1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/kobj.h> 44 #include <sys/modctl.h> 45 #include <sys/atomic.h> 46 #include <sys/policy.h> 47 #include <sys/priv.h> 48 #include <sys/taskq.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/iptun/iptun_impl.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 #include <inet/ilb_ip.h> 105 106 #include <sys/ethernet.h> 107 #include <net/if_types.h> 108 #include <sys/cpuvar.h> 109 110 #include <ipp/ipp.h> 111 #include <ipp/ipp_impl.h> 112 #include <ipp/ipgpc/ipgpc.h> 113 114 #include <sys/multidata.h> 115 #include <sys/pattr.h> 116 117 #include <inet/ipclassifier.h> 118 #include <inet/sctp_ip.h> 119 #include <inet/sctp/sctp_impl.h> 120 #include <inet/udp_impl.h> 121 #include <inet/rawip_impl.h> 122 #include <inet/rts_impl.h> 123 124 #include <sys/tsol/label.h> 125 #include <sys/tsol/tnet.h> 126 127 #include <rpc/pmap_prot.h> 128 #include <sys/squeue_impl.h> 129 130 /* 131 * Values for squeue switch: 132 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 133 * IP_SQUEUE_ENTER: SQ_PROCESS 134 * IP_SQUEUE_FILL: SQ_FILL 135 */ 136 int ip_squeue_enter = 2; /* Setable in /etc/system */ 137 138 int ip_squeue_flag; 139 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 140 141 /* 142 * Setable in /etc/system 143 */ 144 int ip_poll_normal_ms = 100; 145 int ip_poll_normal_ticks = 0; 146 int ip_modclose_ackwait_ms = 3000; 147 148 /* 149 * It would be nice to have these present only in DEBUG systems, but the 150 * current design of the global symbol checking logic requires them to be 151 * unconditionally present. 152 */ 153 uint_t ip_thread_data; /* TSD key for debug support */ 154 krwlock_t ip_thread_rwlock; 155 list_t ip_thread_list; 156 157 /* 158 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 159 */ 160 161 struct listptr_s { 162 mblk_t *lp_head; /* pointer to the head of the list */ 163 mblk_t *lp_tail; /* pointer to the tail of the list */ 164 }; 165 166 typedef struct listptr_s listptr_t; 167 168 /* 169 * This is used by ip_snmp_get_mib2_ip_route_media and 170 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 171 */ 172 typedef struct iproutedata_s { 173 uint_t ird_idx; 174 uint_t ird_flags; /* see below */ 175 listptr_t ird_route; /* ipRouteEntryTable */ 176 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 177 listptr_t ird_attrs; /* ipRouteAttributeTable */ 178 } iproutedata_t; 179 180 #define IRD_REPORT_TESTHIDDEN 0x01 /* include IRE_MARK_TESTHIDDEN routes */ 181 182 /* 183 * Cluster specific hooks. These should be NULL when booted as a non-cluster 184 */ 185 186 /* 187 * Hook functions to enable cluster networking 188 * On non-clustered systems these vectors must always be NULL. 189 * 190 * Hook function to Check ip specified ip address is a shared ip address 191 * in the cluster 192 * 193 */ 194 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 195 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 196 197 /* 198 * Hook function to generate cluster wide ip fragment identifier 199 */ 200 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 201 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 202 void *args) = NULL; 203 204 /* 205 * Hook function to generate cluster wide SPI. 206 */ 207 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 208 void *) = NULL; 209 210 /* 211 * Hook function to verify if the SPI is already utlized. 212 */ 213 214 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 215 216 /* 217 * Hook function to delete the SPI from the cluster wide repository. 218 */ 219 220 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 221 222 /* 223 * Hook function to inform the cluster when packet received on an IDLE SA 224 */ 225 226 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 227 in6_addr_t, in6_addr_t, void *) = NULL; 228 229 /* 230 * Synchronization notes: 231 * 232 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 233 * MT level protection given by STREAMS. IP uses a combination of its own 234 * internal serialization mechanism and standard Solaris locking techniques. 235 * The internal serialization is per phyint. This is used to serialize 236 * plumbing operations, certain multicast operations, most set ioctls, 237 * igmp/mld timers etc. 238 * 239 * Plumbing is a long sequence of operations involving message 240 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 241 * involved in plumbing operations. A natural model is to serialize these 242 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 243 * parallel without any interference. But various set ioctls on hme0 are best 244 * serialized, along with multicast join/leave operations, igmp/mld timer 245 * operations, and processing of DLPI control messages received from drivers 246 * on a per phyint basis. This serialization is provided by the ipsq_t and 247 * primitives operating on this. Details can be found in ip_if.c above the 248 * core primitives operating on ipsq_t. 249 * 250 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 251 * Simiarly lookup of an ire by a thread also returns a refheld ire. 252 * In addition ipif's and ill's referenced by the ire are also indirectly 253 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 254 * the ipif's address or netmask change as long as an ipif is refheld 255 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 256 * address of an ipif has to go through the ipsq_t. This ensures that only 257 * 1 such exclusive operation proceeds at any time on the ipif. It then 258 * deletes all ires associated with this ipif, and waits for all refcnts 259 * associated with this ipif to come down to zero. The address is changed 260 * only after the ipif has been quiesced. Then the ipif is brought up again. 261 * More details are described above the comment in ip_sioctl_flags. 262 * 263 * Packet processing is based mostly on IREs and are fully multi-threaded 264 * using standard Solaris MT techniques. 265 * 266 * There are explicit locks in IP to handle: 267 * - The ip_g_head list maintained by mi_open_link() and friends. 268 * 269 * - The reassembly data structures (one lock per hash bucket) 270 * 271 * - conn_lock is meant to protect conn_t fields. The fields actually 272 * protected by conn_lock are documented in the conn_t definition. 273 * 274 * - ire_lock to protect some of the fields of the ire, IRE tables 275 * (one lock per hash bucket). Refer to ip_ire.c for details. 276 * 277 * - ndp_g_lock and nce_lock for protecting NCEs. 278 * 279 * - ill_lock protects fields of the ill and ipif. Details in ip.h 280 * 281 * - ill_g_lock: This is a global reader/writer lock. Protects the following 282 * * The AVL tree based global multi list of all ills. 283 * * The linked list of all ipifs of an ill 284 * * The <ipsq-xop> mapping 285 * * <ill-phyint> association 286 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 287 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 288 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 289 * writer for the actual duration of the insertion/deletion/change. 290 * 291 * - ill_lock: This is a per ill mutex. 292 * It protects some members of the ill_t struct; see ip.h for details. 293 * It also protects the <ill-phyint> assoc. 294 * It also protects the list of ipifs hanging off the ill. 295 * 296 * - ipsq_lock: This is a per ipsq_t mutex lock. 297 * This protects some members of the ipsq_t struct; see ip.h for details. 298 * It also protects the <ipsq-ipxop> mapping 299 * 300 * - ipx_lock: This is a per ipxop_t mutex lock. 301 * This protects some members of the ipxop_t struct; see ip.h for details. 302 * 303 * - phyint_lock: This is a per phyint mutex lock. Protects just the 304 * phyint_flags 305 * 306 * - ip_g_nd_lock: This is a global reader/writer lock. 307 * Any call to nd_load to load a new parameter to the ND table must hold the 308 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 309 * as reader. 310 * 311 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 312 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 313 * uniqueness check also done atomically. 314 * 315 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 316 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 317 * as a writer when adding or deleting elements from these lists, and 318 * as a reader when walking these lists to send a SADB update to the 319 * IPsec capable ills. 320 * 321 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 322 * group list linked by ill_usesrc_grp_next. It also protects the 323 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 324 * group is being added or deleted. This lock is taken as a reader when 325 * walking the list/group(eg: to get the number of members in a usesrc group). 326 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 327 * field is changing state i.e from NULL to non-NULL or vice-versa. For 328 * example, it is not necessary to take this lock in the initial portion 329 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 330 * operations are executed exclusively and that ensures that the "usesrc 331 * group state" cannot change. The "usesrc group state" change can happen 332 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 333 * 334 * Changing <ill-phyint>, <ipsq-xop> assocications: 335 * 336 * To change the <ill-phyint> association, the ill_g_lock must be held 337 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 338 * must be held. 339 * 340 * To change the <ipsq-xop> association, the ill_g_lock must be held as 341 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 342 * This is only done when ills are added or removed from IPMP groups. 343 * 344 * To add or delete an ipif from the list of ipifs hanging off the ill, 345 * ill_g_lock (writer) and ill_lock must be held and the thread must be 346 * a writer on the associated ipsq. 347 * 348 * To add or delete an ill to the system, the ill_g_lock must be held as 349 * writer and the thread must be a writer on the associated ipsq. 350 * 351 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 352 * must be a writer on the associated ipsq. 353 * 354 * Lock hierarchy 355 * 356 * Some lock hierarchy scenarios are listed below. 357 * 358 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 359 * ill_g_lock -> ill_lock(s) -> phyint_lock 360 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 361 * ill_g_lock -> ip_addr_avail_lock 362 * conn_lock -> irb_lock -> ill_lock -> ire_lock 363 * ill_g_lock -> ip_g_nd_lock 364 * 365 * When more than 1 ill lock is needed to be held, all ill lock addresses 366 * are sorted on address and locked starting from highest addressed lock 367 * downward. 368 * 369 * IPsec scenarios 370 * 371 * ipsa_lock -> ill_g_lock -> ill_lock 372 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 373 * ipsec_capab_ills_lock -> ipsa_lock 374 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 375 * 376 * Trusted Solaris scenarios 377 * 378 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 379 * igsa_lock -> gcdb_lock 380 * gcgrp_rwlock -> ire_lock 381 * gcgrp_rwlock -> gcdb_lock 382 * 383 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 384 * 385 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 386 * sq_lock -> conn_lock -> QLOCK(q) 387 * ill_lock -> ft_lock -> fe_lock 388 * 389 * Routing/forwarding table locking notes: 390 * 391 * Lock acquisition order: Radix tree lock, irb_lock. 392 * Requirements: 393 * i. Walker must not hold any locks during the walker callback. 394 * ii Walker must not see a truncated tree during the walk because of any node 395 * deletion. 396 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 397 * in many places in the code to walk the irb list. Thus even if all the 398 * ires in a bucket have been deleted, we still can't free the radix node 399 * until the ires have actually been inactive'd (freed). 400 * 401 * Tree traversal - Need to hold the global tree lock in read mode. 402 * Before dropping the global tree lock, need to either increment the ire_refcnt 403 * to ensure that the radix node can't be deleted. 404 * 405 * Tree add - Need to hold the global tree lock in write mode to add a 406 * radix node. To prevent the node from being deleted, increment the 407 * irb_refcnt, after the node is added to the tree. The ire itself is 408 * added later while holding the irb_lock, but not the tree lock. 409 * 410 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 411 * All associated ires must be inactive (i.e. freed), and irb_refcnt 412 * must be zero. 413 * 414 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 415 * global tree lock (read mode) for traversal. 416 * 417 * IPsec notes : 418 * 419 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 420 * in front of the actual packet. For outbound datagrams, the M_CTL 421 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 422 * information used by the IPsec code for applying the right level of 423 * protection. The information initialized by IP in the ipsec_out_t 424 * is determined by the per-socket policy or global policy in the system. 425 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 426 * ipsec_info.h) which starts out with nothing in it. It gets filled 427 * with the right information if it goes through the AH/ESP code, which 428 * happens if the incoming packet is secure. The information initialized 429 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 430 * the policy requirements needed by per-socket policy or global policy 431 * is met or not. 432 * 433 * If there is both per-socket policy (set using setsockopt) and there 434 * is also global policy match for the 5 tuples of the socket, 435 * ipsec_override_policy() makes the decision of which one to use. 436 * 437 * For fully connected sockets i.e dst, src [addr, port] is known, 438 * conn_policy_cached is set indicating that policy has been cached. 439 * conn_in_enforce_policy may or may not be set depending on whether 440 * there is a global policy match or per-socket policy match. 441 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 442 * Once the right policy is set on the conn_t, policy cannot change for 443 * this socket. This makes life simpler for TCP (UDP ?) where 444 * re-transmissions go out with the same policy. For symmetry, policy 445 * is cached for fully connected UDP sockets also. Thus if policy is cached, 446 * it also implies that policy is latched i.e policy cannot change 447 * on these sockets. As we have the right policy on the conn, we don't 448 * have to lookup global policy for every outbound and inbound datagram 449 * and thus serving as an optimization. Note that a global policy change 450 * does not affect fully connected sockets if they have policy. If fully 451 * connected sockets did not have any policy associated with it, global 452 * policy change may affect them. 453 * 454 * IP Flow control notes: 455 * --------------------- 456 * Non-TCP streams are flow controlled by IP. The way this is accomplished 457 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 458 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 459 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 460 * functions. 461 * 462 * Per Tx ring udp flow control: 463 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 464 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 465 * 466 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 467 * To achieve best performance, outgoing traffic need to be fanned out among 468 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 469 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 470 * the address of connp as fanout hint to mac_tx(). Under flow controlled 471 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 472 * cookie points to a specific Tx ring that is blocked. The cookie is used to 473 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 474 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 475 * connp's. The drain list is not a single list but a configurable number of 476 * lists. 477 * 478 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 479 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 480 * which is equal to 128. This array in turn contains a pointer to idl_t[], 481 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 482 * list will point to the list of connp's that are flow controlled. 483 * 484 * --------------- ------- ------- ------- 485 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 486 * | --------------- ------- ------- ------- 487 * | --------------- ------- ------- ------- 488 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 489 * ---------------- | --------------- ------- ------- ------- 490 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 491 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 492 * | --------------- ------- ------- ------- 493 * . . . . . 494 * | --------------- ------- ------- ------- 495 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 496 * --------------- ------- ------- ------- 497 * --------------- ------- ------- ------- 498 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 499 * | --------------- ------- ------- ------- 500 * | --------------- ------- ------- ------- 501 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 502 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 503 * ---------------- | . . . . 504 * | --------------- ------- ------- ------- 505 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 506 * --------------- ------- ------- ------- 507 * ..... 508 * ---------------- 509 * |idl_tx_list[n]|-> ... 510 * ---------------- 511 * 512 * When mac_tx() returns a cookie, the cookie is used to hash into a 513 * idl_tx_list in ips_idl_tx_list[] array. Then conn_drain_insert() is 514 * called passing idl_tx_list. The connp gets inserted in a drain list 515 * pointed to by idl_tx_list. conn_drain_list() asserts flow control for 516 * the sockets (non stream based) and sets QFULL condition for conn_wq. 517 * connp->conn_direct_blocked will be set to indicate the blocked 518 * condition. 519 * 520 * GLDv3 mac layer calls ill_flow_enable() when flow control is relieved. 521 * A cookie is passed in the call to ill_flow_enable() that identifies the 522 * blocked Tx ring. This cookie is used to get to the idl_tx_list that 523 * contains the blocked connp's. conn_walk_drain() uses the idl_tx_list_t 524 * and goes through each of the drain list (q)enabling the conn_wq of the 525 * first conn in each of the drain list. This causes ip_wsrv to run for the 526 * conn. ip_wsrv drains the queued messages, and removes the conn from the 527 * drain list, if all messages were drained. It also qenables the next conn 528 * in the drain list to continue the drain process. 529 * 530 * In reality the drain list is not a single list, but a configurable number 531 * of lists. conn_drain_walk() in the IP module, qenables the first conn in 532 * each list. If the ip_wsrv of the next qenabled conn does not run, because 533 * the stream closes, ip_close takes responsibility to qenable the next conn 534 * in the drain list. conn_drain_insert and conn_drain_tail are the only 535 * functions that manipulate this drain list. conn_drain_insert is called in 536 * ip_wput context itself (as opposed to from ip_wsrv context for STREAMS 537 * case -- see below). The synchronization between drain insertion and flow 538 * control wakeup is handled by using idl_txl->txl_lock. 539 * 540 * Flow control using STREAMS: 541 * When ILL_DIRECT_CAPABLE() is not TRUE, STREAMS flow control mechanism 542 * is used. On the send side, if the packet cannot be sent down to the 543 * driver by IP, because of a canput failure, IP does a putq on the conn_wq. 544 * This will cause ip_wsrv to run on the conn_wq. ip_wsrv in turn, inserts 545 * the conn in a list of conn's that need to be drained when the flow 546 * control condition subsides. The blocked connps are put in first member 547 * of ips_idl_tx_list[] array. Ultimately STREAMS backenables the ip_wsrv 548 * on the IP module. It calls conn_walk_drain() passing ips_idl_tx_list[0]. 549 * ips_idl_tx_list[0] contains the drain lists of blocked conns. The 550 * conn_wq of the first conn in the drain lists is (q)enabled to run. 551 * ip_wsrv on this conn drains the queued messages, and removes the conn 552 * from the drain list, if all messages were drained. It also qenables the 553 * next conn in the drain list to continue the drain process. 554 * 555 * If the ip_wsrv of the next qenabled conn does not run, because the 556 * stream closes, ip_close takes responsibility to qenable the next conn in 557 * the drain list. The directly called ip_wput path always does a putq, if 558 * it cannot putnext. Thus synchronization problems are handled between 559 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 560 * functions that manipulate this drain list. Furthermore conn_drain_insert 561 * is called only from ip_wsrv for the STREAMS case, and there can be only 1 562 * instance of ip_wsrv running on a queue at any time. conn_drain_tail can 563 * be simultaneously called from both ip_wsrv and ip_close. 564 * 565 * IPQOS notes: 566 * 567 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 568 * and IPQoS modules. IPPF includes hooks in IP at different control points 569 * (callout positions) which direct packets to IPQoS modules for policy 570 * processing. Policies, if present, are global. 571 * 572 * The callout positions are located in the following paths: 573 * o local_in (packets destined for this host) 574 * o local_out (packets orginating from this host ) 575 * o fwd_in (packets forwarded by this m/c - inbound) 576 * o fwd_out (packets forwarded by this m/c - outbound) 577 * Hooks at these callout points can be enabled/disabled using the ndd variable 578 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 579 * By default all the callout positions are enabled. 580 * 581 * Outbound (local_out) 582 * Hooks are placed in ip_wput_ire and ipsec_out_process. 583 * 584 * Inbound (local_in) 585 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 586 * TCP and UDP fanout routines. 587 * 588 * Forwarding (in and out) 589 * Hooks are placed in ip_rput_forward. 590 * 591 * IP Policy Framework processing (IPPF processing) 592 * Policy processing for a packet is initiated by ip_process, which ascertains 593 * that the classifier (ipgpc) is loaded and configured, failing which the 594 * packet resumes normal processing in IP. If the clasifier is present, the 595 * packet is acted upon by one or more IPQoS modules (action instances), per 596 * filters configured in ipgpc and resumes normal IP processing thereafter. 597 * An action instance can drop a packet in course of its processing. 598 * 599 * A boolean variable, ip_policy, is used in all the fanout routines that can 600 * invoke ip_process for a packet. This variable indicates if the packet should 601 * to be sent for policy processing. The variable is set to B_TRUE by default, 602 * i.e. when the routines are invoked in the normal ip procesing path for a 603 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 604 * ip_policy is set to B_FALSE for all the routines called in these two 605 * functions because, in the former case, we don't process loopback traffic 606 * currently while in the latter, the packets have already been processed in 607 * icmp_inbound. 608 * 609 * Zones notes: 610 * 611 * The partitioning rules for networking are as follows: 612 * 1) Packets coming from a zone must have a source address belonging to that 613 * zone. 614 * 2) Packets coming from a zone can only be sent on a physical interface on 615 * which the zone has an IP address. 616 * 3) Between two zones on the same machine, packet delivery is only allowed if 617 * there's a matching route for the destination and zone in the forwarding 618 * table. 619 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 620 * different zones can bind to the same port with the wildcard address 621 * (INADDR_ANY). 622 * 623 * The granularity of interface partitioning is at the logical interface level. 624 * Therefore, every zone has its own IP addresses, and incoming packets can be 625 * attributed to a zone unambiguously. A logical interface is placed into a zone 626 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 627 * structure. Rule (1) is implemented by modifying the source address selection 628 * algorithm so that the list of eligible addresses is filtered based on the 629 * sending process zone. 630 * 631 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 632 * across all zones, depending on their type. Here is the break-up: 633 * 634 * IRE type Shared/exclusive 635 * -------- ---------------- 636 * IRE_BROADCAST Exclusive 637 * IRE_DEFAULT (default routes) Shared (*) 638 * IRE_LOCAL Exclusive (x) 639 * IRE_LOOPBACK Exclusive 640 * IRE_PREFIX (net routes) Shared (*) 641 * IRE_CACHE Exclusive 642 * IRE_IF_NORESOLVER (interface routes) Exclusive 643 * IRE_IF_RESOLVER (interface routes) Exclusive 644 * IRE_HOST (host routes) Shared (*) 645 * 646 * (*) A zone can only use a default or off-subnet route if the gateway is 647 * directly reachable from the zone, that is, if the gateway's address matches 648 * one of the zone's logical interfaces. 649 * 650 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 651 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 652 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 653 * address of the zone itself (the destination). Since IRE_LOCAL is used 654 * for communication between zones, ip_wput_ire has special logic to set 655 * the right source address when sending using an IRE_LOCAL. 656 * 657 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 658 * ire_cache_lookup restricts loopback using an IRE_LOCAL 659 * between zone to the case when L2 would have conceptually looped the packet 660 * back, i.e. the loopback which is required since neither Ethernet drivers 661 * nor Ethernet hardware loops them back. This is the case when the normal 662 * routes (ignoring IREs with different zoneids) would send out the packet on 663 * the same ill as the ill with which is IRE_LOCAL is associated. 664 * 665 * Multiple zones can share a common broadcast address; typically all zones 666 * share the 255.255.255.255 address. Incoming as well as locally originated 667 * broadcast packets must be dispatched to all the zones on the broadcast 668 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 669 * since some zones may not be on the 10.16.72/24 network. To handle this, each 670 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 671 * sent to every zone that has an IRE_BROADCAST entry for the destination 672 * address on the input ill, see conn_wantpacket(). 673 * 674 * Applications in different zones can join the same multicast group address. 675 * For IPv4, group memberships are per-logical interface, so they're already 676 * inherently part of a zone. For IPv6, group memberships are per-physical 677 * interface, so we distinguish IPv6 group memberships based on group address, 678 * interface and zoneid. In both cases, received multicast packets are sent to 679 * every zone for which a group membership entry exists. On IPv6 we need to 680 * check that the target zone still has an address on the receiving physical 681 * interface; it could have been removed since the application issued the 682 * IPV6_JOIN_GROUP. 683 */ 684 685 /* 686 * Squeue Fanout flags: 687 * 0: No fanout. 688 * 1: Fanout across all squeues 689 */ 690 boolean_t ip_squeue_fanout = 0; 691 692 /* 693 * Maximum dups allowed per packet. 694 */ 695 uint_t ip_max_frag_dups = 10; 696 697 #define IS_SIMPLE_IPH(ipha) \ 698 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 699 700 /* RFC 1122 Conformance */ 701 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 702 703 #define ILL_MAX_NAMELEN LIFNAMSIZ 704 705 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 706 707 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 708 cred_t *credp, boolean_t isv6); 709 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t, 710 ipha_t **); 711 712 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 713 ip_stack_t *); 714 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 715 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 716 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 717 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 718 mblk_t *, int, ip_stack_t *); 719 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 720 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 721 ill_t *, zoneid_t); 722 static void icmp_options_update(ipha_t *); 723 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 724 ip_stack_t *); 725 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 726 zoneid_t zoneid, ip_stack_t *); 727 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 728 static void icmp_redirect(ill_t *, mblk_t *); 729 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 730 ip_stack_t *); 731 732 static void ip_arp_news(queue_t *, mblk_t *); 733 static boolean_t ip_bind_get_ire_v4(mblk_t **, ire_t *, iulp_t *, ip_stack_t *); 734 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 735 char *ip_dot_addr(ipaddr_t, char *); 736 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 737 int ip_close(queue_t *, int); 738 static char *ip_dot_saddr(uchar_t *, char *); 739 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 740 boolean_t, boolean_t, ill_t *, zoneid_t); 741 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 742 boolean_t, boolean_t, zoneid_t); 743 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 744 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 745 static void ip_lrput(queue_t *, mblk_t *); 746 ipaddr_t ip_net_mask(ipaddr_t); 747 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 748 ip_stack_t *); 749 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 750 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 751 char *ip_nv_lookup(nv_t *, int); 752 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 753 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 754 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 755 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 756 ipndp_t *, size_t); 757 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 758 void ip_rput(queue_t *, mblk_t *); 759 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 760 void *dummy_arg); 761 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 762 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 763 ip_stack_t *); 764 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 765 ire_t *, ip_stack_t *); 766 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 767 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 768 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 769 ip_stack_t *); 770 static boolean_t ip_rput_fragment(ill_t *, ill_t *, mblk_t **, ipha_t *, 771 uint32_t *, uint16_t *); 772 int ip_snmp_get(queue_t *, mblk_t *, int); 773 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 774 mib2_ipIfStatsEntry_t *, ip_stack_t *); 775 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 776 ip_stack_t *); 777 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 778 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 779 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 780 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 781 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 782 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 783 ip_stack_t *ipst); 784 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 785 ip_stack_t *ipst); 786 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 787 ip_stack_t *ipst); 788 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 789 ip_stack_t *ipst); 790 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 791 ip_stack_t *ipst); 792 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 793 ip_stack_t *ipst); 794 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 795 ip_stack_t *ipst); 796 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 797 ip_stack_t *ipst); 798 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 799 ip_stack_t *ipst); 800 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 801 ip_stack_t *ipst); 802 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 803 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 804 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 805 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 806 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 807 static boolean_t ip_source_route_included(ipha_t *); 808 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 809 810 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 811 zoneid_t, ip_stack_t *, conn_t *); 812 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *, 813 mblk_t *); 814 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 815 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 816 zoneid_t, ip_stack_t *); 817 818 static void conn_drain_init(ip_stack_t *); 819 static void conn_drain_fini(ip_stack_t *); 820 static void conn_drain_tail(conn_t *connp, boolean_t closing); 821 822 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 823 static void conn_setqfull(conn_t *); 824 static void conn_clrqfull(conn_t *); 825 826 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 827 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 828 static void ip_stack_fini(netstackid_t stackid, void *arg); 829 830 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 831 zoneid_t); 832 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 833 void *dummy_arg); 834 835 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 836 837 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 838 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 839 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 840 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 841 842 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 843 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 844 caddr_t, cred_t *); 845 extern int ip_helper_stream_setup(queue_t *, dev_t *, int, int, 846 cred_t *, boolean_t); 847 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 848 caddr_t cp, cred_t *cr); 849 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 850 cred_t *); 851 static int ip_squeue_switch(int); 852 853 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 854 static void ip_kstat_fini(netstackid_t, kstat_t *); 855 static int ip_kstat_update(kstat_t *kp, int rw); 856 static void *icmp_kstat_init(netstackid_t); 857 static void icmp_kstat_fini(netstackid_t, kstat_t *); 858 static int icmp_kstat_update(kstat_t *kp, int rw); 859 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 860 static void ip_kstat2_fini(netstackid_t, kstat_t *); 861 862 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 863 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 864 865 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 866 ipha_t *, ill_t *, boolean_t, boolean_t); 867 868 static void ipobs_init(ip_stack_t *); 869 static void ipobs_fini(ip_stack_t *); 870 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 871 872 /* How long, in seconds, we allow frags to hang around. */ 873 #define IP_FRAG_TIMEOUT 15 874 #define IPV6_FRAG_TIMEOUT 60 875 876 /* 877 * Threshold which determines whether MDT should be used when 878 * generating IP fragments; payload size must be greater than 879 * this threshold for MDT to take place. 880 */ 881 #define IP_WPUT_FRAG_MDT_MIN 32768 882 883 /* Setable in /etc/system only */ 884 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 885 886 static long ip_rput_pullups; 887 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 888 889 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 890 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 891 892 int ip_debug; 893 894 #ifdef DEBUG 895 uint32_t ipsechw_debug = 0; 896 #endif 897 898 /* 899 * Multirouting/CGTP stuff 900 */ 901 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 902 903 /* 904 * XXX following really should only be in a header. Would need more 905 * header and .c clean up first. 906 */ 907 extern optdb_obj_t ip_opt_obj; 908 909 ulong_t ip_squeue_enter_unbound = 0; 910 911 /* 912 * Named Dispatch Parameter Table. 913 * All of these are alterable, within the min/max values given, at run time. 914 */ 915 static ipparam_t lcl_param_arr[] = { 916 /* min max value name */ 917 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 918 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 919 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 920 { 0, 1, 0, "ip_respond_to_timestamp"}, 921 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 922 { 0, 1, 1, "ip_send_redirects"}, 923 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 924 { 0, 10, 0, "ip_mrtdebug"}, 925 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 926 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 927 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 928 { 1, 255, 255, "ip_def_ttl" }, 929 { 0, 1, 0, "ip_forward_src_routed"}, 930 { 0, 256, 32, "ip_wroff_extra" }, 931 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 932 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 933 { 0, 1, 1, "ip_path_mtu_discovery" }, 934 { 0, 240, 30, "ip_ignore_delete_time" }, 935 { 0, 1, 0, "ip_ignore_redirect" }, 936 { 0, 1, 1, "ip_output_queue" }, 937 { 1, 254, 1, "ip_broadcast_ttl" }, 938 { 0, 99999, 100, "ip_icmp_err_interval" }, 939 { 1, 99999, 10, "ip_icmp_err_burst" }, 940 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 941 { 0, 1, 0, "ip_strict_dst_multihoming" }, 942 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 943 { 0, 1, 0, "ipsec_override_persocket_policy" }, 944 { 0, 1, 1, "icmp_accept_clear_messages" }, 945 { 0, 1, 1, "igmp_accept_clear_messages" }, 946 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 947 "ip_ndp_delay_first_probe_time"}, 948 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 949 "ip_ndp_max_unicast_solicit"}, 950 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 951 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 952 { 0, 1, 0, "ip6_forward_src_routed"}, 953 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 954 { 0, 1, 1, "ip6_send_redirects"}, 955 { 0, 1, 0, "ip6_ignore_redirect" }, 956 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 957 958 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 959 960 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 961 962 { 0, 1, 1, "pim_accept_clear_messages" }, 963 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 964 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 965 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 966 { 0, 15, 0, "ip_policy_mask" }, 967 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 968 { 0, 255, 1, "ip_multirt_ttl" }, 969 { 0, 1, 1, "ip_multidata_outbound" }, 970 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 971 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 972 { 0, 1000, 1, "ip_max_temp_defend" }, 973 { 0, 1000, 3, "ip_max_defend" }, 974 { 0, 999999, 30, "ip_defend_interval" }, 975 { 0, 3600000, 300000, "ip_dup_recovery" }, 976 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 977 { 0, 1, 1, "ip_lso_outbound" }, 978 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 979 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 980 { 68, 65535, 576, "ip_pmtu_min" }, 981 #ifdef DEBUG 982 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 983 #else 984 { 0, 0, 0, "" }, 985 #endif 986 }; 987 988 /* 989 * Extended NDP table 990 * The addresses for the first two are filled in to be ips_ip_g_forward 991 * and ips_ipv6_forward at init time. 992 */ 993 static ipndp_t lcl_ndp_arr[] = { 994 /* getf setf data name */ 995 #define IPNDP_IP_FORWARDING_OFFSET 0 996 { ip_param_generic_get, ip_forward_set, NULL, 997 "ip_forwarding" }, 998 #define IPNDP_IP6_FORWARDING_OFFSET 1 999 { ip_param_generic_get, ip_forward_set, NULL, 1000 "ip6_forwarding" }, 1001 { ip_param_generic_get, ip_input_proc_set, 1002 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 1003 { ip_param_generic_get, ip_int_set, 1004 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 1005 #define IPNDP_CGTP_FILTER_OFFSET 4 1006 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 1007 "ip_cgtp_filter" }, 1008 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 1009 "ip_debug" }, 1010 }; 1011 1012 /* 1013 * Table of IP ioctls encoding the various properties of the ioctl and 1014 * indexed based on the last byte of the ioctl command. Occasionally there 1015 * is a clash, and there is more than 1 ioctl with the same last byte. 1016 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1017 * ioctls are encoded in the misc table. An entry in the ndx table is 1018 * retrieved by indexing on the last byte of the ioctl command and comparing 1019 * the ioctl command with the value in the ndx table. In the event of a 1020 * mismatch the misc table is then searched sequentially for the desired 1021 * ioctl command. 1022 * 1023 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1024 */ 1025 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1026 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 1037 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1038 MISC_CMD, ip_siocaddrt, NULL }, 1039 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1040 MISC_CMD, ip_siocdelrt, NULL }, 1041 1042 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1043 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1044 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 1045 IF_CMD, ip_sioctl_get_addr, NULL }, 1046 1047 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1048 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1049 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1050 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1051 1052 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1053 IPI_PRIV | IPI_WR, 1054 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1055 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1056 IPI_MODOK | IPI_GET_CMD, 1057 IF_CMD, ip_sioctl_get_flags, NULL }, 1058 1059 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1061 1062 /* copyin size cannot be coded for SIOCGIFCONF */ 1063 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 1064 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1065 1066 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1067 IF_CMD, ip_sioctl_mtu, NULL }, 1068 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 1069 IF_CMD, ip_sioctl_get_mtu, NULL }, 1070 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1071 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1072 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1073 IF_CMD, ip_sioctl_brdaddr, NULL }, 1074 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1075 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 1076 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1077 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1078 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1079 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 1080 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1081 IF_CMD, ip_sioctl_metric, NULL }, 1082 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1083 1084 /* See 166-168 below for extended SIOC*XARP ioctls */ 1085 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1086 ARP_CMD, ip_sioctl_arp, NULL }, 1087 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 1088 ARP_CMD, ip_sioctl_arp, NULL }, 1089 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1090 ARP_CMD, ip_sioctl_arp, NULL }, 1091 1092 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1093 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1094 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1095 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 1114 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1115 MISC_CMD, if_unitsel, if_unitsel_restart }, 1116 1117 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1128 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1129 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1130 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1131 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1132 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1133 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1134 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1135 1136 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1137 IPI_PRIV | IPI_WR | IPI_MODOK, 1138 IF_CMD, ip_sioctl_sifname, NULL }, 1139 1140 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1153 1154 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 1155 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1156 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 1157 IF_CMD, ip_sioctl_get_muxid, NULL }, 1158 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1159 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 1160 1161 /* Both if and lif variants share same func */ 1162 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 1163 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1164 /* Both if and lif variants share same func */ 1165 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1166 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 1167 1168 /* copyin size cannot be coded for SIOCGIFCONF */ 1169 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1170 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1171 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1179 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1180 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1181 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1182 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1183 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1184 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1187 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1188 1189 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1190 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 1191 ip_sioctl_removeif_restart }, 1192 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1193 IPI_GET_CMD | IPI_PRIV | IPI_WR, 1194 LIF_CMD, ip_sioctl_addif, NULL }, 1195 #define SIOCLIFADDR_NDX 112 1196 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1197 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1198 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1199 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 1200 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1201 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1202 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1203 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1204 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1205 IPI_PRIV | IPI_WR, 1206 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1207 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1208 IPI_GET_CMD | IPI_MODOK, 1209 LIF_CMD, ip_sioctl_get_flags, NULL }, 1210 1211 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1212 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1213 1214 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1215 ip_sioctl_get_lifconf, NULL }, 1216 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1217 LIF_CMD, ip_sioctl_mtu, NULL }, 1218 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 1219 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1220 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1221 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1222 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1223 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1224 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1225 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 1226 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1227 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1228 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1229 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 1230 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1231 LIF_CMD, ip_sioctl_metric, NULL }, 1232 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1233 IPI_PRIV | IPI_WR | IPI_MODOK, 1234 LIF_CMD, ip_sioctl_slifname, 1235 ip_sioctl_slifname_restart }, 1236 1237 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 1238 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1239 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1240 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 1241 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1242 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1243 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1244 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1245 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1246 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1247 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1248 LIF_CMD, ip_sioctl_token, NULL }, 1249 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1250 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1251 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1252 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1253 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1254 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1255 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1256 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1257 1258 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1259 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1260 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1261 LIF_CMD, ip_siocdelndp_v6, NULL }, 1262 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1263 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1264 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1265 LIF_CMD, ip_siocsetndp_v6, NULL }, 1266 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1267 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1268 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1269 MISC_CMD, ip_sioctl_tonlink, NULL }, 1270 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1271 MISC_CMD, ip_sioctl_tmysite, NULL }, 1272 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1273 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1274 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1275 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1276 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1277 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1278 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1279 1280 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1281 1282 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1283 LIF_CMD, ip_sioctl_get_binding, NULL }, 1284 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1285 IPI_PRIV | IPI_WR, 1286 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1287 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1288 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1289 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1290 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1291 1292 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1293 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1294 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1295 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1296 1297 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1298 1299 /* These are handled in ip_sioctl_copyin_setup itself */ 1300 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1301 MISC_CMD, NULL, NULL }, 1302 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1303 MISC_CMD, NULL, NULL }, 1304 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1305 1306 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1307 ip_sioctl_get_lifconf, NULL }, 1308 1309 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1310 XARP_CMD, ip_sioctl_arp, NULL }, 1311 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1312 XARP_CMD, ip_sioctl_arp, NULL }, 1313 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1314 XARP_CMD, ip_sioctl_arp, NULL }, 1315 1316 /* SIOCPOPSOCKFS is not handled by IP */ 1317 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1318 1319 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1320 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1321 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1322 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1323 ip_sioctl_slifzone_restart }, 1324 /* 172-174 are SCTP ioctls and not handled by IP */ 1325 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1326 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1327 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1328 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1329 IPI_GET_CMD, LIF_CMD, 1330 ip_sioctl_get_lifusesrc, 0 }, 1331 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1332 IPI_PRIV | IPI_WR, 1333 LIF_CMD, ip_sioctl_slifusesrc, 1334 NULL }, 1335 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1336 ip_sioctl_get_lifsrcof, NULL }, 1337 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1338 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1339 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1340 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1341 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1342 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1343 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1344 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1345 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1346 /* SIOCSENABLESDP is handled by SDP */ 1347 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1348 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1349 /* 185 */ { IPI_DONTCARE /* SIOCGIFHWADDR */, 0, 0, 0, NULL, NULL }, 1350 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL }, 1351 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD, 1352 ip_sioctl_ilb_cmd, NULL }, 1353 }; 1354 1355 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1356 1357 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1358 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1359 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1360 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1361 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1362 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1363 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1364 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1365 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1366 MISC_CMD, mrt_ioctl}, 1367 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1368 MISC_CMD, mrt_ioctl}, 1369 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1370 MISC_CMD, mrt_ioctl} 1371 }; 1372 1373 int ip_misc_ioctl_count = 1374 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1375 1376 int conn_drain_nthreads; /* Number of drainers reqd. */ 1377 /* Settable in /etc/system */ 1378 /* Defined in ip_ire.c */ 1379 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1380 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1381 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1382 1383 static nv_t ire_nv_arr[] = { 1384 { IRE_BROADCAST, "BROADCAST" }, 1385 { IRE_LOCAL, "LOCAL" }, 1386 { IRE_LOOPBACK, "LOOPBACK" }, 1387 { IRE_CACHE, "CACHE" }, 1388 { IRE_DEFAULT, "DEFAULT" }, 1389 { IRE_PREFIX, "PREFIX" }, 1390 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1391 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1392 { IRE_HOST, "HOST" }, 1393 { 0 } 1394 }; 1395 1396 nv_t *ire_nv_tbl = ire_nv_arr; 1397 1398 /* Simple ICMP IP Header Template */ 1399 static ipha_t icmp_ipha = { 1400 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1401 }; 1402 1403 struct module_info ip_mod_info = { 1404 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1405 IP_MOD_LOWAT 1406 }; 1407 1408 /* 1409 * Duplicate static symbols within a module confuses mdb; so we avoid the 1410 * problem by making the symbols here distinct from those in udp.c. 1411 */ 1412 1413 /* 1414 * Entry points for IP as a device and as a module. 1415 * FIXME: down the road we might want a separate module and driver qinit. 1416 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1417 */ 1418 static struct qinit iprinitv4 = { 1419 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1420 &ip_mod_info 1421 }; 1422 1423 struct qinit iprinitv6 = { 1424 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1425 &ip_mod_info 1426 }; 1427 1428 static struct qinit ipwinitv4 = { 1429 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1430 &ip_mod_info 1431 }; 1432 1433 struct qinit ipwinitv6 = { 1434 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1435 &ip_mod_info 1436 }; 1437 1438 static struct qinit iplrinit = { 1439 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1440 &ip_mod_info 1441 }; 1442 1443 static struct qinit iplwinit = { 1444 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1445 &ip_mod_info 1446 }; 1447 1448 /* For AF_INET aka /dev/ip */ 1449 struct streamtab ipinfov4 = { 1450 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1451 }; 1452 1453 /* For AF_INET6 aka /dev/ip6 */ 1454 struct streamtab ipinfov6 = { 1455 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1456 }; 1457 1458 #ifdef DEBUG 1459 static boolean_t skip_sctp_cksum = B_FALSE; 1460 #endif 1461 1462 /* 1463 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1464 * ip_rput_v6(), ip_output(), etc. If the message 1465 * block already has a M_CTL at the front of it, then simply set the zoneid 1466 * appropriately. 1467 */ 1468 mblk_t * 1469 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1470 { 1471 mblk_t *first_mp; 1472 ipsec_out_t *io; 1473 1474 ASSERT(zoneid != ALL_ZONES); 1475 if (mp->b_datap->db_type == M_CTL) { 1476 io = (ipsec_out_t *)mp->b_rptr; 1477 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1478 io->ipsec_out_zoneid = zoneid; 1479 return (mp); 1480 } 1481 1482 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1483 if (first_mp == NULL) 1484 return (NULL); 1485 io = (ipsec_out_t *)first_mp->b_rptr; 1486 /* This is not a secure packet */ 1487 io->ipsec_out_secure = B_FALSE; 1488 io->ipsec_out_zoneid = zoneid; 1489 first_mp->b_cont = mp; 1490 return (first_mp); 1491 } 1492 1493 /* 1494 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1495 */ 1496 mblk_t * 1497 ip_copymsg(mblk_t *mp) 1498 { 1499 mblk_t *nmp; 1500 ipsec_info_t *in; 1501 1502 if (mp->b_datap->db_type != M_CTL) 1503 return (copymsg(mp)); 1504 1505 in = (ipsec_info_t *)mp->b_rptr; 1506 1507 /* 1508 * Note that M_CTL is also used for delivering ICMP error messages 1509 * upstream to transport layers. 1510 */ 1511 if (in->ipsec_info_type != IPSEC_OUT && 1512 in->ipsec_info_type != IPSEC_IN) 1513 return (copymsg(mp)); 1514 1515 nmp = copymsg(mp->b_cont); 1516 1517 if (in->ipsec_info_type == IPSEC_OUT) { 1518 return (ipsec_out_tag(mp, nmp, 1519 ((ipsec_out_t *)in)->ipsec_out_ns)); 1520 } else { 1521 return (ipsec_in_tag(mp, nmp, 1522 ((ipsec_in_t *)in)->ipsec_in_ns)); 1523 } 1524 } 1525 1526 /* Generate an ICMP fragmentation needed message. */ 1527 static void 1528 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1529 ip_stack_t *ipst) 1530 { 1531 icmph_t icmph; 1532 mblk_t *first_mp; 1533 boolean_t mctl_present; 1534 1535 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1536 1537 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1538 if (mctl_present) 1539 freeb(first_mp); 1540 return; 1541 } 1542 1543 bzero(&icmph, sizeof (icmph_t)); 1544 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1545 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1546 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1547 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1548 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1549 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1550 ipst); 1551 } 1552 1553 /* 1554 * icmp_inbound deals with ICMP messages in the following ways. 1555 * 1556 * 1) It needs to send a reply back and possibly delivering it 1557 * to the "interested" upper clients. 1558 * 2) It needs to send it to the upper clients only. 1559 * 3) It needs to change some values in IP only. 1560 * 4) It needs to change some values in IP and upper layers e.g TCP. 1561 * 1562 * We need to accomodate icmp messages coming in clear until we get 1563 * everything secure from the wire. If icmp_accept_clear_messages 1564 * is zero we check with the global policy and act accordingly. If 1565 * it is non-zero, we accept the message without any checks. But 1566 * *this does not mean* that this will be delivered to the upper 1567 * clients. By accepting we might send replies back, change our MTU 1568 * value etc. but delivery to the ULP/clients depends on their policy 1569 * dispositions. 1570 * 1571 * We handle the above 4 cases in the context of IPsec in the 1572 * following way : 1573 * 1574 * 1) Send the reply back in the same way as the request came in. 1575 * If it came in encrypted, it goes out encrypted. If it came in 1576 * clear, it goes out in clear. Thus, this will prevent chosen 1577 * plain text attack. 1578 * 2) The client may or may not expect things to come in secure. 1579 * If it comes in secure, the policy constraints are checked 1580 * before delivering it to the upper layers. If it comes in 1581 * clear, ipsec_inbound_accept_clear will decide whether to 1582 * accept this in clear or not. In both the cases, if the returned 1583 * message (IP header + 8 bytes) that caused the icmp message has 1584 * AH/ESP headers, it is sent up to AH/ESP for validation before 1585 * sending up. If there are only 8 bytes of returned message, then 1586 * upper client will not be notified. 1587 * 3) Check with global policy to see whether it matches the constaints. 1588 * But this will be done only if icmp_accept_messages_in_clear is 1589 * zero. 1590 * 4) If we need to change both in IP and ULP, then the decision taken 1591 * while affecting the values in IP and while delivering up to TCP 1592 * should be the same. 1593 * 1594 * There are two cases. 1595 * 1596 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1597 * failed), we will not deliver it to the ULP, even though they 1598 * are *willing* to accept in *clear*. This is fine as our global 1599 * disposition to icmp messages asks us reject the datagram. 1600 * 1601 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1602 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1603 * to deliver it to ULP (policy failed), it can lead to 1604 * consistency problems. The cases known at this time are 1605 * ICMP_DESTINATION_UNREACHABLE messages with following code 1606 * values : 1607 * 1608 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1609 * and Upper layer rejects. Then the communication will 1610 * come to a stop. This is solved by making similar decisions 1611 * at both levels. Currently, when we are unable to deliver 1612 * to the Upper Layer (due to policy failures) while IP has 1613 * adjusted ire_max_frag, the next outbound datagram would 1614 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1615 * will be with the right level of protection. Thus the right 1616 * value will be communicated even if we are not able to 1617 * communicate when we get from the wire initially. But this 1618 * assumes there would be at least one outbound datagram after 1619 * IP has adjusted its ire_max_frag value. To make things 1620 * simpler, we accept in clear after the validation of 1621 * AH/ESP headers. 1622 * 1623 * - Other ICMP ERRORS : We may not be able to deliver it to the 1624 * upper layer depending on the level of protection the upper 1625 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1626 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1627 * should be accepted in clear when the Upper layer expects secure. 1628 * Thus the communication may get aborted by some bad ICMP 1629 * packets. 1630 * 1631 * IPQoS Notes: 1632 * The only instance when a packet is sent for processing is when there 1633 * isn't an ICMP client and if we are interested in it. 1634 * If there is a client, IPPF processing will take place in the 1635 * ip_fanout_proto routine. 1636 * 1637 * Zones notes: 1638 * The packet is only processed in the context of the specified zone: typically 1639 * only this zone will reply to an echo request, and only interested clients in 1640 * this zone will receive a copy of the packet. This means that the caller must 1641 * call icmp_inbound() for each relevant zone. 1642 */ 1643 static void 1644 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1645 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1646 ill_t *recv_ill, zoneid_t zoneid) 1647 { 1648 icmph_t *icmph; 1649 ipha_t *ipha; 1650 int iph_hdr_length; 1651 int hdr_length; 1652 boolean_t interested; 1653 uint32_t ts; 1654 uchar_t *wptr; 1655 ipif_t *ipif; 1656 mblk_t *first_mp; 1657 ipsec_in_t *ii; 1658 timestruc_t now; 1659 uint32_t ill_index; 1660 ip_stack_t *ipst; 1661 1662 ASSERT(ill != NULL); 1663 ipst = ill->ill_ipst; 1664 1665 first_mp = mp; 1666 if (mctl_present) { 1667 mp = first_mp->b_cont; 1668 ASSERT(mp != NULL); 1669 } 1670 1671 ipha = (ipha_t *)mp->b_rptr; 1672 if (ipst->ips_icmp_accept_clear_messages == 0) { 1673 first_mp = ipsec_check_global_policy(first_mp, NULL, 1674 ipha, NULL, mctl_present, ipst->ips_netstack); 1675 if (first_mp == NULL) 1676 return; 1677 } 1678 1679 /* 1680 * On a labeled system, we have to check whether the zone itself is 1681 * permitted to receive raw traffic. 1682 */ 1683 if (is_system_labeled()) { 1684 if (zoneid == ALL_ZONES) 1685 zoneid = tsol_packet_to_zoneid(mp); 1686 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1687 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1688 zoneid)); 1689 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1690 freemsg(first_mp); 1691 return; 1692 } 1693 } 1694 1695 /* 1696 * We have accepted the ICMP message. It means that we will 1697 * respond to the packet if needed. It may not be delivered 1698 * to the upper client depending on the policy constraints 1699 * and the disposition in ipsec_inbound_accept_clear. 1700 */ 1701 1702 ASSERT(ill != NULL); 1703 1704 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1705 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1706 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1707 /* Last chance to get real. */ 1708 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1709 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1710 freemsg(first_mp); 1711 return; 1712 } 1713 /* Refresh iph following the pullup. */ 1714 ipha = (ipha_t *)mp->b_rptr; 1715 } 1716 /* ICMP header checksum, including checksum field, should be zero. */ 1717 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1718 IP_CSUM(mp, iph_hdr_length, 0)) { 1719 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1720 freemsg(first_mp); 1721 return; 1722 } 1723 /* The IP header will always be a multiple of four bytes */ 1724 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1725 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1726 icmph->icmph_code)); 1727 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1728 /* We will set "interested" to "true" if we want a copy */ 1729 interested = B_FALSE; 1730 switch (icmph->icmph_type) { 1731 case ICMP_ECHO_REPLY: 1732 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1733 break; 1734 case ICMP_DEST_UNREACHABLE: 1735 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1736 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1737 interested = B_TRUE; /* Pass up to transport */ 1738 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1739 break; 1740 case ICMP_SOURCE_QUENCH: 1741 interested = B_TRUE; /* Pass up to transport */ 1742 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1743 break; 1744 case ICMP_REDIRECT: 1745 if (!ipst->ips_ip_ignore_redirect) 1746 interested = B_TRUE; 1747 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1748 break; 1749 case ICMP_ECHO_REQUEST: 1750 /* 1751 * Whether to respond to echo requests that come in as IP 1752 * broadcasts or as IP multicast is subject to debate 1753 * (what isn't?). We aim to please, you pick it. 1754 * Default is do it. 1755 */ 1756 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1757 /* unicast: always respond */ 1758 interested = B_TRUE; 1759 } else if (CLASSD(ipha->ipha_dst)) { 1760 /* multicast: respond based on tunable */ 1761 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1762 } else if (broadcast) { 1763 /* broadcast: respond based on tunable */ 1764 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1765 } 1766 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1767 break; 1768 case ICMP_ROUTER_ADVERTISEMENT: 1769 case ICMP_ROUTER_SOLICITATION: 1770 break; 1771 case ICMP_TIME_EXCEEDED: 1772 interested = B_TRUE; /* Pass up to transport */ 1773 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1774 break; 1775 case ICMP_PARAM_PROBLEM: 1776 interested = B_TRUE; /* Pass up to transport */ 1777 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1778 break; 1779 case ICMP_TIME_STAMP_REQUEST: 1780 /* Response to Time Stamp Requests is local policy. */ 1781 if (ipst->ips_ip_g_resp_to_timestamp && 1782 /* So is whether to respond if it was an IP broadcast. */ 1783 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1784 int tstamp_len = 3 * sizeof (uint32_t); 1785 1786 if (wptr + tstamp_len > mp->b_wptr) { 1787 if (!pullupmsg(mp, wptr + tstamp_len - 1788 mp->b_rptr)) { 1789 BUMP_MIB(ill->ill_ip_mib, 1790 ipIfStatsInDiscards); 1791 freemsg(first_mp); 1792 return; 1793 } 1794 /* Refresh ipha following the pullup. */ 1795 ipha = (ipha_t *)mp->b_rptr; 1796 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1797 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1798 } 1799 interested = B_TRUE; 1800 } 1801 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1802 break; 1803 case ICMP_TIME_STAMP_REPLY: 1804 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1805 break; 1806 case ICMP_INFO_REQUEST: 1807 /* Per RFC 1122 3.2.2.7, ignore this. */ 1808 case ICMP_INFO_REPLY: 1809 break; 1810 case ICMP_ADDRESS_MASK_REQUEST: 1811 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1812 !broadcast) && 1813 /* TODO m_pullup of complete header? */ 1814 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1815 interested = B_TRUE; 1816 } 1817 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1818 break; 1819 case ICMP_ADDRESS_MASK_REPLY: 1820 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1821 break; 1822 default: 1823 interested = B_TRUE; /* Pass up to transport */ 1824 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1825 break; 1826 } 1827 /* See if there is an ICMP client. */ 1828 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1829 /* If there is an ICMP client and we want one too, copy it. */ 1830 mblk_t *first_mp1; 1831 1832 if (!interested) { 1833 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1834 ip_policy, recv_ill, zoneid); 1835 return; 1836 } 1837 first_mp1 = ip_copymsg(first_mp); 1838 if (first_mp1 != NULL) { 1839 ip_fanout_proto(q, first_mp1, ill, ipha, 1840 0, mctl_present, ip_policy, recv_ill, zoneid); 1841 } 1842 } else if (!interested) { 1843 freemsg(first_mp); 1844 return; 1845 } else { 1846 /* 1847 * Initiate policy processing for this packet if ip_policy 1848 * is true. 1849 */ 1850 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1851 ill_index = ill->ill_phyint->phyint_ifindex; 1852 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1853 if (mp == NULL) { 1854 if (mctl_present) { 1855 freeb(first_mp); 1856 } 1857 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1858 return; 1859 } 1860 } 1861 } 1862 /* We want to do something with it. */ 1863 /* Check db_ref to make sure we can modify the packet. */ 1864 if (mp->b_datap->db_ref > 1) { 1865 mblk_t *first_mp1; 1866 1867 first_mp1 = ip_copymsg(first_mp); 1868 freemsg(first_mp); 1869 if (!first_mp1) { 1870 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1871 return; 1872 } 1873 first_mp = first_mp1; 1874 if (mctl_present) { 1875 mp = first_mp->b_cont; 1876 ASSERT(mp != NULL); 1877 } else { 1878 mp = first_mp; 1879 } 1880 ipha = (ipha_t *)mp->b_rptr; 1881 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1882 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1883 } 1884 switch (icmph->icmph_type) { 1885 case ICMP_ADDRESS_MASK_REQUEST: 1886 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1887 if (ipif == NULL) { 1888 freemsg(first_mp); 1889 return; 1890 } 1891 /* 1892 * outging interface must be IPv4 1893 */ 1894 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1895 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1896 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1897 ipif_refrele(ipif); 1898 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1899 break; 1900 case ICMP_ECHO_REQUEST: 1901 icmph->icmph_type = ICMP_ECHO_REPLY; 1902 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1903 break; 1904 case ICMP_TIME_STAMP_REQUEST: { 1905 uint32_t *tsp; 1906 1907 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1908 tsp = (uint32_t *)wptr; 1909 tsp++; /* Skip past 'originate time' */ 1910 /* Compute # of milliseconds since midnight */ 1911 gethrestime(&now); 1912 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1913 now.tv_nsec / (NANOSEC / MILLISEC); 1914 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1915 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1916 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1917 break; 1918 } 1919 default: 1920 ipha = (ipha_t *)&icmph[1]; 1921 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1922 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1923 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1924 freemsg(first_mp); 1925 return; 1926 } 1927 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1928 ipha = (ipha_t *)&icmph[1]; 1929 } 1930 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1931 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1932 freemsg(first_mp); 1933 return; 1934 } 1935 hdr_length = IPH_HDR_LENGTH(ipha); 1936 if (hdr_length < sizeof (ipha_t)) { 1937 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1938 freemsg(first_mp); 1939 return; 1940 } 1941 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1942 if (!pullupmsg(mp, 1943 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1944 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1945 freemsg(first_mp); 1946 return; 1947 } 1948 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1949 ipha = (ipha_t *)&icmph[1]; 1950 } 1951 switch (icmph->icmph_type) { 1952 case ICMP_REDIRECT: 1953 /* 1954 * As there is no upper client to deliver, we don't 1955 * need the first_mp any more. 1956 */ 1957 if (mctl_present) { 1958 freeb(first_mp); 1959 } 1960 icmp_redirect(ill, mp); 1961 return; 1962 case ICMP_DEST_UNREACHABLE: 1963 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1964 if (!icmp_inbound_too_big(icmph, ipha, ill, 1965 zoneid, mp, iph_hdr_length, ipst)) { 1966 freemsg(first_mp); 1967 return; 1968 } 1969 /* 1970 * icmp_inbound_too_big() may alter mp. 1971 * Resynch ipha and icmph accordingly. 1972 */ 1973 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1974 ipha = (ipha_t *)&icmph[1]; 1975 } 1976 /* FALLTHRU */ 1977 default : 1978 /* 1979 * IPQoS notes: Since we have already done IPQoS 1980 * processing we don't want to do it again in 1981 * the fanout routines called by 1982 * icmp_inbound_error_fanout, hence the last 1983 * argument, ip_policy, is B_FALSE. 1984 */ 1985 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1986 ipha, iph_hdr_length, hdr_length, mctl_present, 1987 B_FALSE, recv_ill, zoneid); 1988 } 1989 return; 1990 } 1991 /* Send out an ICMP packet */ 1992 icmph->icmph_checksum = 0; 1993 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1994 if (broadcast || CLASSD(ipha->ipha_dst)) { 1995 ipif_t *ipif_chosen; 1996 /* 1997 * Make it look like it was directed to us, so we don't look 1998 * like a fool with a broadcast or multicast source address. 1999 */ 2000 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 2001 /* 2002 * Make sure that we haven't grabbed an interface that's DOWN. 2003 */ 2004 if (ipif != NULL) { 2005 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2006 ipha->ipha_src, zoneid); 2007 if (ipif_chosen != NULL) { 2008 ipif_refrele(ipif); 2009 ipif = ipif_chosen; 2010 } 2011 } 2012 if (ipif == NULL) { 2013 ip0dbg(("icmp_inbound: " 2014 "No source for broadcast/multicast:\n" 2015 "\tsrc 0x%x dst 0x%x ill %p " 2016 "ipif_lcl_addr 0x%x\n", 2017 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2018 (void *)ill, 2019 ill->ill_ipif->ipif_lcl_addr)); 2020 freemsg(first_mp); 2021 return; 2022 } 2023 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2024 ipha->ipha_dst = ipif->ipif_src_addr; 2025 ipif_refrele(ipif); 2026 } 2027 /* Reset time to live. */ 2028 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2029 { 2030 /* Swap source and destination addresses */ 2031 ipaddr_t tmp; 2032 2033 tmp = ipha->ipha_src; 2034 ipha->ipha_src = ipha->ipha_dst; 2035 ipha->ipha_dst = tmp; 2036 } 2037 ipha->ipha_ident = 0; 2038 if (!IS_SIMPLE_IPH(ipha)) 2039 icmp_options_update(ipha); 2040 2041 if (!mctl_present) { 2042 /* 2043 * This packet should go out the same way as it 2044 * came in i.e in clear. To make sure that global 2045 * policy will not be applied to this in ip_wput_ire, 2046 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2047 */ 2048 ASSERT(first_mp == mp); 2049 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2050 if (first_mp == NULL) { 2051 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2052 freemsg(mp); 2053 return; 2054 } 2055 ii = (ipsec_in_t *)first_mp->b_rptr; 2056 2057 /* This is not a secure packet */ 2058 ii->ipsec_in_secure = B_FALSE; 2059 first_mp->b_cont = mp; 2060 } else { 2061 ii = (ipsec_in_t *)first_mp->b_rptr; 2062 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2063 } 2064 if (!ipsec_in_to_out(first_mp, ipha, NULL, zoneid)) { 2065 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2066 return; 2067 } 2068 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2069 put(WR(q), first_mp); 2070 } 2071 2072 static ipaddr_t 2073 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2074 { 2075 conn_t *connp; 2076 connf_t *connfp; 2077 ipaddr_t nexthop_addr = INADDR_ANY; 2078 int hdr_length = IPH_HDR_LENGTH(ipha); 2079 uint16_t *up; 2080 uint32_t ports; 2081 ip_stack_t *ipst = ill->ill_ipst; 2082 2083 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2084 switch (ipha->ipha_protocol) { 2085 case IPPROTO_TCP: 2086 { 2087 tcph_t *tcph; 2088 2089 /* do a reverse lookup */ 2090 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2091 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2092 TCPS_LISTEN, ipst); 2093 break; 2094 } 2095 case IPPROTO_UDP: 2096 { 2097 uint32_t dstport, srcport; 2098 2099 ((uint16_t *)&ports)[0] = up[1]; 2100 ((uint16_t *)&ports)[1] = up[0]; 2101 2102 /* Extract ports in net byte order */ 2103 dstport = htons(ntohl(ports) & 0xFFFF); 2104 srcport = htons(ntohl(ports) >> 16); 2105 2106 connfp = &ipst->ips_ipcl_udp_fanout[ 2107 IPCL_UDP_HASH(dstport, ipst)]; 2108 mutex_enter(&connfp->connf_lock); 2109 connp = connfp->connf_head; 2110 2111 /* do a reverse lookup */ 2112 while ((connp != NULL) && 2113 (!IPCL_UDP_MATCH(connp, dstport, 2114 ipha->ipha_src, srcport, ipha->ipha_dst) || 2115 !IPCL_ZONE_MATCH(connp, zoneid))) { 2116 connp = connp->conn_next; 2117 } 2118 if (connp != NULL) 2119 CONN_INC_REF(connp); 2120 mutex_exit(&connfp->connf_lock); 2121 break; 2122 } 2123 case IPPROTO_SCTP: 2124 { 2125 in6_addr_t map_src, map_dst; 2126 2127 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2128 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2129 ((uint16_t *)&ports)[0] = up[1]; 2130 ((uint16_t *)&ports)[1] = up[0]; 2131 2132 connp = sctp_find_conn(&map_src, &map_dst, ports, 2133 zoneid, ipst->ips_netstack->netstack_sctp); 2134 if (connp == NULL) { 2135 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2136 zoneid, ports, ipha, ipst); 2137 } else { 2138 CONN_INC_REF(connp); 2139 SCTP_REFRELE(CONN2SCTP(connp)); 2140 } 2141 break; 2142 } 2143 default: 2144 { 2145 ipha_t ripha; 2146 2147 ripha.ipha_src = ipha->ipha_dst; 2148 ripha.ipha_dst = ipha->ipha_src; 2149 ripha.ipha_protocol = ipha->ipha_protocol; 2150 2151 connfp = &ipst->ips_ipcl_proto_fanout[ 2152 ipha->ipha_protocol]; 2153 mutex_enter(&connfp->connf_lock); 2154 connp = connfp->connf_head; 2155 for (connp = connfp->connf_head; connp != NULL; 2156 connp = connp->conn_next) { 2157 if (IPCL_PROTO_MATCH(connp, 2158 ipha->ipha_protocol, &ripha, ill, 2159 0, zoneid)) { 2160 CONN_INC_REF(connp); 2161 break; 2162 } 2163 } 2164 mutex_exit(&connfp->connf_lock); 2165 } 2166 } 2167 if (connp != NULL) { 2168 if (connp->conn_nexthop_set) 2169 nexthop_addr = connp->conn_nexthop_v4; 2170 CONN_DEC_REF(connp); 2171 } 2172 return (nexthop_addr); 2173 } 2174 2175 /* Table from RFC 1191 */ 2176 static int icmp_frag_size_table[] = 2177 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2178 2179 /* 2180 * Process received ICMP Packet too big. 2181 * After updating any IRE it does the fanout to any matching transport streams. 2182 * Assumes the message has been pulled up till the IP header that caused 2183 * the error. 2184 * 2185 * Returns B_FALSE on failure and B_TRUE on success. 2186 */ 2187 static boolean_t 2188 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2189 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2190 ip_stack_t *ipst) 2191 { 2192 ire_t *ire, *first_ire; 2193 int mtu, orig_mtu; 2194 int hdr_length; 2195 ipaddr_t nexthop_addr; 2196 boolean_t disable_pmtud; 2197 2198 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2199 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2200 ASSERT(ill != NULL); 2201 2202 hdr_length = IPH_HDR_LENGTH(ipha); 2203 2204 /* Drop if the original packet contained a source route */ 2205 if (ip_source_route_included(ipha)) { 2206 return (B_FALSE); 2207 } 2208 /* 2209 * Verify we have at least ICMP_MIN_TP_HDR_LENGTH bytes of transport 2210 * header. 2211 */ 2212 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2213 mp->b_wptr) { 2214 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2215 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2216 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2217 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2218 return (B_FALSE); 2219 } 2220 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2221 ipha = (ipha_t *)&icmph[1]; 2222 } 2223 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2224 if (nexthop_addr != INADDR_ANY) { 2225 /* nexthop set */ 2226 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2227 nexthop_addr, 0, NULL, ALL_ZONES, msg_getlabel(mp), 2228 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2229 } else { 2230 /* nexthop not set */ 2231 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2232 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2233 } 2234 2235 if (!first_ire) { 2236 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2237 ntohl(ipha->ipha_dst))); 2238 return (B_FALSE); 2239 } 2240 2241 /* Check for MTU discovery advice as described in RFC 1191 */ 2242 mtu = ntohs(icmph->icmph_du_mtu); 2243 orig_mtu = mtu; 2244 disable_pmtud = B_FALSE; 2245 2246 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2247 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2248 ire = ire->ire_next) { 2249 /* 2250 * Look for the connection to which this ICMP message is 2251 * directed. If it has the IP_NEXTHOP option set, then the 2252 * search is limited to IREs with the MATCH_IRE_PRIVATE 2253 * option. Else the search is limited to regular IREs. 2254 */ 2255 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2256 (nexthop_addr != ire->ire_gateway_addr)) || 2257 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2258 (nexthop_addr != INADDR_ANY))) 2259 continue; 2260 2261 mutex_enter(&ire->ire_lock); 2262 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 2263 uint32_t length; 2264 int i; 2265 2266 /* 2267 * Use the table from RFC 1191 to figure out 2268 * the next "plateau" based on the length in 2269 * the original IP packet. 2270 */ 2271 length = ntohs(ipha->ipha_length); 2272 DTRACE_PROBE2(ip4__pmtu__guess, ire_t *, ire, 2273 uint32_t, length); 2274 if (ire->ire_max_frag <= length && 2275 ire->ire_max_frag >= length - hdr_length) { 2276 /* 2277 * Handle broken BSD 4.2 systems that 2278 * return the wrong iph_length in ICMP 2279 * errors. 2280 */ 2281 length -= hdr_length; 2282 } 2283 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2284 if (length > icmp_frag_size_table[i]) 2285 break; 2286 } 2287 if (i == A_CNT(icmp_frag_size_table)) { 2288 /* Smaller than 68! */ 2289 disable_pmtud = B_TRUE; 2290 mtu = ipst->ips_ip_pmtu_min; 2291 } else { 2292 mtu = icmp_frag_size_table[i]; 2293 if (mtu < ipst->ips_ip_pmtu_min) { 2294 mtu = ipst->ips_ip_pmtu_min; 2295 disable_pmtud = B_TRUE; 2296 } 2297 } 2298 /* Fool the ULP into believing our guessed PMTU. */ 2299 icmph->icmph_du_zero = 0; 2300 icmph->icmph_du_mtu = htons(mtu); 2301 } 2302 if (disable_pmtud) 2303 ire->ire_frag_flag = 0; 2304 /* Reduce the IRE max frag value as advised. */ 2305 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2306 if (ire->ire_max_frag == mtu) { 2307 /* Decreased it */ 2308 ire->ire_marks |= IRE_MARK_PMTU; 2309 } 2310 mutex_exit(&ire->ire_lock); 2311 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, ire_t *, 2312 ire, int, orig_mtu, int, mtu); 2313 } 2314 rw_exit(&first_ire->ire_bucket->irb_lock); 2315 ire_refrele(first_ire); 2316 return (B_TRUE); 2317 } 2318 2319 /* 2320 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2321 * calls this function. 2322 */ 2323 static mblk_t * 2324 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2325 { 2326 ipha_t *ipha; 2327 icmph_t *icmph; 2328 ipha_t *in_ipha; 2329 int length; 2330 2331 ASSERT(mp->b_datap->db_type == M_DATA); 2332 2333 /* 2334 * For Self-encapsulated packets, we added an extra IP header 2335 * without the options. Inner IP header is the one from which 2336 * the outer IP header was formed. Thus, we need to remove the 2337 * outer IP header. To do this, we pullup the whole message 2338 * and overlay whatever follows the outer IP header over the 2339 * outer IP header. 2340 */ 2341 2342 if (!pullupmsg(mp, -1)) 2343 return (NULL); 2344 2345 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2346 ipha = (ipha_t *)&icmph[1]; 2347 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2348 2349 /* 2350 * The length that we want to overlay is following the inner 2351 * IP header. Subtracting the IP header + icmp header + outer 2352 * IP header's length should give us the length that we want to 2353 * overlay. 2354 */ 2355 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2356 hdr_length; 2357 /* 2358 * Overlay whatever follows the inner header over the 2359 * outer header. 2360 */ 2361 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2362 2363 /* Set the wptr to account for the outer header */ 2364 mp->b_wptr -= hdr_length; 2365 return (mp); 2366 } 2367 2368 /* 2369 * Fanout for ICMP errors containing IP-in-IPv4 packets. Returns B_TRUE if a 2370 * tunnel consumed the message, and B_FALSE otherwise. 2371 */ 2372 static boolean_t 2373 icmp_inbound_iptun_fanout(mblk_t *first_mp, ipha_t *ripha, ill_t *ill, 2374 ip_stack_t *ipst) 2375 { 2376 conn_t *connp; 2377 2378 if ((connp = ipcl_iptun_classify_v4(&ripha->ipha_src, &ripha->ipha_dst, 2379 ipst)) == NULL) 2380 return (B_FALSE); 2381 2382 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 2383 connp->conn_recv(connp, first_mp, NULL); 2384 CONN_DEC_REF(connp); 2385 return (B_TRUE); 2386 } 2387 2388 /* 2389 * Try to pass the ICMP message upstream in case the ULP cares. 2390 * 2391 * If the packet that caused the ICMP error is secure, we send 2392 * it to AH/ESP to make sure that the attached packet has a 2393 * valid association. ipha in the code below points to the 2394 * IP header of the packet that caused the error. 2395 * 2396 * For IPsec cases, we let the next-layer-up (which has access to 2397 * cached policy on the conn_t, or can query the SPD directly) 2398 * subtract out any IPsec overhead if they must. We therefore make no 2399 * adjustments here for IPsec overhead. 2400 * 2401 * IFN could have been generated locally or by some router. 2402 * 2403 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2404 * This happens because IP adjusted its value of MTU on an 2405 * earlier IFN message and could not tell the upper layer, 2406 * the new adjusted value of MTU e.g. Packet was encrypted 2407 * or there was not enough information to fanout to upper 2408 * layers. Thus on the next outbound datagram, ip_wput_ire 2409 * generates the IFN, where IPsec processing has *not* been 2410 * done. 2411 * 2412 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2413 * could have generated this. This happens because ire_max_frag 2414 * value in IP was set to a new value, while the IPsec processing 2415 * was being done and after we made the fragmentation check in 2416 * ip_wput_ire. Thus on return from IPsec processing, 2417 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2418 * and generates the IFN. As IPsec processing is over, we fanout 2419 * to AH/ESP to remove the header. 2420 * 2421 * In both these cases, ipsec_in_loopback will be set indicating 2422 * that IFN was generated locally. 2423 * 2424 * ROUTER : IFN could be secure or non-secure. 2425 * 2426 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2427 * packet in error has AH/ESP headers to validate the AH/ESP 2428 * headers. AH/ESP will verify whether there is a valid SA or 2429 * not and send it back. We will fanout again if we have more 2430 * data in the packet. 2431 * 2432 * If the packet in error does not have AH/ESP, we handle it 2433 * like any other case. 2434 * 2435 * * NON_SECURE : If the packet in error has AH/ESP headers, 2436 * we attach a dummy ipsec_in and send it up to AH/ESP 2437 * for validation. AH/ESP will verify whether there is a 2438 * valid SA or not and send it back. We will fanout again if 2439 * we have more data in the packet. 2440 * 2441 * If the packet in error does not have AH/ESP, we handle it 2442 * like any other case. 2443 */ 2444 static void 2445 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2446 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2447 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2448 zoneid_t zoneid) 2449 { 2450 uint16_t *up; /* Pointer to ports in ULP header */ 2451 uint32_t ports; /* reversed ports for fanout */ 2452 ipha_t ripha; /* With reversed addresses */ 2453 mblk_t *first_mp; 2454 ipsec_in_t *ii; 2455 tcph_t *tcph; 2456 conn_t *connp; 2457 ip_stack_t *ipst; 2458 2459 ASSERT(ill != NULL); 2460 2461 ASSERT(recv_ill != NULL); 2462 ipst = recv_ill->ill_ipst; 2463 2464 first_mp = mp; 2465 if (mctl_present) { 2466 mp = first_mp->b_cont; 2467 ASSERT(mp != NULL); 2468 2469 ii = (ipsec_in_t *)first_mp->b_rptr; 2470 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2471 } else { 2472 ii = NULL; 2473 } 2474 2475 /* 2476 * We need a separate IP header with the source and destination 2477 * addresses reversed to do fanout/classification because the ipha in 2478 * the ICMP error is in the form we sent it out. 2479 */ 2480 ripha.ipha_src = ipha->ipha_dst; 2481 ripha.ipha_dst = ipha->ipha_src; 2482 ripha.ipha_protocol = ipha->ipha_protocol; 2483 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2484 2485 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2486 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2487 ntohl(ipha->ipha_dst), 2488 icmph->icmph_type, icmph->icmph_code)); 2489 2490 switch (ipha->ipha_protocol) { 2491 case IPPROTO_UDP: 2492 /* 2493 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2494 * transport header. 2495 */ 2496 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2497 mp->b_wptr) { 2498 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2499 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2500 goto discard_pkt; 2501 } 2502 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2503 ipha = (ipha_t *)&icmph[1]; 2504 } 2505 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2506 2507 /* Attempt to find a client stream based on port. */ 2508 ((uint16_t *)&ports)[0] = up[1]; 2509 ((uint16_t *)&ports)[1] = up[0]; 2510 ip2dbg(("icmp_inbound_error: UDP ports %d to %d\n", 2511 ntohs(up[0]), ntohs(up[1]))); 2512 2513 /* Have to change db_type after any pullupmsg */ 2514 DB_TYPE(mp) = M_CTL; 2515 2516 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2517 mctl_present, ip_policy, recv_ill, zoneid); 2518 return; 2519 2520 case IPPROTO_TCP: 2521 /* 2522 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2523 * transport header. 2524 */ 2525 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2526 mp->b_wptr) { 2527 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2528 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2529 goto discard_pkt; 2530 } 2531 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2532 ipha = (ipha_t *)&icmph[1]; 2533 } 2534 /* 2535 * Find a TCP client stream for this packet. 2536 * Note that we do a reverse lookup since the header is 2537 * in the form we sent it out. 2538 */ 2539 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2540 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2541 ipst); 2542 if (connp == NULL) 2543 goto discard_pkt; 2544 2545 /* Have to change db_type after any pullupmsg */ 2546 DB_TYPE(mp) = M_CTL; 2547 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, tcp_input, connp, 2548 SQ_FILL, SQTAG_TCP_INPUT_ICMP_ERR); 2549 return; 2550 2551 case IPPROTO_SCTP: 2552 /* 2553 * Verify we have at least ICMP_MIN_SCTP_HDR_LEN bytes of 2554 * transport header, in the first mp. 2555 */ 2556 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_SCTP_HDR_LEN > 2557 mp->b_wptr) { 2558 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2559 ICMP_MIN_SCTP_HDR_LEN - mp->b_rptr)) { 2560 goto discard_pkt; 2561 } 2562 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2563 ipha = (ipha_t *)&icmph[1]; 2564 } 2565 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2566 /* Find a SCTP client stream for this packet. */ 2567 ((uint16_t *)&ports)[0] = up[1]; 2568 ((uint16_t *)&ports)[1] = up[0]; 2569 2570 /* Have to change db_type after any pullupmsg */ 2571 DB_TYPE(mp) = M_CTL; 2572 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2573 mctl_present, ip_policy, zoneid); 2574 return; 2575 2576 case IPPROTO_ESP: 2577 case IPPROTO_AH: { 2578 int ipsec_rc; 2579 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2580 2581 /* 2582 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2583 * We will re-use the IPSEC_IN if it is already present as 2584 * AH/ESP will not affect any fields in the IPSEC_IN for 2585 * ICMP errors. If there is no IPSEC_IN, allocate a new 2586 * one and attach it in the front. 2587 */ 2588 if (ii != NULL) { 2589 /* 2590 * ip_fanout_proto_again converts the ICMP errors 2591 * that come back from AH/ESP to M_DATA so that 2592 * if it is non-AH/ESP and we do a pullupmsg in 2593 * this function, it would work. Convert it back 2594 * to M_CTL before we send up as this is a ICMP 2595 * error. This could have been generated locally or 2596 * by some router. Validate the inner IPsec 2597 * headers. 2598 * 2599 * NOTE : ill_index is used by ip_fanout_proto_again 2600 * to locate the ill. 2601 */ 2602 ASSERT(ill != NULL); 2603 ii->ipsec_in_ill_index = 2604 ill->ill_phyint->phyint_ifindex; 2605 ii->ipsec_in_rill_index = 2606 recv_ill->ill_phyint->phyint_ifindex; 2607 DB_TYPE(first_mp->b_cont) = M_CTL; 2608 } else { 2609 /* 2610 * IPSEC_IN is not present. We attach a ipsec_in 2611 * message and send up to IPsec for validating 2612 * and removing the IPsec headers. Clear 2613 * ipsec_in_secure so that when we return 2614 * from IPsec, we don't mistakenly think that this 2615 * is a secure packet came from the network. 2616 * 2617 * NOTE : ill_index is used by ip_fanout_proto_again 2618 * to locate the ill. 2619 */ 2620 ASSERT(first_mp == mp); 2621 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2622 if (first_mp == NULL) { 2623 freemsg(mp); 2624 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2625 return; 2626 } 2627 ii = (ipsec_in_t *)first_mp->b_rptr; 2628 2629 /* This is not a secure packet */ 2630 ii->ipsec_in_secure = B_FALSE; 2631 first_mp->b_cont = mp; 2632 DB_TYPE(mp) = M_CTL; 2633 ASSERT(ill != NULL); 2634 ii->ipsec_in_ill_index = 2635 ill->ill_phyint->phyint_ifindex; 2636 ii->ipsec_in_rill_index = 2637 recv_ill->ill_phyint->phyint_ifindex; 2638 } 2639 2640 if (!ipsec_loaded(ipss)) { 2641 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2642 return; 2643 } 2644 2645 if (ipha->ipha_protocol == IPPROTO_ESP) 2646 ipsec_rc = ipsecesp_icmp_error(first_mp); 2647 else 2648 ipsec_rc = ipsecah_icmp_error(first_mp); 2649 if (ipsec_rc == IPSEC_STATUS_FAILED) 2650 return; 2651 2652 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2653 return; 2654 } 2655 case IPPROTO_ENCAP: 2656 case IPPROTO_IPV6: 2657 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2658 ipha_t *in_ipha; 2659 2660 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2661 mp->b_wptr) { 2662 if (!pullupmsg(mp, (uchar_t *)ipha + 2663 hdr_length + sizeof (ipha_t) - 2664 mp->b_rptr)) { 2665 goto discard_pkt; 2666 } 2667 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2668 ipha = (ipha_t *)&icmph[1]; 2669 } 2670 /* 2671 * Caller has verified that length has to be 2672 * at least the size of IP header. 2673 */ 2674 ASSERT(hdr_length >= sizeof (ipha_t)); 2675 /* 2676 * Check the sanity of the inner IP header like 2677 * we did for the outer header. 2678 */ 2679 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2680 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION) || 2681 IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) 2682 goto discard_pkt; 2683 /* Check for Self-encapsulated tunnels */ 2684 if (in_ipha->ipha_src == ipha->ipha_src && 2685 in_ipha->ipha_dst == ipha->ipha_dst) { 2686 2687 mp = icmp_inbound_self_encap_error(mp, 2688 iph_hdr_length, hdr_length); 2689 if (mp == NULL) 2690 goto discard_pkt; 2691 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2692 ipha = (ipha_t *)&icmph[1]; 2693 hdr_length = IPH_HDR_LENGTH(ipha); 2694 /* 2695 * The packet in error is self-encapsualted. 2696 * And we are finding it further encapsulated 2697 * which we could not have possibly generated. 2698 */ 2699 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2700 goto discard_pkt; 2701 } 2702 icmp_inbound_error_fanout(q, ill, first_mp, 2703 icmph, ipha, iph_hdr_length, hdr_length, 2704 mctl_present, ip_policy, recv_ill, zoneid); 2705 return; 2706 } 2707 } 2708 2709 DB_TYPE(mp) = M_CTL; 2710 if (icmp_inbound_iptun_fanout(first_mp, &ripha, ill, ipst)) 2711 return; 2712 /* 2713 * No IP tunnel is interested, fallthrough and see 2714 * if a raw socket will want it. 2715 */ 2716 /* FALLTHRU */ 2717 default: 2718 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2719 ip_policy, recv_ill, zoneid); 2720 return; 2721 } 2722 /* NOTREACHED */ 2723 discard_pkt: 2724 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2725 drop_pkt:; 2726 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2727 freemsg(first_mp); 2728 } 2729 2730 /* 2731 * Common IP options parser. 2732 * 2733 * Setup routine: fill in *optp with options-parsing state, then 2734 * tail-call ipoptp_next to return the first option. 2735 */ 2736 uint8_t 2737 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2738 { 2739 uint32_t totallen; /* total length of all options */ 2740 2741 totallen = ipha->ipha_version_and_hdr_length - 2742 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2743 totallen <<= 2; 2744 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2745 optp->ipoptp_end = optp->ipoptp_next + totallen; 2746 optp->ipoptp_flags = 0; 2747 return (ipoptp_next(optp)); 2748 } 2749 2750 /* 2751 * Common IP options parser: extract next option. 2752 */ 2753 uint8_t 2754 ipoptp_next(ipoptp_t *optp) 2755 { 2756 uint8_t *end = optp->ipoptp_end; 2757 uint8_t *cur = optp->ipoptp_next; 2758 uint8_t opt, len, pointer; 2759 2760 /* 2761 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2762 * has been corrupted. 2763 */ 2764 ASSERT(cur <= end); 2765 2766 if (cur == end) 2767 return (IPOPT_EOL); 2768 2769 opt = cur[IPOPT_OPTVAL]; 2770 2771 /* 2772 * Skip any NOP options. 2773 */ 2774 while (opt == IPOPT_NOP) { 2775 cur++; 2776 if (cur == end) 2777 return (IPOPT_EOL); 2778 opt = cur[IPOPT_OPTVAL]; 2779 } 2780 2781 if (opt == IPOPT_EOL) 2782 return (IPOPT_EOL); 2783 2784 /* 2785 * Option requiring a length. 2786 */ 2787 if ((cur + 1) >= end) { 2788 optp->ipoptp_flags |= IPOPTP_ERROR; 2789 return (IPOPT_EOL); 2790 } 2791 len = cur[IPOPT_OLEN]; 2792 if (len < 2) { 2793 optp->ipoptp_flags |= IPOPTP_ERROR; 2794 return (IPOPT_EOL); 2795 } 2796 optp->ipoptp_cur = cur; 2797 optp->ipoptp_len = len; 2798 optp->ipoptp_next = cur + len; 2799 if (cur + len > end) { 2800 optp->ipoptp_flags |= IPOPTP_ERROR; 2801 return (IPOPT_EOL); 2802 } 2803 2804 /* 2805 * For the options which require a pointer field, make sure 2806 * its there, and make sure it points to either something 2807 * inside this option, or the end of the option. 2808 */ 2809 switch (opt) { 2810 case IPOPT_RR: 2811 case IPOPT_TS: 2812 case IPOPT_LSRR: 2813 case IPOPT_SSRR: 2814 if (len <= IPOPT_OFFSET) { 2815 optp->ipoptp_flags |= IPOPTP_ERROR; 2816 return (opt); 2817 } 2818 pointer = cur[IPOPT_OFFSET]; 2819 if (pointer - 1 > len) { 2820 optp->ipoptp_flags |= IPOPTP_ERROR; 2821 return (opt); 2822 } 2823 break; 2824 } 2825 2826 /* 2827 * Sanity check the pointer field based on the type of the 2828 * option. 2829 */ 2830 switch (opt) { 2831 case IPOPT_RR: 2832 case IPOPT_SSRR: 2833 case IPOPT_LSRR: 2834 if (pointer < IPOPT_MINOFF_SR) 2835 optp->ipoptp_flags |= IPOPTP_ERROR; 2836 break; 2837 case IPOPT_TS: 2838 if (pointer < IPOPT_MINOFF_IT) 2839 optp->ipoptp_flags |= IPOPTP_ERROR; 2840 /* 2841 * Note that the Internet Timestamp option also 2842 * contains two four bit fields (the Overflow field, 2843 * and the Flag field), which follow the pointer 2844 * field. We don't need to check that these fields 2845 * fall within the length of the option because this 2846 * was implicitely done above. We've checked that the 2847 * pointer value is at least IPOPT_MINOFF_IT, and that 2848 * it falls within the option. Since IPOPT_MINOFF_IT > 2849 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2850 */ 2851 ASSERT(len > IPOPT_POS_OV_FLG); 2852 break; 2853 } 2854 2855 return (opt); 2856 } 2857 2858 /* 2859 * Use the outgoing IP header to create an IP_OPTIONS option the way 2860 * it was passed down from the application. 2861 */ 2862 int 2863 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2864 { 2865 ipoptp_t opts; 2866 const uchar_t *opt; 2867 uint8_t optval; 2868 uint8_t optlen; 2869 uint32_t len = 0; 2870 uchar_t *buf1 = buf; 2871 2872 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2873 len += IP_ADDR_LEN; 2874 bzero(buf1, IP_ADDR_LEN); 2875 2876 /* 2877 * OK to cast away const here, as we don't store through the returned 2878 * opts.ipoptp_cur pointer. 2879 */ 2880 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2881 optval != IPOPT_EOL; 2882 optval = ipoptp_next(&opts)) { 2883 int off; 2884 2885 opt = opts.ipoptp_cur; 2886 optlen = opts.ipoptp_len; 2887 switch (optval) { 2888 case IPOPT_SSRR: 2889 case IPOPT_LSRR: 2890 2891 /* 2892 * Insert ipha_dst as the first entry in the source 2893 * route and move down the entries on step. 2894 * The last entry gets placed at buf1. 2895 */ 2896 buf[IPOPT_OPTVAL] = optval; 2897 buf[IPOPT_OLEN] = optlen; 2898 buf[IPOPT_OFFSET] = optlen; 2899 2900 off = optlen - IP_ADDR_LEN; 2901 if (off < 0) { 2902 /* No entries in source route */ 2903 break; 2904 } 2905 /* Last entry in source route */ 2906 bcopy(opt + off, buf1, IP_ADDR_LEN); 2907 off -= IP_ADDR_LEN; 2908 2909 while (off > 0) { 2910 bcopy(opt + off, 2911 buf + off + IP_ADDR_LEN, 2912 IP_ADDR_LEN); 2913 off -= IP_ADDR_LEN; 2914 } 2915 /* ipha_dst into first slot */ 2916 bcopy(&ipha->ipha_dst, 2917 buf + off + IP_ADDR_LEN, 2918 IP_ADDR_LEN); 2919 buf += optlen; 2920 len += optlen; 2921 break; 2922 2923 case IPOPT_COMSEC: 2924 case IPOPT_SECURITY: 2925 /* if passing up a label is not ok, then remove */ 2926 if (is_system_labeled()) 2927 break; 2928 /* FALLTHROUGH */ 2929 default: 2930 bcopy(opt, buf, optlen); 2931 buf += optlen; 2932 len += optlen; 2933 break; 2934 } 2935 } 2936 done: 2937 /* Pad the resulting options */ 2938 while (len & 0x3) { 2939 *buf++ = IPOPT_EOL; 2940 len++; 2941 } 2942 return (len); 2943 } 2944 2945 /* 2946 * Update any record route or timestamp options to include this host. 2947 * Reverse any source route option. 2948 * This routine assumes that the options are well formed i.e. that they 2949 * have already been checked. 2950 */ 2951 static void 2952 icmp_options_update(ipha_t *ipha) 2953 { 2954 ipoptp_t opts; 2955 uchar_t *opt; 2956 uint8_t optval; 2957 ipaddr_t src; /* Our local address */ 2958 ipaddr_t dst; 2959 2960 ip2dbg(("icmp_options_update\n")); 2961 src = ipha->ipha_src; 2962 dst = ipha->ipha_dst; 2963 2964 for (optval = ipoptp_first(&opts, ipha); 2965 optval != IPOPT_EOL; 2966 optval = ipoptp_next(&opts)) { 2967 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2968 opt = opts.ipoptp_cur; 2969 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2970 optval, opts.ipoptp_len)); 2971 switch (optval) { 2972 int off1, off2; 2973 case IPOPT_SSRR: 2974 case IPOPT_LSRR: 2975 /* 2976 * Reverse the source route. The first entry 2977 * should be the next to last one in the current 2978 * source route (the last entry is our address). 2979 * The last entry should be the final destination. 2980 */ 2981 off1 = IPOPT_MINOFF_SR - 1; 2982 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2983 if (off2 < 0) { 2984 /* No entries in source route */ 2985 ip1dbg(( 2986 "icmp_options_update: bad src route\n")); 2987 break; 2988 } 2989 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2990 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2991 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2992 off2 -= IP_ADDR_LEN; 2993 2994 while (off1 < off2) { 2995 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2996 bcopy((char *)opt + off2, (char *)opt + off1, 2997 IP_ADDR_LEN); 2998 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2999 off1 += IP_ADDR_LEN; 3000 off2 -= IP_ADDR_LEN; 3001 } 3002 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3003 break; 3004 } 3005 } 3006 } 3007 3008 /* 3009 * Process received ICMP Redirect messages. 3010 */ 3011 static void 3012 icmp_redirect(ill_t *ill, mblk_t *mp) 3013 { 3014 ipha_t *ipha; 3015 int iph_hdr_length; 3016 icmph_t *icmph; 3017 ipha_t *ipha_err; 3018 ire_t *ire; 3019 ire_t *prev_ire; 3020 ire_t *save_ire; 3021 ipaddr_t src, dst, gateway; 3022 iulp_t ulp_info = { 0 }; 3023 int error; 3024 ip_stack_t *ipst; 3025 3026 ASSERT(ill != NULL); 3027 ipst = ill->ill_ipst; 3028 3029 ipha = (ipha_t *)mp->b_rptr; 3030 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3031 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3032 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3033 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3034 freemsg(mp); 3035 return; 3036 } 3037 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3038 ipha_err = (ipha_t *)&icmph[1]; 3039 src = ipha->ipha_src; 3040 dst = ipha_err->ipha_dst; 3041 gateway = icmph->icmph_rd_gateway; 3042 /* Make sure the new gateway is reachable somehow. */ 3043 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3044 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3045 /* 3046 * Make sure we had a route for the dest in question and that 3047 * that route was pointing to the old gateway (the source of the 3048 * redirect packet.) 3049 */ 3050 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3051 NULL, MATCH_IRE_GW, ipst); 3052 /* 3053 * Check that 3054 * the redirect was not from ourselves 3055 * the new gateway and the old gateway are directly reachable 3056 */ 3057 if (!prev_ire || 3058 !ire || 3059 ire->ire_type == IRE_LOCAL) { 3060 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3061 freemsg(mp); 3062 if (ire != NULL) 3063 ire_refrele(ire); 3064 if (prev_ire != NULL) 3065 ire_refrele(prev_ire); 3066 return; 3067 } 3068 3069 /* 3070 * Should we use the old ULP info to create the new gateway? From 3071 * a user's perspective, we should inherit the info so that it 3072 * is a "smooth" transition. If we do not do that, then new 3073 * connections going thru the new gateway will have no route metrics, 3074 * which is counter-intuitive to user. From a network point of 3075 * view, this may or may not make sense even though the new gateway 3076 * is still directly connected to us so the route metrics should not 3077 * change much. 3078 * 3079 * But if the old ire_uinfo is not initialized, we do another 3080 * recursive lookup on the dest using the new gateway. There may 3081 * be a route to that. If so, use it to initialize the redirect 3082 * route. 3083 */ 3084 if (prev_ire->ire_uinfo.iulp_set) { 3085 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3086 } else { 3087 ire_t *tmp_ire; 3088 ire_t *sire; 3089 3090 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3091 ALL_ZONES, 0, NULL, 3092 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3093 ipst); 3094 if (sire != NULL) { 3095 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3096 /* 3097 * If sire != NULL, ire_ftable_lookup() should not 3098 * return a NULL value. 3099 */ 3100 ASSERT(tmp_ire != NULL); 3101 ire_refrele(tmp_ire); 3102 ire_refrele(sire); 3103 } else if (tmp_ire != NULL) { 3104 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3105 sizeof (iulp_t)); 3106 ire_refrele(tmp_ire); 3107 } 3108 } 3109 if (prev_ire->ire_type == IRE_CACHE) 3110 ire_delete(prev_ire); 3111 ire_refrele(prev_ire); 3112 /* 3113 * TODO: more precise handling for cases 0, 2, 3, the latter two 3114 * require TOS routing 3115 */ 3116 switch (icmph->icmph_code) { 3117 case 0: 3118 case 1: 3119 /* TODO: TOS specificity for cases 2 and 3 */ 3120 case 2: 3121 case 3: 3122 break; 3123 default: 3124 freemsg(mp); 3125 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3126 ire_refrele(ire); 3127 return; 3128 } 3129 /* 3130 * Create a Route Association. This will allow us to remember that 3131 * someone we believe told us to use the particular gateway. 3132 */ 3133 save_ire = ire; 3134 ire = ire_create( 3135 (uchar_t *)&dst, /* dest addr */ 3136 (uchar_t *)&ip_g_all_ones, /* mask */ 3137 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3138 (uchar_t *)&gateway, /* gateway addr */ 3139 &save_ire->ire_max_frag, /* max frag */ 3140 NULL, /* no src nce */ 3141 NULL, /* no rfq */ 3142 NULL, /* no stq */ 3143 IRE_HOST, 3144 NULL, /* ipif */ 3145 0, /* cmask */ 3146 0, /* phandle */ 3147 0, /* ihandle */ 3148 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3149 &ulp_info, 3150 NULL, /* tsol_gc_t */ 3151 NULL, /* gcgrp */ 3152 ipst); 3153 3154 if (ire == NULL) { 3155 freemsg(mp); 3156 ire_refrele(save_ire); 3157 return; 3158 } 3159 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3160 ire_refrele(save_ire); 3161 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3162 3163 if (error == 0) { 3164 ire_refrele(ire); /* Held in ire_add_v4 */ 3165 /* tell routing sockets that we received a redirect */ 3166 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3167 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3168 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3169 } 3170 3171 /* 3172 * Delete any existing IRE_HOST type redirect ires for this destination. 3173 * This together with the added IRE has the effect of 3174 * modifying an existing redirect. 3175 */ 3176 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3177 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3178 if (prev_ire != NULL) { 3179 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3180 ire_delete(prev_ire); 3181 ire_refrele(prev_ire); 3182 } 3183 3184 freemsg(mp); 3185 } 3186 3187 /* 3188 * Generate an ICMP parameter problem message. 3189 */ 3190 static void 3191 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3192 ip_stack_t *ipst) 3193 { 3194 icmph_t icmph; 3195 boolean_t mctl_present; 3196 mblk_t *first_mp; 3197 3198 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3199 3200 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3201 if (mctl_present) 3202 freeb(first_mp); 3203 return; 3204 } 3205 3206 bzero(&icmph, sizeof (icmph_t)); 3207 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3208 icmph.icmph_pp_ptr = ptr; 3209 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3210 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3211 ipst); 3212 } 3213 3214 /* 3215 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3216 * the ICMP header pointed to by "stuff". (May be called as writer.) 3217 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3218 * an icmp error packet can be sent. 3219 * Assigns an appropriate source address to the packet. If ipha_dst is 3220 * one of our addresses use it for source. Otherwise pick a source based 3221 * on a route lookup back to ipha_src. 3222 * Note that ipha_src must be set here since the 3223 * packet is likely to arrive on an ill queue in ip_wput() which will 3224 * not set a source address. 3225 */ 3226 static void 3227 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3228 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3229 { 3230 ipaddr_t dst; 3231 icmph_t *icmph; 3232 ipha_t *ipha; 3233 uint_t len_needed; 3234 size_t msg_len; 3235 mblk_t *mp1; 3236 ipaddr_t src; 3237 ire_t *ire; 3238 mblk_t *ipsec_mp; 3239 ipsec_out_t *io = NULL; 3240 3241 if (mctl_present) { 3242 /* 3243 * If it is : 3244 * 3245 * 1) a IPSEC_OUT, then this is caused by outbound 3246 * datagram originating on this host. IPsec processing 3247 * may or may not have been done. Refer to comments above 3248 * icmp_inbound_error_fanout for details. 3249 * 3250 * 2) a IPSEC_IN if we are generating a icmp_message 3251 * for an incoming datagram destined for us i.e called 3252 * from ip_fanout_send_icmp. 3253 */ 3254 ipsec_info_t *in; 3255 ipsec_mp = mp; 3256 mp = ipsec_mp->b_cont; 3257 3258 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3259 ipha = (ipha_t *)mp->b_rptr; 3260 3261 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3262 in->ipsec_info_type == IPSEC_IN); 3263 3264 if (in->ipsec_info_type == IPSEC_IN) { 3265 /* 3266 * Convert the IPSEC_IN to IPSEC_OUT. 3267 */ 3268 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL, zoneid)) { 3269 BUMP_MIB(&ipst->ips_ip_mib, 3270 ipIfStatsOutDiscards); 3271 return; 3272 } 3273 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3274 } else { 3275 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3276 io = (ipsec_out_t *)in; 3277 /* 3278 * Clear out ipsec_out_proc_begin, so we do a fresh 3279 * ire lookup. 3280 */ 3281 io->ipsec_out_proc_begin = B_FALSE; 3282 } 3283 ASSERT(zoneid != ALL_ZONES); 3284 /* 3285 * The IPSEC_IN (now an IPSEC_OUT) didn't have its zoneid 3286 * initialized. We need to do that now. 3287 */ 3288 io->ipsec_out_zoneid = zoneid; 3289 } else { 3290 /* 3291 * This is in clear. The icmp message we are building 3292 * here should go out in clear. 3293 * 3294 * Pardon the convolution of it all, but it's easier to 3295 * allocate a "use cleartext" IPSEC_IN message and convert 3296 * it than it is to allocate a new one. 3297 */ 3298 ipsec_in_t *ii; 3299 ASSERT(DB_TYPE(mp) == M_DATA); 3300 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3301 if (ipsec_mp == NULL) { 3302 freemsg(mp); 3303 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3304 return; 3305 } 3306 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3307 3308 /* This is not a secure packet */ 3309 ii->ipsec_in_secure = B_FALSE; 3310 ipsec_mp->b_cont = mp; 3311 ipha = (ipha_t *)mp->b_rptr; 3312 /* 3313 * Convert the IPSEC_IN to IPSEC_OUT. 3314 */ 3315 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL, zoneid)) { 3316 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3317 return; 3318 } 3319 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3320 } 3321 3322 /* Remember our eventual destination */ 3323 dst = ipha->ipha_src; 3324 3325 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3326 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3327 if (ire != NULL && 3328 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3329 src = ipha->ipha_dst; 3330 } else { 3331 if (ire != NULL) 3332 ire_refrele(ire); 3333 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3334 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3335 ipst); 3336 if (ire == NULL) { 3337 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3338 freemsg(ipsec_mp); 3339 return; 3340 } 3341 src = ire->ire_src_addr; 3342 } 3343 3344 if (ire != NULL) 3345 ire_refrele(ire); 3346 3347 /* 3348 * Check if we can send back more then 8 bytes in addition to 3349 * the IP header. We try to send 64 bytes of data and the internal 3350 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3351 */ 3352 len_needed = IPH_HDR_LENGTH(ipha); 3353 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3354 ipha->ipha_protocol == IPPROTO_IPV6) { 3355 3356 if (!pullupmsg(mp, -1)) { 3357 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3358 freemsg(ipsec_mp); 3359 return; 3360 } 3361 ipha = (ipha_t *)mp->b_rptr; 3362 3363 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3364 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3365 len_needed)); 3366 } else { 3367 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3368 3369 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3370 len_needed += ip_hdr_length_v6(mp, ip6h); 3371 } 3372 } 3373 len_needed += ipst->ips_ip_icmp_return; 3374 msg_len = msgdsize(mp); 3375 if (msg_len > len_needed) { 3376 (void) adjmsg(mp, len_needed - msg_len); 3377 msg_len = len_needed; 3378 } 3379 /* Make sure we propagate the cred/label for TX */ 3380 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3381 if (mp1 == NULL) { 3382 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3383 freemsg(ipsec_mp); 3384 return; 3385 } 3386 mp1->b_cont = mp; 3387 mp = mp1; 3388 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3389 ipsec_mp->b_rptr == (uint8_t *)io && 3390 io->ipsec_out_type == IPSEC_OUT); 3391 ipsec_mp->b_cont = mp; 3392 3393 /* 3394 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3395 * node generates be accepted in peace by all on-host destinations. 3396 * If we do NOT assume that all on-host destinations trust 3397 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3398 * (Look for ipsec_out_icmp_loopback). 3399 */ 3400 io->ipsec_out_icmp_loopback = B_TRUE; 3401 3402 ipha = (ipha_t *)mp->b_rptr; 3403 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3404 *ipha = icmp_ipha; 3405 ipha->ipha_src = src; 3406 ipha->ipha_dst = dst; 3407 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3408 msg_len += sizeof (icmp_ipha) + len; 3409 if (msg_len > IP_MAXPACKET) { 3410 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3411 msg_len = IP_MAXPACKET; 3412 } 3413 ipha->ipha_length = htons((uint16_t)msg_len); 3414 icmph = (icmph_t *)&ipha[1]; 3415 bcopy(stuff, icmph, len); 3416 icmph->icmph_checksum = 0; 3417 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3418 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3419 put(q, ipsec_mp); 3420 } 3421 3422 /* 3423 * Determine if an ICMP error packet can be sent given the rate limit. 3424 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3425 * in milliseconds) and a burst size. Burst size number of packets can 3426 * be sent arbitrarely closely spaced. 3427 * The state is tracked using two variables to implement an approximate 3428 * token bucket filter: 3429 * icmp_pkt_err_last - lbolt value when the last burst started 3430 * icmp_pkt_err_sent - number of packets sent in current burst 3431 */ 3432 boolean_t 3433 icmp_err_rate_limit(ip_stack_t *ipst) 3434 { 3435 clock_t now = TICK_TO_MSEC(lbolt); 3436 uint_t refilled; /* Number of packets refilled in tbf since last */ 3437 /* Guard against changes by loading into local variable */ 3438 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3439 3440 if (err_interval == 0) 3441 return (B_FALSE); 3442 3443 if (ipst->ips_icmp_pkt_err_last > now) { 3444 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3445 ipst->ips_icmp_pkt_err_last = 0; 3446 ipst->ips_icmp_pkt_err_sent = 0; 3447 } 3448 /* 3449 * If we are in a burst update the token bucket filter. 3450 * Update the "last" time to be close to "now" but make sure 3451 * we don't loose precision. 3452 */ 3453 if (ipst->ips_icmp_pkt_err_sent != 0) { 3454 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3455 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3456 ipst->ips_icmp_pkt_err_sent = 0; 3457 } else { 3458 ipst->ips_icmp_pkt_err_sent -= refilled; 3459 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3460 } 3461 } 3462 if (ipst->ips_icmp_pkt_err_sent == 0) { 3463 /* Start of new burst */ 3464 ipst->ips_icmp_pkt_err_last = now; 3465 } 3466 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3467 ipst->ips_icmp_pkt_err_sent++; 3468 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3469 ipst->ips_icmp_pkt_err_sent)); 3470 return (B_FALSE); 3471 } 3472 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3473 return (B_TRUE); 3474 } 3475 3476 /* 3477 * Check if it is ok to send an IPv4 ICMP error packet in 3478 * response to the IPv4 packet in mp. 3479 * Free the message and return null if no 3480 * ICMP error packet should be sent. 3481 */ 3482 static mblk_t * 3483 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3484 { 3485 icmph_t *icmph; 3486 ipha_t *ipha; 3487 uint_t len_needed; 3488 ire_t *src_ire; 3489 ire_t *dst_ire; 3490 3491 if (!mp) 3492 return (NULL); 3493 ipha = (ipha_t *)mp->b_rptr; 3494 if (ip_csum_hdr(ipha)) { 3495 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3496 freemsg(mp); 3497 return (NULL); 3498 } 3499 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3500 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3501 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3502 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3503 if (src_ire != NULL || dst_ire != NULL || 3504 CLASSD(ipha->ipha_dst) || 3505 CLASSD(ipha->ipha_src) || 3506 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3507 /* Note: only errors to the fragment with offset 0 */ 3508 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3509 freemsg(mp); 3510 if (src_ire != NULL) 3511 ire_refrele(src_ire); 3512 if (dst_ire != NULL) 3513 ire_refrele(dst_ire); 3514 return (NULL); 3515 } 3516 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3517 /* 3518 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3519 * errors in response to any ICMP errors. 3520 */ 3521 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3522 if (mp->b_wptr - mp->b_rptr < len_needed) { 3523 if (!pullupmsg(mp, len_needed)) { 3524 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3525 freemsg(mp); 3526 return (NULL); 3527 } 3528 ipha = (ipha_t *)mp->b_rptr; 3529 } 3530 icmph = (icmph_t *) 3531 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3532 switch (icmph->icmph_type) { 3533 case ICMP_DEST_UNREACHABLE: 3534 case ICMP_SOURCE_QUENCH: 3535 case ICMP_TIME_EXCEEDED: 3536 case ICMP_PARAM_PROBLEM: 3537 case ICMP_REDIRECT: 3538 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3539 freemsg(mp); 3540 return (NULL); 3541 default: 3542 break; 3543 } 3544 } 3545 /* 3546 * If this is a labeled system, then check to see if we're allowed to 3547 * send a response to this particular sender. If not, then just drop. 3548 */ 3549 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3550 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3551 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3552 freemsg(mp); 3553 return (NULL); 3554 } 3555 if (icmp_err_rate_limit(ipst)) { 3556 /* 3557 * Only send ICMP error packets every so often. 3558 * This should be done on a per port/source basis, 3559 * but for now this will suffice. 3560 */ 3561 freemsg(mp); 3562 return (NULL); 3563 } 3564 return (mp); 3565 } 3566 3567 /* 3568 * Generate an ICMP redirect message. 3569 */ 3570 static void 3571 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3572 { 3573 icmph_t icmph; 3574 3575 /* 3576 * We are called from ip_rput where we could 3577 * not have attached an IPSEC_IN. 3578 */ 3579 ASSERT(mp->b_datap->db_type == M_DATA); 3580 3581 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3582 return; 3583 } 3584 3585 bzero(&icmph, sizeof (icmph_t)); 3586 icmph.icmph_type = ICMP_REDIRECT; 3587 icmph.icmph_code = 1; 3588 icmph.icmph_rd_gateway = gateway; 3589 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3590 /* Redirects sent by router, and router is global zone */ 3591 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3592 } 3593 3594 /* 3595 * Generate an ICMP time exceeded message. 3596 */ 3597 void 3598 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3599 ip_stack_t *ipst) 3600 { 3601 icmph_t icmph; 3602 boolean_t mctl_present; 3603 mblk_t *first_mp; 3604 3605 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3606 3607 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3608 if (mctl_present) 3609 freeb(first_mp); 3610 return; 3611 } 3612 3613 bzero(&icmph, sizeof (icmph_t)); 3614 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3615 icmph.icmph_code = code; 3616 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3617 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3618 ipst); 3619 } 3620 3621 /* 3622 * Generate an ICMP unreachable message. 3623 */ 3624 void 3625 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3626 ip_stack_t *ipst) 3627 { 3628 icmph_t icmph; 3629 mblk_t *first_mp; 3630 boolean_t mctl_present; 3631 3632 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3633 3634 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3635 if (mctl_present) 3636 freeb(first_mp); 3637 return; 3638 } 3639 3640 bzero(&icmph, sizeof (icmph_t)); 3641 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3642 icmph.icmph_code = code; 3643 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3644 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3645 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3646 zoneid, ipst); 3647 } 3648 3649 /* 3650 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3651 * duplicate. As long as someone else holds the address, the interface will 3652 * stay down. When that conflict goes away, the interface is brought back up. 3653 * This is done so that accidental shutdowns of addresses aren't made 3654 * permanent. Your server will recover from a failure. 3655 * 3656 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3657 * user space process (dhcpagent). 3658 * 3659 * Recovery completes if ARP reports that the address is now ours (via 3660 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3661 * 3662 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3663 */ 3664 static void 3665 ipif_dup_recovery(void *arg) 3666 { 3667 ipif_t *ipif = arg; 3668 ill_t *ill = ipif->ipif_ill; 3669 mblk_t *arp_add_mp; 3670 mblk_t *arp_del_mp; 3671 ip_stack_t *ipst = ill->ill_ipst; 3672 3673 ipif->ipif_recovery_id = 0; 3674 3675 /* 3676 * No lock needed for moving or condemned check, as this is just an 3677 * optimization. 3678 */ 3679 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3680 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3681 (ipif->ipif_state_flags & (IPIF_CONDEMNED))) { 3682 /* No reason to try to bring this address back. */ 3683 return; 3684 } 3685 3686 /* ACE_F_UNVERIFIED restarts DAD */ 3687 if ((arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) 3688 goto alloc_fail; 3689 3690 if (ipif->ipif_arp_del_mp == NULL) { 3691 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3692 goto alloc_fail; 3693 ipif->ipif_arp_del_mp = arp_del_mp; 3694 } 3695 3696 putnext(ill->ill_rq, arp_add_mp); 3697 return; 3698 3699 alloc_fail: 3700 /* 3701 * On allocation failure, just restart the timer. Note that the ipif 3702 * is down here, so no other thread could be trying to start a recovery 3703 * timer. The ill_lock protects the condemned flag and the recovery 3704 * timer ID. 3705 */ 3706 freemsg(arp_add_mp); 3707 mutex_enter(&ill->ill_lock); 3708 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3709 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3710 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3711 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3712 } 3713 mutex_exit(&ill->ill_lock); 3714 } 3715 3716 /* 3717 * This is for exclusive changes due to ARP. Either tear down an interface due 3718 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3719 */ 3720 /* ARGSUSED */ 3721 static void 3722 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3723 { 3724 ill_t *ill = rq->q_ptr; 3725 arh_t *arh; 3726 ipaddr_t src; 3727 ipif_t *ipif; 3728 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3729 char hbuf[MAC_STR_LEN]; 3730 char sbuf[INET_ADDRSTRLEN]; 3731 const char *failtype; 3732 boolean_t bring_up; 3733 ip_stack_t *ipst = ill->ill_ipst; 3734 3735 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3736 case AR_CN_READY: 3737 failtype = NULL; 3738 bring_up = B_TRUE; 3739 break; 3740 case AR_CN_FAILED: 3741 failtype = "in use"; 3742 bring_up = B_FALSE; 3743 break; 3744 default: 3745 failtype = "claimed"; 3746 bring_up = B_FALSE; 3747 break; 3748 } 3749 3750 arh = (arh_t *)mp->b_cont->b_rptr; 3751 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3752 3753 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3754 sizeof (hbuf)); 3755 (void) ip_dot_addr(src, sbuf); 3756 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3757 3758 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3759 ipif->ipif_lcl_addr != src) { 3760 continue; 3761 } 3762 3763 /* 3764 * If we failed on a recovery probe, then restart the timer to 3765 * try again later. 3766 */ 3767 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3768 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3769 ill->ill_net_type == IRE_IF_RESOLVER && 3770 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3771 ipst->ips_ip_dup_recovery > 0 && 3772 ipif->ipif_recovery_id == 0) { 3773 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3774 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3775 continue; 3776 } 3777 3778 /* 3779 * If what we're trying to do has already been done, then do 3780 * nothing. 3781 */ 3782 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3783 continue; 3784 3785 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3786 3787 if (failtype == NULL) { 3788 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3789 ibuf); 3790 } else { 3791 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3792 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3793 } 3794 3795 if (bring_up) { 3796 ASSERT(ill->ill_dl_up); 3797 /* 3798 * Free up the ARP delete message so we can allocate 3799 * a fresh one through the normal path. 3800 */ 3801 freemsg(ipif->ipif_arp_del_mp); 3802 ipif->ipif_arp_del_mp = NULL; 3803 if (ipif_resolver_up(ipif, Res_act_initial) != 3804 EINPROGRESS) { 3805 ipif->ipif_addr_ready = 1; 3806 (void) ipif_up_done(ipif); 3807 ASSERT(ill->ill_move_ipif == NULL); 3808 } 3809 continue; 3810 } 3811 3812 mutex_enter(&ill->ill_lock); 3813 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3814 ipif->ipif_flags |= IPIF_DUPLICATE; 3815 ill->ill_ipif_dup_count++; 3816 mutex_exit(&ill->ill_lock); 3817 /* 3818 * Already exclusive on the ill; no need to handle deferred 3819 * processing here. 3820 */ 3821 (void) ipif_down(ipif, NULL, NULL); 3822 ipif_down_tail(ipif); 3823 mutex_enter(&ill->ill_lock); 3824 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3825 ill->ill_net_type == IRE_IF_RESOLVER && 3826 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3827 ipst->ips_ip_dup_recovery > 0) { 3828 ASSERT(ipif->ipif_recovery_id == 0); 3829 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3830 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3831 } 3832 mutex_exit(&ill->ill_lock); 3833 } 3834 freemsg(mp); 3835 } 3836 3837 /* ARGSUSED */ 3838 static void 3839 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3840 { 3841 ill_t *ill = rq->q_ptr; 3842 arh_t *arh; 3843 ipaddr_t src; 3844 ipif_t *ipif; 3845 3846 arh = (arh_t *)mp->b_cont->b_rptr; 3847 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3848 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3849 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3850 (void) ipif_resolver_up(ipif, Res_act_defend); 3851 } 3852 freemsg(mp); 3853 } 3854 3855 /* 3856 * News from ARP. ARP sends notification of interesting events down 3857 * to its clients using M_CTL messages with the interesting ARP packet 3858 * attached via b_cont. 3859 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3860 * queue as opposed to ARP sending the message to all the clients, i.e. all 3861 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3862 * table if a cache IRE is found to delete all the entries for the address in 3863 * the packet. 3864 */ 3865 static void 3866 ip_arp_news(queue_t *q, mblk_t *mp) 3867 { 3868 arcn_t *arcn; 3869 arh_t *arh; 3870 ire_t *ire = NULL; 3871 char hbuf[MAC_STR_LEN]; 3872 char sbuf[INET_ADDRSTRLEN]; 3873 ipaddr_t src; 3874 in6_addr_t v6src; 3875 boolean_t isv6 = B_FALSE; 3876 ipif_t *ipif; 3877 ill_t *ill; 3878 ip_stack_t *ipst; 3879 3880 if (CONN_Q(q)) { 3881 conn_t *connp = Q_TO_CONN(q); 3882 3883 ipst = connp->conn_netstack->netstack_ip; 3884 } else { 3885 ill_t *ill = (ill_t *)q->q_ptr; 3886 3887 ipst = ill->ill_ipst; 3888 } 3889 3890 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3891 if (q->q_next) { 3892 putnext(q, mp); 3893 } else 3894 freemsg(mp); 3895 return; 3896 } 3897 arh = (arh_t *)mp->b_cont->b_rptr; 3898 /* Is it one we are interested in? */ 3899 if (BE16_TO_U16(arh->arh_proto) == ETHERTYPE_IPV6) { 3900 isv6 = B_TRUE; 3901 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3902 IPV6_ADDR_LEN); 3903 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3904 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3905 IP_ADDR_LEN); 3906 } else { 3907 freemsg(mp); 3908 return; 3909 } 3910 3911 ill = q->q_ptr; 3912 3913 arcn = (arcn_t *)mp->b_rptr; 3914 switch (arcn->arcn_code) { 3915 case AR_CN_BOGON: 3916 /* 3917 * Someone is sending ARP packets with a source protocol 3918 * address that we have published and for which we believe our 3919 * entry is authoritative and (when ill_arp_extend is set) 3920 * verified to be unique on the network. 3921 * 3922 * The ARP module internally handles the cases where the sender 3923 * is just probing (for DAD) and where the hardware address of 3924 * a non-authoritative entry has changed. Thus, these are the 3925 * real conflicts, and we have to do resolution. 3926 * 3927 * We back away quickly from the address if it's from DHCP or 3928 * otherwise temporary and hasn't been used recently (or at 3929 * all). We'd like to include "deprecated" addresses here as 3930 * well (as there's no real reason to defend something we're 3931 * discarding), but IPMP "reuses" this flag to mean something 3932 * other than the standard meaning. 3933 * 3934 * If the ARP module above is not extended (meaning that it 3935 * doesn't know how to defend the address), then we just log 3936 * the problem as we always did and continue on. It's not 3937 * right, but there's little else we can do, and those old ATM 3938 * users are going away anyway. 3939 */ 3940 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3941 hbuf, sizeof (hbuf)); 3942 (void) ip_dot_addr(src, sbuf); 3943 if (isv6) { 3944 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3945 ipst); 3946 } else { 3947 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3948 } 3949 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3950 uint32_t now; 3951 uint32_t maxage; 3952 clock_t lused; 3953 uint_t maxdefense; 3954 uint_t defs; 3955 3956 /* 3957 * First, figure out if this address hasn't been used 3958 * in a while. If it hasn't, then it's a better 3959 * candidate for abandoning. 3960 */ 3961 ipif = ire->ire_ipif; 3962 ASSERT(ipif != NULL); 3963 now = gethrestime_sec(); 3964 maxage = now - ire->ire_create_time; 3965 if (maxage > ipst->ips_ip_max_temp_idle) 3966 maxage = ipst->ips_ip_max_temp_idle; 3967 lused = drv_hztousec(ddi_get_lbolt() - 3968 ire->ire_last_used_time) / MICROSEC + 1; 3969 if (lused >= maxage && (ipif->ipif_flags & 3970 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 3971 maxdefense = ipst->ips_ip_max_temp_defend; 3972 else 3973 maxdefense = ipst->ips_ip_max_defend; 3974 3975 /* 3976 * Now figure out how many times we've defended 3977 * ourselves. Ignore defenses that happened long in 3978 * the past. 3979 */ 3980 mutex_enter(&ire->ire_lock); 3981 if ((defs = ire->ire_defense_count) > 0 && 3982 now - ire->ire_defense_time > 3983 ipst->ips_ip_defend_interval) { 3984 ire->ire_defense_count = defs = 0; 3985 } 3986 ire->ire_defense_count++; 3987 ire->ire_defense_time = now; 3988 mutex_exit(&ire->ire_lock); 3989 ill_refhold(ill); 3990 ire_refrele(ire); 3991 3992 /* 3993 * If we've defended ourselves too many times already, 3994 * then give up and tear down the interface(s) using 3995 * this address. Otherwise, defend by sending out a 3996 * gratuitous ARP. 3997 */ 3998 if (defs >= maxdefense && ill->ill_arp_extend) { 3999 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4000 B_FALSE); 4001 } else { 4002 cmn_err(CE_WARN, 4003 "node %s is using our IP address %s on %s", 4004 hbuf, sbuf, ill->ill_name); 4005 /* 4006 * If this is an old (ATM) ARP module, then 4007 * don't try to defend the address. Remain 4008 * compatible with the old behavior. Defend 4009 * only with new ARP. 4010 */ 4011 if (ill->ill_arp_extend) { 4012 qwriter_ip(ill, q, mp, ip_arp_defend, 4013 NEW_OP, B_FALSE); 4014 } else { 4015 ill_refrele(ill); 4016 } 4017 } 4018 return; 4019 } 4020 cmn_err(CE_WARN, 4021 "proxy ARP problem? Node '%s' is using %s on %s", 4022 hbuf, sbuf, ill->ill_name); 4023 if (ire != NULL) 4024 ire_refrele(ire); 4025 break; 4026 case AR_CN_ANNOUNCE: 4027 if (isv6) { 4028 /* 4029 * For XRESOLV interfaces. 4030 * Delete the IRE cache entry and NCE for this 4031 * v6 address 4032 */ 4033 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4034 /* 4035 * If v6src is a non-zero, it's a router address 4036 * as below. Do the same sort of thing to clean 4037 * out off-net IRE_CACHE entries that go through 4038 * the router. 4039 */ 4040 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4041 ire_walk_v6(ire_delete_cache_gw_v6, 4042 (char *)&v6src, ALL_ZONES, ipst); 4043 } 4044 } else { 4045 nce_hw_map_t hwm; 4046 4047 /* 4048 * ARP gives us a copy of any packet where it thinks 4049 * the address has changed, so that we can update our 4050 * caches. We're responsible for caching known answers 4051 * in the current design. We check whether the 4052 * hardware address really has changed in all of our 4053 * entries that have cached this mapping, and if so, we 4054 * blow them away. This way we will immediately pick 4055 * up the rare case of a host changing hardware 4056 * address. 4057 */ 4058 if (src == 0) 4059 break; 4060 hwm.hwm_addr = src; 4061 hwm.hwm_hwlen = arh->arh_hlen; 4062 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4063 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4064 ndp_walk_common(ipst->ips_ndp4, NULL, 4065 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4066 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4067 } 4068 break; 4069 case AR_CN_READY: 4070 /* No external v6 resolver has a contract to use this */ 4071 if (isv6) 4072 break; 4073 /* If the link is down, we'll retry this later */ 4074 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4075 break; 4076 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4077 NULL, NULL, ipst); 4078 if (ipif != NULL) { 4079 /* 4080 * If this is a duplicate recovery, then we now need to 4081 * go exclusive to bring this thing back up. 4082 */ 4083 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4084 IPIF_DUPLICATE) { 4085 ipif_refrele(ipif); 4086 ill_refhold(ill); 4087 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4088 B_FALSE); 4089 return; 4090 } 4091 /* 4092 * If this is the first notice that this address is 4093 * ready, then let the user know now. 4094 */ 4095 if ((ipif->ipif_flags & IPIF_UP) && 4096 !ipif->ipif_addr_ready) { 4097 ipif_mask_reply(ipif); 4098 ipif_up_notify(ipif); 4099 } 4100 ipif->ipif_addr_ready = 1; 4101 ipif_refrele(ipif); 4102 } 4103 ire = ire_cache_lookup(src, ALL_ZONES, msg_getlabel(mp), ipst); 4104 if (ire != NULL) { 4105 ire->ire_defense_count = 0; 4106 ire_refrele(ire); 4107 } 4108 break; 4109 case AR_CN_FAILED: 4110 /* No external v6 resolver has a contract to use this */ 4111 if (isv6) 4112 break; 4113 if (!ill->ill_arp_extend) { 4114 (void) mac_colon_addr((uint8_t *)(arh + 1), 4115 arh->arh_hlen, hbuf, sizeof (hbuf)); 4116 (void) ip_dot_addr(src, sbuf); 4117 4118 cmn_err(CE_WARN, 4119 "node %s is using our IP address %s on %s", 4120 hbuf, sbuf, ill->ill_name); 4121 break; 4122 } 4123 ill_refhold(ill); 4124 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4125 return; 4126 } 4127 freemsg(mp); 4128 } 4129 4130 /* 4131 * Create a mblk suitable for carrying the interface index and/or source link 4132 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4133 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4134 * application. 4135 */ 4136 mblk_t * 4137 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4138 ip_stack_t *ipst) 4139 { 4140 mblk_t *mp; 4141 ip_pktinfo_t *pinfo; 4142 ipha_t *ipha; 4143 struct ether_header *pether; 4144 boolean_t ipmp_ill_held = B_FALSE; 4145 4146 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4147 if (mp == NULL) { 4148 ip1dbg(("ip_add_info: allocation failure.\n")); 4149 return (data_mp); 4150 } 4151 4152 ipha = (ipha_t *)data_mp->b_rptr; 4153 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4154 bzero(pinfo, sizeof (ip_pktinfo_t)); 4155 pinfo->ip_pkt_flags = (uchar_t)flags; 4156 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4157 4158 pether = (struct ether_header *)((char *)ipha 4159 - sizeof (struct ether_header)); 4160 4161 /* 4162 * Make sure the interface is an ethernet type, since this option 4163 * is currently supported only on this type of interface. Also make 4164 * sure we are pointing correctly above db_base. 4165 */ 4166 if ((flags & IPF_RECVSLLA) && 4167 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4168 (ill->ill_type == IFT_ETHER) && 4169 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4170 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4171 bcopy(pether->ether_shost.ether_addr_octet, 4172 pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4173 } else { 4174 /* 4175 * Clear the bit. Indicate to upper layer that IP is not 4176 * sending this ancillary info. 4177 */ 4178 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4179 } 4180 4181 /* 4182 * If `ill' is in an IPMP group, use the IPMP ill to determine 4183 * IPF_RECVIF and IPF_RECVADDR. (This currently assumes that 4184 * IPF_RECVADDR support on test addresses is not needed.) 4185 * 4186 * Note that `ill' may already be an IPMP ill if e.g. we're 4187 * processing a packet looped back to an IPMP data address 4188 * (since those IRE_LOCALs are tied to IPMP ills). 4189 */ 4190 if (IS_UNDER_IPMP(ill)) { 4191 if ((ill = ipmp_ill_hold_ipmp_ill(ill)) == NULL) { 4192 ip1dbg(("ip_add_info: cannot hold IPMP ill.\n")); 4193 freemsg(mp); 4194 return (data_mp); 4195 } 4196 ipmp_ill_held = B_TRUE; 4197 } 4198 4199 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4200 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4201 if (flags & IPF_RECVADDR) { 4202 ipif_t *ipif; 4203 ire_t *ire; 4204 4205 /* 4206 * Only valid for V4 4207 */ 4208 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4209 (IPV4_VERSION << 4)); 4210 4211 ipif = ipif_get_next_ipif(NULL, ill); 4212 if (ipif != NULL) { 4213 /* 4214 * Since a decision has already been made to deliver the 4215 * packet, there is no need to test for SECATTR and 4216 * ZONEONLY. 4217 * When a multicast packet is transmitted 4218 * a cache entry is created for the multicast address. 4219 * When delivering a copy of the packet or when new 4220 * packets are received we do not want to match on the 4221 * cached entry so explicitly match on 4222 * IRE_LOCAL and IRE_LOOPBACK 4223 */ 4224 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4225 IRE_LOCAL | IRE_LOOPBACK, 4226 ipif, zoneid, NULL, 4227 MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 4228 if (ire == NULL) { 4229 /* 4230 * packet must have come on a different 4231 * interface. 4232 * Since a decision has already been made to 4233 * deliver the packet, there is no need to test 4234 * for SECATTR and ZONEONLY. 4235 * Only match on local and broadcast ire's. 4236 * See detailed comment above. 4237 */ 4238 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4239 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4240 NULL, MATCH_IRE_TYPE, ipst); 4241 } 4242 4243 if (ire == NULL) { 4244 /* 4245 * This is either a multicast packet or 4246 * the address has been removed since 4247 * the packet was received. 4248 * Return INADDR_ANY so that normal source 4249 * selection occurs for the response. 4250 */ 4251 4252 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4253 } else { 4254 pinfo->ip_pkt_match_addr.s_addr = 4255 ire->ire_src_addr; 4256 ire_refrele(ire); 4257 } 4258 ipif_refrele(ipif); 4259 } else { 4260 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4261 } 4262 } 4263 4264 if (ipmp_ill_held) 4265 ill_refrele(ill); 4266 4267 mp->b_datap->db_type = M_CTL; 4268 mp->b_wptr += sizeof (ip_pktinfo_t); 4269 mp->b_cont = data_mp; 4270 4271 return (mp); 4272 } 4273 4274 /* 4275 * Used to determine the most accurate cred_t to use for TX. 4276 * First priority is SCM_UCRED having set the label in the message, 4277 * which is used for MLP on UDP. Second priority is the open credentials 4278 * with the peer's label (aka conn_effective_cred), which is needed for 4279 * MLP on TCP/SCTP and for MAC-Exempt. Last priority is the open credentials. 4280 */ 4281 cred_t * 4282 ip_best_cred(mblk_t *mp, conn_t *connp, pid_t *pidp) 4283 { 4284 cred_t *cr; 4285 4286 cr = msg_getcred(mp, pidp); 4287 if (cr != NULL && crgetlabel(cr) != NULL) 4288 return (cr); 4289 *pidp = NOPID; 4290 return (CONN_CRED(connp)); 4291 } 4292 4293 /* 4294 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4295 * part of the bind request. 4296 */ 4297 4298 boolean_t 4299 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4300 { 4301 ipsec_in_t *ii; 4302 4303 ASSERT(policy_mp != NULL); 4304 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4305 4306 ii = (ipsec_in_t *)policy_mp->b_rptr; 4307 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4308 4309 connp->conn_policy = ii->ipsec_in_policy; 4310 ii->ipsec_in_policy = NULL; 4311 4312 if (ii->ipsec_in_action != NULL) { 4313 if (connp->conn_latch == NULL) { 4314 connp->conn_latch = iplatch_create(); 4315 if (connp->conn_latch == NULL) 4316 return (B_FALSE); 4317 } 4318 ipsec_latch_inbound(connp->conn_latch, ii); 4319 } 4320 return (B_TRUE); 4321 } 4322 4323 /* 4324 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4325 * and to arrange for power-fanout assist. The ULP is identified by 4326 * adding a single byte at the end of the original bind message. 4327 * A ULP other than UDP or TCP that wishes to be recognized passes 4328 * down a bind with a zero length address. 4329 * 4330 * The binding works as follows: 4331 * - A zero byte address means just bind to the protocol. 4332 * - A four byte address is treated as a request to validate 4333 * that the address is a valid local address, appropriate for 4334 * an application to bind to. This does not affect any fanout 4335 * information in IP. 4336 * - A sizeof sin_t byte address is used to bind to only the local address 4337 * and port. 4338 * - A sizeof ipa_conn_t byte address contains complete fanout information 4339 * consisting of local and remote addresses and ports. In 4340 * this case, the addresses are both validated as appropriate 4341 * for this operation, and, if so, the information is retained 4342 * for use in the inbound fanout. 4343 * 4344 * The ULP (except in the zero-length bind) can append an 4345 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4346 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4347 * a copy of the source or destination IRE (source for local bind; 4348 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4349 * policy information contained should be copied on to the conn. 4350 * 4351 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4352 */ 4353 mblk_t * 4354 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4355 { 4356 ssize_t len; 4357 struct T_bind_req *tbr; 4358 sin_t *sin; 4359 ipa_conn_t *ac; 4360 uchar_t *ucp; 4361 int error = 0; 4362 int protocol; 4363 ipa_conn_x_t *acx; 4364 cred_t *cr; 4365 4366 /* 4367 * All Solaris components should pass a db_credp 4368 * for this TPI message, hence we ASSERT. 4369 * But in case there is some other M_PROTO that looks 4370 * like a TPI message sent by some other kernel 4371 * component, we check and return an error. 4372 */ 4373 cr = msg_getcred(mp, NULL); 4374 ASSERT(cr != NULL); 4375 if (cr == NULL) { 4376 error = EINVAL; 4377 goto bad_addr; 4378 } 4379 4380 ASSERT(!connp->conn_af_isv6); 4381 connp->conn_pkt_isv6 = B_FALSE; 4382 4383 len = MBLKL(mp); 4384 if (len < (sizeof (*tbr) + 1)) { 4385 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4386 "ip_bind: bogus msg, len %ld", len); 4387 /* XXX: Need to return something better */ 4388 goto bad_addr; 4389 } 4390 /* Back up and extract the protocol identifier. */ 4391 mp->b_wptr--; 4392 protocol = *mp->b_wptr & 0xFF; 4393 tbr = (struct T_bind_req *)mp->b_rptr; 4394 /* Reset the message type in preparation for shipping it back. */ 4395 DB_TYPE(mp) = M_PCPROTO; 4396 4397 connp->conn_ulp = (uint8_t)protocol; 4398 4399 /* 4400 * Check for a zero length address. This is from a protocol that 4401 * wants to register to receive all packets of its type. 4402 */ 4403 if (tbr->ADDR_length == 0) { 4404 /* 4405 * These protocols are now intercepted in ip_bind_v6(). 4406 * Reject protocol-level binds here for now. 4407 * 4408 * For SCTP raw socket, ICMP sends down a bind with sin_t 4409 * so that the protocol type cannot be SCTP. 4410 */ 4411 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4412 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4413 goto bad_addr; 4414 } 4415 4416 /* 4417 * 4418 * The udp module never sends down a zero-length address, 4419 * and allowing this on a labeled system will break MLP 4420 * functionality. 4421 */ 4422 if (is_system_labeled() && protocol == IPPROTO_UDP) 4423 goto bad_addr; 4424 4425 if (connp->conn_mac_mode != CONN_MAC_DEFAULT) 4426 goto bad_addr; 4427 4428 /* No hash here really. The table is big enough. */ 4429 connp->conn_srcv6 = ipv6_all_zeros; 4430 4431 ipcl_proto_insert(connp, protocol); 4432 4433 tbr->PRIM_type = T_BIND_ACK; 4434 return (mp); 4435 } 4436 4437 /* Extract the address pointer from the message. */ 4438 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4439 tbr->ADDR_length); 4440 if (ucp == NULL) { 4441 ip1dbg(("ip_bind: no address\n")); 4442 goto bad_addr; 4443 } 4444 if (!OK_32PTR(ucp)) { 4445 ip1dbg(("ip_bind: unaligned address\n")); 4446 goto bad_addr; 4447 } 4448 4449 switch (tbr->ADDR_length) { 4450 default: 4451 ip1dbg(("ip_bind: bad address length %d\n", 4452 (int)tbr->ADDR_length)); 4453 goto bad_addr; 4454 4455 case IP_ADDR_LEN: 4456 /* Verification of local address only */ 4457 error = ip_bind_laddr_v4(connp, &mp->b_cont, protocol, 4458 *(ipaddr_t *)ucp, 0, B_FALSE); 4459 break; 4460 4461 case sizeof (sin_t): 4462 sin = (sin_t *)ucp; 4463 error = ip_bind_laddr_v4(connp, &mp->b_cont, protocol, 4464 sin->sin_addr.s_addr, sin->sin_port, B_TRUE); 4465 break; 4466 4467 case sizeof (ipa_conn_t): 4468 ac = (ipa_conn_t *)ucp; 4469 /* For raw socket, the local port is not set. */ 4470 if (ac->ac_lport == 0) 4471 ac->ac_lport = connp->conn_lport; 4472 /* Always verify destination reachability. */ 4473 error = ip_bind_connected_v4(connp, &mp->b_cont, protocol, 4474 &ac->ac_laddr, ac->ac_lport, ac->ac_faddr, ac->ac_fport, 4475 B_TRUE, B_TRUE, cr); 4476 break; 4477 4478 case sizeof (ipa_conn_x_t): 4479 acx = (ipa_conn_x_t *)ucp; 4480 /* 4481 * Whether or not to verify destination reachability depends 4482 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4483 */ 4484 error = ip_bind_connected_v4(connp, &mp->b_cont, protocol, 4485 &acx->acx_conn.ac_laddr, acx->acx_conn.ac_lport, 4486 acx->acx_conn.ac_faddr, acx->acx_conn.ac_fport, 4487 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0, cr); 4488 break; 4489 } 4490 ASSERT(error != EINPROGRESS); 4491 if (error != 0) 4492 goto bad_addr; 4493 4494 /* Send it home. */ 4495 mp->b_datap->db_type = M_PCPROTO; 4496 tbr->PRIM_type = T_BIND_ACK; 4497 return (mp); 4498 4499 bad_addr: 4500 /* 4501 * If error = -1 then we generate a TBADADDR - otherwise error is 4502 * a unix errno. 4503 */ 4504 if (error > 0) 4505 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4506 else 4507 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4508 return (mp); 4509 } 4510 4511 /* 4512 * Here address is verified to be a valid local address. 4513 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4514 * address is also considered a valid local address. 4515 * In the case of a broadcast/multicast address, however, the 4516 * upper protocol is expected to reset the src address 4517 * to 0 if it sees a IRE_BROADCAST type returned so that 4518 * no packets are emitted with broadcast/multicast address as 4519 * source address (that violates hosts requirements RFC 1122) 4520 * The addresses valid for bind are: 4521 * (1) - INADDR_ANY (0) 4522 * (2) - IP address of an UP interface 4523 * (3) - IP address of a DOWN interface 4524 * (4) - valid local IP broadcast addresses. In this case 4525 * the conn will only receive packets destined to 4526 * the specified broadcast address. 4527 * (5) - a multicast address. In this case 4528 * the conn will only receive packets destined to 4529 * the specified multicast address. Note: the 4530 * application still has to issue an 4531 * IP_ADD_MEMBERSHIP socket option. 4532 * 4533 * On error, return -1 for TBADADDR otherwise pass the 4534 * errno with TSYSERR reply. 4535 * 4536 * In all the above cases, the bound address must be valid in the current zone. 4537 * When the address is loopback, multicast or broadcast, there might be many 4538 * matching IREs so bind has to look up based on the zone. 4539 * 4540 * Note: lport is in network byte order. 4541 * 4542 */ 4543 int 4544 ip_bind_laddr_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4545 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4546 { 4547 int error = 0; 4548 ire_t *src_ire; 4549 zoneid_t zoneid; 4550 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4551 mblk_t *mp = NULL; 4552 boolean_t ire_requested = B_FALSE; 4553 boolean_t ipsec_policy_set = B_FALSE; 4554 4555 if (mpp) 4556 mp = *mpp; 4557 4558 if (mp != NULL) { 4559 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4560 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4561 } 4562 4563 /* 4564 * If it was previously connected, conn_fully_bound would have 4565 * been set. 4566 */ 4567 connp->conn_fully_bound = B_FALSE; 4568 4569 src_ire = NULL; 4570 4571 zoneid = IPCL_ZONEID(connp); 4572 4573 if (src_addr) { 4574 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4575 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4576 /* 4577 * If an address other than 0.0.0.0 is requested, 4578 * we verify that it is a valid address for bind 4579 * Note: Following code is in if-else-if form for 4580 * readability compared to a condition check. 4581 */ 4582 /* LINTED - statement has no consequence */ 4583 if (IRE_IS_LOCAL(src_ire)) { 4584 /* 4585 * (2) Bind to address of local UP interface 4586 */ 4587 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4588 /* 4589 * (4) Bind to broadcast address 4590 * Note: permitted only from transports that 4591 * request IRE 4592 */ 4593 if (!ire_requested) 4594 error = EADDRNOTAVAIL; 4595 } else { 4596 /* 4597 * (3) Bind to address of local DOWN interface 4598 * (ipif_lookup_addr() looks up all interfaces 4599 * but we do not get here for UP interfaces 4600 * - case (2) above) 4601 */ 4602 /* LINTED - statement has no consequent */ 4603 if (ip_addr_exists(src_addr, zoneid, ipst)) { 4604 /* The address exists */ 4605 } else if (CLASSD(src_addr)) { 4606 error = 0; 4607 if (src_ire != NULL) 4608 ire_refrele(src_ire); 4609 /* 4610 * (5) bind to multicast address. 4611 * Fake out the IRE returned to upper 4612 * layer to be a broadcast IRE. 4613 */ 4614 src_ire = ire_ctable_lookup( 4615 INADDR_BROADCAST, INADDR_ANY, 4616 IRE_BROADCAST, NULL, zoneid, NULL, 4617 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4618 ipst); 4619 if (src_ire == NULL || !ire_requested) 4620 error = EADDRNOTAVAIL; 4621 } else { 4622 /* 4623 * Not a valid address for bind 4624 */ 4625 error = EADDRNOTAVAIL; 4626 } 4627 } 4628 if (error) { 4629 /* Red Alert! Attempting to be a bogon! */ 4630 ip1dbg(("ip_bind_laddr_v4: bad src address 0x%x\n", 4631 ntohl(src_addr))); 4632 goto bad_addr; 4633 } 4634 } 4635 4636 /* 4637 * Allow setting new policies. For example, disconnects come 4638 * down as ipa_t bind. As we would have set conn_policy_cached 4639 * to B_TRUE before, we should set it to B_FALSE, so that policy 4640 * can change after the disconnect. 4641 */ 4642 connp->conn_policy_cached = B_FALSE; 4643 4644 /* 4645 * If not fanout_insert this was just an address verification 4646 */ 4647 if (fanout_insert) { 4648 /* 4649 * The addresses have been verified. Time to insert in 4650 * the correct fanout list. 4651 */ 4652 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4653 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4654 connp->conn_lport = lport; 4655 connp->conn_fport = 0; 4656 /* 4657 * Do we need to add a check to reject Multicast packets 4658 */ 4659 error = ipcl_bind_insert(connp, protocol, src_addr, lport); 4660 } 4661 4662 if (error == 0) { 4663 if (ire_requested) { 4664 if (!ip_bind_get_ire_v4(mpp, src_ire, NULL, ipst)) { 4665 error = -1; 4666 /* Falls through to bad_addr */ 4667 } 4668 } else if (ipsec_policy_set) { 4669 if (!ip_bind_ipsec_policy_set(connp, mp)) { 4670 error = -1; 4671 /* Falls through to bad_addr */ 4672 } 4673 } 4674 } 4675 bad_addr: 4676 if (error != 0) { 4677 if (connp->conn_anon_port) { 4678 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4679 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4680 B_FALSE); 4681 } 4682 connp->conn_mlp_type = mlptSingle; 4683 } 4684 if (src_ire != NULL) 4685 IRE_REFRELE(src_ire); 4686 return (error); 4687 } 4688 4689 int 4690 ip_proto_bind_laddr_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 4691 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4692 { 4693 int error; 4694 4695 ASSERT(!connp->conn_af_isv6); 4696 connp->conn_pkt_isv6 = B_FALSE; 4697 connp->conn_ulp = protocol; 4698 4699 error = ip_bind_laddr_v4(connp, ire_mpp, protocol, src_addr, lport, 4700 fanout_insert); 4701 if (error < 0) 4702 error = -TBADADDR; 4703 return (error); 4704 } 4705 4706 /* 4707 * Verify that both the source and destination addresses 4708 * are valid. If verify_dst is false, then the destination address may be 4709 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4710 * destination reachability, while tunnels do not. 4711 * Note that we allow connect to broadcast and multicast 4712 * addresses when ire_requested is set. Thus the ULP 4713 * has to check for IRE_BROADCAST and multicast. 4714 * 4715 * Returns zero if ok. 4716 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4717 * (for use with TSYSERR reply). 4718 * 4719 * Note: lport and fport are in network byte order. 4720 */ 4721 int 4722 ip_bind_connected_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4723 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4724 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 4725 { 4726 4727 ire_t *src_ire; 4728 ire_t *dst_ire; 4729 int error = 0; 4730 ire_t *sire = NULL; 4731 ire_t *md_dst_ire = NULL; 4732 ire_t *lso_dst_ire = NULL; 4733 ill_t *ill = NULL; 4734 zoneid_t zoneid; 4735 ipaddr_t src_addr = *src_addrp; 4736 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4737 mblk_t *mp = NULL; 4738 boolean_t ire_requested = B_FALSE; 4739 boolean_t ipsec_policy_set = B_FALSE; 4740 ts_label_t *tsl = NULL; 4741 cred_t *effective_cred = NULL; 4742 4743 if (mpp) 4744 mp = *mpp; 4745 4746 if (mp != NULL) { 4747 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4748 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4749 } 4750 4751 src_ire = dst_ire = NULL; 4752 4753 /* 4754 * If we never got a disconnect before, clear it now. 4755 */ 4756 connp->conn_fully_bound = B_FALSE; 4757 4758 zoneid = IPCL_ZONEID(connp); 4759 4760 /* 4761 * Check whether Trusted Solaris policy allows communication with this 4762 * host, and pretend that the destination is unreachable if not. 4763 * 4764 * This is never a problem for TCP, since that transport is known to 4765 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4766 * handling. If the remote is unreachable, it will be detected at that 4767 * point, so there's no reason to check it here. 4768 * 4769 * Note that for sendto (and other datagram-oriented friends), this 4770 * check is done as part of the data path label computation instead. 4771 * The check here is just to make non-TCP connect() report the right 4772 * error. 4773 */ 4774 if (is_system_labeled() && !IPCL_IS_TCP(connp)) { 4775 if ((error = tsol_check_dest(cr, &dst_addr, IPV4_VERSION, 4776 connp->conn_mac_mode, &effective_cred)) != 0) { 4777 if (ip_debug > 2) { 4778 pr_addr_dbg( 4779 "ip_bind_connected_v4:" 4780 " no label for dst %s\n", 4781 AF_INET, &dst_addr); 4782 } 4783 goto bad_addr; 4784 } 4785 4786 /* 4787 * tsol_check_dest() may have created a new cred with 4788 * a modified security label. Use that cred if it exists 4789 * for ire lookups. 4790 */ 4791 if (effective_cred == NULL) { 4792 tsl = crgetlabel(cr); 4793 } else { 4794 tsl = crgetlabel(effective_cred); 4795 } 4796 } 4797 4798 if (CLASSD(dst_addr)) { 4799 /* Pick up an IRE_BROADCAST */ 4800 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4801 NULL, zoneid, tsl, 4802 (MATCH_IRE_RECURSIVE | 4803 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4804 MATCH_IRE_SECATTR), ipst); 4805 } else { 4806 /* 4807 * If conn_dontroute is set or if conn_nexthop_set is set, 4808 * and onlink ipif is not found set ENETUNREACH error. 4809 */ 4810 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4811 ipif_t *ipif; 4812 4813 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4814 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4815 if (ipif == NULL) { 4816 error = ENETUNREACH; 4817 goto bad_addr; 4818 } 4819 ipif_refrele(ipif); 4820 } 4821 4822 if (connp->conn_nexthop_set) { 4823 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4824 0, 0, NULL, NULL, zoneid, tsl, 4825 MATCH_IRE_SECATTR, ipst); 4826 } else { 4827 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4828 &sire, zoneid, tsl, 4829 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4830 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4831 MATCH_IRE_SECATTR), ipst); 4832 } 4833 } 4834 /* 4835 * dst_ire can't be a broadcast when not ire_requested. 4836 * We also prevent ire's with src address INADDR_ANY to 4837 * be used, which are created temporarily for 4838 * sending out packets from endpoints that have 4839 * conn_unspec_src set. If verify_dst is true, the destination must be 4840 * reachable. If verify_dst is false, the destination needn't be 4841 * reachable. 4842 * 4843 * If we match on a reject or black hole, then we've got a 4844 * local failure. May as well fail out the connect() attempt, 4845 * since it's never going to succeed. 4846 */ 4847 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4848 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4849 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4850 /* 4851 * If we're verifying destination reachability, we always want 4852 * to complain here. 4853 * 4854 * If we're not verifying destination reachability but the 4855 * destination has a route, we still want to fail on the 4856 * temporary address and broadcast address tests. 4857 */ 4858 if (verify_dst || (dst_ire != NULL)) { 4859 if (ip_debug > 2) { 4860 pr_addr_dbg("ip_bind_connected_v4:" 4861 "bad connected dst %s\n", 4862 AF_INET, &dst_addr); 4863 } 4864 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4865 error = ENETUNREACH; 4866 else 4867 error = EHOSTUNREACH; 4868 goto bad_addr; 4869 } 4870 } 4871 4872 /* 4873 * If the app does a connect(), it means that it will most likely 4874 * send more than 1 packet to the destination. It makes sense 4875 * to clear the temporary flag. 4876 */ 4877 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4878 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4879 irb_t *irb = dst_ire->ire_bucket; 4880 4881 rw_enter(&irb->irb_lock, RW_WRITER); 4882 /* 4883 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4884 * the lock to guarantee irb_tmp_ire_cnt. 4885 */ 4886 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4887 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4888 irb->irb_tmp_ire_cnt--; 4889 } 4890 rw_exit(&irb->irb_lock); 4891 } 4892 4893 /* 4894 * See if we should notify ULP about LSO/MDT; we do this whether or not 4895 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4896 * eligibility tests for passive connects are handled separately 4897 * through tcp_adapt_ire(). We do this before the source address 4898 * selection, because dst_ire may change after a call to 4899 * ipif_select_source(). This is a best-effort check, as the 4900 * packet for this connection may not actually go through 4901 * dst_ire->ire_stq, and the exact IRE can only be known after 4902 * calling ip_newroute(). This is why we further check on the 4903 * IRE during LSO/Multidata packet transmission in 4904 * tcp_lsosend()/tcp_multisend(). 4905 */ 4906 if (!ipsec_policy_set && dst_ire != NULL && 4907 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4908 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4909 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4910 lso_dst_ire = dst_ire; 4911 IRE_REFHOLD(lso_dst_ire); 4912 } else if (ipst->ips_ip_multidata_outbound && 4913 ILL_MDT_CAPABLE(ill)) { 4914 md_dst_ire = dst_ire; 4915 IRE_REFHOLD(md_dst_ire); 4916 } 4917 } 4918 4919 if (dst_ire != NULL && dst_ire->ire_type == IRE_LOCAL && 4920 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4921 /* 4922 * If the IRE belongs to a different zone, look for a matching 4923 * route in the forwarding table and use the source address from 4924 * that route. 4925 */ 4926 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4927 zoneid, 0, NULL, 4928 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4929 MATCH_IRE_RJ_BHOLE, ipst); 4930 if (src_ire == NULL) { 4931 error = EHOSTUNREACH; 4932 goto bad_addr; 4933 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4934 if (!(src_ire->ire_type & IRE_HOST)) 4935 error = ENETUNREACH; 4936 else 4937 error = EHOSTUNREACH; 4938 goto bad_addr; 4939 } 4940 if (src_addr == INADDR_ANY) 4941 src_addr = src_ire->ire_src_addr; 4942 ire_refrele(src_ire); 4943 src_ire = NULL; 4944 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4945 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4946 src_addr = sire->ire_src_addr; 4947 ire_refrele(dst_ire); 4948 dst_ire = sire; 4949 sire = NULL; 4950 } else { 4951 /* 4952 * Pick a source address so that a proper inbound 4953 * load spreading would happen. 4954 */ 4955 ill_t *ire_ill = dst_ire->ire_ipif->ipif_ill; 4956 ipif_t *src_ipif = NULL; 4957 ire_t *ipif_ire; 4958 4959 /* 4960 * Supply a local source address such that inbound 4961 * load spreading happens. 4962 * 4963 * Determine the best source address on this ill for 4964 * the destination. 4965 * 4966 * 1) For broadcast, we should return a broadcast ire 4967 * found above so that upper layers know that the 4968 * destination address is a broadcast address. 4969 * 4970 * 2) If the ipif is DEPRECATED, select a better 4971 * source address. Similarly, if the ipif is on 4972 * the IPMP meta-interface, pick a source address 4973 * at random to improve inbound load spreading. 4974 * 4975 * 3) If the outgoing interface is part of a usesrc 4976 * group, then try selecting a source address from 4977 * the usesrc ILL. 4978 */ 4979 if ((dst_ire->ire_zoneid != zoneid && 4980 dst_ire->ire_zoneid != ALL_ZONES) || 4981 (!(dst_ire->ire_flags & RTF_SETSRC)) && 4982 (!(dst_ire->ire_type & IRE_BROADCAST) && 4983 (IS_IPMP(ire_ill) || 4984 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4985 (ire_ill->ill_usesrc_ifindex != 0)))) { 4986 /* 4987 * If the destination is reachable via a 4988 * given gateway, the selected source address 4989 * should be in the same subnet as the gateway. 4990 * Otherwise, the destination is not reachable. 4991 * 4992 * If there are no interfaces on the same subnet 4993 * as the destination, ipif_select_source gives 4994 * first non-deprecated interface which might be 4995 * on a different subnet than the gateway. 4996 * This is not desirable. Hence pass the dst_ire 4997 * source address to ipif_select_source. 4998 * It is sure that the destination is reachable 4999 * with the dst_ire source address subnet. 5000 * So passing dst_ire source address to 5001 * ipif_select_source will make sure that the 5002 * selected source will be on the same subnet 5003 * as dst_ire source address. 5004 */ 5005 ipaddr_t saddr = 5006 dst_ire->ire_ipif->ipif_src_addr; 5007 src_ipif = ipif_select_source(ire_ill, 5008 saddr, zoneid); 5009 if (src_ipif != NULL) { 5010 if (IS_VNI(src_ipif->ipif_ill)) { 5011 /* 5012 * For VNI there is no 5013 * interface route 5014 */ 5015 src_addr = 5016 src_ipif->ipif_src_addr; 5017 } else { 5018 ipif_ire = 5019 ipif_to_ire(src_ipif); 5020 if (ipif_ire != NULL) { 5021 IRE_REFRELE(dst_ire); 5022 dst_ire = ipif_ire; 5023 } 5024 src_addr = 5025 dst_ire->ire_src_addr; 5026 } 5027 ipif_refrele(src_ipif); 5028 } else { 5029 src_addr = dst_ire->ire_src_addr; 5030 } 5031 } else { 5032 src_addr = dst_ire->ire_src_addr; 5033 } 5034 } 5035 } 5036 5037 /* 5038 * We do ire_route_lookup() here (and not 5039 * interface lookup as we assert that 5040 * src_addr should only come from an 5041 * UP interface for hard binding. 5042 */ 5043 ASSERT(src_ire == NULL); 5044 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5045 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5046 /* src_ire must be a local|loopback */ 5047 if (!IRE_IS_LOCAL(src_ire)) { 5048 if (ip_debug > 2) { 5049 pr_addr_dbg("ip_bind_connected_v4: bad connected " 5050 "src %s\n", AF_INET, &src_addr); 5051 } 5052 error = EADDRNOTAVAIL; 5053 goto bad_addr; 5054 } 5055 5056 /* 5057 * If the source address is a loopback address, the 5058 * destination had best be local or multicast. 5059 * The transports that can't handle multicast will reject 5060 * those addresses. 5061 */ 5062 if (src_ire->ire_type == IRE_LOOPBACK && 5063 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5064 ip1dbg(("ip_bind_connected_v4: bad connected loopback\n")); 5065 error = -1; 5066 goto bad_addr; 5067 } 5068 5069 /* 5070 * Allow setting new policies. For example, disconnects come 5071 * down as ipa_t bind. As we would have set conn_policy_cached 5072 * to B_TRUE before, we should set it to B_FALSE, so that policy 5073 * can change after the disconnect. 5074 */ 5075 connp->conn_policy_cached = B_FALSE; 5076 5077 /* 5078 * Set the conn addresses/ports immediately, so the IPsec policy calls 5079 * can handle their passed-in conn's. 5080 */ 5081 5082 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5083 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5084 connp->conn_lport = lport; 5085 connp->conn_fport = fport; 5086 *src_addrp = src_addr; 5087 5088 ASSERT(!(ipsec_policy_set && ire_requested)); 5089 if (ire_requested) { 5090 iulp_t *ulp_info = NULL; 5091 5092 /* 5093 * Note that sire will not be NULL if this is an off-link 5094 * connection and there is not cache for that dest yet. 5095 * 5096 * XXX Because of an existing bug, if there are multiple 5097 * default routes, the IRE returned now may not be the actual 5098 * default route used (default routes are chosen in a 5099 * round robin fashion). So if the metrics for different 5100 * default routes are different, we may return the wrong 5101 * metrics. This will not be a problem if the existing 5102 * bug is fixed. 5103 */ 5104 if (sire != NULL) { 5105 ulp_info = &(sire->ire_uinfo); 5106 } 5107 if (!ip_bind_get_ire_v4(mpp, dst_ire, ulp_info, ipst)) { 5108 error = -1; 5109 goto bad_addr; 5110 } 5111 mp = *mpp; 5112 } else if (ipsec_policy_set) { 5113 if (!ip_bind_ipsec_policy_set(connp, mp)) { 5114 error = -1; 5115 goto bad_addr; 5116 } 5117 } 5118 5119 /* 5120 * Cache IPsec policy in this conn. If we have per-socket policy, 5121 * we'll cache that. If we don't, we'll inherit global policy. 5122 * 5123 * We can't insert until the conn reflects the policy. Note that 5124 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5125 * connections where we don't have a policy. This is to prevent 5126 * global policy lookups in the inbound path. 5127 * 5128 * If we insert before we set conn_policy_cached, 5129 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5130 * because global policy cound be non-empty. We normally call 5131 * ipsec_check_policy() for conn_policy_cached connections only if 5132 * ipc_in_enforce_policy is set. But in this case, 5133 * conn_policy_cached can get set anytime since we made the 5134 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5135 * called, which will make the above assumption false. Thus, we 5136 * need to insert after we set conn_policy_cached. 5137 */ 5138 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5139 goto bad_addr; 5140 5141 if (fanout_insert) { 5142 /* 5143 * The addresses have been verified. Time to insert in 5144 * the correct fanout list. 5145 */ 5146 error = ipcl_conn_insert(connp, protocol, src_addr, 5147 dst_addr, connp->conn_ports); 5148 } 5149 5150 if (error == 0) { 5151 connp->conn_fully_bound = B_TRUE; 5152 /* 5153 * Our initial checks for LSO/MDT have passed; the IRE is not 5154 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5155 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5156 * ip_xxinfo_return(), which performs further checks 5157 * against them and upon success, returns the LSO/MDT info 5158 * mblk which we will attach to the bind acknowledgment. 5159 */ 5160 if (lso_dst_ire != NULL) { 5161 mblk_t *lsoinfo_mp; 5162 5163 ASSERT(ill->ill_lso_capab != NULL); 5164 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5165 ill->ill_name, ill->ill_lso_capab)) != NULL) { 5166 if (mp == NULL) { 5167 *mpp = lsoinfo_mp; 5168 } else { 5169 linkb(mp, lsoinfo_mp); 5170 } 5171 } 5172 } else if (md_dst_ire != NULL) { 5173 mblk_t *mdinfo_mp; 5174 5175 ASSERT(ill->ill_mdt_capab != NULL); 5176 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5177 ill->ill_name, ill->ill_mdt_capab)) != NULL) { 5178 if (mp == NULL) { 5179 *mpp = mdinfo_mp; 5180 } else { 5181 linkb(mp, mdinfo_mp); 5182 } 5183 } 5184 } 5185 } 5186 bad_addr: 5187 if (ipsec_policy_set) { 5188 ASSERT(mp != NULL); 5189 freeb(mp); 5190 /* 5191 * As of now assume that nothing else accompanies 5192 * IPSEC_POLICY_SET. 5193 */ 5194 *mpp = NULL; 5195 } 5196 if (src_ire != NULL) 5197 IRE_REFRELE(src_ire); 5198 if (dst_ire != NULL) 5199 IRE_REFRELE(dst_ire); 5200 if (sire != NULL) 5201 IRE_REFRELE(sire); 5202 if (md_dst_ire != NULL) 5203 IRE_REFRELE(md_dst_ire); 5204 if (lso_dst_ire != NULL) 5205 IRE_REFRELE(lso_dst_ire); 5206 if (effective_cred != NULL) 5207 crfree(effective_cred); 5208 return (error); 5209 } 5210 5211 int 5212 ip_proto_bind_connected_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 5213 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 5214 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 5215 { 5216 int error; 5217 5218 ASSERT(!connp->conn_af_isv6); 5219 connp->conn_pkt_isv6 = B_FALSE; 5220 connp->conn_ulp = protocol; 5221 5222 /* For raw socket, the local port is not set. */ 5223 if (lport == 0) 5224 lport = connp->conn_lport; 5225 error = ip_bind_connected_v4(connp, ire_mpp, protocol, 5226 src_addrp, lport, dst_addr, fport, fanout_insert, verify_dst, cr); 5227 if (error < 0) 5228 error = -TBADADDR; 5229 return (error); 5230 } 5231 5232 /* 5233 * Get the ire in *mpp. Returns false if it fails (due to lack of space). 5234 * Prefers dst_ire over src_ire. 5235 */ 5236 static boolean_t 5237 ip_bind_get_ire_v4(mblk_t **mpp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5238 { 5239 mblk_t *mp = *mpp; 5240 ire_t *ret_ire; 5241 5242 ASSERT(mp != NULL); 5243 5244 if (ire != NULL) { 5245 /* 5246 * mp initialized above to IRE_DB_REQ_TYPE 5247 * appended mblk. Its <upper protocol>'s 5248 * job to make sure there is room. 5249 */ 5250 if ((mp->b_datap->db_lim - mp->b_rptr) < sizeof (ire_t)) 5251 return (B_FALSE); 5252 5253 mp->b_datap->db_type = IRE_DB_TYPE; 5254 mp->b_wptr = mp->b_rptr + sizeof (ire_t); 5255 bcopy(ire, mp->b_rptr, sizeof (ire_t)); 5256 ret_ire = (ire_t *)mp->b_rptr; 5257 /* 5258 * Pass the latest setting of the ip_path_mtu_discovery and 5259 * copy the ulp info if any. 5260 */ 5261 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5262 IPH_DF : 0; 5263 if (ulp_info != NULL) { 5264 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5265 sizeof (iulp_t)); 5266 } 5267 ret_ire->ire_mp = mp; 5268 } else { 5269 /* 5270 * No IRE was found. Remove IRE mblk. 5271 */ 5272 *mpp = mp->b_cont; 5273 freeb(mp); 5274 } 5275 return (B_TRUE); 5276 } 5277 5278 /* 5279 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5280 * the final piece where we don't. Return a pointer to the first mblk in the 5281 * result, and update the pointer to the next mblk to chew on. If anything 5282 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5283 * NULL pointer. 5284 */ 5285 mblk_t * 5286 ip_carve_mp(mblk_t **mpp, ssize_t len) 5287 { 5288 mblk_t *mp0; 5289 mblk_t *mp1; 5290 mblk_t *mp2; 5291 5292 if (!len || !mpp || !(mp0 = *mpp)) 5293 return (NULL); 5294 /* If we aren't going to consume the first mblk, we need a dup. */ 5295 if (mp0->b_wptr - mp0->b_rptr > len) { 5296 mp1 = dupb(mp0); 5297 if (mp1) { 5298 /* Partition the data between the two mblks. */ 5299 mp1->b_wptr = mp1->b_rptr + len; 5300 mp0->b_rptr = mp1->b_wptr; 5301 /* 5302 * after adjustments if mblk not consumed is now 5303 * unaligned, try to align it. If this fails free 5304 * all messages and let upper layer recover. 5305 */ 5306 if (!OK_32PTR(mp0->b_rptr)) { 5307 if (!pullupmsg(mp0, -1)) { 5308 freemsg(mp0); 5309 freemsg(mp1); 5310 *mpp = NULL; 5311 return (NULL); 5312 } 5313 } 5314 } 5315 return (mp1); 5316 } 5317 /* Eat through as many mblks as we need to get len bytes. */ 5318 len -= mp0->b_wptr - mp0->b_rptr; 5319 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5320 if (mp2->b_wptr - mp2->b_rptr > len) { 5321 /* 5322 * We won't consume the entire last mblk. Like 5323 * above, dup and partition it. 5324 */ 5325 mp1->b_cont = dupb(mp2); 5326 mp1 = mp1->b_cont; 5327 if (!mp1) { 5328 /* 5329 * Trouble. Rather than go to a lot of 5330 * trouble to clean up, we free the messages. 5331 * This won't be any worse than losing it on 5332 * the wire. 5333 */ 5334 freemsg(mp0); 5335 freemsg(mp2); 5336 *mpp = NULL; 5337 return (NULL); 5338 } 5339 mp1->b_wptr = mp1->b_rptr + len; 5340 mp2->b_rptr = mp1->b_wptr; 5341 /* 5342 * after adjustments if mblk not consumed is now 5343 * unaligned, try to align it. If this fails free 5344 * all messages and let upper layer recover. 5345 */ 5346 if (!OK_32PTR(mp2->b_rptr)) { 5347 if (!pullupmsg(mp2, -1)) { 5348 freemsg(mp0); 5349 freemsg(mp2); 5350 *mpp = NULL; 5351 return (NULL); 5352 } 5353 } 5354 *mpp = mp2; 5355 return (mp0); 5356 } 5357 /* Decrement len by the amount we just got. */ 5358 len -= mp2->b_wptr - mp2->b_rptr; 5359 } 5360 /* 5361 * len should be reduced to zero now. If not our caller has 5362 * screwed up. 5363 */ 5364 if (len) { 5365 /* Shouldn't happen! */ 5366 freemsg(mp0); 5367 *mpp = NULL; 5368 return (NULL); 5369 } 5370 /* 5371 * We consumed up to exactly the end of an mblk. Detach the part 5372 * we are returning from the rest of the chain. 5373 */ 5374 mp1->b_cont = NULL; 5375 *mpp = mp2; 5376 return (mp0); 5377 } 5378 5379 /* The ill stream is being unplumbed. Called from ip_close */ 5380 int 5381 ip_modclose(ill_t *ill) 5382 { 5383 boolean_t success; 5384 ipsq_t *ipsq; 5385 ipif_t *ipif; 5386 queue_t *q = ill->ill_rq; 5387 ip_stack_t *ipst = ill->ill_ipst; 5388 int i; 5389 5390 /* 5391 * The punlink prior to this may have initiated a capability 5392 * negotiation. But ipsq_enter will block until that finishes or 5393 * times out. 5394 */ 5395 success = ipsq_enter(ill, B_FALSE, NEW_OP); 5396 5397 /* 5398 * Open/close/push/pop is guaranteed to be single threaded 5399 * per stream by STREAMS. FS guarantees that all references 5400 * from top are gone before close is called. So there can't 5401 * be another close thread that has set CONDEMNED on this ill. 5402 * and cause ipsq_enter to return failure. 5403 */ 5404 ASSERT(success); 5405 ipsq = ill->ill_phyint->phyint_ipsq; 5406 5407 /* 5408 * Mark it condemned. No new reference will be made to this ill. 5409 * Lookup functions will return an error. Threads that try to 5410 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5411 * that the refcnt will drop down to zero. 5412 */ 5413 mutex_enter(&ill->ill_lock); 5414 ill->ill_state_flags |= ILL_CONDEMNED; 5415 for (ipif = ill->ill_ipif; ipif != NULL; 5416 ipif = ipif->ipif_next) { 5417 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5418 } 5419 /* 5420 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5421 * returns error if ILL_CONDEMNED is set 5422 */ 5423 cv_broadcast(&ill->ill_cv); 5424 mutex_exit(&ill->ill_lock); 5425 5426 /* 5427 * Send all the deferred DLPI messages downstream which came in 5428 * during the small window right before ipsq_enter(). We do this 5429 * without waiting for the ACKs because all the ACKs for M_PROTO 5430 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5431 */ 5432 ill_dlpi_send_deferred(ill); 5433 5434 /* 5435 * Shut down fragmentation reassembly. 5436 * ill_frag_timer won't start a timer again. 5437 * Now cancel any existing timer 5438 */ 5439 (void) untimeout(ill->ill_frag_timer_id); 5440 (void) ill_frag_timeout(ill, 0); 5441 5442 /* 5443 * Call ill_delete to bring down the ipifs, ilms and ill on 5444 * this ill. Then wait for the refcnts to drop to zero. 5445 * ill_is_freeable checks whether the ill is really quiescent. 5446 * Then make sure that threads that are waiting to enter the 5447 * ipsq have seen the error returned by ipsq_enter and have 5448 * gone away. Then we call ill_delete_tail which does the 5449 * DL_UNBIND_REQ with the driver and then qprocsoff. 5450 */ 5451 ill_delete(ill); 5452 mutex_enter(&ill->ill_lock); 5453 while (!ill_is_freeable(ill)) 5454 cv_wait(&ill->ill_cv, &ill->ill_lock); 5455 while (ill->ill_waiters) 5456 cv_wait(&ill->ill_cv, &ill->ill_lock); 5457 5458 mutex_exit(&ill->ill_lock); 5459 5460 /* 5461 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5462 * it held until the end of the function since the cleanup 5463 * below needs to be able to use the ip_stack_t. 5464 */ 5465 netstack_hold(ipst->ips_netstack); 5466 5467 /* qprocsoff is done via ill_delete_tail */ 5468 ill_delete_tail(ill); 5469 ASSERT(ill->ill_ipst == NULL); 5470 5471 /* 5472 * Walk through all upper (conn) streams and qenable 5473 * those that have queued data. 5474 * close synchronization needs this to 5475 * be done to ensure that all upper layers blocked 5476 * due to flow control to the closing device 5477 * get unblocked. 5478 */ 5479 ip1dbg(("ip_wsrv: walking\n")); 5480 for (i = 0; i < TX_FANOUT_SIZE; i++) { 5481 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 5482 } 5483 5484 mutex_enter(&ipst->ips_ip_mi_lock); 5485 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5486 mutex_exit(&ipst->ips_ip_mi_lock); 5487 5488 /* 5489 * credp could be null if the open didn't succeed and ip_modopen 5490 * itself calls ip_close. 5491 */ 5492 if (ill->ill_credp != NULL) 5493 crfree(ill->ill_credp); 5494 5495 /* 5496 * Now we are done with the module close pieces that 5497 * need the netstack_t. 5498 */ 5499 netstack_rele(ipst->ips_netstack); 5500 5501 mi_close_free((IDP)ill); 5502 q->q_ptr = WR(q)->q_ptr = NULL; 5503 5504 ipsq_exit(ipsq); 5505 5506 return (0); 5507 } 5508 5509 /* 5510 * This is called as part of close() for IP, UDP, ICMP, and RTS 5511 * in order to quiesce the conn. 5512 */ 5513 void 5514 ip_quiesce_conn(conn_t *connp) 5515 { 5516 boolean_t drain_cleanup_reqd = B_FALSE; 5517 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5518 boolean_t ilg_cleanup_reqd = B_FALSE; 5519 ip_stack_t *ipst; 5520 5521 ASSERT(!IPCL_IS_TCP(connp)); 5522 ipst = connp->conn_netstack->netstack_ip; 5523 5524 /* 5525 * Mark the conn as closing, and this conn must not be 5526 * inserted in future into any list. Eg. conn_drain_insert(), 5527 * won't insert this conn into the conn_drain_list. 5528 * Similarly ill_pending_mp_add() will not add any mp to 5529 * the pending mp list, after this conn has started closing. 5530 * 5531 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5532 * cannot get set henceforth. 5533 */ 5534 mutex_enter(&connp->conn_lock); 5535 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5536 connp->conn_state_flags |= CONN_CLOSING; 5537 if (connp->conn_idl != NULL) 5538 drain_cleanup_reqd = B_TRUE; 5539 if (connp->conn_oper_pending_ill != NULL) 5540 conn_ioctl_cleanup_reqd = B_TRUE; 5541 if (connp->conn_dhcpinit_ill != NULL) { 5542 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5543 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5544 connp->conn_dhcpinit_ill = NULL; 5545 } 5546 if (connp->conn_ilg_inuse != 0) 5547 ilg_cleanup_reqd = B_TRUE; 5548 mutex_exit(&connp->conn_lock); 5549 5550 if (conn_ioctl_cleanup_reqd) 5551 conn_ioctl_cleanup(connp); 5552 5553 if (is_system_labeled() && connp->conn_anon_port) { 5554 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5555 connp->conn_mlp_type, connp->conn_ulp, 5556 ntohs(connp->conn_lport), B_FALSE); 5557 connp->conn_anon_port = 0; 5558 } 5559 connp->conn_mlp_type = mlptSingle; 5560 5561 /* 5562 * Remove this conn from any fanout list it is on. 5563 * and then wait for any threads currently operating 5564 * on this endpoint to finish 5565 */ 5566 ipcl_hash_remove(connp); 5567 5568 /* 5569 * Remove this conn from the drain list, and do 5570 * any other cleanup that may be required. 5571 * (Only non-tcp streams may have a non-null conn_idl. 5572 * TCP streams are never flow controlled, and 5573 * conn_idl will be null) 5574 */ 5575 if (drain_cleanup_reqd) 5576 conn_drain_tail(connp, B_TRUE); 5577 5578 if (connp == ipst->ips_ip_g_mrouter) 5579 (void) ip_mrouter_done(NULL, ipst); 5580 5581 if (ilg_cleanup_reqd) 5582 ilg_delete_all(connp); 5583 5584 conn_delete_ire(connp, NULL); 5585 5586 /* 5587 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5588 * callers from write side can't be there now because close 5589 * is in progress. The only other caller is ipcl_walk 5590 * which checks for the condemned flag. 5591 */ 5592 mutex_enter(&connp->conn_lock); 5593 connp->conn_state_flags |= CONN_CONDEMNED; 5594 while (connp->conn_ref != 1) 5595 cv_wait(&connp->conn_cv, &connp->conn_lock); 5596 connp->conn_state_flags |= CONN_QUIESCED; 5597 mutex_exit(&connp->conn_lock); 5598 } 5599 5600 /* ARGSUSED */ 5601 int 5602 ip_close(queue_t *q, int flags) 5603 { 5604 conn_t *connp; 5605 5606 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5607 5608 /* 5609 * Call the appropriate delete routine depending on whether this is 5610 * a module or device. 5611 */ 5612 if (WR(q)->q_next != NULL) { 5613 /* This is a module close */ 5614 return (ip_modclose((ill_t *)q->q_ptr)); 5615 } 5616 5617 connp = q->q_ptr; 5618 ip_quiesce_conn(connp); 5619 5620 qprocsoff(q); 5621 5622 /* 5623 * Now we are truly single threaded on this stream, and can 5624 * delete the things hanging off the connp, and finally the connp. 5625 * We removed this connp from the fanout list, it cannot be 5626 * accessed thru the fanouts, and we already waited for the 5627 * conn_ref to drop to 0. We are already in close, so 5628 * there cannot be any other thread from the top. qprocsoff 5629 * has completed, and service has completed or won't run in 5630 * future. 5631 */ 5632 ASSERT(connp->conn_ref == 1); 5633 5634 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5635 5636 connp->conn_ref--; 5637 ipcl_conn_destroy(connp); 5638 5639 q->q_ptr = WR(q)->q_ptr = NULL; 5640 return (0); 5641 } 5642 5643 /* 5644 * Wapper around putnext() so that ip_rts_request can merely use 5645 * conn_recv. 5646 */ 5647 /*ARGSUSED2*/ 5648 static void 5649 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5650 { 5651 conn_t *connp = (conn_t *)arg1; 5652 5653 putnext(connp->conn_rq, mp); 5654 } 5655 5656 /* 5657 * Called when the module is about to be unloaded 5658 */ 5659 void 5660 ip_ddi_destroy(void) 5661 { 5662 tnet_fini(); 5663 5664 icmp_ddi_g_destroy(); 5665 rts_ddi_g_destroy(); 5666 udp_ddi_g_destroy(); 5667 sctp_ddi_g_destroy(); 5668 tcp_ddi_g_destroy(); 5669 ilb_ddi_g_destroy(); 5670 ipsec_policy_g_destroy(); 5671 ipcl_g_destroy(); 5672 ip_net_g_destroy(); 5673 ip_ire_g_fini(); 5674 inet_minor_destroy(ip_minor_arena_sa); 5675 #if defined(_LP64) 5676 inet_minor_destroy(ip_minor_arena_la); 5677 #endif 5678 5679 #ifdef DEBUG 5680 list_destroy(&ip_thread_list); 5681 rw_destroy(&ip_thread_rwlock); 5682 tsd_destroy(&ip_thread_data); 5683 #endif 5684 5685 netstack_unregister(NS_IP); 5686 } 5687 5688 /* 5689 * First step in cleanup. 5690 */ 5691 /* ARGSUSED */ 5692 static void 5693 ip_stack_shutdown(netstackid_t stackid, void *arg) 5694 { 5695 ip_stack_t *ipst = (ip_stack_t *)arg; 5696 5697 #ifdef NS_DEBUG 5698 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5699 #endif 5700 5701 /* 5702 * Perform cleanup for special interfaces (loopback and IPMP). 5703 */ 5704 ip_interface_cleanup(ipst); 5705 5706 /* 5707 * The *_hook_shutdown()s start the process of notifying any 5708 * consumers that things are going away.... nothing is destroyed. 5709 */ 5710 ipv4_hook_shutdown(ipst); 5711 ipv6_hook_shutdown(ipst); 5712 5713 mutex_enter(&ipst->ips_capab_taskq_lock); 5714 ipst->ips_capab_taskq_quit = B_TRUE; 5715 cv_signal(&ipst->ips_capab_taskq_cv); 5716 mutex_exit(&ipst->ips_capab_taskq_lock); 5717 5718 mutex_enter(&ipst->ips_mrt_lock); 5719 ipst->ips_mrt_flags |= IP_MRT_STOP; 5720 cv_signal(&ipst->ips_mrt_cv); 5721 mutex_exit(&ipst->ips_mrt_lock); 5722 } 5723 5724 /* 5725 * Free the IP stack instance. 5726 */ 5727 static void 5728 ip_stack_fini(netstackid_t stackid, void *arg) 5729 { 5730 ip_stack_t *ipst = (ip_stack_t *)arg; 5731 int ret; 5732 5733 #ifdef NS_DEBUG 5734 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5735 #endif 5736 /* 5737 * At this point, all of the notifications that the events and 5738 * protocols are going away have been run, meaning that we can 5739 * now set about starting to clean things up. 5740 */ 5741 ipobs_fini(ipst); 5742 ipv4_hook_destroy(ipst); 5743 ipv6_hook_destroy(ipst); 5744 ip_net_destroy(ipst); 5745 5746 mutex_destroy(&ipst->ips_capab_taskq_lock); 5747 cv_destroy(&ipst->ips_capab_taskq_cv); 5748 5749 mutex_enter(&ipst->ips_mrt_lock); 5750 while (!(ipst->ips_mrt_flags & IP_MRT_DONE)) 5751 cv_wait(&ipst->ips_mrt_done_cv, &ipst->ips_mrt_lock); 5752 mutex_destroy(&ipst->ips_mrt_lock); 5753 cv_destroy(&ipst->ips_mrt_cv); 5754 cv_destroy(&ipst->ips_mrt_done_cv); 5755 5756 ipmp_destroy(ipst); 5757 rw_destroy(&ipst->ips_srcid_lock); 5758 5759 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5760 ipst->ips_ip_mibkp = NULL; 5761 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5762 ipst->ips_icmp_mibkp = NULL; 5763 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5764 ipst->ips_ip_kstat = NULL; 5765 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5766 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5767 ipst->ips_ip6_kstat = NULL; 5768 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5769 5770 nd_free(&ipst->ips_ip_g_nd); 5771 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5772 ipst->ips_param_arr = NULL; 5773 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5774 ipst->ips_ndp_arr = NULL; 5775 5776 ip_mrouter_stack_destroy(ipst); 5777 5778 mutex_destroy(&ipst->ips_ip_mi_lock); 5779 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5780 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5781 rw_destroy(&ipst->ips_ip_g_nd_lock); 5782 5783 ret = untimeout(ipst->ips_igmp_timeout_id); 5784 if (ret == -1) { 5785 ASSERT(ipst->ips_igmp_timeout_id == 0); 5786 } else { 5787 ASSERT(ipst->ips_igmp_timeout_id != 0); 5788 ipst->ips_igmp_timeout_id = 0; 5789 } 5790 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5791 if (ret == -1) { 5792 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5793 } else { 5794 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5795 ipst->ips_igmp_slowtimeout_id = 0; 5796 } 5797 ret = untimeout(ipst->ips_mld_timeout_id); 5798 if (ret == -1) { 5799 ASSERT(ipst->ips_mld_timeout_id == 0); 5800 } else { 5801 ASSERT(ipst->ips_mld_timeout_id != 0); 5802 ipst->ips_mld_timeout_id = 0; 5803 } 5804 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5805 if (ret == -1) { 5806 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5807 } else { 5808 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5809 ipst->ips_mld_slowtimeout_id = 0; 5810 } 5811 ret = untimeout(ipst->ips_ip_ire_expire_id); 5812 if (ret == -1) { 5813 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5814 } else { 5815 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5816 ipst->ips_ip_ire_expire_id = 0; 5817 } 5818 5819 mutex_destroy(&ipst->ips_igmp_timer_lock); 5820 mutex_destroy(&ipst->ips_mld_timer_lock); 5821 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5822 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5823 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5824 rw_destroy(&ipst->ips_ill_g_lock); 5825 5826 ip_ire_fini(ipst); 5827 ip6_asp_free(ipst); 5828 conn_drain_fini(ipst); 5829 ipcl_destroy(ipst); 5830 5831 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5832 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5833 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5834 ipst->ips_ndp4 = NULL; 5835 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5836 ipst->ips_ndp6 = NULL; 5837 5838 if (ipst->ips_loopback_ksp != NULL) { 5839 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5840 ipst->ips_loopback_ksp = NULL; 5841 } 5842 5843 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5844 ipst->ips_phyint_g_list = NULL; 5845 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5846 ipst->ips_ill_g_heads = NULL; 5847 5848 ldi_ident_release(ipst->ips_ldi_ident); 5849 kmem_free(ipst, sizeof (*ipst)); 5850 } 5851 5852 /* 5853 * This function is called from the TSD destructor, and is used to debug 5854 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5855 * details. 5856 */ 5857 static void 5858 ip_thread_exit(void *phash) 5859 { 5860 th_hash_t *thh = phash; 5861 5862 rw_enter(&ip_thread_rwlock, RW_WRITER); 5863 list_remove(&ip_thread_list, thh); 5864 rw_exit(&ip_thread_rwlock); 5865 mod_hash_destroy_hash(thh->thh_hash); 5866 kmem_free(thh, sizeof (*thh)); 5867 } 5868 5869 /* 5870 * Called when the IP kernel module is loaded into the kernel 5871 */ 5872 void 5873 ip_ddi_init(void) 5874 { 5875 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 5876 5877 /* 5878 * For IP and TCP the minor numbers should start from 2 since we have 4 5879 * initial devices: ip, ip6, tcp, tcp6. 5880 */ 5881 /* 5882 * If this is a 64-bit kernel, then create two separate arenas - 5883 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5884 * other for socket apps in the range 2^^18 through 2^^32-1. 5885 */ 5886 ip_minor_arena_la = NULL; 5887 ip_minor_arena_sa = NULL; 5888 #if defined(_LP64) 5889 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5890 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5891 cmn_err(CE_PANIC, 5892 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5893 } 5894 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5895 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5896 cmn_err(CE_PANIC, 5897 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5898 } 5899 #else 5900 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5901 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5902 cmn_err(CE_PANIC, 5903 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5904 } 5905 #endif 5906 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5907 5908 ipcl_g_init(); 5909 ip_ire_g_init(); 5910 ip_net_g_init(); 5911 5912 #ifdef DEBUG 5913 tsd_create(&ip_thread_data, ip_thread_exit); 5914 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5915 list_create(&ip_thread_list, sizeof (th_hash_t), 5916 offsetof(th_hash_t, thh_link)); 5917 #endif 5918 5919 /* 5920 * We want to be informed each time a stack is created or 5921 * destroyed in the kernel, so we can maintain the 5922 * set of udp_stack_t's. 5923 */ 5924 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5925 ip_stack_fini); 5926 5927 ipsec_policy_g_init(); 5928 tcp_ddi_g_init(); 5929 sctp_ddi_g_init(); 5930 5931 tnet_init(); 5932 5933 udp_ddi_g_init(); 5934 rts_ddi_g_init(); 5935 icmp_ddi_g_init(); 5936 ilb_ddi_g_init(); 5937 } 5938 5939 /* 5940 * Initialize the IP stack instance. 5941 */ 5942 static void * 5943 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5944 { 5945 ip_stack_t *ipst; 5946 ipparam_t *pa; 5947 ipndp_t *na; 5948 major_t major; 5949 5950 #ifdef NS_DEBUG 5951 printf("ip_stack_init(stack %d)\n", stackid); 5952 #endif 5953 5954 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5955 ipst->ips_netstack = ns; 5956 5957 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5958 KM_SLEEP); 5959 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5960 KM_SLEEP); 5961 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5962 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5963 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5964 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5965 5966 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5967 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5968 ipst->ips_igmp_deferred_next = INFINITY; 5969 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5970 ipst->ips_mld_deferred_next = INFINITY; 5971 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5972 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5973 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5974 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5975 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5976 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5977 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5978 5979 ipcl_init(ipst); 5980 ip_ire_init(ipst); 5981 ip6_asp_init(ipst); 5982 ipif_init(ipst); 5983 conn_drain_init(ipst); 5984 ip_mrouter_stack_init(ipst); 5985 5986 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5987 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5988 ipst->ips_ipv6_frag_timeout = IPV6_FRAG_TIMEOUT; 5989 ipst->ips_ipv6_frag_timo_ms = IPV6_FRAG_TIMEOUT * 1000; 5990 5991 ipst->ips_ip_multirt_log_interval = 1000; 5992 5993 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5994 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5995 ipst->ips_ill_index = 1; 5996 5997 ipst->ips_saved_ip_g_forward = -1; 5998 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 5999 6000 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6001 ipst->ips_param_arr = pa; 6002 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6003 6004 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6005 ipst->ips_ndp_arr = na; 6006 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6007 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6008 (caddr_t)&ipst->ips_ip_g_forward; 6009 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6010 (caddr_t)&ipst->ips_ipv6_forward; 6011 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6012 "ip_cgtp_filter") == 0); 6013 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6014 (caddr_t)&ipst->ips_ip_cgtp_filter; 6015 6016 (void) ip_param_register(&ipst->ips_ip_g_nd, 6017 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6018 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6019 6020 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6021 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6022 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6023 ipst->ips_ip6_kstat = 6024 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6025 6026 ipst->ips_ip_src_id = 1; 6027 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6028 6029 ip_net_init(ipst, ns); 6030 ipv4_hook_init(ipst); 6031 ipv6_hook_init(ipst); 6032 ipmp_init(ipst); 6033 ipobs_init(ipst); 6034 6035 /* 6036 * Create the taskq dispatcher thread and initialize related stuff. 6037 */ 6038 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 6039 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 6040 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 6041 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 6042 6043 /* 6044 * Create the mcast_restart_timers_thread() worker thread. 6045 */ 6046 mutex_init(&ipst->ips_mrt_lock, NULL, MUTEX_DEFAULT, NULL); 6047 cv_init(&ipst->ips_mrt_cv, NULL, CV_DEFAULT, NULL); 6048 cv_init(&ipst->ips_mrt_done_cv, NULL, CV_DEFAULT, NULL); 6049 ipst->ips_mrt_thread = thread_create(NULL, 0, 6050 mcast_restart_timers_thread, ipst, 0, &p0, TS_RUN, minclsyspri); 6051 6052 major = mod_name_to_major(INET_NAME); 6053 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 6054 return (ipst); 6055 } 6056 6057 /* 6058 * Allocate and initialize a DLPI template of the specified length. (May be 6059 * called as writer.) 6060 */ 6061 mblk_t * 6062 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6063 { 6064 mblk_t *mp; 6065 6066 mp = allocb(len, BPRI_MED); 6067 if (!mp) 6068 return (NULL); 6069 6070 /* 6071 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6072 * of which we don't seem to use) are sent with M_PCPROTO, and 6073 * that other DLPI are M_PROTO. 6074 */ 6075 if (prim == DL_INFO_REQ) { 6076 mp->b_datap->db_type = M_PCPROTO; 6077 } else { 6078 mp->b_datap->db_type = M_PROTO; 6079 } 6080 6081 mp->b_wptr = mp->b_rptr + len; 6082 bzero(mp->b_rptr, len); 6083 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6084 return (mp); 6085 } 6086 6087 /* 6088 * Allocate and initialize a DLPI notification. (May be called as writer.) 6089 */ 6090 mblk_t * 6091 ip_dlnotify_alloc(uint_t notification, uint_t data) 6092 { 6093 dl_notify_ind_t *notifyp; 6094 mblk_t *mp; 6095 6096 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 6097 return (NULL); 6098 6099 notifyp = (dl_notify_ind_t *)mp->b_rptr; 6100 notifyp->dl_notification = notification; 6101 notifyp->dl_data = data; 6102 return (mp); 6103 } 6104 6105 /* 6106 * Debug formatting routine. Returns a character string representation of the 6107 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6108 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6109 * 6110 * Once the ndd table-printing interfaces are removed, this can be changed to 6111 * standard dotted-decimal form. 6112 */ 6113 char * 6114 ip_dot_addr(ipaddr_t addr, char *buf) 6115 { 6116 uint8_t *ap = (uint8_t *)&addr; 6117 6118 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6119 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6120 return (buf); 6121 } 6122 6123 /* 6124 * Write the given MAC address as a printable string in the usual colon- 6125 * separated format. 6126 */ 6127 const char * 6128 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6129 { 6130 char *bp; 6131 6132 if (alen == 0 || buflen < 4) 6133 return ("?"); 6134 bp = buf; 6135 for (;;) { 6136 /* 6137 * If there are more MAC address bytes available, but we won't 6138 * have any room to print them, then add "..." to the string 6139 * instead. See below for the 'magic number' explanation. 6140 */ 6141 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6142 (void) strcpy(bp, "..."); 6143 break; 6144 } 6145 (void) sprintf(bp, "%02x", *addr++); 6146 bp += 2; 6147 if (--alen == 0) 6148 break; 6149 *bp++ = ':'; 6150 buflen -= 3; 6151 /* 6152 * At this point, based on the first 'if' statement above, 6153 * either alen == 1 and buflen >= 3, or alen > 1 and 6154 * buflen >= 4. The first case leaves room for the final "xx" 6155 * number and trailing NUL byte. The second leaves room for at 6156 * least "...". Thus the apparently 'magic' numbers chosen for 6157 * that statement. 6158 */ 6159 } 6160 return (buf); 6161 } 6162 6163 /* 6164 * Send an ICMP error after patching up the packet appropriately. Returns 6165 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6166 */ 6167 static boolean_t 6168 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6169 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6170 zoneid_t zoneid, ip_stack_t *ipst) 6171 { 6172 ipha_t *ipha; 6173 mblk_t *first_mp; 6174 boolean_t secure; 6175 unsigned char db_type; 6176 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6177 6178 first_mp = mp; 6179 if (mctl_present) { 6180 mp = mp->b_cont; 6181 secure = ipsec_in_is_secure(first_mp); 6182 ASSERT(mp != NULL); 6183 } else { 6184 /* 6185 * If this is an ICMP error being reported - which goes 6186 * up as M_CTLs, we need to convert them to M_DATA till 6187 * we finish checking with global policy because 6188 * ipsec_check_global_policy() assumes M_DATA as clear 6189 * and M_CTL as secure. 6190 */ 6191 db_type = DB_TYPE(mp); 6192 DB_TYPE(mp) = M_DATA; 6193 secure = B_FALSE; 6194 } 6195 /* 6196 * We are generating an icmp error for some inbound packet. 6197 * Called from all ip_fanout_(udp, tcp, proto) functions. 6198 * Before we generate an error, check with global policy 6199 * to see whether this is allowed to enter the system. As 6200 * there is no "conn", we are checking with global policy. 6201 */ 6202 ipha = (ipha_t *)mp->b_rptr; 6203 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6204 first_mp = ipsec_check_global_policy(first_mp, NULL, 6205 ipha, NULL, mctl_present, ipst->ips_netstack); 6206 if (first_mp == NULL) 6207 return (B_FALSE); 6208 } 6209 6210 if (!mctl_present) 6211 DB_TYPE(mp) = db_type; 6212 6213 if (flags & IP_FF_SEND_ICMP) { 6214 if (flags & IP_FF_HDR_COMPLETE) { 6215 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6216 freemsg(first_mp); 6217 return (B_TRUE); 6218 } 6219 } 6220 if (flags & IP_FF_CKSUM) { 6221 /* 6222 * Have to correct checksum since 6223 * the packet might have been 6224 * fragmented and the reassembly code in ip_rput 6225 * does not restore the IP checksum. 6226 */ 6227 ipha->ipha_hdr_checksum = 0; 6228 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6229 } 6230 switch (icmp_type) { 6231 case ICMP_DEST_UNREACHABLE: 6232 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6233 ipst); 6234 break; 6235 default: 6236 freemsg(first_mp); 6237 break; 6238 } 6239 } else { 6240 freemsg(first_mp); 6241 return (B_FALSE); 6242 } 6243 6244 return (B_TRUE); 6245 } 6246 6247 /* 6248 * Used to send an ICMP error message when a packet is received for 6249 * a protocol that is not supported. The mblk passed as argument 6250 * is consumed by this function. 6251 */ 6252 void 6253 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6254 ip_stack_t *ipst) 6255 { 6256 mblk_t *mp; 6257 ipha_t *ipha; 6258 ill_t *ill; 6259 ipsec_in_t *ii; 6260 6261 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6262 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6263 6264 mp = ipsec_mp->b_cont; 6265 ipsec_mp->b_cont = NULL; 6266 ipha = (ipha_t *)mp->b_rptr; 6267 /* Get ill from index in ipsec_in_t. */ 6268 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6269 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6270 ipst); 6271 if (ill != NULL) { 6272 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6273 if (ip_fanout_send_icmp(q, mp, flags, 6274 ICMP_DEST_UNREACHABLE, 6275 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6276 BUMP_MIB(ill->ill_ip_mib, 6277 ipIfStatsInUnknownProtos); 6278 } 6279 } else { 6280 if (ip_fanout_send_icmp_v6(q, mp, flags, 6281 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6282 0, B_FALSE, zoneid, ipst)) { 6283 BUMP_MIB(ill->ill_ip_mib, 6284 ipIfStatsInUnknownProtos); 6285 } 6286 } 6287 ill_refrele(ill); 6288 } else { /* re-link for the freemsg() below. */ 6289 ipsec_mp->b_cont = mp; 6290 } 6291 6292 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6293 freemsg(ipsec_mp); 6294 } 6295 6296 /* 6297 * See if the inbound datagram has had IPsec processing applied to it. 6298 */ 6299 boolean_t 6300 ipsec_in_is_secure(mblk_t *ipsec_mp) 6301 { 6302 ipsec_in_t *ii; 6303 6304 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6305 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6306 6307 if (ii->ipsec_in_loopback) { 6308 return (ii->ipsec_in_secure); 6309 } else { 6310 return (ii->ipsec_in_ah_sa != NULL || 6311 ii->ipsec_in_esp_sa != NULL || 6312 ii->ipsec_in_decaps); 6313 } 6314 } 6315 6316 /* 6317 * Handle protocols with which IP is less intimate. There 6318 * can be more than one stream bound to a particular 6319 * protocol. When this is the case, normally each one gets a copy 6320 * of any incoming packets. 6321 * 6322 * IPsec NOTE : 6323 * 6324 * Don't allow a secure packet going up a non-secure connection. 6325 * We don't allow this because 6326 * 6327 * 1) Reply might go out in clear which will be dropped at 6328 * the sending side. 6329 * 2) If the reply goes out in clear it will give the 6330 * adversary enough information for getting the key in 6331 * most of the cases. 6332 * 6333 * Moreover getting a secure packet when we expect clear 6334 * implies that SA's were added without checking for 6335 * policy on both ends. This should not happen once ISAKMP 6336 * is used to negotiate SAs as SAs will be added only after 6337 * verifying the policy. 6338 * 6339 * IPQoS Notes: 6340 * Once we have determined the client, invoke IPPF processing. 6341 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6342 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6343 * ip_policy will be false. 6344 * 6345 * Zones notes: 6346 * Currently only applications in the global zone can create raw sockets for 6347 * protocols other than ICMP. So unlike the broadcast / multicast case of 6348 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6349 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6350 */ 6351 static void 6352 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6353 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6354 zoneid_t zoneid) 6355 { 6356 queue_t *rq; 6357 mblk_t *mp1, *first_mp1; 6358 uint_t protocol = ipha->ipha_protocol; 6359 ipaddr_t dst; 6360 mblk_t *first_mp = mp; 6361 boolean_t secure; 6362 uint32_t ill_index; 6363 conn_t *connp, *first_connp, *next_connp; 6364 connf_t *connfp; 6365 boolean_t shared_addr; 6366 mib2_ipIfStatsEntry_t *mibptr; 6367 ip_stack_t *ipst = recv_ill->ill_ipst; 6368 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6369 6370 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6371 if (mctl_present) { 6372 mp = first_mp->b_cont; 6373 secure = ipsec_in_is_secure(first_mp); 6374 ASSERT(mp != NULL); 6375 } else { 6376 secure = B_FALSE; 6377 } 6378 dst = ipha->ipha_dst; 6379 shared_addr = (zoneid == ALL_ZONES); 6380 if (shared_addr) { 6381 /* 6382 * We don't allow multilevel ports for raw IP, so no need to 6383 * check for that here. 6384 */ 6385 zoneid = tsol_packet_to_zoneid(mp); 6386 } 6387 6388 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6389 mutex_enter(&connfp->connf_lock); 6390 connp = connfp->connf_head; 6391 for (connp = connfp->connf_head; connp != NULL; 6392 connp = connp->conn_next) { 6393 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6394 zoneid) && 6395 (!is_system_labeled() || 6396 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6397 connp))) { 6398 break; 6399 } 6400 } 6401 6402 if (connp == NULL) { 6403 /* 6404 * No one bound to these addresses. Is 6405 * there a client that wants all 6406 * unclaimed datagrams? 6407 */ 6408 mutex_exit(&connfp->connf_lock); 6409 /* 6410 * Check for IPPROTO_ENCAP... 6411 */ 6412 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6413 /* 6414 * If an IPsec mblk is here on a multicast 6415 * tunnel (using ip_mroute stuff), check policy here, 6416 * THEN ship off to ip_mroute_decap(). 6417 * 6418 * BTW, If I match a configured IP-in-IP 6419 * tunnel, this path will not be reached, and 6420 * ip_mroute_decap will never be called. 6421 */ 6422 first_mp = ipsec_check_global_policy(first_mp, connp, 6423 ipha, NULL, mctl_present, ipst->ips_netstack); 6424 if (first_mp != NULL) { 6425 if (mctl_present) 6426 freeb(first_mp); 6427 ip_mroute_decap(q, mp, ill); 6428 } /* Else we already freed everything! */ 6429 } else { 6430 /* 6431 * Otherwise send an ICMP protocol unreachable. 6432 */ 6433 if (ip_fanout_send_icmp(q, first_mp, flags, 6434 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6435 mctl_present, zoneid, ipst)) { 6436 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6437 } 6438 } 6439 return; 6440 } 6441 6442 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 6443 6444 CONN_INC_REF(connp); 6445 first_connp = connp; 6446 connp = connp->conn_next; 6447 6448 for (;;) { 6449 while (connp != NULL) { 6450 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6451 flags, zoneid) && 6452 (!is_system_labeled() || 6453 tsol_receive_local(mp, &dst, IPV4_VERSION, 6454 shared_addr, connp))) 6455 break; 6456 connp = connp->conn_next; 6457 } 6458 6459 /* 6460 * Copy the packet. 6461 */ 6462 if (connp == NULL || 6463 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6464 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6465 /* 6466 * No more interested clients or memory 6467 * allocation failed 6468 */ 6469 connp = first_connp; 6470 break; 6471 } 6472 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 6473 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6474 CONN_INC_REF(connp); 6475 mutex_exit(&connfp->connf_lock); 6476 rq = connp->conn_rq; 6477 6478 /* 6479 * Check flow control 6480 */ 6481 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6482 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6483 if (flags & IP_FF_RAWIP) { 6484 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6485 } else { 6486 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6487 } 6488 6489 freemsg(first_mp1); 6490 } else { 6491 /* 6492 * Enforce policy like any other conn_t. Note that 6493 * IP-in-IP packets don't come through here, but 6494 * through ip_iptun_input() or 6495 * icmp_inbound_iptun_fanout(). IPsec policy for such 6496 * packets is enforced in the iptun module. 6497 */ 6498 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6499 secure) { 6500 first_mp1 = ipsec_check_inbound_policy 6501 (first_mp1, connp, ipha, NULL, 6502 mctl_present); 6503 } 6504 if (first_mp1 != NULL) { 6505 int in_flags = 0; 6506 /* 6507 * ip_fanout_proto also gets called from 6508 * icmp_inbound_error_fanout, in which case 6509 * the msg type is M_CTL. Don't add info 6510 * in this case for the time being. In future 6511 * when there is a need for knowing the 6512 * inbound iface index for ICMP error msgs, 6513 * then this can be changed. 6514 */ 6515 if (connp->conn_recvif) 6516 in_flags = IPF_RECVIF; 6517 /* 6518 * The ULP may support IP_RECVPKTINFO for both 6519 * IP v4 and v6 so pass the appropriate argument 6520 * based on conn IP version. 6521 */ 6522 if (connp->conn_ip_recvpktinfo) { 6523 if (connp->conn_af_isv6) { 6524 /* 6525 * V6 only needs index 6526 */ 6527 in_flags |= IPF_RECVIF; 6528 } else { 6529 /* 6530 * V4 needs index + 6531 * matching address. 6532 */ 6533 in_flags |= IPF_RECVADDR; 6534 } 6535 } 6536 if ((in_flags != 0) && 6537 (mp->b_datap->db_type != M_CTL)) { 6538 /* 6539 * the actual data will be 6540 * contained in b_cont upon 6541 * successful return of the 6542 * following call else 6543 * original mblk is returned 6544 */ 6545 ASSERT(recv_ill != NULL); 6546 mp1 = ip_add_info(mp1, recv_ill, 6547 in_flags, IPCL_ZONEID(connp), ipst); 6548 } 6549 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6550 if (mctl_present) 6551 freeb(first_mp1); 6552 (connp->conn_recv)(connp, mp1, NULL); 6553 } 6554 } 6555 mutex_enter(&connfp->connf_lock); 6556 /* Follow the next pointer before releasing the conn. */ 6557 next_connp = connp->conn_next; 6558 CONN_DEC_REF(connp); 6559 connp = next_connp; 6560 } 6561 6562 /* Last one. Send it upstream. */ 6563 mutex_exit(&connfp->connf_lock); 6564 6565 /* 6566 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6567 * will be set to false. 6568 */ 6569 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6570 ill_index = ill->ill_phyint->phyint_ifindex; 6571 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6572 if (mp == NULL) { 6573 CONN_DEC_REF(connp); 6574 if (mctl_present) { 6575 freeb(first_mp); 6576 } 6577 return; 6578 } 6579 } 6580 6581 rq = connp->conn_rq; 6582 /* 6583 * Check flow control 6584 */ 6585 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6586 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6587 if (flags & IP_FF_RAWIP) { 6588 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6589 } else { 6590 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6591 } 6592 6593 freemsg(first_mp); 6594 } else { 6595 ASSERT(!IPCL_IS_IPTUN(connp)); 6596 6597 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6598 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6599 ipha, NULL, mctl_present); 6600 } 6601 6602 if (first_mp != NULL) { 6603 int in_flags = 0; 6604 6605 /* 6606 * ip_fanout_proto also gets called 6607 * from icmp_inbound_error_fanout, in 6608 * which case the msg type is M_CTL. 6609 * Don't add info in this case for time 6610 * being. In future when there is a 6611 * need for knowing the inbound iface 6612 * index for ICMP error msgs, then this 6613 * can be changed 6614 */ 6615 if (connp->conn_recvif) 6616 in_flags = IPF_RECVIF; 6617 if (connp->conn_ip_recvpktinfo) { 6618 if (connp->conn_af_isv6) { 6619 /* 6620 * V6 only needs index 6621 */ 6622 in_flags |= IPF_RECVIF; 6623 } else { 6624 /* 6625 * V4 needs index + 6626 * matching address. 6627 */ 6628 in_flags |= IPF_RECVADDR; 6629 } 6630 } 6631 if ((in_flags != 0) && 6632 (mp->b_datap->db_type != M_CTL)) { 6633 6634 /* 6635 * the actual data will be contained in 6636 * b_cont upon successful return 6637 * of the following call else original 6638 * mblk is returned 6639 */ 6640 ASSERT(recv_ill != NULL); 6641 mp = ip_add_info(mp, recv_ill, 6642 in_flags, IPCL_ZONEID(connp), ipst); 6643 } 6644 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6645 (connp->conn_recv)(connp, mp, NULL); 6646 if (mctl_present) 6647 freeb(first_mp); 6648 } 6649 } 6650 CONN_DEC_REF(connp); 6651 } 6652 6653 /* 6654 * Serialize tcp resets by calling tcp_xmit_reset_serialize through 6655 * SQUEUE_ENTER_ONE(SQ_FILL). We do this to ensure the reset is handled on 6656 * the correct squeue, in this case the same squeue as a valid listener with 6657 * no current connection state for the packet we are processing. The function 6658 * is called for synchronizing both IPv4 and IPv6. 6659 */ 6660 void 6661 ip_xmit_reset_serialize(mblk_t *mp, int hdrlen, zoneid_t zoneid, 6662 tcp_stack_t *tcps, conn_t *connp) 6663 { 6664 mblk_t *rst_mp; 6665 tcp_xmit_reset_event_t *eventp; 6666 6667 rst_mp = allocb(sizeof (tcp_xmit_reset_event_t), BPRI_HI); 6668 6669 if (rst_mp == NULL) { 6670 freemsg(mp); 6671 return; 6672 } 6673 6674 rst_mp->b_datap->db_type = M_PROTO; 6675 rst_mp->b_wptr += sizeof (tcp_xmit_reset_event_t); 6676 6677 eventp = (tcp_xmit_reset_event_t *)rst_mp->b_rptr; 6678 eventp->tcp_xre_event = TCP_XRE_EVENT_IP_FANOUT_TCP; 6679 eventp->tcp_xre_iphdrlen = hdrlen; 6680 eventp->tcp_xre_zoneid = zoneid; 6681 eventp->tcp_xre_tcps = tcps; 6682 6683 rst_mp->b_cont = mp; 6684 mp = rst_mp; 6685 6686 /* 6687 * Increment the connref, this ref will be released by the squeue 6688 * framework. 6689 */ 6690 CONN_INC_REF(connp); 6691 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_xmit_reset, connp, 6692 SQ_FILL, SQTAG_XMIT_EARLY_RESET); 6693 } 6694 6695 /* 6696 * Fanout for TCP packets 6697 * The caller puts <fport, lport> in the ports parameter. 6698 * 6699 * IPQoS Notes 6700 * Before sending it to the client, invoke IPPF processing. 6701 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6702 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6703 * ip_policy is false. 6704 */ 6705 static void 6706 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6707 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6708 { 6709 mblk_t *first_mp; 6710 boolean_t secure; 6711 uint32_t ill_index; 6712 int ip_hdr_len; 6713 tcph_t *tcph; 6714 boolean_t syn_present = B_FALSE; 6715 conn_t *connp; 6716 ip_stack_t *ipst = recv_ill->ill_ipst; 6717 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6718 6719 ASSERT(recv_ill != NULL); 6720 6721 first_mp = mp; 6722 if (mctl_present) { 6723 ASSERT(first_mp->b_datap->db_type == M_CTL); 6724 mp = first_mp->b_cont; 6725 secure = ipsec_in_is_secure(first_mp); 6726 ASSERT(mp != NULL); 6727 } else { 6728 secure = B_FALSE; 6729 } 6730 6731 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6732 6733 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6734 zoneid, ipst)) == NULL) { 6735 /* 6736 * No connected connection or listener. Send a 6737 * TH_RST via tcp_xmit_listeners_reset. 6738 */ 6739 6740 /* Initiate IPPf processing, if needed. */ 6741 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6742 uint32_t ill_index; 6743 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6744 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6745 if (first_mp == NULL) 6746 return; 6747 } 6748 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6749 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6750 zoneid)); 6751 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6752 ipst->ips_netstack->netstack_tcp, NULL); 6753 return; 6754 } 6755 6756 /* 6757 * Allocate the SYN for the TCP connection here itself 6758 */ 6759 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6760 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6761 if (IPCL_IS_TCP(connp)) { 6762 squeue_t *sqp; 6763 6764 /* 6765 * If the queue belongs to a conn, and fused tcp 6766 * loopback is enabled, assign the eager's squeue 6767 * to be that of the active connect's. Note that 6768 * we don't check for IP_FF_LOOPBACK here since this 6769 * routine gets called only for loopback (unlike the 6770 * IPv6 counterpart). 6771 */ 6772 if (do_tcp_fusion && 6773 CONN_Q(q) && IPCL_IS_TCP(Q_TO_CONN(q)) && 6774 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6775 !secure && 6776 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy) { 6777 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6778 sqp = Q_TO_CONN(q)->conn_sqp; 6779 } else { 6780 sqp = IP_SQUEUE_GET(lbolt); 6781 } 6782 6783 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6784 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6785 syn_present = B_TRUE; 6786 } 6787 } 6788 6789 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6790 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6791 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6792 if ((flags & TH_RST) || (flags & TH_URG)) { 6793 CONN_DEC_REF(connp); 6794 freemsg(first_mp); 6795 return; 6796 } 6797 if (flags & TH_ACK) { 6798 ip_xmit_reset_serialize(first_mp, ip_hdr_len, zoneid, 6799 ipst->ips_netstack->netstack_tcp, connp); 6800 CONN_DEC_REF(connp); 6801 return; 6802 } 6803 6804 CONN_DEC_REF(connp); 6805 freemsg(first_mp); 6806 return; 6807 } 6808 6809 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6810 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6811 NULL, mctl_present); 6812 if (first_mp == NULL) { 6813 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6814 CONN_DEC_REF(connp); 6815 return; 6816 } 6817 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6818 ASSERT(syn_present); 6819 if (mctl_present) { 6820 ASSERT(first_mp != mp); 6821 first_mp->b_datap->db_struioflag |= 6822 STRUIO_POLICY; 6823 } else { 6824 ASSERT(first_mp == mp); 6825 mp->b_datap->db_struioflag &= 6826 ~STRUIO_EAGER; 6827 mp->b_datap->db_struioflag |= 6828 STRUIO_POLICY; 6829 } 6830 } else { 6831 /* 6832 * Discard first_mp early since we're dealing with a 6833 * fully-connected conn_t and tcp doesn't do policy in 6834 * this case. 6835 */ 6836 if (mctl_present) { 6837 freeb(first_mp); 6838 mctl_present = B_FALSE; 6839 } 6840 first_mp = mp; 6841 } 6842 } 6843 6844 /* 6845 * Initiate policy processing here if needed. If we get here from 6846 * icmp_inbound_error_fanout, ip_policy is false. 6847 */ 6848 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6849 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6850 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6851 if (mp == NULL) { 6852 CONN_DEC_REF(connp); 6853 if (mctl_present) 6854 freeb(first_mp); 6855 return; 6856 } else if (mctl_present) { 6857 ASSERT(first_mp != mp); 6858 first_mp->b_cont = mp; 6859 } else { 6860 first_mp = mp; 6861 } 6862 } 6863 6864 /* Handle socket options. */ 6865 if (!syn_present && 6866 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6867 /* Add header */ 6868 ASSERT(recv_ill != NULL); 6869 /* 6870 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6871 * IPF_RECVIF. 6872 */ 6873 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6874 ipst); 6875 if (mp == NULL) { 6876 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6877 CONN_DEC_REF(connp); 6878 if (mctl_present) 6879 freeb(first_mp); 6880 return; 6881 } else if (mctl_present) { 6882 /* 6883 * ip_add_info might return a new mp. 6884 */ 6885 ASSERT(first_mp != mp); 6886 first_mp->b_cont = mp; 6887 } else { 6888 first_mp = mp; 6889 } 6890 } 6891 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6892 if (IPCL_IS_TCP(connp)) { 6893 /* do not drain, certain use cases can blow the stack */ 6894 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, connp->conn_recv, 6895 connp, SQ_NODRAIN, SQTAG_IP_FANOUT_TCP); 6896 } else { 6897 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6898 (connp->conn_recv)(connp, first_mp, NULL); 6899 CONN_DEC_REF(connp); 6900 } 6901 } 6902 6903 /* 6904 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6905 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6906 * is not consumed. 6907 * 6908 * One of four things can happen, all of which affect the passed-in mblk: 6909 * 6910 * 1.) ICMP messages that go through here just get returned TRUE. 6911 * 6912 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6913 * 6914 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6915 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6916 * 6917 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6918 */ 6919 static boolean_t 6920 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6921 ipsec_stack_t *ipss) 6922 { 6923 int shift, plen, iph_len; 6924 ipha_t *ipha; 6925 udpha_t *udpha; 6926 uint32_t *spi; 6927 uint32_t esp_ports; 6928 uint8_t *orptr; 6929 boolean_t free_ire; 6930 6931 if (DB_TYPE(mp) == M_CTL) { 6932 /* 6933 * ICMP message with UDP inside. Don't bother stripping, just 6934 * send it up. 6935 * 6936 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6937 * to ignore errors set by ICMP anyway ('cause they might be 6938 * forged), but that's the app's decision, not ours. 6939 */ 6940 6941 /* Bunch of reality checks for DEBUG kernels... */ 6942 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6943 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6944 6945 return (B_TRUE); 6946 } 6947 6948 ipha = (ipha_t *)mp->b_rptr; 6949 iph_len = IPH_HDR_LENGTH(ipha); 6950 plen = ntohs(ipha->ipha_length); 6951 6952 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6953 /* 6954 * Most likely a keepalive for the benefit of an intervening 6955 * NAT. These aren't for us, per se, so drop it. 6956 * 6957 * RFC 3947/8 doesn't say for sure what to do for 2-3 6958 * byte packets (keepalives are 1-byte), but we'll drop them 6959 * also. 6960 */ 6961 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6962 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6963 return (B_FALSE); 6964 } 6965 6966 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6967 /* might as well pull it all up - it might be ESP. */ 6968 if (!pullupmsg(mp, -1)) { 6969 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6970 DROPPER(ipss, ipds_esp_nomem), 6971 &ipss->ipsec_dropper); 6972 return (B_FALSE); 6973 } 6974 6975 ipha = (ipha_t *)mp->b_rptr; 6976 } 6977 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6978 if (*spi == 0) { 6979 /* UDP packet - remove 0-spi. */ 6980 shift = sizeof (uint32_t); 6981 } else { 6982 /* ESP-in-UDP packet - reduce to ESP. */ 6983 ipha->ipha_protocol = IPPROTO_ESP; 6984 shift = sizeof (udpha_t); 6985 } 6986 6987 /* Fix IP header */ 6988 ipha->ipha_length = htons(plen - shift); 6989 ipha->ipha_hdr_checksum = 0; 6990 6991 orptr = mp->b_rptr; 6992 mp->b_rptr += shift; 6993 6994 udpha = (udpha_t *)(orptr + iph_len); 6995 if (*spi == 0) { 6996 ASSERT((uint8_t *)ipha == orptr); 6997 udpha->uha_length = htons(plen - shift - iph_len); 6998 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 6999 esp_ports = 0; 7000 } else { 7001 esp_ports = *((uint32_t *)udpha); 7002 ASSERT(esp_ports != 0); 7003 } 7004 ovbcopy(orptr, orptr + shift, iph_len); 7005 if (esp_ports != 0) /* Punt up for ESP processing. */ { 7006 ipha = (ipha_t *)(orptr + shift); 7007 7008 free_ire = (ire == NULL); 7009 if (free_ire) { 7010 /* Re-acquire ire. */ 7011 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 7012 ipss->ipsec_netstack->netstack_ip); 7013 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 7014 if (ire != NULL) 7015 ire_refrele(ire); 7016 /* 7017 * Do a regular freemsg(), as this is an IP 7018 * error (no local route) not an IPsec one. 7019 */ 7020 freemsg(mp); 7021 } 7022 } 7023 7024 ip_proto_input(q, mp, ipha, ire, recv_ill, esp_ports); 7025 if (free_ire) 7026 ire_refrele(ire); 7027 } 7028 7029 return (esp_ports == 0); 7030 } 7031 7032 /* 7033 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 7034 * We are responsible for disposing of mp, such as by freemsg() or putnext() 7035 * Caller is responsible for dropping references to the conn, and freeing 7036 * first_mp. 7037 * 7038 * IPQoS Notes 7039 * Before sending it to the client, invoke IPPF processing. Policy processing 7040 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 7041 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 7042 * ip_wput_local, ip_policy is false. 7043 */ 7044 static void 7045 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 7046 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 7047 boolean_t ip_policy) 7048 { 7049 boolean_t mctl_present = (first_mp != NULL); 7050 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 7051 uint32_t ill_index; 7052 ip_stack_t *ipst = recv_ill->ill_ipst; 7053 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 7054 7055 ASSERT(ill != NULL); 7056 7057 if (mctl_present) 7058 first_mp->b_cont = mp; 7059 else 7060 first_mp = mp; 7061 7062 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 7063 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 7064 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7065 freemsg(first_mp); 7066 return; 7067 } 7068 7069 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7070 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7071 NULL, mctl_present); 7072 /* Freed by ipsec_check_inbound_policy(). */ 7073 if (first_mp == NULL) { 7074 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7075 return; 7076 } 7077 } 7078 if (mctl_present) 7079 freeb(first_mp); 7080 7081 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7082 if (connp->conn_udp->udp_nat_t_endpoint) { 7083 if (mctl_present) { 7084 /* mctl_present *shouldn't* happen. */ 7085 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7086 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7087 &ipss->ipsec_dropper); 7088 return; 7089 } 7090 7091 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7092 return; 7093 } 7094 7095 /* Handle options. */ 7096 if (connp->conn_recvif) 7097 in_flags = IPF_RECVIF; 7098 /* 7099 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7100 * passed to ip_add_info is based on IP version of connp. 7101 */ 7102 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7103 if (connp->conn_af_isv6) { 7104 /* 7105 * V6 only needs index 7106 */ 7107 in_flags |= IPF_RECVIF; 7108 } else { 7109 /* 7110 * V4 needs index + matching address. 7111 */ 7112 in_flags |= IPF_RECVADDR; 7113 } 7114 } 7115 7116 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7117 in_flags |= IPF_RECVSLLA; 7118 7119 /* 7120 * Initiate IPPF processing here, if needed. Note first_mp won't be 7121 * freed if the packet is dropped. The caller will do so. 7122 */ 7123 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7124 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7125 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7126 if (mp == NULL) { 7127 return; 7128 } 7129 } 7130 if ((in_flags != 0) && 7131 (mp->b_datap->db_type != M_CTL)) { 7132 /* 7133 * The actual data will be contained in b_cont 7134 * upon successful return of the following call 7135 * else original mblk is returned 7136 */ 7137 ASSERT(recv_ill != NULL); 7138 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7139 ipst); 7140 } 7141 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7142 /* Send it upstream */ 7143 (connp->conn_recv)(connp, mp, NULL); 7144 } 7145 7146 /* 7147 * Fanout for UDP packets. 7148 * The caller puts <fport, lport> in the ports parameter. 7149 * 7150 * If SO_REUSEADDR is set all multicast and broadcast packets 7151 * will be delivered to all streams bound to the same port. 7152 * 7153 * Zones notes: 7154 * Multicast and broadcast packets will be distributed to streams in all zones. 7155 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7156 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7157 * packets. To maintain this behavior with multiple zones, the conns are grouped 7158 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7159 * each zone. If unset, all the following conns in the same zone are skipped. 7160 */ 7161 static void 7162 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7163 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7164 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7165 { 7166 uint32_t dstport, srcport; 7167 ipaddr_t dst; 7168 mblk_t *first_mp; 7169 boolean_t secure; 7170 in6_addr_t v6src; 7171 conn_t *connp; 7172 connf_t *connfp; 7173 conn_t *first_connp; 7174 conn_t *next_connp; 7175 mblk_t *mp1, *first_mp1; 7176 ipaddr_t src; 7177 zoneid_t last_zoneid; 7178 boolean_t reuseaddr; 7179 boolean_t shared_addr; 7180 boolean_t unlabeled; 7181 ip_stack_t *ipst; 7182 7183 ASSERT(recv_ill != NULL); 7184 ipst = recv_ill->ill_ipst; 7185 7186 first_mp = mp; 7187 if (mctl_present) { 7188 mp = first_mp->b_cont; 7189 first_mp->b_cont = NULL; 7190 secure = ipsec_in_is_secure(first_mp); 7191 ASSERT(mp != NULL); 7192 } else { 7193 first_mp = NULL; 7194 secure = B_FALSE; 7195 } 7196 7197 /* Extract ports in net byte order */ 7198 dstport = htons(ntohl(ports) & 0xFFFF); 7199 srcport = htons(ntohl(ports) >> 16); 7200 dst = ipha->ipha_dst; 7201 src = ipha->ipha_src; 7202 7203 unlabeled = B_FALSE; 7204 if (is_system_labeled()) 7205 /* Cred cannot be null on IPv4 */ 7206 unlabeled = (msg_getlabel(mp)->tsl_flags & 7207 TSLF_UNLABELED) != 0; 7208 shared_addr = (zoneid == ALL_ZONES); 7209 if (shared_addr) { 7210 /* 7211 * No need to handle exclusive-stack zones since ALL_ZONES 7212 * only applies to the shared stack. 7213 */ 7214 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7215 /* 7216 * If no shared MLP is found, tsol_mlp_findzone returns 7217 * ALL_ZONES. In that case, we assume it's SLP, and 7218 * search for the zone based on the packet label. 7219 * 7220 * If there is such a zone, we prefer to find a 7221 * connection in it. Otherwise, we look for a 7222 * MAC-exempt connection in any zone whose label 7223 * dominates the default label on the packet. 7224 */ 7225 if (zoneid == ALL_ZONES) 7226 zoneid = tsol_packet_to_zoneid(mp); 7227 else 7228 unlabeled = B_FALSE; 7229 } 7230 7231 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7232 mutex_enter(&connfp->connf_lock); 7233 connp = connfp->connf_head; 7234 if (!broadcast && !CLASSD(dst)) { 7235 /* 7236 * Not broadcast or multicast. Send to the one (first) 7237 * client we find. No need to check conn_wantpacket() 7238 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7239 * IPv4 unicast packets. 7240 */ 7241 while ((connp != NULL) && 7242 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7243 (!IPCL_ZONE_MATCH(connp, zoneid) && 7244 !(unlabeled && (connp->conn_mac_mode != CONN_MAC_DEFAULT) && 7245 shared_addr)))) { 7246 /* 7247 * We keep searching since the conn did not match, 7248 * or its zone did not match and it is not either 7249 * an allzones conn or a mac exempt conn (if the 7250 * sender is unlabeled.) 7251 */ 7252 connp = connp->conn_next; 7253 } 7254 7255 if (connp == NULL || 7256 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7257 goto notfound; 7258 7259 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7260 7261 if (is_system_labeled() && 7262 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7263 connp)) 7264 goto notfound; 7265 7266 CONN_INC_REF(connp); 7267 mutex_exit(&connfp->connf_lock); 7268 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7269 flags, recv_ill, ip_policy); 7270 IP_STAT(ipst, ip_udp_fannorm); 7271 CONN_DEC_REF(connp); 7272 return; 7273 } 7274 7275 /* 7276 * Broadcast and multicast case 7277 * 7278 * Need to check conn_wantpacket(). 7279 * If SO_REUSEADDR has been set on the first we send the 7280 * packet to all clients that have joined the group and 7281 * match the port. 7282 */ 7283 7284 while (connp != NULL) { 7285 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7286 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7287 (!is_system_labeled() || 7288 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7289 connp))) 7290 break; 7291 connp = connp->conn_next; 7292 } 7293 7294 if (connp == NULL || 7295 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7296 goto notfound; 7297 7298 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7299 7300 first_connp = connp; 7301 /* 7302 * When SO_REUSEADDR is not set, send the packet only to the first 7303 * matching connection in its zone by keeping track of the zoneid. 7304 */ 7305 reuseaddr = first_connp->conn_reuseaddr; 7306 last_zoneid = first_connp->conn_zoneid; 7307 7308 CONN_INC_REF(connp); 7309 connp = connp->conn_next; 7310 for (;;) { 7311 while (connp != NULL) { 7312 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7313 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7314 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7315 (!is_system_labeled() || 7316 tsol_receive_local(mp, &dst, IPV4_VERSION, 7317 shared_addr, connp))) 7318 break; 7319 connp = connp->conn_next; 7320 } 7321 /* 7322 * Just copy the data part alone. The mctl part is 7323 * needed just for verifying policy and it is never 7324 * sent up. 7325 */ 7326 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7327 ((mp1 = copymsg(mp)) == NULL))) { 7328 /* 7329 * No more interested clients or memory 7330 * allocation failed 7331 */ 7332 connp = first_connp; 7333 break; 7334 } 7335 if (connp->conn_zoneid != last_zoneid) { 7336 /* 7337 * Update the zoneid so that the packet isn't sent to 7338 * any more conns in the same zone unless SO_REUSEADDR 7339 * is set. 7340 */ 7341 reuseaddr = connp->conn_reuseaddr; 7342 last_zoneid = connp->conn_zoneid; 7343 } 7344 if (first_mp != NULL) { 7345 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7346 ipsec_info_type == IPSEC_IN); 7347 first_mp1 = ipsec_in_tag(first_mp, NULL, 7348 ipst->ips_netstack); 7349 if (first_mp1 == NULL) { 7350 freemsg(mp1); 7351 connp = first_connp; 7352 break; 7353 } 7354 } else { 7355 first_mp1 = NULL; 7356 } 7357 CONN_INC_REF(connp); 7358 mutex_exit(&connfp->connf_lock); 7359 /* 7360 * IPQoS notes: We don't send the packet for policy 7361 * processing here, will do it for the last one (below). 7362 * i.e. we do it per-packet now, but if we do policy 7363 * processing per-conn, then we would need to do it 7364 * here too. 7365 */ 7366 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7367 ipha, flags, recv_ill, B_FALSE); 7368 mutex_enter(&connfp->connf_lock); 7369 /* Follow the next pointer before releasing the conn. */ 7370 next_connp = connp->conn_next; 7371 IP_STAT(ipst, ip_udp_fanmb); 7372 CONN_DEC_REF(connp); 7373 connp = next_connp; 7374 } 7375 7376 /* Last one. Send it upstream. */ 7377 mutex_exit(&connfp->connf_lock); 7378 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7379 recv_ill, ip_policy); 7380 IP_STAT(ipst, ip_udp_fanmb); 7381 CONN_DEC_REF(connp); 7382 return; 7383 7384 notfound: 7385 7386 mutex_exit(&connfp->connf_lock); 7387 IP_STAT(ipst, ip_udp_fanothers); 7388 /* 7389 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7390 * have already been matched above, since they live in the IPv4 7391 * fanout tables. This implies we only need to 7392 * check for IPv6 in6addr_any endpoints here. 7393 * Thus we compare using ipv6_all_zeros instead of the destination 7394 * address, except for the multicast group membership lookup which 7395 * uses the IPv4 destination. 7396 */ 7397 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7398 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7399 mutex_enter(&connfp->connf_lock); 7400 connp = connfp->connf_head; 7401 if (!broadcast && !CLASSD(dst)) { 7402 while (connp != NULL) { 7403 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7404 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7405 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7406 !connp->conn_ipv6_v6only) 7407 break; 7408 connp = connp->conn_next; 7409 } 7410 7411 if (connp != NULL && is_system_labeled() && 7412 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7413 connp)) 7414 connp = NULL; 7415 7416 if (connp == NULL || 7417 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7418 /* 7419 * No one bound to this port. Is 7420 * there a client that wants all 7421 * unclaimed datagrams? 7422 */ 7423 mutex_exit(&connfp->connf_lock); 7424 7425 if (mctl_present) 7426 first_mp->b_cont = mp; 7427 else 7428 first_mp = mp; 7429 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7430 connf_head != NULL) { 7431 ip_fanout_proto(q, first_mp, ill, ipha, 7432 flags | IP_FF_RAWIP, mctl_present, 7433 ip_policy, recv_ill, zoneid); 7434 } else { 7435 if (ip_fanout_send_icmp(q, first_mp, flags, 7436 ICMP_DEST_UNREACHABLE, 7437 ICMP_PORT_UNREACHABLE, 7438 mctl_present, zoneid, ipst)) { 7439 BUMP_MIB(ill->ill_ip_mib, 7440 udpIfStatsNoPorts); 7441 } 7442 } 7443 return; 7444 } 7445 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7446 7447 CONN_INC_REF(connp); 7448 mutex_exit(&connfp->connf_lock); 7449 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7450 flags, recv_ill, ip_policy); 7451 CONN_DEC_REF(connp); 7452 return; 7453 } 7454 /* 7455 * IPv4 multicast packet being delivered to an AF_INET6 7456 * in6addr_any endpoint. 7457 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7458 * and not conn_wantpacket_v6() since any multicast membership is 7459 * for an IPv4-mapped multicast address. 7460 * The packet is sent to all clients in all zones that have joined the 7461 * group and match the port. 7462 */ 7463 while (connp != NULL) { 7464 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7465 srcport, v6src) && 7466 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7467 (!is_system_labeled() || 7468 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7469 connp))) 7470 break; 7471 connp = connp->conn_next; 7472 } 7473 7474 if (connp == NULL || 7475 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7476 /* 7477 * No one bound to this port. Is 7478 * there a client that wants all 7479 * unclaimed datagrams? 7480 */ 7481 mutex_exit(&connfp->connf_lock); 7482 7483 if (mctl_present) 7484 first_mp->b_cont = mp; 7485 else 7486 first_mp = mp; 7487 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7488 NULL) { 7489 ip_fanout_proto(q, first_mp, ill, ipha, 7490 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7491 recv_ill, zoneid); 7492 } else { 7493 /* 7494 * We used to attempt to send an icmp error here, but 7495 * since this is known to be a multicast packet 7496 * and we don't send icmp errors in response to 7497 * multicast, just drop the packet and give up sooner. 7498 */ 7499 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7500 freemsg(first_mp); 7501 } 7502 return; 7503 } 7504 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7505 7506 first_connp = connp; 7507 7508 CONN_INC_REF(connp); 7509 connp = connp->conn_next; 7510 for (;;) { 7511 while (connp != NULL) { 7512 if (IPCL_UDP_MATCH_V6(connp, dstport, 7513 ipv6_all_zeros, srcport, v6src) && 7514 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7515 (!is_system_labeled() || 7516 tsol_receive_local(mp, &dst, IPV4_VERSION, 7517 shared_addr, connp))) 7518 break; 7519 connp = connp->conn_next; 7520 } 7521 /* 7522 * Just copy the data part alone. The mctl part is 7523 * needed just for verifying policy and it is never 7524 * sent up. 7525 */ 7526 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7527 ((mp1 = copymsg(mp)) == NULL))) { 7528 /* 7529 * No more intested clients or memory 7530 * allocation failed 7531 */ 7532 connp = first_connp; 7533 break; 7534 } 7535 if (first_mp != NULL) { 7536 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7537 ipsec_info_type == IPSEC_IN); 7538 first_mp1 = ipsec_in_tag(first_mp, NULL, 7539 ipst->ips_netstack); 7540 if (first_mp1 == NULL) { 7541 freemsg(mp1); 7542 connp = first_connp; 7543 break; 7544 } 7545 } else { 7546 first_mp1 = NULL; 7547 } 7548 CONN_INC_REF(connp); 7549 mutex_exit(&connfp->connf_lock); 7550 /* 7551 * IPQoS notes: We don't send the packet for policy 7552 * processing here, will do it for the last one (below). 7553 * i.e. we do it per-packet now, but if we do policy 7554 * processing per-conn, then we would need to do it 7555 * here too. 7556 */ 7557 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7558 ipha, flags, recv_ill, B_FALSE); 7559 mutex_enter(&connfp->connf_lock); 7560 /* Follow the next pointer before releasing the conn. */ 7561 next_connp = connp->conn_next; 7562 CONN_DEC_REF(connp); 7563 connp = next_connp; 7564 } 7565 7566 /* Last one. Send it upstream. */ 7567 mutex_exit(&connfp->connf_lock); 7568 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7569 recv_ill, ip_policy); 7570 CONN_DEC_REF(connp); 7571 } 7572 7573 /* 7574 * Complete the ip_wput header so that it 7575 * is possible to generate ICMP 7576 * errors. 7577 */ 7578 int 7579 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7580 { 7581 ire_t *ire; 7582 7583 if (ipha->ipha_src == INADDR_ANY) { 7584 ire = ire_lookup_local(zoneid, ipst); 7585 if (ire == NULL) { 7586 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7587 return (1); 7588 } 7589 ipha->ipha_src = ire->ire_addr; 7590 ire_refrele(ire); 7591 } 7592 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7593 ipha->ipha_hdr_checksum = 0; 7594 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7595 return (0); 7596 } 7597 7598 /* 7599 * Nobody should be sending 7600 * packets up this stream 7601 */ 7602 static void 7603 ip_lrput(queue_t *q, mblk_t *mp) 7604 { 7605 mblk_t *mp1; 7606 7607 switch (mp->b_datap->db_type) { 7608 case M_FLUSH: 7609 /* Turn around */ 7610 if (*mp->b_rptr & FLUSHW) { 7611 *mp->b_rptr &= ~FLUSHR; 7612 qreply(q, mp); 7613 return; 7614 } 7615 break; 7616 } 7617 /* Could receive messages that passed through ar_rput */ 7618 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7619 mp1->b_prev = mp1->b_next = NULL; 7620 freemsg(mp); 7621 } 7622 7623 /* Nobody should be sending packets down this stream */ 7624 /* ARGSUSED */ 7625 void 7626 ip_lwput(queue_t *q, mblk_t *mp) 7627 { 7628 freemsg(mp); 7629 } 7630 7631 /* 7632 * Move the first hop in any source route to ipha_dst and remove that part of 7633 * the source route. Called by other protocols. Errors in option formatting 7634 * are ignored - will be handled by ip_wput_options Return the final 7635 * destination (either ipha_dst or the last entry in a source route.) 7636 */ 7637 ipaddr_t 7638 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7639 { 7640 ipoptp_t opts; 7641 uchar_t *opt; 7642 uint8_t optval; 7643 uint8_t optlen; 7644 ipaddr_t dst; 7645 int i; 7646 ire_t *ire; 7647 ip_stack_t *ipst = ns->netstack_ip; 7648 7649 ip2dbg(("ip_massage_options\n")); 7650 dst = ipha->ipha_dst; 7651 for (optval = ipoptp_first(&opts, ipha); 7652 optval != IPOPT_EOL; 7653 optval = ipoptp_next(&opts)) { 7654 opt = opts.ipoptp_cur; 7655 switch (optval) { 7656 uint8_t off; 7657 case IPOPT_SSRR: 7658 case IPOPT_LSRR: 7659 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7660 ip1dbg(("ip_massage_options: bad src route\n")); 7661 break; 7662 } 7663 optlen = opts.ipoptp_len; 7664 off = opt[IPOPT_OFFSET]; 7665 off--; 7666 redo_srr: 7667 if (optlen < IP_ADDR_LEN || 7668 off > optlen - IP_ADDR_LEN) { 7669 /* End of source route */ 7670 ip1dbg(("ip_massage_options: end of SR\n")); 7671 break; 7672 } 7673 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7674 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7675 ntohl(dst))); 7676 /* 7677 * Check if our address is present more than 7678 * once as consecutive hops in source route. 7679 * XXX verify per-interface ip_forwarding 7680 * for source route? 7681 */ 7682 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7683 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7684 if (ire != NULL) { 7685 ire_refrele(ire); 7686 off += IP_ADDR_LEN; 7687 goto redo_srr; 7688 } 7689 if (dst == htonl(INADDR_LOOPBACK)) { 7690 ip1dbg(("ip_massage_options: loopback addr in " 7691 "source route!\n")); 7692 break; 7693 } 7694 /* 7695 * Update ipha_dst to be the first hop and remove the 7696 * first hop from the source route (by overwriting 7697 * part of the option with NOP options). 7698 */ 7699 ipha->ipha_dst = dst; 7700 /* Put the last entry in dst */ 7701 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7702 3; 7703 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7704 7705 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7706 ntohl(dst))); 7707 /* Move down and overwrite */ 7708 opt[IP_ADDR_LEN] = opt[0]; 7709 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7710 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7711 for (i = 0; i < IP_ADDR_LEN; i++) 7712 opt[i] = IPOPT_NOP; 7713 break; 7714 } 7715 } 7716 return (dst); 7717 } 7718 7719 /* 7720 * Return the network mask 7721 * associated with the specified address. 7722 */ 7723 ipaddr_t 7724 ip_net_mask(ipaddr_t addr) 7725 { 7726 uchar_t *up = (uchar_t *)&addr; 7727 ipaddr_t mask = 0; 7728 uchar_t *maskp = (uchar_t *)&mask; 7729 7730 #if defined(__i386) || defined(__amd64) 7731 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7732 #endif 7733 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7734 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7735 #endif 7736 if (CLASSD(addr)) { 7737 maskp[0] = 0xF0; 7738 return (mask); 7739 } 7740 7741 /* We assume Class E default netmask to be 32 */ 7742 if (CLASSE(addr)) 7743 return (0xffffffffU); 7744 7745 if (addr == 0) 7746 return (0); 7747 maskp[0] = 0xFF; 7748 if ((up[0] & 0x80) == 0) 7749 return (mask); 7750 7751 maskp[1] = 0xFF; 7752 if ((up[0] & 0xC0) == 0x80) 7753 return (mask); 7754 7755 maskp[2] = 0xFF; 7756 if ((up[0] & 0xE0) == 0xC0) 7757 return (mask); 7758 7759 /* Otherwise return no mask */ 7760 return ((ipaddr_t)0); 7761 } 7762 7763 /* 7764 * Helper ill lookup function used by IPsec. 7765 */ 7766 ill_t * 7767 ip_grab_ill(mblk_t *first_mp, int ifindex, boolean_t isv6, ip_stack_t *ipst) 7768 { 7769 ill_t *ret_ill; 7770 7771 ASSERT(ifindex != 0); 7772 7773 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7774 ipst); 7775 if (ret_ill == NULL) { 7776 if (isv6) { 7777 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 7778 ip1dbg(("ip_grab_ill (IPv6): bad ifindex %d.\n", 7779 ifindex)); 7780 } else { 7781 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 7782 ip1dbg(("ip_grab_ill (IPv4): bad ifindex %d.\n", 7783 ifindex)); 7784 } 7785 freemsg(first_mp); 7786 return (NULL); 7787 } 7788 return (ret_ill); 7789 } 7790 7791 /* 7792 * IPv4 - 7793 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7794 * out a packet to a destination address for which we do not have specific 7795 * (or sufficient) routing information. 7796 * 7797 * NOTE : These are the scopes of some of the variables that point at IRE, 7798 * which needs to be followed while making any future modifications 7799 * to avoid memory leaks. 7800 * 7801 * - ire and sire are the entries looked up initially by 7802 * ire_ftable_lookup. 7803 * - ipif_ire is used to hold the interface ire associated with 7804 * the new cache ire. But it's scope is limited, so we always REFRELE 7805 * it before branching out to error paths. 7806 * - save_ire is initialized before ire_create, so that ire returned 7807 * by ire_create will not over-write the ire. We REFRELE save_ire 7808 * before breaking out of the switch. 7809 * 7810 * Thus on failures, we have to REFRELE only ire and sire, if they 7811 * are not NULL. 7812 */ 7813 void 7814 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7815 zoneid_t zoneid, ip_stack_t *ipst) 7816 { 7817 areq_t *areq; 7818 ipaddr_t gw = 0; 7819 ire_t *ire = NULL; 7820 mblk_t *res_mp; 7821 ipaddr_t *addrp; 7822 ipaddr_t nexthop_addr; 7823 ipif_t *src_ipif = NULL; 7824 ill_t *dst_ill = NULL; 7825 ipha_t *ipha; 7826 ire_t *sire = NULL; 7827 mblk_t *first_mp; 7828 ire_t *save_ire; 7829 ushort_t ire_marks = 0; 7830 boolean_t mctl_present; 7831 ipsec_out_t *io; 7832 mblk_t *saved_mp; 7833 mblk_t *copy_mp = NULL; 7834 mblk_t *xmit_mp = NULL; 7835 ipaddr_t save_dst; 7836 uint32_t multirt_flags = 7837 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7838 boolean_t multirt_is_resolvable; 7839 boolean_t multirt_resolve_next; 7840 boolean_t unspec_src; 7841 boolean_t ip_nexthop = B_FALSE; 7842 tsol_ire_gw_secattr_t *attrp = NULL; 7843 tsol_gcgrp_t *gcgrp = NULL; 7844 tsol_gcgrp_addr_t ga; 7845 int multirt_res_failures = 0; 7846 int multirt_res_attempts = 0; 7847 int multirt_already_resolved = 0; 7848 boolean_t multirt_no_icmp_error = B_FALSE; 7849 7850 if (ip_debug > 2) { 7851 /* ip1dbg */ 7852 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7853 } 7854 7855 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7856 if (mctl_present) { 7857 io = (ipsec_out_t *)first_mp->b_rptr; 7858 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7859 ASSERT(zoneid == io->ipsec_out_zoneid); 7860 ASSERT(zoneid != ALL_ZONES); 7861 } 7862 7863 ipha = (ipha_t *)mp->b_rptr; 7864 7865 /* All multicast lookups come through ip_newroute_ipif() */ 7866 if (CLASSD(dst)) { 7867 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7868 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7869 freemsg(first_mp); 7870 return; 7871 } 7872 7873 if (mctl_present && io->ipsec_out_ip_nexthop) { 7874 ip_nexthop = B_TRUE; 7875 nexthop_addr = io->ipsec_out_nexthop_addr; 7876 } 7877 /* 7878 * If this IRE is created for forwarding or it is not for 7879 * traffic for congestion controlled protocols, mark it as temporary. 7880 */ 7881 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7882 ire_marks |= IRE_MARK_TEMPORARY; 7883 7884 /* 7885 * Get what we can from ire_ftable_lookup which will follow an IRE 7886 * chain until it gets the most specific information available. 7887 * For example, we know that there is no IRE_CACHE for this dest, 7888 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7889 * ire_ftable_lookup will look up the gateway, etc. 7890 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7891 * to the destination, of equal netmask length in the forward table, 7892 * will be recursively explored. If no information is available 7893 * for the final gateway of that route, we force the returned ire 7894 * to be equal to sire using MATCH_IRE_PARENT. 7895 * At least, in this case we have a starting point (in the buckets) 7896 * to look for other routes to the destination in the forward table. 7897 * This is actually used only for multirouting, where a list 7898 * of routes has to be processed in sequence. 7899 * 7900 * In the process of coming up with the most specific information, 7901 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7902 * for the gateway (i.e., one for which the ire_nce->nce_state is 7903 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7904 * Two caveats when handling incomplete ire's in ip_newroute: 7905 * - we should be careful when accessing its ire_nce (specifically 7906 * the nce_res_mp) ast it might change underneath our feet, and, 7907 * - not all legacy code path callers are prepared to handle 7908 * incomplete ire's, so we should not create/add incomplete 7909 * ire_cache entries here. (See discussion about temporary solution 7910 * further below). 7911 * 7912 * In order to minimize packet dropping, and to preserve existing 7913 * behavior, we treat this case as if there were no IRE_CACHE for the 7914 * gateway, and instead use the IF_RESOLVER ire to send out 7915 * another request to ARP (this is achieved by passing the 7916 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7917 * arp response comes back in ip_wput_nondata, we will create 7918 * a per-dst ire_cache that has an ND_COMPLETE ire. 7919 * 7920 * Note that this is a temporary solution; the correct solution is 7921 * to create an incomplete per-dst ire_cache entry, and send the 7922 * packet out when the gw's nce is resolved. In order to achieve this, 7923 * all packet processing must have been completed prior to calling 7924 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7925 * to be modified to accomodate this solution. 7926 */ 7927 if (ip_nexthop) { 7928 /* 7929 * The first time we come here, we look for an IRE_INTERFACE 7930 * entry for the specified nexthop, set the dst to be the 7931 * nexthop address and create an IRE_CACHE entry for the 7932 * nexthop. The next time around, we are able to find an 7933 * IRE_CACHE entry for the nexthop, set the gateway to be the 7934 * nexthop address and create an IRE_CACHE entry for the 7935 * destination address via the specified nexthop. 7936 */ 7937 ire = ire_cache_lookup(nexthop_addr, zoneid, 7938 msg_getlabel(mp), ipst); 7939 if (ire != NULL) { 7940 gw = nexthop_addr; 7941 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7942 } else { 7943 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7944 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7945 msg_getlabel(mp), 7946 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7947 ipst); 7948 if (ire != NULL) { 7949 dst = nexthop_addr; 7950 } 7951 } 7952 } else { 7953 ire = ire_ftable_lookup(dst, 0, 0, 0, 7954 NULL, &sire, zoneid, 0, msg_getlabel(mp), 7955 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7956 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7957 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7958 ipst); 7959 } 7960 7961 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7962 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7963 7964 /* 7965 * This loop is run only once in most cases. 7966 * We loop to resolve further routes only when the destination 7967 * can be reached through multiple RTF_MULTIRT-flagged ires. 7968 */ 7969 do { 7970 /* Clear the previous iteration's values */ 7971 if (src_ipif != NULL) { 7972 ipif_refrele(src_ipif); 7973 src_ipif = NULL; 7974 } 7975 if (dst_ill != NULL) { 7976 ill_refrele(dst_ill); 7977 dst_ill = NULL; 7978 } 7979 7980 multirt_resolve_next = B_FALSE; 7981 /* 7982 * We check if packets have to be multirouted. 7983 * In this case, given the current <ire, sire> couple, 7984 * we look for the next suitable <ire, sire>. 7985 * This check is done in ire_multirt_lookup(), 7986 * which applies various criteria to find the next route 7987 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7988 * unchanged if it detects it has not been tried yet. 7989 */ 7990 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7991 ip3dbg(("ip_newroute: starting next_resolution " 7992 "with first_mp %p, tag %d\n", 7993 (void *)first_mp, 7994 MULTIRT_DEBUG_TAGGED(first_mp))); 7995 7996 ASSERT(sire != NULL); 7997 multirt_is_resolvable = 7998 ire_multirt_lookup(&ire, &sire, multirt_flags, 7999 &multirt_already_resolved, msg_getlabel(mp), ipst); 8000 8001 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8002 "multirt_already_resolved %d, " 8003 "multirt_res_attempts %d, multirt_res_failures %d, " 8004 "ire %p, sire %p\n", multirt_is_resolvable, 8005 multirt_already_resolved, multirt_res_attempts, 8006 multirt_res_failures, (void *)ire, (void *)sire)); 8007 8008 if (!multirt_is_resolvable) { 8009 /* 8010 * No more multirt route to resolve; give up 8011 * (all routes resolved or no more 8012 * resolvable routes). 8013 */ 8014 if (ire != NULL) { 8015 ire_refrele(ire); 8016 ire = NULL; 8017 } 8018 /* 8019 * Generate ICMP error only if all attempts to 8020 * resolve multirt route failed and there is no 8021 * already resolved one. Don't generate ICMP 8022 * error when: 8023 * 8024 * 1) there was no attempt to resolve 8025 * 2) at least one attempt passed 8026 * 3) a multirt route is already resolved 8027 * 8028 * Case 1) may occur due to multiple 8029 * resolution attempts during single 8030 * ip_multirt_resolution_interval. 8031 * 8032 * Case 2-3) means that CGTP destination is 8033 * reachable via one link so we don't want to 8034 * generate ICMP host unreachable error. 8035 */ 8036 if (multirt_res_attempts == 0 || 8037 multirt_res_failures < 8038 multirt_res_attempts || 8039 multirt_already_resolved > 0) 8040 multirt_no_icmp_error = B_TRUE; 8041 } else { 8042 ASSERT(sire != NULL); 8043 ASSERT(ire != NULL); 8044 8045 multirt_res_attempts++; 8046 } 8047 } 8048 8049 if (ire == NULL) { 8050 if (ip_debug > 3) { 8051 /* ip2dbg */ 8052 pr_addr_dbg("ip_newroute: " 8053 "can't resolve %s\n", AF_INET, &dst); 8054 } 8055 ip3dbg(("ip_newroute: " 8056 "ire %p, sire %p, multirt_no_icmp_error %d\n", 8057 (void *)ire, (void *)sire, 8058 (int)multirt_no_icmp_error)); 8059 8060 if (sire != NULL) { 8061 ire_refrele(sire); 8062 sire = NULL; 8063 } 8064 8065 if (multirt_no_icmp_error) { 8066 /* There is no need to report an ICMP error. */ 8067 MULTIRT_DEBUG_UNTAG(first_mp); 8068 freemsg(first_mp); 8069 return; 8070 } 8071 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8072 RTA_DST, ipst); 8073 goto icmp_err_ret; 8074 } 8075 8076 /* 8077 * Verify that the returned IRE does not have either 8078 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8079 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8080 */ 8081 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8082 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8083 goto icmp_err_ret; 8084 } 8085 /* 8086 * Increment the ire_ob_pkt_count field for ire if it is an 8087 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8088 * increment the same for the parent IRE, sire, if it is some 8089 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8090 */ 8091 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8092 UPDATE_OB_PKT_COUNT(ire); 8093 ire->ire_last_used_time = lbolt; 8094 } 8095 8096 if (sire != NULL) { 8097 gw = sire->ire_gateway_addr; 8098 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8099 IRE_INTERFACE)) == 0); 8100 UPDATE_OB_PKT_COUNT(sire); 8101 sire->ire_last_used_time = lbolt; 8102 } 8103 /* 8104 * We have a route to reach the destination. Find the 8105 * appropriate ill, then get a source address using 8106 * ipif_select_source(). 8107 * 8108 * If we are here trying to create an IRE_CACHE for an offlink 8109 * destination and have an IRE_CACHE entry for VNI, then use 8110 * ire_stq instead since VNI's queue is a black hole. 8111 */ 8112 if ((ire->ire_type == IRE_CACHE) && 8113 IS_VNI(ire->ire_ipif->ipif_ill)) { 8114 dst_ill = ire->ire_stq->q_ptr; 8115 ill_refhold(dst_ill); 8116 } else { 8117 ill_t *ill = ire->ire_ipif->ipif_ill; 8118 8119 if (IS_IPMP(ill)) { 8120 dst_ill = 8121 ipmp_illgrp_hold_next_ill(ill->ill_grp); 8122 } else { 8123 dst_ill = ill; 8124 ill_refhold(dst_ill); 8125 } 8126 } 8127 8128 if (dst_ill == NULL) { 8129 if (ip_debug > 2) { 8130 pr_addr_dbg("ip_newroute: no dst " 8131 "ill for dst %s\n", AF_INET, &dst); 8132 } 8133 goto icmp_err_ret; 8134 } 8135 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8136 8137 /* 8138 * Pick the best source address from dst_ill. 8139 * 8140 * 1) Try to pick the source address from the destination 8141 * route. Clustering assumes that when we have multiple 8142 * prefixes hosted on an interface, the prefix of the 8143 * source address matches the prefix of the destination 8144 * route. We do this only if the address is not 8145 * DEPRECATED. 8146 * 8147 * 2) If the conn is in a different zone than the ire, we 8148 * need to pick a source address from the right zone. 8149 */ 8150 ASSERT(src_ipif == NULL); 8151 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8152 /* 8153 * The RTF_SETSRC flag is set in the parent ire (sire). 8154 * Check that the ipif matching the requested source 8155 * address still exists. 8156 */ 8157 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8158 zoneid, NULL, NULL, NULL, NULL, ipst); 8159 } 8160 8161 unspec_src = (connp != NULL && connp->conn_unspec_src); 8162 8163 if (src_ipif == NULL && 8164 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8165 ire_marks |= IRE_MARK_USESRC_CHECK; 8166 if (!IS_UNDER_IPMP(ire->ire_ipif->ipif_ill) && 8167 IS_IPMP(ire->ire_ipif->ipif_ill) || 8168 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8169 (connp != NULL && ire->ire_zoneid != zoneid && 8170 ire->ire_zoneid != ALL_ZONES) || 8171 (dst_ill->ill_usesrc_ifindex != 0)) { 8172 /* 8173 * If the destination is reachable via a 8174 * given gateway, the selected source address 8175 * should be in the same subnet as the gateway. 8176 * Otherwise, the destination is not reachable. 8177 * 8178 * If there are no interfaces on the same subnet 8179 * as the destination, ipif_select_source gives 8180 * first non-deprecated interface which might be 8181 * on a different subnet than the gateway. 8182 * This is not desirable. Hence pass the dst_ire 8183 * source address to ipif_select_source. 8184 * It is sure that the destination is reachable 8185 * with the dst_ire source address subnet. 8186 * So passing dst_ire source address to 8187 * ipif_select_source will make sure that the 8188 * selected source will be on the same subnet 8189 * as dst_ire source address. 8190 */ 8191 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8192 8193 src_ipif = ipif_select_source(dst_ill, saddr, 8194 zoneid); 8195 if (src_ipif == NULL) { 8196 /* 8197 * In the case of multirouting, it may 8198 * happen that ipif_select_source fails 8199 * as DAD may disallow use of the 8200 * particular source interface. Anyway, 8201 * we need to continue and attempt to 8202 * resolve other multirt routes. 8203 */ 8204 if ((sire != NULL) && 8205 (sire->ire_flags & RTF_MULTIRT)) { 8206 ire_refrele(ire); 8207 ire = NULL; 8208 multirt_resolve_next = B_TRUE; 8209 multirt_res_failures++; 8210 continue; 8211 } 8212 8213 if (ip_debug > 2) { 8214 pr_addr_dbg("ip_newroute: " 8215 "no src for dst %s ", 8216 AF_INET, &dst); 8217 printf("on interface %s\n", 8218 dst_ill->ill_name); 8219 } 8220 goto icmp_err_ret; 8221 } 8222 } else { 8223 src_ipif = ire->ire_ipif; 8224 ASSERT(src_ipif != NULL); 8225 /* hold src_ipif for uniformity */ 8226 ipif_refhold(src_ipif); 8227 } 8228 } 8229 8230 /* 8231 * Assign a source address while we have the conn. 8232 * We can't have ip_wput_ire pick a source address when the 8233 * packet returns from arp since we need to look at 8234 * conn_unspec_src and conn_zoneid, and we lose the conn when 8235 * going through arp. 8236 * 8237 * NOTE : ip_newroute_v6 does not have this piece of code as 8238 * it uses ip6i to store this information. 8239 */ 8240 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8241 ipha->ipha_src = src_ipif->ipif_src_addr; 8242 8243 if (ip_debug > 3) { 8244 /* ip2dbg */ 8245 pr_addr_dbg("ip_newroute: first hop %s\n", 8246 AF_INET, &gw); 8247 } 8248 ip2dbg(("\tire type %s (%d)\n", 8249 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8250 8251 /* 8252 * The TTL of multirouted packets is bounded by the 8253 * ip_multirt_ttl ndd variable. 8254 */ 8255 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8256 /* Force TTL of multirouted packets */ 8257 if ((ipst->ips_ip_multirt_ttl > 0) && 8258 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8259 ip2dbg(("ip_newroute: forcing multirt TTL " 8260 "to %d (was %d), dst 0x%08x\n", 8261 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8262 ntohl(sire->ire_addr))); 8263 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8264 } 8265 } 8266 /* 8267 * At this point in ip_newroute(), ire is either the 8268 * IRE_CACHE of the next-hop gateway for an off-subnet 8269 * destination or an IRE_INTERFACE type that should be used 8270 * to resolve an on-subnet destination or an on-subnet 8271 * next-hop gateway. 8272 * 8273 * In the IRE_CACHE case, we have the following : 8274 * 8275 * 1) src_ipif - used for getting a source address. 8276 * 8277 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8278 * means packets using this IRE_CACHE will go out on 8279 * dst_ill. 8280 * 8281 * 3) The IRE sire will point to the prefix that is the 8282 * longest matching route for the destination. These 8283 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8284 * 8285 * The newly created IRE_CACHE entry for the off-subnet 8286 * destination is tied to both the prefix route and the 8287 * interface route used to resolve the next-hop gateway 8288 * via the ire_phandle and ire_ihandle fields, 8289 * respectively. 8290 * 8291 * In the IRE_INTERFACE case, we have the following : 8292 * 8293 * 1) src_ipif - used for getting a source address. 8294 * 8295 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8296 * means packets using the IRE_CACHE that we will build 8297 * here will go out on dst_ill. 8298 * 8299 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8300 * to be created will only be tied to the IRE_INTERFACE 8301 * that was derived from the ire_ihandle field. 8302 * 8303 * If sire is non-NULL, it means the destination is 8304 * off-link and we will first create the IRE_CACHE for the 8305 * gateway. Next time through ip_newroute, we will create 8306 * the IRE_CACHE for the final destination as described 8307 * above. 8308 * 8309 * In both cases, after the current resolution has been 8310 * completed (or possibly initialised, in the IRE_INTERFACE 8311 * case), the loop may be re-entered to attempt the resolution 8312 * of another RTF_MULTIRT route. 8313 * 8314 * When an IRE_CACHE entry for the off-subnet destination is 8315 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8316 * for further processing in emission loops. 8317 */ 8318 save_ire = ire; 8319 switch (ire->ire_type) { 8320 case IRE_CACHE: { 8321 ire_t *ipif_ire; 8322 8323 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8324 if (gw == 0) 8325 gw = ire->ire_gateway_addr; 8326 /* 8327 * We need 3 ire's to create a new cache ire for an 8328 * off-link destination from the cache ire of the 8329 * gateway. 8330 * 8331 * 1. The prefix ire 'sire' (Note that this does 8332 * not apply to the conn_nexthop_set case) 8333 * 2. The cache ire of the gateway 'ire' 8334 * 3. The interface ire 'ipif_ire' 8335 * 8336 * We have (1) and (2). We lookup (3) below. 8337 * 8338 * If there is no interface route to the gateway, 8339 * it is a race condition, where we found the cache 8340 * but the interface route has been deleted. 8341 */ 8342 if (ip_nexthop) { 8343 ipif_ire = ire_ihandle_lookup_onlink(ire); 8344 } else { 8345 ipif_ire = 8346 ire_ihandle_lookup_offlink(ire, sire); 8347 } 8348 if (ipif_ire == NULL) { 8349 ip1dbg(("ip_newroute: " 8350 "ire_ihandle_lookup_offlink failed\n")); 8351 goto icmp_err_ret; 8352 } 8353 8354 /* 8355 * Check cached gateway IRE for any security 8356 * attributes; if found, associate the gateway 8357 * credentials group to the destination IRE. 8358 */ 8359 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8360 mutex_enter(&attrp->igsa_lock); 8361 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8362 GCGRP_REFHOLD(gcgrp); 8363 mutex_exit(&attrp->igsa_lock); 8364 } 8365 8366 /* 8367 * XXX For the source of the resolver mp, 8368 * we are using the same DL_UNITDATA_REQ 8369 * (from save_ire->ire_nce->nce_res_mp) 8370 * though the save_ire is not pointing at the same ill. 8371 * This is incorrect. We need to send it up to the 8372 * resolver to get the right res_mp. For ethernets 8373 * this may be okay (ill_type == DL_ETHER). 8374 */ 8375 8376 ire = ire_create( 8377 (uchar_t *)&dst, /* dest address */ 8378 (uchar_t *)&ip_g_all_ones, /* mask */ 8379 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8380 (uchar_t *)&gw, /* gateway address */ 8381 &save_ire->ire_max_frag, 8382 save_ire->ire_nce, /* src nce */ 8383 dst_ill->ill_rq, /* recv-from queue */ 8384 dst_ill->ill_wq, /* send-to queue */ 8385 IRE_CACHE, /* IRE type */ 8386 src_ipif, 8387 (sire != NULL) ? 8388 sire->ire_mask : 0, /* Parent mask */ 8389 (sire != NULL) ? 8390 sire->ire_phandle : 0, /* Parent handle */ 8391 ipif_ire->ire_ihandle, /* Interface handle */ 8392 (sire != NULL) ? (sire->ire_flags & 8393 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8394 (sire != NULL) ? 8395 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8396 NULL, 8397 gcgrp, 8398 ipst); 8399 8400 if (ire == NULL) { 8401 if (gcgrp != NULL) { 8402 GCGRP_REFRELE(gcgrp); 8403 gcgrp = NULL; 8404 } 8405 ire_refrele(ipif_ire); 8406 ire_refrele(save_ire); 8407 break; 8408 } 8409 8410 /* reference now held by IRE */ 8411 gcgrp = NULL; 8412 8413 ire->ire_marks |= ire_marks; 8414 8415 /* 8416 * Prevent sire and ipif_ire from getting deleted. 8417 * The newly created ire is tied to both of them via 8418 * the phandle and ihandle respectively. 8419 */ 8420 if (sire != NULL) { 8421 IRB_REFHOLD(sire->ire_bucket); 8422 /* Has it been removed already ? */ 8423 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8424 IRB_REFRELE(sire->ire_bucket); 8425 ire_refrele(ipif_ire); 8426 ire_refrele(save_ire); 8427 break; 8428 } 8429 } 8430 8431 IRB_REFHOLD(ipif_ire->ire_bucket); 8432 /* Has it been removed already ? */ 8433 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8434 IRB_REFRELE(ipif_ire->ire_bucket); 8435 if (sire != NULL) 8436 IRB_REFRELE(sire->ire_bucket); 8437 ire_refrele(ipif_ire); 8438 ire_refrele(save_ire); 8439 break; 8440 } 8441 8442 xmit_mp = first_mp; 8443 /* 8444 * In the case of multirouting, a copy 8445 * of the packet is done before its sending. 8446 * The copy is used to attempt another 8447 * route resolution, in a next loop. 8448 */ 8449 if (ire->ire_flags & RTF_MULTIRT) { 8450 copy_mp = copymsg(first_mp); 8451 if (copy_mp != NULL) { 8452 xmit_mp = copy_mp; 8453 MULTIRT_DEBUG_TAG(first_mp); 8454 } 8455 } 8456 8457 ire_add_then_send(q, ire, xmit_mp); 8458 ire_refrele(save_ire); 8459 8460 /* Assert that sire is not deleted yet. */ 8461 if (sire != NULL) { 8462 ASSERT(sire->ire_ptpn != NULL); 8463 IRB_REFRELE(sire->ire_bucket); 8464 } 8465 8466 /* Assert that ipif_ire is not deleted yet. */ 8467 ASSERT(ipif_ire->ire_ptpn != NULL); 8468 IRB_REFRELE(ipif_ire->ire_bucket); 8469 ire_refrele(ipif_ire); 8470 8471 /* 8472 * If copy_mp is not NULL, multirouting was 8473 * requested. We loop to initiate a next 8474 * route resolution attempt, starting from sire. 8475 */ 8476 if (copy_mp != NULL) { 8477 /* 8478 * Search for the next unresolved 8479 * multirt route. 8480 */ 8481 copy_mp = NULL; 8482 ipif_ire = NULL; 8483 ire = NULL; 8484 multirt_resolve_next = B_TRUE; 8485 continue; 8486 } 8487 if (sire != NULL) 8488 ire_refrele(sire); 8489 ipif_refrele(src_ipif); 8490 ill_refrele(dst_ill); 8491 return; 8492 } 8493 case IRE_IF_NORESOLVER: { 8494 if (dst_ill->ill_resolver_mp == NULL) { 8495 ip1dbg(("ip_newroute: dst_ill %p " 8496 "for IRE_IF_NORESOLVER ire %p has " 8497 "no ill_resolver_mp\n", 8498 (void *)dst_ill, (void *)ire)); 8499 break; 8500 } 8501 8502 /* 8503 * TSol note: We are creating the ire cache for the 8504 * destination 'dst'. If 'dst' is offlink, going 8505 * through the first hop 'gw', the security attributes 8506 * of 'dst' must be set to point to the gateway 8507 * credentials of gateway 'gw'. If 'dst' is onlink, it 8508 * is possible that 'dst' is a potential gateway that is 8509 * referenced by some route that has some security 8510 * attributes. Thus in the former case, we need to do a 8511 * gcgrp_lookup of 'gw' while in the latter case we 8512 * need to do gcgrp_lookup of 'dst' itself. 8513 */ 8514 ga.ga_af = AF_INET; 8515 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8516 &ga.ga_addr); 8517 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8518 8519 ire = ire_create( 8520 (uchar_t *)&dst, /* dest address */ 8521 (uchar_t *)&ip_g_all_ones, /* mask */ 8522 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8523 (uchar_t *)&gw, /* gateway address */ 8524 &save_ire->ire_max_frag, 8525 NULL, /* no src nce */ 8526 dst_ill->ill_rq, /* recv-from queue */ 8527 dst_ill->ill_wq, /* send-to queue */ 8528 IRE_CACHE, 8529 src_ipif, 8530 save_ire->ire_mask, /* Parent mask */ 8531 (sire != NULL) ? /* Parent handle */ 8532 sire->ire_phandle : 0, 8533 save_ire->ire_ihandle, /* Interface handle */ 8534 (sire != NULL) ? sire->ire_flags & 8535 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8536 &(save_ire->ire_uinfo), 8537 NULL, 8538 gcgrp, 8539 ipst); 8540 8541 if (ire == NULL) { 8542 if (gcgrp != NULL) { 8543 GCGRP_REFRELE(gcgrp); 8544 gcgrp = NULL; 8545 } 8546 ire_refrele(save_ire); 8547 break; 8548 } 8549 8550 /* reference now held by IRE */ 8551 gcgrp = NULL; 8552 8553 ire->ire_marks |= ire_marks; 8554 8555 /* Prevent save_ire from getting deleted */ 8556 IRB_REFHOLD(save_ire->ire_bucket); 8557 /* Has it been removed already ? */ 8558 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8559 IRB_REFRELE(save_ire->ire_bucket); 8560 ire_refrele(save_ire); 8561 break; 8562 } 8563 8564 /* 8565 * In the case of multirouting, a copy 8566 * of the packet is made before it is sent. 8567 * The copy is used in the next 8568 * loop to attempt another resolution. 8569 */ 8570 xmit_mp = first_mp; 8571 if ((sire != NULL) && 8572 (sire->ire_flags & RTF_MULTIRT)) { 8573 copy_mp = copymsg(first_mp); 8574 if (copy_mp != NULL) { 8575 xmit_mp = copy_mp; 8576 MULTIRT_DEBUG_TAG(first_mp); 8577 } 8578 } 8579 ire_add_then_send(q, ire, xmit_mp); 8580 8581 /* Assert that it is not deleted yet. */ 8582 ASSERT(save_ire->ire_ptpn != NULL); 8583 IRB_REFRELE(save_ire->ire_bucket); 8584 ire_refrele(save_ire); 8585 8586 if (copy_mp != NULL) { 8587 /* 8588 * If we found a (no)resolver, we ignore any 8589 * trailing top priority IRE_CACHE in further 8590 * loops. This ensures that we do not omit any 8591 * (no)resolver. 8592 * This IRE_CACHE, if any, will be processed 8593 * by another thread entering ip_newroute(). 8594 * IRE_CACHE entries, if any, will be processed 8595 * by another thread entering ip_newroute(), 8596 * (upon resolver response, for instance). 8597 * This aims to force parallel multirt 8598 * resolutions as soon as a packet must be sent. 8599 * In the best case, after the tx of only one 8600 * packet, all reachable routes are resolved. 8601 * Otherwise, the resolution of all RTF_MULTIRT 8602 * routes would require several emissions. 8603 */ 8604 multirt_flags &= ~MULTIRT_CACHEGW; 8605 8606 /* 8607 * Search for the next unresolved multirt 8608 * route. 8609 */ 8610 copy_mp = NULL; 8611 save_ire = NULL; 8612 ire = NULL; 8613 multirt_resolve_next = B_TRUE; 8614 continue; 8615 } 8616 8617 /* 8618 * Don't need sire anymore 8619 */ 8620 if (sire != NULL) 8621 ire_refrele(sire); 8622 8623 ipif_refrele(src_ipif); 8624 ill_refrele(dst_ill); 8625 return; 8626 } 8627 case IRE_IF_RESOLVER: 8628 /* 8629 * We can't build an IRE_CACHE yet, but at least we 8630 * found a resolver that can help. 8631 */ 8632 res_mp = dst_ill->ill_resolver_mp; 8633 if (!OK_RESOLVER_MP(res_mp)) 8634 break; 8635 8636 /* 8637 * To be at this point in the code with a non-zero gw 8638 * means that dst is reachable through a gateway that 8639 * we have never resolved. By changing dst to the gw 8640 * addr we resolve the gateway first. 8641 * When ire_add_then_send() tries to put the IP dg 8642 * to dst, it will reenter ip_newroute() at which 8643 * time we will find the IRE_CACHE for the gw and 8644 * create another IRE_CACHE in case IRE_CACHE above. 8645 */ 8646 if (gw != INADDR_ANY) { 8647 /* 8648 * The source ipif that was determined above was 8649 * relative to the destination address, not the 8650 * gateway's. If src_ipif was not taken out of 8651 * the IRE_IF_RESOLVER entry, we'll need to call 8652 * ipif_select_source() again. 8653 */ 8654 if (src_ipif != ire->ire_ipif) { 8655 ipif_refrele(src_ipif); 8656 src_ipif = ipif_select_source(dst_ill, 8657 gw, zoneid); 8658 /* 8659 * In the case of multirouting, it may 8660 * happen that ipif_select_source fails 8661 * as DAD may disallow use of the 8662 * particular source interface. Anyway, 8663 * we need to continue and attempt to 8664 * resolve other multirt routes. 8665 */ 8666 if (src_ipif == NULL) { 8667 if (sire != NULL && 8668 (sire->ire_flags & 8669 RTF_MULTIRT)) { 8670 ire_refrele(ire); 8671 ire = NULL; 8672 multirt_resolve_next = 8673 B_TRUE; 8674 multirt_res_failures++; 8675 continue; 8676 } 8677 if (ip_debug > 2) { 8678 pr_addr_dbg( 8679 "ip_newroute: no " 8680 "src for gw %s ", 8681 AF_INET, &gw); 8682 printf("on " 8683 "interface %s\n", 8684 dst_ill->ill_name); 8685 } 8686 goto icmp_err_ret; 8687 } 8688 } 8689 save_dst = dst; 8690 dst = gw; 8691 gw = INADDR_ANY; 8692 } 8693 8694 /* 8695 * We obtain a partial IRE_CACHE which we will pass 8696 * along with the resolver query. When the response 8697 * comes back it will be there ready for us to add. 8698 * The ire_max_frag is atomically set under the 8699 * irebucket lock in ire_add_v[46]. 8700 */ 8701 8702 ire = ire_create_mp( 8703 (uchar_t *)&dst, /* dest address */ 8704 (uchar_t *)&ip_g_all_ones, /* mask */ 8705 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8706 (uchar_t *)&gw, /* gateway address */ 8707 NULL, /* ire_max_frag */ 8708 NULL, /* no src nce */ 8709 dst_ill->ill_rq, /* recv-from queue */ 8710 dst_ill->ill_wq, /* send-to queue */ 8711 IRE_CACHE, 8712 src_ipif, /* Interface ipif */ 8713 save_ire->ire_mask, /* Parent mask */ 8714 0, 8715 save_ire->ire_ihandle, /* Interface handle */ 8716 0, /* flags if any */ 8717 &(save_ire->ire_uinfo), 8718 NULL, 8719 NULL, 8720 ipst); 8721 8722 if (ire == NULL) { 8723 ire_refrele(save_ire); 8724 break; 8725 } 8726 8727 if ((sire != NULL) && 8728 (sire->ire_flags & RTF_MULTIRT)) { 8729 copy_mp = copymsg(first_mp); 8730 if (copy_mp != NULL) 8731 MULTIRT_DEBUG_TAG(copy_mp); 8732 } 8733 8734 ire->ire_marks |= ire_marks; 8735 8736 /* 8737 * Construct message chain for the resolver 8738 * of the form: 8739 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8740 * Packet could contain a IPSEC_OUT mp. 8741 * 8742 * NOTE : ire will be added later when the response 8743 * comes back from ARP. If the response does not 8744 * come back, ARP frees the packet. For this reason, 8745 * we can't REFHOLD the bucket of save_ire to prevent 8746 * deletions. We may not be able to REFRELE the bucket 8747 * if the response never comes back. Thus, before 8748 * adding the ire, ire_add_v4 will make sure that the 8749 * interface route does not get deleted. This is the 8750 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8751 * where we can always prevent deletions because of 8752 * the synchronous nature of adding IRES i.e 8753 * ire_add_then_send is called after creating the IRE. 8754 */ 8755 ASSERT(ire->ire_mp != NULL); 8756 ire->ire_mp->b_cont = first_mp; 8757 /* Have saved_mp handy, for cleanup if canput fails */ 8758 saved_mp = mp; 8759 mp = copyb(res_mp); 8760 if (mp == NULL) { 8761 /* Prepare for cleanup */ 8762 mp = saved_mp; /* pkt */ 8763 ire_delete(ire); /* ire_mp */ 8764 ire = NULL; 8765 ire_refrele(save_ire); 8766 if (copy_mp != NULL) { 8767 MULTIRT_DEBUG_UNTAG(copy_mp); 8768 freemsg(copy_mp); 8769 copy_mp = NULL; 8770 } 8771 break; 8772 } 8773 linkb(mp, ire->ire_mp); 8774 8775 /* 8776 * Fill in the source and dest addrs for the resolver. 8777 * NOTE: this depends on memory layouts imposed by 8778 * ill_init(). 8779 */ 8780 areq = (areq_t *)mp->b_rptr; 8781 addrp = (ipaddr_t *)((char *)areq + 8782 areq->areq_sender_addr_offset); 8783 *addrp = save_ire->ire_src_addr; 8784 8785 ire_refrele(save_ire); 8786 addrp = (ipaddr_t *)((char *)areq + 8787 areq->areq_target_addr_offset); 8788 *addrp = dst; 8789 /* Up to the resolver. */ 8790 if (canputnext(dst_ill->ill_rq) && 8791 !(dst_ill->ill_arp_closing)) { 8792 putnext(dst_ill->ill_rq, mp); 8793 ire = NULL; 8794 if (copy_mp != NULL) { 8795 /* 8796 * If we found a resolver, we ignore 8797 * any trailing top priority IRE_CACHE 8798 * in the further loops. This ensures 8799 * that we do not omit any resolver. 8800 * IRE_CACHE entries, if any, will be 8801 * processed next time we enter 8802 * ip_newroute(). 8803 */ 8804 multirt_flags &= ~MULTIRT_CACHEGW; 8805 /* 8806 * Search for the next unresolved 8807 * multirt route. 8808 */ 8809 first_mp = copy_mp; 8810 copy_mp = NULL; 8811 /* Prepare the next resolution loop. */ 8812 mp = first_mp; 8813 EXTRACT_PKT_MP(mp, first_mp, 8814 mctl_present); 8815 if (mctl_present) 8816 io = (ipsec_out_t *) 8817 first_mp->b_rptr; 8818 ipha = (ipha_t *)mp->b_rptr; 8819 8820 ASSERT(sire != NULL); 8821 8822 dst = save_dst; 8823 multirt_resolve_next = B_TRUE; 8824 continue; 8825 } 8826 8827 if (sire != NULL) 8828 ire_refrele(sire); 8829 8830 /* 8831 * The response will come back in ip_wput 8832 * with db_type IRE_DB_TYPE. 8833 */ 8834 ipif_refrele(src_ipif); 8835 ill_refrele(dst_ill); 8836 return; 8837 } else { 8838 /* Prepare for cleanup */ 8839 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8840 mp); 8841 mp->b_cont = NULL; 8842 freeb(mp); /* areq */ 8843 /* 8844 * this is an ire that is not added to the 8845 * cache. ire_freemblk will handle the release 8846 * of any resources associated with the ire. 8847 */ 8848 ire_delete(ire); /* ire_mp */ 8849 mp = saved_mp; /* pkt */ 8850 ire = NULL; 8851 if (copy_mp != NULL) { 8852 MULTIRT_DEBUG_UNTAG(copy_mp); 8853 freemsg(copy_mp); 8854 copy_mp = NULL; 8855 } 8856 break; 8857 } 8858 default: 8859 break; 8860 } 8861 } while (multirt_resolve_next); 8862 8863 ip1dbg(("ip_newroute: dropped\n")); 8864 /* Did this packet originate externally? */ 8865 if (mp->b_prev) { 8866 mp->b_next = NULL; 8867 mp->b_prev = NULL; 8868 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8869 } else { 8870 if (dst_ill != NULL) { 8871 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8872 } else { 8873 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8874 } 8875 } 8876 ASSERT(copy_mp == NULL); 8877 MULTIRT_DEBUG_UNTAG(first_mp); 8878 freemsg(first_mp); 8879 if (ire != NULL) 8880 ire_refrele(ire); 8881 if (sire != NULL) 8882 ire_refrele(sire); 8883 if (src_ipif != NULL) 8884 ipif_refrele(src_ipif); 8885 if (dst_ill != NULL) 8886 ill_refrele(dst_ill); 8887 return; 8888 8889 icmp_err_ret: 8890 ip1dbg(("ip_newroute: no route\n")); 8891 if (src_ipif != NULL) 8892 ipif_refrele(src_ipif); 8893 if (dst_ill != NULL) 8894 ill_refrele(dst_ill); 8895 if (sire != NULL) 8896 ire_refrele(sire); 8897 /* Did this packet originate externally? */ 8898 if (mp->b_prev) { 8899 mp->b_next = NULL; 8900 mp->b_prev = NULL; 8901 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8902 q = WR(q); 8903 } else { 8904 /* 8905 * There is no outgoing ill, so just increment the 8906 * system MIB. 8907 */ 8908 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8909 /* 8910 * Since ip_wput() isn't close to finished, we fill 8911 * in enough of the header for credible error reporting. 8912 */ 8913 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8914 /* Failed */ 8915 MULTIRT_DEBUG_UNTAG(first_mp); 8916 freemsg(first_mp); 8917 if (ire != NULL) 8918 ire_refrele(ire); 8919 return; 8920 } 8921 } 8922 8923 /* 8924 * At this point we will have ire only if RTF_BLACKHOLE 8925 * or RTF_REJECT flags are set on the IRE. It will not 8926 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8927 */ 8928 if (ire != NULL) { 8929 if (ire->ire_flags & RTF_BLACKHOLE) { 8930 ire_refrele(ire); 8931 MULTIRT_DEBUG_UNTAG(first_mp); 8932 freemsg(first_mp); 8933 return; 8934 } 8935 ire_refrele(ire); 8936 } 8937 if (ip_source_routed(ipha, ipst)) { 8938 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8939 zoneid, ipst); 8940 return; 8941 } 8942 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8943 } 8944 8945 ip_opt_info_t zero_info; 8946 8947 /* 8948 * IPv4 - 8949 * ip_newroute_ipif is called by ip_wput_multicast and 8950 * ip_rput_forward_multicast whenever we need to send 8951 * out a packet to a destination address for which we do not have specific 8952 * routing information. It is used when the packet will be sent out 8953 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8954 * socket option is set or icmp error message wants to go out on a particular 8955 * interface for a unicast packet. 8956 * 8957 * In most cases, the destination address is resolved thanks to the ipif 8958 * intrinsic resolver. However, there are some cases where the call to 8959 * ip_newroute_ipif must take into account the potential presence of 8960 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8961 * that uses the interface. This is specified through flags, 8962 * which can be a combination of: 8963 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8964 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8965 * and flags. Additionally, the packet source address has to be set to 8966 * the specified address. The caller is thus expected to set this flag 8967 * if the packet has no specific source address yet. 8968 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8969 * flag, the resulting ire will inherit the flag. All unresolved routes 8970 * to the destination must be explored in the same call to 8971 * ip_newroute_ipif(). 8972 */ 8973 static void 8974 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8975 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 8976 { 8977 areq_t *areq; 8978 ire_t *ire = NULL; 8979 mblk_t *res_mp; 8980 ipaddr_t *addrp; 8981 mblk_t *first_mp; 8982 ire_t *save_ire = NULL; 8983 ipif_t *src_ipif = NULL; 8984 ushort_t ire_marks = 0; 8985 ill_t *dst_ill = NULL; 8986 ipha_t *ipha; 8987 mblk_t *saved_mp; 8988 ire_t *fire = NULL; 8989 mblk_t *copy_mp = NULL; 8990 boolean_t multirt_resolve_next; 8991 boolean_t unspec_src; 8992 ipaddr_t ipha_dst; 8993 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 8994 8995 /* 8996 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 8997 * here for uniformity 8998 */ 8999 ipif_refhold(ipif); 9000 9001 /* 9002 * This loop is run only once in most cases. 9003 * We loop to resolve further routes only when the destination 9004 * can be reached through multiple RTF_MULTIRT-flagged ires. 9005 */ 9006 do { 9007 if (dst_ill != NULL) { 9008 ill_refrele(dst_ill); 9009 dst_ill = NULL; 9010 } 9011 if (src_ipif != NULL) { 9012 ipif_refrele(src_ipif); 9013 src_ipif = NULL; 9014 } 9015 multirt_resolve_next = B_FALSE; 9016 9017 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9018 ipif->ipif_ill->ill_name)); 9019 9020 first_mp = mp; 9021 if (DB_TYPE(mp) == M_CTL) 9022 mp = mp->b_cont; 9023 ipha = (ipha_t *)mp->b_rptr; 9024 9025 /* 9026 * Save the packet destination address, we may need it after 9027 * the packet has been consumed. 9028 */ 9029 ipha_dst = ipha->ipha_dst; 9030 9031 /* 9032 * If the interface is a pt-pt interface we look for an 9033 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9034 * local_address and the pt-pt destination address. Otherwise 9035 * we just match the local address. 9036 * NOTE: dst could be different than ipha->ipha_dst in case 9037 * of sending igmp multicast packets over a point-to-point 9038 * connection. 9039 * Thus we must be careful enough to check ipha_dst to be a 9040 * multicast address, otherwise it will take xmit_if path for 9041 * multicast packets resulting into kernel stack overflow by 9042 * repeated calls to ip_newroute_ipif from ire_send(). 9043 */ 9044 if (CLASSD(ipha_dst) && 9045 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9046 goto err_ret; 9047 } 9048 9049 /* 9050 * We check if an IRE_OFFSUBNET for the addr that goes through 9051 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9052 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9053 * propagate its flags to the new ire. 9054 */ 9055 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9056 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9057 ip2dbg(("ip_newroute_ipif: " 9058 "ipif_lookup_multi_ire(" 9059 "ipif %p, dst %08x) = fire %p\n", 9060 (void *)ipif, ntohl(dst), (void *)fire)); 9061 } 9062 9063 /* 9064 * Note: While we pick a dst_ill we are really only 9065 * interested in the ill for load spreading. The source 9066 * ipif is determined by source address selection below. 9067 */ 9068 if (IS_IPMP(ipif->ipif_ill)) { 9069 ipmp_illgrp_t *illg = ipif->ipif_ill->ill_grp; 9070 9071 if (CLASSD(ipha_dst)) 9072 dst_ill = ipmp_illgrp_hold_cast_ill(illg); 9073 else 9074 dst_ill = ipmp_illgrp_hold_next_ill(illg); 9075 } else { 9076 dst_ill = ipif->ipif_ill; 9077 ill_refhold(dst_ill); 9078 } 9079 9080 if (dst_ill == NULL) { 9081 if (ip_debug > 2) { 9082 pr_addr_dbg("ip_newroute_ipif: no dst ill " 9083 "for dst %s\n", AF_INET, &dst); 9084 } 9085 goto err_ret; 9086 } 9087 9088 /* 9089 * Pick a source address preferring non-deprecated ones. 9090 * Unlike ip_newroute, we don't do any source address 9091 * selection here since for multicast it really does not help 9092 * in inbound load spreading as in the unicast case. 9093 */ 9094 if ((flags & RTF_SETSRC) && (fire != NULL) && 9095 (fire->ire_flags & RTF_SETSRC)) { 9096 /* 9097 * As requested by flags, an IRE_OFFSUBNET was looked up 9098 * on that interface. This ire has RTF_SETSRC flag, so 9099 * the source address of the packet must be changed. 9100 * Check that the ipif matching the requested source 9101 * address still exists. 9102 */ 9103 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9104 zoneid, NULL, NULL, NULL, NULL, ipst); 9105 } 9106 9107 unspec_src = (connp != NULL && connp->conn_unspec_src); 9108 9109 if (!IS_UNDER_IPMP(ipif->ipif_ill) && 9110 (IS_IPMP(ipif->ipif_ill) || 9111 (!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9112 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9113 (connp != NULL && ipif->ipif_zoneid != zoneid && 9114 ipif->ipif_zoneid != ALL_ZONES)) && 9115 (src_ipif == NULL) && 9116 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9117 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9118 if (src_ipif == NULL) { 9119 if (ip_debug > 2) { 9120 /* ip1dbg */ 9121 pr_addr_dbg("ip_newroute_ipif: " 9122 "no src for dst %s", 9123 AF_INET, &dst); 9124 } 9125 ip1dbg((" on interface %s\n", 9126 dst_ill->ill_name)); 9127 goto err_ret; 9128 } 9129 ipif_refrele(ipif); 9130 ipif = src_ipif; 9131 ipif_refhold(ipif); 9132 } 9133 if (src_ipif == NULL) { 9134 src_ipif = ipif; 9135 ipif_refhold(src_ipif); 9136 } 9137 9138 /* 9139 * Assign a source address while we have the conn. 9140 * We can't have ip_wput_ire pick a source address when the 9141 * packet returns from arp since conn_unspec_src might be set 9142 * and we lose the conn when going through arp. 9143 */ 9144 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9145 ipha->ipha_src = src_ipif->ipif_src_addr; 9146 9147 /* 9148 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9149 * that the outgoing interface does not have an interface ire. 9150 */ 9151 if (CLASSD(ipha_dst) && (connp == NULL || 9152 connp->conn_outgoing_ill == NULL) && 9153 infop->ip_opt_ill_index == 0) { 9154 /* ipif_to_ire returns an held ire */ 9155 ire = ipif_to_ire(ipif); 9156 if (ire == NULL) 9157 goto err_ret; 9158 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9159 goto err_ret; 9160 save_ire = ire; 9161 9162 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9163 "flags %04x\n", 9164 (void *)ire, (void *)ipif, flags)); 9165 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9166 (fire->ire_flags & RTF_MULTIRT)) { 9167 /* 9168 * As requested by flags, an IRE_OFFSUBNET was 9169 * looked up on that interface. This ire has 9170 * RTF_MULTIRT flag, so the resolution loop will 9171 * be re-entered to resolve additional routes on 9172 * other interfaces. For that purpose, a copy of 9173 * the packet is performed at this point. 9174 */ 9175 fire->ire_last_used_time = lbolt; 9176 copy_mp = copymsg(first_mp); 9177 if (copy_mp) { 9178 MULTIRT_DEBUG_TAG(copy_mp); 9179 } 9180 } 9181 if ((flags & RTF_SETSRC) && (fire != NULL) && 9182 (fire->ire_flags & RTF_SETSRC)) { 9183 /* 9184 * As requested by flags, an IRE_OFFSUBET was 9185 * looked up on that interface. This ire has 9186 * RTF_SETSRC flag, so the source address of the 9187 * packet must be changed. 9188 */ 9189 ipha->ipha_src = fire->ire_src_addr; 9190 } 9191 } else { 9192 /* 9193 * The only ways we can come here are: 9194 * 1) IP_BOUND_IF socket option is set 9195 * 2) SO_DONTROUTE socket option is set 9196 * 3) IP_PKTINFO option is passed in as ancillary data. 9197 * In all cases, the new ire will not be added 9198 * into cache table. 9199 */ 9200 ASSERT(connp == NULL || connp->conn_dontroute || 9201 connp->conn_outgoing_ill != NULL || 9202 infop->ip_opt_ill_index != 0); 9203 ire_marks |= IRE_MARK_NOADD; 9204 } 9205 9206 switch (ipif->ipif_net_type) { 9207 case IRE_IF_NORESOLVER: { 9208 /* We have what we need to build an IRE_CACHE. */ 9209 9210 if (dst_ill->ill_resolver_mp == NULL) { 9211 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9212 "for IRE_IF_NORESOLVER ire %p has " 9213 "no ill_resolver_mp\n", 9214 (void *)dst_ill, (void *)ire)); 9215 break; 9216 } 9217 9218 /* 9219 * The new ire inherits the IRE_OFFSUBNET flags 9220 * and source address, if this was requested. 9221 */ 9222 ire = ire_create( 9223 (uchar_t *)&dst, /* dest address */ 9224 (uchar_t *)&ip_g_all_ones, /* mask */ 9225 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9226 NULL, /* gateway address */ 9227 &ipif->ipif_mtu, 9228 NULL, /* no src nce */ 9229 dst_ill->ill_rq, /* recv-from queue */ 9230 dst_ill->ill_wq, /* send-to queue */ 9231 IRE_CACHE, 9232 src_ipif, 9233 (save_ire != NULL ? save_ire->ire_mask : 0), 9234 (fire != NULL) ? /* Parent handle */ 9235 fire->ire_phandle : 0, 9236 (save_ire != NULL) ? /* Interface handle */ 9237 save_ire->ire_ihandle : 0, 9238 (fire != NULL) ? 9239 (fire->ire_flags & 9240 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9241 (save_ire == NULL ? &ire_uinfo_null : 9242 &save_ire->ire_uinfo), 9243 NULL, 9244 NULL, 9245 ipst); 9246 9247 if (ire == NULL) { 9248 if (save_ire != NULL) 9249 ire_refrele(save_ire); 9250 break; 9251 } 9252 9253 ire->ire_marks |= ire_marks; 9254 9255 /* 9256 * If IRE_MARK_NOADD is set then we need to convert 9257 * the max_fragp to a useable value now. This is 9258 * normally done in ire_add_v[46]. We also need to 9259 * associate the ire with an nce (normally would be 9260 * done in ip_wput_nondata()). 9261 * 9262 * Note that IRE_MARK_NOADD packets created here 9263 * do not have a non-null ire_mp pointer. The null 9264 * value of ire_bucket indicates that they were 9265 * never added. 9266 */ 9267 if (ire->ire_marks & IRE_MARK_NOADD) { 9268 uint_t max_frag; 9269 9270 max_frag = *ire->ire_max_fragp; 9271 ire->ire_max_fragp = NULL; 9272 ire->ire_max_frag = max_frag; 9273 9274 if ((ire->ire_nce = ndp_lookup_v4( 9275 ire_to_ill(ire), 9276 (ire->ire_gateway_addr != INADDR_ANY ? 9277 &ire->ire_gateway_addr : &ire->ire_addr), 9278 B_FALSE)) == NULL) { 9279 if (save_ire != NULL) 9280 ire_refrele(save_ire); 9281 break; 9282 } 9283 ASSERT(ire->ire_nce->nce_state == 9284 ND_REACHABLE); 9285 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9286 } 9287 9288 /* Prevent save_ire from getting deleted */ 9289 if (save_ire != NULL) { 9290 IRB_REFHOLD(save_ire->ire_bucket); 9291 /* Has it been removed already ? */ 9292 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9293 IRB_REFRELE(save_ire->ire_bucket); 9294 ire_refrele(save_ire); 9295 break; 9296 } 9297 } 9298 9299 ire_add_then_send(q, ire, first_mp); 9300 9301 /* Assert that save_ire is not deleted yet. */ 9302 if (save_ire != NULL) { 9303 ASSERT(save_ire->ire_ptpn != NULL); 9304 IRB_REFRELE(save_ire->ire_bucket); 9305 ire_refrele(save_ire); 9306 save_ire = NULL; 9307 } 9308 if (fire != NULL) { 9309 ire_refrele(fire); 9310 fire = NULL; 9311 } 9312 9313 /* 9314 * the resolution loop is re-entered if this 9315 * was requested through flags and if we 9316 * actually are in a multirouting case. 9317 */ 9318 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9319 boolean_t need_resolve = 9320 ire_multirt_need_resolve(ipha_dst, 9321 msg_getlabel(copy_mp), ipst); 9322 if (!need_resolve) { 9323 MULTIRT_DEBUG_UNTAG(copy_mp); 9324 freemsg(copy_mp); 9325 copy_mp = NULL; 9326 } else { 9327 /* 9328 * ipif_lookup_group() calls 9329 * ire_lookup_multi() that uses 9330 * ire_ftable_lookup() to find 9331 * an IRE_INTERFACE for the group. 9332 * In the multirt case, 9333 * ire_lookup_multi() then invokes 9334 * ire_multirt_lookup() to find 9335 * the next resolvable ire. 9336 * As a result, we obtain an new 9337 * interface, derived from the 9338 * next ire. 9339 */ 9340 ipif_refrele(ipif); 9341 ipif = ipif_lookup_group(ipha_dst, 9342 zoneid, ipst); 9343 ip2dbg(("ip_newroute_ipif: " 9344 "multirt dst %08x, ipif %p\n", 9345 htonl(dst), (void *)ipif)); 9346 if (ipif != NULL) { 9347 mp = copy_mp; 9348 copy_mp = NULL; 9349 multirt_resolve_next = B_TRUE; 9350 continue; 9351 } else { 9352 freemsg(copy_mp); 9353 } 9354 } 9355 } 9356 if (ipif != NULL) 9357 ipif_refrele(ipif); 9358 ill_refrele(dst_ill); 9359 ipif_refrele(src_ipif); 9360 return; 9361 } 9362 case IRE_IF_RESOLVER: 9363 /* 9364 * We can't build an IRE_CACHE yet, but at least 9365 * we found a resolver that can help. 9366 */ 9367 res_mp = dst_ill->ill_resolver_mp; 9368 if (!OK_RESOLVER_MP(res_mp)) 9369 break; 9370 9371 /* 9372 * We obtain a partial IRE_CACHE which we will pass 9373 * along with the resolver query. When the response 9374 * comes back it will be there ready for us to add. 9375 * The new ire inherits the IRE_OFFSUBNET flags 9376 * and source address, if this was requested. 9377 * The ire_max_frag is atomically set under the 9378 * irebucket lock in ire_add_v[46]. Only in the 9379 * case of IRE_MARK_NOADD, we set it here itself. 9380 */ 9381 ire = ire_create_mp( 9382 (uchar_t *)&dst, /* dest address */ 9383 (uchar_t *)&ip_g_all_ones, /* mask */ 9384 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9385 NULL, /* gateway address */ 9386 (ire_marks & IRE_MARK_NOADD) ? 9387 ipif->ipif_mtu : 0, /* max_frag */ 9388 NULL, /* no src nce */ 9389 dst_ill->ill_rq, /* recv-from queue */ 9390 dst_ill->ill_wq, /* send-to queue */ 9391 IRE_CACHE, 9392 src_ipif, 9393 (save_ire != NULL ? save_ire->ire_mask : 0), 9394 (fire != NULL) ? /* Parent handle */ 9395 fire->ire_phandle : 0, 9396 (save_ire != NULL) ? /* Interface handle */ 9397 save_ire->ire_ihandle : 0, 9398 (fire != NULL) ? /* flags if any */ 9399 (fire->ire_flags & 9400 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9401 (save_ire == NULL ? &ire_uinfo_null : 9402 &save_ire->ire_uinfo), 9403 NULL, 9404 NULL, 9405 ipst); 9406 9407 if (save_ire != NULL) { 9408 ire_refrele(save_ire); 9409 save_ire = NULL; 9410 } 9411 if (ire == NULL) 9412 break; 9413 9414 ire->ire_marks |= ire_marks; 9415 /* 9416 * Construct message chain for the resolver of the 9417 * form: 9418 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9419 * 9420 * NOTE : ire will be added later when the response 9421 * comes back from ARP. If the response does not 9422 * come back, ARP frees the packet. For this reason, 9423 * we can't REFHOLD the bucket of save_ire to prevent 9424 * deletions. We may not be able to REFRELE the 9425 * bucket if the response never comes back. 9426 * Thus, before adding the ire, ire_add_v4 will make 9427 * sure that the interface route does not get deleted. 9428 * This is the only case unlike ip_newroute_v6, 9429 * ip_newroute_ipif_v6 where we can always prevent 9430 * deletions because ire_add_then_send is called after 9431 * creating the IRE. 9432 * If IRE_MARK_NOADD is set, then ire_add_then_send 9433 * does not add this IRE into the IRE CACHE. 9434 */ 9435 ASSERT(ire->ire_mp != NULL); 9436 ire->ire_mp->b_cont = first_mp; 9437 /* Have saved_mp handy, for cleanup if canput fails */ 9438 saved_mp = mp; 9439 mp = copyb(res_mp); 9440 if (mp == NULL) { 9441 /* Prepare for cleanup */ 9442 mp = saved_mp; /* pkt */ 9443 ire_delete(ire); /* ire_mp */ 9444 ire = NULL; 9445 if (copy_mp != NULL) { 9446 MULTIRT_DEBUG_UNTAG(copy_mp); 9447 freemsg(copy_mp); 9448 copy_mp = NULL; 9449 } 9450 break; 9451 } 9452 linkb(mp, ire->ire_mp); 9453 9454 /* 9455 * Fill in the source and dest addrs for the resolver. 9456 * NOTE: this depends on memory layouts imposed by 9457 * ill_init(). There are corner cases above where we 9458 * might've created the IRE with an INADDR_ANY source 9459 * address (e.g., if the zeroth ipif on an underlying 9460 * ill in an IPMP group is 0.0.0.0, but another ipif 9461 * on the ill has a usable test address). If so, tell 9462 * ARP to use ipha_src as its sender address. 9463 */ 9464 areq = (areq_t *)mp->b_rptr; 9465 addrp = (ipaddr_t *)((char *)areq + 9466 areq->areq_sender_addr_offset); 9467 if (ire->ire_src_addr != INADDR_ANY) 9468 *addrp = ire->ire_src_addr; 9469 else 9470 *addrp = ipha->ipha_src; 9471 addrp = (ipaddr_t *)((char *)areq + 9472 areq->areq_target_addr_offset); 9473 *addrp = dst; 9474 /* Up to the resolver. */ 9475 if (canputnext(dst_ill->ill_rq) && 9476 !(dst_ill->ill_arp_closing)) { 9477 putnext(dst_ill->ill_rq, mp); 9478 /* 9479 * The response will come back in ip_wput 9480 * with db_type IRE_DB_TYPE. 9481 */ 9482 } else { 9483 mp->b_cont = NULL; 9484 freeb(mp); /* areq */ 9485 ire_delete(ire); /* ire_mp */ 9486 saved_mp->b_next = NULL; 9487 saved_mp->b_prev = NULL; 9488 freemsg(first_mp); /* pkt */ 9489 ip2dbg(("ip_newroute_ipif: dropped\n")); 9490 } 9491 9492 if (fire != NULL) { 9493 ire_refrele(fire); 9494 fire = NULL; 9495 } 9496 9497 /* 9498 * The resolution loop is re-entered if this was 9499 * requested through flags and we actually are 9500 * in a multirouting case. 9501 */ 9502 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9503 boolean_t need_resolve = 9504 ire_multirt_need_resolve(ipha_dst, 9505 msg_getlabel(copy_mp), ipst); 9506 if (!need_resolve) { 9507 MULTIRT_DEBUG_UNTAG(copy_mp); 9508 freemsg(copy_mp); 9509 copy_mp = NULL; 9510 } else { 9511 /* 9512 * ipif_lookup_group() calls 9513 * ire_lookup_multi() that uses 9514 * ire_ftable_lookup() to find 9515 * an IRE_INTERFACE for the group. 9516 * In the multirt case, 9517 * ire_lookup_multi() then invokes 9518 * ire_multirt_lookup() to find 9519 * the next resolvable ire. 9520 * As a result, we obtain an new 9521 * interface, derived from the 9522 * next ire. 9523 */ 9524 ipif_refrele(ipif); 9525 ipif = ipif_lookup_group(ipha_dst, 9526 zoneid, ipst); 9527 if (ipif != NULL) { 9528 mp = copy_mp; 9529 copy_mp = NULL; 9530 multirt_resolve_next = B_TRUE; 9531 continue; 9532 } else { 9533 freemsg(copy_mp); 9534 } 9535 } 9536 } 9537 if (ipif != NULL) 9538 ipif_refrele(ipif); 9539 ill_refrele(dst_ill); 9540 ipif_refrele(src_ipif); 9541 return; 9542 default: 9543 break; 9544 } 9545 } while (multirt_resolve_next); 9546 9547 err_ret: 9548 ip2dbg(("ip_newroute_ipif: dropped\n")); 9549 if (fire != NULL) 9550 ire_refrele(fire); 9551 ipif_refrele(ipif); 9552 /* Did this packet originate externally? */ 9553 if (dst_ill != NULL) 9554 ill_refrele(dst_ill); 9555 if (src_ipif != NULL) 9556 ipif_refrele(src_ipif); 9557 if (mp->b_prev || mp->b_next) { 9558 mp->b_next = NULL; 9559 mp->b_prev = NULL; 9560 } else { 9561 /* 9562 * Since ip_wput() isn't close to finished, we fill 9563 * in enough of the header for credible error reporting. 9564 */ 9565 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9566 /* Failed */ 9567 freemsg(first_mp); 9568 if (ire != NULL) 9569 ire_refrele(ire); 9570 return; 9571 } 9572 } 9573 /* 9574 * At this point we will have ire only if RTF_BLACKHOLE 9575 * or RTF_REJECT flags are set on the IRE. It will not 9576 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9577 */ 9578 if (ire != NULL) { 9579 if (ire->ire_flags & RTF_BLACKHOLE) { 9580 ire_refrele(ire); 9581 freemsg(first_mp); 9582 return; 9583 } 9584 ire_refrele(ire); 9585 } 9586 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9587 } 9588 9589 /* Name/Value Table Lookup Routine */ 9590 char * 9591 ip_nv_lookup(nv_t *nv, int value) 9592 { 9593 if (!nv) 9594 return (NULL); 9595 for (; nv->nv_name; nv++) { 9596 if (nv->nv_value == value) 9597 return (nv->nv_name); 9598 } 9599 return ("unknown"); 9600 } 9601 9602 /* 9603 * This is a module open, i.e. this is a control stream for access 9604 * to a DLPI device. We allocate an ill_t as the instance data in 9605 * this case. 9606 */ 9607 int 9608 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9609 { 9610 ill_t *ill; 9611 int err; 9612 zoneid_t zoneid; 9613 netstack_t *ns; 9614 ip_stack_t *ipst; 9615 9616 /* 9617 * Prevent unprivileged processes from pushing IP so that 9618 * they can't send raw IP. 9619 */ 9620 if (secpolicy_net_rawaccess(credp) != 0) 9621 return (EPERM); 9622 9623 ns = netstack_find_by_cred(credp); 9624 ASSERT(ns != NULL); 9625 ipst = ns->netstack_ip; 9626 ASSERT(ipst != NULL); 9627 9628 /* 9629 * For exclusive stacks we set the zoneid to zero 9630 * to make IP operate as if in the global zone. 9631 */ 9632 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9633 zoneid = GLOBAL_ZONEID; 9634 else 9635 zoneid = crgetzoneid(credp); 9636 9637 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9638 q->q_ptr = WR(q)->q_ptr = ill; 9639 ill->ill_ipst = ipst; 9640 ill->ill_zoneid = zoneid; 9641 9642 /* 9643 * ill_init initializes the ill fields and then sends down 9644 * down a DL_INFO_REQ after calling qprocson. 9645 */ 9646 err = ill_init(q, ill); 9647 if (err != 0) { 9648 mi_free(ill); 9649 netstack_rele(ipst->ips_netstack); 9650 q->q_ptr = NULL; 9651 WR(q)->q_ptr = NULL; 9652 return (err); 9653 } 9654 9655 /* ill_init initializes the ipsq marking this thread as writer */ 9656 ipsq_exit(ill->ill_phyint->phyint_ipsq); 9657 /* Wait for the DL_INFO_ACK */ 9658 mutex_enter(&ill->ill_lock); 9659 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9660 /* 9661 * Return value of 0 indicates a pending signal. 9662 */ 9663 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9664 if (err == 0) { 9665 mutex_exit(&ill->ill_lock); 9666 (void) ip_close(q, 0); 9667 return (EINTR); 9668 } 9669 } 9670 mutex_exit(&ill->ill_lock); 9671 9672 /* 9673 * ip_rput_other could have set an error in ill_error on 9674 * receipt of M_ERROR. 9675 */ 9676 9677 err = ill->ill_error; 9678 if (err != 0) { 9679 (void) ip_close(q, 0); 9680 return (err); 9681 } 9682 9683 ill->ill_credp = credp; 9684 crhold(credp); 9685 9686 mutex_enter(&ipst->ips_ip_mi_lock); 9687 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9688 credp); 9689 mutex_exit(&ipst->ips_ip_mi_lock); 9690 if (err) { 9691 (void) ip_close(q, 0); 9692 return (err); 9693 } 9694 return (0); 9695 } 9696 9697 /* For /dev/ip aka AF_INET open */ 9698 int 9699 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9700 { 9701 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9702 } 9703 9704 /* For /dev/ip6 aka AF_INET6 open */ 9705 int 9706 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9707 { 9708 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9709 } 9710 9711 /* IP open routine. */ 9712 int 9713 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9714 boolean_t isv6) 9715 { 9716 conn_t *connp; 9717 major_t maj; 9718 zoneid_t zoneid; 9719 netstack_t *ns; 9720 ip_stack_t *ipst; 9721 9722 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9723 9724 /* Allow reopen. */ 9725 if (q->q_ptr != NULL) 9726 return (0); 9727 9728 if (sflag & MODOPEN) { 9729 /* This is a module open */ 9730 return (ip_modopen(q, devp, flag, sflag, credp)); 9731 } 9732 9733 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 9734 /* 9735 * Non streams based socket looking for a stream 9736 * to access IP 9737 */ 9738 return (ip_helper_stream_setup(q, devp, flag, sflag, 9739 credp, isv6)); 9740 } 9741 9742 ns = netstack_find_by_cred(credp); 9743 ASSERT(ns != NULL); 9744 ipst = ns->netstack_ip; 9745 ASSERT(ipst != NULL); 9746 9747 /* 9748 * For exclusive stacks we set the zoneid to zero 9749 * to make IP operate as if in the global zone. 9750 */ 9751 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9752 zoneid = GLOBAL_ZONEID; 9753 else 9754 zoneid = crgetzoneid(credp); 9755 9756 /* 9757 * We are opening as a device. This is an IP client stream, and we 9758 * allocate an conn_t as the instance data. 9759 */ 9760 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9761 9762 /* 9763 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9764 * done by netstack_find_by_cred() 9765 */ 9766 netstack_rele(ipst->ips_netstack); 9767 9768 connp->conn_zoneid = zoneid; 9769 connp->conn_sqp = NULL; 9770 connp->conn_initial_sqp = NULL; 9771 connp->conn_final_sqp = NULL; 9772 9773 connp->conn_upq = q; 9774 q->q_ptr = WR(q)->q_ptr = connp; 9775 9776 if (flag & SO_SOCKSTR) 9777 connp->conn_flags |= IPCL_SOCKET; 9778 9779 /* Minor tells us which /dev entry was opened */ 9780 if (isv6) { 9781 connp->conn_af_isv6 = B_TRUE; 9782 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9783 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9784 } else { 9785 connp->conn_af_isv6 = B_FALSE; 9786 connp->conn_pkt_isv6 = B_FALSE; 9787 } 9788 9789 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9790 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9791 connp->conn_minor_arena = ip_minor_arena_la; 9792 } else { 9793 /* 9794 * Either minor numbers in the large arena were exhausted 9795 * or a non socket application is doing the open. 9796 * Try to allocate from the small arena. 9797 */ 9798 if ((connp->conn_dev = 9799 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9800 /* CONN_DEC_REF takes care of netstack_rele() */ 9801 q->q_ptr = WR(q)->q_ptr = NULL; 9802 CONN_DEC_REF(connp); 9803 return (EBUSY); 9804 } 9805 connp->conn_minor_arena = ip_minor_arena_sa; 9806 } 9807 9808 maj = getemajor(*devp); 9809 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9810 9811 /* 9812 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9813 */ 9814 connp->conn_cred = credp; 9815 9816 /* 9817 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9818 */ 9819 connp->conn_recv = ip_conn_input; 9820 9821 crhold(connp->conn_cred); 9822 9823 /* 9824 * If the caller has the process-wide flag set, then default to MAC 9825 * exempt mode. This allows read-down to unlabeled hosts. 9826 */ 9827 if (getpflags(NET_MAC_AWARE, credp) != 0) 9828 connp->conn_mac_mode = CONN_MAC_AWARE; 9829 9830 connp->conn_rq = q; 9831 connp->conn_wq = WR(q); 9832 9833 /* Non-zero default values */ 9834 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9835 9836 /* 9837 * Make the conn globally visible to walkers 9838 */ 9839 ASSERT(connp->conn_ref == 1); 9840 mutex_enter(&connp->conn_lock); 9841 connp->conn_state_flags &= ~CONN_INCIPIENT; 9842 mutex_exit(&connp->conn_lock); 9843 9844 qprocson(q); 9845 9846 return (0); 9847 } 9848 9849 /* 9850 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9851 * Note that there is no race since either ip_output function works - it 9852 * is just an optimization to enter the best ip_output routine directly. 9853 */ 9854 void 9855 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9856 ip_stack_t *ipst) 9857 { 9858 if (isv6) { 9859 if (bump_mib) { 9860 BUMP_MIB(&ipst->ips_ip6_mib, 9861 ipIfStatsOutSwitchIPVersion); 9862 } 9863 connp->conn_send = ip_output_v6; 9864 connp->conn_pkt_isv6 = B_TRUE; 9865 } else { 9866 if (bump_mib) { 9867 BUMP_MIB(&ipst->ips_ip_mib, 9868 ipIfStatsOutSwitchIPVersion); 9869 } 9870 connp->conn_send = ip_output; 9871 connp->conn_pkt_isv6 = B_FALSE; 9872 } 9873 9874 } 9875 9876 /* 9877 * See if IPsec needs loading because of the options in mp. 9878 */ 9879 static boolean_t 9880 ipsec_opt_present(mblk_t *mp) 9881 { 9882 uint8_t *optcp, *next_optcp, *opt_endcp; 9883 struct opthdr *opt; 9884 struct T_opthdr *topt; 9885 int opthdr_len; 9886 t_uscalar_t optname, optlevel; 9887 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9888 ipsec_req_t *ipsr; 9889 9890 /* 9891 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9892 * return TRUE. 9893 */ 9894 9895 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9896 opt_endcp = optcp + tor->OPT_length; 9897 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9898 opthdr_len = sizeof (struct T_opthdr); 9899 } else { /* O_OPTMGMT_REQ */ 9900 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9901 opthdr_len = sizeof (struct opthdr); 9902 } 9903 for (; optcp < opt_endcp; optcp = next_optcp) { 9904 if (optcp + opthdr_len > opt_endcp) 9905 return (B_FALSE); /* Not enough option header. */ 9906 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9907 topt = (struct T_opthdr *)optcp; 9908 optlevel = topt->level; 9909 optname = topt->name; 9910 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9911 } else { 9912 opt = (struct opthdr *)optcp; 9913 optlevel = opt->level; 9914 optname = opt->name; 9915 next_optcp = optcp + opthdr_len + 9916 _TPI_ALIGN_OPT(opt->len); 9917 } 9918 if ((next_optcp < optcp) || /* wraparound pointer space */ 9919 ((next_optcp >= opt_endcp) && /* last option bad len */ 9920 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9921 return (B_FALSE); /* bad option buffer */ 9922 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9923 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9924 /* 9925 * Check to see if it's an all-bypass or all-zeroes 9926 * IPsec request. Don't bother loading IPsec if 9927 * the socket doesn't want to use it. (A good example 9928 * is a bypass request.) 9929 * 9930 * Basically, if any of the non-NEVER bits are set, 9931 * load IPsec. 9932 */ 9933 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9934 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9935 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9936 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9937 != 0) 9938 return (B_TRUE); 9939 } 9940 } 9941 return (B_FALSE); 9942 } 9943 9944 /* 9945 * If conn is is waiting for ipsec to finish loading, kick it. 9946 */ 9947 /* ARGSUSED */ 9948 static void 9949 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9950 { 9951 t_scalar_t optreq_prim; 9952 mblk_t *mp; 9953 cred_t *cr; 9954 int err = 0; 9955 9956 /* 9957 * This function is called, after ipsec loading is complete. 9958 * Since IP checks exclusively and atomically (i.e it prevents 9959 * ipsec load from completing until ip_optcom_req completes) 9960 * whether ipsec load is complete, there cannot be a race with IP 9961 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9962 */ 9963 mutex_enter(&connp->conn_lock); 9964 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9965 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9966 mp = connp->conn_ipsec_opt_mp; 9967 connp->conn_ipsec_opt_mp = NULL; 9968 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9969 mutex_exit(&connp->conn_lock); 9970 9971 /* 9972 * All Solaris components should pass a db_credp 9973 * for this TPI message, hence we ASSERT. 9974 * But in case there is some other M_PROTO that looks 9975 * like a TPI message sent by some other kernel 9976 * component, we check and return an error. 9977 */ 9978 cr = msg_getcred(mp, NULL); 9979 ASSERT(cr != NULL); 9980 if (cr == NULL) { 9981 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 9982 if (mp != NULL) 9983 qreply(connp->conn_wq, mp); 9984 return; 9985 } 9986 9987 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9988 9989 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9990 if (optreq_prim == T_OPTMGMT_REQ) { 9991 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9992 &ip_opt_obj, B_FALSE); 9993 } else { 9994 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 9995 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9996 &ip_opt_obj, B_FALSE); 9997 } 9998 if (err != EINPROGRESS) 9999 CONN_OPER_PENDING_DONE(connp); 10000 return; 10001 } 10002 mutex_exit(&connp->conn_lock); 10003 } 10004 10005 /* 10006 * Called from the ipsec_loader thread, outside any perimeter, to tell 10007 * ip qenable any of the queues waiting for the ipsec loader to 10008 * complete. 10009 */ 10010 void 10011 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10012 { 10013 netstack_t *ns = ipss->ipsec_netstack; 10014 10015 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10016 } 10017 10018 /* 10019 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10020 * determines the grp on which it has to become exclusive, queues the mp 10021 * and IPSQ draining restarts the optmgmt 10022 */ 10023 static boolean_t 10024 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10025 { 10026 conn_t *connp = Q_TO_CONN(q); 10027 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10028 10029 /* 10030 * Take IPsec requests and treat them special. 10031 */ 10032 if (ipsec_opt_present(mp)) { 10033 /* First check if IPsec is loaded. */ 10034 mutex_enter(&ipss->ipsec_loader_lock); 10035 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10036 mutex_exit(&ipss->ipsec_loader_lock); 10037 return (B_FALSE); 10038 } 10039 mutex_enter(&connp->conn_lock); 10040 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10041 10042 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10043 connp->conn_ipsec_opt_mp = mp; 10044 mutex_exit(&connp->conn_lock); 10045 mutex_exit(&ipss->ipsec_loader_lock); 10046 10047 ipsec_loader_loadnow(ipss); 10048 return (B_TRUE); 10049 } 10050 return (B_FALSE); 10051 } 10052 10053 /* 10054 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10055 * all of them are copied to the conn_t. If the req is "zero", the policy is 10056 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10057 * fields. 10058 * We keep only the latest setting of the policy and thus policy setting 10059 * is not incremental/cumulative. 10060 * 10061 * Requests to set policies with multiple alternative actions will 10062 * go through a different API. 10063 */ 10064 int 10065 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10066 { 10067 uint_t ah_req = 0; 10068 uint_t esp_req = 0; 10069 uint_t se_req = 0; 10070 ipsec_act_t *actp = NULL; 10071 uint_t nact; 10072 ipsec_policy_head_t *ph; 10073 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 10074 int error = 0; 10075 netstack_t *ns = connp->conn_netstack; 10076 ip_stack_t *ipst = ns->netstack_ip; 10077 ipsec_stack_t *ipss = ns->netstack_ipsec; 10078 10079 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10080 10081 /* 10082 * The IP_SEC_OPT option does not allow variable length parameters, 10083 * hence a request cannot be NULL. 10084 */ 10085 if (req == NULL) 10086 return (EINVAL); 10087 10088 ah_req = req->ipsr_ah_req; 10089 esp_req = req->ipsr_esp_req; 10090 se_req = req->ipsr_self_encap_req; 10091 10092 /* Don't allow setting self-encap without one or more of AH/ESP. */ 10093 if (se_req != 0 && esp_req == 0 && ah_req == 0) 10094 return (EINVAL); 10095 10096 /* 10097 * Are we dealing with a request to reset the policy (i.e. 10098 * zero requests). 10099 */ 10100 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10101 (esp_req & REQ_MASK) == 0 && 10102 (se_req & REQ_MASK) == 0); 10103 10104 if (!is_pol_reset) { 10105 /* 10106 * If we couldn't load IPsec, fail with "protocol 10107 * not supported". 10108 * IPsec may not have been loaded for a request with zero 10109 * policies, so we don't fail in this case. 10110 */ 10111 mutex_enter(&ipss->ipsec_loader_lock); 10112 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10113 mutex_exit(&ipss->ipsec_loader_lock); 10114 return (EPROTONOSUPPORT); 10115 } 10116 mutex_exit(&ipss->ipsec_loader_lock); 10117 10118 /* 10119 * Test for valid requests. Invalid algorithms 10120 * need to be tested by IPsec code because new 10121 * algorithms can be added dynamically. 10122 */ 10123 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10124 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10125 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10126 return (EINVAL); 10127 } 10128 10129 /* 10130 * Only privileged users can issue these 10131 * requests. 10132 */ 10133 if (((ah_req & IPSEC_PREF_NEVER) || 10134 (esp_req & IPSEC_PREF_NEVER) || 10135 (se_req & IPSEC_PREF_NEVER)) && 10136 secpolicy_ip_config(cr, B_FALSE) != 0) { 10137 return (EPERM); 10138 } 10139 10140 /* 10141 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10142 * are mutually exclusive. 10143 */ 10144 if (((ah_req & REQ_MASK) == REQ_MASK) || 10145 ((esp_req & REQ_MASK) == REQ_MASK) || 10146 ((se_req & REQ_MASK) == REQ_MASK)) { 10147 /* Both of them are set */ 10148 return (EINVAL); 10149 } 10150 } 10151 10152 mutex_enter(&connp->conn_lock); 10153 10154 /* 10155 * If we have already cached policies in ip_bind_connected*(), don't 10156 * let them change now. We cache policies for connections 10157 * whose src,dst [addr, port] is known. 10158 */ 10159 if (connp->conn_policy_cached) { 10160 mutex_exit(&connp->conn_lock); 10161 return (EINVAL); 10162 } 10163 10164 /* 10165 * We have a zero policies, reset the connection policy if already 10166 * set. This will cause the connection to inherit the 10167 * global policy, if any. 10168 */ 10169 if (is_pol_reset) { 10170 if (connp->conn_policy != NULL) { 10171 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10172 connp->conn_policy = NULL; 10173 } 10174 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10175 connp->conn_in_enforce_policy = B_FALSE; 10176 connp->conn_out_enforce_policy = B_FALSE; 10177 mutex_exit(&connp->conn_lock); 10178 return (0); 10179 } 10180 10181 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10182 ipst->ips_netstack); 10183 if (ph == NULL) 10184 goto enomem; 10185 10186 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10187 if (actp == NULL) 10188 goto enomem; 10189 10190 /* 10191 * Always insert IPv4 policy entries, since they can also apply to 10192 * ipv6 sockets being used in ipv4-compat mode. 10193 */ 10194 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 10195 IPSEC_TYPE_INBOUND, ns)) 10196 goto enomem; 10197 is_pol_inserted = B_TRUE; 10198 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 10199 IPSEC_TYPE_OUTBOUND, ns)) 10200 goto enomem; 10201 10202 /* 10203 * We're looking at a v6 socket, also insert the v6-specific 10204 * entries. 10205 */ 10206 if (connp->conn_af_isv6) { 10207 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 10208 IPSEC_TYPE_INBOUND, ns)) 10209 goto enomem; 10210 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 10211 IPSEC_TYPE_OUTBOUND, ns)) 10212 goto enomem; 10213 } 10214 10215 ipsec_actvec_free(actp, nact); 10216 10217 /* 10218 * If the requests need security, set enforce_policy. 10219 * If the requests are IPSEC_PREF_NEVER, one should 10220 * still set conn_out_enforce_policy so that an ipsec_out 10221 * gets attached in ip_wput. This is needed so that 10222 * for connections that we don't cache policy in ip_bind, 10223 * if global policy matches in ip_wput_attach_policy, we 10224 * don't wrongly inherit global policy. Similarly, we need 10225 * to set conn_in_enforce_policy also so that we don't verify 10226 * policy wrongly. 10227 */ 10228 if ((ah_req & REQ_MASK) != 0 || 10229 (esp_req & REQ_MASK) != 0 || 10230 (se_req & REQ_MASK) != 0) { 10231 connp->conn_in_enforce_policy = B_TRUE; 10232 connp->conn_out_enforce_policy = B_TRUE; 10233 connp->conn_flags |= IPCL_CHECK_POLICY; 10234 } 10235 10236 mutex_exit(&connp->conn_lock); 10237 return (error); 10238 #undef REQ_MASK 10239 10240 /* 10241 * Common memory-allocation-failure exit path. 10242 */ 10243 enomem: 10244 mutex_exit(&connp->conn_lock); 10245 if (actp != NULL) 10246 ipsec_actvec_free(actp, nact); 10247 if (is_pol_inserted) 10248 ipsec_polhead_flush(ph, ns); 10249 return (ENOMEM); 10250 } 10251 10252 /* 10253 * Only for options that pass in an IP addr. Currently only V4 options 10254 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10255 * So this function assumes level is IPPROTO_IP 10256 */ 10257 int 10258 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10259 mblk_t *first_mp) 10260 { 10261 ipif_t *ipif = NULL; 10262 int error; 10263 ill_t *ill; 10264 int zoneid; 10265 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10266 10267 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10268 10269 if (addr != INADDR_ANY || checkonly) { 10270 ASSERT(connp != NULL); 10271 zoneid = IPCL_ZONEID(connp); 10272 if (option == IP_NEXTHOP) { 10273 ipif = ipif_lookup_onlink_addr(addr, 10274 connp->conn_zoneid, ipst); 10275 } else { 10276 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10277 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10278 &error, ipst); 10279 } 10280 if (ipif == NULL) { 10281 if (error == EINPROGRESS) 10282 return (error); 10283 if ((option == IP_MULTICAST_IF) || 10284 (option == IP_NEXTHOP)) 10285 return (EHOSTUNREACH); 10286 else 10287 return (EINVAL); 10288 } else if (checkonly) { 10289 if (option == IP_MULTICAST_IF) { 10290 ill = ipif->ipif_ill; 10291 /* not supported by the virtual network iface */ 10292 if (IS_VNI(ill)) { 10293 ipif_refrele(ipif); 10294 return (EINVAL); 10295 } 10296 } 10297 ipif_refrele(ipif); 10298 return (0); 10299 } 10300 ill = ipif->ipif_ill; 10301 mutex_enter(&connp->conn_lock); 10302 mutex_enter(&ill->ill_lock); 10303 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10304 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10305 mutex_exit(&ill->ill_lock); 10306 mutex_exit(&connp->conn_lock); 10307 ipif_refrele(ipif); 10308 return (option == IP_MULTICAST_IF ? 10309 EHOSTUNREACH : EINVAL); 10310 } 10311 } else { 10312 mutex_enter(&connp->conn_lock); 10313 } 10314 10315 /* None of the options below are supported on the VNI */ 10316 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10317 mutex_exit(&ill->ill_lock); 10318 mutex_exit(&connp->conn_lock); 10319 ipif_refrele(ipif); 10320 return (EINVAL); 10321 } 10322 10323 switch (option) { 10324 case IP_MULTICAST_IF: 10325 connp->conn_multicast_ipif = ipif; 10326 break; 10327 case IP_NEXTHOP: 10328 connp->conn_nexthop_v4 = addr; 10329 connp->conn_nexthop_set = B_TRUE; 10330 break; 10331 } 10332 10333 if (ipif != NULL) { 10334 mutex_exit(&ill->ill_lock); 10335 mutex_exit(&connp->conn_lock); 10336 ipif_refrele(ipif); 10337 return (0); 10338 } 10339 mutex_exit(&connp->conn_lock); 10340 /* We succeded in cleared the option */ 10341 return (0); 10342 } 10343 10344 /* 10345 * For options that pass in an ifindex specifying the ill. V6 options always 10346 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10347 */ 10348 int 10349 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10350 int level, int option, mblk_t *first_mp) 10351 { 10352 ill_t *ill = NULL; 10353 int error = 0; 10354 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10355 10356 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10357 if (ifindex != 0) { 10358 ASSERT(connp != NULL); 10359 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10360 first_mp, ip_restart_optmgmt, &error, ipst); 10361 if (ill != NULL) { 10362 if (checkonly) { 10363 /* not supported by the virtual network iface */ 10364 if (IS_VNI(ill)) { 10365 ill_refrele(ill); 10366 return (EINVAL); 10367 } 10368 ill_refrele(ill); 10369 return (0); 10370 } 10371 if (!ipif_lookup_zoneid(ill, connp->conn_zoneid, 10372 0, NULL)) { 10373 ill_refrele(ill); 10374 ill = NULL; 10375 mutex_enter(&connp->conn_lock); 10376 goto setit; 10377 } 10378 mutex_enter(&connp->conn_lock); 10379 mutex_enter(&ill->ill_lock); 10380 if (ill->ill_state_flags & ILL_CONDEMNED) { 10381 mutex_exit(&ill->ill_lock); 10382 mutex_exit(&connp->conn_lock); 10383 ill_refrele(ill); 10384 ill = NULL; 10385 mutex_enter(&connp->conn_lock); 10386 } 10387 goto setit; 10388 } else if (error == EINPROGRESS) { 10389 return (error); 10390 } else { 10391 error = 0; 10392 } 10393 } 10394 mutex_enter(&connp->conn_lock); 10395 setit: 10396 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10397 10398 /* 10399 * The options below assume that the ILL (if any) transmits and/or 10400 * receives traffic. Neither of which is true for the virtual network 10401 * interface, so fail setting these on a VNI. 10402 */ 10403 if (IS_VNI(ill)) { 10404 ASSERT(ill != NULL); 10405 mutex_exit(&ill->ill_lock); 10406 mutex_exit(&connp->conn_lock); 10407 ill_refrele(ill); 10408 return (EINVAL); 10409 } 10410 10411 if (level == IPPROTO_IP) { 10412 switch (option) { 10413 case IP_BOUND_IF: 10414 connp->conn_incoming_ill = ill; 10415 connp->conn_outgoing_ill = ill; 10416 break; 10417 10418 case IP_MULTICAST_IF: 10419 /* 10420 * This option is an internal special. The socket 10421 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10422 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10423 * specifies an ifindex and we try first on V6 ill's. 10424 * If we don't find one, we they try using on v4 ill's 10425 * intenally and we come here. 10426 */ 10427 if (!checkonly && ill != NULL) { 10428 ipif_t *ipif; 10429 ipif = ill->ill_ipif; 10430 10431 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10432 mutex_exit(&ill->ill_lock); 10433 mutex_exit(&connp->conn_lock); 10434 ill_refrele(ill); 10435 ill = NULL; 10436 mutex_enter(&connp->conn_lock); 10437 } else { 10438 connp->conn_multicast_ipif = ipif; 10439 } 10440 } 10441 break; 10442 10443 case IP_DHCPINIT_IF: 10444 if (connp->conn_dhcpinit_ill != NULL) { 10445 /* 10446 * We've locked the conn so conn_cleanup_ill() 10447 * cannot clear conn_dhcpinit_ill -- so it's 10448 * safe to access the ill. 10449 */ 10450 ill_t *oill = connp->conn_dhcpinit_ill; 10451 10452 ASSERT(oill->ill_dhcpinit != 0); 10453 atomic_dec_32(&oill->ill_dhcpinit); 10454 connp->conn_dhcpinit_ill = NULL; 10455 } 10456 10457 if (ill != NULL) { 10458 connp->conn_dhcpinit_ill = ill; 10459 atomic_inc_32(&ill->ill_dhcpinit); 10460 } 10461 break; 10462 } 10463 } else { 10464 switch (option) { 10465 case IPV6_BOUND_IF: 10466 connp->conn_incoming_ill = ill; 10467 connp->conn_outgoing_ill = ill; 10468 break; 10469 10470 case IPV6_MULTICAST_IF: 10471 /* 10472 * Set conn_multicast_ill to be the IPv6 ill. 10473 * Set conn_multicast_ipif to be an IPv4 ipif 10474 * for ifindex to make IPv4 mapped addresses 10475 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10476 * Even if no IPv6 ill exists for the ifindex 10477 * we need to check for an IPv4 ifindex in order 10478 * for this to work with mapped addresses. In that 10479 * case only set conn_multicast_ipif. 10480 */ 10481 if (!checkonly) { 10482 if (ifindex == 0) { 10483 connp->conn_multicast_ill = NULL; 10484 connp->conn_multicast_ipif = NULL; 10485 } else if (ill != NULL) { 10486 connp->conn_multicast_ill = ill; 10487 } 10488 } 10489 break; 10490 } 10491 } 10492 10493 if (ill != NULL) { 10494 mutex_exit(&ill->ill_lock); 10495 mutex_exit(&connp->conn_lock); 10496 ill_refrele(ill); 10497 return (0); 10498 } 10499 mutex_exit(&connp->conn_lock); 10500 /* 10501 * We succeeded in clearing the option (ifindex == 0) or failed to 10502 * locate the ill and could not set the option (ifindex != 0) 10503 */ 10504 return (ifindex == 0 ? 0 : EINVAL); 10505 } 10506 10507 /* This routine sets socket options. */ 10508 /* ARGSUSED */ 10509 int 10510 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10511 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10512 void *dummy, cred_t *cr, mblk_t *first_mp) 10513 { 10514 int *i1 = (int *)invalp; 10515 conn_t *connp = Q_TO_CONN(q); 10516 int error = 0; 10517 boolean_t checkonly; 10518 ire_t *ire; 10519 boolean_t found; 10520 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10521 10522 switch (optset_context) { 10523 10524 case SETFN_OPTCOM_CHECKONLY: 10525 checkonly = B_TRUE; 10526 /* 10527 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10528 * inlen != 0 implies value supplied and 10529 * we have to "pretend" to set it. 10530 * inlen == 0 implies that there is no 10531 * value part in T_CHECK request and just validation 10532 * done elsewhere should be enough, we just return here. 10533 */ 10534 if (inlen == 0) { 10535 *outlenp = 0; 10536 return (0); 10537 } 10538 break; 10539 case SETFN_OPTCOM_NEGOTIATE: 10540 case SETFN_UD_NEGOTIATE: 10541 case SETFN_CONN_NEGOTIATE: 10542 checkonly = B_FALSE; 10543 break; 10544 default: 10545 /* 10546 * We should never get here 10547 */ 10548 *outlenp = 0; 10549 return (EINVAL); 10550 } 10551 10552 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10553 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10554 10555 /* 10556 * For fixed length options, no sanity check 10557 * of passed in length is done. It is assumed *_optcom_req() 10558 * routines do the right thing. 10559 */ 10560 10561 switch (level) { 10562 case SOL_SOCKET: 10563 /* 10564 * conn_lock protects the bitfields, and is used to 10565 * set the fields atomically. 10566 */ 10567 switch (name) { 10568 case SO_BROADCAST: 10569 if (!checkonly) { 10570 /* TODO: use value someplace? */ 10571 mutex_enter(&connp->conn_lock); 10572 connp->conn_broadcast = *i1 ? 1 : 0; 10573 mutex_exit(&connp->conn_lock); 10574 } 10575 break; /* goto sizeof (int) option return */ 10576 case SO_USELOOPBACK: 10577 if (!checkonly) { 10578 /* TODO: use value someplace? */ 10579 mutex_enter(&connp->conn_lock); 10580 connp->conn_loopback = *i1 ? 1 : 0; 10581 mutex_exit(&connp->conn_lock); 10582 } 10583 break; /* goto sizeof (int) option return */ 10584 case SO_DONTROUTE: 10585 if (!checkonly) { 10586 mutex_enter(&connp->conn_lock); 10587 connp->conn_dontroute = *i1 ? 1 : 0; 10588 mutex_exit(&connp->conn_lock); 10589 } 10590 break; /* goto sizeof (int) option return */ 10591 case SO_REUSEADDR: 10592 if (!checkonly) { 10593 mutex_enter(&connp->conn_lock); 10594 connp->conn_reuseaddr = *i1 ? 1 : 0; 10595 mutex_exit(&connp->conn_lock); 10596 } 10597 break; /* goto sizeof (int) option return */ 10598 case SO_PROTOTYPE: 10599 if (!checkonly) { 10600 mutex_enter(&connp->conn_lock); 10601 connp->conn_proto = *i1; 10602 mutex_exit(&connp->conn_lock); 10603 } 10604 break; /* goto sizeof (int) option return */ 10605 case SO_ALLZONES: 10606 if (!checkonly) { 10607 mutex_enter(&connp->conn_lock); 10608 if (IPCL_IS_BOUND(connp)) { 10609 mutex_exit(&connp->conn_lock); 10610 return (EINVAL); 10611 } 10612 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10613 mutex_exit(&connp->conn_lock); 10614 } 10615 break; /* goto sizeof (int) option return */ 10616 case SO_ANON_MLP: 10617 if (!checkonly) { 10618 mutex_enter(&connp->conn_lock); 10619 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10620 mutex_exit(&connp->conn_lock); 10621 } 10622 break; /* goto sizeof (int) option return */ 10623 case SO_MAC_EXEMPT: 10624 if (secpolicy_net_mac_aware(cr) != 0 || 10625 IPCL_IS_BOUND(connp)) 10626 return (EACCES); 10627 if (!checkonly) { 10628 mutex_enter(&connp->conn_lock); 10629 connp->conn_mac_mode = *i1 != 0 ? 10630 CONN_MAC_AWARE : CONN_MAC_DEFAULT; 10631 mutex_exit(&connp->conn_lock); 10632 } 10633 break; /* goto sizeof (int) option return */ 10634 case SO_MAC_IMPLICIT: 10635 if (secpolicy_net_mac_implicit(cr) != 0) 10636 return (EACCES); 10637 if (!checkonly) { 10638 mutex_enter(&connp->conn_lock); 10639 connp->conn_mac_mode = *i1 != 0 ? 10640 CONN_MAC_IMPLICIT : CONN_MAC_DEFAULT; 10641 mutex_exit(&connp->conn_lock); 10642 } 10643 break; /* goto sizeof (int) option return */ 10644 default: 10645 /* 10646 * "soft" error (negative) 10647 * option not handled at this level 10648 * Note: Do not modify *outlenp 10649 */ 10650 return (-EINVAL); 10651 } 10652 break; 10653 case IPPROTO_IP: 10654 switch (name) { 10655 case IP_NEXTHOP: 10656 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10657 return (EPERM); 10658 /* FALLTHRU */ 10659 case IP_MULTICAST_IF: { 10660 ipaddr_t addr = *i1; 10661 10662 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10663 first_mp); 10664 if (error != 0) 10665 return (error); 10666 break; /* goto sizeof (int) option return */ 10667 } 10668 10669 case IP_MULTICAST_TTL: 10670 /* Recorded in transport above IP */ 10671 *outvalp = *invalp; 10672 *outlenp = sizeof (uchar_t); 10673 return (0); 10674 case IP_MULTICAST_LOOP: 10675 if (!checkonly) { 10676 mutex_enter(&connp->conn_lock); 10677 connp->conn_multicast_loop = *invalp ? 1 : 0; 10678 mutex_exit(&connp->conn_lock); 10679 } 10680 *outvalp = *invalp; 10681 *outlenp = sizeof (uchar_t); 10682 return (0); 10683 case IP_ADD_MEMBERSHIP: 10684 case MCAST_JOIN_GROUP: 10685 case IP_DROP_MEMBERSHIP: 10686 case MCAST_LEAVE_GROUP: { 10687 struct ip_mreq *mreqp; 10688 struct group_req *greqp; 10689 ire_t *ire; 10690 boolean_t done = B_FALSE; 10691 ipaddr_t group, ifaddr; 10692 struct sockaddr_in *sin; 10693 uint32_t *ifindexp; 10694 boolean_t mcast_opt = B_TRUE; 10695 mcast_record_t fmode; 10696 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10697 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10698 10699 switch (name) { 10700 case IP_ADD_MEMBERSHIP: 10701 mcast_opt = B_FALSE; 10702 /* FALLTHRU */ 10703 case MCAST_JOIN_GROUP: 10704 fmode = MODE_IS_EXCLUDE; 10705 optfn = ip_opt_add_group; 10706 break; 10707 10708 case IP_DROP_MEMBERSHIP: 10709 mcast_opt = B_FALSE; 10710 /* FALLTHRU */ 10711 case MCAST_LEAVE_GROUP: 10712 fmode = MODE_IS_INCLUDE; 10713 optfn = ip_opt_delete_group; 10714 break; 10715 } 10716 10717 if (mcast_opt) { 10718 greqp = (struct group_req *)i1; 10719 sin = (struct sockaddr_in *)&greqp->gr_group; 10720 if (sin->sin_family != AF_INET) { 10721 *outlenp = 0; 10722 return (ENOPROTOOPT); 10723 } 10724 group = (ipaddr_t)sin->sin_addr.s_addr; 10725 ifaddr = INADDR_ANY; 10726 ifindexp = &greqp->gr_interface; 10727 } else { 10728 mreqp = (struct ip_mreq *)i1; 10729 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10730 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10731 ifindexp = NULL; 10732 } 10733 10734 /* 10735 * In the multirouting case, we need to replicate 10736 * the request on all interfaces that will take part 10737 * in replication. We do so because multirouting is 10738 * reflective, thus we will probably receive multi- 10739 * casts on those interfaces. 10740 * The ip_multirt_apply_membership() succeeds if the 10741 * operation succeeds on at least one interface. 10742 */ 10743 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10744 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10745 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10746 if (ire != NULL) { 10747 if (ire->ire_flags & RTF_MULTIRT) { 10748 error = ip_multirt_apply_membership( 10749 optfn, ire, connp, checkonly, group, 10750 fmode, INADDR_ANY, first_mp); 10751 done = B_TRUE; 10752 } 10753 ire_refrele(ire); 10754 } 10755 if (!done) { 10756 error = optfn(connp, checkonly, group, ifaddr, 10757 ifindexp, fmode, INADDR_ANY, first_mp); 10758 } 10759 if (error) { 10760 /* 10761 * EINPROGRESS is a soft error, needs retry 10762 * so don't make *outlenp zero. 10763 */ 10764 if (error != EINPROGRESS) 10765 *outlenp = 0; 10766 return (error); 10767 } 10768 /* OK return - copy input buffer into output buffer */ 10769 if (invalp != outvalp) { 10770 /* don't trust bcopy for identical src/dst */ 10771 bcopy(invalp, outvalp, inlen); 10772 } 10773 *outlenp = inlen; 10774 return (0); 10775 } 10776 case IP_BLOCK_SOURCE: 10777 case IP_UNBLOCK_SOURCE: 10778 case IP_ADD_SOURCE_MEMBERSHIP: 10779 case IP_DROP_SOURCE_MEMBERSHIP: 10780 case MCAST_BLOCK_SOURCE: 10781 case MCAST_UNBLOCK_SOURCE: 10782 case MCAST_JOIN_SOURCE_GROUP: 10783 case MCAST_LEAVE_SOURCE_GROUP: { 10784 struct ip_mreq_source *imreqp; 10785 struct group_source_req *gsreqp; 10786 in_addr_t grp, src, ifaddr = INADDR_ANY; 10787 uint32_t ifindex = 0; 10788 mcast_record_t fmode; 10789 struct sockaddr_in *sin; 10790 ire_t *ire; 10791 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10792 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10793 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10794 10795 switch (name) { 10796 case IP_BLOCK_SOURCE: 10797 mcast_opt = B_FALSE; 10798 /* FALLTHRU */ 10799 case MCAST_BLOCK_SOURCE: 10800 fmode = MODE_IS_EXCLUDE; 10801 optfn = ip_opt_add_group; 10802 break; 10803 10804 case IP_UNBLOCK_SOURCE: 10805 mcast_opt = B_FALSE; 10806 /* FALLTHRU */ 10807 case MCAST_UNBLOCK_SOURCE: 10808 fmode = MODE_IS_EXCLUDE; 10809 optfn = ip_opt_delete_group; 10810 break; 10811 10812 case IP_ADD_SOURCE_MEMBERSHIP: 10813 mcast_opt = B_FALSE; 10814 /* FALLTHRU */ 10815 case MCAST_JOIN_SOURCE_GROUP: 10816 fmode = MODE_IS_INCLUDE; 10817 optfn = ip_opt_add_group; 10818 break; 10819 10820 case IP_DROP_SOURCE_MEMBERSHIP: 10821 mcast_opt = B_FALSE; 10822 /* FALLTHRU */ 10823 case MCAST_LEAVE_SOURCE_GROUP: 10824 fmode = MODE_IS_INCLUDE; 10825 optfn = ip_opt_delete_group; 10826 break; 10827 } 10828 10829 if (mcast_opt) { 10830 gsreqp = (struct group_source_req *)i1; 10831 if (gsreqp->gsr_group.ss_family != AF_INET) { 10832 *outlenp = 0; 10833 return (ENOPROTOOPT); 10834 } 10835 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10836 grp = (ipaddr_t)sin->sin_addr.s_addr; 10837 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10838 src = (ipaddr_t)sin->sin_addr.s_addr; 10839 ifindex = gsreqp->gsr_interface; 10840 } else { 10841 imreqp = (struct ip_mreq_source *)i1; 10842 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10843 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10844 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10845 } 10846 10847 /* 10848 * In the multirouting case, we need to replicate 10849 * the request as noted in the mcast cases above. 10850 */ 10851 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10852 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10853 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10854 if (ire != NULL) { 10855 if (ire->ire_flags & RTF_MULTIRT) { 10856 error = ip_multirt_apply_membership( 10857 optfn, ire, connp, checkonly, grp, 10858 fmode, src, first_mp); 10859 done = B_TRUE; 10860 } 10861 ire_refrele(ire); 10862 } 10863 if (!done) { 10864 error = optfn(connp, checkonly, grp, ifaddr, 10865 &ifindex, fmode, src, first_mp); 10866 } 10867 if (error != 0) { 10868 /* 10869 * EINPROGRESS is a soft error, needs retry 10870 * so don't make *outlenp zero. 10871 */ 10872 if (error != EINPROGRESS) 10873 *outlenp = 0; 10874 return (error); 10875 } 10876 /* OK return - copy input buffer into output buffer */ 10877 if (invalp != outvalp) { 10878 bcopy(invalp, outvalp, inlen); 10879 } 10880 *outlenp = inlen; 10881 return (0); 10882 } 10883 case IP_SEC_OPT: 10884 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10885 if (error != 0) { 10886 *outlenp = 0; 10887 return (error); 10888 } 10889 break; 10890 case IP_HDRINCL: 10891 case IP_OPTIONS: 10892 case T_IP_OPTIONS: 10893 case IP_TOS: 10894 case T_IP_TOS: 10895 case IP_TTL: 10896 case IP_RECVDSTADDR: 10897 case IP_RECVOPTS: 10898 /* OK return - copy input buffer into output buffer */ 10899 if (invalp != outvalp) { 10900 /* don't trust bcopy for identical src/dst */ 10901 bcopy(invalp, outvalp, inlen); 10902 } 10903 *outlenp = inlen; 10904 return (0); 10905 case IP_RECVIF: 10906 /* Retrieve the inbound interface index */ 10907 if (!checkonly) { 10908 mutex_enter(&connp->conn_lock); 10909 connp->conn_recvif = *i1 ? 1 : 0; 10910 mutex_exit(&connp->conn_lock); 10911 } 10912 break; /* goto sizeof (int) option return */ 10913 case IP_RECVPKTINFO: 10914 if (!checkonly) { 10915 mutex_enter(&connp->conn_lock); 10916 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 10917 mutex_exit(&connp->conn_lock); 10918 } 10919 break; /* goto sizeof (int) option return */ 10920 case IP_RECVSLLA: 10921 /* Retrieve the source link layer address */ 10922 if (!checkonly) { 10923 mutex_enter(&connp->conn_lock); 10924 connp->conn_recvslla = *i1 ? 1 : 0; 10925 mutex_exit(&connp->conn_lock); 10926 } 10927 break; /* goto sizeof (int) option return */ 10928 case MRT_INIT: 10929 case MRT_DONE: 10930 case MRT_ADD_VIF: 10931 case MRT_DEL_VIF: 10932 case MRT_ADD_MFC: 10933 case MRT_DEL_MFC: 10934 case MRT_ASSERT: 10935 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 10936 *outlenp = 0; 10937 return (error); 10938 } 10939 error = ip_mrouter_set((int)name, q, checkonly, 10940 (uchar_t *)invalp, inlen, first_mp); 10941 if (error) { 10942 *outlenp = 0; 10943 return (error); 10944 } 10945 /* OK return - copy input buffer into output buffer */ 10946 if (invalp != outvalp) { 10947 /* don't trust bcopy for identical src/dst */ 10948 bcopy(invalp, outvalp, inlen); 10949 } 10950 *outlenp = inlen; 10951 return (0); 10952 case IP_BOUND_IF: 10953 case IP_DHCPINIT_IF: 10954 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10955 level, name, first_mp); 10956 if (error != 0) 10957 return (error); 10958 break; /* goto sizeof (int) option return */ 10959 10960 case IP_UNSPEC_SRC: 10961 /* Allow sending with a zero source address */ 10962 if (!checkonly) { 10963 mutex_enter(&connp->conn_lock); 10964 connp->conn_unspec_src = *i1 ? 1 : 0; 10965 mutex_exit(&connp->conn_lock); 10966 } 10967 break; /* goto sizeof (int) option return */ 10968 default: 10969 /* 10970 * "soft" error (negative) 10971 * option not handled at this level 10972 * Note: Do not modify *outlenp 10973 */ 10974 return (-EINVAL); 10975 } 10976 break; 10977 case IPPROTO_IPV6: 10978 switch (name) { 10979 case IPV6_BOUND_IF: 10980 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10981 level, name, first_mp); 10982 if (error != 0) 10983 return (error); 10984 break; /* goto sizeof (int) option return */ 10985 10986 case IPV6_MULTICAST_IF: 10987 /* 10988 * The only possible errors are EINPROGRESS and 10989 * EINVAL. EINPROGRESS will be restarted and is not 10990 * a hard error. We call this option on both V4 and V6 10991 * If both return EINVAL, then this call returns 10992 * EINVAL. If at least one of them succeeds we 10993 * return success. 10994 */ 10995 found = B_FALSE; 10996 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10997 level, name, first_mp); 10998 if (error == EINPROGRESS) 10999 return (error); 11000 if (error == 0) 11001 found = B_TRUE; 11002 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11003 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11004 if (error == 0) 11005 found = B_TRUE; 11006 if (!found) 11007 return (error); 11008 break; /* goto sizeof (int) option return */ 11009 11010 case IPV6_MULTICAST_HOPS: 11011 /* Recorded in transport above IP */ 11012 break; /* goto sizeof (int) option return */ 11013 case IPV6_MULTICAST_LOOP: 11014 if (!checkonly) { 11015 mutex_enter(&connp->conn_lock); 11016 connp->conn_multicast_loop = *i1; 11017 mutex_exit(&connp->conn_lock); 11018 } 11019 break; /* goto sizeof (int) option return */ 11020 case IPV6_JOIN_GROUP: 11021 case MCAST_JOIN_GROUP: 11022 case IPV6_LEAVE_GROUP: 11023 case MCAST_LEAVE_GROUP: { 11024 struct ipv6_mreq *ip_mreqp; 11025 struct group_req *greqp; 11026 ire_t *ire; 11027 boolean_t done = B_FALSE; 11028 in6_addr_t groupv6; 11029 uint32_t ifindex; 11030 boolean_t mcast_opt = B_TRUE; 11031 mcast_record_t fmode; 11032 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11033 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11034 11035 switch (name) { 11036 case IPV6_JOIN_GROUP: 11037 mcast_opt = B_FALSE; 11038 /* FALLTHRU */ 11039 case MCAST_JOIN_GROUP: 11040 fmode = MODE_IS_EXCLUDE; 11041 optfn = ip_opt_add_group_v6; 11042 break; 11043 11044 case IPV6_LEAVE_GROUP: 11045 mcast_opt = B_FALSE; 11046 /* FALLTHRU */ 11047 case MCAST_LEAVE_GROUP: 11048 fmode = MODE_IS_INCLUDE; 11049 optfn = ip_opt_delete_group_v6; 11050 break; 11051 } 11052 11053 if (mcast_opt) { 11054 struct sockaddr_in *sin; 11055 struct sockaddr_in6 *sin6; 11056 greqp = (struct group_req *)i1; 11057 if (greqp->gr_group.ss_family == AF_INET) { 11058 sin = (struct sockaddr_in *) 11059 &(greqp->gr_group); 11060 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11061 &groupv6); 11062 } else { 11063 sin6 = (struct sockaddr_in6 *) 11064 &(greqp->gr_group); 11065 groupv6 = sin6->sin6_addr; 11066 } 11067 ifindex = greqp->gr_interface; 11068 } else { 11069 ip_mreqp = (struct ipv6_mreq *)i1; 11070 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11071 ifindex = ip_mreqp->ipv6mr_interface; 11072 } 11073 /* 11074 * In the multirouting case, we need to replicate 11075 * the request on all interfaces that will take part 11076 * in replication. We do so because multirouting is 11077 * reflective, thus we will probably receive multi- 11078 * casts on those interfaces. 11079 * The ip_multirt_apply_membership_v6() succeeds if 11080 * the operation succeeds on at least one interface. 11081 */ 11082 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11083 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11084 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11085 if (ire != NULL) { 11086 if (ire->ire_flags & RTF_MULTIRT) { 11087 error = ip_multirt_apply_membership_v6( 11088 optfn, ire, connp, checkonly, 11089 &groupv6, fmode, &ipv6_all_zeros, 11090 first_mp); 11091 done = B_TRUE; 11092 } 11093 ire_refrele(ire); 11094 } 11095 if (!done) { 11096 error = optfn(connp, checkonly, &groupv6, 11097 ifindex, fmode, &ipv6_all_zeros, first_mp); 11098 } 11099 if (error) { 11100 /* 11101 * EINPROGRESS is a soft error, needs retry 11102 * so don't make *outlenp zero. 11103 */ 11104 if (error != EINPROGRESS) 11105 *outlenp = 0; 11106 return (error); 11107 } 11108 /* OK return - copy input buffer into output buffer */ 11109 if (invalp != outvalp) { 11110 /* don't trust bcopy for identical src/dst */ 11111 bcopy(invalp, outvalp, inlen); 11112 } 11113 *outlenp = inlen; 11114 return (0); 11115 } 11116 case MCAST_BLOCK_SOURCE: 11117 case MCAST_UNBLOCK_SOURCE: 11118 case MCAST_JOIN_SOURCE_GROUP: 11119 case MCAST_LEAVE_SOURCE_GROUP: { 11120 struct group_source_req *gsreqp; 11121 in6_addr_t v6grp, v6src; 11122 uint32_t ifindex; 11123 mcast_record_t fmode; 11124 ire_t *ire; 11125 boolean_t done = B_FALSE; 11126 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11127 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11128 11129 switch (name) { 11130 case MCAST_BLOCK_SOURCE: 11131 fmode = MODE_IS_EXCLUDE; 11132 optfn = ip_opt_add_group_v6; 11133 break; 11134 case MCAST_UNBLOCK_SOURCE: 11135 fmode = MODE_IS_EXCLUDE; 11136 optfn = ip_opt_delete_group_v6; 11137 break; 11138 case MCAST_JOIN_SOURCE_GROUP: 11139 fmode = MODE_IS_INCLUDE; 11140 optfn = ip_opt_add_group_v6; 11141 break; 11142 case MCAST_LEAVE_SOURCE_GROUP: 11143 fmode = MODE_IS_INCLUDE; 11144 optfn = ip_opt_delete_group_v6; 11145 break; 11146 } 11147 11148 gsreqp = (struct group_source_req *)i1; 11149 ifindex = gsreqp->gsr_interface; 11150 if (gsreqp->gsr_group.ss_family == AF_INET) { 11151 struct sockaddr_in *s; 11152 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11153 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11154 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11155 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11156 } else { 11157 struct sockaddr_in6 *s6; 11158 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11159 v6grp = s6->sin6_addr; 11160 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11161 v6src = s6->sin6_addr; 11162 } 11163 11164 /* 11165 * In the multirouting case, we need to replicate 11166 * the request as noted in the mcast cases above. 11167 */ 11168 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11169 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11170 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11171 if (ire != NULL) { 11172 if (ire->ire_flags & RTF_MULTIRT) { 11173 error = ip_multirt_apply_membership_v6( 11174 optfn, ire, connp, checkonly, 11175 &v6grp, fmode, &v6src, first_mp); 11176 done = B_TRUE; 11177 } 11178 ire_refrele(ire); 11179 } 11180 if (!done) { 11181 error = optfn(connp, checkonly, &v6grp, 11182 ifindex, fmode, &v6src, first_mp); 11183 } 11184 if (error != 0) { 11185 /* 11186 * EINPROGRESS is a soft error, needs retry 11187 * so don't make *outlenp zero. 11188 */ 11189 if (error != EINPROGRESS) 11190 *outlenp = 0; 11191 return (error); 11192 } 11193 /* OK return - copy input buffer into output buffer */ 11194 if (invalp != outvalp) { 11195 bcopy(invalp, outvalp, inlen); 11196 } 11197 *outlenp = inlen; 11198 return (0); 11199 } 11200 case IPV6_UNICAST_HOPS: 11201 /* Recorded in transport above IP */ 11202 break; /* goto sizeof (int) option return */ 11203 case IPV6_UNSPEC_SRC: 11204 /* Allow sending with a zero source address */ 11205 if (!checkonly) { 11206 mutex_enter(&connp->conn_lock); 11207 connp->conn_unspec_src = *i1 ? 1 : 0; 11208 mutex_exit(&connp->conn_lock); 11209 } 11210 break; /* goto sizeof (int) option return */ 11211 case IPV6_RECVPKTINFO: 11212 if (!checkonly) { 11213 mutex_enter(&connp->conn_lock); 11214 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11215 mutex_exit(&connp->conn_lock); 11216 } 11217 break; /* goto sizeof (int) option return */ 11218 case IPV6_RECVTCLASS: 11219 if (!checkonly) { 11220 if (*i1 < 0 || *i1 > 1) { 11221 return (EINVAL); 11222 } 11223 mutex_enter(&connp->conn_lock); 11224 connp->conn_ipv6_recvtclass = *i1; 11225 mutex_exit(&connp->conn_lock); 11226 } 11227 break; 11228 case IPV6_RECVPATHMTU: 11229 if (!checkonly) { 11230 if (*i1 < 0 || *i1 > 1) { 11231 return (EINVAL); 11232 } 11233 mutex_enter(&connp->conn_lock); 11234 connp->conn_ipv6_recvpathmtu = *i1; 11235 mutex_exit(&connp->conn_lock); 11236 } 11237 break; 11238 case IPV6_RECVHOPLIMIT: 11239 if (!checkonly) { 11240 mutex_enter(&connp->conn_lock); 11241 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11242 mutex_exit(&connp->conn_lock); 11243 } 11244 break; /* goto sizeof (int) option return */ 11245 case IPV6_RECVHOPOPTS: 11246 if (!checkonly) { 11247 mutex_enter(&connp->conn_lock); 11248 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11249 mutex_exit(&connp->conn_lock); 11250 } 11251 break; /* goto sizeof (int) option return */ 11252 case IPV6_RECVDSTOPTS: 11253 if (!checkonly) { 11254 mutex_enter(&connp->conn_lock); 11255 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11256 mutex_exit(&connp->conn_lock); 11257 } 11258 break; /* goto sizeof (int) option return */ 11259 case IPV6_RECVRTHDR: 11260 if (!checkonly) { 11261 mutex_enter(&connp->conn_lock); 11262 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11263 mutex_exit(&connp->conn_lock); 11264 } 11265 break; /* goto sizeof (int) option return */ 11266 case IPV6_RECVRTHDRDSTOPTS: 11267 if (!checkonly) { 11268 mutex_enter(&connp->conn_lock); 11269 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11270 mutex_exit(&connp->conn_lock); 11271 } 11272 break; /* goto sizeof (int) option return */ 11273 case IPV6_PKTINFO: 11274 if (inlen == 0) 11275 return (-EINVAL); /* clearing option */ 11276 error = ip6_set_pktinfo(cr, connp, 11277 (struct in6_pktinfo *)invalp); 11278 if (error != 0) 11279 *outlenp = 0; 11280 else 11281 *outlenp = inlen; 11282 return (error); 11283 case IPV6_NEXTHOP: { 11284 struct sockaddr_in6 *sin6; 11285 11286 /* Verify that the nexthop is reachable */ 11287 if (inlen == 0) 11288 return (-EINVAL); /* clearing option */ 11289 11290 sin6 = (struct sockaddr_in6 *)invalp; 11291 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11292 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11293 NULL, MATCH_IRE_DEFAULT, ipst); 11294 11295 if (ire == NULL) { 11296 *outlenp = 0; 11297 return (EHOSTUNREACH); 11298 } 11299 ire_refrele(ire); 11300 return (-EINVAL); 11301 } 11302 case IPV6_SEC_OPT: 11303 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11304 if (error != 0) { 11305 *outlenp = 0; 11306 return (error); 11307 } 11308 break; 11309 case IPV6_SRC_PREFERENCES: { 11310 /* 11311 * This is implemented strictly in the ip module 11312 * (here and in tcp_opt_*() to accomodate tcp 11313 * sockets). Modules above ip pass this option 11314 * down here since ip is the only one that needs to 11315 * be aware of source address preferences. 11316 * 11317 * This socket option only affects connected 11318 * sockets that haven't already bound to a specific 11319 * IPv6 address. In other words, sockets that 11320 * don't call bind() with an address other than the 11321 * unspecified address and that call connect(). 11322 * ip_bind_connected_v6() passes these preferences 11323 * to the ipif_select_source_v6() function. 11324 */ 11325 if (inlen != sizeof (uint32_t)) 11326 return (EINVAL); 11327 error = ip6_set_src_preferences(connp, 11328 *(uint32_t *)invalp); 11329 if (error != 0) { 11330 *outlenp = 0; 11331 return (error); 11332 } else { 11333 *outlenp = sizeof (uint32_t); 11334 } 11335 break; 11336 } 11337 case IPV6_V6ONLY: 11338 if (*i1 < 0 || *i1 > 1) { 11339 return (EINVAL); 11340 } 11341 mutex_enter(&connp->conn_lock); 11342 connp->conn_ipv6_v6only = *i1; 11343 mutex_exit(&connp->conn_lock); 11344 break; 11345 default: 11346 return (-EINVAL); 11347 } 11348 break; 11349 default: 11350 /* 11351 * "soft" error (negative) 11352 * option not handled at this level 11353 * Note: Do not modify *outlenp 11354 */ 11355 return (-EINVAL); 11356 } 11357 /* 11358 * Common case of return from an option that is sizeof (int) 11359 */ 11360 *(int *)outvalp = *i1; 11361 *outlenp = sizeof (int); 11362 return (0); 11363 } 11364 11365 /* 11366 * This routine gets default values of certain options whose default 11367 * values are maintained by protocol specific code 11368 */ 11369 /* ARGSUSED */ 11370 int 11371 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11372 { 11373 int *i1 = (int *)ptr; 11374 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11375 11376 switch (level) { 11377 case IPPROTO_IP: 11378 switch (name) { 11379 case IP_MULTICAST_TTL: 11380 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11381 return (sizeof (uchar_t)); 11382 case IP_MULTICAST_LOOP: 11383 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11384 return (sizeof (uchar_t)); 11385 default: 11386 return (-1); 11387 } 11388 case IPPROTO_IPV6: 11389 switch (name) { 11390 case IPV6_UNICAST_HOPS: 11391 *i1 = ipst->ips_ipv6_def_hops; 11392 return (sizeof (int)); 11393 case IPV6_MULTICAST_HOPS: 11394 *i1 = IP_DEFAULT_MULTICAST_TTL; 11395 return (sizeof (int)); 11396 case IPV6_MULTICAST_LOOP: 11397 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11398 return (sizeof (int)); 11399 case IPV6_V6ONLY: 11400 *i1 = 1; 11401 return (sizeof (int)); 11402 default: 11403 return (-1); 11404 } 11405 default: 11406 return (-1); 11407 } 11408 /* NOTREACHED */ 11409 } 11410 11411 /* 11412 * Given a destination address and a pointer to where to put the information 11413 * this routine fills in the mtuinfo. 11414 */ 11415 int 11416 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11417 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11418 { 11419 ire_t *ire; 11420 ip_stack_t *ipst = ns->netstack_ip; 11421 11422 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11423 return (-1); 11424 11425 bzero(mtuinfo, sizeof (*mtuinfo)); 11426 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11427 mtuinfo->ip6m_addr.sin6_port = port; 11428 mtuinfo->ip6m_addr.sin6_addr = *in6; 11429 11430 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11431 if (ire != NULL) { 11432 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11433 ire_refrele(ire); 11434 } else { 11435 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11436 } 11437 return (sizeof (struct ip6_mtuinfo)); 11438 } 11439 11440 /* 11441 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11442 * checking of cred and that ip_g_mrouter is set should be done and 11443 * isn't. This doesn't matter as the error checking is done properly for the 11444 * other MRT options coming in through ip_opt_set. 11445 */ 11446 int 11447 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11448 { 11449 conn_t *connp = Q_TO_CONN(q); 11450 ipsec_req_t *req = (ipsec_req_t *)ptr; 11451 11452 switch (level) { 11453 case IPPROTO_IP: 11454 switch (name) { 11455 case MRT_VERSION: 11456 case MRT_ASSERT: 11457 (void) ip_mrouter_get(name, q, ptr); 11458 return (sizeof (int)); 11459 case IP_SEC_OPT: 11460 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11461 case IP_NEXTHOP: 11462 if (connp->conn_nexthop_set) { 11463 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11464 return (sizeof (ipaddr_t)); 11465 } else 11466 return (0); 11467 case IP_RECVPKTINFO: 11468 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11469 return (sizeof (int)); 11470 default: 11471 break; 11472 } 11473 break; 11474 case IPPROTO_IPV6: 11475 switch (name) { 11476 case IPV6_SEC_OPT: 11477 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11478 case IPV6_SRC_PREFERENCES: { 11479 return (ip6_get_src_preferences(connp, 11480 (uint32_t *)ptr)); 11481 } 11482 case IPV6_V6ONLY: 11483 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11484 return (sizeof (int)); 11485 case IPV6_PATHMTU: 11486 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11487 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11488 default: 11489 break; 11490 } 11491 break; 11492 default: 11493 break; 11494 } 11495 return (-1); 11496 } 11497 /* Named Dispatch routine to get a current value out of our parameter table. */ 11498 /* ARGSUSED */ 11499 static int 11500 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11501 { 11502 ipparam_t *ippa = (ipparam_t *)cp; 11503 11504 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11505 return (0); 11506 } 11507 11508 /* ARGSUSED */ 11509 static int 11510 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11511 { 11512 11513 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11514 return (0); 11515 } 11516 11517 /* 11518 * Set ip{,6}_forwarding values. This means walking through all of the 11519 * ill's and toggling their forwarding values. 11520 */ 11521 /* ARGSUSED */ 11522 static int 11523 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11524 { 11525 long new_value; 11526 int *forwarding_value = (int *)cp; 11527 ill_t *ill; 11528 boolean_t isv6; 11529 ill_walk_context_t ctx; 11530 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11531 11532 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11533 11534 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11535 new_value < 0 || new_value > 1) { 11536 return (EINVAL); 11537 } 11538 11539 *forwarding_value = new_value; 11540 11541 /* 11542 * Regardless of the current value of ip_forwarding, set all per-ill 11543 * values of ip_forwarding to the value being set. 11544 * 11545 * Bring all the ill's up to date with the new global value. 11546 */ 11547 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11548 11549 if (isv6) 11550 ill = ILL_START_WALK_V6(&ctx, ipst); 11551 else 11552 ill = ILL_START_WALK_V4(&ctx, ipst); 11553 11554 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11555 (void) ill_forward_set(ill, new_value != 0); 11556 11557 rw_exit(&ipst->ips_ill_g_lock); 11558 return (0); 11559 } 11560 11561 /* 11562 * Walk through the param array specified registering each element with the 11563 * Named Dispatch handler. This is called only during init. So it is ok 11564 * not to acquire any locks 11565 */ 11566 static boolean_t 11567 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11568 ipndp_t *ipnd, size_t ipnd_cnt) 11569 { 11570 for (; ippa_cnt-- > 0; ippa++) { 11571 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11572 if (!nd_load(ndp, ippa->ip_param_name, 11573 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11574 nd_free(ndp); 11575 return (B_FALSE); 11576 } 11577 } 11578 } 11579 11580 for (; ipnd_cnt-- > 0; ipnd++) { 11581 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11582 if (!nd_load(ndp, ipnd->ip_ndp_name, 11583 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11584 ipnd->ip_ndp_data)) { 11585 nd_free(ndp); 11586 return (B_FALSE); 11587 } 11588 } 11589 } 11590 11591 return (B_TRUE); 11592 } 11593 11594 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11595 /* ARGSUSED */ 11596 static int 11597 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11598 { 11599 long new_value; 11600 ipparam_t *ippa = (ipparam_t *)cp; 11601 11602 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11603 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11604 return (EINVAL); 11605 } 11606 ippa->ip_param_value = new_value; 11607 return (0); 11608 } 11609 11610 /* 11611 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11612 * When an ipf is passed here for the first time, if 11613 * we already have in-order fragments on the queue, we convert from the fast- 11614 * path reassembly scheme to the hard-case scheme. From then on, additional 11615 * fragments are reassembled here. We keep track of the start and end offsets 11616 * of each piece, and the number of holes in the chain. When the hole count 11617 * goes to zero, we are done! 11618 * 11619 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11620 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11621 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11622 * after the call to ip_reassemble(). 11623 */ 11624 int 11625 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11626 size_t msg_len) 11627 { 11628 uint_t end; 11629 mblk_t *next_mp; 11630 mblk_t *mp1; 11631 uint_t offset; 11632 boolean_t incr_dups = B_TRUE; 11633 boolean_t offset_zero_seen = B_FALSE; 11634 boolean_t pkt_boundary_checked = B_FALSE; 11635 11636 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11637 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11638 11639 /* Add in byte count */ 11640 ipf->ipf_count += msg_len; 11641 if (ipf->ipf_end) { 11642 /* 11643 * We were part way through in-order reassembly, but now there 11644 * is a hole. We walk through messages already queued, and 11645 * mark them for hard case reassembly. We know that up till 11646 * now they were in order starting from offset zero. 11647 */ 11648 offset = 0; 11649 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11650 IP_REASS_SET_START(mp1, offset); 11651 if (offset == 0) { 11652 ASSERT(ipf->ipf_nf_hdr_len != 0); 11653 offset = -ipf->ipf_nf_hdr_len; 11654 } 11655 offset += mp1->b_wptr - mp1->b_rptr; 11656 IP_REASS_SET_END(mp1, offset); 11657 } 11658 /* One hole at the end. */ 11659 ipf->ipf_hole_cnt = 1; 11660 /* Brand it as a hard case, forever. */ 11661 ipf->ipf_end = 0; 11662 } 11663 /* Walk through all the new pieces. */ 11664 do { 11665 end = start + (mp->b_wptr - mp->b_rptr); 11666 /* 11667 * If start is 0, decrease 'end' only for the first mblk of 11668 * the fragment. Otherwise 'end' can get wrong value in the 11669 * second pass of the loop if first mblk is exactly the 11670 * size of ipf_nf_hdr_len. 11671 */ 11672 if (start == 0 && !offset_zero_seen) { 11673 /* First segment */ 11674 ASSERT(ipf->ipf_nf_hdr_len != 0); 11675 end -= ipf->ipf_nf_hdr_len; 11676 offset_zero_seen = B_TRUE; 11677 } 11678 next_mp = mp->b_cont; 11679 /* 11680 * We are checking to see if there is any interesing data 11681 * to process. If there isn't and the mblk isn't the 11682 * one which carries the unfragmentable header then we 11683 * drop it. It's possible to have just the unfragmentable 11684 * header come through without any data. That needs to be 11685 * saved. 11686 * 11687 * If the assert at the top of this function holds then the 11688 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11689 * is infrequently traveled enough that the test is left in 11690 * to protect against future code changes which break that 11691 * invariant. 11692 */ 11693 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11694 /* Empty. Blast it. */ 11695 IP_REASS_SET_START(mp, 0); 11696 IP_REASS_SET_END(mp, 0); 11697 /* 11698 * If the ipf points to the mblk we are about to free, 11699 * update ipf to point to the next mblk (or NULL 11700 * if none). 11701 */ 11702 if (ipf->ipf_mp->b_cont == mp) 11703 ipf->ipf_mp->b_cont = next_mp; 11704 freeb(mp); 11705 continue; 11706 } 11707 mp->b_cont = NULL; 11708 IP_REASS_SET_START(mp, start); 11709 IP_REASS_SET_END(mp, end); 11710 if (!ipf->ipf_tail_mp) { 11711 ipf->ipf_tail_mp = mp; 11712 ipf->ipf_mp->b_cont = mp; 11713 if (start == 0 || !more) { 11714 ipf->ipf_hole_cnt = 1; 11715 /* 11716 * if the first fragment comes in more than one 11717 * mblk, this loop will be executed for each 11718 * mblk. Need to adjust hole count so exiting 11719 * this routine will leave hole count at 1. 11720 */ 11721 if (next_mp) 11722 ipf->ipf_hole_cnt++; 11723 } else 11724 ipf->ipf_hole_cnt = 2; 11725 continue; 11726 } else if (ipf->ipf_last_frag_seen && !more && 11727 !pkt_boundary_checked) { 11728 /* 11729 * We check datagram boundary only if this fragment 11730 * claims to be the last fragment and we have seen a 11731 * last fragment in the past too. We do this only 11732 * once for a given fragment. 11733 * 11734 * start cannot be 0 here as fragments with start=0 11735 * and MF=0 gets handled as a complete packet. These 11736 * fragments should not reach here. 11737 */ 11738 11739 if (start + msgdsize(mp) != 11740 IP_REASS_END(ipf->ipf_tail_mp)) { 11741 /* 11742 * We have two fragments both of which claim 11743 * to be the last fragment but gives conflicting 11744 * information about the whole datagram size. 11745 * Something fishy is going on. Drop the 11746 * fragment and free up the reassembly list. 11747 */ 11748 return (IP_REASS_FAILED); 11749 } 11750 11751 /* 11752 * We shouldn't come to this code block again for this 11753 * particular fragment. 11754 */ 11755 pkt_boundary_checked = B_TRUE; 11756 } 11757 11758 /* New stuff at or beyond tail? */ 11759 offset = IP_REASS_END(ipf->ipf_tail_mp); 11760 if (start >= offset) { 11761 if (ipf->ipf_last_frag_seen) { 11762 /* current fragment is beyond last fragment */ 11763 return (IP_REASS_FAILED); 11764 } 11765 /* Link it on end. */ 11766 ipf->ipf_tail_mp->b_cont = mp; 11767 ipf->ipf_tail_mp = mp; 11768 if (more) { 11769 if (start != offset) 11770 ipf->ipf_hole_cnt++; 11771 } else if (start == offset && next_mp == NULL) 11772 ipf->ipf_hole_cnt--; 11773 continue; 11774 } 11775 mp1 = ipf->ipf_mp->b_cont; 11776 offset = IP_REASS_START(mp1); 11777 /* New stuff at the front? */ 11778 if (start < offset) { 11779 if (start == 0) { 11780 if (end >= offset) { 11781 /* Nailed the hole at the begining. */ 11782 ipf->ipf_hole_cnt--; 11783 } 11784 } else if (end < offset) { 11785 /* 11786 * A hole, stuff, and a hole where there used 11787 * to be just a hole. 11788 */ 11789 ipf->ipf_hole_cnt++; 11790 } 11791 mp->b_cont = mp1; 11792 /* Check for overlap. */ 11793 while (end > offset) { 11794 if (end < IP_REASS_END(mp1)) { 11795 mp->b_wptr -= end - offset; 11796 IP_REASS_SET_END(mp, offset); 11797 BUMP_MIB(ill->ill_ip_mib, 11798 ipIfStatsReasmPartDups); 11799 break; 11800 } 11801 /* Did we cover another hole? */ 11802 if ((mp1->b_cont && 11803 IP_REASS_END(mp1) != 11804 IP_REASS_START(mp1->b_cont) && 11805 end >= IP_REASS_START(mp1->b_cont)) || 11806 (!ipf->ipf_last_frag_seen && !more)) { 11807 ipf->ipf_hole_cnt--; 11808 } 11809 /* Clip out mp1. */ 11810 if ((mp->b_cont = mp1->b_cont) == NULL) { 11811 /* 11812 * After clipping out mp1, this guy 11813 * is now hanging off the end. 11814 */ 11815 ipf->ipf_tail_mp = mp; 11816 } 11817 IP_REASS_SET_START(mp1, 0); 11818 IP_REASS_SET_END(mp1, 0); 11819 /* Subtract byte count */ 11820 ipf->ipf_count -= mp1->b_datap->db_lim - 11821 mp1->b_datap->db_base; 11822 freeb(mp1); 11823 BUMP_MIB(ill->ill_ip_mib, 11824 ipIfStatsReasmPartDups); 11825 mp1 = mp->b_cont; 11826 if (!mp1) 11827 break; 11828 offset = IP_REASS_START(mp1); 11829 } 11830 ipf->ipf_mp->b_cont = mp; 11831 continue; 11832 } 11833 /* 11834 * The new piece starts somewhere between the start of the head 11835 * and before the end of the tail. 11836 */ 11837 for (; mp1; mp1 = mp1->b_cont) { 11838 offset = IP_REASS_END(mp1); 11839 if (start < offset) { 11840 if (end <= offset) { 11841 /* Nothing new. */ 11842 IP_REASS_SET_START(mp, 0); 11843 IP_REASS_SET_END(mp, 0); 11844 /* Subtract byte count */ 11845 ipf->ipf_count -= mp->b_datap->db_lim - 11846 mp->b_datap->db_base; 11847 if (incr_dups) { 11848 ipf->ipf_num_dups++; 11849 incr_dups = B_FALSE; 11850 } 11851 freeb(mp); 11852 BUMP_MIB(ill->ill_ip_mib, 11853 ipIfStatsReasmDuplicates); 11854 break; 11855 } 11856 /* 11857 * Trim redundant stuff off beginning of new 11858 * piece. 11859 */ 11860 IP_REASS_SET_START(mp, offset); 11861 mp->b_rptr += offset - start; 11862 BUMP_MIB(ill->ill_ip_mib, 11863 ipIfStatsReasmPartDups); 11864 start = offset; 11865 if (!mp1->b_cont) { 11866 /* 11867 * After trimming, this guy is now 11868 * hanging off the end. 11869 */ 11870 mp1->b_cont = mp; 11871 ipf->ipf_tail_mp = mp; 11872 if (!more) { 11873 ipf->ipf_hole_cnt--; 11874 } 11875 break; 11876 } 11877 } 11878 if (start >= IP_REASS_START(mp1->b_cont)) 11879 continue; 11880 /* Fill a hole */ 11881 if (start > offset) 11882 ipf->ipf_hole_cnt++; 11883 mp->b_cont = mp1->b_cont; 11884 mp1->b_cont = mp; 11885 mp1 = mp->b_cont; 11886 offset = IP_REASS_START(mp1); 11887 if (end >= offset) { 11888 ipf->ipf_hole_cnt--; 11889 /* Check for overlap. */ 11890 while (end > offset) { 11891 if (end < IP_REASS_END(mp1)) { 11892 mp->b_wptr -= end - offset; 11893 IP_REASS_SET_END(mp, offset); 11894 /* 11895 * TODO we might bump 11896 * this up twice if there is 11897 * overlap at both ends. 11898 */ 11899 BUMP_MIB(ill->ill_ip_mib, 11900 ipIfStatsReasmPartDups); 11901 break; 11902 } 11903 /* Did we cover another hole? */ 11904 if ((mp1->b_cont && 11905 IP_REASS_END(mp1) 11906 != IP_REASS_START(mp1->b_cont) && 11907 end >= 11908 IP_REASS_START(mp1->b_cont)) || 11909 (!ipf->ipf_last_frag_seen && 11910 !more)) { 11911 ipf->ipf_hole_cnt--; 11912 } 11913 /* Clip out mp1. */ 11914 if ((mp->b_cont = mp1->b_cont) == 11915 NULL) { 11916 /* 11917 * After clipping out mp1, 11918 * this guy is now hanging 11919 * off the end. 11920 */ 11921 ipf->ipf_tail_mp = mp; 11922 } 11923 IP_REASS_SET_START(mp1, 0); 11924 IP_REASS_SET_END(mp1, 0); 11925 /* Subtract byte count */ 11926 ipf->ipf_count -= 11927 mp1->b_datap->db_lim - 11928 mp1->b_datap->db_base; 11929 freeb(mp1); 11930 BUMP_MIB(ill->ill_ip_mib, 11931 ipIfStatsReasmPartDups); 11932 mp1 = mp->b_cont; 11933 if (!mp1) 11934 break; 11935 offset = IP_REASS_START(mp1); 11936 } 11937 } 11938 break; 11939 } 11940 } while (start = end, mp = next_mp); 11941 11942 /* Fragment just processed could be the last one. Remember this fact */ 11943 if (!more) 11944 ipf->ipf_last_frag_seen = B_TRUE; 11945 11946 /* Still got holes? */ 11947 if (ipf->ipf_hole_cnt) 11948 return (IP_REASS_PARTIAL); 11949 /* Clean up overloaded fields to avoid upstream disasters. */ 11950 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11951 IP_REASS_SET_START(mp1, 0); 11952 IP_REASS_SET_END(mp1, 0); 11953 } 11954 return (IP_REASS_COMPLETE); 11955 } 11956 11957 /* 11958 * ipsec processing for the fast path, used for input UDP Packets 11959 * Returns true if ready for passup to UDP. 11960 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 11961 * was an ESP-in-UDP packet, etc.). 11962 */ 11963 static boolean_t 11964 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 11965 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 11966 { 11967 uint32_t ill_index; 11968 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 11969 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 11970 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 11971 udp_t *udp = connp->conn_udp; 11972 11973 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11974 /* The ill_index of the incoming ILL */ 11975 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 11976 11977 /* pass packet up to the transport */ 11978 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 11979 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 11980 NULL, mctl_present); 11981 if (*first_mpp == NULL) { 11982 return (B_FALSE); 11983 } 11984 } 11985 11986 /* Initiate IPPF processing for fastpath UDP */ 11987 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 11988 ip_process(IPP_LOCAL_IN, mpp, ill_index); 11989 if (*mpp == NULL) { 11990 ip2dbg(("ip_input_ipsec_process: UDP pkt " 11991 "deferred/dropped during IPPF processing\n")); 11992 return (B_FALSE); 11993 } 11994 } 11995 /* 11996 * Remove 0-spi if it's 0, or move everything behind 11997 * the UDP header over it and forward to ESP via 11998 * ip_proto_input(). 11999 */ 12000 if (udp->udp_nat_t_endpoint) { 12001 if (mctl_present) { 12002 /* mctl_present *shouldn't* happen. */ 12003 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12004 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12005 &ipss->ipsec_dropper); 12006 *first_mpp = NULL; 12007 return (B_FALSE); 12008 } 12009 12010 /* "ill" is "recv_ill" in actuality. */ 12011 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12012 return (B_FALSE); 12013 12014 /* Else continue like a normal UDP packet. */ 12015 } 12016 12017 /* 12018 * We make the checks as below since we are in the fast path 12019 * and want to minimize the number of checks if the IP_RECVIF and/or 12020 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12021 */ 12022 if (connp->conn_recvif || connp->conn_recvslla || 12023 connp->conn_ip_recvpktinfo) { 12024 if (connp->conn_recvif) { 12025 in_flags = IPF_RECVIF; 12026 } 12027 /* 12028 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12029 * so the flag passed to ip_add_info is based on IP version 12030 * of connp. 12031 */ 12032 if (connp->conn_ip_recvpktinfo) { 12033 if (connp->conn_af_isv6) { 12034 /* 12035 * V6 only needs index 12036 */ 12037 in_flags |= IPF_RECVIF; 12038 } else { 12039 /* 12040 * V4 needs index + matching address. 12041 */ 12042 in_flags |= IPF_RECVADDR; 12043 } 12044 } 12045 if (connp->conn_recvslla) { 12046 in_flags |= IPF_RECVSLLA; 12047 } 12048 /* 12049 * since in_flags are being set ill will be 12050 * referenced in ip_add_info, so it better not 12051 * be NULL. 12052 */ 12053 /* 12054 * the actual data will be contained in b_cont 12055 * upon successful return of the following call. 12056 * If the call fails then the original mblk is 12057 * returned. 12058 */ 12059 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12060 ipst); 12061 } 12062 12063 return (B_TRUE); 12064 } 12065 12066 /* 12067 * Fragmentation reassembly. Each ILL has a hash table for 12068 * queuing packets undergoing reassembly for all IPIFs 12069 * associated with the ILL. The hash is based on the packet 12070 * IP ident field. The ILL frag hash table was allocated 12071 * as a timer block at the time the ILL was created. Whenever 12072 * there is anything on the reassembly queue, the timer will 12073 * be running. Returns B_TRUE if successful else B_FALSE; 12074 * frees mp on failure. 12075 */ 12076 static boolean_t 12077 ip_rput_fragment(ill_t *ill, ill_t *recv_ill, mblk_t **mpp, ipha_t *ipha, 12078 uint32_t *cksum_val, uint16_t *cksum_flags) 12079 { 12080 uint32_t frag_offset_flags; 12081 mblk_t *mp = *mpp; 12082 mblk_t *t_mp; 12083 ipaddr_t dst; 12084 uint8_t proto = ipha->ipha_protocol; 12085 uint32_t sum_val; 12086 uint16_t sum_flags; 12087 ipf_t *ipf; 12088 ipf_t **ipfp; 12089 ipfb_t *ipfb; 12090 uint16_t ident; 12091 uint32_t offset; 12092 ipaddr_t src; 12093 uint_t hdr_length; 12094 uint32_t end; 12095 mblk_t *mp1; 12096 mblk_t *tail_mp; 12097 size_t count; 12098 size_t msg_len; 12099 uint8_t ecn_info = 0; 12100 uint32_t packet_size; 12101 boolean_t pruned = B_FALSE; 12102 ip_stack_t *ipst = ill->ill_ipst; 12103 12104 if (cksum_val != NULL) 12105 *cksum_val = 0; 12106 if (cksum_flags != NULL) 12107 *cksum_flags = 0; 12108 12109 /* 12110 * Drop the fragmented as early as possible, if 12111 * we don't have resource(s) to re-assemble. 12112 */ 12113 if (ipst->ips_ip_reass_queue_bytes == 0) { 12114 freemsg(mp); 12115 return (B_FALSE); 12116 } 12117 12118 /* Check for fragmentation offset; return if there's none */ 12119 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12120 (IPH_MF | IPH_OFFSET)) == 0) 12121 return (B_TRUE); 12122 12123 /* 12124 * We utilize hardware computed checksum info only for UDP since 12125 * IP fragmentation is a normal occurrence for the protocol. In 12126 * addition, checksum offload support for IP fragments carrying 12127 * UDP payload is commonly implemented across network adapters. 12128 */ 12129 ASSERT(recv_ill != NULL); 12130 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(recv_ill) && 12131 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12132 mblk_t *mp1 = mp->b_cont; 12133 int32_t len; 12134 12135 /* Record checksum information from the packet */ 12136 sum_val = (uint32_t)DB_CKSUM16(mp); 12137 sum_flags = DB_CKSUMFLAGS(mp); 12138 12139 /* IP payload offset from beginning of mblk */ 12140 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12141 12142 if ((sum_flags & HCK_PARTIALCKSUM) && 12143 (mp1 == NULL || mp1->b_cont == NULL) && 12144 offset >= DB_CKSUMSTART(mp) && 12145 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12146 uint32_t adj; 12147 /* 12148 * Partial checksum has been calculated by hardware 12149 * and attached to the packet; in addition, any 12150 * prepended extraneous data is even byte aligned. 12151 * If any such data exists, we adjust the checksum; 12152 * this would also handle any postpended data. 12153 */ 12154 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12155 mp, mp1, len, adj); 12156 12157 /* One's complement subtract extraneous checksum */ 12158 if (adj >= sum_val) 12159 sum_val = ~(adj - sum_val) & 0xFFFF; 12160 else 12161 sum_val -= adj; 12162 } 12163 } else { 12164 sum_val = 0; 12165 sum_flags = 0; 12166 } 12167 12168 /* Clear hardware checksumming flag */ 12169 DB_CKSUMFLAGS(mp) = 0; 12170 12171 ident = ipha->ipha_ident; 12172 offset = (frag_offset_flags << 3) & 0xFFFF; 12173 src = ipha->ipha_src; 12174 dst = ipha->ipha_dst; 12175 hdr_length = IPH_HDR_LENGTH(ipha); 12176 end = ntohs(ipha->ipha_length) - hdr_length; 12177 12178 /* If end == 0 then we have a packet with no data, so just free it */ 12179 if (end == 0) { 12180 freemsg(mp); 12181 return (B_FALSE); 12182 } 12183 12184 /* Record the ECN field info. */ 12185 ecn_info = (ipha->ipha_type_of_service & 0x3); 12186 if (offset != 0) { 12187 /* 12188 * If this isn't the first piece, strip the header, and 12189 * add the offset to the end value. 12190 */ 12191 mp->b_rptr += hdr_length; 12192 end += offset; 12193 } 12194 12195 msg_len = MBLKSIZE(mp); 12196 tail_mp = mp; 12197 while (tail_mp->b_cont != NULL) { 12198 tail_mp = tail_mp->b_cont; 12199 msg_len += MBLKSIZE(tail_mp); 12200 } 12201 12202 /* If the reassembly list for this ILL will get too big, prune it */ 12203 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12204 ipst->ips_ip_reass_queue_bytes) { 12205 ill_frag_prune(ill, 12206 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12207 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12208 pruned = B_TRUE; 12209 } 12210 12211 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12212 mutex_enter(&ipfb->ipfb_lock); 12213 12214 ipfp = &ipfb->ipfb_ipf; 12215 /* Try to find an existing fragment queue for this packet. */ 12216 for (;;) { 12217 ipf = ipfp[0]; 12218 if (ipf != NULL) { 12219 /* 12220 * It has to match on ident and src/dst address. 12221 */ 12222 if (ipf->ipf_ident == ident && 12223 ipf->ipf_src == src && 12224 ipf->ipf_dst == dst && 12225 ipf->ipf_protocol == proto) { 12226 /* 12227 * If we have received too many 12228 * duplicate fragments for this packet 12229 * free it. 12230 */ 12231 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12232 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12233 freemsg(mp); 12234 mutex_exit(&ipfb->ipfb_lock); 12235 return (B_FALSE); 12236 } 12237 /* Found it. */ 12238 break; 12239 } 12240 ipfp = &ipf->ipf_hash_next; 12241 continue; 12242 } 12243 12244 /* 12245 * If we pruned the list, do we want to store this new 12246 * fragment?. We apply an optimization here based on the 12247 * fact that most fragments will be received in order. 12248 * So if the offset of this incoming fragment is zero, 12249 * it is the first fragment of a new packet. We will 12250 * keep it. Otherwise drop the fragment, as we have 12251 * probably pruned the packet already (since the 12252 * packet cannot be found). 12253 */ 12254 if (pruned && offset != 0) { 12255 mutex_exit(&ipfb->ipfb_lock); 12256 freemsg(mp); 12257 return (B_FALSE); 12258 } 12259 12260 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12261 /* 12262 * Too many fragmented packets in this hash 12263 * bucket. Free the oldest. 12264 */ 12265 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12266 } 12267 12268 /* New guy. Allocate a frag message. */ 12269 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12270 if (mp1 == NULL) { 12271 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12272 freemsg(mp); 12273 reass_done: 12274 mutex_exit(&ipfb->ipfb_lock); 12275 return (B_FALSE); 12276 } 12277 12278 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12279 mp1->b_cont = mp; 12280 12281 /* Initialize the fragment header. */ 12282 ipf = (ipf_t *)mp1->b_rptr; 12283 ipf->ipf_mp = mp1; 12284 ipf->ipf_ptphn = ipfp; 12285 ipfp[0] = ipf; 12286 ipf->ipf_hash_next = NULL; 12287 ipf->ipf_ident = ident; 12288 ipf->ipf_protocol = proto; 12289 ipf->ipf_src = src; 12290 ipf->ipf_dst = dst; 12291 ipf->ipf_nf_hdr_len = 0; 12292 /* Record reassembly start time. */ 12293 ipf->ipf_timestamp = gethrestime_sec(); 12294 /* Record ipf generation and account for frag header */ 12295 ipf->ipf_gen = ill->ill_ipf_gen++; 12296 ipf->ipf_count = MBLKSIZE(mp1); 12297 ipf->ipf_last_frag_seen = B_FALSE; 12298 ipf->ipf_ecn = ecn_info; 12299 ipf->ipf_num_dups = 0; 12300 ipfb->ipfb_frag_pkts++; 12301 ipf->ipf_checksum = 0; 12302 ipf->ipf_checksum_flags = 0; 12303 12304 /* Store checksum value in fragment header */ 12305 if (sum_flags != 0) { 12306 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12307 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12308 ipf->ipf_checksum = sum_val; 12309 ipf->ipf_checksum_flags = sum_flags; 12310 } 12311 12312 /* 12313 * We handle reassembly two ways. In the easy case, 12314 * where all the fragments show up in order, we do 12315 * minimal bookkeeping, and just clip new pieces on 12316 * the end. If we ever see a hole, then we go off 12317 * to ip_reassemble which has to mark the pieces and 12318 * keep track of the number of holes, etc. Obviously, 12319 * the point of having both mechanisms is so we can 12320 * handle the easy case as efficiently as possible. 12321 */ 12322 if (offset == 0) { 12323 /* Easy case, in-order reassembly so far. */ 12324 ipf->ipf_count += msg_len; 12325 ipf->ipf_tail_mp = tail_mp; 12326 /* 12327 * Keep track of next expected offset in 12328 * ipf_end. 12329 */ 12330 ipf->ipf_end = end; 12331 ipf->ipf_nf_hdr_len = hdr_length; 12332 } else { 12333 /* Hard case, hole at the beginning. */ 12334 ipf->ipf_tail_mp = NULL; 12335 /* 12336 * ipf_end == 0 means that we have given up 12337 * on easy reassembly. 12338 */ 12339 ipf->ipf_end = 0; 12340 12341 /* Forget checksum offload from now on */ 12342 ipf->ipf_checksum_flags = 0; 12343 12344 /* 12345 * ipf_hole_cnt is set by ip_reassemble. 12346 * ipf_count is updated by ip_reassemble. 12347 * No need to check for return value here 12348 * as we don't expect reassembly to complete 12349 * or fail for the first fragment itself. 12350 */ 12351 (void) ip_reassemble(mp, ipf, 12352 (frag_offset_flags & IPH_OFFSET) << 3, 12353 (frag_offset_flags & IPH_MF), ill, msg_len); 12354 } 12355 /* Update per ipfb and ill byte counts */ 12356 ipfb->ipfb_count += ipf->ipf_count; 12357 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12358 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12359 /* If the frag timer wasn't already going, start it. */ 12360 mutex_enter(&ill->ill_lock); 12361 ill_frag_timer_start(ill); 12362 mutex_exit(&ill->ill_lock); 12363 goto reass_done; 12364 } 12365 12366 /* 12367 * If the packet's flag has changed (it could be coming up 12368 * from an interface different than the previous, therefore 12369 * possibly different checksum capability), then forget about 12370 * any stored checksum states. Otherwise add the value to 12371 * the existing one stored in the fragment header. 12372 */ 12373 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12374 sum_val += ipf->ipf_checksum; 12375 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12376 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12377 ipf->ipf_checksum = sum_val; 12378 } else if (ipf->ipf_checksum_flags != 0) { 12379 /* Forget checksum offload from now on */ 12380 ipf->ipf_checksum_flags = 0; 12381 } 12382 12383 /* 12384 * We have a new piece of a datagram which is already being 12385 * reassembled. Update the ECN info if all IP fragments 12386 * are ECN capable. If there is one which is not, clear 12387 * all the info. If there is at least one which has CE 12388 * code point, IP needs to report that up to transport. 12389 */ 12390 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12391 if (ecn_info == IPH_ECN_CE) 12392 ipf->ipf_ecn = IPH_ECN_CE; 12393 } else { 12394 ipf->ipf_ecn = IPH_ECN_NECT; 12395 } 12396 if (offset && ipf->ipf_end == offset) { 12397 /* The new fragment fits at the end */ 12398 ipf->ipf_tail_mp->b_cont = mp; 12399 /* Update the byte count */ 12400 ipf->ipf_count += msg_len; 12401 /* Update per ipfb and ill byte counts */ 12402 ipfb->ipfb_count += msg_len; 12403 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12404 atomic_add_32(&ill->ill_frag_count, msg_len); 12405 if (frag_offset_flags & IPH_MF) { 12406 /* More to come. */ 12407 ipf->ipf_end = end; 12408 ipf->ipf_tail_mp = tail_mp; 12409 goto reass_done; 12410 } 12411 } else { 12412 /* Go do the hard cases. */ 12413 int ret; 12414 12415 if (offset == 0) 12416 ipf->ipf_nf_hdr_len = hdr_length; 12417 12418 /* Save current byte count */ 12419 count = ipf->ipf_count; 12420 ret = ip_reassemble(mp, ipf, 12421 (frag_offset_flags & IPH_OFFSET) << 3, 12422 (frag_offset_flags & IPH_MF), ill, msg_len); 12423 /* Count of bytes added and subtracted (freeb()ed) */ 12424 count = ipf->ipf_count - count; 12425 if (count) { 12426 /* Update per ipfb and ill byte counts */ 12427 ipfb->ipfb_count += count; 12428 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12429 atomic_add_32(&ill->ill_frag_count, count); 12430 } 12431 if (ret == IP_REASS_PARTIAL) { 12432 goto reass_done; 12433 } else if (ret == IP_REASS_FAILED) { 12434 /* Reassembly failed. Free up all resources */ 12435 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12436 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12437 IP_REASS_SET_START(t_mp, 0); 12438 IP_REASS_SET_END(t_mp, 0); 12439 } 12440 freemsg(mp); 12441 goto reass_done; 12442 } 12443 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12444 } 12445 /* 12446 * We have completed reassembly. Unhook the frag header from 12447 * the reassembly list. 12448 * 12449 * Before we free the frag header, record the ECN info 12450 * to report back to the transport. 12451 */ 12452 ecn_info = ipf->ipf_ecn; 12453 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12454 ipfp = ipf->ipf_ptphn; 12455 12456 /* We need to supply these to caller */ 12457 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12458 sum_val = ipf->ipf_checksum; 12459 else 12460 sum_val = 0; 12461 12462 mp1 = ipf->ipf_mp; 12463 count = ipf->ipf_count; 12464 ipf = ipf->ipf_hash_next; 12465 if (ipf != NULL) 12466 ipf->ipf_ptphn = ipfp; 12467 ipfp[0] = ipf; 12468 atomic_add_32(&ill->ill_frag_count, -count); 12469 ASSERT(ipfb->ipfb_count >= count); 12470 ipfb->ipfb_count -= count; 12471 ipfb->ipfb_frag_pkts--; 12472 mutex_exit(&ipfb->ipfb_lock); 12473 /* Ditch the frag header. */ 12474 mp = mp1->b_cont; 12475 12476 freeb(mp1); 12477 12478 /* Restore original IP length in header. */ 12479 packet_size = (uint32_t)msgdsize(mp); 12480 if (packet_size > IP_MAXPACKET) { 12481 freemsg(mp); 12482 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12483 return (B_FALSE); 12484 } 12485 12486 if (DB_REF(mp) > 1) { 12487 mblk_t *mp2 = copymsg(mp); 12488 12489 freemsg(mp); 12490 if (mp2 == NULL) { 12491 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12492 return (B_FALSE); 12493 } 12494 mp = mp2; 12495 } 12496 ipha = (ipha_t *)mp->b_rptr; 12497 12498 ipha->ipha_length = htons((uint16_t)packet_size); 12499 /* We're now complete, zip the frag state */ 12500 ipha->ipha_fragment_offset_and_flags = 0; 12501 /* Record the ECN info. */ 12502 ipha->ipha_type_of_service &= 0xFC; 12503 ipha->ipha_type_of_service |= ecn_info; 12504 *mpp = mp; 12505 12506 /* Reassembly is successful; return checksum information if needed */ 12507 if (cksum_val != NULL) 12508 *cksum_val = sum_val; 12509 if (cksum_flags != NULL) 12510 *cksum_flags = sum_flags; 12511 12512 return (B_TRUE); 12513 } 12514 12515 /* 12516 * Perform ip header check sum update local options. 12517 * return B_TRUE if all is well, else return B_FALSE and release 12518 * the mp. caller is responsible for decrementing ire ref cnt. 12519 */ 12520 static boolean_t 12521 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12522 ip_stack_t *ipst) 12523 { 12524 mblk_t *first_mp; 12525 boolean_t mctl_present; 12526 uint16_t sum; 12527 12528 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12529 /* 12530 * Don't do the checksum if it has gone through AH/ESP 12531 * processing. 12532 */ 12533 if (!mctl_present) { 12534 sum = ip_csum_hdr(ipha); 12535 if (sum != 0) { 12536 if (ill != NULL) { 12537 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12538 } else { 12539 BUMP_MIB(&ipst->ips_ip_mib, 12540 ipIfStatsInCksumErrs); 12541 } 12542 freemsg(first_mp); 12543 return (B_FALSE); 12544 } 12545 } 12546 12547 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12548 if (mctl_present) 12549 freeb(first_mp); 12550 return (B_FALSE); 12551 } 12552 12553 return (B_TRUE); 12554 } 12555 12556 /* 12557 * All udp packet are delivered to the local host via this routine. 12558 */ 12559 void 12560 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12561 ill_t *recv_ill) 12562 { 12563 uint32_t sum; 12564 uint32_t u1; 12565 boolean_t mctl_present; 12566 conn_t *connp; 12567 mblk_t *first_mp; 12568 uint16_t *up; 12569 ill_t *ill = (ill_t *)q->q_ptr; 12570 uint16_t reass_hck_flags = 0; 12571 ip_stack_t *ipst; 12572 12573 ASSERT(recv_ill != NULL); 12574 ipst = recv_ill->ill_ipst; 12575 12576 #define rptr ((uchar_t *)ipha) 12577 12578 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12579 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12580 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12581 ASSERT(ill != NULL); 12582 12583 /* 12584 * FAST PATH for udp packets 12585 */ 12586 12587 /* u1 is # words of IP options */ 12588 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12589 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12590 12591 /* IP options present */ 12592 if (u1 != 0) 12593 goto ipoptions; 12594 12595 /* Check the IP header checksum. */ 12596 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12597 /* Clear the IP header h/w cksum flag */ 12598 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12599 } else if (!mctl_present) { 12600 /* 12601 * Don't verify header checksum if this packet is coming 12602 * back from AH/ESP as we already did it. 12603 */ 12604 #define uph ((uint16_t *)ipha) 12605 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12606 uph[6] + uph[7] + uph[8] + uph[9]; 12607 #undef uph 12608 /* finish doing IP checksum */ 12609 sum = (sum & 0xFFFF) + (sum >> 16); 12610 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12611 if (sum != 0 && sum != 0xFFFF) { 12612 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12613 freemsg(first_mp); 12614 return; 12615 } 12616 } 12617 12618 /* 12619 * Count for SNMP of inbound packets for ire. 12620 * if mctl is present this might be a secure packet and 12621 * has already been counted for in ip_proto_input(). 12622 */ 12623 if (!mctl_present) { 12624 UPDATE_IB_PKT_COUNT(ire); 12625 ire->ire_last_used_time = lbolt; 12626 } 12627 12628 /* packet part of fragmented IP packet? */ 12629 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12630 if (u1 & (IPH_MF | IPH_OFFSET)) { 12631 goto fragmented; 12632 } 12633 12634 /* u1 = IP header length (20 bytes) */ 12635 u1 = IP_SIMPLE_HDR_LENGTH; 12636 12637 /* packet does not contain complete IP & UDP headers */ 12638 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12639 goto udppullup; 12640 12641 /* up points to UDP header */ 12642 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12643 #define iphs ((uint16_t *)ipha) 12644 12645 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12646 if (up[3] != 0) { 12647 mblk_t *mp1 = mp->b_cont; 12648 boolean_t cksum_err; 12649 uint16_t hck_flags = 0; 12650 12651 /* Pseudo-header checksum */ 12652 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12653 iphs[9] + up[2]; 12654 12655 /* 12656 * Revert to software checksum calculation if the interface 12657 * isn't capable of checksum offload or if IPsec is present. 12658 */ 12659 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 12660 hck_flags = DB_CKSUMFLAGS(mp); 12661 12662 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12663 IP_STAT(ipst, ip_in_sw_cksum); 12664 12665 IP_CKSUM_RECV(hck_flags, u1, 12666 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12667 (int32_t)((uchar_t *)up - rptr), 12668 mp, mp1, cksum_err); 12669 12670 if (cksum_err) { 12671 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12672 if (hck_flags & HCK_FULLCKSUM) 12673 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12674 else if (hck_flags & HCK_PARTIALCKSUM) 12675 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12676 else 12677 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12678 12679 freemsg(first_mp); 12680 return; 12681 } 12682 } 12683 12684 /* Non-fragmented broadcast or multicast packet? */ 12685 if (ire->ire_type == IRE_BROADCAST) 12686 goto udpslowpath; 12687 12688 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12689 ire->ire_zoneid, ipst)) != NULL) { 12690 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 12691 IP_STAT(ipst, ip_udp_fast_path); 12692 12693 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 12694 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 12695 freemsg(mp); 12696 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12697 } else { 12698 if (!mctl_present) { 12699 BUMP_MIB(ill->ill_ip_mib, 12700 ipIfStatsHCInDelivers); 12701 } 12702 /* 12703 * mp and first_mp can change. 12704 */ 12705 if (ip_udp_check(q, connp, recv_ill, 12706 ipha, &mp, &first_mp, mctl_present, ire)) { 12707 /* Send it upstream */ 12708 (connp->conn_recv)(connp, mp, NULL); 12709 } 12710 } 12711 /* 12712 * freeb() cannot deal with null mblk being passed 12713 * in and first_mp can be set to null in the call 12714 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12715 */ 12716 if (mctl_present && first_mp != NULL) { 12717 freeb(first_mp); 12718 } 12719 CONN_DEC_REF(connp); 12720 return; 12721 } 12722 12723 /* 12724 * if we got here we know the packet is not fragmented and 12725 * has no options. The classifier could not find a conn_t and 12726 * most likely its an icmp packet so send it through slow path. 12727 */ 12728 12729 goto udpslowpath; 12730 12731 ipoptions: 12732 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12733 goto slow_done; 12734 } 12735 12736 UPDATE_IB_PKT_COUNT(ire); 12737 ire->ire_last_used_time = lbolt; 12738 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12739 if (u1 & (IPH_MF | IPH_OFFSET)) { 12740 fragmented: 12741 /* 12742 * "sum" and "reass_hck_flags" are non-zero if the 12743 * reassembled packet has a valid hardware computed 12744 * checksum information associated with it. 12745 */ 12746 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, &sum, 12747 &reass_hck_flags)) { 12748 goto slow_done; 12749 } 12750 12751 /* 12752 * Make sure that first_mp points back to mp as 12753 * the mp we came in with could have changed in 12754 * ip_rput_fragment(). 12755 */ 12756 ASSERT(!mctl_present); 12757 ipha = (ipha_t *)mp->b_rptr; 12758 first_mp = mp; 12759 } 12760 12761 /* Now we have a complete datagram, destined for this machine. */ 12762 u1 = IPH_HDR_LENGTH(ipha); 12763 /* Pull up the UDP header, if necessary. */ 12764 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12765 udppullup: 12766 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12767 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12768 freemsg(first_mp); 12769 goto slow_done; 12770 } 12771 ipha = (ipha_t *)mp->b_rptr; 12772 } 12773 12774 /* 12775 * Validate the checksum for the reassembled packet; for the 12776 * pullup case we calculate the payload checksum in software. 12777 */ 12778 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12779 if (up[3] != 0) { 12780 boolean_t cksum_err; 12781 12782 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12783 IP_STAT(ipst, ip_in_sw_cksum); 12784 12785 IP_CKSUM_RECV_REASS(reass_hck_flags, 12786 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12787 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12788 iphs[9] + up[2], sum, cksum_err); 12789 12790 if (cksum_err) { 12791 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12792 12793 if (reass_hck_flags & HCK_FULLCKSUM) 12794 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12795 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12796 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12797 else 12798 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12799 12800 freemsg(first_mp); 12801 goto slow_done; 12802 } 12803 } 12804 udpslowpath: 12805 12806 /* Clear hardware checksum flag to be safe */ 12807 DB_CKSUMFLAGS(mp) = 0; 12808 12809 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12810 (ire->ire_type == IRE_BROADCAST), 12811 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12812 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12813 12814 slow_done: 12815 IP_STAT(ipst, ip_udp_slow_path); 12816 return; 12817 12818 #undef iphs 12819 #undef rptr 12820 } 12821 12822 static boolean_t 12823 ip_iptun_input(mblk_t *ipsec_mp, mblk_t *data_mp, ipha_t *ipha, ill_t *ill, 12824 ire_t *ire, ip_stack_t *ipst) 12825 { 12826 conn_t *connp; 12827 12828 ASSERT(ipsec_mp == NULL || ipsec_mp->b_cont == data_mp); 12829 12830 if ((connp = ipcl_classify_v4(data_mp, ipha->ipha_protocol, 12831 IP_SIMPLE_HDR_LENGTH, ire->ire_zoneid, ipst)) != NULL) { 12832 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 12833 connp->conn_recv(connp, ipsec_mp != NULL ? ipsec_mp : data_mp, 12834 NULL); 12835 CONN_DEC_REF(connp); 12836 return (B_TRUE); 12837 } 12838 return (B_FALSE); 12839 } 12840 12841 /* ARGSUSED */ 12842 static mblk_t * 12843 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12844 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12845 ill_rx_ring_t *ill_ring) 12846 { 12847 conn_t *connp; 12848 uint32_t sum; 12849 uint32_t u1; 12850 uint16_t *up; 12851 int offset; 12852 ssize_t len; 12853 mblk_t *mp1; 12854 boolean_t syn_present = B_FALSE; 12855 tcph_t *tcph; 12856 uint_t tcph_flags; 12857 uint_t ip_hdr_len; 12858 ill_t *ill = (ill_t *)q->q_ptr; 12859 zoneid_t zoneid = ire->ire_zoneid; 12860 boolean_t cksum_err; 12861 uint16_t hck_flags = 0; 12862 ip_stack_t *ipst = recv_ill->ill_ipst; 12863 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12864 12865 #define rptr ((uchar_t *)ipha) 12866 12867 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12868 ASSERT(ill != NULL); 12869 12870 /* 12871 * FAST PATH for tcp packets 12872 */ 12873 12874 /* u1 is # words of IP options */ 12875 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12876 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12877 12878 /* IP options present */ 12879 if (u1) { 12880 goto ipoptions; 12881 } else if (!mctl_present) { 12882 /* Check the IP header checksum. */ 12883 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12884 /* Clear the IP header h/w cksum flag */ 12885 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12886 } else if (!mctl_present) { 12887 /* 12888 * Don't verify header checksum if this packet 12889 * is coming back from AH/ESP as we already did it. 12890 */ 12891 #define uph ((uint16_t *)ipha) 12892 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12893 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12894 #undef uph 12895 /* finish doing IP checksum */ 12896 sum = (sum & 0xFFFF) + (sum >> 16); 12897 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12898 if (sum != 0 && sum != 0xFFFF) { 12899 BUMP_MIB(ill->ill_ip_mib, 12900 ipIfStatsInCksumErrs); 12901 goto error; 12902 } 12903 } 12904 } 12905 12906 if (!mctl_present) { 12907 UPDATE_IB_PKT_COUNT(ire); 12908 ire->ire_last_used_time = lbolt; 12909 } 12910 12911 /* packet part of fragmented IP packet? */ 12912 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12913 if (u1 & (IPH_MF | IPH_OFFSET)) { 12914 goto fragmented; 12915 } 12916 12917 /* u1 = IP header length (20 bytes) */ 12918 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12919 12920 /* does packet contain IP+TCP headers? */ 12921 len = mp->b_wptr - rptr; 12922 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12923 IP_STAT(ipst, ip_tcppullup); 12924 goto tcppullup; 12925 } 12926 12927 /* TCP options present? */ 12928 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12929 12930 /* 12931 * If options need to be pulled up, then goto tcpoptions. 12932 * otherwise we are still in the fast path 12933 */ 12934 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12935 IP_STAT(ipst, ip_tcpoptions); 12936 goto tcpoptions; 12937 } 12938 12939 /* multiple mblks of tcp data? */ 12940 if ((mp1 = mp->b_cont) != NULL) { 12941 IP_STAT(ipst, ip_multipkttcp); 12942 len += msgdsize(mp1); 12943 } 12944 12945 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 12946 12947 /* part of pseudo checksum */ 12948 12949 /* TCP datagram length */ 12950 u1 = len - IP_SIMPLE_HDR_LENGTH; 12951 12952 #define iphs ((uint16_t *)ipha) 12953 12954 #ifdef _BIG_ENDIAN 12955 u1 += IPPROTO_TCP; 12956 #else 12957 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12958 #endif 12959 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12960 12961 /* 12962 * Revert to software checksum calculation if the interface 12963 * isn't capable of checksum offload or if IPsec is present. 12964 */ 12965 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 12966 hck_flags = DB_CKSUMFLAGS(mp); 12967 12968 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12969 IP_STAT(ipst, ip_in_sw_cksum); 12970 12971 IP_CKSUM_RECV(hck_flags, u1, 12972 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12973 (int32_t)((uchar_t *)up - rptr), 12974 mp, mp1, cksum_err); 12975 12976 if (cksum_err) { 12977 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 12978 12979 if (hck_flags & HCK_FULLCKSUM) 12980 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 12981 else if (hck_flags & HCK_PARTIALCKSUM) 12982 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 12983 else 12984 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 12985 12986 goto error; 12987 } 12988 12989 try_again: 12990 12991 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 12992 zoneid, ipst)) == NULL) { 12993 /* Send the TH_RST */ 12994 goto no_conn; 12995 } 12996 12997 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 12998 tcph_flags = tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG); 12999 13000 /* 13001 * TCP FAST PATH for AF_INET socket. 13002 * 13003 * TCP fast path to avoid extra work. An AF_INET socket type 13004 * does not have facility to receive extra information via 13005 * ip_process or ip_add_info. Also, when the connection was 13006 * established, we made a check if this connection is impacted 13007 * by any global IPsec policy or per connection policy (a 13008 * policy that comes in effect later will not apply to this 13009 * connection). Since all this can be determined at the 13010 * connection establishment time, a quick check of flags 13011 * can avoid extra work. 13012 */ 13013 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13014 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13015 ASSERT(first_mp == mp); 13016 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13017 if (tcph_flags != (TH_SYN | TH_ACK)) { 13018 SET_SQUEUE(mp, tcp_rput_data, connp); 13019 return (mp); 13020 } 13021 mp->b_datap->db_struioflag |= STRUIO_CONNECT; 13022 DB_CKSUMSTART(mp) = (intptr_t)ip_squeue_get(ill_ring); 13023 SET_SQUEUE(mp, tcp_input, connp); 13024 return (mp); 13025 } 13026 13027 if (tcph_flags == TH_SYN) { 13028 if (IPCL_IS_TCP(connp)) { 13029 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13030 DB_CKSUMSTART(mp) = 13031 (intptr_t)ip_squeue_get(ill_ring); 13032 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13033 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13034 BUMP_MIB(ill->ill_ip_mib, 13035 ipIfStatsHCInDelivers); 13036 SET_SQUEUE(mp, connp->conn_recv, connp); 13037 return (mp); 13038 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13039 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13040 BUMP_MIB(ill->ill_ip_mib, 13041 ipIfStatsHCInDelivers); 13042 ip_squeue_enter_unbound++; 13043 SET_SQUEUE(mp, tcp_conn_request_unbound, 13044 connp); 13045 return (mp); 13046 } 13047 syn_present = B_TRUE; 13048 } 13049 } 13050 13051 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13052 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13053 13054 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13055 /* No need to send this packet to TCP */ 13056 if ((flags & TH_RST) || (flags & TH_URG)) { 13057 CONN_DEC_REF(connp); 13058 freemsg(first_mp); 13059 return (NULL); 13060 } 13061 if (flags & TH_ACK) { 13062 ip_xmit_reset_serialize(first_mp, ip_hdr_len, zoneid, 13063 ipst->ips_netstack->netstack_tcp, connp); 13064 CONN_DEC_REF(connp); 13065 return (NULL); 13066 } 13067 13068 CONN_DEC_REF(connp); 13069 freemsg(first_mp); 13070 return (NULL); 13071 } 13072 13073 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13074 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13075 ipha, NULL, mctl_present); 13076 if (first_mp == NULL) { 13077 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13078 CONN_DEC_REF(connp); 13079 return (NULL); 13080 } 13081 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13082 ASSERT(syn_present); 13083 if (mctl_present) { 13084 ASSERT(first_mp != mp); 13085 first_mp->b_datap->db_struioflag |= 13086 STRUIO_POLICY; 13087 } else { 13088 ASSERT(first_mp == mp); 13089 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13090 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13091 } 13092 } else { 13093 /* 13094 * Discard first_mp early since we're dealing with a 13095 * fully-connected conn_t and tcp doesn't do policy in 13096 * this case. 13097 */ 13098 if (mctl_present) { 13099 freeb(first_mp); 13100 mctl_present = B_FALSE; 13101 } 13102 first_mp = mp; 13103 } 13104 } 13105 13106 /* Initiate IPPF processing for fastpath */ 13107 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13108 uint32_t ill_index; 13109 13110 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13111 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13112 if (mp == NULL) { 13113 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13114 "deferred/dropped during IPPF processing\n")); 13115 CONN_DEC_REF(connp); 13116 if (mctl_present) 13117 freeb(first_mp); 13118 return (NULL); 13119 } else if (mctl_present) { 13120 /* 13121 * ip_process might return a new mp. 13122 */ 13123 ASSERT(first_mp != mp); 13124 first_mp->b_cont = mp; 13125 } else { 13126 first_mp = mp; 13127 } 13128 13129 } 13130 13131 if (!syn_present && connp->conn_ip_recvpktinfo) { 13132 /* 13133 * TCP does not support IP_RECVPKTINFO for v4 so lets 13134 * make sure IPF_RECVIF is passed to ip_add_info. 13135 */ 13136 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13137 IPCL_ZONEID(connp), ipst); 13138 if (mp == NULL) { 13139 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13140 CONN_DEC_REF(connp); 13141 if (mctl_present) 13142 freeb(first_mp); 13143 return (NULL); 13144 } else if (mctl_present) { 13145 /* 13146 * ip_add_info might return a new mp. 13147 */ 13148 ASSERT(first_mp != mp); 13149 first_mp->b_cont = mp; 13150 } else { 13151 first_mp = mp; 13152 } 13153 } 13154 13155 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13156 if (IPCL_IS_TCP(connp)) { 13157 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13158 return (first_mp); 13159 } else { 13160 /* SOCK_RAW, IPPROTO_TCP case */ 13161 (connp->conn_recv)(connp, first_mp, NULL); 13162 CONN_DEC_REF(connp); 13163 return (NULL); 13164 } 13165 13166 no_conn: 13167 /* Initiate IPPf processing, if needed. */ 13168 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13169 uint32_t ill_index; 13170 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13171 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13172 if (first_mp == NULL) { 13173 return (NULL); 13174 } 13175 } 13176 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13177 13178 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13179 ipst->ips_netstack->netstack_tcp, NULL); 13180 return (NULL); 13181 ipoptions: 13182 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13183 goto slow_done; 13184 } 13185 13186 UPDATE_IB_PKT_COUNT(ire); 13187 ire->ire_last_used_time = lbolt; 13188 13189 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13190 if (u1 & (IPH_MF | IPH_OFFSET)) { 13191 fragmented: 13192 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) { 13193 if (mctl_present) 13194 freeb(first_mp); 13195 goto slow_done; 13196 } 13197 /* 13198 * Make sure that first_mp points back to mp as 13199 * the mp we came in with could have changed in 13200 * ip_rput_fragment(). 13201 */ 13202 ASSERT(!mctl_present); 13203 ipha = (ipha_t *)mp->b_rptr; 13204 first_mp = mp; 13205 } 13206 13207 /* Now we have a complete datagram, destined for this machine. */ 13208 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13209 13210 len = mp->b_wptr - mp->b_rptr; 13211 /* Pull up a minimal TCP header, if necessary. */ 13212 if (len < (u1 + 20)) { 13213 tcppullup: 13214 if (!pullupmsg(mp, u1 + 20)) { 13215 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13216 goto error; 13217 } 13218 ipha = (ipha_t *)mp->b_rptr; 13219 len = mp->b_wptr - mp->b_rptr; 13220 } 13221 13222 /* 13223 * Extract the offset field from the TCP header. As usual, we 13224 * try to help the compiler more than the reader. 13225 */ 13226 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13227 if (offset != 5) { 13228 tcpoptions: 13229 if (offset < 5) { 13230 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13231 goto error; 13232 } 13233 /* 13234 * There must be TCP options. 13235 * Make sure we can grab them. 13236 */ 13237 offset <<= 2; 13238 offset += u1; 13239 if (len < offset) { 13240 if (!pullupmsg(mp, offset)) { 13241 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13242 goto error; 13243 } 13244 ipha = (ipha_t *)mp->b_rptr; 13245 len = mp->b_wptr - rptr; 13246 } 13247 } 13248 13249 /* Get the total packet length in len, including headers. */ 13250 if (mp->b_cont) 13251 len = msgdsize(mp); 13252 13253 /* 13254 * Check the TCP checksum by pulling together the pseudo- 13255 * header checksum, and passing it to ip_csum to be added in 13256 * with the TCP datagram. 13257 * 13258 * Since we are not using the hwcksum if available we must 13259 * clear the flag. We may come here via tcppullup or tcpoptions. 13260 * If either of these fails along the way the mblk is freed. 13261 * If this logic ever changes and mblk is reused to say send 13262 * ICMP's back, then this flag may need to be cleared in 13263 * other places as well. 13264 */ 13265 DB_CKSUMFLAGS(mp) = 0; 13266 13267 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13268 13269 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13270 #ifdef _BIG_ENDIAN 13271 u1 += IPPROTO_TCP; 13272 #else 13273 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13274 #endif 13275 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13276 /* 13277 * Not M_DATA mblk or its a dup, so do the checksum now. 13278 */ 13279 IP_STAT(ipst, ip_in_sw_cksum); 13280 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13281 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13282 goto error; 13283 } 13284 13285 IP_STAT(ipst, ip_tcp_slow_path); 13286 goto try_again; 13287 #undef iphs 13288 #undef rptr 13289 13290 error: 13291 freemsg(first_mp); 13292 slow_done: 13293 return (NULL); 13294 } 13295 13296 /* ARGSUSED */ 13297 static void 13298 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13299 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13300 { 13301 conn_t *connp; 13302 uint32_t sum; 13303 uint32_t u1; 13304 ssize_t len; 13305 sctp_hdr_t *sctph; 13306 zoneid_t zoneid = ire->ire_zoneid; 13307 uint32_t pktsum; 13308 uint32_t calcsum; 13309 uint32_t ports; 13310 in6_addr_t map_src, map_dst; 13311 ill_t *ill = (ill_t *)q->q_ptr; 13312 ip_stack_t *ipst; 13313 sctp_stack_t *sctps; 13314 boolean_t sctp_csum_err = B_FALSE; 13315 13316 ASSERT(recv_ill != NULL); 13317 ipst = recv_ill->ill_ipst; 13318 sctps = ipst->ips_netstack->netstack_sctp; 13319 13320 #define rptr ((uchar_t *)ipha) 13321 13322 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13323 ASSERT(ill != NULL); 13324 13325 /* u1 is # words of IP options */ 13326 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13327 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13328 13329 /* IP options present */ 13330 if (u1 > 0) { 13331 goto ipoptions; 13332 } else { 13333 /* Check the IP header checksum. */ 13334 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill) && 13335 !mctl_present) { 13336 #define uph ((uint16_t *)ipha) 13337 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13338 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13339 #undef uph 13340 /* finish doing IP checksum */ 13341 sum = (sum & 0xFFFF) + (sum >> 16); 13342 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13343 /* 13344 * Don't verify header checksum if this packet 13345 * is coming back from AH/ESP as we already did it. 13346 */ 13347 if (sum != 0 && sum != 0xFFFF) { 13348 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13349 goto error; 13350 } 13351 } 13352 /* 13353 * Since there is no SCTP h/w cksum support yet, just 13354 * clear the flag. 13355 */ 13356 DB_CKSUMFLAGS(mp) = 0; 13357 } 13358 13359 /* 13360 * Don't verify header checksum if this packet is coming 13361 * back from AH/ESP as we already did it. 13362 */ 13363 if (!mctl_present) { 13364 UPDATE_IB_PKT_COUNT(ire); 13365 ire->ire_last_used_time = lbolt; 13366 } 13367 13368 /* packet part of fragmented IP packet? */ 13369 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13370 if (u1 & (IPH_MF | IPH_OFFSET)) 13371 goto fragmented; 13372 13373 /* u1 = IP header length (20 bytes) */ 13374 u1 = IP_SIMPLE_HDR_LENGTH; 13375 13376 find_sctp_client: 13377 /* Pullup if we don't have the sctp common header. */ 13378 len = MBLKL(mp); 13379 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13380 if (mp->b_cont == NULL || 13381 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13382 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13383 goto error; 13384 } 13385 ipha = (ipha_t *)mp->b_rptr; 13386 len = MBLKL(mp); 13387 } 13388 13389 sctph = (sctp_hdr_t *)(rptr + u1); 13390 #ifdef DEBUG 13391 if (!skip_sctp_cksum) { 13392 #endif 13393 pktsum = sctph->sh_chksum; 13394 sctph->sh_chksum = 0; 13395 calcsum = sctp_cksum(mp, u1); 13396 sctph->sh_chksum = pktsum; 13397 if (calcsum != pktsum) 13398 sctp_csum_err = B_TRUE; 13399 #ifdef DEBUG /* skip_sctp_cksum */ 13400 } 13401 #endif 13402 /* get the ports */ 13403 ports = *(uint32_t *)&sctph->sh_sport; 13404 13405 IRE_REFRELE(ire); 13406 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13407 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13408 if (sctp_csum_err) { 13409 /* 13410 * No potential sctp checksum errors go to the Sun 13411 * sctp stack however they might be Adler-32 summed 13412 * packets a userland stack bound to a raw IP socket 13413 * could reasonably use. Note though that Adler-32 is 13414 * a long deprecated algorithm and customer sctp 13415 * networks should eventually migrate to CRC-32 at 13416 * which time this facility should be removed. 13417 */ 13418 flags |= IP_FF_SCTP_CSUM_ERR; 13419 goto no_conn; 13420 } 13421 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13422 sctps)) == NULL) { 13423 /* Check for raw socket or OOTB handling */ 13424 goto no_conn; 13425 } 13426 13427 /* Found a client; up it goes */ 13428 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13429 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13430 return; 13431 13432 no_conn: 13433 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13434 ports, mctl_present, flags, B_TRUE, zoneid); 13435 return; 13436 13437 ipoptions: 13438 DB_CKSUMFLAGS(mp) = 0; 13439 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13440 goto slow_done; 13441 13442 UPDATE_IB_PKT_COUNT(ire); 13443 ire->ire_last_used_time = lbolt; 13444 13445 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13446 if (u1 & (IPH_MF | IPH_OFFSET)) { 13447 fragmented: 13448 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 13449 goto slow_done; 13450 /* 13451 * Make sure that first_mp points back to mp as 13452 * the mp we came in with could have changed in 13453 * ip_rput_fragment(). 13454 */ 13455 ASSERT(!mctl_present); 13456 ipha = (ipha_t *)mp->b_rptr; 13457 first_mp = mp; 13458 } 13459 13460 /* Now we have a complete datagram, destined for this machine. */ 13461 u1 = IPH_HDR_LENGTH(ipha); 13462 goto find_sctp_client; 13463 #undef iphs 13464 #undef rptr 13465 13466 error: 13467 freemsg(first_mp); 13468 slow_done: 13469 IRE_REFRELE(ire); 13470 } 13471 13472 #define VER_BITS 0xF0 13473 #define VERSION_6 0x60 13474 13475 static boolean_t 13476 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13477 ipaddr_t *dstp, ip_stack_t *ipst) 13478 { 13479 uint_t opt_len; 13480 ipha_t *ipha; 13481 ssize_t len; 13482 uint_t pkt_len; 13483 13484 ASSERT(ill != NULL); 13485 IP_STAT(ipst, ip_ipoptions); 13486 ipha = *iphapp; 13487 13488 #define rptr ((uchar_t *)ipha) 13489 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13490 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13491 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13492 freemsg(mp); 13493 return (B_FALSE); 13494 } 13495 13496 /* multiple mblk or too short */ 13497 pkt_len = ntohs(ipha->ipha_length); 13498 13499 /* Get the number of words of IP options in the IP header. */ 13500 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13501 if (opt_len) { 13502 /* IP Options present! Validate and process. */ 13503 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13504 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13505 goto done; 13506 } 13507 /* 13508 * Recompute complete header length and make sure we 13509 * have access to all of it. 13510 */ 13511 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13512 if (len > (mp->b_wptr - rptr)) { 13513 if (len > pkt_len) { 13514 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13515 goto done; 13516 } 13517 if (!pullupmsg(mp, len)) { 13518 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13519 goto done; 13520 } 13521 ipha = (ipha_t *)mp->b_rptr; 13522 } 13523 /* 13524 * Go off to ip_rput_options which returns the next hop 13525 * destination address, which may have been affected 13526 * by source routing. 13527 */ 13528 IP_STAT(ipst, ip_opt); 13529 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13530 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13531 return (B_FALSE); 13532 } 13533 } 13534 *iphapp = ipha; 13535 return (B_TRUE); 13536 done: 13537 /* clear b_prev - used by ip_mroute_decap */ 13538 mp->b_prev = NULL; 13539 freemsg(mp); 13540 return (B_FALSE); 13541 #undef rptr 13542 } 13543 13544 /* 13545 * Deal with the fact that there is no ire for the destination. 13546 */ 13547 static ire_t * 13548 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13549 { 13550 ipha_t *ipha; 13551 ill_t *ill; 13552 ire_t *ire; 13553 ip_stack_t *ipst; 13554 enum ire_forward_action ret_action; 13555 13556 ipha = (ipha_t *)mp->b_rptr; 13557 ill = (ill_t *)q->q_ptr; 13558 13559 ASSERT(ill != NULL); 13560 ipst = ill->ill_ipst; 13561 13562 /* 13563 * No IRE for this destination, so it can't be for us. 13564 * Unless we are forwarding, drop the packet. 13565 * We have to let source routed packets through 13566 * since we don't yet know if they are 'ping -l' 13567 * packets i.e. if they will go out over the 13568 * same interface as they came in on. 13569 */ 13570 if (ll_multicast) { 13571 freemsg(mp); 13572 return (NULL); 13573 } 13574 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13575 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13576 freemsg(mp); 13577 return (NULL); 13578 } 13579 13580 /* 13581 * Mark this packet as having originated externally. 13582 * 13583 * For non-forwarding code path, ire_send later double 13584 * checks this interface to see if it is still exists 13585 * post-ARP resolution. 13586 * 13587 * Also, IPQOS uses this to differentiate between 13588 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13589 * QOS packet processing in ip_wput_attach_llhdr(). 13590 * The QoS module can mark the b_band for a fastpath message 13591 * or the dl_priority field in a unitdata_req header for 13592 * CoS marking. This info can only be found in 13593 * ip_wput_attach_llhdr(). 13594 */ 13595 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13596 /* 13597 * Clear the indication that this may have a hardware checksum 13598 * as we are not using it 13599 */ 13600 DB_CKSUMFLAGS(mp) = 0; 13601 13602 ire = ire_forward(dst, &ret_action, NULL, NULL, 13603 msg_getlabel(mp), ipst); 13604 13605 if (ire == NULL && ret_action == Forward_check_multirt) { 13606 /* Let ip_newroute handle CGTP */ 13607 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13608 return (NULL); 13609 } 13610 13611 if (ire != NULL) 13612 return (ire); 13613 13614 mp->b_prev = mp->b_next = 0; 13615 13616 if (ret_action == Forward_blackhole) { 13617 freemsg(mp); 13618 return (NULL); 13619 } 13620 /* send icmp unreachable */ 13621 q = WR(q); 13622 /* Sent by forwarding path, and router is global zone */ 13623 if (ip_source_routed(ipha, ipst)) { 13624 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13625 GLOBAL_ZONEID, ipst); 13626 } else { 13627 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13628 ipst); 13629 } 13630 13631 return (NULL); 13632 13633 } 13634 13635 /* 13636 * check ip header length and align it. 13637 */ 13638 static boolean_t 13639 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13640 { 13641 ssize_t len; 13642 ill_t *ill; 13643 ipha_t *ipha; 13644 13645 len = MBLKL(mp); 13646 13647 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13648 ill = (ill_t *)q->q_ptr; 13649 13650 if (!OK_32PTR(mp->b_rptr)) 13651 IP_STAT(ipst, ip_notaligned1); 13652 else 13653 IP_STAT(ipst, ip_notaligned2); 13654 /* Guard against bogus device drivers */ 13655 if (len < 0) { 13656 /* clear b_prev - used by ip_mroute_decap */ 13657 mp->b_prev = NULL; 13658 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13659 freemsg(mp); 13660 return (B_FALSE); 13661 } 13662 13663 if (ip_rput_pullups++ == 0) { 13664 ipha = (ipha_t *)mp->b_rptr; 13665 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13666 "ip_check_and_align_header: %s forced us to " 13667 " pullup pkt, hdr len %ld, hdr addr %p", 13668 ill->ill_name, len, (void *)ipha); 13669 } 13670 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13671 /* clear b_prev - used by ip_mroute_decap */ 13672 mp->b_prev = NULL; 13673 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13674 freemsg(mp); 13675 return (B_FALSE); 13676 } 13677 } 13678 return (B_TRUE); 13679 } 13680 13681 /* 13682 * Handle the situation where a packet came in on `ill' but matched an IRE 13683 * whose ire_rfq doesn't match `ill'. We return the IRE that should be used 13684 * for interface statistics. 13685 */ 13686 ire_t * 13687 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13688 { 13689 ire_t *new_ire; 13690 ill_t *ire_ill; 13691 uint_t ifindex; 13692 ip_stack_t *ipst = ill->ill_ipst; 13693 boolean_t strict_check = B_FALSE; 13694 13695 /* 13696 * IPMP common case: if IRE and ILL are in the same group, there's no 13697 * issue (e.g. packet received on an underlying interface matched an 13698 * IRE_LOCAL on its associated group interface). 13699 */ 13700 if (ire->ire_rfq != NULL && 13701 IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr)) { 13702 return (ire); 13703 } 13704 13705 /* 13706 * Do another ire lookup here, using the ingress ill, to see if the 13707 * interface is in a usesrc group. 13708 * As long as the ills belong to the same group, we don't consider 13709 * them to be arriving on the wrong interface. Thus, if the switch 13710 * is doing inbound load spreading, we won't drop packets when the 13711 * ip*_strict_dst_multihoming switch is on. 13712 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13713 * where the local address may not be unique. In this case we were 13714 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13715 * actually returned. The new lookup, which is more specific, should 13716 * only find the IRE_LOCAL associated with the ingress ill if one 13717 * exists. 13718 */ 13719 13720 if (ire->ire_ipversion == IPV4_VERSION) { 13721 if (ipst->ips_ip_strict_dst_multihoming) 13722 strict_check = B_TRUE; 13723 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13724 ill->ill_ipif, ALL_ZONES, NULL, 13725 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13726 } else { 13727 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13728 if (ipst->ips_ipv6_strict_dst_multihoming) 13729 strict_check = B_TRUE; 13730 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13731 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13732 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13733 } 13734 /* 13735 * If the same ire that was returned in ip_input() is found then this 13736 * is an indication that usesrc groups are in use. The packet 13737 * arrived on a different ill in the group than the one associated with 13738 * the destination address. If a different ire was found then the same 13739 * IP address must be hosted on multiple ills. This is possible with 13740 * unnumbered point2point interfaces. We switch to use this new ire in 13741 * order to have accurate interface statistics. 13742 */ 13743 if (new_ire != NULL) { 13744 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13745 ire_refrele(ire); 13746 ire = new_ire; 13747 } else { 13748 ire_refrele(new_ire); 13749 } 13750 return (ire); 13751 } else if ((ire->ire_rfq == NULL) && 13752 (ire->ire_ipversion == IPV4_VERSION)) { 13753 /* 13754 * The best match could have been the original ire which 13755 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13756 * the strict multihoming checks are irrelevant as we consider 13757 * local addresses hosted on lo0 to be interface agnostic. We 13758 * only expect a null ire_rfq on IREs which are associated with 13759 * lo0 hence we can return now. 13760 */ 13761 return (ire); 13762 } 13763 13764 /* 13765 * Chase pointers once and store locally. 13766 */ 13767 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13768 (ill_t *)(ire->ire_rfq->q_ptr); 13769 ifindex = ill->ill_usesrc_ifindex; 13770 13771 /* 13772 * Check if it's a legal address on the 'usesrc' interface. 13773 */ 13774 if ((ifindex != 0) && (ire_ill != NULL) && 13775 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13776 return (ire); 13777 } 13778 13779 /* 13780 * If the ip*_strict_dst_multihoming switch is on then we can 13781 * only accept this packet if the interface is marked as routing. 13782 */ 13783 if (!(strict_check)) 13784 return (ire); 13785 13786 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13787 ILLF_ROUTER) != 0) { 13788 return (ire); 13789 } 13790 13791 ire_refrele(ire); 13792 return (NULL); 13793 } 13794 13795 /* 13796 * 13797 * This is the fast forward path. If we are here, we dont need to 13798 * worry about RSVP, CGTP, or TSol. Furthermore the ftable lookup 13799 * needed to find the nexthop in this case is much simpler 13800 */ 13801 ire_t * 13802 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13803 { 13804 ipha_t *ipha; 13805 ire_t *src_ire; 13806 ill_t *stq_ill; 13807 uint_t hlen; 13808 uint_t pkt_len; 13809 uint32_t sum; 13810 queue_t *dev_q; 13811 ip_stack_t *ipst = ill->ill_ipst; 13812 mblk_t *fpmp; 13813 enum ire_forward_action ret_action; 13814 13815 ipha = (ipha_t *)mp->b_rptr; 13816 13817 if (ire != NULL && 13818 ire->ire_zoneid != GLOBAL_ZONEID && 13819 ire->ire_zoneid != ALL_ZONES) { 13820 /* 13821 * Should only use IREs that are visible to the global 13822 * zone for forwarding. 13823 */ 13824 ire_refrele(ire); 13825 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 13826 /* 13827 * ire_cache_lookup() can return ire of IRE_LOCAL in 13828 * transient cases. In such case, just drop the packet 13829 */ 13830 if (ire != NULL && ire->ire_type != IRE_CACHE) 13831 goto indiscard; 13832 } 13833 13834 /* 13835 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13836 * The loopback address check for both src and dst has already 13837 * been checked in ip_input 13838 */ 13839 13840 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13841 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13842 goto drop; 13843 } 13844 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13845 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13846 13847 if (src_ire != NULL) { 13848 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13849 ire_refrele(src_ire); 13850 goto drop; 13851 } 13852 13853 /* No ire cache of nexthop. So first create one */ 13854 if (ire == NULL) { 13855 13856 ire = ire_forward_simple(dst, &ret_action, ipst); 13857 13858 /* 13859 * We only come to ip_fast_forward if ip_cgtp_filter 13860 * is not set. So ire_forward() should not return with 13861 * Forward_check_multirt as the next action. 13862 */ 13863 ASSERT(ret_action != Forward_check_multirt); 13864 if (ire == NULL) { 13865 /* An attempt was made to forward the packet */ 13866 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13867 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13868 mp->b_prev = mp->b_next = 0; 13869 /* send icmp unreachable */ 13870 /* Sent by forwarding path, and router is global zone */ 13871 if (ret_action == Forward_ret_icmp_err) { 13872 if (ip_source_routed(ipha, ipst)) { 13873 icmp_unreachable(ill->ill_wq, mp, 13874 ICMP_SOURCE_ROUTE_FAILED, 13875 GLOBAL_ZONEID, ipst); 13876 } else { 13877 icmp_unreachable(ill->ill_wq, mp, 13878 ICMP_HOST_UNREACHABLE, 13879 GLOBAL_ZONEID, ipst); 13880 } 13881 } else { 13882 freemsg(mp); 13883 } 13884 return (NULL); 13885 } 13886 } 13887 13888 /* 13889 * Forwarding fastpath exception case: 13890 * If any of the following are true, we take the slowpath: 13891 * o forwarding is not enabled 13892 * o incoming and outgoing interface are the same, or in the same 13893 * IPMP group. 13894 * o corresponding ire is in incomplete state 13895 * o packet needs fragmentation 13896 * o ARP cache is not resolved 13897 * 13898 * The codeflow from here on is thus: 13899 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13900 */ 13901 pkt_len = ntohs(ipha->ipha_length); 13902 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13903 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13904 (ill == stq_ill) || IS_IN_SAME_ILLGRP(ill, stq_ill) || 13905 (ire->ire_nce == NULL) || 13906 (pkt_len > ire->ire_max_frag) || 13907 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 13908 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 13909 ipha->ipha_ttl <= 1) { 13910 ip_rput_process_forward(ill->ill_rq, mp, ire, 13911 ipha, ill, B_FALSE, B_TRUE); 13912 return (ire); 13913 } 13914 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13915 13916 DTRACE_PROBE4(ip4__forwarding__start, 13917 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13918 13919 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13920 ipst->ips_ipv4firewall_forwarding, 13921 ill, stq_ill, ipha, mp, mp, 0, ipst); 13922 13923 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13924 13925 if (mp == NULL) 13926 goto drop; 13927 13928 mp->b_datap->db_struioun.cksum.flags = 0; 13929 /* Adjust the checksum to reflect the ttl decrement. */ 13930 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13931 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13932 ipha->ipha_ttl--; 13933 13934 /* 13935 * Write the link layer header. We can do this safely here, 13936 * because we have already tested to make sure that the IP 13937 * policy is not set, and that we have a fast path destination 13938 * header. 13939 */ 13940 mp->b_rptr -= hlen; 13941 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 13942 13943 UPDATE_IB_PKT_COUNT(ire); 13944 ire->ire_last_used_time = lbolt; 13945 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 13946 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 13947 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 13948 13949 if (!ILL_DIRECT_CAPABLE(stq_ill) || DB_TYPE(mp) != M_DATA) { 13950 dev_q = ire->ire_stq->q_next; 13951 if (DEV_Q_FLOW_BLOCKED(dev_q)) 13952 goto indiscard; 13953 } 13954 13955 DTRACE_PROBE4(ip4__physical__out__start, 13956 ill_t *, NULL, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13957 FW_HOOKS(ipst->ips_ip4_physical_out_event, 13958 ipst->ips_ipv4firewall_physical_out, 13959 NULL, stq_ill, ipha, mp, mp, 0, ipst); 13960 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 13961 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, 13962 ipha, __dtrace_ipsr_ill_t *, stq_ill, ipha_t *, ipha, 13963 ip6_t *, NULL, int, 0); 13964 13965 if (mp != NULL) { 13966 if (ipst->ips_ip4_observe.he_interested) { 13967 zoneid_t szone; 13968 13969 /* 13970 * Both of these functions expect b_rptr to be 13971 * where the IP header starts, so advance past the 13972 * link layer header if present. 13973 */ 13974 mp->b_rptr += hlen; 13975 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 13976 ipst, ALL_ZONES); 13977 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 13978 ALL_ZONES, ill, ipst); 13979 mp->b_rptr -= hlen; 13980 } 13981 ILL_SEND_TX(stq_ill, ire, dst, mp, IP_DROP_ON_NO_DESC, NULL); 13982 } 13983 return (ire); 13984 13985 indiscard: 13986 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13987 drop: 13988 if (mp != NULL) 13989 freemsg(mp); 13990 return (ire); 13991 13992 } 13993 13994 /* 13995 * This function is called in the forwarding slowpath, when 13996 * either the ire lacks the link-layer address, or the packet needs 13997 * further processing(eg. fragmentation), before transmission. 13998 */ 13999 14000 static void 14001 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14002 ill_t *ill, boolean_t ll_multicast, boolean_t from_ip_fast_forward) 14003 { 14004 queue_t *dev_q; 14005 ire_t *src_ire; 14006 ip_stack_t *ipst = ill->ill_ipst; 14007 boolean_t same_illgrp = B_FALSE; 14008 14009 ASSERT(ire->ire_stq != NULL); 14010 14011 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14012 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14013 14014 /* 14015 * If the caller of this function is ip_fast_forward() skip the 14016 * next three checks as it does not apply. 14017 */ 14018 if (from_ip_fast_forward) 14019 goto skip; 14020 14021 if (ll_multicast != 0) { 14022 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14023 goto drop_pkt; 14024 } 14025 14026 /* 14027 * check if ipha_src is a broadcast address. Note that this 14028 * check is redundant when we get here from ip_fast_forward() 14029 * which has already done this check. However, since we can 14030 * also get here from ip_rput_process_broadcast() or, for 14031 * for the slow path through ip_fast_forward(), we perform 14032 * the check again for code-reusability 14033 */ 14034 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14035 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14036 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14037 if (src_ire != NULL) 14038 ire_refrele(src_ire); 14039 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14040 ip2dbg(("ip_rput_process_forward: Received packet with" 14041 " bad src/dst address on %s\n", ill->ill_name)); 14042 goto drop_pkt; 14043 } 14044 14045 /* 14046 * Check if we want to forward this one at this time. 14047 * We allow source routed packets on a host provided that 14048 * they go out the same ill or illgrp as they came in on. 14049 * 14050 * XXX To be quicker, we may wish to not chase pointers to 14051 * get the ILLF_ROUTER flag and instead store the 14052 * forwarding policy in the ire. An unfortunate 14053 * side-effect of that would be requiring an ire flush 14054 * whenever the ILLF_ROUTER flag changes. 14055 */ 14056 skip: 14057 same_illgrp = IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr); 14058 14059 if (((ill->ill_flags & 14060 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & ILLF_ROUTER) == 0) && 14061 !(ip_source_routed(ipha, ipst) && 14062 (ire->ire_rfq == q || same_illgrp))) { 14063 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14064 if (ip_source_routed(ipha, ipst)) { 14065 q = WR(q); 14066 /* 14067 * Clear the indication that this may have 14068 * hardware checksum as we are not using it. 14069 */ 14070 DB_CKSUMFLAGS(mp) = 0; 14071 /* Sent by forwarding path, and router is global zone */ 14072 icmp_unreachable(q, mp, 14073 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14074 return; 14075 } 14076 goto drop_pkt; 14077 } 14078 14079 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14080 14081 /* Packet is being forwarded. Turning off hwcksum flag. */ 14082 DB_CKSUMFLAGS(mp) = 0; 14083 if (ipst->ips_ip_g_send_redirects) { 14084 /* 14085 * Check whether the incoming interface and outgoing 14086 * interface is part of the same group. If so, 14087 * send redirects. 14088 * 14089 * Check the source address to see if it originated 14090 * on the same logical subnet it is going back out on. 14091 * If so, we should be able to send it a redirect. 14092 * Avoid sending a redirect if the destination 14093 * is directly connected (i.e., ipha_dst is the same 14094 * as ire_gateway_addr or the ire_addr of the 14095 * nexthop IRE_CACHE ), or if the packet was source 14096 * routed out this interface. 14097 */ 14098 ipaddr_t src, nhop; 14099 mblk_t *mp1; 14100 ire_t *nhop_ire = NULL; 14101 14102 /* 14103 * Check whether ire_rfq and q are from the same ill or illgrp. 14104 * If so, send redirects. 14105 */ 14106 if ((ire->ire_rfq == q || same_illgrp) && 14107 !ip_source_routed(ipha, ipst)) { 14108 14109 nhop = (ire->ire_gateway_addr != 0 ? 14110 ire->ire_gateway_addr : ire->ire_addr); 14111 14112 if (ipha->ipha_dst == nhop) { 14113 /* 14114 * We avoid sending a redirect if the 14115 * destination is directly connected 14116 * because it is possible that multiple 14117 * IP subnets may have been configured on 14118 * the link, and the source may not 14119 * be on the same subnet as ip destination, 14120 * even though they are on the same 14121 * physical link. 14122 */ 14123 goto sendit; 14124 } 14125 14126 src = ipha->ipha_src; 14127 14128 /* 14129 * We look up the interface ire for the nexthop, 14130 * to see if ipha_src is in the same subnet 14131 * as the nexthop. 14132 * 14133 * Note that, if, in the future, IRE_CACHE entries 14134 * are obsoleted, this lookup will not be needed, 14135 * as the ire passed to this function will be the 14136 * same as the nhop_ire computed below. 14137 */ 14138 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14139 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14140 0, NULL, MATCH_IRE_TYPE, ipst); 14141 14142 if (nhop_ire != NULL) { 14143 if ((src & nhop_ire->ire_mask) == 14144 (nhop & nhop_ire->ire_mask)) { 14145 /* 14146 * The source is directly connected. 14147 * Just copy the ip header (which is 14148 * in the first mblk) 14149 */ 14150 mp1 = copyb(mp); 14151 if (mp1 != NULL) { 14152 icmp_send_redirect(WR(q), mp1, 14153 nhop, ipst); 14154 } 14155 } 14156 ire_refrele(nhop_ire); 14157 } 14158 } 14159 } 14160 sendit: 14161 dev_q = ire->ire_stq->q_next; 14162 if (DEV_Q_FLOW_BLOCKED(dev_q)) { 14163 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14164 freemsg(mp); 14165 return; 14166 } 14167 14168 ip_rput_forward(ire, ipha, mp, ill); 14169 return; 14170 14171 drop_pkt: 14172 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14173 freemsg(mp); 14174 } 14175 14176 ire_t * 14177 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14178 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14179 { 14180 queue_t *q; 14181 uint16_t hcksumflags; 14182 ip_stack_t *ipst = ill->ill_ipst; 14183 14184 q = *qp; 14185 14186 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14187 14188 /* 14189 * Clear the indication that this may have hardware 14190 * checksum as we are not using it for forwarding. 14191 */ 14192 hcksumflags = DB_CKSUMFLAGS(mp); 14193 DB_CKSUMFLAGS(mp) = 0; 14194 14195 /* 14196 * Directed broadcast forwarding: if the packet came in over a 14197 * different interface then it is routed out over we can forward it. 14198 */ 14199 if (ipha->ipha_protocol == IPPROTO_TCP) { 14200 ire_refrele(ire); 14201 freemsg(mp); 14202 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14203 return (NULL); 14204 } 14205 /* 14206 * For multicast we have set dst to be INADDR_BROADCAST 14207 * for delivering to all STREAMS. 14208 */ 14209 if (!CLASSD(ipha->ipha_dst)) { 14210 ire_t *new_ire; 14211 ipif_t *ipif; 14212 14213 ipif = ipif_get_next_ipif(NULL, ill); 14214 if (ipif == NULL) { 14215 discard: ire_refrele(ire); 14216 freemsg(mp); 14217 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14218 return (NULL); 14219 } 14220 new_ire = ire_ctable_lookup(dst, 0, 0, 14221 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14222 ipif_refrele(ipif); 14223 14224 if (new_ire != NULL) { 14225 /* 14226 * If the matching IRE_BROADCAST is part of an IPMP 14227 * group, then drop the packet unless our ill has been 14228 * nominated to receive for the group. 14229 */ 14230 if (IS_IPMP(new_ire->ire_ipif->ipif_ill) && 14231 new_ire->ire_rfq != q) { 14232 ire_refrele(new_ire); 14233 goto discard; 14234 } 14235 14236 /* 14237 * In the special case of multirouted broadcast 14238 * packets, we unconditionally need to "gateway" 14239 * them to the appropriate interface here. 14240 * In the normal case, this cannot happen, because 14241 * there is no broadcast IRE tagged with the 14242 * RTF_MULTIRT flag. 14243 */ 14244 if (new_ire->ire_flags & RTF_MULTIRT) { 14245 ire_refrele(new_ire); 14246 if (ire->ire_rfq != NULL) { 14247 q = ire->ire_rfq; 14248 *qp = q; 14249 } 14250 } else { 14251 ire_refrele(ire); 14252 ire = new_ire; 14253 } 14254 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14255 if (!ipst->ips_ip_g_forward_directed_bcast) { 14256 /* 14257 * Free the message if 14258 * ip_g_forward_directed_bcast is turned 14259 * off for non-local broadcast. 14260 */ 14261 ire_refrele(ire); 14262 freemsg(mp); 14263 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14264 return (NULL); 14265 } 14266 } else { 14267 /* 14268 * This CGTP packet successfully passed the 14269 * CGTP filter, but the related CGTP 14270 * broadcast IRE has not been found, 14271 * meaning that the redundant ipif is 14272 * probably down. However, if we discarded 14273 * this packet, its duplicate would be 14274 * filtered out by the CGTP filter so none 14275 * of them would get through. So we keep 14276 * going with this one. 14277 */ 14278 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14279 if (ire->ire_rfq != NULL) { 14280 q = ire->ire_rfq; 14281 *qp = q; 14282 } 14283 } 14284 } 14285 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14286 /* 14287 * Verify that there are not more then one 14288 * IRE_BROADCAST with this broadcast address which 14289 * has ire_stq set. 14290 * TODO: simplify, loop over all IRE's 14291 */ 14292 ire_t *ire1; 14293 int num_stq = 0; 14294 mblk_t *mp1; 14295 14296 /* Find the first one with ire_stq set */ 14297 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14298 for (ire1 = ire; ire1 && 14299 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14300 ire1 = ire1->ire_next) 14301 ; 14302 if (ire1) { 14303 ire_refrele(ire); 14304 ire = ire1; 14305 IRE_REFHOLD(ire); 14306 } 14307 14308 /* Check if there are additional ones with stq set */ 14309 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14310 if (ire->ire_addr != ire1->ire_addr) 14311 break; 14312 if (ire1->ire_stq) { 14313 num_stq++; 14314 break; 14315 } 14316 } 14317 rw_exit(&ire->ire_bucket->irb_lock); 14318 if (num_stq == 1 && ire->ire_stq != NULL) { 14319 ip1dbg(("ip_rput_process_broadcast: directed " 14320 "broadcast to 0x%x\n", 14321 ntohl(ire->ire_addr))); 14322 mp1 = copymsg(mp); 14323 if (mp1) { 14324 switch (ipha->ipha_protocol) { 14325 case IPPROTO_UDP: 14326 ip_udp_input(q, mp1, ipha, ire, ill); 14327 break; 14328 default: 14329 ip_proto_input(q, mp1, ipha, ire, ill, 14330 0); 14331 break; 14332 } 14333 } 14334 /* 14335 * Adjust ttl to 2 (1+1 - the forward engine 14336 * will decrement it by one. 14337 */ 14338 if (ip_csum_hdr(ipha)) { 14339 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14340 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14341 freemsg(mp); 14342 ire_refrele(ire); 14343 return (NULL); 14344 } 14345 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14346 ipha->ipha_hdr_checksum = 0; 14347 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14348 ip_rput_process_forward(q, mp, ire, ipha, 14349 ill, ll_multicast, B_FALSE); 14350 ire_refrele(ire); 14351 return (NULL); 14352 } 14353 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14354 ntohl(ire->ire_addr))); 14355 } 14356 14357 /* Restore any hardware checksum flags */ 14358 DB_CKSUMFLAGS(mp) = hcksumflags; 14359 return (ire); 14360 } 14361 14362 /* ARGSUSED */ 14363 static boolean_t 14364 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14365 int *ll_multicast, ipaddr_t *dstp) 14366 { 14367 ip_stack_t *ipst = ill->ill_ipst; 14368 14369 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14370 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14371 ntohs(ipha->ipha_length)); 14372 14373 /* 14374 * So that we don't end up with dups, only one ill in an IPMP group is 14375 * nominated to receive multicast traffic. 14376 */ 14377 if (IS_UNDER_IPMP(ill) && !ill->ill_nom_cast) 14378 goto drop_pkt; 14379 14380 /* 14381 * Forward packets only if we have joined the allmulti 14382 * group on this interface. 14383 */ 14384 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14385 int retval; 14386 14387 /* 14388 * Clear the indication that this may have hardware 14389 * checksum as we are not using it. 14390 */ 14391 DB_CKSUMFLAGS(mp) = 0; 14392 retval = ip_mforward(ill, ipha, mp); 14393 /* ip_mforward updates mib variables if needed */ 14394 /* clear b_prev - used by ip_mroute_decap */ 14395 mp->b_prev = NULL; 14396 14397 switch (retval) { 14398 case 0: 14399 /* 14400 * pkt is okay and arrived on phyint. 14401 * 14402 * If we are running as a multicast router 14403 * we need to see all IGMP and/or PIM packets. 14404 */ 14405 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14406 (ipha->ipha_protocol == IPPROTO_PIM)) { 14407 goto done; 14408 } 14409 break; 14410 case -1: 14411 /* pkt is mal-formed, toss it */ 14412 goto drop_pkt; 14413 case 1: 14414 /* pkt is okay and arrived on a tunnel */ 14415 /* 14416 * If we are running a multicast router 14417 * we need to see all igmp packets. 14418 */ 14419 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14420 *dstp = INADDR_BROADCAST; 14421 *ll_multicast = 1; 14422 return (B_FALSE); 14423 } 14424 14425 goto drop_pkt; 14426 } 14427 } 14428 14429 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14430 /* 14431 * This might just be caused by the fact that 14432 * multiple IP Multicast addresses map to the same 14433 * link layer multicast - no need to increment counter! 14434 */ 14435 freemsg(mp); 14436 return (B_TRUE); 14437 } 14438 done: 14439 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14440 /* 14441 * This assumes the we deliver to all streams for multicast 14442 * and broadcast packets. 14443 */ 14444 *dstp = INADDR_BROADCAST; 14445 *ll_multicast = 1; 14446 return (B_FALSE); 14447 drop_pkt: 14448 ip2dbg(("ip_rput: drop pkt\n")); 14449 freemsg(mp); 14450 return (B_TRUE); 14451 } 14452 14453 /* 14454 * This function is used to both return an indication of whether or not 14455 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14456 * and in doing so, determine whether or not it is broadcast vs multicast. 14457 * For it to be a broadcast packet, we must have the appropriate mblk_t 14458 * hanging off the ill_t. If this is either not present or doesn't match 14459 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14460 * to be multicast. Thus NICs that have no broadcast address (or no 14461 * capability for one, such as point to point links) cannot return as 14462 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14463 * the return values simplifies the current use of the return value of this 14464 * function, which is to pass through the multicast/broadcast characteristic 14465 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14466 * changing the return value to some other symbol demands the appropriate 14467 * "translation" when hpe_flags is set prior to calling hook_run() for 14468 * packet events. 14469 */ 14470 int 14471 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14472 { 14473 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14474 mblk_t *bmp; 14475 14476 if (ind->dl_group_address) { 14477 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14478 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14479 MBLKL(mb) && 14480 (bmp = ill->ill_bcast_mp) != NULL) { 14481 dl_unitdata_req_t *dlur; 14482 uint8_t *bphys_addr; 14483 14484 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14485 if (ill->ill_sap_length < 0) 14486 bphys_addr = (uchar_t *)dlur + 14487 dlur->dl_dest_addr_offset; 14488 else 14489 bphys_addr = (uchar_t *)dlur + 14490 dlur->dl_dest_addr_offset + 14491 ill->ill_sap_length; 14492 14493 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14494 bphys_addr, ind->dl_dest_addr_length) == 0) { 14495 return (HPE_BROADCAST); 14496 } 14497 return (HPE_MULTICAST); 14498 } 14499 return (HPE_MULTICAST); 14500 } 14501 return (0); 14502 } 14503 14504 static boolean_t 14505 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14506 int *ll_multicast, mblk_t **mpp) 14507 { 14508 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14509 boolean_t must_copy = B_FALSE; 14510 struct iocblk *iocp; 14511 ipha_t *ipha; 14512 ip_stack_t *ipst = ill->ill_ipst; 14513 14514 #define rptr ((uchar_t *)ipha) 14515 14516 first_mp = *first_mpp; 14517 mp = *mpp; 14518 14519 ASSERT(first_mp == mp); 14520 14521 /* 14522 * if db_ref > 1 then copymsg and free original. Packet may be 14523 * changed and do not want other entity who has a reference to this 14524 * message to trip over the changes. This is a blind change because 14525 * trying to catch all places that might change packet is too 14526 * difficult (since it may be a module above this one) 14527 * 14528 * This corresponds to the non-fast path case. We walk down the full 14529 * chain in this case, and check the db_ref count of all the dblks, 14530 * and do a copymsg if required. It is possible that the db_ref counts 14531 * of the data blocks in the mblk chain can be different. 14532 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14533 * count of 1, followed by a M_DATA block with a ref count of 2, if 14534 * 'snoop' is running. 14535 */ 14536 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14537 if (mp1->b_datap->db_ref > 1) { 14538 must_copy = B_TRUE; 14539 break; 14540 } 14541 } 14542 14543 if (must_copy) { 14544 mp1 = copymsg(mp); 14545 if (mp1 == NULL) { 14546 for (mp1 = mp; mp1 != NULL; 14547 mp1 = mp1->b_cont) { 14548 mp1->b_next = NULL; 14549 mp1->b_prev = NULL; 14550 } 14551 freemsg(mp); 14552 if (ill != NULL) { 14553 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14554 } else { 14555 BUMP_MIB(&ipst->ips_ip_mib, 14556 ipIfStatsInDiscards); 14557 } 14558 return (B_TRUE); 14559 } 14560 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14561 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14562 /* Copy b_prev - used by ip_mroute_decap */ 14563 to_mp->b_prev = from_mp->b_prev; 14564 from_mp->b_prev = NULL; 14565 } 14566 *first_mpp = first_mp = mp1; 14567 freemsg(mp); 14568 mp = mp1; 14569 *mpp = mp1; 14570 } 14571 14572 ipha = (ipha_t *)mp->b_rptr; 14573 14574 /* 14575 * previous code has a case for M_DATA. 14576 * We want to check how that happens. 14577 */ 14578 ASSERT(first_mp->b_datap->db_type != M_DATA); 14579 switch (first_mp->b_datap->db_type) { 14580 case M_PROTO: 14581 case M_PCPROTO: 14582 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14583 DL_UNITDATA_IND) { 14584 /* Go handle anything other than data elsewhere. */ 14585 ip_rput_dlpi(q, mp); 14586 return (B_TRUE); 14587 } 14588 14589 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14590 /* Ditch the DLPI header. */ 14591 mp1 = mp->b_cont; 14592 ASSERT(first_mp == mp); 14593 *first_mpp = mp1; 14594 freeb(mp); 14595 *mpp = mp1; 14596 return (B_FALSE); 14597 case M_IOCACK: 14598 ip1dbg(("got iocack ")); 14599 iocp = (struct iocblk *)mp->b_rptr; 14600 switch (iocp->ioc_cmd) { 14601 case DL_IOC_HDR_INFO: 14602 ill = (ill_t *)q->q_ptr; 14603 ill_fastpath_ack(ill, mp); 14604 return (B_TRUE); 14605 default: 14606 putnext(q, mp); 14607 return (B_TRUE); 14608 } 14609 /* FALLTHRU */ 14610 case M_ERROR: 14611 case M_HANGUP: 14612 /* 14613 * Since this is on the ill stream we unconditionally 14614 * bump up the refcount 14615 */ 14616 ill_refhold(ill); 14617 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14618 return (B_TRUE); 14619 case M_CTL: 14620 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14621 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14622 IPHADA_M_CTL)) { 14623 /* 14624 * It's an IPsec accelerated packet. 14625 * Make sure that the ill from which we received the 14626 * packet has enabled IPsec hardware acceleration. 14627 */ 14628 if (!(ill->ill_capabilities & 14629 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14630 /* IPsec kstats: bean counter */ 14631 freemsg(mp); 14632 return (B_TRUE); 14633 } 14634 14635 /* 14636 * Make mp point to the mblk following the M_CTL, 14637 * then process according to type of mp. 14638 * After this processing, first_mp will point to 14639 * the data-attributes and mp to the pkt following 14640 * the M_CTL. 14641 */ 14642 mp = first_mp->b_cont; 14643 if (mp == NULL) { 14644 freemsg(first_mp); 14645 return (B_TRUE); 14646 } 14647 /* 14648 * A Hardware Accelerated packet can only be M_DATA 14649 * ESP or AH packet. 14650 */ 14651 if (mp->b_datap->db_type != M_DATA) { 14652 /* non-M_DATA IPsec accelerated packet */ 14653 IPSECHW_DEBUG(IPSECHW_PKT, 14654 ("non-M_DATA IPsec accelerated pkt\n")); 14655 freemsg(first_mp); 14656 return (B_TRUE); 14657 } 14658 ipha = (ipha_t *)mp->b_rptr; 14659 if (ipha->ipha_protocol != IPPROTO_AH && 14660 ipha->ipha_protocol != IPPROTO_ESP) { 14661 IPSECHW_DEBUG(IPSECHW_PKT, 14662 ("non-M_DATA IPsec accelerated pkt\n")); 14663 freemsg(first_mp); 14664 return (B_TRUE); 14665 } 14666 *mpp = mp; 14667 return (B_FALSE); 14668 } 14669 putnext(q, mp); 14670 return (B_TRUE); 14671 case M_IOCNAK: 14672 ip1dbg(("got iocnak ")); 14673 iocp = (struct iocblk *)mp->b_rptr; 14674 switch (iocp->ioc_cmd) { 14675 case DL_IOC_HDR_INFO: 14676 ip_rput_other(NULL, q, mp, NULL); 14677 return (B_TRUE); 14678 default: 14679 break; 14680 } 14681 /* FALLTHRU */ 14682 default: 14683 putnext(q, mp); 14684 return (B_TRUE); 14685 } 14686 } 14687 14688 /* Read side put procedure. Packets coming from the wire arrive here. */ 14689 void 14690 ip_rput(queue_t *q, mblk_t *mp) 14691 { 14692 ill_t *ill; 14693 union DL_primitives *dl; 14694 14695 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14696 14697 ill = (ill_t *)q->q_ptr; 14698 14699 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14700 /* 14701 * If things are opening or closing, only accept high-priority 14702 * DLPI messages. (On open ill->ill_ipif has not yet been 14703 * created; on close, things hanging off the ill may have been 14704 * freed already.) 14705 */ 14706 dl = (union DL_primitives *)mp->b_rptr; 14707 if (DB_TYPE(mp) != M_PCPROTO || 14708 dl->dl_primitive == DL_UNITDATA_IND) { 14709 inet_freemsg(mp); 14710 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14711 "ip_rput_end: q %p (%S)", q, "uninit"); 14712 return; 14713 } 14714 } 14715 14716 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14717 "ip_rput_end: q %p (%S)", q, "end"); 14718 14719 ip_input(ill, NULL, mp, NULL); 14720 } 14721 14722 static mblk_t * 14723 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14724 { 14725 mblk_t *mp1; 14726 boolean_t adjusted = B_FALSE; 14727 ip_stack_t *ipst = ill->ill_ipst; 14728 14729 IP_STAT(ipst, ip_db_ref); 14730 /* 14731 * The IP_RECVSLLA option depends on having the 14732 * link layer header. First check that: 14733 * a> the underlying device is of type ether, 14734 * since this option is currently supported only 14735 * over ethernet. 14736 * b> there is enough room to copy over the link 14737 * layer header. 14738 * 14739 * Once the checks are done, adjust rptr so that 14740 * the link layer header will be copied via 14741 * copymsg. Note that, IFT_ETHER may be returned 14742 * by some non-ethernet drivers but in this case 14743 * the second check will fail. 14744 */ 14745 if (ill->ill_type == IFT_ETHER && 14746 (mp->b_rptr - mp->b_datap->db_base) >= 14747 sizeof (struct ether_header)) { 14748 mp->b_rptr -= sizeof (struct ether_header); 14749 adjusted = B_TRUE; 14750 } 14751 mp1 = copymsg(mp); 14752 14753 if (mp1 == NULL) { 14754 mp->b_next = NULL; 14755 /* clear b_prev - used by ip_mroute_decap */ 14756 mp->b_prev = NULL; 14757 freemsg(mp); 14758 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14759 return (NULL); 14760 } 14761 14762 if (adjusted) { 14763 /* 14764 * Copy is done. Restore the pointer in 14765 * the _new_ mblk 14766 */ 14767 mp1->b_rptr += sizeof (struct ether_header); 14768 } 14769 14770 /* Copy b_prev - used by ip_mroute_decap */ 14771 mp1->b_prev = mp->b_prev; 14772 mp->b_prev = NULL; 14773 14774 /* preserve the hardware checksum flags and data, if present */ 14775 if (DB_CKSUMFLAGS(mp) != 0) { 14776 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14777 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14778 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14779 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14780 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14781 } 14782 14783 freemsg(mp); 14784 return (mp1); 14785 } 14786 14787 #define ADD_TO_CHAIN(head, tail, cnt, mp) { \ 14788 if (tail != NULL) \ 14789 tail->b_next = mp; \ 14790 else \ 14791 head = mp; \ 14792 tail = mp; \ 14793 cnt++; \ 14794 } 14795 14796 /* 14797 * Direct read side procedure capable of dealing with chains. GLDv3 based 14798 * drivers call this function directly with mblk chains while STREAMS 14799 * read side procedure ip_rput() calls this for single packet with ip_ring 14800 * set to NULL to process one packet at a time. 14801 * 14802 * The ill will always be valid if this function is called directly from 14803 * the driver. 14804 * 14805 * If ip_input() is called from GLDv3: 14806 * 14807 * - This must be a non-VLAN IP stream. 14808 * - 'mp' is either an untagged or a special priority-tagged packet. 14809 * - Any VLAN tag that was in the MAC header has been stripped. 14810 * 14811 * If the IP header in packet is not 32-bit aligned, every message in the 14812 * chain will be aligned before further operations. This is required on SPARC 14813 * platform. 14814 */ 14815 /* ARGSUSED */ 14816 void 14817 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14818 struct mac_header_info_s *mhip) 14819 { 14820 ipaddr_t dst = NULL; 14821 ipaddr_t prev_dst; 14822 ire_t *ire = NULL; 14823 ipha_t *ipha; 14824 uint_t pkt_len; 14825 ssize_t len; 14826 uint_t opt_len; 14827 int ll_multicast; 14828 int cgtp_flt_pkt; 14829 queue_t *q = ill->ill_rq; 14830 squeue_t *curr_sqp = NULL; 14831 mblk_t *head = NULL; 14832 mblk_t *tail = NULL; 14833 mblk_t *first_mp; 14834 int cnt = 0; 14835 ip_stack_t *ipst = ill->ill_ipst; 14836 mblk_t *mp; 14837 mblk_t *dmp; 14838 uint8_t tag; 14839 ilb_stack_t *ilbs; 14840 ipaddr_t lb_dst; 14841 14842 ASSERT(mp_chain != NULL); 14843 ASSERT(ill != NULL); 14844 14845 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14846 14847 tag = (ip_ring != NULL) ? SQTAG_IP_INPUT_RX_RING : SQTAG_IP_INPUT; 14848 14849 #define rptr ((uchar_t *)ipha) 14850 14851 ilbs = ipst->ips_netstack->netstack_ilb; 14852 while (mp_chain != NULL) { 14853 mp = mp_chain; 14854 mp_chain = mp_chain->b_next; 14855 mp->b_next = NULL; 14856 ll_multicast = 0; 14857 14858 /* 14859 * We do ire caching from one iteration to 14860 * another. In the event the packet chain contains 14861 * all packets from the same dst, this caching saves 14862 * an ire_cache_lookup for each of the succeeding 14863 * packets in a packet chain. 14864 */ 14865 prev_dst = dst; 14866 14867 /* 14868 * if db_ref > 1 then copymsg and free original. Packet 14869 * may be changed and we do not want the other entity 14870 * who has a reference to this message to trip over the 14871 * changes. This is a blind change because trying to 14872 * catch all places that might change the packet is too 14873 * difficult. 14874 * 14875 * This corresponds to the fast path case, where we have 14876 * a chain of M_DATA mblks. We check the db_ref count 14877 * of only the 1st data block in the mblk chain. There 14878 * doesn't seem to be a reason why a device driver would 14879 * send up data with varying db_ref counts in the mblk 14880 * chain. In any case the Fast path is a private 14881 * interface, and our drivers don't do such a thing. 14882 * Given the above assumption, there is no need to walk 14883 * down the entire mblk chain (which could have a 14884 * potential performance problem) 14885 * 14886 * The "(DB_REF(mp) > 1)" check was moved from ip_rput() 14887 * to here because of exclusive ip stacks and vnics. 14888 * Packets transmitted from exclusive stack over vnic 14889 * can have db_ref > 1 and when it gets looped back to 14890 * another vnic in a different zone, you have ip_input() 14891 * getting dblks with db_ref > 1. So if someone 14892 * complains of TCP performance under this scenario, 14893 * take a serious look here on the impact of copymsg(). 14894 */ 14895 14896 if (DB_REF(mp) > 1) { 14897 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14898 continue; 14899 } 14900 14901 /* 14902 * Check and align the IP header. 14903 */ 14904 first_mp = mp; 14905 if (DB_TYPE(mp) == M_DATA) { 14906 dmp = mp; 14907 } else if (DB_TYPE(mp) == M_PROTO && 14908 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14909 dmp = mp->b_cont; 14910 } else { 14911 dmp = NULL; 14912 } 14913 if (dmp != NULL) { 14914 /* 14915 * IP header ptr not aligned? 14916 * OR IP header not complete in first mblk 14917 */ 14918 if (!OK_32PTR(dmp->b_rptr) || 14919 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14920 if (!ip_check_and_align_header(q, dmp, ipst)) 14921 continue; 14922 } 14923 } 14924 14925 /* 14926 * ip_input fast path 14927 */ 14928 14929 /* mblk type is not M_DATA */ 14930 if (DB_TYPE(mp) != M_DATA) { 14931 if (ip_rput_process_notdata(q, &first_mp, ill, 14932 &ll_multicast, &mp)) 14933 continue; 14934 14935 /* 14936 * The only way we can get here is if we had a 14937 * packet that was either a DL_UNITDATA_IND or 14938 * an M_CTL for an IPsec accelerated packet. 14939 * 14940 * In either case, the first_mp will point to 14941 * the leading M_PROTO or M_CTL. 14942 */ 14943 ASSERT(first_mp != NULL); 14944 } else if (mhip != NULL) { 14945 /* 14946 * ll_multicast is set here so that it is ready 14947 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 14948 * manipulates ll_multicast in the same fashion when 14949 * called from ip_rput_process_notdata. 14950 */ 14951 switch (mhip->mhi_dsttype) { 14952 case MAC_ADDRTYPE_MULTICAST : 14953 ll_multicast = HPE_MULTICAST; 14954 break; 14955 case MAC_ADDRTYPE_BROADCAST : 14956 ll_multicast = HPE_BROADCAST; 14957 break; 14958 default : 14959 break; 14960 } 14961 } 14962 14963 /* Only M_DATA can come here and it is always aligned */ 14964 ASSERT(DB_TYPE(mp) == M_DATA); 14965 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 14966 14967 ipha = (ipha_t *)mp->b_rptr; 14968 len = mp->b_wptr - rptr; 14969 pkt_len = ntohs(ipha->ipha_length); 14970 14971 /* 14972 * We must count all incoming packets, even if they end 14973 * up being dropped later on. 14974 */ 14975 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 14976 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 14977 14978 /* multiple mblk or too short */ 14979 len -= pkt_len; 14980 if (len != 0) { 14981 /* 14982 * Make sure we have data length consistent 14983 * with the IP header. 14984 */ 14985 if (mp->b_cont == NULL) { 14986 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14987 BUMP_MIB(ill->ill_ip_mib, 14988 ipIfStatsInHdrErrors); 14989 ip2dbg(("ip_input: drop pkt\n")); 14990 freemsg(mp); 14991 continue; 14992 } 14993 mp->b_wptr = rptr + pkt_len; 14994 } else if ((len += msgdsize(mp->b_cont)) != 0) { 14995 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14996 BUMP_MIB(ill->ill_ip_mib, 14997 ipIfStatsInHdrErrors); 14998 ip2dbg(("ip_input: drop pkt\n")); 14999 freemsg(mp); 15000 continue; 15001 } 15002 (void) adjmsg(mp, -len); 15003 /* 15004 * adjmsg may have freed an mblk from the chain, 15005 * hence invalidate any hw checksum here. This 15006 * will force IP to calculate the checksum in 15007 * sw, but only for this packet. 15008 */ 15009 DB_CKSUMFLAGS(mp) = 0; 15010 IP_STAT(ipst, ip_multimblk3); 15011 } 15012 } 15013 15014 /* Obtain the dst of the current packet */ 15015 dst = ipha->ipha_dst; 15016 15017 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, 15018 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, 15019 ipha, ip6_t *, NULL, int, 0); 15020 15021 /* 15022 * The following test for loopback is faster than 15023 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15024 * operations. 15025 * Note that these addresses are always in network byte order 15026 */ 15027 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15028 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15029 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15030 freemsg(mp); 15031 continue; 15032 } 15033 15034 /* 15035 * The event for packets being received from a 'physical' 15036 * interface is placed after validation of the source and/or 15037 * destination address as being local so that packets can be 15038 * redirected to loopback addresses using ipnat. 15039 */ 15040 DTRACE_PROBE4(ip4__physical__in__start, 15041 ill_t *, ill, ill_t *, NULL, 15042 ipha_t *, ipha, mblk_t *, first_mp); 15043 15044 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15045 ipst->ips_ipv4firewall_physical_in, 15046 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15047 15048 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15049 15050 if (first_mp == NULL) { 15051 continue; 15052 } 15053 dst = ipha->ipha_dst; 15054 /* 15055 * Attach any necessary label information to 15056 * this packet 15057 */ 15058 if (is_system_labeled() && 15059 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15060 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15061 freemsg(mp); 15062 continue; 15063 } 15064 15065 if (ipst->ips_ip4_observe.he_interested) { 15066 zoneid_t dzone; 15067 15068 /* 15069 * On the inbound path the src zone will be unknown as 15070 * this packet has come from the wire. 15071 */ 15072 dzone = ip_get_zoneid_v4(dst, mp, ipst, ALL_ZONES); 15073 ipobs_hook(mp, IPOBS_HOOK_INBOUND, ALL_ZONES, dzone, 15074 ill, ipst); 15075 } 15076 15077 /* 15078 * Here we check to see if we machine is setup as 15079 * L3 loadbalancer and if the incoming packet is for a VIP 15080 * 15081 * Check the following: 15082 * - there is at least a rule 15083 * - protocol of the packet is supported 15084 */ 15085 if (ilb_has_rules(ilbs) && ILB_SUPP_L4(ipha->ipha_protocol)) { 15086 int lb_ret; 15087 15088 /* For convenience, we pull up the mblk. */ 15089 if (mp->b_cont != NULL) { 15090 if (pullupmsg(mp, -1) == 0) { 15091 BUMP_MIB(ill->ill_ip_mib, 15092 ipIfStatsInDiscards); 15093 freemsg(first_mp); 15094 continue; 15095 } 15096 ipha = (ipha_t *)mp->b_rptr; 15097 } 15098 15099 /* 15100 * We just drop all fragments going to any VIP, at 15101 * least for now.... 15102 */ 15103 if (ntohs(ipha->ipha_fragment_offset_and_flags) & 15104 (IPH_MF | IPH_OFFSET)) { 15105 if (!ilb_rule_match_vip_v4(ilbs, 15106 ipha->ipha_dst, NULL)) { 15107 goto after_ilb; 15108 } 15109 15110 ILB_KSTAT_UPDATE(ilbs, ip_frag_in, 1); 15111 ILB_KSTAT_UPDATE(ilbs, ip_frag_dropped, 1); 15112 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15113 freemsg(first_mp); 15114 continue; 15115 } 15116 lb_ret = ilb_check_v4(ilbs, ill, mp, ipha, 15117 ipha->ipha_protocol, (uint8_t *)ipha + 15118 IPH_HDR_LENGTH(ipha), &lb_dst); 15119 15120 if (lb_ret == ILB_DROPPED) { 15121 /* Is this the right counter to increase? */ 15122 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15123 freemsg(first_mp); 15124 continue; 15125 } else if (lb_ret == ILB_BALANCED) { 15126 /* Set the dst to that of the chosen server */ 15127 dst = lb_dst; 15128 DB_CKSUMFLAGS(mp) = 0; 15129 } 15130 } 15131 15132 after_ilb: 15133 /* 15134 * Reuse the cached ire only if the ipha_dst of the previous 15135 * packet is the same as the current packet AND it is not 15136 * INADDR_ANY. 15137 */ 15138 if (!(dst == prev_dst && dst != INADDR_ANY) && 15139 (ire != NULL)) { 15140 ire_refrele(ire); 15141 ire = NULL; 15142 } 15143 15144 opt_len = ipha->ipha_version_and_hdr_length - 15145 IP_SIMPLE_HDR_VERSION; 15146 15147 /* 15148 * Check to see if we can take the fastpath. 15149 * That is possible if the following conditions are met 15150 * o Tsol disabled 15151 * o CGTP disabled 15152 * o ipp_action_count is 0 15153 * o no options in the packet 15154 * o not a RSVP packet 15155 * o not a multicast packet 15156 * o ill not in IP_DHCPINIT_IF mode 15157 */ 15158 if (!is_system_labeled() && 15159 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15160 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15161 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15162 if (ire == NULL) 15163 ire = ire_cache_lookup_simple(dst, ipst); 15164 /* 15165 * Unless forwarding is enabled, dont call 15166 * ip_fast_forward(). Incoming packet is for forwarding 15167 */ 15168 if ((ill->ill_flags & ILLF_ROUTER) && 15169 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15170 ire = ip_fast_forward(ire, dst, ill, mp); 15171 continue; 15172 } 15173 /* incoming packet is for local consumption */ 15174 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15175 goto local; 15176 } 15177 15178 /* 15179 * Disable ire caching for anything more complex 15180 * than the simple fast path case we checked for above. 15181 */ 15182 if (ire != NULL) { 15183 ire_refrele(ire); 15184 ire = NULL; 15185 } 15186 15187 /* 15188 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15189 * server to unicast DHCP packets to a DHCP client using the 15190 * IP address it is offering to the client. This can be 15191 * disabled through the "broadcast bit", but not all DHCP 15192 * servers honor that bit. Therefore, to interoperate with as 15193 * many DHCP servers as possible, the DHCP client allows the 15194 * server to unicast, but we treat those packets as broadcast 15195 * here. Note that we don't rewrite the packet itself since 15196 * (a) that would mess up the checksums and (b) the DHCP 15197 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15198 * hand it the packet regardless. 15199 */ 15200 if (ill->ill_dhcpinit != 0 && 15201 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15202 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15203 udpha_t *udpha; 15204 15205 /* 15206 * Reload ipha since pullupmsg() can change b_rptr. 15207 */ 15208 ipha = (ipha_t *)mp->b_rptr; 15209 udpha = (udpha_t *)&ipha[1]; 15210 15211 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15212 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15213 mblk_t *, mp); 15214 dst = INADDR_BROADCAST; 15215 } 15216 } 15217 15218 /* Full-blown slow path */ 15219 if (opt_len != 0) { 15220 if (len != 0) 15221 IP_STAT(ipst, ip_multimblk4); 15222 else 15223 IP_STAT(ipst, ip_ipoptions); 15224 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15225 &dst, ipst)) 15226 continue; 15227 } 15228 15229 /* 15230 * Invoke the CGTP (multirouting) filtering module to process 15231 * the incoming packet. Packets identified as duplicates 15232 * must be discarded. Filtering is active only if the 15233 * the ip_cgtp_filter ndd variable is non-zero. 15234 */ 15235 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15236 if (ipst->ips_ip_cgtp_filter && 15237 ipst->ips_ip_cgtp_filter_ops != NULL) { 15238 netstackid_t stackid; 15239 15240 stackid = ipst->ips_netstack->netstack_stackid; 15241 cgtp_flt_pkt = 15242 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15243 ill->ill_phyint->phyint_ifindex, mp); 15244 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15245 freemsg(first_mp); 15246 continue; 15247 } 15248 } 15249 15250 /* 15251 * If rsvpd is running, let RSVP daemon handle its processing 15252 * and forwarding of RSVP multicast/unicast packets. 15253 * If rsvpd is not running but mrouted is running, RSVP 15254 * multicast packets are forwarded as multicast traffic 15255 * and RSVP unicast packets are forwarded by unicast router. 15256 * If neither rsvpd nor mrouted is running, RSVP multicast 15257 * packets are not forwarded, but the unicast packets are 15258 * forwarded like unicast traffic. 15259 */ 15260 if (ipha->ipha_protocol == IPPROTO_RSVP && 15261 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15262 NULL) { 15263 /* RSVP packet and rsvpd running. Treat as ours */ 15264 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15265 /* 15266 * This assumes that we deliver to all streams for 15267 * multicast and broadcast packets. 15268 * We have to force ll_multicast to 1 to handle the 15269 * M_DATA messages passed in from ip_mroute_decap. 15270 */ 15271 dst = INADDR_BROADCAST; 15272 ll_multicast = 1; 15273 } else if (CLASSD(dst)) { 15274 /* packet is multicast */ 15275 mp->b_next = NULL; 15276 if (ip_rput_process_multicast(q, mp, ill, ipha, 15277 &ll_multicast, &dst)) 15278 continue; 15279 } 15280 15281 if (ire == NULL) { 15282 ire = ire_cache_lookup(dst, ALL_ZONES, 15283 msg_getlabel(mp), ipst); 15284 } 15285 15286 if (ire != NULL && ire->ire_stq != NULL && 15287 ire->ire_zoneid != GLOBAL_ZONEID && 15288 ire->ire_zoneid != ALL_ZONES) { 15289 /* 15290 * Should only use IREs that are visible from the 15291 * global zone for forwarding. 15292 */ 15293 ire_refrele(ire); 15294 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15295 msg_getlabel(mp), ipst); 15296 } 15297 15298 if (ire == NULL) { 15299 /* 15300 * No IRE for this destination, so it can't be for us. 15301 * Unless we are forwarding, drop the packet. 15302 * We have to let source routed packets through 15303 * since we don't yet know if they are 'ping -l' 15304 * packets i.e. if they will go out over the 15305 * same interface as they came in on. 15306 */ 15307 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15308 if (ire == NULL) 15309 continue; 15310 } 15311 15312 /* 15313 * Broadcast IRE may indicate either broadcast or 15314 * multicast packet 15315 */ 15316 if (ire->ire_type == IRE_BROADCAST) { 15317 /* 15318 * Skip broadcast checks if packet is UDP multicast; 15319 * we'd rather not enter ip_rput_process_broadcast() 15320 * unless the packet is broadcast for real, since 15321 * that routine is a no-op for multicast. 15322 */ 15323 if (ipha->ipha_protocol != IPPROTO_UDP || 15324 !CLASSD(ipha->ipha_dst)) { 15325 ire = ip_rput_process_broadcast(&q, mp, 15326 ire, ipha, ill, dst, cgtp_flt_pkt, 15327 ll_multicast); 15328 if (ire == NULL) 15329 continue; 15330 } 15331 } else if (ire->ire_stq != NULL) { 15332 /* fowarding? */ 15333 ip_rput_process_forward(q, mp, ire, ipha, ill, 15334 ll_multicast, B_FALSE); 15335 /* ip_rput_process_forward consumed the packet */ 15336 continue; 15337 } 15338 15339 local: 15340 /* 15341 * If the queue in the ire is different to the ingress queue 15342 * then we need to check to see if we can accept the packet. 15343 * Note that for multicast packets and broadcast packets sent 15344 * to a broadcast address which is shared between multiple 15345 * interfaces we should not do this since we just got a random 15346 * broadcast ire. 15347 */ 15348 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15349 ire = ip_check_multihome(&ipha->ipha_dst, ire, ill); 15350 if (ire == NULL) { 15351 /* Drop packet */ 15352 BUMP_MIB(ill->ill_ip_mib, 15353 ipIfStatsForwProhibits); 15354 freemsg(mp); 15355 continue; 15356 } 15357 if (ire->ire_rfq != NULL) 15358 q = ire->ire_rfq; 15359 } 15360 15361 switch (ipha->ipha_protocol) { 15362 case IPPROTO_TCP: 15363 ASSERT(first_mp == mp); 15364 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15365 mp, 0, q, ip_ring)) != NULL) { 15366 if (curr_sqp == NULL) { 15367 curr_sqp = GET_SQUEUE(mp); 15368 ASSERT(cnt == 0); 15369 cnt++; 15370 head = tail = mp; 15371 } else if (curr_sqp == GET_SQUEUE(mp)) { 15372 ASSERT(tail != NULL); 15373 cnt++; 15374 tail->b_next = mp; 15375 tail = mp; 15376 } else { 15377 /* 15378 * A different squeue. Send the 15379 * chain for the previous squeue on 15380 * its way. This shouldn't happen 15381 * often unless interrupt binding 15382 * changes. 15383 */ 15384 IP_STAT(ipst, ip_input_multi_squeue); 15385 SQUEUE_ENTER(curr_sqp, head, 15386 tail, cnt, SQ_PROCESS, tag); 15387 curr_sqp = GET_SQUEUE(mp); 15388 head = mp; 15389 tail = mp; 15390 cnt = 1; 15391 } 15392 } 15393 continue; 15394 case IPPROTO_UDP: 15395 ASSERT(first_mp == mp); 15396 ip_udp_input(q, mp, ipha, ire, ill); 15397 continue; 15398 case IPPROTO_SCTP: 15399 ASSERT(first_mp == mp); 15400 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15401 q, dst); 15402 /* ire has been released by ip_sctp_input */ 15403 ire = NULL; 15404 continue; 15405 case IPPROTO_ENCAP: 15406 case IPPROTO_IPV6: 15407 ASSERT(first_mp == mp); 15408 if (ip_iptun_input(NULL, mp, ipha, ill, ire, ipst)) 15409 break; 15410 /* 15411 * If there was no IP tunnel data-link bound to 15412 * receive this packet, then we fall through to 15413 * allow potential raw sockets bound to either of 15414 * these protocols to pick it up. 15415 */ 15416 default: 15417 ip_proto_input(q, first_mp, ipha, ire, ill, 0); 15418 continue; 15419 } 15420 } 15421 15422 if (ire != NULL) 15423 ire_refrele(ire); 15424 15425 if (head != NULL) 15426 SQUEUE_ENTER(curr_sqp, head, tail, cnt, SQ_PROCESS, tag); 15427 15428 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15429 "ip_input_end: q %p (%S)", q, "end"); 15430 #undef rptr 15431 } 15432 15433 /* 15434 * ip_accept_tcp() - This function is called by the squeue when it retrieves 15435 * a chain of packets in the poll mode. The packets have gone through the 15436 * data link processing but not IP processing. For performance and latency 15437 * reasons, the squeue wants to process the chain in line instead of feeding 15438 * it back via ip_input path. 15439 * 15440 * So this is a light weight function which checks to see if the packets 15441 * retrived are indeed TCP packets (TCP squeue always polls TCP soft ring 15442 * but we still do the paranoid check) meant for local machine and we don't 15443 * have labels etc enabled. Packets that meet the criterion are returned to 15444 * the squeue and processed inline while the rest go via ip_input path. 15445 */ 15446 /*ARGSUSED*/ 15447 mblk_t * 15448 ip_accept_tcp(ill_t *ill, ill_rx_ring_t *ip_ring, squeue_t *target_sqp, 15449 mblk_t *mp_chain, mblk_t **last, uint_t *cnt) 15450 { 15451 mblk_t *mp; 15452 ipaddr_t dst = NULL; 15453 ipaddr_t prev_dst; 15454 ire_t *ire = NULL; 15455 ipha_t *ipha; 15456 uint_t pkt_len; 15457 ssize_t len; 15458 uint_t opt_len; 15459 queue_t *q = ill->ill_rq; 15460 squeue_t *curr_sqp; 15461 mblk_t *ahead = NULL; /* Accepted head */ 15462 mblk_t *atail = NULL; /* Accepted tail */ 15463 uint_t acnt = 0; /* Accepted count */ 15464 mblk_t *utail = NULL; /* Unaccepted head */ 15465 mblk_t *uhead = NULL; /* Unaccepted tail */ 15466 uint_t ucnt = 0; /* Unaccepted cnt */ 15467 ip_stack_t *ipst = ill->ill_ipst; 15468 ilb_stack_t *ilbs = ipst->ips_netstack->netstack_ilb; 15469 15470 *cnt = 0; 15471 15472 ASSERT(ill != NULL); 15473 ASSERT(ip_ring != NULL); 15474 15475 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_accept_tcp: q %p", q); 15476 15477 /* If ILB is enabled, don't do fast processing. */ 15478 if (ilb_has_rules(ilbs)) { 15479 uhead = mp_chain; 15480 goto all_reject; 15481 } 15482 15483 #define rptr ((uchar_t *)ipha) 15484 15485 while (mp_chain != NULL) { 15486 mp = mp_chain; 15487 mp_chain = mp_chain->b_next; 15488 mp->b_next = NULL; 15489 15490 /* 15491 * We do ire caching from one iteration to 15492 * another. In the event the packet chain contains 15493 * all packets from the same dst, this caching saves 15494 * an ire_cache_lookup for each of the succeeding 15495 * packets in a packet chain. 15496 */ 15497 prev_dst = dst; 15498 15499 ipha = (ipha_t *)mp->b_rptr; 15500 len = mp->b_wptr - rptr; 15501 15502 ASSERT(!MBLK_RX_FANOUT_SLOWPATH(mp, ipha)); 15503 15504 /* 15505 * If it is a non TCP packet, or doesn't have H/W cksum, 15506 * or doesn't have min len, reject. 15507 */ 15508 if ((ipha->ipha_protocol != IPPROTO_TCP) || (len < 15509 (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH))) { 15510 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15511 continue; 15512 } 15513 15514 pkt_len = ntohs(ipha->ipha_length); 15515 if (len != pkt_len) { 15516 if (len > pkt_len) { 15517 mp->b_wptr = rptr + pkt_len; 15518 } else { 15519 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15520 continue; 15521 } 15522 } 15523 15524 opt_len = ipha->ipha_version_and_hdr_length - 15525 IP_SIMPLE_HDR_VERSION; 15526 dst = ipha->ipha_dst; 15527 15528 /* IP version bad or there are IP options */ 15529 if (opt_len && (!ip_rput_multimblk_ipoptions(q, ill, 15530 mp, &ipha, &dst, ipst))) 15531 continue; 15532 15533 if (is_system_labeled() || (ill->ill_dhcpinit != 0) || 15534 (ipst->ips_ip_cgtp_filter && 15535 ipst->ips_ip_cgtp_filter_ops != NULL)) { 15536 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15537 continue; 15538 } 15539 15540 /* 15541 * Reuse the cached ire only if the ipha_dst of the previous 15542 * packet is the same as the current packet AND it is not 15543 * INADDR_ANY. 15544 */ 15545 if (!(dst == prev_dst && dst != INADDR_ANY) && 15546 (ire != NULL)) { 15547 ire_refrele(ire); 15548 ire = NULL; 15549 } 15550 15551 if (ire == NULL) 15552 ire = ire_cache_lookup_simple(dst, ipst); 15553 15554 /* 15555 * Unless forwarding is enabled, dont call 15556 * ip_fast_forward(). Incoming packet is for forwarding 15557 */ 15558 if ((ill->ill_flags & ILLF_ROUTER) && 15559 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15560 15561 DTRACE_PROBE4(ip4__physical__in__start, 15562 ill_t *, ill, ill_t *, NULL, 15563 ipha_t *, ipha, mblk_t *, mp); 15564 15565 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15566 ipst->ips_ipv4firewall_physical_in, 15567 ill, NULL, ipha, mp, mp, 0, ipst); 15568 15569 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15570 15571 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15572 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, 15573 pkt_len); 15574 15575 if (mp != NULL) 15576 ire = ip_fast_forward(ire, dst, ill, mp); 15577 continue; 15578 } 15579 15580 /* incoming packet is for local consumption */ 15581 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15582 goto local_accept; 15583 15584 /* 15585 * Disable ire caching for anything more complex 15586 * than the simple fast path case we checked for above. 15587 */ 15588 if (ire != NULL) { 15589 ire_refrele(ire); 15590 ire = NULL; 15591 } 15592 15593 ire = ire_cache_lookup(dst, ALL_ZONES, msg_getlabel(mp), 15594 ipst); 15595 if (ire == NULL || ire->ire_type == IRE_BROADCAST || 15596 ire->ire_stq != NULL) { 15597 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15598 if (ire != NULL) { 15599 ire_refrele(ire); 15600 ire = NULL; 15601 } 15602 continue; 15603 } 15604 15605 local_accept: 15606 15607 if (ire->ire_rfq != q) { 15608 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15609 if (ire != NULL) { 15610 ire_refrele(ire); 15611 ire = NULL; 15612 } 15613 continue; 15614 } 15615 15616 /* 15617 * The event for packets being received from a 'physical' 15618 * interface is placed after validation of the source and/or 15619 * destination address as being local so that packets can be 15620 * redirected to loopback addresses using ipnat. 15621 */ 15622 DTRACE_PROBE4(ip4__physical__in__start, 15623 ill_t *, ill, ill_t *, NULL, 15624 ipha_t *, ipha, mblk_t *, mp); 15625 15626 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15627 ipst->ips_ipv4firewall_physical_in, 15628 ill, NULL, ipha, mp, mp, 0, ipst); 15629 15630 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15631 15632 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15633 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15634 15635 if (mp != NULL && 15636 (mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, mp, 15637 0, q, ip_ring)) != NULL) { 15638 if ((curr_sqp = GET_SQUEUE(mp)) == target_sqp) { 15639 ADD_TO_CHAIN(ahead, atail, acnt, mp); 15640 } else { 15641 SQUEUE_ENTER(curr_sqp, mp, mp, 1, 15642 SQ_FILL, SQTAG_IP_INPUT); 15643 } 15644 } 15645 } 15646 15647 if (ire != NULL) 15648 ire_refrele(ire); 15649 15650 all_reject: 15651 if (uhead != NULL) 15652 ip_input(ill, ip_ring, uhead, NULL); 15653 15654 if (ahead != NULL) { 15655 *last = atail; 15656 *cnt = acnt; 15657 return (ahead); 15658 } 15659 15660 return (NULL); 15661 #undef rptr 15662 } 15663 15664 static void 15665 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15666 t_uscalar_t err) 15667 { 15668 if (dl_err == DL_SYSERR) { 15669 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15670 "%s: %s failed: DL_SYSERR (errno %u)\n", 15671 ill->ill_name, dl_primstr(prim), err); 15672 return; 15673 } 15674 15675 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15676 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15677 dl_errstr(dl_err)); 15678 } 15679 15680 /* 15681 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15682 * than DL_UNITDATA_IND messages. If we need to process this message 15683 * exclusively, we call qwriter_ip, in which case we also need to call 15684 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15685 */ 15686 void 15687 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15688 { 15689 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15690 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15691 ill_t *ill = q->q_ptr; 15692 t_uscalar_t prim = dloa->dl_primitive; 15693 t_uscalar_t reqprim = DL_PRIM_INVAL; 15694 15695 ip1dbg(("ip_rput_dlpi")); 15696 15697 /* 15698 * If we received an ACK but didn't send a request for it, then it 15699 * can't be part of any pending operation; discard up-front. 15700 */ 15701 switch (prim) { 15702 case DL_ERROR_ACK: 15703 reqprim = dlea->dl_error_primitive; 15704 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 15705 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 15706 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 15707 dlea->dl_unix_errno)); 15708 break; 15709 case DL_OK_ACK: 15710 reqprim = dloa->dl_correct_primitive; 15711 break; 15712 case DL_INFO_ACK: 15713 reqprim = DL_INFO_REQ; 15714 break; 15715 case DL_BIND_ACK: 15716 reqprim = DL_BIND_REQ; 15717 break; 15718 case DL_PHYS_ADDR_ACK: 15719 reqprim = DL_PHYS_ADDR_REQ; 15720 break; 15721 case DL_NOTIFY_ACK: 15722 reqprim = DL_NOTIFY_REQ; 15723 break; 15724 case DL_CONTROL_ACK: 15725 reqprim = DL_CONTROL_REQ; 15726 break; 15727 case DL_CAPABILITY_ACK: 15728 reqprim = DL_CAPABILITY_REQ; 15729 break; 15730 } 15731 15732 if (prim != DL_NOTIFY_IND) { 15733 if (reqprim == DL_PRIM_INVAL || 15734 !ill_dlpi_pending(ill, reqprim)) { 15735 /* Not a DLPI message we support or expected */ 15736 freemsg(mp); 15737 return; 15738 } 15739 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 15740 dl_primstr(reqprim))); 15741 } 15742 15743 switch (reqprim) { 15744 case DL_UNBIND_REQ: 15745 /* 15746 * NOTE: we mark the unbind as complete even if we got a 15747 * DL_ERROR_ACK, since there's not much else we can do. 15748 */ 15749 mutex_enter(&ill->ill_lock); 15750 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15751 cv_signal(&ill->ill_cv); 15752 mutex_exit(&ill->ill_lock); 15753 break; 15754 15755 case DL_ENABMULTI_REQ: 15756 if (prim == DL_OK_ACK) { 15757 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15758 ill->ill_dlpi_multicast_state = IDS_OK; 15759 } 15760 break; 15761 } 15762 15763 /* 15764 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15765 * need to become writer to continue to process it. Because an 15766 * exclusive operation doesn't complete until replies to all queued 15767 * DLPI messages have been received, we know we're in the middle of an 15768 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15769 * 15770 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15771 * Since this is on the ill stream we unconditionally bump up the 15772 * refcount without doing ILL_CAN_LOOKUP(). 15773 */ 15774 ill_refhold(ill); 15775 if (prim == DL_NOTIFY_IND) 15776 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15777 else 15778 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15779 } 15780 15781 /* 15782 * Handling of DLPI messages that require exclusive access to the ipsq. 15783 * 15784 * Need to do ill_pending_mp_release on ioctl completion, which could 15785 * happen here. (along with mi_copy_done) 15786 */ 15787 /* ARGSUSED */ 15788 static void 15789 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15790 { 15791 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15792 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15793 int err = 0; 15794 ill_t *ill; 15795 ipif_t *ipif = NULL; 15796 mblk_t *mp1 = NULL; 15797 conn_t *connp = NULL; 15798 t_uscalar_t paddrreq; 15799 mblk_t *mp_hw; 15800 boolean_t success; 15801 boolean_t ioctl_aborted = B_FALSE; 15802 boolean_t log = B_TRUE; 15803 ip_stack_t *ipst; 15804 15805 ip1dbg(("ip_rput_dlpi_writer ..")); 15806 ill = (ill_t *)q->q_ptr; 15807 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 15808 ASSERT(IAM_WRITER_ILL(ill)); 15809 15810 ipst = ill->ill_ipst; 15811 15812 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 15813 /* 15814 * The current ioctl could have been aborted by the user and a new 15815 * ioctl to bring up another ill could have started. We could still 15816 * get a response from the driver later. 15817 */ 15818 if (ipif != NULL && ipif->ipif_ill != ill) 15819 ioctl_aborted = B_TRUE; 15820 15821 switch (dloa->dl_primitive) { 15822 case DL_ERROR_ACK: 15823 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15824 dl_primstr(dlea->dl_error_primitive))); 15825 15826 switch (dlea->dl_error_primitive) { 15827 case DL_DISABMULTI_REQ: 15828 ill_dlpi_done(ill, dlea->dl_error_primitive); 15829 break; 15830 case DL_PROMISCON_REQ: 15831 case DL_PROMISCOFF_REQ: 15832 case DL_UNBIND_REQ: 15833 case DL_ATTACH_REQ: 15834 case DL_INFO_REQ: 15835 ill_dlpi_done(ill, dlea->dl_error_primitive); 15836 break; 15837 case DL_NOTIFY_REQ: 15838 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15839 log = B_FALSE; 15840 break; 15841 case DL_PHYS_ADDR_REQ: 15842 /* 15843 * For IPv6 only, there are two additional 15844 * phys_addr_req's sent to the driver to get the 15845 * IPv6 token and lla. This allows IP to acquire 15846 * the hardware address format for a given interface 15847 * without having built in knowledge of the hardware 15848 * address. ill_phys_addr_pend keeps track of the last 15849 * DL_PAR sent so we know which response we are 15850 * dealing with. ill_dlpi_done will update 15851 * ill_phys_addr_pend when it sends the next req. 15852 * We don't complete the IOCTL until all three DL_PARs 15853 * have been attempted, so set *_len to 0 and break. 15854 */ 15855 paddrreq = ill->ill_phys_addr_pend; 15856 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15857 if (paddrreq == DL_IPV6_TOKEN) { 15858 ill->ill_token_length = 0; 15859 log = B_FALSE; 15860 break; 15861 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15862 ill->ill_nd_lla_len = 0; 15863 log = B_FALSE; 15864 break; 15865 } 15866 /* 15867 * Something went wrong with the DL_PHYS_ADDR_REQ. 15868 * We presumably have an IOCTL hanging out waiting 15869 * for completion. Find it and complete the IOCTL 15870 * with the error noted. 15871 * However, ill_dl_phys was called on an ill queue 15872 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15873 * set. But the ioctl is known to be pending on ill_wq. 15874 */ 15875 if (!ill->ill_ifname_pending) 15876 break; 15877 ill->ill_ifname_pending = 0; 15878 if (!ioctl_aborted) 15879 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15880 if (mp1 != NULL) { 15881 /* 15882 * This operation (SIOCSLIFNAME) must have 15883 * happened on the ill. Assert there is no conn 15884 */ 15885 ASSERT(connp == NULL); 15886 q = ill->ill_wq; 15887 } 15888 break; 15889 case DL_BIND_REQ: 15890 ill_dlpi_done(ill, DL_BIND_REQ); 15891 if (ill->ill_ifname_pending) 15892 break; 15893 /* 15894 * Something went wrong with the bind. We presumably 15895 * have an IOCTL hanging out waiting for completion. 15896 * Find it, take down the interface that was coming 15897 * up, and complete the IOCTL with the error noted. 15898 */ 15899 if (!ioctl_aborted) 15900 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15901 if (mp1 != NULL) { 15902 /* 15903 * This might be a result of a DL_NOTE_REPLUMB 15904 * notification. In that case, connp is NULL. 15905 */ 15906 if (connp != NULL) 15907 q = CONNP_TO_WQ(connp); 15908 15909 (void) ipif_down(ipif, NULL, NULL); 15910 /* error is set below the switch */ 15911 } 15912 break; 15913 case DL_ENABMULTI_REQ: 15914 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15915 15916 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15917 ill->ill_dlpi_multicast_state = IDS_FAILED; 15918 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15919 ipif_t *ipif; 15920 15921 printf("ip: joining multicasts failed (%d)" 15922 " on %s - will use link layer " 15923 "broadcasts for multicast\n", 15924 dlea->dl_errno, ill->ill_name); 15925 15926 /* 15927 * Set up the multicast mapping alone. 15928 * writer, so ok to access ill->ill_ipif 15929 * without any lock. 15930 */ 15931 ipif = ill->ill_ipif; 15932 mutex_enter(&ill->ill_phyint->phyint_lock); 15933 ill->ill_phyint->phyint_flags |= 15934 PHYI_MULTI_BCAST; 15935 mutex_exit(&ill->ill_phyint->phyint_lock); 15936 15937 if (!ill->ill_isv6) { 15938 (void) ipif_arp_setup_multicast(ipif, 15939 NULL); 15940 } else { 15941 (void) ipif_ndp_setup_multicast(ipif, 15942 NULL); 15943 } 15944 } 15945 freemsg(mp); /* Don't want to pass this up */ 15946 return; 15947 case DL_CONTROL_REQ: 15948 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15949 "DL_CONTROL_REQ\n")); 15950 ill_dlpi_done(ill, dlea->dl_error_primitive); 15951 freemsg(mp); 15952 return; 15953 case DL_CAPABILITY_REQ: 15954 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15955 "DL_CAPABILITY REQ\n")); 15956 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 15957 ill->ill_dlpi_capab_state = IDCS_FAILED; 15958 ill_capability_done(ill); 15959 freemsg(mp); 15960 return; 15961 } 15962 /* 15963 * Note the error for IOCTL completion (mp1 is set when 15964 * ready to complete ioctl). If ill_ifname_pending_err is 15965 * set, an error occured during plumbing (ill_ifname_pending), 15966 * so we want to report that error. 15967 * 15968 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15969 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15970 * expected to get errack'd if the driver doesn't support 15971 * these flags (e.g. ethernet). log will be set to B_FALSE 15972 * if these error conditions are encountered. 15973 */ 15974 if (mp1 != NULL) { 15975 if (ill->ill_ifname_pending_err != 0) { 15976 err = ill->ill_ifname_pending_err; 15977 ill->ill_ifname_pending_err = 0; 15978 } else { 15979 err = dlea->dl_unix_errno ? 15980 dlea->dl_unix_errno : ENXIO; 15981 } 15982 /* 15983 * If we're plumbing an interface and an error hasn't already 15984 * been saved, set ill_ifname_pending_err to the error passed 15985 * up. Ignore the error if log is B_FALSE (see comment above). 15986 */ 15987 } else if (log && ill->ill_ifname_pending && 15988 ill->ill_ifname_pending_err == 0) { 15989 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15990 dlea->dl_unix_errno : ENXIO; 15991 } 15992 15993 if (log) 15994 ip_dlpi_error(ill, dlea->dl_error_primitive, 15995 dlea->dl_errno, dlea->dl_unix_errno); 15996 break; 15997 case DL_CAPABILITY_ACK: 15998 ill_capability_ack(ill, mp); 15999 /* 16000 * The message has been handed off to ill_capability_ack 16001 * and must not be freed below 16002 */ 16003 mp = NULL; 16004 break; 16005 16006 case DL_CONTROL_ACK: 16007 /* We treat all of these as "fire and forget" */ 16008 ill_dlpi_done(ill, DL_CONTROL_REQ); 16009 break; 16010 case DL_INFO_ACK: 16011 /* Call a routine to handle this one. */ 16012 ill_dlpi_done(ill, DL_INFO_REQ); 16013 ip_ll_subnet_defaults(ill, mp); 16014 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 16015 return; 16016 case DL_BIND_ACK: 16017 /* 16018 * We should have an IOCTL waiting on this unless 16019 * sent by ill_dl_phys, in which case just return 16020 */ 16021 ill_dlpi_done(ill, DL_BIND_REQ); 16022 if (ill->ill_ifname_pending) 16023 break; 16024 16025 if (!ioctl_aborted) 16026 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16027 if (mp1 == NULL) 16028 break; 16029 /* 16030 * mp1 was added by ill_dl_up(). if that is a result of 16031 * a DL_NOTE_REPLUMB notification, connp could be NULL. 16032 */ 16033 if (connp != NULL) 16034 q = CONNP_TO_WQ(connp); 16035 16036 /* 16037 * We are exclusive. So nothing can change even after 16038 * we get the pending mp. If need be we can put it back 16039 * and restart, as in calling ipif_arp_up() below. 16040 */ 16041 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 16042 16043 mutex_enter(&ill->ill_lock); 16044 ill->ill_dl_up = 1; 16045 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 16046 mutex_exit(&ill->ill_lock); 16047 16048 /* 16049 * Now bring up the resolver; when that is complete, we'll 16050 * create IREs. Note that we intentionally mirror what 16051 * ipif_up() would have done, because we got here by way of 16052 * ill_dl_up(), which stopped ipif_up()'s processing. 16053 */ 16054 if (ill->ill_isv6) { 16055 if (ill->ill_flags & ILLF_XRESOLV) { 16056 if (connp != NULL) 16057 mutex_enter(&connp->conn_lock); 16058 mutex_enter(&ill->ill_lock); 16059 success = ipsq_pending_mp_add(connp, ipif, q, 16060 mp1, 0); 16061 mutex_exit(&ill->ill_lock); 16062 if (connp != NULL) 16063 mutex_exit(&connp->conn_lock); 16064 if (success) { 16065 err = ipif_resolver_up(ipif, 16066 Res_act_initial); 16067 if (err == EINPROGRESS) { 16068 freemsg(mp); 16069 return; 16070 } 16071 ASSERT(err != 0); 16072 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16073 ASSERT(mp1 != NULL); 16074 } else { 16075 /* conn has started closing */ 16076 err = EINTR; 16077 } 16078 } else { /* Non XRESOLV interface */ 16079 (void) ipif_resolver_up(ipif, Res_act_initial); 16080 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 16081 err = ipif_up_done_v6(ipif); 16082 } 16083 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 16084 /* 16085 * ARP and other v4 external resolvers. 16086 * Leave the pending mblk intact so that 16087 * the ioctl completes in ip_rput(). 16088 */ 16089 if (connp != NULL) 16090 mutex_enter(&connp->conn_lock); 16091 mutex_enter(&ill->ill_lock); 16092 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 16093 mutex_exit(&ill->ill_lock); 16094 if (connp != NULL) 16095 mutex_exit(&connp->conn_lock); 16096 if (success) { 16097 err = ipif_resolver_up(ipif, Res_act_initial); 16098 if (err == EINPROGRESS) { 16099 freemsg(mp); 16100 return; 16101 } 16102 ASSERT(err != 0); 16103 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16104 } else { 16105 /* The conn has started closing */ 16106 err = EINTR; 16107 } 16108 } else { 16109 /* 16110 * This one is complete. Reply to pending ioctl. 16111 */ 16112 (void) ipif_resolver_up(ipif, Res_act_initial); 16113 err = ipif_up_done(ipif); 16114 } 16115 16116 if ((err == 0) && (ill->ill_up_ipifs)) { 16117 err = ill_up_ipifs(ill, q, mp1); 16118 if (err == EINPROGRESS) { 16119 freemsg(mp); 16120 return; 16121 } 16122 } 16123 16124 /* 16125 * If we have a moved ipif to bring up, and everything has 16126 * succeeded to this point, bring it up on the IPMP ill. 16127 * Otherwise, leave it down -- the admin can try to bring it 16128 * up by hand if need be. 16129 */ 16130 if (ill->ill_move_ipif != NULL) { 16131 if (err != 0) { 16132 ill->ill_move_ipif = NULL; 16133 } else { 16134 ipif = ill->ill_move_ipif; 16135 ill->ill_move_ipif = NULL; 16136 err = ipif_up(ipif, q, mp1); 16137 if (err == EINPROGRESS) { 16138 freemsg(mp); 16139 return; 16140 } 16141 } 16142 } 16143 break; 16144 16145 case DL_NOTIFY_IND: { 16146 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 16147 ire_t *ire; 16148 uint_t orig_mtu; 16149 boolean_t need_ire_walk_v4 = B_FALSE; 16150 boolean_t need_ire_walk_v6 = B_FALSE; 16151 16152 switch (notify->dl_notification) { 16153 case DL_NOTE_PHYS_ADDR: 16154 err = ill_set_phys_addr(ill, mp); 16155 break; 16156 16157 case DL_NOTE_REPLUMB: 16158 /* 16159 * Directly return after calling ill_replumb(). 16160 * Note that we should not free mp as it is reused 16161 * in the ill_replumb() function. 16162 */ 16163 err = ill_replumb(ill, mp); 16164 return; 16165 16166 case DL_NOTE_FASTPATH_FLUSH: 16167 ill_fastpath_flush(ill); 16168 break; 16169 16170 case DL_NOTE_SDU_SIZE: 16171 /* 16172 * Change the MTU size of the interface, of all 16173 * attached ipif's, and of all relevant ire's. The 16174 * new value's a uint32_t at notify->dl_data. 16175 * Mtu change Vs. new ire creation - protocol below. 16176 * 16177 * a Mark the ipif as IPIF_CHANGING. 16178 * b Set the new mtu in the ipif. 16179 * c Change the ire_max_frag on all affected ires 16180 * d Unmark the IPIF_CHANGING 16181 * 16182 * To see how the protocol works, assume an interface 16183 * route is also being added simultaneously by 16184 * ip_rt_add and let 'ipif' be the ipif referenced by 16185 * the ire. If the ire is created before step a, 16186 * it will be cleaned up by step c. If the ire is 16187 * created after step d, it will see the new value of 16188 * ipif_mtu. Any attempt to create the ire between 16189 * steps a to d will fail because of the IPIF_CHANGING 16190 * flag. Note that ire_create() is passed a pointer to 16191 * the ipif_mtu, and not the value. During ire_add 16192 * under the bucket lock, the ire_max_frag of the 16193 * new ire being created is set from the ipif/ire from 16194 * which it is being derived. 16195 */ 16196 mutex_enter(&ill->ill_lock); 16197 16198 orig_mtu = ill->ill_max_mtu; 16199 ill->ill_max_frag = (uint_t)notify->dl_data; 16200 ill->ill_max_mtu = (uint_t)notify->dl_data; 16201 16202 /* 16203 * If ill_user_mtu was set (via SIOCSLIFLNKINFO), 16204 * clamp ill_max_mtu at it. 16205 */ 16206 if (ill->ill_user_mtu != 0 && 16207 ill->ill_user_mtu < ill->ill_max_mtu) 16208 ill->ill_max_mtu = ill->ill_user_mtu; 16209 16210 /* 16211 * If the MTU is unchanged, we're done. 16212 */ 16213 if (orig_mtu == ill->ill_max_mtu) { 16214 mutex_exit(&ill->ill_lock); 16215 break; 16216 } 16217 16218 if (ill->ill_isv6) { 16219 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16220 ill->ill_max_mtu = IPV6_MIN_MTU; 16221 } else { 16222 if (ill->ill_max_mtu < IP_MIN_MTU) 16223 ill->ill_max_mtu = IP_MIN_MTU; 16224 } 16225 for (ipif = ill->ill_ipif; ipif != NULL; 16226 ipif = ipif->ipif_next) { 16227 /* 16228 * Don't override the mtu if the user 16229 * has explicitly set it. 16230 */ 16231 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16232 continue; 16233 ipif->ipif_mtu = (uint_t)notify->dl_data; 16234 if (ipif->ipif_isv6) 16235 ire = ipif_to_ire_v6(ipif); 16236 else 16237 ire = ipif_to_ire(ipif); 16238 if (ire != NULL) { 16239 ire->ire_max_frag = ipif->ipif_mtu; 16240 ire_refrele(ire); 16241 } 16242 if (ipif->ipif_flags & IPIF_UP) { 16243 if (ill->ill_isv6) 16244 need_ire_walk_v6 = B_TRUE; 16245 else 16246 need_ire_walk_v4 = B_TRUE; 16247 } 16248 } 16249 mutex_exit(&ill->ill_lock); 16250 if (need_ire_walk_v4) 16251 ire_walk_v4(ill_mtu_change, (char *)ill, 16252 ALL_ZONES, ipst); 16253 if (need_ire_walk_v6) 16254 ire_walk_v6(ill_mtu_change, (char *)ill, 16255 ALL_ZONES, ipst); 16256 16257 /* 16258 * Refresh IPMP meta-interface MTU if necessary. 16259 */ 16260 if (IS_UNDER_IPMP(ill)) 16261 ipmp_illgrp_refresh_mtu(ill->ill_grp); 16262 break; 16263 16264 case DL_NOTE_LINK_UP: 16265 case DL_NOTE_LINK_DOWN: { 16266 /* 16267 * We are writer. ill / phyint / ipsq assocs stable. 16268 * The RUNNING flag reflects the state of the link. 16269 */ 16270 phyint_t *phyint = ill->ill_phyint; 16271 uint64_t new_phyint_flags; 16272 boolean_t changed = B_FALSE; 16273 boolean_t went_up; 16274 16275 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16276 mutex_enter(&phyint->phyint_lock); 16277 16278 new_phyint_flags = went_up ? 16279 phyint->phyint_flags | PHYI_RUNNING : 16280 phyint->phyint_flags & ~PHYI_RUNNING; 16281 16282 if (IS_IPMP(ill)) { 16283 new_phyint_flags = went_up ? 16284 new_phyint_flags & ~PHYI_FAILED : 16285 new_phyint_flags | PHYI_FAILED; 16286 } 16287 16288 if (new_phyint_flags != phyint->phyint_flags) { 16289 phyint->phyint_flags = new_phyint_flags; 16290 changed = B_TRUE; 16291 } 16292 mutex_exit(&phyint->phyint_lock); 16293 /* 16294 * ill_restart_dad handles the DAD restart and routing 16295 * socket notification logic. 16296 */ 16297 if (changed) { 16298 ill_restart_dad(phyint->phyint_illv4, went_up); 16299 ill_restart_dad(phyint->phyint_illv6, went_up); 16300 } 16301 break; 16302 } 16303 case DL_NOTE_PROMISC_ON_PHYS: { 16304 phyint_t *phyint = ill->ill_phyint; 16305 16306 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16307 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16308 mutex_enter(&phyint->phyint_lock); 16309 phyint->phyint_flags |= PHYI_PROMISC; 16310 mutex_exit(&phyint->phyint_lock); 16311 break; 16312 } 16313 case DL_NOTE_PROMISC_OFF_PHYS: { 16314 phyint_t *phyint = ill->ill_phyint; 16315 16316 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16317 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16318 mutex_enter(&phyint->phyint_lock); 16319 phyint->phyint_flags &= ~PHYI_PROMISC; 16320 mutex_exit(&phyint->phyint_lock); 16321 break; 16322 } 16323 case DL_NOTE_CAPAB_RENEG: 16324 /* 16325 * Something changed on the driver side. 16326 * It wants us to renegotiate the capabilities 16327 * on this ill. One possible cause is the aggregation 16328 * interface under us where a port got added or 16329 * went away. 16330 * 16331 * If the capability negotiation is already done 16332 * or is in progress, reset the capabilities and 16333 * mark the ill's ill_capab_reneg to be B_TRUE, 16334 * so that when the ack comes back, we can start 16335 * the renegotiation process. 16336 * 16337 * Note that if ill_capab_reneg is already B_TRUE 16338 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16339 * the capability resetting request has been sent 16340 * and the renegotiation has not been started yet; 16341 * nothing needs to be done in this case. 16342 */ 16343 ipsq_current_start(ipsq, ill->ill_ipif, 0); 16344 ill_capability_reset(ill, B_TRUE); 16345 ipsq_current_finish(ipsq); 16346 break; 16347 default: 16348 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16349 "type 0x%x for DL_NOTIFY_IND\n", 16350 notify->dl_notification)); 16351 break; 16352 } 16353 16354 /* 16355 * As this is an asynchronous operation, we 16356 * should not call ill_dlpi_done 16357 */ 16358 break; 16359 } 16360 case DL_NOTIFY_ACK: { 16361 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16362 16363 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16364 ill->ill_note_link = 1; 16365 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16366 break; 16367 } 16368 case DL_PHYS_ADDR_ACK: { 16369 /* 16370 * As part of plumbing the interface via SIOCSLIFNAME, 16371 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16372 * whose answers we receive here. As each answer is received, 16373 * we call ill_dlpi_done() to dispatch the next request as 16374 * we're processing the current one. Once all answers have 16375 * been received, we use ipsq_pending_mp_get() to dequeue the 16376 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16377 * is invoked from an ill queue, conn_oper_pending_ill is not 16378 * available, but we know the ioctl is pending on ill_wq.) 16379 */ 16380 uint_t paddrlen, paddroff; 16381 uint8_t *addr; 16382 16383 paddrreq = ill->ill_phys_addr_pend; 16384 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16385 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16386 addr = mp->b_rptr + paddroff; 16387 16388 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16389 if (paddrreq == DL_IPV6_TOKEN) { 16390 /* 16391 * bcopy to low-order bits of ill_token 16392 * 16393 * XXX Temporary hack - currently, all known tokens 16394 * are 64 bits, so I'll cheat for the moment. 16395 */ 16396 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 16397 ill->ill_token_length = paddrlen; 16398 break; 16399 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16400 ASSERT(ill->ill_nd_lla_mp == NULL); 16401 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16402 mp = NULL; 16403 break; 16404 } else if (paddrreq == DL_CURR_DEST_ADDR) { 16405 ASSERT(ill->ill_dest_addr_mp == NULL); 16406 ill->ill_dest_addr_mp = mp; 16407 ill->ill_dest_addr = addr; 16408 mp = NULL; 16409 if (ill->ill_isv6) { 16410 ill_setdesttoken(ill); 16411 ipif_setdestlinklocal(ill->ill_ipif); 16412 } 16413 break; 16414 } 16415 16416 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16417 ASSERT(ill->ill_phys_addr_mp == NULL); 16418 if (!ill->ill_ifname_pending) 16419 break; 16420 ill->ill_ifname_pending = 0; 16421 if (!ioctl_aborted) 16422 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16423 if (mp1 != NULL) { 16424 ASSERT(connp == NULL); 16425 q = ill->ill_wq; 16426 } 16427 /* 16428 * If any error acks received during the plumbing sequence, 16429 * ill_ifname_pending_err will be set. Break out and send up 16430 * the error to the pending ioctl. 16431 */ 16432 if (ill->ill_ifname_pending_err != 0) { 16433 err = ill->ill_ifname_pending_err; 16434 ill->ill_ifname_pending_err = 0; 16435 break; 16436 } 16437 16438 ill->ill_phys_addr_mp = mp; 16439 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 16440 mp = NULL; 16441 16442 /* 16443 * If paddrlen or ill_phys_addr_length is zero, the DLPI 16444 * provider doesn't support physical addresses. We check both 16445 * paddrlen and ill_phys_addr_length because sppp (PPP) does 16446 * not have physical addresses, but historically adversises a 16447 * physical address length of 0 in its DL_INFO_ACK, but 6 in 16448 * its DL_PHYS_ADDR_ACK. 16449 */ 16450 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 16451 ill->ill_phys_addr = NULL; 16452 } else if (paddrlen != ill->ill_phys_addr_length) { 16453 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16454 paddrlen, ill->ill_phys_addr_length)); 16455 err = EINVAL; 16456 break; 16457 } 16458 16459 if (ill->ill_nd_lla_mp == NULL) { 16460 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16461 err = ENOMEM; 16462 break; 16463 } 16464 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16465 } 16466 16467 if (ill->ill_isv6) { 16468 ill_setdefaulttoken(ill); 16469 ipif_setlinklocal(ill->ill_ipif); 16470 } 16471 break; 16472 } 16473 case DL_OK_ACK: 16474 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16475 dl_primstr((int)dloa->dl_correct_primitive), 16476 dloa->dl_correct_primitive)); 16477 switch (dloa->dl_correct_primitive) { 16478 case DL_ENABMULTI_REQ: 16479 case DL_DISABMULTI_REQ: 16480 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16481 break; 16482 case DL_PROMISCON_REQ: 16483 case DL_PROMISCOFF_REQ: 16484 case DL_UNBIND_REQ: 16485 case DL_ATTACH_REQ: 16486 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16487 break; 16488 } 16489 break; 16490 default: 16491 break; 16492 } 16493 16494 freemsg(mp); 16495 if (mp1 == NULL) 16496 return; 16497 16498 /* 16499 * The operation must complete without EINPROGRESS since 16500 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 16501 * the operation will be stuck forever inside the IPSQ. 16502 */ 16503 ASSERT(err != EINPROGRESS); 16504 16505 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 16506 case 0: 16507 ipsq_current_finish(ipsq); 16508 break; 16509 16510 case SIOCSLIFNAME: 16511 case IF_UNITSEL: { 16512 ill_t *ill_other = ILL_OTHER(ill); 16513 16514 /* 16515 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 16516 * ill has a peer which is in an IPMP group, then place ill 16517 * into the same group. One catch: although ifconfig plumbs 16518 * the appropriate IPMP meta-interface prior to plumbing this 16519 * ill, it is possible for multiple ifconfig applications to 16520 * race (or for another application to adjust plumbing), in 16521 * which case the IPMP meta-interface we need will be missing. 16522 * If so, kick the phyint out of the group. 16523 */ 16524 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 16525 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 16526 ipmp_illgrp_t *illg; 16527 16528 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 16529 if (illg == NULL) 16530 ipmp_phyint_leave_grp(ill->ill_phyint); 16531 else 16532 ipmp_ill_join_illgrp(ill, illg); 16533 } 16534 16535 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 16536 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16537 else 16538 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16539 break; 16540 } 16541 case SIOCLIFADDIF: 16542 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16543 break; 16544 16545 default: 16546 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16547 break; 16548 } 16549 } 16550 16551 /* 16552 * ip_rput_other is called by ip_rput to handle messages modifying the global 16553 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 16554 */ 16555 /* ARGSUSED */ 16556 void 16557 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16558 { 16559 ill_t *ill = q->q_ptr; 16560 struct iocblk *iocp; 16561 16562 ip1dbg(("ip_rput_other ")); 16563 if (ipsq != NULL) { 16564 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16565 ASSERT(ipsq->ipsq_xop == 16566 ill->ill_phyint->phyint_ipsq->ipsq_xop); 16567 } 16568 16569 switch (mp->b_datap->db_type) { 16570 case M_ERROR: 16571 case M_HANGUP: 16572 /* 16573 * The device has a problem. We force the ILL down. It can 16574 * be brought up again manually using SIOCSIFFLAGS (via 16575 * ifconfig or equivalent). 16576 */ 16577 ASSERT(ipsq != NULL); 16578 if (mp->b_rptr < mp->b_wptr) 16579 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16580 if (ill->ill_error == 0) 16581 ill->ill_error = ENXIO; 16582 if (!ill_down_start(q, mp)) 16583 return; 16584 ipif_all_down_tail(ipsq, q, mp, NULL); 16585 break; 16586 case M_IOCNAK: { 16587 iocp = (struct iocblk *)mp->b_rptr; 16588 16589 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 16590 /* 16591 * If this was the first attempt, turn off the fastpath 16592 * probing. 16593 */ 16594 mutex_enter(&ill->ill_lock); 16595 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16596 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16597 mutex_exit(&ill->ill_lock); 16598 ill_fastpath_nack(ill); 16599 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 16600 ill->ill_name)); 16601 } else { 16602 mutex_exit(&ill->ill_lock); 16603 } 16604 freemsg(mp); 16605 break; 16606 } 16607 default: 16608 ASSERT(0); 16609 break; 16610 } 16611 } 16612 16613 /* 16614 * NOTE : This function does not ire_refrele the ire argument passed in. 16615 * 16616 * IPQoS notes 16617 * IP policy is invoked twice for a forwarded packet, once on the read side 16618 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16619 * enabled. An additional parameter, in_ill, has been added for this purpose. 16620 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16621 * because ip_mroute drops this information. 16622 * 16623 */ 16624 void 16625 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16626 { 16627 uint32_t old_pkt_len; 16628 uint32_t pkt_len; 16629 queue_t *q; 16630 uint32_t sum; 16631 #define rptr ((uchar_t *)ipha) 16632 uint32_t max_frag; 16633 uint32_t ill_index; 16634 ill_t *out_ill; 16635 mib2_ipIfStatsEntry_t *mibptr; 16636 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16637 16638 /* Get the ill_index of the incoming ILL */ 16639 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16640 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16641 16642 /* Initiate Read side IPPF processing */ 16643 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16644 ip_process(IPP_FWD_IN, &mp, ill_index); 16645 if (mp == NULL) { 16646 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16647 "during IPPF processing\n")); 16648 return; 16649 } 16650 } 16651 16652 /* Adjust the checksum to reflect the ttl decrement. */ 16653 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16654 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16655 16656 if (ipha->ipha_ttl-- <= 1) { 16657 if (ip_csum_hdr(ipha)) { 16658 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16659 goto drop_pkt; 16660 } 16661 /* 16662 * Note: ire_stq this will be NULL for multicast 16663 * datagrams using the long path through arp (the IRE 16664 * is not an IRE_CACHE). This should not cause 16665 * problems since we don't generate ICMP errors for 16666 * multicast packets. 16667 */ 16668 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16669 q = ire->ire_stq; 16670 if (q != NULL) { 16671 /* Sent by forwarding path, and router is global zone */ 16672 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16673 GLOBAL_ZONEID, ipst); 16674 } else 16675 freemsg(mp); 16676 return; 16677 } 16678 16679 /* 16680 * Don't forward if the interface is down 16681 */ 16682 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16683 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16684 ip2dbg(("ip_rput_forward:interface is down\n")); 16685 goto drop_pkt; 16686 } 16687 16688 /* Get the ill_index of the outgoing ILL */ 16689 out_ill = ire_to_ill(ire); 16690 ill_index = out_ill->ill_phyint->phyint_ifindex; 16691 16692 DTRACE_PROBE4(ip4__forwarding__start, 16693 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16694 16695 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16696 ipst->ips_ipv4firewall_forwarding, 16697 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16698 16699 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16700 16701 if (mp == NULL) 16702 return; 16703 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16704 16705 if (is_system_labeled()) { 16706 mblk_t *mp1; 16707 16708 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16709 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16710 goto drop_pkt; 16711 } 16712 /* Size may have changed */ 16713 mp = mp1; 16714 ipha = (ipha_t *)mp->b_rptr; 16715 pkt_len = ntohs(ipha->ipha_length); 16716 } 16717 16718 /* Check if there are options to update */ 16719 if (!IS_SIMPLE_IPH(ipha)) { 16720 if (ip_csum_hdr(ipha)) { 16721 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16722 goto drop_pkt; 16723 } 16724 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16725 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16726 return; 16727 } 16728 16729 ipha->ipha_hdr_checksum = 0; 16730 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16731 } 16732 max_frag = ire->ire_max_frag; 16733 if (pkt_len > max_frag) { 16734 /* 16735 * It needs fragging on its way out. We haven't 16736 * verified the header checksum yet. Since we 16737 * are going to put a surely good checksum in the 16738 * outgoing header, we have to make sure that it 16739 * was good coming in. 16740 */ 16741 if (ip_csum_hdr(ipha)) { 16742 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16743 goto drop_pkt; 16744 } 16745 /* Initiate Write side IPPF processing */ 16746 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16747 ip_process(IPP_FWD_OUT, &mp, ill_index); 16748 if (mp == NULL) { 16749 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16750 " during IPPF processing\n")); 16751 return; 16752 } 16753 } 16754 /* 16755 * Handle labeled packet resizing. 16756 * 16757 * If we have added a label, inform ip_wput_frag() of its 16758 * effect on the MTU for ICMP messages. 16759 */ 16760 if (pkt_len > old_pkt_len) { 16761 uint32_t secopt_size; 16762 16763 secopt_size = pkt_len - old_pkt_len; 16764 if (secopt_size < max_frag) 16765 max_frag -= secopt_size; 16766 } 16767 16768 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, 16769 GLOBAL_ZONEID, ipst, NULL); 16770 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16771 return; 16772 } 16773 16774 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16775 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16776 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16777 ipst->ips_ipv4firewall_physical_out, 16778 NULL, out_ill, ipha, mp, mp, 0, ipst); 16779 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16780 if (mp == NULL) 16781 return; 16782 16783 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16784 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16785 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE, NULL); 16786 /* ip_xmit_v4 always consumes the packet */ 16787 return; 16788 16789 drop_pkt:; 16790 ip1dbg(("ip_rput_forward: drop pkt\n")); 16791 freemsg(mp); 16792 #undef rptr 16793 } 16794 16795 void 16796 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16797 { 16798 ire_t *ire; 16799 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16800 16801 ASSERT(!ipif->ipif_isv6); 16802 /* 16803 * Find an IRE which matches the destination and the outgoing 16804 * queue in the cache table. All we need is an IRE_CACHE which 16805 * is pointing at ipif->ipif_ill. 16806 */ 16807 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16808 dst = ipif->ipif_pp_dst_addr; 16809 16810 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, msg_getlabel(mp), 16811 MATCH_IRE_ILL | MATCH_IRE_SECATTR, ipst); 16812 if (ire == NULL) { 16813 /* 16814 * Mark this packet to make it be delivered to 16815 * ip_rput_forward after the new ire has been 16816 * created. 16817 */ 16818 mp->b_prev = NULL; 16819 mp->b_next = mp; 16820 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16821 NULL, 0, GLOBAL_ZONEID, &zero_info); 16822 } else { 16823 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16824 IRE_REFRELE(ire); 16825 } 16826 } 16827 16828 /* Update any source route, record route or timestamp options */ 16829 static int 16830 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16831 { 16832 ipoptp_t opts; 16833 uchar_t *opt; 16834 uint8_t optval; 16835 uint8_t optlen; 16836 ipaddr_t dst; 16837 uint32_t ts; 16838 ire_t *dst_ire = NULL; 16839 ire_t *tmp_ire = NULL; 16840 timestruc_t now; 16841 16842 ip2dbg(("ip_rput_forward_options\n")); 16843 dst = ipha->ipha_dst; 16844 for (optval = ipoptp_first(&opts, ipha); 16845 optval != IPOPT_EOL; 16846 optval = ipoptp_next(&opts)) { 16847 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16848 opt = opts.ipoptp_cur; 16849 optlen = opts.ipoptp_len; 16850 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16851 optval, opts.ipoptp_len)); 16852 switch (optval) { 16853 uint32_t off; 16854 case IPOPT_SSRR: 16855 case IPOPT_LSRR: 16856 /* Check if adminstratively disabled */ 16857 if (!ipst->ips_ip_forward_src_routed) { 16858 if (ire->ire_stq != NULL) { 16859 /* 16860 * Sent by forwarding path, and router 16861 * is global zone 16862 */ 16863 icmp_unreachable(ire->ire_stq, mp, 16864 ICMP_SOURCE_ROUTE_FAILED, 16865 GLOBAL_ZONEID, ipst); 16866 } else { 16867 ip0dbg(("ip_rput_forward_options: " 16868 "unable to send unreach\n")); 16869 freemsg(mp); 16870 } 16871 return (-1); 16872 } 16873 16874 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16875 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16876 if (dst_ire == NULL) { 16877 /* 16878 * Must be partial since ip_rput_options 16879 * checked for strict. 16880 */ 16881 break; 16882 } 16883 off = opt[IPOPT_OFFSET]; 16884 off--; 16885 redo_srr: 16886 if (optlen < IP_ADDR_LEN || 16887 off > optlen - IP_ADDR_LEN) { 16888 /* End of source route */ 16889 ip1dbg(( 16890 "ip_rput_forward_options: end of SR\n")); 16891 ire_refrele(dst_ire); 16892 break; 16893 } 16894 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16895 bcopy(&ire->ire_src_addr, (char *)opt + off, 16896 IP_ADDR_LEN); 16897 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16898 ntohl(dst))); 16899 16900 /* 16901 * Check if our address is present more than 16902 * once as consecutive hops in source route. 16903 */ 16904 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16905 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16906 if (tmp_ire != NULL) { 16907 ire_refrele(tmp_ire); 16908 off += IP_ADDR_LEN; 16909 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16910 goto redo_srr; 16911 } 16912 ipha->ipha_dst = dst; 16913 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16914 ire_refrele(dst_ire); 16915 break; 16916 case IPOPT_RR: 16917 off = opt[IPOPT_OFFSET]; 16918 off--; 16919 if (optlen < IP_ADDR_LEN || 16920 off > optlen - IP_ADDR_LEN) { 16921 /* No more room - ignore */ 16922 ip1dbg(( 16923 "ip_rput_forward_options: end of RR\n")); 16924 break; 16925 } 16926 bcopy(&ire->ire_src_addr, (char *)opt + off, 16927 IP_ADDR_LEN); 16928 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16929 break; 16930 case IPOPT_TS: 16931 /* Insert timestamp if there is room */ 16932 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16933 case IPOPT_TS_TSONLY: 16934 off = IPOPT_TS_TIMELEN; 16935 break; 16936 case IPOPT_TS_PRESPEC: 16937 case IPOPT_TS_PRESPEC_RFC791: 16938 /* Verify that the address matched */ 16939 off = opt[IPOPT_OFFSET] - 1; 16940 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16941 dst_ire = ire_ctable_lookup(dst, 0, 16942 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16943 MATCH_IRE_TYPE, ipst); 16944 if (dst_ire == NULL) { 16945 /* Not for us */ 16946 break; 16947 } 16948 ire_refrele(dst_ire); 16949 /* FALLTHRU */ 16950 case IPOPT_TS_TSANDADDR: 16951 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16952 break; 16953 default: 16954 /* 16955 * ip_*put_options should have already 16956 * dropped this packet. 16957 */ 16958 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16959 "unknown IT - bug in ip_rput_options?\n"); 16960 return (0); /* Keep "lint" happy */ 16961 } 16962 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16963 /* Increase overflow counter */ 16964 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16965 opt[IPOPT_POS_OV_FLG] = 16966 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16967 (off << 4)); 16968 break; 16969 } 16970 off = opt[IPOPT_OFFSET] - 1; 16971 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16972 case IPOPT_TS_PRESPEC: 16973 case IPOPT_TS_PRESPEC_RFC791: 16974 case IPOPT_TS_TSANDADDR: 16975 bcopy(&ire->ire_src_addr, 16976 (char *)opt + off, IP_ADDR_LEN); 16977 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16978 /* FALLTHRU */ 16979 case IPOPT_TS_TSONLY: 16980 off = opt[IPOPT_OFFSET] - 1; 16981 /* Compute # of milliseconds since midnight */ 16982 gethrestime(&now); 16983 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16984 now.tv_nsec / (NANOSEC / MILLISEC); 16985 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16986 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16987 break; 16988 } 16989 break; 16990 } 16991 } 16992 return (0); 16993 } 16994 16995 /* 16996 * This is called after processing at least one of AH/ESP headers. 16997 * 16998 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16999 * the actual, physical interface on which the packet was received, 17000 * but, when ip_strict_dst_multihoming is set to 1, could be the 17001 * interface which had the ipha_dst configured when the packet went 17002 * through ip_rput. The ill_index corresponding to the recv_ill 17003 * is saved in ipsec_in_rill_index 17004 * 17005 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 17006 * cannot assume "ire" points to valid data for any IPv6 cases. 17007 */ 17008 void 17009 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 17010 { 17011 mblk_t *mp; 17012 ipaddr_t dst; 17013 in6_addr_t *v6dstp; 17014 ipha_t *ipha; 17015 ip6_t *ip6h; 17016 ipsec_in_t *ii; 17017 boolean_t ill_need_rele = B_FALSE; 17018 boolean_t rill_need_rele = B_FALSE; 17019 boolean_t ire_need_rele = B_FALSE; 17020 netstack_t *ns; 17021 ip_stack_t *ipst; 17022 17023 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 17024 ASSERT(ii->ipsec_in_ill_index != 0); 17025 ns = ii->ipsec_in_ns; 17026 ASSERT(ii->ipsec_in_ns != NULL); 17027 ipst = ns->netstack_ip; 17028 17029 mp = ipsec_mp->b_cont; 17030 ASSERT(mp != NULL); 17031 17032 if (ill == NULL) { 17033 ASSERT(recv_ill == NULL); 17034 /* 17035 * We need to get the original queue on which ip_rput_local 17036 * or ip_rput_data_v6 was called. 17037 */ 17038 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 17039 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 17040 ill_need_rele = B_TRUE; 17041 17042 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 17043 recv_ill = ill_lookup_on_ifindex( 17044 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 17045 NULL, NULL, NULL, NULL, ipst); 17046 rill_need_rele = B_TRUE; 17047 } else { 17048 recv_ill = ill; 17049 } 17050 17051 if ((ill == NULL) || (recv_ill == NULL)) { 17052 ip0dbg(("ip_fanout_proto_again: interface " 17053 "disappeared\n")); 17054 if (ill != NULL) 17055 ill_refrele(ill); 17056 if (recv_ill != NULL) 17057 ill_refrele(recv_ill); 17058 freemsg(ipsec_mp); 17059 return; 17060 } 17061 } 17062 17063 ASSERT(ill != NULL && recv_ill != NULL); 17064 17065 if (mp->b_datap->db_type == M_CTL) { 17066 /* 17067 * AH/ESP is returning the ICMP message after 17068 * removing their headers. Fanout again till 17069 * it gets to the right protocol. 17070 */ 17071 if (ii->ipsec_in_v4) { 17072 icmph_t *icmph; 17073 int iph_hdr_length; 17074 int hdr_length; 17075 17076 ipha = (ipha_t *)mp->b_rptr; 17077 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17078 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17079 ipha = (ipha_t *)&icmph[1]; 17080 hdr_length = IPH_HDR_LENGTH(ipha); 17081 /* 17082 * icmp_inbound_error_fanout may need to do pullupmsg. 17083 * Reset the type to M_DATA. 17084 */ 17085 mp->b_datap->db_type = M_DATA; 17086 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17087 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17088 B_FALSE, ill, ii->ipsec_in_zoneid); 17089 } else { 17090 icmp6_t *icmp6; 17091 int hdr_length; 17092 17093 ip6h = (ip6_t *)mp->b_rptr; 17094 /* Don't call hdr_length_v6() unless you have to. */ 17095 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17096 hdr_length = ip_hdr_length_v6(mp, ip6h); 17097 else 17098 hdr_length = IPV6_HDR_LEN; 17099 17100 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17101 /* 17102 * icmp_inbound_error_fanout_v6 may need to do 17103 * pullupmsg. Reset the type to M_DATA. 17104 */ 17105 mp->b_datap->db_type = M_DATA; 17106 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17107 ip6h, icmp6, ill, recv_ill, B_TRUE, 17108 ii->ipsec_in_zoneid); 17109 } 17110 if (ill_need_rele) 17111 ill_refrele(ill); 17112 if (rill_need_rele) 17113 ill_refrele(recv_ill); 17114 return; 17115 } 17116 17117 if (ii->ipsec_in_v4) { 17118 ipha = (ipha_t *)mp->b_rptr; 17119 dst = ipha->ipha_dst; 17120 if (CLASSD(dst)) { 17121 /* 17122 * Multicast has to be delivered to all streams. 17123 */ 17124 dst = INADDR_BROADCAST; 17125 } 17126 17127 if (ire == NULL) { 17128 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17129 msg_getlabel(mp), ipst); 17130 if (ire == NULL) { 17131 if (ill_need_rele) 17132 ill_refrele(ill); 17133 if (rill_need_rele) 17134 ill_refrele(recv_ill); 17135 ip1dbg(("ip_fanout_proto_again: " 17136 "IRE not found")); 17137 freemsg(ipsec_mp); 17138 return; 17139 } 17140 ire_need_rele = B_TRUE; 17141 } 17142 17143 switch (ipha->ipha_protocol) { 17144 case IPPROTO_UDP: 17145 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17146 recv_ill); 17147 if (ire_need_rele) 17148 ire_refrele(ire); 17149 break; 17150 case IPPROTO_TCP: 17151 if (!ire_need_rele) 17152 IRE_REFHOLD(ire); 17153 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17154 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17155 IRE_REFRELE(ire); 17156 if (mp != NULL) { 17157 SQUEUE_ENTER(GET_SQUEUE(mp), mp, 17158 mp, 1, SQ_PROCESS, 17159 SQTAG_IP_PROTO_AGAIN); 17160 } 17161 break; 17162 case IPPROTO_SCTP: 17163 if (!ire_need_rele) 17164 IRE_REFHOLD(ire); 17165 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17166 ipsec_mp, 0, ill->ill_rq, dst); 17167 break; 17168 case IPPROTO_ENCAP: 17169 case IPPROTO_IPV6: 17170 if (ip_iptun_input(ipsec_mp, mp, ipha, ill, ire, 17171 ill->ill_ipst)) { 17172 /* 17173 * If we made it here, we don't need to worry 17174 * about the raw-socket/protocol fanout. 17175 */ 17176 if (ire_need_rele) 17177 ire_refrele(ire); 17178 break; 17179 } 17180 /* else FALLTHRU */ 17181 default: 17182 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17183 recv_ill, 0); 17184 if (ire_need_rele) 17185 ire_refrele(ire); 17186 break; 17187 } 17188 } else { 17189 uint32_t rput_flags = 0; 17190 17191 ip6h = (ip6_t *)mp->b_rptr; 17192 v6dstp = &ip6h->ip6_dst; 17193 /* 17194 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17195 * address. 17196 * 17197 * Currently, we don't store that state in the IPSEC_IN 17198 * message, and we may need to. 17199 */ 17200 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17201 IP6_IN_LLMCAST : 0); 17202 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17203 NULL, NULL); 17204 } 17205 if (ill_need_rele) 17206 ill_refrele(ill); 17207 if (rill_need_rele) 17208 ill_refrele(recv_ill); 17209 } 17210 17211 /* 17212 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17213 * returns 'true' if there are still fragments left on the queue, in 17214 * which case we restart the timer. 17215 */ 17216 void 17217 ill_frag_timer(void *arg) 17218 { 17219 ill_t *ill = (ill_t *)arg; 17220 boolean_t frag_pending; 17221 ip_stack_t *ipst = ill->ill_ipst; 17222 time_t timeout; 17223 17224 mutex_enter(&ill->ill_lock); 17225 ASSERT(!ill->ill_fragtimer_executing); 17226 if (ill->ill_state_flags & ILL_CONDEMNED) { 17227 ill->ill_frag_timer_id = 0; 17228 mutex_exit(&ill->ill_lock); 17229 return; 17230 } 17231 ill->ill_fragtimer_executing = 1; 17232 mutex_exit(&ill->ill_lock); 17233 17234 if (ill->ill_isv6) 17235 timeout = ipst->ips_ipv6_frag_timeout; 17236 else 17237 timeout = ipst->ips_ip_g_frag_timeout; 17238 17239 frag_pending = ill_frag_timeout(ill, timeout); 17240 17241 /* 17242 * Restart the timer, if we have fragments pending or if someone 17243 * wanted us to be scheduled again. 17244 */ 17245 mutex_enter(&ill->ill_lock); 17246 ill->ill_fragtimer_executing = 0; 17247 ill->ill_frag_timer_id = 0; 17248 if (frag_pending || ill->ill_fragtimer_needrestart) 17249 ill_frag_timer_start(ill); 17250 mutex_exit(&ill->ill_lock); 17251 } 17252 17253 void 17254 ill_frag_timer_start(ill_t *ill) 17255 { 17256 ip_stack_t *ipst = ill->ill_ipst; 17257 clock_t timeo_ms; 17258 17259 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17260 17261 /* If the ill is closing or opening don't proceed */ 17262 if (ill->ill_state_flags & ILL_CONDEMNED) 17263 return; 17264 17265 if (ill->ill_fragtimer_executing) { 17266 /* 17267 * ill_frag_timer is currently executing. Just record the 17268 * the fact that we want the timer to be restarted. 17269 * ill_frag_timer will post a timeout before it returns, 17270 * ensuring it will be called again. 17271 */ 17272 ill->ill_fragtimer_needrestart = 1; 17273 return; 17274 } 17275 17276 if (ill->ill_frag_timer_id == 0) { 17277 if (ill->ill_isv6) 17278 timeo_ms = ipst->ips_ipv6_frag_timo_ms; 17279 else 17280 timeo_ms = ipst->ips_ip_g_frag_timo_ms; 17281 /* 17282 * The timer is neither running nor is the timeout handler 17283 * executing. Post a timeout so that ill_frag_timer will be 17284 * called 17285 */ 17286 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17287 MSEC_TO_TICK(timeo_ms >> 1)); 17288 ill->ill_fragtimer_needrestart = 0; 17289 } 17290 } 17291 17292 /* 17293 * This routine is needed for loopback when forwarding multicasts. 17294 * 17295 * IPQoS Notes: 17296 * IPPF processing is done in fanout routines. 17297 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17298 * processing for IPsec packets is done when it comes back in clear. 17299 * NOTE : The callers of this function need to do the ire_refrele for the 17300 * ire that is being passed in. 17301 */ 17302 void 17303 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17304 ill_t *recv_ill, uint32_t esp_udp_ports) 17305 { 17306 boolean_t esp_in_udp_packet = (esp_udp_ports != 0); 17307 ill_t *ill = (ill_t *)q->q_ptr; 17308 uint32_t sum; 17309 uint32_t u1; 17310 uint32_t u2; 17311 int hdr_length; 17312 boolean_t mctl_present; 17313 mblk_t *first_mp = mp; 17314 mblk_t *hada_mp = NULL; 17315 ipha_t *inner_ipha; 17316 ip_stack_t *ipst; 17317 17318 ASSERT(recv_ill != NULL); 17319 ipst = recv_ill->ill_ipst; 17320 17321 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17322 "ip_rput_locl_start: q %p", q); 17323 17324 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17325 ASSERT(ill != NULL); 17326 17327 #define rptr ((uchar_t *)ipha) 17328 #define iphs ((uint16_t *)ipha) 17329 17330 /* 17331 * no UDP or TCP packet should come here anymore. 17332 */ 17333 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17334 ipha->ipha_protocol != IPPROTO_UDP); 17335 17336 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17337 if (mctl_present && 17338 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17339 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17340 17341 /* 17342 * It's an IPsec accelerated packet. 17343 * Keep a pointer to the data attributes around until 17344 * we allocate the ipsec_info_t. 17345 */ 17346 IPSECHW_DEBUG(IPSECHW_PKT, 17347 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17348 hada_mp = first_mp; 17349 hada_mp->b_cont = NULL; 17350 /* 17351 * Since it is accelerated, it comes directly from 17352 * the ill and the data attributes is followed by 17353 * the packet data. 17354 */ 17355 ASSERT(mp->b_datap->db_type != M_CTL); 17356 first_mp = mp; 17357 mctl_present = B_FALSE; 17358 } 17359 17360 /* 17361 * IF M_CTL is not present, then ipsec_in_is_secure 17362 * should return B_TRUE. There is a case where loopback 17363 * packets has an M_CTL in the front with all the 17364 * IPsec options set to IPSEC_PREF_NEVER - which means 17365 * ipsec_in_is_secure will return B_FALSE. As loopback 17366 * packets never comes here, it is safe to ASSERT the 17367 * following. 17368 */ 17369 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17370 17371 /* 17372 * Also, we should never have an mctl_present if this is an 17373 * ESP-in-UDP packet. 17374 */ 17375 ASSERT(!mctl_present || !esp_in_udp_packet); 17376 17377 /* u1 is # words of IP options */ 17378 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17379 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17380 17381 /* 17382 * Don't verify header checksum if we just removed UDP header or 17383 * packet is coming back from AH/ESP. 17384 */ 17385 if (!esp_in_udp_packet && !mctl_present) { 17386 if (u1) { 17387 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17388 if (hada_mp != NULL) 17389 freemsg(hada_mp); 17390 return; 17391 } 17392 } else { 17393 /* Check the IP header checksum. */ 17394 #define uph ((uint16_t *)ipha) 17395 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17396 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17397 #undef uph 17398 /* finish doing IP checksum */ 17399 sum = (sum & 0xFFFF) + (sum >> 16); 17400 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17401 if (sum && sum != 0xFFFF) { 17402 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17403 goto drop_pkt; 17404 } 17405 } 17406 } 17407 17408 /* 17409 * Count for SNMP of inbound packets for ire. As ip_proto_input 17410 * might be called more than once for secure packets, count only 17411 * the first time. 17412 */ 17413 if (!mctl_present) { 17414 UPDATE_IB_PKT_COUNT(ire); 17415 ire->ire_last_used_time = lbolt; 17416 } 17417 17418 /* Check for fragmentation offset. */ 17419 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17420 u1 = u2 & (IPH_MF | IPH_OFFSET); 17421 if (u1) { 17422 /* 17423 * We re-assemble fragments before we do the AH/ESP 17424 * processing. Thus, M_CTL should not be present 17425 * while we are re-assembling. 17426 */ 17427 ASSERT(!mctl_present); 17428 ASSERT(first_mp == mp); 17429 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 17430 return; 17431 17432 /* 17433 * Make sure that first_mp points back to mp as 17434 * the mp we came in with could have changed in 17435 * ip_rput_fragment(). 17436 */ 17437 ipha = (ipha_t *)mp->b_rptr; 17438 first_mp = mp; 17439 } 17440 17441 /* 17442 * Clear hardware checksumming flag as it is currently only 17443 * used by TCP and UDP. 17444 */ 17445 DB_CKSUMFLAGS(mp) = 0; 17446 17447 /* Now we have a complete datagram, destined for this machine. */ 17448 u1 = IPH_HDR_LENGTH(ipha); 17449 switch (ipha->ipha_protocol) { 17450 case IPPROTO_ICMP: { 17451 ire_t *ire_zone; 17452 ilm_t *ilm; 17453 mblk_t *mp1; 17454 zoneid_t last_zoneid; 17455 ilm_walker_t ilw; 17456 17457 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17458 ASSERT(ire->ire_type == IRE_BROADCAST); 17459 17460 /* 17461 * In the multicast case, applications may have joined 17462 * the group from different zones, so we need to deliver 17463 * the packet to each of them. Loop through the 17464 * multicast memberships structures (ilm) on the receive 17465 * ill and send a copy of the packet up each matching 17466 * one. However, we don't do this for multicasts sent on 17467 * the loopback interface (PHYI_LOOPBACK flag set) as 17468 * they must stay in the sender's zone. 17469 * 17470 * ilm_add_v6() ensures that ilms in the same zone are 17471 * contiguous in the ill_ilm list. We use this property 17472 * to avoid sending duplicates needed when two 17473 * applications in the same zone join the same group on 17474 * different logical interfaces: we ignore the ilm if 17475 * its zoneid is the same as the last matching one. 17476 * In addition, the sending of the packet for 17477 * ire_zoneid is delayed until all of the other ilms 17478 * have been exhausted. 17479 */ 17480 last_zoneid = -1; 17481 ilm = ilm_walker_start(&ilw, recv_ill); 17482 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 17483 if (ipha->ipha_dst != ilm->ilm_addr || 17484 ilm->ilm_zoneid == last_zoneid || 17485 ilm->ilm_zoneid == ire->ire_zoneid || 17486 ilm->ilm_zoneid == ALL_ZONES || 17487 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17488 continue; 17489 mp1 = ip_copymsg(first_mp); 17490 if (mp1 == NULL) 17491 continue; 17492 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 17493 0, sum, mctl_present, B_TRUE, 17494 recv_ill, ilm->ilm_zoneid); 17495 last_zoneid = ilm->ilm_zoneid; 17496 } 17497 ilm_walker_finish(&ilw); 17498 } else if (ire->ire_type == IRE_BROADCAST) { 17499 /* 17500 * In the broadcast case, there may be many zones 17501 * which need a copy of the packet delivered to them. 17502 * There is one IRE_BROADCAST per broadcast address 17503 * and per zone; we walk those using a helper function. 17504 * In addition, the sending of the packet for ire is 17505 * delayed until all of the other ires have been 17506 * processed. 17507 */ 17508 IRB_REFHOLD(ire->ire_bucket); 17509 ire_zone = NULL; 17510 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17511 ire)) != NULL) { 17512 mp1 = ip_copymsg(first_mp); 17513 if (mp1 == NULL) 17514 continue; 17515 17516 UPDATE_IB_PKT_COUNT(ire_zone); 17517 ire_zone->ire_last_used_time = lbolt; 17518 icmp_inbound(q, mp1, B_TRUE, ill, 17519 0, sum, mctl_present, B_TRUE, 17520 recv_ill, ire_zone->ire_zoneid); 17521 } 17522 IRB_REFRELE(ire->ire_bucket); 17523 } 17524 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17525 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17526 ire->ire_zoneid); 17527 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17528 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17529 return; 17530 } 17531 case IPPROTO_IGMP: 17532 /* 17533 * If we are not willing to accept IGMP packets in clear, 17534 * then check with global policy. 17535 */ 17536 if (ipst->ips_igmp_accept_clear_messages == 0) { 17537 first_mp = ipsec_check_global_policy(first_mp, NULL, 17538 ipha, NULL, mctl_present, ipst->ips_netstack); 17539 if (first_mp == NULL) 17540 return; 17541 } 17542 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17543 freemsg(first_mp); 17544 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17545 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17546 return; 17547 } 17548 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17549 /* Bad packet - discarded by igmp_input */ 17550 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17551 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17552 if (mctl_present) 17553 freeb(first_mp); 17554 return; 17555 } 17556 /* 17557 * igmp_input() may have returned the pulled up message. 17558 * So first_mp and ipha need to be reinitialized. 17559 */ 17560 ipha = (ipha_t *)mp->b_rptr; 17561 if (mctl_present) 17562 first_mp->b_cont = mp; 17563 else 17564 first_mp = mp; 17565 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17566 connf_head != NULL) { 17567 /* No user-level listener for IGMP packets */ 17568 goto drop_pkt; 17569 } 17570 /* deliver to local raw users */ 17571 break; 17572 case IPPROTO_PIM: 17573 /* 17574 * If we are not willing to accept PIM packets in clear, 17575 * then check with global policy. 17576 */ 17577 if (ipst->ips_pim_accept_clear_messages == 0) { 17578 first_mp = ipsec_check_global_policy(first_mp, NULL, 17579 ipha, NULL, mctl_present, ipst->ips_netstack); 17580 if (first_mp == NULL) 17581 return; 17582 } 17583 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17584 freemsg(first_mp); 17585 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17586 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17587 return; 17588 } 17589 if (pim_input(q, mp, ill) != 0) { 17590 /* Bad packet - discarded by pim_input */ 17591 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17592 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17593 if (mctl_present) 17594 freeb(first_mp); 17595 return; 17596 } 17597 17598 /* 17599 * pim_input() may have pulled up the message so ipha needs to 17600 * be reinitialized. 17601 */ 17602 ipha = (ipha_t *)mp->b_rptr; 17603 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17604 connf_head != NULL) { 17605 /* No user-level listener for PIM packets */ 17606 goto drop_pkt; 17607 } 17608 /* deliver to local raw users */ 17609 break; 17610 case IPPROTO_ENCAP: 17611 /* 17612 * Handle self-encapsulated packets (IP-in-IP where 17613 * the inner addresses == the outer addresses). 17614 */ 17615 hdr_length = IPH_HDR_LENGTH(ipha); 17616 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17617 mp->b_wptr) { 17618 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17619 sizeof (ipha_t) - mp->b_rptr)) { 17620 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17621 freemsg(first_mp); 17622 return; 17623 } 17624 ipha = (ipha_t *)mp->b_rptr; 17625 } 17626 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17627 /* 17628 * Check the sanity of the inner IP header. 17629 */ 17630 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17631 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17632 freemsg(first_mp); 17633 return; 17634 } 17635 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17636 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17637 freemsg(first_mp); 17638 return; 17639 } 17640 if (inner_ipha->ipha_src == ipha->ipha_src && 17641 inner_ipha->ipha_dst == ipha->ipha_dst) { 17642 ipsec_in_t *ii; 17643 17644 /* 17645 * Self-encapsulated tunnel packet. Remove 17646 * the outer IP header and fanout again. 17647 * We also need to make sure that the inner 17648 * header is pulled up until options. 17649 */ 17650 mp->b_rptr = (uchar_t *)inner_ipha; 17651 ipha = inner_ipha; 17652 hdr_length = IPH_HDR_LENGTH(ipha); 17653 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17654 if (!pullupmsg(mp, (uchar_t *)ipha + 17655 + hdr_length - mp->b_rptr)) { 17656 freemsg(first_mp); 17657 return; 17658 } 17659 ipha = (ipha_t *)mp->b_rptr; 17660 } 17661 if (hdr_length > sizeof (ipha_t)) { 17662 /* We got options on the inner packet. */ 17663 ipaddr_t dst = ipha->ipha_dst; 17664 17665 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17666 -1) { 17667 /* Bad options! */ 17668 return; 17669 } 17670 if (dst != ipha->ipha_dst) { 17671 /* 17672 * Someone put a source-route in 17673 * the inside header of a self- 17674 * encapsulated packet. Drop it 17675 * with extreme prejudice and let 17676 * the sender know. 17677 */ 17678 icmp_unreachable(q, first_mp, 17679 ICMP_SOURCE_ROUTE_FAILED, 17680 recv_ill->ill_zoneid, ipst); 17681 return; 17682 } 17683 } 17684 if (!mctl_present) { 17685 ASSERT(first_mp == mp); 17686 /* 17687 * This means that somebody is sending 17688 * Self-encapsualted packets without AH/ESP. 17689 * If AH/ESP was present, we would have already 17690 * allocated the first_mp. 17691 * 17692 * Send this packet to find a tunnel endpoint. 17693 * if I can't find one, an ICMP 17694 * PROTOCOL_UNREACHABLE will get sent. 17695 */ 17696 goto fanout; 17697 } 17698 /* 17699 * We generally store the ill_index if we need to 17700 * do IPsec processing as we lose the ill queue when 17701 * we come back. But in this case, we never should 17702 * have to store the ill_index here as it should have 17703 * been stored previously when we processed the 17704 * AH/ESP header in this routine or for non-ipsec 17705 * cases, we still have the queue. But for some bad 17706 * packets from the wire, we can get to IPsec after 17707 * this and we better store the index for that case. 17708 */ 17709 ill = (ill_t *)q->q_ptr; 17710 ii = (ipsec_in_t *)first_mp->b_rptr; 17711 ii->ipsec_in_ill_index = 17712 ill->ill_phyint->phyint_ifindex; 17713 ii->ipsec_in_rill_index = 17714 recv_ill->ill_phyint->phyint_ifindex; 17715 if (ii->ipsec_in_decaps) { 17716 /* 17717 * This packet is self-encapsulated multiple 17718 * times. We don't want to recurse infinitely. 17719 * To keep it simple, drop the packet. 17720 */ 17721 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17722 freemsg(first_mp); 17723 return; 17724 } 17725 ii->ipsec_in_decaps = B_TRUE; 17726 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17727 ire); 17728 return; 17729 } 17730 break; 17731 case IPPROTO_AH: 17732 case IPPROTO_ESP: { 17733 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17734 17735 /* 17736 * Fast path for AH/ESP. If this is the first time 17737 * we are sending a datagram to AH/ESP, allocate 17738 * a IPSEC_IN message and prepend it. Otherwise, 17739 * just fanout. 17740 */ 17741 17742 int ipsec_rc; 17743 ipsec_in_t *ii; 17744 netstack_t *ns = ipst->ips_netstack; 17745 17746 IP_STAT(ipst, ipsec_proto_ahesp); 17747 if (!mctl_present) { 17748 ASSERT(first_mp == mp); 17749 first_mp = ipsec_in_alloc(B_TRUE, ns); 17750 if (first_mp == NULL) { 17751 ip1dbg(("ip_proto_input: IPSEC_IN " 17752 "allocation failure.\n")); 17753 freemsg(hada_mp); /* okay ifnull */ 17754 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17755 freemsg(mp); 17756 return; 17757 } 17758 /* 17759 * Store the ill_index so that when we come back 17760 * from IPsec we ride on the same queue. 17761 */ 17762 ill = (ill_t *)q->q_ptr; 17763 ii = (ipsec_in_t *)first_mp->b_rptr; 17764 ii->ipsec_in_ill_index = 17765 ill->ill_phyint->phyint_ifindex; 17766 ii->ipsec_in_rill_index = 17767 recv_ill->ill_phyint->phyint_ifindex; 17768 first_mp->b_cont = mp; 17769 /* 17770 * Cache hardware acceleration info. 17771 */ 17772 if (hada_mp != NULL) { 17773 IPSECHW_DEBUG(IPSECHW_PKT, 17774 ("ip_rput_local: caching data attr.\n")); 17775 ii->ipsec_in_accelerated = B_TRUE; 17776 ii->ipsec_in_da = hada_mp; 17777 hada_mp = NULL; 17778 } 17779 } else { 17780 ii = (ipsec_in_t *)first_mp->b_rptr; 17781 } 17782 17783 ii->ipsec_in_esp_udp_ports = esp_udp_ports; 17784 17785 if (!ipsec_loaded(ipss)) { 17786 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17787 ire->ire_zoneid, ipst); 17788 return; 17789 } 17790 17791 ns = ipst->ips_netstack; 17792 /* select inbound SA and have IPsec process the pkt */ 17793 if (ipha->ipha_protocol == IPPROTO_ESP) { 17794 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17795 boolean_t esp_in_udp_sa; 17796 if (esph == NULL) 17797 return; 17798 ASSERT(ii->ipsec_in_esp_sa != NULL); 17799 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17800 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17801 IPSA_F_NATT) != 0); 17802 /* 17803 * The following is a fancy, but quick, way of saying: 17804 * ESP-in-UDP SA and Raw ESP packet --> drop 17805 * OR 17806 * ESP SA and ESP-in-UDP packet --> drop 17807 */ 17808 if (esp_in_udp_sa != esp_in_udp_packet) { 17809 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17810 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17811 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17812 &ns->netstack_ipsec->ipsec_dropper); 17813 return; 17814 } 17815 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17816 first_mp, esph); 17817 } else { 17818 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17819 if (ah == NULL) 17820 return; 17821 ASSERT(ii->ipsec_in_ah_sa != NULL); 17822 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17823 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17824 first_mp, ah); 17825 } 17826 17827 switch (ipsec_rc) { 17828 case IPSEC_STATUS_SUCCESS: 17829 break; 17830 case IPSEC_STATUS_FAILED: 17831 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17832 /* FALLTHRU */ 17833 case IPSEC_STATUS_PENDING: 17834 return; 17835 } 17836 /* we're done with IPsec processing, send it up */ 17837 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17838 return; 17839 } 17840 default: 17841 break; 17842 } 17843 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17844 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17845 ire->ire_zoneid)); 17846 goto drop_pkt; 17847 } 17848 /* 17849 * Handle protocols with which IP is less intimate. There 17850 * can be more than one stream bound to a particular 17851 * protocol. When this is the case, each one gets a copy 17852 * of any incoming packets. 17853 */ 17854 fanout: 17855 ip_fanout_proto(q, first_mp, ill, ipha, 17856 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17857 B_TRUE, recv_ill, ire->ire_zoneid); 17858 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17859 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17860 return; 17861 17862 drop_pkt: 17863 freemsg(first_mp); 17864 if (hada_mp != NULL) 17865 freeb(hada_mp); 17866 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17867 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17868 #undef rptr 17869 #undef iphs 17870 17871 } 17872 17873 /* 17874 * Update any source route, record route or timestamp options. 17875 * Check that we are at end of strict source route. 17876 * The options have already been checked for sanity in ip_rput_options(). 17877 */ 17878 static boolean_t 17879 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17880 ip_stack_t *ipst) 17881 { 17882 ipoptp_t opts; 17883 uchar_t *opt; 17884 uint8_t optval; 17885 uint8_t optlen; 17886 ipaddr_t dst; 17887 uint32_t ts; 17888 ire_t *dst_ire; 17889 timestruc_t now; 17890 zoneid_t zoneid; 17891 ill_t *ill; 17892 17893 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17894 17895 ip2dbg(("ip_rput_local_options\n")); 17896 17897 for (optval = ipoptp_first(&opts, ipha); 17898 optval != IPOPT_EOL; 17899 optval = ipoptp_next(&opts)) { 17900 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17901 opt = opts.ipoptp_cur; 17902 optlen = opts.ipoptp_len; 17903 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17904 optval, optlen)); 17905 switch (optval) { 17906 uint32_t off; 17907 case IPOPT_SSRR: 17908 case IPOPT_LSRR: 17909 off = opt[IPOPT_OFFSET]; 17910 off--; 17911 if (optlen < IP_ADDR_LEN || 17912 off > optlen - IP_ADDR_LEN) { 17913 /* End of source route */ 17914 ip1dbg(("ip_rput_local_options: end of SR\n")); 17915 break; 17916 } 17917 /* 17918 * This will only happen if two consecutive entries 17919 * in the source route contains our address or if 17920 * it is a packet with a loose source route which 17921 * reaches us before consuming the whole source route 17922 */ 17923 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17924 if (optval == IPOPT_SSRR) { 17925 goto bad_src_route; 17926 } 17927 /* 17928 * Hack: instead of dropping the packet truncate the 17929 * source route to what has been used by filling the 17930 * rest with IPOPT_NOP. 17931 */ 17932 opt[IPOPT_OLEN] = (uint8_t)off; 17933 while (off < optlen) { 17934 opt[off++] = IPOPT_NOP; 17935 } 17936 break; 17937 case IPOPT_RR: 17938 off = opt[IPOPT_OFFSET]; 17939 off--; 17940 if (optlen < IP_ADDR_LEN || 17941 off > optlen - IP_ADDR_LEN) { 17942 /* No more room - ignore */ 17943 ip1dbg(( 17944 "ip_rput_local_options: end of RR\n")); 17945 break; 17946 } 17947 bcopy(&ire->ire_src_addr, (char *)opt + off, 17948 IP_ADDR_LEN); 17949 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17950 break; 17951 case IPOPT_TS: 17952 /* Insert timestamp if there is romm */ 17953 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17954 case IPOPT_TS_TSONLY: 17955 off = IPOPT_TS_TIMELEN; 17956 break; 17957 case IPOPT_TS_PRESPEC: 17958 case IPOPT_TS_PRESPEC_RFC791: 17959 /* Verify that the address matched */ 17960 off = opt[IPOPT_OFFSET] - 1; 17961 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17962 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17963 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17964 ipst); 17965 if (dst_ire == NULL) { 17966 /* Not for us */ 17967 break; 17968 } 17969 ire_refrele(dst_ire); 17970 /* FALLTHRU */ 17971 case IPOPT_TS_TSANDADDR: 17972 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17973 break; 17974 default: 17975 /* 17976 * ip_*put_options should have already 17977 * dropped this packet. 17978 */ 17979 cmn_err(CE_PANIC, "ip_rput_local_options: " 17980 "unknown IT - bug in ip_rput_options?\n"); 17981 return (B_TRUE); /* Keep "lint" happy */ 17982 } 17983 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17984 /* Increase overflow counter */ 17985 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17986 opt[IPOPT_POS_OV_FLG] = 17987 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17988 (off << 4)); 17989 break; 17990 } 17991 off = opt[IPOPT_OFFSET] - 1; 17992 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17993 case IPOPT_TS_PRESPEC: 17994 case IPOPT_TS_PRESPEC_RFC791: 17995 case IPOPT_TS_TSANDADDR: 17996 bcopy(&ire->ire_src_addr, (char *)opt + off, 17997 IP_ADDR_LEN); 17998 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17999 /* FALLTHRU */ 18000 case IPOPT_TS_TSONLY: 18001 off = opt[IPOPT_OFFSET] - 1; 18002 /* Compute # of milliseconds since midnight */ 18003 gethrestime(&now); 18004 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 18005 now.tv_nsec / (NANOSEC / MILLISEC); 18006 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 18007 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 18008 break; 18009 } 18010 break; 18011 } 18012 } 18013 return (B_TRUE); 18014 18015 bad_src_route: 18016 q = WR(q); 18017 if (q->q_next != NULL) 18018 ill = q->q_ptr; 18019 else 18020 ill = NULL; 18021 18022 /* make sure we clear any indication of a hardware checksum */ 18023 DB_CKSUMFLAGS(mp) = 0; 18024 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 18025 if (zoneid == ALL_ZONES) 18026 freemsg(mp); 18027 else 18028 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18029 return (B_FALSE); 18030 18031 } 18032 18033 /* 18034 * Process IP options in an inbound packet. If an option affects the 18035 * effective destination address, return the next hop address via dstp. 18036 * Returns -1 if something fails in which case an ICMP error has been sent 18037 * and mp freed. 18038 */ 18039 static int 18040 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 18041 ip_stack_t *ipst) 18042 { 18043 ipoptp_t opts; 18044 uchar_t *opt; 18045 uint8_t optval; 18046 uint8_t optlen; 18047 ipaddr_t dst; 18048 intptr_t code = 0; 18049 ire_t *ire = NULL; 18050 zoneid_t zoneid; 18051 ill_t *ill; 18052 18053 ip2dbg(("ip_rput_options\n")); 18054 dst = ipha->ipha_dst; 18055 for (optval = ipoptp_first(&opts, ipha); 18056 optval != IPOPT_EOL; 18057 optval = ipoptp_next(&opts)) { 18058 opt = opts.ipoptp_cur; 18059 optlen = opts.ipoptp_len; 18060 ip2dbg(("ip_rput_options: opt %d, len %d\n", 18061 optval, optlen)); 18062 /* 18063 * Note: we need to verify the checksum before we 18064 * modify anything thus this routine only extracts the next 18065 * hop dst from any source route. 18066 */ 18067 switch (optval) { 18068 uint32_t off; 18069 case IPOPT_SSRR: 18070 case IPOPT_LSRR: 18071 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18072 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18073 if (ire == NULL) { 18074 if (optval == IPOPT_SSRR) { 18075 ip1dbg(("ip_rput_options: not next" 18076 " strict source route 0x%x\n", 18077 ntohl(dst))); 18078 code = (char *)&ipha->ipha_dst - 18079 (char *)ipha; 18080 goto param_prob; /* RouterReq's */ 18081 } 18082 ip2dbg(("ip_rput_options: " 18083 "not next source route 0x%x\n", 18084 ntohl(dst))); 18085 break; 18086 } 18087 ire_refrele(ire); 18088 18089 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18090 ip1dbg(( 18091 "ip_rput_options: bad option offset\n")); 18092 code = (char *)&opt[IPOPT_OLEN] - 18093 (char *)ipha; 18094 goto param_prob; 18095 } 18096 off = opt[IPOPT_OFFSET]; 18097 off--; 18098 redo_srr: 18099 if (optlen < IP_ADDR_LEN || 18100 off > optlen - IP_ADDR_LEN) { 18101 /* End of source route */ 18102 ip1dbg(("ip_rput_options: end of SR\n")); 18103 break; 18104 } 18105 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18106 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18107 ntohl(dst))); 18108 18109 /* 18110 * Check if our address is present more than 18111 * once as consecutive hops in source route. 18112 * XXX verify per-interface ip_forwarding 18113 * for source route? 18114 */ 18115 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18116 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18117 18118 if (ire != NULL) { 18119 ire_refrele(ire); 18120 off += IP_ADDR_LEN; 18121 goto redo_srr; 18122 } 18123 18124 if (dst == htonl(INADDR_LOOPBACK)) { 18125 ip1dbg(("ip_rput_options: loopback addr in " 18126 "source route!\n")); 18127 goto bad_src_route; 18128 } 18129 /* 18130 * For strict: verify that dst is directly 18131 * reachable. 18132 */ 18133 if (optval == IPOPT_SSRR) { 18134 ire = ire_ftable_lookup(dst, 0, 0, 18135 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18136 msg_getlabel(mp), 18137 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18138 if (ire == NULL) { 18139 ip1dbg(("ip_rput_options: SSRR not " 18140 "directly reachable: 0x%x\n", 18141 ntohl(dst))); 18142 goto bad_src_route; 18143 } 18144 ire_refrele(ire); 18145 } 18146 /* 18147 * Defer update of the offset and the record route 18148 * until the packet is forwarded. 18149 */ 18150 break; 18151 case IPOPT_RR: 18152 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18153 ip1dbg(( 18154 "ip_rput_options: bad option offset\n")); 18155 code = (char *)&opt[IPOPT_OLEN] - 18156 (char *)ipha; 18157 goto param_prob; 18158 } 18159 break; 18160 case IPOPT_TS: 18161 /* 18162 * Verify that length >= 5 and that there is either 18163 * room for another timestamp or that the overflow 18164 * counter is not maxed out. 18165 */ 18166 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18167 if (optlen < IPOPT_MINLEN_IT) { 18168 goto param_prob; 18169 } 18170 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18171 ip1dbg(( 18172 "ip_rput_options: bad option offset\n")); 18173 code = (char *)&opt[IPOPT_OFFSET] - 18174 (char *)ipha; 18175 goto param_prob; 18176 } 18177 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18178 case IPOPT_TS_TSONLY: 18179 off = IPOPT_TS_TIMELEN; 18180 break; 18181 case IPOPT_TS_TSANDADDR: 18182 case IPOPT_TS_PRESPEC: 18183 case IPOPT_TS_PRESPEC_RFC791: 18184 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18185 break; 18186 default: 18187 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18188 (char *)ipha; 18189 goto param_prob; 18190 } 18191 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18192 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18193 /* 18194 * No room and the overflow counter is 15 18195 * already. 18196 */ 18197 goto param_prob; 18198 } 18199 break; 18200 } 18201 } 18202 18203 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18204 *dstp = dst; 18205 return (0); 18206 } 18207 18208 ip1dbg(("ip_rput_options: error processing IP options.")); 18209 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18210 18211 param_prob: 18212 q = WR(q); 18213 if (q->q_next != NULL) 18214 ill = q->q_ptr; 18215 else 18216 ill = NULL; 18217 18218 /* make sure we clear any indication of a hardware checksum */ 18219 DB_CKSUMFLAGS(mp) = 0; 18220 /* Don't know whether this is for non-global or global/forwarding */ 18221 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18222 if (zoneid == ALL_ZONES) 18223 freemsg(mp); 18224 else 18225 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18226 return (-1); 18227 18228 bad_src_route: 18229 q = WR(q); 18230 if (q->q_next != NULL) 18231 ill = q->q_ptr; 18232 else 18233 ill = NULL; 18234 18235 /* make sure we clear any indication of a hardware checksum */ 18236 DB_CKSUMFLAGS(mp) = 0; 18237 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18238 if (zoneid == ALL_ZONES) 18239 freemsg(mp); 18240 else 18241 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18242 return (-1); 18243 } 18244 18245 /* 18246 * IP & ICMP info in >=14 msg's ... 18247 * - ip fixed part (mib2_ip_t) 18248 * - icmp fixed part (mib2_icmp_t) 18249 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18250 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18251 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18252 * - ipRouteAttributeTable (ip 102) labeled routes 18253 * - ip multicast membership (ip_member_t) 18254 * - ip multicast source filtering (ip_grpsrc_t) 18255 * - igmp fixed part (struct igmpstat) 18256 * - multicast routing stats (struct mrtstat) 18257 * - multicast routing vifs (array of struct vifctl) 18258 * - multicast routing routes (array of struct mfcctl) 18259 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18260 * One per ill plus one generic 18261 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18262 * One per ill plus one generic 18263 * - ipv6RouteEntry all IPv6 IREs 18264 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18265 * - ipv6NetToMediaEntry all Neighbor Cache entries 18266 * - ipv6AddrEntry all IPv6 ipifs 18267 * - ipv6 multicast membership (ipv6_member_t) 18268 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18269 * 18270 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18271 * 18272 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18273 * already filled in by the caller. 18274 * Return value of 0 indicates that no messages were sent and caller 18275 * should free mpctl. 18276 */ 18277 int 18278 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18279 { 18280 ip_stack_t *ipst; 18281 sctp_stack_t *sctps; 18282 18283 if (q->q_next != NULL) { 18284 ipst = ILLQ_TO_IPST(q); 18285 } else { 18286 ipst = CONNQ_TO_IPST(q); 18287 } 18288 ASSERT(ipst != NULL); 18289 sctps = ipst->ips_netstack->netstack_sctp; 18290 18291 if (mpctl == NULL || mpctl->b_cont == NULL) { 18292 return (0); 18293 } 18294 18295 /* 18296 * For the purposes of the (broken) packet shell use 18297 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18298 * to make TCP and UDP appear first in the list of mib items. 18299 * TBD: We could expand this and use it in netstat so that 18300 * the kernel doesn't have to produce large tables (connections, 18301 * routes, etc) when netstat only wants the statistics or a particular 18302 * table. 18303 */ 18304 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18305 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18306 return (1); 18307 } 18308 } 18309 18310 if (level != MIB2_TCP) { 18311 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18312 return (1); 18313 } 18314 } 18315 18316 if (level != MIB2_UDP) { 18317 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18318 return (1); 18319 } 18320 } 18321 18322 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18323 ipst)) == NULL) { 18324 return (1); 18325 } 18326 18327 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18328 return (1); 18329 } 18330 18331 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18332 return (1); 18333 } 18334 18335 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18336 return (1); 18337 } 18338 18339 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18340 return (1); 18341 } 18342 18343 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18344 return (1); 18345 } 18346 18347 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18348 return (1); 18349 } 18350 18351 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18352 return (1); 18353 } 18354 18355 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18356 return (1); 18357 } 18358 18359 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18360 return (1); 18361 } 18362 18363 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18364 return (1); 18365 } 18366 18367 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18368 return (1); 18369 } 18370 18371 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18372 return (1); 18373 } 18374 18375 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18376 return (1); 18377 } 18378 18379 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 18380 if (mpctl == NULL) 18381 return (1); 18382 18383 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 18384 if (mpctl == NULL) 18385 return (1); 18386 18387 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18388 return (1); 18389 } 18390 freemsg(mpctl); 18391 return (1); 18392 } 18393 18394 /* Get global (legacy) IPv4 statistics */ 18395 static mblk_t * 18396 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18397 ip_stack_t *ipst) 18398 { 18399 mib2_ip_t old_ip_mib; 18400 struct opthdr *optp; 18401 mblk_t *mp2ctl; 18402 18403 /* 18404 * make a copy of the original message 18405 */ 18406 mp2ctl = copymsg(mpctl); 18407 18408 /* fixed length IP structure... */ 18409 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18410 optp->level = MIB2_IP; 18411 optp->name = 0; 18412 SET_MIB(old_ip_mib.ipForwarding, 18413 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18414 SET_MIB(old_ip_mib.ipDefaultTTL, 18415 (uint32_t)ipst->ips_ip_def_ttl); 18416 SET_MIB(old_ip_mib.ipReasmTimeout, 18417 ipst->ips_ip_g_frag_timeout); 18418 SET_MIB(old_ip_mib.ipAddrEntrySize, 18419 sizeof (mib2_ipAddrEntry_t)); 18420 SET_MIB(old_ip_mib.ipRouteEntrySize, 18421 sizeof (mib2_ipRouteEntry_t)); 18422 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18423 sizeof (mib2_ipNetToMediaEntry_t)); 18424 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18425 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18426 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18427 sizeof (mib2_ipAttributeEntry_t)); 18428 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18429 18430 /* 18431 * Grab the statistics from the new IP MIB 18432 */ 18433 SET_MIB(old_ip_mib.ipInReceives, 18434 (uint32_t)ipmib->ipIfStatsHCInReceives); 18435 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18436 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18437 SET_MIB(old_ip_mib.ipForwDatagrams, 18438 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18439 SET_MIB(old_ip_mib.ipInUnknownProtos, 18440 ipmib->ipIfStatsInUnknownProtos); 18441 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18442 SET_MIB(old_ip_mib.ipInDelivers, 18443 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18444 SET_MIB(old_ip_mib.ipOutRequests, 18445 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18446 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18447 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18448 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18449 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18450 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18451 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18452 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18453 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18454 18455 /* ipRoutingDiscards is not being used */ 18456 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18457 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18458 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18459 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18460 SET_MIB(old_ip_mib.ipReasmDuplicates, 18461 ipmib->ipIfStatsReasmDuplicates); 18462 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18463 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18464 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18465 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18466 SET_MIB(old_ip_mib.rawipInOverflows, 18467 ipmib->rawipIfStatsInOverflows); 18468 18469 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18470 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18471 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18472 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18473 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18474 ipmib->ipIfStatsOutSwitchIPVersion); 18475 18476 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18477 (int)sizeof (old_ip_mib))) { 18478 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18479 (uint_t)sizeof (old_ip_mib))); 18480 } 18481 18482 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18483 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18484 (int)optp->level, (int)optp->name, (int)optp->len)); 18485 qreply(q, mpctl); 18486 return (mp2ctl); 18487 } 18488 18489 /* Per interface IPv4 statistics */ 18490 static mblk_t * 18491 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18492 { 18493 struct opthdr *optp; 18494 mblk_t *mp2ctl; 18495 ill_t *ill; 18496 ill_walk_context_t ctx; 18497 mblk_t *mp_tail = NULL; 18498 mib2_ipIfStatsEntry_t global_ip_mib; 18499 18500 /* 18501 * Make a copy of the original message 18502 */ 18503 mp2ctl = copymsg(mpctl); 18504 18505 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18506 optp->level = MIB2_IP; 18507 optp->name = MIB2_IP_TRAFFIC_STATS; 18508 /* Include "unknown interface" ip_mib */ 18509 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18510 ipst->ips_ip_mib.ipIfStatsIfIndex = 18511 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18512 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18513 (ipst->ips_ip_g_forward ? 1 : 2)); 18514 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18515 (uint32_t)ipst->ips_ip_def_ttl); 18516 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18517 sizeof (mib2_ipIfStatsEntry_t)); 18518 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18519 sizeof (mib2_ipAddrEntry_t)); 18520 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18521 sizeof (mib2_ipRouteEntry_t)); 18522 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18523 sizeof (mib2_ipNetToMediaEntry_t)); 18524 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18525 sizeof (ip_member_t)); 18526 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18527 sizeof (ip_grpsrc_t)); 18528 18529 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18530 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18531 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18532 "failed to allocate %u bytes\n", 18533 (uint_t)sizeof (ipst->ips_ip_mib))); 18534 } 18535 18536 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18537 18538 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18539 ill = ILL_START_WALK_V4(&ctx, ipst); 18540 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18541 ill->ill_ip_mib->ipIfStatsIfIndex = 18542 ill->ill_phyint->phyint_ifindex; 18543 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18544 (ipst->ips_ip_g_forward ? 1 : 2)); 18545 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18546 (uint32_t)ipst->ips_ip_def_ttl); 18547 18548 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18549 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18550 (char *)ill->ill_ip_mib, 18551 (int)sizeof (*ill->ill_ip_mib))) { 18552 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18553 "failed to allocate %u bytes\n", 18554 (uint_t)sizeof (*ill->ill_ip_mib))); 18555 } 18556 } 18557 rw_exit(&ipst->ips_ill_g_lock); 18558 18559 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18560 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18561 "level %d, name %d, len %d\n", 18562 (int)optp->level, (int)optp->name, (int)optp->len)); 18563 qreply(q, mpctl); 18564 18565 if (mp2ctl == NULL) 18566 return (NULL); 18567 18568 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18569 } 18570 18571 /* Global IPv4 ICMP statistics */ 18572 static mblk_t * 18573 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18574 { 18575 struct opthdr *optp; 18576 mblk_t *mp2ctl; 18577 18578 /* 18579 * Make a copy of the original message 18580 */ 18581 mp2ctl = copymsg(mpctl); 18582 18583 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18584 optp->level = MIB2_ICMP; 18585 optp->name = 0; 18586 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18587 (int)sizeof (ipst->ips_icmp_mib))) { 18588 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18589 (uint_t)sizeof (ipst->ips_icmp_mib))); 18590 } 18591 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18592 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18593 (int)optp->level, (int)optp->name, (int)optp->len)); 18594 qreply(q, mpctl); 18595 return (mp2ctl); 18596 } 18597 18598 /* Global IPv4 IGMP statistics */ 18599 static mblk_t * 18600 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18601 { 18602 struct opthdr *optp; 18603 mblk_t *mp2ctl; 18604 18605 /* 18606 * make a copy of the original message 18607 */ 18608 mp2ctl = copymsg(mpctl); 18609 18610 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18611 optp->level = EXPER_IGMP; 18612 optp->name = 0; 18613 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18614 (int)sizeof (ipst->ips_igmpstat))) { 18615 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18616 (uint_t)sizeof (ipst->ips_igmpstat))); 18617 } 18618 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18619 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18620 (int)optp->level, (int)optp->name, (int)optp->len)); 18621 qreply(q, mpctl); 18622 return (mp2ctl); 18623 } 18624 18625 /* Global IPv4 Multicast Routing statistics */ 18626 static mblk_t * 18627 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18628 { 18629 struct opthdr *optp; 18630 mblk_t *mp2ctl; 18631 18632 /* 18633 * make a copy of the original message 18634 */ 18635 mp2ctl = copymsg(mpctl); 18636 18637 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18638 optp->level = EXPER_DVMRP; 18639 optp->name = 0; 18640 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18641 ip0dbg(("ip_mroute_stats: failed\n")); 18642 } 18643 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18644 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18645 (int)optp->level, (int)optp->name, (int)optp->len)); 18646 qreply(q, mpctl); 18647 return (mp2ctl); 18648 } 18649 18650 /* IPv4 address information */ 18651 static mblk_t * 18652 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18653 { 18654 struct opthdr *optp; 18655 mblk_t *mp2ctl; 18656 mblk_t *mp_tail = NULL; 18657 ill_t *ill; 18658 ipif_t *ipif; 18659 uint_t bitval; 18660 mib2_ipAddrEntry_t mae; 18661 zoneid_t zoneid; 18662 ill_walk_context_t ctx; 18663 18664 /* 18665 * make a copy of the original message 18666 */ 18667 mp2ctl = copymsg(mpctl); 18668 18669 /* ipAddrEntryTable */ 18670 18671 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18672 optp->level = MIB2_IP; 18673 optp->name = MIB2_IP_ADDR; 18674 zoneid = Q_TO_CONN(q)->conn_zoneid; 18675 18676 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18677 ill = ILL_START_WALK_V4(&ctx, ipst); 18678 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18679 for (ipif = ill->ill_ipif; ipif != NULL; 18680 ipif = ipif->ipif_next) { 18681 if (ipif->ipif_zoneid != zoneid && 18682 ipif->ipif_zoneid != ALL_ZONES) 18683 continue; 18684 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18685 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18686 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18687 18688 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18689 OCTET_LENGTH); 18690 mae.ipAdEntIfIndex.o_length = 18691 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18692 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18693 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18694 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18695 mae.ipAdEntInfo.ae_subnet_len = 18696 ip_mask_to_plen(ipif->ipif_net_mask); 18697 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18698 for (bitval = 1; 18699 bitval && 18700 !(bitval & ipif->ipif_brd_addr); 18701 bitval <<= 1) 18702 noop; 18703 mae.ipAdEntBcastAddr = bitval; 18704 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18705 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18706 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18707 mae.ipAdEntInfo.ae_broadcast_addr = 18708 ipif->ipif_brd_addr; 18709 mae.ipAdEntInfo.ae_pp_dst_addr = 18710 ipif->ipif_pp_dst_addr; 18711 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18712 ill->ill_flags | ill->ill_phyint->phyint_flags; 18713 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18714 18715 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18716 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18717 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18718 "allocate %u bytes\n", 18719 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18720 } 18721 } 18722 } 18723 rw_exit(&ipst->ips_ill_g_lock); 18724 18725 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18726 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18727 (int)optp->level, (int)optp->name, (int)optp->len)); 18728 qreply(q, mpctl); 18729 return (mp2ctl); 18730 } 18731 18732 /* IPv6 address information */ 18733 static mblk_t * 18734 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18735 { 18736 struct opthdr *optp; 18737 mblk_t *mp2ctl; 18738 mblk_t *mp_tail = NULL; 18739 ill_t *ill; 18740 ipif_t *ipif; 18741 mib2_ipv6AddrEntry_t mae6; 18742 zoneid_t zoneid; 18743 ill_walk_context_t ctx; 18744 18745 /* 18746 * make a copy of the original message 18747 */ 18748 mp2ctl = copymsg(mpctl); 18749 18750 /* ipv6AddrEntryTable */ 18751 18752 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18753 optp->level = MIB2_IP6; 18754 optp->name = MIB2_IP6_ADDR; 18755 zoneid = Q_TO_CONN(q)->conn_zoneid; 18756 18757 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18758 ill = ILL_START_WALK_V6(&ctx, ipst); 18759 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18760 for (ipif = ill->ill_ipif; ipif != NULL; 18761 ipif = ipif->ipif_next) { 18762 if (ipif->ipif_zoneid != zoneid && 18763 ipif->ipif_zoneid != ALL_ZONES) 18764 continue; 18765 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18766 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18767 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18768 18769 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18770 OCTET_LENGTH); 18771 mae6.ipv6AddrIfIndex.o_length = 18772 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18773 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18774 mae6.ipv6AddrPfxLength = 18775 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18776 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18777 mae6.ipv6AddrInfo.ae_subnet_len = 18778 mae6.ipv6AddrPfxLength; 18779 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18780 18781 /* Type: stateless(1), stateful(2), unknown(3) */ 18782 if (ipif->ipif_flags & IPIF_ADDRCONF) 18783 mae6.ipv6AddrType = 1; 18784 else 18785 mae6.ipv6AddrType = 2; 18786 /* Anycast: true(1), false(2) */ 18787 if (ipif->ipif_flags & IPIF_ANYCAST) 18788 mae6.ipv6AddrAnycastFlag = 1; 18789 else 18790 mae6.ipv6AddrAnycastFlag = 2; 18791 18792 /* 18793 * Address status: preferred(1), deprecated(2), 18794 * invalid(3), inaccessible(4), unknown(5) 18795 */ 18796 if (ipif->ipif_flags & IPIF_NOLOCAL) 18797 mae6.ipv6AddrStatus = 3; 18798 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18799 mae6.ipv6AddrStatus = 2; 18800 else 18801 mae6.ipv6AddrStatus = 1; 18802 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18803 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18804 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18805 ipif->ipif_v6pp_dst_addr; 18806 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18807 ill->ill_flags | ill->ill_phyint->phyint_flags; 18808 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18809 mae6.ipv6AddrIdentifier = ill->ill_token; 18810 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18811 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18812 mae6.ipv6AddrRetransmitTime = 18813 ill->ill_reachable_retrans_time; 18814 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18815 (char *)&mae6, 18816 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18817 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18818 "allocate %u bytes\n", 18819 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18820 } 18821 } 18822 } 18823 rw_exit(&ipst->ips_ill_g_lock); 18824 18825 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18826 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18827 (int)optp->level, (int)optp->name, (int)optp->len)); 18828 qreply(q, mpctl); 18829 return (mp2ctl); 18830 } 18831 18832 /* IPv4 multicast group membership. */ 18833 static mblk_t * 18834 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18835 { 18836 struct opthdr *optp; 18837 mblk_t *mp2ctl; 18838 ill_t *ill; 18839 ipif_t *ipif; 18840 ilm_t *ilm; 18841 ip_member_t ipm; 18842 mblk_t *mp_tail = NULL; 18843 ill_walk_context_t ctx; 18844 zoneid_t zoneid; 18845 ilm_walker_t ilw; 18846 18847 /* 18848 * make a copy of the original message 18849 */ 18850 mp2ctl = copymsg(mpctl); 18851 zoneid = Q_TO_CONN(q)->conn_zoneid; 18852 18853 /* ipGroupMember table */ 18854 optp = (struct opthdr *)&mpctl->b_rptr[ 18855 sizeof (struct T_optmgmt_ack)]; 18856 optp->level = MIB2_IP; 18857 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18858 18859 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18860 ill = ILL_START_WALK_V4(&ctx, ipst); 18861 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18862 if (IS_UNDER_IPMP(ill)) 18863 continue; 18864 18865 ilm = ilm_walker_start(&ilw, ill); 18866 for (ipif = ill->ill_ipif; ipif != NULL; 18867 ipif = ipif->ipif_next) { 18868 if (ipif->ipif_zoneid != zoneid && 18869 ipif->ipif_zoneid != ALL_ZONES) 18870 continue; /* not this zone */ 18871 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18872 OCTET_LENGTH); 18873 ipm.ipGroupMemberIfIndex.o_length = 18874 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18875 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18876 ASSERT(ilm->ilm_ipif != NULL); 18877 ASSERT(ilm->ilm_ill == NULL); 18878 if (ilm->ilm_ipif != ipif) 18879 continue; 18880 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18881 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18882 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18883 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18884 (char *)&ipm, (int)sizeof (ipm))) { 18885 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18886 "failed to allocate %u bytes\n", 18887 (uint_t)sizeof (ipm))); 18888 } 18889 } 18890 } 18891 ilm_walker_finish(&ilw); 18892 } 18893 rw_exit(&ipst->ips_ill_g_lock); 18894 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18895 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18896 (int)optp->level, (int)optp->name, (int)optp->len)); 18897 qreply(q, mpctl); 18898 return (mp2ctl); 18899 } 18900 18901 /* IPv6 multicast group membership. */ 18902 static mblk_t * 18903 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18904 { 18905 struct opthdr *optp; 18906 mblk_t *mp2ctl; 18907 ill_t *ill; 18908 ilm_t *ilm; 18909 ipv6_member_t ipm6; 18910 mblk_t *mp_tail = NULL; 18911 ill_walk_context_t ctx; 18912 zoneid_t zoneid; 18913 ilm_walker_t ilw; 18914 18915 /* 18916 * make a copy of the original message 18917 */ 18918 mp2ctl = copymsg(mpctl); 18919 zoneid = Q_TO_CONN(q)->conn_zoneid; 18920 18921 /* ip6GroupMember table */ 18922 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18923 optp->level = MIB2_IP6; 18924 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18925 18926 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18927 ill = ILL_START_WALK_V6(&ctx, ipst); 18928 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18929 if (IS_UNDER_IPMP(ill)) 18930 continue; 18931 18932 ilm = ilm_walker_start(&ilw, ill); 18933 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18934 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18935 ASSERT(ilm->ilm_ipif == NULL); 18936 ASSERT(ilm->ilm_ill != NULL); 18937 if (ilm->ilm_zoneid != zoneid) 18938 continue; /* not this zone */ 18939 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18940 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18941 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18942 if (!snmp_append_data2(mpctl->b_cont, 18943 &mp_tail, 18944 (char *)&ipm6, (int)sizeof (ipm6))) { 18945 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18946 "failed to allocate %u bytes\n", 18947 (uint_t)sizeof (ipm6))); 18948 } 18949 } 18950 ilm_walker_finish(&ilw); 18951 } 18952 rw_exit(&ipst->ips_ill_g_lock); 18953 18954 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18955 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18956 (int)optp->level, (int)optp->name, (int)optp->len)); 18957 qreply(q, mpctl); 18958 return (mp2ctl); 18959 } 18960 18961 /* IP multicast filtered sources */ 18962 static mblk_t * 18963 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18964 { 18965 struct opthdr *optp; 18966 mblk_t *mp2ctl; 18967 ill_t *ill; 18968 ipif_t *ipif; 18969 ilm_t *ilm; 18970 ip_grpsrc_t ips; 18971 mblk_t *mp_tail = NULL; 18972 ill_walk_context_t ctx; 18973 zoneid_t zoneid; 18974 int i; 18975 slist_t *sl; 18976 ilm_walker_t ilw; 18977 18978 /* 18979 * make a copy of the original message 18980 */ 18981 mp2ctl = copymsg(mpctl); 18982 zoneid = Q_TO_CONN(q)->conn_zoneid; 18983 18984 /* ipGroupSource table */ 18985 optp = (struct opthdr *)&mpctl->b_rptr[ 18986 sizeof (struct T_optmgmt_ack)]; 18987 optp->level = MIB2_IP; 18988 optp->name = EXPER_IP_GROUP_SOURCES; 18989 18990 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18991 ill = ILL_START_WALK_V4(&ctx, ipst); 18992 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18993 if (IS_UNDER_IPMP(ill)) 18994 continue; 18995 18996 ilm = ilm_walker_start(&ilw, ill); 18997 for (ipif = ill->ill_ipif; ipif != NULL; 18998 ipif = ipif->ipif_next) { 18999 if (ipif->ipif_zoneid != zoneid) 19000 continue; /* not this zone */ 19001 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 19002 OCTET_LENGTH); 19003 ips.ipGroupSourceIfIndex.o_length = 19004 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 19005 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19006 ASSERT(ilm->ilm_ipif != NULL); 19007 ASSERT(ilm->ilm_ill == NULL); 19008 sl = ilm->ilm_filter; 19009 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 19010 continue; 19011 ips.ipGroupSourceGroup = ilm->ilm_addr; 19012 for (i = 0; i < sl->sl_numsrc; i++) { 19013 if (!IN6_IS_ADDR_V4MAPPED( 19014 &sl->sl_addr[i])) 19015 continue; 19016 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 19017 ips.ipGroupSourceAddress); 19018 if (snmp_append_data2(mpctl->b_cont, 19019 &mp_tail, (char *)&ips, 19020 (int)sizeof (ips)) == 0) { 19021 ip1dbg(("ip_snmp_get_mib2_" 19022 "ip_group_src: failed to " 19023 "allocate %u bytes\n", 19024 (uint_t)sizeof (ips))); 19025 } 19026 } 19027 } 19028 } 19029 ilm_walker_finish(&ilw); 19030 } 19031 rw_exit(&ipst->ips_ill_g_lock); 19032 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19033 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19034 (int)optp->level, (int)optp->name, (int)optp->len)); 19035 qreply(q, mpctl); 19036 return (mp2ctl); 19037 } 19038 19039 /* IPv6 multicast filtered sources. */ 19040 static mblk_t * 19041 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19042 { 19043 struct opthdr *optp; 19044 mblk_t *mp2ctl; 19045 ill_t *ill; 19046 ilm_t *ilm; 19047 ipv6_grpsrc_t ips6; 19048 mblk_t *mp_tail = NULL; 19049 ill_walk_context_t ctx; 19050 zoneid_t zoneid; 19051 int i; 19052 slist_t *sl; 19053 ilm_walker_t ilw; 19054 19055 /* 19056 * make a copy of the original message 19057 */ 19058 mp2ctl = copymsg(mpctl); 19059 zoneid = Q_TO_CONN(q)->conn_zoneid; 19060 19061 /* ip6GroupMember table */ 19062 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19063 optp->level = MIB2_IP6; 19064 optp->name = EXPER_IP6_GROUP_SOURCES; 19065 19066 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19067 ill = ILL_START_WALK_V6(&ctx, ipst); 19068 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19069 if (IS_UNDER_IPMP(ill)) 19070 continue; 19071 19072 ilm = ilm_walker_start(&ilw, ill); 19073 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 19074 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19075 ASSERT(ilm->ilm_ipif == NULL); 19076 ASSERT(ilm->ilm_ill != NULL); 19077 sl = ilm->ilm_filter; 19078 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 19079 continue; 19080 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 19081 for (i = 0; i < sl->sl_numsrc; i++) { 19082 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 19083 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19084 (char *)&ips6, (int)sizeof (ips6))) { 19085 ip1dbg(("ip_snmp_get_mib2_ip6_" 19086 "group_src: failed to allocate " 19087 "%u bytes\n", 19088 (uint_t)sizeof (ips6))); 19089 } 19090 } 19091 } 19092 ilm_walker_finish(&ilw); 19093 } 19094 rw_exit(&ipst->ips_ill_g_lock); 19095 19096 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19097 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19098 (int)optp->level, (int)optp->name, (int)optp->len)); 19099 qreply(q, mpctl); 19100 return (mp2ctl); 19101 } 19102 19103 /* Multicast routing virtual interface table. */ 19104 static mblk_t * 19105 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19106 { 19107 struct opthdr *optp; 19108 mblk_t *mp2ctl; 19109 19110 /* 19111 * make a copy of the original message 19112 */ 19113 mp2ctl = copymsg(mpctl); 19114 19115 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19116 optp->level = EXPER_DVMRP; 19117 optp->name = EXPER_DVMRP_VIF; 19118 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 19119 ip0dbg(("ip_mroute_vif: failed\n")); 19120 } 19121 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19122 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 19123 (int)optp->level, (int)optp->name, (int)optp->len)); 19124 qreply(q, mpctl); 19125 return (mp2ctl); 19126 } 19127 19128 /* Multicast routing table. */ 19129 static mblk_t * 19130 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19131 { 19132 struct opthdr *optp; 19133 mblk_t *mp2ctl; 19134 19135 /* 19136 * make a copy of the original message 19137 */ 19138 mp2ctl = copymsg(mpctl); 19139 19140 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19141 optp->level = EXPER_DVMRP; 19142 optp->name = EXPER_DVMRP_MRT; 19143 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19144 ip0dbg(("ip_mroute_mrt: failed\n")); 19145 } 19146 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19147 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19148 (int)optp->level, (int)optp->name, (int)optp->len)); 19149 qreply(q, mpctl); 19150 return (mp2ctl); 19151 } 19152 19153 /* 19154 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19155 * in one IRE walk. 19156 */ 19157 static mblk_t * 19158 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 19159 ip_stack_t *ipst) 19160 { 19161 struct opthdr *optp; 19162 mblk_t *mp2ctl; /* Returned */ 19163 mblk_t *mp3ctl; /* nettomedia */ 19164 mblk_t *mp4ctl; /* routeattrs */ 19165 iproutedata_t ird; 19166 zoneid_t zoneid; 19167 19168 /* 19169 * make copies of the original message 19170 * - mp2ctl is returned unchanged to the caller for his use 19171 * - mpctl is sent upstream as ipRouteEntryTable 19172 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19173 * - mp4ctl is sent upstream as ipRouteAttributeTable 19174 */ 19175 mp2ctl = copymsg(mpctl); 19176 mp3ctl = copymsg(mpctl); 19177 mp4ctl = copymsg(mpctl); 19178 if (mp3ctl == NULL || mp4ctl == NULL) { 19179 freemsg(mp4ctl); 19180 freemsg(mp3ctl); 19181 freemsg(mp2ctl); 19182 freemsg(mpctl); 19183 return (NULL); 19184 } 19185 19186 bzero(&ird, sizeof (ird)); 19187 19188 ird.ird_route.lp_head = mpctl->b_cont; 19189 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19190 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19191 /* 19192 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19193 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19194 * intended a temporary solution until a proper MIB API is provided 19195 * that provides complete filtering/caller-opt-in. 19196 */ 19197 if (level == EXPER_IP_AND_TESTHIDDEN) 19198 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19199 19200 zoneid = Q_TO_CONN(q)->conn_zoneid; 19201 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19202 19203 /* ipRouteEntryTable in mpctl */ 19204 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19205 optp->level = MIB2_IP; 19206 optp->name = MIB2_IP_ROUTE; 19207 optp->len = msgdsize(ird.ird_route.lp_head); 19208 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19209 (int)optp->level, (int)optp->name, (int)optp->len)); 19210 qreply(q, mpctl); 19211 19212 /* ipNetToMediaEntryTable in mp3ctl */ 19213 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19214 optp->level = MIB2_IP; 19215 optp->name = MIB2_IP_MEDIA; 19216 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19217 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19218 (int)optp->level, (int)optp->name, (int)optp->len)); 19219 qreply(q, mp3ctl); 19220 19221 /* ipRouteAttributeTable in mp4ctl */ 19222 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19223 optp->level = MIB2_IP; 19224 optp->name = EXPER_IP_RTATTR; 19225 optp->len = msgdsize(ird.ird_attrs.lp_head); 19226 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19227 (int)optp->level, (int)optp->name, (int)optp->len)); 19228 if (optp->len == 0) 19229 freemsg(mp4ctl); 19230 else 19231 qreply(q, mp4ctl); 19232 19233 return (mp2ctl); 19234 } 19235 19236 /* 19237 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19238 * ipv6NetToMediaEntryTable in an NDP walk. 19239 */ 19240 static mblk_t * 19241 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 19242 ip_stack_t *ipst) 19243 { 19244 struct opthdr *optp; 19245 mblk_t *mp2ctl; /* Returned */ 19246 mblk_t *mp3ctl; /* nettomedia */ 19247 mblk_t *mp4ctl; /* routeattrs */ 19248 iproutedata_t ird; 19249 zoneid_t zoneid; 19250 19251 /* 19252 * make copies of the original message 19253 * - mp2ctl is returned unchanged to the caller for his use 19254 * - mpctl is sent upstream as ipv6RouteEntryTable 19255 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19256 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19257 */ 19258 mp2ctl = copymsg(mpctl); 19259 mp3ctl = copymsg(mpctl); 19260 mp4ctl = copymsg(mpctl); 19261 if (mp3ctl == NULL || mp4ctl == NULL) { 19262 freemsg(mp4ctl); 19263 freemsg(mp3ctl); 19264 freemsg(mp2ctl); 19265 freemsg(mpctl); 19266 return (NULL); 19267 } 19268 19269 bzero(&ird, sizeof (ird)); 19270 19271 ird.ird_route.lp_head = mpctl->b_cont; 19272 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19273 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19274 /* 19275 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19276 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19277 * intended a temporary solution until a proper MIB API is provided 19278 * that provides complete filtering/caller-opt-in. 19279 */ 19280 if (level == EXPER_IP_AND_TESTHIDDEN) 19281 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19282 19283 zoneid = Q_TO_CONN(q)->conn_zoneid; 19284 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19285 19286 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19287 optp->level = MIB2_IP6; 19288 optp->name = MIB2_IP6_ROUTE; 19289 optp->len = msgdsize(ird.ird_route.lp_head); 19290 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19291 (int)optp->level, (int)optp->name, (int)optp->len)); 19292 qreply(q, mpctl); 19293 19294 /* ipv6NetToMediaEntryTable in mp3ctl */ 19295 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19296 19297 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19298 optp->level = MIB2_IP6; 19299 optp->name = MIB2_IP6_MEDIA; 19300 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19301 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19302 (int)optp->level, (int)optp->name, (int)optp->len)); 19303 qreply(q, mp3ctl); 19304 19305 /* ipv6RouteAttributeTable in mp4ctl */ 19306 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19307 optp->level = MIB2_IP6; 19308 optp->name = EXPER_IP_RTATTR; 19309 optp->len = msgdsize(ird.ird_attrs.lp_head); 19310 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19311 (int)optp->level, (int)optp->name, (int)optp->len)); 19312 if (optp->len == 0) 19313 freemsg(mp4ctl); 19314 else 19315 qreply(q, mp4ctl); 19316 19317 return (mp2ctl); 19318 } 19319 19320 /* 19321 * IPv6 mib: One per ill 19322 */ 19323 static mblk_t * 19324 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19325 { 19326 struct opthdr *optp; 19327 mblk_t *mp2ctl; 19328 ill_t *ill; 19329 ill_walk_context_t ctx; 19330 mblk_t *mp_tail = NULL; 19331 19332 /* 19333 * Make a copy of the original message 19334 */ 19335 mp2ctl = copymsg(mpctl); 19336 19337 /* fixed length IPv6 structure ... */ 19338 19339 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19340 optp->level = MIB2_IP6; 19341 optp->name = 0; 19342 /* Include "unknown interface" ip6_mib */ 19343 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19344 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19345 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19346 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19347 ipst->ips_ipv6_forward ? 1 : 2); 19348 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19349 ipst->ips_ipv6_def_hops); 19350 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19351 sizeof (mib2_ipIfStatsEntry_t)); 19352 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19353 sizeof (mib2_ipv6AddrEntry_t)); 19354 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19355 sizeof (mib2_ipv6RouteEntry_t)); 19356 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19357 sizeof (mib2_ipv6NetToMediaEntry_t)); 19358 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19359 sizeof (ipv6_member_t)); 19360 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19361 sizeof (ipv6_grpsrc_t)); 19362 19363 /* 19364 * Synchronize 64- and 32-bit counters 19365 */ 19366 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19367 ipIfStatsHCInReceives); 19368 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19369 ipIfStatsHCInDelivers); 19370 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19371 ipIfStatsHCOutRequests); 19372 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19373 ipIfStatsHCOutForwDatagrams); 19374 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19375 ipIfStatsHCOutMcastPkts); 19376 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19377 ipIfStatsHCInMcastPkts); 19378 19379 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19380 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19381 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19382 (uint_t)sizeof (ipst->ips_ip6_mib))); 19383 } 19384 19385 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19386 ill = ILL_START_WALK_V6(&ctx, ipst); 19387 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19388 ill->ill_ip_mib->ipIfStatsIfIndex = 19389 ill->ill_phyint->phyint_ifindex; 19390 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19391 ipst->ips_ipv6_forward ? 1 : 2); 19392 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19393 ill->ill_max_hops); 19394 19395 /* 19396 * Synchronize 64- and 32-bit counters 19397 */ 19398 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19399 ipIfStatsHCInReceives); 19400 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19401 ipIfStatsHCInDelivers); 19402 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19403 ipIfStatsHCOutRequests); 19404 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19405 ipIfStatsHCOutForwDatagrams); 19406 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19407 ipIfStatsHCOutMcastPkts); 19408 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19409 ipIfStatsHCInMcastPkts); 19410 19411 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19412 (char *)ill->ill_ip_mib, 19413 (int)sizeof (*ill->ill_ip_mib))) { 19414 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19415 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19416 } 19417 } 19418 rw_exit(&ipst->ips_ill_g_lock); 19419 19420 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19421 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19422 (int)optp->level, (int)optp->name, (int)optp->len)); 19423 qreply(q, mpctl); 19424 return (mp2ctl); 19425 } 19426 19427 /* 19428 * ICMPv6 mib: One per ill 19429 */ 19430 static mblk_t * 19431 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19432 { 19433 struct opthdr *optp; 19434 mblk_t *mp2ctl; 19435 ill_t *ill; 19436 ill_walk_context_t ctx; 19437 mblk_t *mp_tail = NULL; 19438 /* 19439 * Make a copy of the original message 19440 */ 19441 mp2ctl = copymsg(mpctl); 19442 19443 /* fixed length ICMPv6 structure ... */ 19444 19445 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19446 optp->level = MIB2_ICMP6; 19447 optp->name = 0; 19448 /* Include "unknown interface" icmp6_mib */ 19449 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19450 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19451 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19452 sizeof (mib2_ipv6IfIcmpEntry_t); 19453 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19454 (char *)&ipst->ips_icmp6_mib, 19455 (int)sizeof (ipst->ips_icmp6_mib))) { 19456 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19457 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19458 } 19459 19460 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19461 ill = ILL_START_WALK_V6(&ctx, ipst); 19462 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19463 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19464 ill->ill_phyint->phyint_ifindex; 19465 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19466 (char *)ill->ill_icmp6_mib, 19467 (int)sizeof (*ill->ill_icmp6_mib))) { 19468 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19469 "%u bytes\n", 19470 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19471 } 19472 } 19473 rw_exit(&ipst->ips_ill_g_lock); 19474 19475 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19476 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19477 (int)optp->level, (int)optp->name, (int)optp->len)); 19478 qreply(q, mpctl); 19479 return (mp2ctl); 19480 } 19481 19482 /* 19483 * ire_walk routine to create both ipRouteEntryTable and 19484 * ipRouteAttributeTable in one IRE walk 19485 */ 19486 static void 19487 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19488 { 19489 ill_t *ill; 19490 ipif_t *ipif; 19491 mib2_ipRouteEntry_t *re; 19492 mib2_ipAttributeEntry_t *iae, *iaeptr; 19493 ipaddr_t gw_addr; 19494 tsol_ire_gw_secattr_t *attrp; 19495 tsol_gc_t *gc = NULL; 19496 tsol_gcgrp_t *gcgrp = NULL; 19497 uint_t sacnt = 0; 19498 int i; 19499 19500 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19501 19502 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19503 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19504 return; 19505 } 19506 19507 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19508 return; 19509 19510 if ((attrp = ire->ire_gw_secattr) != NULL) { 19511 mutex_enter(&attrp->igsa_lock); 19512 if ((gc = attrp->igsa_gc) != NULL) { 19513 gcgrp = gc->gc_grp; 19514 ASSERT(gcgrp != NULL); 19515 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19516 sacnt = 1; 19517 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19518 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19519 gc = gcgrp->gcgrp_head; 19520 sacnt = gcgrp->gcgrp_count; 19521 } 19522 mutex_exit(&attrp->igsa_lock); 19523 19524 /* do nothing if there's no gc to report */ 19525 if (gc == NULL) { 19526 ASSERT(sacnt == 0); 19527 if (gcgrp != NULL) { 19528 /* we might as well drop the lock now */ 19529 rw_exit(&gcgrp->gcgrp_rwlock); 19530 gcgrp = NULL; 19531 } 19532 attrp = NULL; 19533 } 19534 19535 ASSERT(gc == NULL || (gcgrp != NULL && 19536 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19537 } 19538 ASSERT(sacnt == 0 || gc != NULL); 19539 19540 if (sacnt != 0 && 19541 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19542 kmem_free(re, sizeof (*re)); 19543 rw_exit(&gcgrp->gcgrp_rwlock); 19544 return; 19545 } 19546 19547 /* 19548 * Return all IRE types for route table... let caller pick and choose 19549 */ 19550 re->ipRouteDest = ire->ire_addr; 19551 ipif = ire->ire_ipif; 19552 re->ipRouteIfIndex.o_length = 0; 19553 if (ire->ire_type == IRE_CACHE) { 19554 ill = (ill_t *)ire->ire_stq->q_ptr; 19555 re->ipRouteIfIndex.o_length = 19556 ill->ill_name_length == 0 ? 0 : 19557 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19558 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19559 re->ipRouteIfIndex.o_length); 19560 } else if (ipif != NULL) { 19561 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19562 re->ipRouteIfIndex.o_length = 19563 mi_strlen(re->ipRouteIfIndex.o_bytes); 19564 } 19565 re->ipRouteMetric1 = -1; 19566 re->ipRouteMetric2 = -1; 19567 re->ipRouteMetric3 = -1; 19568 re->ipRouteMetric4 = -1; 19569 19570 gw_addr = ire->ire_gateway_addr; 19571 19572 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19573 re->ipRouteNextHop = ire->ire_src_addr; 19574 else 19575 re->ipRouteNextHop = gw_addr; 19576 /* indirect(4), direct(3), or invalid(2) */ 19577 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19578 re->ipRouteType = 2; 19579 else 19580 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19581 re->ipRouteProto = -1; 19582 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19583 re->ipRouteMask = ire->ire_mask; 19584 re->ipRouteMetric5 = -1; 19585 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19586 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19587 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19588 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19589 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19590 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19591 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19592 re->ipRouteInfo.re_flags = ire->ire_flags; 19593 19594 if (ire->ire_flags & RTF_DYNAMIC) { 19595 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19596 } else { 19597 re->ipRouteInfo.re_ire_type = ire->ire_type; 19598 } 19599 19600 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19601 (char *)re, (int)sizeof (*re))) { 19602 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19603 (uint_t)sizeof (*re))); 19604 } 19605 19606 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19607 iaeptr->iae_routeidx = ird->ird_idx; 19608 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19609 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19610 } 19611 19612 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19613 (char *)iae, sacnt * sizeof (*iae))) { 19614 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19615 (unsigned)(sacnt * sizeof (*iae)))); 19616 } 19617 19618 /* bump route index for next pass */ 19619 ird->ird_idx++; 19620 19621 kmem_free(re, sizeof (*re)); 19622 if (sacnt != 0) 19623 kmem_free(iae, sacnt * sizeof (*iae)); 19624 19625 if (gcgrp != NULL) 19626 rw_exit(&gcgrp->gcgrp_rwlock); 19627 } 19628 19629 /* 19630 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19631 */ 19632 static void 19633 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19634 { 19635 ill_t *ill; 19636 ipif_t *ipif; 19637 mib2_ipv6RouteEntry_t *re; 19638 mib2_ipAttributeEntry_t *iae, *iaeptr; 19639 in6_addr_t gw_addr_v6; 19640 tsol_ire_gw_secattr_t *attrp; 19641 tsol_gc_t *gc = NULL; 19642 tsol_gcgrp_t *gcgrp = NULL; 19643 uint_t sacnt = 0; 19644 int i; 19645 19646 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19647 19648 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19649 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19650 return; 19651 } 19652 19653 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19654 return; 19655 19656 if ((attrp = ire->ire_gw_secattr) != NULL) { 19657 mutex_enter(&attrp->igsa_lock); 19658 if ((gc = attrp->igsa_gc) != NULL) { 19659 gcgrp = gc->gc_grp; 19660 ASSERT(gcgrp != NULL); 19661 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19662 sacnt = 1; 19663 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19664 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19665 gc = gcgrp->gcgrp_head; 19666 sacnt = gcgrp->gcgrp_count; 19667 } 19668 mutex_exit(&attrp->igsa_lock); 19669 19670 /* do nothing if there's no gc to report */ 19671 if (gc == NULL) { 19672 ASSERT(sacnt == 0); 19673 if (gcgrp != NULL) { 19674 /* we might as well drop the lock now */ 19675 rw_exit(&gcgrp->gcgrp_rwlock); 19676 gcgrp = NULL; 19677 } 19678 attrp = NULL; 19679 } 19680 19681 ASSERT(gc == NULL || (gcgrp != NULL && 19682 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19683 } 19684 ASSERT(sacnt == 0 || gc != NULL); 19685 19686 if (sacnt != 0 && 19687 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19688 kmem_free(re, sizeof (*re)); 19689 rw_exit(&gcgrp->gcgrp_rwlock); 19690 return; 19691 } 19692 19693 /* 19694 * Return all IRE types for route table... let caller pick and choose 19695 */ 19696 re->ipv6RouteDest = ire->ire_addr_v6; 19697 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19698 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19699 re->ipv6RouteIfIndex.o_length = 0; 19700 ipif = ire->ire_ipif; 19701 if (ire->ire_type == IRE_CACHE) { 19702 ill = (ill_t *)ire->ire_stq->q_ptr; 19703 re->ipv6RouteIfIndex.o_length = 19704 ill->ill_name_length == 0 ? 0 : 19705 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19706 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19707 re->ipv6RouteIfIndex.o_length); 19708 } else if (ipif != NULL) { 19709 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19710 re->ipv6RouteIfIndex.o_length = 19711 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19712 } 19713 19714 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19715 19716 mutex_enter(&ire->ire_lock); 19717 gw_addr_v6 = ire->ire_gateway_addr_v6; 19718 mutex_exit(&ire->ire_lock); 19719 19720 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19721 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19722 else 19723 re->ipv6RouteNextHop = gw_addr_v6; 19724 19725 /* remote(4), local(3), or discard(2) */ 19726 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19727 re->ipv6RouteType = 2; 19728 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19729 re->ipv6RouteType = 3; 19730 else 19731 re->ipv6RouteType = 4; 19732 19733 re->ipv6RouteProtocol = -1; 19734 re->ipv6RoutePolicy = 0; 19735 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19736 re->ipv6RouteNextHopRDI = 0; 19737 re->ipv6RouteWeight = 0; 19738 re->ipv6RouteMetric = 0; 19739 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19740 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19741 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19742 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19743 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19744 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19745 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19746 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19747 19748 if (ire->ire_flags & RTF_DYNAMIC) { 19749 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19750 } else { 19751 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19752 } 19753 19754 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19755 (char *)re, (int)sizeof (*re))) { 19756 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19757 (uint_t)sizeof (*re))); 19758 } 19759 19760 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19761 iaeptr->iae_routeidx = ird->ird_idx; 19762 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19763 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19764 } 19765 19766 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19767 (char *)iae, sacnt * sizeof (*iae))) { 19768 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19769 (unsigned)(sacnt * sizeof (*iae)))); 19770 } 19771 19772 /* bump route index for next pass */ 19773 ird->ird_idx++; 19774 19775 kmem_free(re, sizeof (*re)); 19776 if (sacnt != 0) 19777 kmem_free(iae, sacnt * sizeof (*iae)); 19778 19779 if (gcgrp != NULL) 19780 rw_exit(&gcgrp->gcgrp_rwlock); 19781 } 19782 19783 /* 19784 * ndp_walk routine to create ipv6NetToMediaEntryTable 19785 */ 19786 static int 19787 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19788 { 19789 ill_t *ill; 19790 mib2_ipv6NetToMediaEntry_t ntme; 19791 dl_unitdata_req_t *dl; 19792 19793 ill = nce->nce_ill; 19794 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19795 return (0); 19796 19797 /* 19798 * Neighbor cache entry attached to IRE with on-link 19799 * destination. 19800 */ 19801 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19802 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19803 if ((ill->ill_flags & ILLF_XRESOLV) && 19804 (nce->nce_res_mp != NULL)) { 19805 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19806 ntme.ipv6NetToMediaPhysAddress.o_length = 19807 dl->dl_dest_addr_length; 19808 } else { 19809 ntme.ipv6NetToMediaPhysAddress.o_length = 19810 ill->ill_phys_addr_length; 19811 } 19812 if (nce->nce_res_mp != NULL) { 19813 bcopy((char *)nce->nce_res_mp->b_rptr + 19814 NCE_LL_ADDR_OFFSET(ill), 19815 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19816 ntme.ipv6NetToMediaPhysAddress.o_length); 19817 } else { 19818 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19819 ill->ill_phys_addr_length); 19820 } 19821 /* 19822 * Note: Returns ND_* states. Should be: 19823 * reachable(1), stale(2), delay(3), probe(4), 19824 * invalid(5), unknown(6) 19825 */ 19826 ntme.ipv6NetToMediaState = nce->nce_state; 19827 ntme.ipv6NetToMediaLastUpdated = 0; 19828 19829 /* other(1), dynamic(2), static(3), local(4) */ 19830 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19831 ntme.ipv6NetToMediaType = 4; 19832 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19833 ntme.ipv6NetToMediaType = 1; 19834 } else { 19835 ntme.ipv6NetToMediaType = 2; 19836 } 19837 19838 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19839 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19840 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19841 (uint_t)sizeof (ntme))); 19842 } 19843 return (0); 19844 } 19845 19846 /* 19847 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19848 */ 19849 /* ARGSUSED */ 19850 int 19851 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19852 { 19853 switch (level) { 19854 case MIB2_IP: 19855 case MIB2_ICMP: 19856 switch (name) { 19857 default: 19858 break; 19859 } 19860 return (1); 19861 default: 19862 return (1); 19863 } 19864 } 19865 19866 /* 19867 * When there exists both a 64- and 32-bit counter of a particular type 19868 * (i.e., InReceives), only the 64-bit counters are added. 19869 */ 19870 void 19871 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19872 { 19873 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19874 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19875 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19876 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19877 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19878 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19879 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19880 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19881 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19882 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19883 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19884 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19885 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19886 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19887 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19888 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19889 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19890 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19891 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19892 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19893 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19894 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19895 o2->ipIfStatsInWrongIPVersion); 19896 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19897 o2->ipIfStatsInWrongIPVersion); 19898 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19899 o2->ipIfStatsOutSwitchIPVersion); 19900 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19901 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19902 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19903 o2->ipIfStatsHCInForwDatagrams); 19904 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19905 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19906 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19907 o2->ipIfStatsHCOutForwDatagrams); 19908 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19909 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19910 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19911 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19912 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19913 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19914 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19915 o2->ipIfStatsHCOutMcastOctets); 19916 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19917 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19918 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19919 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19920 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19921 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19922 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19923 } 19924 19925 void 19926 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19927 { 19928 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19929 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19930 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19931 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19932 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19933 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19934 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19935 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19936 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19937 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19938 o2->ipv6IfIcmpInRouterSolicits); 19939 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19940 o2->ipv6IfIcmpInRouterAdvertisements); 19941 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19942 o2->ipv6IfIcmpInNeighborSolicits); 19943 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19944 o2->ipv6IfIcmpInNeighborAdvertisements); 19945 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19946 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19947 o2->ipv6IfIcmpInGroupMembQueries); 19948 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19949 o2->ipv6IfIcmpInGroupMembResponses); 19950 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19951 o2->ipv6IfIcmpInGroupMembReductions); 19952 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19953 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19954 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19955 o2->ipv6IfIcmpOutDestUnreachs); 19956 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19957 o2->ipv6IfIcmpOutAdminProhibs); 19958 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19959 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19960 o2->ipv6IfIcmpOutParmProblems); 19961 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19962 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19963 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19964 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19965 o2->ipv6IfIcmpOutRouterSolicits); 19966 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19967 o2->ipv6IfIcmpOutRouterAdvertisements); 19968 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19969 o2->ipv6IfIcmpOutNeighborSolicits); 19970 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19971 o2->ipv6IfIcmpOutNeighborAdvertisements); 19972 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19973 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19974 o2->ipv6IfIcmpOutGroupMembQueries); 19975 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19976 o2->ipv6IfIcmpOutGroupMembResponses); 19977 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19978 o2->ipv6IfIcmpOutGroupMembReductions); 19979 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19980 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19981 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19982 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19983 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19984 o2->ipv6IfIcmpInBadNeighborSolicitations); 19985 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19986 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19987 o2->ipv6IfIcmpInGroupMembTotal); 19988 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19989 o2->ipv6IfIcmpInGroupMembBadQueries); 19990 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19991 o2->ipv6IfIcmpInGroupMembBadReports); 19992 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19993 o2->ipv6IfIcmpInGroupMembOurReports); 19994 } 19995 19996 /* 19997 * Called before the options are updated to check if this packet will 19998 * be source routed from here. 19999 * This routine assumes that the options are well formed i.e. that they 20000 * have already been checked. 20001 */ 20002 static boolean_t 20003 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 20004 { 20005 ipoptp_t opts; 20006 uchar_t *opt; 20007 uint8_t optval; 20008 uint8_t optlen; 20009 ipaddr_t dst; 20010 ire_t *ire; 20011 20012 if (IS_SIMPLE_IPH(ipha)) { 20013 ip2dbg(("not source routed\n")); 20014 return (B_FALSE); 20015 } 20016 dst = ipha->ipha_dst; 20017 for (optval = ipoptp_first(&opts, ipha); 20018 optval != IPOPT_EOL; 20019 optval = ipoptp_next(&opts)) { 20020 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 20021 opt = opts.ipoptp_cur; 20022 optlen = opts.ipoptp_len; 20023 ip2dbg(("ip_source_routed: opt %d, len %d\n", 20024 optval, optlen)); 20025 switch (optval) { 20026 uint32_t off; 20027 case IPOPT_SSRR: 20028 case IPOPT_LSRR: 20029 /* 20030 * If dst is one of our addresses and there are some 20031 * entries left in the source route return (true). 20032 */ 20033 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 20034 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 20035 if (ire == NULL) { 20036 ip2dbg(("ip_source_routed: not next" 20037 " source route 0x%x\n", 20038 ntohl(dst))); 20039 return (B_FALSE); 20040 } 20041 ire_refrele(ire); 20042 off = opt[IPOPT_OFFSET]; 20043 off--; 20044 if (optlen < IP_ADDR_LEN || 20045 off > optlen - IP_ADDR_LEN) { 20046 /* End of source route */ 20047 ip1dbg(("ip_source_routed: end of SR\n")); 20048 return (B_FALSE); 20049 } 20050 return (B_TRUE); 20051 } 20052 } 20053 ip2dbg(("not source routed\n")); 20054 return (B_FALSE); 20055 } 20056 20057 /* 20058 * Check if the packet contains any source route. 20059 */ 20060 static boolean_t 20061 ip_source_route_included(ipha_t *ipha) 20062 { 20063 ipoptp_t opts; 20064 uint8_t optval; 20065 20066 if (IS_SIMPLE_IPH(ipha)) 20067 return (B_FALSE); 20068 for (optval = ipoptp_first(&opts, ipha); 20069 optval != IPOPT_EOL; 20070 optval = ipoptp_next(&opts)) { 20071 switch (optval) { 20072 case IPOPT_SSRR: 20073 case IPOPT_LSRR: 20074 return (B_TRUE); 20075 } 20076 } 20077 return (B_FALSE); 20078 } 20079 20080 /* 20081 * Called when the IRE expiration timer fires. 20082 */ 20083 void 20084 ip_trash_timer_expire(void *args) 20085 { 20086 int flush_flag = 0; 20087 ire_expire_arg_t iea; 20088 ip_stack_t *ipst = (ip_stack_t *)args; 20089 20090 iea.iea_ipst = ipst; /* No netstack_hold */ 20091 20092 /* 20093 * ip_ire_expire_id is protected by ip_trash_timer_lock. 20094 * This lock makes sure that a new invocation of this function 20095 * that occurs due to an almost immediate timer firing will not 20096 * progress beyond this point until the current invocation is done 20097 */ 20098 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20099 ipst->ips_ip_ire_expire_id = 0; 20100 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20101 20102 /* Periodic timer */ 20103 if (ipst->ips_ip_ire_arp_time_elapsed >= 20104 ipst->ips_ip_ire_arp_interval) { 20105 /* 20106 * Remove all IRE_CACHE entries since they might 20107 * contain arp information. 20108 */ 20109 flush_flag |= FLUSH_ARP_TIME; 20110 ipst->ips_ip_ire_arp_time_elapsed = 0; 20111 IP_STAT(ipst, ip_ire_arp_timer_expired); 20112 } 20113 if (ipst->ips_ip_ire_rd_time_elapsed >= 20114 ipst->ips_ip_ire_redir_interval) { 20115 /* Remove all redirects */ 20116 flush_flag |= FLUSH_REDIRECT_TIME; 20117 ipst->ips_ip_ire_rd_time_elapsed = 0; 20118 IP_STAT(ipst, ip_ire_redirect_timer_expired); 20119 } 20120 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 20121 ipst->ips_ip_ire_pathmtu_interval) { 20122 /* Increase path mtu */ 20123 flush_flag |= FLUSH_MTU_TIME; 20124 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 20125 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 20126 } 20127 20128 /* 20129 * Optimize for the case when there are no redirects in the 20130 * ftable, that is, no need to walk the ftable in that case. 20131 */ 20132 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 20133 iea.iea_flush_flag = flush_flag; 20134 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 20135 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 20136 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 20137 NULL, ALL_ZONES, ipst); 20138 } 20139 if ((flush_flag & FLUSH_REDIRECT_TIME) && 20140 ipst->ips_ip_redirect_cnt > 0) { 20141 iea.iea_flush_flag = flush_flag; 20142 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 20143 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 20144 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 20145 } 20146 if (flush_flag & FLUSH_MTU_TIME) { 20147 /* 20148 * Walk all IPv6 IRE's and update them 20149 * Note that ARP and redirect timers are not 20150 * needed since NUD handles stale entries. 20151 */ 20152 flush_flag = FLUSH_MTU_TIME; 20153 iea.iea_flush_flag = flush_flag; 20154 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20155 ALL_ZONES, ipst); 20156 } 20157 20158 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20159 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20160 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20161 20162 /* 20163 * Hold the lock to serialize timeout calls and prevent 20164 * stale values in ip_ire_expire_id. Otherwise it is possible 20165 * for the timer to fire and a new invocation of this function 20166 * to start before the return value of timeout has been stored 20167 * in ip_ire_expire_id by the current invocation. 20168 */ 20169 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20170 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20171 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20172 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20173 } 20174 20175 /* 20176 * Called by the memory allocator subsystem directly, when the system 20177 * is running low on memory. 20178 */ 20179 /* ARGSUSED */ 20180 void 20181 ip_trash_ire_reclaim(void *args) 20182 { 20183 netstack_handle_t nh; 20184 netstack_t *ns; 20185 20186 netstack_next_init(&nh); 20187 while ((ns = netstack_next(&nh)) != NULL) { 20188 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20189 netstack_rele(ns); 20190 } 20191 netstack_next_fini(&nh); 20192 } 20193 20194 static void 20195 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20196 { 20197 ire_cache_count_t icc; 20198 ire_cache_reclaim_t icr; 20199 ncc_cache_count_t ncc; 20200 nce_cache_reclaim_t ncr; 20201 uint_t delete_cnt; 20202 /* 20203 * Memory reclaim call back. 20204 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20205 * Then, with a target of freeing 1/Nth of IRE_CACHE 20206 * entries, determine what fraction to free for 20207 * each category of IRE_CACHE entries giving absolute priority 20208 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20209 * entry will be freed unless all offlink entries are freed). 20210 */ 20211 icc.icc_total = 0; 20212 icc.icc_unused = 0; 20213 icc.icc_offlink = 0; 20214 icc.icc_pmtu = 0; 20215 icc.icc_onlink = 0; 20216 ire_walk(ire_cache_count, (char *)&icc, ipst); 20217 20218 /* 20219 * Free NCEs for IPv6 like the onlink ires. 20220 */ 20221 ncc.ncc_total = 0; 20222 ncc.ncc_host = 0; 20223 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20224 20225 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20226 icc.icc_pmtu + icc.icc_onlink); 20227 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20228 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20229 if (delete_cnt == 0) 20230 return; 20231 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20232 /* Always delete all unused offlink entries */ 20233 icr.icr_ipst = ipst; 20234 icr.icr_unused = 1; 20235 if (delete_cnt <= icc.icc_unused) { 20236 /* 20237 * Only need to free unused entries. In other words, 20238 * there are enough unused entries to free to meet our 20239 * target number of freed ire cache entries. 20240 */ 20241 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20242 ncr.ncr_host = 0; 20243 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20244 /* 20245 * Only need to free unused entries, plus a fraction of offlink 20246 * entries. It follows from the first if statement that 20247 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20248 */ 20249 delete_cnt -= icc.icc_unused; 20250 /* Round up # deleted by truncating fraction */ 20251 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20252 icr.icr_pmtu = icr.icr_onlink = 0; 20253 ncr.ncr_host = 0; 20254 } else if (delete_cnt <= 20255 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20256 /* 20257 * Free all unused and offlink entries, plus a fraction of 20258 * pmtu entries. It follows from the previous if statement 20259 * that icc_pmtu is non-zero, and that 20260 * delete_cnt != icc_unused + icc_offlink. 20261 */ 20262 icr.icr_offlink = 1; 20263 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20264 /* Round up # deleted by truncating fraction */ 20265 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20266 icr.icr_onlink = 0; 20267 ncr.ncr_host = 0; 20268 } else { 20269 /* 20270 * Free all unused, offlink, and pmtu entries, plus a fraction 20271 * of onlink entries. If we're here, then we know that 20272 * icc_onlink is non-zero, and that 20273 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20274 */ 20275 icr.icr_offlink = icr.icr_pmtu = 1; 20276 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20277 icc.icc_pmtu; 20278 /* Round up # deleted by truncating fraction */ 20279 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20280 /* Using the same delete fraction as for onlink IREs */ 20281 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20282 } 20283 #ifdef DEBUG 20284 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20285 "fractions %d/%d/%d/%d\n", 20286 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20287 icc.icc_unused, icc.icc_offlink, 20288 icc.icc_pmtu, icc.icc_onlink, 20289 icr.icr_unused, icr.icr_offlink, 20290 icr.icr_pmtu, icr.icr_onlink)); 20291 #endif 20292 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20293 if (ncr.ncr_host != 0) 20294 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20295 (uchar_t *)&ncr, ipst); 20296 #ifdef DEBUG 20297 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20298 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20299 ire_walk(ire_cache_count, (char *)&icc, ipst); 20300 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20301 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20302 icc.icc_pmtu, icc.icc_onlink)); 20303 #endif 20304 } 20305 20306 /* 20307 * ip_unbind is called when a copy of an unbind request is received from the 20308 * upper level protocol. We remove this conn from any fanout hash list it is 20309 * on, and zero out the bind information. No reply is expected up above. 20310 */ 20311 void 20312 ip_unbind(conn_t *connp) 20313 { 20314 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20315 20316 if (is_system_labeled() && connp->conn_anon_port) { 20317 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20318 connp->conn_mlp_type, connp->conn_ulp, 20319 ntohs(connp->conn_lport), B_FALSE); 20320 connp->conn_anon_port = 0; 20321 } 20322 connp->conn_mlp_type = mlptSingle; 20323 20324 ipcl_hash_remove(connp); 20325 } 20326 20327 /* 20328 * Write side put procedure. Outbound data, IOCTLs, responses from 20329 * resolvers, etc, come down through here. 20330 * 20331 * arg2 is always a queue_t *. 20332 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20333 * the zoneid. 20334 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20335 */ 20336 void 20337 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20338 { 20339 ip_output_options(arg, mp, arg2, caller, &zero_info); 20340 } 20341 20342 void 20343 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20344 ip_opt_info_t *infop) 20345 { 20346 conn_t *connp = NULL; 20347 queue_t *q = (queue_t *)arg2; 20348 ipha_t *ipha; 20349 #define rptr ((uchar_t *)ipha) 20350 ire_t *ire = NULL; 20351 ire_t *sctp_ire = NULL; 20352 uint32_t v_hlen_tos_len; 20353 ipaddr_t dst; 20354 mblk_t *first_mp = NULL; 20355 boolean_t mctl_present; 20356 ipsec_out_t *io; 20357 int match_flags; 20358 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20359 ipif_t *dst_ipif; 20360 boolean_t multirt_need_resolve = B_FALSE; 20361 mblk_t *copy_mp = NULL; 20362 int err = 0; 20363 zoneid_t zoneid; 20364 boolean_t need_decref = B_FALSE; 20365 boolean_t ignore_dontroute = B_FALSE; 20366 boolean_t ignore_nexthop = B_FALSE; 20367 boolean_t ip_nexthop = B_FALSE; 20368 ipaddr_t nexthop_addr; 20369 ip_stack_t *ipst; 20370 20371 #ifdef _BIG_ENDIAN 20372 #define V_HLEN (v_hlen_tos_len >> 24) 20373 #else 20374 #define V_HLEN (v_hlen_tos_len & 0xFF) 20375 #endif 20376 20377 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20378 "ip_wput_start: q %p", q); 20379 20380 /* 20381 * ip_wput fast path 20382 */ 20383 20384 /* is packet from ARP ? */ 20385 if (q->q_next != NULL) { 20386 zoneid = (zoneid_t)(uintptr_t)arg; 20387 goto qnext; 20388 } 20389 20390 connp = (conn_t *)arg; 20391 ASSERT(connp != NULL); 20392 zoneid = connp->conn_zoneid; 20393 ipst = connp->conn_netstack->netstack_ip; 20394 ASSERT(ipst != NULL); 20395 20396 /* is queue flow controlled? */ 20397 if ((q->q_first != NULL || connp->conn_draining) && 20398 (caller == IP_WPUT)) { 20399 ASSERT(!need_decref); 20400 ASSERT(!IP_FLOW_CONTROLLED_ULP(connp->conn_ulp)); 20401 (void) putq(q, mp); 20402 return; 20403 } 20404 20405 /* Multidata transmit? */ 20406 if (DB_TYPE(mp) == M_MULTIDATA) { 20407 /* 20408 * We should never get here, since all Multidata messages 20409 * originating from tcp should have been directed over to 20410 * tcp_multisend() in the first place. 20411 */ 20412 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20413 freemsg(mp); 20414 return; 20415 } else if (DB_TYPE(mp) != M_DATA) 20416 goto notdata; 20417 20418 if (mp->b_flag & MSGHASREF) { 20419 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20420 mp->b_flag &= ~MSGHASREF; 20421 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20422 need_decref = B_TRUE; 20423 } 20424 ipha = (ipha_t *)mp->b_rptr; 20425 20426 /* is IP header non-aligned or mblk smaller than basic IP header */ 20427 #ifndef SAFETY_BEFORE_SPEED 20428 if (!OK_32PTR(rptr) || 20429 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20430 goto hdrtoosmall; 20431 #endif 20432 20433 ASSERT(OK_32PTR(ipha)); 20434 20435 /* 20436 * This function assumes that mp points to an IPv4 packet. If it's the 20437 * wrong version, we'll catch it again in ip_output_v6. 20438 * 20439 * Note that this is *only* locally-generated output here, and never 20440 * forwarded data, and that we need to deal only with transports that 20441 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20442 * label.) 20443 */ 20444 if (is_system_labeled() && 20445 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20446 !connp->conn_ulp_labeled) { 20447 cred_t *credp; 20448 pid_t pid; 20449 20450 credp = BEST_CRED(mp, connp, &pid); 20451 err = tsol_check_label(credp, &mp, 20452 connp->conn_mac_mode, ipst, pid); 20453 ipha = (ipha_t *)mp->b_rptr; 20454 if (err != 0) { 20455 first_mp = mp; 20456 if (err == EINVAL) 20457 goto icmp_parameter_problem; 20458 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20459 goto discard_pkt; 20460 } 20461 } 20462 20463 ASSERT(infop != NULL); 20464 20465 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20466 /* 20467 * IP_PKTINFO ancillary option is present. 20468 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20469 * allows using address of any zone as the source address. 20470 */ 20471 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20472 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20473 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20474 if (ire == NULL) 20475 goto drop_pkt; 20476 ire_refrele(ire); 20477 ire = NULL; 20478 } 20479 20480 /* 20481 * IP_BOUND_IF has precedence over the ill index passed in IP_PKTINFO. 20482 */ 20483 if (infop->ip_opt_ill_index != 0 && connp->conn_outgoing_ill == NULL) { 20484 xmit_ill = ill_lookup_on_ifindex(infop->ip_opt_ill_index, 20485 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20486 20487 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20488 goto drop_pkt; 20489 /* 20490 * check that there is an ipif belonging 20491 * to our zone. IPCL_ZONEID is not used because 20492 * IP_ALLZONES option is valid only when the ill is 20493 * accessible from all zones i.e has a valid ipif in 20494 * all zones. 20495 */ 20496 if (!ipif_lookup_zoneid(xmit_ill, zoneid, 0, NULL)) { 20497 goto drop_pkt; 20498 } 20499 } 20500 20501 /* 20502 * If there is a policy, try to attach an ipsec_out in 20503 * the front. At the end, first_mp either points to a 20504 * M_DATA message or IPSEC_OUT message linked to a 20505 * M_DATA message. We have to do it now as we might 20506 * lose the "conn" if we go through ip_newroute. 20507 */ 20508 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20509 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20510 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20511 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20512 if (need_decref) 20513 CONN_DEC_REF(connp); 20514 return; 20515 } 20516 ASSERT(mp->b_datap->db_type == M_CTL); 20517 first_mp = mp; 20518 mp = mp->b_cont; 20519 mctl_present = B_TRUE; 20520 } else { 20521 first_mp = mp; 20522 mctl_present = B_FALSE; 20523 } 20524 20525 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20526 20527 /* is wrong version or IP options present */ 20528 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20529 goto version_hdrlen_check; 20530 dst = ipha->ipha_dst; 20531 20532 /* If IP_BOUND_IF has been set, use that ill. */ 20533 if (connp->conn_outgoing_ill != NULL) { 20534 xmit_ill = conn_get_held_ill(connp, 20535 &connp->conn_outgoing_ill, &err); 20536 if (err == ILL_LOOKUP_FAILED) 20537 goto drop_pkt; 20538 20539 goto send_from_ill; 20540 } 20541 20542 /* is packet multicast? */ 20543 if (CLASSD(dst)) 20544 goto multicast; 20545 20546 /* 20547 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20548 * takes precedence over conn_dontroute and conn_nexthop_set 20549 */ 20550 if (xmit_ill != NULL) 20551 goto send_from_ill; 20552 20553 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20554 /* 20555 * If the destination is a broadcast, local, or loopback 20556 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20557 * standard path. 20558 */ 20559 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20560 if ((ire == NULL) || (ire->ire_type & 20561 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20562 if (ire != NULL) { 20563 ire_refrele(ire); 20564 /* No more access to ire */ 20565 ire = NULL; 20566 } 20567 /* 20568 * bypass routing checks and go directly to interface. 20569 */ 20570 if (connp->conn_dontroute) 20571 goto dontroute; 20572 20573 ASSERT(connp->conn_nexthop_set); 20574 ip_nexthop = B_TRUE; 20575 nexthop_addr = connp->conn_nexthop_v4; 20576 goto send_from_ill; 20577 } 20578 20579 /* Must be a broadcast, a loopback or a local ire */ 20580 ire_refrele(ire); 20581 /* No more access to ire */ 20582 ire = NULL; 20583 } 20584 20585 /* 20586 * We cache IRE_CACHEs to avoid lookups. We don't do 20587 * this for the tcp global queue and listen end point 20588 * as it does not really have a real destination to 20589 * talk to. This is also true for SCTP. 20590 */ 20591 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20592 !connp->conn_fully_bound) { 20593 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20594 if (ire == NULL) 20595 goto noirefound; 20596 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20597 "ip_wput_end: q %p (%S)", q, "end"); 20598 20599 /* 20600 * Check if the ire has the RTF_MULTIRT flag, inherited 20601 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20602 */ 20603 if (ire->ire_flags & RTF_MULTIRT) { 20604 20605 /* 20606 * Force the TTL of multirouted packets if required. 20607 * The TTL of such packets is bounded by the 20608 * ip_multirt_ttl ndd variable. 20609 */ 20610 if ((ipst->ips_ip_multirt_ttl > 0) && 20611 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20612 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20613 "(was %d), dst 0x%08x\n", 20614 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20615 ntohl(ire->ire_addr))); 20616 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20617 } 20618 /* 20619 * We look at this point if there are pending 20620 * unresolved routes. ire_multirt_resolvable() 20621 * checks in O(n) that all IRE_OFFSUBNET ire 20622 * entries for the packet's destination and 20623 * flagged RTF_MULTIRT are currently resolved. 20624 * If some remain unresolved, we make a copy 20625 * of the current message. It will be used 20626 * to initiate additional route resolutions. 20627 */ 20628 multirt_need_resolve = 20629 ire_multirt_need_resolve(ire->ire_addr, 20630 msg_getlabel(first_mp), ipst); 20631 ip2dbg(("ip_wput[TCP]: ire %p, " 20632 "multirt_need_resolve %d, first_mp %p\n", 20633 (void *)ire, multirt_need_resolve, 20634 (void *)first_mp)); 20635 if (multirt_need_resolve) { 20636 copy_mp = copymsg(first_mp); 20637 if (copy_mp != NULL) { 20638 MULTIRT_DEBUG_TAG(copy_mp); 20639 } 20640 } 20641 } 20642 20643 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20644 20645 /* 20646 * Try to resolve another multiroute if 20647 * ire_multirt_need_resolve() deemed it necessary. 20648 */ 20649 if (copy_mp != NULL) 20650 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20651 if (need_decref) 20652 CONN_DEC_REF(connp); 20653 return; 20654 } 20655 20656 /* 20657 * Access to conn_ire_cache. (protected by conn_lock) 20658 * 20659 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20660 * the ire bucket lock here to check for CONDEMNED as it is okay to 20661 * send a packet or two with the IRE_CACHE that is going away. 20662 * Access to the ire requires an ire refhold on the ire prior to 20663 * its use since an interface unplumb thread may delete the cached 20664 * ire and release the refhold at any time. 20665 * 20666 * Caching an ire in the conn_ire_cache 20667 * 20668 * o Caching an ire pointer in the conn requires a strict check for 20669 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20670 * ires before cleaning up the conns. So the caching of an ire pointer 20671 * in the conn is done after making sure under the bucket lock that the 20672 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20673 * caching an ire after the unplumb thread has cleaned up the conn. 20674 * If the conn does not send a packet subsequently the unplumb thread 20675 * will be hanging waiting for the ire count to drop to zero. 20676 * 20677 * o We also need to atomically test for a null conn_ire_cache and 20678 * set the conn_ire_cache under the the protection of the conn_lock 20679 * to avoid races among concurrent threads trying to simultaneously 20680 * cache an ire in the conn_ire_cache. 20681 */ 20682 mutex_enter(&connp->conn_lock); 20683 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20684 20685 if (ire != NULL && ire->ire_addr == dst && 20686 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20687 20688 IRE_REFHOLD(ire); 20689 mutex_exit(&connp->conn_lock); 20690 20691 } else { 20692 boolean_t cached = B_FALSE; 20693 connp->conn_ire_cache = NULL; 20694 mutex_exit(&connp->conn_lock); 20695 /* Release the old ire */ 20696 if (ire != NULL && sctp_ire == NULL) 20697 IRE_REFRELE_NOTR(ire); 20698 20699 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20700 if (ire == NULL) 20701 goto noirefound; 20702 IRE_REFHOLD_NOTR(ire); 20703 20704 mutex_enter(&connp->conn_lock); 20705 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20706 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20707 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20708 if (connp->conn_ulp == IPPROTO_TCP) 20709 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20710 connp->conn_ire_cache = ire; 20711 cached = B_TRUE; 20712 } 20713 rw_exit(&ire->ire_bucket->irb_lock); 20714 } 20715 mutex_exit(&connp->conn_lock); 20716 20717 /* 20718 * We can continue to use the ire but since it was 20719 * not cached, we should drop the extra reference. 20720 */ 20721 if (!cached) 20722 IRE_REFRELE_NOTR(ire); 20723 } 20724 20725 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20726 "ip_wput_end: q %p (%S)", q, "end"); 20727 20728 /* 20729 * Check if the ire has the RTF_MULTIRT flag, inherited 20730 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20731 */ 20732 if (ire->ire_flags & RTF_MULTIRT) { 20733 /* 20734 * Force the TTL of multirouted packets if required. 20735 * The TTL of such packets is bounded by the 20736 * ip_multirt_ttl ndd variable. 20737 */ 20738 if ((ipst->ips_ip_multirt_ttl > 0) && 20739 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20740 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20741 "(was %d), dst 0x%08x\n", 20742 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20743 ntohl(ire->ire_addr))); 20744 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20745 } 20746 20747 /* 20748 * At this point, we check to see if there are any pending 20749 * unresolved routes. ire_multirt_resolvable() 20750 * checks in O(n) that all IRE_OFFSUBNET ire 20751 * entries for the packet's destination and 20752 * flagged RTF_MULTIRT are currently resolved. 20753 * If some remain unresolved, we make a copy 20754 * of the current message. It will be used 20755 * to initiate additional route resolutions. 20756 */ 20757 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20758 msg_getlabel(first_mp), ipst); 20759 ip2dbg(("ip_wput[not TCP]: ire %p, " 20760 "multirt_need_resolve %d, first_mp %p\n", 20761 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20762 if (multirt_need_resolve) { 20763 copy_mp = copymsg(first_mp); 20764 if (copy_mp != NULL) { 20765 MULTIRT_DEBUG_TAG(copy_mp); 20766 } 20767 } 20768 } 20769 20770 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20771 20772 /* 20773 * Try to resolve another multiroute if 20774 * ire_multirt_resolvable() deemed it necessary 20775 */ 20776 if (copy_mp != NULL) 20777 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20778 if (need_decref) 20779 CONN_DEC_REF(connp); 20780 return; 20781 20782 qnext: 20783 /* 20784 * Upper Level Protocols pass down complete IP datagrams 20785 * as M_DATA messages. Everything else is a sideshow. 20786 * 20787 * 1) We could be re-entering ip_wput because of ip_neworute 20788 * in which case we could have a IPSEC_OUT message. We 20789 * need to pass through ip_wput like other datagrams and 20790 * hence cannot branch to ip_wput_nondata. 20791 * 20792 * 2) ARP, AH, ESP, and other clients who are on the module 20793 * instance of IP stream, give us something to deal with. 20794 * We will handle AH and ESP here and rest in ip_wput_nondata. 20795 * 20796 * 3) ICMP replies also could come here. 20797 */ 20798 ipst = ILLQ_TO_IPST(q); 20799 20800 if (DB_TYPE(mp) != M_DATA) { 20801 notdata: 20802 if (DB_TYPE(mp) == M_CTL) { 20803 /* 20804 * M_CTL messages are used by ARP, AH and ESP to 20805 * communicate with IP. We deal with IPSEC_IN and 20806 * IPSEC_OUT here. ip_wput_nondata handles other 20807 * cases. 20808 */ 20809 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20810 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20811 first_mp = mp->b_cont; 20812 first_mp->b_flag &= ~MSGHASREF; 20813 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20814 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20815 CONN_DEC_REF(connp); 20816 connp = NULL; 20817 } 20818 if (ii->ipsec_info_type == IPSEC_IN) { 20819 /* 20820 * Either this message goes back to 20821 * IPsec for further processing or to 20822 * ULP after policy checks. 20823 */ 20824 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20825 return; 20826 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20827 io = (ipsec_out_t *)ii; 20828 if (io->ipsec_out_proc_begin) { 20829 /* 20830 * IPsec processing has already started. 20831 * Complete it. 20832 * IPQoS notes: We don't care what is 20833 * in ipsec_out_ill_index since this 20834 * won't be processed for IPQoS policies 20835 * in ipsec_out_process. 20836 */ 20837 ipsec_out_process(q, mp, NULL, 20838 io->ipsec_out_ill_index); 20839 return; 20840 } else { 20841 connp = (q->q_next != NULL) ? 20842 NULL : Q_TO_CONN(q); 20843 first_mp = mp; 20844 mp = mp->b_cont; 20845 mctl_present = B_TRUE; 20846 } 20847 zoneid = io->ipsec_out_zoneid; 20848 ASSERT(zoneid != ALL_ZONES); 20849 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20850 /* 20851 * It's an IPsec control message requesting 20852 * an SADB update to be sent to the IPsec 20853 * hardware acceleration capable ills. 20854 */ 20855 ipsec_ctl_t *ipsec_ctl = 20856 (ipsec_ctl_t *)mp->b_rptr; 20857 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20858 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20859 mblk_t *cmp = mp->b_cont; 20860 20861 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20862 ASSERT(cmp != NULL); 20863 20864 freeb(mp); 20865 ill_ipsec_capab_send_all(satype, cmp, sa, 20866 ipst->ips_netstack); 20867 return; 20868 } else { 20869 /* 20870 * This must be ARP or special TSOL signaling. 20871 */ 20872 ip_wput_nondata(NULL, q, mp, NULL); 20873 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20874 "ip_wput_end: q %p (%S)", q, "nondata"); 20875 return; 20876 } 20877 } else { 20878 /* 20879 * This must be non-(ARP/AH/ESP) messages. 20880 */ 20881 ASSERT(!need_decref); 20882 ip_wput_nondata(NULL, q, mp, NULL); 20883 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20884 "ip_wput_end: q %p (%S)", q, "nondata"); 20885 return; 20886 } 20887 } else { 20888 first_mp = mp; 20889 mctl_present = B_FALSE; 20890 } 20891 20892 ASSERT(first_mp != NULL); 20893 20894 if (mctl_present) { 20895 io = (ipsec_out_t *)first_mp->b_rptr; 20896 if (io->ipsec_out_ip_nexthop) { 20897 /* 20898 * We may have lost the conn context if we are 20899 * coming here from ip_newroute(). Copy the 20900 * nexthop information. 20901 */ 20902 ip_nexthop = B_TRUE; 20903 nexthop_addr = io->ipsec_out_nexthop_addr; 20904 20905 ipha = (ipha_t *)mp->b_rptr; 20906 dst = ipha->ipha_dst; 20907 goto send_from_ill; 20908 } 20909 } 20910 20911 ASSERT(xmit_ill == NULL); 20912 20913 /* We have a complete IP datagram heading outbound. */ 20914 ipha = (ipha_t *)mp->b_rptr; 20915 20916 #ifndef SPEED_BEFORE_SAFETY 20917 /* 20918 * Make sure we have a full-word aligned message and that at least 20919 * a simple IP header is accessible in the first message. If not, 20920 * try a pullup. For labeled systems we need to always take this 20921 * path as M_CTLs are "notdata" but have trailing data to process. 20922 */ 20923 if (!OK_32PTR(rptr) || 20924 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 20925 hdrtoosmall: 20926 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20927 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20928 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20929 if (first_mp == NULL) 20930 first_mp = mp; 20931 goto discard_pkt; 20932 } 20933 20934 /* This function assumes that mp points to an IPv4 packet. */ 20935 if (is_system_labeled() && 20936 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20937 (connp == NULL || !connp->conn_ulp_labeled)) { 20938 cred_t *credp; 20939 pid_t pid; 20940 20941 if (connp != NULL) { 20942 credp = BEST_CRED(mp, connp, &pid); 20943 err = tsol_check_label(credp, &mp, 20944 connp->conn_mac_mode, ipst, pid); 20945 } else if ((credp = msg_getcred(mp, &pid)) != NULL) { 20946 err = tsol_check_label(credp, &mp, 20947 CONN_MAC_DEFAULT, ipst, pid); 20948 } 20949 ipha = (ipha_t *)mp->b_rptr; 20950 if (mctl_present) 20951 first_mp->b_cont = mp; 20952 else 20953 first_mp = mp; 20954 if (err != 0) { 20955 if (err == EINVAL) 20956 goto icmp_parameter_problem; 20957 ip2dbg(("ip_wput: label check failed (%d)\n", 20958 err)); 20959 goto discard_pkt; 20960 } 20961 } 20962 20963 ipha = (ipha_t *)mp->b_rptr; 20964 if (first_mp == NULL) { 20965 ASSERT(xmit_ill == NULL); 20966 /* 20967 * If we got here because of "goto hdrtoosmall" 20968 * We need to attach a IPSEC_OUT. 20969 */ 20970 if (connp->conn_out_enforce_policy) { 20971 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20972 NULL, ipha->ipha_protocol, 20973 ipst->ips_netstack)) == NULL)) { 20974 BUMP_MIB(&ipst->ips_ip_mib, 20975 ipIfStatsOutDiscards); 20976 if (need_decref) 20977 CONN_DEC_REF(connp); 20978 return; 20979 } else { 20980 ASSERT(mp->b_datap->db_type == M_CTL); 20981 first_mp = mp; 20982 mp = mp->b_cont; 20983 mctl_present = B_TRUE; 20984 } 20985 } else { 20986 first_mp = mp; 20987 mctl_present = B_FALSE; 20988 } 20989 } 20990 } 20991 #endif 20992 20993 /* Most of the code below is written for speed, not readability */ 20994 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20995 20996 /* 20997 * If ip_newroute() fails, we're going to need a full 20998 * header for the icmp wraparound. 20999 */ 21000 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 21001 uint_t v_hlen; 21002 version_hdrlen_check: 21003 ASSERT(first_mp != NULL); 21004 v_hlen = V_HLEN; 21005 /* 21006 * siphon off IPv6 packets coming down from transport 21007 * layer modules here. 21008 * Note: high-order bit carries NUD reachability confirmation 21009 */ 21010 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 21011 /* 21012 * FIXME: assume that callers of ip_output* call 21013 * the right version? 21014 */ 21015 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 21016 ASSERT(xmit_ill == NULL); 21017 if (need_decref) 21018 mp->b_flag |= MSGHASREF; 21019 (void) ip_output_v6(arg, first_mp, arg2, caller); 21020 return; 21021 } 21022 21023 if ((v_hlen >> 4) != IP_VERSION) { 21024 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21025 "ip_wput_end: q %p (%S)", q, "badvers"); 21026 goto discard_pkt; 21027 } 21028 /* 21029 * Is the header length at least 20 bytes? 21030 * 21031 * Are there enough bytes accessible in the header? If 21032 * not, try a pullup. 21033 */ 21034 v_hlen &= 0xF; 21035 v_hlen <<= 2; 21036 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 21037 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21038 "ip_wput_end: q %p (%S)", q, "badlen"); 21039 goto discard_pkt; 21040 } 21041 if (v_hlen > (mp->b_wptr - rptr)) { 21042 if (!pullupmsg(mp, v_hlen)) { 21043 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21044 "ip_wput_end: q %p (%S)", q, "badpullup2"); 21045 goto discard_pkt; 21046 } 21047 ipha = (ipha_t *)mp->b_rptr; 21048 } 21049 /* 21050 * Move first entry from any source route into ipha_dst and 21051 * verify the options 21052 */ 21053 if (ip_wput_options(q, first_mp, ipha, mctl_present, 21054 zoneid, ipst)) { 21055 ASSERT(xmit_ill == NULL); 21056 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21057 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21058 "ip_wput_end: q %p (%S)", q, "badopts"); 21059 if (need_decref) 21060 CONN_DEC_REF(connp); 21061 return; 21062 } 21063 } 21064 dst = ipha->ipha_dst; 21065 21066 /* 21067 * Try to get an IRE_CACHE for the destination address. If we can't, 21068 * we have to run the packet through ip_newroute which will take 21069 * the appropriate action to arrange for an IRE_CACHE, such as querying 21070 * a resolver, or assigning a default gateway, etc. 21071 */ 21072 if (CLASSD(dst)) { 21073 ipif_t *ipif; 21074 uint32_t setsrc = 0; 21075 21076 multicast: 21077 ASSERT(first_mp != NULL); 21078 ip2dbg(("ip_wput: CLASSD\n")); 21079 if (connp == NULL) { 21080 /* 21081 * Use the first good ipif on the ill. 21082 * XXX Should this ever happen? (Appears 21083 * to show up with just ppp and no ethernet due 21084 * to in.rdisc.) 21085 * However, ire_send should be able to 21086 * call ip_wput_ire directly. 21087 * 21088 * XXX Also, this can happen for ICMP and other packets 21089 * with multicast source addresses. Perhaps we should 21090 * fix things so that we drop the packet in question, 21091 * but for now, just run with it. 21092 */ 21093 ill_t *ill = (ill_t *)q->q_ptr; 21094 21095 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21096 if (ipif == NULL) { 21097 if (need_decref) 21098 CONN_DEC_REF(connp); 21099 freemsg(first_mp); 21100 return; 21101 } 21102 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21103 ntohl(dst), ill->ill_name)); 21104 } else { 21105 /* 21106 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 21107 * and IP_MULTICAST_IF. The block comment above this 21108 * function explains the locking mechanism used here. 21109 */ 21110 if (xmit_ill == NULL) { 21111 xmit_ill = conn_get_held_ill(connp, 21112 &connp->conn_outgoing_ill, &err); 21113 if (err == ILL_LOOKUP_FAILED) { 21114 ip1dbg(("ip_wput: No ill for " 21115 "IP_BOUND_IF\n")); 21116 BUMP_MIB(&ipst->ips_ip_mib, 21117 ipIfStatsOutNoRoutes); 21118 goto drop_pkt; 21119 } 21120 } 21121 21122 if (xmit_ill == NULL) { 21123 ipif = conn_get_held_ipif(connp, 21124 &connp->conn_multicast_ipif, &err); 21125 if (err == IPIF_LOOKUP_FAILED) { 21126 ip1dbg(("ip_wput: No ipif for " 21127 "multicast\n")); 21128 BUMP_MIB(&ipst->ips_ip_mib, 21129 ipIfStatsOutNoRoutes); 21130 goto drop_pkt; 21131 } 21132 } 21133 if (xmit_ill != NULL) { 21134 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21135 if (ipif == NULL) { 21136 ip1dbg(("ip_wput: No ipif for " 21137 "xmit_ill\n")); 21138 BUMP_MIB(&ipst->ips_ip_mib, 21139 ipIfStatsOutNoRoutes); 21140 goto drop_pkt; 21141 } 21142 } else if (ipif == NULL || ipif->ipif_isv6) { 21143 /* 21144 * We must do this ipif determination here 21145 * else we could pass through ip_newroute 21146 * and come back here without the conn context. 21147 * 21148 * Note: we do late binding i.e. we bind to 21149 * the interface when the first packet is sent. 21150 * For performance reasons we do not rebind on 21151 * each packet but keep the binding until the 21152 * next IP_MULTICAST_IF option. 21153 * 21154 * conn_multicast_{ipif,ill} are shared between 21155 * IPv4 and IPv6 and AF_INET6 sockets can 21156 * send both IPv4 and IPv6 packets. Hence 21157 * we have to check that "isv6" matches above. 21158 */ 21159 if (ipif != NULL) 21160 ipif_refrele(ipif); 21161 ipif = ipif_lookup_group(dst, zoneid, ipst); 21162 if (ipif == NULL) { 21163 ip1dbg(("ip_wput: No ipif for " 21164 "multicast\n")); 21165 BUMP_MIB(&ipst->ips_ip_mib, 21166 ipIfStatsOutNoRoutes); 21167 goto drop_pkt; 21168 } 21169 err = conn_set_held_ipif(connp, 21170 &connp->conn_multicast_ipif, ipif); 21171 if (err == IPIF_LOOKUP_FAILED) { 21172 ipif_refrele(ipif); 21173 ip1dbg(("ip_wput: No ipif for " 21174 "multicast\n")); 21175 BUMP_MIB(&ipst->ips_ip_mib, 21176 ipIfStatsOutNoRoutes); 21177 goto drop_pkt; 21178 } 21179 } 21180 } 21181 ASSERT(!ipif->ipif_isv6); 21182 /* 21183 * As we may lose the conn by the time we reach ip_wput_ire, 21184 * we copy conn_multicast_loop and conn_dontroute on to an 21185 * ipsec_out. In case if this datagram goes out secure, 21186 * we need the ill_index also. Copy that also into the 21187 * ipsec_out. 21188 */ 21189 if (mctl_present) { 21190 io = (ipsec_out_t *)first_mp->b_rptr; 21191 ASSERT(first_mp->b_datap->db_type == M_CTL); 21192 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21193 } else { 21194 ASSERT(mp == first_mp); 21195 if ((first_mp = allocb(sizeof (ipsec_info_t), 21196 BPRI_HI)) == NULL) { 21197 ipif_refrele(ipif); 21198 first_mp = mp; 21199 goto discard_pkt; 21200 } 21201 first_mp->b_datap->db_type = M_CTL; 21202 first_mp->b_wptr += sizeof (ipsec_info_t); 21203 /* ipsec_out_secure is B_FALSE now */ 21204 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21205 io = (ipsec_out_t *)first_mp->b_rptr; 21206 io->ipsec_out_type = IPSEC_OUT; 21207 io->ipsec_out_len = sizeof (ipsec_out_t); 21208 io->ipsec_out_use_global_policy = B_TRUE; 21209 io->ipsec_out_ns = ipst->ips_netstack; 21210 first_mp->b_cont = mp; 21211 mctl_present = B_TRUE; 21212 } 21213 21214 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21215 io->ipsec_out_ill_index = 21216 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21217 21218 if (connp != NULL) { 21219 io->ipsec_out_multicast_loop = 21220 connp->conn_multicast_loop; 21221 io->ipsec_out_dontroute = connp->conn_dontroute; 21222 io->ipsec_out_zoneid = connp->conn_zoneid; 21223 } 21224 /* 21225 * If the application uses IP_MULTICAST_IF with 21226 * different logical addresses of the same ILL, we 21227 * need to make sure that the soruce address of 21228 * the packet matches the logical IP address used 21229 * in the option. We do it by initializing ipha_src 21230 * here. This should keep IPsec also happy as 21231 * when we return from IPsec processing, we don't 21232 * have to worry about getting the right address on 21233 * the packet. Thus it is sufficient to look for 21234 * IRE_CACHE using MATCH_IRE_ILL rathen than 21235 * MATCH_IRE_IPIF. 21236 * 21237 * NOTE : We need to do it for non-secure case also as 21238 * this might go out secure if there is a global policy 21239 * match in ip_wput_ire. 21240 * 21241 * As we do not have the ire yet, it is possible that 21242 * we set the source address here and then later discover 21243 * that the ire implies the source address to be assigned 21244 * through the RTF_SETSRC flag. 21245 * In that case, the setsrc variable will remind us 21246 * that overwritting the source address by the one 21247 * of the RTF_SETSRC-flagged ire is allowed. 21248 */ 21249 if (ipha->ipha_src == INADDR_ANY && 21250 (connp == NULL || !connp->conn_unspec_src)) { 21251 ipha->ipha_src = ipif->ipif_src_addr; 21252 setsrc = RTF_SETSRC; 21253 } 21254 /* 21255 * Find an IRE which matches the destination and the outgoing 21256 * queue (i.e. the outgoing interface.) 21257 * For loopback use a unicast IP address for 21258 * the ire lookup. 21259 */ 21260 if (IS_LOOPBACK(ipif->ipif_ill)) 21261 dst = ipif->ipif_lcl_addr; 21262 21263 /* 21264 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21265 * We don't need to lookup ire in ctable as the packet 21266 * needs to be sent to the destination through the specified 21267 * ill irrespective of ires in the cache table. 21268 */ 21269 ire = NULL; 21270 if (xmit_ill == NULL) { 21271 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21272 zoneid, msg_getlabel(mp), match_flags, ipst); 21273 } 21274 21275 if (ire == NULL) { 21276 /* 21277 * Multicast loopback and multicast forwarding is 21278 * done in ip_wput_ire. 21279 * 21280 * Mark this packet to make it be delivered to 21281 * ip_wput_ire after the new ire has been 21282 * created. 21283 * 21284 * The call to ip_newroute_ipif takes into account 21285 * the setsrc reminder. In any case, we take care 21286 * of the RTF_MULTIRT flag. 21287 */ 21288 mp->b_prev = mp->b_next = NULL; 21289 if (xmit_ill == NULL || 21290 xmit_ill->ill_ipif_up_count > 0) { 21291 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21292 setsrc | RTF_MULTIRT, zoneid, infop); 21293 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21294 "ip_wput_end: q %p (%S)", q, "noire"); 21295 } else { 21296 freemsg(first_mp); 21297 } 21298 ipif_refrele(ipif); 21299 if (xmit_ill != NULL) 21300 ill_refrele(xmit_ill); 21301 if (need_decref) 21302 CONN_DEC_REF(connp); 21303 return; 21304 } 21305 21306 ipif_refrele(ipif); 21307 ipif = NULL; 21308 ASSERT(xmit_ill == NULL); 21309 21310 /* 21311 * Honor the RTF_SETSRC flag for multicast packets, 21312 * if allowed by the setsrc reminder. 21313 */ 21314 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21315 ipha->ipha_src = ire->ire_src_addr; 21316 } 21317 21318 /* 21319 * Unconditionally force the TTL to 1 for 21320 * multirouted multicast packets: 21321 * multirouted multicast should not cross 21322 * multicast routers. 21323 */ 21324 if (ire->ire_flags & RTF_MULTIRT) { 21325 if (ipha->ipha_ttl > 1) { 21326 ip2dbg(("ip_wput: forcing multicast " 21327 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21328 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21329 ipha->ipha_ttl = 1; 21330 } 21331 } 21332 } else { 21333 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 21334 if ((ire != NULL) && (ire->ire_type & 21335 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21336 ignore_dontroute = B_TRUE; 21337 ignore_nexthop = B_TRUE; 21338 } 21339 if (ire != NULL) { 21340 ire_refrele(ire); 21341 ire = NULL; 21342 } 21343 /* 21344 * Guard against coming in from arp in which case conn is NULL. 21345 * Also guard against non M_DATA with dontroute set but 21346 * destined to local, loopback or broadcast addresses. 21347 */ 21348 if (connp != NULL && connp->conn_dontroute && 21349 !ignore_dontroute) { 21350 dontroute: 21351 /* 21352 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21353 * routing protocols from seeing false direct 21354 * connectivity. 21355 */ 21356 ipha->ipha_ttl = 1; 21357 /* If suitable ipif not found, drop packet */ 21358 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21359 if (dst_ipif == NULL) { 21360 noroute: 21361 ip1dbg(("ip_wput: no route for dst using" 21362 " SO_DONTROUTE\n")); 21363 BUMP_MIB(&ipst->ips_ip_mib, 21364 ipIfStatsOutNoRoutes); 21365 mp->b_prev = mp->b_next = NULL; 21366 if (first_mp == NULL) 21367 first_mp = mp; 21368 goto drop_pkt; 21369 } else { 21370 /* 21371 * If suitable ipif has been found, set 21372 * xmit_ill to the corresponding 21373 * ipif_ill because we'll be using the 21374 * send_from_ill logic below. 21375 */ 21376 ASSERT(xmit_ill == NULL); 21377 xmit_ill = dst_ipif->ipif_ill; 21378 mutex_enter(&xmit_ill->ill_lock); 21379 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21380 mutex_exit(&xmit_ill->ill_lock); 21381 xmit_ill = NULL; 21382 ipif_refrele(dst_ipif); 21383 goto noroute; 21384 } 21385 ill_refhold_locked(xmit_ill); 21386 mutex_exit(&xmit_ill->ill_lock); 21387 ipif_refrele(dst_ipif); 21388 } 21389 } 21390 21391 send_from_ill: 21392 if (xmit_ill != NULL) { 21393 ipif_t *ipif; 21394 21395 /* 21396 * Mark this packet as originated locally 21397 */ 21398 mp->b_prev = mp->b_next = NULL; 21399 21400 /* 21401 * Could be SO_DONTROUTE case also. 21402 * Verify that at least one ipif is up on the ill. 21403 */ 21404 if (xmit_ill->ill_ipif_up_count == 0) { 21405 ip1dbg(("ip_output: xmit_ill %s is down\n", 21406 xmit_ill->ill_name)); 21407 goto drop_pkt; 21408 } 21409 21410 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21411 if (ipif == NULL) { 21412 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21413 xmit_ill->ill_name)); 21414 goto drop_pkt; 21415 } 21416 21417 match_flags = 0; 21418 if (IS_UNDER_IPMP(xmit_ill)) 21419 match_flags |= MATCH_IRE_MARK_TESTHIDDEN; 21420 21421 /* 21422 * Look for a ire that is part of the group, 21423 * if found use it else call ip_newroute_ipif. 21424 * IPCL_ZONEID is not used for matching because 21425 * IP_ALLZONES option is valid only when the 21426 * ill is accessible from all zones i.e has a 21427 * valid ipif in all zones. 21428 */ 21429 match_flags |= MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21430 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21431 msg_getlabel(mp), match_flags, ipst); 21432 /* 21433 * If an ire exists use it or else create 21434 * an ire but don't add it to the cache. 21435 * Adding an ire may cause issues with 21436 * asymmetric routing. 21437 * In case of multiroute always act as if 21438 * ire does not exist. 21439 */ 21440 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21441 if (ire != NULL) 21442 ire_refrele(ire); 21443 ip_newroute_ipif(q, first_mp, ipif, 21444 dst, connp, 0, zoneid, infop); 21445 ipif_refrele(ipif); 21446 ip1dbg(("ip_output: xmit_ill via %s\n", 21447 xmit_ill->ill_name)); 21448 ill_refrele(xmit_ill); 21449 if (need_decref) 21450 CONN_DEC_REF(connp); 21451 return; 21452 } 21453 ipif_refrele(ipif); 21454 } else if (ip_nexthop || (connp != NULL && 21455 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21456 if (!ip_nexthop) { 21457 ip_nexthop = B_TRUE; 21458 nexthop_addr = connp->conn_nexthop_v4; 21459 } 21460 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21461 MATCH_IRE_GW; 21462 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21463 NULL, zoneid, msg_getlabel(mp), match_flags, ipst); 21464 } else { 21465 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), 21466 ipst); 21467 } 21468 if (!ire) { 21469 if (ip_nexthop && !ignore_nexthop) { 21470 if (mctl_present) { 21471 io = (ipsec_out_t *)first_mp->b_rptr; 21472 ASSERT(first_mp->b_datap->db_type == 21473 M_CTL); 21474 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21475 } else { 21476 ASSERT(mp == first_mp); 21477 first_mp = allocb( 21478 sizeof (ipsec_info_t), BPRI_HI); 21479 if (first_mp == NULL) { 21480 first_mp = mp; 21481 goto discard_pkt; 21482 } 21483 first_mp->b_datap->db_type = M_CTL; 21484 first_mp->b_wptr += 21485 sizeof (ipsec_info_t); 21486 /* ipsec_out_secure is B_FALSE now */ 21487 bzero(first_mp->b_rptr, 21488 sizeof (ipsec_info_t)); 21489 io = (ipsec_out_t *)first_mp->b_rptr; 21490 io->ipsec_out_type = IPSEC_OUT; 21491 io->ipsec_out_len = 21492 sizeof (ipsec_out_t); 21493 io->ipsec_out_use_global_policy = 21494 B_TRUE; 21495 io->ipsec_out_ns = ipst->ips_netstack; 21496 first_mp->b_cont = mp; 21497 mctl_present = B_TRUE; 21498 } 21499 io->ipsec_out_ip_nexthop = ip_nexthop; 21500 io->ipsec_out_nexthop_addr = nexthop_addr; 21501 } 21502 noirefound: 21503 /* 21504 * Mark this packet as having originated on 21505 * this machine. This will be noted in 21506 * ire_add_then_send, which needs to know 21507 * whether to run it back through ip_wput or 21508 * ip_rput following successful resolution. 21509 */ 21510 mp->b_prev = NULL; 21511 mp->b_next = NULL; 21512 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21513 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21514 "ip_wput_end: q %p (%S)", q, "newroute"); 21515 if (xmit_ill != NULL) 21516 ill_refrele(xmit_ill); 21517 if (need_decref) 21518 CONN_DEC_REF(connp); 21519 return; 21520 } 21521 } 21522 21523 /* We now know where we are going with it. */ 21524 21525 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21526 "ip_wput_end: q %p (%S)", q, "end"); 21527 21528 /* 21529 * Check if the ire has the RTF_MULTIRT flag, inherited 21530 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21531 */ 21532 if (ire->ire_flags & RTF_MULTIRT) { 21533 /* 21534 * Force the TTL of multirouted packets if required. 21535 * The TTL of such packets is bounded by the 21536 * ip_multirt_ttl ndd variable. 21537 */ 21538 if ((ipst->ips_ip_multirt_ttl > 0) && 21539 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21540 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21541 "(was %d), dst 0x%08x\n", 21542 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21543 ntohl(ire->ire_addr))); 21544 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21545 } 21546 /* 21547 * At this point, we check to see if there are any pending 21548 * unresolved routes. ire_multirt_resolvable() 21549 * checks in O(n) that all IRE_OFFSUBNET ire 21550 * entries for the packet's destination and 21551 * flagged RTF_MULTIRT are currently resolved. 21552 * If some remain unresolved, we make a copy 21553 * of the current message. It will be used 21554 * to initiate additional route resolutions. 21555 */ 21556 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21557 msg_getlabel(first_mp), ipst); 21558 ip2dbg(("ip_wput[noirefound]: ire %p, " 21559 "multirt_need_resolve %d, first_mp %p\n", 21560 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21561 if (multirt_need_resolve) { 21562 copy_mp = copymsg(first_mp); 21563 if (copy_mp != NULL) { 21564 MULTIRT_DEBUG_TAG(copy_mp); 21565 } 21566 } 21567 } 21568 21569 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21570 /* 21571 * Try to resolve another multiroute if 21572 * ire_multirt_resolvable() deemed it necessary. 21573 * At this point, we need to distinguish 21574 * multicasts from other packets. For multicasts, 21575 * we call ip_newroute_ipif() and request that both 21576 * multirouting and setsrc flags are checked. 21577 */ 21578 if (copy_mp != NULL) { 21579 if (CLASSD(dst)) { 21580 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21581 if (ipif) { 21582 ASSERT(infop->ip_opt_ill_index == 0); 21583 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21584 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21585 ipif_refrele(ipif); 21586 } else { 21587 MULTIRT_DEBUG_UNTAG(copy_mp); 21588 freemsg(copy_mp); 21589 copy_mp = NULL; 21590 } 21591 } else { 21592 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21593 } 21594 } 21595 if (xmit_ill != NULL) 21596 ill_refrele(xmit_ill); 21597 if (need_decref) 21598 CONN_DEC_REF(connp); 21599 return; 21600 21601 icmp_parameter_problem: 21602 /* could not have originated externally */ 21603 ASSERT(mp->b_prev == NULL); 21604 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21605 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21606 /* it's the IP header length that's in trouble */ 21607 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21608 first_mp = NULL; 21609 } 21610 21611 discard_pkt: 21612 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21613 drop_pkt: 21614 ip1dbg(("ip_wput: dropped packet\n")); 21615 if (ire != NULL) 21616 ire_refrele(ire); 21617 if (need_decref) 21618 CONN_DEC_REF(connp); 21619 freemsg(first_mp); 21620 if (xmit_ill != NULL) 21621 ill_refrele(xmit_ill); 21622 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21623 "ip_wput_end: q %p (%S)", q, "droppkt"); 21624 } 21625 21626 /* 21627 * If this is a conn_t queue, then we pass in the conn. This includes the 21628 * zoneid. 21629 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21630 * in which case we use the global zoneid since those are all part of 21631 * the global zone. 21632 */ 21633 void 21634 ip_wput(queue_t *q, mblk_t *mp) 21635 { 21636 if (CONN_Q(q)) 21637 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21638 else 21639 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21640 } 21641 21642 /* 21643 * 21644 * The following rules must be observed when accessing any ipif or ill 21645 * that has been cached in the conn. Typically conn_outgoing_ill, 21646 * conn_multicast_ipif and conn_multicast_ill. 21647 * 21648 * Access: The ipif or ill pointed to from the conn can be accessed under 21649 * the protection of the conn_lock or after it has been refheld under the 21650 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21651 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21652 * The reason for this is that a concurrent unplumb could actually be 21653 * cleaning up these cached pointers by walking the conns and might have 21654 * finished cleaning up the conn in question. The macros check that an 21655 * unplumb has not yet started on the ipif or ill. 21656 * 21657 * Caching: An ipif or ill pointer may be cached in the conn only after 21658 * making sure that an unplumb has not started. So the caching is done 21659 * while holding both the conn_lock and the ill_lock and after using the 21660 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21661 * flag before starting the cleanup of conns. 21662 * 21663 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21664 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21665 * or a reference to the ipif or a reference to an ire that references the 21666 * ipif. An ipif only changes its ill when migrating from an underlying ill 21667 * to an IPMP ill in ipif_up(). 21668 */ 21669 ipif_t * 21670 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21671 { 21672 ipif_t *ipif; 21673 ill_t *ill; 21674 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21675 21676 *err = 0; 21677 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21678 mutex_enter(&connp->conn_lock); 21679 ipif = *ipifp; 21680 if (ipif != NULL) { 21681 ill = ipif->ipif_ill; 21682 mutex_enter(&ill->ill_lock); 21683 if (IPIF_CAN_LOOKUP(ipif)) { 21684 ipif_refhold_locked(ipif); 21685 mutex_exit(&ill->ill_lock); 21686 mutex_exit(&connp->conn_lock); 21687 rw_exit(&ipst->ips_ill_g_lock); 21688 return (ipif); 21689 } else { 21690 *err = IPIF_LOOKUP_FAILED; 21691 } 21692 mutex_exit(&ill->ill_lock); 21693 } 21694 mutex_exit(&connp->conn_lock); 21695 rw_exit(&ipst->ips_ill_g_lock); 21696 return (NULL); 21697 } 21698 21699 ill_t * 21700 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21701 { 21702 ill_t *ill; 21703 21704 *err = 0; 21705 mutex_enter(&connp->conn_lock); 21706 ill = *illp; 21707 if (ill != NULL) { 21708 mutex_enter(&ill->ill_lock); 21709 if (ILL_CAN_LOOKUP(ill)) { 21710 ill_refhold_locked(ill); 21711 mutex_exit(&ill->ill_lock); 21712 mutex_exit(&connp->conn_lock); 21713 return (ill); 21714 } else { 21715 *err = ILL_LOOKUP_FAILED; 21716 } 21717 mutex_exit(&ill->ill_lock); 21718 } 21719 mutex_exit(&connp->conn_lock); 21720 return (NULL); 21721 } 21722 21723 static int 21724 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21725 { 21726 ill_t *ill; 21727 21728 ill = ipif->ipif_ill; 21729 mutex_enter(&connp->conn_lock); 21730 mutex_enter(&ill->ill_lock); 21731 if (IPIF_CAN_LOOKUP(ipif)) { 21732 *ipifp = ipif; 21733 mutex_exit(&ill->ill_lock); 21734 mutex_exit(&connp->conn_lock); 21735 return (0); 21736 } 21737 mutex_exit(&ill->ill_lock); 21738 mutex_exit(&connp->conn_lock); 21739 return (IPIF_LOOKUP_FAILED); 21740 } 21741 21742 /* 21743 * This is called if the outbound datagram needs fragmentation. 21744 * 21745 * NOTE : This function does not ire_refrele the ire argument passed in. 21746 */ 21747 static void 21748 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21749 ip_stack_t *ipst, conn_t *connp) 21750 { 21751 ipha_t *ipha; 21752 mblk_t *mp; 21753 uint32_t v_hlen_tos_len; 21754 uint32_t max_frag; 21755 uint32_t frag_flag; 21756 boolean_t dont_use; 21757 21758 if (ipsec_mp->b_datap->db_type == M_CTL) { 21759 mp = ipsec_mp->b_cont; 21760 } else { 21761 mp = ipsec_mp; 21762 } 21763 21764 ipha = (ipha_t *)mp->b_rptr; 21765 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21766 21767 #ifdef _BIG_ENDIAN 21768 #define V_HLEN (v_hlen_tos_len >> 24) 21769 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21770 #else 21771 #define V_HLEN (v_hlen_tos_len & 0xFF) 21772 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21773 #endif 21774 21775 #ifndef SPEED_BEFORE_SAFETY 21776 /* 21777 * Check that ipha_length is consistent with 21778 * the mblk length 21779 */ 21780 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21781 ip0dbg(("Packet length mismatch: %d, %ld\n", 21782 LENGTH, msgdsize(mp))); 21783 freemsg(ipsec_mp); 21784 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21785 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21786 "packet length mismatch"); 21787 return; 21788 } 21789 #endif 21790 /* 21791 * Don't use frag_flag if pre-built packet or source 21792 * routed or if multicast (since multicast packets do not solicit 21793 * ICMP "packet too big" messages). Get the values of 21794 * max_frag and frag_flag atomically by acquiring the 21795 * ire_lock. 21796 */ 21797 mutex_enter(&ire->ire_lock); 21798 max_frag = ire->ire_max_frag; 21799 frag_flag = ire->ire_frag_flag; 21800 mutex_exit(&ire->ire_lock); 21801 21802 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21803 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21804 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21805 21806 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21807 (dont_use ? 0 : frag_flag), zoneid, ipst, connp); 21808 } 21809 21810 /* 21811 * Used for deciding the MSS size for the upper layer. Thus 21812 * we need to check the outbound policy values in the conn. 21813 */ 21814 int 21815 conn_ipsec_length(conn_t *connp) 21816 { 21817 ipsec_latch_t *ipl; 21818 21819 ipl = connp->conn_latch; 21820 if (ipl == NULL) 21821 return (0); 21822 21823 if (ipl->ipl_out_policy == NULL) 21824 return (0); 21825 21826 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21827 } 21828 21829 /* 21830 * Returns an estimate of the IPsec headers size. This is used if 21831 * we don't want to call into IPsec to get the exact size. 21832 */ 21833 int 21834 ipsec_out_extra_length(mblk_t *ipsec_mp) 21835 { 21836 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21837 ipsec_action_t *a; 21838 21839 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21840 if (!io->ipsec_out_secure) 21841 return (0); 21842 21843 a = io->ipsec_out_act; 21844 21845 if (a == NULL) { 21846 ASSERT(io->ipsec_out_policy != NULL); 21847 a = io->ipsec_out_policy->ipsp_act; 21848 } 21849 ASSERT(a != NULL); 21850 21851 return (a->ipa_ovhd); 21852 } 21853 21854 /* 21855 * Returns an estimate of the IPsec headers size. This is used if 21856 * we don't want to call into IPsec to get the exact size. 21857 */ 21858 int 21859 ipsec_in_extra_length(mblk_t *ipsec_mp) 21860 { 21861 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21862 ipsec_action_t *a; 21863 21864 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21865 21866 a = ii->ipsec_in_action; 21867 return (a == NULL ? 0 : a->ipa_ovhd); 21868 } 21869 21870 /* 21871 * If there are any source route options, return the true final 21872 * destination. Otherwise, return the destination. 21873 */ 21874 ipaddr_t 21875 ip_get_dst(ipha_t *ipha) 21876 { 21877 ipoptp_t opts; 21878 uchar_t *opt; 21879 uint8_t optval; 21880 uint8_t optlen; 21881 ipaddr_t dst; 21882 uint32_t off; 21883 21884 dst = ipha->ipha_dst; 21885 21886 if (IS_SIMPLE_IPH(ipha)) 21887 return (dst); 21888 21889 for (optval = ipoptp_first(&opts, ipha); 21890 optval != IPOPT_EOL; 21891 optval = ipoptp_next(&opts)) { 21892 opt = opts.ipoptp_cur; 21893 optlen = opts.ipoptp_len; 21894 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21895 switch (optval) { 21896 case IPOPT_SSRR: 21897 case IPOPT_LSRR: 21898 off = opt[IPOPT_OFFSET]; 21899 /* 21900 * If one of the conditions is true, it means 21901 * end of options and dst already has the right 21902 * value. 21903 */ 21904 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21905 off = optlen - IP_ADDR_LEN; 21906 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21907 } 21908 return (dst); 21909 default: 21910 break; 21911 } 21912 } 21913 21914 return (dst); 21915 } 21916 21917 mblk_t * 21918 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21919 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21920 { 21921 ipsec_out_t *io; 21922 mblk_t *first_mp; 21923 boolean_t policy_present; 21924 ip_stack_t *ipst; 21925 ipsec_stack_t *ipss; 21926 21927 ASSERT(ire != NULL); 21928 ipst = ire->ire_ipst; 21929 ipss = ipst->ips_netstack->netstack_ipsec; 21930 21931 first_mp = mp; 21932 if (mp->b_datap->db_type == M_CTL) { 21933 io = (ipsec_out_t *)first_mp->b_rptr; 21934 /* 21935 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21936 * 21937 * 1) There is per-socket policy (including cached global 21938 * policy) or a policy on the IP-in-IP tunnel. 21939 * 2) There is no per-socket policy, but it is 21940 * a multicast packet that needs to go out 21941 * on a specific interface. This is the case 21942 * where (ip_wput and ip_wput_multicast) attaches 21943 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21944 * 21945 * In case (2) we check with global policy to 21946 * see if there is a match and set the ill_index 21947 * appropriately so that we can lookup the ire 21948 * properly in ip_wput_ipsec_out. 21949 */ 21950 21951 /* 21952 * ipsec_out_use_global_policy is set to B_FALSE 21953 * in ipsec_in_to_out(). Refer to that function for 21954 * details. 21955 */ 21956 if ((io->ipsec_out_latch == NULL) && 21957 (io->ipsec_out_use_global_policy)) { 21958 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21959 ire, connp, unspec_src, zoneid)); 21960 } 21961 if (!io->ipsec_out_secure) { 21962 /* 21963 * If this is not a secure packet, drop 21964 * the IPSEC_OUT mp and treat it as a clear 21965 * packet. This happens when we are sending 21966 * a ICMP reply back to a clear packet. See 21967 * ipsec_in_to_out() for details. 21968 */ 21969 mp = first_mp->b_cont; 21970 freeb(first_mp); 21971 } 21972 return (mp); 21973 } 21974 /* 21975 * See whether we need to attach a global policy here. We 21976 * don't depend on the conn (as it could be null) for deciding 21977 * what policy this datagram should go through because it 21978 * should have happened in ip_wput if there was some 21979 * policy. This normally happens for connections which are not 21980 * fully bound preventing us from caching policies in 21981 * ip_bind. Packets coming from the TCP listener/global queue 21982 * - which are non-hard_bound - could also be affected by 21983 * applying policy here. 21984 * 21985 * If this packet is coming from tcp global queue or listener, 21986 * we will be applying policy here. This may not be *right* 21987 * if these packets are coming from the detached connection as 21988 * it could have gone in clear before. This happens only if a 21989 * TCP connection started when there is no policy and somebody 21990 * added policy before it became detached. Thus packets of the 21991 * detached connection could go out secure and the other end 21992 * would drop it because it will be expecting in clear. The 21993 * converse is not true i.e if somebody starts a TCP 21994 * connection and deletes the policy, all the packets will 21995 * still go out with the policy that existed before deleting 21996 * because ip_unbind sends up policy information which is used 21997 * by TCP on subsequent ip_wputs. The right solution is to fix 21998 * TCP to attach a dummy IPSEC_OUT and set 21999 * ipsec_out_use_global_policy to B_FALSE. As this might 22000 * affect performance for normal cases, we are not doing it. 22001 * Thus, set policy before starting any TCP connections. 22002 * 22003 * NOTE - We might apply policy even for a hard bound connection 22004 * - for which we cached policy in ip_bind - if somebody added 22005 * global policy after we inherited the policy in ip_bind. 22006 * This means that the packets that were going out in clear 22007 * previously would start going secure and hence get dropped 22008 * on the other side. To fix this, TCP attaches a dummy 22009 * ipsec_out and make sure that we don't apply global policy. 22010 */ 22011 if (ipha != NULL) 22012 policy_present = ipss->ipsec_outbound_v4_policy_present; 22013 else 22014 policy_present = ipss->ipsec_outbound_v6_policy_present; 22015 if (!policy_present) 22016 return (mp); 22017 22018 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 22019 zoneid)); 22020 } 22021 22022 /* 22023 * This function does the ire_refrele of the ire passed in as the 22024 * argument. As this function looks up more ires i.e broadcast ires, 22025 * it needs to REFRELE them. Currently, for simplicity we don't 22026 * differentiate the one passed in and looked up here. We always 22027 * REFRELE. 22028 * IPQoS Notes: 22029 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22030 * IPsec packets are done in ipsec_out_process. 22031 */ 22032 void 22033 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22034 zoneid_t zoneid) 22035 { 22036 ipha_t *ipha; 22037 #define rptr ((uchar_t *)ipha) 22038 queue_t *stq; 22039 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22040 uint32_t v_hlen_tos_len; 22041 uint32_t ttl_protocol; 22042 ipaddr_t src; 22043 ipaddr_t dst; 22044 uint32_t cksum; 22045 ipaddr_t orig_src; 22046 ire_t *ire1; 22047 mblk_t *next_mp; 22048 uint_t hlen; 22049 uint16_t *up; 22050 uint32_t max_frag = ire->ire_max_frag; 22051 ill_t *ill = ire_to_ill(ire); 22052 int clusterwide; 22053 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22054 int ipsec_len; 22055 mblk_t *first_mp; 22056 ipsec_out_t *io; 22057 boolean_t conn_dontroute; /* conn value for multicast */ 22058 boolean_t conn_multicast_loop; /* conn value for multicast */ 22059 boolean_t multicast_forward; /* Should we forward ? */ 22060 boolean_t unspec_src; 22061 ill_t *conn_outgoing_ill = NULL; 22062 ill_t *ire_ill; 22063 ill_t *ire1_ill; 22064 ill_t *out_ill; 22065 uint32_t ill_index = 0; 22066 boolean_t multirt_send = B_FALSE; 22067 int err; 22068 ipxmit_state_t pktxmit_state; 22069 ip_stack_t *ipst = ire->ire_ipst; 22070 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22071 22072 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22073 "ip_wput_ire_start: q %p", q); 22074 22075 multicast_forward = B_FALSE; 22076 unspec_src = (connp != NULL && connp->conn_unspec_src); 22077 22078 if (ire->ire_flags & RTF_MULTIRT) { 22079 /* 22080 * Multirouting case. The bucket where ire is stored 22081 * probably holds other RTF_MULTIRT flagged ire 22082 * to the destination. In this call to ip_wput_ire, 22083 * we attempt to send the packet through all 22084 * those ires. Thus, we first ensure that ire is the 22085 * first RTF_MULTIRT ire in the bucket, 22086 * before walking the ire list. 22087 */ 22088 ire_t *first_ire; 22089 irb_t *irb = ire->ire_bucket; 22090 ASSERT(irb != NULL); 22091 22092 /* Make sure we do not omit any multiroute ire. */ 22093 IRB_REFHOLD(irb); 22094 for (first_ire = irb->irb_ire; 22095 first_ire != NULL; 22096 first_ire = first_ire->ire_next) { 22097 if ((first_ire->ire_flags & RTF_MULTIRT) && 22098 (first_ire->ire_addr == ire->ire_addr) && 22099 !(first_ire->ire_marks & 22100 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 22101 break; 22102 } 22103 22104 if ((first_ire != NULL) && (first_ire != ire)) { 22105 IRE_REFHOLD(first_ire); 22106 ire_refrele(ire); 22107 ire = first_ire; 22108 ill = ire_to_ill(ire); 22109 } 22110 IRB_REFRELE(irb); 22111 } 22112 22113 /* 22114 * conn_outgoing_ill variable is used only in the broadcast loop. 22115 * for performance we don't grab the mutexs in the fastpath 22116 */ 22117 if (ire->ire_type == IRE_BROADCAST && connp != NULL && 22118 connp->conn_outgoing_ill != NULL) { 22119 conn_outgoing_ill = conn_get_held_ill(connp, 22120 &connp->conn_outgoing_ill, &err); 22121 if (err == ILL_LOOKUP_FAILED) { 22122 ire_refrele(ire); 22123 freemsg(mp); 22124 return; 22125 } 22126 } 22127 22128 if (mp->b_datap->db_type != M_CTL) { 22129 ipha = (ipha_t *)mp->b_rptr; 22130 } else { 22131 io = (ipsec_out_t *)mp->b_rptr; 22132 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22133 ASSERT(zoneid == io->ipsec_out_zoneid); 22134 ASSERT(zoneid != ALL_ZONES); 22135 ipha = (ipha_t *)mp->b_cont->b_rptr; 22136 dst = ipha->ipha_dst; 22137 /* 22138 * For the multicast case, ipsec_out carries conn_dontroute and 22139 * conn_multicast_loop as conn may not be available here. We 22140 * need this for multicast loopback and forwarding which is done 22141 * later in the code. 22142 */ 22143 if (CLASSD(dst)) { 22144 conn_dontroute = io->ipsec_out_dontroute; 22145 conn_multicast_loop = io->ipsec_out_multicast_loop; 22146 /* 22147 * If conn_dontroute is not set or conn_multicast_loop 22148 * is set, we need to do forwarding/loopback. For 22149 * datagrams from ip_wput_multicast, conn_dontroute is 22150 * set to B_TRUE and conn_multicast_loop is set to 22151 * B_FALSE so that we neither do forwarding nor 22152 * loopback. 22153 */ 22154 if (!conn_dontroute || conn_multicast_loop) 22155 multicast_forward = B_TRUE; 22156 } 22157 } 22158 22159 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22160 ire->ire_zoneid != ALL_ZONES) { 22161 /* 22162 * When a zone sends a packet to another zone, we try to deliver 22163 * the packet under the same conditions as if the destination 22164 * was a real node on the network. To do so, we look for a 22165 * matching route in the forwarding table. 22166 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22167 * ip_newroute() does. 22168 * Note that IRE_LOCAL are special, since they are used 22169 * when the zoneid doesn't match in some cases. This means that 22170 * we need to handle ipha_src differently since ire_src_addr 22171 * belongs to the receiving zone instead of the sending zone. 22172 * When ip_restrict_interzone_loopback is set, then 22173 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22174 * for loopback between zones when the logical "Ethernet" would 22175 * have looped them back. 22176 */ 22177 ire_t *src_ire; 22178 22179 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22180 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22181 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22182 if (src_ire != NULL && 22183 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22184 (!ipst->ips_ip_restrict_interzone_loopback || 22185 ire_local_same_lan(ire, src_ire))) { 22186 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22187 ipha->ipha_src = src_ire->ire_src_addr; 22188 ire_refrele(src_ire); 22189 } else { 22190 ire_refrele(ire); 22191 if (conn_outgoing_ill != NULL) 22192 ill_refrele(conn_outgoing_ill); 22193 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22194 if (src_ire != NULL) { 22195 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22196 ire_refrele(src_ire); 22197 freemsg(mp); 22198 return; 22199 } 22200 ire_refrele(src_ire); 22201 } 22202 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22203 /* Failed */ 22204 freemsg(mp); 22205 return; 22206 } 22207 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22208 ipst); 22209 return; 22210 } 22211 } 22212 22213 if (mp->b_datap->db_type == M_CTL || 22214 ipss->ipsec_outbound_v4_policy_present) { 22215 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22216 unspec_src, zoneid); 22217 if (mp == NULL) { 22218 ire_refrele(ire); 22219 if (conn_outgoing_ill != NULL) 22220 ill_refrele(conn_outgoing_ill); 22221 return; 22222 } 22223 /* 22224 * Trusted Extensions supports all-zones interfaces, so 22225 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22226 * the global zone. 22227 */ 22228 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22229 io = (ipsec_out_t *)mp->b_rptr; 22230 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22231 zoneid = io->ipsec_out_zoneid; 22232 } 22233 } 22234 22235 first_mp = mp; 22236 ipsec_len = 0; 22237 22238 if (first_mp->b_datap->db_type == M_CTL) { 22239 io = (ipsec_out_t *)first_mp->b_rptr; 22240 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22241 mp = first_mp->b_cont; 22242 ipsec_len = ipsec_out_extra_length(first_mp); 22243 ASSERT(ipsec_len >= 0); 22244 if (zoneid == ALL_ZONES) 22245 zoneid = GLOBAL_ZONEID; 22246 /* We already picked up the zoneid from the M_CTL above */ 22247 ASSERT(zoneid == io->ipsec_out_zoneid); 22248 22249 /* 22250 * Drop M_CTL here if IPsec processing is not needed. 22251 * (Non-IPsec use of M_CTL extracted any information it 22252 * needed above). 22253 */ 22254 if (ipsec_len == 0) { 22255 freeb(first_mp); 22256 first_mp = mp; 22257 } 22258 } 22259 22260 /* 22261 * Fast path for ip_wput_ire 22262 */ 22263 22264 ipha = (ipha_t *)mp->b_rptr; 22265 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22266 dst = ipha->ipha_dst; 22267 22268 /* 22269 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22270 * if the socket is a SOCK_RAW type. The transport checksum should 22271 * be provided in the pre-built packet, so we don't need to compute it. 22272 * Also, other application set flags, like DF, should not be altered. 22273 * Other transport MUST pass down zero. 22274 */ 22275 ip_hdr_included = ipha->ipha_ident; 22276 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22277 22278 if (CLASSD(dst)) { 22279 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22280 ntohl(dst), 22281 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22282 ntohl(ire->ire_addr))); 22283 } 22284 22285 /* Macros to extract header fields from data already in registers */ 22286 #ifdef _BIG_ENDIAN 22287 #define V_HLEN (v_hlen_tos_len >> 24) 22288 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22289 #define PROTO (ttl_protocol & 0xFF) 22290 #else 22291 #define V_HLEN (v_hlen_tos_len & 0xFF) 22292 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22293 #define PROTO (ttl_protocol >> 8) 22294 #endif 22295 22296 orig_src = src = ipha->ipha_src; 22297 /* (The loop back to "another" is explained down below.) */ 22298 another:; 22299 /* 22300 * Assign an ident value for this packet. We assign idents on 22301 * a per destination basis out of the IRE. There could be 22302 * other threads targeting the same destination, so we have to 22303 * arrange for a atomic increment. Note that we use a 32-bit 22304 * atomic add because it has better performance than its 22305 * 16-bit sibling. 22306 * 22307 * If running in cluster mode and if the source address 22308 * belongs to a replicated service then vector through 22309 * cl_inet_ipident vector to allocate ip identifier 22310 * NOTE: This is a contract private interface with the 22311 * clustering group. 22312 */ 22313 clusterwide = 0; 22314 if (cl_inet_ipident) { 22315 ASSERT(cl_inet_isclusterwide); 22316 netstackid_t stack_id = ipst->ips_netstack->netstack_stackid; 22317 22318 if ((*cl_inet_isclusterwide)(stack_id, IPPROTO_IP, 22319 AF_INET, (uint8_t *)(uintptr_t)src, NULL)) { 22320 ipha->ipha_ident = (*cl_inet_ipident)(stack_id, 22321 IPPROTO_IP, AF_INET, (uint8_t *)(uintptr_t)src, 22322 (uint8_t *)(uintptr_t)dst, NULL); 22323 clusterwide = 1; 22324 } 22325 } 22326 if (!clusterwide) { 22327 ipha->ipha_ident = 22328 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22329 } 22330 22331 #ifndef _BIG_ENDIAN 22332 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22333 #endif 22334 22335 /* 22336 * Set source address unless sent on an ill or conn_unspec_src is set. 22337 * This is needed to obey conn_unspec_src when packets go through 22338 * ip_newroute + arp. 22339 * Assumes ip_newroute{,_multi} sets the source address as well. 22340 */ 22341 if (src == INADDR_ANY && !unspec_src) { 22342 /* 22343 * Assign the appropriate source address from the IRE if none 22344 * was specified. 22345 */ 22346 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22347 22348 src = ire->ire_src_addr; 22349 if (connp == NULL) { 22350 ip1dbg(("ip_wput_ire: no connp and no src " 22351 "address for dst 0x%x, using src 0x%x\n", 22352 ntohl(dst), 22353 ntohl(src))); 22354 } 22355 ipha->ipha_src = src; 22356 } 22357 stq = ire->ire_stq; 22358 22359 /* 22360 * We only allow ire chains for broadcasts since there will 22361 * be multiple IRE_CACHE entries for the same multicast 22362 * address (one per ipif). 22363 */ 22364 next_mp = NULL; 22365 22366 /* broadcast packet */ 22367 if (ire->ire_type == IRE_BROADCAST) 22368 goto broadcast; 22369 22370 /* loopback ? */ 22371 if (stq == NULL) 22372 goto nullstq; 22373 22374 /* The ill_index for outbound ILL */ 22375 ill_index = Q_TO_INDEX(stq); 22376 22377 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22378 ttl_protocol = ((uint16_t *)ipha)[4]; 22379 22380 /* pseudo checksum (do it in parts for IP header checksum) */ 22381 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22382 22383 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22384 queue_t *dev_q = stq->q_next; 22385 22386 /* 22387 * For DIRECT_CAPABLE, we do flow control at 22388 * the time of sending the packet. See 22389 * ILL_SEND_TX(). 22390 */ 22391 if (!ILL_DIRECT_CAPABLE((ill_t *)stq->q_ptr) && 22392 (DEV_Q_FLOW_BLOCKED(dev_q))) 22393 goto blocked; 22394 22395 if ((PROTO == IPPROTO_UDP) && 22396 (ip_hdr_included != IP_HDR_INCLUDED)) { 22397 hlen = (V_HLEN & 0xF) << 2; 22398 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22399 if (*up != 0) { 22400 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22401 hlen, LENGTH, max_frag, ipsec_len, cksum); 22402 /* Software checksum? */ 22403 if (DB_CKSUMFLAGS(mp) == 0) { 22404 IP_STAT(ipst, ip_out_sw_cksum); 22405 IP_STAT_UPDATE(ipst, 22406 ip_udp_out_sw_cksum_bytes, 22407 LENGTH - hlen); 22408 } 22409 } 22410 } 22411 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22412 hlen = (V_HLEN & 0xF) << 2; 22413 if (PROTO == IPPROTO_TCP) { 22414 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22415 /* 22416 * The packet header is processed once and for all, even 22417 * in the multirouting case. We disable hardware 22418 * checksum if the packet is multirouted, as it will be 22419 * replicated via several interfaces, and not all of 22420 * them may have this capability. 22421 */ 22422 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22423 LENGTH, max_frag, ipsec_len, cksum); 22424 /* Software checksum? */ 22425 if (DB_CKSUMFLAGS(mp) == 0) { 22426 IP_STAT(ipst, ip_out_sw_cksum); 22427 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22428 LENGTH - hlen); 22429 } 22430 } else { 22431 sctp_hdr_t *sctph; 22432 22433 ASSERT(PROTO == IPPROTO_SCTP); 22434 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22435 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22436 /* 22437 * Zero out the checksum field to ensure proper 22438 * checksum calculation. 22439 */ 22440 sctph->sh_chksum = 0; 22441 #ifdef DEBUG 22442 if (!skip_sctp_cksum) 22443 #endif 22444 sctph->sh_chksum = sctp_cksum(mp, hlen); 22445 } 22446 } 22447 22448 /* 22449 * If this is a multicast packet and originated from ip_wput 22450 * we need to do loopback and forwarding checks. If it comes 22451 * from ip_wput_multicast, we SHOULD not do this. 22452 */ 22453 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22454 22455 /* checksum */ 22456 cksum += ttl_protocol; 22457 22458 /* fragment the packet */ 22459 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22460 goto fragmentit; 22461 /* 22462 * Don't use frag_flag if packet is pre-built or source 22463 * routed or if multicast (since multicast packets do 22464 * not solicit ICMP "packet too big" messages). 22465 */ 22466 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22467 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22468 !ip_source_route_included(ipha)) && 22469 !CLASSD(ipha->ipha_dst)) 22470 ipha->ipha_fragment_offset_and_flags |= 22471 htons(ire->ire_frag_flag); 22472 22473 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22474 /* calculate IP header checksum */ 22475 cksum += ipha->ipha_ident; 22476 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22477 cksum += ipha->ipha_fragment_offset_and_flags; 22478 22479 /* IP options present */ 22480 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22481 if (hlen) 22482 goto checksumoptions; 22483 22484 /* calculate hdr checksum */ 22485 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22486 cksum = ~(cksum + (cksum >> 16)); 22487 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22488 } 22489 if (ipsec_len != 0) { 22490 /* 22491 * We will do the rest of the processing after 22492 * we come back from IPsec in ip_wput_ipsec_out(). 22493 */ 22494 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22495 22496 io = (ipsec_out_t *)first_mp->b_rptr; 22497 io->ipsec_out_ill_index = 22498 ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 22499 ipsec_out_process(q, first_mp, ire, 0); 22500 ire_refrele(ire); 22501 if (conn_outgoing_ill != NULL) 22502 ill_refrele(conn_outgoing_ill); 22503 return; 22504 } 22505 22506 /* 22507 * In most cases, the emission loop below is entered only 22508 * once. Only in the case where the ire holds the 22509 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22510 * flagged ires in the bucket, and send the packet 22511 * through all crossed RTF_MULTIRT routes. 22512 */ 22513 if (ire->ire_flags & RTF_MULTIRT) { 22514 multirt_send = B_TRUE; 22515 } 22516 do { 22517 if (multirt_send) { 22518 irb_t *irb; 22519 /* 22520 * We are in a multiple send case, need to get 22521 * the next ire and make a duplicate of the packet. 22522 * ire1 holds here the next ire to process in the 22523 * bucket. If multirouting is expected, 22524 * any non-RTF_MULTIRT ire that has the 22525 * right destination address is ignored. 22526 */ 22527 irb = ire->ire_bucket; 22528 ASSERT(irb != NULL); 22529 22530 IRB_REFHOLD(irb); 22531 for (ire1 = ire->ire_next; 22532 ire1 != NULL; 22533 ire1 = ire1->ire_next) { 22534 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22535 continue; 22536 if (ire1->ire_addr != ire->ire_addr) 22537 continue; 22538 if (ire1->ire_marks & 22539 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 22540 continue; 22541 22542 /* Got one */ 22543 IRE_REFHOLD(ire1); 22544 break; 22545 } 22546 IRB_REFRELE(irb); 22547 22548 if (ire1 != NULL) { 22549 next_mp = copyb(mp); 22550 if ((next_mp == NULL) || 22551 ((mp->b_cont != NULL) && 22552 ((next_mp->b_cont = 22553 dupmsg(mp->b_cont)) == NULL))) { 22554 freemsg(next_mp); 22555 next_mp = NULL; 22556 ire_refrele(ire1); 22557 ire1 = NULL; 22558 } 22559 } 22560 22561 /* Last multiroute ire; don't loop anymore. */ 22562 if (ire1 == NULL) { 22563 multirt_send = B_FALSE; 22564 } 22565 } 22566 22567 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22568 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22569 mblk_t *, mp); 22570 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22571 ipst->ips_ipv4firewall_physical_out, 22572 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22573 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22574 22575 if (mp == NULL) 22576 goto release_ire_and_ill; 22577 22578 if (ipst->ips_ip4_observe.he_interested) { 22579 zoneid_t szone; 22580 22581 /* 22582 * On the outbound path the destination zone will be 22583 * unknown as we're sending this packet out on the 22584 * wire. 22585 */ 22586 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 22587 ALL_ZONES); 22588 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 22589 ire->ire_ipif->ipif_ill, ipst); 22590 } 22591 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22592 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22593 22594 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE, connp); 22595 22596 if ((pktxmit_state == SEND_FAILED) || 22597 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22598 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22599 "- packet dropped\n")); 22600 release_ire_and_ill: 22601 ire_refrele(ire); 22602 if (next_mp != NULL) { 22603 freemsg(next_mp); 22604 ire_refrele(ire1); 22605 } 22606 if (conn_outgoing_ill != NULL) 22607 ill_refrele(conn_outgoing_ill); 22608 return; 22609 } 22610 22611 if (CLASSD(dst)) { 22612 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22613 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22614 LENGTH); 22615 } 22616 22617 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22618 "ip_wput_ire_end: q %p (%S)", 22619 q, "last copy out"); 22620 IRE_REFRELE(ire); 22621 22622 if (multirt_send) { 22623 ASSERT(ire1); 22624 /* 22625 * Proceed with the next RTF_MULTIRT ire, 22626 * Also set up the send-to queue accordingly. 22627 */ 22628 ire = ire1; 22629 ire1 = NULL; 22630 stq = ire->ire_stq; 22631 mp = next_mp; 22632 next_mp = NULL; 22633 ipha = (ipha_t *)mp->b_rptr; 22634 ill_index = Q_TO_INDEX(stq); 22635 ill = (ill_t *)stq->q_ptr; 22636 } 22637 } while (multirt_send); 22638 if (conn_outgoing_ill != NULL) 22639 ill_refrele(conn_outgoing_ill); 22640 return; 22641 22642 /* 22643 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22644 */ 22645 broadcast: 22646 { 22647 /* 22648 * To avoid broadcast storms, we usually set the TTL to 1 for 22649 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22650 * can be overridden stack-wide through the ip_broadcast_ttl 22651 * ndd tunable, or on a per-connection basis through the 22652 * IP_BROADCAST_TTL socket option. 22653 * 22654 * In the event that we are replying to incoming ICMP packets, 22655 * connp could be NULL. 22656 */ 22657 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22658 if (connp != NULL) { 22659 if (connp->conn_dontroute) 22660 ipha->ipha_ttl = 1; 22661 else if (connp->conn_broadcast_ttl != 0) 22662 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22663 } 22664 22665 /* 22666 * Note that we are not doing a IRB_REFHOLD here. 22667 * Actually we don't care if the list changes i.e 22668 * if somebody deletes an IRE from the list while 22669 * we drop the lock, the next time we come around 22670 * ire_next will be NULL and hence we won't send 22671 * out multiple copies which is fine. 22672 */ 22673 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22674 ire1 = ire->ire_next; 22675 if (conn_outgoing_ill != NULL) { 22676 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22677 ASSERT(ire1 == ire->ire_next); 22678 if (ire1 != NULL && ire1->ire_addr == dst) { 22679 ire_refrele(ire); 22680 ire = ire1; 22681 IRE_REFHOLD(ire); 22682 ire1 = ire->ire_next; 22683 continue; 22684 } 22685 rw_exit(&ire->ire_bucket->irb_lock); 22686 /* Did not find a matching ill */ 22687 ip1dbg(("ip_wput_ire: broadcast with no " 22688 "matching IP_BOUND_IF ill %s dst %x\n", 22689 conn_outgoing_ill->ill_name, dst)); 22690 freemsg(first_mp); 22691 if (ire != NULL) 22692 ire_refrele(ire); 22693 ill_refrele(conn_outgoing_ill); 22694 return; 22695 } 22696 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22697 /* 22698 * If the next IRE has the same address and is not one 22699 * of the two copies that we need to send, try to see 22700 * whether this copy should be sent at all. This 22701 * assumes that we insert loopbacks first and then 22702 * non-loopbacks. This is acheived by inserting the 22703 * loopback always before non-loopback. 22704 * This is used to send a single copy of a broadcast 22705 * packet out all physical interfaces that have an 22706 * matching IRE_BROADCAST while also looping 22707 * back one copy (to ip_wput_local) for each 22708 * matching physical interface. However, we avoid 22709 * sending packets out different logical that match by 22710 * having ipif_up/ipif_down supress duplicate 22711 * IRE_BROADCASTS. 22712 * 22713 * This feature is currently used to get broadcasts 22714 * sent to multiple interfaces, when the broadcast 22715 * address being used applies to multiple interfaces. 22716 * For example, a whole net broadcast will be 22717 * replicated on every connected subnet of 22718 * the target net. 22719 * 22720 * Each zone has its own set of IRE_BROADCASTs, so that 22721 * we're able to distribute inbound packets to multiple 22722 * zones who share a broadcast address. We avoid looping 22723 * back outbound packets in different zones but on the 22724 * same ill, as the application would see duplicates. 22725 * 22726 * This logic assumes that ire_add_v4() groups the 22727 * IRE_BROADCAST entries so that those with the same 22728 * ire_addr are kept together. 22729 */ 22730 ire_ill = ire->ire_ipif->ipif_ill; 22731 if (ire->ire_stq != NULL || ire1->ire_stq == NULL) { 22732 while (ire1 != NULL && ire1->ire_addr == dst) { 22733 ire1_ill = ire1->ire_ipif->ipif_ill; 22734 if (ire1_ill != ire_ill) 22735 break; 22736 ire1 = ire1->ire_next; 22737 } 22738 } 22739 } 22740 ASSERT(multirt_send == B_FALSE); 22741 if (ire1 != NULL && ire1->ire_addr == dst) { 22742 if ((ire->ire_flags & RTF_MULTIRT) && 22743 (ire1->ire_flags & RTF_MULTIRT)) { 22744 /* 22745 * We are in the multirouting case. 22746 * The message must be sent at least 22747 * on both ires. These ires have been 22748 * inserted AFTER the standard ones 22749 * in ip_rt_add(). There are thus no 22750 * other ire entries for the destination 22751 * address in the rest of the bucket 22752 * that do not have the RTF_MULTIRT 22753 * flag. We don't process a copy 22754 * of the message here. This will be 22755 * done in the final sending loop. 22756 */ 22757 multirt_send = B_TRUE; 22758 } else { 22759 next_mp = ip_copymsg(first_mp); 22760 if (next_mp != NULL) 22761 IRE_REFHOLD(ire1); 22762 } 22763 } 22764 rw_exit(&ire->ire_bucket->irb_lock); 22765 } 22766 22767 if (stq) { 22768 /* 22769 * A non-NULL send-to queue means this packet is going 22770 * out of this machine. 22771 */ 22772 out_ill = (ill_t *)stq->q_ptr; 22773 22774 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22775 ttl_protocol = ((uint16_t *)ipha)[4]; 22776 /* 22777 * We accumulate the pseudo header checksum in cksum. 22778 * This is pretty hairy code, so watch close. One 22779 * thing to keep in mind is that UDP and TCP have 22780 * stored their respective datagram lengths in their 22781 * checksum fields. This lines things up real nice. 22782 */ 22783 cksum = (dst >> 16) + (dst & 0xFFFF) + 22784 (src >> 16) + (src & 0xFFFF); 22785 /* 22786 * We assume the udp checksum field contains the 22787 * length, so to compute the pseudo header checksum, 22788 * all we need is the protocol number and src/dst. 22789 */ 22790 /* Provide the checksums for UDP and TCP. */ 22791 if ((PROTO == IPPROTO_TCP) && 22792 (ip_hdr_included != IP_HDR_INCLUDED)) { 22793 /* hlen gets the number of uchar_ts in the IP header */ 22794 hlen = (V_HLEN & 0xF) << 2; 22795 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22796 IP_STAT(ipst, ip_out_sw_cksum); 22797 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22798 LENGTH - hlen); 22799 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22800 } else if (PROTO == IPPROTO_SCTP && 22801 (ip_hdr_included != IP_HDR_INCLUDED)) { 22802 sctp_hdr_t *sctph; 22803 22804 hlen = (V_HLEN & 0xF) << 2; 22805 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22806 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22807 sctph->sh_chksum = 0; 22808 #ifdef DEBUG 22809 if (!skip_sctp_cksum) 22810 #endif 22811 sctph->sh_chksum = sctp_cksum(mp, hlen); 22812 } else { 22813 queue_t *dev_q = stq->q_next; 22814 22815 if (!ILL_DIRECT_CAPABLE((ill_t *)stq->q_ptr) && 22816 (DEV_Q_FLOW_BLOCKED(dev_q))) { 22817 blocked: 22818 ipha->ipha_ident = ip_hdr_included; 22819 /* 22820 * If we don't have a conn to apply 22821 * backpressure, free the message. 22822 * In the ire_send path, we don't know 22823 * the position to requeue the packet. Rather 22824 * than reorder packets, we just drop this 22825 * packet. 22826 */ 22827 if (ipst->ips_ip_output_queue && 22828 connp != NULL && 22829 caller != IRE_SEND) { 22830 if (caller == IP_WSRV) { 22831 idl_tx_list_t *idl_txl; 22832 22833 idl_txl = 22834 &ipst->ips_idl_tx_list[0]; 22835 connp->conn_did_putbq = 1; 22836 (void) putbq(connp->conn_wq, 22837 first_mp); 22838 conn_drain_insert(connp, 22839 idl_txl); 22840 /* 22841 * This is the service thread, 22842 * and the queue is already 22843 * noenabled. The check for 22844 * canput and the putbq is not 22845 * atomic. So we need to check 22846 * again. 22847 */ 22848 if (canput(stq->q_next)) 22849 connp->conn_did_putbq 22850 = 0; 22851 IP_STAT(ipst, ip_conn_flputbq); 22852 } else { 22853 /* 22854 * We are not the service proc. 22855 * ip_wsrv will be scheduled or 22856 * is already running. 22857 */ 22858 22859 (void) putq(connp->conn_wq, 22860 first_mp); 22861 } 22862 } else { 22863 out_ill = (ill_t *)stq->q_ptr; 22864 BUMP_MIB(out_ill->ill_ip_mib, 22865 ipIfStatsOutDiscards); 22866 freemsg(first_mp); 22867 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22868 "ip_wput_ire_end: q %p (%S)", 22869 q, "discard"); 22870 } 22871 ire_refrele(ire); 22872 if (next_mp) { 22873 ire_refrele(ire1); 22874 freemsg(next_mp); 22875 } 22876 if (conn_outgoing_ill != NULL) 22877 ill_refrele(conn_outgoing_ill); 22878 return; 22879 } 22880 if ((PROTO == IPPROTO_UDP) && 22881 (ip_hdr_included != IP_HDR_INCLUDED)) { 22882 /* 22883 * hlen gets the number of uchar_ts in the 22884 * IP header 22885 */ 22886 hlen = (V_HLEN & 0xF) << 2; 22887 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22888 max_frag = ire->ire_max_frag; 22889 if (*up != 0) { 22890 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22891 up, PROTO, hlen, LENGTH, max_frag, 22892 ipsec_len, cksum); 22893 /* Software checksum? */ 22894 if (DB_CKSUMFLAGS(mp) == 0) { 22895 IP_STAT(ipst, ip_out_sw_cksum); 22896 IP_STAT_UPDATE(ipst, 22897 ip_udp_out_sw_cksum_bytes, 22898 LENGTH - hlen); 22899 } 22900 } 22901 } 22902 } 22903 /* 22904 * Need to do this even when fragmenting. The local 22905 * loopback can be done without computing checksums 22906 * but forwarding out other interface must be done 22907 * after the IP checksum (and ULP checksums) have been 22908 * computed. 22909 * 22910 * NOTE : multicast_forward is set only if this packet 22911 * originated from ip_wput. For packets originating from 22912 * ip_wput_multicast, it is not set. 22913 */ 22914 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22915 multi_loopback: 22916 ip2dbg(("ip_wput: multicast, loop %d\n", 22917 conn_multicast_loop)); 22918 22919 /* Forget header checksum offload */ 22920 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22921 22922 /* 22923 * Local loopback of multicasts? Check the 22924 * ill. 22925 * 22926 * Note that the loopback function will not come 22927 * in through ip_rput - it will only do the 22928 * client fanout thus we need to do an mforward 22929 * as well. The is different from the BSD 22930 * logic. 22931 */ 22932 if (ill != NULL) { 22933 if (ilm_lookup_ill(ill, ipha->ipha_dst, 22934 ALL_ZONES) != NULL) { 22935 /* 22936 * Pass along the virtual output q. 22937 * ip_wput_local() will distribute the 22938 * packet to all the matching zones, 22939 * except the sending zone when 22940 * IP_MULTICAST_LOOP is false. 22941 */ 22942 ip_multicast_loopback(q, ill, first_mp, 22943 conn_multicast_loop ? 0 : 22944 IP_FF_NO_MCAST_LOOP, zoneid); 22945 } 22946 } 22947 if (ipha->ipha_ttl == 0) { 22948 /* 22949 * 0 => only to this host i.e. we are 22950 * done. We are also done if this was the 22951 * loopback interface since it is sufficient 22952 * to loopback one copy of a multicast packet. 22953 */ 22954 freemsg(first_mp); 22955 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22956 "ip_wput_ire_end: q %p (%S)", 22957 q, "loopback"); 22958 ire_refrele(ire); 22959 if (conn_outgoing_ill != NULL) 22960 ill_refrele(conn_outgoing_ill); 22961 return; 22962 } 22963 /* 22964 * ILLF_MULTICAST is checked in ip_newroute 22965 * i.e. we don't need to check it here since 22966 * all IRE_CACHEs come from ip_newroute. 22967 * For multicast traffic, SO_DONTROUTE is interpreted 22968 * to mean only send the packet out the interface 22969 * (optionally specified with IP_MULTICAST_IF) 22970 * and do not forward it out additional interfaces. 22971 * RSVP and the rsvp daemon is an example of a 22972 * protocol and user level process that 22973 * handles it's own routing. Hence, it uses the 22974 * SO_DONTROUTE option to accomplish this. 22975 */ 22976 22977 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 22978 ill != NULL) { 22979 /* Unconditionally redo the checksum */ 22980 ipha->ipha_hdr_checksum = 0; 22981 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22982 22983 /* 22984 * If this needs to go out secure, we need 22985 * to wait till we finish the IPsec 22986 * processing. 22987 */ 22988 if (ipsec_len == 0 && 22989 ip_mforward(ill, ipha, mp)) { 22990 freemsg(first_mp); 22991 ip1dbg(("ip_wput: mforward failed\n")); 22992 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22993 "ip_wput_ire_end: q %p (%S)", 22994 q, "mforward failed"); 22995 ire_refrele(ire); 22996 if (conn_outgoing_ill != NULL) 22997 ill_refrele(conn_outgoing_ill); 22998 return; 22999 } 23000 } 23001 } 23002 max_frag = ire->ire_max_frag; 23003 cksum += ttl_protocol; 23004 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23005 /* No fragmentation required for this one. */ 23006 /* 23007 * Don't use frag_flag if packet is pre-built or source 23008 * routed or if multicast (since multicast packets do 23009 * not solicit ICMP "packet too big" messages). 23010 */ 23011 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23012 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23013 !ip_source_route_included(ipha)) && 23014 !CLASSD(ipha->ipha_dst)) 23015 ipha->ipha_fragment_offset_and_flags |= 23016 htons(ire->ire_frag_flag); 23017 23018 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23019 /* Complete the IP header checksum. */ 23020 cksum += ipha->ipha_ident; 23021 cksum += (v_hlen_tos_len >> 16)+ 23022 (v_hlen_tos_len & 0xFFFF); 23023 cksum += ipha->ipha_fragment_offset_and_flags; 23024 hlen = (V_HLEN & 0xF) - 23025 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23026 if (hlen) { 23027 checksumoptions: 23028 /* 23029 * Account for the IP Options in the IP 23030 * header checksum. 23031 */ 23032 up = (uint16_t *)(rptr+ 23033 IP_SIMPLE_HDR_LENGTH); 23034 do { 23035 cksum += up[0]; 23036 cksum += up[1]; 23037 up += 2; 23038 } while (--hlen); 23039 } 23040 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23041 cksum = ~(cksum + (cksum >> 16)); 23042 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23043 } 23044 if (ipsec_len != 0) { 23045 ipsec_out_process(q, first_mp, ire, ill_index); 23046 if (!next_mp) { 23047 ire_refrele(ire); 23048 if (conn_outgoing_ill != NULL) 23049 ill_refrele(conn_outgoing_ill); 23050 return; 23051 } 23052 goto next; 23053 } 23054 23055 /* 23056 * multirt_send has already been handled 23057 * for broadcast, but not yet for multicast 23058 * or IP options. 23059 */ 23060 if (next_mp == NULL) { 23061 if (ire->ire_flags & RTF_MULTIRT) { 23062 multirt_send = B_TRUE; 23063 } 23064 } 23065 23066 /* 23067 * In most cases, the emission loop below is 23068 * entered only once. Only in the case where 23069 * the ire holds the RTF_MULTIRT flag, do we loop 23070 * to process all RTF_MULTIRT ires in the bucket, 23071 * and send the packet through all crossed 23072 * RTF_MULTIRT routes. 23073 */ 23074 do { 23075 if (multirt_send) { 23076 irb_t *irb; 23077 23078 irb = ire->ire_bucket; 23079 ASSERT(irb != NULL); 23080 /* 23081 * We are in a multiple send case, 23082 * need to get the next IRE and make 23083 * a duplicate of the packet. 23084 */ 23085 IRB_REFHOLD(irb); 23086 for (ire1 = ire->ire_next; 23087 ire1 != NULL; 23088 ire1 = ire1->ire_next) { 23089 if (!(ire1->ire_flags & 23090 RTF_MULTIRT)) 23091 continue; 23092 23093 if (ire1->ire_addr != 23094 ire->ire_addr) 23095 continue; 23096 23097 if (ire1->ire_marks & 23098 (IRE_MARK_CONDEMNED | 23099 IRE_MARK_TESTHIDDEN)) 23100 continue; 23101 23102 /* Got one */ 23103 IRE_REFHOLD(ire1); 23104 break; 23105 } 23106 IRB_REFRELE(irb); 23107 23108 if (ire1 != NULL) { 23109 next_mp = copyb(mp); 23110 if ((next_mp == NULL) || 23111 ((mp->b_cont != NULL) && 23112 ((next_mp->b_cont = 23113 dupmsg(mp->b_cont)) 23114 == NULL))) { 23115 freemsg(next_mp); 23116 next_mp = NULL; 23117 ire_refrele(ire1); 23118 ire1 = NULL; 23119 } 23120 } 23121 23122 /* 23123 * Last multiroute ire; don't loop 23124 * anymore. The emission is over 23125 * and next_mp is NULL. 23126 */ 23127 if (ire1 == NULL) { 23128 multirt_send = B_FALSE; 23129 } 23130 } 23131 23132 out_ill = ire_to_ill(ire); 23133 DTRACE_PROBE4(ip4__physical__out__start, 23134 ill_t *, NULL, 23135 ill_t *, out_ill, 23136 ipha_t *, ipha, mblk_t *, mp); 23137 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23138 ipst->ips_ipv4firewall_physical_out, 23139 NULL, out_ill, ipha, mp, mp, 0, ipst); 23140 DTRACE_PROBE1(ip4__physical__out__end, 23141 mblk_t *, mp); 23142 if (mp == NULL) 23143 goto release_ire_and_ill_2; 23144 23145 ASSERT(ipsec_len == 0); 23146 mp->b_prev = 23147 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23148 DTRACE_PROBE2(ip__xmit__2, 23149 mblk_t *, mp, ire_t *, ire); 23150 pktxmit_state = ip_xmit_v4(mp, ire, 23151 NULL, B_TRUE, connp); 23152 if ((pktxmit_state == SEND_FAILED) || 23153 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23154 release_ire_and_ill_2: 23155 if (next_mp) { 23156 freemsg(next_mp); 23157 ire_refrele(ire1); 23158 } 23159 ire_refrele(ire); 23160 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23161 "ip_wput_ire_end: q %p (%S)", 23162 q, "discard MDATA"); 23163 if (conn_outgoing_ill != NULL) 23164 ill_refrele(conn_outgoing_ill); 23165 return; 23166 } 23167 23168 if (CLASSD(dst)) { 23169 BUMP_MIB(out_ill->ill_ip_mib, 23170 ipIfStatsHCOutMcastPkts); 23171 UPDATE_MIB(out_ill->ill_ip_mib, 23172 ipIfStatsHCOutMcastOctets, 23173 LENGTH); 23174 } else if (ire->ire_type == IRE_BROADCAST) { 23175 BUMP_MIB(out_ill->ill_ip_mib, 23176 ipIfStatsHCOutBcastPkts); 23177 } 23178 23179 if (multirt_send) { 23180 /* 23181 * We are in a multiple send case, 23182 * need to re-enter the sending loop 23183 * using the next ire. 23184 */ 23185 ire_refrele(ire); 23186 ire = ire1; 23187 stq = ire->ire_stq; 23188 mp = next_mp; 23189 next_mp = NULL; 23190 ipha = (ipha_t *)mp->b_rptr; 23191 ill_index = Q_TO_INDEX(stq); 23192 } 23193 } while (multirt_send); 23194 23195 if (!next_mp) { 23196 /* 23197 * Last copy going out (the ultra-common 23198 * case). Note that we intentionally replicate 23199 * the putnext rather than calling it before 23200 * the next_mp check in hopes of a little 23201 * tail-call action out of the compiler. 23202 */ 23203 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23204 "ip_wput_ire_end: q %p (%S)", 23205 q, "last copy out(1)"); 23206 ire_refrele(ire); 23207 if (conn_outgoing_ill != NULL) 23208 ill_refrele(conn_outgoing_ill); 23209 return; 23210 } 23211 /* More copies going out below. */ 23212 } else { 23213 int offset; 23214 fragmentit: 23215 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23216 /* 23217 * If this would generate a icmp_frag_needed message, 23218 * we need to handle it before we do the IPsec 23219 * processing. Otherwise, we need to strip the IPsec 23220 * headers before we send up the message to the ULPs 23221 * which becomes messy and difficult. 23222 */ 23223 if (ipsec_len != 0) { 23224 if ((max_frag < (unsigned int)(LENGTH + 23225 ipsec_len)) && (offset & IPH_DF)) { 23226 out_ill = (ill_t *)stq->q_ptr; 23227 BUMP_MIB(out_ill->ill_ip_mib, 23228 ipIfStatsOutFragFails); 23229 BUMP_MIB(out_ill->ill_ip_mib, 23230 ipIfStatsOutFragReqds); 23231 ipha->ipha_hdr_checksum = 0; 23232 ipha->ipha_hdr_checksum = 23233 (uint16_t)ip_csum_hdr(ipha); 23234 icmp_frag_needed(ire->ire_stq, first_mp, 23235 max_frag, zoneid, ipst); 23236 if (!next_mp) { 23237 ire_refrele(ire); 23238 if (conn_outgoing_ill != NULL) { 23239 ill_refrele( 23240 conn_outgoing_ill); 23241 } 23242 return; 23243 } 23244 } else { 23245 /* 23246 * This won't cause a icmp_frag_needed 23247 * message. to be generated. Send it on 23248 * the wire. Note that this could still 23249 * cause fragmentation and all we 23250 * do is the generation of the message 23251 * to the ULP if needed before IPsec. 23252 */ 23253 if (!next_mp) { 23254 ipsec_out_process(q, first_mp, 23255 ire, ill_index); 23256 TRACE_2(TR_FAC_IP, 23257 TR_IP_WPUT_IRE_END, 23258 "ip_wput_ire_end: q %p " 23259 "(%S)", q, 23260 "last ipsec_out_process"); 23261 ire_refrele(ire); 23262 if (conn_outgoing_ill != NULL) { 23263 ill_refrele( 23264 conn_outgoing_ill); 23265 } 23266 return; 23267 } 23268 ipsec_out_process(q, first_mp, 23269 ire, ill_index); 23270 } 23271 } else { 23272 /* 23273 * Initiate IPPF processing. For 23274 * fragmentable packets we finish 23275 * all QOS packet processing before 23276 * calling: 23277 * ip_wput_ire_fragmentit->ip_wput_frag 23278 */ 23279 23280 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23281 ip_process(IPP_LOCAL_OUT, &mp, 23282 ill_index); 23283 if (mp == NULL) { 23284 out_ill = (ill_t *)stq->q_ptr; 23285 BUMP_MIB(out_ill->ill_ip_mib, 23286 ipIfStatsOutDiscards); 23287 if (next_mp != NULL) { 23288 freemsg(next_mp); 23289 ire_refrele(ire1); 23290 } 23291 ire_refrele(ire); 23292 TRACE_2(TR_FAC_IP, 23293 TR_IP_WPUT_IRE_END, 23294 "ip_wput_ire: q %p (%S)", 23295 q, "discard MDATA"); 23296 if (conn_outgoing_ill != NULL) { 23297 ill_refrele( 23298 conn_outgoing_ill); 23299 } 23300 return; 23301 } 23302 } 23303 if (!next_mp) { 23304 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23305 "ip_wput_ire_end: q %p (%S)", 23306 q, "last fragmentation"); 23307 ip_wput_ire_fragmentit(mp, ire, 23308 zoneid, ipst, connp); 23309 ire_refrele(ire); 23310 if (conn_outgoing_ill != NULL) 23311 ill_refrele(conn_outgoing_ill); 23312 return; 23313 } 23314 ip_wput_ire_fragmentit(mp, ire, 23315 zoneid, ipst, connp); 23316 } 23317 } 23318 } else { 23319 nullstq: 23320 /* A NULL stq means the destination address is local. */ 23321 UPDATE_OB_PKT_COUNT(ire); 23322 ire->ire_last_used_time = lbolt; 23323 ASSERT(ire->ire_ipif != NULL); 23324 if (!next_mp) { 23325 /* 23326 * Is there an "in" and "out" for traffic local 23327 * to a host (loopback)? The code in Solaris doesn't 23328 * explicitly draw a line in its code for in vs out, 23329 * so we've had to draw a line in the sand: ip_wput_ire 23330 * is considered to be the "output" side and 23331 * ip_wput_local to be the "input" side. 23332 */ 23333 out_ill = ire_to_ill(ire); 23334 23335 /* 23336 * DTrace this as ip:::send. A blocked packet will 23337 * fire the send probe, but not the receive probe. 23338 */ 23339 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23340 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23341 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23342 23343 DTRACE_PROBE4(ip4__loopback__out__start, 23344 ill_t *, NULL, ill_t *, out_ill, 23345 ipha_t *, ipha, mblk_t *, first_mp); 23346 23347 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23348 ipst->ips_ipv4firewall_loopback_out, 23349 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23350 23351 DTRACE_PROBE1(ip4__loopback__out_end, 23352 mblk_t *, first_mp); 23353 23354 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23355 "ip_wput_ire_end: q %p (%S)", 23356 q, "local address"); 23357 23358 if (first_mp != NULL) 23359 ip_wput_local(q, out_ill, ipha, 23360 first_mp, ire, 0, ire->ire_zoneid); 23361 ire_refrele(ire); 23362 if (conn_outgoing_ill != NULL) 23363 ill_refrele(conn_outgoing_ill); 23364 return; 23365 } 23366 23367 out_ill = ire_to_ill(ire); 23368 23369 /* 23370 * DTrace this as ip:::send. A blocked packet will fire the 23371 * send probe, but not the receive probe. 23372 */ 23373 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23374 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23375 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23376 23377 DTRACE_PROBE4(ip4__loopback__out__start, 23378 ill_t *, NULL, ill_t *, out_ill, 23379 ipha_t *, ipha, mblk_t *, first_mp); 23380 23381 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23382 ipst->ips_ipv4firewall_loopback_out, 23383 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23384 23385 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23386 23387 if (first_mp != NULL) 23388 ip_wput_local(q, out_ill, ipha, 23389 first_mp, ire, 0, ire->ire_zoneid); 23390 } 23391 next: 23392 /* 23393 * More copies going out to additional interfaces. 23394 * ire1 has already been held. We don't need the 23395 * "ire" anymore. 23396 */ 23397 ire_refrele(ire); 23398 ire = ire1; 23399 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23400 mp = next_mp; 23401 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23402 ill = ire_to_ill(ire); 23403 first_mp = mp; 23404 if (ipsec_len != 0) { 23405 ASSERT(first_mp->b_datap->db_type == M_CTL); 23406 mp = mp->b_cont; 23407 } 23408 dst = ire->ire_addr; 23409 ipha = (ipha_t *)mp->b_rptr; 23410 /* 23411 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23412 * Restore ipha_ident "no checksum" flag. 23413 */ 23414 src = orig_src; 23415 ipha->ipha_ident = ip_hdr_included; 23416 goto another; 23417 23418 #undef rptr 23419 #undef Q_TO_INDEX 23420 } 23421 23422 /* 23423 * Routine to allocate a message that is used to notify the ULP about MDT. 23424 * The caller may provide a pointer to the link-layer MDT capabilities, 23425 * or NULL if MDT is to be disabled on the stream. 23426 */ 23427 mblk_t * 23428 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23429 { 23430 mblk_t *mp; 23431 ip_mdt_info_t *mdti; 23432 ill_mdt_capab_t *idst; 23433 23434 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23435 DB_TYPE(mp) = M_CTL; 23436 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23437 mdti = (ip_mdt_info_t *)mp->b_rptr; 23438 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23439 idst = &(mdti->mdt_capab); 23440 23441 /* 23442 * If the caller provides us with the capability, copy 23443 * it over into our notification message; otherwise 23444 * we zero out the capability portion. 23445 */ 23446 if (isrc != NULL) 23447 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23448 else 23449 bzero((caddr_t)idst, sizeof (*idst)); 23450 } 23451 return (mp); 23452 } 23453 23454 /* 23455 * Routine which determines whether MDT can be enabled on the destination 23456 * IRE and IPC combination, and if so, allocates and returns the MDT 23457 * notification mblk that may be used by ULP. We also check if we need to 23458 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23459 * MDT usage in the past have been lifted. This gets called during IP 23460 * and ULP binding. 23461 */ 23462 mblk_t * 23463 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23464 ill_mdt_capab_t *mdt_cap) 23465 { 23466 mblk_t *mp; 23467 boolean_t rc = B_FALSE; 23468 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23469 23470 ASSERT(dst_ire != NULL); 23471 ASSERT(connp != NULL); 23472 ASSERT(mdt_cap != NULL); 23473 23474 /* 23475 * Currently, we only support simple TCP/{IPv4,IPv6} with 23476 * Multidata, which is handled in tcp_multisend(). This 23477 * is the reason why we do all these checks here, to ensure 23478 * that we don't enable Multidata for the cases which we 23479 * can't handle at the moment. 23480 */ 23481 do { 23482 /* Only do TCP at the moment */ 23483 if (connp->conn_ulp != IPPROTO_TCP) 23484 break; 23485 23486 /* 23487 * IPsec outbound policy present? Note that we get here 23488 * after calling ipsec_conn_cache_policy() where the global 23489 * policy checking is performed. conn_latch will be 23490 * non-NULL as long as there's a policy defined, 23491 * i.e. conn_out_enforce_policy may be NULL in such case 23492 * when the connection is non-secure, and hence we check 23493 * further if the latch refers to an outbound policy. 23494 */ 23495 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23496 break; 23497 23498 /* CGTP (multiroute) is enabled? */ 23499 if (dst_ire->ire_flags & RTF_MULTIRT) 23500 break; 23501 23502 /* Outbound IPQoS enabled? */ 23503 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23504 /* 23505 * In this case, we disable MDT for this and all 23506 * future connections going over the interface. 23507 */ 23508 mdt_cap->ill_mdt_on = 0; 23509 break; 23510 } 23511 23512 /* socket option(s) present? */ 23513 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23514 break; 23515 23516 rc = B_TRUE; 23517 /* CONSTCOND */ 23518 } while (0); 23519 23520 /* Remember the result */ 23521 connp->conn_mdt_ok = rc; 23522 23523 if (!rc) 23524 return (NULL); 23525 else if (!mdt_cap->ill_mdt_on) { 23526 /* 23527 * If MDT has been previously turned off in the past, and we 23528 * currently can do MDT (due to IPQoS policy removal, etc.) 23529 * then enable it for this interface. 23530 */ 23531 mdt_cap->ill_mdt_on = 1; 23532 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23533 "interface %s\n", ill_name)); 23534 } 23535 23536 /* Allocate the MDT info mblk */ 23537 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23538 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23539 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23540 return (NULL); 23541 } 23542 return (mp); 23543 } 23544 23545 /* 23546 * Routine to allocate a message that is used to notify the ULP about LSO. 23547 * The caller may provide a pointer to the link-layer LSO capabilities, 23548 * or NULL if LSO is to be disabled on the stream. 23549 */ 23550 mblk_t * 23551 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23552 { 23553 mblk_t *mp; 23554 ip_lso_info_t *lsoi; 23555 ill_lso_capab_t *idst; 23556 23557 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23558 DB_TYPE(mp) = M_CTL; 23559 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23560 lsoi = (ip_lso_info_t *)mp->b_rptr; 23561 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23562 idst = &(lsoi->lso_capab); 23563 23564 /* 23565 * If the caller provides us with the capability, copy 23566 * it over into our notification message; otherwise 23567 * we zero out the capability portion. 23568 */ 23569 if (isrc != NULL) 23570 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23571 else 23572 bzero((caddr_t)idst, sizeof (*idst)); 23573 } 23574 return (mp); 23575 } 23576 23577 /* 23578 * Routine which determines whether LSO can be enabled on the destination 23579 * IRE and IPC combination, and if so, allocates and returns the LSO 23580 * notification mblk that may be used by ULP. We also check if we need to 23581 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23582 * LSO usage in the past have been lifted. This gets called during IP 23583 * and ULP binding. 23584 */ 23585 mblk_t * 23586 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23587 ill_lso_capab_t *lso_cap) 23588 { 23589 mblk_t *mp; 23590 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23591 23592 ASSERT(dst_ire != NULL); 23593 ASSERT(connp != NULL); 23594 ASSERT(lso_cap != NULL); 23595 23596 connp->conn_lso_ok = B_TRUE; 23597 23598 if ((connp->conn_ulp != IPPROTO_TCP) || 23599 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23600 (dst_ire->ire_flags & RTF_MULTIRT) || 23601 !CONN_IS_LSO_MD_FASTPATH(connp) || 23602 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23603 connp->conn_lso_ok = B_FALSE; 23604 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23605 /* 23606 * Disable LSO for this and all future connections going 23607 * over the interface. 23608 */ 23609 lso_cap->ill_lso_on = 0; 23610 } 23611 } 23612 23613 if (!connp->conn_lso_ok) 23614 return (NULL); 23615 else if (!lso_cap->ill_lso_on) { 23616 /* 23617 * If LSO has been previously turned off in the past, and we 23618 * currently can do LSO (due to IPQoS policy removal, etc.) 23619 * then enable it for this interface. 23620 */ 23621 lso_cap->ill_lso_on = 1; 23622 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23623 ill_name)); 23624 } 23625 23626 /* Allocate the LSO info mblk */ 23627 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23628 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23629 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23630 23631 return (mp); 23632 } 23633 23634 /* 23635 * Create destination address attribute, and fill it with the physical 23636 * destination address and SAP taken from the template DL_UNITDATA_REQ 23637 * message block. 23638 */ 23639 boolean_t 23640 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23641 { 23642 dl_unitdata_req_t *dlurp; 23643 pattr_t *pa; 23644 pattrinfo_t pa_info; 23645 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23646 uint_t das_len, das_off; 23647 23648 ASSERT(dlmp != NULL); 23649 23650 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23651 das_len = dlurp->dl_dest_addr_length; 23652 das_off = dlurp->dl_dest_addr_offset; 23653 23654 pa_info.type = PATTR_DSTADDRSAP; 23655 pa_info.len = sizeof (**das) + das_len - 1; 23656 23657 /* create and associate the attribute */ 23658 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23659 if (pa != NULL) { 23660 ASSERT(*das != NULL); 23661 (*das)->addr_is_group = 0; 23662 (*das)->addr_len = (uint8_t)das_len; 23663 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23664 } 23665 23666 return (pa != NULL); 23667 } 23668 23669 /* 23670 * Create hardware checksum attribute and fill it with the values passed. 23671 */ 23672 boolean_t 23673 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23674 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23675 { 23676 pattr_t *pa; 23677 pattrinfo_t pa_info; 23678 23679 ASSERT(mmd != NULL); 23680 23681 pa_info.type = PATTR_HCKSUM; 23682 pa_info.len = sizeof (pattr_hcksum_t); 23683 23684 /* create and associate the attribute */ 23685 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23686 if (pa != NULL) { 23687 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23688 23689 hck->hcksum_start_offset = start_offset; 23690 hck->hcksum_stuff_offset = stuff_offset; 23691 hck->hcksum_end_offset = end_offset; 23692 hck->hcksum_flags = flags; 23693 } 23694 return (pa != NULL); 23695 } 23696 23697 /* 23698 * Create zerocopy attribute and fill it with the specified flags 23699 */ 23700 boolean_t 23701 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23702 { 23703 pattr_t *pa; 23704 pattrinfo_t pa_info; 23705 23706 ASSERT(mmd != NULL); 23707 pa_info.type = PATTR_ZCOPY; 23708 pa_info.len = sizeof (pattr_zcopy_t); 23709 23710 /* create and associate the attribute */ 23711 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23712 if (pa != NULL) { 23713 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23714 23715 zcopy->zcopy_flags = flags; 23716 } 23717 return (pa != NULL); 23718 } 23719 23720 /* 23721 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23722 * block chain. We could rewrite to handle arbitrary message block chains but 23723 * that would make the code complicated and slow. Right now there three 23724 * restrictions: 23725 * 23726 * 1. The first message block must contain the complete IP header and 23727 * at least 1 byte of payload data. 23728 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23729 * so that we can use a single Multidata message. 23730 * 3. No frag must be distributed over two or more message blocks so 23731 * that we don't need more than two packet descriptors per frag. 23732 * 23733 * The above restrictions allow us to support userland applications (which 23734 * will send down a single message block) and NFS over UDP (which will 23735 * send down a chain of at most three message blocks). 23736 * 23737 * We also don't use MDT for payloads with less than or equal to 23738 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23739 */ 23740 boolean_t 23741 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23742 { 23743 int blocks; 23744 ssize_t total, missing, size; 23745 23746 ASSERT(mp != NULL); 23747 ASSERT(hdr_len > 0); 23748 23749 size = MBLKL(mp) - hdr_len; 23750 if (size <= 0) 23751 return (B_FALSE); 23752 23753 /* The first mblk contains the header and some payload. */ 23754 blocks = 1; 23755 total = size; 23756 size %= len; 23757 missing = (size == 0) ? 0 : (len - size); 23758 mp = mp->b_cont; 23759 23760 while (mp != NULL) { 23761 /* 23762 * Give up if we encounter a zero length message block. 23763 * In practice, this should rarely happen and therefore 23764 * not worth the trouble of freeing and re-linking the 23765 * mblk from the chain to handle such case. 23766 */ 23767 if ((size = MBLKL(mp)) == 0) 23768 return (B_FALSE); 23769 23770 /* Too many payload buffers for a single Multidata message? */ 23771 if (++blocks > MULTIDATA_MAX_PBUFS) 23772 return (B_FALSE); 23773 23774 total += size; 23775 /* Is a frag distributed over two or more message blocks? */ 23776 if (missing > size) 23777 return (B_FALSE); 23778 size -= missing; 23779 23780 size %= len; 23781 missing = (size == 0) ? 0 : (len - size); 23782 23783 mp = mp->b_cont; 23784 } 23785 23786 return (total > ip_wput_frag_mdt_min); 23787 } 23788 23789 /* 23790 * Outbound IPv4 fragmentation routine using MDT. 23791 */ 23792 static void 23793 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23794 uint32_t frag_flag, int offset) 23795 { 23796 ipha_t *ipha_orig; 23797 int i1, ip_data_end; 23798 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23799 mblk_t *hdr_mp, *md_mp = NULL; 23800 unsigned char *hdr_ptr, *pld_ptr; 23801 multidata_t *mmd; 23802 ip_pdescinfo_t pdi; 23803 ill_t *ill; 23804 ip_stack_t *ipst = ire->ire_ipst; 23805 23806 ASSERT(DB_TYPE(mp) == M_DATA); 23807 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23808 23809 ill = ire_to_ill(ire); 23810 ASSERT(ill != NULL); 23811 23812 ipha_orig = (ipha_t *)mp->b_rptr; 23813 mp->b_rptr += sizeof (ipha_t); 23814 23815 /* Calculate how many packets we will send out */ 23816 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23817 pkts = (i1 + len - 1) / len; 23818 ASSERT(pkts > 1); 23819 23820 /* Allocate a message block which will hold all the IP Headers. */ 23821 wroff = ipst->ips_ip_wroff_extra; 23822 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23823 23824 i1 = pkts * hdr_chunk_len; 23825 /* 23826 * Create the header buffer, Multidata and destination address 23827 * and SAP attribute that should be associated with it. 23828 */ 23829 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23830 ((hdr_mp->b_wptr += i1), 23831 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23832 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23833 freemsg(mp); 23834 if (md_mp == NULL) { 23835 freemsg(hdr_mp); 23836 } else { 23837 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23838 freemsg(md_mp); 23839 } 23840 IP_STAT(ipst, ip_frag_mdt_allocfail); 23841 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23842 return; 23843 } 23844 IP_STAT(ipst, ip_frag_mdt_allocd); 23845 23846 /* 23847 * Add a payload buffer to the Multidata; this operation must not 23848 * fail, or otherwise our logic in this routine is broken. There 23849 * is no memory allocation done by the routine, so any returned 23850 * failure simply tells us that we've done something wrong. 23851 * 23852 * A failure tells us that either we're adding the same payload 23853 * buffer more than once, or we're trying to add more buffers than 23854 * allowed. None of the above cases should happen, and we panic 23855 * because either there's horrible heap corruption, and/or 23856 * programming mistake. 23857 */ 23858 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23859 goto pbuf_panic; 23860 23861 hdr_ptr = hdr_mp->b_rptr; 23862 pld_ptr = mp->b_rptr; 23863 23864 /* Establish the ending byte offset, based on the starting offset. */ 23865 offset <<= 3; 23866 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23867 IP_SIMPLE_HDR_LENGTH; 23868 23869 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23870 23871 while (pld_ptr < mp->b_wptr) { 23872 ipha_t *ipha; 23873 uint16_t offset_and_flags; 23874 uint16_t ip_len; 23875 int error; 23876 23877 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23878 ipha = (ipha_t *)(hdr_ptr + wroff); 23879 ASSERT(OK_32PTR(ipha)); 23880 *ipha = *ipha_orig; 23881 23882 if (ip_data_end - offset > len) { 23883 offset_and_flags = IPH_MF; 23884 } else { 23885 /* 23886 * Last frag. Set len to the length of this last piece. 23887 */ 23888 len = ip_data_end - offset; 23889 /* A frag of a frag might have IPH_MF non-zero */ 23890 offset_and_flags = 23891 ntohs(ipha->ipha_fragment_offset_and_flags) & 23892 IPH_MF; 23893 } 23894 offset_and_flags |= (uint16_t)(offset >> 3); 23895 offset_and_flags |= (uint16_t)frag_flag; 23896 /* Store the offset and flags in the IP header. */ 23897 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23898 23899 /* Store the length in the IP header. */ 23900 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23901 ipha->ipha_length = htons(ip_len); 23902 23903 /* 23904 * Set the IP header checksum. Note that mp is just 23905 * the header, so this is easy to pass to ip_csum. 23906 */ 23907 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23908 23909 DTRACE_IP7(send, mblk_t *, md_mp, conn_t *, NULL, void_ip_t *, 23910 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, 23911 NULL, int, 0); 23912 23913 /* 23914 * Record offset and size of header and data of the next packet 23915 * in the multidata message. 23916 */ 23917 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23918 PDESC_PLD_INIT(&pdi); 23919 i1 = MIN(mp->b_wptr - pld_ptr, len); 23920 ASSERT(i1 > 0); 23921 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23922 if (i1 == len) { 23923 pld_ptr += len; 23924 } else { 23925 i1 = len - i1; 23926 mp = mp->b_cont; 23927 ASSERT(mp != NULL); 23928 ASSERT(MBLKL(mp) >= i1); 23929 /* 23930 * Attach the next payload message block to the 23931 * multidata message. 23932 */ 23933 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23934 goto pbuf_panic; 23935 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23936 pld_ptr = mp->b_rptr + i1; 23937 } 23938 23939 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23940 KM_NOSLEEP)) == NULL) { 23941 /* 23942 * Any failure other than ENOMEM indicates that we 23943 * have passed in invalid pdesc info or parameters 23944 * to mmd_addpdesc, which must not happen. 23945 * 23946 * EINVAL is a result of failure on boundary checks 23947 * against the pdesc info contents. It should not 23948 * happen, and we panic because either there's 23949 * horrible heap corruption, and/or programming 23950 * mistake. 23951 */ 23952 if (error != ENOMEM) { 23953 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23954 "pdesc logic error detected for " 23955 "mmd %p pinfo %p (%d)\n", 23956 (void *)mmd, (void *)&pdi, error); 23957 /* NOTREACHED */ 23958 } 23959 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 23960 /* Free unattached payload message blocks as well */ 23961 md_mp->b_cont = mp->b_cont; 23962 goto free_mmd; 23963 } 23964 23965 /* Advance fragment offset. */ 23966 offset += len; 23967 23968 /* Advance to location for next header in the buffer. */ 23969 hdr_ptr += hdr_chunk_len; 23970 23971 /* Did we reach the next payload message block? */ 23972 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23973 mp = mp->b_cont; 23974 /* 23975 * Attach the next message block with payload 23976 * data to the multidata message. 23977 */ 23978 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23979 goto pbuf_panic; 23980 pld_ptr = mp->b_rptr; 23981 } 23982 } 23983 23984 ASSERT(hdr_mp->b_wptr == hdr_ptr); 23985 ASSERT(mp->b_wptr == pld_ptr); 23986 23987 /* Update IP statistics */ 23988 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 23989 23990 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 23991 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 23992 23993 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 23994 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 23995 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 23996 23997 if (pkt_type == OB_PKT) { 23998 ire->ire_ob_pkt_count += pkts; 23999 if (ire->ire_ipif != NULL) 24000 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24001 } else { 24002 /* The type is IB_PKT in the forwarding path. */ 24003 ire->ire_ib_pkt_count += pkts; 24004 ASSERT(!IRE_IS_LOCAL(ire)); 24005 if (ire->ire_type & IRE_BROADCAST) { 24006 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24007 } else { 24008 UPDATE_MIB(ill->ill_ip_mib, 24009 ipIfStatsHCOutForwDatagrams, pkts); 24010 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24011 } 24012 } 24013 ire->ire_last_used_time = lbolt; 24014 /* Send it down */ 24015 putnext(ire->ire_stq, md_mp); 24016 return; 24017 24018 pbuf_panic: 24019 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24020 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24021 pbuf_idx); 24022 /* NOTREACHED */ 24023 } 24024 24025 /* 24026 * Outbound IP fragmentation routine. 24027 * 24028 * NOTE : This routine does not ire_refrele the ire that is passed in 24029 * as the argument. 24030 */ 24031 static void 24032 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24033 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst, conn_t *connp) 24034 { 24035 int i1; 24036 mblk_t *ll_hdr_mp; 24037 int ll_hdr_len; 24038 int hdr_len; 24039 mblk_t *hdr_mp; 24040 ipha_t *ipha; 24041 int ip_data_end; 24042 int len; 24043 mblk_t *mp = mp_orig, *mp1; 24044 int offset; 24045 queue_t *q; 24046 uint32_t v_hlen_tos_len; 24047 mblk_t *first_mp; 24048 boolean_t mctl_present; 24049 ill_t *ill; 24050 ill_t *out_ill; 24051 mblk_t *xmit_mp; 24052 mblk_t *carve_mp; 24053 ire_t *ire1 = NULL; 24054 ire_t *save_ire = NULL; 24055 mblk_t *next_mp = NULL; 24056 boolean_t last_frag = B_FALSE; 24057 boolean_t multirt_send = B_FALSE; 24058 ire_t *first_ire = NULL; 24059 irb_t *irb = NULL; 24060 mib2_ipIfStatsEntry_t *mibptr = NULL; 24061 24062 ill = ire_to_ill(ire); 24063 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24064 24065 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24066 24067 if (max_frag == 0) { 24068 ip1dbg(("ip_wput_frag: ire frag size is 0" 24069 " - dropping packet\n")); 24070 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24071 freemsg(mp); 24072 return; 24073 } 24074 24075 /* 24076 * IPsec does not allow hw accelerated packets to be fragmented 24077 * This check is made in ip_wput_ipsec_out prior to coming here 24078 * via ip_wput_ire_fragmentit. 24079 * 24080 * If at this point we have an ire whose ARP request has not 24081 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24082 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24083 * This packet and all fragmentable packets for this ire will 24084 * continue to get dropped while ire_nce->nce_state remains in 24085 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24086 * ND_REACHABLE, all subsquent large packets for this ire will 24087 * get fragemented and sent out by this function. 24088 */ 24089 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24090 /* If nce_state is ND_INITIAL, trigger ARP query */ 24091 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 24092 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24093 " - dropping packet\n")); 24094 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24095 freemsg(mp); 24096 return; 24097 } 24098 24099 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24100 "ip_wput_frag_start:"); 24101 24102 if (mp->b_datap->db_type == M_CTL) { 24103 first_mp = mp; 24104 mp_orig = mp = mp->b_cont; 24105 mctl_present = B_TRUE; 24106 } else { 24107 first_mp = mp; 24108 mctl_present = B_FALSE; 24109 } 24110 24111 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24112 ipha = (ipha_t *)mp->b_rptr; 24113 24114 /* 24115 * If the Don't Fragment flag is on, generate an ICMP destination 24116 * unreachable, fragmentation needed. 24117 */ 24118 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24119 if (offset & IPH_DF) { 24120 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24121 if (is_system_labeled()) { 24122 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24123 ire->ire_max_frag - max_frag, AF_INET); 24124 } 24125 /* 24126 * Need to compute hdr checksum if called from ip_wput_ire. 24127 * Note that ip_rput_forward verifies the checksum before 24128 * calling this routine so in that case this is a noop. 24129 */ 24130 ipha->ipha_hdr_checksum = 0; 24131 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24132 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24133 ipst); 24134 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24135 "ip_wput_frag_end:(%S)", 24136 "don't fragment"); 24137 return; 24138 } 24139 /* 24140 * Labeled systems adjust max_frag if they add a label 24141 * to send the correct path mtu. We need the real mtu since we 24142 * are fragmenting the packet after label adjustment. 24143 */ 24144 if (is_system_labeled()) 24145 max_frag = ire->ire_max_frag; 24146 if (mctl_present) 24147 freeb(first_mp); 24148 /* 24149 * Establish the starting offset. May not be zero if we are fragging 24150 * a fragment that is being forwarded. 24151 */ 24152 offset = offset & IPH_OFFSET; 24153 24154 /* TODO why is this test needed? */ 24155 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24156 if (((max_frag - LENGTH) & ~7) < 8) { 24157 /* TODO: notify ulp somehow */ 24158 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24159 freemsg(mp); 24160 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24161 "ip_wput_frag_end:(%S)", 24162 "len < 8"); 24163 return; 24164 } 24165 24166 hdr_len = (V_HLEN & 0xF) << 2; 24167 24168 ipha->ipha_hdr_checksum = 0; 24169 24170 /* 24171 * Establish the number of bytes maximum per frag, after putting 24172 * in the header. 24173 */ 24174 len = (max_frag - hdr_len) & ~7; 24175 24176 /* Check if we can use MDT to send out the frags. */ 24177 ASSERT(!IRE_IS_LOCAL(ire)); 24178 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24179 ipst->ips_ip_multidata_outbound && 24180 !(ire->ire_flags & RTF_MULTIRT) && 24181 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24182 ill != NULL && ILL_MDT_CAPABLE(ill) && 24183 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24184 ASSERT(ill->ill_mdt_capab != NULL); 24185 if (!ill->ill_mdt_capab->ill_mdt_on) { 24186 /* 24187 * If MDT has been previously turned off in the past, 24188 * and we currently can do MDT (due to IPQoS policy 24189 * removal, etc.) then enable it for this interface. 24190 */ 24191 ill->ill_mdt_capab->ill_mdt_on = 1; 24192 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24193 ill->ill_name)); 24194 } 24195 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24196 offset); 24197 return; 24198 } 24199 24200 /* Get a copy of the header for the trailing frags */ 24201 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 24202 mp); 24203 if (!hdr_mp) { 24204 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24205 freemsg(mp); 24206 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24207 "ip_wput_frag_end:(%S)", 24208 "couldn't copy hdr"); 24209 return; 24210 } 24211 24212 /* Store the starting offset, with the MoreFrags flag. */ 24213 i1 = offset | IPH_MF | frag_flag; 24214 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24215 24216 /* Establish the ending byte offset, based on the starting offset. */ 24217 offset <<= 3; 24218 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24219 24220 /* Store the length of the first fragment in the IP header. */ 24221 i1 = len + hdr_len; 24222 ASSERT(i1 <= IP_MAXPACKET); 24223 ipha->ipha_length = htons((uint16_t)i1); 24224 24225 /* 24226 * Compute the IP header checksum for the first frag. We have to 24227 * watch out that we stop at the end of the header. 24228 */ 24229 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24230 24231 /* 24232 * Now carve off the first frag. Note that this will include the 24233 * original IP header. 24234 */ 24235 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24236 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24237 freeb(hdr_mp); 24238 freemsg(mp_orig); 24239 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24240 "ip_wput_frag_end:(%S)", 24241 "couldn't carve first"); 24242 return; 24243 } 24244 24245 /* 24246 * Multirouting case. Each fragment is replicated 24247 * via all non-condemned RTF_MULTIRT routes 24248 * currently resolved. 24249 * We ensure that first_ire is the first RTF_MULTIRT 24250 * ire in the bucket. 24251 */ 24252 if (ire->ire_flags & RTF_MULTIRT) { 24253 irb = ire->ire_bucket; 24254 ASSERT(irb != NULL); 24255 24256 multirt_send = B_TRUE; 24257 24258 /* Make sure we do not omit any multiroute ire. */ 24259 IRB_REFHOLD(irb); 24260 for (first_ire = irb->irb_ire; 24261 first_ire != NULL; 24262 first_ire = first_ire->ire_next) { 24263 if ((first_ire->ire_flags & RTF_MULTIRT) && 24264 (first_ire->ire_addr == ire->ire_addr) && 24265 !(first_ire->ire_marks & 24266 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 24267 break; 24268 } 24269 24270 if (first_ire != NULL) { 24271 if (first_ire != ire) { 24272 IRE_REFHOLD(first_ire); 24273 /* 24274 * Do not release the ire passed in 24275 * as the argument. 24276 */ 24277 ire = first_ire; 24278 } else { 24279 first_ire = NULL; 24280 } 24281 } 24282 IRB_REFRELE(irb); 24283 24284 /* 24285 * Save the first ire; we will need to restore it 24286 * for the trailing frags. 24287 * We REFHOLD save_ire, as each iterated ire will be 24288 * REFRELEd. 24289 */ 24290 save_ire = ire; 24291 IRE_REFHOLD(save_ire); 24292 } 24293 24294 /* 24295 * First fragment emission loop. 24296 * In most cases, the emission loop below is entered only 24297 * once. Only in the case where the ire holds the RTF_MULTIRT 24298 * flag, do we loop to process all RTF_MULTIRT ires in the 24299 * bucket, and send the fragment through all crossed 24300 * RTF_MULTIRT routes. 24301 */ 24302 do { 24303 if (ire->ire_flags & RTF_MULTIRT) { 24304 /* 24305 * We are in a multiple send case, need to get 24306 * the next ire and make a copy of the packet. 24307 * ire1 holds here the next ire to process in the 24308 * bucket. If multirouting is expected, 24309 * any non-RTF_MULTIRT ire that has the 24310 * right destination address is ignored. 24311 * 24312 * We have to take into account the MTU of 24313 * each walked ire. max_frag is set by the 24314 * the caller and generally refers to 24315 * the primary ire entry. Here we ensure that 24316 * no route with a lower MTU will be used, as 24317 * fragments are carved once for all ires, 24318 * then replicated. 24319 */ 24320 ASSERT(irb != NULL); 24321 IRB_REFHOLD(irb); 24322 for (ire1 = ire->ire_next; 24323 ire1 != NULL; 24324 ire1 = ire1->ire_next) { 24325 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24326 continue; 24327 if (ire1->ire_addr != ire->ire_addr) 24328 continue; 24329 if (ire1->ire_marks & 24330 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 24331 continue; 24332 /* 24333 * Ensure we do not exceed the MTU 24334 * of the next route. 24335 */ 24336 if (ire1->ire_max_frag < max_frag) { 24337 ip_multirt_bad_mtu(ire1, max_frag); 24338 continue; 24339 } 24340 24341 /* Got one. */ 24342 IRE_REFHOLD(ire1); 24343 break; 24344 } 24345 IRB_REFRELE(irb); 24346 24347 if (ire1 != NULL) { 24348 next_mp = copyb(mp); 24349 if ((next_mp == NULL) || 24350 ((mp->b_cont != NULL) && 24351 ((next_mp->b_cont = 24352 dupmsg(mp->b_cont)) == NULL))) { 24353 freemsg(next_mp); 24354 next_mp = NULL; 24355 ire_refrele(ire1); 24356 ire1 = NULL; 24357 } 24358 } 24359 24360 /* Last multiroute ire; don't loop anymore. */ 24361 if (ire1 == NULL) { 24362 multirt_send = B_FALSE; 24363 } 24364 } 24365 24366 ll_hdr_len = 0; 24367 LOCK_IRE_FP_MP(ire); 24368 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24369 if (ll_hdr_mp != NULL) { 24370 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24371 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24372 } else { 24373 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24374 } 24375 24376 /* If there is a transmit header, get a copy for this frag. */ 24377 /* 24378 * TODO: should check db_ref before calling ip_carve_mp since 24379 * it might give us a dup. 24380 */ 24381 if (!ll_hdr_mp) { 24382 /* No xmit header. */ 24383 xmit_mp = mp; 24384 24385 /* We have a link-layer header that can fit in our mblk. */ 24386 } else if (mp->b_datap->db_ref == 1 && 24387 ll_hdr_len != 0 && 24388 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24389 /* M_DATA fastpath */ 24390 mp->b_rptr -= ll_hdr_len; 24391 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24392 xmit_mp = mp; 24393 24394 /* Corner case if copyb has failed */ 24395 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24396 UNLOCK_IRE_FP_MP(ire); 24397 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24398 freeb(hdr_mp); 24399 freemsg(mp); 24400 freemsg(mp_orig); 24401 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24402 "ip_wput_frag_end:(%S)", 24403 "discard"); 24404 24405 if (multirt_send) { 24406 ASSERT(ire1); 24407 ASSERT(next_mp); 24408 24409 freemsg(next_mp); 24410 ire_refrele(ire1); 24411 } 24412 if (save_ire != NULL) 24413 IRE_REFRELE(save_ire); 24414 24415 if (first_ire != NULL) 24416 ire_refrele(first_ire); 24417 return; 24418 24419 /* 24420 * Case of res_mp OR the fastpath mp can't fit 24421 * in the mblk 24422 */ 24423 } else { 24424 xmit_mp->b_cont = mp; 24425 24426 /* 24427 * Get priority marking, if any. 24428 * We propagate the CoS marking from the 24429 * original packet that went to QoS processing 24430 * in ip_wput_ire to the newly carved mp. 24431 */ 24432 if (DB_TYPE(xmit_mp) == M_DATA) 24433 xmit_mp->b_band = mp->b_band; 24434 } 24435 UNLOCK_IRE_FP_MP(ire); 24436 24437 q = ire->ire_stq; 24438 out_ill = (ill_t *)q->q_ptr; 24439 24440 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24441 24442 DTRACE_PROBE4(ip4__physical__out__start, 24443 ill_t *, NULL, ill_t *, out_ill, 24444 ipha_t *, ipha, mblk_t *, xmit_mp); 24445 24446 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24447 ipst->ips_ipv4firewall_physical_out, 24448 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24449 24450 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24451 24452 if (xmit_mp != NULL) { 24453 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, NULL, 24454 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 24455 ipha_t *, ipha, ip6_t *, NULL, int, 0); 24456 24457 ILL_SEND_TX(out_ill, ire, connp, xmit_mp, 0, connp); 24458 24459 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24460 UPDATE_MIB(out_ill->ill_ip_mib, 24461 ipIfStatsHCOutOctets, i1); 24462 24463 if (pkt_type != OB_PKT) { 24464 /* 24465 * Update the packet count and MIB stats 24466 * of trailing RTF_MULTIRT ires. 24467 */ 24468 UPDATE_OB_PKT_COUNT(ire); 24469 BUMP_MIB(out_ill->ill_ip_mib, 24470 ipIfStatsOutFragReqds); 24471 } 24472 } 24473 24474 if (multirt_send) { 24475 /* 24476 * We are in a multiple send case; look for 24477 * the next ire and re-enter the loop. 24478 */ 24479 ASSERT(ire1); 24480 ASSERT(next_mp); 24481 /* REFRELE the current ire before looping */ 24482 ire_refrele(ire); 24483 ire = ire1; 24484 ire1 = NULL; 24485 mp = next_mp; 24486 next_mp = NULL; 24487 } 24488 } while (multirt_send); 24489 24490 ASSERT(ire1 == NULL); 24491 24492 /* Restore the original ire; we need it for the trailing frags */ 24493 if (save_ire != NULL) { 24494 /* REFRELE the last iterated ire */ 24495 ire_refrele(ire); 24496 /* save_ire has been REFHOLDed */ 24497 ire = save_ire; 24498 save_ire = NULL; 24499 q = ire->ire_stq; 24500 } 24501 24502 if (pkt_type == OB_PKT) { 24503 UPDATE_OB_PKT_COUNT(ire); 24504 } else { 24505 out_ill = (ill_t *)q->q_ptr; 24506 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24507 UPDATE_IB_PKT_COUNT(ire); 24508 } 24509 24510 /* Advance the offset to the second frag starting point. */ 24511 offset += len; 24512 /* 24513 * Update hdr_len from the copied header - there might be less options 24514 * in the later fragments. 24515 */ 24516 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24517 /* Loop until done. */ 24518 for (;;) { 24519 uint16_t offset_and_flags; 24520 uint16_t ip_len; 24521 24522 if (ip_data_end - offset > len) { 24523 /* 24524 * Carve off the appropriate amount from the original 24525 * datagram. 24526 */ 24527 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24528 mp = NULL; 24529 break; 24530 } 24531 /* 24532 * More frags after this one. Get another copy 24533 * of the header. 24534 */ 24535 if (carve_mp->b_datap->db_ref == 1 && 24536 hdr_mp->b_wptr - hdr_mp->b_rptr < 24537 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24538 /* Inline IP header */ 24539 carve_mp->b_rptr -= hdr_mp->b_wptr - 24540 hdr_mp->b_rptr; 24541 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24542 hdr_mp->b_wptr - hdr_mp->b_rptr); 24543 mp = carve_mp; 24544 } else { 24545 if (!(mp = copyb(hdr_mp))) { 24546 freemsg(carve_mp); 24547 break; 24548 } 24549 /* Get priority marking, if any. */ 24550 mp->b_band = carve_mp->b_band; 24551 mp->b_cont = carve_mp; 24552 } 24553 ipha = (ipha_t *)mp->b_rptr; 24554 offset_and_flags = IPH_MF; 24555 } else { 24556 /* 24557 * Last frag. Consume the header. Set len to 24558 * the length of this last piece. 24559 */ 24560 len = ip_data_end - offset; 24561 24562 /* 24563 * Carve off the appropriate amount from the original 24564 * datagram. 24565 */ 24566 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24567 mp = NULL; 24568 break; 24569 } 24570 if (carve_mp->b_datap->db_ref == 1 && 24571 hdr_mp->b_wptr - hdr_mp->b_rptr < 24572 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24573 /* Inline IP header */ 24574 carve_mp->b_rptr -= hdr_mp->b_wptr - 24575 hdr_mp->b_rptr; 24576 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24577 hdr_mp->b_wptr - hdr_mp->b_rptr); 24578 mp = carve_mp; 24579 freeb(hdr_mp); 24580 hdr_mp = mp; 24581 } else { 24582 mp = hdr_mp; 24583 /* Get priority marking, if any. */ 24584 mp->b_band = carve_mp->b_band; 24585 mp->b_cont = carve_mp; 24586 } 24587 ipha = (ipha_t *)mp->b_rptr; 24588 /* A frag of a frag might have IPH_MF non-zero */ 24589 offset_and_flags = 24590 ntohs(ipha->ipha_fragment_offset_and_flags) & 24591 IPH_MF; 24592 } 24593 offset_and_flags |= (uint16_t)(offset >> 3); 24594 offset_and_flags |= (uint16_t)frag_flag; 24595 /* Store the offset and flags in the IP header. */ 24596 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24597 24598 /* Store the length in the IP header. */ 24599 ip_len = (uint16_t)(len + hdr_len); 24600 ipha->ipha_length = htons(ip_len); 24601 24602 /* 24603 * Set the IP header checksum. Note that mp is just 24604 * the header, so this is easy to pass to ip_csum. 24605 */ 24606 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24607 24608 /* Attach a transmit header, if any, and ship it. */ 24609 if (pkt_type == OB_PKT) { 24610 UPDATE_OB_PKT_COUNT(ire); 24611 } else { 24612 out_ill = (ill_t *)q->q_ptr; 24613 BUMP_MIB(out_ill->ill_ip_mib, 24614 ipIfStatsHCOutForwDatagrams); 24615 UPDATE_IB_PKT_COUNT(ire); 24616 } 24617 24618 if (ire->ire_flags & RTF_MULTIRT) { 24619 irb = ire->ire_bucket; 24620 ASSERT(irb != NULL); 24621 24622 multirt_send = B_TRUE; 24623 24624 /* 24625 * Save the original ire; we will need to restore it 24626 * for the tailing frags. 24627 */ 24628 save_ire = ire; 24629 IRE_REFHOLD(save_ire); 24630 } 24631 /* 24632 * Emission loop for this fragment, similar 24633 * to what is done for the first fragment. 24634 */ 24635 do { 24636 if (multirt_send) { 24637 /* 24638 * We are in a multiple send case, need to get 24639 * the next ire and make a copy of the packet. 24640 */ 24641 ASSERT(irb != NULL); 24642 IRB_REFHOLD(irb); 24643 for (ire1 = ire->ire_next; 24644 ire1 != NULL; 24645 ire1 = ire1->ire_next) { 24646 if (!(ire1->ire_flags & RTF_MULTIRT)) 24647 continue; 24648 if (ire1->ire_addr != ire->ire_addr) 24649 continue; 24650 if (ire1->ire_marks & 24651 (IRE_MARK_CONDEMNED | 24652 IRE_MARK_TESTHIDDEN)) 24653 continue; 24654 /* 24655 * Ensure we do not exceed the MTU 24656 * of the next route. 24657 */ 24658 if (ire1->ire_max_frag < max_frag) { 24659 ip_multirt_bad_mtu(ire1, 24660 max_frag); 24661 continue; 24662 } 24663 24664 /* Got one. */ 24665 IRE_REFHOLD(ire1); 24666 break; 24667 } 24668 IRB_REFRELE(irb); 24669 24670 if (ire1 != NULL) { 24671 next_mp = copyb(mp); 24672 if ((next_mp == NULL) || 24673 ((mp->b_cont != NULL) && 24674 ((next_mp->b_cont = 24675 dupmsg(mp->b_cont)) == NULL))) { 24676 freemsg(next_mp); 24677 next_mp = NULL; 24678 ire_refrele(ire1); 24679 ire1 = NULL; 24680 } 24681 } 24682 24683 /* Last multiroute ire; don't loop anymore. */ 24684 if (ire1 == NULL) { 24685 multirt_send = B_FALSE; 24686 } 24687 } 24688 24689 /* Update transmit header */ 24690 ll_hdr_len = 0; 24691 LOCK_IRE_FP_MP(ire); 24692 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24693 if (ll_hdr_mp != NULL) { 24694 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24695 ll_hdr_len = MBLKL(ll_hdr_mp); 24696 } else { 24697 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24698 } 24699 24700 if (!ll_hdr_mp) { 24701 xmit_mp = mp; 24702 24703 /* 24704 * We have link-layer header that can fit in 24705 * our mblk. 24706 */ 24707 } else if (mp->b_datap->db_ref == 1 && 24708 ll_hdr_len != 0 && 24709 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24710 /* M_DATA fastpath */ 24711 mp->b_rptr -= ll_hdr_len; 24712 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24713 ll_hdr_len); 24714 xmit_mp = mp; 24715 24716 /* 24717 * Case of res_mp OR the fastpath mp can't fit 24718 * in the mblk 24719 */ 24720 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24721 xmit_mp->b_cont = mp; 24722 /* Get priority marking, if any. */ 24723 if (DB_TYPE(xmit_mp) == M_DATA) 24724 xmit_mp->b_band = mp->b_band; 24725 24726 /* Corner case if copyb failed */ 24727 } else { 24728 /* 24729 * Exit both the replication and 24730 * fragmentation loops. 24731 */ 24732 UNLOCK_IRE_FP_MP(ire); 24733 goto drop_pkt; 24734 } 24735 UNLOCK_IRE_FP_MP(ire); 24736 24737 mp1 = mp; 24738 out_ill = (ill_t *)q->q_ptr; 24739 24740 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24741 24742 DTRACE_PROBE4(ip4__physical__out__start, 24743 ill_t *, NULL, ill_t *, out_ill, 24744 ipha_t *, ipha, mblk_t *, xmit_mp); 24745 24746 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24747 ipst->ips_ipv4firewall_physical_out, 24748 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24749 24750 DTRACE_PROBE1(ip4__physical__out__end, 24751 mblk_t *, xmit_mp); 24752 24753 if (mp != mp1 && hdr_mp == mp1) 24754 hdr_mp = mp; 24755 if (mp != mp1 && mp_orig == mp1) 24756 mp_orig = mp; 24757 24758 if (xmit_mp != NULL) { 24759 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, 24760 NULL, void_ip_t *, ipha, 24761 __dtrace_ipsr_ill_t *, out_ill, ipha_t *, 24762 ipha, ip6_t *, NULL, int, 0); 24763 24764 ILL_SEND_TX(out_ill, ire, connp, 24765 xmit_mp, 0, connp); 24766 24767 BUMP_MIB(out_ill->ill_ip_mib, 24768 ipIfStatsHCOutTransmits); 24769 UPDATE_MIB(out_ill->ill_ip_mib, 24770 ipIfStatsHCOutOctets, ip_len); 24771 24772 if (pkt_type != OB_PKT) { 24773 /* 24774 * Update the packet count of trailing 24775 * RTF_MULTIRT ires. 24776 */ 24777 UPDATE_OB_PKT_COUNT(ire); 24778 } 24779 } 24780 24781 /* All done if we just consumed the hdr_mp. */ 24782 if (mp == hdr_mp) { 24783 last_frag = B_TRUE; 24784 BUMP_MIB(out_ill->ill_ip_mib, 24785 ipIfStatsOutFragOKs); 24786 } 24787 24788 if (multirt_send) { 24789 /* 24790 * We are in a multiple send case; look for 24791 * the next ire and re-enter the loop. 24792 */ 24793 ASSERT(ire1); 24794 ASSERT(next_mp); 24795 /* REFRELE the current ire before looping */ 24796 ire_refrele(ire); 24797 ire = ire1; 24798 ire1 = NULL; 24799 q = ire->ire_stq; 24800 mp = next_mp; 24801 next_mp = NULL; 24802 } 24803 } while (multirt_send); 24804 /* 24805 * Restore the original ire; we need it for the 24806 * trailing frags 24807 */ 24808 if (save_ire != NULL) { 24809 ASSERT(ire1 == NULL); 24810 /* REFRELE the last iterated ire */ 24811 ire_refrele(ire); 24812 /* save_ire has been REFHOLDed */ 24813 ire = save_ire; 24814 q = ire->ire_stq; 24815 save_ire = NULL; 24816 } 24817 24818 if (last_frag) { 24819 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24820 "ip_wput_frag_end:(%S)", 24821 "consumed hdr_mp"); 24822 24823 if (first_ire != NULL) 24824 ire_refrele(first_ire); 24825 return; 24826 } 24827 /* Otherwise, advance and loop. */ 24828 offset += len; 24829 } 24830 24831 drop_pkt: 24832 /* Clean up following allocation failure. */ 24833 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24834 freemsg(mp); 24835 if (mp != hdr_mp) 24836 freeb(hdr_mp); 24837 if (mp != mp_orig) 24838 freemsg(mp_orig); 24839 24840 if (save_ire != NULL) 24841 IRE_REFRELE(save_ire); 24842 if (first_ire != NULL) 24843 ire_refrele(first_ire); 24844 24845 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24846 "ip_wput_frag_end:(%S)", 24847 "end--alloc failure"); 24848 } 24849 24850 /* 24851 * Copy the header plus those options which have the copy bit set 24852 * src is the template to make sure we preserve the cred for TX purposes. 24853 */ 24854 static mblk_t * 24855 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 24856 mblk_t *src) 24857 { 24858 mblk_t *mp; 24859 uchar_t *up; 24860 24861 /* 24862 * Quick check if we need to look for options without the copy bit 24863 * set 24864 */ 24865 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 24866 if (!mp) 24867 return (mp); 24868 mp->b_rptr += ipst->ips_ip_wroff_extra; 24869 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24870 bcopy(rptr, mp->b_rptr, hdr_len); 24871 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24872 return (mp); 24873 } 24874 up = mp->b_rptr; 24875 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24876 up += IP_SIMPLE_HDR_LENGTH; 24877 rptr += IP_SIMPLE_HDR_LENGTH; 24878 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24879 while (hdr_len > 0) { 24880 uint32_t optval; 24881 uint32_t optlen; 24882 24883 optval = *rptr; 24884 if (optval == IPOPT_EOL) 24885 break; 24886 if (optval == IPOPT_NOP) 24887 optlen = 1; 24888 else 24889 optlen = rptr[1]; 24890 if (optval & IPOPT_COPY) { 24891 bcopy(rptr, up, optlen); 24892 up += optlen; 24893 } 24894 rptr += optlen; 24895 hdr_len -= optlen; 24896 } 24897 /* 24898 * Make sure that we drop an even number of words by filling 24899 * with EOL to the next word boundary. 24900 */ 24901 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24902 hdr_len & 0x3; hdr_len++) 24903 *up++ = IPOPT_EOL; 24904 mp->b_wptr = up; 24905 /* Update header length */ 24906 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24907 return (mp); 24908 } 24909 24910 /* 24911 * Delivery to local recipients including fanout to multiple recipients. 24912 * Does not do checksumming of UDP/TCP. 24913 * Note: q should be the read side queue for either the ill or conn. 24914 * Note: rq should be the read side q for the lower (ill) stream. 24915 * We don't send packets to IPPF processing, thus the last argument 24916 * to all the fanout calls are B_FALSE. 24917 */ 24918 void 24919 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24920 int fanout_flags, zoneid_t zoneid) 24921 { 24922 uint32_t protocol; 24923 mblk_t *first_mp; 24924 boolean_t mctl_present; 24925 int ire_type; 24926 #define rptr ((uchar_t *)ipha) 24927 ip_stack_t *ipst = ill->ill_ipst; 24928 24929 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24930 "ip_wput_local_start: q %p", q); 24931 24932 if (ire != NULL) { 24933 ire_type = ire->ire_type; 24934 } else { 24935 /* 24936 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24937 * packet is not multicast, we can't tell the ire type. 24938 */ 24939 ASSERT(CLASSD(ipha->ipha_dst)); 24940 ire_type = IRE_BROADCAST; 24941 } 24942 24943 first_mp = mp; 24944 if (first_mp->b_datap->db_type == M_CTL) { 24945 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24946 if (!io->ipsec_out_secure) { 24947 /* 24948 * This ipsec_out_t was allocated in ip_wput 24949 * for multicast packets to store the ill_index. 24950 * As this is being delivered locally, we don't 24951 * need this anymore. 24952 */ 24953 mp = first_mp->b_cont; 24954 freeb(first_mp); 24955 first_mp = mp; 24956 mctl_present = B_FALSE; 24957 } else { 24958 /* 24959 * Convert IPSEC_OUT to IPSEC_IN, preserving all 24960 * security properties for the looped-back packet. 24961 */ 24962 mctl_present = B_TRUE; 24963 mp = first_mp->b_cont; 24964 ASSERT(mp != NULL); 24965 ipsec_out_to_in(first_mp); 24966 } 24967 } else { 24968 mctl_present = B_FALSE; 24969 } 24970 24971 DTRACE_PROBE4(ip4__loopback__in__start, 24972 ill_t *, ill, ill_t *, NULL, 24973 ipha_t *, ipha, mblk_t *, first_mp); 24974 24975 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 24976 ipst->ips_ipv4firewall_loopback_in, 24977 ill, NULL, ipha, first_mp, mp, 0, ipst); 24978 24979 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 24980 24981 if (first_mp == NULL) 24982 return; 24983 24984 if (ipst->ips_ip4_observe.he_interested) { 24985 zoneid_t szone, dzone, lookup_zoneid = ALL_ZONES; 24986 zoneid_t stackzoneid = netstackid_to_zoneid( 24987 ipst->ips_netstack->netstack_stackid); 24988 24989 dzone = (stackzoneid == GLOBAL_ZONEID) ? zoneid : stackzoneid; 24990 /* 24991 * 127.0.0.1 is special, as we cannot lookup its zoneid by 24992 * address. Restrict the lookup below to the destination zone. 24993 */ 24994 if (ipha->ipha_src == ntohl(INADDR_LOOPBACK)) 24995 lookup_zoneid = zoneid; 24996 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 24997 lookup_zoneid); 24998 ipobs_hook(mp, IPOBS_HOOK_LOCAL, szone, dzone, ill, ipst); 24999 } 25000 25001 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, void_ip_t *, 25002 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL, 25003 int, 1); 25004 25005 ipst->ips_loopback_packets++; 25006 25007 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25008 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25009 if (!IS_SIMPLE_IPH(ipha)) { 25010 ip_wput_local_options(ipha, ipst); 25011 } 25012 25013 protocol = ipha->ipha_protocol; 25014 switch (protocol) { 25015 case IPPROTO_ICMP: { 25016 ire_t *ire_zone; 25017 ilm_t *ilm; 25018 mblk_t *mp1; 25019 zoneid_t last_zoneid; 25020 ilm_walker_t ilw; 25021 25022 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25023 ASSERT(ire_type == IRE_BROADCAST); 25024 /* 25025 * In the multicast case, applications may have joined 25026 * the group from different zones, so we need to deliver 25027 * the packet to each of them. Loop through the 25028 * multicast memberships structures (ilm) on the receive 25029 * ill and send a copy of the packet up each matching 25030 * one. However, we don't do this for multicasts sent on 25031 * the loopback interface (PHYI_LOOPBACK flag set) as 25032 * they must stay in the sender's zone. 25033 * 25034 * ilm_add_v6() ensures that ilms in the same zone are 25035 * contiguous in the ill_ilm list. We use this property 25036 * to avoid sending duplicates needed when two 25037 * applications in the same zone join the same group on 25038 * different logical interfaces: we ignore the ilm if 25039 * it's zoneid is the same as the last matching one. 25040 * In addition, the sending of the packet for 25041 * ire_zoneid is delayed until all of the other ilms 25042 * have been exhausted. 25043 */ 25044 last_zoneid = -1; 25045 ilm = ilm_walker_start(&ilw, ill); 25046 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 25047 if (ipha->ipha_dst != ilm->ilm_addr || 25048 ilm->ilm_zoneid == last_zoneid || 25049 ilm->ilm_zoneid == zoneid || 25050 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25051 continue; 25052 mp1 = ip_copymsg(first_mp); 25053 if (mp1 == NULL) 25054 continue; 25055 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 25056 0, 0, mctl_present, B_FALSE, ill, 25057 ilm->ilm_zoneid); 25058 last_zoneid = ilm->ilm_zoneid; 25059 } 25060 ilm_walker_finish(&ilw); 25061 /* 25062 * Loopback case: the sending endpoint has 25063 * IP_MULTICAST_LOOP disabled, therefore we don't 25064 * dispatch the multicast packet to the sending zone. 25065 */ 25066 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25067 freemsg(first_mp); 25068 return; 25069 } 25070 } else if (ire_type == IRE_BROADCAST) { 25071 /* 25072 * In the broadcast case, there may be many zones 25073 * which need a copy of the packet delivered to them. 25074 * There is one IRE_BROADCAST per broadcast address 25075 * and per zone; we walk those using a helper function. 25076 * In addition, the sending of the packet for zoneid is 25077 * delayed until all of the other ires have been 25078 * processed. 25079 */ 25080 IRB_REFHOLD(ire->ire_bucket); 25081 ire_zone = NULL; 25082 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25083 ire)) != NULL) { 25084 mp1 = ip_copymsg(first_mp); 25085 if (mp1 == NULL) 25086 continue; 25087 25088 UPDATE_IB_PKT_COUNT(ire_zone); 25089 ire_zone->ire_last_used_time = lbolt; 25090 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25091 mctl_present, B_FALSE, ill, 25092 ire_zone->ire_zoneid); 25093 } 25094 IRB_REFRELE(ire->ire_bucket); 25095 } 25096 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25097 0, mctl_present, B_FALSE, ill, zoneid); 25098 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25099 "ip_wput_local_end: q %p (%S)", 25100 q, "icmp"); 25101 return; 25102 } 25103 case IPPROTO_IGMP: 25104 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25105 /* Bad packet - discarded by igmp_input */ 25106 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25107 "ip_wput_local_end: q %p (%S)", 25108 q, "igmp_input--bad packet"); 25109 if (mctl_present) 25110 freeb(first_mp); 25111 return; 25112 } 25113 /* 25114 * igmp_input() may have returned the pulled up message. 25115 * So first_mp and ipha need to be reinitialized. 25116 */ 25117 ipha = (ipha_t *)mp->b_rptr; 25118 if (mctl_present) 25119 first_mp->b_cont = mp; 25120 else 25121 first_mp = mp; 25122 /* deliver to local raw users */ 25123 break; 25124 case IPPROTO_ENCAP: 25125 /* 25126 * This case is covered by either ip_fanout_proto, or by 25127 * the above security processing for self-tunneled packets. 25128 */ 25129 break; 25130 case IPPROTO_UDP: { 25131 uint16_t *up; 25132 uint32_t ports; 25133 25134 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25135 UDP_PORTS_OFFSET); 25136 /* Force a 'valid' checksum. */ 25137 up[3] = 0; 25138 25139 ports = *(uint32_t *)up; 25140 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25141 (ire_type == IRE_BROADCAST), 25142 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25143 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25144 ill, zoneid); 25145 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25146 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25147 return; 25148 } 25149 case IPPROTO_TCP: { 25150 25151 /* 25152 * For TCP, discard broadcast packets. 25153 */ 25154 if ((ushort_t)ire_type == IRE_BROADCAST) { 25155 freemsg(first_mp); 25156 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25157 ip2dbg(("ip_wput_local: discard broadcast\n")); 25158 return; 25159 } 25160 25161 if (mp->b_datap->db_type == M_DATA) { 25162 /* 25163 * M_DATA mblk, so init mblk (chain) for no struio(). 25164 */ 25165 mblk_t *mp1 = mp; 25166 25167 do { 25168 mp1->b_datap->db_struioflag = 0; 25169 } while ((mp1 = mp1->b_cont) != NULL); 25170 } 25171 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25172 <= mp->b_wptr); 25173 ip_fanout_tcp(q, first_mp, ill, ipha, 25174 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25175 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25176 mctl_present, B_FALSE, zoneid); 25177 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25178 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25179 return; 25180 } 25181 case IPPROTO_SCTP: 25182 { 25183 uint32_t ports; 25184 25185 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25186 ip_fanout_sctp(first_mp, ill, ipha, ports, 25187 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25188 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25189 return; 25190 } 25191 25192 default: 25193 break; 25194 } 25195 /* 25196 * Find a client for some other protocol. We give 25197 * copies to multiple clients, if more than one is 25198 * bound. 25199 */ 25200 ip_fanout_proto(q, first_mp, ill, ipha, 25201 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25202 mctl_present, B_FALSE, ill, zoneid); 25203 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25204 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25205 #undef rptr 25206 } 25207 25208 /* 25209 * Update any source route, record route, or timestamp options. 25210 * Check that we are at end of strict source route. 25211 * The options have been sanity checked by ip_wput_options(). 25212 */ 25213 static void 25214 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25215 { 25216 ipoptp_t opts; 25217 uchar_t *opt; 25218 uint8_t optval; 25219 uint8_t optlen; 25220 ipaddr_t dst; 25221 uint32_t ts; 25222 ire_t *ire; 25223 timestruc_t now; 25224 25225 ip2dbg(("ip_wput_local_options\n")); 25226 for (optval = ipoptp_first(&opts, ipha); 25227 optval != IPOPT_EOL; 25228 optval = ipoptp_next(&opts)) { 25229 opt = opts.ipoptp_cur; 25230 optlen = opts.ipoptp_len; 25231 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25232 switch (optval) { 25233 uint32_t off; 25234 case IPOPT_SSRR: 25235 case IPOPT_LSRR: 25236 off = opt[IPOPT_OFFSET]; 25237 off--; 25238 if (optlen < IP_ADDR_LEN || 25239 off > optlen - IP_ADDR_LEN) { 25240 /* End of source route */ 25241 break; 25242 } 25243 /* 25244 * This will only happen if two consecutive entries 25245 * in the source route contains our address or if 25246 * it is a packet with a loose source route which 25247 * reaches us before consuming the whole source route 25248 */ 25249 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25250 if (optval == IPOPT_SSRR) { 25251 return; 25252 } 25253 /* 25254 * Hack: instead of dropping the packet truncate the 25255 * source route to what has been used by filling the 25256 * rest with IPOPT_NOP. 25257 */ 25258 opt[IPOPT_OLEN] = (uint8_t)off; 25259 while (off < optlen) { 25260 opt[off++] = IPOPT_NOP; 25261 } 25262 break; 25263 case IPOPT_RR: 25264 off = opt[IPOPT_OFFSET]; 25265 off--; 25266 if (optlen < IP_ADDR_LEN || 25267 off > optlen - IP_ADDR_LEN) { 25268 /* No more room - ignore */ 25269 ip1dbg(( 25270 "ip_wput_forward_options: end of RR\n")); 25271 break; 25272 } 25273 dst = htonl(INADDR_LOOPBACK); 25274 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25275 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25276 break; 25277 case IPOPT_TS: 25278 /* Insert timestamp if there is romm */ 25279 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25280 case IPOPT_TS_TSONLY: 25281 off = IPOPT_TS_TIMELEN; 25282 break; 25283 case IPOPT_TS_PRESPEC: 25284 case IPOPT_TS_PRESPEC_RFC791: 25285 /* Verify that the address matched */ 25286 off = opt[IPOPT_OFFSET] - 1; 25287 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25288 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25289 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25290 ipst); 25291 if (ire == NULL) { 25292 /* Not for us */ 25293 break; 25294 } 25295 ire_refrele(ire); 25296 /* FALLTHRU */ 25297 case IPOPT_TS_TSANDADDR: 25298 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25299 break; 25300 default: 25301 /* 25302 * ip_*put_options should have already 25303 * dropped this packet. 25304 */ 25305 cmn_err(CE_PANIC, "ip_wput_local_options: " 25306 "unknown IT - bug in ip_wput_options?\n"); 25307 return; /* Keep "lint" happy */ 25308 } 25309 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25310 /* Increase overflow counter */ 25311 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25312 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25313 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25314 (off << 4); 25315 break; 25316 } 25317 off = opt[IPOPT_OFFSET] - 1; 25318 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25319 case IPOPT_TS_PRESPEC: 25320 case IPOPT_TS_PRESPEC_RFC791: 25321 case IPOPT_TS_TSANDADDR: 25322 dst = htonl(INADDR_LOOPBACK); 25323 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25324 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25325 /* FALLTHRU */ 25326 case IPOPT_TS_TSONLY: 25327 off = opt[IPOPT_OFFSET] - 1; 25328 /* Compute # of milliseconds since midnight */ 25329 gethrestime(&now); 25330 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25331 now.tv_nsec / (NANOSEC / MILLISEC); 25332 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25333 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25334 break; 25335 } 25336 break; 25337 } 25338 } 25339 } 25340 25341 /* 25342 * Send out a multicast packet on interface ipif. 25343 * The sender does not have an conn. 25344 * Caller verifies that this isn't a PHYI_LOOPBACK. 25345 */ 25346 void 25347 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25348 { 25349 ipha_t *ipha; 25350 ire_t *ire; 25351 ipaddr_t dst; 25352 mblk_t *first_mp; 25353 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25354 25355 /* igmp_sendpkt always allocates a ipsec_out_t */ 25356 ASSERT(mp->b_datap->db_type == M_CTL); 25357 ASSERT(!ipif->ipif_isv6); 25358 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25359 25360 first_mp = mp; 25361 mp = first_mp->b_cont; 25362 ASSERT(mp->b_datap->db_type == M_DATA); 25363 ipha = (ipha_t *)mp->b_rptr; 25364 25365 /* 25366 * Find an IRE which matches the destination and the outgoing 25367 * queue (i.e. the outgoing interface.) 25368 */ 25369 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25370 dst = ipif->ipif_pp_dst_addr; 25371 else 25372 dst = ipha->ipha_dst; 25373 /* 25374 * The source address has already been initialized by the 25375 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25376 * be sufficient rather than MATCH_IRE_IPIF. 25377 * 25378 * This function is used for sending IGMP packets. For IPMP, 25379 * we sidestep IGMP snooping issues by sending all multicast 25380 * traffic on a single interface in the IPMP group. 25381 */ 25382 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25383 MATCH_IRE_ILL, ipst); 25384 if (!ire) { 25385 /* 25386 * Mark this packet to make it be delivered to 25387 * ip_wput_ire after the new ire has been 25388 * created. 25389 */ 25390 mp->b_prev = NULL; 25391 mp->b_next = NULL; 25392 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25393 zoneid, &zero_info); 25394 return; 25395 } 25396 25397 /* 25398 * Honor the RTF_SETSRC flag; this is the only case 25399 * where we force this addr whatever the current src addr is, 25400 * because this address is set by igmp_sendpkt(), and 25401 * cannot be specified by any user. 25402 */ 25403 if (ire->ire_flags & RTF_SETSRC) { 25404 ipha->ipha_src = ire->ire_src_addr; 25405 } 25406 25407 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25408 } 25409 25410 /* 25411 * NOTE : This function does not ire_refrele the ire argument passed in. 25412 * 25413 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25414 * failure. The nce_fp_mp can vanish any time in the case of 25415 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25416 * the ire_lock to access the nce_fp_mp in this case. 25417 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25418 * prepending a fastpath message IPQoS processing must precede it, we also set 25419 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25420 * (IPQoS might have set the b_band for CoS marking). 25421 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25422 * must follow it so that IPQoS can mark the dl_priority field for CoS 25423 * marking, if needed. 25424 */ 25425 static mblk_t * 25426 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, 25427 uint32_t ill_index, ipha_t **iphap) 25428 { 25429 uint_t hlen; 25430 ipha_t *ipha; 25431 mblk_t *mp1; 25432 boolean_t qos_done = B_FALSE; 25433 uchar_t *ll_hdr; 25434 ip_stack_t *ipst = ire->ire_ipst; 25435 25436 #define rptr ((uchar_t *)ipha) 25437 25438 ipha = (ipha_t *)mp->b_rptr; 25439 hlen = 0; 25440 LOCK_IRE_FP_MP(ire); 25441 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25442 ASSERT(DB_TYPE(mp1) == M_DATA); 25443 /* Initiate IPPF processing */ 25444 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25445 UNLOCK_IRE_FP_MP(ire); 25446 ip_process(proc, &mp, ill_index); 25447 if (mp == NULL) 25448 return (NULL); 25449 25450 ipha = (ipha_t *)mp->b_rptr; 25451 LOCK_IRE_FP_MP(ire); 25452 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25453 qos_done = B_TRUE; 25454 goto no_fp_mp; 25455 } 25456 ASSERT(DB_TYPE(mp1) == M_DATA); 25457 } 25458 hlen = MBLKL(mp1); 25459 /* 25460 * Check if we have enough room to prepend fastpath 25461 * header 25462 */ 25463 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25464 ll_hdr = rptr - hlen; 25465 bcopy(mp1->b_rptr, ll_hdr, hlen); 25466 /* 25467 * Set the b_rptr to the start of the link layer 25468 * header 25469 */ 25470 mp->b_rptr = ll_hdr; 25471 mp1 = mp; 25472 } else { 25473 mp1 = copyb(mp1); 25474 if (mp1 == NULL) 25475 goto unlock_err; 25476 mp1->b_band = mp->b_band; 25477 mp1->b_cont = mp; 25478 /* 25479 * XXX disable ICK_VALID and compute checksum 25480 * here; can happen if nce_fp_mp changes and 25481 * it can't be copied now due to insufficient 25482 * space. (unlikely, fp mp can change, but it 25483 * does not increase in length) 25484 */ 25485 } 25486 UNLOCK_IRE_FP_MP(ire); 25487 } else { 25488 no_fp_mp: 25489 mp1 = copyb(ire->ire_nce->nce_res_mp); 25490 if (mp1 == NULL) { 25491 unlock_err: 25492 UNLOCK_IRE_FP_MP(ire); 25493 freemsg(mp); 25494 return (NULL); 25495 } 25496 UNLOCK_IRE_FP_MP(ire); 25497 mp1->b_cont = mp; 25498 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25499 ip_process(proc, &mp1, ill_index); 25500 if (mp1 == NULL) 25501 return (NULL); 25502 25503 if (mp1->b_cont == NULL) 25504 ipha = NULL; 25505 else 25506 ipha = (ipha_t *)mp1->b_cont->b_rptr; 25507 } 25508 } 25509 25510 *iphap = ipha; 25511 return (mp1); 25512 #undef rptr 25513 } 25514 25515 /* 25516 * Finish the outbound IPsec processing for an IPv6 packet. This function 25517 * is called from ipsec_out_process() if the IPsec packet was processed 25518 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25519 * asynchronously. 25520 */ 25521 void 25522 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25523 ire_t *ire_arg) 25524 { 25525 in6_addr_t *v6dstp; 25526 ire_t *ire; 25527 mblk_t *mp; 25528 ip6_t *ip6h1; 25529 uint_t ill_index; 25530 ipsec_out_t *io; 25531 boolean_t hwaccel; 25532 uint32_t flags = IP6_NO_IPPOLICY; 25533 int match_flags; 25534 zoneid_t zoneid; 25535 boolean_t ill_need_rele = B_FALSE; 25536 boolean_t ire_need_rele = B_FALSE; 25537 ip_stack_t *ipst; 25538 25539 mp = ipsec_mp->b_cont; 25540 ip6h1 = (ip6_t *)mp->b_rptr; 25541 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25542 ASSERT(io->ipsec_out_ns != NULL); 25543 ipst = io->ipsec_out_ns->netstack_ip; 25544 ill_index = io->ipsec_out_ill_index; 25545 if (io->ipsec_out_reachable) { 25546 flags |= IPV6_REACHABILITY_CONFIRMATION; 25547 } 25548 hwaccel = io->ipsec_out_accelerated; 25549 zoneid = io->ipsec_out_zoneid; 25550 ASSERT(zoneid != ALL_ZONES); 25551 ASSERT(IPH_HDR_VERSION(ip6h) == IPV6_VERSION); 25552 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25553 /* Multicast addresses should have non-zero ill_index. */ 25554 v6dstp = &ip6h->ip6_dst; 25555 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25556 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25557 25558 if (ill == NULL && ill_index != 0) { 25559 ill = ip_grab_ill(ipsec_mp, ill_index, B_TRUE, ipst); 25560 /* Failure case frees things for us. */ 25561 if (ill == NULL) 25562 return; 25563 25564 ill_need_rele = B_TRUE; 25565 } 25566 ASSERT(mp != NULL); 25567 25568 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25569 boolean_t unspec_src; 25570 ipif_t *ipif; 25571 25572 /* 25573 * Use the ill_index to get the right ill. 25574 */ 25575 unspec_src = io->ipsec_out_unspec_src; 25576 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25577 if (ipif == NULL) { 25578 if (ill_need_rele) 25579 ill_refrele(ill); 25580 freemsg(ipsec_mp); 25581 return; 25582 } 25583 25584 if (ire_arg != NULL) { 25585 ire = ire_arg; 25586 } else { 25587 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25588 zoneid, msg_getlabel(mp), match_flags, ipst); 25589 ire_need_rele = B_TRUE; 25590 } 25591 if (ire != NULL) { 25592 ipif_refrele(ipif); 25593 /* 25594 * XXX Do the multicast forwarding now, as the IPsec 25595 * processing has been done. 25596 */ 25597 goto send; 25598 } 25599 25600 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25601 mp->b_prev = NULL; 25602 mp->b_next = NULL; 25603 25604 /* 25605 * If the IPsec packet was processed asynchronously, 25606 * drop it now. 25607 */ 25608 if (q == NULL) { 25609 if (ill_need_rele) 25610 ill_refrele(ill); 25611 freemsg(ipsec_mp); 25612 ipif_refrele(ipif); 25613 return; 25614 } 25615 25616 ip_newroute_ipif_v6(q, ipsec_mp, ipif, v6dstp, &ip6h->ip6_src, 25617 unspec_src, zoneid); 25618 ipif_refrele(ipif); 25619 } else { 25620 if (ire_arg != NULL) { 25621 ire = ire_arg; 25622 } else { 25623 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, ipst); 25624 ire_need_rele = B_TRUE; 25625 } 25626 if (ire != NULL) 25627 goto send; 25628 /* 25629 * ire disappeared underneath. 25630 * 25631 * What we need to do here is the ip_newroute 25632 * logic to get the ire without doing the IPsec 25633 * processing. Follow the same old path. But this 25634 * time, ip_wput or ire_add_then_send will call us 25635 * directly as all the IPsec operations are done. 25636 */ 25637 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25638 mp->b_prev = NULL; 25639 mp->b_next = NULL; 25640 25641 /* 25642 * If the IPsec packet was processed asynchronously, 25643 * drop it now. 25644 */ 25645 if (q == NULL) { 25646 if (ill_need_rele) 25647 ill_refrele(ill); 25648 freemsg(ipsec_mp); 25649 return; 25650 } 25651 25652 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25653 zoneid, ipst); 25654 } 25655 if (ill != NULL && ill_need_rele) 25656 ill_refrele(ill); 25657 return; 25658 send: 25659 if (ill != NULL && ill_need_rele) 25660 ill_refrele(ill); 25661 25662 /* Local delivery */ 25663 if (ire->ire_stq == NULL) { 25664 ill_t *out_ill; 25665 ASSERT(q != NULL); 25666 25667 /* PFHooks: LOOPBACK_OUT */ 25668 out_ill = ire_to_ill(ire); 25669 25670 /* 25671 * DTrace this as ip:::send. A blocked packet will fire the 25672 * send probe, but not the receive probe. 25673 */ 25674 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25675 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, out_ill, 25676 ipha_t *, NULL, ip6_t *, ip6h, int, 1); 25677 25678 DTRACE_PROBE4(ip6__loopback__out__start, 25679 ill_t *, NULL, ill_t *, out_ill, 25680 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25681 25682 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25683 ipst->ips_ipv6firewall_loopback_out, 25684 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25685 25686 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25687 25688 if (ipsec_mp != NULL) { 25689 ip_wput_local_v6(RD(q), out_ill, 25690 ip6h, ipsec_mp, ire, 0, zoneid); 25691 } 25692 if (ire_need_rele) 25693 ire_refrele(ire); 25694 return; 25695 } 25696 /* 25697 * Everything is done. Send it out on the wire. 25698 * We force the insertion of a fragment header using the 25699 * IPH_FRAG_HDR flag in two cases: 25700 * - after reception of an ICMPv6 "packet too big" message 25701 * with a MTU < 1280 (cf. RFC 2460 section 5) 25702 * - for multirouted IPv6 packets, so that the receiver can 25703 * discard duplicates according to their fragment identifier 25704 */ 25705 /* XXX fix flow control problems. */ 25706 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25707 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25708 if (hwaccel) { 25709 /* 25710 * hardware acceleration does not handle these 25711 * "slow path" cases. 25712 */ 25713 /* IPsec KSTATS: should bump bean counter here. */ 25714 if (ire_need_rele) 25715 ire_refrele(ire); 25716 freemsg(ipsec_mp); 25717 return; 25718 } 25719 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25720 (mp->b_cont ? msgdsize(mp) : 25721 mp->b_wptr - (uchar_t *)ip6h)) { 25722 /* IPsec KSTATS: should bump bean counter here. */ 25723 ip0dbg(("Packet length mismatch: %d, %ld\n", 25724 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25725 msgdsize(mp))); 25726 if (ire_need_rele) 25727 ire_refrele(ire); 25728 freemsg(ipsec_mp); 25729 return; 25730 } 25731 ASSERT(mp->b_prev == NULL); 25732 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25733 ntohs(ip6h->ip6_plen) + 25734 IPV6_HDR_LEN, ire->ire_max_frag)); 25735 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25736 ire->ire_max_frag); 25737 } else { 25738 UPDATE_OB_PKT_COUNT(ire); 25739 ire->ire_last_used_time = lbolt; 25740 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25741 } 25742 if (ire_need_rele) 25743 ire_refrele(ire); 25744 freeb(ipsec_mp); 25745 } 25746 25747 void 25748 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25749 { 25750 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25751 da_ipsec_t *hada; /* data attributes */ 25752 ill_t *ill = (ill_t *)q->q_ptr; 25753 25754 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25755 25756 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25757 /* IPsec KSTATS: Bump lose counter here! */ 25758 freemsg(mp); 25759 return; 25760 } 25761 25762 /* 25763 * It's an IPsec packet that must be 25764 * accelerated by the Provider, and the 25765 * outbound ill is IPsec acceleration capable. 25766 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25767 * to the ill. 25768 * IPsec KSTATS: should bump packet counter here. 25769 */ 25770 25771 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25772 if (hada_mp == NULL) { 25773 /* IPsec KSTATS: should bump packet counter here. */ 25774 freemsg(mp); 25775 return; 25776 } 25777 25778 hada_mp->b_datap->db_type = M_CTL; 25779 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25780 hada_mp->b_cont = mp; 25781 25782 hada = (da_ipsec_t *)hada_mp->b_rptr; 25783 bzero(hada, sizeof (da_ipsec_t)); 25784 hada->da_type = IPHADA_M_CTL; 25785 25786 putnext(q, hada_mp); 25787 } 25788 25789 /* 25790 * Finish the outbound IPsec processing. This function is called from 25791 * ipsec_out_process() if the IPsec packet was processed 25792 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25793 * asynchronously. 25794 */ 25795 void 25796 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25797 ire_t *ire_arg) 25798 { 25799 uint32_t v_hlen_tos_len; 25800 ipaddr_t dst; 25801 ipif_t *ipif = NULL; 25802 ire_t *ire; 25803 ire_t *ire1 = NULL; 25804 mblk_t *next_mp = NULL; 25805 uint32_t max_frag; 25806 boolean_t multirt_send = B_FALSE; 25807 mblk_t *mp; 25808 ipha_t *ipha1; 25809 uint_t ill_index; 25810 ipsec_out_t *io; 25811 int match_flags; 25812 irb_t *irb = NULL; 25813 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25814 zoneid_t zoneid; 25815 ipxmit_state_t pktxmit_state; 25816 ip_stack_t *ipst; 25817 25818 #ifdef _BIG_ENDIAN 25819 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25820 #else 25821 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25822 #endif 25823 25824 mp = ipsec_mp->b_cont; 25825 ipha1 = (ipha_t *)mp->b_rptr; 25826 ASSERT(mp != NULL); 25827 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25828 dst = ipha->ipha_dst; 25829 25830 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25831 ill_index = io->ipsec_out_ill_index; 25832 zoneid = io->ipsec_out_zoneid; 25833 ASSERT(zoneid != ALL_ZONES); 25834 ipst = io->ipsec_out_ns->netstack_ip; 25835 ASSERT(io->ipsec_out_ns != NULL); 25836 25837 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25838 if (ill == NULL && ill_index != 0) { 25839 ill = ip_grab_ill(ipsec_mp, ill_index, B_FALSE, ipst); 25840 /* Failure case frees things for us. */ 25841 if (ill == NULL) 25842 return; 25843 25844 ill_need_rele = B_TRUE; 25845 } 25846 25847 if (CLASSD(dst)) { 25848 boolean_t conn_dontroute; 25849 /* 25850 * Use the ill_index to get the right ipif. 25851 */ 25852 conn_dontroute = io->ipsec_out_dontroute; 25853 if (ill_index == 0) 25854 ipif = ipif_lookup_group(dst, zoneid, ipst); 25855 else 25856 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25857 if (ipif == NULL) { 25858 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25859 " multicast\n")); 25860 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25861 freemsg(ipsec_mp); 25862 goto done; 25863 } 25864 /* 25865 * ipha_src has already been intialized with the 25866 * value of the ipif in ip_wput. All we need now is 25867 * an ire to send this downstream. 25868 */ 25869 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25870 msg_getlabel(mp), match_flags, ipst); 25871 if (ire != NULL) { 25872 ill_t *ill1; 25873 /* 25874 * Do the multicast forwarding now, as the IPsec 25875 * processing has been done. 25876 */ 25877 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25878 (ill1 = ire_to_ill(ire))) { 25879 if (ip_mforward(ill1, ipha, mp)) { 25880 freemsg(ipsec_mp); 25881 ip1dbg(("ip_wput_ipsec_out: mforward " 25882 "failed\n")); 25883 ire_refrele(ire); 25884 goto done; 25885 } 25886 } 25887 goto send; 25888 } 25889 25890 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25891 mp->b_prev = NULL; 25892 mp->b_next = NULL; 25893 25894 /* 25895 * If the IPsec packet was processed asynchronously, 25896 * drop it now. 25897 */ 25898 if (q == NULL) { 25899 freemsg(ipsec_mp); 25900 goto done; 25901 } 25902 25903 /* 25904 * We may be using a wrong ipif to create the ire. 25905 * But it is okay as the source address is assigned 25906 * for the packet already. Next outbound packet would 25907 * create the IRE with the right IPIF in ip_wput. 25908 * 25909 * Also handle RTF_MULTIRT routes. 25910 */ 25911 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25912 zoneid, &zero_info); 25913 } else { 25914 if (ire_arg != NULL) { 25915 ire = ire_arg; 25916 ire_need_rele = B_FALSE; 25917 } else { 25918 ire = ire_cache_lookup(dst, zoneid, 25919 msg_getlabel(mp), ipst); 25920 } 25921 if (ire != NULL) { 25922 goto send; 25923 } 25924 25925 /* 25926 * ire disappeared underneath. 25927 * 25928 * What we need to do here is the ip_newroute 25929 * logic to get the ire without doing the IPsec 25930 * processing. Follow the same old path. But this 25931 * time, ip_wput or ire_add_then_put will call us 25932 * directly as all the IPsec operations are done. 25933 */ 25934 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25935 mp->b_prev = NULL; 25936 mp->b_next = NULL; 25937 25938 /* 25939 * If the IPsec packet was processed asynchronously, 25940 * drop it now. 25941 */ 25942 if (q == NULL) { 25943 freemsg(ipsec_mp); 25944 goto done; 25945 } 25946 25947 /* 25948 * Since we're going through ip_newroute() again, we 25949 * need to make sure we don't: 25950 * 25951 * 1.) Trigger the ASSERT() with the ipha_ident 25952 * overloading. 25953 * 2.) Redo transport-layer checksumming, since we've 25954 * already done all that to get this far. 25955 * 25956 * The easiest way not do either of the above is to set 25957 * the ipha_ident field to IP_HDR_INCLUDED. 25958 */ 25959 ipha->ipha_ident = IP_HDR_INCLUDED; 25960 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 25961 zoneid, ipst); 25962 } 25963 goto done; 25964 send: 25965 if (ire->ire_stq == NULL) { 25966 ill_t *out_ill; 25967 /* 25968 * Loopbacks go through ip_wput_local except for one case. 25969 * We come here if we generate a icmp_frag_needed message 25970 * after IPsec processing is over. When this function calls 25971 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 25972 * icmp_frag_needed. The message generated comes back here 25973 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 25974 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 25975 * source address as it is usually set in ip_wput_ire. As 25976 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 25977 * and we end up here. We can't enter ip_wput_ire once the 25978 * IPsec processing is over and hence we need to do it here. 25979 */ 25980 ASSERT(q != NULL); 25981 UPDATE_OB_PKT_COUNT(ire); 25982 ire->ire_last_used_time = lbolt; 25983 if (ipha->ipha_src == 0) 25984 ipha->ipha_src = ire->ire_src_addr; 25985 25986 /* PFHooks: LOOPBACK_OUT */ 25987 out_ill = ire_to_ill(ire); 25988 25989 /* 25990 * DTrace this as ip:::send. A blocked packet will fire the 25991 * send probe, but not the receive probe. 25992 */ 25993 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25994 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 25995 ipha_t *, ipha, ip6_t *, NULL, int, 1); 25996 25997 DTRACE_PROBE4(ip4__loopback__out__start, 25998 ill_t *, NULL, ill_t *, out_ill, 25999 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26000 26001 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26002 ipst->ips_ipv4firewall_loopback_out, 26003 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 26004 26005 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26006 26007 if (ipsec_mp != NULL) 26008 ip_wput_local(RD(q), out_ill, 26009 ipha, ipsec_mp, ire, 0, zoneid); 26010 if (ire_need_rele) 26011 ire_refrele(ire); 26012 goto done; 26013 } 26014 26015 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26016 /* 26017 * We are through with IPsec processing. 26018 * Fragment this and send it on the wire. 26019 */ 26020 if (io->ipsec_out_accelerated) { 26021 /* 26022 * The packet has been accelerated but must 26023 * be fragmented. This should not happen 26024 * since AH and ESP must not accelerate 26025 * packets that need fragmentation, however 26026 * the configuration could have changed 26027 * since the AH or ESP processing. 26028 * Drop packet. 26029 * IPsec KSTATS: bump bean counter here. 26030 */ 26031 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26032 "fragmented accelerated packet!\n")); 26033 freemsg(ipsec_mp); 26034 } else { 26035 ip_wput_ire_fragmentit(ipsec_mp, ire, 26036 zoneid, ipst, NULL); 26037 } 26038 if (ire_need_rele) 26039 ire_refrele(ire); 26040 goto done; 26041 } 26042 26043 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26044 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26045 (void *)ire->ire_ipif, (void *)ipif)); 26046 26047 /* 26048 * Multiroute the secured packet. 26049 */ 26050 if (ire->ire_flags & RTF_MULTIRT) { 26051 ire_t *first_ire; 26052 irb = ire->ire_bucket; 26053 ASSERT(irb != NULL); 26054 /* 26055 * This ire has been looked up as the one that 26056 * goes through the given ipif; 26057 * make sure we do not omit any other multiroute ire 26058 * that may be present in the bucket before this one. 26059 */ 26060 IRB_REFHOLD(irb); 26061 for (first_ire = irb->irb_ire; 26062 first_ire != NULL; 26063 first_ire = first_ire->ire_next) { 26064 if ((first_ire->ire_flags & RTF_MULTIRT) && 26065 (first_ire->ire_addr == ire->ire_addr) && 26066 !(first_ire->ire_marks & 26067 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 26068 break; 26069 } 26070 26071 if ((first_ire != NULL) && (first_ire != ire)) { 26072 /* 26073 * Don't change the ire if the packet must 26074 * be fragmented if sent via this new one. 26075 */ 26076 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26077 IRE_REFHOLD(first_ire); 26078 if (ire_need_rele) 26079 ire_refrele(ire); 26080 else 26081 ire_need_rele = B_TRUE; 26082 ire = first_ire; 26083 } 26084 } 26085 IRB_REFRELE(irb); 26086 26087 multirt_send = B_TRUE; 26088 max_frag = ire->ire_max_frag; 26089 } 26090 26091 /* 26092 * In most cases, the emission loop below is entered only once. 26093 * Only in the case where the ire holds the RTF_MULTIRT 26094 * flag, we loop to process all RTF_MULTIRT ires in the 26095 * bucket, and send the packet through all crossed 26096 * RTF_MULTIRT routes. 26097 */ 26098 do { 26099 if (multirt_send) { 26100 /* 26101 * ire1 holds here the next ire to process in the 26102 * bucket. If multirouting is expected, 26103 * any non-RTF_MULTIRT ire that has the 26104 * right destination address is ignored. 26105 */ 26106 ASSERT(irb != NULL); 26107 IRB_REFHOLD(irb); 26108 for (ire1 = ire->ire_next; 26109 ire1 != NULL; 26110 ire1 = ire1->ire_next) { 26111 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26112 continue; 26113 if (ire1->ire_addr != ire->ire_addr) 26114 continue; 26115 if (ire1->ire_marks & 26116 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 26117 continue; 26118 /* No loopback here */ 26119 if (ire1->ire_stq == NULL) 26120 continue; 26121 /* 26122 * Ensure we do not exceed the MTU 26123 * of the next route. 26124 */ 26125 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26126 ip_multirt_bad_mtu(ire1, max_frag); 26127 continue; 26128 } 26129 26130 IRE_REFHOLD(ire1); 26131 break; 26132 } 26133 IRB_REFRELE(irb); 26134 if (ire1 != NULL) { 26135 /* 26136 * We are in a multiple send case, need to 26137 * make a copy of the packet. 26138 */ 26139 next_mp = copymsg(ipsec_mp); 26140 if (next_mp == NULL) { 26141 ire_refrele(ire1); 26142 ire1 = NULL; 26143 } 26144 } 26145 } 26146 /* 26147 * Everything is done. Send it out on the wire 26148 * 26149 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26150 * either send it on the wire or, in the case of 26151 * HW acceleration, call ipsec_hw_putnext. 26152 */ 26153 if (ire->ire_nce && 26154 ire->ire_nce->nce_state != ND_REACHABLE) { 26155 DTRACE_PROBE2(ip__wput__ipsec__bail, 26156 (ire_t *), ire, (mblk_t *), ipsec_mp); 26157 /* 26158 * If ire's link-layer is unresolved (this 26159 * would only happen if the incomplete ire 26160 * was added to cachetable via forwarding path) 26161 * don't bother going to ip_xmit_v4. Just drop the 26162 * packet. 26163 * There is a slight risk here, in that, if we 26164 * have the forwarding path create an incomplete 26165 * IRE, then until the IRE is completed, any 26166 * transmitted IPsec packets will be dropped 26167 * instead of being queued waiting for resolution. 26168 * 26169 * But the likelihood of a forwarding packet and a wput 26170 * packet sending to the same dst at the same time 26171 * and there not yet be an ARP entry for it is small. 26172 * Furthermore, if this actually happens, it might 26173 * be likely that wput would generate multiple 26174 * packets (and forwarding would also have a train 26175 * of packets) for that destination. If this is 26176 * the case, some of them would have been dropped 26177 * anyway, since ARP only queues a few packets while 26178 * waiting for resolution 26179 * 26180 * NOTE: We should really call ip_xmit_v4, 26181 * and let it queue the packet and send the 26182 * ARP query and have ARP come back thus: 26183 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26184 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26185 * hw accel work. But it's too complex to get 26186 * the IPsec hw acceleration approach to fit 26187 * well with ip_xmit_v4 doing ARP without 26188 * doing IPsec simplification. For now, we just 26189 * poke ip_xmit_v4 to trigger the arp resolve, so 26190 * that we can continue with the send on the next 26191 * attempt. 26192 * 26193 * XXX THis should be revisited, when 26194 * the IPsec/IP interaction is cleaned up 26195 */ 26196 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26197 " - dropping packet\n")); 26198 freemsg(ipsec_mp); 26199 /* 26200 * Call ip_xmit_v4() to trigger ARP query 26201 * in case the nce_state is ND_INITIAL 26202 */ 26203 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 26204 goto drop_pkt; 26205 } 26206 26207 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26208 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26209 mblk_t *, ipsec_mp); 26210 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26211 ipst->ips_ipv4firewall_physical_out, NULL, 26212 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26213 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26214 if (ipsec_mp == NULL) 26215 goto drop_pkt; 26216 26217 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26218 pktxmit_state = ip_xmit_v4(mp, ire, 26219 (io->ipsec_out_accelerated ? io : NULL), B_FALSE, NULL); 26220 26221 if ((pktxmit_state == SEND_FAILED) || 26222 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26223 26224 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26225 drop_pkt: 26226 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26227 ipIfStatsOutDiscards); 26228 if (ire_need_rele) 26229 ire_refrele(ire); 26230 if (ire1 != NULL) { 26231 ire_refrele(ire1); 26232 freemsg(next_mp); 26233 } 26234 goto done; 26235 } 26236 26237 freeb(ipsec_mp); 26238 if (ire_need_rele) 26239 ire_refrele(ire); 26240 26241 if (ire1 != NULL) { 26242 ire = ire1; 26243 ire_need_rele = B_TRUE; 26244 ASSERT(next_mp); 26245 ipsec_mp = next_mp; 26246 mp = ipsec_mp->b_cont; 26247 ire1 = NULL; 26248 next_mp = NULL; 26249 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26250 } else { 26251 multirt_send = B_FALSE; 26252 } 26253 } while (multirt_send); 26254 done: 26255 if (ill != NULL && ill_need_rele) 26256 ill_refrele(ill); 26257 if (ipif != NULL) 26258 ipif_refrele(ipif); 26259 } 26260 26261 /* 26262 * Get the ill corresponding to the specified ire, and compare its 26263 * capabilities with the protocol and algorithms specified by the 26264 * the SA obtained from ipsec_out. If they match, annotate the 26265 * ipsec_out structure to indicate that the packet needs acceleration. 26266 * 26267 * 26268 * A packet is eligible for outbound hardware acceleration if the 26269 * following conditions are satisfied: 26270 * 26271 * 1. the packet will not be fragmented 26272 * 2. the provider supports the algorithm 26273 * 3. there is no pending control message being exchanged 26274 * 4. snoop is not attached 26275 * 5. the destination address is not a broadcast or multicast address. 26276 * 26277 * Rationale: 26278 * - Hardware drivers do not support fragmentation with 26279 * the current interface. 26280 * - snoop, multicast, and broadcast may result in exposure of 26281 * a cleartext datagram. 26282 * We check all five of these conditions here. 26283 * 26284 * XXX would like to nuke "ire_t *" parameter here; problem is that 26285 * IRE is only way to figure out if a v4 address is a broadcast and 26286 * thus ineligible for acceleration... 26287 */ 26288 static void 26289 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26290 { 26291 ipsec_out_t *io; 26292 mblk_t *data_mp; 26293 uint_t plen, overhead; 26294 ip_stack_t *ipst; 26295 phyint_t *phyint; 26296 26297 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26298 return; 26299 26300 if (ill == NULL) 26301 return; 26302 ipst = ill->ill_ipst; 26303 phyint = ill->ill_phyint; 26304 26305 /* 26306 * Destination address is a broadcast or multicast. Punt. 26307 */ 26308 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26309 IRE_LOCAL))) 26310 return; 26311 26312 data_mp = ipsec_mp->b_cont; 26313 26314 if (ill->ill_isv6) { 26315 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26316 26317 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26318 return; 26319 26320 plen = ip6h->ip6_plen; 26321 } else { 26322 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26323 26324 if (CLASSD(ipha->ipha_dst)) 26325 return; 26326 26327 plen = ipha->ipha_length; 26328 } 26329 /* 26330 * Is there a pending DLPI control message being exchanged 26331 * between IP/IPsec and the DLS Provider? If there is, it 26332 * could be a SADB update, and the state of the DLS Provider 26333 * SADB might not be in sync with the SADB maintained by 26334 * IPsec. To avoid dropping packets or using the wrong keying 26335 * material, we do not accelerate this packet. 26336 */ 26337 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26338 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26339 "ill_dlpi_pending! don't accelerate packet\n")); 26340 return; 26341 } 26342 26343 /* 26344 * Is the Provider in promiscous mode? If it does, we don't 26345 * accelerate the packet since it will bounce back up to the 26346 * listeners in the clear. 26347 */ 26348 if (phyint->phyint_flags & PHYI_PROMISC) { 26349 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26350 "ill in promiscous mode, don't accelerate packet\n")); 26351 return; 26352 } 26353 26354 /* 26355 * Will the packet require fragmentation? 26356 */ 26357 26358 /* 26359 * IPsec ESP note: this is a pessimistic estimate, but the same 26360 * as is used elsewhere. 26361 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26362 * + 2-byte trailer 26363 */ 26364 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26365 IPSEC_BASE_ESP_HDR_SIZE(sa); 26366 26367 if ((plen + overhead) > ill->ill_max_mtu) 26368 return; 26369 26370 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26371 26372 /* 26373 * Can the ill accelerate this IPsec protocol and algorithm 26374 * specified by the SA? 26375 */ 26376 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26377 ill->ill_isv6, sa, ipst->ips_netstack)) { 26378 return; 26379 } 26380 26381 /* 26382 * Tell AH or ESP that the outbound ill is capable of 26383 * accelerating this packet. 26384 */ 26385 io->ipsec_out_is_capab_ill = B_TRUE; 26386 } 26387 26388 /* 26389 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26390 * 26391 * If this function returns B_TRUE, the requested SA's have been filled 26392 * into the ipsec_out_*_sa pointers. 26393 * 26394 * If the function returns B_FALSE, the packet has been "consumed", most 26395 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26396 * 26397 * The SA references created by the protocol-specific "select" 26398 * function will be released when the ipsec_mp is freed, thanks to the 26399 * ipsec_out_free destructor -- see spd.c. 26400 */ 26401 static boolean_t 26402 ipsec_out_select_sa(mblk_t *ipsec_mp) 26403 { 26404 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26405 ipsec_out_t *io; 26406 ipsec_policy_t *pp; 26407 ipsec_action_t *ap; 26408 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26409 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26410 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26411 26412 if (!io->ipsec_out_secure) { 26413 /* 26414 * We came here by mistake. 26415 * Don't bother with ipsec processing 26416 * We should "discourage" this path in the future. 26417 */ 26418 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26419 return (B_FALSE); 26420 } 26421 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26422 ASSERT((io->ipsec_out_policy != NULL) || 26423 (io->ipsec_out_act != NULL)); 26424 26425 ASSERT(io->ipsec_out_failed == B_FALSE); 26426 26427 /* 26428 * IPsec processing has started. 26429 */ 26430 io->ipsec_out_proc_begin = B_TRUE; 26431 ap = io->ipsec_out_act; 26432 if (ap == NULL) { 26433 pp = io->ipsec_out_policy; 26434 ASSERT(pp != NULL); 26435 ap = pp->ipsp_act; 26436 ASSERT(ap != NULL); 26437 } 26438 26439 /* 26440 * We have an action. now, let's select SA's. 26441 * (In the future, we can cache this in the conn_t..) 26442 */ 26443 if (ap->ipa_want_esp) { 26444 if (io->ipsec_out_esp_sa == NULL) { 26445 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26446 IPPROTO_ESP); 26447 } 26448 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26449 } 26450 26451 if (ap->ipa_want_ah) { 26452 if (io->ipsec_out_ah_sa == NULL) { 26453 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26454 IPPROTO_AH); 26455 } 26456 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26457 /* 26458 * The ESP and AH processing order needs to be preserved 26459 * when both protocols are required (ESP should be applied 26460 * before AH for an outbound packet). Force an ESP ACQUIRE 26461 * when both ESP and AH are required, and an AH ACQUIRE 26462 * is needed. 26463 */ 26464 if (ap->ipa_want_esp && need_ah_acquire) 26465 need_esp_acquire = B_TRUE; 26466 } 26467 26468 /* 26469 * Send an ACQUIRE (extended, regular, or both) if we need one. 26470 * Release SAs that got referenced, but will not be used until we 26471 * acquire _all_ of the SAs we need. 26472 */ 26473 if (need_ah_acquire || need_esp_acquire) { 26474 if (io->ipsec_out_ah_sa != NULL) { 26475 IPSA_REFRELE(io->ipsec_out_ah_sa); 26476 io->ipsec_out_ah_sa = NULL; 26477 } 26478 if (io->ipsec_out_esp_sa != NULL) { 26479 IPSA_REFRELE(io->ipsec_out_esp_sa); 26480 io->ipsec_out_esp_sa = NULL; 26481 } 26482 26483 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26484 return (B_FALSE); 26485 } 26486 26487 return (B_TRUE); 26488 } 26489 26490 /* 26491 * Process an IPSEC_OUT message and see what you can 26492 * do with it. 26493 * IPQoS Notes: 26494 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26495 * IPsec. 26496 * XXX would like to nuke ire_t. 26497 * XXX ill_index better be "real" 26498 */ 26499 void 26500 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26501 { 26502 ipsec_out_t *io; 26503 ipsec_policy_t *pp; 26504 ipsec_action_t *ap; 26505 ipha_t *ipha; 26506 ip6_t *ip6h; 26507 mblk_t *mp; 26508 ill_t *ill; 26509 zoneid_t zoneid; 26510 ipsec_status_t ipsec_rc; 26511 boolean_t ill_need_rele = B_FALSE; 26512 ip_stack_t *ipst; 26513 ipsec_stack_t *ipss; 26514 26515 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26516 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26517 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26518 ipst = io->ipsec_out_ns->netstack_ip; 26519 mp = ipsec_mp->b_cont; 26520 26521 /* 26522 * Initiate IPPF processing. We do it here to account for packets 26523 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26524 * We can check for ipsec_out_proc_begin even for such packets, as 26525 * they will always be false (asserted below). 26526 */ 26527 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26528 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26529 io->ipsec_out_ill_index : ill_index); 26530 if (mp == NULL) { 26531 ip2dbg(("ipsec_out_process: packet dropped "\ 26532 "during IPPF processing\n")); 26533 freeb(ipsec_mp); 26534 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26535 return; 26536 } 26537 } 26538 26539 if (!io->ipsec_out_secure) { 26540 /* 26541 * We came here by mistake. 26542 * Don't bother with ipsec processing 26543 * Should "discourage" this path in the future. 26544 */ 26545 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26546 goto done; 26547 } 26548 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26549 ASSERT((io->ipsec_out_policy != NULL) || 26550 (io->ipsec_out_act != NULL)); 26551 ASSERT(io->ipsec_out_failed == B_FALSE); 26552 26553 ipss = ipst->ips_netstack->netstack_ipsec; 26554 if (!ipsec_loaded(ipss)) { 26555 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26556 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26557 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26558 } else { 26559 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26560 } 26561 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26562 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26563 &ipss->ipsec_dropper); 26564 return; 26565 } 26566 26567 /* 26568 * IPsec processing has started. 26569 */ 26570 io->ipsec_out_proc_begin = B_TRUE; 26571 ap = io->ipsec_out_act; 26572 if (ap == NULL) { 26573 pp = io->ipsec_out_policy; 26574 ASSERT(pp != NULL); 26575 ap = pp->ipsp_act; 26576 ASSERT(ap != NULL); 26577 } 26578 26579 /* 26580 * Save the outbound ill index. When the packet comes back 26581 * from IPsec, we make sure the ill hasn't changed or disappeared 26582 * before sending it the accelerated packet. 26583 */ 26584 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26585 ill = ire_to_ill(ire); 26586 io->ipsec_out_capab_ill_index = ill->ill_phyint->phyint_ifindex; 26587 } 26588 26589 /* 26590 * The order of processing is first insert a IP header if needed. 26591 * Then insert the ESP header and then the AH header. 26592 */ 26593 if ((io->ipsec_out_se_done == B_FALSE) && 26594 (ap->ipa_want_se)) { 26595 /* 26596 * First get the outer IP header before sending 26597 * it to ESP. 26598 */ 26599 ipha_t *oipha, *iipha; 26600 mblk_t *outer_mp, *inner_mp; 26601 26602 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26603 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26604 "ipsec_out_process: " 26605 "Self-Encapsulation failed: Out of memory\n"); 26606 freemsg(ipsec_mp); 26607 if (ill != NULL) { 26608 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26609 } else { 26610 BUMP_MIB(&ipst->ips_ip_mib, 26611 ipIfStatsOutDiscards); 26612 } 26613 return; 26614 } 26615 inner_mp = ipsec_mp->b_cont; 26616 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26617 oipha = (ipha_t *)outer_mp->b_rptr; 26618 iipha = (ipha_t *)inner_mp->b_rptr; 26619 *oipha = *iipha; 26620 outer_mp->b_wptr += sizeof (ipha_t); 26621 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26622 sizeof (ipha_t)); 26623 oipha->ipha_protocol = IPPROTO_ENCAP; 26624 oipha->ipha_version_and_hdr_length = 26625 IP_SIMPLE_HDR_VERSION; 26626 oipha->ipha_hdr_checksum = 0; 26627 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26628 outer_mp->b_cont = inner_mp; 26629 ipsec_mp->b_cont = outer_mp; 26630 26631 io->ipsec_out_se_done = B_TRUE; 26632 io->ipsec_out_tunnel = B_TRUE; 26633 } 26634 26635 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26636 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26637 !ipsec_out_select_sa(ipsec_mp)) 26638 return; 26639 26640 /* 26641 * By now, we know what SA's to use. Toss over to ESP & AH 26642 * to do the heavy lifting. 26643 */ 26644 zoneid = io->ipsec_out_zoneid; 26645 ASSERT(zoneid != ALL_ZONES); 26646 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26647 ASSERT(io->ipsec_out_esp_sa != NULL); 26648 io->ipsec_out_esp_done = B_TRUE; 26649 /* 26650 * Note that since hw accel can only apply one transform, 26651 * not two, we skip hw accel for ESP if we also have AH 26652 * This is an design limitation of the interface 26653 * which should be revisited. 26654 */ 26655 ASSERT(ire != NULL); 26656 if (io->ipsec_out_ah_sa == NULL) { 26657 ill = (ill_t *)ire->ire_stq->q_ptr; 26658 ipsec_out_is_accelerated(ipsec_mp, 26659 io->ipsec_out_esp_sa, ill, ire); 26660 } 26661 26662 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26663 switch (ipsec_rc) { 26664 case IPSEC_STATUS_SUCCESS: 26665 break; 26666 case IPSEC_STATUS_FAILED: 26667 if (ill != NULL) { 26668 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26669 } else { 26670 BUMP_MIB(&ipst->ips_ip_mib, 26671 ipIfStatsOutDiscards); 26672 } 26673 /* FALLTHRU */ 26674 case IPSEC_STATUS_PENDING: 26675 return; 26676 } 26677 } 26678 26679 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26680 ASSERT(io->ipsec_out_ah_sa != NULL); 26681 io->ipsec_out_ah_done = B_TRUE; 26682 if (ire == NULL) { 26683 int idx = io->ipsec_out_capab_ill_index; 26684 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26685 NULL, NULL, NULL, NULL, ipst); 26686 ill_need_rele = B_TRUE; 26687 } else { 26688 ill = (ill_t *)ire->ire_stq->q_ptr; 26689 } 26690 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26691 ire); 26692 26693 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26694 switch (ipsec_rc) { 26695 case IPSEC_STATUS_SUCCESS: 26696 break; 26697 case IPSEC_STATUS_FAILED: 26698 if (ill != NULL) { 26699 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26700 } else { 26701 BUMP_MIB(&ipst->ips_ip_mib, 26702 ipIfStatsOutDiscards); 26703 } 26704 /* FALLTHRU */ 26705 case IPSEC_STATUS_PENDING: 26706 if (ill != NULL && ill_need_rele) 26707 ill_refrele(ill); 26708 return; 26709 } 26710 } 26711 /* 26712 * We are done with IPsec processing. Send it over the wire. 26713 */ 26714 done: 26715 mp = ipsec_mp->b_cont; 26716 ipha = (ipha_t *)mp->b_rptr; 26717 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26718 ip_wput_ipsec_out(q, ipsec_mp, ipha, ire->ire_ipif->ipif_ill, 26719 ire); 26720 } else { 26721 ip6h = (ip6_t *)ipha; 26722 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ire->ire_ipif->ipif_ill, 26723 ire); 26724 } 26725 if (ill != NULL && ill_need_rele) 26726 ill_refrele(ill); 26727 } 26728 26729 /* ARGSUSED */ 26730 void 26731 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26732 { 26733 opt_restart_t *or; 26734 int err; 26735 conn_t *connp; 26736 cred_t *cr; 26737 26738 ASSERT(CONN_Q(q)); 26739 connp = Q_TO_CONN(q); 26740 26741 ASSERT(first_mp->b_datap->db_type == M_CTL); 26742 or = (opt_restart_t *)first_mp->b_rptr; 26743 /* 26744 * We checked for a db_credp the first time svr4_optcom_req 26745 * was called (from ip_wput_nondata). So we can just ASSERT here. 26746 */ 26747 cr = msg_getcred(first_mp, NULL); 26748 ASSERT(cr != NULL); 26749 26750 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26751 err = svr4_optcom_req(q, first_mp, cr, 26752 &ip_opt_obj, B_FALSE); 26753 } else { 26754 ASSERT(or->or_type == T_OPTMGMT_REQ); 26755 err = tpi_optcom_req(q, first_mp, cr, 26756 &ip_opt_obj, B_FALSE); 26757 } 26758 if (err != EINPROGRESS) { 26759 /* operation is done */ 26760 CONN_OPER_PENDING_DONE(connp); 26761 } 26762 } 26763 26764 /* 26765 * ioctls that go through a down/up sequence may need to wait for the down 26766 * to complete. This involves waiting for the ire and ipif refcnts to go down 26767 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26768 */ 26769 /* ARGSUSED */ 26770 void 26771 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26772 { 26773 struct iocblk *iocp; 26774 mblk_t *mp1; 26775 ip_ioctl_cmd_t *ipip; 26776 int err; 26777 sin_t *sin; 26778 struct lifreq *lifr; 26779 struct ifreq *ifr; 26780 26781 iocp = (struct iocblk *)mp->b_rptr; 26782 ASSERT(ipsq != NULL); 26783 /* Existence of mp1 verified in ip_wput_nondata */ 26784 mp1 = mp->b_cont->b_cont; 26785 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26786 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26787 /* 26788 * Special case where ipx_current_ipif is not set: 26789 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26790 * We are here as were not able to complete the operation in 26791 * ipif_set_values because we could not become exclusive on 26792 * the new ipsq. 26793 */ 26794 ill_t *ill = q->q_ptr; 26795 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26796 } 26797 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 26798 26799 if (ipip->ipi_cmd_type == IF_CMD) { 26800 /* This a old style SIOC[GS]IF* command */ 26801 ifr = (struct ifreq *)mp1->b_rptr; 26802 sin = (sin_t *)&ifr->ifr_addr; 26803 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26804 /* This a new style SIOC[GS]LIF* command */ 26805 lifr = (struct lifreq *)mp1->b_rptr; 26806 sin = (sin_t *)&lifr->lifr_addr; 26807 } else { 26808 sin = NULL; 26809 } 26810 26811 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 26812 q, mp, ipip, mp1->b_rptr); 26813 26814 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26815 } 26816 26817 /* 26818 * ioctl processing 26819 * 26820 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26821 * the ioctl command in the ioctl tables, determines the copyin data size 26822 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26823 * 26824 * ioctl processing then continues when the M_IOCDATA makes its way down to 26825 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26826 * associated 'conn' is refheld till the end of the ioctl and the general 26827 * ioctl processing function ip_process_ioctl() is called to extract the 26828 * arguments and process the ioctl. To simplify extraction, ioctl commands 26829 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26830 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26831 * is used to extract the ioctl's arguments. 26832 * 26833 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26834 * so goes thru the serialization primitive ipsq_try_enter. Then the 26835 * appropriate function to handle the ioctl is called based on the entry in 26836 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26837 * which also refreleases the 'conn' that was refheld at the start of the 26838 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26839 * 26840 * Many exclusive ioctls go thru an internal down up sequence as part of 26841 * the operation. For example an attempt to change the IP address of an 26842 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26843 * does all the cleanup such as deleting all ires that use this address. 26844 * Then we need to wait till all references to the interface go away. 26845 */ 26846 void 26847 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26848 { 26849 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26850 ip_ioctl_cmd_t *ipip = arg; 26851 ip_extract_func_t *extract_funcp; 26852 cmd_info_t ci; 26853 int err; 26854 boolean_t entered_ipsq = B_FALSE; 26855 26856 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26857 26858 if (ipip == NULL) 26859 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26860 26861 /* 26862 * SIOCLIFADDIF needs to go thru a special path since the 26863 * ill may not exist yet. This happens in the case of lo0 26864 * which is created using this ioctl. 26865 */ 26866 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26867 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26868 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26869 return; 26870 } 26871 26872 ci.ci_ipif = NULL; 26873 if (ipip->ipi_cmd_type == MISC_CMD) { 26874 /* 26875 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 26876 */ 26877 if (ipip->ipi_cmd == IF_UNITSEL) { 26878 /* ioctl comes down the ill */ 26879 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26880 ipif_refhold(ci.ci_ipif); 26881 } 26882 err = 0; 26883 ci.ci_sin = NULL; 26884 ci.ci_sin6 = NULL; 26885 ci.ci_lifr = NULL; 26886 } else { 26887 switch (ipip->ipi_cmd_type) { 26888 case IF_CMD: 26889 case LIF_CMD: 26890 extract_funcp = ip_extract_lifreq; 26891 break; 26892 26893 case ARP_CMD: 26894 case XARP_CMD: 26895 extract_funcp = ip_extract_arpreq; 26896 break; 26897 26898 case MSFILT_CMD: 26899 extract_funcp = ip_extract_msfilter; 26900 break; 26901 26902 default: 26903 ASSERT(0); 26904 } 26905 26906 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 26907 if (err != 0) { 26908 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26909 return; 26910 } 26911 26912 /* 26913 * All of the extraction functions return a refheld ipif. 26914 */ 26915 ASSERT(ci.ci_ipif != NULL); 26916 } 26917 26918 if (!(ipip->ipi_flags & IPI_WR)) { 26919 /* 26920 * A return value of EINPROGRESS means the ioctl is 26921 * either queued and waiting for some reason or has 26922 * already completed. 26923 */ 26924 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26925 ci.ci_lifr); 26926 if (ci.ci_ipif != NULL) 26927 ipif_refrele(ci.ci_ipif); 26928 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26929 return; 26930 } 26931 26932 ASSERT(ci.ci_ipif != NULL); 26933 26934 /* 26935 * If ipsq is non-NULL, we are already being called exclusively. 26936 */ 26937 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26938 if (ipsq == NULL) { 26939 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 26940 NEW_OP, B_TRUE); 26941 if (ipsq == NULL) { 26942 ipif_refrele(ci.ci_ipif); 26943 return; 26944 } 26945 entered_ipsq = B_TRUE; 26946 } 26947 26948 /* 26949 * Release the ipif so that ipif_down and friends that wait for 26950 * references to go away are not misled about the current ipif_refcnt 26951 * values. We are writer so we can access the ipif even after releasing 26952 * the ipif. 26953 */ 26954 ipif_refrele(ci.ci_ipif); 26955 26956 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 26957 26958 /* 26959 * A return value of EINPROGRESS means the ioctl is 26960 * either queued and waiting for some reason or has 26961 * already completed. 26962 */ 26963 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 26964 26965 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26966 26967 if (entered_ipsq) 26968 ipsq_exit(ipsq); 26969 } 26970 26971 /* 26972 * Complete the ioctl. Typically ioctls use the mi package and need to 26973 * do mi_copyout/mi_copy_done. 26974 */ 26975 void 26976 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 26977 { 26978 conn_t *connp = NULL; 26979 26980 if (err == EINPROGRESS) 26981 return; 26982 26983 if (CONN_Q(q)) { 26984 connp = Q_TO_CONN(q); 26985 ASSERT(connp->conn_ref >= 2); 26986 } 26987 26988 switch (mode) { 26989 case COPYOUT: 26990 if (err == 0) 26991 mi_copyout(q, mp); 26992 else 26993 mi_copy_done(q, mp, err); 26994 break; 26995 26996 case NO_COPYOUT: 26997 mi_copy_done(q, mp, err); 26998 break; 26999 27000 default: 27001 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27002 break; 27003 } 27004 27005 /* 27006 * The refhold placed at the start of the ioctl is released here. 27007 */ 27008 if (connp != NULL) 27009 CONN_OPER_PENDING_DONE(connp); 27010 27011 if (ipsq != NULL) 27012 ipsq_current_finish(ipsq); 27013 } 27014 27015 /* Called from ip_wput for all non data messages */ 27016 /* ARGSUSED */ 27017 void 27018 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27019 { 27020 mblk_t *mp1; 27021 ire_t *ire, *fake_ire; 27022 ill_t *ill; 27023 struct iocblk *iocp; 27024 ip_ioctl_cmd_t *ipip; 27025 cred_t *cr; 27026 conn_t *connp; 27027 int err; 27028 nce_t *nce; 27029 ipif_t *ipif; 27030 ip_stack_t *ipst; 27031 char *proto_str; 27032 27033 if (CONN_Q(q)) { 27034 connp = Q_TO_CONN(q); 27035 ipst = connp->conn_netstack->netstack_ip; 27036 } else { 27037 connp = NULL; 27038 ipst = ILLQ_TO_IPST(q); 27039 } 27040 27041 switch (DB_TYPE(mp)) { 27042 case M_IOCTL: 27043 /* 27044 * IOCTL processing begins in ip_sioctl_copyin_setup which 27045 * will arrange to copy in associated control structures. 27046 */ 27047 ip_sioctl_copyin_setup(q, mp); 27048 return; 27049 case M_IOCDATA: 27050 /* 27051 * Ensure that this is associated with one of our trans- 27052 * parent ioctls. If it's not ours, discard it if we're 27053 * running as a driver, or pass it on if we're a module. 27054 */ 27055 iocp = (struct iocblk *)mp->b_rptr; 27056 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27057 if (ipip == NULL) { 27058 if (q->q_next == NULL) { 27059 goto nak; 27060 } else { 27061 putnext(q, mp); 27062 } 27063 return; 27064 } 27065 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27066 /* 27067 * the ioctl is one we recognise, but is not 27068 * consumed by IP as a module, pass M_IOCDATA 27069 * for processing downstream, but only for 27070 * common Streams ioctls. 27071 */ 27072 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27073 putnext(q, mp); 27074 return; 27075 } else { 27076 goto nak; 27077 } 27078 } 27079 27080 /* IOCTL continuation following copyin or copyout. */ 27081 if (mi_copy_state(q, mp, NULL) == -1) { 27082 /* 27083 * The copy operation failed. mi_copy_state already 27084 * cleaned up, so we're out of here. 27085 */ 27086 return; 27087 } 27088 /* 27089 * If we just completed a copy in, we become writer and 27090 * continue processing in ip_sioctl_copyin_done. If it 27091 * was a copy out, we call mi_copyout again. If there is 27092 * nothing more to copy out, it will complete the IOCTL. 27093 */ 27094 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27095 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27096 mi_copy_done(q, mp, EPROTO); 27097 return; 27098 } 27099 /* 27100 * Check for cases that need more copying. A return 27101 * value of 0 means a second copyin has been started, 27102 * so we return; a return value of 1 means no more 27103 * copying is needed, so we continue. 27104 */ 27105 if (ipip->ipi_cmd_type == MSFILT_CMD && 27106 MI_COPY_COUNT(mp) == 1) { 27107 if (ip_copyin_msfilter(q, mp) == 0) 27108 return; 27109 } 27110 /* 27111 * Refhold the conn, till the ioctl completes. This is 27112 * needed in case the ioctl ends up in the pending mp 27113 * list. Every mp in the ill_pending_mp list and 27114 * the ipx_pending_mp must have a refhold on the conn 27115 * to resume processing. The refhold is released when 27116 * the ioctl completes. (normally or abnormally) 27117 * In all cases ip_ioctl_finish is called to finish 27118 * the ioctl. 27119 */ 27120 if (connp != NULL) { 27121 /* This is not a reentry */ 27122 ASSERT(ipsq == NULL); 27123 CONN_INC_REF(connp); 27124 } else { 27125 if (!(ipip->ipi_flags & IPI_MODOK)) { 27126 mi_copy_done(q, mp, EINVAL); 27127 return; 27128 } 27129 } 27130 27131 ip_process_ioctl(ipsq, q, mp, ipip); 27132 27133 } else { 27134 mi_copyout(q, mp); 27135 } 27136 return; 27137 nak: 27138 iocp->ioc_error = EINVAL; 27139 mp->b_datap->db_type = M_IOCNAK; 27140 iocp->ioc_count = 0; 27141 qreply(q, mp); 27142 return; 27143 27144 case M_IOCNAK: 27145 /* 27146 * The only way we could get here is if a resolver didn't like 27147 * an IOCTL we sent it. This shouldn't happen. 27148 */ 27149 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27150 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27151 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27152 freemsg(mp); 27153 return; 27154 case M_IOCACK: 27155 /* /dev/ip shouldn't see this */ 27156 if (CONN_Q(q)) 27157 goto nak; 27158 27159 /* 27160 * Finish socket ioctls passed through to ARP. We use the 27161 * ioc_cmd values we set in ip_sioctl_arp() to decide whether 27162 * we need to become writer before calling ip_sioctl_iocack(). 27163 * Note that qwriter_ip() will release the refhold, and that a 27164 * refhold is OK without ILL_CAN_LOOKUP() since we're on the 27165 * ill stream. 27166 */ 27167 iocp = (struct iocblk *)mp->b_rptr; 27168 if (iocp->ioc_cmd == AR_ENTRY_SQUERY) { 27169 ip_sioctl_iocack(NULL, q, mp, NULL); 27170 return; 27171 } 27172 27173 ASSERT(iocp->ioc_cmd == AR_ENTRY_DELETE || 27174 iocp->ioc_cmd == AR_ENTRY_ADD); 27175 ill = q->q_ptr; 27176 ill_refhold(ill); 27177 qwriter_ip(ill, q, mp, ip_sioctl_iocack, CUR_OP, B_FALSE); 27178 return; 27179 case M_FLUSH: 27180 if (*mp->b_rptr & FLUSHW) 27181 flushq(q, FLUSHALL); 27182 if (q->q_next) { 27183 putnext(q, mp); 27184 return; 27185 } 27186 if (*mp->b_rptr & FLUSHR) { 27187 *mp->b_rptr &= ~FLUSHW; 27188 qreply(q, mp); 27189 return; 27190 } 27191 freemsg(mp); 27192 return; 27193 case IRE_DB_REQ_TYPE: 27194 if (connp == NULL) { 27195 proto_str = "IRE_DB_REQ_TYPE"; 27196 goto protonak; 27197 } 27198 /* An Upper Level Protocol wants a copy of an IRE. */ 27199 ip_ire_req(q, mp); 27200 return; 27201 case M_CTL: 27202 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27203 break; 27204 27205 /* M_CTL messages are used by ARP to tell us things. */ 27206 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27207 break; 27208 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27209 case AR_ENTRY_SQUERY: 27210 putnext(q, mp); 27211 return; 27212 case AR_CLIENT_NOTIFY: 27213 ip_arp_news(q, mp); 27214 return; 27215 case AR_DLPIOP_DONE: 27216 ASSERT(q->q_next != NULL); 27217 ill = (ill_t *)q->q_ptr; 27218 /* qwriter_ip releases the refhold */ 27219 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27220 ill_refhold(ill); 27221 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27222 return; 27223 case AR_ARP_CLOSING: 27224 /* 27225 * ARP (above us) is closing. If no ARP bringup is 27226 * currently pending, ack the message so that ARP 27227 * can complete its close. Also mark ill_arp_closing 27228 * so that new ARP bringups will fail. If any 27229 * ARP bringup is currently in progress, we will 27230 * ack this when the current ARP bringup completes. 27231 */ 27232 ASSERT(q->q_next != NULL); 27233 ill = (ill_t *)q->q_ptr; 27234 mutex_enter(&ill->ill_lock); 27235 ill->ill_arp_closing = 1; 27236 if (!ill->ill_arp_bringup_pending) { 27237 mutex_exit(&ill->ill_lock); 27238 qreply(q, mp); 27239 } else { 27240 mutex_exit(&ill->ill_lock); 27241 freemsg(mp); 27242 } 27243 return; 27244 case AR_ARP_EXTEND: 27245 /* 27246 * The ARP module above us is capable of duplicate 27247 * address detection. Old ATM drivers will not send 27248 * this message. 27249 */ 27250 ASSERT(q->q_next != NULL); 27251 ill = (ill_t *)q->q_ptr; 27252 ill->ill_arp_extend = B_TRUE; 27253 freemsg(mp); 27254 return; 27255 default: 27256 break; 27257 } 27258 break; 27259 case M_PROTO: 27260 case M_PCPROTO: 27261 /* 27262 * The only PROTO messages we expect are copies of option 27263 * negotiation acknowledgements, AH and ESP bind requests 27264 * are also expected. 27265 */ 27266 switch (((union T_primitives *)mp->b_rptr)->type) { 27267 case O_T_BIND_REQ: 27268 case T_BIND_REQ: { 27269 /* Request can get queued in bind */ 27270 if (connp == NULL) { 27271 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27272 goto protonak; 27273 } 27274 /* 27275 * The transports except SCTP call ip_bind_{v4,v6}() 27276 * directly instead of a a putnext. SCTP doesn't 27277 * generate any T_BIND_REQ since it has its own 27278 * fanout data structures. However, ESP and AH 27279 * come in for regular binds; all other cases are 27280 * bind retries. 27281 */ 27282 ASSERT(!IPCL_IS_SCTP(connp)); 27283 27284 /* Don't increment refcnt if this is a re-entry */ 27285 if (ipsq == NULL) 27286 CONN_INC_REF(connp); 27287 27288 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27289 connp, NULL) : ip_bind_v4(q, mp, connp); 27290 ASSERT(mp != NULL); 27291 27292 ASSERT(!IPCL_IS_TCP(connp)); 27293 ASSERT(!IPCL_IS_UDP(connp)); 27294 ASSERT(!IPCL_IS_RAWIP(connp)); 27295 ASSERT(!IPCL_IS_IPTUN(connp)); 27296 27297 /* The case of AH and ESP */ 27298 qreply(q, mp); 27299 CONN_OPER_PENDING_DONE(connp); 27300 return; 27301 } 27302 case T_SVR4_OPTMGMT_REQ: 27303 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27304 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27305 27306 if (connp == NULL) { 27307 proto_str = "T_SVR4_OPTMGMT_REQ"; 27308 goto protonak; 27309 } 27310 27311 /* 27312 * All Solaris components should pass a db_credp 27313 * for this TPI message, hence we ASSERT. 27314 * But in case there is some other M_PROTO that looks 27315 * like a TPI message sent by some other kernel 27316 * component, we check and return an error. 27317 */ 27318 cr = msg_getcred(mp, NULL); 27319 ASSERT(cr != NULL); 27320 if (cr == NULL) { 27321 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27322 if (mp != NULL) 27323 qreply(q, mp); 27324 return; 27325 } 27326 27327 if (!snmpcom_req(q, mp, ip_snmp_set, 27328 ip_snmp_get, cr)) { 27329 /* 27330 * Call svr4_optcom_req so that it can 27331 * generate the ack. We don't come here 27332 * if this operation is being restarted. 27333 * ip_restart_optmgmt will drop the conn ref. 27334 * In the case of ipsec option after the ipsec 27335 * load is complete conn_restart_ipsec_waiter 27336 * drops the conn ref. 27337 */ 27338 ASSERT(ipsq == NULL); 27339 CONN_INC_REF(connp); 27340 if (ip_check_for_ipsec_opt(q, mp)) 27341 return; 27342 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27343 B_FALSE); 27344 if (err != EINPROGRESS) { 27345 /* Operation is done */ 27346 CONN_OPER_PENDING_DONE(connp); 27347 } 27348 } 27349 return; 27350 case T_OPTMGMT_REQ: 27351 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27352 /* 27353 * Note: No snmpcom_req support through new 27354 * T_OPTMGMT_REQ. 27355 * Call tpi_optcom_req so that it can 27356 * generate the ack. 27357 */ 27358 if (connp == NULL) { 27359 proto_str = "T_OPTMGMT_REQ"; 27360 goto protonak; 27361 } 27362 27363 /* 27364 * All Solaris components should pass a db_credp 27365 * for this TPI message, hence we ASSERT. 27366 * But in case there is some other M_PROTO that looks 27367 * like a TPI message sent by some other kernel 27368 * component, we check and return an error. 27369 */ 27370 cr = msg_getcred(mp, NULL); 27371 ASSERT(cr != NULL); 27372 if (cr == NULL) { 27373 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27374 if (mp != NULL) 27375 qreply(q, mp); 27376 return; 27377 } 27378 ASSERT(ipsq == NULL); 27379 /* 27380 * We don't come here for restart. ip_restart_optmgmt 27381 * will drop the conn ref. In the case of ipsec option 27382 * after the ipsec load is complete 27383 * conn_restart_ipsec_waiter drops the conn ref. 27384 */ 27385 CONN_INC_REF(connp); 27386 if (ip_check_for_ipsec_opt(q, mp)) 27387 return; 27388 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27389 if (err != EINPROGRESS) { 27390 /* Operation is done */ 27391 CONN_OPER_PENDING_DONE(connp); 27392 } 27393 return; 27394 case T_UNBIND_REQ: 27395 if (connp == NULL) { 27396 proto_str = "T_UNBIND_REQ"; 27397 goto protonak; 27398 } 27399 ip_unbind(Q_TO_CONN(q)); 27400 mp = mi_tpi_ok_ack_alloc(mp); 27401 qreply(q, mp); 27402 return; 27403 default: 27404 /* 27405 * Have to drop any DLPI messages coming down from 27406 * arp (such as an info_req which would cause ip 27407 * to receive an extra info_ack if it was passed 27408 * through. 27409 */ 27410 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27411 (int)*(uint_t *)mp->b_rptr)); 27412 freemsg(mp); 27413 return; 27414 } 27415 /* NOTREACHED */ 27416 case IRE_DB_TYPE: { 27417 nce_t *nce; 27418 ill_t *ill; 27419 in6_addr_t gw_addr_v6; 27420 27421 /* 27422 * This is a response back from a resolver. It 27423 * consists of a message chain containing: 27424 * IRE_MBLK-->LL_HDR_MBLK->pkt 27425 * The IRE_MBLK is the one we allocated in ip_newroute. 27426 * The LL_HDR_MBLK is the DLPI header to use to get 27427 * the attached packet, and subsequent ones for the 27428 * same destination, transmitted. 27429 */ 27430 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27431 break; 27432 /* 27433 * First, check to make sure the resolution succeeded. 27434 * If it failed, the second mblk will be empty. 27435 * If it is, free the chain, dropping the packet. 27436 * (We must ire_delete the ire; that frees the ire mblk) 27437 * We're doing this now to support PVCs for ATM; it's 27438 * a partial xresolv implementation. When we fully implement 27439 * xresolv interfaces, instead of freeing everything here 27440 * we'll initiate neighbor discovery. 27441 * 27442 * For v4 (ARP and other external resolvers) the resolver 27443 * frees the message, so no check is needed. This check 27444 * is required, though, for a full xresolve implementation. 27445 * Including this code here now both shows how external 27446 * resolvers can NACK a resolution request using an 27447 * existing design that has no specific provisions for NACKs, 27448 * and also takes into account that the current non-ARP 27449 * external resolver has been coded to use this method of 27450 * NACKing for all IPv6 (xresolv) cases, 27451 * whether our xresolv implementation is complete or not. 27452 * 27453 */ 27454 ire = (ire_t *)mp->b_rptr; 27455 ill = ire_to_ill(ire); 27456 mp1 = mp->b_cont; /* dl_unitdata_req */ 27457 if (mp1->b_rptr == mp1->b_wptr) { 27458 if (ire->ire_ipversion == IPV6_VERSION) { 27459 /* 27460 * XRESOLV interface. 27461 */ 27462 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27463 mutex_enter(&ire->ire_lock); 27464 gw_addr_v6 = ire->ire_gateway_addr_v6; 27465 mutex_exit(&ire->ire_lock); 27466 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27467 nce = ndp_lookup_v6(ill, B_FALSE, 27468 &ire->ire_addr_v6, B_FALSE); 27469 } else { 27470 nce = ndp_lookup_v6(ill, B_FALSE, 27471 &gw_addr_v6, B_FALSE); 27472 } 27473 if (nce != NULL) { 27474 nce_resolv_failed(nce); 27475 ndp_delete(nce); 27476 NCE_REFRELE(nce); 27477 } 27478 } 27479 mp->b_cont = NULL; 27480 freemsg(mp1); /* frees the pkt as well */ 27481 ASSERT(ire->ire_nce == NULL); 27482 ire_delete((ire_t *)mp->b_rptr); 27483 return; 27484 } 27485 27486 /* 27487 * Split them into IRE_MBLK and pkt and feed it into 27488 * ire_add_then_send. Then in ire_add_then_send 27489 * the IRE will be added, and then the packet will be 27490 * run back through ip_wput. This time it will make 27491 * it to the wire. 27492 */ 27493 mp->b_cont = NULL; 27494 mp = mp1->b_cont; /* now, mp points to pkt */ 27495 mp1->b_cont = NULL; 27496 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27497 if (ire->ire_ipversion == IPV6_VERSION) { 27498 /* 27499 * XRESOLV interface. Find the nce and put a copy 27500 * of the dl_unitdata_req in nce_res_mp 27501 */ 27502 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27503 mutex_enter(&ire->ire_lock); 27504 gw_addr_v6 = ire->ire_gateway_addr_v6; 27505 mutex_exit(&ire->ire_lock); 27506 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27507 nce = ndp_lookup_v6(ill, B_FALSE, 27508 &ire->ire_addr_v6, B_FALSE); 27509 } else { 27510 nce = ndp_lookup_v6(ill, B_FALSE, 27511 &gw_addr_v6, B_FALSE); 27512 } 27513 if (nce != NULL) { 27514 /* 27515 * We have to protect nce_res_mp here 27516 * from being accessed by other threads 27517 * while we change the mblk pointer. 27518 * Other functions will also lock the nce when 27519 * accessing nce_res_mp. 27520 * 27521 * The reason we change the mblk pointer 27522 * here rather than copying the resolved address 27523 * into the template is that, unlike with 27524 * ethernet, we have no guarantee that the 27525 * resolved address length will be 27526 * smaller than or equal to the lla length 27527 * with which the template was allocated, 27528 * (for ethernet, they're equal) 27529 * so we have to use the actual resolved 27530 * address mblk - which holds the real 27531 * dl_unitdata_req with the resolved address. 27532 * 27533 * Doing this is the same behavior as was 27534 * previously used in the v4 ARP case. 27535 */ 27536 mutex_enter(&nce->nce_lock); 27537 if (nce->nce_res_mp != NULL) 27538 freemsg(nce->nce_res_mp); 27539 nce->nce_res_mp = mp1; 27540 mutex_exit(&nce->nce_lock); 27541 /* 27542 * We do a fastpath probe here because 27543 * we have resolved the address without 27544 * using Neighbor Discovery. 27545 * In the non-XRESOLV v6 case, the fastpath 27546 * probe is done right after neighbor 27547 * discovery completes. 27548 */ 27549 if (nce->nce_res_mp != NULL) { 27550 int res; 27551 nce_fastpath_list_add(nce); 27552 res = ill_fastpath_probe(ill, 27553 nce->nce_res_mp); 27554 if (res != 0 && res != EAGAIN) 27555 nce_fastpath_list_delete(nce); 27556 } 27557 27558 ire_add_then_send(q, ire, mp); 27559 /* 27560 * Now we have to clean out any packets 27561 * that may have been queued on the nce 27562 * while it was waiting for address resolution 27563 * to complete. 27564 */ 27565 mutex_enter(&nce->nce_lock); 27566 mp1 = nce->nce_qd_mp; 27567 nce->nce_qd_mp = NULL; 27568 mutex_exit(&nce->nce_lock); 27569 while (mp1 != NULL) { 27570 mblk_t *nxt_mp; 27571 queue_t *fwdq = NULL; 27572 ill_t *inbound_ill; 27573 uint_t ifindex; 27574 27575 nxt_mp = mp1->b_next; 27576 mp1->b_next = NULL; 27577 /* 27578 * Retrieve ifindex stored in 27579 * ip_rput_data_v6() 27580 */ 27581 ifindex = 27582 (uint_t)(uintptr_t)mp1->b_prev; 27583 inbound_ill = 27584 ill_lookup_on_ifindex(ifindex, 27585 B_TRUE, NULL, NULL, NULL, 27586 NULL, ipst); 27587 mp1->b_prev = NULL; 27588 if (inbound_ill != NULL) 27589 fwdq = inbound_ill->ill_rq; 27590 27591 if (fwdq != NULL) { 27592 put(fwdq, mp1); 27593 ill_refrele(inbound_ill); 27594 } else 27595 put(WR(ill->ill_rq), mp1); 27596 mp1 = nxt_mp; 27597 } 27598 NCE_REFRELE(nce); 27599 } else { /* nce is NULL; clean up */ 27600 ire_delete(ire); 27601 freemsg(mp); 27602 freemsg(mp1); 27603 return; 27604 } 27605 } else { 27606 nce_t *arpce; 27607 /* 27608 * Link layer resolution succeeded. Recompute the 27609 * ire_nce. 27610 */ 27611 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27612 if ((arpce = ndp_lookup_v4(ill, 27613 (ire->ire_gateway_addr != INADDR_ANY ? 27614 &ire->ire_gateway_addr : &ire->ire_addr), 27615 B_FALSE)) == NULL) { 27616 freeb(ire->ire_mp); 27617 freeb(mp1); 27618 freemsg(mp); 27619 return; 27620 } 27621 mutex_enter(&arpce->nce_lock); 27622 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27623 if (arpce->nce_state == ND_REACHABLE) { 27624 /* 27625 * Someone resolved this before us; 27626 * cleanup the res_mp. Since ire has 27627 * not been added yet, the call to ire_add_v4 27628 * from ire_add_then_send (when a dup is 27629 * detected) will clean up the ire. 27630 */ 27631 freeb(mp1); 27632 } else { 27633 ASSERT(arpce->nce_res_mp == NULL); 27634 arpce->nce_res_mp = mp1; 27635 arpce->nce_state = ND_REACHABLE; 27636 } 27637 mutex_exit(&arpce->nce_lock); 27638 if (ire->ire_marks & IRE_MARK_NOADD) { 27639 /* 27640 * this ire will not be added to the ire 27641 * cache table, so we can set the ire_nce 27642 * here, as there are no atomicity constraints. 27643 */ 27644 ire->ire_nce = arpce; 27645 /* 27646 * We are associating this nce with the ire 27647 * so change the nce ref taken in 27648 * ndp_lookup_v4() from 27649 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27650 */ 27651 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27652 } else { 27653 NCE_REFRELE(arpce); 27654 } 27655 ire_add_then_send(q, ire, mp); 27656 } 27657 return; /* All is well, the packet has been sent. */ 27658 } 27659 case IRE_ARPRESOLVE_TYPE: { 27660 27661 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27662 break; 27663 mp1 = mp->b_cont; /* dl_unitdata_req */ 27664 mp->b_cont = NULL; 27665 /* 27666 * First, check to make sure the resolution succeeded. 27667 * If it failed, the second mblk will be empty. 27668 */ 27669 if (mp1->b_rptr == mp1->b_wptr) { 27670 /* cleanup the incomplete ire, free queued packets */ 27671 freemsg(mp); /* fake ire */ 27672 freeb(mp1); /* dl_unitdata response */ 27673 return; 27674 } 27675 27676 /* 27677 * Update any incomplete nce_t found. We search the ctable 27678 * and find the nce from the ire->ire_nce because we need 27679 * to pass the ire to ip_xmit_v4 later, and can find both 27680 * ire and nce in one lookup. 27681 */ 27682 fake_ire = (ire_t *)mp->b_rptr; 27683 27684 /* 27685 * By the time we come back here from ARP the logical outgoing 27686 * interface of the incomplete ire we added in ire_forward() 27687 * could have disappeared, causing the incomplete ire to also 27688 * disappear. So we need to retreive the proper ipif for the 27689 * ire before looking in ctable. In the case of IPMP, the 27690 * ipif may be on the IPMP ill, so look it up based on the 27691 * ire_ipif_ifindex we stashed back in ire_init_common(). 27692 * Then, we can verify that ire_ipif_seqid still exists. 27693 */ 27694 ill = ill_lookup_on_ifindex(fake_ire->ire_ipif_ifindex, B_FALSE, 27695 NULL, NULL, NULL, NULL, ipst); 27696 if (ill == NULL) { 27697 ip1dbg(("ill for incomplete ire vanished\n")); 27698 freemsg(mp); /* fake ire */ 27699 freeb(mp1); /* dl_unitdata response */ 27700 return; 27701 } 27702 27703 /* Get the outgoing ipif */ 27704 mutex_enter(&ill->ill_lock); 27705 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27706 if (ipif == NULL) { 27707 mutex_exit(&ill->ill_lock); 27708 ill_refrele(ill); 27709 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27710 freemsg(mp); /* fake_ire */ 27711 freeb(mp1); /* dl_unitdata response */ 27712 return; 27713 } 27714 27715 ipif_refhold_locked(ipif); 27716 mutex_exit(&ill->ill_lock); 27717 ill_refrele(ill); 27718 ire = ire_arpresolve_lookup(fake_ire->ire_addr, 27719 fake_ire->ire_gateway_addr, ipif, fake_ire->ire_zoneid, 27720 ipst, ((ill_t *)q->q_ptr)->ill_wq); 27721 ipif_refrele(ipif); 27722 if (ire == NULL) { 27723 /* 27724 * no ire was found; check if there is an nce 27725 * for this lookup; if it has no ire's pointing at it 27726 * cleanup. 27727 */ 27728 if ((nce = ndp_lookup_v4(q->q_ptr, 27729 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27730 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27731 B_FALSE)) != NULL) { 27732 /* 27733 * cleanup: 27734 * We check for refcnt 2 (one for the nce 27735 * hash list + 1 for the ref taken by 27736 * ndp_lookup_v4) to check that there are 27737 * no ire's pointing at the nce. 27738 */ 27739 if (nce->nce_refcnt == 2) 27740 ndp_delete(nce); 27741 NCE_REFRELE(nce); 27742 } 27743 freeb(mp1); /* dl_unitdata response */ 27744 freemsg(mp); /* fake ire */ 27745 return; 27746 } 27747 27748 nce = ire->ire_nce; 27749 DTRACE_PROBE2(ire__arpresolve__type, 27750 ire_t *, ire, nce_t *, nce); 27751 mutex_enter(&nce->nce_lock); 27752 nce->nce_last = TICK_TO_MSEC(lbolt64); 27753 if (nce->nce_state == ND_REACHABLE) { 27754 /* 27755 * Someone resolved this before us; 27756 * our response is not needed any more. 27757 */ 27758 mutex_exit(&nce->nce_lock); 27759 freeb(mp1); /* dl_unitdata response */ 27760 } else { 27761 ASSERT(nce->nce_res_mp == NULL); 27762 nce->nce_res_mp = mp1; 27763 nce->nce_state = ND_REACHABLE; 27764 mutex_exit(&nce->nce_lock); 27765 nce_fastpath(nce); 27766 } 27767 /* 27768 * The cached nce_t has been updated to be reachable; 27769 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27770 */ 27771 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27772 freemsg(mp); 27773 /* 27774 * send out queued packets. 27775 */ 27776 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 27777 27778 IRE_REFRELE(ire); 27779 return; 27780 } 27781 default: 27782 break; 27783 } 27784 if (q->q_next) { 27785 putnext(q, mp); 27786 } else 27787 freemsg(mp); 27788 return; 27789 27790 protonak: 27791 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27792 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27793 qreply(q, mp); 27794 } 27795 27796 /* 27797 * Process IP options in an outbound packet. Modify the destination if there 27798 * is a source route option. 27799 * Returns non-zero if something fails in which case an ICMP error has been 27800 * sent and mp freed. 27801 */ 27802 static int 27803 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27804 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27805 { 27806 ipoptp_t opts; 27807 uchar_t *opt; 27808 uint8_t optval; 27809 uint8_t optlen; 27810 ipaddr_t dst; 27811 intptr_t code = 0; 27812 mblk_t *mp; 27813 ire_t *ire = NULL; 27814 27815 ip2dbg(("ip_wput_options\n")); 27816 mp = ipsec_mp; 27817 if (mctl_present) { 27818 mp = ipsec_mp->b_cont; 27819 } 27820 27821 dst = ipha->ipha_dst; 27822 for (optval = ipoptp_first(&opts, ipha); 27823 optval != IPOPT_EOL; 27824 optval = ipoptp_next(&opts)) { 27825 opt = opts.ipoptp_cur; 27826 optlen = opts.ipoptp_len; 27827 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27828 optval, optlen)); 27829 switch (optval) { 27830 uint32_t off; 27831 case IPOPT_SSRR: 27832 case IPOPT_LSRR: 27833 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27834 ip1dbg(( 27835 "ip_wput_options: bad option offset\n")); 27836 code = (char *)&opt[IPOPT_OLEN] - 27837 (char *)ipha; 27838 goto param_prob; 27839 } 27840 off = opt[IPOPT_OFFSET]; 27841 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27842 ntohl(dst))); 27843 /* 27844 * For strict: verify that dst is directly 27845 * reachable. 27846 */ 27847 if (optval == IPOPT_SSRR) { 27848 ire = ire_ftable_lookup(dst, 0, 0, 27849 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27850 msg_getlabel(mp), 27851 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27852 if (ire == NULL) { 27853 ip1dbg(("ip_wput_options: SSRR not" 27854 " directly reachable: 0x%x\n", 27855 ntohl(dst))); 27856 goto bad_src_route; 27857 } 27858 ire_refrele(ire); 27859 } 27860 break; 27861 case IPOPT_RR: 27862 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27863 ip1dbg(( 27864 "ip_wput_options: bad option offset\n")); 27865 code = (char *)&opt[IPOPT_OLEN] - 27866 (char *)ipha; 27867 goto param_prob; 27868 } 27869 break; 27870 case IPOPT_TS: 27871 /* 27872 * Verify that length >=5 and that there is either 27873 * room for another timestamp or that the overflow 27874 * counter is not maxed out. 27875 */ 27876 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27877 if (optlen < IPOPT_MINLEN_IT) { 27878 goto param_prob; 27879 } 27880 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27881 ip1dbg(( 27882 "ip_wput_options: bad option offset\n")); 27883 code = (char *)&opt[IPOPT_OFFSET] - 27884 (char *)ipha; 27885 goto param_prob; 27886 } 27887 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27888 case IPOPT_TS_TSONLY: 27889 off = IPOPT_TS_TIMELEN; 27890 break; 27891 case IPOPT_TS_TSANDADDR: 27892 case IPOPT_TS_PRESPEC: 27893 case IPOPT_TS_PRESPEC_RFC791: 27894 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27895 break; 27896 default: 27897 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27898 (char *)ipha; 27899 goto param_prob; 27900 } 27901 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27902 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27903 /* 27904 * No room and the overflow counter is 15 27905 * already. 27906 */ 27907 goto param_prob; 27908 } 27909 break; 27910 } 27911 } 27912 27913 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 27914 return (0); 27915 27916 ip1dbg(("ip_wput_options: error processing IP options.")); 27917 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 27918 27919 param_prob: 27920 /* 27921 * Since ip_wput() isn't close to finished, we fill 27922 * in enough of the header for credible error reporting. 27923 */ 27924 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27925 /* Failed */ 27926 freemsg(ipsec_mp); 27927 return (-1); 27928 } 27929 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 27930 return (-1); 27931 27932 bad_src_route: 27933 /* 27934 * Since ip_wput() isn't close to finished, we fill 27935 * in enough of the header for credible error reporting. 27936 */ 27937 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27938 /* Failed */ 27939 freemsg(ipsec_mp); 27940 return (-1); 27941 } 27942 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 27943 return (-1); 27944 } 27945 27946 /* 27947 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 27948 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 27949 * thru /etc/system. 27950 */ 27951 #define CONN_MAXDRAINCNT 64 27952 27953 static void 27954 conn_drain_init(ip_stack_t *ipst) 27955 { 27956 int i, j; 27957 idl_tx_list_t *itl_tx; 27958 27959 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 27960 27961 if ((ipst->ips_conn_drain_list_cnt == 0) || 27962 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 27963 /* 27964 * Default value of the number of drainers is the 27965 * number of cpus, subject to maximum of 8 drainers. 27966 */ 27967 if (boot_max_ncpus != -1) 27968 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 27969 else 27970 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 27971 } 27972 27973 ipst->ips_idl_tx_list = 27974 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 27975 for (i = 0; i < TX_FANOUT_SIZE; i++) { 27976 itl_tx = &ipst->ips_idl_tx_list[i]; 27977 itl_tx->txl_drain_list = 27978 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 27979 sizeof (idl_t), KM_SLEEP); 27980 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 27981 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 27982 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 27983 MUTEX_DEFAULT, NULL); 27984 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 27985 } 27986 } 27987 } 27988 27989 static void 27990 conn_drain_fini(ip_stack_t *ipst) 27991 { 27992 int i; 27993 idl_tx_list_t *itl_tx; 27994 27995 for (i = 0; i < TX_FANOUT_SIZE; i++) { 27996 itl_tx = &ipst->ips_idl_tx_list[i]; 27997 kmem_free(itl_tx->txl_drain_list, 27998 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 27999 } 28000 kmem_free(ipst->ips_idl_tx_list, 28001 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 28002 ipst->ips_idl_tx_list = NULL; 28003 } 28004 28005 /* 28006 * Note: For an overview of how flowcontrol is handled in IP please see the 28007 * IP Flowcontrol notes at the top of this file. 28008 * 28009 * Flow control has blocked us from proceeding. Insert the given conn in one 28010 * of the conn drain lists. These conn wq's will be qenabled later on when 28011 * STREAMS flow control does a backenable. conn_walk_drain will enable 28012 * the first conn in each of these drain lists. Each of these qenabled conns 28013 * in turn enables the next in the list, after it runs, or when it closes, 28014 * thus sustaining the drain process. 28015 */ 28016 void 28017 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 28018 { 28019 idl_t *idl = tx_list->txl_drain_list; 28020 uint_t index; 28021 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28022 28023 mutex_enter(&connp->conn_lock); 28024 if (connp->conn_state_flags & CONN_CLOSING) { 28025 /* 28026 * The conn is closing as a result of which CONN_CLOSING 28027 * is set. Return. 28028 */ 28029 mutex_exit(&connp->conn_lock); 28030 return; 28031 } else if (connp->conn_idl == NULL) { 28032 /* 28033 * Assign the next drain list round robin. We dont' use 28034 * a lock, and thus it may not be strictly round robin. 28035 * Atomicity of load/stores is enough to make sure that 28036 * conn_drain_list_index is always within bounds. 28037 */ 28038 index = tx_list->txl_drain_index; 28039 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28040 connp->conn_idl = &tx_list->txl_drain_list[index]; 28041 index++; 28042 if (index == ipst->ips_conn_drain_list_cnt) 28043 index = 0; 28044 tx_list->txl_drain_index = index; 28045 } 28046 mutex_exit(&connp->conn_lock); 28047 28048 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28049 if ((connp->conn_drain_prev != NULL) || 28050 (connp->conn_state_flags & CONN_CLOSING)) { 28051 /* 28052 * The conn is already in the drain list, OR 28053 * the conn is closing. We need to check again for 28054 * the closing case again since close can happen 28055 * after we drop the conn_lock, and before we 28056 * acquire the CONN_DRAIN_LIST_LOCK. 28057 */ 28058 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28059 return; 28060 } else { 28061 idl = connp->conn_idl; 28062 } 28063 28064 /* 28065 * The conn is not in the drain list. Insert it at the 28066 * tail of the drain list. The drain list is circular 28067 * and doubly linked. idl_conn points to the 1st element 28068 * in the list. 28069 */ 28070 if (idl->idl_conn == NULL) { 28071 idl->idl_conn = connp; 28072 connp->conn_drain_next = connp; 28073 connp->conn_drain_prev = connp; 28074 } else { 28075 conn_t *head = idl->idl_conn; 28076 28077 connp->conn_drain_next = head; 28078 connp->conn_drain_prev = head->conn_drain_prev; 28079 head->conn_drain_prev->conn_drain_next = connp; 28080 head->conn_drain_prev = connp; 28081 } 28082 /* 28083 * For non streams based sockets assert flow control. 28084 */ 28085 if (IPCL_IS_NONSTR(connp)) { 28086 DTRACE_PROBE1(su__txq__full, conn_t *, connp); 28087 (*connp->conn_upcalls->su_txq_full) 28088 (connp->conn_upper_handle, B_TRUE); 28089 } else { 28090 conn_setqfull(connp); 28091 noenable(connp->conn_wq); 28092 } 28093 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28094 } 28095 28096 /* 28097 * This conn is closing, and we are called from ip_close. OR 28098 * This conn has been serviced by ip_wsrv, and we need to do the tail 28099 * processing. 28100 * If this conn is part of the drain list, we may need to sustain the drain 28101 * process by qenabling the next conn in the drain list. We may also need to 28102 * remove this conn from the list, if it is done. 28103 */ 28104 static void 28105 conn_drain_tail(conn_t *connp, boolean_t closing) 28106 { 28107 idl_t *idl; 28108 28109 /* 28110 * connp->conn_idl is stable at this point, and no lock is needed 28111 * to check it. If we are called from ip_close, close has already 28112 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28113 * called us only because conn_idl is non-null. If we are called thru 28114 * service, conn_idl could be null, but it cannot change because 28115 * service is single-threaded per queue, and there cannot be another 28116 * instance of service trying to call conn_drain_insert on this conn 28117 * now. 28118 */ 28119 ASSERT(!closing || (connp->conn_idl != NULL)); 28120 28121 /* 28122 * If connp->conn_idl is null, the conn has not been inserted into any 28123 * drain list even once since creation of the conn. Just return. 28124 */ 28125 if (connp->conn_idl == NULL) 28126 return; 28127 28128 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28129 28130 if (connp->conn_drain_prev == NULL) { 28131 /* This conn is currently not in the drain list. */ 28132 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28133 return; 28134 } 28135 idl = connp->conn_idl; 28136 if (idl->idl_conn_draining == connp) { 28137 /* 28138 * This conn is the current drainer. If this is the last conn 28139 * in the drain list, we need to do more checks, in the 'if' 28140 * below. Otherwwise we need to just qenable the next conn, 28141 * to sustain the draining, and is handled in the 'else' 28142 * below. 28143 */ 28144 if (connp->conn_drain_next == idl->idl_conn) { 28145 /* 28146 * This conn is the last in this list. This round 28147 * of draining is complete. If idl_repeat is set, 28148 * it means another flow enabling has happened from 28149 * the driver/streams and we need to another round 28150 * of draining. 28151 * If there are more than 2 conns in the drain list, 28152 * do a left rotate by 1, so that all conns except the 28153 * conn at the head move towards the head by 1, and the 28154 * the conn at the head goes to the tail. This attempts 28155 * a more even share for all queues that are being 28156 * drained. 28157 */ 28158 if ((connp->conn_drain_next != connp) && 28159 (idl->idl_conn->conn_drain_next != connp)) { 28160 idl->idl_conn = idl->idl_conn->conn_drain_next; 28161 } 28162 if (idl->idl_repeat) { 28163 qenable(idl->idl_conn->conn_wq); 28164 idl->idl_conn_draining = idl->idl_conn; 28165 idl->idl_repeat = 0; 28166 } else { 28167 idl->idl_conn_draining = NULL; 28168 } 28169 } else { 28170 /* 28171 * If the next queue that we are now qenable'ing, 28172 * is closing, it will remove itself from this list 28173 * and qenable the subsequent queue in ip_close(). 28174 * Serialization is acheived thru idl_lock. 28175 */ 28176 qenable(connp->conn_drain_next->conn_wq); 28177 idl->idl_conn_draining = connp->conn_drain_next; 28178 } 28179 } 28180 if (!connp->conn_did_putbq || closing) { 28181 /* 28182 * Remove ourself from the drain list, if we did not do 28183 * a putbq, or if the conn is closing. 28184 * Note: It is possible that q->q_first is non-null. It means 28185 * that these messages landed after we did a enableok() in 28186 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28187 * service them. 28188 */ 28189 if (connp->conn_drain_next == connp) { 28190 /* Singleton in the list */ 28191 ASSERT(connp->conn_drain_prev == connp); 28192 idl->idl_conn = NULL; 28193 idl->idl_conn_draining = NULL; 28194 } else { 28195 connp->conn_drain_prev->conn_drain_next = 28196 connp->conn_drain_next; 28197 connp->conn_drain_next->conn_drain_prev = 28198 connp->conn_drain_prev; 28199 if (idl->idl_conn == connp) 28200 idl->idl_conn = connp->conn_drain_next; 28201 ASSERT(idl->idl_conn_draining != connp); 28202 28203 } 28204 connp->conn_drain_next = NULL; 28205 connp->conn_drain_prev = NULL; 28206 28207 /* 28208 * For non streams based sockets open up flow control. 28209 */ 28210 if (IPCL_IS_NONSTR(connp)) { 28211 (*connp->conn_upcalls->su_txq_full) 28212 (connp->conn_upper_handle, B_FALSE); 28213 } else { 28214 conn_clrqfull(connp); 28215 enableok(connp->conn_wq); 28216 } 28217 } 28218 28219 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28220 } 28221 28222 /* 28223 * Write service routine. Shared perimeter entry point. 28224 * ip_wsrv can be called in any of the following ways. 28225 * 1. The device queue's messages has fallen below the low water mark 28226 * and STREAMS has backenabled the ill_wq. We walk thru all the 28227 * the drain lists and backenable the first conn in each list. 28228 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28229 * qenabled non-tcp upper layers. We start dequeing messages and call 28230 * ip_wput for each message. 28231 */ 28232 28233 void 28234 ip_wsrv(queue_t *q) 28235 { 28236 conn_t *connp; 28237 ill_t *ill; 28238 mblk_t *mp; 28239 28240 if (q->q_next) { 28241 ill = (ill_t *)q->q_ptr; 28242 if (ill->ill_state_flags == 0) { 28243 ip_stack_t *ipst = ill->ill_ipst; 28244 28245 /* 28246 * The device flow control has opened up. 28247 * Walk through conn drain lists and qenable the 28248 * first conn in each list. This makes sense only 28249 * if the stream is fully plumbed and setup. 28250 * Hence the if check above. 28251 */ 28252 ip1dbg(("ip_wsrv: walking\n")); 28253 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 28254 } 28255 return; 28256 } 28257 28258 connp = Q_TO_CONN(q); 28259 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28260 28261 /* 28262 * 1. Set conn_draining flag to signal that service is active. 28263 * 28264 * 2. ip_output determines whether it has been called from service, 28265 * based on the last parameter. If it is IP_WSRV it concludes it 28266 * has been called from service. 28267 * 28268 * 3. Message ordering is preserved by the following logic. 28269 * i. A directly called ip_output (i.e. not thru service) will queue 28270 * the message at the tail, if conn_draining is set (i.e. service 28271 * is running) or if q->q_first is non-null. 28272 * 28273 * ii. If ip_output is called from service, and if ip_output cannot 28274 * putnext due to flow control, it does a putbq. 28275 * 28276 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28277 * (causing an infinite loop). 28278 */ 28279 ASSERT(!connp->conn_did_putbq); 28280 28281 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28282 connp->conn_draining = 1; 28283 noenable(q); 28284 while ((mp = getq(q)) != NULL) { 28285 ASSERT(CONN_Q(q)); 28286 28287 DTRACE_PROBE1(ip__wsrv__ip__output, conn_t *, connp); 28288 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28289 if (connp->conn_did_putbq) { 28290 /* ip_wput did a putbq */ 28291 break; 28292 } 28293 } 28294 /* 28295 * At this point, a thread coming down from top, calling 28296 * ip_wput, may end up queueing the message. We have not yet 28297 * enabled the queue, so ip_wsrv won't be called again. 28298 * To avoid this race, check q->q_first again (in the loop) 28299 * If the other thread queued the message before we call 28300 * enableok(), we will catch it in the q->q_first check. 28301 * If the other thread queues the message after we call 28302 * enableok(), ip_wsrv will be called again by STREAMS. 28303 */ 28304 connp->conn_draining = 0; 28305 enableok(q); 28306 } 28307 28308 /* Enable the next conn for draining */ 28309 conn_drain_tail(connp, B_FALSE); 28310 28311 /* 28312 * conn_direct_blocked is used to indicate blocked 28313 * condition for direct path (ILL_DIRECT_CAPABLE()). 28314 * This is the only place where it is set without 28315 * checking for ILL_DIRECT_CAPABLE() and setting it 28316 * to 0 is ok even if it is not ILL_DIRECT_CAPABLE(). 28317 */ 28318 if (!connp->conn_did_putbq && connp->conn_direct_blocked) { 28319 DTRACE_PROBE1(ip__wsrv__direct__blocked, conn_t *, connp); 28320 connp->conn_direct_blocked = B_FALSE; 28321 } 28322 28323 connp->conn_did_putbq = 0; 28324 } 28325 28326 /* 28327 * Callback to disable flow control in IP. 28328 * 28329 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 28330 * is enabled. 28331 * 28332 * When MAC_TX() is not able to send any more packets, dld sets its queue 28333 * to QFULL and enable the STREAMS flow control. Later, when the underlying 28334 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 28335 * function and wakes up corresponding mac worker threads, which in turn 28336 * calls this callback function, and disables flow control. 28337 */ 28338 void 28339 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 28340 { 28341 ill_t *ill = (ill_t *)arg; 28342 ip_stack_t *ipst = ill->ill_ipst; 28343 idl_tx_list_t *idl_txl; 28344 28345 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 28346 mutex_enter(&idl_txl->txl_lock); 28347 /* add code to to set a flag to indicate idl_txl is enabled */ 28348 conn_walk_drain(ipst, idl_txl); 28349 mutex_exit(&idl_txl->txl_lock); 28350 } 28351 28352 /* 28353 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28354 * of conns that need to be drained, check if drain is already in progress. 28355 * If so set the idl_repeat bit, indicating that the last conn in the list 28356 * needs to reinitiate the drain once again, for the list. If drain is not 28357 * in progress for the list, initiate the draining, by qenabling the 1st 28358 * conn in the list. The drain is self-sustaining, each qenabled conn will 28359 * in turn qenable the next conn, when it is done/blocked/closing. 28360 */ 28361 static void 28362 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 28363 { 28364 int i; 28365 idl_t *idl; 28366 28367 IP_STAT(ipst, ip_conn_walk_drain); 28368 28369 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28370 idl = &tx_list->txl_drain_list[i]; 28371 mutex_enter(&idl->idl_lock); 28372 if (idl->idl_conn == NULL) { 28373 mutex_exit(&idl->idl_lock); 28374 continue; 28375 } 28376 /* 28377 * If this list is not being drained currently by 28378 * an ip_wsrv thread, start the process. 28379 */ 28380 if (idl->idl_conn_draining == NULL) { 28381 ASSERT(idl->idl_repeat == 0); 28382 qenable(idl->idl_conn->conn_wq); 28383 idl->idl_conn_draining = idl->idl_conn; 28384 } else { 28385 idl->idl_repeat = 1; 28386 } 28387 mutex_exit(&idl->idl_lock); 28388 } 28389 } 28390 28391 /* 28392 * Determine if the ill and multicast aspects of that packets 28393 * "matches" the conn. 28394 */ 28395 boolean_t 28396 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28397 zoneid_t zoneid) 28398 { 28399 ill_t *bound_ill; 28400 boolean_t found; 28401 ipif_t *ipif; 28402 ire_t *ire; 28403 ipaddr_t dst, src; 28404 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28405 28406 dst = ipha->ipha_dst; 28407 src = ipha->ipha_src; 28408 28409 /* 28410 * conn_incoming_ill is set by IP_BOUND_IF which limits 28411 * unicast, broadcast and multicast reception to 28412 * conn_incoming_ill. conn_wantpacket itself is called 28413 * only for BROADCAST and multicast. 28414 */ 28415 bound_ill = connp->conn_incoming_ill; 28416 if (bound_ill != NULL) { 28417 if (IS_IPMP(bound_ill)) { 28418 if (bound_ill->ill_grp != ill->ill_grp) 28419 return (B_FALSE); 28420 } else { 28421 if (bound_ill != ill) 28422 return (B_FALSE); 28423 } 28424 } 28425 28426 if (!CLASSD(dst)) { 28427 if (IPCL_ZONE_MATCH(connp, zoneid)) 28428 return (B_TRUE); 28429 /* 28430 * The conn is in a different zone; we need to check that this 28431 * broadcast address is configured in the application's zone. 28432 */ 28433 ipif = ipif_get_next_ipif(NULL, ill); 28434 if (ipif == NULL) 28435 return (B_FALSE); 28436 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28437 connp->conn_zoneid, NULL, 28438 (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 28439 ipif_refrele(ipif); 28440 if (ire != NULL) { 28441 ire_refrele(ire); 28442 return (B_TRUE); 28443 } else { 28444 return (B_FALSE); 28445 } 28446 } 28447 28448 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28449 connp->conn_zoneid == zoneid) { 28450 /* 28451 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28452 * disabled, therefore we don't dispatch the multicast packet to 28453 * the sending zone. 28454 */ 28455 return (B_FALSE); 28456 } 28457 28458 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28459 /* 28460 * Multicast packet on the loopback interface: we only match 28461 * conns who joined the group in the specified zone. 28462 */ 28463 return (B_FALSE); 28464 } 28465 28466 if (connp->conn_multi_router) { 28467 /* multicast packet and multicast router socket: send up */ 28468 return (B_TRUE); 28469 } 28470 28471 mutex_enter(&connp->conn_lock); 28472 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28473 mutex_exit(&connp->conn_lock); 28474 return (found); 28475 } 28476 28477 static void 28478 conn_setqfull(conn_t *connp) 28479 { 28480 queue_t *q = connp->conn_wq; 28481 28482 if (!(q->q_flag & QFULL)) { 28483 mutex_enter(QLOCK(q)); 28484 if (!(q->q_flag & QFULL)) { 28485 /* still need to set QFULL */ 28486 q->q_flag |= QFULL; 28487 mutex_exit(QLOCK(q)); 28488 } else { 28489 mutex_exit(QLOCK(q)); 28490 } 28491 } 28492 } 28493 28494 static void 28495 conn_clrqfull(conn_t *connp) 28496 { 28497 queue_t *q = connp->conn_wq; 28498 28499 if (q->q_flag & QFULL) { 28500 mutex_enter(QLOCK(q)); 28501 if (q->q_flag & QFULL) { 28502 q->q_flag &= ~QFULL; 28503 mutex_exit(QLOCK(q)); 28504 if (q->q_flag & QWANTW) 28505 qbackenable(q, 0); 28506 } else { 28507 mutex_exit(QLOCK(q)); 28508 } 28509 } 28510 } 28511 28512 /* 28513 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28514 */ 28515 /* ARGSUSED */ 28516 static void 28517 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28518 { 28519 ill_t *ill = (ill_t *)q->q_ptr; 28520 mblk_t *mp1, *mp2; 28521 ipif_t *ipif; 28522 int err = 0; 28523 conn_t *connp = NULL; 28524 ipsq_t *ipsq; 28525 arc_t *arc; 28526 28527 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28528 28529 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28530 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28531 28532 ASSERT(IAM_WRITER_ILL(ill)); 28533 mp2 = mp->b_cont; 28534 mp->b_cont = NULL; 28535 28536 /* 28537 * We have now received the arp bringup completion message 28538 * from ARP. Mark the arp bringup as done. Also if the arp 28539 * stream has already started closing, send up the AR_ARP_CLOSING 28540 * ack now since ARP is waiting in close for this ack. 28541 */ 28542 mutex_enter(&ill->ill_lock); 28543 ill->ill_arp_bringup_pending = 0; 28544 if (ill->ill_arp_closing) { 28545 mutex_exit(&ill->ill_lock); 28546 /* Let's reuse the mp for sending the ack */ 28547 arc = (arc_t *)mp->b_rptr; 28548 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28549 arc->arc_cmd = AR_ARP_CLOSING; 28550 qreply(q, mp); 28551 } else { 28552 mutex_exit(&ill->ill_lock); 28553 freeb(mp); 28554 } 28555 28556 ipsq = ill->ill_phyint->phyint_ipsq; 28557 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 28558 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28559 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28560 if (mp1 == NULL) { 28561 /* bringup was aborted by the user */ 28562 freemsg(mp2); 28563 return; 28564 } 28565 28566 /* 28567 * If an IOCTL is waiting on this (ipx_current_ioctl != 0), then we 28568 * must have an associated conn_t. Otherwise, we're bringing this 28569 * interface back up as part of handling an asynchronous event (e.g., 28570 * physical address change). 28571 */ 28572 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 28573 ASSERT(connp != NULL); 28574 q = CONNP_TO_WQ(connp); 28575 } else { 28576 ASSERT(connp == NULL); 28577 q = ill->ill_rq; 28578 } 28579 28580 /* 28581 * If the DL_BIND_REQ fails, it is noted 28582 * in arc_name_offset. 28583 */ 28584 err = *((int *)mp2->b_rptr); 28585 if (err == 0) { 28586 if (ipif->ipif_isv6) { 28587 if ((err = ipif_up_done_v6(ipif)) != 0) 28588 ip0dbg(("ip_arp_done: init failed\n")); 28589 } else { 28590 if ((err = ipif_up_done(ipif)) != 0) 28591 ip0dbg(("ip_arp_done: init failed\n")); 28592 } 28593 } else { 28594 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28595 } 28596 28597 freemsg(mp2); 28598 28599 if ((err == 0) && (ill->ill_up_ipifs)) { 28600 err = ill_up_ipifs(ill, q, mp1); 28601 if (err == EINPROGRESS) 28602 return; 28603 } 28604 28605 /* 28606 * If we have a moved ipif to bring up, and everything has succeeded 28607 * to this point, bring it up on the IPMP ill. Otherwise, leave it 28608 * down -- the admin can try to bring it up by hand if need be. 28609 */ 28610 if (ill->ill_move_ipif != NULL) { 28611 ipif = ill->ill_move_ipif; 28612 ill->ill_move_ipif = NULL; 28613 if (err == 0) { 28614 err = ipif_up(ipif, q, mp1); 28615 if (err == EINPROGRESS) 28616 return; 28617 } 28618 } 28619 28620 /* 28621 * The operation must complete without EINPROGRESS since 28622 * ipsq_pending_mp_get() has removed the mblk. Otherwise, the 28623 * operation will be stuck forever in the ipsq. 28624 */ 28625 ASSERT(err != EINPROGRESS); 28626 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) 28627 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28628 else 28629 ipsq_current_finish(ipsq); 28630 } 28631 28632 /* Allocate the private structure */ 28633 static int 28634 ip_priv_alloc(void **bufp) 28635 { 28636 void *buf; 28637 28638 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28639 return (ENOMEM); 28640 28641 *bufp = buf; 28642 return (0); 28643 } 28644 28645 /* Function to delete the private structure */ 28646 void 28647 ip_priv_free(void *buf) 28648 { 28649 ASSERT(buf != NULL); 28650 kmem_free(buf, sizeof (ip_priv_t)); 28651 } 28652 28653 /* 28654 * The entry point for IPPF processing. 28655 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28656 * routine just returns. 28657 * 28658 * When called, ip_process generates an ipp_packet_t structure 28659 * which holds the state information for this packet and invokes the 28660 * the classifier (via ipp_packet_process). The classification, depending on 28661 * configured filters, results in a list of actions for this packet. Invoking 28662 * an action may cause the packet to be dropped, in which case the resulting 28663 * mblk (*mpp) is NULL. proc indicates the callout position for 28664 * this packet and ill_index is the interface this packet on or will leave 28665 * on (inbound and outbound resp.). 28666 */ 28667 void 28668 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28669 { 28670 mblk_t *mp; 28671 ip_priv_t *priv; 28672 ipp_action_id_t aid; 28673 int rc = 0; 28674 ipp_packet_t *pp; 28675 #define IP_CLASS "ip" 28676 28677 /* If the classifier is not loaded, return */ 28678 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28679 return; 28680 } 28681 28682 mp = *mpp; 28683 ASSERT(mp != NULL); 28684 28685 /* Allocate the packet structure */ 28686 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28687 if (rc != 0) { 28688 *mpp = NULL; 28689 freemsg(mp); 28690 return; 28691 } 28692 28693 /* Allocate the private structure */ 28694 rc = ip_priv_alloc((void **)&priv); 28695 if (rc != 0) { 28696 *mpp = NULL; 28697 freemsg(mp); 28698 ipp_packet_free(pp); 28699 return; 28700 } 28701 priv->proc = proc; 28702 priv->ill_index = ill_index; 28703 ipp_packet_set_private(pp, priv, ip_priv_free); 28704 ipp_packet_set_data(pp, mp); 28705 28706 /* Invoke the classifier */ 28707 rc = ipp_packet_process(&pp); 28708 if (pp != NULL) { 28709 mp = ipp_packet_get_data(pp); 28710 ipp_packet_free(pp); 28711 if (rc != 0) { 28712 freemsg(mp); 28713 *mpp = NULL; 28714 } 28715 } else { 28716 *mpp = NULL; 28717 } 28718 #undef IP_CLASS 28719 } 28720 28721 /* 28722 * Propagate a multicast group membership operation (add/drop) on 28723 * all the interfaces crossed by the related multirt routes. 28724 * The call is considered successful if the operation succeeds 28725 * on at least one interface. 28726 */ 28727 static int 28728 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28729 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28730 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28731 mblk_t *first_mp) 28732 { 28733 ire_t *ire_gw; 28734 irb_t *irb; 28735 int error = 0; 28736 opt_restart_t *or; 28737 ip_stack_t *ipst = ire->ire_ipst; 28738 28739 irb = ire->ire_bucket; 28740 ASSERT(irb != NULL); 28741 28742 ASSERT(DB_TYPE(first_mp) == M_CTL); 28743 28744 or = (opt_restart_t *)first_mp->b_rptr; 28745 IRB_REFHOLD(irb); 28746 for (; ire != NULL; ire = ire->ire_next) { 28747 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28748 continue; 28749 if (ire->ire_addr != group) 28750 continue; 28751 28752 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28753 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28754 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28755 /* No resolver exists for the gateway; skip this ire. */ 28756 if (ire_gw == NULL) 28757 continue; 28758 28759 /* 28760 * This function can return EINPROGRESS. If so the operation 28761 * will be restarted from ip_restart_optmgmt which will 28762 * call ip_opt_set and option processing will restart for 28763 * this option. So we may end up calling 'fn' more than once. 28764 * This requires that 'fn' is idempotent except for the 28765 * return value. The operation is considered a success if 28766 * it succeeds at least once on any one interface. 28767 */ 28768 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28769 NULL, fmode, src, first_mp); 28770 if (error == 0) 28771 or->or_private = CGTP_MCAST_SUCCESS; 28772 28773 if (ip_debug > 0) { 28774 ulong_t off; 28775 char *ksym; 28776 ksym = kobj_getsymname((uintptr_t)fn, &off); 28777 ip2dbg(("ip_multirt_apply_membership: " 28778 "called %s, multirt group 0x%08x via itf 0x%08x, " 28779 "error %d [success %u]\n", 28780 ksym ? ksym : "?", 28781 ntohl(group), ntohl(ire_gw->ire_src_addr), 28782 error, or->or_private)); 28783 } 28784 28785 ire_refrele(ire_gw); 28786 if (error == EINPROGRESS) { 28787 IRB_REFRELE(irb); 28788 return (error); 28789 } 28790 } 28791 IRB_REFRELE(irb); 28792 /* 28793 * Consider the call as successful if we succeeded on at least 28794 * one interface. Otherwise, return the last encountered error. 28795 */ 28796 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28797 } 28798 28799 /* 28800 * Issue a warning regarding a route crossing an interface with an 28801 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28802 * amount of time is logged. 28803 */ 28804 static void 28805 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28806 { 28807 hrtime_t current = gethrtime(); 28808 char buf[INET_ADDRSTRLEN]; 28809 ip_stack_t *ipst = ire->ire_ipst; 28810 28811 /* Convert interval in ms to hrtime in ns */ 28812 if (ipst->ips_multirt_bad_mtu_last_time + 28813 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28814 current) { 28815 cmn_err(CE_WARN, "ip: ignoring multiroute " 28816 "to %s, incorrect MTU %u (expected %u)\n", 28817 ip_dot_addr(ire->ire_addr, buf), 28818 ire->ire_max_frag, max_frag); 28819 28820 ipst->ips_multirt_bad_mtu_last_time = current; 28821 } 28822 } 28823 28824 /* 28825 * Get the CGTP (multirouting) filtering status. 28826 * If 0, the CGTP hooks are transparent. 28827 */ 28828 /* ARGSUSED */ 28829 static int 28830 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28831 { 28832 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28833 28834 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28835 return (0); 28836 } 28837 28838 /* 28839 * Set the CGTP (multirouting) filtering status. 28840 * If the status is changed from active to transparent 28841 * or from transparent to active, forward the new status 28842 * to the filtering module (if loaded). 28843 */ 28844 /* ARGSUSED */ 28845 static int 28846 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28847 cred_t *ioc_cr) 28848 { 28849 long new_value; 28850 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28851 ip_stack_t *ipst = CONNQ_TO_IPST(q); 28852 28853 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 28854 return (EPERM); 28855 28856 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28857 new_value < 0 || new_value > 1) { 28858 return (EINVAL); 28859 } 28860 28861 if ((!*ip_cgtp_filter_value) && new_value) { 28862 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28863 ipst->ips_ip_cgtp_filter_ops == NULL ? 28864 " (module not loaded)" : ""); 28865 } 28866 if (*ip_cgtp_filter_value && (!new_value)) { 28867 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28868 ipst->ips_ip_cgtp_filter_ops == NULL ? 28869 " (module not loaded)" : ""); 28870 } 28871 28872 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28873 int res; 28874 netstackid_t stackid; 28875 28876 stackid = ipst->ips_netstack->netstack_stackid; 28877 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 28878 new_value); 28879 if (res) 28880 return (res); 28881 } 28882 28883 *ip_cgtp_filter_value = (boolean_t)new_value; 28884 28885 return (0); 28886 } 28887 28888 /* 28889 * Return the expected CGTP hooks version number. 28890 */ 28891 int 28892 ip_cgtp_filter_supported(void) 28893 { 28894 return (ip_cgtp_filter_rev); 28895 } 28896 28897 /* 28898 * CGTP hooks can be registered by invoking this function. 28899 * Checks that the version number matches. 28900 */ 28901 int 28902 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 28903 { 28904 netstack_t *ns; 28905 ip_stack_t *ipst; 28906 28907 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 28908 return (ENOTSUP); 28909 28910 ns = netstack_find_by_stackid(stackid); 28911 if (ns == NULL) 28912 return (EINVAL); 28913 ipst = ns->netstack_ip; 28914 ASSERT(ipst != NULL); 28915 28916 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28917 netstack_rele(ns); 28918 return (EALREADY); 28919 } 28920 28921 ipst->ips_ip_cgtp_filter_ops = ops; 28922 netstack_rele(ns); 28923 return (0); 28924 } 28925 28926 /* 28927 * CGTP hooks can be unregistered by invoking this function. 28928 * Returns ENXIO if there was no registration. 28929 * Returns EBUSY if the ndd variable has not been turned off. 28930 */ 28931 int 28932 ip_cgtp_filter_unregister(netstackid_t stackid) 28933 { 28934 netstack_t *ns; 28935 ip_stack_t *ipst; 28936 28937 ns = netstack_find_by_stackid(stackid); 28938 if (ns == NULL) 28939 return (EINVAL); 28940 ipst = ns->netstack_ip; 28941 ASSERT(ipst != NULL); 28942 28943 if (ipst->ips_ip_cgtp_filter) { 28944 netstack_rele(ns); 28945 return (EBUSY); 28946 } 28947 28948 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 28949 netstack_rele(ns); 28950 return (ENXIO); 28951 } 28952 ipst->ips_ip_cgtp_filter_ops = NULL; 28953 netstack_rele(ns); 28954 return (0); 28955 } 28956 28957 /* 28958 * Check whether there is a CGTP filter registration. 28959 * Returns non-zero if there is a registration, otherwise returns zero. 28960 * Note: returns zero if bad stackid. 28961 */ 28962 int 28963 ip_cgtp_filter_is_registered(netstackid_t stackid) 28964 { 28965 netstack_t *ns; 28966 ip_stack_t *ipst; 28967 int ret; 28968 28969 ns = netstack_find_by_stackid(stackid); 28970 if (ns == NULL) 28971 return (0); 28972 ipst = ns->netstack_ip; 28973 ASSERT(ipst != NULL); 28974 28975 if (ipst->ips_ip_cgtp_filter_ops != NULL) 28976 ret = 1; 28977 else 28978 ret = 0; 28979 28980 netstack_rele(ns); 28981 return (ret); 28982 } 28983 28984 static int 28985 ip_squeue_switch(int val) 28986 { 28987 int rval = SQ_FILL; 28988 28989 switch (val) { 28990 case IP_SQUEUE_ENTER_NODRAIN: 28991 rval = SQ_NODRAIN; 28992 break; 28993 case IP_SQUEUE_ENTER: 28994 rval = SQ_PROCESS; 28995 break; 28996 default: 28997 break; 28998 } 28999 return (rval); 29000 } 29001 29002 /* ARGSUSED */ 29003 static int 29004 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29005 caddr_t addr, cred_t *cr) 29006 { 29007 int *v = (int *)addr; 29008 long new_value; 29009 29010 if (secpolicy_net_config(cr, B_FALSE) != 0) 29011 return (EPERM); 29012 29013 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29014 return (EINVAL); 29015 29016 ip_squeue_flag = ip_squeue_switch(new_value); 29017 *v = new_value; 29018 return (0); 29019 } 29020 29021 /* 29022 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29023 * ip_debug. 29024 */ 29025 /* ARGSUSED */ 29026 static int 29027 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29028 caddr_t addr, cred_t *cr) 29029 { 29030 int *v = (int *)addr; 29031 long new_value; 29032 29033 if (secpolicy_net_config(cr, B_FALSE) != 0) 29034 return (EPERM); 29035 29036 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29037 return (EINVAL); 29038 29039 *v = new_value; 29040 return (0); 29041 } 29042 29043 static void * 29044 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29045 { 29046 kstat_t *ksp; 29047 29048 ip_stat_t template = { 29049 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29050 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29051 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29052 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29053 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29054 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29055 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29056 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29057 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29058 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29059 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29060 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29061 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29062 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29063 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29064 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29065 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29066 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29067 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29068 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29069 { "ip_opt", KSTAT_DATA_UINT64 }, 29070 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29071 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29072 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29073 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29074 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29075 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29076 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29077 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29078 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29079 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29080 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29081 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29082 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29083 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29084 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29085 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29086 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29087 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29088 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29089 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29090 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29091 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29092 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29093 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29094 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29095 }; 29096 29097 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29098 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29099 KSTAT_FLAG_VIRTUAL, stackid); 29100 29101 if (ksp == NULL) 29102 return (NULL); 29103 29104 bcopy(&template, ip_statisticsp, sizeof (template)); 29105 ksp->ks_data = (void *)ip_statisticsp; 29106 ksp->ks_private = (void *)(uintptr_t)stackid; 29107 29108 kstat_install(ksp); 29109 return (ksp); 29110 } 29111 29112 static void 29113 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29114 { 29115 if (ksp != NULL) { 29116 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29117 kstat_delete_netstack(ksp, stackid); 29118 } 29119 } 29120 29121 static void * 29122 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29123 { 29124 kstat_t *ksp; 29125 29126 ip_named_kstat_t template = { 29127 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29128 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29129 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29130 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29131 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29132 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29133 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29134 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29135 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29136 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29137 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29138 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29139 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29140 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29141 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29142 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29143 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29144 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29145 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29146 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29147 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29148 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29149 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29150 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29151 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29152 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29153 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29154 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29155 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29156 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29157 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29158 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29159 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29160 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29161 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29162 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29163 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29164 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29165 }; 29166 29167 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29168 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29169 if (ksp == NULL || ksp->ks_data == NULL) 29170 return (NULL); 29171 29172 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29173 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29174 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29175 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29176 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29177 29178 template.netToMediaEntrySize.value.i32 = 29179 sizeof (mib2_ipNetToMediaEntry_t); 29180 29181 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29182 29183 bcopy(&template, ksp->ks_data, sizeof (template)); 29184 ksp->ks_update = ip_kstat_update; 29185 ksp->ks_private = (void *)(uintptr_t)stackid; 29186 29187 kstat_install(ksp); 29188 return (ksp); 29189 } 29190 29191 static void 29192 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29193 { 29194 if (ksp != NULL) { 29195 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29196 kstat_delete_netstack(ksp, stackid); 29197 } 29198 } 29199 29200 static int 29201 ip_kstat_update(kstat_t *kp, int rw) 29202 { 29203 ip_named_kstat_t *ipkp; 29204 mib2_ipIfStatsEntry_t ipmib; 29205 ill_walk_context_t ctx; 29206 ill_t *ill; 29207 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29208 netstack_t *ns; 29209 ip_stack_t *ipst; 29210 29211 if (kp == NULL || kp->ks_data == NULL) 29212 return (EIO); 29213 29214 if (rw == KSTAT_WRITE) 29215 return (EACCES); 29216 29217 ns = netstack_find_by_stackid(stackid); 29218 if (ns == NULL) 29219 return (-1); 29220 ipst = ns->netstack_ip; 29221 if (ipst == NULL) { 29222 netstack_rele(ns); 29223 return (-1); 29224 } 29225 ipkp = (ip_named_kstat_t *)kp->ks_data; 29226 29227 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29228 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29229 ill = ILL_START_WALK_V4(&ctx, ipst); 29230 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29231 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29232 rw_exit(&ipst->ips_ill_g_lock); 29233 29234 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29235 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29236 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29237 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29238 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29239 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29240 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29241 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29242 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29243 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29244 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29245 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29246 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29247 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29248 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29249 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29250 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29251 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29252 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29253 29254 ipkp->routingDiscards.value.ui32 = 0; 29255 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29256 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29257 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29258 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29259 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29260 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29261 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29262 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29263 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29264 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29265 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29266 29267 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29268 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29269 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29270 29271 netstack_rele(ns); 29272 29273 return (0); 29274 } 29275 29276 static void * 29277 icmp_kstat_init(netstackid_t stackid) 29278 { 29279 kstat_t *ksp; 29280 29281 icmp_named_kstat_t template = { 29282 { "inMsgs", KSTAT_DATA_UINT32 }, 29283 { "inErrors", KSTAT_DATA_UINT32 }, 29284 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29285 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29286 { "inParmProbs", KSTAT_DATA_UINT32 }, 29287 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29288 { "inRedirects", KSTAT_DATA_UINT32 }, 29289 { "inEchos", KSTAT_DATA_UINT32 }, 29290 { "inEchoReps", KSTAT_DATA_UINT32 }, 29291 { "inTimestamps", KSTAT_DATA_UINT32 }, 29292 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29293 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29294 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29295 { "outMsgs", KSTAT_DATA_UINT32 }, 29296 { "outErrors", KSTAT_DATA_UINT32 }, 29297 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29298 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29299 { "outParmProbs", KSTAT_DATA_UINT32 }, 29300 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29301 { "outRedirects", KSTAT_DATA_UINT32 }, 29302 { "outEchos", KSTAT_DATA_UINT32 }, 29303 { "outEchoReps", KSTAT_DATA_UINT32 }, 29304 { "outTimestamps", KSTAT_DATA_UINT32 }, 29305 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29306 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29307 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29308 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29309 { "inUnknowns", KSTAT_DATA_UINT32 }, 29310 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29311 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29312 { "outDrops", KSTAT_DATA_UINT32 }, 29313 { "inOverFlows", KSTAT_DATA_UINT32 }, 29314 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29315 }; 29316 29317 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29318 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29319 if (ksp == NULL || ksp->ks_data == NULL) 29320 return (NULL); 29321 29322 bcopy(&template, ksp->ks_data, sizeof (template)); 29323 29324 ksp->ks_update = icmp_kstat_update; 29325 ksp->ks_private = (void *)(uintptr_t)stackid; 29326 29327 kstat_install(ksp); 29328 return (ksp); 29329 } 29330 29331 static void 29332 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29333 { 29334 if (ksp != NULL) { 29335 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29336 kstat_delete_netstack(ksp, stackid); 29337 } 29338 } 29339 29340 static int 29341 icmp_kstat_update(kstat_t *kp, int rw) 29342 { 29343 icmp_named_kstat_t *icmpkp; 29344 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29345 netstack_t *ns; 29346 ip_stack_t *ipst; 29347 29348 if ((kp == NULL) || (kp->ks_data == NULL)) 29349 return (EIO); 29350 29351 if (rw == KSTAT_WRITE) 29352 return (EACCES); 29353 29354 ns = netstack_find_by_stackid(stackid); 29355 if (ns == NULL) 29356 return (-1); 29357 ipst = ns->netstack_ip; 29358 if (ipst == NULL) { 29359 netstack_rele(ns); 29360 return (-1); 29361 } 29362 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29363 29364 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29365 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29366 icmpkp->inDestUnreachs.value.ui32 = 29367 ipst->ips_icmp_mib.icmpInDestUnreachs; 29368 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29369 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29370 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29371 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29372 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29373 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29374 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29375 icmpkp->inTimestampReps.value.ui32 = 29376 ipst->ips_icmp_mib.icmpInTimestampReps; 29377 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29378 icmpkp->inAddrMaskReps.value.ui32 = 29379 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29380 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29381 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29382 icmpkp->outDestUnreachs.value.ui32 = 29383 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29384 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29385 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29386 icmpkp->outSrcQuenchs.value.ui32 = 29387 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29388 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29389 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29390 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29391 icmpkp->outTimestamps.value.ui32 = 29392 ipst->ips_icmp_mib.icmpOutTimestamps; 29393 icmpkp->outTimestampReps.value.ui32 = 29394 ipst->ips_icmp_mib.icmpOutTimestampReps; 29395 icmpkp->outAddrMasks.value.ui32 = 29396 ipst->ips_icmp_mib.icmpOutAddrMasks; 29397 icmpkp->outAddrMaskReps.value.ui32 = 29398 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29399 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29400 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29401 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29402 icmpkp->outFragNeeded.value.ui32 = 29403 ipst->ips_icmp_mib.icmpOutFragNeeded; 29404 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29405 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29406 icmpkp->inBadRedirects.value.ui32 = 29407 ipst->ips_icmp_mib.icmpInBadRedirects; 29408 29409 netstack_rele(ns); 29410 return (0); 29411 } 29412 29413 /* 29414 * This is the fanout function for raw socket opened for SCTP. Note 29415 * that it is called after SCTP checks that there is no socket which 29416 * wants a packet. Then before SCTP handles this out of the blue packet, 29417 * this function is called to see if there is any raw socket for SCTP. 29418 * If there is and it is bound to the correct address, the packet will 29419 * be sent to that socket. Note that only one raw socket can be bound to 29420 * a port. This is assured in ipcl_sctp_hash_insert(); 29421 */ 29422 void 29423 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29424 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29425 zoneid_t zoneid) 29426 { 29427 conn_t *connp; 29428 queue_t *rq; 29429 mblk_t *first_mp; 29430 boolean_t secure; 29431 ip6_t *ip6h; 29432 ip_stack_t *ipst = recv_ill->ill_ipst; 29433 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29434 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29435 boolean_t sctp_csum_err = B_FALSE; 29436 29437 if (flags & IP_FF_SCTP_CSUM_ERR) { 29438 sctp_csum_err = B_TRUE; 29439 flags &= ~IP_FF_SCTP_CSUM_ERR; 29440 } 29441 29442 first_mp = mp; 29443 if (mctl_present) { 29444 mp = first_mp->b_cont; 29445 secure = ipsec_in_is_secure(first_mp); 29446 ASSERT(mp != NULL); 29447 } else { 29448 secure = B_FALSE; 29449 } 29450 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29451 29452 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29453 if (connp == NULL) { 29454 /* 29455 * Although raw sctp is not summed, OOB chunks must be. 29456 * Drop the packet here if the sctp checksum failed. 29457 */ 29458 if (sctp_csum_err) { 29459 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29460 freemsg(first_mp); 29461 return; 29462 } 29463 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29464 return; 29465 } 29466 rq = connp->conn_rq; 29467 if (!canputnext(rq)) { 29468 CONN_DEC_REF(connp); 29469 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29470 freemsg(first_mp); 29471 return; 29472 } 29473 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29474 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29475 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29476 (isv4 ? ipha : NULL), ip6h, mctl_present); 29477 if (first_mp == NULL) { 29478 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29479 CONN_DEC_REF(connp); 29480 return; 29481 } 29482 } 29483 /* 29484 * We probably should not send M_CTL message up to 29485 * raw socket. 29486 */ 29487 if (mctl_present) 29488 freeb(first_mp); 29489 29490 /* Initiate IPPF processing here if needed. */ 29491 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29492 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29493 ip_process(IPP_LOCAL_IN, &mp, 29494 recv_ill->ill_phyint->phyint_ifindex); 29495 if (mp == NULL) { 29496 CONN_DEC_REF(connp); 29497 return; 29498 } 29499 } 29500 29501 if (connp->conn_recvif || connp->conn_recvslla || 29502 ((connp->conn_ip_recvpktinfo || 29503 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29504 (flags & IP_FF_IPINFO))) { 29505 int in_flags = 0; 29506 29507 /* 29508 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29509 * IPF_RECVIF. 29510 */ 29511 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29512 in_flags = IPF_RECVIF; 29513 } 29514 if (connp->conn_recvslla) { 29515 in_flags |= IPF_RECVSLLA; 29516 } 29517 if (isv4) { 29518 mp = ip_add_info(mp, recv_ill, in_flags, 29519 IPCL_ZONEID(connp), ipst); 29520 } else { 29521 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29522 if (mp == NULL) { 29523 BUMP_MIB(recv_ill->ill_ip_mib, 29524 ipIfStatsInDiscards); 29525 CONN_DEC_REF(connp); 29526 return; 29527 } 29528 } 29529 } 29530 29531 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29532 /* 29533 * We are sending the IPSEC_IN message also up. Refer 29534 * to comments above this function. 29535 * This is the SOCK_RAW, IPPROTO_SCTP case. 29536 */ 29537 (connp->conn_recv)(connp, mp, NULL); 29538 CONN_DEC_REF(connp); 29539 } 29540 29541 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29542 { \ 29543 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29544 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29545 } 29546 /* 29547 * This function should be called only if all packet processing 29548 * including fragmentation is complete. Callers of this function 29549 * must set mp->b_prev to one of these values: 29550 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29551 * prior to handing over the mp as first argument to this function. 29552 * 29553 * If the ire passed by caller is incomplete, this function 29554 * queues the packet and if necessary, sends ARP request and bails. 29555 * If the ire passed is fully resolved, we simply prepend 29556 * the link-layer header to the packet, do ipsec hw acceleration 29557 * work if necessary, and send the packet out on the wire. 29558 * 29559 * NOTE: IPsec will only call this function with fully resolved 29560 * ires if hw acceleration is involved. 29561 * TODO list : 29562 * a Handle M_MULTIDATA so that 29563 * tcp_multisend->tcp_multisend_data can 29564 * call ip_xmit_v4 directly 29565 * b Handle post-ARP work for fragments so that 29566 * ip_wput_frag can call this function. 29567 */ 29568 ipxmit_state_t 29569 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, 29570 boolean_t flow_ctl_enabled, conn_t *connp) 29571 { 29572 nce_t *arpce; 29573 ipha_t *ipha; 29574 queue_t *q; 29575 int ill_index; 29576 mblk_t *nxt_mp, *first_mp; 29577 boolean_t xmit_drop = B_FALSE; 29578 ip_proc_t proc; 29579 ill_t *out_ill; 29580 int pkt_len; 29581 29582 arpce = ire->ire_nce; 29583 ASSERT(arpce != NULL); 29584 29585 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29586 29587 mutex_enter(&arpce->nce_lock); 29588 switch (arpce->nce_state) { 29589 case ND_REACHABLE: 29590 /* If there are other queued packets, queue this packet */ 29591 if (arpce->nce_qd_mp != NULL) { 29592 if (mp != NULL) 29593 nce_queue_mp_common(arpce, mp, B_FALSE); 29594 mp = arpce->nce_qd_mp; 29595 } 29596 arpce->nce_qd_mp = NULL; 29597 mutex_exit(&arpce->nce_lock); 29598 29599 /* 29600 * Flush the queue. In the common case, where the 29601 * ARP is already resolved, it will go through the 29602 * while loop only once. 29603 */ 29604 while (mp != NULL) { 29605 29606 nxt_mp = mp->b_next; 29607 mp->b_next = NULL; 29608 ASSERT(mp->b_datap->db_type != M_CTL); 29609 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29610 /* 29611 * This info is needed for IPQOS to do COS marking 29612 * in ip_wput_attach_llhdr->ip_process. 29613 */ 29614 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29615 mp->b_prev = NULL; 29616 29617 /* set up ill index for outbound qos processing */ 29618 out_ill = ire_to_ill(ire); 29619 ill_index = out_ill->ill_phyint->phyint_ifindex; 29620 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29621 ill_index, &ipha); 29622 if (first_mp == NULL) { 29623 xmit_drop = B_TRUE; 29624 BUMP_MIB(out_ill->ill_ip_mib, 29625 ipIfStatsOutDiscards); 29626 goto next_mp; 29627 } 29628 29629 /* non-ipsec hw accel case */ 29630 if (io == NULL || !io->ipsec_out_accelerated) { 29631 /* send it */ 29632 q = ire->ire_stq; 29633 if (proc == IPP_FWD_OUT) { 29634 UPDATE_IB_PKT_COUNT(ire); 29635 } else { 29636 UPDATE_OB_PKT_COUNT(ire); 29637 } 29638 ire->ire_last_used_time = lbolt; 29639 29640 if (flow_ctl_enabled || canputnext(q)) { 29641 if (proc == IPP_FWD_OUT) { 29642 29643 BUMP_MIB(out_ill->ill_ip_mib, 29644 ipIfStatsHCOutForwDatagrams); 29645 29646 } 29647 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29648 pkt_len); 29649 29650 DTRACE_IP7(send, mblk_t *, first_mp, 29651 conn_t *, NULL, void_ip_t *, ipha, 29652 __dtrace_ipsr_ill_t *, out_ill, 29653 ipha_t *, ipha, ip6_t *, NULL, int, 29654 0); 29655 29656 ILL_SEND_TX(out_ill, 29657 ire, connp, first_mp, 0, connp); 29658 } else { 29659 BUMP_MIB(out_ill->ill_ip_mib, 29660 ipIfStatsOutDiscards); 29661 xmit_drop = B_TRUE; 29662 freemsg(first_mp); 29663 } 29664 } else { 29665 /* 29666 * Safety Pup says: make sure this 29667 * is going to the right interface! 29668 */ 29669 ill_t *ill1 = 29670 (ill_t *)ire->ire_stq->q_ptr; 29671 int ifindex = 29672 ill1->ill_phyint->phyint_ifindex; 29673 if (ifindex != 29674 io->ipsec_out_capab_ill_index) { 29675 xmit_drop = B_TRUE; 29676 freemsg(mp); 29677 } else { 29678 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29679 pkt_len); 29680 29681 DTRACE_IP7(send, mblk_t *, first_mp, 29682 conn_t *, NULL, void_ip_t *, ipha, 29683 __dtrace_ipsr_ill_t *, ill1, 29684 ipha_t *, ipha, ip6_t *, NULL, 29685 int, 0); 29686 29687 ipsec_hw_putnext(ire->ire_stq, mp); 29688 } 29689 } 29690 next_mp: 29691 mp = nxt_mp; 29692 } /* while (mp != NULL) */ 29693 if (xmit_drop) 29694 return (SEND_FAILED); 29695 else 29696 return (SEND_PASSED); 29697 29698 case ND_INITIAL: 29699 case ND_INCOMPLETE: 29700 29701 /* 29702 * While we do send off packets to dests that 29703 * use fully-resolved CGTP routes, we do not 29704 * handle unresolved CGTP routes. 29705 */ 29706 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29707 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29708 29709 if (mp != NULL) { 29710 /* queue the packet */ 29711 nce_queue_mp_common(arpce, mp, B_FALSE); 29712 } 29713 29714 if (arpce->nce_state == ND_INCOMPLETE) { 29715 mutex_exit(&arpce->nce_lock); 29716 DTRACE_PROBE3(ip__xmit__incomplete, 29717 (ire_t *), ire, (mblk_t *), mp, 29718 (ipsec_out_t *), io); 29719 return (LOOKUP_IN_PROGRESS); 29720 } 29721 29722 arpce->nce_state = ND_INCOMPLETE; 29723 mutex_exit(&arpce->nce_lock); 29724 29725 /* 29726 * Note that ire_add() (called from ire_forward()) 29727 * holds a ref on the ire until ARP is completed. 29728 */ 29729 ire_arpresolve(ire); 29730 return (LOOKUP_IN_PROGRESS); 29731 default: 29732 ASSERT(0); 29733 mutex_exit(&arpce->nce_lock); 29734 return (LLHDR_RESLV_FAILED); 29735 } 29736 } 29737 29738 #undef UPDATE_IP_MIB_OB_COUNTERS 29739 29740 /* 29741 * Return B_TRUE if the buffers differ in length or content. 29742 * This is used for comparing extension header buffers. 29743 * Note that an extension header would be declared different 29744 * even if all that changed was the next header value in that header i.e. 29745 * what really changed is the next extension header. 29746 */ 29747 boolean_t 29748 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29749 uint_t blen) 29750 { 29751 if (!b_valid) 29752 blen = 0; 29753 29754 if (alen != blen) 29755 return (B_TRUE); 29756 if (alen == 0) 29757 return (B_FALSE); /* Both zero length */ 29758 return (bcmp(abuf, bbuf, alen)); 29759 } 29760 29761 /* 29762 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29763 * Return B_FALSE if memory allocation fails - don't change any state! 29764 */ 29765 boolean_t 29766 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29767 const void *src, uint_t srclen) 29768 { 29769 void *dst; 29770 29771 if (!src_valid) 29772 srclen = 0; 29773 29774 ASSERT(*dstlenp == 0); 29775 if (src != NULL && srclen != 0) { 29776 dst = mi_alloc(srclen, BPRI_MED); 29777 if (dst == NULL) 29778 return (B_FALSE); 29779 } else { 29780 dst = NULL; 29781 } 29782 if (*dstp != NULL) 29783 mi_free(*dstp); 29784 *dstp = dst; 29785 *dstlenp = dst == NULL ? 0 : srclen; 29786 return (B_TRUE); 29787 } 29788 29789 /* 29790 * Replace what is in *dst, *dstlen with the source. 29791 * Assumes ip_allocbuf has already been called. 29792 */ 29793 void 29794 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29795 const void *src, uint_t srclen) 29796 { 29797 if (!src_valid) 29798 srclen = 0; 29799 29800 ASSERT(*dstlenp == srclen); 29801 if (src != NULL && srclen != 0) 29802 bcopy(src, *dstp, srclen); 29803 } 29804 29805 /* 29806 * Free the storage pointed to by the members of an ip6_pkt_t. 29807 */ 29808 void 29809 ip6_pkt_free(ip6_pkt_t *ipp) 29810 { 29811 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 29812 29813 if (ipp->ipp_fields & IPPF_HOPOPTS) { 29814 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 29815 ipp->ipp_hopopts = NULL; 29816 ipp->ipp_hopoptslen = 0; 29817 } 29818 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 29819 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 29820 ipp->ipp_rtdstopts = NULL; 29821 ipp->ipp_rtdstoptslen = 0; 29822 } 29823 if (ipp->ipp_fields & IPPF_DSTOPTS) { 29824 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 29825 ipp->ipp_dstopts = NULL; 29826 ipp->ipp_dstoptslen = 0; 29827 } 29828 if (ipp->ipp_fields & IPPF_RTHDR) { 29829 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 29830 ipp->ipp_rthdr = NULL; 29831 ipp->ipp_rthdrlen = 0; 29832 } 29833 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 29834 IPPF_RTHDR); 29835 } 29836 29837 zoneid_t 29838 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_stack_t *ipst, 29839 zoneid_t lookup_zoneid) 29840 { 29841 ire_t *ire; 29842 int ire_flags = MATCH_IRE_TYPE; 29843 zoneid_t zoneid = ALL_ZONES; 29844 29845 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 29846 return (ALL_ZONES); 29847 29848 if (lookup_zoneid != ALL_ZONES) 29849 ire_flags |= MATCH_IRE_ZONEONLY; 29850 ire = ire_ctable_lookup(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, NULL, 29851 lookup_zoneid, NULL, ire_flags, ipst); 29852 if (ire != NULL) { 29853 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 29854 ire_refrele(ire); 29855 } 29856 return (zoneid); 29857 } 29858 29859 zoneid_t 29860 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 29861 ip_stack_t *ipst, zoneid_t lookup_zoneid) 29862 { 29863 ire_t *ire; 29864 int ire_flags = MATCH_IRE_TYPE; 29865 zoneid_t zoneid = ALL_ZONES; 29866 ipif_t *ipif_arg = NULL; 29867 29868 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 29869 return (ALL_ZONES); 29870 29871 if (IN6_IS_ADDR_LINKLOCAL(addr)) { 29872 ire_flags |= MATCH_IRE_ILL; 29873 ipif_arg = ill->ill_ipif; 29874 } 29875 if (lookup_zoneid != ALL_ZONES) 29876 ire_flags |= MATCH_IRE_ZONEONLY; 29877 ire = ire_ctable_lookup_v6(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, 29878 ipif_arg, lookup_zoneid, NULL, ire_flags, ipst); 29879 if (ire != NULL) { 29880 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 29881 ire_refrele(ire); 29882 } 29883 return (zoneid); 29884 } 29885 29886 /* 29887 * IP obserability hook support functions. 29888 */ 29889 static void 29890 ipobs_init(ip_stack_t *ipst) 29891 { 29892 netid_t id; 29893 29894 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 29895 29896 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 29897 VERIFY(ipst->ips_ip4_observe_pr != NULL); 29898 29899 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 29900 VERIFY(ipst->ips_ip6_observe_pr != NULL); 29901 } 29902 29903 static void 29904 ipobs_fini(ip_stack_t *ipst) 29905 { 29906 29907 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0); 29908 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0); 29909 } 29910 29911 /* 29912 * hook_pkt_observe_t is composed in network byte order so that the 29913 * entire mblk_t chain handed into hook_run can be used as-is. 29914 * The caveat is that use of the fields, such as the zone fields, 29915 * requires conversion into host byte order first. 29916 */ 29917 void 29918 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 29919 const ill_t *ill, ip_stack_t *ipst) 29920 { 29921 hook_pkt_observe_t *hdr; 29922 uint64_t grifindex; 29923 mblk_t *imp; 29924 29925 imp = allocb(sizeof (*hdr), BPRI_HI); 29926 if (imp == NULL) 29927 return; 29928 29929 hdr = (hook_pkt_observe_t *)imp->b_rptr; 29930 /* 29931 * b_wptr is set to make the apparent size of the data in the mblk_t 29932 * to exclude the pointers at the end of hook_pkt_observer_t. 29933 */ 29934 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 29935 imp->b_cont = mp; 29936 29937 ASSERT(DB_TYPE(mp) == M_DATA); 29938 29939 if (IS_UNDER_IPMP(ill)) 29940 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 29941 else 29942 grifindex = 0; 29943 29944 hdr->hpo_version = 1; 29945 hdr->hpo_htype = htype; 29946 hdr->hpo_pktlen = htons((ushort_t)msgdsize(mp)); 29947 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 29948 hdr->hpo_grifindex = htonl(grifindex); 29949 hdr->hpo_zsrc = htonl(zsrc); 29950 hdr->hpo_zdst = htonl(zdst); 29951 hdr->hpo_pkt = imp; 29952 hdr->hpo_ctx = ipst->ips_netstack; 29953 29954 if (ill->ill_isv6) { 29955 hdr->hpo_family = AF_INET6; 29956 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 29957 ipst->ips_ipv6observing, (hook_data_t)hdr); 29958 } else { 29959 hdr->hpo_family = AF_INET; 29960 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 29961 ipst->ips_ipv4observing, (hook_data_t)hdr); 29962 } 29963 29964 imp->b_cont = NULL; 29965 freemsg(imp); 29966 } 29967