optp->name = EXPER_IP_GROUP_SOURCES; 18711 18712 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18713 ill = ILL_START_WALK_V4(&ctx, ipst); 18714 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18715 ILM_WALKER_HOLD(ill); 18716 for (ipif = ill->ill_ipif; ipif != NULL; 18717 ipif = ipif->ipif_next) { 18718 if (ipif->ipif_zoneid != zoneid) 18719 continue; /* not this zone */ 18720 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18721 OCTET_LENGTH); 18722 ips.ipGroupSourceIfIndex.o_length = 18723 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18724 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18725 ASSERT(ilm->ilm_ipif != NULL); 18726 ASSERT(ilm->ilm_ill == NULL); 18727 sl = ilm->ilm_filter; 18728 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18729 continue; 18730 ips.ipGroupSourceGroup = ilm->ilm_addr; 18731 for (i = 0; i < sl->sl_numsrc; i++) { 18732 if (!IN6_IS_ADDR_V4MAPPED( 18733 &sl->sl_addr[i])) 18734 continue; 18735 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18736 ips.ipGroupSourceAddress); 18737 if (snmp_append_data2(mpctl->b_cont, 18738 &mp_tail, (char *)&ips, 18739 (int)sizeof (ips)) == 0) { 18740 ip1dbg(("ip_snmp_get_mib2_" 18741 "ip_group_src: failed to " 18742 "allocate %u bytes\n", 18743 (uint_t)sizeof (ips))); 18744 } 18745 } 18746 } 18747 } 18748 ILM_WALKER_RELE(ill); 18749 } 18750 rw_exit(&ipst->ips_ill_g_lock); 18751 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18752 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18753 (int)optp->level, (int)optp->name, (int)optp->len)); 18754 qreply(q, mpctl); 18755 return (mp2ctl); 18756 } 18757 18758 /* IPv6 multicast filtered sources. */ 18759 static mblk_t * 18760 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18761 { 18762 struct opthdr *optp; 18763 mblk_t *mp2ctl; 18764 ill_t *ill; 18765 ilm_t *ilm; 18766 ipv6_grpsrc_t ips6; 18767 mblk_t *mp_tail = NULL; 18768 ill_walk_context_t ctx; 18769 zoneid_t zoneid; 18770 int i; 18771 slist_t *sl; 18772 18773 /* 18774 * make a copy of the original message 18775 */ 18776 mp2ctl = copymsg(mpctl); 18777 zoneid = Q_TO_CONN(q)->conn_zoneid; 18778 18779 /* ip6GroupMember table */ 18780 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18781 optp->level = MIB2_IP6; 18782 optp->name = EXPER_IP6_GROUP_SOURCES; 18783 18784 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18785 ill = ILL_START_WALK_V6(&ctx, ipst); 18786 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18787 ILM_WALKER_HOLD(ill); 18788 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18789 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18790 ASSERT(ilm->ilm_ipif == NULL); 18791 ASSERT(ilm->ilm_ill != NULL); 18792 sl = ilm->ilm_filter; 18793 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18794 continue; 18795 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18796 for (i = 0; i < sl->sl_numsrc; i++) { 18797 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18798 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18799 (char *)&ips6, (int)sizeof (ips6))) { 18800 ip1dbg(("ip_snmp_get_mib2_ip6_" 18801 "group_src: failed to allocate " 18802 "%u bytes\n", 18803 (uint_t)sizeof (ips6))); 18804 } 18805 } 18806 } 18807 ILM_WALKER_RELE(ill); 18808 } 18809 rw_exit(&ipst->ips_ill_g_lock); 18810 18811 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18812 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18813 (int)optp->level, (int)optp->name, (int)optp->len)); 18814 qreply(q, mpctl); 18815 return (mp2ctl); 18816 } 18817 18818 /* Multicast routing virtual interface table. */ 18819 static mblk_t * 18820 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18821 { 18822 struct opthdr *optp; 18823 mblk_t *mp2ctl; 18824 18825 /* 18826 * make a copy of the original message 18827 */ 18828 mp2ctl = copymsg(mpctl); 18829 18830 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18831 optp->level = EXPER_DVMRP; 18832 optp->name = EXPER_DVMRP_VIF; 18833 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18834 ip0dbg(("ip_mroute_vif: failed\n")); 18835 } 18836 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18837 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18838 (int)optp->level, (int)optp->name, (int)optp->len)); 18839 qreply(q, mpctl); 18840 return (mp2ctl); 18841 } 18842 18843 /* Multicast routing table. */ 18844 static mblk_t * 18845 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18846 { 18847 struct opthdr *optp; 18848 mblk_t *mp2ctl; 18849 18850 /* 18851 * make a copy of the original message 18852 */ 18853 mp2ctl = copymsg(mpctl); 18854 18855 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18856 optp->level = EXPER_DVMRP; 18857 optp->name = EXPER_DVMRP_MRT; 18858 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 18859 ip0dbg(("ip_mroute_mrt: failed\n")); 18860 } 18861 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18862 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18863 (int)optp->level, (int)optp->name, (int)optp->len)); 18864 qreply(q, mpctl); 18865 return (mp2ctl); 18866 } 18867 18868 /* 18869 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18870 * in one IRE walk. 18871 */ 18872 static mblk_t * 18873 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18874 { 18875 struct opthdr *optp; 18876 mblk_t *mp2ctl; /* Returned */ 18877 mblk_t *mp3ctl; /* nettomedia */ 18878 mblk_t *mp4ctl; /* routeattrs */ 18879 iproutedata_t ird; 18880 zoneid_t zoneid; 18881 18882 /* 18883 * make copies of the original message 18884 * - mp2ctl is returned unchanged to the caller for his use 18885 * - mpctl is sent upstream as ipRouteEntryTable 18886 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18887 * - mp4ctl is sent upstream as ipRouteAttributeTable 18888 */ 18889 mp2ctl = copymsg(mpctl); 18890 mp3ctl = copymsg(mpctl); 18891 mp4ctl = copymsg(mpctl); 18892 if (mp3ctl == NULL || mp4ctl == NULL) { 18893 freemsg(mp4ctl); 18894 freemsg(mp3ctl); 18895 freemsg(mp2ctl); 18896 freemsg(mpctl); 18897 return (NULL); 18898 } 18899 18900 bzero(&ird, sizeof (ird)); 18901 18902 ird.ird_route.lp_head = mpctl->b_cont; 18903 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18904 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18905 18906 zoneid = Q_TO_CONN(q)->conn_zoneid; 18907 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 18908 18909 /* ipRouteEntryTable in mpctl */ 18910 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18911 optp->level = MIB2_IP; 18912 optp->name = MIB2_IP_ROUTE; 18913 optp->len = msgdsize(ird.ird_route.lp_head); 18914 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18915 (int)optp->level, (int)optp->name, (int)optp->len)); 18916 qreply(q, mpctl); 18917 18918 /* ipNetToMediaEntryTable in mp3ctl */ 18919 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18920 optp->level = MIB2_IP; 18921 optp->name = MIB2_IP_MEDIA; 18922 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18923 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18924 (int)optp->level, (int)optp->name, (int)optp->len)); 18925 qreply(q, mp3ctl); 18926 18927 /* ipRouteAttributeTable in mp4ctl */ 18928 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18929 optp->level = MIB2_IP; 18930 optp->name = EXPER_IP_RTATTR; 18931 optp->len = msgdsize(ird.ird_attrs.lp_head); 18932 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18933 (int)optp->level, (int)optp->name, (int)optp->len)); 18934 if (optp->len == 0) 18935 freemsg(mp4ctl); 18936 else 18937 qreply(q, mp4ctl); 18938 18939 return (mp2ctl); 18940 } 18941 18942 /* 18943 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 18944 * ipv6NetToMediaEntryTable in an NDP walk. 18945 */ 18946 static mblk_t * 18947 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18948 { 18949 struct opthdr *optp; 18950 mblk_t *mp2ctl; /* Returned */ 18951 mblk_t *mp3ctl; /* nettomedia */ 18952 mblk_t *mp4ctl; /* routeattrs */ 18953 iproutedata_t ird; 18954 zoneid_t zoneid; 18955 18956 /* 18957 * make copies of the original message 18958 * - mp2ctl is returned unchanged to the caller for his use 18959 * - mpctl is sent upstream as ipv6RouteEntryTable 18960 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 18961 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 18962 */ 18963 mp2ctl = copymsg(mpctl); 18964 mp3ctl = copymsg(mpctl); 18965 mp4ctl = copymsg(mpctl); 18966 if (mp3ctl == NULL || mp4ctl == NULL) { 18967 freemsg(mp4ctl); 18968 freemsg(mp3ctl); 18969 freemsg(mp2ctl); 18970 freemsg(mpctl); 18971 return (NULL); 18972 } 18973 18974 bzero(&ird, sizeof (ird)); 18975 18976 ird.ird_route.lp_head = mpctl->b_cont; 18977 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18978 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18979 18980 zoneid = Q_TO_CONN(q)->conn_zoneid; 18981 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 18982 18983 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18984 optp->level = MIB2_IP6; 18985 optp->name = MIB2_IP6_ROUTE; 18986 optp->len = msgdsize(ird.ird_route.lp_head); 18987 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18988 (int)optp->level, (int)optp->name, (int)optp->len)); 18989 qreply(q, mpctl); 18990 18991 /* ipv6NetToMediaEntryTable in mp3ctl */ 18992 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 18993 18994 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18995 optp->level = MIB2_IP6; 18996 optp->name = MIB2_IP6_MEDIA; 18997 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18998 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18999 (int)optp->level, (int)optp->name, (int)optp->len)); 19000 qreply(q, mp3ctl); 19001 19002 /* ipv6RouteAttributeTable in mp4ctl */ 19003 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19004 optp->level = MIB2_IP6; 19005 optp->name = EXPER_IP_RTATTR; 19006 optp->len = msgdsize(ird.ird_attrs.lp_head); 19007 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19008 (int)optp->level, (int)optp->name, (int)optp->len)); 19009 if (optp->len == 0) 19010 freemsg(mp4ctl); 19011 else 19012 qreply(q, mp4ctl); 19013 19014 return (mp2ctl); 19015 } 19016 19017 /* 19018 * IPv6 mib: One per ill 19019 */ 19020 static mblk_t * 19021 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19022 { 19023 struct opthdr *optp; 19024 mblk_t *mp2ctl; 19025 ill_t *ill; 19026 ill_walk_context_t ctx; 19027 mblk_t *mp_tail = NULL; 19028 19029 /* 19030 * Make a copy of the original message 19031 */ 19032 mp2ctl = copymsg(mpctl); 19033 19034 /* fixed length IPv6 structure ... */ 19035 19036 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19037 optp->level = MIB2_IP6; 19038 optp->name = 0; 19039 /* Include "unknown interface" ip6_mib */ 19040 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19041 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19042 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19043 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19044 ipst->ips_ipv6_forward ? 1 : 2); 19045 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19046 ipst->ips_ipv6_def_hops); 19047 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19048 sizeof (mib2_ipIfStatsEntry_t)); 19049 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19050 sizeof (mib2_ipv6AddrEntry_t)); 19051 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19052 sizeof (mib2_ipv6RouteEntry_t)); 19053 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19054 sizeof (mib2_ipv6NetToMediaEntry_t)); 19055 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19056 sizeof (ipv6_member_t)); 19057 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19058 sizeof (ipv6_grpsrc_t)); 19059 19060 /* 19061 * Synchronize 64- and 32-bit counters 19062 */ 19063 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19064 ipIfStatsHCInReceives); 19065 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19066 ipIfStatsHCInDelivers); 19067 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19068 ipIfStatsHCOutRequests); 19069 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19070 ipIfStatsHCOutForwDatagrams); 19071 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19072 ipIfStatsHCOutMcastPkts); 19073 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19074 ipIfStatsHCInMcastPkts); 19075 19076 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19077 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19078 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19079 (uint_t)sizeof (ipst->ips_ip6_mib))); 19080 } 19081 19082 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19083 ill = ILL_START_WALK_V6(&ctx, ipst); 19084 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19085 ill->ill_ip_mib->ipIfStatsIfIndex = 19086 ill->ill_phyint->phyint_ifindex; 19087 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19088 ipst->ips_ipv6_forward ? 1 : 2); 19089 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19090 ill->ill_max_hops); 19091 19092 /* 19093 * Synchronize 64- and 32-bit counters 19094 */ 19095 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19096 ipIfStatsHCInReceives); 19097 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19098 ipIfStatsHCInDelivers); 19099 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19100 ipIfStatsHCOutRequests); 19101 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19102 ipIfStatsHCOutForwDatagrams); 19103 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19104 ipIfStatsHCOutMcastPkts); 19105 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19106 ipIfStatsHCInMcastPkts); 19107 19108 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19109 (char *)ill->ill_ip_mib, 19110 (int)sizeof (*ill->ill_ip_mib))) { 19111 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19112 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19113 } 19114 } 19115 rw_exit(&ipst->ips_ill_g_lock); 19116 19117 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19118 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19119 (int)optp->level, (int)optp->name, (int)optp->len)); 19120 qreply(q, mpctl); 19121 return (mp2ctl); 19122 } 19123 19124 /* 19125 * ICMPv6 mib: One per ill 19126 */ 19127 static mblk_t * 19128 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19129 { 19130 struct opthdr *optp; 19131 mblk_t *mp2ctl; 19132 ill_t *ill; 19133 ill_walk_context_t ctx; 19134 mblk_t *mp_tail = NULL; 19135 /* 19136 * Make a copy of the original message 19137 */ 19138 mp2ctl = copymsg(mpctl); 19139 19140 /* fixed length ICMPv6 structure ... */ 19141 19142 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19143 optp->level = MIB2_ICMP6; 19144 optp->name = 0; 19145 /* Include "unknown interface" icmp6_mib */ 19146 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19147 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19148 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19149 sizeof (mib2_ipv6IfIcmpEntry_t); 19150 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19151 (char *)&ipst->ips_icmp6_mib, 19152 (int)sizeof (ipst->ips_icmp6_mib))) { 19153 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19154 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19155 } 19156 19157 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19158 ill = ILL_START_WALK_V6(&ctx, ipst); 19159 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19160 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19161 ill->ill_phyint->phyint_ifindex; 19162 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19163 (char *)ill->ill_icmp6_mib, 19164 (int)sizeof (*ill->ill_icmp6_mib))) { 19165 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19166 "%u bytes\n", 19167 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19168 } 19169 } 19170 rw_exit(&ipst->ips_ill_g_lock); 19171 19172 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19173 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19174 (int)optp->level, (int)optp->name, (int)optp->len)); 19175 qreply(q, mpctl); 19176 return (mp2ctl); 19177 } 19178 19179 /* 19180 * ire_walk routine to create both ipRouteEntryTable and 19181 * ipRouteAttributeTable in one IRE walk 19182 */ 19183 static void 19184 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19185 { 19186 ill_t *ill; 19187 ipif_t *ipif; 19188 mib2_ipRouteEntry_t *re; 19189 mib2_ipAttributeEntry_t *iae, *iaeptr; 19190 ipaddr_t gw_addr; 19191 tsol_ire_gw_secattr_t *attrp; 19192 tsol_gc_t *gc = NULL; 19193 tsol_gcgrp_t *gcgrp = NULL; 19194 uint_t sacnt = 0; 19195 int i; 19196 19197 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19198 19199 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19200 return; 19201 19202 if ((attrp = ire->ire_gw_secattr) != NULL) { 19203 mutex_enter(&attrp->igsa_lock); 19204 if ((gc = attrp->igsa_gc) != NULL) { 19205 gcgrp = gc->gc_grp; 19206 ASSERT(gcgrp != NULL); 19207 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19208 sacnt = 1; 19209 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19210 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19211 gc = gcgrp->gcgrp_head; 19212 sacnt = gcgrp->gcgrp_count; 19213 } 19214 mutex_exit(&attrp->igsa_lock); 19215 19216 /* do nothing if there's no gc to report */ 19217 if (gc == NULL) { 19218 ASSERT(sacnt == 0); 19219 if (gcgrp != NULL) { 19220 /* we might as well drop the lock now */ 19221 rw_exit(&gcgrp->gcgrp_rwlock); 19222 gcgrp = NULL; 19223 } 19224 attrp = NULL; 19225 } 19226 19227 ASSERT(gc == NULL || (gcgrp != NULL && 19228 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19229 } 19230 ASSERT(sacnt == 0 || gc != NULL); 19231 19232 if (sacnt != 0 && 19233 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19234 kmem_free(re, sizeof (*re)); 19235 rw_exit(&gcgrp->gcgrp_rwlock); 19236 return; 19237 } 19238 19239 /* 19240 * Return all IRE types for route table... let caller pick and choose 19241 */ 19242 re->ipRouteDest = ire->ire_addr; 19243 ipif = ire->ire_ipif; 19244 re->ipRouteIfIndex.o_length = 0; 19245 if (ire->ire_type == IRE_CACHE) { 19246 ill = (ill_t *)ire->ire_stq->q_ptr; 19247 re->ipRouteIfIndex.o_length = 19248 ill->ill_name_length == 0 ? 0 : 19249 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19250 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19251 re->ipRouteIfIndex.o_length); 19252 } else if (ipif != NULL) { 19253 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19254 re->ipRouteIfIndex.o_length = 19255 mi_strlen(re->ipRouteIfIndex.o_bytes); 19256 } 19257 re->ipRouteMetric1 = -1; 19258 re->ipRouteMetric2 = -1; 19259 re->ipRouteMetric3 = -1; 19260 re->ipRouteMetric4 = -1; 19261 19262 gw_addr = ire->ire_gateway_addr; 19263 19264 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19265 re->ipRouteNextHop = ire->ire_src_addr; 19266 else 19267 re->ipRouteNextHop = gw_addr; 19268 /* indirect(4), direct(3), or invalid(2) */ 19269 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19270 re->ipRouteType = 2; 19271 else 19272 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19273 re->ipRouteProto = -1; 19274 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19275 re->ipRouteMask = ire->ire_mask; 19276 re->ipRouteMetric5 = -1; 19277 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19278 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19279 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19280 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19281 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19282 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19283 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19284 re->ipRouteInfo.re_flags = ire->ire_flags; 19285 19286 if (ire->ire_flags & RTF_DYNAMIC) { 19287 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19288 } else { 19289 re->ipRouteInfo.re_ire_type = ire->ire_type; 19290 } 19291 19292 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19293 (char *)re, (int)sizeof (*re))) { 19294 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19295 (uint_t)sizeof (*re))); 19296 } 19297 19298 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19299 iaeptr->iae_routeidx = ird->ird_idx; 19300 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19301 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19302 } 19303 19304 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19305 (char *)iae, sacnt * sizeof (*iae))) { 19306 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19307 (unsigned)(sacnt * sizeof (*iae)))); 19308 } 19309 19310 /* bump route index for next pass */ 19311 ird->ird_idx++; 19312 19313 kmem_free(re, sizeof (*re)); 19314 if (sacnt != 0) 19315 kmem_free(iae, sacnt * sizeof (*iae)); 19316 19317 if (gcgrp != NULL) 19318 rw_exit(&gcgrp->gcgrp_rwlock); 19319 } 19320 19321 /* 19322 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19323 */ 19324 static void 19325 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19326 { 19327 ill_t *ill; 19328 ipif_t *ipif; 19329 mib2_ipv6RouteEntry_t *re; 19330 mib2_ipAttributeEntry_t *iae, *iaeptr; 19331 in6_addr_t gw_addr_v6; 19332 tsol_ire_gw_secattr_t *attrp; 19333 tsol_gc_t *gc = NULL; 19334 tsol_gcgrp_t *gcgrp = NULL; 19335 uint_t sacnt = 0; 19336 int i; 19337 19338 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19339 19340 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19341 return; 19342 19343 if ((attrp = ire->ire_gw_secattr) != NULL) { 19344 mutex_enter(&attrp->igsa_lock); 19345 if ((gc = attrp->igsa_gc) != NULL) { 19346 gcgrp = gc->gc_grp; 19347 ASSERT(gcgrp != NULL); 19348 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19349 sacnt = 1; 19350 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19351 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19352 gc = gcgrp->gcgrp_head; 19353 sacnt = gcgrp->gcgrp_count; 19354 } 19355 mutex_exit(&attrp->igsa_lock); 19356 19357 /* do nothing if there's no gc to report */ 19358 if (gc == NULL) { 19359 ASSERT(sacnt == 0); 19360 if (gcgrp != NULL) { 19361 /* we might as well drop the lock now */ 19362 rw_exit(&gcgrp->gcgrp_rwlock); 19363 gcgrp = NULL; 19364 } 19365 attrp = NULL; 19366 } 19367 19368 ASSERT(gc == NULL || (gcgrp != NULL && 19369 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19370 } 19371 ASSERT(sacnt == 0 || gc != NULL); 19372 19373 if (sacnt != 0 && 19374 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19375 kmem_free(re, sizeof (*re)); 19376 rw_exit(&gcgrp->gcgrp_rwlock); 19377 return; 19378 } 19379 19380 /* 19381 * Return all IRE types for route table... let caller pick and choose 19382 */ 19383 re->ipv6RouteDest = ire->ire_addr_v6; 19384 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19385 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19386 re->ipv6RouteIfIndex.o_length = 0; 19387 ipif = ire->ire_ipif; 19388 if (ire->ire_type == IRE_CACHE) { 19389 ill = (ill_t *)ire->ire_stq->q_ptr; 19390 re->ipv6RouteIfIndex.o_length = 19391 ill->ill_name_length == 0 ? 0 : 19392 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19393 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19394 re->ipv6RouteIfIndex.o_length); 19395 } else if (ipif != NULL) { 19396 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19397 re->ipv6RouteIfIndex.o_length = 19398 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19399 } 19400 19401 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19402 19403 mutex_enter(&ire->ire_lock); 19404 gw_addr_v6 = ire->ire_gateway_addr_v6; 19405 mutex_exit(&ire->ire_lock); 19406 19407 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19408 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19409 else 19410 re->ipv6RouteNextHop = gw_addr_v6; 19411 19412 /* remote(4), local(3), or discard(2) */ 19413 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19414 re->ipv6RouteType = 2; 19415 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19416 re->ipv6RouteType = 3; 19417 else 19418 re->ipv6RouteType = 4; 19419 19420 re->ipv6RouteProtocol = -1; 19421 re->ipv6RoutePolicy = 0; 19422 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19423 re->ipv6RouteNextHopRDI = 0; 19424 re->ipv6RouteWeight = 0; 19425 re->ipv6RouteMetric = 0; 19426 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19427 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19428 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19429 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19430 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19431 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19432 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19433 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19434 19435 if (ire->ire_flags & RTF_DYNAMIC) { 19436 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19437 } else { 19438 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19439 } 19440 19441 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19442 (char *)re, (int)sizeof (*re))) { 19443 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19444 (uint_t)sizeof (*re))); 19445 } 19446 19447 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19448 iaeptr->iae_routeidx = ird->ird_idx; 19449 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19450 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19451 } 19452 19453 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19454 (char *)iae, sacnt * sizeof (*iae))) { 19455 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19456 (unsigned)(sacnt * sizeof (*iae)))); 19457 } 19458 19459 /* bump route index for next pass */ 19460 ird->ird_idx++; 19461 19462 kmem_free(re, sizeof (*re)); 19463 if (sacnt != 0) 19464 kmem_free(iae, sacnt * sizeof (*iae)); 19465 19466 if (gcgrp != NULL) 19467 rw_exit(&gcgrp->gcgrp_rwlock); 19468 } 19469 19470 /* 19471 * ndp_walk routine to create ipv6NetToMediaEntryTable 19472 */ 19473 static int 19474 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19475 { 19476 ill_t *ill; 19477 mib2_ipv6NetToMediaEntry_t ntme; 19478 dl_unitdata_req_t *dl; 19479 19480 ill = nce->nce_ill; 19481 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19482 return (0); 19483 19484 /* 19485 * Neighbor cache entry attached to IRE with on-link 19486 * destination. 19487 */ 19488 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19489 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19490 if ((ill->ill_flags & ILLF_XRESOLV) && 19491 (nce->nce_res_mp != NULL)) { 19492 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19493 ntme.ipv6NetToMediaPhysAddress.o_length = 19494 dl->dl_dest_addr_length; 19495 } else { 19496 ntme.ipv6NetToMediaPhysAddress.o_length = 19497 ill->ill_phys_addr_length; 19498 } 19499 if (nce->nce_res_mp != NULL) { 19500 bcopy((char *)nce->nce_res_mp->b_rptr + 19501 NCE_LL_ADDR_OFFSET(ill), 19502 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19503 ntme.ipv6NetToMediaPhysAddress.o_length); 19504 } else { 19505 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19506 ill->ill_phys_addr_length); 19507 } 19508 /* 19509 * Note: Returns ND_* states. Should be: 19510 * reachable(1), stale(2), delay(3), probe(4), 19511 * invalid(5), unknown(6) 19512 */ 19513 ntme.ipv6NetToMediaState = nce->nce_state; 19514 ntme.ipv6NetToMediaLastUpdated = 0; 19515 19516 /* other(1), dynamic(2), static(3), local(4) */ 19517 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19518 ntme.ipv6NetToMediaType = 4; 19519 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19520 ntme.ipv6NetToMediaType = 1; 19521 } else { 19522 ntme.ipv6NetToMediaType = 2; 19523 } 19524 19525 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19526 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19527 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19528 (uint_t)sizeof (ntme))); 19529 } 19530 return (0); 19531 } 19532 19533 /* 19534 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19535 */ 19536 /* ARGSUSED */ 19537 int 19538 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19539 { 19540 switch (level) { 19541 case MIB2_IP: 19542 case MIB2_ICMP: 19543 switch (name) { 19544 default: 19545 break; 19546 } 19547 return (1); 19548 default: 19549 return (1); 19550 } 19551 } 19552 19553 /* 19554 * When there exists both a 64- and 32-bit counter of a particular type 19555 * (i.e., InReceives), only the 64-bit counters are added. 19556 */ 19557 void 19558 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19559 { 19560 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19561 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19562 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19563 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19564 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19565 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19566 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19567 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19568 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19569 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19570 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19571 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19572 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19573 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19574 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19575 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19576 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19577 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19578 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19579 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19580 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19581 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19582 o2->ipIfStatsInWrongIPVersion); 19583 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19584 o2->ipIfStatsInWrongIPVersion); 19585 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19586 o2->ipIfStatsOutSwitchIPVersion); 19587 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19588 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19589 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19590 o2->ipIfStatsHCInForwDatagrams); 19591 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19592 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19593 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19594 o2->ipIfStatsHCOutForwDatagrams); 19595 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19596 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19597 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19598 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19599 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19600 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19601 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19602 o2->ipIfStatsHCOutMcastOctets); 19603 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19604 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19605 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19606 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19607 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19608 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19609 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19610 } 19611 19612 void 19613 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19614 { 19615 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19616 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19617 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19618 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19619 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19620 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19621 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19622 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19623 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19624 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19625 o2->ipv6IfIcmpInRouterSolicits); 19626 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19627 o2->ipv6IfIcmpInRouterAdvertisements); 19628 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19629 o2->ipv6IfIcmpInNeighborSolicits); 19630 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19631 o2->ipv6IfIcmpInNeighborAdvertisements); 19632 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19633 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19634 o2->ipv6IfIcmpInGroupMembQueries); 19635 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19636 o2->ipv6IfIcmpInGroupMembResponses); 19637 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19638 o2->ipv6IfIcmpInGroupMembReductions); 19639 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19640 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19641 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19642 o2->ipv6IfIcmpOutDestUnreachs); 19643 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19644 o2->ipv6IfIcmpOutAdminProhibs); 19645 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19646 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19647 o2->ipv6IfIcmpOutParmProblems); 19648 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19649 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19650 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19651 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19652 o2->ipv6IfIcmpOutRouterSolicits); 19653 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19654 o2->ipv6IfIcmpOutRouterAdvertisements); 19655 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19656 o2->ipv6IfIcmpOutNeighborSolicits); 19657 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19658 o2->ipv6IfIcmpOutNeighborAdvertisements); 19659 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19660 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19661 o2->ipv6IfIcmpOutGroupMembQueries); 19662 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19663 o2->ipv6IfIcmpOutGroupMembResponses); 19664 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19665 o2->ipv6IfIcmpOutGroupMembReductions); 19666 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19667 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19668 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19669 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19670 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19671 o2->ipv6IfIcmpInBadNeighborSolicitations); 19672 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19673 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19674 o2->ipv6IfIcmpInGroupMembTotal); 19675 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19676 o2->ipv6IfIcmpInGroupMembBadQueries); 19677 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19678 o2->ipv6IfIcmpInGroupMembBadReports); 19679 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19680 o2->ipv6IfIcmpInGroupMembOurReports); 19681 } 19682 19683 /* 19684 * Called before the options are updated to check if this packet will 19685 * be source routed from here. 19686 * This routine assumes that the options are well formed i.e. that they 19687 * have already been checked. 19688 */ 19689 static boolean_t 19690 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19691 { 19692 ipoptp_t opts; 19693 uchar_t *opt; 19694 uint8_t optval; 19695 uint8_t optlen; 19696 ipaddr_t dst; 19697 ire_t *ire; 19698 19699 if (IS_SIMPLE_IPH(ipha)) { 19700 ip2dbg(("not source routed\n")); 19701 return (B_FALSE); 19702 } 19703 dst = ipha->ipha_dst; 19704 for (optval = ipoptp_first(&opts, ipha); 19705 optval != IPOPT_EOL; 19706 optval = ipoptp_next(&opts)) { 19707 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19708 opt = opts.ipoptp_cur; 19709 optlen = opts.ipoptp_len; 19710 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19711 optval, optlen)); 19712 switch (optval) { 19713 uint32_t off; 19714 case IPOPT_SSRR: 19715 case IPOPT_LSRR: 19716 /* 19717 * If dst is one of our addresses and there are some 19718 * entries left in the source route return (true). 19719 */ 19720 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19721 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19722 if (ire == NULL) { 19723 ip2dbg(("ip_source_routed: not next" 19724 " source route 0x%x\n", 19725 ntohl(dst))); 19726 return (B_FALSE); 19727 } 19728 ire_refrele(ire); 19729 off = opt[IPOPT_OFFSET]; 19730 off--; 19731 if (optlen < IP_ADDR_LEN || 19732 off > optlen - IP_ADDR_LEN) { 19733 /* End of source route */ 19734 ip1dbg(("ip_source_routed: end of SR\n")); 19735 return (B_FALSE); 19736 } 19737 return (B_TRUE); 19738 } 19739 } 19740 ip2dbg(("not source routed\n")); 19741 return (B_FALSE); 19742 } 19743 19744 /* 19745 * Check if the packet contains any source route. 19746 */ 19747 static boolean_t 19748 ip_source_route_included(ipha_t *ipha) 19749 { 19750 ipoptp_t opts; 19751 uint8_t optval; 19752 19753 if (IS_SIMPLE_IPH(ipha)) 19754 return (B_FALSE); 19755 for (optval = ipoptp_first(&opts, ipha); 19756 optval != IPOPT_EOL; 19757 optval = ipoptp_next(&opts)) { 19758 switch (optval) { 19759 case IPOPT_SSRR: 19760 case IPOPT_LSRR: 19761 return (B_TRUE); 19762 } 19763 } 19764 return (B_FALSE); 19765 } 19766 19767 /* 19768 * Called when the IRE expiration timer fires. 19769 */ 19770 void 19771 ip_trash_timer_expire(void *args) 19772 { 19773 int flush_flag = 0; 19774 ire_expire_arg_t iea; 19775 ip_stack_t *ipst = (ip_stack_t *)args; 19776 19777 iea.iea_ipst = ipst; /* No netstack_hold */ 19778 19779 /* 19780 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19781 * This lock makes sure that a new invocation of this function 19782 * that occurs due to an almost immediate timer firing will not 19783 * progress beyond this point until the current invocation is done 19784 */ 19785 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19786 ipst->ips_ip_ire_expire_id = 0; 19787 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19788 19789 /* Periodic timer */ 19790 if (ipst->ips_ip_ire_arp_time_elapsed >= 19791 ipst->ips_ip_ire_arp_interval) { 19792 /* 19793 * Remove all IRE_CACHE entries since they might 19794 * contain arp information. 19795 */ 19796 flush_flag |= FLUSH_ARP_TIME; 19797 ipst->ips_ip_ire_arp_time_elapsed = 0; 19798 IP_STAT(ipst, ip_ire_arp_timer_expired); 19799 } 19800 if (ipst->ips_ip_ire_rd_time_elapsed >= 19801 ipst->ips_ip_ire_redir_interval) { 19802 /* Remove all redirects */ 19803 flush_flag |= FLUSH_REDIRECT_TIME; 19804 ipst->ips_ip_ire_rd_time_elapsed = 0; 19805 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19806 } 19807 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19808 ipst->ips_ip_ire_pathmtu_interval) { 19809 /* Increase path mtu */ 19810 flush_flag |= FLUSH_MTU_TIME; 19811 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 19812 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 19813 } 19814 19815 /* 19816 * Optimize for the case when there are no redirects in the 19817 * ftable, that is, no need to walk the ftable in that case. 19818 */ 19819 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19820 iea.iea_flush_flag = flush_flag; 19821 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19822 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 19823 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 19824 NULL, ALL_ZONES, ipst); 19825 } 19826 if ((flush_flag & FLUSH_REDIRECT_TIME) && 19827 ipst->ips_ip_redirect_cnt > 0) { 19828 iea.iea_flush_flag = flush_flag; 19829 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19830 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 19831 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 19832 } 19833 if (flush_flag & FLUSH_MTU_TIME) { 19834 /* 19835 * Walk all IPv6 IRE's and update them 19836 * Note that ARP and redirect timers are not 19837 * needed since NUD handles stale entries. 19838 */ 19839 flush_flag = FLUSH_MTU_TIME; 19840 iea.iea_flush_flag = flush_flag; 19841 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 19842 ALL_ZONES, ipst); 19843 } 19844 19845 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 19846 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 19847 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 19848 19849 /* 19850 * Hold the lock to serialize timeout calls and prevent 19851 * stale values in ip_ire_expire_id. Otherwise it is possible 19852 * for the timer to fire and a new invocation of this function 19853 * to start before the return value of timeout has been stored 19854 * in ip_ire_expire_id by the current invocation. 19855 */ 19856 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19857 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 19858 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 19859 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19860 } 19861 19862 /* 19863 * Called by the memory allocator subsystem directly, when the system 19864 * is running low on memory. 19865 */ 19866 /* ARGSUSED */ 19867 void 19868 ip_trash_ire_reclaim(void *args) 19869 { 19870 netstack_handle_t nh; 19871 netstack_t *ns; 19872 19873 netstack_next_init(&nh); 19874 while ((ns = netstack_next(&nh)) != NULL) { 19875 ip_trash_ire_reclaim_stack(ns->netstack_ip); 19876 netstack_rele(ns); 19877 } 19878 netstack_next_fini(&nh); 19879 } 19880 19881 static void 19882 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 19883 { 19884 ire_cache_count_t icc; 19885 ire_cache_reclaim_t icr; 19886 ncc_cache_count_t ncc; 19887 nce_cache_reclaim_t ncr; 19888 uint_t delete_cnt; 19889 /* 19890 * Memory reclaim call back. 19891 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19892 * Then, with a target of freeing 1/Nth of IRE_CACHE 19893 * entries, determine what fraction to free for 19894 * each category of IRE_CACHE entries giving absolute priority 19895 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19896 * entry will be freed unless all offlink entries are freed). 19897 */ 19898 icc.icc_total = 0; 19899 icc.icc_unused = 0; 19900 icc.icc_offlink = 0; 19901 icc.icc_pmtu = 0; 19902 icc.icc_onlink = 0; 19903 ire_walk(ire_cache_count, (char *)&icc, ipst); 19904 19905 /* 19906 * Free NCEs for IPv6 like the onlink ires. 19907 */ 19908 ncc.ncc_total = 0; 19909 ncc.ncc_host = 0; 19910 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 19911 19912 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 19913 icc.icc_pmtu + icc.icc_onlink); 19914 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 19915 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 19916 if (delete_cnt == 0) 19917 return; 19918 IP_STAT(ipst, ip_trash_ire_reclaim_success); 19919 /* Always delete all unused offlink entries */ 19920 icr.icr_ipst = ipst; 19921 icr.icr_unused = 1; 19922 if (delete_cnt <= icc.icc_unused) { 19923 /* 19924 * Only need to free unused entries. In other words, 19925 * there are enough unused entries to free to meet our 19926 * target number of freed ire cache entries. 19927 */ 19928 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 19929 ncr.ncr_host = 0; 19930 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 19931 /* 19932 * Only need to free unused entries, plus a fraction of offlink 19933 * entries. It follows from the first if statement that 19934 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 19935 */ 19936 delete_cnt -= icc.icc_unused; 19937 /* Round up # deleted by truncating fraction */ 19938 icr.icr_offlink = icc.icc_offlink / delete_cnt; 19939 icr.icr_pmtu = icr.icr_onlink = 0; 19940 ncr.ncr_host = 0; 19941 } else if (delete_cnt <= 19942 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 19943 /* 19944 * Free all unused and offlink entries, plus a fraction of 19945 * pmtu entries. It follows from the previous if statement 19946 * that icc_pmtu is non-zero, and that 19947 * delete_cnt != icc_unused + icc_offlink. 19948 */ 19949 icr.icr_offlink = 1; 19950 delete_cnt -= icc.icc_unused + icc.icc_offlink; 19951 /* Round up # deleted by truncating fraction */ 19952 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 19953 icr.icr_onlink = 0; 19954 ncr.ncr_host = 0; 19955 } else { 19956 /* 19957 * Free all unused, offlink, and pmtu entries, plus a fraction 19958 * of onlink entries. If we're here, then we know that 19959 * icc_onlink is non-zero, and that 19960 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 19961 */ 19962 icr.icr_offlink = icr.icr_pmtu = 1; 19963 delete_cnt -= icc.icc_unused + icc.icc_offlink + 19964 icc.icc_pmtu; 19965 /* Round up # deleted by truncating fraction */ 19966 icr.icr_onlink = icc.icc_onlink / delete_cnt; 19967 /* Using the same delete fraction as for onlink IREs */ 19968 ncr.ncr_host = ncc.ncc_host / delete_cnt; 19969 } 19970 #ifdef DEBUG 19971 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 19972 "fractions %d/%d/%d/%d\n", 19973 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 19974 icc.icc_unused, icc.icc_offlink, 19975 icc.icc_pmtu, icc.icc_onlink, 19976 icr.icr_unused, icr.icr_offlink, 19977 icr.icr_pmtu, icr.icr_onlink)); 19978 #endif 19979 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 19980 if (ncr.ncr_host != 0) 19981 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 19982 (uchar_t *)&ncr, ipst); 19983 #ifdef DEBUG 19984 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 19985 icc.icc_pmtu = 0; icc.icc_onlink = 0; 19986 ire_walk(ire_cache_count, (char *)&icc, ipst); 19987 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 19988 icc.icc_total, icc.icc_unused, icc.icc_offlink, 19989 icc.icc_pmtu, icc.icc_onlink)); 19990 #endif 19991 } 19992 19993 /* 19994 * ip_unbind is called when a copy of an unbind request is received from the 19995 * upper level protocol. We remove this conn from any fanout hash list it is 19996 * on, and zero out the bind information. No reply is expected up above. 19997 */ 19998 mblk_t * 19999 ip_unbind(queue_t *q, mblk_t *mp) 20000 { 20001 conn_t *connp = Q_TO_CONN(q); 20002 20003 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20004 20005 if (is_system_labeled() && connp->conn_anon_port) { 20006 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20007 connp->conn_mlp_type, connp->conn_ulp, 20008 ntohs(connp->conn_lport), B_FALSE); 20009 connp->conn_anon_port = 0; 20010 } 20011 connp->conn_mlp_type = mlptSingle; 20012 20013 ipcl_hash_remove(connp); 20014 20015 ASSERT(mp->b_cont == NULL); 20016 /* 20017 * Convert mp into a T_OK_ACK 20018 */ 20019 mp = mi_tpi_ok_ack_alloc(mp); 20020 20021 /* 20022 * should not happen in practice... T_OK_ACK is smaller than the 20023 * original message. 20024 */ 20025 if (mp == NULL) 20026 return (NULL); 20027 20028 return (mp); 20029 } 20030 20031 /* 20032 * Write side put procedure. Outbound data, IOCTLs, responses from 20033 * resolvers, etc, come down through here. 20034 * 20035 * arg2 is always a queue_t *. 20036 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20037 * the zoneid. 20038 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20039 */ 20040 void 20041 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20042 { 20043 ip_output_options(arg, mp, arg2, caller, &zero_info); 20044 } 20045 20046 void 20047 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20048 ip_opt_info_t *infop) 20049 { 20050 conn_t *connp = NULL; 20051 queue_t *q = (queue_t *)arg2; 20052 ipha_t *ipha; 20053 #define rptr ((uchar_t *)ipha) 20054 ire_t *ire = NULL; 20055 ire_t *sctp_ire = NULL; 20056 uint32_t v_hlen_tos_len; 20057 ipaddr_t dst; 20058 mblk_t *first_mp = NULL; 20059 boolean_t mctl_present; 20060 ipsec_out_t *io; 20061 int match_flags; 20062 ill_t *attach_ill = NULL; 20063 /* Bind to IPIF_NOFAILOVER ill etc. */ 20064 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20065 ipif_t *dst_ipif; 20066 boolean_t multirt_need_resolve = B_FALSE; 20067 mblk_t *copy_mp = NULL; 20068 int err; 20069 zoneid_t zoneid; 20070 int adjust; 20071 uint16_t iplen; 20072 boolean_t need_decref = B_FALSE; 20073 boolean_t ignore_dontroute = B_FALSE; 20074 boolean_t ignore_nexthop = B_FALSE; 20075 boolean_t ip_nexthop = B_FALSE; 20076 ipaddr_t nexthop_addr; 20077 ip_stack_t *ipst; 20078 20079 #ifdef _BIG_ENDIAN 20080 #define V_HLEN (v_hlen_tos_len >> 24) 20081 #else 20082 #define V_HLEN (v_hlen_tos_len & 0xFF) 20083 #endif 20084 20085 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20086 "ip_wput_start: q %p", q); 20087 20088 /* 20089 * ip_wput fast path 20090 */ 20091 20092 /* is packet from ARP ? */ 20093 if (q->q_next != NULL) { 20094 zoneid = (zoneid_t)(uintptr_t)arg; 20095 goto qnext; 20096 } 20097 20098 connp = (conn_t *)arg; 20099 ASSERT(connp != NULL); 20100 zoneid = connp->conn_zoneid; 20101 ipst = connp->conn_netstack->netstack_ip; 20102 20103 /* is queue flow controlled? */ 20104 if ((q->q_first != NULL || connp->conn_draining) && 20105 (caller == IP_WPUT)) { 20106 ASSERT(!need_decref); 20107 (void) putq(q, mp); 20108 return; 20109 } 20110 20111 /* Multidata transmit? */ 20112 if (DB_TYPE(mp) == M_MULTIDATA) { 20113 /* 20114 * We should never get here, since all Multidata messages 20115 * originating from tcp should have been directed over to 20116 * tcp_multisend() in the first place. 20117 */ 20118 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20119 freemsg(mp); 20120 return; 20121 } else if (DB_TYPE(mp) != M_DATA) 20122 goto notdata; 20123 20124 if (mp->b_flag & MSGHASREF) { 20125 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20126 mp->b_flag &= ~MSGHASREF; 20127 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20128 need_decref = B_TRUE; 20129 } 20130 ipha = (ipha_t *)mp->b_rptr; 20131 20132 /* is IP header non-aligned or mblk smaller than basic IP header */ 20133 #ifndef SAFETY_BEFORE_SPEED 20134 if (!OK_32PTR(rptr) || 20135 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20136 goto hdrtoosmall; 20137 #endif 20138 20139 ASSERT(OK_32PTR(ipha)); 20140 20141 /* 20142 * This function assumes that mp points to an IPv4 packet. If it's the 20143 * wrong version, we'll catch it again in ip_output_v6. 20144 * 20145 * Note that this is *only* locally-generated output here, and never 20146 * forwarded data, and that we need to deal only with transports that 20147 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20148 * label.) 20149 */ 20150 if (is_system_labeled() && 20151 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20152 !connp->conn_ulp_labeled) { 20153 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 20154 connp->conn_mac_exempt, ipst); 20155 ipha = (ipha_t *)mp->b_rptr; 20156 if (err != 0) { 20157 first_mp = mp; 20158 if (err == EINVAL) 20159 goto icmp_parameter_problem; 20160 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20161 goto discard_pkt; 20162 } 20163 iplen = ntohs(ipha->ipha_length) + adjust; 20164 ipha->ipha_length = htons(iplen); 20165 } 20166 20167 ASSERT(infop != NULL); 20168 20169 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20170 /* 20171 * IP_PKTINFO ancillary option is present. 20172 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20173 * allows using address of any zone as the source address. 20174 */ 20175 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20176 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20177 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20178 if (ire == NULL) 20179 goto drop_pkt; 20180 ire_refrele(ire); 20181 ire = NULL; 20182 } 20183 20184 /* 20185 * IP_DONTFAILOVER_IF and IP_BOUND_IF have precedence over ill index 20186 * passed in IP_PKTINFO. 20187 */ 20188 if (infop->ip_opt_ill_index != 0 && 20189 connp->conn_outgoing_ill == NULL && 20190 connp->conn_nofailover_ill == NULL) { 20191 20192 xmit_ill = ill_lookup_on_ifindex( 20193 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20194 ipst); 20195 20196 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20197 goto drop_pkt; 20198 /* 20199 * check that there is an ipif belonging 20200 * to our zone. IPCL_ZONEID is not used because 20201 * IP_ALLZONES option is valid only when the ill is 20202 * accessible from all zones i.e has a valid ipif in 20203 * all zones. 20204 */ 20205 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20206 goto drop_pkt; 20207 } 20208 } 20209 20210 /* 20211 * If there is a policy, try to attach an ipsec_out in 20212 * the front. At the end, first_mp either points to a 20213 * M_DATA message or IPSEC_OUT message linked to a 20214 * M_DATA message. We have to do it now as we might 20215 * lose the "conn" if we go through ip_newroute. 20216 */ 20217 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20218 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20219 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20220 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20221 if (need_decref) 20222 CONN_DEC_REF(connp); 20223 return; 20224 } else { 20225 ASSERT(mp->b_datap->db_type == M_CTL); 20226 first_mp = mp; 20227 mp = mp->b_cont; 20228 mctl_present = B_TRUE; 20229 } 20230 } else { 20231 first_mp = mp; 20232 mctl_present = B_FALSE; 20233 } 20234 20235 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20236 20237 /* is wrong version or IP options present */ 20238 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20239 goto version_hdrlen_check; 20240 dst = ipha->ipha_dst; 20241 20242 if (connp->conn_nofailover_ill != NULL) { 20243 attach_ill = conn_get_held_ill(connp, 20244 &connp->conn_nofailover_ill, &err); 20245 if (err == ILL_LOOKUP_FAILED) { 20246 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20247 if (need_decref) 20248 CONN_DEC_REF(connp); 20249 freemsg(first_mp); 20250 return; 20251 } 20252 } 20253 20254 /* If IP_BOUND_IF has been set, use that ill. */ 20255 if (connp->conn_outgoing_ill != NULL) { 20256 xmit_ill = conn_get_held_ill(connp, 20257 &connp->conn_outgoing_ill, &err); 20258 if (err == ILL_LOOKUP_FAILED) 20259 goto drop_pkt; 20260 20261 goto send_from_ill; 20262 } 20263 20264 /* is packet multicast? */ 20265 if (CLASSD(dst)) 20266 goto multicast; 20267 20268 /* 20269 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20270 * takes precedence over conn_dontroute and conn_nexthop_set 20271 */ 20272 if (xmit_ill != NULL) 20273 goto send_from_ill; 20274 20275 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20276 /* 20277 * If the destination is a broadcast, local, or loopback 20278 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20279 * standard path. 20280 */ 20281 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20282 if ((ire == NULL) || (ire->ire_type & 20283 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20284 if (ire != NULL) { 20285 ire_refrele(ire); 20286 /* No more access to ire */ 20287 ire = NULL; 20288 } 20289 /* 20290 * bypass routing checks and go directly to interface. 20291 */ 20292 if (connp->conn_dontroute) 20293 goto dontroute; 20294 20295 ASSERT(connp->conn_nexthop_set); 20296 ip_nexthop = B_TRUE; 20297 nexthop_addr = connp->conn_nexthop_v4; 20298 goto send_from_ill; 20299 } 20300 20301 /* Must be a broadcast, a loopback or a local ire */ 20302 ire_refrele(ire); 20303 /* No more access to ire */ 20304 ire = NULL; 20305 } 20306 20307 if (attach_ill != NULL) 20308 goto send_from_ill; 20309 20310 /* 20311 * We cache IRE_CACHEs to avoid lookups. We don't do 20312 * this for the tcp global queue and listen end point 20313 * as it does not really have a real destination to 20314 * talk to. This is also true for SCTP. 20315 */ 20316 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20317 !connp->conn_fully_bound) { 20318 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20319 if (ire == NULL) 20320 goto noirefound; 20321 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20322 "ip_wput_end: q %p (%S)", q, "end"); 20323 20324 /* 20325 * Check if the ire has the RTF_MULTIRT flag, inherited 20326 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20327 */ 20328 if (ire->ire_flags & RTF_MULTIRT) { 20329 20330 /* 20331 * Force the TTL of multirouted packets if required. 20332 * The TTL of such packets is bounded by the 20333 * ip_multirt_ttl ndd variable. 20334 */ 20335 if ((ipst->ips_ip_multirt_ttl > 0) && 20336 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20337 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20338 "(was %d), dst 0x%08x\n", 20339 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20340 ntohl(ire->ire_addr))); 20341 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20342 } 20343 /* 20344 * We look at this point if there are pending 20345 * unresolved routes. ire_multirt_resolvable() 20346 * checks in O(n) that all IRE_OFFSUBNET ire 20347 * entries for the packet's destination and 20348 * flagged RTF_MULTIRT are currently resolved. 20349 * If some remain unresolved, we make a copy 20350 * of the current message. It will be used 20351 * to initiate additional route resolutions. 20352 */ 20353 multirt_need_resolve = 20354 ire_multirt_need_resolve(ire->ire_addr, 20355 MBLK_GETLABEL(first_mp), ipst); 20356 ip2dbg(("ip_wput[TCP]: ire %p, " 20357 "multirt_need_resolve %d, first_mp %p\n", 20358 (void *)ire, multirt_need_resolve, 20359 (void *)first_mp)); 20360 if (multirt_need_resolve) { 20361 copy_mp = copymsg(first_mp); 20362 if (copy_mp != NULL) { 20363 MULTIRT_DEBUG_TAG(copy_mp); 20364 } 20365 } 20366 } 20367 20368 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20369 20370 /* 20371 * Try to resolve another multiroute if 20372 * ire_multirt_need_resolve() deemed it necessary. 20373 */ 20374 if (copy_mp != NULL) 20375 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20376 if (need_decref) 20377 CONN_DEC_REF(connp); 20378 return; 20379 } 20380 20381 /* 20382 * Access to conn_ire_cache. (protected by conn_lock) 20383 * 20384 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20385 * the ire bucket lock here to check for CONDEMNED as it is okay to 20386 * send a packet or two with the IRE_CACHE that is going away. 20387 * Access to the ire requires an ire refhold on the ire prior to 20388 * its use since an interface unplumb thread may delete the cached 20389 * ire and release the refhold at any time. 20390 * 20391 * Caching an ire in the conn_ire_cache 20392 * 20393 * o Caching an ire pointer in the conn requires a strict check for 20394 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20395 * ires before cleaning up the conns. So the caching of an ire pointer 20396 * in the conn is done after making sure under the bucket lock that the 20397 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20398 * caching an ire after the unplumb thread has cleaned up the conn. 20399 * If the conn does not send a packet subsequently the unplumb thread 20400 * will be hanging waiting for the ire count to drop to zero. 20401 * 20402 * o We also need to atomically test for a null conn_ire_cache and 20403 * set the conn_ire_cache under the the protection of the conn_lock 20404 * to avoid races among concurrent threads trying to simultaneously 20405 * cache an ire in the conn_ire_cache. 20406 */ 20407 mutex_enter(&connp->conn_lock); 20408 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20409 20410 if (ire != NULL && ire->ire_addr == dst && 20411 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20412 20413 IRE_REFHOLD(ire); 20414 mutex_exit(&connp->conn_lock); 20415 20416 } else { 20417 boolean_t cached = B_FALSE; 20418 connp->conn_ire_cache = NULL; 20419 mutex_exit(&connp->conn_lock); 20420 /* Release the old ire */ 20421 if (ire != NULL && sctp_ire == NULL) 20422 IRE_REFRELE_NOTR(ire); 20423 20424 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20425 if (ire == NULL) 20426 goto noirefound; 20427 IRE_REFHOLD_NOTR(ire); 20428 20429 mutex_enter(&connp->conn_lock); 20430 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20431 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20432 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20433 if (connp->conn_ulp == IPPROTO_TCP) 20434 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20435 connp->conn_ire_cache = ire; 20436 cached = B_TRUE; 20437 } 20438 rw_exit(&ire->ire_bucket->irb_lock); 20439 } 20440 mutex_exit(&connp->conn_lock); 20441 20442 /* 20443 * We can continue to use the ire but since it was 20444 * not cached, we should drop the extra reference. 20445 */ 20446 if (!cached) 20447 IRE_REFRELE_NOTR(ire); 20448 } 20449 20450 20451 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20452 "ip_wput_end: q %p (%S)", q, "end"); 20453 20454 /* 20455 * Check if the ire has the RTF_MULTIRT flag, inherited 20456 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20457 */ 20458 if (ire->ire_flags & RTF_MULTIRT) { 20459 20460 /* 20461 * Force the TTL of multirouted packets if required. 20462 * The TTL of such packets is bounded by the 20463 * ip_multirt_ttl ndd variable. 20464 */ 20465 if ((ipst->ips_ip_multirt_ttl > 0) && 20466 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20467 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20468 "(was %d), dst 0x%08x\n", 20469 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20470 ntohl(ire->ire_addr))); 20471 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20472 } 20473 20474 /* 20475 * At this point, we check to see if there are any pending 20476 * unresolved routes. ire_multirt_resolvable() 20477 * checks in O(n) that all IRE_OFFSUBNET ire 20478 * entries for the packet's destination and 20479 * flagged RTF_MULTIRT are currently resolved. 20480 * If some remain unresolved, we make a copy 20481 * of the current message. It will be used 20482 * to initiate additional route resolutions. 20483 */ 20484 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20485 MBLK_GETLABEL(first_mp), ipst); 20486 ip2dbg(("ip_wput[not TCP]: ire %p, " 20487 "multirt_need_resolve %d, first_mp %p\n", 20488 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20489 if (multirt_need_resolve) { 20490 copy_mp = copymsg(first_mp); 20491 if (copy_mp != NULL) { 20492 MULTIRT_DEBUG_TAG(copy_mp); 20493 } 20494 } 20495 } 20496 20497 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20498 20499 /* 20500 * Try to resolve another multiroute if 20501 * ire_multirt_resolvable() deemed it necessary 20502 */ 20503 if (copy_mp != NULL) 20504 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20505 if (need_decref) 20506 CONN_DEC_REF(connp); 20507 return; 20508 20509 qnext: 20510 /* 20511 * Upper Level Protocols pass down complete IP datagrams 20512 * as M_DATA messages. Everything else is a sideshow. 20513 * 20514 * 1) We could be re-entering ip_wput because of ip_neworute 20515 * in which case we could have a IPSEC_OUT message. We 20516 * need to pass through ip_wput like other datagrams and 20517 * hence cannot branch to ip_wput_nondata. 20518 * 20519 * 2) ARP, AH, ESP, and other clients who are on the module 20520 * instance of IP stream, give us something to deal with. 20521 * We will handle AH and ESP here and rest in ip_wput_nondata. 20522 * 20523 * 3) ICMP replies also could come here. 20524 */ 20525 ipst = ILLQ_TO_IPST(q); 20526 20527 if (DB_TYPE(mp) != M_DATA) { 20528 notdata: 20529 if (DB_TYPE(mp) == M_CTL) { 20530 /* 20531 * M_CTL messages are used by ARP, AH and ESP to 20532 * communicate with IP. We deal with IPSEC_IN and 20533 * IPSEC_OUT here. ip_wput_nondata handles other 20534 * cases. 20535 */ 20536 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20537 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20538 first_mp = mp->b_cont; 20539 first_mp->b_flag &= ~MSGHASREF; 20540 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20541 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20542 CONN_DEC_REF(connp); 20543 connp = NULL; 20544 } 20545 if (ii->ipsec_info_type == IPSEC_IN) { 20546 /* 20547 * Either this message goes back to 20548 * IPsec for further processing or to 20549 * ULP after policy checks. 20550 */ 20551 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20552 return; 20553 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20554 io = (ipsec_out_t *)ii; 20555 if (io->ipsec_out_proc_begin) { 20556 /* 20557 * IPsec processing has already started. 20558 * Complete it. 20559 * IPQoS notes: We don't care what is 20560 * in ipsec_out_ill_index since this 20561 * won't be processed for IPQoS policies 20562 * in ipsec_out_process. 20563 */ 20564 ipsec_out_process(q, mp, NULL, 20565 io->ipsec_out_ill_index); 20566 return; 20567 } else { 20568 connp = (q->q_next != NULL) ? 20569 NULL : Q_TO_CONN(q); 20570 first_mp = mp; 20571 mp = mp->b_cont; 20572 mctl_present = B_TRUE; 20573 } 20574 zoneid = io->ipsec_out_zoneid; 20575 ASSERT(zoneid != ALL_ZONES); 20576 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20577 /* 20578 * It's an IPsec control message requesting 20579 * an SADB update to be sent to the IPsec 20580 * hardware acceleration capable ills. 20581 */ 20582 ipsec_ctl_t *ipsec_ctl = 20583 (ipsec_ctl_t *)mp->b_rptr; 20584 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20585 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20586 mblk_t *cmp = mp->b_cont; 20587 20588 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20589 ASSERT(cmp != NULL); 20590 20591 freeb(mp); 20592 ill_ipsec_capab_send_all(satype, cmp, sa, 20593 ipst->ips_netstack); 20594 return; 20595 } else { 20596 /* 20597 * This must be ARP or special TSOL signaling. 20598 */ 20599 ip_wput_nondata(NULL, q, mp, NULL); 20600 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20601 "ip_wput_end: q %p (%S)", q, "nondata"); 20602 return; 20603 } 20604 } else { 20605 /* 20606 * This must be non-(ARP/AH/ESP) messages. 20607 */ 20608 ASSERT(!need_decref); 20609 ip_wput_nondata(NULL, q, mp, NULL); 20610 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20611 "ip_wput_end: q %p (%S)", q, "nondata"); 20612 return; 20613 } 20614 } else { 20615 first_mp = mp; 20616 mctl_present = B_FALSE; 20617 } 20618 20619 ASSERT(first_mp != NULL); 20620 /* 20621 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20622 * to make sure that this packet goes out on the same interface it 20623 * came in. We handle that here. 20624 */ 20625 if (mctl_present) { 20626 uint_t ifindex; 20627 20628 io = (ipsec_out_t *)first_mp->b_rptr; 20629 if (io->ipsec_out_attach_if || io->ipsec_out_ip_nexthop) { 20630 /* 20631 * We may have lost the conn context if we are 20632 * coming here from ip_newroute(). Copy the 20633 * nexthop information. 20634 */ 20635 if (io->ipsec_out_ip_nexthop) { 20636 ip_nexthop = B_TRUE; 20637 nexthop_addr = io->ipsec_out_nexthop_addr; 20638 20639 ipha = (ipha_t *)mp->b_rptr; 20640 dst = ipha->ipha_dst; 20641 goto send_from_ill; 20642 } else { 20643 ASSERT(io->ipsec_out_ill_index != 0); 20644 ifindex = io->ipsec_out_ill_index; 20645 attach_ill = ill_lookup_on_ifindex(ifindex, 20646 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20647 if (attach_ill == NULL) { 20648 ASSERT(xmit_ill == NULL); 20649 ip1dbg(("ip_output: bad ifindex for " 20650 "(BIND TO IPIF_NOFAILOVER) %d\n", 20651 ifindex)); 20652 freemsg(first_mp); 20653 BUMP_MIB(&ipst->ips_ip_mib, 20654 ipIfStatsOutDiscards); 20655 ASSERT(!need_decref); 20656 return; 20657 } 20658 } 20659 } 20660 } 20661 20662 ASSERT(xmit_ill == NULL); 20663 20664 /* We have a complete IP datagram heading outbound. */ 20665 ipha = (ipha_t *)mp->b_rptr; 20666 20667 #ifndef SPEED_BEFORE_SAFETY 20668 /* 20669 * Make sure we have a full-word aligned message and that at least 20670 * a simple IP header is accessible in the first message. If not, 20671 * try a pullup. 20672 */ 20673 if (!OK_32PTR(rptr) || 20674 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20675 hdrtoosmall: 20676 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20677 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20678 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20679 if (first_mp == NULL) 20680 first_mp = mp; 20681 goto discard_pkt; 20682 } 20683 20684 /* This function assumes that mp points to an IPv4 packet. */ 20685 if (is_system_labeled() && q->q_next == NULL && 20686 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20687 !connp->conn_ulp_labeled) { 20688 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20689 &adjust, connp->conn_mac_exempt, ipst); 20690 ipha = (ipha_t *)mp->b_rptr; 20691 if (first_mp != NULL) 20692 first_mp->b_cont = mp; 20693 if (err != 0) { 20694 if (first_mp == NULL) 20695 first_mp = mp; 20696 if (err == EINVAL) 20697 goto icmp_parameter_problem; 20698 ip2dbg(("ip_wput: label check failed (%d)\n", 20699 err)); 20700 goto discard_pkt; 20701 } 20702 iplen = ntohs(ipha->ipha_length) + adjust; 20703 ipha->ipha_length = htons(iplen); 20704 } 20705 20706 ipha = (ipha_t *)mp->b_rptr; 20707 if (first_mp == NULL) { 20708 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20709 /* 20710 * If we got here because of "goto hdrtoosmall" 20711 * We need to attach a IPSEC_OUT. 20712 */ 20713 if (connp->conn_out_enforce_policy) { 20714 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20715 NULL, ipha->ipha_protocol, 20716 ipst->ips_netstack)) == NULL)) { 20717 BUMP_MIB(&ipst->ips_ip_mib, 20718 ipIfStatsOutDiscards); 20719 if (need_decref) 20720 CONN_DEC_REF(connp); 20721 return; 20722 } else { 20723 ASSERT(mp->b_datap->db_type == M_CTL); 20724 first_mp = mp; 20725 mp = mp->b_cont; 20726 mctl_present = B_TRUE; 20727 } 20728 } else { 20729 first_mp = mp; 20730 mctl_present = B_FALSE; 20731 } 20732 } 20733 } 20734 #endif 20735 20736 /* Most of the code below is written for speed, not readability */ 20737 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20738 20739 /* 20740 * If ip_newroute() fails, we're going to need a full 20741 * header for the icmp wraparound. 20742 */ 20743 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20744 uint_t v_hlen; 20745 version_hdrlen_check: 20746 ASSERT(first_mp != NULL); 20747 v_hlen = V_HLEN; 20748 /* 20749 * siphon off IPv6 packets coming down from transport 20750 * layer modules here. 20751 * Note: high-order bit carries NUD reachability confirmation 20752 */ 20753 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20754 /* 20755 * FIXME: assume that callers of ip_output* call 20756 * the right version? 20757 */ 20758 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20759 ASSERT(xmit_ill == NULL); 20760 if (attach_ill != NULL) 20761 ill_refrele(attach_ill); 20762 if (need_decref) 20763 mp->b_flag |= MSGHASREF; 20764 (void) ip_output_v6(arg, first_mp, arg2, caller); 20765 return; 20766 } 20767 20768 if ((v_hlen >> 4) != IP_VERSION) { 20769 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20770 "ip_wput_end: q %p (%S)", q, "badvers"); 20771 goto discard_pkt; 20772 } 20773 /* 20774 * Is the header length at least 20 bytes? 20775 * 20776 * Are there enough bytes accessible in the header? If 20777 * not, try a pullup. 20778 */ 20779 v_hlen &= 0xF; 20780 v_hlen <<= 2; 20781 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20782 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20783 "ip_wput_end: q %p (%S)", q, "badlen"); 20784 goto discard_pkt; 20785 } 20786 if (v_hlen > (mp->b_wptr - rptr)) { 20787 if (!pullupmsg(mp, v_hlen)) { 20788 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20789 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20790 goto discard_pkt; 20791 } 20792 ipha = (ipha_t *)mp->b_rptr; 20793 } 20794 /* 20795 * Move first entry from any source route into ipha_dst and 20796 * verify the options 20797 */ 20798 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20799 zoneid, ipst)) { 20800 ASSERT(xmit_ill == NULL); 20801 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20802 if (attach_ill != NULL) 20803 ill_refrele(attach_ill); 20804 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20805 "ip_wput_end: q %p (%S)", q, "badopts"); 20806 if (need_decref) 20807 CONN_DEC_REF(connp); 20808 return; 20809 } 20810 } 20811 dst = ipha->ipha_dst; 20812 20813 /* 20814 * Try to get an IRE_CACHE for the destination address. If we can't, 20815 * we have to run the packet through ip_newroute which will take 20816 * the appropriate action to arrange for an IRE_CACHE, such as querying 20817 * a resolver, or assigning a default gateway, etc. 20818 */ 20819 if (CLASSD(dst)) { 20820 ipif_t *ipif; 20821 uint32_t setsrc = 0; 20822 20823 multicast: 20824 ASSERT(first_mp != NULL); 20825 ip2dbg(("ip_wput: CLASSD\n")); 20826 if (connp == NULL) { 20827 /* 20828 * Use the first good ipif on the ill. 20829 * XXX Should this ever happen? (Appears 20830 * to show up with just ppp and no ethernet due 20831 * to in.rdisc.) 20832 * However, ire_send should be able to 20833 * call ip_wput_ire directly. 20834 * 20835 * XXX Also, this can happen for ICMP and other packets 20836 * with multicast source addresses. Perhaps we should 20837 * fix things so that we drop the packet in question, 20838 * but for now, just run with it. 20839 */ 20840 ill_t *ill = (ill_t *)q->q_ptr; 20841 20842 /* 20843 * Don't honor attach_if for this case. If ill 20844 * is part of the group, ipif could belong to 20845 * any ill and we cannot maintain attach_ill 20846 * and ipif_ill same anymore and the assert 20847 * below would fail. 20848 */ 20849 if (mctl_present && io->ipsec_out_attach_if) { 20850 io->ipsec_out_ill_index = 0; 20851 io->ipsec_out_attach_if = B_FALSE; 20852 ASSERT(attach_ill != NULL); 20853 ill_refrele(attach_ill); 20854 attach_ill = NULL; 20855 } 20856 20857 ASSERT(attach_ill == NULL); 20858 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20859 if (ipif == NULL) { 20860 if (need_decref) 20861 CONN_DEC_REF(connp); 20862 freemsg(first_mp); 20863 return; 20864 } 20865 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20866 ntohl(dst), ill->ill_name)); 20867 } else { 20868 /* 20869 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 20870 * and IP_MULTICAST_IF. The block comment above this 20871 * function explains the locking mechanism used here. 20872 */ 20873 if (xmit_ill == NULL) { 20874 xmit_ill = conn_get_held_ill(connp, 20875 &connp->conn_outgoing_ill, &err); 20876 if (err == ILL_LOOKUP_FAILED) { 20877 ip1dbg(("ip_wput: No ill for " 20878 "IP_BOUND_IF\n")); 20879 BUMP_MIB(&ipst->ips_ip_mib, 20880 ipIfStatsOutNoRoutes); 20881 goto drop_pkt; 20882 } 20883 } 20884 20885 if (xmit_ill == NULL) { 20886 ipif = conn_get_held_ipif(connp, 20887 &connp->conn_multicast_ipif, &err); 20888 if (err == IPIF_LOOKUP_FAILED) { 20889 ip1dbg(("ip_wput: No ipif for " 20890 "multicast\n")); 20891 BUMP_MIB(&ipst->ips_ip_mib, 20892 ipIfStatsOutNoRoutes); 20893 goto drop_pkt; 20894 } 20895 } 20896 if (xmit_ill != NULL) { 20897 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20898 if (ipif == NULL) { 20899 ip1dbg(("ip_wput: No ipif for " 20900 "xmit_ill\n")); 20901 BUMP_MIB(&ipst->ips_ip_mib, 20902 ipIfStatsOutNoRoutes); 20903 goto drop_pkt; 20904 } 20905 } else if (ipif == NULL || ipif->ipif_isv6) { 20906 /* 20907 * We must do this ipif determination here 20908 * else we could pass through ip_newroute 20909 * and come back here without the conn context. 20910 * 20911 * Note: we do late binding i.e. we bind to 20912 * the interface when the first packet is sent. 20913 * For performance reasons we do not rebind on 20914 * each packet but keep the binding until the 20915 * next IP_MULTICAST_IF option. 20916 * 20917 * conn_multicast_{ipif,ill} are shared between 20918 * IPv4 and IPv6 and AF_INET6 sockets can 20919 * send both IPv4 and IPv6 packets. Hence 20920 * we have to check that "isv6" matches above. 20921 */ 20922 if (ipif != NULL) 20923 ipif_refrele(ipif); 20924 ipif = ipif_lookup_group(dst, zoneid, ipst); 20925 if (ipif == NULL) { 20926 ip1dbg(("ip_wput: No ipif for " 20927 "multicast\n")); 20928 BUMP_MIB(&ipst->ips_ip_mib, 20929 ipIfStatsOutNoRoutes); 20930 goto drop_pkt; 20931 } 20932 err = conn_set_held_ipif(connp, 20933 &connp->conn_multicast_ipif, ipif); 20934 if (err == IPIF_LOOKUP_FAILED) { 20935 ipif_refrele(ipif); 20936 ip1dbg(("ip_wput: No ipif for " 20937 "multicast\n")); 20938 BUMP_MIB(&ipst->ips_ip_mib, 20939 ipIfStatsOutNoRoutes); 20940 goto drop_pkt; 20941 } 20942 } 20943 } 20944 ASSERT(!ipif->ipif_isv6); 20945 /* 20946 * As we may lose the conn by the time we reach ip_wput_ire, 20947 * we copy conn_multicast_loop and conn_dontroute on to an 20948 * ipsec_out. In case if this datagram goes out secure, 20949 * we need the ill_index also. Copy that also into the 20950 * ipsec_out. 20951 */ 20952 if (mctl_present) { 20953 io = (ipsec_out_t *)first_mp->b_rptr; 20954 ASSERT(first_mp->b_datap->db_type == M_CTL); 20955 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20956 } else { 20957 ASSERT(mp == first_mp); 20958 if ((first_mp = allocb(sizeof (ipsec_info_t), 20959 BPRI_HI)) == NULL) { 20960 ipif_refrele(ipif); 20961 first_mp = mp; 20962 goto discard_pkt; 20963 } 20964 first_mp->b_datap->db_type = M_CTL; 20965 first_mp->b_wptr += sizeof (ipsec_info_t); 20966 /* ipsec_out_secure is B_FALSE now */ 20967 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 20968 io = (ipsec_out_t *)first_mp->b_rptr; 20969 io->ipsec_out_type = IPSEC_OUT; 20970 io->ipsec_out_len = sizeof (ipsec_out_t); 20971 io->ipsec_out_use_global_policy = B_TRUE; 20972 io->ipsec_out_ns = ipst->ips_netstack; 20973 first_mp->b_cont = mp; 20974 mctl_present = B_TRUE; 20975 } 20976 if (attach_ill != NULL) { 20977 ASSERT(attach_ill == ipif->ipif_ill); 20978 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20979 20980 /* 20981 * Check if we need an ire that will not be 20982 * looked up by anybody else i.e. HIDDEN. 20983 */ 20984 if (ill_is_probeonly(attach_ill)) { 20985 match_flags |= MATCH_IRE_MARK_HIDDEN; 20986 } 20987 io->ipsec_out_ill_index = 20988 attach_ill->ill_phyint->phyint_ifindex; 20989 io->ipsec_out_attach_if = B_TRUE; 20990 } else { 20991 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 20992 io->ipsec_out_ill_index = 20993 ipif->ipif_ill->ill_phyint->phyint_ifindex; 20994 } 20995 if (connp != NULL) { 20996 io->ipsec_out_multicast_loop = 20997 connp->conn_multicast_loop; 20998 io->ipsec_out_dontroute = connp->conn_dontroute; 20999 io->ipsec_out_zoneid = connp->conn_zoneid; 21000 } 21001 /* 21002 * If the application uses IP_MULTICAST_IF with 21003 * different logical addresses of the same ILL, we 21004 * need to make sure that the soruce address of 21005 * the packet matches the logical IP address used 21006 * in the option. We do it by initializing ipha_src 21007 * here. This should keep IPsec also happy as 21008 * when we return from IPsec processing, we don't 21009 * have to worry about getting the right address on 21010 * the packet. Thus it is sufficient to look for 21011 * IRE_CACHE using MATCH_IRE_ILL rathen than 21012 * MATCH_IRE_IPIF. 21013 * 21014 * NOTE : We need to do it for non-secure case also as 21015 * this might go out secure if there is a global policy 21016 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21017 * address, the source should be initialized already and 21018 * hence we won't be initializing here. 21019 * 21020 * As we do not have the ire yet, it is possible that 21021 * we set the source address here and then later discover 21022 * that the ire implies the source address to be assigned 21023 * through the RTF_SETSRC flag. 21024 * In that case, the setsrc variable will remind us 21025 * that overwritting the source address by the one 21026 * of the RTF_SETSRC-flagged ire is allowed. 21027 */ 21028 if (ipha->ipha_src == INADDR_ANY && 21029 (connp == NULL || !connp->conn_unspec_src)) { 21030 ipha->ipha_src = ipif->ipif_src_addr; 21031 setsrc = RTF_SETSRC; 21032 } 21033 /* 21034 * Find an IRE which matches the destination and the outgoing 21035 * queue (i.e. the outgoing interface.) 21036 * For loopback use a unicast IP address for 21037 * the ire lookup. 21038 */ 21039 if (IS_LOOPBACK(ipif->ipif_ill)) 21040 dst = ipif->ipif_lcl_addr; 21041 21042 /* 21043 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21044 * We don't need to lookup ire in ctable as the packet 21045 * needs to be sent to the destination through the specified 21046 * ill irrespective of ires in the cache table. 21047 */ 21048 ire = NULL; 21049 if (xmit_ill == NULL) { 21050 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21051 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21052 } 21053 21054 /* 21055 * refrele attach_ill as its not needed anymore. 21056 */ 21057 if (attach_ill != NULL) { 21058 ill_refrele(attach_ill); 21059 attach_ill = NULL; 21060 } 21061 21062 if (ire == NULL) { 21063 /* 21064 * Multicast loopback and multicast forwarding is 21065 * done in ip_wput_ire. 21066 * 21067 * Mark this packet to make it be delivered to 21068 * ip_wput_ire after the new ire has been 21069 * created. 21070 * 21071 * The call to ip_newroute_ipif takes into account 21072 * the setsrc reminder. In any case, we take care 21073 * of the RTF_MULTIRT flag. 21074 */ 21075 mp->b_prev = mp->b_next = NULL; 21076 if (xmit_ill == NULL || 21077 xmit_ill->ill_ipif_up_count > 0) { 21078 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21079 setsrc | RTF_MULTIRT, zoneid, infop); 21080 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21081 "ip_wput_end: q %p (%S)", q, "noire"); 21082 } else { 21083 freemsg(first_mp); 21084 } 21085 ipif_refrele(ipif); 21086 if (xmit_ill != NULL) 21087 ill_refrele(xmit_ill); 21088 if (need_decref) 21089 CONN_DEC_REF(connp); 21090 return; 21091 } 21092 21093 ipif_refrele(ipif); 21094 ipif = NULL; 21095 ASSERT(xmit_ill == NULL); 21096 21097 /* 21098 * Honor the RTF_SETSRC flag for multicast packets, 21099 * if allowed by the setsrc reminder. 21100 */ 21101 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21102 ipha->ipha_src = ire->ire_src_addr; 21103 } 21104 21105 /* 21106 * Unconditionally force the TTL to 1 for 21107 * multirouted multicast packets: 21108 * multirouted multicast should not cross 21109 * multicast routers. 21110 */ 21111 if (ire->ire_flags & RTF_MULTIRT) { 21112 if (ipha->ipha_ttl > 1) { 21113 ip2dbg(("ip_wput: forcing multicast " 21114 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21115 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21116 ipha->ipha_ttl = 1; 21117 } 21118 } 21119 } else { 21120 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21121 if ((ire != NULL) && (ire->ire_type & 21122 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21123 ignore_dontroute = B_TRUE; 21124 ignore_nexthop = B_TRUE; 21125 } 21126 if (ire != NULL) { 21127 ire_refrele(ire); 21128 ire = NULL; 21129 } 21130 /* 21131 * Guard against coming in from arp in which case conn is NULL. 21132 * Also guard against non M_DATA with dontroute set but 21133 * destined to local, loopback or broadcast addresses. 21134 */ 21135 if (connp != NULL && connp->conn_dontroute && 21136 !ignore_dontroute) { 21137 dontroute: 21138 /* 21139 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21140 * routing protocols from seeing false direct 21141 * connectivity. 21142 */ 21143 ipha->ipha_ttl = 1; 21144 21145 /* If suitable ipif not found, drop packet */ 21146 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21147 if (dst_ipif == NULL) { 21148 noroute: 21149 ip1dbg(("ip_wput: no route for dst using" 21150 " SO_DONTROUTE\n")); 21151 BUMP_MIB(&ipst->ips_ip_mib, 21152 ipIfStatsOutNoRoutes); 21153 mp->b_prev = mp->b_next = NULL; 21154 if (first_mp == NULL) 21155 first_mp = mp; 21156 goto drop_pkt; 21157 } else { 21158 /* 21159 * If suitable ipif has been found, set 21160 * xmit_ill to the corresponding 21161 * ipif_ill because we'll be using the 21162 * send_from_ill logic below. 21163 */ 21164 ASSERT(xmit_ill == NULL); 21165 xmit_ill = dst_ipif->ipif_ill; 21166 mutex_enter(&xmit_ill->ill_lock); 21167 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21168 mutex_exit(&xmit_ill->ill_lock); 21169 xmit_ill = NULL; 21170 ipif_refrele(dst_ipif); 21171 goto noroute; 21172 } 21173 ill_refhold_locked(xmit_ill); 21174 mutex_exit(&xmit_ill->ill_lock); 21175 ipif_refrele(dst_ipif); 21176 } 21177 } 21178 /* 21179 * If we are bound to IPIF_NOFAILOVER address, look for 21180 * an IRE_CACHE matching the ill. 21181 */ 21182 send_from_ill: 21183 if (attach_ill != NULL) { 21184 ipif_t *attach_ipif; 21185 21186 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21187 21188 /* 21189 * Check if we need an ire that will not be 21190 * looked up by anybody else i.e. HIDDEN. 21191 */ 21192 if (ill_is_probeonly(attach_ill)) { 21193 match_flags |= MATCH_IRE_MARK_HIDDEN; 21194 } 21195 21196 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21197 if (attach_ipif == NULL) { 21198 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21199 goto discard_pkt; 21200 } 21201 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21202 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21203 ipif_refrele(attach_ipif); 21204 } else if (xmit_ill != NULL) { 21205 ipif_t *ipif; 21206 21207 /* 21208 * Mark this packet as originated locally 21209 */ 21210 mp->b_prev = mp->b_next = NULL; 21211 21212 /* 21213 * Could be SO_DONTROUTE case also. 21214 * Verify that at least one ipif is up on the ill. 21215 */ 21216 if (xmit_ill->ill_ipif_up_count == 0) { 21217 ip1dbg(("ip_output: xmit_ill %s is down\n", 21218 xmit_ill->ill_name)); 21219 goto drop_pkt; 21220 } 21221 21222 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21223 if (ipif == NULL) { 21224 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21225 xmit_ill->ill_name)); 21226 goto drop_pkt; 21227 } 21228 21229 /* 21230 * Look for a ire that is part of the group, 21231 * if found use it else call ip_newroute_ipif. 21232 * IPCL_ZONEID is not used for matching because 21233 * IP_ALLZONES option is valid only when the 21234 * ill is accessible from all zones i.e has a 21235 * valid ipif in all zones. 21236 */ 21237 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21238 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21239 MBLK_GETLABEL(mp), match_flags, ipst); 21240 /* 21241 * If an ire exists use it or else create 21242 * an ire but don't add it to the cache. 21243 * Adding an ire may cause issues with 21244 * asymmetric routing. 21245 * In case of multiroute always act as if 21246 * ire does not exist. 21247 */ 21248 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21249 if (ire != NULL) 21250 ire_refrele(ire); 21251 ip_newroute_ipif(q, first_mp, ipif, 21252 dst, connp, 0, zoneid, infop); 21253 ipif_refrele(ipif); 21254 ip1dbg(("ip_output: xmit_ill via %s\n", 21255 xmit_ill->ill_name)); 21256 ill_refrele(xmit_ill); 21257 if (need_decref) 21258 CONN_DEC_REF(connp); 21259 return; 21260 } 21261 ipif_refrele(ipif); 21262 } else if (ip_nexthop || (connp != NULL && 21263 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21264 if (!ip_nexthop) { 21265 ip_nexthop = B_TRUE; 21266 nexthop_addr = connp->conn_nexthop_v4; 21267 } 21268 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21269 MATCH_IRE_GW; 21270 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21271 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21272 } else { 21273 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21274 ipst); 21275 } 21276 if (!ire) { 21277 /* 21278 * Make sure we don't load spread if this 21279 * is IPIF_NOFAILOVER case. 21280 */ 21281 if ((attach_ill != NULL) || 21282 (ip_nexthop && !ignore_nexthop)) { 21283 if (mctl_present) { 21284 io = (ipsec_out_t *)first_mp->b_rptr; 21285 ASSERT(first_mp->b_datap->db_type == 21286 M_CTL); 21287 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21288 } else { 21289 ASSERT(mp == first_mp); 21290 first_mp = allocb( 21291 sizeof (ipsec_info_t), BPRI_HI); 21292 if (first_mp == NULL) { 21293 first_mp = mp; 21294 goto discard_pkt; 21295 } 21296 first_mp->b_datap->db_type = M_CTL; 21297 first_mp->b_wptr += 21298 sizeof (ipsec_info_t); 21299 /* ipsec_out_secure is B_FALSE now */ 21300 bzero(first_mp->b_rptr, 21301 sizeof (ipsec_info_t)); 21302 io = (ipsec_out_t *)first_mp->b_rptr; 21303 io->ipsec_out_type = IPSEC_OUT; 21304 io->ipsec_out_len = 21305 sizeof (ipsec_out_t); 21306 io->ipsec_out_use_global_policy = 21307 B_TRUE; 21308 io->ipsec_out_ns = ipst->ips_netstack; 21309 first_mp->b_cont = mp; 21310 mctl_present = B_TRUE; 21311 } 21312 if (attach_ill != NULL) { 21313 io->ipsec_out_ill_index = attach_ill-> 21314 ill_phyint->phyint_ifindex; 21315 io->ipsec_out_attach_if = B_TRUE; 21316 } else { 21317 io->ipsec_out_ip_nexthop = ip_nexthop; 21318 io->ipsec_out_nexthop_addr = 21319 nexthop_addr; 21320 } 21321 } 21322 noirefound: 21323 /* 21324 * Mark this packet as having originated on 21325 * this machine. This will be noted in 21326 * ire_add_then_send, which needs to know 21327 * whether to run it back through ip_wput or 21328 * ip_rput following successful resolution. 21329 */ 21330 mp->b_prev = NULL; 21331 mp->b_next = NULL; 21332 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21333 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21334 "ip_wput_end: q %p (%S)", q, "newroute"); 21335 if (attach_ill != NULL) 21336 ill_refrele(attach_ill); 21337 if (xmit_ill != NULL) 21338 ill_refrele(xmit_ill); 21339 if (need_decref) 21340 CONN_DEC_REF(connp); 21341 return; 21342 } 21343 } 21344 21345 /* We now know where we are going with it. */ 21346 21347 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21348 "ip_wput_end: q %p (%S)", q, "end"); 21349 21350 /* 21351 * Check if the ire has the RTF_MULTIRT flag, inherited 21352 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21353 */ 21354 if (ire->ire_flags & RTF_MULTIRT) { 21355 /* 21356 * Force the TTL of multirouted packets if required. 21357 * The TTL of such packets is bounded by the 21358 * ip_multirt_ttl ndd variable. 21359 */ 21360 if ((ipst->ips_ip_multirt_ttl > 0) && 21361 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21362 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21363 "(was %d), dst 0x%08x\n", 21364 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21365 ntohl(ire->ire_addr))); 21366 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21367 } 21368 /* 21369 * At this point, we check to see if there are any pending 21370 * unresolved routes. ire_multirt_resolvable() 21371 * checks in O(n) that all IRE_OFFSUBNET ire 21372 * entries for the packet's destination and 21373 * flagged RTF_MULTIRT are currently resolved. 21374 * If some remain unresolved, we make a copy 21375 * of the current message. It will be used 21376 * to initiate additional route resolutions. 21377 */ 21378 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21379 MBLK_GETLABEL(first_mp), ipst); 21380 ip2dbg(("ip_wput[noirefound]: ire %p, " 21381 "multirt_need_resolve %d, first_mp %p\n", 21382 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21383 if (multirt_need_resolve) { 21384 copy_mp = copymsg(first_mp); 21385 if (copy_mp != NULL) { 21386 MULTIRT_DEBUG_TAG(copy_mp); 21387 } 21388 } 21389 } 21390 21391 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21392 /* 21393 * Try to resolve another multiroute if 21394 * ire_multirt_resolvable() deemed it necessary. 21395 * At this point, we need to distinguish 21396 * multicasts from other packets. For multicasts, 21397 * we call ip_newroute_ipif() and request that both 21398 * multirouting and setsrc flags are checked. 21399 */ 21400 if (copy_mp != NULL) { 21401 if (CLASSD(dst)) { 21402 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21403 if (ipif) { 21404 ASSERT(infop->ip_opt_ill_index == 0); 21405 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21406 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21407 ipif_refrele(ipif); 21408 } else { 21409 MULTIRT_DEBUG_UNTAG(copy_mp); 21410 freemsg(copy_mp); 21411 copy_mp = NULL; 21412 } 21413 } else { 21414 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21415 } 21416 } 21417 if (attach_ill != NULL) 21418 ill_refrele(attach_ill); 21419 if (xmit_ill != NULL) 21420 ill_refrele(xmit_ill); 21421 if (need_decref) 21422 CONN_DEC_REF(connp); 21423 return; 21424 21425 icmp_parameter_problem: 21426 /* could not have originated externally */ 21427 ASSERT(mp->b_prev == NULL); 21428 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21429 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21430 /* it's the IP header length that's in trouble */ 21431 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21432 first_mp = NULL; 21433 } 21434 21435 discard_pkt: 21436 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21437 drop_pkt: 21438 ip1dbg(("ip_wput: dropped packet\n")); 21439 if (ire != NULL) 21440 ire_refrele(ire); 21441 if (need_decref) 21442 CONN_DEC_REF(connp); 21443 freemsg(first_mp); 21444 if (attach_ill != NULL) 21445 ill_refrele(attach_ill); 21446 if (xmit_ill != NULL) 21447 ill_refrele(xmit_ill); 21448 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21449 "ip_wput_end: q %p (%S)", q, "droppkt"); 21450 } 21451 21452 /* 21453 * If this is a conn_t queue, then we pass in the conn. This includes the 21454 * zoneid. 21455 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21456 * in which case we use the global zoneid since those are all part of 21457 * the global zone. 21458 */ 21459 void 21460 ip_wput(queue_t *q, mblk_t *mp) 21461 { 21462 if (CONN_Q(q)) 21463 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21464 else 21465 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21466 } 21467 21468 /* 21469 * 21470 * The following rules must be observed when accessing any ipif or ill 21471 * that has been cached in the conn. Typically conn_nofailover_ill, 21472 * conn_outgoing_ill, conn_multicast_ipif and conn_multicast_ill. 21473 * 21474 * Access: The ipif or ill pointed to from the conn can be accessed under 21475 * the protection of the conn_lock or after it has been refheld under the 21476 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21477 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21478 * The reason for this is that a concurrent unplumb could actually be 21479 * cleaning up these cached pointers by walking the conns and might have 21480 * finished cleaning up the conn in question. The macros check that an 21481 * unplumb has not yet started on the ipif or ill. 21482 * 21483 * Caching: An ipif or ill pointer may be cached in the conn only after 21484 * making sure that an unplumb has not started. So the caching is done 21485 * while holding both the conn_lock and the ill_lock and after using the 21486 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21487 * flag before starting the cleanup of conns. 21488 * 21489 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21490 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21491 * or a reference to the ipif or a reference to an ire that references the 21492 * ipif. An ipif does not change its ill except for failover/failback. Since 21493 * failover/failback happens only after bringing down the ipif and making sure 21494 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21495 * the above holds. 21496 */ 21497 ipif_t * 21498 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21499 { 21500 ipif_t *ipif; 21501 ill_t *ill; 21502 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21503 21504 *err = 0; 21505 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21506 mutex_enter(&connp->conn_lock); 21507 ipif = *ipifp; 21508 if (ipif != NULL) { 21509 ill = ipif->ipif_ill; 21510 mutex_enter(&ill->ill_lock); 21511 if (IPIF_CAN_LOOKUP(ipif)) { 21512 ipif_refhold_locked(ipif); 21513 mutex_exit(&ill->ill_lock); 21514 mutex_exit(&connp->conn_lock); 21515 rw_exit(&ipst->ips_ill_g_lock); 21516 return (ipif); 21517 } else { 21518 *err = IPIF_LOOKUP_FAILED; 21519 } 21520 mutex_exit(&ill->ill_lock); 21521 } 21522 mutex_exit(&connp->conn_lock); 21523 rw_exit(&ipst->ips_ill_g_lock); 21524 return (NULL); 21525 } 21526 21527 ill_t * 21528 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21529 { 21530 ill_t *ill; 21531 21532 *err = 0; 21533 mutex_enter(&connp->conn_lock); 21534 ill = *illp; 21535 if (ill != NULL) { 21536 mutex_enter(&ill->ill_lock); 21537 if (ILL_CAN_LOOKUP(ill)) { 21538 ill_refhold_locked(ill); 21539 mutex_exit(&ill->ill_lock); 21540 mutex_exit(&connp->conn_lock); 21541 return (ill); 21542 } else { 21543 *err = ILL_LOOKUP_FAILED; 21544 } 21545 mutex_exit(&ill->ill_lock); 21546 } 21547 mutex_exit(&connp->conn_lock); 21548 return (NULL); 21549 } 21550 21551 static int 21552 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21553 { 21554 ill_t *ill; 21555 21556 ill = ipif->ipif_ill; 21557 mutex_enter(&connp->conn_lock); 21558 mutex_enter(&ill->ill_lock); 21559 if (IPIF_CAN_LOOKUP(ipif)) { 21560 *ipifp = ipif; 21561 mutex_exit(&ill->ill_lock); 21562 mutex_exit(&connp->conn_lock); 21563 return (0); 21564 } 21565 mutex_exit(&ill->ill_lock); 21566 mutex_exit(&connp->conn_lock); 21567 return (IPIF_LOOKUP_FAILED); 21568 } 21569 21570 /* 21571 * This is called if the outbound datagram needs fragmentation. 21572 * 21573 * NOTE : This function does not ire_refrele the ire argument passed in. 21574 */ 21575 static void 21576 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21577 ip_stack_t *ipst) 21578 { 21579 ipha_t *ipha; 21580 mblk_t *mp; 21581 uint32_t v_hlen_tos_len; 21582 uint32_t max_frag; 21583 uint32_t frag_flag; 21584 boolean_t dont_use; 21585 21586 if (ipsec_mp->b_datap->db_type == M_CTL) { 21587 mp = ipsec_mp->b_cont; 21588 } else { 21589 mp = ipsec_mp; 21590 } 21591 21592 ipha = (ipha_t *)mp->b_rptr; 21593 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21594 21595 #ifdef _BIG_ENDIAN 21596 #define V_HLEN (v_hlen_tos_len >> 24) 21597 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21598 #else 21599 #define V_HLEN (v_hlen_tos_len & 0xFF) 21600 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21601 #endif 21602 21603 #ifndef SPEED_BEFORE_SAFETY 21604 /* 21605 * Check that ipha_length is consistent with 21606 * the mblk length 21607 */ 21608 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21609 ip0dbg(("Packet length mismatch: %d, %ld\n", 21610 LENGTH, msgdsize(mp))); 21611 freemsg(ipsec_mp); 21612 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21613 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21614 "packet length mismatch"); 21615 return; 21616 } 21617 #endif 21618 /* 21619 * Don't use frag_flag if pre-built packet or source 21620 * routed or if multicast (since multicast packets do not solicit 21621 * ICMP "packet too big" messages). Get the values of 21622 * max_frag and frag_flag atomically by acquiring the 21623 * ire_lock. 21624 */ 21625 mutex_enter(&ire->ire_lock); 21626 max_frag = ire->ire_max_frag; 21627 frag_flag = ire->ire_frag_flag; 21628 mutex_exit(&ire->ire_lock); 21629 21630 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21631 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21632 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21633 21634 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21635 (dont_use ? 0 : frag_flag), zoneid, ipst); 21636 } 21637 21638 /* 21639 * Used for deciding the MSS size for the upper layer. Thus 21640 * we need to check the outbound policy values in the conn. 21641 */ 21642 int 21643 conn_ipsec_length(conn_t *connp) 21644 { 21645 ipsec_latch_t *ipl; 21646 21647 ipl = connp->conn_latch; 21648 if (ipl == NULL) 21649 return (0); 21650 21651 if (ipl->ipl_out_policy == NULL) 21652 return (0); 21653 21654 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21655 } 21656 21657 /* 21658 * Returns an estimate of the IPsec headers size. This is used if 21659 * we don't want to call into IPsec to get the exact size. 21660 */ 21661 int 21662 ipsec_out_extra_length(mblk_t *ipsec_mp) 21663 { 21664 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21665 ipsec_action_t *a; 21666 21667 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21668 if (!io->ipsec_out_secure) 21669 return (0); 21670 21671 a = io->ipsec_out_act; 21672 21673 if (a == NULL) { 21674 ASSERT(io->ipsec_out_policy != NULL); 21675 a = io->ipsec_out_policy->ipsp_act; 21676 } 21677 ASSERT(a != NULL); 21678 21679 return (a->ipa_ovhd); 21680 } 21681 21682 /* 21683 * Returns an estimate of the IPsec headers size. This is used if 21684 * we don't want to call into IPsec to get the exact size. 21685 */ 21686 int 21687 ipsec_in_extra_length(mblk_t *ipsec_mp) 21688 { 21689 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21690 ipsec_action_t *a; 21691 21692 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21693 21694 a = ii->ipsec_in_action; 21695 return (a == NULL ? 0 : a->ipa_ovhd); 21696 } 21697 21698 /* 21699 * If there are any source route options, return the true final 21700 * destination. Otherwise, return the destination. 21701 */ 21702 ipaddr_t 21703 ip_get_dst(ipha_t *ipha) 21704 { 21705 ipoptp_t opts; 21706 uchar_t *opt; 21707 uint8_t optval; 21708 uint8_t optlen; 21709 ipaddr_t dst; 21710 uint32_t off; 21711 21712 dst = ipha->ipha_dst; 21713 21714 if (IS_SIMPLE_IPH(ipha)) 21715 return (dst); 21716 21717 for (optval = ipoptp_first(&opts, ipha); 21718 optval != IPOPT_EOL; 21719 optval = ipoptp_next(&opts)) { 21720 opt = opts.ipoptp_cur; 21721 optlen = opts.ipoptp_len; 21722 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21723 switch (optval) { 21724 case IPOPT_SSRR: 21725 case IPOPT_LSRR: 21726 off = opt[IPOPT_OFFSET]; 21727 /* 21728 * If one of the conditions is true, it means 21729 * end of options and dst already has the right 21730 * value. 21731 */ 21732 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21733 off = optlen - IP_ADDR_LEN; 21734 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21735 } 21736 return (dst); 21737 default: 21738 break; 21739 } 21740 } 21741 21742 return (dst); 21743 } 21744 21745 mblk_t * 21746 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21747 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21748 { 21749 ipsec_out_t *io; 21750 mblk_t *first_mp; 21751 boolean_t policy_present; 21752 ip_stack_t *ipst; 21753 ipsec_stack_t *ipss; 21754 21755 ASSERT(ire != NULL); 21756 ipst = ire->ire_ipst; 21757 ipss = ipst->ips_netstack->netstack_ipsec; 21758 21759 first_mp = mp; 21760 if (mp->b_datap->db_type == M_CTL) { 21761 io = (ipsec_out_t *)first_mp->b_rptr; 21762 /* 21763 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21764 * 21765 * 1) There is per-socket policy (including cached global 21766 * policy) or a policy on the IP-in-IP tunnel. 21767 * 2) There is no per-socket policy, but it is 21768 * a multicast packet that needs to go out 21769 * on a specific interface. This is the case 21770 * where (ip_wput and ip_wput_multicast) attaches 21771 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21772 * 21773 * In case (2) we check with global policy to 21774 * see if there is a match and set the ill_index 21775 * appropriately so that we can lookup the ire 21776 * properly in ip_wput_ipsec_out. 21777 */ 21778 21779 /* 21780 * ipsec_out_use_global_policy is set to B_FALSE 21781 * in ipsec_in_to_out(). Refer to that function for 21782 * details. 21783 */ 21784 if ((io->ipsec_out_latch == NULL) && 21785 (io->ipsec_out_use_global_policy)) { 21786 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21787 ire, connp, unspec_src, zoneid)); 21788 } 21789 if (!io->ipsec_out_secure) { 21790 /* 21791 * If this is not a secure packet, drop 21792 * the IPSEC_OUT mp and treat it as a clear 21793 * packet. This happens when we are sending 21794 * a ICMP reply back to a clear packet. See 21795 * ipsec_in_to_out() for details. 21796 */ 21797 mp = first_mp->b_cont; 21798 freeb(first_mp); 21799 } 21800 return (mp); 21801 } 21802 /* 21803 * See whether we need to attach a global policy here. We 21804 * don't depend on the conn (as it could be null) for deciding 21805 * what policy this datagram should go through because it 21806 * should have happened in ip_wput if there was some 21807 * policy. This normally happens for connections which are not 21808 * fully bound preventing us from caching policies in 21809 * ip_bind. Packets coming from the TCP listener/global queue 21810 * - which are non-hard_bound - could also be affected by 21811 * applying policy here. 21812 * 21813 * If this packet is coming from tcp global queue or listener, 21814 * we will be applying policy here. This may not be *right* 21815 * if these packets are coming from the detached connection as 21816 * it could have gone in clear before. This happens only if a 21817 * TCP connection started when there is no policy and somebody 21818 * added policy before it became detached. Thus packets of the 21819 * detached connection could go out secure and the other end 21820 * would drop it because it will be expecting in clear. The 21821 * converse is not true i.e if somebody starts a TCP 21822 * connection and deletes the policy, all the packets will 21823 * still go out with the policy that existed before deleting 21824 * because ip_unbind sends up policy information which is used 21825 * by TCP on subsequent ip_wputs. The right solution is to fix 21826 * TCP to attach a dummy IPSEC_OUT and set 21827 * ipsec_out_use_global_policy to B_FALSE. As this might 21828 * affect performance for normal cases, we are not doing it. 21829 * Thus, set policy before starting any TCP connections. 21830 * 21831 * NOTE - We might apply policy even for a hard bound connection 21832 * - for which we cached policy in ip_bind - if somebody added 21833 * global policy after we inherited the policy in ip_bind. 21834 * This means that the packets that were going out in clear 21835 * previously would start going secure and hence get dropped 21836 * on the other side. To fix this, TCP attaches a dummy 21837 * ipsec_out and make sure that we don't apply global policy. 21838 */ 21839 if (ipha != NULL) 21840 policy_present = ipss->ipsec_outbound_v4_policy_present; 21841 else 21842 policy_present = ipss->ipsec_outbound_v6_policy_present; 21843 if (!policy_present) 21844 return (mp); 21845 21846 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21847 zoneid)); 21848 } 21849 21850 ire_t * 21851 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21852 { 21853 ipaddr_t addr; 21854 ire_t *save_ire; 21855 irb_t *irb; 21856 ill_group_t *illgrp; 21857 int err; 21858 21859 save_ire = ire; 21860 addr = ire->ire_addr; 21861 21862 ASSERT(ire->ire_type == IRE_BROADCAST); 21863 21864 illgrp = connp->conn_outgoing_ill->ill_group; 21865 if (illgrp == NULL) { 21866 *conn_outgoing_ill = conn_get_held_ill(connp, 21867 &connp->conn_outgoing_ill, &err); 21868 if (err == ILL_LOOKUP_FAILED) { 21869 ire_refrele(save_ire); 21870 return (NULL); 21871 } 21872 return (save_ire); 21873 } 21874 /* 21875 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21876 * If it is part of the group, we need to send on the ire 21877 * that has been cleared of IRE_MARK_NORECV and that belongs 21878 * to this group. This is okay as IP_BOUND_IF really means 21879 * any ill in the group. We depend on the fact that the 21880 * first ire in the group is always cleared of IRE_MARK_NORECV 21881 * if such an ire exists. This is possible only if you have 21882 * at least one ill in the group that has not failed. 21883 * 21884 * First get to the ire that matches the address and group. 21885 * 21886 * We don't look for an ire with a matching zoneid because a given zone 21887 * won't always have broadcast ires on all ills in the group. 21888 */ 21889 irb = ire->ire_bucket; 21890 rw_enter(&irb->irb_lock, RW_READER); 21891 if (ire->ire_marks & IRE_MARK_NORECV) { 21892 /* 21893 * If the current zone only has an ire broadcast for this 21894 * address marked NORECV, the ire we want is ahead in the 21895 * bucket, so we look it up deliberately ignoring the zoneid. 21896 */ 21897 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21898 if (ire->ire_addr != addr) 21899 continue; 21900 /* skip over deleted ires */ 21901 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21902 continue; 21903 } 21904 } 21905 while (ire != NULL) { 21906 /* 21907 * If a new interface is coming up, we could end up 21908 * seeing the loopback ire and the non-loopback ire 21909 * may not have been added yet. So check for ire_stq 21910 */ 21911 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 21912 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 21913 break; 21914 } 21915 ire = ire->ire_next; 21916 } 21917 if (ire != NULL && ire->ire_addr == addr && 21918 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 21919 IRE_REFHOLD(ire); 21920 rw_exit(&irb->irb_lock); 21921 ire_refrele(save_ire); 21922 *conn_outgoing_ill = ire_to_ill(ire); 21923 /* 21924 * Refhold the ill to make the conn_outgoing_ill 21925 * independent of the ire. ip_wput_ire goes in a loop 21926 * and may refrele the ire. Since we have an ire at this 21927 * point we don't need to use ILL_CAN_LOOKUP on the ill. 21928 */ 21929 ill_refhold(*conn_outgoing_ill); 21930 return (ire); 21931 } 21932 rw_exit(&irb->irb_lock); 21933 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 21934 /* 21935 * If we can't find a suitable ire, return the original ire. 21936 */ 21937 return (save_ire); 21938 } 21939 21940 /* 21941 * This function does the ire_refrele of the ire passed in as the 21942 * argument. As this function looks up more ires i.e broadcast ires, 21943 * it needs to REFRELE them. Currently, for simplicity we don't 21944 * differentiate the one passed in and looked up here. We always 21945 * REFRELE. 21946 * IPQoS Notes: 21947 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21948 * IPsec packets are done in ipsec_out_process. 21949 * 21950 */ 21951 void 21952 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 21953 zoneid_t zoneid) 21954 { 21955 ipha_t *ipha; 21956 #define rptr ((uchar_t *)ipha) 21957 queue_t *stq; 21958 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21959 uint32_t v_hlen_tos_len; 21960 uint32_t ttl_protocol; 21961 ipaddr_t src; 21962 ipaddr_t dst; 21963 uint32_t cksum; 21964 ipaddr_t orig_src; 21965 ire_t *ire1; 21966 mblk_t *next_mp; 21967 uint_t hlen; 21968 uint16_t *up; 21969 uint32_t max_frag = ire->ire_max_frag; 21970 ill_t *ill = ire_to_ill(ire); 21971 int clusterwide; 21972 uint16_t ip_hdr_included; /* IP header included by ULP? */ 21973 int ipsec_len; 21974 mblk_t *first_mp; 21975 ipsec_out_t *io; 21976 boolean_t conn_dontroute; /* conn value for multicast */ 21977 boolean_t conn_multicast_loop; /* conn value for multicast */ 21978 boolean_t multicast_forward; /* Should we forward ? */ 21979 boolean_t unspec_src; 21980 ill_t *conn_outgoing_ill = NULL; 21981 ill_t *ire_ill; 21982 ill_t *ire1_ill; 21983 ill_t *out_ill; 21984 uint32_t ill_index = 0; 21985 boolean_t multirt_send = B_FALSE; 21986 int err; 21987 ipxmit_state_t pktxmit_state; 21988 ip_stack_t *ipst = ire->ire_ipst; 21989 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 21990 21991 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 21992 "ip_wput_ire_start: q %p", q); 21993 21994 multicast_forward = B_FALSE; 21995 unspec_src = (connp != NULL && connp->conn_unspec_src); 21996 21997 if (ire->ire_flags & RTF_MULTIRT) { 21998 /* 21999 * Multirouting case. The bucket where ire is stored 22000 * probably holds other RTF_MULTIRT flagged ire 22001 * to the destination. In this call to ip_wput_ire, 22002 * we attempt to send the packet through all 22003 * those ires. Thus, we first ensure that ire is the 22004 * first RTF_MULTIRT ire in the bucket, 22005 * before walking the ire list. 22006 */ 22007 ire_t *first_ire; 22008 irb_t *irb = ire->ire_bucket; 22009 ASSERT(irb != NULL); 22010 22011 /* Make sure we do not omit any multiroute ire. */ 22012 IRB_REFHOLD(irb); 22013 for (first_ire = irb->irb_ire; 22014 first_ire != NULL; 22015 first_ire = first_ire->ire_next) { 22016 if ((first_ire->ire_flags & RTF_MULTIRT) && 22017 (first_ire->ire_addr == ire->ire_addr) && 22018 !(first_ire->ire_marks & 22019 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 22020 break; 22021 } 22022 } 22023 22024 if ((first_ire != NULL) && (first_ire != ire)) { 22025 IRE_REFHOLD(first_ire); 22026 ire_refrele(ire); 22027 ire = first_ire; 22028 ill = ire_to_ill(ire); 22029 } 22030 IRB_REFRELE(irb); 22031 } 22032 22033 /* 22034 * conn_outgoing_ill variable is used only in the broadcast loop. 22035 * for performance we don't grab the mutexs in the fastpath 22036 */ 22037 if ((connp != NULL) && 22038 (ire->ire_type == IRE_BROADCAST) && 22039 ((connp->conn_nofailover_ill != NULL) || 22040 (connp->conn_outgoing_ill != NULL))) { 22041 /* 22042 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22043 * option. So, see if this endpoint is bound to a 22044 * IPIF_NOFAILOVER address. If so, honor it. This implies 22045 * that if the interface is failed, we will still send 22046 * the packet on the same ill which is what we want. 22047 */ 22048 conn_outgoing_ill = conn_get_held_ill(connp, 22049 &connp->conn_nofailover_ill, &err); 22050 if (err == ILL_LOOKUP_FAILED) { 22051 ire_refrele(ire); 22052 freemsg(mp); 22053 return; 22054 } 22055 if (conn_outgoing_ill == NULL) { 22056 /* 22057 * Choose a good ill in the group to send the 22058 * packets on. 22059 */ 22060 ire = conn_set_outgoing_ill(connp, ire, 22061 &conn_outgoing_ill); 22062 if (ire == NULL) { 22063 freemsg(mp); 22064 return; 22065 } 22066 } 22067 } 22068 22069 if (mp->b_datap->db_type != M_CTL) { 22070 ipha = (ipha_t *)mp->b_rptr; 22071 } else { 22072 io = (ipsec_out_t *)mp->b_rptr; 22073 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22074 ASSERT(zoneid == io->ipsec_out_zoneid); 22075 ASSERT(zoneid != ALL_ZONES); 22076 ipha = (ipha_t *)mp->b_cont->b_rptr; 22077 dst = ipha->ipha_dst; 22078 /* 22079 * For the multicast case, ipsec_out carries conn_dontroute and 22080 * conn_multicast_loop as conn may not be available here. We 22081 * need this for multicast loopback and forwarding which is done 22082 * later in the code. 22083 */ 22084 if (CLASSD(dst)) { 22085 conn_dontroute = io->ipsec_out_dontroute; 22086 conn_multicast_loop = io->ipsec_out_multicast_loop; 22087 /* 22088 * If conn_dontroute is not set or conn_multicast_loop 22089 * is set, we need to do forwarding/loopback. For 22090 * datagrams from ip_wput_multicast, conn_dontroute is 22091 * set to B_TRUE and conn_multicast_loop is set to 22092 * B_FALSE so that we neither do forwarding nor 22093 * loopback. 22094 */ 22095 if (!conn_dontroute || conn_multicast_loop) 22096 multicast_forward = B_TRUE; 22097 } 22098 } 22099 22100 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22101 ire->ire_zoneid != ALL_ZONES) { 22102 /* 22103 * When a zone sends a packet to another zone, we try to deliver 22104 * the packet under the same conditions as if the destination 22105 * was a real node on the network. To do so, we look for a 22106 * matching route in the forwarding table. 22107 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22108 * ip_newroute() does. 22109 * Note that IRE_LOCAL are special, since they are used 22110 * when the zoneid doesn't match in some cases. This means that 22111 * we need to handle ipha_src differently since ire_src_addr 22112 * belongs to the receiving zone instead of the sending zone. 22113 * When ip_restrict_interzone_loopback is set, then 22114 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22115 * for loopback between zones when the logical "Ethernet" would 22116 * have looped them back. 22117 */ 22118 ire_t *src_ire; 22119 22120 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22121 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22122 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22123 if (src_ire != NULL && 22124 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22125 (!ipst->ips_ip_restrict_interzone_loopback || 22126 ire_local_same_ill_group(ire, src_ire))) { 22127 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22128 ipha->ipha_src = src_ire->ire_src_addr; 22129 ire_refrele(src_ire); 22130 } else { 22131 ire_refrele(ire); 22132 if (conn_outgoing_ill != NULL) 22133 ill_refrele(conn_outgoing_ill); 22134 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22135 if (src_ire != NULL) { 22136 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22137 ire_refrele(src_ire); 22138 freemsg(mp); 22139 return; 22140 } 22141 ire_refrele(src_ire); 22142 } 22143 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22144 /* Failed */ 22145 freemsg(mp); 22146 return; 22147 } 22148 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22149 ipst); 22150 return; 22151 } 22152 } 22153 22154 if (mp->b_datap->db_type == M_CTL || 22155 ipss->ipsec_outbound_v4_policy_present) { 22156 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22157 unspec_src, zoneid); 22158 if (mp == NULL) { 22159 ire_refrele(ire); 22160 if (conn_outgoing_ill != NULL) 22161 ill_refrele(conn_outgoing_ill); 22162 return; 22163 } 22164 } 22165 22166 first_mp = mp; 22167 ipsec_len = 0; 22168 22169 if (first_mp->b_datap->db_type == M_CTL) { 22170 io = (ipsec_out_t *)first_mp->b_rptr; 22171 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22172 mp = first_mp->b_cont; 22173 ipsec_len = ipsec_out_extra_length(first_mp); 22174 ASSERT(ipsec_len >= 0); 22175 /* We already picked up the zoneid from the M_CTL above */ 22176 ASSERT(zoneid == io->ipsec_out_zoneid); 22177 ASSERT(zoneid != ALL_ZONES); 22178 22179 /* 22180 * Drop M_CTL here if IPsec processing is not needed. 22181 * (Non-IPsec use of M_CTL extracted any information it 22182 * needed above). 22183 */ 22184 if (ipsec_len == 0) { 22185 freeb(first_mp); 22186 first_mp = mp; 22187 } 22188 } 22189 22190 /* 22191 * Fast path for ip_wput_ire 22192 */ 22193 22194 ipha = (ipha_t *)mp->b_rptr; 22195 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22196 dst = ipha->ipha_dst; 22197 22198 /* 22199 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22200 * if the socket is a SOCK_RAW type. The transport checksum should 22201 * be provided in the pre-built packet, so we don't need to compute it. 22202 * Also, other application set flags, like DF, should not be altered. 22203 * Other transport MUST pass down zero. 22204 */ 22205 ip_hdr_included = ipha->ipha_ident; 22206 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22207 22208 if (CLASSD(dst)) { 22209 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22210 ntohl(dst), 22211 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22212 ntohl(ire->ire_addr))); 22213 } 22214 22215 /* Macros to extract header fields from data already in registers */ 22216 #ifdef _BIG_ENDIAN 22217 #define V_HLEN (v_hlen_tos_len >> 24) 22218 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22219 #define PROTO (ttl_protocol & 0xFF) 22220 #else 22221 #define V_HLEN (v_hlen_tos_len & 0xFF) 22222 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22223 #define PROTO (ttl_protocol >> 8) 22224 #endif 22225 22226 22227 orig_src = src = ipha->ipha_src; 22228 /* (The loop back to "another" is explained down below.) */ 22229 another:; 22230 /* 22231 * Assign an ident value for this packet. We assign idents on 22232 * a per destination basis out of the IRE. There could be 22233 * other threads targeting the same destination, so we have to 22234 * arrange for a atomic increment. Note that we use a 32-bit 22235 * atomic add because it has better performance than its 22236 * 16-bit sibling. 22237 * 22238 * If running in cluster mode and if the source address 22239 * belongs to a replicated service then vector through 22240 * cl_inet_ipident vector to allocate ip identifier 22241 * NOTE: This is a contract private interface with the 22242 * clustering group. 22243 */ 22244 clusterwide = 0; 22245 if (cl_inet_ipident) { 22246 ASSERT(cl_inet_isclusterwide); 22247 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22248 AF_INET, (uint8_t *)(uintptr_t)src)) { 22249 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22250 AF_INET, (uint8_t *)(uintptr_t)src, 22251 (uint8_t *)(uintptr_t)dst); 22252 clusterwide = 1; 22253 } 22254 } 22255 if (!clusterwide) { 22256 ipha->ipha_ident = 22257 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22258 } 22259 22260 #ifndef _BIG_ENDIAN 22261 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22262 #endif 22263 22264 /* 22265 * Set source address unless sent on an ill or conn_unspec_src is set. 22266 * This is needed to obey conn_unspec_src when packets go through 22267 * ip_newroute + arp. 22268 * Assumes ip_newroute{,_multi} sets the source address as well. 22269 */ 22270 if (src == INADDR_ANY && !unspec_src) { 22271 /* 22272 * Assign the appropriate source address from the IRE if none 22273 * was specified. 22274 */ 22275 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22276 22277 /* 22278 * With IP multipathing, broadcast packets are sent on the ire 22279 * that has been cleared of IRE_MARK_NORECV and that belongs to 22280 * the group. However, this ire might not be in the same zone so 22281 * we can't always use its source address. We look for a 22282 * broadcast ire in the same group and in the right zone. 22283 */ 22284 if (ire->ire_type == IRE_BROADCAST && 22285 ire->ire_zoneid != zoneid) { 22286 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22287 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22288 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22289 if (src_ire != NULL) { 22290 src = src_ire->ire_src_addr; 22291 ire_refrele(src_ire); 22292 } else { 22293 ire_refrele(ire); 22294 if (conn_outgoing_ill != NULL) 22295 ill_refrele(conn_outgoing_ill); 22296 freemsg(first_mp); 22297 if (ill != NULL) { 22298 BUMP_MIB(ill->ill_ip_mib, 22299 ipIfStatsOutDiscards); 22300 } else { 22301 BUMP_MIB(&ipst->ips_ip_mib, 22302 ipIfStatsOutDiscards); 22303 } 22304 return; 22305 } 22306 } else { 22307 src = ire->ire_src_addr; 22308 } 22309 22310 if (connp == NULL) { 22311 ip1dbg(("ip_wput_ire: no connp and no src " 22312 "address for dst 0x%x, using src 0x%x\n", 22313 ntohl(dst), 22314 ntohl(src))); 22315 } 22316 ipha->ipha_src = src; 22317 } 22318 stq = ire->ire_stq; 22319 22320 /* 22321 * We only allow ire chains for broadcasts since there will 22322 * be multiple IRE_CACHE entries for the same multicast 22323 * address (one per ipif). 22324 */ 22325 next_mp = NULL; 22326 22327 /* broadcast packet */ 22328 if (ire->ire_type == IRE_BROADCAST) 22329 goto broadcast; 22330 22331 /* loopback ? */ 22332 if (stq == NULL) 22333 goto nullstq; 22334 22335 /* The ill_index for outbound ILL */ 22336 ill_index = Q_TO_INDEX(stq); 22337 22338 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22339 ttl_protocol = ((uint16_t *)ipha)[4]; 22340 22341 /* pseudo checksum (do it in parts for IP header checksum) */ 22342 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22343 22344 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22345 queue_t *dev_q = stq->q_next; 22346 22347 /* flow controlled */ 22348 if ((dev_q->q_next || dev_q->q_first) && 22349 !canput(dev_q)) 22350 goto blocked; 22351 if ((PROTO == IPPROTO_UDP) && 22352 (ip_hdr_included != IP_HDR_INCLUDED)) { 22353 hlen = (V_HLEN & 0xF) << 2; 22354 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22355 if (*up != 0) { 22356 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22357 hlen, LENGTH, max_frag, ipsec_len, cksum); 22358 /* Software checksum? */ 22359 if (DB_CKSUMFLAGS(mp) == 0) { 22360 IP_STAT(ipst, ip_out_sw_cksum); 22361 IP_STAT_UPDATE(ipst, 22362 ip_udp_out_sw_cksum_bytes, 22363 LENGTH - hlen); 22364 } 22365 } 22366 } 22367 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22368 hlen = (V_HLEN & 0xF) << 2; 22369 if (PROTO == IPPROTO_TCP) { 22370 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22371 /* 22372 * The packet header is processed once and for all, even 22373 * in the multirouting case. We disable hardware 22374 * checksum if the packet is multirouted, as it will be 22375 * replicated via several interfaces, and not all of 22376 * them may have this capability. 22377 */ 22378 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22379 LENGTH, max_frag, ipsec_len, cksum); 22380 /* Software checksum? */ 22381 if (DB_CKSUMFLAGS(mp) == 0) { 22382 IP_STAT(ipst, ip_out_sw_cksum); 22383 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22384 LENGTH - hlen); 22385 } 22386 } else { 22387 sctp_hdr_t *sctph; 22388 22389 ASSERT(PROTO == IPPROTO_SCTP); 22390 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22391 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22392 /* 22393 * Zero out the checksum field to ensure proper 22394 * checksum calculation. 22395 */ 22396 sctph->sh_chksum = 0; 22397 #ifdef DEBUG 22398 if (!skip_sctp_cksum) 22399 #endif 22400 sctph->sh_chksum = sctp_cksum(mp, hlen); 22401 } 22402 } 22403 22404 /* 22405 * If this is a multicast packet and originated from ip_wput 22406 * we need to do loopback and forwarding checks. If it comes 22407 * from ip_wput_multicast, we SHOULD not do this. 22408 */ 22409 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22410 22411 /* checksum */ 22412 cksum += ttl_protocol; 22413 22414 /* fragment the packet */ 22415 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22416 goto fragmentit; 22417 /* 22418 * Don't use frag_flag if packet is pre-built or source 22419 * routed or if multicast (since multicast packets do 22420 * not solicit ICMP "packet too big" messages). 22421 */ 22422 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22423 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22424 !ip_source_route_included(ipha)) && 22425 !CLASSD(ipha->ipha_dst)) 22426 ipha->ipha_fragment_offset_and_flags |= 22427 htons(ire->ire_frag_flag); 22428 22429 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22430 /* calculate IP header checksum */ 22431 cksum += ipha->ipha_ident; 22432 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22433 cksum += ipha->ipha_fragment_offset_and_flags; 22434 22435 /* IP options present */ 22436 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22437 if (hlen) 22438 goto checksumoptions; 22439 22440 /* calculate hdr checksum */ 22441 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22442 cksum = ~(cksum + (cksum >> 16)); 22443 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22444 } 22445 if (ipsec_len != 0) { 22446 /* 22447 * We will do the rest of the processing after 22448 * we come back from IPsec in ip_wput_ipsec_out(). 22449 */ 22450 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22451 22452 io = (ipsec_out_t *)first_mp->b_rptr; 22453 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22454 ill_phyint->phyint_ifindex; 22455 22456 ipsec_out_process(q, first_mp, ire, ill_index); 22457 ire_refrele(ire); 22458 if (conn_outgoing_ill != NULL) 22459 ill_refrele(conn_outgoing_ill); 22460 return; 22461 } 22462 22463 /* 22464 * In most cases, the emission loop below is entered only 22465 * once. Only in the case where the ire holds the 22466 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22467 * flagged ires in the bucket, and send the packet 22468 * through all crossed RTF_MULTIRT routes. 22469 */ 22470 if (ire->ire_flags & RTF_MULTIRT) { 22471 multirt_send = B_TRUE; 22472 } 22473 do { 22474 if (multirt_send) { 22475 irb_t *irb; 22476 /* 22477 * We are in a multiple send case, need to get 22478 * the next ire and make a duplicate of the packet. 22479 * ire1 holds here the next ire to process in the 22480 * bucket. If multirouting is expected, 22481 * any non-RTF_MULTIRT ire that has the 22482 * right destination address is ignored. 22483 */ 22484 irb = ire->ire_bucket; 22485 ASSERT(irb != NULL); 22486 22487 IRB_REFHOLD(irb); 22488 for (ire1 = ire->ire_next; 22489 ire1 != NULL; 22490 ire1 = ire1->ire_next) { 22491 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22492 continue; 22493 if (ire1->ire_addr != ire->ire_addr) 22494 continue; 22495 if (ire1->ire_marks & 22496 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22497 continue; 22498 22499 /* Got one */ 22500 IRE_REFHOLD(ire1); 22501 break; 22502 } 22503 IRB_REFRELE(irb); 22504 22505 if (ire1 != NULL) { 22506 next_mp = copyb(mp); 22507 if ((next_mp == NULL) || 22508 ((mp->b_cont != NULL) && 22509 ((next_mp->b_cont = 22510 dupmsg(mp->b_cont)) == NULL))) { 22511 freemsg(next_mp); 22512 next_mp = NULL; 22513 ire_refrele(ire1); 22514 ire1 = NULL; 22515 } 22516 } 22517 22518 /* Last multiroute ire; don't loop anymore. */ 22519 if (ire1 == NULL) { 22520 multirt_send = B_FALSE; 22521 } 22522 } 22523 22524 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22525 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22526 mblk_t *, mp); 22527 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22528 ipst->ips_ipv4firewall_physical_out, 22529 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, ipst); 22530 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22531 if (mp == NULL) 22532 goto release_ire_and_ill; 22533 22534 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22535 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22536 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22537 if ((pktxmit_state == SEND_FAILED) || 22538 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22539 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22540 "- packet dropped\n")); 22541 release_ire_and_ill: 22542 ire_refrele(ire); 22543 if (next_mp != NULL) { 22544 freemsg(next_mp); 22545 ire_refrele(ire1); 22546 } 22547 if (conn_outgoing_ill != NULL) 22548 ill_refrele(conn_outgoing_ill); 22549 return; 22550 } 22551 22552 if (CLASSD(dst)) { 22553 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22554 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22555 LENGTH); 22556 } 22557 22558 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22559 "ip_wput_ire_end: q %p (%S)", 22560 q, "last copy out"); 22561 IRE_REFRELE(ire); 22562 22563 if (multirt_send) { 22564 ASSERT(ire1); 22565 /* 22566 * Proceed with the next RTF_MULTIRT ire, 22567 * Also set up the send-to queue accordingly. 22568 */ 22569 ire = ire1; 22570 ire1 = NULL; 22571 stq = ire->ire_stq; 22572 mp = next_mp; 22573 next_mp = NULL; 22574 ipha = (ipha_t *)mp->b_rptr; 22575 ill_index = Q_TO_INDEX(stq); 22576 ill = (ill_t *)stq->q_ptr; 22577 } 22578 } while (multirt_send); 22579 if (conn_outgoing_ill != NULL) 22580 ill_refrele(conn_outgoing_ill); 22581 return; 22582 22583 /* 22584 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22585 */ 22586 broadcast: 22587 { 22588 /* 22589 * To avoid broadcast storms, we usually set the TTL to 1 for 22590 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22591 * can be overridden stack-wide through the ip_broadcast_ttl 22592 * ndd tunable, or on a per-connection basis through the 22593 * IP_BROADCAST_TTL socket option. 22594 * 22595 * In the event that we are replying to incoming ICMP packets, 22596 * connp could be NULL. 22597 */ 22598 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22599 if (connp != NULL) { 22600 if (connp->conn_dontroute) 22601 ipha->ipha_ttl = 1; 22602 else if (connp->conn_broadcast_ttl != 0) 22603 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22604 } 22605 22606 /* 22607 * Note that we are not doing a IRB_REFHOLD here. 22608 * Actually we don't care if the list changes i.e 22609 * if somebody deletes an IRE from the list while 22610 * we drop the lock, the next time we come around 22611 * ire_next will be NULL and hence we won't send 22612 * out multiple copies which is fine. 22613 */ 22614 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22615 ire1 = ire->ire_next; 22616 if (conn_outgoing_ill != NULL) { 22617 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22618 ASSERT(ire1 == ire->ire_next); 22619 if (ire1 != NULL && ire1->ire_addr == dst) { 22620 ire_refrele(ire); 22621 ire = ire1; 22622 IRE_REFHOLD(ire); 22623 ire1 = ire->ire_next; 22624 continue; 22625 } 22626 rw_exit(&ire->ire_bucket->irb_lock); 22627 /* Did not find a matching ill */ 22628 ip1dbg(("ip_wput_ire: broadcast with no " 22629 "matching IP_BOUND_IF ill %s dst %x\n", 22630 conn_outgoing_ill->ill_name, dst)); 22631 freemsg(first_mp); 22632 if (ire != NULL) 22633 ire_refrele(ire); 22634 ill_refrele(conn_outgoing_ill); 22635 return; 22636 } 22637 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22638 /* 22639 * If the next IRE has the same address and is not one 22640 * of the two copies that we need to send, try to see 22641 * whether this copy should be sent at all. This 22642 * assumes that we insert loopbacks first and then 22643 * non-loopbacks. This is acheived by inserting the 22644 * loopback always before non-loopback. 22645 * This is used to send a single copy of a broadcast 22646 * packet out all physical interfaces that have an 22647 * matching IRE_BROADCAST while also looping 22648 * back one copy (to ip_wput_local) for each 22649 * matching physical interface. However, we avoid 22650 * sending packets out different logical that match by 22651 * having ipif_up/ipif_down supress duplicate 22652 * IRE_BROADCASTS. 22653 * 22654 * This feature is currently used to get broadcasts 22655 * sent to multiple interfaces, when the broadcast 22656 * address being used applies to multiple interfaces. 22657 * For example, a whole net broadcast will be 22658 * replicated on every connected subnet of 22659 * the target net. 22660 * 22661 * Each zone has its own set of IRE_BROADCASTs, so that 22662 * we're able to distribute inbound packets to multiple 22663 * zones who share a broadcast address. We avoid looping 22664 * back outbound packets in different zones but on the 22665 * same ill, as the application would see duplicates. 22666 * 22667 * If the interfaces are part of the same group, 22668 * we would want to send only one copy out for 22669 * whole group. 22670 * 22671 * This logic assumes that ire_add_v4() groups the 22672 * IRE_BROADCAST entries so that those with the same 22673 * ire_addr and ill_group are kept together. 22674 */ 22675 ire_ill = ire->ire_ipif->ipif_ill; 22676 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22677 if (ire_ill->ill_group != NULL && 22678 (ire->ire_marks & IRE_MARK_NORECV)) { 22679 /* 22680 * If the current zone only has an ire 22681 * broadcast for this address marked 22682 * NORECV, the ire we want is ahead in 22683 * the bucket, so we look it up 22684 * deliberately ignoring the zoneid. 22685 */ 22686 for (ire1 = ire->ire_bucket->irb_ire; 22687 ire1 != NULL; 22688 ire1 = ire1->ire_next) { 22689 ire1_ill = 22690 ire1->ire_ipif->ipif_ill; 22691 if (ire1->ire_addr != dst) 22692 continue; 22693 /* skip over the current ire */ 22694 if (ire1 == ire) 22695 continue; 22696 /* skip over deleted ires */ 22697 if (ire1->ire_marks & 22698 IRE_MARK_CONDEMNED) 22699 continue; 22700 /* 22701 * non-loopback ire in our 22702 * group: use it for the next 22703 * pass in the loop 22704 */ 22705 if (ire1->ire_stq != NULL && 22706 ire1_ill->ill_group == 22707 ire_ill->ill_group) 22708 break; 22709 } 22710 } 22711 } else { 22712 while (ire1 != NULL && ire1->ire_addr == dst) { 22713 ire1_ill = ire1->ire_ipif->ipif_ill; 22714 /* 22715 * We can have two broadcast ires on the 22716 * same ill in different zones; here 22717 * we'll send a copy of the packet on 22718 * each ill and the fanout code will 22719 * call conn_wantpacket() to check that 22720 * the zone has the broadcast address 22721 * configured on the ill. If the two 22722 * ires are in the same group we only 22723 * send one copy up. 22724 */ 22725 if (ire1_ill != ire_ill && 22726 (ire1_ill->ill_group == NULL || 22727 ire_ill->ill_group == NULL || 22728 ire1_ill->ill_group != 22729 ire_ill->ill_group)) { 22730 break; 22731 } 22732 ire1 = ire1->ire_next; 22733 } 22734 } 22735 } 22736 ASSERT(multirt_send == B_FALSE); 22737 if (ire1 != NULL && ire1->ire_addr == dst) { 22738 if ((ire->ire_flags & RTF_MULTIRT) && 22739 (ire1->ire_flags & RTF_MULTIRT)) { 22740 /* 22741 * We are in the multirouting case. 22742 * The message must be sent at least 22743 * on both ires. These ires have been 22744 * inserted AFTER the standard ones 22745 * in ip_rt_add(). There are thus no 22746 * other ire entries for the destination 22747 * address in the rest of the bucket 22748 * that do not have the RTF_MULTIRT 22749 * flag. We don't process a copy 22750 * of the message here. This will be 22751 * done in the final sending loop. 22752 */ 22753 multirt_send = B_TRUE; 22754 } else { 22755 next_mp = ip_copymsg(first_mp); 22756 if (next_mp != NULL) 22757 IRE_REFHOLD(ire1); 22758 } 22759 } 22760 rw_exit(&ire->ire_bucket->irb_lock); 22761 } 22762 22763 if (stq) { 22764 /* 22765 * A non-NULL send-to queue means this packet is going 22766 * out of this machine. 22767 */ 22768 out_ill = (ill_t *)stq->q_ptr; 22769 22770 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22771 ttl_protocol = ((uint16_t *)ipha)[4]; 22772 /* 22773 * We accumulate the pseudo header checksum in cksum. 22774 * This is pretty hairy code, so watch close. One 22775 * thing to keep in mind is that UDP and TCP have 22776 * stored their respective datagram lengths in their 22777 * checksum fields. This lines things up real nice. 22778 */ 22779 cksum = (dst >> 16) + (dst & 0xFFFF) + 22780 (src >> 16) + (src & 0xFFFF); 22781 /* 22782 * We assume the udp checksum field contains the 22783 * length, so to compute the pseudo header checksum, 22784 * all we need is the protocol number and src/dst. 22785 */ 22786 /* Provide the checksums for UDP and TCP. */ 22787 if ((PROTO == IPPROTO_TCP) && 22788 (ip_hdr_included != IP_HDR_INCLUDED)) { 22789 /* hlen gets the number of uchar_ts in the IP header */ 22790 hlen = (V_HLEN & 0xF) << 2; 22791 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22792 IP_STAT(ipst, ip_out_sw_cksum); 22793 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22794 LENGTH - hlen); 22795 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22796 } else if (PROTO == IPPROTO_SCTP && 22797 (ip_hdr_included != IP_HDR_INCLUDED)) { 22798 sctp_hdr_t *sctph; 22799 22800 hlen = (V_HLEN & 0xF) << 2; 22801 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22802 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22803 sctph->sh_chksum = 0; 22804 #ifdef DEBUG 22805 if (!skip_sctp_cksum) 22806 #endif 22807 sctph->sh_chksum = sctp_cksum(mp, hlen); 22808 } else { 22809 queue_t *dev_q = stq->q_next; 22810 22811 if ((dev_q->q_next || dev_q->q_first) && 22812 !canput(dev_q)) { 22813 blocked: 22814 ipha->ipha_ident = ip_hdr_included; 22815 /* 22816 * If we don't have a conn to apply 22817 * backpressure, free the message. 22818 * In the ire_send path, we don't know 22819 * the position to requeue the packet. Rather 22820 * than reorder packets, we just drop this 22821 * packet. 22822 */ 22823 if (ipst->ips_ip_output_queue && 22824 connp != NULL && 22825 caller != IRE_SEND) { 22826 if (caller == IP_WSRV) { 22827 connp->conn_did_putbq = 1; 22828 (void) putbq(connp->conn_wq, 22829 first_mp); 22830 conn_drain_insert(connp); 22831 /* 22832 * This is the service thread, 22833 * and the queue is already 22834 * noenabled. The check for 22835 * canput and the putbq is not 22836 * atomic. So we need to check 22837 * again. 22838 */ 22839 if (canput(stq->q_next)) 22840 connp->conn_did_putbq 22841 = 0; 22842 IP_STAT(ipst, ip_conn_flputbq); 22843 } else { 22844 /* 22845 * We are not the service proc. 22846 * ip_wsrv will be scheduled or 22847 * is already running. 22848 */ 22849 (void) putq(connp->conn_wq, 22850 first_mp); 22851 } 22852 } else { 22853 out_ill = (ill_t *)stq->q_ptr; 22854 BUMP_MIB(out_ill->ill_ip_mib, 22855 ipIfStatsOutDiscards); 22856 freemsg(first_mp); 22857 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22858 "ip_wput_ire_end: q %p (%S)", 22859 q, "discard"); 22860 } 22861 ire_refrele(ire); 22862 if (next_mp) { 22863 ire_refrele(ire1); 22864 freemsg(next_mp); 22865 } 22866 if (conn_outgoing_ill != NULL) 22867 ill_refrele(conn_outgoing_ill); 22868 return; 22869 } 22870 if ((PROTO == IPPROTO_UDP) && 22871 (ip_hdr_included != IP_HDR_INCLUDED)) { 22872 /* 22873 * hlen gets the number of uchar_ts in the 22874 * IP header 22875 */ 22876 hlen = (V_HLEN & 0xF) << 2; 22877 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22878 max_frag = ire->ire_max_frag; 22879 if (*up != 0) { 22880 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22881 up, PROTO, hlen, LENGTH, max_frag, 22882 ipsec_len, cksum); 22883 /* Software checksum? */ 22884 if (DB_CKSUMFLAGS(mp) == 0) { 22885 IP_STAT(ipst, ip_out_sw_cksum); 22886 IP_STAT_UPDATE(ipst, 22887 ip_udp_out_sw_cksum_bytes, 22888 LENGTH - hlen); 22889 } 22890 } 22891 } 22892 } 22893 /* 22894 * Need to do this even when fragmenting. The local 22895 * loopback can be done without computing checksums 22896 * but forwarding out other interface must be done 22897 * after the IP checksum (and ULP checksums) have been 22898 * computed. 22899 * 22900 * NOTE : multicast_forward is set only if this packet 22901 * originated from ip_wput. For packets originating from 22902 * ip_wput_multicast, it is not set. 22903 */ 22904 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22905 multi_loopback: 22906 ip2dbg(("ip_wput: multicast, loop %d\n", 22907 conn_multicast_loop)); 22908 22909 /* Forget header checksum offload */ 22910 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22911 22912 /* 22913 * Local loopback of multicasts? Check the 22914 * ill. 22915 * 22916 * Note that the loopback function will not come 22917 * in through ip_rput - it will only do the 22918 * client fanout thus we need to do an mforward 22919 * as well. The is different from the BSD 22920 * logic. 22921 */ 22922 if (ill != NULL) { 22923 ilm_t *ilm; 22924 22925 ILM_WALKER_HOLD(ill); 22926 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 22927 ALL_ZONES); 22928 ILM_WALKER_RELE(ill); 22929 if (ilm != NULL) { 22930 /* 22931 * Pass along the virtual output q. 22932 * ip_wput_local() will distribute the 22933 * packet to all the matching zones, 22934 * except the sending zone when 22935 * IP_MULTICAST_LOOP is false. 22936 */ 22937 ip_multicast_loopback(q, ill, first_mp, 22938 conn_multicast_loop ? 0 : 22939 IP_FF_NO_MCAST_LOOP, zoneid); 22940 } 22941 } 22942 if (ipha->ipha_ttl == 0) { 22943 /* 22944 * 0 => only to this host i.e. we are 22945 * done. We are also done if this was the 22946 * loopback interface since it is sufficient 22947 * to loopback one copy of a multicast packet. 22948 */ 22949 freemsg(first_mp); 22950 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22951 "ip_wput_ire_end: q %p (%S)", 22952 q, "loopback"); 22953 ire_refrele(ire); 22954 if (conn_outgoing_ill != NULL) 22955 ill_refrele(conn_outgoing_ill); 22956 return; 22957 } 22958 /* 22959 * ILLF_MULTICAST is checked in ip_newroute 22960 * i.e. we don't need to check it here since 22961 * all IRE_CACHEs come from ip_newroute. 22962 * For multicast traffic, SO_DONTROUTE is interpreted 22963 * to mean only send the packet out the interface 22964 * (optionally specified with IP_MULTICAST_IF) 22965 * and do not forward it out additional interfaces. 22966 * RSVP and the rsvp daemon is an example of a 22967 * protocol and user level process that 22968 * handles it's own routing. Hence, it uses the 22969 * SO_DONTROUTE option to accomplish this. 22970 */ 22971 22972 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 22973 ill != NULL) { 22974 /* Unconditionally redo the checksum */ 22975 ipha->ipha_hdr_checksum = 0; 22976 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22977 22978 /* 22979 * If this needs to go out secure, we need 22980 * to wait till we finish the IPsec 22981 * processing. 22982 */ 22983 if (ipsec_len == 0 && 22984 ip_mforward(ill, ipha, mp)) { 22985 freemsg(first_mp); 22986 ip1dbg(("ip_wput: mforward failed\n")); 22987 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22988 "ip_wput_ire_end: q %p (%S)", 22989 q, "mforward failed"); 22990 ire_refrele(ire); 22991 if (conn_outgoing_ill != NULL) 22992 ill_refrele(conn_outgoing_ill); 22993 return; 22994 } 22995 } 22996 } 22997 max_frag = ire->ire_max_frag; 22998 cksum += ttl_protocol; 22999 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23000 /* No fragmentation required for this one. */ 23001 /* 23002 * Don't use frag_flag if packet is pre-built or source 23003 * routed or if multicast (since multicast packets do 23004 * not solicit ICMP "packet too big" messages). 23005 */ 23006 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23007 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23008 !ip_source_route_included(ipha)) && 23009 !CLASSD(ipha->ipha_dst)) 23010 ipha->ipha_fragment_offset_and_flags |= 23011 htons(ire->ire_frag_flag); 23012 23013 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23014 /* Complete the IP header checksum. */ 23015 cksum += ipha->ipha_ident; 23016 cksum += (v_hlen_tos_len >> 16)+ 23017 (v_hlen_tos_len & 0xFFFF); 23018 cksum += ipha->ipha_fragment_offset_and_flags; 23019 hlen = (V_HLEN & 0xF) - 23020 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23021 if (hlen) { 23022 checksumoptions: 23023 /* 23024 * Account for the IP Options in the IP 23025 * header checksum. 23026 */ 23027 up = (uint16_t *)(rptr+ 23028 IP_SIMPLE_HDR_LENGTH); 23029 do { 23030 cksum += up[0]; 23031 cksum += up[1]; 23032 up += 2; 23033 } while (--hlen); 23034 } 23035 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23036 cksum = ~(cksum + (cksum >> 16)); 23037 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23038 } 23039 if (ipsec_len != 0) { 23040 ipsec_out_process(q, first_mp, ire, ill_index); 23041 if (!next_mp) { 23042 ire_refrele(ire); 23043 if (conn_outgoing_ill != NULL) 23044 ill_refrele(conn_outgoing_ill); 23045 return; 23046 } 23047 goto next; 23048 } 23049 23050 /* 23051 * multirt_send has already been handled 23052 * for broadcast, but not yet for multicast 23053 * or IP options. 23054 */ 23055 if (next_mp == NULL) { 23056 if (ire->ire_flags & RTF_MULTIRT) { 23057 multirt_send = B_TRUE; 23058 } 23059 } 23060 23061 /* 23062 * In most cases, the emission loop below is 23063 * entered only once. Only in the case where 23064 * the ire holds the RTF_MULTIRT flag, do we loop 23065 * to process all RTF_MULTIRT ires in the bucket, 23066 * and send the packet through all crossed 23067 * RTF_MULTIRT routes. 23068 */ 23069 do { 23070 if (multirt_send) { 23071 irb_t *irb; 23072 23073 irb = ire->ire_bucket; 23074 ASSERT(irb != NULL); 23075 /* 23076 * We are in a multiple send case, 23077 * need to get the next IRE and make 23078 * a duplicate of the packet. 23079 */ 23080 IRB_REFHOLD(irb); 23081 for (ire1 = ire->ire_next; 23082 ire1 != NULL; 23083 ire1 = ire1->ire_next) { 23084 if (!(ire1->ire_flags & 23085 RTF_MULTIRT)) { 23086 continue; 23087 } 23088 if (ire1->ire_addr != 23089 ire->ire_addr) { 23090 continue; 23091 } 23092 if (ire1->ire_marks & 23093 (IRE_MARK_CONDEMNED| 23094 IRE_MARK_HIDDEN)) { 23095 continue; 23096 } 23097 23098 /* Got one */ 23099 IRE_REFHOLD(ire1); 23100 break; 23101 } 23102 IRB_REFRELE(irb); 23103 23104 if (ire1 != NULL) { 23105 next_mp = copyb(mp); 23106 if ((next_mp == NULL) || 23107 ((mp->b_cont != NULL) && 23108 ((next_mp->b_cont = 23109 dupmsg(mp->b_cont)) 23110 == NULL))) { 23111 freemsg(next_mp); 23112 next_mp = NULL; 23113 ire_refrele(ire1); 23114 ire1 = NULL; 23115 } 23116 } 23117 23118 /* 23119 * Last multiroute ire; don't loop 23120 * anymore. The emission is over 23121 * and next_mp is NULL. 23122 */ 23123 if (ire1 == NULL) { 23124 multirt_send = B_FALSE; 23125 } 23126 } 23127 23128 out_ill = ire_to_ill(ire); 23129 DTRACE_PROBE4(ip4__physical__out__start, 23130 ill_t *, NULL, 23131 ill_t *, out_ill, 23132 ipha_t *, ipha, mblk_t *, mp); 23133 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23134 ipst->ips_ipv4firewall_physical_out, 23135 NULL, out_ill, ipha, mp, mp, ipst); 23136 DTRACE_PROBE1(ip4__physical__out__end, 23137 mblk_t *, mp); 23138 if (mp == NULL) 23139 goto release_ire_and_ill_2; 23140 23141 ASSERT(ipsec_len == 0); 23142 mp->b_prev = 23143 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23144 DTRACE_PROBE2(ip__xmit__2, 23145 mblk_t *, mp, ire_t *, ire); 23146 pktxmit_state = ip_xmit_v4(mp, ire, 23147 NULL, B_TRUE); 23148 if ((pktxmit_state == SEND_FAILED) || 23149 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23150 release_ire_and_ill_2: 23151 if (next_mp) { 23152 freemsg(next_mp); 23153 ire_refrele(ire1); 23154 } 23155 ire_refrele(ire); 23156 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23157 "ip_wput_ire_end: q %p (%S)", 23158 q, "discard MDATA"); 23159 if (conn_outgoing_ill != NULL) 23160 ill_refrele(conn_outgoing_ill); 23161 return; 23162 } 23163 23164 if (CLASSD(dst)) { 23165 BUMP_MIB(out_ill->ill_ip_mib, 23166 ipIfStatsHCOutMcastPkts); 23167 UPDATE_MIB(out_ill->ill_ip_mib, 23168 ipIfStatsHCOutMcastOctets, 23169 LENGTH); 23170 } else if (ire->ire_type == IRE_BROADCAST) { 23171 BUMP_MIB(out_ill->ill_ip_mib, 23172 ipIfStatsHCOutBcastPkts); 23173 } 23174 23175 if (multirt_send) { 23176 /* 23177 * We are in a multiple send case, 23178 * need to re-enter the sending loop 23179 * using the next ire. 23180 */ 23181 ire_refrele(ire); 23182 ire = ire1; 23183 stq = ire->ire_stq; 23184 mp = next_mp; 23185 next_mp = NULL; 23186 ipha = (ipha_t *)mp->b_rptr; 23187 ill_index = Q_TO_INDEX(stq); 23188 } 23189 } while (multirt_send); 23190 23191 if (!next_mp) { 23192 /* 23193 * Last copy going out (the ultra-common 23194 * case). Note that we intentionally replicate 23195 * the putnext rather than calling it before 23196 * the next_mp check in hopes of a little 23197 * tail-call action out of the compiler. 23198 */ 23199 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23200 "ip_wput_ire_end: q %p (%S)", 23201 q, "last copy out(1)"); 23202 ire_refrele(ire); 23203 if (conn_outgoing_ill != NULL) 23204 ill_refrele(conn_outgoing_ill); 23205 return; 23206 } 23207 /* More copies going out below. */ 23208 } else { 23209 int offset; 23210 fragmentit: 23211 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23212 /* 23213 * If this would generate a icmp_frag_needed message, 23214 * we need to handle it before we do the IPsec 23215 * processing. Otherwise, we need to strip the IPsec 23216 * headers before we send up the message to the ULPs 23217 * which becomes messy and difficult. 23218 */ 23219 if (ipsec_len != 0) { 23220 if ((max_frag < (unsigned int)(LENGTH + 23221 ipsec_len)) && (offset & IPH_DF)) { 23222 out_ill = (ill_t *)stq->q_ptr; 23223 BUMP_MIB(out_ill->ill_ip_mib, 23224 ipIfStatsOutFragFails); 23225 BUMP_MIB(out_ill->ill_ip_mib, 23226 ipIfStatsOutFragReqds); 23227 ipha->ipha_hdr_checksum = 0; 23228 ipha->ipha_hdr_checksum = 23229 (uint16_t)ip_csum_hdr(ipha); 23230 icmp_frag_needed(ire->ire_stq, first_mp, 23231 max_frag, zoneid, ipst); 23232 if (!next_mp) { 23233 ire_refrele(ire); 23234 if (conn_outgoing_ill != NULL) { 23235 ill_refrele( 23236 conn_outgoing_ill); 23237 } 23238 return; 23239 } 23240 } else { 23241 /* 23242 * This won't cause a icmp_frag_needed 23243 * message. to be generated. Send it on 23244 * the wire. Note that this could still 23245 * cause fragmentation and all we 23246 * do is the generation of the message 23247 * to the ULP if needed before IPsec. 23248 */ 23249 if (!next_mp) { 23250 ipsec_out_process(q, first_mp, 23251 ire, ill_index); 23252 TRACE_2(TR_FAC_IP, 23253 TR_IP_WPUT_IRE_END, 23254 "ip_wput_ire_end: q %p " 23255 "(%S)", q, 23256 "last ipsec_out_process"); 23257 ire_refrele(ire); 23258 if (conn_outgoing_ill != NULL) { 23259 ill_refrele( 23260 conn_outgoing_ill); 23261 } 23262 return; 23263 } 23264 ipsec_out_process(q, first_mp, 23265 ire, ill_index); 23266 } 23267 } else { 23268 /* 23269 * Initiate IPPF processing. For 23270 * fragmentable packets we finish 23271 * all QOS packet processing before 23272 * calling: 23273 * ip_wput_ire_fragmentit->ip_wput_frag 23274 */ 23275 23276 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23277 ip_process(IPP_LOCAL_OUT, &mp, 23278 ill_index); 23279 if (mp == NULL) { 23280 out_ill = (ill_t *)stq->q_ptr; 23281 BUMP_MIB(out_ill->ill_ip_mib, 23282 ipIfStatsOutDiscards); 23283 if (next_mp != NULL) { 23284 freemsg(next_mp); 23285 ire_refrele(ire1); 23286 } 23287 ire_refrele(ire); 23288 TRACE_2(TR_FAC_IP, 23289 TR_IP_WPUT_IRE_END, 23290 "ip_wput_ire: q %p (%S)", 23291 q, "discard MDATA"); 23292 if (conn_outgoing_ill != NULL) { 23293 ill_refrele( 23294 conn_outgoing_ill); 23295 } 23296 return; 23297 } 23298 } 23299 if (!next_mp) { 23300 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23301 "ip_wput_ire_end: q %p (%S)", 23302 q, "last fragmentation"); 23303 ip_wput_ire_fragmentit(mp, ire, 23304 zoneid, ipst); 23305 ire_refrele(ire); 23306 if (conn_outgoing_ill != NULL) 23307 ill_refrele(conn_outgoing_ill); 23308 return; 23309 } 23310 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23311 } 23312 } 23313 } else { 23314 nullstq: 23315 /* A NULL stq means the destination address is local. */ 23316 UPDATE_OB_PKT_COUNT(ire); 23317 ire->ire_last_used_time = lbolt; 23318 ASSERT(ire->ire_ipif != NULL); 23319 if (!next_mp) { 23320 /* 23321 * Is there an "in" and "out" for traffic local 23322 * to a host (loopback)? The code in Solaris doesn't 23323 * explicitly draw a line in its code for in vs out, 23324 * so we've had to draw a line in the sand: ip_wput_ire 23325 * is considered to be the "output" side and 23326 * ip_wput_local to be the "input" side. 23327 */ 23328 out_ill = ire_to_ill(ire); 23329 23330 DTRACE_PROBE4(ip4__loopback__out__start, 23331 ill_t *, NULL, ill_t *, out_ill, 23332 ipha_t *, ipha, mblk_t *, first_mp); 23333 23334 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23335 ipst->ips_ipv4firewall_loopback_out, 23336 NULL, out_ill, ipha, first_mp, mp, ipst); 23337 23338 DTRACE_PROBE1(ip4__loopback__out_end, 23339 mblk_t *, first_mp); 23340 23341 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23342 "ip_wput_ire_end: q %p (%S)", 23343 q, "local address"); 23344 23345 if (first_mp != NULL) 23346 ip_wput_local(q, out_ill, ipha, 23347 first_mp, ire, 0, ire->ire_zoneid); 23348 ire_refrele(ire); 23349 if (conn_outgoing_ill != NULL) 23350 ill_refrele(conn_outgoing_ill); 23351 return; 23352 } 23353 23354 out_ill = ire_to_ill(ire); 23355 23356 DTRACE_PROBE4(ip4__loopback__out__start, 23357 ill_t *, NULL, ill_t *, out_ill, 23358 ipha_t *, ipha, mblk_t *, first_mp); 23359 23360 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23361 ipst->ips_ipv4firewall_loopback_out, 23362 NULL, out_ill, ipha, first_mp, mp, ipst); 23363 23364 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23365 23366 if (first_mp != NULL) 23367 ip_wput_local(q, out_ill, ipha, 23368 first_mp, ire, 0, ire->ire_zoneid); 23369 } 23370 next: 23371 /* 23372 * More copies going out to additional interfaces. 23373 * ire1 has already been held. We don't need the 23374 * "ire" anymore. 23375 */ 23376 ire_refrele(ire); 23377 ire = ire1; 23378 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23379 mp = next_mp; 23380 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23381 ill = ire_to_ill(ire); 23382 first_mp = mp; 23383 if (ipsec_len != 0) { 23384 ASSERT(first_mp->b_datap->db_type == M_CTL); 23385 mp = mp->b_cont; 23386 } 23387 dst = ire->ire_addr; 23388 ipha = (ipha_t *)mp->b_rptr; 23389 /* 23390 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23391 * Restore ipha_ident "no checksum" flag. 23392 */ 23393 src = orig_src; 23394 ipha->ipha_ident = ip_hdr_included; 23395 goto another; 23396 23397 #undef rptr 23398 #undef Q_TO_INDEX 23399 } 23400 23401 /* 23402 * Routine to allocate a message that is used to notify the ULP about MDT. 23403 * The caller may provide a pointer to the link-layer MDT capabilities, 23404 * or NULL if MDT is to be disabled on the stream. 23405 */ 23406 mblk_t * 23407 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23408 { 23409 mblk_t *mp; 23410 ip_mdt_info_t *mdti; 23411 ill_mdt_capab_t *idst; 23412 23413 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23414 DB_TYPE(mp) = M_CTL; 23415 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23416 mdti = (ip_mdt_info_t *)mp->b_rptr; 23417 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23418 idst = &(mdti->mdt_capab); 23419 23420 /* 23421 * If the caller provides us with the capability, copy 23422 * it over into our notification message; otherwise 23423 * we zero out the capability portion. 23424 */ 23425 if (isrc != NULL) 23426 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23427 else 23428 bzero((caddr_t)idst, sizeof (*idst)); 23429 } 23430 return (mp); 23431 } 23432 23433 /* 23434 * Routine which determines whether MDT can be enabled on the destination 23435 * IRE and IPC combination, and if so, allocates and returns the MDT 23436 * notification mblk that may be used by ULP. We also check if we need to 23437 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23438 * MDT usage in the past have been lifted. This gets called during IP 23439 * and ULP binding. 23440 */ 23441 mblk_t * 23442 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23443 ill_mdt_capab_t *mdt_cap) 23444 { 23445 mblk_t *mp; 23446 boolean_t rc = B_FALSE; 23447 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23448 23449 ASSERT(dst_ire != NULL); 23450 ASSERT(connp != NULL); 23451 ASSERT(mdt_cap != NULL); 23452 23453 /* 23454 * Currently, we only support simple TCP/{IPv4,IPv6} with 23455 * Multidata, which is handled in tcp_multisend(). This 23456 * is the reason why we do all these checks here, to ensure 23457 * that we don't enable Multidata for the cases which we 23458 * can't handle at the moment. 23459 */ 23460 do { 23461 /* Only do TCP at the moment */ 23462 if (connp->conn_ulp != IPPROTO_TCP) 23463 break; 23464 23465 /* 23466 * IPsec outbound policy present? Note that we get here 23467 * after calling ipsec_conn_cache_policy() where the global 23468 * policy checking is performed. conn_latch will be 23469 * non-NULL as long as there's a policy defined, 23470 * i.e. conn_out_enforce_policy may be NULL in such case 23471 * when the connection is non-secure, and hence we check 23472 * further if the latch refers to an outbound policy. 23473 */ 23474 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23475 break; 23476 23477 /* CGTP (multiroute) is enabled? */ 23478 if (dst_ire->ire_flags & RTF_MULTIRT) 23479 break; 23480 23481 /* Outbound IPQoS enabled? */ 23482 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23483 /* 23484 * In this case, we disable MDT for this and all 23485 * future connections going over the interface. 23486 */ 23487 mdt_cap->ill_mdt_on = 0; 23488 break; 23489 } 23490 23491 /* socket option(s) present? */ 23492 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23493 break; 23494 23495 rc = B_TRUE; 23496 /* CONSTCOND */ 23497 } while (0); 23498 23499 /* Remember the result */ 23500 connp->conn_mdt_ok = rc; 23501 23502 if (!rc) 23503 return (NULL); 23504 else if (!mdt_cap->ill_mdt_on) { 23505 /* 23506 * If MDT has been previously turned off in the past, and we 23507 * currently can do MDT (due to IPQoS policy removal, etc.) 23508 * then enable it for this interface. 23509 */ 23510 mdt_cap->ill_mdt_on = 1; 23511 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23512 "interface %s\n", ill_name)); 23513 } 23514 23515 /* Allocate the MDT info mblk */ 23516 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23517 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23518 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23519 return (NULL); 23520 } 23521 return (mp); 23522 } 23523 23524 /* 23525 * Routine to allocate a message that is used to notify the ULP about LSO. 23526 * The caller may provide a pointer to the link-layer LSO capabilities, 23527 * or NULL if LSO is to be disabled on the stream. 23528 */ 23529 mblk_t * 23530 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23531 { 23532 mblk_t *mp; 23533 ip_lso_info_t *lsoi; 23534 ill_lso_capab_t *idst; 23535 23536 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23537 DB_TYPE(mp) = M_CTL; 23538 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23539 lsoi = (ip_lso_info_t *)mp->b_rptr; 23540 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23541 idst = &(lsoi->lso_capab); 23542 23543 /* 23544 * If the caller provides us with the capability, copy 23545 * it over into our notification message; otherwise 23546 * we zero out the capability portion. 23547 */ 23548 if (isrc != NULL) 23549 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23550 else 23551 bzero((caddr_t)idst, sizeof (*idst)); 23552 } 23553 return (mp); 23554 } 23555 23556 /* 23557 * Routine which determines whether LSO can be enabled on the destination 23558 * IRE and IPC combination, and if so, allocates and returns the LSO 23559 * notification mblk that may be used by ULP. We also check if we need to 23560 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23561 * LSO usage in the past have been lifted. This gets called during IP 23562 * and ULP binding. 23563 */ 23564 mblk_t * 23565 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23566 ill_lso_capab_t *lso_cap) 23567 { 23568 mblk_t *mp; 23569 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23570 23571 ASSERT(dst_ire != NULL); 23572 ASSERT(connp != NULL); 23573 ASSERT(lso_cap != NULL); 23574 23575 connp->conn_lso_ok = B_TRUE; 23576 23577 if ((connp->conn_ulp != IPPROTO_TCP) || 23578 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23579 (dst_ire->ire_flags & RTF_MULTIRT) || 23580 !CONN_IS_LSO_MD_FASTPATH(connp) || 23581 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23582 connp->conn_lso_ok = B_FALSE; 23583 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23584 /* 23585 * Disable LSO for this and all future connections going 23586 * over the interface. 23587 */ 23588 lso_cap->ill_lso_on = 0; 23589 } 23590 } 23591 23592 if (!connp->conn_lso_ok) 23593 return (NULL); 23594 else if (!lso_cap->ill_lso_on) { 23595 /* 23596 * If LSO has been previously turned off in the past, and we 23597 * currently can do LSO (due to IPQoS policy removal, etc.) 23598 * then enable it for this interface. 23599 */ 23600 lso_cap->ill_lso_on = 1; 23601 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23602 ill_name)); 23603 } 23604 23605 /* Allocate the LSO info mblk */ 23606 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23607 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23608 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23609 23610 return (mp); 23611 } 23612 23613 /* 23614 * Create destination address attribute, and fill it with the physical 23615 * destination address and SAP taken from the template DL_UNITDATA_REQ 23616 * message block. 23617 */ 23618 boolean_t 23619 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23620 { 23621 dl_unitdata_req_t *dlurp; 23622 pattr_t *pa; 23623 pattrinfo_t pa_info; 23624 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23625 uint_t das_len, das_off; 23626 23627 ASSERT(dlmp != NULL); 23628 23629 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23630 das_len = dlurp->dl_dest_addr_length; 23631 das_off = dlurp->dl_dest_addr_offset; 23632 23633 pa_info.type = PATTR_DSTADDRSAP; 23634 pa_info.len = sizeof (**das) + das_len - 1; 23635 23636 /* create and associate the attribute */ 23637 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23638 if (pa != NULL) { 23639 ASSERT(*das != NULL); 23640 (*das)->addr_is_group = 0; 23641 (*das)->addr_len = (uint8_t)das_len; 23642 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23643 } 23644 23645 return (pa != NULL); 23646 } 23647 23648 /* 23649 * Create hardware checksum attribute and fill it with the values passed. 23650 */ 23651 boolean_t 23652 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23653 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23654 { 23655 pattr_t *pa; 23656 pattrinfo_t pa_info; 23657 23658 ASSERT(mmd != NULL); 23659 23660 pa_info.type = PATTR_HCKSUM; 23661 pa_info.len = sizeof (pattr_hcksum_t); 23662 23663 /* create and associate the attribute */ 23664 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23665 if (pa != NULL) { 23666 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23667 23668 hck->hcksum_start_offset = start_offset; 23669 hck->hcksum_stuff_offset = stuff_offset; 23670 hck->hcksum_end_offset = end_offset; 23671 hck->hcksum_flags = flags; 23672 } 23673 return (pa != NULL); 23674 } 23675 23676 /* 23677 * Create zerocopy attribute and fill it with the specified flags 23678 */ 23679 boolean_t 23680 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23681 { 23682 pattr_t *pa; 23683 pattrinfo_t pa_info; 23684 23685 ASSERT(mmd != NULL); 23686 pa_info.type = PATTR_ZCOPY; 23687 pa_info.len = sizeof (pattr_zcopy_t); 23688 23689 /* create and associate the attribute */ 23690 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23691 if (pa != NULL) { 23692 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23693 23694 zcopy->zcopy_flags = flags; 23695 } 23696 return (pa != NULL); 23697 } 23698 23699 /* 23700 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23701 * block chain. We could rewrite to handle arbitrary message block chains but 23702 * that would make the code complicated and slow. Right now there three 23703 * restrictions: 23704 * 23705 * 1. The first message block must contain the complete IP header and 23706 * at least 1 byte of payload data. 23707 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23708 * so that we can use a single Multidata message. 23709 * 3. No frag must be distributed over two or more message blocks so 23710 * that we don't need more than two packet descriptors per frag. 23711 * 23712 * The above restrictions allow us to support userland applications (which 23713 * will send down a single message block) and NFS over UDP (which will 23714 * send down a chain of at most three message blocks). 23715 * 23716 * We also don't use MDT for payloads with less than or equal to 23717 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23718 */ 23719 boolean_t 23720 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23721 { 23722 int blocks; 23723 ssize_t total, missing, size; 23724 23725 ASSERT(mp != NULL); 23726 ASSERT(hdr_len > 0); 23727 23728 size = MBLKL(mp) - hdr_len; 23729 if (size <= 0) 23730 return (B_FALSE); 23731 23732 /* The first mblk contains the header and some payload. */ 23733 blocks = 1; 23734 total = size; 23735 size %= len; 23736 missing = (size == 0) ? 0 : (len - size); 23737 mp = mp->b_cont; 23738 23739 while (mp != NULL) { 23740 /* 23741 * Give up if we encounter a zero length message block. 23742 * In practice, this should rarely happen and therefore 23743 * not worth the trouble of freeing and re-linking the 23744 * mblk from the chain to handle such case. 23745 */ 23746 if ((size = MBLKL(mp)) == 0) 23747 return (B_FALSE); 23748 23749 /* Too many payload buffers for a single Multidata message? */ 23750 if (++blocks > MULTIDATA_MAX_PBUFS) 23751 return (B_FALSE); 23752 23753 total += size; 23754 /* Is a frag distributed over two or more message blocks? */ 23755 if (missing > size) 23756 return (B_FALSE); 23757 size -= missing; 23758 23759 size %= len; 23760 missing = (size == 0) ? 0 : (len - size); 23761 23762 mp = mp->b_cont; 23763 } 23764 23765 return (total > ip_wput_frag_mdt_min); 23766 } 23767 23768 /* 23769 * Outbound IPv4 fragmentation routine using MDT. 23770 */ 23771 static void 23772 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23773 uint32_t frag_flag, int offset) 23774 { 23775 ipha_t *ipha_orig; 23776 int i1, ip_data_end; 23777 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23778 mblk_t *hdr_mp, *md_mp = NULL; 23779 unsigned char *hdr_ptr, *pld_ptr; 23780 multidata_t *mmd; 23781 ip_pdescinfo_t pdi; 23782 ill_t *ill; 23783 ip_stack_t *ipst = ire->ire_ipst; 23784 23785 ASSERT(DB_TYPE(mp) == M_DATA); 23786 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23787 23788 ill = ire_to_ill(ire); 23789 ASSERT(ill != NULL); 23790 23791 ipha_orig = (ipha_t *)mp->b_rptr; 23792 mp->b_rptr += sizeof (ipha_t); 23793 23794 /* Calculate how many packets we will send out */ 23795 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23796 pkts = (i1 + len - 1) / len; 23797 ASSERT(pkts > 1); 23798 23799 /* Allocate a message block which will hold all the IP Headers. */ 23800 wroff = ipst->ips_ip_wroff_extra; 23801 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23802 23803 i1 = pkts * hdr_chunk_len; 23804 /* 23805 * Create the header buffer, Multidata and destination address 23806 * and SAP attribute that should be associated with it. 23807 */ 23808 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23809 ((hdr_mp->b_wptr += i1), 23810 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23811 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23812 freemsg(mp); 23813 if (md_mp == NULL) { 23814 freemsg(hdr_mp); 23815 } else { 23816 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23817 freemsg(md_mp); 23818 } 23819 IP_STAT(ipst, ip_frag_mdt_allocfail); 23820 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23821 return; 23822 } 23823 IP_STAT(ipst, ip_frag_mdt_allocd); 23824 23825 /* 23826 * Add a payload buffer to the Multidata; this operation must not 23827 * fail, or otherwise our logic in this routine is broken. There 23828 * is no memory allocation done by the routine, so any returned 23829 * failure simply tells us that we've done something wrong. 23830 * 23831 * A failure tells us that either we're adding the same payload 23832 * buffer more than once, or we're trying to add more buffers than 23833 * allowed. None of the above cases should happen, and we panic 23834 * because either there's horrible heap corruption, and/or 23835 * programming mistake. 23836 */ 23837 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23838 goto pbuf_panic; 23839 23840 hdr_ptr = hdr_mp->b_rptr; 23841 pld_ptr = mp->b_rptr; 23842 23843 /* Establish the ending byte offset, based on the starting offset. */ 23844 offset <<= 3; 23845 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23846 IP_SIMPLE_HDR_LENGTH; 23847 23848 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23849 23850 while (pld_ptr < mp->b_wptr) { 23851 ipha_t *ipha; 23852 uint16_t offset_and_flags; 23853 uint16_t ip_len; 23854 int error; 23855 23856 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23857 ipha = (ipha_t *)(hdr_ptr + wroff); 23858 ASSERT(OK_32PTR(ipha)); 23859 *ipha = *ipha_orig; 23860 23861 if (ip_data_end - offset > len) { 23862 offset_and_flags = IPH_MF; 23863 } else { 23864 /* 23865 * Last frag. Set len to the length of this last piece. 23866 */ 23867 len = ip_data_end - offset; 23868 /* A frag of a frag might have IPH_MF non-zero */ 23869 offset_and_flags = 23870 ntohs(ipha->ipha_fragment_offset_and_flags) & 23871 IPH_MF; 23872 } 23873 offset_and_flags |= (uint16_t)(offset >> 3); 23874 offset_and_flags |= (uint16_t)frag_flag; 23875 /* Store the offset and flags in the IP header. */ 23876 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23877 23878 /* Store the length in the IP header. */ 23879 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23880 ipha->ipha_length = htons(ip_len); 23881 23882 /* 23883 * Set the IP header checksum. Note that mp is just 23884 * the header, so this is easy to pass to ip_csum. 23885 */ 23886 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23887 23888 /* 23889 * Record offset and size of header and data of the next packet 23890 * in the multidata message. 23891 */ 23892 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23893 PDESC_PLD_INIT(&pdi); 23894 i1 = MIN(mp->b_wptr - pld_ptr, len); 23895 ASSERT(i1 > 0); 23896 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23897 if (i1 == len) { 23898 pld_ptr += len; 23899 } else { 23900 i1 = len - i1; 23901 mp = mp->b_cont; 23902 ASSERT(mp != NULL); 23903 ASSERT(MBLKL(mp) >= i1); 23904 /* 23905 * Attach the next payload message block to the 23906 * multidata message. 23907 */ 23908 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23909 goto pbuf_panic; 23910 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23911 pld_ptr = mp->b_rptr + i1; 23912 } 23913 23914 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23915 KM_NOSLEEP)) == NULL) { 23916 /* 23917 * Any failure other than ENOMEM indicates that we 23918 * have passed in invalid pdesc info or parameters 23919 * to mmd_addpdesc, which must not happen. 23920 * 23921 * EINVAL is a result of failure on boundary checks 23922 * against the pdesc info contents. It should not 23923 * happen, and we panic because either there's 23924 * horrible heap corruption, and/or programming 23925 * mistake. 23926 */ 23927 if (error != ENOMEM) { 23928 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23929 "pdesc logic error detected for " 23930 "mmd %p pinfo %p (%d)\n", 23931 (void *)mmd, (void *)&pdi, error); 23932 /* NOTREACHED */ 23933 } 23934 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 23935 /* Free unattached payload message blocks as well */ 23936 md_mp->b_cont = mp->b_cont; 23937 goto free_mmd; 23938 } 23939 23940 /* Advance fragment offset. */ 23941 offset += len; 23942 23943 /* Advance to location for next header in the buffer. */ 23944 hdr_ptr += hdr_chunk_len; 23945 23946 /* Did we reach the next payload message block? */ 23947 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23948 mp = mp->b_cont; 23949 /* 23950 * Attach the next message block with payload 23951 * data to the multidata message. 23952 */ 23953 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23954 goto pbuf_panic; 23955 pld_ptr = mp->b_rptr; 23956 } 23957 } 23958 23959 ASSERT(hdr_mp->b_wptr == hdr_ptr); 23960 ASSERT(mp->b_wptr == pld_ptr); 23961 23962 /* Update IP statistics */ 23963 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 23964 23965 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 23966 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 23967 23968 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 23969 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 23970 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 23971 23972 if (pkt_type == OB_PKT) { 23973 ire->ire_ob_pkt_count += pkts; 23974 if (ire->ire_ipif != NULL) 23975 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 23976 } else { 23977 /* The type is IB_PKT in the forwarding path. */ 23978 ire->ire_ib_pkt_count += pkts; 23979 ASSERT(!IRE_IS_LOCAL(ire)); 23980 if (ire->ire_type & IRE_BROADCAST) { 23981 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 23982 } else { 23983 UPDATE_MIB(ill->ill_ip_mib, 23984 ipIfStatsHCOutForwDatagrams, pkts); 23985 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 23986 } 23987 } 23988 ire->ire_last_used_time = lbolt; 23989 /* Send it down */ 23990 putnext(ire->ire_stq, md_mp); 23991 return; 23992 23993 pbuf_panic: 23994 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 23995 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 23996 pbuf_idx); 23997 /* NOTREACHED */ 23998 } 23999 24000 /* 24001 * Outbound IP fragmentation routine. 24002 * 24003 * NOTE : This routine does not ire_refrele the ire that is passed in 24004 * as the argument. 24005 */ 24006 static void 24007 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24008 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 24009 { 24010 int i1; 24011 mblk_t *ll_hdr_mp; 24012 int ll_hdr_len; 24013 int hdr_len; 24014 mblk_t *hdr_mp; 24015 ipha_t *ipha; 24016 int ip_data_end; 24017 int len; 24018 mblk_t *mp = mp_orig, *mp1; 24019 int offset; 24020 queue_t *q; 24021 uint32_t v_hlen_tos_len; 24022 mblk_t *first_mp; 24023 boolean_t mctl_present; 24024 ill_t *ill; 24025 ill_t *out_ill; 24026 mblk_t *xmit_mp; 24027 mblk_t *carve_mp; 24028 ire_t *ire1 = NULL; 24029 ire_t *save_ire = NULL; 24030 mblk_t *next_mp = NULL; 24031 boolean_t last_frag = B_FALSE; 24032 boolean_t multirt_send = B_FALSE; 24033 ire_t *first_ire = NULL; 24034 irb_t *irb = NULL; 24035 mib2_ipIfStatsEntry_t *mibptr = NULL; 24036 24037 ill = ire_to_ill(ire); 24038 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24039 24040 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24041 24042 if (max_frag == 0) { 24043 ip1dbg(("ip_wput_frag: ire frag size is 0" 24044 " - dropping packet\n")); 24045 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24046 freemsg(mp); 24047 return; 24048 } 24049 24050 /* 24051 * IPsec does not allow hw accelerated packets to be fragmented 24052 * This check is made in ip_wput_ipsec_out prior to coming here 24053 * via ip_wput_ire_fragmentit. 24054 * 24055 * If at this point we have an ire whose ARP request has not 24056 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24057 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24058 * This packet and all fragmentable packets for this ire will 24059 * continue to get dropped while ire_nce->nce_state remains in 24060 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24061 * ND_REACHABLE, all subsquent large packets for this ire will 24062 * get fragemented and sent out by this function. 24063 */ 24064 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24065 /* If nce_state is ND_INITIAL, trigger ARP query */ 24066 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24067 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24068 " - dropping packet\n")); 24069 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24070 freemsg(mp); 24071 return; 24072 } 24073 24074 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24075 "ip_wput_frag_start:"); 24076 24077 if (mp->b_datap->db_type == M_CTL) { 24078 first_mp = mp; 24079 mp_orig = mp = mp->b_cont; 24080 mctl_present = B_TRUE; 24081 } else { 24082 first_mp = mp; 24083 mctl_present = B_FALSE; 24084 } 24085 24086 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24087 ipha = (ipha_t *)mp->b_rptr; 24088 24089 /* 24090 * If the Don't Fragment flag is on, generate an ICMP destination 24091 * unreachable, fragmentation needed. 24092 */ 24093 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24094 if (offset & IPH_DF) { 24095 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24096 if (is_system_labeled()) { 24097 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24098 ire->ire_max_frag - max_frag, AF_INET); 24099 } 24100 /* 24101 * Need to compute hdr checksum if called from ip_wput_ire. 24102 * Note that ip_rput_forward verifies the checksum before 24103 * calling this routine so in that case this is a noop. 24104 */ 24105 ipha->ipha_hdr_checksum = 0; 24106 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24107 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24108 ipst); 24109 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24110 "ip_wput_frag_end:(%S)", 24111 "don't fragment"); 24112 return; 24113 } 24114 /* 24115 * Labeled systems adjust max_frag if they add a label 24116 * to send the correct path mtu. We need the real mtu since we 24117 * are fragmenting the packet after label adjustment. 24118 */ 24119 if (is_system_labeled()) 24120 max_frag = ire->ire_max_frag; 24121 if (mctl_present) 24122 freeb(first_mp); 24123 /* 24124 * Establish the starting offset. May not be zero if we are fragging 24125 * a fragment that is being forwarded. 24126 */ 24127 offset = offset & IPH_OFFSET; 24128 24129 /* TODO why is this test needed? */ 24130 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24131 if (((max_frag - LENGTH) & ~7) < 8) { 24132 /* TODO: notify ulp somehow */ 24133 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24134 freemsg(mp); 24135 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24136 "ip_wput_frag_end:(%S)", 24137 "len < 8"); 24138 return; 24139 } 24140 24141 hdr_len = (V_HLEN & 0xF) << 2; 24142 24143 ipha->ipha_hdr_checksum = 0; 24144 24145 /* 24146 * Establish the number of bytes maximum per frag, after putting 24147 * in the header. 24148 */ 24149 len = (max_frag - hdr_len) & ~7; 24150 24151 /* Check if we can use MDT to send out the frags. */ 24152 ASSERT(!IRE_IS_LOCAL(ire)); 24153 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24154 ipst->ips_ip_multidata_outbound && 24155 !(ire->ire_flags & RTF_MULTIRT) && 24156 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24157 ill != NULL && ILL_MDT_CAPABLE(ill) && 24158 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24159 ASSERT(ill->ill_mdt_capab != NULL); 24160 if (!ill->ill_mdt_capab->ill_mdt_on) { 24161 /* 24162 * If MDT has been previously turned off in the past, 24163 * and we currently can do MDT (due to IPQoS policy 24164 * removal, etc.) then enable it for this interface. 24165 */ 24166 ill->ill_mdt_capab->ill_mdt_on = 1; 24167 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24168 ill->ill_name)); 24169 } 24170 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24171 offset); 24172 return; 24173 } 24174 24175 /* Get a copy of the header for the trailing frags */ 24176 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24177 if (!hdr_mp) { 24178 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24179 freemsg(mp); 24180 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24181 "ip_wput_frag_end:(%S)", 24182 "couldn't copy hdr"); 24183 return; 24184 } 24185 if (DB_CRED(mp) != NULL) 24186 mblk_setcred(hdr_mp, DB_CRED(mp)); 24187 24188 /* Store the starting offset, with the MoreFrags flag. */ 24189 i1 = offset | IPH_MF | frag_flag; 24190 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24191 24192 /* Establish the ending byte offset, based on the starting offset. */ 24193 offset <<= 3; 24194 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24195 24196 /* Store the length of the first fragment in the IP header. */ 24197 i1 = len + hdr_len; 24198 ASSERT(i1 <= IP_MAXPACKET); 24199 ipha->ipha_length = htons((uint16_t)i1); 24200 24201 /* 24202 * Compute the IP header checksum for the first frag. We have to 24203 * watch out that we stop at the end of the header. 24204 */ 24205 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24206 24207 /* 24208 * Now carve off the first frag. Note that this will include the 24209 * original IP header. 24210 */ 24211 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24212 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24213 freeb(hdr_mp); 24214 freemsg(mp_orig); 24215 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24216 "ip_wput_frag_end:(%S)", 24217 "couldn't carve first"); 24218 return; 24219 } 24220 24221 /* 24222 * Multirouting case. Each fragment is replicated 24223 * via all non-condemned RTF_MULTIRT routes 24224 * currently resolved. 24225 * We ensure that first_ire is the first RTF_MULTIRT 24226 * ire in the bucket. 24227 */ 24228 if (ire->ire_flags & RTF_MULTIRT) { 24229 irb = ire->ire_bucket; 24230 ASSERT(irb != NULL); 24231 24232 multirt_send = B_TRUE; 24233 24234 /* Make sure we do not omit any multiroute ire. */ 24235 IRB_REFHOLD(irb); 24236 for (first_ire = irb->irb_ire; 24237 first_ire != NULL; 24238 first_ire = first_ire->ire_next) { 24239 if ((first_ire->ire_flags & RTF_MULTIRT) && 24240 (first_ire->ire_addr == ire->ire_addr) && 24241 !(first_ire->ire_marks & 24242 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24243 break; 24244 } 24245 } 24246 24247 if (first_ire != NULL) { 24248 if (first_ire != ire) { 24249 IRE_REFHOLD(first_ire); 24250 /* 24251 * Do not release the ire passed in 24252 * as the argument. 24253 */ 24254 ire = first_ire; 24255 } else { 24256 first_ire = NULL; 24257 } 24258 } 24259 IRB_REFRELE(irb); 24260 24261 /* 24262 * Save the first ire; we will need to restore it 24263 * for the trailing frags. 24264 * We REFHOLD save_ire, as each iterated ire will be 24265 * REFRELEd. 24266 */ 24267 save_ire = ire; 24268 IRE_REFHOLD(save_ire); 24269 } 24270 24271 /* 24272 * First fragment emission loop. 24273 * In most cases, the emission loop below is entered only 24274 * once. Only in the case where the ire holds the RTF_MULTIRT 24275 * flag, do we loop to process all RTF_MULTIRT ires in the 24276 * bucket, and send the fragment through all crossed 24277 * RTF_MULTIRT routes. 24278 */ 24279 do { 24280 if (ire->ire_flags & RTF_MULTIRT) { 24281 /* 24282 * We are in a multiple send case, need to get 24283 * the next ire and make a copy of the packet. 24284 * ire1 holds here the next ire to process in the 24285 * bucket. If multirouting is expected, 24286 * any non-RTF_MULTIRT ire that has the 24287 * right destination address is ignored. 24288 * 24289 * We have to take into account the MTU of 24290 * each walked ire. max_frag is set by the 24291 * the caller and generally refers to 24292 * the primary ire entry. Here we ensure that 24293 * no route with a lower MTU will be used, as 24294 * fragments are carved once for all ires, 24295 * then replicated. 24296 */ 24297 ASSERT(irb != NULL); 24298 IRB_REFHOLD(irb); 24299 for (ire1 = ire->ire_next; 24300 ire1 != NULL; 24301 ire1 = ire1->ire_next) { 24302 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24303 continue; 24304 if (ire1->ire_addr != ire->ire_addr) 24305 continue; 24306 if (ire1->ire_marks & 24307 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24308 continue; 24309 /* 24310 * Ensure we do not exceed the MTU 24311 * of the next route. 24312 */ 24313 if (ire1->ire_max_frag < max_frag) { 24314 ip_multirt_bad_mtu(ire1, max_frag); 24315 continue; 24316 } 24317 24318 /* Got one. */ 24319 IRE_REFHOLD(ire1); 24320 break; 24321 } 24322 IRB_REFRELE(irb); 24323 24324 if (ire1 != NULL) { 24325 next_mp = copyb(mp); 24326 if ((next_mp == NULL) || 24327 ((mp->b_cont != NULL) && 24328 ((next_mp->b_cont = 24329 dupmsg(mp->b_cont)) == NULL))) { 24330 freemsg(next_mp); 24331 next_mp = NULL; 24332 ire_refrele(ire1); 24333 ire1 = NULL; 24334 } 24335 } 24336 24337 /* Last multiroute ire; don't loop anymore. */ 24338 if (ire1 == NULL) { 24339 multirt_send = B_FALSE; 24340 } 24341 } 24342 24343 ll_hdr_len = 0; 24344 LOCK_IRE_FP_MP(ire); 24345 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24346 if (ll_hdr_mp != NULL) { 24347 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24348 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24349 } else { 24350 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24351 } 24352 24353 /* If there is a transmit header, get a copy for this frag. */ 24354 /* 24355 * TODO: should check db_ref before calling ip_carve_mp since 24356 * it might give us a dup. 24357 */ 24358 if (!ll_hdr_mp) { 24359 /* No xmit header. */ 24360 xmit_mp = mp; 24361 24362 /* We have a link-layer header that can fit in our mblk. */ 24363 } else if (mp->b_datap->db_ref == 1 && 24364 ll_hdr_len != 0 && 24365 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24366 /* M_DATA fastpath */ 24367 mp->b_rptr -= ll_hdr_len; 24368 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24369 xmit_mp = mp; 24370 24371 /* Corner case if copyb has failed */ 24372 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24373 UNLOCK_IRE_FP_MP(ire); 24374 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24375 freeb(hdr_mp); 24376 freemsg(mp); 24377 freemsg(mp_orig); 24378 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24379 "ip_wput_frag_end:(%S)", 24380 "discard"); 24381 24382 if (multirt_send) { 24383 ASSERT(ire1); 24384 ASSERT(next_mp); 24385 24386 freemsg(next_mp); 24387 ire_refrele(ire1); 24388 } 24389 if (save_ire != NULL) 24390 IRE_REFRELE(save_ire); 24391 24392 if (first_ire != NULL) 24393 ire_refrele(first_ire); 24394 return; 24395 24396 /* 24397 * Case of res_mp OR the fastpath mp can't fit 24398 * in the mblk 24399 */ 24400 } else { 24401 xmit_mp->b_cont = mp; 24402 if (DB_CRED(mp) != NULL) 24403 mblk_setcred(xmit_mp, DB_CRED(mp)); 24404 /* 24405 * Get priority marking, if any. 24406 * We propagate the CoS marking from the 24407 * original packet that went to QoS processing 24408 * in ip_wput_ire to the newly carved mp. 24409 */ 24410 if (DB_TYPE(xmit_mp) == M_DATA) 24411 xmit_mp->b_band = mp->b_band; 24412 } 24413 UNLOCK_IRE_FP_MP(ire); 24414 24415 q = ire->ire_stq; 24416 out_ill = (ill_t *)q->q_ptr; 24417 24418 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24419 24420 DTRACE_PROBE4(ip4__physical__out__start, 24421 ill_t *, NULL, ill_t *, out_ill, 24422 ipha_t *, ipha, mblk_t *, xmit_mp); 24423 24424 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24425 ipst->ips_ipv4firewall_physical_out, 24426 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24427 24428 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24429 24430 if (xmit_mp != NULL) { 24431 putnext(q, xmit_mp); 24432 24433 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24434 UPDATE_MIB(out_ill->ill_ip_mib, 24435 ipIfStatsHCOutOctets, i1); 24436 24437 if (pkt_type != OB_PKT) { 24438 /* 24439 * Update the packet count and MIB stats 24440 * of trailing RTF_MULTIRT ires. 24441 */ 24442 UPDATE_OB_PKT_COUNT(ire); 24443 BUMP_MIB(out_ill->ill_ip_mib, 24444 ipIfStatsOutFragReqds); 24445 } 24446 } 24447 24448 if (multirt_send) { 24449 /* 24450 * We are in a multiple send case; look for 24451 * the next ire and re-enter the loop. 24452 */ 24453 ASSERT(ire1); 24454 ASSERT(next_mp); 24455 /* REFRELE the current ire before looping */ 24456 ire_refrele(ire); 24457 ire = ire1; 24458 ire1 = NULL; 24459 mp = next_mp; 24460 next_mp = NULL; 24461 } 24462 } while (multirt_send); 24463 24464 ASSERT(ire1 == NULL); 24465 24466 /* Restore the original ire; we need it for the trailing frags */ 24467 if (save_ire != NULL) { 24468 /* REFRELE the last iterated ire */ 24469 ire_refrele(ire); 24470 /* save_ire has been REFHOLDed */ 24471 ire = save_ire; 24472 save_ire = NULL; 24473 q = ire->ire_stq; 24474 } 24475 24476 if (pkt_type == OB_PKT) { 24477 UPDATE_OB_PKT_COUNT(ire); 24478 } else { 24479 out_ill = (ill_t *)q->q_ptr; 24480 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24481 UPDATE_IB_PKT_COUNT(ire); 24482 } 24483 24484 /* Advance the offset to the second frag starting point. */ 24485 offset += len; 24486 /* 24487 * Update hdr_len from the copied header - there might be less options 24488 * in the later fragments. 24489 */ 24490 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24491 /* Loop until done. */ 24492 for (;;) { 24493 uint16_t offset_and_flags; 24494 uint16_t ip_len; 24495 24496 if (ip_data_end - offset > len) { 24497 /* 24498 * Carve off the appropriate amount from the original 24499 * datagram. 24500 */ 24501 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24502 mp = NULL; 24503 break; 24504 } 24505 /* 24506 * More frags after this one. Get another copy 24507 * of the header. 24508 */ 24509 if (carve_mp->b_datap->db_ref == 1 && 24510 hdr_mp->b_wptr - hdr_mp->b_rptr < 24511 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24512 /* Inline IP header */ 24513 carve_mp->b_rptr -= hdr_mp->b_wptr - 24514 hdr_mp->b_rptr; 24515 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24516 hdr_mp->b_wptr - hdr_mp->b_rptr); 24517 mp = carve_mp; 24518 } else { 24519 if (!(mp = copyb(hdr_mp))) { 24520 freemsg(carve_mp); 24521 break; 24522 } 24523 /* Get priority marking, if any. */ 24524 mp->b_band = carve_mp->b_band; 24525 mp->b_cont = carve_mp; 24526 } 24527 ipha = (ipha_t *)mp->b_rptr; 24528 offset_and_flags = IPH_MF; 24529 } else { 24530 /* 24531 * Last frag. Consume the header. Set len to 24532 * the length of this last piece. 24533 */ 24534 len = ip_data_end - offset; 24535 24536 /* 24537 * Carve off the appropriate amount from the original 24538 * datagram. 24539 */ 24540 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24541 mp = NULL; 24542 break; 24543 } 24544 if (carve_mp->b_datap->db_ref == 1 && 24545 hdr_mp->b_wptr - hdr_mp->b_rptr < 24546 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24547 /* Inline IP header */ 24548 carve_mp->b_rptr -= hdr_mp->b_wptr - 24549 hdr_mp->b_rptr; 24550 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24551 hdr_mp->b_wptr - hdr_mp->b_rptr); 24552 mp = carve_mp; 24553 freeb(hdr_mp); 24554 hdr_mp = mp; 24555 } else { 24556 mp = hdr_mp; 24557 /* Get priority marking, if any. */ 24558 mp->b_band = carve_mp->b_band; 24559 mp->b_cont = carve_mp; 24560 } 24561 ipha = (ipha_t *)mp->b_rptr; 24562 /* A frag of a frag might have IPH_MF non-zero */ 24563 offset_and_flags = 24564 ntohs(ipha->ipha_fragment_offset_and_flags) & 24565 IPH_MF; 24566 } 24567 offset_and_flags |= (uint16_t)(offset >> 3); 24568 offset_and_flags |= (uint16_t)frag_flag; 24569 /* Store the offset and flags in the IP header. */ 24570 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24571 24572 /* Store the length in the IP header. */ 24573 ip_len = (uint16_t)(len + hdr_len); 24574 ipha->ipha_length = htons(ip_len); 24575 24576 /* 24577 * Set the IP header checksum. Note that mp is just 24578 * the header, so this is easy to pass to ip_csum. 24579 */ 24580 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24581 24582 /* Attach a transmit header, if any, and ship it. */ 24583 if (pkt_type == OB_PKT) { 24584 UPDATE_OB_PKT_COUNT(ire); 24585 } else { 24586 out_ill = (ill_t *)q->q_ptr; 24587 BUMP_MIB(out_ill->ill_ip_mib, 24588 ipIfStatsHCOutForwDatagrams); 24589 UPDATE_IB_PKT_COUNT(ire); 24590 } 24591 24592 if (ire->ire_flags & RTF_MULTIRT) { 24593 irb = ire->ire_bucket; 24594 ASSERT(irb != NULL); 24595 24596 multirt_send = B_TRUE; 24597 24598 /* 24599 * Save the original ire; we will need to restore it 24600 * for the tailing frags. 24601 */ 24602 save_ire = ire; 24603 IRE_REFHOLD(save_ire); 24604 } 24605 /* 24606 * Emission loop for this fragment, similar 24607 * to what is done for the first fragment. 24608 */ 24609 do { 24610 if (multirt_send) { 24611 /* 24612 * We are in a multiple send case, need to get 24613 * the next ire and make a copy of the packet. 24614 */ 24615 ASSERT(irb != NULL); 24616 IRB_REFHOLD(irb); 24617 for (ire1 = ire->ire_next; 24618 ire1 != NULL; 24619 ire1 = ire1->ire_next) { 24620 if (!(ire1->ire_flags & RTF_MULTIRT)) 24621 continue; 24622 if (ire1->ire_addr != ire->ire_addr) 24623 continue; 24624 if (ire1->ire_marks & 24625 (IRE_MARK_CONDEMNED| 24626 IRE_MARK_HIDDEN)) { 24627 continue; 24628 } 24629 /* 24630 * Ensure we do not exceed the MTU 24631 * of the next route. 24632 */ 24633 if (ire1->ire_max_frag < max_frag) { 24634 ip_multirt_bad_mtu(ire1, 24635 max_frag); 24636 continue; 24637 } 24638 24639 /* Got one. */ 24640 IRE_REFHOLD(ire1); 24641 break; 24642 } 24643 IRB_REFRELE(irb); 24644 24645 if (ire1 != NULL) { 24646 next_mp = copyb(mp); 24647 if ((next_mp == NULL) || 24648 ((mp->b_cont != NULL) && 24649 ((next_mp->b_cont = 24650 dupmsg(mp->b_cont)) == NULL))) { 24651 freemsg(next_mp); 24652 next_mp = NULL; 24653 ire_refrele(ire1); 24654 ire1 = NULL; 24655 } 24656 } 24657 24658 /* Last multiroute ire; don't loop anymore. */ 24659 if (ire1 == NULL) { 24660 multirt_send = B_FALSE; 24661 } 24662 } 24663 24664 /* Update transmit header */ 24665 ll_hdr_len = 0; 24666 LOCK_IRE_FP_MP(ire); 24667 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24668 if (ll_hdr_mp != NULL) { 24669 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24670 ll_hdr_len = MBLKL(ll_hdr_mp); 24671 } else { 24672 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24673 } 24674 24675 if (!ll_hdr_mp) { 24676 xmit_mp = mp; 24677 24678 /* 24679 * We have link-layer header that can fit in 24680 * our mblk. 24681 */ 24682 } else if (mp->b_datap->db_ref == 1 && 24683 ll_hdr_len != 0 && 24684 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24685 /* M_DATA fastpath */ 24686 mp->b_rptr -= ll_hdr_len; 24687 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24688 ll_hdr_len); 24689 xmit_mp = mp; 24690 24691 /* 24692 * Case of res_mp OR the fastpath mp can't fit 24693 * in the mblk 24694 */ 24695 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24696 xmit_mp->b_cont = mp; 24697 if (DB_CRED(mp) != NULL) 24698 mblk_setcred(xmit_mp, DB_CRED(mp)); 24699 /* Get priority marking, if any. */ 24700 if (DB_TYPE(xmit_mp) == M_DATA) 24701 xmit_mp->b_band = mp->b_band; 24702 24703 /* Corner case if copyb failed */ 24704 } else { 24705 /* 24706 * Exit both the replication and 24707 * fragmentation loops. 24708 */ 24709 UNLOCK_IRE_FP_MP(ire); 24710 goto drop_pkt; 24711 } 24712 UNLOCK_IRE_FP_MP(ire); 24713 24714 mp1 = mp; 24715 out_ill = (ill_t *)q->q_ptr; 24716 24717 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24718 24719 DTRACE_PROBE4(ip4__physical__out__start, 24720 ill_t *, NULL, ill_t *, out_ill, 24721 ipha_t *, ipha, mblk_t *, xmit_mp); 24722 24723 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24724 ipst->ips_ipv4firewall_physical_out, 24725 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24726 24727 DTRACE_PROBE1(ip4__physical__out__end, 24728 mblk_t *, xmit_mp); 24729 24730 if (mp != mp1 && hdr_mp == mp1) 24731 hdr_mp = mp; 24732 if (mp != mp1 && mp_orig == mp1) 24733 mp_orig = mp; 24734 24735 if (xmit_mp != NULL) { 24736 putnext(q, xmit_mp); 24737 24738 BUMP_MIB(out_ill->ill_ip_mib, 24739 ipIfStatsHCOutTransmits); 24740 UPDATE_MIB(out_ill->ill_ip_mib, 24741 ipIfStatsHCOutOctets, ip_len); 24742 24743 if (pkt_type != OB_PKT) { 24744 /* 24745 * Update the packet count of trailing 24746 * RTF_MULTIRT ires. 24747 */ 24748 UPDATE_OB_PKT_COUNT(ire); 24749 } 24750 } 24751 24752 /* All done if we just consumed the hdr_mp. */ 24753 if (mp == hdr_mp) { 24754 last_frag = B_TRUE; 24755 BUMP_MIB(out_ill->ill_ip_mib, 24756 ipIfStatsOutFragOKs); 24757 } 24758 24759 if (multirt_send) { 24760 /* 24761 * We are in a multiple send case; look for 24762 * the next ire and re-enter the loop. 24763 */ 24764 ASSERT(ire1); 24765 ASSERT(next_mp); 24766 /* REFRELE the current ire before looping */ 24767 ire_refrele(ire); 24768 ire = ire1; 24769 ire1 = NULL; 24770 q = ire->ire_stq; 24771 mp = next_mp; 24772 next_mp = NULL; 24773 } 24774 } while (multirt_send); 24775 /* 24776 * Restore the original ire; we need it for the 24777 * trailing frags 24778 */ 24779 if (save_ire != NULL) { 24780 ASSERT(ire1 == NULL); 24781 /* REFRELE the last iterated ire */ 24782 ire_refrele(ire); 24783 /* save_ire has been REFHOLDed */ 24784 ire = save_ire; 24785 q = ire->ire_stq; 24786 save_ire = NULL; 24787 } 24788 24789 if (last_frag) { 24790 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24791 "ip_wput_frag_end:(%S)", 24792 "consumed hdr_mp"); 24793 24794 if (first_ire != NULL) 24795 ire_refrele(first_ire); 24796 return; 24797 } 24798 /* Otherwise, advance and loop. */ 24799 offset += len; 24800 } 24801 24802 drop_pkt: 24803 /* Clean up following allocation failure. */ 24804 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24805 freemsg(mp); 24806 if (mp != hdr_mp) 24807 freeb(hdr_mp); 24808 if (mp != mp_orig) 24809 freemsg(mp_orig); 24810 24811 if (save_ire != NULL) 24812 IRE_REFRELE(save_ire); 24813 if (first_ire != NULL) 24814 ire_refrele(first_ire); 24815 24816 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24817 "ip_wput_frag_end:(%S)", 24818 "end--alloc failure"); 24819 } 24820 24821 /* 24822 * Copy the header plus those options which have the copy bit set 24823 */ 24824 static mblk_t * 24825 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 24826 { 24827 mblk_t *mp; 24828 uchar_t *up; 24829 24830 /* 24831 * Quick check if we need to look for options without the copy bit 24832 * set 24833 */ 24834 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 24835 if (!mp) 24836 return (mp); 24837 mp->b_rptr += ipst->ips_ip_wroff_extra; 24838 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24839 bcopy(rptr, mp->b_rptr, hdr_len); 24840 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24841 return (mp); 24842 } 24843 up = mp->b_rptr; 24844 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24845 up += IP_SIMPLE_HDR_LENGTH; 24846 rptr += IP_SIMPLE_HDR_LENGTH; 24847 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24848 while (hdr_len > 0) { 24849 uint32_t optval; 24850 uint32_t optlen; 24851 24852 optval = *rptr; 24853 if (optval == IPOPT_EOL) 24854 break; 24855 if (optval == IPOPT_NOP) 24856 optlen = 1; 24857 else 24858 optlen = rptr[1]; 24859 if (optval & IPOPT_COPY) { 24860 bcopy(rptr, up, optlen); 24861 up += optlen; 24862 } 24863 rptr += optlen; 24864 hdr_len -= optlen; 24865 } 24866 /* 24867 * Make sure that we drop an even number of words by filling 24868 * with EOL to the next word boundary. 24869 */ 24870 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24871 hdr_len & 0x3; hdr_len++) 24872 *up++ = IPOPT_EOL; 24873 mp->b_wptr = up; 24874 /* Update header length */ 24875 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24876 return (mp); 24877 } 24878 24879 /* 24880 * Delivery to local recipients including fanout to multiple recipients. 24881 * Does not do checksumming of UDP/TCP. 24882 * Note: q should be the read side queue for either the ill or conn. 24883 * Note: rq should be the read side q for the lower (ill) stream. 24884 * We don't send packets to IPPF processing, thus the last argument 24885 * to all the fanout calls are B_FALSE. 24886 */ 24887 void 24888 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24889 int fanout_flags, zoneid_t zoneid) 24890 { 24891 uint32_t protocol; 24892 mblk_t *first_mp; 24893 boolean_t mctl_present; 24894 int ire_type; 24895 #define rptr ((uchar_t *)ipha) 24896 ip_stack_t *ipst = ill->ill_ipst; 24897 24898 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24899 "ip_wput_local_start: q %p", q); 24900 24901 if (ire != NULL) { 24902 ire_type = ire->ire_type; 24903 } else { 24904 /* 24905 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24906 * packet is not multicast, we can't tell the ire type. 24907 */ 24908 ASSERT(CLASSD(ipha->ipha_dst)); 24909 ire_type = IRE_BROADCAST; 24910 } 24911 24912 first_mp = mp; 24913 if (first_mp->b_datap->db_type == M_CTL) { 24914 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24915 if (!io->ipsec_out_secure) { 24916 /* 24917 * This ipsec_out_t was allocated in ip_wput 24918 * for multicast packets to store the ill_index. 24919 * As this is being delivered locally, we don't 24920 * need this anymore. 24921 */ 24922 mp = first_mp->b_cont; 24923 freeb(first_mp); 24924 first_mp = mp; 24925 mctl_present = B_FALSE; 24926 } else { 24927 /* 24928 * Convert IPSEC_OUT to IPSEC_IN, preserving all 24929 * security properties for the looped-back packet. 24930 */ 24931 mctl_present = B_TRUE; 24932 mp = first_mp->b_cont; 24933 ASSERT(mp != NULL); 24934 ipsec_out_to_in(first_mp); 24935 } 24936 } else { 24937 mctl_present = B_FALSE; 24938 } 24939 24940 DTRACE_PROBE4(ip4__loopback__in__start, 24941 ill_t *, ill, ill_t *, NULL, 24942 ipha_t *, ipha, mblk_t *, first_mp); 24943 24944 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 24945 ipst->ips_ipv4firewall_loopback_in, 24946 ill, NULL, ipha, first_mp, mp, ipst); 24947 24948 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 24949 24950 if (first_mp == NULL) 24951 return; 24952 24953 ipst->ips_loopback_packets++; 24954 24955 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 24956 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 24957 if (!IS_SIMPLE_IPH(ipha)) { 24958 ip_wput_local_options(ipha, ipst); 24959 } 24960 24961 protocol = ipha->ipha_protocol; 24962 switch (protocol) { 24963 case IPPROTO_ICMP: { 24964 ire_t *ire_zone; 24965 ilm_t *ilm; 24966 mblk_t *mp1; 24967 zoneid_t last_zoneid; 24968 24969 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 24970 ASSERT(ire_type == IRE_BROADCAST); 24971 /* 24972 * In the multicast case, applications may have joined 24973 * the group from different zones, so we need to deliver 24974 * the packet to each of them. Loop through the 24975 * multicast memberships structures (ilm) on the receive 24976 * ill and send a copy of the packet up each matching 24977 * one. However, we don't do this for multicasts sent on 24978 * the loopback interface (PHYI_LOOPBACK flag set) as 24979 * they must stay in the sender's zone. 24980 * 24981 * ilm_add_v6() ensures that ilms in the same zone are 24982 * contiguous in the ill_ilm list. We use this property 24983 * to avoid sending duplicates needed when two 24984 * applications in the same zone join the same group on 24985 * different logical interfaces: we ignore the ilm if 24986 * it's zoneid is the same as the last matching one. 24987 * In addition, the sending of the packet for 24988 * ire_zoneid is delayed until all of the other ilms 24989 * have been exhausted. 24990 */ 24991 last_zoneid = -1; 24992 ILM_WALKER_HOLD(ill); 24993 for (ilm = ill->ill_ilm; ilm != NULL; 24994 ilm = ilm->ilm_next) { 24995 if ((ilm->ilm_flags & ILM_DELETED) || 24996 ipha->ipha_dst != ilm->ilm_addr || 24997 ilm->ilm_zoneid == last_zoneid || 24998 ilm->ilm_zoneid == zoneid || 24999 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25000 continue; 25001 mp1 = ip_copymsg(first_mp); 25002 if (mp1 == NULL) 25003 continue; 25004 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25005 mctl_present, B_FALSE, ill, 25006 ilm->ilm_zoneid); 25007 last_zoneid = ilm->ilm_zoneid; 25008 } 25009 ILM_WALKER_RELE(ill); 25010 /* 25011 * Loopback case: the sending endpoint has 25012 * IP_MULTICAST_LOOP disabled, therefore we don't 25013 * dispatch the multicast packet to the sending zone. 25014 */ 25015 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25016 freemsg(first_mp); 25017 return; 25018 } 25019 } else if (ire_type == IRE_BROADCAST) { 25020 /* 25021 * In the broadcast case, there may be many zones 25022 * which need a copy of the packet delivered to them. 25023 * There is one IRE_BROADCAST per broadcast address 25024 * and per zone; we walk those using a helper function. 25025 * In addition, the sending of the packet for zoneid is 25026 * delayed until all of the other ires have been 25027 * processed. 25028 */ 25029 IRB_REFHOLD(ire->ire_bucket); 25030 ire_zone = NULL; 25031 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25032 ire)) != NULL) { 25033 mp1 = ip_copymsg(first_mp); 25034 if (mp1 == NULL) 25035 continue; 25036 25037 UPDATE_IB_PKT_COUNT(ire_zone); 25038 ire_zone->ire_last_used_time = lbolt; 25039 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25040 mctl_present, B_FALSE, ill, 25041 ire_zone->ire_zoneid); 25042 } 25043 IRB_REFRELE(ire->ire_bucket); 25044 } 25045 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25046 0, mctl_present, B_FALSE, ill, zoneid); 25047 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25048 "ip_wput_local_end: q %p (%S)", 25049 q, "icmp"); 25050 return; 25051 } 25052 case IPPROTO_IGMP: 25053 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25054 /* Bad packet - discarded by igmp_input */ 25055 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25056 "ip_wput_local_end: q %p (%S)", 25057 q, "igmp_input--bad packet"); 25058 if (mctl_present) 25059 freeb(first_mp); 25060 return; 25061 } 25062 /* 25063 * igmp_input() may have returned the pulled up message. 25064 * So first_mp and ipha need to be reinitialized. 25065 */ 25066 ipha = (ipha_t *)mp->b_rptr; 25067 if (mctl_present) 25068 first_mp->b_cont = mp; 25069 else 25070 first_mp = mp; 25071 /* deliver to local raw users */ 25072 break; 25073 case IPPROTO_ENCAP: 25074 /* 25075 * This case is covered by either ip_fanout_proto, or by 25076 * the above security processing for self-tunneled packets. 25077 */ 25078 break; 25079 case IPPROTO_UDP: { 25080 uint16_t *up; 25081 uint32_t ports; 25082 25083 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25084 UDP_PORTS_OFFSET); 25085 /* Force a 'valid' checksum. */ 25086 up[3] = 0; 25087 25088 ports = *(uint32_t *)up; 25089 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25090 (ire_type == IRE_BROADCAST), 25091 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25092 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25093 ill, zoneid); 25094 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25095 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25096 return; 25097 } 25098 case IPPROTO_TCP: { 25099 25100 /* 25101 * For TCP, discard broadcast packets. 25102 */ 25103 if ((ushort_t)ire_type == IRE_BROADCAST) { 25104 freemsg(first_mp); 25105 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25106 ip2dbg(("ip_wput_local: discard broadcast\n")); 25107 return; 25108 } 25109 25110 if (mp->b_datap->db_type == M_DATA) { 25111 /* 25112 * M_DATA mblk, so init mblk (chain) for no struio(). 25113 */ 25114 mblk_t *mp1 = mp; 25115 25116 do { 25117 mp1->b_datap->db_struioflag = 0; 25118 } while ((mp1 = mp1->b_cont) != NULL); 25119 } 25120 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25121 <= mp->b_wptr); 25122 ip_fanout_tcp(q, first_mp, ill, ipha, 25123 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25124 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25125 mctl_present, B_FALSE, zoneid); 25126 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25127 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25128 return; 25129 } 25130 case IPPROTO_SCTP: 25131 { 25132 uint32_t ports; 25133 25134 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25135 ip_fanout_sctp(first_mp, ill, ipha, ports, 25136 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25137 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25138 return; 25139 } 25140 25141 default: 25142 break; 25143 } 25144 /* 25145 * Find a client for some other protocol. We give 25146 * copies to multiple clients, if more than one is 25147 * bound. 25148 */ 25149 ip_fanout_proto(q, first_mp, ill, ipha, 25150 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25151 mctl_present, B_FALSE, ill, zoneid); 25152 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25153 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25154 #undef rptr 25155 } 25156 25157 /* 25158 * Update any source route, record route, or timestamp options. 25159 * Check that we are at end of strict source route. 25160 * The options have been sanity checked by ip_wput_options(). 25161 */ 25162 static void 25163 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25164 { 25165 ipoptp_t opts; 25166 uchar_t *opt; 25167 uint8_t optval; 25168 uint8_t optlen; 25169 ipaddr_t dst; 25170 uint32_t ts; 25171 ire_t *ire; 25172 timestruc_t now; 25173 25174 ip2dbg(("ip_wput_local_options\n")); 25175 for (optval = ipoptp_first(&opts, ipha); 25176 optval != IPOPT_EOL; 25177 optval = ipoptp_next(&opts)) { 25178 opt = opts.ipoptp_cur; 25179 optlen = opts.ipoptp_len; 25180 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25181 switch (optval) { 25182 uint32_t off; 25183 case IPOPT_SSRR: 25184 case IPOPT_LSRR: 25185 off = opt[IPOPT_OFFSET]; 25186 off--; 25187 if (optlen < IP_ADDR_LEN || 25188 off > optlen - IP_ADDR_LEN) { 25189 /* End of source route */ 25190 break; 25191 } 25192 /* 25193 * This will only happen if two consecutive entries 25194 * in the source route contains our address or if 25195 * it is a packet with a loose source route which 25196 * reaches us before consuming the whole source route 25197 */ 25198 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25199 if (optval == IPOPT_SSRR) { 25200 return; 25201 } 25202 /* 25203 * Hack: instead of dropping the packet truncate the 25204 * source route to what has been used by filling the 25205 * rest with IPOPT_NOP. 25206 */ 25207 opt[IPOPT_OLEN] = (uint8_t)off; 25208 while (off < optlen) { 25209 opt[off++] = IPOPT_NOP; 25210 } 25211 break; 25212 case IPOPT_RR: 25213 off = opt[IPOPT_OFFSET]; 25214 off--; 25215 if (optlen < IP_ADDR_LEN || 25216 off > optlen - IP_ADDR_LEN) { 25217 /* No more room - ignore */ 25218 ip1dbg(( 25219 "ip_wput_forward_options: end of RR\n")); 25220 break; 25221 } 25222 dst = htonl(INADDR_LOOPBACK); 25223 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25224 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25225 break; 25226 case IPOPT_TS: 25227 /* Insert timestamp if there is romm */ 25228 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25229 case IPOPT_TS_TSONLY: 25230 off = IPOPT_TS_TIMELEN; 25231 break; 25232 case IPOPT_TS_PRESPEC: 25233 case IPOPT_TS_PRESPEC_RFC791: 25234 /* Verify that the address matched */ 25235 off = opt[IPOPT_OFFSET] - 1; 25236 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25237 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25238 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25239 ipst); 25240 if (ire == NULL) { 25241 /* Not for us */ 25242 break; 25243 } 25244 ire_refrele(ire); 25245 /* FALLTHRU */ 25246 case IPOPT_TS_TSANDADDR: 25247 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25248 break; 25249 default: 25250 /* 25251 * ip_*put_options should have already 25252 * dropped this packet. 25253 */ 25254 cmn_err(CE_PANIC, "ip_wput_local_options: " 25255 "unknown IT - bug in ip_wput_options?\n"); 25256 return; /* Keep "lint" happy */ 25257 } 25258 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25259 /* Increase overflow counter */ 25260 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25261 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25262 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25263 (off << 4); 25264 break; 25265 } 25266 off = opt[IPOPT_OFFSET] - 1; 25267 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25268 case IPOPT_TS_PRESPEC: 25269 case IPOPT_TS_PRESPEC_RFC791: 25270 case IPOPT_TS_TSANDADDR: 25271 dst = htonl(INADDR_LOOPBACK); 25272 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25273 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25274 /* FALLTHRU */ 25275 case IPOPT_TS_TSONLY: 25276 off = opt[IPOPT_OFFSET] - 1; 25277 /* Compute # of milliseconds since midnight */ 25278 gethrestime(&now); 25279 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25280 now.tv_nsec / (NANOSEC / MILLISEC); 25281 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25282 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25283 break; 25284 } 25285 break; 25286 } 25287 } 25288 } 25289 25290 /* 25291 * Send out a multicast packet on interface ipif. 25292 * The sender does not have an conn. 25293 * Caller verifies that this isn't a PHYI_LOOPBACK. 25294 */ 25295 void 25296 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25297 { 25298 ipha_t *ipha; 25299 ire_t *ire; 25300 ipaddr_t dst; 25301 mblk_t *first_mp; 25302 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25303 25304 /* igmp_sendpkt always allocates a ipsec_out_t */ 25305 ASSERT(mp->b_datap->db_type == M_CTL); 25306 ASSERT(!ipif->ipif_isv6); 25307 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25308 25309 first_mp = mp; 25310 mp = first_mp->b_cont; 25311 ASSERT(mp->b_datap->db_type == M_DATA); 25312 ipha = (ipha_t *)mp->b_rptr; 25313 25314 /* 25315 * Find an IRE which matches the destination and the outgoing 25316 * queue (i.e. the outgoing interface.) 25317 */ 25318 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25319 dst = ipif->ipif_pp_dst_addr; 25320 else 25321 dst = ipha->ipha_dst; 25322 /* 25323 * The source address has already been initialized by the 25324 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25325 * be sufficient rather than MATCH_IRE_IPIF. 25326 * 25327 * This function is used for sending IGMP packets. We need 25328 * to make sure that we send the packet out of the interface 25329 * (ipif->ipif_ill) where we joined the group. This is to 25330 * prevent from switches doing IGMP snooping to send us multicast 25331 * packets for a given group on the interface we have joined. 25332 * If we can't find an ire, igmp_sendpkt has already initialized 25333 * ipsec_out_attach_if so that this will not be load spread in 25334 * ip_newroute_ipif. 25335 */ 25336 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25337 MATCH_IRE_ILL, ipst); 25338 if (!ire) { 25339 /* 25340 * Mark this packet to make it be delivered to 25341 * ip_wput_ire after the new ire has been 25342 * created. 25343 */ 25344 mp->b_prev = NULL; 25345 mp->b_next = NULL; 25346 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25347 zoneid, &zero_info); 25348 return; 25349 } 25350 25351 /* 25352 * Honor the RTF_SETSRC flag; this is the only case 25353 * where we force this addr whatever the current src addr is, 25354 * because this address is set by igmp_sendpkt(), and 25355 * cannot be specified by any user. 25356 */ 25357 if (ire->ire_flags & RTF_SETSRC) { 25358 ipha->ipha_src = ire->ire_src_addr; 25359 } 25360 25361 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25362 } 25363 25364 /* 25365 * NOTE : This function does not ire_refrele the ire argument passed in. 25366 * 25367 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25368 * failure. The nce_fp_mp can vanish any time in the case of 25369 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25370 * the ire_lock to access the nce_fp_mp in this case. 25371 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25372 * prepending a fastpath message IPQoS processing must precede it, we also set 25373 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25374 * (IPQoS might have set the b_band for CoS marking). 25375 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25376 * must follow it so that IPQoS can mark the dl_priority field for CoS 25377 * marking, if needed. 25378 */ 25379 static mblk_t * 25380 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 25381 { 25382 uint_t hlen; 25383 ipha_t *ipha; 25384 mblk_t *mp1; 25385 boolean_t qos_done = B_FALSE; 25386 uchar_t *ll_hdr; 25387 ip_stack_t *ipst = ire->ire_ipst; 25388 25389 #define rptr ((uchar_t *)ipha) 25390 25391 ipha = (ipha_t *)mp->b_rptr; 25392 hlen = 0; 25393 LOCK_IRE_FP_MP(ire); 25394 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25395 ASSERT(DB_TYPE(mp1) == M_DATA); 25396 /* Initiate IPPF processing */ 25397 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25398 UNLOCK_IRE_FP_MP(ire); 25399 ip_process(proc, &mp, ill_index); 25400 if (mp == NULL) 25401 return (NULL); 25402 25403 ipha = (ipha_t *)mp->b_rptr; 25404 LOCK_IRE_FP_MP(ire); 25405 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25406 qos_done = B_TRUE; 25407 goto no_fp_mp; 25408 } 25409 ASSERT(DB_TYPE(mp1) == M_DATA); 25410 } 25411 hlen = MBLKL(mp1); 25412 /* 25413 * Check if we have enough room to prepend fastpath 25414 * header 25415 */ 25416 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25417 ll_hdr = rptr - hlen; 25418 bcopy(mp1->b_rptr, ll_hdr, hlen); 25419 /* 25420 * Set the b_rptr to the start of the link layer 25421 * header 25422 */ 25423 mp->b_rptr = ll_hdr; 25424 mp1 = mp; 25425 } else { 25426 mp1 = copyb(mp1); 25427 if (mp1 == NULL) 25428 goto unlock_err; 25429 mp1->b_band = mp->b_band; 25430 mp1->b_cont = mp; 25431 /* 25432 * certain system generated traffic may not 25433 * have cred/label in ip header block. This 25434 * is true even for a labeled system. But for 25435 * labeled traffic, inherit the label in the 25436 * new header. 25437 */ 25438 if (DB_CRED(mp) != NULL) 25439 mblk_setcred(mp1, DB_CRED(mp)); 25440 /* 25441 * XXX disable ICK_VALID and compute checksum 25442 * here; can happen if nce_fp_mp changes and 25443 * it can't be copied now due to insufficient 25444 * space. (unlikely, fp mp can change, but it 25445 * does not increase in length) 25446 */ 25447 } 25448 UNLOCK_IRE_FP_MP(ire); 25449 } else { 25450 no_fp_mp: 25451 mp1 = copyb(ire->ire_nce->nce_res_mp); 25452 if (mp1 == NULL) { 25453 unlock_err: 25454 UNLOCK_IRE_FP_MP(ire); 25455 freemsg(mp); 25456 return (NULL); 25457 } 25458 UNLOCK_IRE_FP_MP(ire); 25459 mp1->b_cont = mp; 25460 /* 25461 * certain system generated traffic may not 25462 * have cred/label in ip header block. This 25463 * is true even for a labeled system. But for 25464 * labeled traffic, inherit the label in the 25465 * new header. 25466 */ 25467 if (DB_CRED(mp) != NULL) 25468 mblk_setcred(mp1, DB_CRED(mp)); 25469 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25470 ip_process(proc, &mp1, ill_index); 25471 if (mp1 == NULL) 25472 return (NULL); 25473 } 25474 } 25475 return (mp1); 25476 #undef rptr 25477 } 25478 25479 /* 25480 * Finish the outbound IPsec processing for an IPv6 packet. This function 25481 * is called from ipsec_out_process() if the IPsec packet was processed 25482 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25483 * asynchronously. 25484 */ 25485 void 25486 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25487 ire_t *ire_arg) 25488 { 25489 in6_addr_t *v6dstp; 25490 ire_t *ire; 25491 mblk_t *mp; 25492 ip6_t *ip6h1; 25493 uint_t ill_index; 25494 ipsec_out_t *io; 25495 boolean_t attach_if, hwaccel; 25496 uint32_t flags = IP6_NO_IPPOLICY; 25497 int match_flags; 25498 zoneid_t zoneid; 25499 boolean_t ill_need_rele = B_FALSE; 25500 boolean_t ire_need_rele = B_FALSE; 25501 ip_stack_t *ipst; 25502 25503 mp = ipsec_mp->b_cont; 25504 ip6h1 = (ip6_t *)mp->b_rptr; 25505 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25506 ASSERT(io->ipsec_out_ns != NULL); 25507 ipst = io->ipsec_out_ns->netstack_ip; 25508 ill_index = io->ipsec_out_ill_index; 25509 if (io->ipsec_out_reachable) { 25510 flags |= IPV6_REACHABILITY_CONFIRMATION; 25511 } 25512 attach_if = io->ipsec_out_attach_if; 25513 hwaccel = io->ipsec_out_accelerated; 25514 zoneid = io->ipsec_out_zoneid; 25515 ASSERT(zoneid != ALL_ZONES); 25516 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25517 /* Multicast addresses should have non-zero ill_index. */ 25518 v6dstp = &ip6h->ip6_dst; 25519 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25520 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25521 ASSERT(!attach_if || ill_index != 0); 25522 if (ill_index != 0) { 25523 if (ill == NULL) { 25524 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25525 B_TRUE, ipst); 25526 25527 /* Failure case frees things for us. */ 25528 if (ill == NULL) 25529 return; 25530 25531 ill_need_rele = B_TRUE; 25532 } 25533 /* 25534 * If this packet needs to go out on a particular interface 25535 * honor it. 25536 */ 25537 if (attach_if) { 25538 match_flags = MATCH_IRE_ILL; 25539 25540 /* 25541 * Check if we need an ire that will not be 25542 * looked up by anybody else i.e. HIDDEN. 25543 */ 25544 if (ill_is_probeonly(ill)) { 25545 match_flags |= MATCH_IRE_MARK_HIDDEN; 25546 } 25547 } 25548 } 25549 ASSERT(mp != NULL); 25550 25551 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25552 boolean_t unspec_src; 25553 ipif_t *ipif; 25554 25555 /* 25556 * Use the ill_index to get the right ill. 25557 */ 25558 unspec_src = io->ipsec_out_unspec_src; 25559 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25560 if (ipif == NULL) { 25561 if (ill_need_rele) 25562 ill_refrele(ill); 25563 freemsg(ipsec_mp); 25564 return; 25565 } 25566 25567 if (ire_arg != NULL) { 25568 ire = ire_arg; 25569 } else { 25570 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25571 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25572 ire_need_rele = B_TRUE; 25573 } 25574 if (ire != NULL) { 25575 ipif_refrele(ipif); 25576 /* 25577 * XXX Do the multicast forwarding now, as the IPsec 25578 * processing has been done. 25579 */ 25580 goto send; 25581 } 25582 25583 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25584 mp->b_prev = NULL; 25585 mp->b_next = NULL; 25586 25587 /* 25588 * If the IPsec packet was processed asynchronously, 25589 * drop it now. 25590 */ 25591 if (q == NULL) { 25592 if (ill_need_rele) 25593 ill_refrele(ill); 25594 freemsg(ipsec_mp); 25595 return; 25596 } 25597 25598 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25599 unspec_src, zoneid); 25600 ipif_refrele(ipif); 25601 } else { 25602 if (attach_if) { 25603 ipif_t *ipif; 25604 25605 ipif = ipif_get_next_ipif(NULL, ill); 25606 if (ipif == NULL) { 25607 if (ill_need_rele) 25608 ill_refrele(ill); 25609 freemsg(ipsec_mp); 25610 return; 25611 } 25612 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25613 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25614 ire_need_rele = B_TRUE; 25615 ipif_refrele(ipif); 25616 } else { 25617 if (ire_arg != NULL) { 25618 ire = ire_arg; 25619 } else { 25620 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25621 ipst); 25622 ire_need_rele = B_TRUE; 25623 } 25624 } 25625 if (ire != NULL) 25626 goto send; 25627 /* 25628 * ire disappeared underneath. 25629 * 25630 * What we need to do here is the ip_newroute 25631 * logic to get the ire without doing the IPsec 25632 * processing. Follow the same old path. But this 25633 * time, ip_wput or ire_add_then_send will call us 25634 * directly as all the IPsec operations are done. 25635 */ 25636 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25637 mp->b_prev = NULL; 25638 mp->b_next = NULL; 25639 25640 /* 25641 * If the IPsec packet was processed asynchronously, 25642 * drop it now. 25643 */ 25644 if (q == NULL) { 25645 if (ill_need_rele) 25646 ill_refrele(ill); 25647 freemsg(ipsec_mp); 25648 return; 25649 } 25650 25651 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25652 zoneid, ipst); 25653 } 25654 if (ill != NULL && ill_need_rele) 25655 ill_refrele(ill); 25656 return; 25657 send: 25658 if (ill != NULL && ill_need_rele) 25659 ill_refrele(ill); 25660 25661 /* Local delivery */ 25662 if (ire->ire_stq == NULL) { 25663 ill_t *out_ill; 25664 ASSERT(q != NULL); 25665 25666 /* PFHooks: LOOPBACK_OUT */ 25667 out_ill = ire_to_ill(ire); 25668 25669 DTRACE_PROBE4(ip6__loopback__out__start, 25670 ill_t *, NULL, ill_t *, out_ill, 25671 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25672 25673 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25674 ipst->ips_ipv6firewall_loopback_out, 25675 NULL, out_ill, ip6h1, ipsec_mp, mp, ipst); 25676 25677 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25678 25679 if (ipsec_mp != NULL) 25680 ip_wput_local_v6(RD(q), out_ill, 25681 ip6h, ipsec_mp, ire, 0); 25682 if (ire_need_rele) 25683 ire_refrele(ire); 25684 return; 25685 } 25686 /* 25687 * Everything is done. Send it out on the wire. 25688 * We force the insertion of a fragment header using the 25689 * IPH_FRAG_HDR flag in two cases: 25690 * - after reception of an ICMPv6 "packet too big" message 25691 * with a MTU < 1280 (cf. RFC 2460 section 5) 25692 * - for multirouted IPv6 packets, so that the receiver can 25693 * discard duplicates according to their fragment identifier 25694 */ 25695 /* XXX fix flow control problems. */ 25696 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25697 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25698 if (hwaccel) { 25699 /* 25700 * hardware acceleration does not handle these 25701 * "slow path" cases. 25702 */ 25703 /* IPsec KSTATS: should bump bean counter here. */ 25704 if (ire_need_rele) 25705 ire_refrele(ire); 25706 freemsg(ipsec_mp); 25707 return; 25708 } 25709 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25710 (mp->b_cont ? msgdsize(mp) : 25711 mp->b_wptr - (uchar_t *)ip6h)) { 25712 /* IPsec KSTATS: should bump bean counter here. */ 25713 ip0dbg(("Packet length mismatch: %d, %ld\n", 25714 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25715 msgdsize(mp))); 25716 if (ire_need_rele) 25717 ire_refrele(ire); 25718 freemsg(ipsec_mp); 25719 return; 25720 } 25721 ASSERT(mp->b_prev == NULL); 25722 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25723 ntohs(ip6h->ip6_plen) + 25724 IPV6_HDR_LEN, ire->ire_max_frag)); 25725 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25726 ire->ire_max_frag); 25727 } else { 25728 UPDATE_OB_PKT_COUNT(ire); 25729 ire->ire_last_used_time = lbolt; 25730 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25731 } 25732 if (ire_need_rele) 25733 ire_refrele(ire); 25734 freeb(ipsec_mp); 25735 } 25736 25737 void 25738 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25739 { 25740 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25741 da_ipsec_t *hada; /* data attributes */ 25742 ill_t *ill = (ill_t *)q->q_ptr; 25743 25744 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25745 25746 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25747 /* IPsec KSTATS: Bump lose counter here! */ 25748 freemsg(mp); 25749 return; 25750 } 25751 25752 /* 25753 * It's an IPsec packet that must be 25754 * accelerated by the Provider, and the 25755 * outbound ill is IPsec acceleration capable. 25756 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25757 * to the ill. 25758 * IPsec KSTATS: should bump packet counter here. 25759 */ 25760 25761 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25762 if (hada_mp == NULL) { 25763 /* IPsec KSTATS: should bump packet counter here. */ 25764 freemsg(mp); 25765 return; 25766 } 25767 25768 hada_mp->b_datap->db_type = M_CTL; 25769 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25770 hada_mp->b_cont = mp; 25771 25772 hada = (da_ipsec_t *)hada_mp->b_rptr; 25773 bzero(hada, sizeof (da_ipsec_t)); 25774 hada->da_type = IPHADA_M_CTL; 25775 25776 putnext(q, hada_mp); 25777 } 25778 25779 /* 25780 * Finish the outbound IPsec processing. This function is called from 25781 * ipsec_out_process() if the IPsec packet was processed 25782 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25783 * asynchronously. 25784 */ 25785 void 25786 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25787 ire_t *ire_arg) 25788 { 25789 uint32_t v_hlen_tos_len; 25790 ipaddr_t dst; 25791 ipif_t *ipif = NULL; 25792 ire_t *ire; 25793 ire_t *ire1 = NULL; 25794 mblk_t *next_mp = NULL; 25795 uint32_t max_frag; 25796 boolean_t multirt_send = B_FALSE; 25797 mblk_t *mp; 25798 ipha_t *ipha1; 25799 uint_t ill_index; 25800 ipsec_out_t *io; 25801 boolean_t attach_if; 25802 int match_flags; 25803 irb_t *irb = NULL; 25804 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25805 zoneid_t zoneid; 25806 ipxmit_state_t pktxmit_state; 25807 ip_stack_t *ipst; 25808 25809 #ifdef _BIG_ENDIAN 25810 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25811 #else 25812 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25813 #endif 25814 25815 mp = ipsec_mp->b_cont; 25816 ipha1 = (ipha_t *)mp->b_rptr; 25817 ASSERT(mp != NULL); 25818 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25819 dst = ipha->ipha_dst; 25820 25821 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25822 ill_index = io->ipsec_out_ill_index; 25823 attach_if = io->ipsec_out_attach_if; 25824 zoneid = io->ipsec_out_zoneid; 25825 ASSERT(zoneid != ALL_ZONES); 25826 ipst = io->ipsec_out_ns->netstack_ip; 25827 ASSERT(io->ipsec_out_ns != NULL); 25828 25829 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25830 if (ill_index != 0) { 25831 if (ill == NULL) { 25832 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25833 ill_index, B_FALSE, ipst); 25834 25835 /* Failure case frees things for us. */ 25836 if (ill == NULL) 25837 return; 25838 25839 ill_need_rele = B_TRUE; 25840 } 25841 /* 25842 * If this packet needs to go out on a particular interface 25843 * honor it. 25844 */ 25845 if (attach_if) { 25846 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25847 25848 /* 25849 * Check if we need an ire that will not be 25850 * looked up by anybody else i.e. HIDDEN. 25851 */ 25852 if (ill_is_probeonly(ill)) { 25853 match_flags |= MATCH_IRE_MARK_HIDDEN; 25854 } 25855 } 25856 } 25857 25858 if (CLASSD(dst)) { 25859 boolean_t conn_dontroute; 25860 /* 25861 * Use the ill_index to get the right ipif. 25862 */ 25863 conn_dontroute = io->ipsec_out_dontroute; 25864 if (ill_index == 0) 25865 ipif = ipif_lookup_group(dst, zoneid, ipst); 25866 else 25867 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25868 if (ipif == NULL) { 25869 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25870 " multicast\n")); 25871 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25872 freemsg(ipsec_mp); 25873 goto done; 25874 } 25875 /* 25876 * ipha_src has already been intialized with the 25877 * value of the ipif in ip_wput. All we need now is 25878 * an ire to send this downstream. 25879 */ 25880 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25881 MBLK_GETLABEL(mp), match_flags, ipst); 25882 if (ire != NULL) { 25883 ill_t *ill1; 25884 /* 25885 * Do the multicast forwarding now, as the IPsec 25886 * processing has been done. 25887 */ 25888 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25889 (ill1 = ire_to_ill(ire))) { 25890 if (ip_mforward(ill1, ipha, mp)) { 25891 freemsg(ipsec_mp); 25892 ip1dbg(("ip_wput_ipsec_out: mforward " 25893 "failed\n")); 25894 ire_refrele(ire); 25895 goto done; 25896 } 25897 } 25898 goto send; 25899 } 25900 25901 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25902 mp->b_prev = NULL; 25903 mp->b_next = NULL; 25904 25905 /* 25906 * If the IPsec packet was processed asynchronously, 25907 * drop it now. 25908 */ 25909 if (q == NULL) { 25910 freemsg(ipsec_mp); 25911 goto done; 25912 } 25913 25914 /* 25915 * We may be using a wrong ipif to create the ire. 25916 * But it is okay as the source address is assigned 25917 * for the packet already. Next outbound packet would 25918 * create the IRE with the right IPIF in ip_wput. 25919 * 25920 * Also handle RTF_MULTIRT routes. 25921 */ 25922 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25923 zoneid, &zero_info); 25924 } else { 25925 if (attach_if) { 25926 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 25927 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25928 } else { 25929 if (ire_arg != NULL) { 25930 ire = ire_arg; 25931 ire_need_rele = B_FALSE; 25932 } else { 25933 ire = ire_cache_lookup(dst, zoneid, 25934 MBLK_GETLABEL(mp), ipst); 25935 } 25936 } 25937 if (ire != NULL) { 25938 goto send; 25939 } 25940 25941 /* 25942 * ire disappeared underneath. 25943 * 25944 * What we need to do here is the ip_newroute 25945 * logic to get the ire without doing the IPsec 25946 * processing. Follow the same old path. But this 25947 * time, ip_wput or ire_add_then_put will call us 25948 * directly as all the IPsec operations are done. 25949 */ 25950 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25951 mp->b_prev = NULL; 25952 mp->b_next = NULL; 25953 25954 /* 25955 * If the IPsec packet was processed asynchronously, 25956 * drop it now. 25957 */ 25958 if (q == NULL) { 25959 freemsg(ipsec_mp); 25960 goto done; 25961 } 25962 25963 /* 25964 * Since we're going through ip_newroute() again, we 25965 * need to make sure we don't: 25966 * 25967 * 1.) Trigger the ASSERT() with the ipha_ident 25968 * overloading. 25969 * 2.) Redo transport-layer checksumming, since we've 25970 * already done all that to get this far. 25971 * 25972 * The easiest way not do either of the above is to set 25973 * the ipha_ident field to IP_HDR_INCLUDED. 25974 */ 25975 ipha->ipha_ident = IP_HDR_INCLUDED; 25976 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 25977 zoneid, ipst); 25978 } 25979 goto done; 25980 send: 25981 if (ire->ire_stq == NULL) { 25982 ill_t *out_ill; 25983 /* 25984 * Loopbacks go through ip_wput_local except for one case. 25985 * We come here if we generate a icmp_frag_needed message 25986 * after IPsec processing is over. When this function calls 25987 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 25988 * icmp_frag_needed. The message generated comes back here 25989 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 25990 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 25991 * source address as it is usually set in ip_wput_ire. As 25992 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 25993 * and we end up here. We can't enter ip_wput_ire once the 25994 * IPsec processing is over and hence we need to do it here. 25995 */ 25996 ASSERT(q != NULL); 25997 UPDATE_OB_PKT_COUNT(ire); 25998 ire->ire_last_used_time = lbolt; 25999 if (ipha->ipha_src == 0) 26000 ipha->ipha_src = ire->ire_src_addr; 26001 26002 /* PFHooks: LOOPBACK_OUT */ 26003 out_ill = ire_to_ill(ire); 26004 26005 DTRACE_PROBE4(ip4__loopback__out__start, 26006 ill_t *, NULL, ill_t *, out_ill, 26007 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26008 26009 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26010 ipst->ips_ipv4firewall_loopback_out, 26011 NULL, out_ill, ipha1, ipsec_mp, mp, ipst); 26012 26013 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26014 26015 if (ipsec_mp != NULL) 26016 ip_wput_local(RD(q), out_ill, 26017 ipha, ipsec_mp, ire, 0, zoneid); 26018 if (ire_need_rele) 26019 ire_refrele(ire); 26020 goto done; 26021 } 26022 26023 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26024 /* 26025 * We are through with IPsec processing. 26026 * Fragment this and send it on the wire. 26027 */ 26028 if (io->ipsec_out_accelerated) { 26029 /* 26030 * The packet has been accelerated but must 26031 * be fragmented. This should not happen 26032 * since AH and ESP must not accelerate 26033 * packets that need fragmentation, however 26034 * the configuration could have changed 26035 * since the AH or ESP processing. 26036 * Drop packet. 26037 * IPsec KSTATS: bump bean counter here. 26038 */ 26039 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26040 "fragmented accelerated packet!\n")); 26041 freemsg(ipsec_mp); 26042 } else { 26043 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26044 } 26045 if (ire_need_rele) 26046 ire_refrele(ire); 26047 goto done; 26048 } 26049 26050 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26051 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26052 (void *)ire->ire_ipif, (void *)ipif)); 26053 26054 /* 26055 * Multiroute the secured packet, unless IPsec really 26056 * requires the packet to go out only through a particular 26057 * interface. 26058 */ 26059 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26060 ire_t *first_ire; 26061 irb = ire->ire_bucket; 26062 ASSERT(irb != NULL); 26063 /* 26064 * This ire has been looked up as the one that 26065 * goes through the given ipif; 26066 * make sure we do not omit any other multiroute ire 26067 * that may be present in the bucket before this one. 26068 */ 26069 IRB_REFHOLD(irb); 26070 for (first_ire = irb->irb_ire; 26071 first_ire != NULL; 26072 first_ire = first_ire->ire_next) { 26073 if ((first_ire->ire_flags & RTF_MULTIRT) && 26074 (first_ire->ire_addr == ire->ire_addr) && 26075 !(first_ire->ire_marks & 26076 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26077 break; 26078 } 26079 } 26080 26081 if ((first_ire != NULL) && (first_ire != ire)) { 26082 /* 26083 * Don't change the ire if the packet must 26084 * be fragmented if sent via this new one. 26085 */ 26086 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26087 IRE_REFHOLD(first_ire); 26088 if (ire_need_rele) 26089 ire_refrele(ire); 26090 else 26091 ire_need_rele = B_TRUE; 26092 ire = first_ire; 26093 } 26094 } 26095 IRB_REFRELE(irb); 26096 26097 multirt_send = B_TRUE; 26098 max_frag = ire->ire_max_frag; 26099 } else { 26100 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26101 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26102 "flag, attach_if %d\n", attach_if)); 26103 } 26104 } 26105 26106 /* 26107 * In most cases, the emission loop below is entered only once. 26108 * Only in the case where the ire holds the RTF_MULTIRT 26109 * flag, we loop to process all RTF_MULTIRT ires in the 26110 * bucket, and send the packet through all crossed 26111 * RTF_MULTIRT routes. 26112 */ 26113 do { 26114 if (multirt_send) { 26115 /* 26116 * ire1 holds here the next ire to process in the 26117 * bucket. If multirouting is expected, 26118 * any non-RTF_MULTIRT ire that has the 26119 * right destination address is ignored. 26120 */ 26121 ASSERT(irb != NULL); 26122 IRB_REFHOLD(irb); 26123 for (ire1 = ire->ire_next; 26124 ire1 != NULL; 26125 ire1 = ire1->ire_next) { 26126 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26127 continue; 26128 if (ire1->ire_addr != ire->ire_addr) 26129 continue; 26130 if (ire1->ire_marks & 26131 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26132 continue; 26133 /* No loopback here */ 26134 if (ire1->ire_stq == NULL) 26135 continue; 26136 /* 26137 * Ensure we do not exceed the MTU 26138 * of the next route. 26139 */ 26140 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26141 ip_multirt_bad_mtu(ire1, max_frag); 26142 continue; 26143 } 26144 26145 IRE_REFHOLD(ire1); 26146 break; 26147 } 26148 IRB_REFRELE(irb); 26149 if (ire1 != NULL) { 26150 /* 26151 * We are in a multiple send case, need to 26152 * make a copy of the packet. 26153 */ 26154 next_mp = copymsg(ipsec_mp); 26155 if (next_mp == NULL) { 26156 ire_refrele(ire1); 26157 ire1 = NULL; 26158 } 26159 } 26160 } 26161 /* 26162 * Everything is done. Send it out on the wire 26163 * 26164 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26165 * either send it on the wire or, in the case of 26166 * HW acceleration, call ipsec_hw_putnext. 26167 */ 26168 if (ire->ire_nce && 26169 ire->ire_nce->nce_state != ND_REACHABLE) { 26170 DTRACE_PROBE2(ip__wput__ipsec__bail, 26171 (ire_t *), ire, (mblk_t *), ipsec_mp); 26172 /* 26173 * If ire's link-layer is unresolved (this 26174 * would only happen if the incomplete ire 26175 * was added to cachetable via forwarding path) 26176 * don't bother going to ip_xmit_v4. Just drop the 26177 * packet. 26178 * There is a slight risk here, in that, if we 26179 * have the forwarding path create an incomplete 26180 * IRE, then until the IRE is completed, any 26181 * transmitted IPsec packets will be dropped 26182 * instead of being queued waiting for resolution. 26183 * 26184 * But the likelihood of a forwarding packet and a wput 26185 * packet sending to the same dst at the same time 26186 * and there not yet be an ARP entry for it is small. 26187 * Furthermore, if this actually happens, it might 26188 * be likely that wput would generate multiple 26189 * packets (and forwarding would also have a train 26190 * of packets) for that destination. If this is 26191 * the case, some of them would have been dropped 26192 * anyway, since ARP only queues a few packets while 26193 * waiting for resolution 26194 * 26195 * NOTE: We should really call ip_xmit_v4, 26196 * and let it queue the packet and send the 26197 * ARP query and have ARP come back thus: 26198 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26199 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26200 * hw accel work. But it's too complex to get 26201 * the IPsec hw acceleration approach to fit 26202 * well with ip_xmit_v4 doing ARP without 26203 * doing IPsec simplification. For now, we just 26204 * poke ip_xmit_v4 to trigger the arp resolve, so 26205 * that we can continue with the send on the next 26206 * attempt. 26207 * 26208 * XXX THis should be revisited, when 26209 * the IPsec/IP interaction is cleaned up 26210 */ 26211 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26212 " - dropping packet\n")); 26213 freemsg(ipsec_mp); 26214 /* 26215 * Call ip_xmit_v4() to trigger ARP query 26216 * in case the nce_state is ND_INITIAL 26217 */ 26218 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26219 goto drop_pkt; 26220 } 26221 26222 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26223 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26224 mblk_t *, ipsec_mp); 26225 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26226 ipst->ips_ipv4firewall_physical_out, 26227 NULL, ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, ipst); 26228 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26229 if (ipsec_mp == NULL) 26230 goto drop_pkt; 26231 26232 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26233 pktxmit_state = ip_xmit_v4(mp, ire, 26234 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26235 26236 if ((pktxmit_state == SEND_FAILED) || 26237 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26238 26239 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26240 drop_pkt: 26241 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26242 ipIfStatsOutDiscards); 26243 if (ire_need_rele) 26244 ire_refrele(ire); 26245 if (ire1 != NULL) { 26246 ire_refrele(ire1); 26247 freemsg(next_mp); 26248 } 26249 goto done; 26250 } 26251 26252 freeb(ipsec_mp); 26253 if (ire_need_rele) 26254 ire_refrele(ire); 26255 26256 if (ire1 != NULL) { 26257 ire = ire1; 26258 ire_need_rele = B_TRUE; 26259 ASSERT(next_mp); 26260 ipsec_mp = next_mp; 26261 mp = ipsec_mp->b_cont; 26262 ire1 = NULL; 26263 next_mp = NULL; 26264 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26265 } else { 26266 multirt_send = B_FALSE; 26267 } 26268 } while (multirt_send); 26269 done: 26270 if (ill != NULL && ill_need_rele) 26271 ill_refrele(ill); 26272 if (ipif != NULL) 26273 ipif_refrele(ipif); 26274 } 26275 26276 /* 26277 * Get the ill corresponding to the specified ire, and compare its 26278 * capabilities with the protocol and algorithms specified by the 26279 * the SA obtained from ipsec_out. If they match, annotate the 26280 * ipsec_out structure to indicate that the packet needs acceleration. 26281 * 26282 * 26283 * A packet is eligible for outbound hardware acceleration if the 26284 * following conditions are satisfied: 26285 * 26286 * 1. the packet will not be fragmented 26287 * 2. the provider supports the algorithm 26288 * 3. there is no pending control message being exchanged 26289 * 4. snoop is not attached 26290 * 5. the destination address is not a broadcast or multicast address. 26291 * 26292 * Rationale: 26293 * - Hardware drivers do not support fragmentation with 26294 * the current interface. 26295 * - snoop, multicast, and broadcast may result in exposure of 26296 * a cleartext datagram. 26297 * We check all five of these conditions here. 26298 * 26299 * XXX would like to nuke "ire_t *" parameter here; problem is that 26300 * IRE is only way to figure out if a v4 address is a broadcast and 26301 * thus ineligible for acceleration... 26302 */ 26303 static void 26304 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26305 { 26306 ipsec_out_t *io; 26307 mblk_t *data_mp; 26308 uint_t plen, overhead; 26309 ip_stack_t *ipst; 26310 26311 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26312 return; 26313 26314 if (ill == NULL) 26315 return; 26316 ipst = ill->ill_ipst; 26317 /* 26318 * Destination address is a broadcast or multicast. Punt. 26319 */ 26320 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26321 IRE_LOCAL))) 26322 return; 26323 26324 data_mp = ipsec_mp->b_cont; 26325 26326 if (ill->ill_isv6) { 26327 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26328 26329 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26330 return; 26331 26332 plen = ip6h->ip6_plen; 26333 } else { 26334 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26335 26336 if (CLASSD(ipha->ipha_dst)) 26337 return; 26338 26339 plen = ipha->ipha_length; 26340 } 26341 /* 26342 * Is there a pending DLPI control message being exchanged 26343 * between IP/IPsec and the DLS Provider? If there is, it 26344 * could be a SADB update, and the state of the DLS Provider 26345 * SADB might not be in sync with the SADB maintained by 26346 * IPsec. To avoid dropping packets or using the wrong keying 26347 * material, we do not accelerate this packet. 26348 */ 26349 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26350 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26351 "ill_dlpi_pending! don't accelerate packet\n")); 26352 return; 26353 } 26354 26355 /* 26356 * Is the Provider in promiscous mode? If it does, we don't 26357 * accelerate the packet since it will bounce back up to the 26358 * listeners in the clear. 26359 */ 26360 if (ill->ill_promisc_on_phys) { 26361 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26362 "ill in promiscous mode, don't accelerate packet\n")); 26363 return; 26364 } 26365 26366 /* 26367 * Will the packet require fragmentation? 26368 */ 26369 26370 /* 26371 * IPsec ESP note: this is a pessimistic estimate, but the same 26372 * as is used elsewhere. 26373 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26374 * + 2-byte trailer 26375 */ 26376 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26377 IPSEC_BASE_ESP_HDR_SIZE(sa); 26378 26379 if ((plen + overhead) > ill->ill_max_mtu) 26380 return; 26381 26382 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26383 26384 /* 26385 * Can the ill accelerate this IPsec protocol and algorithm 26386 * specified by the SA? 26387 */ 26388 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26389 ill->ill_isv6, sa, ipst->ips_netstack)) { 26390 return; 26391 } 26392 26393 /* 26394 * Tell AH or ESP that the outbound ill is capable of 26395 * accelerating this packet. 26396 */ 26397 io->ipsec_out_is_capab_ill = B_TRUE; 26398 } 26399 26400 /* 26401 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26402 * 26403 * If this function returns B_TRUE, the requested SA's have been filled 26404 * into the ipsec_out_*_sa pointers. 26405 * 26406 * If the function returns B_FALSE, the packet has been "consumed", most 26407 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26408 * 26409 * The SA references created by the protocol-specific "select" 26410 * function will be released when the ipsec_mp is freed, thanks to the 26411 * ipsec_out_free destructor -- see spd.c. 26412 */ 26413 static boolean_t 26414 ipsec_out_select_sa(mblk_t *ipsec_mp) 26415 { 26416 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26417 ipsec_out_t *io; 26418 ipsec_policy_t *pp; 26419 ipsec_action_t *ap; 26420 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26421 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26422 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26423 26424 if (!io->ipsec_out_secure) { 26425 /* 26426 * We came here by mistake. 26427 * Don't bother with ipsec processing 26428 * We should "discourage" this path in the future. 26429 */ 26430 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26431 return (B_FALSE); 26432 } 26433 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26434 ASSERT((io->ipsec_out_policy != NULL) || 26435 (io->ipsec_out_act != NULL)); 26436 26437 ASSERT(io->ipsec_out_failed == B_FALSE); 26438 26439 /* 26440 * IPsec processing has started. 26441 */ 26442 io->ipsec_out_proc_begin = B_TRUE; 26443 ap = io->ipsec_out_act; 26444 if (ap == NULL) { 26445 pp = io->ipsec_out_policy; 26446 ASSERT(pp != NULL); 26447 ap = pp->ipsp_act; 26448 ASSERT(ap != NULL); 26449 } 26450 26451 /* 26452 * We have an action. now, let's select SA's. 26453 * (In the future, we can cache this in the conn_t..) 26454 */ 26455 if (ap->ipa_want_esp) { 26456 if (io->ipsec_out_esp_sa == NULL) { 26457 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26458 IPPROTO_ESP); 26459 } 26460 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26461 } 26462 26463 if (ap->ipa_want_ah) { 26464 if (io->ipsec_out_ah_sa == NULL) { 26465 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26466 IPPROTO_AH); 26467 } 26468 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26469 /* 26470 * The ESP and AH processing order needs to be preserved 26471 * when both protocols are required (ESP should be applied 26472 * before AH for an outbound packet). Force an ESP ACQUIRE 26473 * when both ESP and AH are required, and an AH ACQUIRE 26474 * is needed. 26475 */ 26476 if (ap->ipa_want_esp && need_ah_acquire) 26477 need_esp_acquire = B_TRUE; 26478 } 26479 26480 /* 26481 * Send an ACQUIRE (extended, regular, or both) if we need one. 26482 * Release SAs that got referenced, but will not be used until we 26483 * acquire _all_ of the SAs we need. 26484 */ 26485 if (need_ah_acquire || need_esp_acquire) { 26486 if (io->ipsec_out_ah_sa != NULL) { 26487 IPSA_REFRELE(io->ipsec_out_ah_sa); 26488 io->ipsec_out_ah_sa = NULL; 26489 } 26490 if (io->ipsec_out_esp_sa != NULL) { 26491 IPSA_REFRELE(io->ipsec_out_esp_sa); 26492 io->ipsec_out_esp_sa = NULL; 26493 } 26494 26495 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26496 return (B_FALSE); 26497 } 26498 26499 return (B_TRUE); 26500 } 26501 26502 /* 26503 * Process an IPSEC_OUT message and see what you can 26504 * do with it. 26505 * IPQoS Notes: 26506 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26507 * IPsec. 26508 * XXX would like to nuke ire_t. 26509 * XXX ill_index better be "real" 26510 */ 26511 void 26512 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26513 { 26514 ipsec_out_t *io; 26515 ipsec_policy_t *pp; 26516 ipsec_action_t *ap; 26517 ipha_t *ipha; 26518 ip6_t *ip6h; 26519 mblk_t *mp; 26520 ill_t *ill; 26521 zoneid_t zoneid; 26522 ipsec_status_t ipsec_rc; 26523 boolean_t ill_need_rele = B_FALSE; 26524 ip_stack_t *ipst; 26525 ipsec_stack_t *ipss; 26526 26527 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26528 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26529 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26530 ipst = io->ipsec_out_ns->netstack_ip; 26531 mp = ipsec_mp->b_cont; 26532 26533 /* 26534 * Initiate IPPF processing. We do it here to account for packets 26535 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26536 * We can check for ipsec_out_proc_begin even for such packets, as 26537 * they will always be false (asserted below). 26538 */ 26539 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26540 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26541 io->ipsec_out_ill_index : ill_index); 26542 if (mp == NULL) { 26543 ip2dbg(("ipsec_out_process: packet dropped "\ 26544 "during IPPF processing\n")); 26545 freeb(ipsec_mp); 26546 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26547 return; 26548 } 26549 } 26550 26551 if (!io->ipsec_out_secure) { 26552 /* 26553 * We came here by mistake. 26554 * Don't bother with ipsec processing 26555 * Should "discourage" this path in the future. 26556 */ 26557 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26558 goto done; 26559 } 26560 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26561 ASSERT((io->ipsec_out_policy != NULL) || 26562 (io->ipsec_out_act != NULL)); 26563 ASSERT(io->ipsec_out_failed == B_FALSE); 26564 26565 ipss = ipst->ips_netstack->netstack_ipsec; 26566 if (!ipsec_loaded(ipss)) { 26567 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26568 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26569 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26570 } else { 26571 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26572 } 26573 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26574 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26575 &ipss->ipsec_dropper); 26576 return; 26577 } 26578 26579 /* 26580 * IPsec processing has started. 26581 */ 26582 io->ipsec_out_proc_begin = B_TRUE; 26583 ap = io->ipsec_out_act; 26584 if (ap == NULL) { 26585 pp = io->ipsec_out_policy; 26586 ASSERT(pp != NULL); 26587 ap = pp->ipsp_act; 26588 ASSERT(ap != NULL); 26589 } 26590 26591 /* 26592 * Save the outbound ill index. When the packet comes back 26593 * from IPsec, we make sure the ill hasn't changed or disappeared 26594 * before sending it the accelerated packet. 26595 */ 26596 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26597 int ifindex; 26598 ill = ire_to_ill(ire); 26599 ifindex = ill->ill_phyint->phyint_ifindex; 26600 io->ipsec_out_capab_ill_index = ifindex; 26601 } 26602 26603 /* 26604 * The order of processing is first insert a IP header if needed. 26605 * Then insert the ESP header and then the AH header. 26606 */ 26607 if ((io->ipsec_out_se_done == B_FALSE) && 26608 (ap->ipa_want_se)) { 26609 /* 26610 * First get the outer IP header before sending 26611 * it to ESP. 26612 */ 26613 ipha_t *oipha, *iipha; 26614 mblk_t *outer_mp, *inner_mp; 26615 26616 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26617 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26618 "ipsec_out_process: " 26619 "Self-Encapsulation failed: Out of memory\n"); 26620 freemsg(ipsec_mp); 26621 if (ill != NULL) { 26622 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26623 } else { 26624 BUMP_MIB(&ipst->ips_ip_mib, 26625 ipIfStatsOutDiscards); 26626 } 26627 return; 26628 } 26629 inner_mp = ipsec_mp->b_cont; 26630 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26631 oipha = (ipha_t *)outer_mp->b_rptr; 26632 iipha = (ipha_t *)inner_mp->b_rptr; 26633 *oipha = *iipha; 26634 outer_mp->b_wptr += sizeof (ipha_t); 26635 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26636 sizeof (ipha_t)); 26637 oipha->ipha_protocol = IPPROTO_ENCAP; 26638 oipha->ipha_version_and_hdr_length = 26639 IP_SIMPLE_HDR_VERSION; 26640 oipha->ipha_hdr_checksum = 0; 26641 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26642 outer_mp->b_cont = inner_mp; 26643 ipsec_mp->b_cont = outer_mp; 26644 26645 io->ipsec_out_se_done = B_TRUE; 26646 io->ipsec_out_tunnel = B_TRUE; 26647 } 26648 26649 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26650 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26651 !ipsec_out_select_sa(ipsec_mp)) 26652 return; 26653 26654 /* 26655 * By now, we know what SA's to use. Toss over to ESP & AH 26656 * to do the heavy lifting. 26657 */ 26658 zoneid = io->ipsec_out_zoneid; 26659 ASSERT(zoneid != ALL_ZONES); 26660 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26661 ASSERT(io->ipsec_out_esp_sa != NULL); 26662 io->ipsec_out_esp_done = B_TRUE; 26663 /* 26664 * Note that since hw accel can only apply one transform, 26665 * not two, we skip hw accel for ESP if we also have AH 26666 * This is an design limitation of the interface 26667 * which should be revisited. 26668 */ 26669 ASSERT(ire != NULL); 26670 if (io->ipsec_out_ah_sa == NULL) { 26671 ill = (ill_t *)ire->ire_stq->q_ptr; 26672 ipsec_out_is_accelerated(ipsec_mp, 26673 io->ipsec_out_esp_sa, ill, ire); 26674 } 26675 26676 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26677 switch (ipsec_rc) { 26678 case IPSEC_STATUS_SUCCESS: 26679 break; 26680 case IPSEC_STATUS_FAILED: 26681 if (ill != NULL) { 26682 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26683 } else { 26684 BUMP_MIB(&ipst->ips_ip_mib, 26685 ipIfStatsOutDiscards); 26686 } 26687 /* FALLTHRU */ 26688 case IPSEC_STATUS_PENDING: 26689 return; 26690 } 26691 } 26692 26693 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26694 ASSERT(io->ipsec_out_ah_sa != NULL); 26695 io->ipsec_out_ah_done = B_TRUE; 26696 if (ire == NULL) { 26697 int idx = io->ipsec_out_capab_ill_index; 26698 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26699 NULL, NULL, NULL, NULL, ipst); 26700 ill_need_rele = B_TRUE; 26701 } else { 26702 ill = (ill_t *)ire->ire_stq->q_ptr; 26703 } 26704 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26705 ire); 26706 26707 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26708 switch (ipsec_rc) { 26709 case IPSEC_STATUS_SUCCESS: 26710 break; 26711 case IPSEC_STATUS_FAILED: 26712 if (ill != NULL) { 26713 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26714 } else { 26715 BUMP_MIB(&ipst->ips_ip_mib, 26716 ipIfStatsOutDiscards); 26717 } 26718 /* FALLTHRU */ 26719 case IPSEC_STATUS_PENDING: 26720 if (ill != NULL && ill_need_rele) 26721 ill_refrele(ill); 26722 return; 26723 } 26724 } 26725 /* 26726 * We are done with IPsec processing. Send it over 26727 * the wire. 26728 */ 26729 done: 26730 mp = ipsec_mp->b_cont; 26731 ipha = (ipha_t *)mp->b_rptr; 26732 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26733 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26734 } else { 26735 ip6h = (ip6_t *)ipha; 26736 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26737 } 26738 if (ill != NULL && ill_need_rele) 26739 ill_refrele(ill); 26740 } 26741 26742 /* ARGSUSED */ 26743 void 26744 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26745 { 26746 opt_restart_t *or; 26747 int err; 26748 conn_t *connp; 26749 26750 ASSERT(CONN_Q(q)); 26751 connp = Q_TO_CONN(q); 26752 26753 ASSERT(first_mp->b_datap->db_type == M_CTL); 26754 or = (opt_restart_t *)first_mp->b_rptr; 26755 /* 26756 * We don't need to pass any credentials here since this is just 26757 * a restart. The credentials are passed in when svr4_optcom_req 26758 * is called the first time (from ip_wput_nondata). 26759 */ 26760 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26761 err = svr4_optcom_req(q, first_mp, NULL, 26762 &ip_opt_obj, B_FALSE); 26763 } else { 26764 ASSERT(or->or_type == T_OPTMGMT_REQ); 26765 err = tpi_optcom_req(q, first_mp, NULL, 26766 &ip_opt_obj, B_FALSE); 26767 } 26768 if (err != EINPROGRESS) { 26769 /* operation is done */ 26770 CONN_OPER_PENDING_DONE(connp); 26771 } 26772 } 26773 26774 /* 26775 * ioctls that go through a down/up sequence may need to wait for the down 26776 * to complete. This involves waiting for the ire and ipif refcnts to go down 26777 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26778 */ 26779 /* ARGSUSED */ 26780 void 26781 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26782 { 26783 struct iocblk *iocp; 26784 mblk_t *mp1; 26785 ip_ioctl_cmd_t *ipip; 26786 int err; 26787 sin_t *sin; 26788 struct lifreq *lifr; 26789 struct ifreq *ifr; 26790 26791 iocp = (struct iocblk *)mp->b_rptr; 26792 ASSERT(ipsq != NULL); 26793 /* Existence of mp1 verified in ip_wput_nondata */ 26794 mp1 = mp->b_cont->b_cont; 26795 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26796 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26797 /* 26798 * Special case where ipsq_current_ipif is not set: 26799 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26800 * ill could also have become part of a ipmp group in the 26801 * process, we are here as were not able to complete the 26802 * operation in ipif_set_values because we could not become 26803 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26804 * will not be set so we need to set it. 26805 */ 26806 ill_t *ill = q->q_ptr; 26807 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26808 } 26809 ASSERT(ipsq->ipsq_current_ipif != NULL); 26810 26811 if (ipip->ipi_cmd_type == IF_CMD) { 26812 /* This a old style SIOC[GS]IF* command */ 26813 ifr = (struct ifreq *)mp1->b_rptr; 26814 sin = (sin_t *)&ifr->ifr_addr; 26815 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26816 /* This a new style SIOC[GS]LIF* command */ 26817 lifr = (struct lifreq *)mp1->b_rptr; 26818 sin = (sin_t *)&lifr->lifr_addr; 26819 } else { 26820 sin = NULL; 26821 } 26822 26823 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 26824 ipip, mp1->b_rptr); 26825 26826 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26827 } 26828 26829 /* 26830 * ioctl processing 26831 * 26832 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26833 * the ioctl command in the ioctl tables, determines the copyin data size 26834 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26835 * 26836 * ioctl processing then continues when the M_IOCDATA makes its way down to 26837 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26838 * associated 'conn' is refheld till the end of the ioctl and the general 26839 * ioctl processing function ip_process_ioctl() is called to extract the 26840 * arguments and process the ioctl. To simplify extraction, ioctl commands 26841 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26842 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26843 * is used to extract the ioctl's arguments. 26844 * 26845 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26846 * so goes thru the serialization primitive ipsq_try_enter. Then the 26847 * appropriate function to handle the ioctl is called based on the entry in 26848 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26849 * which also refreleases the 'conn' that was refheld at the start of the 26850 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26851 * 26852 * Many exclusive ioctls go thru an internal down up sequence as part of 26853 * the operation. For example an attempt to change the IP address of an 26854 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26855 * does all the cleanup such as deleting all ires that use this address. 26856 * Then we need to wait till all references to the interface go away. 26857 */ 26858 void 26859 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26860 { 26861 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26862 ip_ioctl_cmd_t *ipip = arg; 26863 ip_extract_func_t *extract_funcp; 26864 cmd_info_t ci; 26865 int err; 26866 boolean_t entered_ipsq = B_FALSE; 26867 26868 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26869 26870 if (ipip == NULL) 26871 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26872 26873 /* 26874 * SIOCLIFADDIF needs to go thru a special path since the 26875 * ill may not exist yet. This happens in the case of lo0 26876 * which is created using this ioctl. 26877 */ 26878 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26879 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26880 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26881 return; 26882 } 26883 26884 ci.ci_ipif = NULL; 26885 if (ipip->ipi_cmd_type == MISC_CMD) { 26886 /* 26887 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 26888 */ 26889 if (ipip->ipi_cmd == IF_UNITSEL) { 26890 /* ioctl comes down the ill */ 26891 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26892 ipif_refhold(ci.ci_ipif); 26893 } 26894 err = 0; 26895 ci.ci_sin = NULL; 26896 ci.ci_sin6 = NULL; 26897 ci.ci_lifr = NULL; 26898 } else { 26899 switch (ipip->ipi_cmd_type) { 26900 case IF_CMD: 26901 case LIF_CMD: 26902 extract_funcp = ip_extract_lifreq; 26903 break; 26904 26905 case ARP_CMD: 26906 case XARP_CMD: 26907 extract_funcp = ip_extract_arpreq; 26908 break; 26909 26910 case TUN_CMD: 26911 extract_funcp = ip_extract_tunreq; 26912 break; 26913 26914 case MSFILT_CMD: 26915 extract_funcp = ip_extract_msfilter; 26916 break; 26917 26918 default: 26919 ASSERT(0); 26920 } 26921 26922 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 26923 if (err != 0) { 26924 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26925 return; 26926 } 26927 26928 /* 26929 * All of the extraction functions return a refheld ipif. 26930 */ 26931 ASSERT(ci.ci_ipif != NULL); 26932 } 26933 26934 /* 26935 * If ipsq is non-null, we are already being called exclusively 26936 */ 26937 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26938 if (!(ipip->ipi_flags & IPI_WR)) { 26939 /* 26940 * A return value of EINPROGRESS means the ioctl is 26941 * either queued and waiting for some reason or has 26942 * already completed. 26943 */ 26944 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26945 ci.ci_lifr); 26946 if (ci.ci_ipif != NULL) 26947 ipif_refrele(ci.ci_ipif); 26948 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26949 return; 26950 } 26951 26952 ASSERT(ci.ci_ipif != NULL); 26953 26954 if (ipsq == NULL) { 26955 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 26956 ip_process_ioctl, NEW_OP, B_TRUE); 26957 entered_ipsq = B_TRUE; 26958 } 26959 /* 26960 * Release the ipif so that ipif_down and friends that wait for 26961 * references to go away are not misled about the current ipif_refcnt 26962 * values. We are writer so we can access the ipif even after releasing 26963 * the ipif. 26964 */ 26965 ipif_refrele(ci.ci_ipif); 26966 if (ipsq == NULL) 26967 return; 26968 26969 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 26970 26971 /* 26972 * For most set ioctls that come here, this serves as a single point 26973 * where we set the IPIF_CHANGING flag. This ensures that there won't 26974 * be any new references to the ipif. This helps functions that go 26975 * through this path and end up trying to wait for the refcnts 26976 * associated with the ipif to go down to zero. Some exceptions are 26977 * Failover, Failback, and Groupname commands that operate on more than 26978 * just the ci.ci_ipif. These commands internally determine the 26979 * set of ipif's they operate on and set and clear the IPIF_CHANGING 26980 * flags on that set. Another exception is the Removeif command that 26981 * sets the IPIF_CONDEMNED flag internally after identifying the right 26982 * ipif to operate on. 26983 */ 26984 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 26985 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 26986 ipip->ipi_cmd != SIOCLIFFAILOVER && 26987 ipip->ipi_cmd != SIOCLIFFAILBACK && 26988 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 26989 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 26990 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 26991 26992 /* 26993 * A return value of EINPROGRESS means the ioctl is 26994 * either queued and waiting for some reason or has 26995 * already completed. 26996 */ 26997 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 26998 26999 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27000 27001 if (entered_ipsq) 27002 ipsq_exit(ipsq, B_TRUE, B_TRUE); 27003 } 27004 27005 /* 27006 * Complete the ioctl. Typically ioctls use the mi package and need to 27007 * do mi_copyout/mi_copy_done. 27008 */ 27009 void 27010 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27011 { 27012 conn_t *connp = NULL; 27013 27014 if (err == EINPROGRESS) 27015 return; 27016 27017 if (CONN_Q(q)) { 27018 connp = Q_TO_CONN(q); 27019 ASSERT(connp->conn_ref >= 2); 27020 } 27021 27022 switch (mode) { 27023 case COPYOUT: 27024 if (err == 0) 27025 mi_copyout(q, mp); 27026 else 27027 mi_copy_done(q, mp, err); 27028 break; 27029 27030 case NO_COPYOUT: 27031 mi_copy_done(q, mp, err); 27032 break; 27033 27034 default: 27035 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27036 break; 27037 } 27038 27039 /* 27040 * The refhold placed at the start of the ioctl is released here. 27041 */ 27042 if (connp != NULL) 27043 CONN_OPER_PENDING_DONE(connp); 27044 27045 if (ipsq != NULL) 27046 ipsq_current_finish(ipsq); 27047 } 27048 27049 /* 27050 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27051 */ 27052 /* ARGSUSED */ 27053 void 27054 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27055 { 27056 conn_t *connp = arg; 27057 tcp_t *tcp; 27058 27059 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27060 tcp = connp->conn_tcp; 27061 27062 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27063 freemsg(mp); 27064 else 27065 tcp_rput_other(tcp, mp); 27066 CONN_OPER_PENDING_DONE(connp); 27067 } 27068 27069 /* Called from ip_wput for all non data messages */ 27070 /* ARGSUSED */ 27071 void 27072 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27073 { 27074 mblk_t *mp1; 27075 ire_t *ire, *fake_ire; 27076 ill_t *ill; 27077 struct iocblk *iocp; 27078 ip_ioctl_cmd_t *ipip; 27079 cred_t *cr; 27080 conn_t *connp; 27081 int err; 27082 nce_t *nce; 27083 ipif_t *ipif; 27084 ip_stack_t *ipst; 27085 char *proto_str; 27086 27087 if (CONN_Q(q)) { 27088 connp = Q_TO_CONN(q); 27089 ipst = connp->conn_netstack->netstack_ip; 27090 } else { 27091 connp = NULL; 27092 ipst = ILLQ_TO_IPST(q); 27093 } 27094 27095 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27096 27097 switch (DB_TYPE(mp)) { 27098 case M_IOCTL: 27099 /* 27100 * IOCTL processing begins in ip_sioctl_copyin_setup which 27101 * will arrange to copy in associated control structures. 27102 */ 27103 ip_sioctl_copyin_setup(q, mp); 27104 return; 27105 case M_IOCDATA: 27106 /* 27107 * Ensure that this is associated with one of our trans- 27108 * parent ioctls. If it's not ours, discard it if we're 27109 * running as a driver, or pass it on if we're a module. 27110 */ 27111 iocp = (struct iocblk *)mp->b_rptr; 27112 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27113 if (ipip == NULL) { 27114 if (q->q_next == NULL) { 27115 goto nak; 27116 } else { 27117 putnext(q, mp); 27118 } 27119 return; 27120 } 27121 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27122 /* 27123 * the ioctl is one we recognise, but is not 27124 * consumed by IP as a module, pass M_IOCDATA 27125 * for processing downstream, but only for 27126 * common Streams ioctls. 27127 */ 27128 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27129 putnext(q, mp); 27130 return; 27131 } else { 27132 goto nak; 27133 } 27134 } 27135 27136 /* IOCTL continuation following copyin or copyout. */ 27137 if (mi_copy_state(q, mp, NULL) == -1) { 27138 /* 27139 * The copy operation failed. mi_copy_state already 27140 * cleaned up, so we're out of here. 27141 */ 27142 return; 27143 } 27144 /* 27145 * If we just completed a copy in, we become writer and 27146 * continue processing in ip_sioctl_copyin_done. If it 27147 * was a copy out, we call mi_copyout again. If there is 27148 * nothing more to copy out, it will complete the IOCTL. 27149 */ 27150 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27151 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27152 mi_copy_done(q, mp, EPROTO); 27153 return; 27154 } 27155 /* 27156 * Check for cases that need more copying. A return 27157 * value of 0 means a second copyin has been started, 27158 * so we return; a return value of 1 means no more 27159 * copying is needed, so we continue. 27160 */ 27161 if (ipip->ipi_cmd_type == MSFILT_CMD && 27162 MI_COPY_COUNT(mp) == 1) { 27163 if (ip_copyin_msfilter(q, mp) == 0) 27164 return; 27165 } 27166 /* 27167 * Refhold the conn, till the ioctl completes. This is 27168 * needed in case the ioctl ends up in the pending mp 27169 * list. Every mp in the ill_pending_mp list and 27170 * the ipsq_pending_mp must have a refhold on the conn 27171 * to resume processing. The refhold is released when 27172 * the ioctl completes. (normally or abnormally) 27173 * In all cases ip_ioctl_finish is called to finish 27174 * the ioctl. 27175 */ 27176 if (connp != NULL) { 27177 /* This is not a reentry */ 27178 ASSERT(ipsq == NULL); 27179 CONN_INC_REF(connp); 27180 } else { 27181 if (!(ipip->ipi_flags & IPI_MODOK)) { 27182 mi_copy_done(q, mp, EINVAL); 27183 return; 27184 } 27185 } 27186 27187 ip_process_ioctl(ipsq, q, mp, ipip); 27188 27189 } else { 27190 mi_copyout(q, mp); 27191 } 27192 return; 27193 nak: 27194 iocp->ioc_error = EINVAL; 27195 mp->b_datap->db_type = M_IOCNAK; 27196 iocp->ioc_count = 0; 27197 qreply(q, mp); 27198 return; 27199 27200 case M_IOCNAK: 27201 /* 27202 * The only way we could get here is if a resolver didn't like 27203 * an IOCTL we sent it. This shouldn't happen. 27204 */ 27205 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27206 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27207 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27208 freemsg(mp); 27209 return; 27210 case M_IOCACK: 27211 /* /dev/ip shouldn't see this */ 27212 if (CONN_Q(q)) 27213 goto nak; 27214 27215 /* Finish socket ioctls passed through to ARP. */ 27216 ip_sioctl_iocack(q, mp); 27217 return; 27218 case M_FLUSH: 27219 if (*mp->b_rptr & FLUSHW) 27220 flushq(q, FLUSHALL); 27221 if (q->q_next) { 27222 putnext(q, mp); 27223 return; 27224 } 27225 if (*mp->b_rptr & FLUSHR) { 27226 *mp->b_rptr &= ~FLUSHW; 27227 qreply(q, mp); 27228 return; 27229 } 27230 freemsg(mp); 27231 return; 27232 case IRE_DB_REQ_TYPE: 27233 if (connp == NULL) { 27234 proto_str = "IRE_DB_REQ_TYPE"; 27235 goto protonak; 27236 } 27237 /* An Upper Level Protocol wants a copy of an IRE. */ 27238 ip_ire_req(q, mp); 27239 return; 27240 case M_CTL: 27241 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27242 break; 27243 27244 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27245 TUN_HELLO) { 27246 ASSERT(connp != NULL); 27247 connp->conn_flags |= IPCL_IPTUN; 27248 freeb(mp); 27249 return; 27250 } 27251 27252 /* M_CTL messages are used by ARP to tell us things. */ 27253 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27254 break; 27255 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27256 case AR_ENTRY_SQUERY: 27257 ip_wput_ctl(q, mp); 27258 return; 27259 case AR_CLIENT_NOTIFY: 27260 ip_arp_news(q, mp); 27261 return; 27262 case AR_DLPIOP_DONE: 27263 ASSERT(q->q_next != NULL); 27264 ill = (ill_t *)q->q_ptr; 27265 /* qwriter_ip releases the refhold */ 27266 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27267 ill_refhold(ill); 27268 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27269 return; 27270 case AR_ARP_CLOSING: 27271 /* 27272 * ARP (above us) is closing. If no ARP bringup is 27273 * currently pending, ack the message so that ARP 27274 * can complete its close. Also mark ill_arp_closing 27275 * so that new ARP bringups will fail. If any 27276 * ARP bringup is currently in progress, we will 27277 * ack this when the current ARP bringup completes. 27278 */ 27279 ASSERT(q->q_next != NULL); 27280 ill = (ill_t *)q->q_ptr; 27281 mutex_enter(&ill->ill_lock); 27282 ill->ill_arp_closing = 1; 27283 if (!ill->ill_arp_bringup_pending) { 27284 mutex_exit(&ill->ill_lock); 27285 qreply(q, mp); 27286 } else { 27287 mutex_exit(&ill->ill_lock); 27288 freemsg(mp); 27289 } 27290 return; 27291 case AR_ARP_EXTEND: 27292 /* 27293 * The ARP module above us is capable of duplicate 27294 * address detection. Old ATM drivers will not send 27295 * this message. 27296 */ 27297 ASSERT(q->q_next != NULL); 27298 ill = (ill_t *)q->q_ptr; 27299 ill->ill_arp_extend = B_TRUE; 27300 freemsg(mp); 27301 return; 27302 default: 27303 break; 27304 } 27305 break; 27306 case M_PROTO: 27307 case M_PCPROTO: 27308 /* 27309 * The only PROTO messages we expect are ULP binds and 27310 * copies of option negotiation acknowledgements. 27311 */ 27312 switch (((union T_primitives *)mp->b_rptr)->type) { 27313 case O_T_BIND_REQ: 27314 case T_BIND_REQ: { 27315 /* Request can get queued in bind */ 27316 if (connp == NULL) { 27317 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27318 goto protonak; 27319 } 27320 /* 27321 * The transports except SCTP call ip_bind_{v4,v6}() 27322 * directly instead of a a putnext. SCTP doesn't 27323 * generate any T_BIND_REQ since it has its own 27324 * fanout data structures. However, ESP and AH 27325 * come in for regular binds; all other cases are 27326 * bind retries. 27327 */ 27328 ASSERT(!IPCL_IS_SCTP(connp)); 27329 27330 /* Don't increment refcnt if this is a re-entry */ 27331 if (ipsq == NULL) 27332 CONN_INC_REF(connp); 27333 27334 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27335 connp, NULL) : ip_bind_v4(q, mp, connp); 27336 if (mp == NULL) 27337 return; 27338 if (IPCL_IS_TCP(connp)) { 27339 /* 27340 * In the case of TCP endpoint we 27341 * come here only for bind retries 27342 */ 27343 ASSERT(ipsq != NULL); 27344 CONN_INC_REF(connp); 27345 squeue_fill(connp->conn_sqp, mp, 27346 ip_resume_tcp_bind, connp, 27347 SQTAG_BIND_RETRY); 27348 } else if (IPCL_IS_UDP(connp)) { 27349 /* 27350 * In the case of UDP endpoint we 27351 * come here only for bind retries 27352 */ 27353 ASSERT(ipsq != NULL); 27354 udp_resume_bind(connp, mp); 27355 } else if (IPCL_IS_RAWIP(connp)) { 27356 /* 27357 * In the case of RAWIP endpoint we 27358 * come here only for bind retries 27359 */ 27360 ASSERT(ipsq != NULL); 27361 rawip_resume_bind(connp, mp); 27362 } else { 27363 /* The case of AH and ESP */ 27364 qreply(q, mp); 27365 CONN_OPER_PENDING_DONE(connp); 27366 } 27367 return; 27368 } 27369 case T_SVR4_OPTMGMT_REQ: 27370 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27371 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27372 27373 if (connp == NULL) { 27374 proto_str = "T_SVR4_OPTMGMT_REQ"; 27375 goto protonak; 27376 } 27377 27378 if (!snmpcom_req(q, mp, ip_snmp_set, 27379 ip_snmp_get, cr)) { 27380 /* 27381 * Call svr4_optcom_req so that it can 27382 * generate the ack. We don't come here 27383 * if this operation is being restarted. 27384 * ip_restart_optmgmt will drop the conn ref. 27385 * In the case of ipsec option after the ipsec 27386 * load is complete conn_restart_ipsec_waiter 27387 * drops the conn ref. 27388 */ 27389 ASSERT(ipsq == NULL); 27390 CONN_INC_REF(connp); 27391 if (ip_check_for_ipsec_opt(q, mp)) 27392 return; 27393 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27394 B_FALSE); 27395 if (err != EINPROGRESS) { 27396 /* Operation is done */ 27397 CONN_OPER_PENDING_DONE(connp); 27398 } 27399 } 27400 return; 27401 case T_OPTMGMT_REQ: 27402 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27403 /* 27404 * Note: No snmpcom_req support through new 27405 * T_OPTMGMT_REQ. 27406 * Call tpi_optcom_req so that it can 27407 * generate the ack. 27408 */ 27409 if (connp == NULL) { 27410 proto_str = "T_OPTMGMT_REQ"; 27411 goto protonak; 27412 } 27413 27414 ASSERT(ipsq == NULL); 27415 /* 27416 * We don't come here for restart. ip_restart_optmgmt 27417 * will drop the conn ref. In the case of ipsec option 27418 * after the ipsec load is complete 27419 * conn_restart_ipsec_waiter drops the conn ref. 27420 */ 27421 CONN_INC_REF(connp); 27422 if (ip_check_for_ipsec_opt(q, mp)) 27423 return; 27424 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27425 if (err != EINPROGRESS) { 27426 /* Operation is done */ 27427 CONN_OPER_PENDING_DONE(connp); 27428 } 27429 return; 27430 case T_UNBIND_REQ: 27431 if (connp == NULL) { 27432 proto_str = "T_UNBIND_REQ"; 27433 goto protonak; 27434 } 27435 mp = ip_unbind(q, mp); 27436 qreply(q, mp); 27437 return; 27438 default: 27439 /* 27440 * Have to drop any DLPI messages coming down from 27441 * arp (such as an info_req which would cause ip 27442 * to receive an extra info_ack if it was passed 27443 * through. 27444 */ 27445 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27446 (int)*(uint_t *)mp->b_rptr)); 27447 freemsg(mp); 27448 return; 27449 } 27450 /* NOTREACHED */ 27451 case IRE_DB_TYPE: { 27452 nce_t *nce; 27453 ill_t *ill; 27454 in6_addr_t gw_addr_v6; 27455 27456 27457 /* 27458 * This is a response back from a resolver. It 27459 * consists of a message chain containing: 27460 * IRE_MBLK-->LL_HDR_MBLK->pkt 27461 * The IRE_MBLK is the one we allocated in ip_newroute. 27462 * The LL_HDR_MBLK is the DLPI header to use to get 27463 * the attached packet, and subsequent ones for the 27464 * same destination, transmitted. 27465 */ 27466 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27467 break; 27468 /* 27469 * First, check to make sure the resolution succeeded. 27470 * If it failed, the second mblk will be empty. 27471 * If it is, free the chain, dropping the packet. 27472 * (We must ire_delete the ire; that frees the ire mblk) 27473 * We're doing this now to support PVCs for ATM; it's 27474 * a partial xresolv implementation. When we fully implement 27475 * xresolv interfaces, instead of freeing everything here 27476 * we'll initiate neighbor discovery. 27477 * 27478 * For v4 (ARP and other external resolvers) the resolver 27479 * frees the message, so no check is needed. This check 27480 * is required, though, for a full xresolve implementation. 27481 * Including this code here now both shows how external 27482 * resolvers can NACK a resolution request using an 27483 * existing design that has no specific provisions for NACKs, 27484 * and also takes into account that the current non-ARP 27485 * external resolver has been coded to use this method of 27486 * NACKing for all IPv6 (xresolv) cases, 27487 * whether our xresolv implementation is complete or not. 27488 * 27489 */ 27490 ire = (ire_t *)mp->b_rptr; 27491 ill = ire_to_ill(ire); 27492 mp1 = mp->b_cont; /* dl_unitdata_req */ 27493 if (mp1->b_rptr == mp1->b_wptr) { 27494 if (ire->ire_ipversion == IPV6_VERSION) { 27495 /* 27496 * XRESOLV interface. 27497 */ 27498 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27499 mutex_enter(&ire->ire_lock); 27500 gw_addr_v6 = ire->ire_gateway_addr_v6; 27501 mutex_exit(&ire->ire_lock); 27502 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27503 nce = ndp_lookup_v6(ill, 27504 &ire->ire_addr_v6, B_FALSE); 27505 } else { 27506 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27507 B_FALSE); 27508 } 27509 if (nce != NULL) { 27510 nce_resolv_failed(nce); 27511 ndp_delete(nce); 27512 NCE_REFRELE(nce); 27513 } 27514 } 27515 mp->b_cont = NULL; 27516 freemsg(mp1); /* frees the pkt as well */ 27517 ASSERT(ire->ire_nce == NULL); 27518 ire_delete((ire_t *)mp->b_rptr); 27519 return; 27520 } 27521 27522 /* 27523 * Split them into IRE_MBLK and pkt and feed it into 27524 * ire_add_then_send. Then in ire_add_then_send 27525 * the IRE will be added, and then the packet will be 27526 * run back through ip_wput. This time it will make 27527 * it to the wire. 27528 */ 27529 mp->b_cont = NULL; 27530 mp = mp1->b_cont; /* now, mp points to pkt */ 27531 mp1->b_cont = NULL; 27532 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27533 if (ire->ire_ipversion == IPV6_VERSION) { 27534 /* 27535 * XRESOLV interface. Find the nce and put a copy 27536 * of the dl_unitdata_req in nce_res_mp 27537 */ 27538 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27539 mutex_enter(&ire->ire_lock); 27540 gw_addr_v6 = ire->ire_gateway_addr_v6; 27541 mutex_exit(&ire->ire_lock); 27542 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27543 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27544 B_FALSE); 27545 } else { 27546 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27547 } 27548 if (nce != NULL) { 27549 /* 27550 * We have to protect nce_res_mp here 27551 * from being accessed by other threads 27552 * while we change the mblk pointer. 27553 * Other functions will also lock the nce when 27554 * accessing nce_res_mp. 27555 * 27556 * The reason we change the mblk pointer 27557 * here rather than copying the resolved address 27558 * into the template is that, unlike with 27559 * ethernet, we have no guarantee that the 27560 * resolved address length will be 27561 * smaller than or equal to the lla length 27562 * with which the template was allocated, 27563 * (for ethernet, they're equal) 27564 * so we have to use the actual resolved 27565 * address mblk - which holds the real 27566 * dl_unitdata_req with the resolved address. 27567 * 27568 * Doing this is the same behavior as was 27569 * previously used in the v4 ARP case. 27570 */ 27571 mutex_enter(&nce->nce_lock); 27572 if (nce->nce_res_mp != NULL) 27573 freemsg(nce->nce_res_mp); 27574 nce->nce_res_mp = mp1; 27575 mutex_exit(&nce->nce_lock); 27576 /* 27577 * We do a fastpath probe here because 27578 * we have resolved the address without 27579 * using Neighbor Discovery. 27580 * In the non-XRESOLV v6 case, the fastpath 27581 * probe is done right after neighbor 27582 * discovery completes. 27583 */ 27584 if (nce->nce_res_mp != NULL) { 27585 int res; 27586 nce_fastpath_list_add(nce); 27587 res = ill_fastpath_probe(ill, 27588 nce->nce_res_mp); 27589 if (res != 0 && res != EAGAIN) 27590 nce_fastpath_list_delete(nce); 27591 } 27592 27593 ire_add_then_send(q, ire, mp); 27594 /* 27595 * Now we have to clean out any packets 27596 * that may have been queued on the nce 27597 * while it was waiting for address resolution 27598 * to complete. 27599 */ 27600 mutex_enter(&nce->nce_lock); 27601 mp1 = nce->nce_qd_mp; 27602 nce->nce_qd_mp = NULL; 27603 mutex_exit(&nce->nce_lock); 27604 while (mp1 != NULL) { 27605 mblk_t *nxt_mp; 27606 queue_t *fwdq = NULL; 27607 ill_t *inbound_ill; 27608 uint_t ifindex; 27609 27610 nxt_mp = mp1->b_next; 27611 mp1->b_next = NULL; 27612 /* 27613 * Retrieve ifindex stored in 27614 * ip_rput_data_v6() 27615 */ 27616 ifindex = 27617 (uint_t)(uintptr_t)mp1->b_prev; 27618 inbound_ill = 27619 ill_lookup_on_ifindex(ifindex, 27620 B_TRUE, NULL, NULL, NULL, 27621 NULL, ipst); 27622 mp1->b_prev = NULL; 27623 if (inbound_ill != NULL) 27624 fwdq = inbound_ill->ill_rq; 27625 27626 if (fwdq != NULL) { 27627 put(fwdq, mp1); 27628 ill_refrele(inbound_ill); 27629 } else 27630 put(WR(ill->ill_rq), mp1); 27631 mp1 = nxt_mp; 27632 } 27633 NCE_REFRELE(nce); 27634 } else { /* nce is NULL; clean up */ 27635 ire_delete(ire); 27636 freemsg(mp); 27637 freemsg(mp1); 27638 return; 27639 } 27640 } else { 27641 nce_t *arpce; 27642 /* 27643 * Link layer resolution succeeded. Recompute the 27644 * ire_nce. 27645 */ 27646 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27647 if ((arpce = ndp_lookup_v4(ill, 27648 (ire->ire_gateway_addr != INADDR_ANY ? 27649 &ire->ire_gateway_addr : &ire->ire_addr), 27650 B_FALSE)) == NULL) { 27651 freeb(ire->ire_mp); 27652 freeb(mp1); 27653 freemsg(mp); 27654 return; 27655 } 27656 mutex_enter(&arpce->nce_lock); 27657 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27658 if (arpce->nce_state == ND_REACHABLE) { 27659 /* 27660 * Someone resolved this before us; 27661 * cleanup the res_mp. Since ire has 27662 * not been added yet, the call to ire_add_v4 27663 * from ire_add_then_send (when a dup is 27664 * detected) will clean up the ire. 27665 */ 27666 freeb(mp1); 27667 } else { 27668 ASSERT(arpce->nce_res_mp == NULL); 27669 arpce->nce_res_mp = mp1; 27670 arpce->nce_state = ND_REACHABLE; 27671 } 27672 mutex_exit(&arpce->nce_lock); 27673 if (ire->ire_marks & IRE_MARK_NOADD) { 27674 /* 27675 * this ire will not be added to the ire 27676 * cache table, so we can set the ire_nce 27677 * here, as there are no atomicity constraints. 27678 */ 27679 ire->ire_nce = arpce; 27680 /* 27681 * We are associating this nce with the ire 27682 * so change the nce ref taken in 27683 * ndp_lookup_v4() from 27684 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27685 */ 27686 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27687 } else { 27688 NCE_REFRELE(arpce); 27689 } 27690 ire_add_then_send(q, ire, mp); 27691 } 27692 return; /* All is well, the packet has been sent. */ 27693 } 27694 case IRE_ARPRESOLVE_TYPE: { 27695 27696 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27697 break; 27698 mp1 = mp->b_cont; /* dl_unitdata_req */ 27699 mp->b_cont = NULL; 27700 /* 27701 * First, check to make sure the resolution succeeded. 27702 * If it failed, the second mblk will be empty. 27703 */ 27704 if (mp1->b_rptr == mp1->b_wptr) { 27705 /* cleanup the incomplete ire, free queued packets */ 27706 freemsg(mp); /* fake ire */ 27707 freeb(mp1); /* dl_unitdata response */ 27708 return; 27709 } 27710 27711 /* 27712 * update any incomplete nce_t found. we lookup the ctable 27713 * and find the nce from the ire->ire_nce because we need 27714 * to pass the ire to ip_xmit_v4 later, and can find both 27715 * ire and nce in one lookup from the ctable. 27716 */ 27717 fake_ire = (ire_t *)mp->b_rptr; 27718 /* 27719 * By the time we come back here from ARP 27720 * the logical outgoing interface of the incomplete ire 27721 * we added in ire_forward could have disappeared, 27722 * causing the incomplete ire to also have 27723 * dissapeared. So we need to retreive the 27724 * proper ipif for the ire before looking 27725 * in ctable; do the ctablelookup based on ire_ipif_seqid 27726 */ 27727 ill = q->q_ptr; 27728 27729 /* Get the outgoing ipif */ 27730 mutex_enter(&ill->ill_lock); 27731 if (ill->ill_state_flags & ILL_CONDEMNED) { 27732 mutex_exit(&ill->ill_lock); 27733 freemsg(mp); /* fake ire */ 27734 freeb(mp1); /* dl_unitdata response */ 27735 return; 27736 } 27737 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27738 27739 if (ipif == NULL) { 27740 mutex_exit(&ill->ill_lock); 27741 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27742 freemsg(mp); 27743 freeb(mp1); 27744 return; 27745 } 27746 ipif_refhold_locked(ipif); 27747 mutex_exit(&ill->ill_lock); 27748 ire = ire_ctable_lookup(fake_ire->ire_addr, 27749 fake_ire->ire_gateway_addr, IRE_CACHE, 27750 ipif, fake_ire->ire_zoneid, NULL, 27751 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY), ipst); 27752 ipif_refrele(ipif); 27753 if (ire == NULL) { 27754 /* 27755 * no ire was found; check if there is an nce 27756 * for this lookup; if it has no ire's pointing at it 27757 * cleanup. 27758 */ 27759 if ((nce = ndp_lookup_v4(ill, 27760 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27761 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27762 B_FALSE)) != NULL) { 27763 /* 27764 * cleanup: 27765 * We check for refcnt 2 (one for the nce 27766 * hash list + 1 for the ref taken by 27767 * ndp_lookup_v4) to check that there are 27768 * no ire's pointing at the nce. 27769 */ 27770 if (nce->nce_refcnt == 2) 27771 ndp_delete(nce); 27772 NCE_REFRELE(nce); 27773 } 27774 freeb(mp1); /* dl_unitdata response */ 27775 freemsg(mp); /* fake ire */ 27776 return; 27777 } 27778 nce = ire->ire_nce; 27779 DTRACE_PROBE2(ire__arpresolve__type, 27780 ire_t *, ire, nce_t *, nce); 27781 ASSERT(nce->nce_state != ND_INITIAL); 27782 mutex_enter(&nce->nce_lock); 27783 nce->nce_last = TICK_TO_MSEC(lbolt64); 27784 if (nce->nce_state == ND_REACHABLE) { 27785 /* 27786 * Someone resolved this before us; 27787 * our response is not needed any more. 27788 */ 27789 mutex_exit(&nce->nce_lock); 27790 freeb(mp1); /* dl_unitdata response */ 27791 } else { 27792 ASSERT(nce->nce_res_mp == NULL); 27793 nce->nce_res_mp = mp1; 27794 nce->nce_state = ND_REACHABLE; 27795 mutex_exit(&nce->nce_lock); 27796 nce_fastpath(nce); 27797 } 27798 /* 27799 * The cached nce_t has been updated to be reachable; 27800 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27801 */ 27802 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27803 freemsg(mp); 27804 /* 27805 * send out queued packets. 27806 */ 27807 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27808 27809 IRE_REFRELE(ire); 27810 return; 27811 } 27812 default: 27813 break; 27814 } 27815 if (q->q_next) { 27816 putnext(q, mp); 27817 } else 27818 freemsg(mp); 27819 return; 27820 27821 protonak: 27822 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27823 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27824 qreply(q, mp); 27825 } 27826 27827 /* 27828 * Process IP options in an outbound packet. Modify the destination if there 27829 * is a source route option. 27830 * Returns non-zero if something fails in which case an ICMP error has been 27831 * sent and mp freed. 27832 */ 27833 static int 27834 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27835 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27836 { 27837 ipoptp_t opts; 27838 uchar_t *opt; 27839 uint8_t optval; 27840 uint8_t optlen; 27841 ipaddr_t dst; 27842 intptr_t code = 0; 27843 mblk_t *mp; 27844 ire_t *ire = NULL; 27845 27846 ip2dbg(("ip_wput_options\n")); 27847 mp = ipsec_mp; 27848 if (mctl_present) { 27849 mp = ipsec_mp->b_cont; 27850 } 27851 27852 dst = ipha->ipha_dst; 27853 for (optval = ipoptp_first(&opts, ipha); 27854 optval != IPOPT_EOL; 27855 optval = ipoptp_next(&opts)) { 27856 opt = opts.ipoptp_cur; 27857 optlen = opts.ipoptp_len; 27858 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27859 optval, optlen)); 27860 switch (optval) { 27861 uint32_t off; 27862 case IPOPT_SSRR: 27863 case IPOPT_LSRR: 27864 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27865 ip1dbg(( 27866 "ip_wput_options: bad option offset\n")); 27867 code = (char *)&opt[IPOPT_OLEN] - 27868 (char *)ipha; 27869 goto param_prob; 27870 } 27871 off = opt[IPOPT_OFFSET]; 27872 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27873 ntohl(dst))); 27874 /* 27875 * For strict: verify that dst is directly 27876 * reachable. 27877 */ 27878 if (optval == IPOPT_SSRR) { 27879 ire = ire_ftable_lookup(dst, 0, 0, 27880 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27881 MBLK_GETLABEL(mp), 27882 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27883 if (ire == NULL) { 27884 ip1dbg(("ip_wput_options: SSRR not" 27885 " directly reachable: 0x%x\n", 27886 ntohl(dst))); 27887 goto bad_src_route; 27888 } 27889 ire_refrele(ire); 27890 } 27891 break; 27892 case IPOPT_RR: 27893 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27894 ip1dbg(( 27895 "ip_wput_options: bad option offset\n")); 27896 code = (char *)&opt[IPOPT_OLEN] - 27897 (char *)ipha; 27898 goto param_prob; 27899 } 27900 break; 27901 case IPOPT_TS: 27902 /* 27903 * Verify that length >=5 and that there is either 27904 * room for another timestamp or that the overflow 27905 * counter is not maxed out. 27906 */ 27907 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27908 if (optlen < IPOPT_MINLEN_IT) { 27909 goto param_prob; 27910 } 27911 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27912 ip1dbg(( 27913 "ip_wput_options: bad option offset\n")); 27914 code = (char *)&opt[IPOPT_OFFSET] - 27915 (char *)ipha; 27916 goto param_prob; 27917 } 27918 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27919 case IPOPT_TS_TSONLY: 27920 off = IPOPT_TS_TIMELEN; 27921 break; 27922 case IPOPT_TS_TSANDADDR: 27923 case IPOPT_TS_PRESPEC: 27924 case IPOPT_TS_PRESPEC_RFC791: 27925 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27926 break; 27927 default: 27928 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27929 (char *)ipha; 27930 goto param_prob; 27931 } 27932 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27933 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27934 /* 27935 * No room and the overflow counter is 15 27936 * already. 27937 */ 27938 goto param_prob; 27939 } 27940 break; 27941 } 27942 } 27943 27944 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 27945 return (0); 27946 27947 ip1dbg(("ip_wput_options: error processing IP options.")); 27948 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 27949 27950 param_prob: 27951 /* 27952 * Since ip_wput() isn't close to finished, we fill 27953 * in enough of the header for credible error reporting. 27954 */ 27955 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27956 /* Failed */ 27957 freemsg(ipsec_mp); 27958 return (-1); 27959 } 27960 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 27961 return (-1); 27962 27963 bad_src_route: 27964 /* 27965 * Since ip_wput() isn't close to finished, we fill 27966 * in enough of the header for credible error reporting. 27967 */ 27968 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27969 /* Failed */ 27970 freemsg(ipsec_mp); 27971 return (-1); 27972 } 27973 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 27974 return (-1); 27975 } 27976 27977 /* 27978 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 27979 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 27980 * thru /etc/system. 27981 */ 27982 #define CONN_MAXDRAINCNT 64 27983 27984 static void 27985 conn_drain_init(ip_stack_t *ipst) 27986 { 27987 int i; 27988 27989 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 27990 27991 if ((ipst->ips_conn_drain_list_cnt == 0) || 27992 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 27993 /* 27994 * Default value of the number of drainers is the 27995 * number of cpus, subject to maximum of 8 drainers. 27996 */ 27997 if (boot_max_ncpus != -1) 27998 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 27999 else 28000 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28001 } 28002 28003 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28004 sizeof (idl_t), KM_SLEEP); 28005 28006 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28007 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28008 MUTEX_DEFAULT, NULL); 28009 } 28010 } 28011 28012 static void 28013 conn_drain_fini(ip_stack_t *ipst) 28014 { 28015 int i; 28016 28017 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28018 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28019 kmem_free(ipst->ips_conn_drain_list, 28020 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28021 ipst->ips_conn_drain_list = NULL; 28022 } 28023 28024 /* 28025 * Note: For an overview of how flowcontrol is handled in IP please see the 28026 * IP Flowcontrol notes at the top of this file. 28027 * 28028 * Flow control has blocked us from proceeding. Insert the given conn in one 28029 * of the conn drain lists. These conn wq's will be qenabled later on when 28030 * STREAMS flow control does a backenable. conn_walk_drain will enable 28031 * the first conn in each of these drain lists. Each of these qenabled conns 28032 * in turn enables the next in the list, after it runs, or when it closes, 28033 * thus sustaining the drain process. 28034 * 28035 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28036 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28037 * running at any time, on a given conn, since there can be only 1 service proc 28038 * running on a queue at any time. 28039 */ 28040 void 28041 conn_drain_insert(conn_t *connp) 28042 { 28043 idl_t *idl; 28044 uint_t index; 28045 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28046 28047 mutex_enter(&connp->conn_lock); 28048 if (connp->conn_state_flags & CONN_CLOSING) { 28049 /* 28050 * The conn is closing as a result of which CONN_CLOSING 28051 * is set. Return. 28052 */ 28053 mutex_exit(&connp->conn_lock); 28054 return; 28055 } else if (connp->conn_idl == NULL) { 28056 /* 28057 * Assign the next drain list round robin. We dont' use 28058 * a lock, and thus it may not be strictly round robin. 28059 * Atomicity of load/stores is enough to make sure that 28060 * conn_drain_list_index is always within bounds. 28061 */ 28062 index = ipst->ips_conn_drain_list_index; 28063 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28064 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28065 index++; 28066 if (index == ipst->ips_conn_drain_list_cnt) 28067 index = 0; 28068 ipst->ips_conn_drain_list_index = index; 28069 } 28070 mutex_exit(&connp->conn_lock); 28071 28072 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28073 if ((connp->conn_drain_prev != NULL) || 28074 (connp->conn_state_flags & CONN_CLOSING)) { 28075 /* 28076 * The conn is already in the drain list, OR 28077 * the conn is closing. We need to check again for 28078 * the closing case again since close can happen 28079 * after we drop the conn_lock, and before we 28080 * acquire the CONN_DRAIN_LIST_LOCK. 28081 */ 28082 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28083 return; 28084 } else { 28085 idl = connp->conn_idl; 28086 } 28087 28088 /* 28089 * The conn is not in the drain list. Insert it at the 28090 * tail of the drain list. The drain list is circular 28091 * and doubly linked. idl_conn points to the 1st element 28092 * in the list. 28093 */ 28094 if (idl->idl_conn == NULL) { 28095 idl->idl_conn = connp; 28096 connp->conn_drain_next = connp; 28097 connp->conn_drain_prev = connp; 28098 } else { 28099 conn_t *head = idl->idl_conn; 28100 28101 connp->conn_drain_next = head; 28102 connp->conn_drain_prev = head->conn_drain_prev; 28103 head->conn_drain_prev->conn_drain_next = connp; 28104 head->conn_drain_prev = connp; 28105 } 28106 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28107 } 28108 28109 /* 28110 * This conn is closing, and we are called from ip_close. OR 28111 * This conn has been serviced by ip_wsrv, and we need to do the tail 28112 * processing. 28113 * If this conn is part of the drain list, we may need to sustain the drain 28114 * process by qenabling the next conn in the drain list. We may also need to 28115 * remove this conn from the list, if it is done. 28116 */ 28117 static void 28118 conn_drain_tail(conn_t *connp, boolean_t closing) 28119 { 28120 idl_t *idl; 28121 28122 /* 28123 * connp->conn_idl is stable at this point, and no lock is needed 28124 * to check it. If we are called from ip_close, close has already 28125 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28126 * called us only because conn_idl is non-null. If we are called thru 28127 * service, conn_idl could be null, but it cannot change because 28128 * service is single-threaded per queue, and there cannot be another 28129 * instance of service trying to call conn_drain_insert on this conn 28130 * now. 28131 */ 28132 ASSERT(!closing || (connp->conn_idl != NULL)); 28133 28134 /* 28135 * If connp->conn_idl is null, the conn has not been inserted into any 28136 * drain list even once since creation of the conn. Just return. 28137 */ 28138 if (connp->conn_idl == NULL) 28139 return; 28140 28141 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28142 28143 if (connp->conn_drain_prev == NULL) { 28144 /* This conn is currently not in the drain list. */ 28145 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28146 return; 28147 } 28148 idl = connp->conn_idl; 28149 if (idl->idl_conn_draining == connp) { 28150 /* 28151 * This conn is the current drainer. If this is the last conn 28152 * in the drain list, we need to do more checks, in the 'if' 28153 * below. Otherwwise we need to just qenable the next conn, 28154 * to sustain the draining, and is handled in the 'else' 28155 * below. 28156 */ 28157 if (connp->conn_drain_next == idl->idl_conn) { 28158 /* 28159 * This conn is the last in this list. This round 28160 * of draining is complete. If idl_repeat is set, 28161 * it means another flow enabling has happened from 28162 * the driver/streams and we need to another round 28163 * of draining. 28164 * If there are more than 2 conns in the drain list, 28165 * do a left rotate by 1, so that all conns except the 28166 * conn at the head move towards the head by 1, and the 28167 * the conn at the head goes to the tail. This attempts 28168 * a more even share for all queues that are being 28169 * drained. 28170 */ 28171 if ((connp->conn_drain_next != connp) && 28172 (idl->idl_conn->conn_drain_next != connp)) { 28173 idl->idl_conn = idl->idl_conn->conn_drain_next; 28174 } 28175 if (idl->idl_repeat) { 28176 qenable(idl->idl_conn->conn_wq); 28177 idl->idl_conn_draining = idl->idl_conn; 28178 idl->idl_repeat = 0; 28179 } else { 28180 idl->idl_conn_draining = NULL; 28181 } 28182 } else { 28183 /* 28184 * If the next queue that we are now qenable'ing, 28185 * is closing, it will remove itself from this list 28186 * and qenable the subsequent queue in ip_close(). 28187 * Serialization is acheived thru idl_lock. 28188 */ 28189 qenable(connp->conn_drain_next->conn_wq); 28190 idl->idl_conn_draining = connp->conn_drain_next; 28191 } 28192 } 28193 if (!connp->conn_did_putbq || closing) { 28194 /* 28195 * Remove ourself from the drain list, if we did not do 28196 * a putbq, or if the conn is closing. 28197 * Note: It is possible that q->q_first is non-null. It means 28198 * that these messages landed after we did a enableok() in 28199 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28200 * service them. 28201 */ 28202 if (connp->conn_drain_next == connp) { 28203 /* Singleton in the list */ 28204 ASSERT(connp->conn_drain_prev == connp); 28205 idl->idl_conn = NULL; 28206 idl->idl_conn_draining = NULL; 28207 } else { 28208 connp->conn_drain_prev->conn_drain_next = 28209 connp->conn_drain_next; 28210 connp->conn_drain_next->conn_drain_prev = 28211 connp->conn_drain_prev; 28212 if (idl->idl_conn == connp) 28213 idl->idl_conn = connp->conn_drain_next; 28214 ASSERT(idl->idl_conn_draining != connp); 28215 28216 } 28217 connp->conn_drain_next = NULL; 28218 connp->conn_drain_prev = NULL; 28219 } 28220 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28221 } 28222 28223 /* 28224 * Write service routine. Shared perimeter entry point. 28225 * ip_wsrv can be called in any of the following ways. 28226 * 1. The device queue's messages has fallen below the low water mark 28227 * and STREAMS has backenabled the ill_wq. We walk thru all the 28228 * the drain lists and backenable the first conn in each list. 28229 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28230 * qenabled non-tcp upper layers. We start dequeing messages and call 28231 * ip_wput for each message. 28232 */ 28233 28234 void 28235 ip_wsrv(queue_t *q) 28236 { 28237 conn_t *connp; 28238 ill_t *ill; 28239 mblk_t *mp; 28240 28241 if (q->q_next) { 28242 ill = (ill_t *)q->q_ptr; 28243 if (ill->ill_state_flags == 0) { 28244 /* 28245 * The device flow control has opened up. 28246 * Walk through conn drain lists and qenable the 28247 * first conn in each list. This makes sense only 28248 * if the stream is fully plumbed and setup. 28249 * Hence the if check above. 28250 */ 28251 ip1dbg(("ip_wsrv: walking\n")); 28252 conn_walk_drain(ill->ill_ipst); 28253 } 28254 return; 28255 } 28256 28257 connp = Q_TO_CONN(q); 28258 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28259 28260 /* 28261 * 1. Set conn_draining flag to signal that service is active. 28262 * 28263 * 2. ip_output determines whether it has been called from service, 28264 * based on the last parameter. If it is IP_WSRV it concludes it 28265 * has been called from service. 28266 * 28267 * 3. Message ordering is preserved by the following logic. 28268 * i. A directly called ip_output (i.e. not thru service) will queue 28269 * the message at the tail, if conn_draining is set (i.e. service 28270 * is running) or if q->q_first is non-null. 28271 * 28272 * ii. If ip_output is called from service, and if ip_output cannot 28273 * putnext due to flow control, it does a putbq. 28274 * 28275 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28276 * (causing an infinite loop). 28277 */ 28278 ASSERT(!connp->conn_did_putbq); 28279 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28280 connp->conn_draining = 1; 28281 noenable(q); 28282 while ((mp = getq(q)) != NULL) { 28283 ASSERT(CONN_Q(q)); 28284 28285 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28286 if (connp->conn_did_putbq) { 28287 /* ip_wput did a putbq */ 28288 break; 28289 } 28290 } 28291 /* 28292 * At this point, a thread coming down from top, calling 28293 * ip_wput, may end up queueing the message. We have not yet 28294 * enabled the queue, so ip_wsrv won't be called again. 28295 * To avoid this race, check q->q_first again (in the loop) 28296 * If the other thread queued the message before we call 28297 * enableok(), we will catch it in the q->q_first check. 28298 * If the other thread queues the message after we call 28299 * enableok(), ip_wsrv will be called again by STREAMS. 28300 */ 28301 connp->conn_draining = 0; 28302 enableok(q); 28303 } 28304 28305 /* Enable the next conn for draining */ 28306 conn_drain_tail(connp, B_FALSE); 28307 28308 connp->conn_did_putbq = 0; 28309 } 28310 28311 /* 28312 * Walk the list of all conn's calling the function provided with the 28313 * specified argument for each. Note that this only walks conn's that 28314 * have been bound. 28315 * Applies to both IPv4 and IPv6. 28316 */ 28317 static void 28318 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28319 { 28320 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28321 ipst->ips_ipcl_udp_fanout_size, 28322 func, arg, zoneid); 28323 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28324 ipst->ips_ipcl_conn_fanout_size, 28325 func, arg, zoneid); 28326 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28327 ipst->ips_ipcl_bind_fanout_size, 28328 func, arg, zoneid); 28329 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28330 IPPROTO_MAX, func, arg, zoneid); 28331 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28332 IPPROTO_MAX, func, arg, zoneid); 28333 } 28334 28335 /* 28336 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28337 * of conns that need to be drained, check if drain is already in progress. 28338 * If so set the idl_repeat bit, indicating that the last conn in the list 28339 * needs to reinitiate the drain once again, for the list. If drain is not 28340 * in progress for the list, initiate the draining, by qenabling the 1st 28341 * conn in the list. The drain is self-sustaining, each qenabled conn will 28342 * in turn qenable the next conn, when it is done/blocked/closing. 28343 */ 28344 static void 28345 conn_walk_drain(ip_stack_t *ipst) 28346 { 28347 int i; 28348 idl_t *idl; 28349 28350 IP_STAT(ipst, ip_conn_walk_drain); 28351 28352 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28353 idl = &ipst->ips_conn_drain_list[i]; 28354 mutex_enter(&idl->idl_lock); 28355 if (idl->idl_conn == NULL) { 28356 mutex_exit(&idl->idl_lock); 28357 continue; 28358 } 28359 /* 28360 * If this list is not being drained currently by 28361 * an ip_wsrv thread, start the process. 28362 */ 28363 if (idl->idl_conn_draining == NULL) { 28364 ASSERT(idl->idl_repeat == 0); 28365 qenable(idl->idl_conn->conn_wq); 28366 idl->idl_conn_draining = idl->idl_conn; 28367 } else { 28368 idl->idl_repeat = 1; 28369 } 28370 mutex_exit(&idl->idl_lock); 28371 } 28372 } 28373 28374 /* 28375 * Walk an conn hash table of `count' buckets, calling func for each entry. 28376 */ 28377 static void 28378 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28379 zoneid_t zoneid) 28380 { 28381 conn_t *connp; 28382 28383 while (count-- > 0) { 28384 mutex_enter(&connfp->connf_lock); 28385 for (connp = connfp->connf_head; connp != NULL; 28386 connp = connp->conn_next) { 28387 if (zoneid == GLOBAL_ZONEID || 28388 zoneid == connp->conn_zoneid) { 28389 CONN_INC_REF(connp); 28390 mutex_exit(&connfp->connf_lock); 28391 (*func)(connp, arg); 28392 mutex_enter(&connfp->connf_lock); 28393 CONN_DEC_REF(connp); 28394 } 28395 } 28396 mutex_exit(&connfp->connf_lock); 28397 connfp++; 28398 } 28399 } 28400 28401 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */ 28402 static void 28403 conn_report1(conn_t *connp, void *mp) 28404 { 28405 char buf1[INET6_ADDRSTRLEN]; 28406 char buf2[INET6_ADDRSTRLEN]; 28407 uint_t print_len, buf_len; 28408 28409 ASSERT(connp != NULL); 28410 28411 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28412 if (buf_len <= 0) 28413 return; 28414 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28415 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28416 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28417 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28418 "%5d %s/%05d %s/%05d\n", 28419 (void *)connp, (void *)CONNP_TO_RQ(connp), 28420 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28421 buf1, connp->conn_lport, 28422 buf2, connp->conn_fport); 28423 if (print_len < buf_len) { 28424 ((mblk_t *)mp)->b_wptr += print_len; 28425 } else { 28426 ((mblk_t *)mp)->b_wptr += buf_len; 28427 } 28428 } 28429 28430 /* 28431 * Named Dispatch routine to produce a formatted report on all conns 28432 * that are listed in one of the fanout tables. 28433 * This report is accessed by using the ndd utility to "get" ND variable 28434 * "ip_conn_status". 28435 */ 28436 /* ARGSUSED */ 28437 static int 28438 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28439 { 28440 conn_t *connp = Q_TO_CONN(q); 28441 28442 (void) mi_mpprintf(mp, 28443 "CONN " MI_COL_HDRPAD_STR 28444 "rfq " MI_COL_HDRPAD_STR 28445 "stq " MI_COL_HDRPAD_STR 28446 " zone local remote"); 28447 28448 /* 28449 * Because of the ndd constraint, at most we can have 64K buffer 28450 * to put in all conn info. So to be more efficient, just 28451 * allocate a 64K buffer here, assuming we need that large buffer. 28452 * This should be OK as only privileged processes can do ndd /dev/ip. 28453 */ 28454 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28455 /* The following may work even if we cannot get a large buf. */ 28456 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28457 return (0); 28458 } 28459 28460 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28461 connp->conn_netstack->netstack_ip); 28462 return (0); 28463 } 28464 28465 /* 28466 * Determine if the ill and multicast aspects of that packets 28467 * "matches" the conn. 28468 */ 28469 boolean_t 28470 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28471 zoneid_t zoneid) 28472 { 28473 ill_t *in_ill; 28474 boolean_t found; 28475 ipif_t *ipif; 28476 ire_t *ire; 28477 ipaddr_t dst, src; 28478 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28479 28480 dst = ipha->ipha_dst; 28481 src = ipha->ipha_src; 28482 28483 /* 28484 * conn_incoming_ill is set by IP_BOUND_IF which limits 28485 * unicast, broadcast and multicast reception to 28486 * conn_incoming_ill. conn_wantpacket itself is called 28487 * only for BROADCAST and multicast. 28488 * 28489 * 1) ip_rput supresses duplicate broadcasts if the ill 28490 * is part of a group. Hence, we should be receiving 28491 * just one copy of broadcast for the whole group. 28492 * Thus, if it is part of the group the packet could 28493 * come on any ill of the group and hence we need a 28494 * match on the group. Otherwise, match on ill should 28495 * be sufficient. 28496 * 28497 * 2) ip_rput does not suppress duplicate multicast packets. 28498 * If there are two interfaces in a ill group and we have 28499 * 2 applications (conns) joined a multicast group G on 28500 * both the interfaces, ilm_lookup_ill filter in ip_rput 28501 * will give us two packets because we join G on both the 28502 * interfaces rather than nominating just one interface 28503 * for receiving multicast like broadcast above. So, 28504 * we have to call ilg_lookup_ill to filter out duplicate 28505 * copies, if ill is part of a group. 28506 */ 28507 in_ill = connp->conn_incoming_ill; 28508 if (in_ill != NULL) { 28509 if (in_ill->ill_group == NULL) { 28510 if (in_ill != ill) 28511 return (B_FALSE); 28512 } else if (in_ill->ill_group != ill->ill_group) { 28513 return (B_FALSE); 28514 } 28515 } 28516 28517 if (!CLASSD(dst)) { 28518 if (IPCL_ZONE_MATCH(connp, zoneid)) 28519 return (B_TRUE); 28520 /* 28521 * The conn is in a different zone; we need to check that this 28522 * broadcast address is configured in the application's zone and 28523 * on one ill in the group. 28524 */ 28525 ipif = ipif_get_next_ipif(NULL, ill); 28526 if (ipif == NULL) 28527 return (B_FALSE); 28528 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28529 connp->conn_zoneid, NULL, 28530 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28531 ipif_refrele(ipif); 28532 if (ire != NULL) { 28533 ire_refrele(ire); 28534 return (B_TRUE); 28535 } else { 28536 return (B_FALSE); 28537 } 28538 } 28539 28540 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28541 connp->conn_zoneid == zoneid) { 28542 /* 28543 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28544 * disabled, therefore we don't dispatch the multicast packet to 28545 * the sending zone. 28546 */ 28547 return (B_FALSE); 28548 } 28549 28550 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28551 /* 28552 * Multicast packet on the loopback interface: we only match 28553 * conns who joined the group in the specified zone. 28554 */ 28555 return (B_FALSE); 28556 } 28557 28558 if (connp->conn_multi_router) { 28559 /* multicast packet and multicast router socket: send up */ 28560 return (B_TRUE); 28561 } 28562 28563 mutex_enter(&connp->conn_lock); 28564 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28565 mutex_exit(&connp->conn_lock); 28566 return (found); 28567 } 28568 28569 /* 28570 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28571 */ 28572 /* ARGSUSED */ 28573 static void 28574 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28575 { 28576 ill_t *ill = (ill_t *)q->q_ptr; 28577 mblk_t *mp1, *mp2; 28578 ipif_t *ipif; 28579 int err = 0; 28580 conn_t *connp = NULL; 28581 ipsq_t *ipsq; 28582 arc_t *arc; 28583 28584 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28585 28586 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28587 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28588 28589 ASSERT(IAM_WRITER_ILL(ill)); 28590 mp2 = mp->b_cont; 28591 mp->b_cont = NULL; 28592 28593 /* 28594 * We have now received the arp bringup completion message 28595 * from ARP. Mark the arp bringup as done. Also if the arp 28596 * stream has already started closing, send up the AR_ARP_CLOSING 28597 * ack now since ARP is waiting in close for this ack. 28598 */ 28599 mutex_enter(&ill->ill_lock); 28600 ill->ill_arp_bringup_pending = 0; 28601 if (ill->ill_arp_closing) { 28602 mutex_exit(&ill->ill_lock); 28603 /* Let's reuse the mp for sending the ack */ 28604 arc = (arc_t *)mp->b_rptr; 28605 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28606 arc->arc_cmd = AR_ARP_CLOSING; 28607 qreply(q, mp); 28608 } else { 28609 mutex_exit(&ill->ill_lock); 28610 freeb(mp); 28611 } 28612 28613 ipsq = ill->ill_phyint->phyint_ipsq; 28614 ipif = ipsq->ipsq_pending_ipif; 28615 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28616 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28617 if (mp1 == NULL) { 28618 /* bringup was aborted by the user */ 28619 freemsg(mp2); 28620 return; 28621 } 28622 28623 /* 28624 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28625 * must have an associated conn_t. Otherwise, we're bringing this 28626 * interface back up as part of handling an asynchronous event (e.g., 28627 * physical address change). 28628 */ 28629 if (ipsq->ipsq_current_ioctl != 0) { 28630 ASSERT(connp != NULL); 28631 q = CONNP_TO_WQ(connp); 28632 } else { 28633 ASSERT(connp == NULL); 28634 q = ill->ill_rq; 28635 } 28636 28637 /* 28638 * If the DL_BIND_REQ fails, it is noted 28639 * in arc_name_offset. 28640 */ 28641 err = *((int *)mp2->b_rptr); 28642 if (err == 0) { 28643 if (ipif->ipif_isv6) { 28644 if ((err = ipif_up_done_v6(ipif)) != 0) 28645 ip0dbg(("ip_arp_done: init failed\n")); 28646 } else { 28647 if ((err = ipif_up_done(ipif)) != 0) 28648 ip0dbg(("ip_arp_done: init failed\n")); 28649 } 28650 } else { 28651 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28652 } 28653 28654 freemsg(mp2); 28655 28656 if ((err == 0) && (ill->ill_up_ipifs)) { 28657 err = ill_up_ipifs(ill, q, mp1); 28658 if (err == EINPROGRESS) 28659 return; 28660 } 28661 28662 if (ill->ill_up_ipifs) 28663 ill_group_cleanup(ill); 28664 28665 /* 28666 * The operation must complete without EINPROGRESS since 28667 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 28668 * Otherwise, the operation will be stuck forever in the ipsq. 28669 */ 28670 ASSERT(err != EINPROGRESS); 28671 if (ipsq->ipsq_current_ioctl != 0) 28672 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28673 else 28674 ipsq_current_finish(ipsq); 28675 } 28676 28677 /* Allocate the private structure */ 28678 static int 28679 ip_priv_alloc(void **bufp) 28680 { 28681 void *buf; 28682 28683 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28684 return (ENOMEM); 28685 28686 *bufp = buf; 28687 return (0); 28688 } 28689 28690 /* Function to delete the private structure */ 28691 void 28692 ip_priv_free(void *buf) 28693 { 28694 ASSERT(buf != NULL); 28695 kmem_free(buf, sizeof (ip_priv_t)); 28696 } 28697 28698 /* 28699 * The entry point for IPPF processing. 28700 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28701 * routine just returns. 28702 * 28703 * When called, ip_process generates an ipp_packet_t structure 28704 * which holds the state information for this packet and invokes the 28705 * the classifier (via ipp_packet_process). The classification, depending on 28706 * configured filters, results in a list of actions for this packet. Invoking 28707 * an action may cause the packet to be dropped, in which case the resulting 28708 * mblk (*mpp) is NULL. proc indicates the callout position for 28709 * this packet and ill_index is the interface this packet on or will leave 28710 * on (inbound and outbound resp.). 28711 */ 28712 void 28713 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28714 { 28715 mblk_t *mp; 28716 ip_priv_t *priv; 28717 ipp_action_id_t aid; 28718 int rc = 0; 28719 ipp_packet_t *pp; 28720 #define IP_CLASS "ip" 28721 28722 /* If the classifier is not loaded, return */ 28723 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28724 return; 28725 } 28726 28727 mp = *mpp; 28728 ASSERT(mp != NULL); 28729 28730 /* Allocate the packet structure */ 28731 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28732 if (rc != 0) { 28733 *mpp = NULL; 28734 freemsg(mp); 28735 return; 28736 } 28737 28738 /* Allocate the private structure */ 28739 rc = ip_priv_alloc((void **)&priv); 28740 if (rc != 0) { 28741 *mpp = NULL; 28742 freemsg(mp); 28743 ipp_packet_free(pp); 28744 return; 28745 } 28746 priv->proc = proc; 28747 priv->ill_index = ill_index; 28748 ipp_packet_set_private(pp, priv, ip_priv_free); 28749 ipp_packet_set_data(pp, mp); 28750 28751 /* Invoke the classifier */ 28752 rc = ipp_packet_process(&pp); 28753 if (pp != NULL) { 28754 mp = ipp_packet_get_data(pp); 28755 ipp_packet_free(pp); 28756 if (rc != 0) { 28757 freemsg(mp); 28758 *mpp = NULL; 28759 } 28760 } else { 28761 *mpp = NULL; 28762 } 28763 #undef IP_CLASS 28764 } 28765 28766 /* 28767 * Propagate a multicast group membership operation (add/drop) on 28768 * all the interfaces crossed by the related multirt routes. 28769 * The call is considered successful if the operation succeeds 28770 * on at least one interface. 28771 */ 28772 static int 28773 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28774 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28775 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28776 mblk_t *first_mp) 28777 { 28778 ire_t *ire_gw; 28779 irb_t *irb; 28780 int error = 0; 28781 opt_restart_t *or; 28782 ip_stack_t *ipst = ire->ire_ipst; 28783 28784 irb = ire->ire_bucket; 28785 ASSERT(irb != NULL); 28786 28787 ASSERT(DB_TYPE(first_mp) == M_CTL); 28788 28789 or = (opt_restart_t *)first_mp->b_rptr; 28790 IRB_REFHOLD(irb); 28791 for (; ire != NULL; ire = ire->ire_next) { 28792 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28793 continue; 28794 if (ire->ire_addr != group) 28795 continue; 28796 28797 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28798 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28799 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28800 /* No resolver exists for the gateway; skip this ire. */ 28801 if (ire_gw == NULL) 28802 continue; 28803 28804 /* 28805 * This function can return EINPROGRESS. If so the operation 28806 * will be restarted from ip_restart_optmgmt which will 28807 * call ip_opt_set and option processing will restart for 28808 * this option. So we may end up calling 'fn' more than once. 28809 * This requires that 'fn' is idempotent except for the 28810 * return value. The operation is considered a success if 28811 * it succeeds at least once on any one interface. 28812 */ 28813 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28814 NULL, fmode, src, first_mp); 28815 if (error == 0) 28816 or->or_private = CGTP_MCAST_SUCCESS; 28817 28818 if (ip_debug > 0) { 28819 ulong_t off; 28820 char *ksym; 28821 ksym = kobj_getsymname((uintptr_t)fn, &off); 28822 ip2dbg(("ip_multirt_apply_membership: " 28823 "called %s, multirt group 0x%08x via itf 0x%08x, " 28824 "error %d [success %u]\n", 28825 ksym ? ksym : "?", 28826 ntohl(group), ntohl(ire_gw->ire_src_addr), 28827 error, or->or_private)); 28828 } 28829 28830 ire_refrele(ire_gw); 28831 if (error == EINPROGRESS) { 28832 IRB_REFRELE(irb); 28833 return (error); 28834 } 28835 } 28836 IRB_REFRELE(irb); 28837 /* 28838 * Consider the call as successful if we succeeded on at least 28839 * one interface. Otherwise, return the last encountered error. 28840 */ 28841 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28842 } 28843 28844 28845 /* 28846 * Issue a warning regarding a route crossing an interface with an 28847 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28848 * amount of time is logged. 28849 */ 28850 static void 28851 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28852 { 28853 hrtime_t current = gethrtime(); 28854 char buf[INET_ADDRSTRLEN]; 28855 ip_stack_t *ipst = ire->ire_ipst; 28856 28857 /* Convert interval in ms to hrtime in ns */ 28858 if (ipst->ips_multirt_bad_mtu_last_time + 28859 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28860 current) { 28861 cmn_err(CE_WARN, "ip: ignoring multiroute " 28862 "to %s, incorrect MTU %u (expected %u)\n", 28863 ip_dot_addr(ire->ire_addr, buf), 28864 ire->ire_max_frag, max_frag); 28865 28866 ipst->ips_multirt_bad_mtu_last_time = current; 28867 } 28868 } 28869 28870 28871 /* 28872 * Get the CGTP (multirouting) filtering status. 28873 * If 0, the CGTP hooks are transparent. 28874 */ 28875 /* ARGSUSED */ 28876 static int 28877 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28878 { 28879 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28880 28881 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28882 return (0); 28883 } 28884 28885 28886 /* 28887 * Set the CGTP (multirouting) filtering status. 28888 * If the status is changed from active to transparent 28889 * or from transparent to active, forward the new status 28890 * to the filtering module (if loaded). 28891 */ 28892 /* ARGSUSED */ 28893 static int 28894 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28895 cred_t *ioc_cr) 28896 { 28897 long new_value; 28898 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28899 ip_stack_t *ipst = CONNQ_TO_IPST(q); 28900 28901 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 28902 return (EPERM); 28903 28904 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28905 new_value < 0 || new_value > 1) { 28906 return (EINVAL); 28907 } 28908 28909 if ((!*ip_cgtp_filter_value) && new_value) { 28910 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28911 ipst->ips_ip_cgtp_filter_ops == NULL ? 28912 " (module not loaded)" : ""); 28913 } 28914 if (*ip_cgtp_filter_value && (!new_value)) { 28915 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28916 ipst->ips_ip_cgtp_filter_ops == NULL ? 28917 " (module not loaded)" : ""); 28918 } 28919 28920 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28921 int res; 28922 netstackid_t stackid; 28923 28924 stackid = ipst->ips_netstack->netstack_stackid; 28925 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 28926 new_value); 28927 if (res) 28928 return (res); 28929 } 28930 28931 *ip_cgtp_filter_value = (boolean_t)new_value; 28932 28933 return (0); 28934 } 28935 28936 28937 /* 28938 * Return the expected CGTP hooks version number. 28939 */ 28940 int 28941 ip_cgtp_filter_supported(void) 28942 { 28943 return (ip_cgtp_filter_rev); 28944 } 28945 28946 28947 /* 28948 * CGTP hooks can be registered by invoking this function. 28949 * Checks that the version number matches. 28950 */ 28951 int 28952 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 28953 { 28954 netstack_t *ns; 28955 ip_stack_t *ipst; 28956 28957 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 28958 return (ENOTSUP); 28959 28960 ns = netstack_find_by_stackid(stackid); 28961 if (ns == NULL) 28962 return (EINVAL); 28963 ipst = ns->netstack_ip; 28964 ASSERT(ipst != NULL); 28965 28966 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28967 netstack_rele(ns); 28968 return (EALREADY); 28969 } 28970 28971 ipst->ips_ip_cgtp_filter_ops = ops; 28972 netstack_rele(ns); 28973 return (0); 28974 } 28975 28976 /* 28977 * CGTP hooks can be unregistered by invoking this function. 28978 * Returns ENXIO if there was no registration. 28979 * Returns EBUSY if the ndd variable has not been turned off. 28980 */ 28981 int 28982 ip_cgtp_filter_unregister(netstackid_t stackid) 28983 { 28984 netstack_t *ns; 28985 ip_stack_t *ipst; 28986 28987 ns = netstack_find_by_stackid(stackid); 28988 if (ns == NULL) 28989 return (EINVAL); 28990 ipst = ns->netstack_ip; 28991 ASSERT(ipst != NULL); 28992 28993 if (ipst->ips_ip_cgtp_filter) { 28994 netstack_rele(ns); 28995 return (EBUSY); 28996 } 28997 28998 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 28999 netstack_rele(ns); 29000 return (ENXIO); 29001 } 29002 ipst->ips_ip_cgtp_filter_ops = NULL; 29003 netstack_rele(ns); 29004 return (0); 29005 } 29006 29007 /* 29008 * Check whether there is a CGTP filter registration. 29009 * Returns non-zero if there is a registration, otherwise returns zero. 29010 * Note: returns zero if bad stackid. 29011 */ 29012 int 29013 ip_cgtp_filter_is_registered(netstackid_t stackid) 29014 { 29015 netstack_t *ns; 29016 ip_stack_t *ipst; 29017 int ret; 29018 29019 ns = netstack_find_by_stackid(stackid); 29020 if (ns == NULL) 29021 return (0); 29022 ipst = ns->netstack_ip; 29023 ASSERT(ipst != NULL); 29024 29025 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29026 ret = 1; 29027 else 29028 ret = 0; 29029 29030 netstack_rele(ns); 29031 return (ret); 29032 } 29033 29034 static squeue_func_t 29035 ip_squeue_switch(int val) 29036 { 29037 squeue_func_t rval = squeue_fill; 29038 29039 switch (val) { 29040 case IP_SQUEUE_ENTER_NODRAIN: 29041 rval = squeue_enter_nodrain; 29042 break; 29043 case IP_SQUEUE_ENTER: 29044 rval = squeue_enter; 29045 break; 29046 default: 29047 break; 29048 } 29049 return (rval); 29050 } 29051 29052 /* ARGSUSED */ 29053 static int 29054 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29055 caddr_t addr, cred_t *cr) 29056 { 29057 int *v = (int *)addr; 29058 long new_value; 29059 29060 if (secpolicy_net_config(cr, B_FALSE) != 0) 29061 return (EPERM); 29062 29063 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29064 return (EINVAL); 29065 29066 ip_input_proc = ip_squeue_switch(new_value); 29067 *v = new_value; 29068 return (0); 29069 } 29070 29071 /* 29072 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29073 * ip_debug. 29074 */ 29075 /* ARGSUSED */ 29076 static int 29077 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29078 caddr_t addr, cred_t *cr) 29079 { 29080 int *v = (int *)addr; 29081 long new_value; 29082 29083 if (secpolicy_net_config(cr, B_FALSE) != 0) 29084 return (EPERM); 29085 29086 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29087 return (EINVAL); 29088 29089 *v = new_value; 29090 return (0); 29091 } 29092 29093 /* 29094 * Handle changes to ipmp_hook_emulation ndd variable. 29095 * Need to update phyint_hook_ifindex. 29096 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29097 */ 29098 static void 29099 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29100 { 29101 phyint_t *phyi; 29102 phyint_t *phyi_tmp; 29103 char *groupname; 29104 int namelen; 29105 ill_t *ill; 29106 boolean_t new_group; 29107 29108 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29109 /* 29110 * Group indicies are stored in the phyint - a common structure 29111 * to both IPv4 and IPv6. 29112 */ 29113 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29114 for (; phyi != NULL; 29115 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29116 phyi, AVL_AFTER)) { 29117 /* Ignore the ones that do not have a group */ 29118 if (phyi->phyint_groupname_len == 0) 29119 continue; 29120 29121 /* 29122 * Look for other phyint in group. 29123 * Clear name/namelen so the lookup doesn't find ourselves. 29124 */ 29125 namelen = phyi->phyint_groupname_len; 29126 groupname = phyi->phyint_groupname; 29127 phyi->phyint_groupname_len = 0; 29128 phyi->phyint_groupname = NULL; 29129 29130 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29131 /* Restore */ 29132 phyi->phyint_groupname_len = namelen; 29133 phyi->phyint_groupname = groupname; 29134 29135 new_group = B_FALSE; 29136 if (ipst->ips_ipmp_hook_emulation) { 29137 /* 29138 * If the group already exists and has already 29139 * been assigned a group ifindex, we use the existing 29140 * group_ifindex, otherwise we pick a new group_ifindex 29141 * here. 29142 */ 29143 if (phyi_tmp != NULL && 29144 phyi_tmp->phyint_group_ifindex != 0) { 29145 phyi->phyint_group_ifindex = 29146 phyi_tmp->phyint_group_ifindex; 29147 } else { 29148 /* XXX We need a recovery strategy here. */ 29149 if (!ip_assign_ifindex( 29150 &phyi->phyint_group_ifindex, ipst)) 29151 cmn_err(CE_PANIC, 29152 "ip_assign_ifindex() failed"); 29153 new_group = B_TRUE; 29154 } 29155 } else { 29156 phyi->phyint_group_ifindex = 0; 29157 } 29158 if (ipst->ips_ipmp_hook_emulation) 29159 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29160 else 29161 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29162 29163 /* 29164 * For IP Filter to find out the relationship between 29165 * names and interface indicies, we need to generate 29166 * a NE_PLUMB event when a new group can appear. 29167 * We always generate events when a new interface appears 29168 * (even when ipmp_hook_emulation is set) so there 29169 * is no need to generate NE_PLUMB events when 29170 * ipmp_hook_emulation is turned off. 29171 * And since it isn't critical for IP Filter to get 29172 * the NE_UNPLUMB events we skip those here. 29173 */ 29174 if (new_group) { 29175 /* 29176 * First phyint in group - generate group PLUMB event. 29177 * Since we are not running inside the ipsq we do 29178 * the dispatch immediately. 29179 */ 29180 if (phyi->phyint_illv4 != NULL) 29181 ill = phyi->phyint_illv4; 29182 else 29183 ill = phyi->phyint_illv6; 29184 29185 if (ill != NULL) { 29186 mutex_enter(&ill->ill_lock); 29187 ill_nic_info_plumb(ill, B_TRUE); 29188 ill_nic_info_dispatch(ill); 29189 mutex_exit(&ill->ill_lock); 29190 } 29191 } 29192 } 29193 rw_exit(&ipst->ips_ill_g_lock); 29194 } 29195 29196 /* ARGSUSED */ 29197 static int 29198 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29199 caddr_t addr, cred_t *cr) 29200 { 29201 int *v = (int *)addr; 29202 long new_value; 29203 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29204 29205 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29206 return (EINVAL); 29207 29208 if (*v != new_value) { 29209 *v = new_value; 29210 ipmp_hook_emulation_changed(ipst); 29211 } 29212 return (0); 29213 } 29214 29215 static void * 29216 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29217 { 29218 kstat_t *ksp; 29219 29220 ip_stat_t template = { 29221 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29222 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29223 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29224 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29225 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29226 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29227 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29228 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29229 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29230 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29231 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29232 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29233 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29234 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29235 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29236 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29237 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29238 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29239 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29240 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29241 { "ip_opt", KSTAT_DATA_UINT64 }, 29242 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29243 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29244 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29245 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29246 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29247 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29248 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29249 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29250 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29251 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29252 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29253 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29254 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29255 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29256 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29257 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29258 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29259 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29260 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29261 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29262 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29263 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29264 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29265 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29266 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29267 }; 29268 29269 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29270 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29271 KSTAT_FLAG_VIRTUAL, stackid); 29272 29273 if (ksp == NULL) 29274 return (NULL); 29275 29276 bcopy(&template, ip_statisticsp, sizeof (template)); 29277 ksp->ks_data = (void *)ip_statisticsp; 29278 ksp->ks_private = (void *)(uintptr_t)stackid; 29279 29280 kstat_install(ksp); 29281 return (ksp); 29282 } 29283 29284 static void 29285 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29286 { 29287 if (ksp != NULL) { 29288 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29289 kstat_delete_netstack(ksp, stackid); 29290 } 29291 } 29292 29293 static void * 29294 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29295 { 29296 kstat_t *ksp; 29297 29298 ip_named_kstat_t template = { 29299 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29300 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29301 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29302 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29303 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29304 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29305 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29306 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29307 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29308 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29309 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29310 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29311 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29312 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29313 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29314 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29315 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29316 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29317 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29318 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29319 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29320 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29321 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29322 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29323 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29324 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29325 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29326 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29327 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29328 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29329 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29330 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29331 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29332 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29333 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29334 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29335 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29336 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29337 }; 29338 29339 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29340 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29341 if (ksp == NULL || ksp->ks_data == NULL) 29342 return (NULL); 29343 29344 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29345 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29346 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29347 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29348 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29349 29350 template.netToMediaEntrySize.value.i32 = 29351 sizeof (mib2_ipNetToMediaEntry_t); 29352 29353 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29354 29355 bcopy(&template, ksp->ks_data, sizeof (template)); 29356 ksp->ks_update = ip_kstat_update; 29357 ksp->ks_private = (void *)(uintptr_t)stackid; 29358 29359 kstat_install(ksp); 29360 return (ksp); 29361 } 29362 29363 static void 29364 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29365 { 29366 if (ksp != NULL) { 29367 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29368 kstat_delete_netstack(ksp, stackid); 29369 } 29370 } 29371 29372 static int 29373 ip_kstat_update(kstat_t *kp, int rw) 29374 { 29375 ip_named_kstat_t *ipkp; 29376 mib2_ipIfStatsEntry_t ipmib; 29377 ill_walk_context_t ctx; 29378 ill_t *ill; 29379 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29380 netstack_t *ns; 29381 ip_stack_t *ipst; 29382 29383 if (kp == NULL || kp->ks_data == NULL) 29384 return (EIO); 29385 29386 if (rw == KSTAT_WRITE) 29387 return (EACCES); 29388 29389 ns = netstack_find_by_stackid(stackid); 29390 if (ns == NULL) 29391 return (-1); 29392 ipst = ns->netstack_ip; 29393 if (ipst == NULL) { 29394 netstack_rele(ns); 29395 return (-1); 29396 } 29397 ipkp = (ip_named_kstat_t *)kp->ks_data; 29398 29399 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29400 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29401 ill = ILL_START_WALK_V4(&ctx, ipst); 29402 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29403 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29404 rw_exit(&ipst->ips_ill_g_lock); 29405 29406 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29407 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29408 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29409 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29410 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29411 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29412 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29413 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29414 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29415 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29416 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29417 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29418 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29419 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29420 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29421 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29422 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29423 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29424 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29425 29426 ipkp->routingDiscards.value.ui32 = 0; 29427 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29428 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29429 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29430 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29431 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29432 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29433 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29434 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29435 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29436 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29437 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29438 29439 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29440 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29441 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29442 29443 netstack_rele(ns); 29444 29445 return (0); 29446 } 29447 29448 static void * 29449 icmp_kstat_init(netstackid_t stackid) 29450 { 29451 kstat_t *ksp; 29452 29453 icmp_named_kstat_t template = { 29454 { "inMsgs", KSTAT_DATA_UINT32 }, 29455 { "inErrors", KSTAT_DATA_UINT32 }, 29456 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29457 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29458 { "inParmProbs", KSTAT_DATA_UINT32 }, 29459 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29460 { "inRedirects", KSTAT_DATA_UINT32 }, 29461 { "inEchos", KSTAT_DATA_UINT32 }, 29462 { "inEchoReps", KSTAT_DATA_UINT32 }, 29463 { "inTimestamps", KSTAT_DATA_UINT32 }, 29464 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29465 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29466 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29467 { "outMsgs", KSTAT_DATA_UINT32 }, 29468 { "outErrors", KSTAT_DATA_UINT32 }, 29469 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29470 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29471 { "outParmProbs", KSTAT_DATA_UINT32 }, 29472 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29473 { "outRedirects", KSTAT_DATA_UINT32 }, 29474 { "outEchos", KSTAT_DATA_UINT32 }, 29475 { "outEchoReps", KSTAT_DATA_UINT32 }, 29476 { "outTimestamps", KSTAT_DATA_UINT32 }, 29477 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29478 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29479 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29480 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29481 { "inUnknowns", KSTAT_DATA_UINT32 }, 29482 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29483 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29484 { "outDrops", KSTAT_DATA_UINT32 }, 29485 { "inOverFlows", KSTAT_DATA_UINT32 }, 29486 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29487 }; 29488 29489 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29490 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29491 if (ksp == NULL || ksp->ks_data == NULL) 29492 return (NULL); 29493 29494 bcopy(&template, ksp->ks_data, sizeof (template)); 29495 29496 ksp->ks_update = icmp_kstat_update; 29497 ksp->ks_private = (void *)(uintptr_t)stackid; 29498 29499 kstat_install(ksp); 29500 return (ksp); 29501 } 29502 29503 static void 29504 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29505 { 29506 if (ksp != NULL) { 29507 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29508 kstat_delete_netstack(ksp, stackid); 29509 } 29510 } 29511 29512 static int 29513 icmp_kstat_update(kstat_t *kp, int rw) 29514 { 29515 icmp_named_kstat_t *icmpkp; 29516 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29517 netstack_t *ns; 29518 ip_stack_t *ipst; 29519 29520 if ((kp == NULL) || (kp->ks_data == NULL)) 29521 return (EIO); 29522 29523 if (rw == KSTAT_WRITE) 29524 return (EACCES); 29525 29526 ns = netstack_find_by_stackid(stackid); 29527 if (ns == NULL) 29528 return (-1); 29529 ipst = ns->netstack_ip; 29530 if (ipst == NULL) { 29531 netstack_rele(ns); 29532 return (-1); 29533 } 29534 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29535 29536 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29537 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29538 icmpkp->inDestUnreachs.value.ui32 = 29539 ipst->ips_icmp_mib.icmpInDestUnreachs; 29540 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29541 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29542 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29543 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29544 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29545 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29546 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29547 icmpkp->inTimestampReps.value.ui32 = 29548 ipst->ips_icmp_mib.icmpInTimestampReps; 29549 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29550 icmpkp->inAddrMaskReps.value.ui32 = 29551 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29552 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29553 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29554 icmpkp->outDestUnreachs.value.ui32 = 29555 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29556 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29557 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29558 icmpkp->outSrcQuenchs.value.ui32 = 29559 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29560 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29561 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29562 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29563 icmpkp->outTimestamps.value.ui32 = 29564 ipst->ips_icmp_mib.icmpOutTimestamps; 29565 icmpkp->outTimestampReps.value.ui32 = 29566 ipst->ips_icmp_mib.icmpOutTimestampReps; 29567 icmpkp->outAddrMasks.value.ui32 = 29568 ipst->ips_icmp_mib.icmpOutAddrMasks; 29569 icmpkp->outAddrMaskReps.value.ui32 = 29570 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29571 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29572 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29573 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29574 icmpkp->outFragNeeded.value.ui32 = 29575 ipst->ips_icmp_mib.icmpOutFragNeeded; 29576 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29577 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29578 icmpkp->inBadRedirects.value.ui32 = 29579 ipst->ips_icmp_mib.icmpInBadRedirects; 29580 29581 netstack_rele(ns); 29582 return (0); 29583 } 29584 29585 /* 29586 * This is the fanout function for raw socket opened for SCTP. Note 29587 * that it is called after SCTP checks that there is no socket which 29588 * wants a packet. Then before SCTP handles this out of the blue packet, 29589 * this function is called to see if there is any raw socket for SCTP. 29590 * If there is and it is bound to the correct address, the packet will 29591 * be sent to that socket. Note that only one raw socket can be bound to 29592 * a port. This is assured in ipcl_sctp_hash_insert(); 29593 */ 29594 void 29595 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29596 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29597 zoneid_t zoneid) 29598 { 29599 conn_t *connp; 29600 queue_t *rq; 29601 mblk_t *first_mp; 29602 boolean_t secure; 29603 ip6_t *ip6h; 29604 ip_stack_t *ipst = recv_ill->ill_ipst; 29605 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29606 29607 first_mp = mp; 29608 if (mctl_present) { 29609 mp = first_mp->b_cont; 29610 secure = ipsec_in_is_secure(first_mp); 29611 ASSERT(mp != NULL); 29612 } else { 29613 secure = B_FALSE; 29614 } 29615 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29616 29617 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29618 if (connp == NULL) { 29619 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29620 return; 29621 } 29622 rq = connp->conn_rq; 29623 if (!canputnext(rq)) { 29624 CONN_DEC_REF(connp); 29625 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29626 freemsg(first_mp); 29627 return; 29628 } 29629 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29630 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29631 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29632 (isv4 ? ipha : NULL), ip6h, mctl_present); 29633 if (first_mp == NULL) { 29634 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29635 CONN_DEC_REF(connp); 29636 return; 29637 } 29638 } 29639 /* 29640 * We probably should not send M_CTL message up to 29641 * raw socket. 29642 */ 29643 if (mctl_present) 29644 freeb(first_mp); 29645 29646 /* Initiate IPPF processing here if needed. */ 29647 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29648 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29649 ip_process(IPP_LOCAL_IN, &mp, 29650 recv_ill->ill_phyint->phyint_ifindex); 29651 if (mp == NULL) { 29652 CONN_DEC_REF(connp); 29653 return; 29654 } 29655 } 29656 29657 if (connp->conn_recvif || connp->conn_recvslla || 29658 ((connp->conn_ip_recvpktinfo || 29659 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29660 (flags & IP_FF_IPINFO))) { 29661 int in_flags = 0; 29662 29663 /* 29664 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29665 * IPF_RECVIF. 29666 */ 29667 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29668 in_flags = IPF_RECVIF; 29669 } 29670 if (connp->conn_recvslla) { 29671 in_flags |= IPF_RECVSLLA; 29672 } 29673 if (isv4) { 29674 mp = ip_add_info(mp, recv_ill, in_flags, 29675 IPCL_ZONEID(connp), ipst); 29676 } else { 29677 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29678 if (mp == NULL) { 29679 BUMP_MIB(recv_ill->ill_ip_mib, 29680 ipIfStatsInDiscards); 29681 CONN_DEC_REF(connp); 29682 return; 29683 } 29684 } 29685 } 29686 29687 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29688 /* 29689 * We are sending the IPSEC_IN message also up. Refer 29690 * to comments above this function. 29691 * This is the SOCK_RAW, IPPROTO_SCTP case. 29692 */ 29693 (connp->conn_recv)(connp, mp, NULL); 29694 CONN_DEC_REF(connp); 29695 } 29696 29697 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29698 { \ 29699 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29700 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29701 } 29702 /* 29703 * This function should be called only if all packet processing 29704 * including fragmentation is complete. Callers of this function 29705 * must set mp->b_prev to one of these values: 29706 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29707 * prior to handing over the mp as first argument to this function. 29708 * 29709 * If the ire passed by caller is incomplete, this function 29710 * queues the packet and if necessary, sends ARP request and bails. 29711 * If the ire passed is fully resolved, we simply prepend 29712 * the link-layer header to the packet, do ipsec hw acceleration 29713 * work if necessary, and send the packet out on the wire. 29714 * 29715 * NOTE: IPsec will only call this function with fully resolved 29716 * ires if hw acceleration is involved. 29717 * TODO list : 29718 * a Handle M_MULTIDATA so that 29719 * tcp_multisend->tcp_multisend_data can 29720 * call ip_xmit_v4 directly 29721 * b Handle post-ARP work for fragments so that 29722 * ip_wput_frag can call this function. 29723 */ 29724 ipxmit_state_t 29725 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 29726 { 29727 nce_t *arpce; 29728 queue_t *q; 29729 int ill_index; 29730 mblk_t *nxt_mp, *first_mp; 29731 boolean_t xmit_drop = B_FALSE; 29732 ip_proc_t proc; 29733 ill_t *out_ill; 29734 int pkt_len; 29735 29736 arpce = ire->ire_nce; 29737 ASSERT(arpce != NULL); 29738 29739 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29740 29741 mutex_enter(&arpce->nce_lock); 29742 switch (arpce->nce_state) { 29743 case ND_REACHABLE: 29744 /* If there are other queued packets, queue this packet */ 29745 if (arpce->nce_qd_mp != NULL) { 29746 if (mp != NULL) 29747 nce_queue_mp_common(arpce, mp, B_FALSE); 29748 mp = arpce->nce_qd_mp; 29749 } 29750 arpce->nce_qd_mp = NULL; 29751 mutex_exit(&arpce->nce_lock); 29752 29753 /* 29754 * Flush the queue. In the common case, where the 29755 * ARP is already resolved, it will go through the 29756 * while loop only once. 29757 */ 29758 while (mp != NULL) { 29759 29760 nxt_mp = mp->b_next; 29761 mp->b_next = NULL; 29762 ASSERT(mp->b_datap->db_type != M_CTL); 29763 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29764 /* 29765 * This info is needed for IPQOS to do COS marking 29766 * in ip_wput_attach_llhdr->ip_process. 29767 */ 29768 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29769 mp->b_prev = NULL; 29770 29771 /* set up ill index for outbound qos processing */ 29772 out_ill = ire_to_ill(ire); 29773 ill_index = out_ill->ill_phyint->phyint_ifindex; 29774 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29775 ill_index); 29776 if (first_mp == NULL) { 29777 xmit_drop = B_TRUE; 29778 BUMP_MIB(out_ill->ill_ip_mib, 29779 ipIfStatsOutDiscards); 29780 goto next_mp; 29781 } 29782 /* non-ipsec hw accel case */ 29783 if (io == NULL || !io->ipsec_out_accelerated) { 29784 /* send it */ 29785 q = ire->ire_stq; 29786 if (proc == IPP_FWD_OUT) { 29787 UPDATE_IB_PKT_COUNT(ire); 29788 } else { 29789 UPDATE_OB_PKT_COUNT(ire); 29790 } 29791 ire->ire_last_used_time = lbolt; 29792 29793 if (flow_ctl_enabled || canputnext(q)) { 29794 if (proc == IPP_FWD_OUT) { 29795 29796 BUMP_MIB(out_ill->ill_ip_mib, 29797 ipIfStatsHCOutForwDatagrams); 29798 29799 } 29800 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29801 pkt_len); 29802 29803 putnext(q, first_mp); 29804 } else { 29805 BUMP_MIB(out_ill->ill_ip_mib, 29806 ipIfStatsOutDiscards); 29807 xmit_drop = B_TRUE; 29808 freemsg(first_mp); 29809 } 29810 } else { 29811 /* 29812 * Safety Pup says: make sure this 29813 * is going to the right interface! 29814 */ 29815 ill_t *ill1 = 29816 (ill_t *)ire->ire_stq->q_ptr; 29817 int ifindex = 29818 ill1->ill_phyint->phyint_ifindex; 29819 if (ifindex != 29820 io->ipsec_out_capab_ill_index) { 29821 xmit_drop = B_TRUE; 29822 freemsg(mp); 29823 } else { 29824 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29825 pkt_len); 29826 ipsec_hw_putnext(ire->ire_stq, mp); 29827 } 29828 } 29829 next_mp: 29830 mp = nxt_mp; 29831 } /* while (mp != NULL) */ 29832 if (xmit_drop) 29833 return (SEND_FAILED); 29834 else 29835 return (SEND_PASSED); 29836 29837 case ND_INITIAL: 29838 case ND_INCOMPLETE: 29839 29840 /* 29841 * While we do send off packets to dests that 29842 * use fully-resolved CGTP routes, we do not 29843 * handle unresolved CGTP routes. 29844 */ 29845 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29846 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29847 29848 if (mp != NULL) { 29849 /* queue the packet */ 29850 nce_queue_mp_common(arpce, mp, B_FALSE); 29851 } 29852 29853 if (arpce->nce_state == ND_INCOMPLETE) { 29854 mutex_exit(&arpce->nce_lock); 29855 DTRACE_PROBE3(ip__xmit__incomplete, 29856 (ire_t *), ire, (mblk_t *), mp, 29857 (ipsec_out_t *), io); 29858 return (LOOKUP_IN_PROGRESS); 29859 } 29860 29861 arpce->nce_state = ND_INCOMPLETE; 29862 mutex_exit(&arpce->nce_lock); 29863 /* 29864 * Note that ire_add() (called from ire_forward()) 29865 * holds a ref on the ire until ARP is completed. 29866 */ 29867 29868 ire_arpresolve(ire, ire_to_ill(ire)); 29869 return (LOOKUP_IN_PROGRESS); 29870 default: 29871 ASSERT(0); 29872 mutex_exit(&arpce->nce_lock); 29873 return (LLHDR_RESLV_FAILED); 29874 } 29875 } 29876 29877 #undef UPDATE_IP_MIB_OB_COUNTERS 29878 29879 /* 29880 * Return B_TRUE if the buffers differ in length or content. 29881 * This is used for comparing extension header buffers. 29882 * Note that an extension header would be declared different 29883 * even if all that changed was the next header value in that header i.e. 29884 * what really changed is the next extension header. 29885 */ 29886 boolean_t 29887 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29888 uint_t blen) 29889 { 29890 if (!b_valid) 29891 blen = 0; 29892 29893 if (alen != blen) 29894 return (B_TRUE); 29895 if (alen == 0) 29896 return (B_FALSE); /* Both zero length */ 29897 return (bcmp(abuf, bbuf, alen)); 29898 } 29899 29900 /* 29901 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29902 * Return B_FALSE if memory allocation fails - don't change any state! 29903 */ 29904 boolean_t 29905 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29906 const void *src, uint_t srclen) 29907 { 29908 void *dst; 29909 29910 if (!src_valid) 29911 srclen = 0; 29912 29913 ASSERT(*dstlenp == 0); 29914 if (src != NULL && srclen != 0) { 29915 dst = mi_alloc(srclen, BPRI_MED); 29916 if (dst == NULL) 29917 return (B_FALSE); 29918 } else { 29919 dst = NULL; 29920 } 29921 if (*dstp != NULL) 29922 mi_free(*dstp); 29923 *dstp = dst; 29924 *dstlenp = dst == NULL ? 0 : srclen; 29925 return (B_TRUE); 29926 } 29927 29928 /* 29929 * Replace what is in *dst, *dstlen with the source. 29930 * Assumes ip_allocbuf has already been called. 29931 */ 29932 void 29933 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29934 const void *src, uint_t srclen) 29935 { 29936 if (!src_valid) 29937 srclen = 0; 29938 29939 ASSERT(*dstlenp == srclen); 29940 if (src != NULL && srclen != 0) 29941 bcopy(src, *dstp, srclen); 29942 } 29943 29944 /* 29945 * Free the storage pointed to by the members of an ip6_pkt_t. 29946 */ 29947 void 29948 ip6_pkt_free(ip6_pkt_t *ipp) 29949 { 29950 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 29951 29952 if (ipp->ipp_fields & IPPF_HOPOPTS) { 29953 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 29954 ipp->ipp_hopopts = NULL; 29955 ipp->ipp_hopoptslen = 0; 29956 } 29957 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 29958 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 29959 ipp->ipp_rtdstopts = NULL; 29960 ipp->ipp_rtdstoptslen = 0; 29961 } 29962 if (ipp->ipp_fields & IPPF_DSTOPTS) { 29963 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 29964 ipp->ipp_dstopts = NULL; 29965 ipp->ipp_dstoptslen = 0; 29966 } 29967 if (ipp->ipp_fields & IPPF_RTHDR) { 29968 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 29969 ipp->ipp_rthdr = NULL; 29970 ipp->ipp_rthdrlen = 0; 29971 } 29972 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 29973 IPPF_RTHDR); 29974 } 29975