1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/debug.h> 44 #include <sys/kobj.h> 45 #include <sys/modctl.h> 46 #include <sys/atomic.h> 47 #include <sys/policy.h> 48 #include <sys/priv.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/tun.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <inet/rawip_impl.h> 121 #include <inet/rts_impl.h> 122 #include <sys/sunddi.h> 123 124 #include <sys/tsol/label.h> 125 #include <sys/tsol/tnet.h> 126 127 #include <rpc/pmap_prot.h> 128 129 /* 130 * Values for squeue switch: 131 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 132 * IP_SQUEUE_ENTER: squeue_enter 133 * IP_SQUEUE_FILL: squeue_fill 134 */ 135 int ip_squeue_enter = 2; /* Setable in /etc/system */ 136 137 squeue_func_t ip_input_proc; 138 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 139 140 /* 141 * Setable in /etc/system 142 */ 143 int ip_poll_normal_ms = 100; 144 int ip_poll_normal_ticks = 0; 145 int ip_modclose_ackwait_ms = 3000; 146 147 /* 148 * It would be nice to have these present only in DEBUG systems, but the 149 * current design of the global symbol checking logic requires them to be 150 * unconditionally present. 151 */ 152 uint_t ip_thread_data; /* TSD key for debug support */ 153 krwlock_t ip_thread_rwlock; 154 list_t ip_thread_list; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 listptr_t ird_route; /* ipRouteEntryTable */ 174 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 175 listptr_t ird_attrs; /* ipRouteAttributeTable */ 176 } iproutedata_t; 177 178 /* 179 * Cluster specific hooks. These should be NULL when booted as a non-cluster 180 */ 181 182 /* 183 * Hook functions to enable cluster networking 184 * On non-clustered systems these vectors must always be NULL. 185 * 186 * Hook function to Check ip specified ip address is a shared ip address 187 * in the cluster 188 * 189 */ 190 int (*cl_inet_isclusterwide)(uint8_t protocol, 191 sa_family_t addr_family, uint8_t *laddrp) = NULL; 192 193 /* 194 * Hook function to generate cluster wide ip fragment identifier 195 */ 196 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 197 uint8_t *laddrp, uint8_t *faddrp) = NULL; 198 199 /* 200 * Synchronization notes: 201 * 202 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 203 * MT level protection given by STREAMS. IP uses a combination of its own 204 * internal serialization mechanism and standard Solaris locking techniques. 205 * The internal serialization is per phyint (no IPMP) or per IPMP group. 206 * This is used to serialize plumbing operations, IPMP operations, certain 207 * multicast operations, most set ioctls, igmp/mld timers etc. 208 * 209 * Plumbing is a long sequence of operations involving message 210 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 211 * involved in plumbing operations. A natural model is to serialize these 212 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 213 * parallel without any interference. But various set ioctls on hme0 are best 214 * serialized. However if the system uses IPMP, the operations are easier if 215 * they are serialized on a per IPMP group basis since IPMP operations 216 * happen across ill's of a group. Thus the lowest common denominator is to 217 * serialize most set ioctls, multicast join/leave operations, IPMP operations 218 * igmp/mld timer operations, and processing of DLPI control messages received 219 * from drivers on a per IPMP group basis. If the system does not employ 220 * IPMP the serialization is on a per phyint basis. This serialization is 221 * provided by the ipsq_t and primitives operating on this. Details can 222 * be found in ip_if.c above the core primitives operating on ipsq_t. 223 * 224 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 225 * Simiarly lookup of an ire by a thread also returns a refheld ire. 226 * In addition ipif's and ill's referenced by the ire are also indirectly 227 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 228 * the ipif's address or netmask change as long as an ipif is refheld 229 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 230 * address of an ipif has to go through the ipsq_t. This ensures that only 231 * 1 such exclusive operation proceeds at any time on the ipif. It then 232 * deletes all ires associated with this ipif, and waits for all refcnts 233 * associated with this ipif to come down to zero. The address is changed 234 * only after the ipif has been quiesced. Then the ipif is brought up again. 235 * More details are described above the comment in ip_sioctl_flags. 236 * 237 * Packet processing is based mostly on IREs and are fully multi-threaded 238 * using standard Solaris MT techniques. 239 * 240 * There are explicit locks in IP to handle: 241 * - The ip_g_head list maintained by mi_open_link() and friends. 242 * 243 * - The reassembly data structures (one lock per hash bucket) 244 * 245 * - conn_lock is meant to protect conn_t fields. The fields actually 246 * protected by conn_lock are documented in the conn_t definition. 247 * 248 * - ire_lock to protect some of the fields of the ire, IRE tables 249 * (one lock per hash bucket). Refer to ip_ire.c for details. 250 * 251 * - ndp_g_lock and nce_lock for protecting NCEs. 252 * 253 * - ill_lock protects fields of the ill and ipif. Details in ip.h 254 * 255 * - ill_g_lock: This is a global reader/writer lock. Protects the following 256 * * The AVL tree based global multi list of all ills. 257 * * The linked list of all ipifs of an ill 258 * * The <ill-ipsq> mapping 259 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 260 * * The illgroup list threaded by ill_group_next. 261 * * <ill-phyint> association 262 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 263 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 264 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 265 * will all have to hold the ill_g_lock as writer for the actual duration 266 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 267 * may be found in the IPMP section. 268 * 269 * - ill_lock: This is a per ill mutex. 270 * It protects some members of the ill and is documented below. 271 * It also protects the <ill-ipsq> mapping 272 * It also protects the illgroup list threaded by ill_group_next. 273 * It also protects the <ill-phyint> assoc. 274 * It also protects the list of ipifs hanging off the ill. 275 * 276 * - ipsq_lock: This is a per ipsq_t mutex lock. 277 * This protects all the other members of the ipsq struct except 278 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 279 * 280 * - illgrp_lock: This is a per ill_group mutex lock. 281 * The only thing it protects is the illgrp_ill_schednext member of ill_group 282 * which dictates which is the next ill in an ill_group that is to be chosen 283 * for sending outgoing packets, through creation of an IRE_CACHE that 284 * references this ill. 285 * 286 * - phyint_lock: This is a per phyint mutex lock. Protects just the 287 * phyint_flags 288 * 289 * - ip_g_nd_lock: This is a global reader/writer lock. 290 * Any call to nd_load to load a new parameter to the ND table must hold the 291 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 292 * as reader. 293 * 294 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 295 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 296 * uniqueness check also done atomically. 297 * 298 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 299 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 300 * as a writer when adding or deleting elements from these lists, and 301 * as a reader when walking these lists to send a SADB update to the 302 * IPsec capable ills. 303 * 304 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 305 * group list linked by ill_usesrc_grp_next. It also protects the 306 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 307 * group is being added or deleted. This lock is taken as a reader when 308 * walking the list/group(eg: to get the number of members in a usesrc group). 309 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 310 * field is changing state i.e from NULL to non-NULL or vice-versa. For 311 * example, it is not necessary to take this lock in the initial portion 312 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 313 * ip_sioctl_flags since the these operations are executed exclusively and 314 * that ensures that the "usesrc group state" cannot change. The "usesrc 315 * group state" change can happen only in the latter part of 316 * ip_sioctl_slifusesrc and in ill_delete. 317 * 318 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 319 * 320 * To change the <ill-phyint> association, the ill_g_lock must be held 321 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 322 * must be held. 323 * 324 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 325 * and the ill_lock of the ill in question must be held. 326 * 327 * To change the <ill-illgroup> association the ill_g_lock must be held as 328 * writer and the ill_lock of the ill in question must be held. 329 * 330 * To add or delete an ipif from the list of ipifs hanging off the ill, 331 * ill_g_lock (writer) and ill_lock must be held and the thread must be 332 * a writer on the associated ipsq,. 333 * 334 * To add or delete an ill to the system, the ill_g_lock must be held as 335 * writer and the thread must be a writer on the associated ipsq. 336 * 337 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 338 * must be a writer on the associated ipsq. 339 * 340 * Lock hierarchy 341 * 342 * Some lock hierarchy scenarios are listed below. 343 * 344 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 345 * ill_g_lock -> illgrp_lock -> ill_lock 346 * ill_g_lock -> ill_lock(s) -> phyint_lock 347 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 348 * ill_g_lock -> ip_addr_avail_lock 349 * conn_lock -> irb_lock -> ill_lock -> ire_lock 350 * ill_g_lock -> ip_g_nd_lock 351 * 352 * When more than 1 ill lock is needed to be held, all ill lock addresses 353 * are sorted on address and locked starting from highest addressed lock 354 * downward. 355 * 356 * IPsec scenarios 357 * 358 * ipsa_lock -> ill_g_lock -> ill_lock 359 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 360 * ipsec_capab_ills_lock -> ipsa_lock 361 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 362 * 363 * Trusted Solaris scenarios 364 * 365 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 366 * igsa_lock -> gcdb_lock 367 * gcgrp_rwlock -> ire_lock 368 * gcgrp_rwlock -> gcdb_lock 369 * 370 * 371 * Routing/forwarding table locking notes: 372 * 373 * Lock acquisition order: Radix tree lock, irb_lock. 374 * Requirements: 375 * i. Walker must not hold any locks during the walker callback. 376 * ii Walker must not see a truncated tree during the walk because of any node 377 * deletion. 378 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 379 * in many places in the code to walk the irb list. Thus even if all the 380 * ires in a bucket have been deleted, we still can't free the radix node 381 * until the ires have actually been inactive'd (freed). 382 * 383 * Tree traversal - Need to hold the global tree lock in read mode. 384 * Before dropping the global tree lock, need to either increment the ire_refcnt 385 * to ensure that the radix node can't be deleted. 386 * 387 * Tree add - Need to hold the global tree lock in write mode to add a 388 * radix node. To prevent the node from being deleted, increment the 389 * irb_refcnt, after the node is added to the tree. The ire itself is 390 * added later while holding the irb_lock, but not the tree lock. 391 * 392 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 393 * All associated ires must be inactive (i.e. freed), and irb_refcnt 394 * must be zero. 395 * 396 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 397 * global tree lock (read mode) for traversal. 398 * 399 * IPsec notes : 400 * 401 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 402 * in front of the actual packet. For outbound datagrams, the M_CTL 403 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 404 * information used by the IPsec code for applying the right level of 405 * protection. The information initialized by IP in the ipsec_out_t 406 * is determined by the per-socket policy or global policy in the system. 407 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 408 * ipsec_info.h) which starts out with nothing in it. It gets filled 409 * with the right information if it goes through the AH/ESP code, which 410 * happens if the incoming packet is secure. The information initialized 411 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 412 * the policy requirements needed by per-socket policy or global policy 413 * is met or not. 414 * 415 * If there is both per-socket policy (set using setsockopt) and there 416 * is also global policy match for the 5 tuples of the socket, 417 * ipsec_override_policy() makes the decision of which one to use. 418 * 419 * For fully connected sockets i.e dst, src [addr, port] is known, 420 * conn_policy_cached is set indicating that policy has been cached. 421 * conn_in_enforce_policy may or may not be set depending on whether 422 * there is a global policy match or per-socket policy match. 423 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 424 * Once the right policy is set on the conn_t, policy cannot change for 425 * this socket. This makes life simpler for TCP (UDP ?) where 426 * re-transmissions go out with the same policy. For symmetry, policy 427 * is cached for fully connected UDP sockets also. Thus if policy is cached, 428 * it also implies that policy is latched i.e policy cannot change 429 * on these sockets. As we have the right policy on the conn, we don't 430 * have to lookup global policy for every outbound and inbound datagram 431 * and thus serving as an optimization. Note that a global policy change 432 * does not affect fully connected sockets if they have policy. If fully 433 * connected sockets did not have any policy associated with it, global 434 * policy change may affect them. 435 * 436 * IP Flow control notes: 437 * 438 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 439 * cannot be sent down to the driver by IP, because of a canput failure, IP 440 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 441 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 442 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 443 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 444 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 445 * the queued messages, and removes the conn from the drain list, if all 446 * messages were drained. It also qenables the next conn in the drain list to 447 * continue the drain process. 448 * 449 * In reality the drain list is not a single list, but a configurable number 450 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 451 * list. If the ip_wsrv of the next qenabled conn does not run, because the 452 * stream closes, ip_close takes responsibility to qenable the next conn in 453 * the drain list. The directly called ip_wput path always does a putq, if 454 * it cannot putnext. Thus synchronization problems are handled between 455 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 456 * functions that manipulate this drain list. Furthermore conn_drain_insert 457 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 458 * running on a queue at any time. conn_drain_tail can be simultaneously called 459 * from both ip_wsrv and ip_close. 460 * 461 * IPQOS notes: 462 * 463 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 464 * and IPQoS modules. IPPF includes hooks in IP at different control points 465 * (callout positions) which direct packets to IPQoS modules for policy 466 * processing. Policies, if present, are global. 467 * 468 * The callout positions are located in the following paths: 469 * o local_in (packets destined for this host) 470 * o local_out (packets orginating from this host ) 471 * o fwd_in (packets forwarded by this m/c - inbound) 472 * o fwd_out (packets forwarded by this m/c - outbound) 473 * Hooks at these callout points can be enabled/disabled using the ndd variable 474 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 475 * By default all the callout positions are enabled. 476 * 477 * Outbound (local_out) 478 * Hooks are placed in ip_wput_ire and ipsec_out_process. 479 * 480 * Inbound (local_in) 481 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 482 * TCP and UDP fanout routines. 483 * 484 * Forwarding (in and out) 485 * Hooks are placed in ip_rput_forward. 486 * 487 * IP Policy Framework processing (IPPF processing) 488 * Policy processing for a packet is initiated by ip_process, which ascertains 489 * that the classifier (ipgpc) is loaded and configured, failing which the 490 * packet resumes normal processing in IP. If the clasifier is present, the 491 * packet is acted upon by one or more IPQoS modules (action instances), per 492 * filters configured in ipgpc and resumes normal IP processing thereafter. 493 * An action instance can drop a packet in course of its processing. 494 * 495 * A boolean variable, ip_policy, is used in all the fanout routines that can 496 * invoke ip_process for a packet. This variable indicates if the packet should 497 * to be sent for policy processing. The variable is set to B_TRUE by default, 498 * i.e. when the routines are invoked in the normal ip procesing path for a 499 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 500 * ip_policy is set to B_FALSE for all the routines called in these two 501 * functions because, in the former case, we don't process loopback traffic 502 * currently while in the latter, the packets have already been processed in 503 * icmp_inbound. 504 * 505 * Zones notes: 506 * 507 * The partitioning rules for networking are as follows: 508 * 1) Packets coming from a zone must have a source address belonging to that 509 * zone. 510 * 2) Packets coming from a zone can only be sent on a physical interface on 511 * which the zone has an IP address. 512 * 3) Between two zones on the same machine, packet delivery is only allowed if 513 * there's a matching route for the destination and zone in the forwarding 514 * table. 515 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 516 * different zones can bind to the same port with the wildcard address 517 * (INADDR_ANY). 518 * 519 * The granularity of interface partitioning is at the logical interface level. 520 * Therefore, every zone has its own IP addresses, and incoming packets can be 521 * attributed to a zone unambiguously. A logical interface is placed into a zone 522 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 523 * structure. Rule (1) is implemented by modifying the source address selection 524 * algorithm so that the list of eligible addresses is filtered based on the 525 * sending process zone. 526 * 527 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 528 * across all zones, depending on their type. Here is the break-up: 529 * 530 * IRE type Shared/exclusive 531 * -------- ---------------- 532 * IRE_BROADCAST Exclusive 533 * IRE_DEFAULT (default routes) Shared (*) 534 * IRE_LOCAL Exclusive (x) 535 * IRE_LOOPBACK Exclusive 536 * IRE_PREFIX (net routes) Shared (*) 537 * IRE_CACHE Exclusive 538 * IRE_IF_NORESOLVER (interface routes) Exclusive 539 * IRE_IF_RESOLVER (interface routes) Exclusive 540 * IRE_HOST (host routes) Shared (*) 541 * 542 * (*) A zone can only use a default or off-subnet route if the gateway is 543 * directly reachable from the zone, that is, if the gateway's address matches 544 * one of the zone's logical interfaces. 545 * 546 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 547 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 548 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 549 * address of the zone itself (the destination). Since IRE_LOCAL is used 550 * for communication between zones, ip_wput_ire has special logic to set 551 * the right source address when sending using an IRE_LOCAL. 552 * 553 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 554 * ire_cache_lookup restricts loopback using an IRE_LOCAL 555 * between zone to the case when L2 would have conceptually looped the packet 556 * back, i.e. the loopback which is required since neither Ethernet drivers 557 * nor Ethernet hardware loops them back. This is the case when the normal 558 * routes (ignoring IREs with different zoneids) would send out the packet on 559 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 560 * associated. 561 * 562 * Multiple zones can share a common broadcast address; typically all zones 563 * share the 255.255.255.255 address. Incoming as well as locally originated 564 * broadcast packets must be dispatched to all the zones on the broadcast 565 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 566 * since some zones may not be on the 10.16.72/24 network. To handle this, each 567 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 568 * sent to every zone that has an IRE_BROADCAST entry for the destination 569 * address on the input ill, see conn_wantpacket(). 570 * 571 * Applications in different zones can join the same multicast group address. 572 * For IPv4, group memberships are per-logical interface, so they're already 573 * inherently part of a zone. For IPv6, group memberships are per-physical 574 * interface, so we distinguish IPv6 group memberships based on group address, 575 * interface and zoneid. In both cases, received multicast packets are sent to 576 * every zone for which a group membership entry exists. On IPv6 we need to 577 * check that the target zone still has an address on the receiving physical 578 * interface; it could have been removed since the application issued the 579 * IPV6_JOIN_GROUP. 580 */ 581 582 /* 583 * Squeue Fanout flags: 584 * 0: No fanout. 585 * 1: Fanout across all squeues 586 */ 587 boolean_t ip_squeue_fanout = 0; 588 589 /* 590 * Maximum dups allowed per packet. 591 */ 592 uint_t ip_max_frag_dups = 10; 593 594 #define IS_SIMPLE_IPH(ipha) \ 595 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 596 597 /* RFC1122 Conformance */ 598 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 599 600 #define ILL_MAX_NAMELEN LIFNAMSIZ 601 602 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 603 604 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 605 cred_t *credp, boolean_t isv6); 606 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t, 607 ipha_t **); 608 609 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 610 ip_stack_t *); 611 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 612 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 613 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 614 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 615 mblk_t *, int, ip_stack_t *); 616 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 617 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 618 ill_t *, zoneid_t); 619 static void icmp_options_update(ipha_t *); 620 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 621 ip_stack_t *); 622 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 623 zoneid_t zoneid, ip_stack_t *); 624 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 625 static void icmp_redirect(ill_t *, mblk_t *); 626 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 627 ip_stack_t *); 628 629 static void ip_arp_news(queue_t *, mblk_t *); 630 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 631 ip_stack_t *); 632 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 633 char *ip_dot_addr(ipaddr_t, char *); 634 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 635 int ip_close(queue_t *, int); 636 static char *ip_dot_saddr(uchar_t *, char *); 637 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 638 boolean_t, boolean_t, ill_t *, zoneid_t); 639 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 640 boolean_t, boolean_t, zoneid_t); 641 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 642 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 643 static void ip_lrput(queue_t *, mblk_t *); 644 ipaddr_t ip_net_mask(ipaddr_t); 645 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 646 ip_stack_t *); 647 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 648 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 649 char *ip_nv_lookup(nv_t *, int); 650 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 651 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 652 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 653 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 654 ipndp_t *, size_t); 655 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 656 void ip_rput(queue_t *, mblk_t *); 657 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 658 void *dummy_arg); 659 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 660 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 661 ip_stack_t *); 662 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 663 ire_t *, ip_stack_t *); 664 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 665 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 666 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 667 ip_stack_t *); 668 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 669 uint16_t *); 670 int ip_snmp_get(queue_t *, mblk_t *, int); 671 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 672 mib2_ipIfStatsEntry_t *, ip_stack_t *); 673 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 674 ip_stack_t *); 675 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 676 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 677 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 678 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 679 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 680 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 681 ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 683 ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 685 ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 701 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 702 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 703 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 704 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 705 static boolean_t ip_source_route_included(ipha_t *); 706 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 707 708 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 709 zoneid_t, ip_stack_t *); 710 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 711 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 712 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 713 zoneid_t, ip_stack_t *); 714 715 static void conn_drain_init(ip_stack_t *); 716 static void conn_drain_fini(ip_stack_t *); 717 static void conn_drain_tail(conn_t *connp, boolean_t closing); 718 719 static void conn_walk_drain(ip_stack_t *); 720 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 721 zoneid_t); 722 723 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 724 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 725 static void ip_stack_fini(netstackid_t stackid, void *arg); 726 727 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 728 zoneid_t); 729 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 730 void *dummy_arg); 731 732 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 733 734 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 735 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 736 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 737 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 738 739 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 740 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 741 caddr_t, cred_t *); 742 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 743 caddr_t cp, cred_t *cr); 744 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 745 cred_t *); 746 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 747 caddr_t cp, cred_t *cr); 748 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 749 cred_t *); 750 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 751 cred_t *); 752 static squeue_func_t ip_squeue_switch(int); 753 754 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 755 static void ip_kstat_fini(netstackid_t, kstat_t *); 756 static int ip_kstat_update(kstat_t *kp, int rw); 757 static void *icmp_kstat_init(netstackid_t); 758 static void icmp_kstat_fini(netstackid_t, kstat_t *); 759 static int icmp_kstat_update(kstat_t *kp, int rw); 760 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 761 static void ip_kstat2_fini(netstackid_t, kstat_t *); 762 763 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 764 765 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 766 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 767 768 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 769 ipha_t *, ill_t *, boolean_t); 770 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 771 772 /* How long, in seconds, we allow frags to hang around. */ 773 #define IP_FRAG_TIMEOUT 60 774 775 /* 776 * Threshold which determines whether MDT should be used when 777 * generating IP fragments; payload size must be greater than 778 * this threshold for MDT to take place. 779 */ 780 #define IP_WPUT_FRAG_MDT_MIN 32768 781 782 /* Setable in /etc/system only */ 783 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 784 785 static long ip_rput_pullups; 786 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 787 788 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 789 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 790 791 int ip_debug; 792 793 #ifdef DEBUG 794 uint32_t ipsechw_debug = 0; 795 #endif 796 797 /* 798 * Multirouting/CGTP stuff 799 */ 800 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 801 802 /* 803 * XXX following really should only be in a header. Would need more 804 * header and .c clean up first. 805 */ 806 extern optdb_obj_t ip_opt_obj; 807 808 ulong_t ip_squeue_enter_unbound = 0; 809 810 /* 811 * Named Dispatch Parameter Table. 812 * All of these are alterable, within the min/max values given, at run time. 813 */ 814 static ipparam_t lcl_param_arr[] = { 815 /* min max value name */ 816 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 817 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 818 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 819 { 0, 1, 0, "ip_respond_to_timestamp"}, 820 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 821 { 0, 1, 1, "ip_send_redirects"}, 822 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 823 { 0, 10, 0, "ip_mrtdebug"}, 824 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 825 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 826 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 827 { 1, 255, 255, "ip_def_ttl" }, 828 { 0, 1, 0, "ip_forward_src_routed"}, 829 { 0, 256, 32, "ip_wroff_extra" }, 830 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 831 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 832 { 0, 1, 1, "ip_path_mtu_discovery" }, 833 { 0, 240, 30, "ip_ignore_delete_time" }, 834 { 0, 1, 0, "ip_ignore_redirect" }, 835 { 0, 1, 1, "ip_output_queue" }, 836 { 1, 254, 1, "ip_broadcast_ttl" }, 837 { 0, 99999, 100, "ip_icmp_err_interval" }, 838 { 1, 99999, 10, "ip_icmp_err_burst" }, 839 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 840 { 0, 1, 0, "ip_strict_dst_multihoming" }, 841 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 842 { 0, 1, 0, "ipsec_override_persocket_policy" }, 843 { 0, 1, 1, "icmp_accept_clear_messages" }, 844 { 0, 1, 1, "igmp_accept_clear_messages" }, 845 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 846 "ip_ndp_delay_first_probe_time"}, 847 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 848 "ip_ndp_max_unicast_solicit"}, 849 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 850 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 851 { 0, 1, 0, "ip6_forward_src_routed"}, 852 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 853 { 0, 1, 1, "ip6_send_redirects"}, 854 { 0, 1, 0, "ip6_ignore_redirect" }, 855 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 856 857 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 858 859 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 860 861 { 0, 1, 1, "pim_accept_clear_messages" }, 862 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 863 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 864 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 865 { 0, 15, 0, "ip_policy_mask" }, 866 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 867 { 0, 255, 1, "ip_multirt_ttl" }, 868 { 0, 1, 1, "ip_multidata_outbound" }, 869 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 870 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 871 { 0, 1000, 1, "ip_max_temp_defend" }, 872 { 0, 1000, 3, "ip_max_defend" }, 873 { 0, 999999, 30, "ip_defend_interval" }, 874 { 0, 3600000, 300000, "ip_dup_recovery" }, 875 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 876 { 0, 1, 1, "ip_lso_outbound" }, 877 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 878 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 879 #ifdef DEBUG 880 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 881 #else 882 { 0, 0, 0, "" }, 883 #endif 884 }; 885 886 /* 887 * Extended NDP table 888 * The addresses for the first two are filled in to be ips_ip_g_forward 889 * and ips_ipv6_forward at init time. 890 */ 891 static ipndp_t lcl_ndp_arr[] = { 892 /* getf setf data name */ 893 #define IPNDP_IP_FORWARDING_OFFSET 0 894 { ip_param_generic_get, ip_forward_set, NULL, 895 "ip_forwarding" }, 896 #define IPNDP_IP6_FORWARDING_OFFSET 1 897 { ip_param_generic_get, ip_forward_set, NULL, 898 "ip6_forwarding" }, 899 { ip_ill_report, NULL, NULL, 900 "ip_ill_status" }, 901 { ip_ipif_report, NULL, NULL, 902 "ip_ipif_status" }, 903 { ip_conn_report, NULL, NULL, 904 "ip_conn_status" }, 905 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 906 "ip_rput_pullups" }, 907 { ip_srcid_report, NULL, NULL, 908 "ip_srcid_status" }, 909 { ip_param_generic_get, ip_squeue_profile_set, 910 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 911 { ip_param_generic_get, ip_squeue_bind_set, 912 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 913 { ip_param_generic_get, ip_input_proc_set, 914 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 915 { ip_param_generic_get, ip_int_set, 916 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 917 #define IPNDP_CGTP_FILTER_OFFSET 11 918 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 919 "ip_cgtp_filter" }, 920 { ip_param_generic_get, ip_int_set, 921 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 922 #define IPNDP_IPMP_HOOK_OFFSET 13 923 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 924 "ipmp_hook_emulation" }, 925 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 926 "ip_debug" }, 927 }; 928 929 /* 930 * Table of IP ioctls encoding the various properties of the ioctl and 931 * indexed based on the last byte of the ioctl command. Occasionally there 932 * is a clash, and there is more than 1 ioctl with the same last byte. 933 * In such a case 1 ioctl is encoded in the ndx table and the remaining 934 * ioctls are encoded in the misc table. An entry in the ndx table is 935 * retrieved by indexing on the last byte of the ioctl command and comparing 936 * the ioctl command with the value in the ndx table. In the event of a 937 * mismatch the misc table is then searched sequentially for the desired 938 * ioctl command. 939 * 940 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 941 */ 942 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 943 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 944 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 945 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 946 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 947 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 948 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 949 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 950 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 951 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 952 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 953 954 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 955 MISC_CMD, ip_siocaddrt, NULL }, 956 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 957 MISC_CMD, ip_siocdelrt, NULL }, 958 959 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 960 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 961 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 962 IF_CMD, ip_sioctl_get_addr, NULL }, 963 964 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 965 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 966 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 967 IPI_GET_CMD | IPI_REPL, 968 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 969 970 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 971 IPI_PRIV | IPI_WR | IPI_REPL, 972 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 973 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 974 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 975 IF_CMD, ip_sioctl_get_flags, NULL }, 976 977 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 978 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 979 980 /* copyin size cannot be coded for SIOCGIFCONF */ 981 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 982 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 983 984 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 985 IF_CMD, ip_sioctl_mtu, NULL }, 986 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 987 IF_CMD, ip_sioctl_get_mtu, NULL }, 988 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 989 IPI_GET_CMD | IPI_REPL, 990 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 991 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 992 IF_CMD, ip_sioctl_brdaddr, NULL }, 993 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 994 IPI_GET_CMD | IPI_REPL, 995 IF_CMD, ip_sioctl_get_netmask, NULL }, 996 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 997 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 998 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 999 IPI_GET_CMD | IPI_REPL, 1000 IF_CMD, ip_sioctl_get_metric, NULL }, 1001 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1002 IF_CMD, ip_sioctl_metric, NULL }, 1003 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1004 1005 /* See 166-168 below for extended SIOC*XARP ioctls */ 1006 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1007 ARP_CMD, ip_sioctl_arp, NULL }, 1008 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1009 ARP_CMD, ip_sioctl_arp, NULL }, 1010 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1011 ARP_CMD, ip_sioctl_arp, NULL }, 1012 1013 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1014 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1015 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1016 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1017 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1018 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1019 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1020 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 1035 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1036 MISC_CMD, if_unitsel, if_unitsel_restart }, 1037 1038 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 1057 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1058 IPI_PRIV | IPI_WR | IPI_MODOK, 1059 IF_CMD, ip_sioctl_sifname, NULL }, 1060 1061 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1062 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1063 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1064 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 1075 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1076 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1077 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1078 IF_CMD, ip_sioctl_get_muxid, NULL }, 1079 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1080 IPI_PRIV | IPI_WR | IPI_REPL, 1081 IF_CMD, ip_sioctl_muxid, NULL }, 1082 1083 /* Both if and lif variants share same func */ 1084 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1085 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1086 /* Both if and lif variants share same func */ 1087 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1088 IPI_PRIV | IPI_WR | IPI_REPL, 1089 IF_CMD, ip_sioctl_slifindex, NULL }, 1090 1091 /* copyin size cannot be coded for SIOCGIFCONF */ 1092 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1093 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1094 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1095 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 1112 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1113 IPI_PRIV | IPI_WR | IPI_REPL, 1114 LIF_CMD, ip_sioctl_removeif, 1115 ip_sioctl_removeif_restart }, 1116 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1117 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1118 LIF_CMD, ip_sioctl_addif, NULL }, 1119 #define SIOCLIFADDR_NDX 112 1120 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1121 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1122 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1123 IPI_GET_CMD | IPI_REPL, 1124 LIF_CMD, ip_sioctl_get_addr, NULL }, 1125 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1126 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1127 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1128 IPI_GET_CMD | IPI_REPL, 1129 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1130 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1131 IPI_PRIV | IPI_WR | IPI_REPL, 1132 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1133 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1134 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1135 LIF_CMD, ip_sioctl_get_flags, NULL }, 1136 1137 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1138 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 1140 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1141 ip_sioctl_get_lifconf, NULL }, 1142 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1143 LIF_CMD, ip_sioctl_mtu, NULL }, 1144 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1145 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1146 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1147 IPI_GET_CMD | IPI_REPL, 1148 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1149 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1150 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1151 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1152 IPI_GET_CMD | IPI_REPL, 1153 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1154 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1155 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1156 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1157 IPI_GET_CMD | IPI_REPL, 1158 LIF_CMD, ip_sioctl_get_metric, NULL }, 1159 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1160 LIF_CMD, ip_sioctl_metric, NULL }, 1161 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1162 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1163 LIF_CMD, ip_sioctl_slifname, 1164 ip_sioctl_slifname_restart }, 1165 1166 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1167 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1168 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1169 IPI_GET_CMD | IPI_REPL, 1170 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1171 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1172 IPI_PRIV | IPI_WR | IPI_REPL, 1173 LIF_CMD, ip_sioctl_muxid, NULL }, 1174 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1175 IPI_GET_CMD | IPI_REPL, 1176 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1177 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1178 IPI_PRIV | IPI_WR | IPI_REPL, 1179 LIF_CMD, ip_sioctl_slifindex, 0 }, 1180 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1181 LIF_CMD, ip_sioctl_token, NULL }, 1182 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1183 IPI_GET_CMD | IPI_REPL, 1184 LIF_CMD, ip_sioctl_get_token, NULL }, 1185 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1186 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1187 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1188 IPI_GET_CMD | IPI_REPL, 1189 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1190 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1191 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1192 1193 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1194 IPI_GET_CMD | IPI_REPL, 1195 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1196 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1197 LIF_CMD, ip_siocdelndp_v6, NULL }, 1198 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1199 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1200 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1201 LIF_CMD, ip_siocsetndp_v6, NULL }, 1202 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1203 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1204 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1205 MISC_CMD, ip_sioctl_tonlink, NULL }, 1206 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1207 MISC_CMD, ip_sioctl_tmysite, NULL }, 1208 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1209 TUN_CMD, ip_sioctl_tunparam, NULL }, 1210 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1211 IPI_PRIV | IPI_WR, 1212 TUN_CMD, ip_sioctl_tunparam, NULL }, 1213 1214 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1215 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1216 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1217 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1218 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1219 1220 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1221 IPI_PRIV | IPI_WR | IPI_REPL, 1222 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1223 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1224 IPI_PRIV | IPI_WR | IPI_REPL, 1225 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1226 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1227 IPI_PRIV | IPI_WR | IPI_REPL, 1228 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1229 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1230 IPI_GET_CMD | IPI_REPL, 1231 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1232 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1233 IPI_GET_CMD | IPI_REPL, 1234 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1235 1236 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1237 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1238 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1239 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1240 1241 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1242 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1243 1244 /* These are handled in ip_sioctl_copyin_setup itself */ 1245 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1246 MISC_CMD, NULL, NULL }, 1247 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1248 MISC_CMD, NULL, NULL }, 1249 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1250 1251 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1252 ip_sioctl_get_lifconf, NULL }, 1253 1254 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1255 XARP_CMD, ip_sioctl_arp, NULL }, 1256 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1257 XARP_CMD, ip_sioctl_arp, NULL }, 1258 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1259 XARP_CMD, ip_sioctl_arp, NULL }, 1260 1261 /* SIOCPOPSOCKFS is not handled by IP */ 1262 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1263 1264 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1265 IPI_GET_CMD | IPI_REPL, 1266 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1267 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1268 IPI_PRIV | IPI_WR | IPI_REPL, 1269 LIF_CMD, ip_sioctl_slifzone, 1270 ip_sioctl_slifzone_restart }, 1271 /* 172-174 are SCTP ioctls and not handled by IP */ 1272 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1273 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1274 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1275 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1276 IPI_GET_CMD, LIF_CMD, 1277 ip_sioctl_get_lifusesrc, 0 }, 1278 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1279 IPI_PRIV | IPI_WR, 1280 LIF_CMD, ip_sioctl_slifusesrc, 1281 NULL }, 1282 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1283 ip_sioctl_get_lifsrcof, NULL }, 1284 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1285 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1286 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1287 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1288 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1289 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1290 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1291 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1292 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1293 ip_sioctl_set_ipmpfailback, NULL }, 1294 /* SIOCSENABLESDP is handled by SDP */ 1295 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1296 }; 1297 1298 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1299 1300 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1301 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1302 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1303 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1304 TUN_CMD, ip_sioctl_tunparam, NULL }, 1305 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1306 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1307 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1308 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1309 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1310 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1311 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1312 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1313 MISC_CMD, mrt_ioctl}, 1314 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1315 MISC_CMD, mrt_ioctl}, 1316 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1317 MISC_CMD, mrt_ioctl} 1318 }; 1319 1320 int ip_misc_ioctl_count = 1321 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1322 1323 int conn_drain_nthreads; /* Number of drainers reqd. */ 1324 /* Settable in /etc/system */ 1325 /* Defined in ip_ire.c */ 1326 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1327 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1328 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1329 1330 static nv_t ire_nv_arr[] = { 1331 { IRE_BROADCAST, "BROADCAST" }, 1332 { IRE_LOCAL, "LOCAL" }, 1333 { IRE_LOOPBACK, "LOOPBACK" }, 1334 { IRE_CACHE, "CACHE" }, 1335 { IRE_DEFAULT, "DEFAULT" }, 1336 { IRE_PREFIX, "PREFIX" }, 1337 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1338 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1339 { IRE_HOST, "HOST" }, 1340 { 0 } 1341 }; 1342 1343 nv_t *ire_nv_tbl = ire_nv_arr; 1344 1345 /* Simple ICMP IP Header Template */ 1346 static ipha_t icmp_ipha = { 1347 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1348 }; 1349 1350 struct module_info ip_mod_info = { 1351 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1352 }; 1353 1354 /* 1355 * Duplicate static symbols within a module confuses mdb; so we avoid the 1356 * problem by making the symbols here distinct from those in udp.c. 1357 */ 1358 1359 /* 1360 * Entry points for IP as a device and as a module. 1361 * FIXME: down the road we might want a separate module and driver qinit. 1362 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1363 */ 1364 static struct qinit iprinitv4 = { 1365 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1366 &ip_mod_info 1367 }; 1368 1369 struct qinit iprinitv6 = { 1370 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1371 &ip_mod_info 1372 }; 1373 1374 static struct qinit ipwinitv4 = { 1375 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1376 &ip_mod_info 1377 }; 1378 1379 struct qinit ipwinitv6 = { 1380 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1381 &ip_mod_info 1382 }; 1383 1384 static struct qinit iplrinit = { 1385 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1386 &ip_mod_info 1387 }; 1388 1389 static struct qinit iplwinit = { 1390 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1391 &ip_mod_info 1392 }; 1393 1394 /* For AF_INET aka /dev/ip */ 1395 struct streamtab ipinfov4 = { 1396 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1397 }; 1398 1399 /* For AF_INET6 aka /dev/ip6 */ 1400 struct streamtab ipinfov6 = { 1401 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1402 }; 1403 1404 #ifdef DEBUG 1405 static boolean_t skip_sctp_cksum = B_FALSE; 1406 #endif 1407 1408 /* 1409 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1410 * ip_rput_v6(), ip_output(), etc. If the message 1411 * block already has a M_CTL at the front of it, then simply set the zoneid 1412 * appropriately. 1413 */ 1414 mblk_t * 1415 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1416 { 1417 mblk_t *first_mp; 1418 ipsec_out_t *io; 1419 1420 ASSERT(zoneid != ALL_ZONES); 1421 if (mp->b_datap->db_type == M_CTL) { 1422 io = (ipsec_out_t *)mp->b_rptr; 1423 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1424 io->ipsec_out_zoneid = zoneid; 1425 return (mp); 1426 } 1427 1428 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1429 if (first_mp == NULL) 1430 return (NULL); 1431 io = (ipsec_out_t *)first_mp->b_rptr; 1432 /* This is not a secure packet */ 1433 io->ipsec_out_secure = B_FALSE; 1434 io->ipsec_out_zoneid = zoneid; 1435 first_mp->b_cont = mp; 1436 return (first_mp); 1437 } 1438 1439 /* 1440 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1441 */ 1442 mblk_t * 1443 ip_copymsg(mblk_t *mp) 1444 { 1445 mblk_t *nmp; 1446 ipsec_info_t *in; 1447 1448 if (mp->b_datap->db_type != M_CTL) 1449 return (copymsg(mp)); 1450 1451 in = (ipsec_info_t *)mp->b_rptr; 1452 1453 /* 1454 * Note that M_CTL is also used for delivering ICMP error messages 1455 * upstream to transport layers. 1456 */ 1457 if (in->ipsec_info_type != IPSEC_OUT && 1458 in->ipsec_info_type != IPSEC_IN) 1459 return (copymsg(mp)); 1460 1461 nmp = copymsg(mp->b_cont); 1462 1463 if (in->ipsec_info_type == IPSEC_OUT) { 1464 return (ipsec_out_tag(mp, nmp, 1465 ((ipsec_out_t *)in)->ipsec_out_ns)); 1466 } else { 1467 return (ipsec_in_tag(mp, nmp, 1468 ((ipsec_in_t *)in)->ipsec_in_ns)); 1469 } 1470 } 1471 1472 /* Generate an ICMP fragmentation needed message. */ 1473 static void 1474 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1475 ip_stack_t *ipst) 1476 { 1477 icmph_t icmph; 1478 mblk_t *first_mp; 1479 boolean_t mctl_present; 1480 1481 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1482 1483 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1484 if (mctl_present) 1485 freeb(first_mp); 1486 return; 1487 } 1488 1489 bzero(&icmph, sizeof (icmph_t)); 1490 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1491 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1492 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1493 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1494 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1495 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1496 ipst); 1497 } 1498 1499 /* 1500 * icmp_inbound deals with ICMP messages in the following ways. 1501 * 1502 * 1) It needs to send a reply back and possibly delivering it 1503 * to the "interested" upper clients. 1504 * 2) It needs to send it to the upper clients only. 1505 * 3) It needs to change some values in IP only. 1506 * 4) It needs to change some values in IP and upper layers e.g TCP. 1507 * 1508 * We need to accomodate icmp messages coming in clear until we get 1509 * everything secure from the wire. If icmp_accept_clear_messages 1510 * is zero we check with the global policy and act accordingly. If 1511 * it is non-zero, we accept the message without any checks. But 1512 * *this does not mean* that this will be delivered to the upper 1513 * clients. By accepting we might send replies back, change our MTU 1514 * value etc. but delivery to the ULP/clients depends on their policy 1515 * dispositions. 1516 * 1517 * We handle the above 4 cases in the context of IPsec in the 1518 * following way : 1519 * 1520 * 1) Send the reply back in the same way as the request came in. 1521 * If it came in encrypted, it goes out encrypted. If it came in 1522 * clear, it goes out in clear. Thus, this will prevent chosen 1523 * plain text attack. 1524 * 2) The client may or may not expect things to come in secure. 1525 * If it comes in secure, the policy constraints are checked 1526 * before delivering it to the upper layers. If it comes in 1527 * clear, ipsec_inbound_accept_clear will decide whether to 1528 * accept this in clear or not. In both the cases, if the returned 1529 * message (IP header + 8 bytes) that caused the icmp message has 1530 * AH/ESP headers, it is sent up to AH/ESP for validation before 1531 * sending up. If there are only 8 bytes of returned message, then 1532 * upper client will not be notified. 1533 * 3) Check with global policy to see whether it matches the constaints. 1534 * But this will be done only if icmp_accept_messages_in_clear is 1535 * zero. 1536 * 4) If we need to change both in IP and ULP, then the decision taken 1537 * while affecting the values in IP and while delivering up to TCP 1538 * should be the same. 1539 * 1540 * There are two cases. 1541 * 1542 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1543 * failed), we will not deliver it to the ULP, even though they 1544 * are *willing* to accept in *clear*. This is fine as our global 1545 * disposition to icmp messages asks us reject the datagram. 1546 * 1547 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1548 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1549 * to deliver it to ULP (policy failed), it can lead to 1550 * consistency problems. The cases known at this time are 1551 * ICMP_DESTINATION_UNREACHABLE messages with following code 1552 * values : 1553 * 1554 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1555 * and Upper layer rejects. Then the communication will 1556 * come to a stop. This is solved by making similar decisions 1557 * at both levels. Currently, when we are unable to deliver 1558 * to the Upper Layer (due to policy failures) while IP has 1559 * adjusted ire_max_frag, the next outbound datagram would 1560 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1561 * will be with the right level of protection. Thus the right 1562 * value will be communicated even if we are not able to 1563 * communicate when we get from the wire initially. But this 1564 * assumes there would be at least one outbound datagram after 1565 * IP has adjusted its ire_max_frag value. To make things 1566 * simpler, we accept in clear after the validation of 1567 * AH/ESP headers. 1568 * 1569 * - Other ICMP ERRORS : We may not be able to deliver it to the 1570 * upper layer depending on the level of protection the upper 1571 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1572 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1573 * should be accepted in clear when the Upper layer expects secure. 1574 * Thus the communication may get aborted by some bad ICMP 1575 * packets. 1576 * 1577 * IPQoS Notes: 1578 * The only instance when a packet is sent for processing is when there 1579 * isn't an ICMP client and if we are interested in it. 1580 * If there is a client, IPPF processing will take place in the 1581 * ip_fanout_proto routine. 1582 * 1583 * Zones notes: 1584 * The packet is only processed in the context of the specified zone: typically 1585 * only this zone will reply to an echo request, and only interested clients in 1586 * this zone will receive a copy of the packet. This means that the caller must 1587 * call icmp_inbound() for each relevant zone. 1588 */ 1589 static void 1590 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1591 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1592 ill_t *recv_ill, zoneid_t zoneid) 1593 { 1594 icmph_t *icmph; 1595 ipha_t *ipha; 1596 int iph_hdr_length; 1597 int hdr_length; 1598 boolean_t interested; 1599 uint32_t ts; 1600 uchar_t *wptr; 1601 ipif_t *ipif; 1602 mblk_t *first_mp; 1603 ipsec_in_t *ii; 1604 ire_t *src_ire; 1605 boolean_t onlink; 1606 timestruc_t now; 1607 uint32_t ill_index; 1608 ip_stack_t *ipst; 1609 1610 ASSERT(ill != NULL); 1611 ipst = ill->ill_ipst; 1612 1613 first_mp = mp; 1614 if (mctl_present) { 1615 mp = first_mp->b_cont; 1616 ASSERT(mp != NULL); 1617 } 1618 1619 ipha = (ipha_t *)mp->b_rptr; 1620 if (ipst->ips_icmp_accept_clear_messages == 0) { 1621 first_mp = ipsec_check_global_policy(first_mp, NULL, 1622 ipha, NULL, mctl_present, ipst->ips_netstack); 1623 if (first_mp == NULL) 1624 return; 1625 } 1626 1627 /* 1628 * On a labeled system, we have to check whether the zone itself is 1629 * permitted to receive raw traffic. 1630 */ 1631 if (is_system_labeled()) { 1632 if (zoneid == ALL_ZONES) 1633 zoneid = tsol_packet_to_zoneid(mp); 1634 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1635 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1636 zoneid)); 1637 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1638 freemsg(first_mp); 1639 return; 1640 } 1641 } 1642 1643 /* 1644 * We have accepted the ICMP message. It means that we will 1645 * respond to the packet if needed. It may not be delivered 1646 * to the upper client depending on the policy constraints 1647 * and the disposition in ipsec_inbound_accept_clear. 1648 */ 1649 1650 ASSERT(ill != NULL); 1651 1652 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1653 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1654 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1655 /* Last chance to get real. */ 1656 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1657 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1658 freemsg(first_mp); 1659 return; 1660 } 1661 /* Refresh iph following the pullup. */ 1662 ipha = (ipha_t *)mp->b_rptr; 1663 } 1664 /* ICMP header checksum, including checksum field, should be zero. */ 1665 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1666 IP_CSUM(mp, iph_hdr_length, 0)) { 1667 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1668 freemsg(first_mp); 1669 return; 1670 } 1671 /* The IP header will always be a multiple of four bytes */ 1672 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1673 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1674 icmph->icmph_code)); 1675 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1676 /* We will set "interested" to "true" if we want a copy */ 1677 interested = B_FALSE; 1678 switch (icmph->icmph_type) { 1679 case ICMP_ECHO_REPLY: 1680 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1681 break; 1682 case ICMP_DEST_UNREACHABLE: 1683 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1684 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1685 interested = B_TRUE; /* Pass up to transport */ 1686 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1687 break; 1688 case ICMP_SOURCE_QUENCH: 1689 interested = B_TRUE; /* Pass up to transport */ 1690 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1691 break; 1692 case ICMP_REDIRECT: 1693 if (!ipst->ips_ip_ignore_redirect) 1694 interested = B_TRUE; 1695 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1696 break; 1697 case ICMP_ECHO_REQUEST: 1698 /* 1699 * Whether to respond to echo requests that come in as IP 1700 * broadcasts or as IP multicast is subject to debate 1701 * (what isn't?). We aim to please, you pick it. 1702 * Default is do it. 1703 */ 1704 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1705 /* unicast: always respond */ 1706 interested = B_TRUE; 1707 } else if (CLASSD(ipha->ipha_dst)) { 1708 /* multicast: respond based on tunable */ 1709 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1710 } else if (broadcast) { 1711 /* broadcast: respond based on tunable */ 1712 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1713 } 1714 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1715 break; 1716 case ICMP_ROUTER_ADVERTISEMENT: 1717 case ICMP_ROUTER_SOLICITATION: 1718 break; 1719 case ICMP_TIME_EXCEEDED: 1720 interested = B_TRUE; /* Pass up to transport */ 1721 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1722 break; 1723 case ICMP_PARAM_PROBLEM: 1724 interested = B_TRUE; /* Pass up to transport */ 1725 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1726 break; 1727 case ICMP_TIME_STAMP_REQUEST: 1728 /* Response to Time Stamp Requests is local policy. */ 1729 if (ipst->ips_ip_g_resp_to_timestamp && 1730 /* So is whether to respond if it was an IP broadcast. */ 1731 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1732 int tstamp_len = 3 * sizeof (uint32_t); 1733 1734 if (wptr + tstamp_len > mp->b_wptr) { 1735 if (!pullupmsg(mp, wptr + tstamp_len - 1736 mp->b_rptr)) { 1737 BUMP_MIB(ill->ill_ip_mib, 1738 ipIfStatsInDiscards); 1739 freemsg(first_mp); 1740 return; 1741 } 1742 /* Refresh ipha following the pullup. */ 1743 ipha = (ipha_t *)mp->b_rptr; 1744 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1745 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1746 } 1747 interested = B_TRUE; 1748 } 1749 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1750 break; 1751 case ICMP_TIME_STAMP_REPLY: 1752 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1753 break; 1754 case ICMP_INFO_REQUEST: 1755 /* Per RFC 1122 3.2.2.7, ignore this. */ 1756 case ICMP_INFO_REPLY: 1757 break; 1758 case ICMP_ADDRESS_MASK_REQUEST: 1759 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1760 !broadcast) && 1761 /* TODO m_pullup of complete header? */ 1762 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1763 interested = B_TRUE; 1764 } 1765 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1766 break; 1767 case ICMP_ADDRESS_MASK_REPLY: 1768 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1769 break; 1770 default: 1771 interested = B_TRUE; /* Pass up to transport */ 1772 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1773 break; 1774 } 1775 /* See if there is an ICMP client. */ 1776 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1777 /* If there is an ICMP client and we want one too, copy it. */ 1778 mblk_t *first_mp1; 1779 1780 if (!interested) { 1781 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1782 ip_policy, recv_ill, zoneid); 1783 return; 1784 } 1785 first_mp1 = ip_copymsg(first_mp); 1786 if (first_mp1 != NULL) { 1787 ip_fanout_proto(q, first_mp1, ill, ipha, 1788 0, mctl_present, ip_policy, recv_ill, zoneid); 1789 } 1790 } else if (!interested) { 1791 freemsg(first_mp); 1792 return; 1793 } else { 1794 /* 1795 * Initiate policy processing for this packet if ip_policy 1796 * is true. 1797 */ 1798 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1799 ill_index = ill->ill_phyint->phyint_ifindex; 1800 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1801 if (mp == NULL) { 1802 if (mctl_present) { 1803 freeb(first_mp); 1804 } 1805 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1806 return; 1807 } 1808 } 1809 } 1810 /* We want to do something with it. */ 1811 /* Check db_ref to make sure we can modify the packet. */ 1812 if (mp->b_datap->db_ref > 1) { 1813 mblk_t *first_mp1; 1814 1815 first_mp1 = ip_copymsg(first_mp); 1816 freemsg(first_mp); 1817 if (!first_mp1) { 1818 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1819 return; 1820 } 1821 first_mp = first_mp1; 1822 if (mctl_present) { 1823 mp = first_mp->b_cont; 1824 ASSERT(mp != NULL); 1825 } else { 1826 mp = first_mp; 1827 } 1828 ipha = (ipha_t *)mp->b_rptr; 1829 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1830 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1831 } 1832 switch (icmph->icmph_type) { 1833 case ICMP_ADDRESS_MASK_REQUEST: 1834 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1835 if (ipif == NULL) { 1836 freemsg(first_mp); 1837 return; 1838 } 1839 /* 1840 * outging interface must be IPv4 1841 */ 1842 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1843 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1844 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1845 ipif_refrele(ipif); 1846 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1847 break; 1848 case ICMP_ECHO_REQUEST: 1849 icmph->icmph_type = ICMP_ECHO_REPLY; 1850 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1851 break; 1852 case ICMP_TIME_STAMP_REQUEST: { 1853 uint32_t *tsp; 1854 1855 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1856 tsp = (uint32_t *)wptr; 1857 tsp++; /* Skip past 'originate time' */ 1858 /* Compute # of milliseconds since midnight */ 1859 gethrestime(&now); 1860 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1861 now.tv_nsec / (NANOSEC / MILLISEC); 1862 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1863 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1864 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1865 break; 1866 } 1867 default: 1868 ipha = (ipha_t *)&icmph[1]; 1869 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1870 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1871 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1872 freemsg(first_mp); 1873 return; 1874 } 1875 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1876 ipha = (ipha_t *)&icmph[1]; 1877 } 1878 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1879 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1880 freemsg(first_mp); 1881 return; 1882 } 1883 hdr_length = IPH_HDR_LENGTH(ipha); 1884 if (hdr_length < sizeof (ipha_t)) { 1885 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1886 freemsg(first_mp); 1887 return; 1888 } 1889 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1890 if (!pullupmsg(mp, 1891 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1892 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1893 freemsg(first_mp); 1894 return; 1895 } 1896 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1897 ipha = (ipha_t *)&icmph[1]; 1898 } 1899 switch (icmph->icmph_type) { 1900 case ICMP_REDIRECT: 1901 /* 1902 * As there is no upper client to deliver, we don't 1903 * need the first_mp any more. 1904 */ 1905 if (mctl_present) { 1906 freeb(first_mp); 1907 } 1908 icmp_redirect(ill, mp); 1909 return; 1910 case ICMP_DEST_UNREACHABLE: 1911 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1912 if (!icmp_inbound_too_big(icmph, ipha, ill, 1913 zoneid, mp, iph_hdr_length, ipst)) { 1914 freemsg(first_mp); 1915 return; 1916 } 1917 /* 1918 * icmp_inbound_too_big() may alter mp. 1919 * Resynch ipha and icmph accordingly. 1920 */ 1921 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1922 ipha = (ipha_t *)&icmph[1]; 1923 } 1924 /* FALLTHRU */ 1925 default : 1926 /* 1927 * IPQoS notes: Since we have already done IPQoS 1928 * processing we don't want to do it again in 1929 * the fanout routines called by 1930 * icmp_inbound_error_fanout, hence the last 1931 * argument, ip_policy, is B_FALSE. 1932 */ 1933 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1934 ipha, iph_hdr_length, hdr_length, mctl_present, 1935 B_FALSE, recv_ill, zoneid); 1936 } 1937 return; 1938 } 1939 /* Send out an ICMP packet */ 1940 icmph->icmph_checksum = 0; 1941 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1942 if (broadcast || CLASSD(ipha->ipha_dst)) { 1943 ipif_t *ipif_chosen; 1944 /* 1945 * Make it look like it was directed to us, so we don't look 1946 * like a fool with a broadcast or multicast source address. 1947 */ 1948 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1949 /* 1950 * Make sure that we haven't grabbed an interface that's DOWN. 1951 */ 1952 if (ipif != NULL) { 1953 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1954 ipha->ipha_src, zoneid); 1955 if (ipif_chosen != NULL) { 1956 ipif_refrele(ipif); 1957 ipif = ipif_chosen; 1958 } 1959 } 1960 if (ipif == NULL) { 1961 ip0dbg(("icmp_inbound: " 1962 "No source for broadcast/multicast:\n" 1963 "\tsrc 0x%x dst 0x%x ill %p " 1964 "ipif_lcl_addr 0x%x\n", 1965 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1966 (void *)ill, 1967 ill->ill_ipif->ipif_lcl_addr)); 1968 freemsg(first_mp); 1969 return; 1970 } 1971 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1972 ipha->ipha_dst = ipif->ipif_src_addr; 1973 ipif_refrele(ipif); 1974 } 1975 /* Reset time to live. */ 1976 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1977 { 1978 /* Swap source and destination addresses */ 1979 ipaddr_t tmp; 1980 1981 tmp = ipha->ipha_src; 1982 ipha->ipha_src = ipha->ipha_dst; 1983 ipha->ipha_dst = tmp; 1984 } 1985 ipha->ipha_ident = 0; 1986 if (!IS_SIMPLE_IPH(ipha)) 1987 icmp_options_update(ipha); 1988 1989 /* 1990 * ICMP echo replies should go out on the same interface 1991 * the request came on as probes used by in.mpathd for detecting 1992 * NIC failures are ECHO packets. We turn-off load spreading 1993 * by setting ipsec_in_attach_if to B_TRUE, which is copied 1994 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 1995 * function. This is in turn handled by ip_wput and ip_newroute 1996 * to make sure that the packet goes out on the interface it came 1997 * in on. If we don't turnoff load spreading, the packets might get 1998 * dropped if there are no non-FAILED/INACTIVE interfaces for it 1999 * to go out and in.mpathd would wrongly detect a failure or 2000 * mis-detect a NIC failure for link failure. As load spreading 2001 * can happen only if ill_group is not NULL, we do only for 2002 * that case and this does not affect the normal case. 2003 * 2004 * We turn off load spreading only on echo packets that came from 2005 * on-link hosts. If the interface route has been deleted, this will 2006 * not be enforced as we can't do much. For off-link hosts, as the 2007 * default routes in IPv4 does not typically have an ire_ipif 2008 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2009 * Moreover, expecting a default route through this interface may 2010 * not be correct. We use ipha_dst because of the swap above. 2011 */ 2012 onlink = B_FALSE; 2013 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2014 /* 2015 * First, we need to make sure that it is not one of our 2016 * local addresses. If we set onlink when it is one of 2017 * our local addresses, we will end up creating IRE_CACHES 2018 * for one of our local addresses. Then, we will never 2019 * accept packets for them afterwards. 2020 */ 2021 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2022 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2023 if (src_ire == NULL) { 2024 ipif = ipif_get_next_ipif(NULL, ill); 2025 if (ipif == NULL) { 2026 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2027 freemsg(mp); 2028 return; 2029 } 2030 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2031 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2032 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2033 ipif_refrele(ipif); 2034 if (src_ire != NULL) { 2035 onlink = B_TRUE; 2036 ire_refrele(src_ire); 2037 } 2038 } else { 2039 ire_refrele(src_ire); 2040 } 2041 } 2042 if (!mctl_present) { 2043 /* 2044 * This packet should go out the same way as it 2045 * came in i.e in clear. To make sure that global 2046 * policy will not be applied to this in ip_wput_ire, 2047 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2048 */ 2049 ASSERT(first_mp == mp); 2050 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2051 if (first_mp == NULL) { 2052 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2053 freemsg(mp); 2054 return; 2055 } 2056 ii = (ipsec_in_t *)first_mp->b_rptr; 2057 2058 /* This is not a secure packet */ 2059 ii->ipsec_in_secure = B_FALSE; 2060 if (onlink) { 2061 ii->ipsec_in_attach_if = B_TRUE; 2062 ii->ipsec_in_ill_index = 2063 ill->ill_phyint->phyint_ifindex; 2064 ii->ipsec_in_rill_index = 2065 recv_ill->ill_phyint->phyint_ifindex; 2066 } 2067 first_mp->b_cont = mp; 2068 } else if (onlink) { 2069 ii = (ipsec_in_t *)first_mp->b_rptr; 2070 ii->ipsec_in_attach_if = B_TRUE; 2071 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2072 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2073 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2074 } else { 2075 ii = (ipsec_in_t *)first_mp->b_rptr; 2076 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2077 } 2078 ii->ipsec_in_zoneid = zoneid; 2079 ASSERT(zoneid != ALL_ZONES); 2080 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2081 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2082 return; 2083 } 2084 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2085 put(WR(q), first_mp); 2086 } 2087 2088 static ipaddr_t 2089 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2090 { 2091 conn_t *connp; 2092 connf_t *connfp; 2093 ipaddr_t nexthop_addr = INADDR_ANY; 2094 int hdr_length = IPH_HDR_LENGTH(ipha); 2095 uint16_t *up; 2096 uint32_t ports; 2097 ip_stack_t *ipst = ill->ill_ipst; 2098 2099 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2100 switch (ipha->ipha_protocol) { 2101 case IPPROTO_TCP: 2102 { 2103 tcph_t *tcph; 2104 2105 /* do a reverse lookup */ 2106 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2107 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2108 TCPS_LISTEN, ipst); 2109 break; 2110 } 2111 case IPPROTO_UDP: 2112 { 2113 uint32_t dstport, srcport; 2114 2115 ((uint16_t *)&ports)[0] = up[1]; 2116 ((uint16_t *)&ports)[1] = up[0]; 2117 2118 /* Extract ports in net byte order */ 2119 dstport = htons(ntohl(ports) & 0xFFFF); 2120 srcport = htons(ntohl(ports) >> 16); 2121 2122 connfp = &ipst->ips_ipcl_udp_fanout[ 2123 IPCL_UDP_HASH(dstport, ipst)]; 2124 mutex_enter(&connfp->connf_lock); 2125 connp = connfp->connf_head; 2126 2127 /* do a reverse lookup */ 2128 while ((connp != NULL) && 2129 (!IPCL_UDP_MATCH(connp, dstport, 2130 ipha->ipha_src, srcport, ipha->ipha_dst) || 2131 !IPCL_ZONE_MATCH(connp, zoneid))) { 2132 connp = connp->conn_next; 2133 } 2134 if (connp != NULL) 2135 CONN_INC_REF(connp); 2136 mutex_exit(&connfp->connf_lock); 2137 break; 2138 } 2139 case IPPROTO_SCTP: 2140 { 2141 in6_addr_t map_src, map_dst; 2142 2143 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2144 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2145 ((uint16_t *)&ports)[0] = up[1]; 2146 ((uint16_t *)&ports)[1] = up[0]; 2147 2148 connp = sctp_find_conn(&map_src, &map_dst, ports, 2149 zoneid, ipst->ips_netstack->netstack_sctp); 2150 if (connp == NULL) { 2151 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2152 zoneid, ports, ipha, ipst); 2153 } else { 2154 CONN_INC_REF(connp); 2155 SCTP_REFRELE(CONN2SCTP(connp)); 2156 } 2157 break; 2158 } 2159 default: 2160 { 2161 ipha_t ripha; 2162 2163 ripha.ipha_src = ipha->ipha_dst; 2164 ripha.ipha_dst = ipha->ipha_src; 2165 ripha.ipha_protocol = ipha->ipha_protocol; 2166 2167 connfp = &ipst->ips_ipcl_proto_fanout[ 2168 ipha->ipha_protocol]; 2169 mutex_enter(&connfp->connf_lock); 2170 connp = connfp->connf_head; 2171 for (connp = connfp->connf_head; connp != NULL; 2172 connp = connp->conn_next) { 2173 if (IPCL_PROTO_MATCH(connp, 2174 ipha->ipha_protocol, &ripha, ill, 2175 0, zoneid)) { 2176 CONN_INC_REF(connp); 2177 break; 2178 } 2179 } 2180 mutex_exit(&connfp->connf_lock); 2181 } 2182 } 2183 if (connp != NULL) { 2184 if (connp->conn_nexthop_set) 2185 nexthop_addr = connp->conn_nexthop_v4; 2186 CONN_DEC_REF(connp); 2187 } 2188 return (nexthop_addr); 2189 } 2190 2191 /* Table from RFC 1191 */ 2192 static int icmp_frag_size_table[] = 2193 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2194 2195 /* 2196 * Process received ICMP Packet too big. 2197 * After updating any IRE it does the fanout to any matching transport streams. 2198 * Assumes the message has been pulled up till the IP header that caused 2199 * the error. 2200 * 2201 * Returns B_FALSE on failure and B_TRUE on success. 2202 */ 2203 static boolean_t 2204 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2205 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2206 ip_stack_t *ipst) 2207 { 2208 ire_t *ire, *first_ire; 2209 int mtu; 2210 int hdr_length; 2211 ipaddr_t nexthop_addr; 2212 2213 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2214 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2215 ASSERT(ill != NULL); 2216 2217 hdr_length = IPH_HDR_LENGTH(ipha); 2218 2219 /* Drop if the original packet contained a source route */ 2220 if (ip_source_route_included(ipha)) { 2221 return (B_FALSE); 2222 } 2223 /* 2224 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2225 * header. 2226 */ 2227 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2228 mp->b_wptr) { 2229 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2230 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2231 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2232 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2233 return (B_FALSE); 2234 } 2235 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2236 ipha = (ipha_t *)&icmph[1]; 2237 } 2238 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2239 if (nexthop_addr != INADDR_ANY) { 2240 /* nexthop set */ 2241 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2242 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2243 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2244 } else { 2245 /* nexthop not set */ 2246 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2247 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2248 } 2249 2250 if (!first_ire) { 2251 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2252 ntohl(ipha->ipha_dst))); 2253 return (B_FALSE); 2254 } 2255 /* Check for MTU discovery advice as described in RFC 1191 */ 2256 mtu = ntohs(icmph->icmph_du_mtu); 2257 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2258 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2259 ire = ire->ire_next) { 2260 /* 2261 * Look for the connection to which this ICMP message is 2262 * directed. If it has the IP_NEXTHOP option set, then the 2263 * search is limited to IREs with the MATCH_IRE_PRIVATE 2264 * option. Else the search is limited to regular IREs. 2265 */ 2266 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2267 (nexthop_addr != ire->ire_gateway_addr)) || 2268 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2269 (nexthop_addr != INADDR_ANY))) 2270 continue; 2271 2272 mutex_enter(&ire->ire_lock); 2273 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2274 /* Reduce the IRE max frag value as advised. */ 2275 ip1dbg(("Received mtu from router: %d (was %d)\n", 2276 mtu, ire->ire_max_frag)); 2277 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2278 } else { 2279 uint32_t length; 2280 int i; 2281 2282 /* 2283 * Use the table from RFC 1191 to figure out 2284 * the next "plateau" based on the length in 2285 * the original IP packet. 2286 */ 2287 length = ntohs(ipha->ipha_length); 2288 if (ire->ire_max_frag <= length && 2289 ire->ire_max_frag >= length - hdr_length) { 2290 /* 2291 * Handle broken BSD 4.2 systems that 2292 * return the wrong iph_length in ICMP 2293 * errors. 2294 */ 2295 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2296 length, ire->ire_max_frag)); 2297 length -= hdr_length; 2298 } 2299 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2300 if (length > icmp_frag_size_table[i]) 2301 break; 2302 } 2303 if (i == A_CNT(icmp_frag_size_table)) { 2304 /* Smaller than 68! */ 2305 ip1dbg(("Too big for packet size %d\n", 2306 length)); 2307 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2308 ire->ire_frag_flag = 0; 2309 } else { 2310 mtu = icmp_frag_size_table[i]; 2311 ip1dbg(("Calculated mtu %d, packet size %d, " 2312 "before %d", mtu, length, 2313 ire->ire_max_frag)); 2314 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2315 ip1dbg((", after %d\n", ire->ire_max_frag)); 2316 } 2317 /* Record the new max frag size for the ULP. */ 2318 icmph->icmph_du_zero = 0; 2319 icmph->icmph_du_mtu = 2320 htons((uint16_t)ire->ire_max_frag); 2321 } 2322 mutex_exit(&ire->ire_lock); 2323 } 2324 rw_exit(&first_ire->ire_bucket->irb_lock); 2325 ire_refrele(first_ire); 2326 return (B_TRUE); 2327 } 2328 2329 /* 2330 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2331 * calls this function. 2332 */ 2333 static mblk_t * 2334 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2335 { 2336 ipha_t *ipha; 2337 icmph_t *icmph; 2338 ipha_t *in_ipha; 2339 int length; 2340 2341 ASSERT(mp->b_datap->db_type == M_DATA); 2342 2343 /* 2344 * For Self-encapsulated packets, we added an extra IP header 2345 * without the options. Inner IP header is the one from which 2346 * the outer IP header was formed. Thus, we need to remove the 2347 * outer IP header. To do this, we pullup the whole message 2348 * and overlay whatever follows the outer IP header over the 2349 * outer IP header. 2350 */ 2351 2352 if (!pullupmsg(mp, -1)) 2353 return (NULL); 2354 2355 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2356 ipha = (ipha_t *)&icmph[1]; 2357 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2358 2359 /* 2360 * The length that we want to overlay is following the inner 2361 * IP header. Subtracting the IP header + icmp header + outer 2362 * IP header's length should give us the length that we want to 2363 * overlay. 2364 */ 2365 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2366 hdr_length; 2367 /* 2368 * Overlay whatever follows the inner header over the 2369 * outer header. 2370 */ 2371 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2372 2373 /* Set the wptr to account for the outer header */ 2374 mp->b_wptr -= hdr_length; 2375 return (mp); 2376 } 2377 2378 /* 2379 * Try to pass the ICMP message upstream in case the ULP cares. 2380 * 2381 * If the packet that caused the ICMP error is secure, we send 2382 * it to AH/ESP to make sure that the attached packet has a 2383 * valid association. ipha in the code below points to the 2384 * IP header of the packet that caused the error. 2385 * 2386 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2387 * in the context of IPsec. Normally we tell the upper layer 2388 * whenever we send the ire (including ip_bind), the IPsec header 2389 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2390 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2391 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2392 * same thing. As TCP has the IPsec options size that needs to be 2393 * adjusted, we just pass the MTU unchanged. 2394 * 2395 * IFN could have been generated locally or by some router. 2396 * 2397 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2398 * This happens because IP adjusted its value of MTU on an 2399 * earlier IFN message and could not tell the upper layer, 2400 * the new adjusted value of MTU e.g. Packet was encrypted 2401 * or there was not enough information to fanout to upper 2402 * layers. Thus on the next outbound datagram, ip_wput_ire 2403 * generates the IFN, where IPsec processing has *not* been 2404 * done. 2405 * 2406 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2407 * could have generated this. This happens because ire_max_frag 2408 * value in IP was set to a new value, while the IPsec processing 2409 * was being done and after we made the fragmentation check in 2410 * ip_wput_ire. Thus on return from IPsec processing, 2411 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2412 * and generates the IFN. As IPsec processing is over, we fanout 2413 * to AH/ESP to remove the header. 2414 * 2415 * In both these cases, ipsec_in_loopback will be set indicating 2416 * that IFN was generated locally. 2417 * 2418 * ROUTER : IFN could be secure or non-secure. 2419 * 2420 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2421 * packet in error has AH/ESP headers to validate the AH/ESP 2422 * headers. AH/ESP will verify whether there is a valid SA or 2423 * not and send it back. We will fanout again if we have more 2424 * data in the packet. 2425 * 2426 * If the packet in error does not have AH/ESP, we handle it 2427 * like any other case. 2428 * 2429 * * NON_SECURE : If the packet in error has AH/ESP headers, 2430 * we attach a dummy ipsec_in and send it up to AH/ESP 2431 * for validation. AH/ESP will verify whether there is a 2432 * valid SA or not and send it back. We will fanout again if 2433 * we have more data in the packet. 2434 * 2435 * If the packet in error does not have AH/ESP, we handle it 2436 * like any other case. 2437 */ 2438 static void 2439 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2440 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2441 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2442 zoneid_t zoneid) 2443 { 2444 uint16_t *up; /* Pointer to ports in ULP header */ 2445 uint32_t ports; /* reversed ports for fanout */ 2446 ipha_t ripha; /* With reversed addresses */ 2447 mblk_t *first_mp; 2448 ipsec_in_t *ii; 2449 tcph_t *tcph; 2450 conn_t *connp; 2451 ip_stack_t *ipst; 2452 2453 ASSERT(ill != NULL); 2454 2455 ASSERT(recv_ill != NULL); 2456 ipst = recv_ill->ill_ipst; 2457 2458 first_mp = mp; 2459 if (mctl_present) { 2460 mp = first_mp->b_cont; 2461 ASSERT(mp != NULL); 2462 2463 ii = (ipsec_in_t *)first_mp->b_rptr; 2464 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2465 } else { 2466 ii = NULL; 2467 } 2468 2469 switch (ipha->ipha_protocol) { 2470 case IPPROTO_UDP: 2471 /* 2472 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2473 * transport header. 2474 */ 2475 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2476 mp->b_wptr) { 2477 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2478 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2479 goto discard_pkt; 2480 } 2481 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2482 ipha = (ipha_t *)&icmph[1]; 2483 } 2484 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2485 2486 /* 2487 * Attempt to find a client stream based on port. 2488 * Note that we do a reverse lookup since the header is 2489 * in the form we sent it out. 2490 * The ripha header is only used for the IP_UDP_MATCH and we 2491 * only set the src and dst addresses and protocol. 2492 */ 2493 ripha.ipha_src = ipha->ipha_dst; 2494 ripha.ipha_dst = ipha->ipha_src; 2495 ripha.ipha_protocol = ipha->ipha_protocol; 2496 ((uint16_t *)&ports)[0] = up[1]; 2497 ((uint16_t *)&ports)[1] = up[0]; 2498 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2499 ntohl(ipha->ipha_src), ntohs(up[0]), 2500 ntohl(ipha->ipha_dst), ntohs(up[1]), 2501 icmph->icmph_type, icmph->icmph_code)); 2502 2503 /* Have to change db_type after any pullupmsg */ 2504 DB_TYPE(mp) = M_CTL; 2505 2506 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2507 mctl_present, ip_policy, recv_ill, zoneid); 2508 return; 2509 2510 case IPPROTO_TCP: 2511 /* 2512 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2513 * transport header. 2514 */ 2515 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2516 mp->b_wptr) { 2517 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2518 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2519 goto discard_pkt; 2520 } 2521 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2522 ipha = (ipha_t *)&icmph[1]; 2523 } 2524 /* 2525 * Find a TCP client stream for this packet. 2526 * Note that we do a reverse lookup since the header is 2527 * in the form we sent it out. 2528 */ 2529 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2530 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2531 ipst); 2532 if (connp == NULL) 2533 goto discard_pkt; 2534 2535 /* Have to change db_type after any pullupmsg */ 2536 DB_TYPE(mp) = M_CTL; 2537 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2538 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2539 return; 2540 2541 case IPPROTO_SCTP: 2542 /* 2543 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2544 * transport header. 2545 */ 2546 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2547 mp->b_wptr) { 2548 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2549 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2550 goto discard_pkt; 2551 } 2552 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2553 ipha = (ipha_t *)&icmph[1]; 2554 } 2555 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2556 /* 2557 * Find a SCTP client stream for this packet. 2558 * Note that we do a reverse lookup since the header is 2559 * in the form we sent it out. 2560 * The ripha header is only used for the matching and we 2561 * only set the src and dst addresses, protocol, and version. 2562 */ 2563 ripha.ipha_src = ipha->ipha_dst; 2564 ripha.ipha_dst = ipha->ipha_src; 2565 ripha.ipha_protocol = ipha->ipha_protocol; 2566 ripha.ipha_version_and_hdr_length = 2567 ipha->ipha_version_and_hdr_length; 2568 ((uint16_t *)&ports)[0] = up[1]; 2569 ((uint16_t *)&ports)[1] = up[0]; 2570 2571 /* Have to change db_type after any pullupmsg */ 2572 DB_TYPE(mp) = M_CTL; 2573 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2574 mctl_present, ip_policy, zoneid); 2575 return; 2576 2577 case IPPROTO_ESP: 2578 case IPPROTO_AH: { 2579 int ipsec_rc; 2580 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2581 2582 /* 2583 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2584 * We will re-use the IPSEC_IN if it is already present as 2585 * AH/ESP will not affect any fields in the IPSEC_IN for 2586 * ICMP errors. If there is no IPSEC_IN, allocate a new 2587 * one and attach it in the front. 2588 */ 2589 if (ii != NULL) { 2590 /* 2591 * ip_fanout_proto_again converts the ICMP errors 2592 * that come back from AH/ESP to M_DATA so that 2593 * if it is non-AH/ESP and we do a pullupmsg in 2594 * this function, it would work. Convert it back 2595 * to M_CTL before we send up as this is a ICMP 2596 * error. This could have been generated locally or 2597 * by some router. Validate the inner IPsec 2598 * headers. 2599 * 2600 * NOTE : ill_index is used by ip_fanout_proto_again 2601 * to locate the ill. 2602 */ 2603 ASSERT(ill != NULL); 2604 ii->ipsec_in_ill_index = 2605 ill->ill_phyint->phyint_ifindex; 2606 ii->ipsec_in_rill_index = 2607 recv_ill->ill_phyint->phyint_ifindex; 2608 DB_TYPE(first_mp->b_cont) = M_CTL; 2609 } else { 2610 /* 2611 * IPSEC_IN is not present. We attach a ipsec_in 2612 * message and send up to IPsec for validating 2613 * and removing the IPsec headers. Clear 2614 * ipsec_in_secure so that when we return 2615 * from IPsec, we don't mistakenly think that this 2616 * is a secure packet came from the network. 2617 * 2618 * NOTE : ill_index is used by ip_fanout_proto_again 2619 * to locate the ill. 2620 */ 2621 ASSERT(first_mp == mp); 2622 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2623 if (first_mp == NULL) { 2624 freemsg(mp); 2625 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2626 return; 2627 } 2628 ii = (ipsec_in_t *)first_mp->b_rptr; 2629 2630 /* This is not a secure packet */ 2631 ii->ipsec_in_secure = B_FALSE; 2632 first_mp->b_cont = mp; 2633 DB_TYPE(mp) = M_CTL; 2634 ASSERT(ill != NULL); 2635 ii->ipsec_in_ill_index = 2636 ill->ill_phyint->phyint_ifindex; 2637 ii->ipsec_in_rill_index = 2638 recv_ill->ill_phyint->phyint_ifindex; 2639 } 2640 ip2dbg(("icmp_inbound_error: ipsec\n")); 2641 2642 if (!ipsec_loaded(ipss)) { 2643 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2644 return; 2645 } 2646 2647 if (ipha->ipha_protocol == IPPROTO_ESP) 2648 ipsec_rc = ipsecesp_icmp_error(first_mp); 2649 else 2650 ipsec_rc = ipsecah_icmp_error(first_mp); 2651 if (ipsec_rc == IPSEC_STATUS_FAILED) 2652 return; 2653 2654 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2655 return; 2656 } 2657 default: 2658 /* 2659 * The ripha header is only used for the lookup and we 2660 * only set the src and dst addresses and protocol. 2661 */ 2662 ripha.ipha_src = ipha->ipha_dst; 2663 ripha.ipha_dst = ipha->ipha_src; 2664 ripha.ipha_protocol = ipha->ipha_protocol; 2665 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2666 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2667 ntohl(ipha->ipha_dst), 2668 icmph->icmph_type, icmph->icmph_code)); 2669 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2670 ipha_t *in_ipha; 2671 2672 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2673 mp->b_wptr) { 2674 if (!pullupmsg(mp, (uchar_t *)ipha + 2675 hdr_length + sizeof (ipha_t) - 2676 mp->b_rptr)) { 2677 goto discard_pkt; 2678 } 2679 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2680 ipha = (ipha_t *)&icmph[1]; 2681 } 2682 /* 2683 * Caller has verified that length has to be 2684 * at least the size of IP header. 2685 */ 2686 ASSERT(hdr_length >= sizeof (ipha_t)); 2687 /* 2688 * Check the sanity of the inner IP header like 2689 * we did for the outer header. 2690 */ 2691 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2692 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2693 goto discard_pkt; 2694 } 2695 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2696 goto discard_pkt; 2697 } 2698 /* Check for Self-encapsulated tunnels */ 2699 if (in_ipha->ipha_src == ipha->ipha_src && 2700 in_ipha->ipha_dst == ipha->ipha_dst) { 2701 2702 mp = icmp_inbound_self_encap_error(mp, 2703 iph_hdr_length, hdr_length); 2704 if (mp == NULL) 2705 goto discard_pkt; 2706 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2707 ipha = (ipha_t *)&icmph[1]; 2708 hdr_length = IPH_HDR_LENGTH(ipha); 2709 /* 2710 * The packet in error is self-encapsualted. 2711 * And we are finding it further encapsulated 2712 * which we could not have possibly generated. 2713 */ 2714 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2715 goto discard_pkt; 2716 } 2717 icmp_inbound_error_fanout(q, ill, first_mp, 2718 icmph, ipha, iph_hdr_length, hdr_length, 2719 mctl_present, ip_policy, recv_ill, zoneid); 2720 return; 2721 } 2722 } 2723 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2724 ipha->ipha_protocol == IPPROTO_IPV6) && 2725 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2726 ii != NULL && 2727 ii->ipsec_in_loopback && 2728 ii->ipsec_in_secure) { 2729 /* 2730 * For IP tunnels that get a looped-back 2731 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2732 * reported new MTU to take into account the IPsec 2733 * headers protecting this configured tunnel. 2734 * 2735 * This allows the tunnel module (tun.c) to blindly 2736 * accept the MTU reported in an ICMP "too big" 2737 * message. 2738 * 2739 * Non-looped back ICMP messages will just be 2740 * handled by the security protocols (if needed), 2741 * and the first subsequent packet will hit this 2742 * path. 2743 */ 2744 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2745 ipsec_in_extra_length(first_mp)); 2746 } 2747 /* Have to change db_type after any pullupmsg */ 2748 DB_TYPE(mp) = M_CTL; 2749 2750 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2751 ip_policy, recv_ill, zoneid); 2752 return; 2753 } 2754 /* NOTREACHED */ 2755 discard_pkt: 2756 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2757 drop_pkt:; 2758 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2759 freemsg(first_mp); 2760 } 2761 2762 /* 2763 * Common IP options parser. 2764 * 2765 * Setup routine: fill in *optp with options-parsing state, then 2766 * tail-call ipoptp_next to return the first option. 2767 */ 2768 uint8_t 2769 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2770 { 2771 uint32_t totallen; /* total length of all options */ 2772 2773 totallen = ipha->ipha_version_and_hdr_length - 2774 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2775 totallen <<= 2; 2776 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2777 optp->ipoptp_end = optp->ipoptp_next + totallen; 2778 optp->ipoptp_flags = 0; 2779 return (ipoptp_next(optp)); 2780 } 2781 2782 /* 2783 * Common IP options parser: extract next option. 2784 */ 2785 uint8_t 2786 ipoptp_next(ipoptp_t *optp) 2787 { 2788 uint8_t *end = optp->ipoptp_end; 2789 uint8_t *cur = optp->ipoptp_next; 2790 uint8_t opt, len, pointer; 2791 2792 /* 2793 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2794 * has been corrupted. 2795 */ 2796 ASSERT(cur <= end); 2797 2798 if (cur == end) 2799 return (IPOPT_EOL); 2800 2801 opt = cur[IPOPT_OPTVAL]; 2802 2803 /* 2804 * Skip any NOP options. 2805 */ 2806 while (opt == IPOPT_NOP) { 2807 cur++; 2808 if (cur == end) 2809 return (IPOPT_EOL); 2810 opt = cur[IPOPT_OPTVAL]; 2811 } 2812 2813 if (opt == IPOPT_EOL) 2814 return (IPOPT_EOL); 2815 2816 /* 2817 * Option requiring a length. 2818 */ 2819 if ((cur + 1) >= end) { 2820 optp->ipoptp_flags |= IPOPTP_ERROR; 2821 return (IPOPT_EOL); 2822 } 2823 len = cur[IPOPT_OLEN]; 2824 if (len < 2) { 2825 optp->ipoptp_flags |= IPOPTP_ERROR; 2826 return (IPOPT_EOL); 2827 } 2828 optp->ipoptp_cur = cur; 2829 optp->ipoptp_len = len; 2830 optp->ipoptp_next = cur + len; 2831 if (cur + len > end) { 2832 optp->ipoptp_flags |= IPOPTP_ERROR; 2833 return (IPOPT_EOL); 2834 } 2835 2836 /* 2837 * For the options which require a pointer field, make sure 2838 * its there, and make sure it points to either something 2839 * inside this option, or the end of the option. 2840 */ 2841 switch (opt) { 2842 case IPOPT_RR: 2843 case IPOPT_TS: 2844 case IPOPT_LSRR: 2845 case IPOPT_SSRR: 2846 if (len <= IPOPT_OFFSET) { 2847 optp->ipoptp_flags |= IPOPTP_ERROR; 2848 return (opt); 2849 } 2850 pointer = cur[IPOPT_OFFSET]; 2851 if (pointer - 1 > len) { 2852 optp->ipoptp_flags |= IPOPTP_ERROR; 2853 return (opt); 2854 } 2855 break; 2856 } 2857 2858 /* 2859 * Sanity check the pointer field based on the type of the 2860 * option. 2861 */ 2862 switch (opt) { 2863 case IPOPT_RR: 2864 case IPOPT_SSRR: 2865 case IPOPT_LSRR: 2866 if (pointer < IPOPT_MINOFF_SR) 2867 optp->ipoptp_flags |= IPOPTP_ERROR; 2868 break; 2869 case IPOPT_TS: 2870 if (pointer < IPOPT_MINOFF_IT) 2871 optp->ipoptp_flags |= IPOPTP_ERROR; 2872 /* 2873 * Note that the Internet Timestamp option also 2874 * contains two four bit fields (the Overflow field, 2875 * and the Flag field), which follow the pointer 2876 * field. We don't need to check that these fields 2877 * fall within the length of the option because this 2878 * was implicitely done above. We've checked that the 2879 * pointer value is at least IPOPT_MINOFF_IT, and that 2880 * it falls within the option. Since IPOPT_MINOFF_IT > 2881 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2882 */ 2883 ASSERT(len > IPOPT_POS_OV_FLG); 2884 break; 2885 } 2886 2887 return (opt); 2888 } 2889 2890 /* 2891 * Use the outgoing IP header to create an IP_OPTIONS option the way 2892 * it was passed down from the application. 2893 */ 2894 int 2895 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2896 { 2897 ipoptp_t opts; 2898 const uchar_t *opt; 2899 uint8_t optval; 2900 uint8_t optlen; 2901 uint32_t len = 0; 2902 uchar_t *buf1 = buf; 2903 2904 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2905 len += IP_ADDR_LEN; 2906 bzero(buf1, IP_ADDR_LEN); 2907 2908 /* 2909 * OK to cast away const here, as we don't store through the returned 2910 * opts.ipoptp_cur pointer. 2911 */ 2912 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2913 optval != IPOPT_EOL; 2914 optval = ipoptp_next(&opts)) { 2915 int off; 2916 2917 opt = opts.ipoptp_cur; 2918 optlen = opts.ipoptp_len; 2919 switch (optval) { 2920 case IPOPT_SSRR: 2921 case IPOPT_LSRR: 2922 2923 /* 2924 * Insert ipha_dst as the first entry in the source 2925 * route and move down the entries on step. 2926 * The last entry gets placed at buf1. 2927 */ 2928 buf[IPOPT_OPTVAL] = optval; 2929 buf[IPOPT_OLEN] = optlen; 2930 buf[IPOPT_OFFSET] = optlen; 2931 2932 off = optlen - IP_ADDR_LEN; 2933 if (off < 0) { 2934 /* No entries in source route */ 2935 break; 2936 } 2937 /* Last entry in source route */ 2938 bcopy(opt + off, buf1, IP_ADDR_LEN); 2939 off -= IP_ADDR_LEN; 2940 2941 while (off > 0) { 2942 bcopy(opt + off, 2943 buf + off + IP_ADDR_LEN, 2944 IP_ADDR_LEN); 2945 off -= IP_ADDR_LEN; 2946 } 2947 /* ipha_dst into first slot */ 2948 bcopy(&ipha->ipha_dst, 2949 buf + off + IP_ADDR_LEN, 2950 IP_ADDR_LEN); 2951 buf += optlen; 2952 len += optlen; 2953 break; 2954 2955 case IPOPT_COMSEC: 2956 case IPOPT_SECURITY: 2957 /* if passing up a label is not ok, then remove */ 2958 if (is_system_labeled()) 2959 break; 2960 /* FALLTHROUGH */ 2961 default: 2962 bcopy(opt, buf, optlen); 2963 buf += optlen; 2964 len += optlen; 2965 break; 2966 } 2967 } 2968 done: 2969 /* Pad the resulting options */ 2970 while (len & 0x3) { 2971 *buf++ = IPOPT_EOL; 2972 len++; 2973 } 2974 return (len); 2975 } 2976 2977 /* 2978 * Update any record route or timestamp options to include this host. 2979 * Reverse any source route option. 2980 * This routine assumes that the options are well formed i.e. that they 2981 * have already been checked. 2982 */ 2983 static void 2984 icmp_options_update(ipha_t *ipha) 2985 { 2986 ipoptp_t opts; 2987 uchar_t *opt; 2988 uint8_t optval; 2989 ipaddr_t src; /* Our local address */ 2990 ipaddr_t dst; 2991 2992 ip2dbg(("icmp_options_update\n")); 2993 src = ipha->ipha_src; 2994 dst = ipha->ipha_dst; 2995 2996 for (optval = ipoptp_first(&opts, ipha); 2997 optval != IPOPT_EOL; 2998 optval = ipoptp_next(&opts)) { 2999 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3000 opt = opts.ipoptp_cur; 3001 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3002 optval, opts.ipoptp_len)); 3003 switch (optval) { 3004 int off1, off2; 3005 case IPOPT_SSRR: 3006 case IPOPT_LSRR: 3007 /* 3008 * Reverse the source route. The first entry 3009 * should be the next to last one in the current 3010 * source route (the last entry is our address). 3011 * The last entry should be the final destination. 3012 */ 3013 off1 = IPOPT_MINOFF_SR - 1; 3014 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3015 if (off2 < 0) { 3016 /* No entries in source route */ 3017 ip1dbg(( 3018 "icmp_options_update: bad src route\n")); 3019 break; 3020 } 3021 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3022 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3023 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3024 off2 -= IP_ADDR_LEN; 3025 3026 while (off1 < off2) { 3027 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3028 bcopy((char *)opt + off2, (char *)opt + off1, 3029 IP_ADDR_LEN); 3030 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3031 off1 += IP_ADDR_LEN; 3032 off2 -= IP_ADDR_LEN; 3033 } 3034 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3035 break; 3036 } 3037 } 3038 } 3039 3040 /* 3041 * Process received ICMP Redirect messages. 3042 */ 3043 static void 3044 icmp_redirect(ill_t *ill, mblk_t *mp) 3045 { 3046 ipha_t *ipha; 3047 int iph_hdr_length; 3048 icmph_t *icmph; 3049 ipha_t *ipha_err; 3050 ire_t *ire; 3051 ire_t *prev_ire; 3052 ire_t *save_ire; 3053 ipaddr_t src, dst, gateway; 3054 iulp_t ulp_info = { 0 }; 3055 int error; 3056 ip_stack_t *ipst; 3057 3058 ASSERT(ill != NULL); 3059 ipst = ill->ill_ipst; 3060 3061 ipha = (ipha_t *)mp->b_rptr; 3062 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3063 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3064 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3065 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3066 freemsg(mp); 3067 return; 3068 } 3069 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3070 ipha_err = (ipha_t *)&icmph[1]; 3071 src = ipha->ipha_src; 3072 dst = ipha_err->ipha_dst; 3073 gateway = icmph->icmph_rd_gateway; 3074 /* Make sure the new gateway is reachable somehow. */ 3075 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3076 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3077 /* 3078 * Make sure we had a route for the dest in question and that 3079 * that route was pointing to the old gateway (the source of the 3080 * redirect packet.) 3081 */ 3082 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3083 NULL, MATCH_IRE_GW, ipst); 3084 /* 3085 * Check that 3086 * the redirect was not from ourselves 3087 * the new gateway and the old gateway are directly reachable 3088 */ 3089 if (!prev_ire || 3090 !ire || 3091 ire->ire_type == IRE_LOCAL) { 3092 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3093 freemsg(mp); 3094 if (ire != NULL) 3095 ire_refrele(ire); 3096 if (prev_ire != NULL) 3097 ire_refrele(prev_ire); 3098 return; 3099 } 3100 3101 /* 3102 * Should we use the old ULP info to create the new gateway? From 3103 * a user's perspective, we should inherit the info so that it 3104 * is a "smooth" transition. If we do not do that, then new 3105 * connections going thru the new gateway will have no route metrics, 3106 * which is counter-intuitive to user. From a network point of 3107 * view, this may or may not make sense even though the new gateway 3108 * is still directly connected to us so the route metrics should not 3109 * change much. 3110 * 3111 * But if the old ire_uinfo is not initialized, we do another 3112 * recursive lookup on the dest using the new gateway. There may 3113 * be a route to that. If so, use it to initialize the redirect 3114 * route. 3115 */ 3116 if (prev_ire->ire_uinfo.iulp_set) { 3117 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3118 } else { 3119 ire_t *tmp_ire; 3120 ire_t *sire; 3121 3122 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3123 ALL_ZONES, 0, NULL, 3124 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3125 ipst); 3126 if (sire != NULL) { 3127 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3128 /* 3129 * If sire != NULL, ire_ftable_lookup() should not 3130 * return a NULL value. 3131 */ 3132 ASSERT(tmp_ire != NULL); 3133 ire_refrele(tmp_ire); 3134 ire_refrele(sire); 3135 } else if (tmp_ire != NULL) { 3136 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3137 sizeof (iulp_t)); 3138 ire_refrele(tmp_ire); 3139 } 3140 } 3141 if (prev_ire->ire_type == IRE_CACHE) 3142 ire_delete(prev_ire); 3143 ire_refrele(prev_ire); 3144 /* 3145 * TODO: more precise handling for cases 0, 2, 3, the latter two 3146 * require TOS routing 3147 */ 3148 switch (icmph->icmph_code) { 3149 case 0: 3150 case 1: 3151 /* TODO: TOS specificity for cases 2 and 3 */ 3152 case 2: 3153 case 3: 3154 break; 3155 default: 3156 freemsg(mp); 3157 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3158 ire_refrele(ire); 3159 return; 3160 } 3161 /* 3162 * Create a Route Association. This will allow us to remember that 3163 * someone we believe told us to use the particular gateway. 3164 */ 3165 save_ire = ire; 3166 ire = ire_create( 3167 (uchar_t *)&dst, /* dest addr */ 3168 (uchar_t *)&ip_g_all_ones, /* mask */ 3169 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3170 (uchar_t *)&gateway, /* gateway addr */ 3171 &save_ire->ire_max_frag, /* max frag */ 3172 NULL, /* no src nce */ 3173 NULL, /* no rfq */ 3174 NULL, /* no stq */ 3175 IRE_HOST, 3176 NULL, /* ipif */ 3177 0, /* cmask */ 3178 0, /* phandle */ 3179 0, /* ihandle */ 3180 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3181 &ulp_info, 3182 NULL, /* tsol_gc_t */ 3183 NULL, /* gcgrp */ 3184 ipst); 3185 3186 if (ire == NULL) { 3187 freemsg(mp); 3188 ire_refrele(save_ire); 3189 return; 3190 } 3191 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3192 ire_refrele(save_ire); 3193 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3194 3195 if (error == 0) { 3196 ire_refrele(ire); /* Held in ire_add_v4 */ 3197 /* tell routing sockets that we received a redirect */ 3198 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3199 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3200 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3201 } 3202 3203 /* 3204 * Delete any existing IRE_HOST type redirect ires for this destination. 3205 * This together with the added IRE has the effect of 3206 * modifying an existing redirect. 3207 */ 3208 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3209 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3210 if (prev_ire != NULL) { 3211 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3212 ire_delete(prev_ire); 3213 ire_refrele(prev_ire); 3214 } 3215 3216 freemsg(mp); 3217 } 3218 3219 /* 3220 * Generate an ICMP parameter problem message. 3221 */ 3222 static void 3223 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3224 ip_stack_t *ipst) 3225 { 3226 icmph_t icmph; 3227 boolean_t mctl_present; 3228 mblk_t *first_mp; 3229 3230 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3231 3232 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3233 if (mctl_present) 3234 freeb(first_mp); 3235 return; 3236 } 3237 3238 bzero(&icmph, sizeof (icmph_t)); 3239 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3240 icmph.icmph_pp_ptr = ptr; 3241 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3242 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3243 ipst); 3244 } 3245 3246 /* 3247 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3248 * the ICMP header pointed to by "stuff". (May be called as writer.) 3249 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3250 * an icmp error packet can be sent. 3251 * Assigns an appropriate source address to the packet. If ipha_dst is 3252 * one of our addresses use it for source. Otherwise pick a source based 3253 * on a route lookup back to ipha_src. 3254 * Note that ipha_src must be set here since the 3255 * packet is likely to arrive on an ill queue in ip_wput() which will 3256 * not set a source address. 3257 */ 3258 static void 3259 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3260 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3261 { 3262 ipaddr_t dst; 3263 icmph_t *icmph; 3264 ipha_t *ipha; 3265 uint_t len_needed; 3266 size_t msg_len; 3267 mblk_t *mp1; 3268 ipaddr_t src; 3269 ire_t *ire; 3270 mblk_t *ipsec_mp; 3271 ipsec_out_t *io = NULL; 3272 3273 if (mctl_present) { 3274 /* 3275 * If it is : 3276 * 3277 * 1) a IPSEC_OUT, then this is caused by outbound 3278 * datagram originating on this host. IPsec processing 3279 * may or may not have been done. Refer to comments above 3280 * icmp_inbound_error_fanout for details. 3281 * 3282 * 2) a IPSEC_IN if we are generating a icmp_message 3283 * for an incoming datagram destined for us i.e called 3284 * from ip_fanout_send_icmp. 3285 */ 3286 ipsec_info_t *in; 3287 ipsec_mp = mp; 3288 mp = ipsec_mp->b_cont; 3289 3290 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3291 ipha = (ipha_t *)mp->b_rptr; 3292 3293 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3294 in->ipsec_info_type == IPSEC_IN); 3295 3296 if (in->ipsec_info_type == IPSEC_IN) { 3297 /* 3298 * Convert the IPSEC_IN to IPSEC_OUT. 3299 */ 3300 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3301 BUMP_MIB(&ipst->ips_ip_mib, 3302 ipIfStatsOutDiscards); 3303 return; 3304 } 3305 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3306 } else { 3307 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3308 io = (ipsec_out_t *)in; 3309 /* 3310 * Clear out ipsec_out_proc_begin, so we do a fresh 3311 * ire lookup. 3312 */ 3313 io->ipsec_out_proc_begin = B_FALSE; 3314 } 3315 ASSERT(zoneid == io->ipsec_out_zoneid); 3316 ASSERT(zoneid != ALL_ZONES); 3317 } else { 3318 /* 3319 * This is in clear. The icmp message we are building 3320 * here should go out in clear. 3321 * 3322 * Pardon the convolution of it all, but it's easier to 3323 * allocate a "use cleartext" IPSEC_IN message and convert 3324 * it than it is to allocate a new one. 3325 */ 3326 ipsec_in_t *ii; 3327 ASSERT(DB_TYPE(mp) == M_DATA); 3328 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3329 if (ipsec_mp == NULL) { 3330 freemsg(mp); 3331 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3332 return; 3333 } 3334 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3335 3336 /* This is not a secure packet */ 3337 ii->ipsec_in_secure = B_FALSE; 3338 /* 3339 * For trusted extensions using a shared IP address we can 3340 * send using any zoneid. 3341 */ 3342 if (zoneid == ALL_ZONES) 3343 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3344 else 3345 ii->ipsec_in_zoneid = zoneid; 3346 ipsec_mp->b_cont = mp; 3347 ipha = (ipha_t *)mp->b_rptr; 3348 /* 3349 * Convert the IPSEC_IN to IPSEC_OUT. 3350 */ 3351 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3352 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3353 return; 3354 } 3355 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3356 } 3357 3358 /* Remember our eventual destination */ 3359 dst = ipha->ipha_src; 3360 3361 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3362 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3363 if (ire != NULL && 3364 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3365 src = ipha->ipha_dst; 3366 } else { 3367 if (ire != NULL) 3368 ire_refrele(ire); 3369 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3370 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3371 ipst); 3372 if (ire == NULL) { 3373 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3374 freemsg(ipsec_mp); 3375 return; 3376 } 3377 src = ire->ire_src_addr; 3378 } 3379 3380 if (ire != NULL) 3381 ire_refrele(ire); 3382 3383 /* 3384 * Check if we can send back more then 8 bytes in addition to 3385 * the IP header. We try to send 64 bytes of data and the internal 3386 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3387 */ 3388 len_needed = IPH_HDR_LENGTH(ipha); 3389 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3390 ipha->ipha_protocol == IPPROTO_IPV6) { 3391 3392 if (!pullupmsg(mp, -1)) { 3393 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3394 freemsg(ipsec_mp); 3395 return; 3396 } 3397 ipha = (ipha_t *)mp->b_rptr; 3398 3399 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3400 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3401 len_needed)); 3402 } else { 3403 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3404 3405 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3406 len_needed += ip_hdr_length_v6(mp, ip6h); 3407 } 3408 } 3409 len_needed += ipst->ips_ip_icmp_return; 3410 msg_len = msgdsize(mp); 3411 if (msg_len > len_needed) { 3412 (void) adjmsg(mp, len_needed - msg_len); 3413 msg_len = len_needed; 3414 } 3415 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3416 if (mp1 == NULL) { 3417 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3418 freemsg(ipsec_mp); 3419 return; 3420 } 3421 mp1->b_cont = mp; 3422 mp = mp1; 3423 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3424 ipsec_mp->b_rptr == (uint8_t *)io && 3425 io->ipsec_out_type == IPSEC_OUT); 3426 ipsec_mp->b_cont = mp; 3427 3428 /* 3429 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3430 * node generates be accepted in peace by all on-host destinations. 3431 * If we do NOT assume that all on-host destinations trust 3432 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3433 * (Look for ipsec_out_icmp_loopback). 3434 */ 3435 io->ipsec_out_icmp_loopback = B_TRUE; 3436 3437 ipha = (ipha_t *)mp->b_rptr; 3438 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3439 *ipha = icmp_ipha; 3440 ipha->ipha_src = src; 3441 ipha->ipha_dst = dst; 3442 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3443 msg_len += sizeof (icmp_ipha) + len; 3444 if (msg_len > IP_MAXPACKET) { 3445 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3446 msg_len = IP_MAXPACKET; 3447 } 3448 ipha->ipha_length = htons((uint16_t)msg_len); 3449 icmph = (icmph_t *)&ipha[1]; 3450 bcopy(stuff, icmph, len); 3451 icmph->icmph_checksum = 0; 3452 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3453 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3454 put(q, ipsec_mp); 3455 } 3456 3457 /* 3458 * Determine if an ICMP error packet can be sent given the rate limit. 3459 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3460 * in milliseconds) and a burst size. Burst size number of packets can 3461 * be sent arbitrarely closely spaced. 3462 * The state is tracked using two variables to implement an approximate 3463 * token bucket filter: 3464 * icmp_pkt_err_last - lbolt value when the last burst started 3465 * icmp_pkt_err_sent - number of packets sent in current burst 3466 */ 3467 boolean_t 3468 icmp_err_rate_limit(ip_stack_t *ipst) 3469 { 3470 clock_t now = TICK_TO_MSEC(lbolt); 3471 uint_t refilled; /* Number of packets refilled in tbf since last */ 3472 /* Guard against changes by loading into local variable */ 3473 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3474 3475 if (err_interval == 0) 3476 return (B_FALSE); 3477 3478 if (ipst->ips_icmp_pkt_err_last > now) { 3479 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3480 ipst->ips_icmp_pkt_err_last = 0; 3481 ipst->ips_icmp_pkt_err_sent = 0; 3482 } 3483 /* 3484 * If we are in a burst update the token bucket filter. 3485 * Update the "last" time to be close to "now" but make sure 3486 * we don't loose precision. 3487 */ 3488 if (ipst->ips_icmp_pkt_err_sent != 0) { 3489 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3490 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3491 ipst->ips_icmp_pkt_err_sent = 0; 3492 } else { 3493 ipst->ips_icmp_pkt_err_sent -= refilled; 3494 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3495 } 3496 } 3497 if (ipst->ips_icmp_pkt_err_sent == 0) { 3498 /* Start of new burst */ 3499 ipst->ips_icmp_pkt_err_last = now; 3500 } 3501 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3502 ipst->ips_icmp_pkt_err_sent++; 3503 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3504 ipst->ips_icmp_pkt_err_sent)); 3505 return (B_FALSE); 3506 } 3507 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3508 return (B_TRUE); 3509 } 3510 3511 /* 3512 * Check if it is ok to send an IPv4 ICMP error packet in 3513 * response to the IPv4 packet in mp. 3514 * Free the message and return null if no 3515 * ICMP error packet should be sent. 3516 */ 3517 static mblk_t * 3518 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3519 { 3520 icmph_t *icmph; 3521 ipha_t *ipha; 3522 uint_t len_needed; 3523 ire_t *src_ire; 3524 ire_t *dst_ire; 3525 3526 if (!mp) 3527 return (NULL); 3528 ipha = (ipha_t *)mp->b_rptr; 3529 if (ip_csum_hdr(ipha)) { 3530 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3531 freemsg(mp); 3532 return (NULL); 3533 } 3534 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3535 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3536 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3537 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3538 if (src_ire != NULL || dst_ire != NULL || 3539 CLASSD(ipha->ipha_dst) || 3540 CLASSD(ipha->ipha_src) || 3541 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3542 /* Note: only errors to the fragment with offset 0 */ 3543 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3544 freemsg(mp); 3545 if (src_ire != NULL) 3546 ire_refrele(src_ire); 3547 if (dst_ire != NULL) 3548 ire_refrele(dst_ire); 3549 return (NULL); 3550 } 3551 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3552 /* 3553 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3554 * errors in response to any ICMP errors. 3555 */ 3556 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3557 if (mp->b_wptr - mp->b_rptr < len_needed) { 3558 if (!pullupmsg(mp, len_needed)) { 3559 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3560 freemsg(mp); 3561 return (NULL); 3562 } 3563 ipha = (ipha_t *)mp->b_rptr; 3564 } 3565 icmph = (icmph_t *) 3566 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3567 switch (icmph->icmph_type) { 3568 case ICMP_DEST_UNREACHABLE: 3569 case ICMP_SOURCE_QUENCH: 3570 case ICMP_TIME_EXCEEDED: 3571 case ICMP_PARAM_PROBLEM: 3572 case ICMP_REDIRECT: 3573 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3574 freemsg(mp); 3575 return (NULL); 3576 default: 3577 break; 3578 } 3579 } 3580 /* 3581 * If this is a labeled system, then check to see if we're allowed to 3582 * send a response to this particular sender. If not, then just drop. 3583 */ 3584 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3585 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3586 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3587 freemsg(mp); 3588 return (NULL); 3589 } 3590 if (icmp_err_rate_limit(ipst)) { 3591 /* 3592 * Only send ICMP error packets every so often. 3593 * This should be done on a per port/source basis, 3594 * but for now this will suffice. 3595 */ 3596 freemsg(mp); 3597 return (NULL); 3598 } 3599 return (mp); 3600 } 3601 3602 /* 3603 * Generate an ICMP redirect message. 3604 */ 3605 static void 3606 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3607 { 3608 icmph_t icmph; 3609 3610 /* 3611 * We are called from ip_rput where we could 3612 * not have attached an IPSEC_IN. 3613 */ 3614 ASSERT(mp->b_datap->db_type == M_DATA); 3615 3616 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3617 return; 3618 } 3619 3620 bzero(&icmph, sizeof (icmph_t)); 3621 icmph.icmph_type = ICMP_REDIRECT; 3622 icmph.icmph_code = 1; 3623 icmph.icmph_rd_gateway = gateway; 3624 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3625 /* Redirects sent by router, and router is global zone */ 3626 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3627 } 3628 3629 /* 3630 * Generate an ICMP time exceeded message. 3631 */ 3632 void 3633 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3634 ip_stack_t *ipst) 3635 { 3636 icmph_t icmph; 3637 boolean_t mctl_present; 3638 mblk_t *first_mp; 3639 3640 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3641 3642 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3643 if (mctl_present) 3644 freeb(first_mp); 3645 return; 3646 } 3647 3648 bzero(&icmph, sizeof (icmph_t)); 3649 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3650 icmph.icmph_code = code; 3651 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3652 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3653 ipst); 3654 } 3655 3656 /* 3657 * Generate an ICMP unreachable message. 3658 */ 3659 void 3660 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3661 ip_stack_t *ipst) 3662 { 3663 icmph_t icmph; 3664 mblk_t *first_mp; 3665 boolean_t mctl_present; 3666 3667 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3668 3669 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3670 if (mctl_present) 3671 freeb(first_mp); 3672 return; 3673 } 3674 3675 bzero(&icmph, sizeof (icmph_t)); 3676 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3677 icmph.icmph_code = code; 3678 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3679 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3680 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3681 zoneid, ipst); 3682 } 3683 3684 /* 3685 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3686 * duplicate. As long as someone else holds the address, the interface will 3687 * stay down. When that conflict goes away, the interface is brought back up. 3688 * This is done so that accidental shutdowns of addresses aren't made 3689 * permanent. Your server will recover from a failure. 3690 * 3691 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3692 * user space process (dhcpagent). 3693 * 3694 * Recovery completes if ARP reports that the address is now ours (via 3695 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3696 * 3697 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3698 */ 3699 static void 3700 ipif_dup_recovery(void *arg) 3701 { 3702 ipif_t *ipif = arg; 3703 ill_t *ill = ipif->ipif_ill; 3704 mblk_t *arp_add_mp; 3705 mblk_t *arp_del_mp; 3706 area_t *area; 3707 ip_stack_t *ipst = ill->ill_ipst; 3708 3709 ipif->ipif_recovery_id = 0; 3710 3711 /* 3712 * No lock needed for moving or condemned check, as this is just an 3713 * optimization. 3714 */ 3715 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3716 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3717 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3718 /* No reason to try to bring this address back. */ 3719 return; 3720 } 3721 3722 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3723 goto alloc_fail; 3724 3725 if (ipif->ipif_arp_del_mp == NULL) { 3726 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3727 goto alloc_fail; 3728 ipif->ipif_arp_del_mp = arp_del_mp; 3729 } 3730 3731 /* Setting the 'unverified' flag restarts DAD */ 3732 area = (area_t *)arp_add_mp->b_rptr; 3733 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3734 ACE_F_UNVERIFIED; 3735 putnext(ill->ill_rq, arp_add_mp); 3736 return; 3737 3738 alloc_fail: 3739 /* 3740 * On allocation failure, just restart the timer. Note that the ipif 3741 * is down here, so no other thread could be trying to start a recovery 3742 * timer. The ill_lock protects the condemned flag and the recovery 3743 * timer ID. 3744 */ 3745 freemsg(arp_add_mp); 3746 mutex_enter(&ill->ill_lock); 3747 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3748 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3749 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3750 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3751 } 3752 mutex_exit(&ill->ill_lock); 3753 } 3754 3755 /* 3756 * This is for exclusive changes due to ARP. Either tear down an interface due 3757 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3758 */ 3759 /* ARGSUSED */ 3760 static void 3761 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3762 { 3763 ill_t *ill = rq->q_ptr; 3764 arh_t *arh; 3765 ipaddr_t src; 3766 ipif_t *ipif; 3767 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3768 char hbuf[MAC_STR_LEN]; 3769 char sbuf[INET_ADDRSTRLEN]; 3770 const char *failtype; 3771 boolean_t bring_up; 3772 ip_stack_t *ipst = ill->ill_ipst; 3773 3774 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3775 case AR_CN_READY: 3776 failtype = NULL; 3777 bring_up = B_TRUE; 3778 break; 3779 case AR_CN_FAILED: 3780 failtype = "in use"; 3781 bring_up = B_FALSE; 3782 break; 3783 default: 3784 failtype = "claimed"; 3785 bring_up = B_FALSE; 3786 break; 3787 } 3788 3789 arh = (arh_t *)mp->b_cont->b_rptr; 3790 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3791 3792 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3793 sizeof (hbuf)); 3794 (void) ip_dot_addr(src, sbuf); 3795 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3796 3797 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3798 ipif->ipif_lcl_addr != src) { 3799 continue; 3800 } 3801 3802 /* 3803 * If we failed on a recovery probe, then restart the timer to 3804 * try again later. 3805 */ 3806 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3807 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3808 ill->ill_net_type == IRE_IF_RESOLVER && 3809 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3810 ipst->ips_ip_dup_recovery > 0 && 3811 ipif->ipif_recovery_id == 0) { 3812 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3813 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3814 continue; 3815 } 3816 3817 /* 3818 * If what we're trying to do has already been done, then do 3819 * nothing. 3820 */ 3821 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3822 continue; 3823 3824 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3825 3826 if (failtype == NULL) { 3827 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3828 ibuf); 3829 } else { 3830 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3831 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3832 } 3833 3834 if (bring_up) { 3835 ASSERT(ill->ill_dl_up); 3836 /* 3837 * Free up the ARP delete message so we can allocate 3838 * a fresh one through the normal path. 3839 */ 3840 freemsg(ipif->ipif_arp_del_mp); 3841 ipif->ipif_arp_del_mp = NULL; 3842 if (ipif_resolver_up(ipif, Res_act_initial) != 3843 EINPROGRESS) { 3844 ipif->ipif_addr_ready = 1; 3845 (void) ipif_up_done(ipif); 3846 } 3847 continue; 3848 } 3849 3850 mutex_enter(&ill->ill_lock); 3851 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3852 ipif->ipif_flags |= IPIF_DUPLICATE; 3853 ill->ill_ipif_dup_count++; 3854 mutex_exit(&ill->ill_lock); 3855 /* 3856 * Already exclusive on the ill; no need to handle deferred 3857 * processing here. 3858 */ 3859 (void) ipif_down(ipif, NULL, NULL); 3860 ipif_down_tail(ipif); 3861 mutex_enter(&ill->ill_lock); 3862 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3863 ill->ill_net_type == IRE_IF_RESOLVER && 3864 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3865 ipst->ips_ip_dup_recovery > 0) { 3866 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3867 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3868 } 3869 mutex_exit(&ill->ill_lock); 3870 } 3871 freemsg(mp); 3872 } 3873 3874 /* ARGSUSED */ 3875 static void 3876 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3877 { 3878 ill_t *ill = rq->q_ptr; 3879 arh_t *arh; 3880 ipaddr_t src; 3881 ipif_t *ipif; 3882 3883 arh = (arh_t *)mp->b_cont->b_rptr; 3884 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3885 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3886 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3887 (void) ipif_resolver_up(ipif, Res_act_defend); 3888 } 3889 freemsg(mp); 3890 } 3891 3892 /* 3893 * News from ARP. ARP sends notification of interesting events down 3894 * to its clients using M_CTL messages with the interesting ARP packet 3895 * attached via b_cont. 3896 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3897 * queue as opposed to ARP sending the message to all the clients, i.e. all 3898 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3899 * table if a cache IRE is found to delete all the entries for the address in 3900 * the packet. 3901 */ 3902 static void 3903 ip_arp_news(queue_t *q, mblk_t *mp) 3904 { 3905 arcn_t *arcn; 3906 arh_t *arh; 3907 ire_t *ire = NULL; 3908 char hbuf[MAC_STR_LEN]; 3909 char sbuf[INET_ADDRSTRLEN]; 3910 ipaddr_t src; 3911 in6_addr_t v6src; 3912 boolean_t isv6 = B_FALSE; 3913 ipif_t *ipif; 3914 ill_t *ill; 3915 ip_stack_t *ipst; 3916 3917 if (CONN_Q(q)) { 3918 conn_t *connp = Q_TO_CONN(q); 3919 3920 ipst = connp->conn_netstack->netstack_ip; 3921 } else { 3922 ill_t *ill = (ill_t *)q->q_ptr; 3923 3924 ipst = ill->ill_ipst; 3925 } 3926 3927 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3928 if (q->q_next) { 3929 putnext(q, mp); 3930 } else 3931 freemsg(mp); 3932 return; 3933 } 3934 arh = (arh_t *)mp->b_cont->b_rptr; 3935 /* Is it one we are interested in? */ 3936 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3937 isv6 = B_TRUE; 3938 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3939 IPV6_ADDR_LEN); 3940 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3941 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3942 IP_ADDR_LEN); 3943 } else { 3944 freemsg(mp); 3945 return; 3946 } 3947 3948 ill = q->q_ptr; 3949 3950 arcn = (arcn_t *)mp->b_rptr; 3951 switch (arcn->arcn_code) { 3952 case AR_CN_BOGON: 3953 /* 3954 * Someone is sending ARP packets with a source protocol 3955 * address that we have published and for which we believe our 3956 * entry is authoritative and (when ill_arp_extend is set) 3957 * verified to be unique on the network. 3958 * 3959 * The ARP module internally handles the cases where the sender 3960 * is just probing (for DAD) and where the hardware address of 3961 * a non-authoritative entry has changed. Thus, these are the 3962 * real conflicts, and we have to do resolution. 3963 * 3964 * We back away quickly from the address if it's from DHCP or 3965 * otherwise temporary and hasn't been used recently (or at 3966 * all). We'd like to include "deprecated" addresses here as 3967 * well (as there's no real reason to defend something we're 3968 * discarding), but IPMP "reuses" this flag to mean something 3969 * other than the standard meaning. 3970 * 3971 * If the ARP module above is not extended (meaning that it 3972 * doesn't know how to defend the address), then we just log 3973 * the problem as we always did and continue on. It's not 3974 * right, but there's little else we can do, and those old ATM 3975 * users are going away anyway. 3976 */ 3977 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3978 hbuf, sizeof (hbuf)); 3979 (void) ip_dot_addr(src, sbuf); 3980 if (isv6) { 3981 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3982 ipst); 3983 } else { 3984 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3985 } 3986 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3987 uint32_t now; 3988 uint32_t maxage; 3989 clock_t lused; 3990 uint_t maxdefense; 3991 uint_t defs; 3992 3993 /* 3994 * First, figure out if this address hasn't been used 3995 * in a while. If it hasn't, then it's a better 3996 * candidate for abandoning. 3997 */ 3998 ipif = ire->ire_ipif; 3999 ASSERT(ipif != NULL); 4000 now = gethrestime_sec(); 4001 maxage = now - ire->ire_create_time; 4002 if (maxage > ipst->ips_ip_max_temp_idle) 4003 maxage = ipst->ips_ip_max_temp_idle; 4004 lused = drv_hztousec(ddi_get_lbolt() - 4005 ire->ire_last_used_time) / MICROSEC + 1; 4006 if (lused >= maxage && (ipif->ipif_flags & 4007 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4008 maxdefense = ipst->ips_ip_max_temp_defend; 4009 else 4010 maxdefense = ipst->ips_ip_max_defend; 4011 4012 /* 4013 * Now figure out how many times we've defended 4014 * ourselves. Ignore defenses that happened long in 4015 * the past. 4016 */ 4017 mutex_enter(&ire->ire_lock); 4018 if ((defs = ire->ire_defense_count) > 0 && 4019 now - ire->ire_defense_time > 4020 ipst->ips_ip_defend_interval) { 4021 ire->ire_defense_count = defs = 0; 4022 } 4023 ire->ire_defense_count++; 4024 ire->ire_defense_time = now; 4025 mutex_exit(&ire->ire_lock); 4026 ill_refhold(ill); 4027 ire_refrele(ire); 4028 4029 /* 4030 * If we've defended ourselves too many times already, 4031 * then give up and tear down the interface(s) using 4032 * this address. Otherwise, defend by sending out a 4033 * gratuitous ARP. 4034 */ 4035 if (defs >= maxdefense && ill->ill_arp_extend) { 4036 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4037 B_FALSE); 4038 } else { 4039 cmn_err(CE_WARN, 4040 "node %s is using our IP address %s on %s", 4041 hbuf, sbuf, ill->ill_name); 4042 /* 4043 * If this is an old (ATM) ARP module, then 4044 * don't try to defend the address. Remain 4045 * compatible with the old behavior. Defend 4046 * only with new ARP. 4047 */ 4048 if (ill->ill_arp_extend) { 4049 qwriter_ip(ill, q, mp, ip_arp_defend, 4050 NEW_OP, B_FALSE); 4051 } else { 4052 ill_refrele(ill); 4053 } 4054 } 4055 return; 4056 } 4057 cmn_err(CE_WARN, 4058 "proxy ARP problem? Node '%s' is using %s on %s", 4059 hbuf, sbuf, ill->ill_name); 4060 if (ire != NULL) 4061 ire_refrele(ire); 4062 break; 4063 case AR_CN_ANNOUNCE: 4064 if (isv6) { 4065 /* 4066 * For XRESOLV interfaces. 4067 * Delete the IRE cache entry and NCE for this 4068 * v6 address 4069 */ 4070 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4071 /* 4072 * If v6src is a non-zero, it's a router address 4073 * as below. Do the same sort of thing to clean 4074 * out off-net IRE_CACHE entries that go through 4075 * the router. 4076 */ 4077 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4078 ire_walk_v6(ire_delete_cache_gw_v6, 4079 (char *)&v6src, ALL_ZONES, ipst); 4080 } 4081 } else { 4082 nce_hw_map_t hwm; 4083 4084 /* 4085 * ARP gives us a copy of any packet where it thinks 4086 * the address has changed, so that we can update our 4087 * caches. We're responsible for caching known answers 4088 * in the current design. We check whether the 4089 * hardware address really has changed in all of our 4090 * entries that have cached this mapping, and if so, we 4091 * blow them away. This way we will immediately pick 4092 * up the rare case of a host changing hardware 4093 * address. 4094 */ 4095 if (src == 0) 4096 break; 4097 hwm.hwm_addr = src; 4098 hwm.hwm_hwlen = arh->arh_hlen; 4099 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4100 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4101 ndp_walk_common(ipst->ips_ndp4, NULL, 4102 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4103 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4104 } 4105 break; 4106 case AR_CN_READY: 4107 /* No external v6 resolver has a contract to use this */ 4108 if (isv6) 4109 break; 4110 /* If the link is down, we'll retry this later */ 4111 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4112 break; 4113 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4114 NULL, NULL, ipst); 4115 if (ipif != NULL) { 4116 /* 4117 * If this is a duplicate recovery, then we now need to 4118 * go exclusive to bring this thing back up. 4119 */ 4120 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4121 IPIF_DUPLICATE) { 4122 ipif_refrele(ipif); 4123 ill_refhold(ill); 4124 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4125 B_FALSE); 4126 return; 4127 } 4128 /* 4129 * If this is the first notice that this address is 4130 * ready, then let the user know now. 4131 */ 4132 if ((ipif->ipif_flags & IPIF_UP) && 4133 !ipif->ipif_addr_ready) { 4134 ipif_mask_reply(ipif); 4135 ip_rts_ifmsg(ipif); 4136 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4137 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4138 } 4139 ipif->ipif_addr_ready = 1; 4140 ipif_refrele(ipif); 4141 } 4142 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4143 if (ire != NULL) { 4144 ire->ire_defense_count = 0; 4145 ire_refrele(ire); 4146 } 4147 break; 4148 case AR_CN_FAILED: 4149 /* No external v6 resolver has a contract to use this */ 4150 if (isv6) 4151 break; 4152 ill_refhold(ill); 4153 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4154 return; 4155 } 4156 freemsg(mp); 4157 } 4158 4159 /* 4160 * Create a mblk suitable for carrying the interface index and/or source link 4161 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4162 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4163 * application. 4164 */ 4165 mblk_t * 4166 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4167 ip_stack_t *ipst) 4168 { 4169 mblk_t *mp; 4170 ip_pktinfo_t *pinfo; 4171 ipha_t *ipha; 4172 struct ether_header *pether; 4173 4174 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4175 if (mp == NULL) { 4176 ip1dbg(("ip_add_info: allocation failure.\n")); 4177 return (data_mp); 4178 } 4179 4180 ipha = (ipha_t *)data_mp->b_rptr; 4181 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4182 bzero(pinfo, sizeof (ip_pktinfo_t)); 4183 pinfo->ip_pkt_flags = (uchar_t)flags; 4184 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4185 4186 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4187 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4188 if (flags & IPF_RECVADDR) { 4189 ipif_t *ipif; 4190 ire_t *ire; 4191 4192 /* 4193 * Only valid for V4 4194 */ 4195 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4196 (IPV4_VERSION << 4)); 4197 4198 ipif = ipif_get_next_ipif(NULL, ill); 4199 if (ipif != NULL) { 4200 /* 4201 * Since a decision has already been made to deliver the 4202 * packet, there is no need to test for SECATTR and 4203 * ZONEONLY. 4204 * When a multicast packet is transmitted 4205 * a cache entry is created for the multicast address. 4206 * When delivering a copy of the packet or when new 4207 * packets are received we do not want to match on the 4208 * cached entry so explicitly match on 4209 * IRE_LOCAL and IRE_LOOPBACK 4210 */ 4211 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4212 IRE_LOCAL | IRE_LOOPBACK, 4213 ipif, zoneid, NULL, 4214 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4215 if (ire == NULL) { 4216 /* 4217 * packet must have come on a different 4218 * interface. 4219 * Since a decision has already been made to 4220 * deliver the packet, there is no need to test 4221 * for SECATTR and ZONEONLY. 4222 * Only match on local and broadcast ire's. 4223 * See detailed comment above. 4224 */ 4225 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4226 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4227 NULL, MATCH_IRE_TYPE, ipst); 4228 } 4229 4230 if (ire == NULL) { 4231 /* 4232 * This is either a multicast packet or 4233 * the address has been removed since 4234 * the packet was received. 4235 * Return INADDR_ANY so that normal source 4236 * selection occurs for the response. 4237 */ 4238 4239 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4240 } else { 4241 pinfo->ip_pkt_match_addr.s_addr = 4242 ire->ire_src_addr; 4243 ire_refrele(ire); 4244 } 4245 ipif_refrele(ipif); 4246 } else { 4247 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4248 } 4249 } 4250 4251 pether = (struct ether_header *)((char *)ipha 4252 - sizeof (struct ether_header)); 4253 /* 4254 * Make sure the interface is an ethernet type, since this option 4255 * is currently supported only on this type of interface. Also make 4256 * sure we are pointing correctly above db_base. 4257 */ 4258 4259 if ((flags & IPF_RECVSLLA) && 4260 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4261 (ill->ill_type == IFT_ETHER) && 4262 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4263 4264 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4265 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4266 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4267 } else { 4268 /* 4269 * Clear the bit. Indicate to upper layer that IP is not 4270 * sending this ancillary info. 4271 */ 4272 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4273 } 4274 4275 mp->b_datap->db_type = M_CTL; 4276 mp->b_wptr += sizeof (ip_pktinfo_t); 4277 mp->b_cont = data_mp; 4278 4279 return (mp); 4280 } 4281 4282 /* 4283 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4284 * part of the bind request. 4285 */ 4286 4287 boolean_t 4288 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4289 { 4290 ipsec_in_t *ii; 4291 4292 ASSERT(policy_mp != NULL); 4293 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4294 4295 ii = (ipsec_in_t *)policy_mp->b_rptr; 4296 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4297 4298 connp->conn_policy = ii->ipsec_in_policy; 4299 ii->ipsec_in_policy = NULL; 4300 4301 if (ii->ipsec_in_action != NULL) { 4302 if (connp->conn_latch == NULL) { 4303 connp->conn_latch = iplatch_create(); 4304 if (connp->conn_latch == NULL) 4305 return (B_FALSE); 4306 } 4307 ipsec_latch_inbound(connp->conn_latch, ii); 4308 } 4309 return (B_TRUE); 4310 } 4311 4312 /* 4313 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4314 * and to arrange for power-fanout assist. The ULP is identified by 4315 * adding a single byte at the end of the original bind message. 4316 * A ULP other than UDP or TCP that wishes to be recognized passes 4317 * down a bind with a zero length address. 4318 * 4319 * The binding works as follows: 4320 * - A zero byte address means just bind to the protocol. 4321 * - A four byte address is treated as a request to validate 4322 * that the address is a valid local address, appropriate for 4323 * an application to bind to. This does not affect any fanout 4324 * information in IP. 4325 * - A sizeof sin_t byte address is used to bind to only the local address 4326 * and port. 4327 * - A sizeof ipa_conn_t byte address contains complete fanout information 4328 * consisting of local and remote addresses and ports. In 4329 * this case, the addresses are both validated as appropriate 4330 * for this operation, and, if so, the information is retained 4331 * for use in the inbound fanout. 4332 * 4333 * The ULP (except in the zero-length bind) can append an 4334 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4335 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4336 * a copy of the source or destination IRE (source for local bind; 4337 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4338 * policy information contained should be copied on to the conn. 4339 * 4340 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4341 */ 4342 mblk_t * 4343 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4344 { 4345 ssize_t len; 4346 struct T_bind_req *tbr; 4347 sin_t *sin; 4348 ipa_conn_t *ac; 4349 uchar_t *ucp; 4350 mblk_t *mp1; 4351 boolean_t ire_requested; 4352 boolean_t ipsec_policy_set = B_FALSE; 4353 int error = 0; 4354 int protocol; 4355 ipa_conn_x_t *acx; 4356 4357 ASSERT(!connp->conn_af_isv6); 4358 connp->conn_pkt_isv6 = B_FALSE; 4359 4360 len = MBLKL(mp); 4361 if (len < (sizeof (*tbr) + 1)) { 4362 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4363 "ip_bind: bogus msg, len %ld", len); 4364 /* XXX: Need to return something better */ 4365 goto bad_addr; 4366 } 4367 /* Back up and extract the protocol identifier. */ 4368 mp->b_wptr--; 4369 protocol = *mp->b_wptr & 0xFF; 4370 tbr = (struct T_bind_req *)mp->b_rptr; 4371 /* Reset the message type in preparation for shipping it back. */ 4372 DB_TYPE(mp) = M_PCPROTO; 4373 4374 connp->conn_ulp = (uint8_t)protocol; 4375 4376 /* 4377 * Check for a zero length address. This is from a protocol that 4378 * wants to register to receive all packets of its type. 4379 */ 4380 if (tbr->ADDR_length == 0) { 4381 /* 4382 * These protocols are now intercepted in ip_bind_v6(). 4383 * Reject protocol-level binds here for now. 4384 * 4385 * For SCTP raw socket, ICMP sends down a bind with sin_t 4386 * so that the protocol type cannot be SCTP. 4387 */ 4388 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4389 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4390 goto bad_addr; 4391 } 4392 4393 /* 4394 * 4395 * The udp module never sends down a zero-length address, 4396 * and allowing this on a labeled system will break MLP 4397 * functionality. 4398 */ 4399 if (is_system_labeled() && protocol == IPPROTO_UDP) 4400 goto bad_addr; 4401 4402 if (connp->conn_mac_exempt) 4403 goto bad_addr; 4404 4405 /* No hash here really. The table is big enough. */ 4406 connp->conn_srcv6 = ipv6_all_zeros; 4407 4408 ipcl_proto_insert(connp, protocol); 4409 4410 tbr->PRIM_type = T_BIND_ACK; 4411 return (mp); 4412 } 4413 4414 /* Extract the address pointer from the message. */ 4415 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4416 tbr->ADDR_length); 4417 if (ucp == NULL) { 4418 ip1dbg(("ip_bind: no address\n")); 4419 goto bad_addr; 4420 } 4421 if (!OK_32PTR(ucp)) { 4422 ip1dbg(("ip_bind: unaligned address\n")); 4423 goto bad_addr; 4424 } 4425 /* 4426 * Check for trailing mps. 4427 */ 4428 4429 mp1 = mp->b_cont; 4430 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4431 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4432 4433 switch (tbr->ADDR_length) { 4434 default: 4435 ip1dbg(("ip_bind: bad address length %d\n", 4436 (int)tbr->ADDR_length)); 4437 goto bad_addr; 4438 4439 case IP_ADDR_LEN: 4440 /* Verification of local address only */ 4441 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4442 ire_requested, ipsec_policy_set, B_FALSE); 4443 break; 4444 4445 case sizeof (sin_t): 4446 sin = (sin_t *)ucp; 4447 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4448 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4449 break; 4450 4451 case sizeof (ipa_conn_t): 4452 ac = (ipa_conn_t *)ucp; 4453 /* For raw socket, the local port is not set. */ 4454 if (ac->ac_lport == 0) 4455 ac->ac_lport = connp->conn_lport; 4456 /* Always verify destination reachability. */ 4457 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4458 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4459 ipsec_policy_set, B_TRUE, B_TRUE); 4460 break; 4461 4462 case sizeof (ipa_conn_x_t): 4463 acx = (ipa_conn_x_t *)ucp; 4464 /* 4465 * Whether or not to verify destination reachability depends 4466 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4467 */ 4468 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4469 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4470 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4471 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4472 break; 4473 } 4474 if (error == EINPROGRESS) 4475 return (NULL); 4476 else if (error != 0) 4477 goto bad_addr; 4478 /* 4479 * Pass the IPsec headers size in ire_ipsec_overhead. 4480 * We can't do this in ip_bind_insert_ire because the policy 4481 * may not have been inherited at that point in time and hence 4482 * conn_out_enforce_policy may not be set. 4483 */ 4484 mp1 = mp->b_cont; 4485 if (ire_requested && connp->conn_out_enforce_policy && 4486 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4487 ire_t *ire = (ire_t *)mp1->b_rptr; 4488 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4489 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4490 } 4491 4492 /* Send it home. */ 4493 mp->b_datap->db_type = M_PCPROTO; 4494 tbr->PRIM_type = T_BIND_ACK; 4495 return (mp); 4496 4497 bad_addr: 4498 /* 4499 * If error = -1 then we generate a TBADADDR - otherwise error is 4500 * a unix errno. 4501 */ 4502 if (error > 0) 4503 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4504 else 4505 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4506 return (mp); 4507 } 4508 4509 /* 4510 * Here address is verified to be a valid local address. 4511 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4512 * address is also considered a valid local address. 4513 * In the case of a broadcast/multicast address, however, the 4514 * upper protocol is expected to reset the src address 4515 * to 0 if it sees a IRE_BROADCAST type returned so that 4516 * no packets are emitted with broadcast/multicast address as 4517 * source address (that violates hosts requirements RFC1122) 4518 * The addresses valid for bind are: 4519 * (1) - INADDR_ANY (0) 4520 * (2) - IP address of an UP interface 4521 * (3) - IP address of a DOWN interface 4522 * (4) - valid local IP broadcast addresses. In this case 4523 * the conn will only receive packets destined to 4524 * the specified broadcast address. 4525 * (5) - a multicast address. In this case 4526 * the conn will only receive packets destined to 4527 * the specified multicast address. Note: the 4528 * application still has to issue an 4529 * IP_ADD_MEMBERSHIP socket option. 4530 * 4531 * On error, return -1 for TBADADDR otherwise pass the 4532 * errno with TSYSERR reply. 4533 * 4534 * In all the above cases, the bound address must be valid in the current zone. 4535 * When the address is loopback, multicast or broadcast, there might be many 4536 * matching IREs so bind has to look up based on the zone. 4537 * 4538 * Note: lport is in network byte order. 4539 */ 4540 int 4541 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4542 boolean_t ire_requested, boolean_t ipsec_policy_set, 4543 boolean_t fanout_insert) 4544 { 4545 int error = 0; 4546 ire_t *src_ire; 4547 mblk_t *policy_mp; 4548 ipif_t *ipif; 4549 zoneid_t zoneid; 4550 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4551 4552 if (ipsec_policy_set) { 4553 policy_mp = mp->b_cont; 4554 } 4555 4556 /* 4557 * If it was previously connected, conn_fully_bound would have 4558 * been set. 4559 */ 4560 connp->conn_fully_bound = B_FALSE; 4561 4562 src_ire = NULL; 4563 ipif = NULL; 4564 4565 zoneid = IPCL_ZONEID(connp); 4566 4567 if (src_addr) { 4568 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4569 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4570 /* 4571 * If an address other than 0.0.0.0 is requested, 4572 * we verify that it is a valid address for bind 4573 * Note: Following code is in if-else-if form for 4574 * readability compared to a condition check. 4575 */ 4576 /* LINTED - statement has no consequent */ 4577 if (IRE_IS_LOCAL(src_ire)) { 4578 /* 4579 * (2) Bind to address of local UP interface 4580 */ 4581 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4582 /* 4583 * (4) Bind to broadcast address 4584 * Note: permitted only from transports that 4585 * request IRE 4586 */ 4587 if (!ire_requested) 4588 error = EADDRNOTAVAIL; 4589 } else { 4590 /* 4591 * (3) Bind to address of local DOWN interface 4592 * (ipif_lookup_addr() looks up all interfaces 4593 * but we do not get here for UP interfaces 4594 * - case (2) above) 4595 * We put the protocol byte back into the mblk 4596 * since we may come back via ip_wput_nondata() 4597 * later with this mblk if ipif_lookup_addr chooses 4598 * to defer processing. 4599 */ 4600 *mp->b_wptr++ = (char)connp->conn_ulp; 4601 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4602 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4603 &error, ipst)) != NULL) { 4604 ipif_refrele(ipif); 4605 } else if (error == EINPROGRESS) { 4606 if (src_ire != NULL) 4607 ire_refrele(src_ire); 4608 return (EINPROGRESS); 4609 } else if (CLASSD(src_addr)) { 4610 error = 0; 4611 if (src_ire != NULL) 4612 ire_refrele(src_ire); 4613 /* 4614 * (5) bind to multicast address. 4615 * Fake out the IRE returned to upper 4616 * layer to be a broadcast IRE. 4617 */ 4618 src_ire = ire_ctable_lookup( 4619 INADDR_BROADCAST, INADDR_ANY, 4620 IRE_BROADCAST, NULL, zoneid, NULL, 4621 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4622 ipst); 4623 if (src_ire == NULL || !ire_requested) 4624 error = EADDRNOTAVAIL; 4625 } else { 4626 /* 4627 * Not a valid address for bind 4628 */ 4629 error = EADDRNOTAVAIL; 4630 } 4631 /* 4632 * Just to keep it consistent with the processing in 4633 * ip_bind_v4() 4634 */ 4635 mp->b_wptr--; 4636 } 4637 if (error) { 4638 /* Red Alert! Attempting to be a bogon! */ 4639 ip1dbg(("ip_bind: bad src address 0x%x\n", 4640 ntohl(src_addr))); 4641 goto bad_addr; 4642 } 4643 } 4644 4645 /* 4646 * Allow setting new policies. For example, disconnects come 4647 * down as ipa_t bind. As we would have set conn_policy_cached 4648 * to B_TRUE before, we should set it to B_FALSE, so that policy 4649 * can change after the disconnect. 4650 */ 4651 connp->conn_policy_cached = B_FALSE; 4652 4653 /* 4654 * If not fanout_insert this was just an address verification 4655 */ 4656 if (fanout_insert) { 4657 /* 4658 * The addresses have been verified. Time to insert in 4659 * the correct fanout list. 4660 */ 4661 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4662 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4663 connp->conn_lport = lport; 4664 connp->conn_fport = 0; 4665 /* 4666 * Do we need to add a check to reject Multicast packets 4667 */ 4668 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4669 } 4670 4671 if (error == 0) { 4672 if (ire_requested) { 4673 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4674 error = -1; 4675 /* Falls through to bad_addr */ 4676 } 4677 } else if (ipsec_policy_set) { 4678 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4679 error = -1; 4680 /* Falls through to bad_addr */ 4681 } 4682 } 4683 } 4684 bad_addr: 4685 if (error != 0) { 4686 if (connp->conn_anon_port) { 4687 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4688 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4689 B_FALSE); 4690 } 4691 connp->conn_mlp_type = mlptSingle; 4692 } 4693 if (src_ire != NULL) 4694 IRE_REFRELE(src_ire); 4695 if (ipsec_policy_set) { 4696 ASSERT(policy_mp == mp->b_cont); 4697 ASSERT(policy_mp != NULL); 4698 freeb(policy_mp); 4699 /* 4700 * As of now assume that nothing else accompanies 4701 * IPSEC_POLICY_SET. 4702 */ 4703 mp->b_cont = NULL; 4704 } 4705 return (error); 4706 } 4707 4708 /* 4709 * Verify that both the source and destination addresses 4710 * are valid. If verify_dst is false, then the destination address may be 4711 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4712 * destination reachability, while tunnels do not. 4713 * Note that we allow connect to broadcast and multicast 4714 * addresses when ire_requested is set. Thus the ULP 4715 * has to check for IRE_BROADCAST and multicast. 4716 * 4717 * Returns zero if ok. 4718 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4719 * (for use with TSYSERR reply). 4720 * 4721 * Note: lport and fport are in network byte order. 4722 */ 4723 int 4724 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4725 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4726 boolean_t ire_requested, boolean_t ipsec_policy_set, 4727 boolean_t fanout_insert, boolean_t verify_dst) 4728 { 4729 ire_t *src_ire; 4730 ire_t *dst_ire; 4731 int error = 0; 4732 int protocol; 4733 mblk_t *policy_mp; 4734 ire_t *sire = NULL; 4735 ire_t *md_dst_ire = NULL; 4736 ire_t *lso_dst_ire = NULL; 4737 ill_t *ill = NULL; 4738 zoneid_t zoneid; 4739 ipaddr_t src_addr = *src_addrp; 4740 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4741 4742 src_ire = dst_ire = NULL; 4743 protocol = *mp->b_wptr & 0xFF; 4744 4745 /* 4746 * If we never got a disconnect before, clear it now. 4747 */ 4748 connp->conn_fully_bound = B_FALSE; 4749 4750 if (ipsec_policy_set) { 4751 policy_mp = mp->b_cont; 4752 } 4753 4754 zoneid = IPCL_ZONEID(connp); 4755 4756 if (CLASSD(dst_addr)) { 4757 /* Pick up an IRE_BROADCAST */ 4758 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4759 NULL, zoneid, MBLK_GETLABEL(mp), 4760 (MATCH_IRE_RECURSIVE | 4761 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4762 MATCH_IRE_SECATTR), ipst); 4763 } else { 4764 /* 4765 * If conn_dontroute is set or if conn_nexthop_set is set, 4766 * and onlink ipif is not found set ENETUNREACH error. 4767 */ 4768 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4769 ipif_t *ipif; 4770 4771 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4772 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4773 if (ipif == NULL) { 4774 error = ENETUNREACH; 4775 goto bad_addr; 4776 } 4777 ipif_refrele(ipif); 4778 } 4779 4780 if (connp->conn_nexthop_set) { 4781 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4782 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4783 MATCH_IRE_SECATTR, ipst); 4784 } else { 4785 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4786 &sire, zoneid, MBLK_GETLABEL(mp), 4787 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4788 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4789 MATCH_IRE_SECATTR), ipst); 4790 } 4791 } 4792 /* 4793 * dst_ire can't be a broadcast when not ire_requested. 4794 * We also prevent ire's with src address INADDR_ANY to 4795 * be used, which are created temporarily for 4796 * sending out packets from endpoints that have 4797 * conn_unspec_src set. If verify_dst is true, the destination must be 4798 * reachable. If verify_dst is false, the destination needn't be 4799 * reachable. 4800 * 4801 * If we match on a reject or black hole, then we've got a 4802 * local failure. May as well fail out the connect() attempt, 4803 * since it's never going to succeed. 4804 */ 4805 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4806 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4807 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4808 /* 4809 * If we're verifying destination reachability, we always want 4810 * to complain here. 4811 * 4812 * If we're not verifying destination reachability but the 4813 * destination has a route, we still want to fail on the 4814 * temporary address and broadcast address tests. 4815 */ 4816 if (verify_dst || (dst_ire != NULL)) { 4817 if (ip_debug > 2) { 4818 pr_addr_dbg("ip_bind_connected: bad connected " 4819 "dst %s\n", AF_INET, &dst_addr); 4820 } 4821 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4822 error = ENETUNREACH; 4823 else 4824 error = EHOSTUNREACH; 4825 goto bad_addr; 4826 } 4827 } 4828 4829 /* 4830 * We now know that routing will allow us to reach the destination. 4831 * Check whether Trusted Solaris policy allows communication with this 4832 * host, and pretend that the destination is unreachable if not. 4833 * 4834 * This is never a problem for TCP, since that transport is known to 4835 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4836 * handling. If the remote is unreachable, it will be detected at that 4837 * point, so there's no reason to check it here. 4838 * 4839 * Note that for sendto (and other datagram-oriented friends), this 4840 * check is done as part of the data path label computation instead. 4841 * The check here is just to make non-TCP connect() report the right 4842 * error. 4843 */ 4844 if (dst_ire != NULL && is_system_labeled() && 4845 !IPCL_IS_TCP(connp) && 4846 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4847 connp->conn_mac_exempt, ipst) != 0) { 4848 error = EHOSTUNREACH; 4849 if (ip_debug > 2) { 4850 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4851 AF_INET, &dst_addr); 4852 } 4853 goto bad_addr; 4854 } 4855 4856 /* 4857 * If the app does a connect(), it means that it will most likely 4858 * send more than 1 packet to the destination. It makes sense 4859 * to clear the temporary flag. 4860 */ 4861 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4862 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4863 irb_t *irb = dst_ire->ire_bucket; 4864 4865 rw_enter(&irb->irb_lock, RW_WRITER); 4866 /* 4867 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4868 * the lock to guarantee irb_tmp_ire_cnt. 4869 */ 4870 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4871 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4872 irb->irb_tmp_ire_cnt--; 4873 } 4874 rw_exit(&irb->irb_lock); 4875 } 4876 4877 /* 4878 * See if we should notify ULP about LSO/MDT; we do this whether or not 4879 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4880 * eligibility tests for passive connects are handled separately 4881 * through tcp_adapt_ire(). We do this before the source address 4882 * selection, because dst_ire may change after a call to 4883 * ipif_select_source(). This is a best-effort check, as the 4884 * packet for this connection may not actually go through 4885 * dst_ire->ire_stq, and the exact IRE can only be known after 4886 * calling ip_newroute(). This is why we further check on the 4887 * IRE during LSO/Multidata packet transmission in 4888 * tcp_lsosend()/tcp_multisend(). 4889 */ 4890 if (!ipsec_policy_set && dst_ire != NULL && 4891 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4892 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4893 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4894 lso_dst_ire = dst_ire; 4895 IRE_REFHOLD(lso_dst_ire); 4896 } else if (ipst->ips_ip_multidata_outbound && 4897 ILL_MDT_CAPABLE(ill)) { 4898 md_dst_ire = dst_ire; 4899 IRE_REFHOLD(md_dst_ire); 4900 } 4901 } 4902 4903 if (dst_ire != NULL && 4904 dst_ire->ire_type == IRE_LOCAL && 4905 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4906 /* 4907 * If the IRE belongs to a different zone, look for a matching 4908 * route in the forwarding table and use the source address from 4909 * that route. 4910 */ 4911 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4912 zoneid, 0, NULL, 4913 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4914 MATCH_IRE_RJ_BHOLE, ipst); 4915 if (src_ire == NULL) { 4916 error = EHOSTUNREACH; 4917 goto bad_addr; 4918 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4919 if (!(src_ire->ire_type & IRE_HOST)) 4920 error = ENETUNREACH; 4921 else 4922 error = EHOSTUNREACH; 4923 goto bad_addr; 4924 } 4925 if (src_addr == INADDR_ANY) 4926 src_addr = src_ire->ire_src_addr; 4927 ire_refrele(src_ire); 4928 src_ire = NULL; 4929 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4930 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4931 src_addr = sire->ire_src_addr; 4932 ire_refrele(dst_ire); 4933 dst_ire = sire; 4934 sire = NULL; 4935 } else { 4936 /* 4937 * Pick a source address so that a proper inbound 4938 * load spreading would happen. 4939 */ 4940 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4941 ipif_t *src_ipif = NULL; 4942 ire_t *ipif_ire; 4943 4944 /* 4945 * Supply a local source address such that inbound 4946 * load spreading happens. 4947 * 4948 * Determine the best source address on this ill for 4949 * the destination. 4950 * 4951 * 1) For broadcast, we should return a broadcast ire 4952 * found above so that upper layers know that the 4953 * destination address is a broadcast address. 4954 * 4955 * 2) If this is part of a group, select a better 4956 * source address so that better inbound load 4957 * balancing happens. Do the same if the ipif 4958 * is DEPRECATED. 4959 * 4960 * 3) If the outgoing interface is part of a usesrc 4961 * group, then try selecting a source address from 4962 * the usesrc ILL. 4963 */ 4964 if ((dst_ire->ire_zoneid != zoneid && 4965 dst_ire->ire_zoneid != ALL_ZONES) || 4966 (!(dst_ire->ire_flags & RTF_SETSRC)) && 4967 (!(dst_ire->ire_type & IRE_BROADCAST) && 4968 ((dst_ill->ill_group != NULL) || 4969 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4970 (dst_ill->ill_usesrc_ifindex != 0)))) { 4971 /* 4972 * If the destination is reachable via a 4973 * given gateway, the selected source address 4974 * should be in the same subnet as the gateway. 4975 * Otherwise, the destination is not reachable. 4976 * 4977 * If there are no interfaces on the same subnet 4978 * as the destination, ipif_select_source gives 4979 * first non-deprecated interface which might be 4980 * on a different subnet than the gateway. 4981 * This is not desirable. Hence pass the dst_ire 4982 * source address to ipif_select_source. 4983 * It is sure that the destination is reachable 4984 * with the dst_ire source address subnet. 4985 * So passing dst_ire source address to 4986 * ipif_select_source will make sure that the 4987 * selected source will be on the same subnet 4988 * as dst_ire source address. 4989 */ 4990 ipaddr_t saddr = 4991 dst_ire->ire_ipif->ipif_src_addr; 4992 src_ipif = ipif_select_source(dst_ill, 4993 saddr, zoneid); 4994 if (src_ipif != NULL) { 4995 if (IS_VNI(src_ipif->ipif_ill)) { 4996 /* 4997 * For VNI there is no 4998 * interface route 4999 */ 5000 src_addr = 5001 src_ipif->ipif_src_addr; 5002 } else { 5003 ipif_ire = 5004 ipif_to_ire(src_ipif); 5005 if (ipif_ire != NULL) { 5006 IRE_REFRELE(dst_ire); 5007 dst_ire = ipif_ire; 5008 } 5009 src_addr = 5010 dst_ire->ire_src_addr; 5011 } 5012 ipif_refrele(src_ipif); 5013 } else { 5014 src_addr = dst_ire->ire_src_addr; 5015 } 5016 } else { 5017 src_addr = dst_ire->ire_src_addr; 5018 } 5019 } 5020 } 5021 5022 /* 5023 * We do ire_route_lookup() here (and not 5024 * interface lookup as we assert that 5025 * src_addr should only come from an 5026 * UP interface for hard binding. 5027 */ 5028 ASSERT(src_ire == NULL); 5029 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5030 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5031 /* src_ire must be a local|loopback */ 5032 if (!IRE_IS_LOCAL(src_ire)) { 5033 if (ip_debug > 2) { 5034 pr_addr_dbg("ip_bind_connected: bad connected " 5035 "src %s\n", AF_INET, &src_addr); 5036 } 5037 error = EADDRNOTAVAIL; 5038 goto bad_addr; 5039 } 5040 5041 /* 5042 * If the source address is a loopback address, the 5043 * destination had best be local or multicast. 5044 * The transports that can't handle multicast will reject 5045 * those addresses. 5046 */ 5047 if (src_ire->ire_type == IRE_LOOPBACK && 5048 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5049 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5050 error = -1; 5051 goto bad_addr; 5052 } 5053 5054 /* 5055 * Allow setting new policies. For example, disconnects come 5056 * down as ipa_t bind. As we would have set conn_policy_cached 5057 * to B_TRUE before, we should set it to B_FALSE, so that policy 5058 * can change after the disconnect. 5059 */ 5060 connp->conn_policy_cached = B_FALSE; 5061 5062 /* 5063 * Set the conn addresses/ports immediately, so the IPsec policy calls 5064 * can handle their passed-in conn's. 5065 */ 5066 5067 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5068 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5069 connp->conn_lport = lport; 5070 connp->conn_fport = fport; 5071 *src_addrp = src_addr; 5072 5073 ASSERT(!(ipsec_policy_set && ire_requested)); 5074 if (ire_requested) { 5075 iulp_t *ulp_info = NULL; 5076 5077 /* 5078 * Note that sire will not be NULL if this is an off-link 5079 * connection and there is not cache for that dest yet. 5080 * 5081 * XXX Because of an existing bug, if there are multiple 5082 * default routes, the IRE returned now may not be the actual 5083 * default route used (default routes are chosen in a 5084 * round robin fashion). So if the metrics for different 5085 * default routes are different, we may return the wrong 5086 * metrics. This will not be a problem if the existing 5087 * bug is fixed. 5088 */ 5089 if (sire != NULL) { 5090 ulp_info = &(sire->ire_uinfo); 5091 } 5092 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5093 error = -1; 5094 goto bad_addr; 5095 } 5096 } else if (ipsec_policy_set) { 5097 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5098 error = -1; 5099 goto bad_addr; 5100 } 5101 } 5102 5103 /* 5104 * Cache IPsec policy in this conn. If we have per-socket policy, 5105 * we'll cache that. If we don't, we'll inherit global policy. 5106 * 5107 * We can't insert until the conn reflects the policy. Note that 5108 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5109 * connections where we don't have a policy. This is to prevent 5110 * global policy lookups in the inbound path. 5111 * 5112 * If we insert before we set conn_policy_cached, 5113 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5114 * because global policy cound be non-empty. We normally call 5115 * ipsec_check_policy() for conn_policy_cached connections only if 5116 * ipc_in_enforce_policy is set. But in this case, 5117 * conn_policy_cached can get set anytime since we made the 5118 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5119 * called, which will make the above assumption false. Thus, we 5120 * need to insert after we set conn_policy_cached. 5121 */ 5122 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5123 goto bad_addr; 5124 5125 if (fanout_insert) { 5126 /* 5127 * The addresses have been verified. Time to insert in 5128 * the correct fanout list. 5129 */ 5130 error = ipcl_conn_insert(connp, protocol, src_addr, 5131 dst_addr, connp->conn_ports); 5132 } 5133 5134 if (error == 0) { 5135 connp->conn_fully_bound = B_TRUE; 5136 /* 5137 * Our initial checks for LSO/MDT have passed; the IRE is not 5138 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5139 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5140 * ip_xxinfo_return(), which performs further checks 5141 * against them and upon success, returns the LSO/MDT info 5142 * mblk which we will attach to the bind acknowledgment. 5143 */ 5144 if (lso_dst_ire != NULL) { 5145 mblk_t *lsoinfo_mp; 5146 5147 ASSERT(ill->ill_lso_capab != NULL); 5148 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5149 ill->ill_name, ill->ill_lso_capab)) != NULL) 5150 linkb(mp, lsoinfo_mp); 5151 } else if (md_dst_ire != NULL) { 5152 mblk_t *mdinfo_mp; 5153 5154 ASSERT(ill->ill_mdt_capab != NULL); 5155 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5156 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5157 linkb(mp, mdinfo_mp); 5158 } 5159 } 5160 bad_addr: 5161 if (ipsec_policy_set) { 5162 ASSERT(policy_mp == mp->b_cont); 5163 ASSERT(policy_mp != NULL); 5164 freeb(policy_mp); 5165 /* 5166 * As of now assume that nothing else accompanies 5167 * IPSEC_POLICY_SET. 5168 */ 5169 mp->b_cont = NULL; 5170 } 5171 if (src_ire != NULL) 5172 IRE_REFRELE(src_ire); 5173 if (dst_ire != NULL) 5174 IRE_REFRELE(dst_ire); 5175 if (sire != NULL) 5176 IRE_REFRELE(sire); 5177 if (md_dst_ire != NULL) 5178 IRE_REFRELE(md_dst_ire); 5179 if (lso_dst_ire != NULL) 5180 IRE_REFRELE(lso_dst_ire); 5181 return (error); 5182 } 5183 5184 /* 5185 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5186 * Prefers dst_ire over src_ire. 5187 */ 5188 static boolean_t 5189 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5190 { 5191 mblk_t *mp1; 5192 ire_t *ret_ire = NULL; 5193 5194 mp1 = mp->b_cont; 5195 ASSERT(mp1 != NULL); 5196 5197 if (ire != NULL) { 5198 /* 5199 * mp1 initialized above to IRE_DB_REQ_TYPE 5200 * appended mblk. Its <upper protocol>'s 5201 * job to make sure there is room. 5202 */ 5203 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5204 return (0); 5205 5206 mp1->b_datap->db_type = IRE_DB_TYPE; 5207 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5208 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5209 ret_ire = (ire_t *)mp1->b_rptr; 5210 /* 5211 * Pass the latest setting of the ip_path_mtu_discovery and 5212 * copy the ulp info if any. 5213 */ 5214 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5215 IPH_DF : 0; 5216 if (ulp_info != NULL) { 5217 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5218 sizeof (iulp_t)); 5219 } 5220 ret_ire->ire_mp = mp1; 5221 } else { 5222 /* 5223 * No IRE was found. Remove IRE mblk. 5224 */ 5225 mp->b_cont = mp1->b_cont; 5226 freeb(mp1); 5227 } 5228 5229 return (1); 5230 } 5231 5232 /* 5233 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5234 * the final piece where we don't. Return a pointer to the first mblk in the 5235 * result, and update the pointer to the next mblk to chew on. If anything 5236 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5237 * NULL pointer. 5238 */ 5239 mblk_t * 5240 ip_carve_mp(mblk_t **mpp, ssize_t len) 5241 { 5242 mblk_t *mp0; 5243 mblk_t *mp1; 5244 mblk_t *mp2; 5245 5246 if (!len || !mpp || !(mp0 = *mpp)) 5247 return (NULL); 5248 /* If we aren't going to consume the first mblk, we need a dup. */ 5249 if (mp0->b_wptr - mp0->b_rptr > len) { 5250 mp1 = dupb(mp0); 5251 if (mp1) { 5252 /* Partition the data between the two mblks. */ 5253 mp1->b_wptr = mp1->b_rptr + len; 5254 mp0->b_rptr = mp1->b_wptr; 5255 /* 5256 * after adjustments if mblk not consumed is now 5257 * unaligned, try to align it. If this fails free 5258 * all messages and let upper layer recover. 5259 */ 5260 if (!OK_32PTR(mp0->b_rptr)) { 5261 if (!pullupmsg(mp0, -1)) { 5262 freemsg(mp0); 5263 freemsg(mp1); 5264 *mpp = NULL; 5265 return (NULL); 5266 } 5267 } 5268 } 5269 return (mp1); 5270 } 5271 /* Eat through as many mblks as we need to get len bytes. */ 5272 len -= mp0->b_wptr - mp0->b_rptr; 5273 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5274 if (mp2->b_wptr - mp2->b_rptr > len) { 5275 /* 5276 * We won't consume the entire last mblk. Like 5277 * above, dup and partition it. 5278 */ 5279 mp1->b_cont = dupb(mp2); 5280 mp1 = mp1->b_cont; 5281 if (!mp1) { 5282 /* 5283 * Trouble. Rather than go to a lot of 5284 * trouble to clean up, we free the messages. 5285 * This won't be any worse than losing it on 5286 * the wire. 5287 */ 5288 freemsg(mp0); 5289 freemsg(mp2); 5290 *mpp = NULL; 5291 return (NULL); 5292 } 5293 mp1->b_wptr = mp1->b_rptr + len; 5294 mp2->b_rptr = mp1->b_wptr; 5295 /* 5296 * after adjustments if mblk not consumed is now 5297 * unaligned, try to align it. If this fails free 5298 * all messages and let upper layer recover. 5299 */ 5300 if (!OK_32PTR(mp2->b_rptr)) { 5301 if (!pullupmsg(mp2, -1)) { 5302 freemsg(mp0); 5303 freemsg(mp2); 5304 *mpp = NULL; 5305 return (NULL); 5306 } 5307 } 5308 *mpp = mp2; 5309 return (mp0); 5310 } 5311 /* Decrement len by the amount we just got. */ 5312 len -= mp2->b_wptr - mp2->b_rptr; 5313 } 5314 /* 5315 * len should be reduced to zero now. If not our caller has 5316 * screwed up. 5317 */ 5318 if (len) { 5319 /* Shouldn't happen! */ 5320 freemsg(mp0); 5321 *mpp = NULL; 5322 return (NULL); 5323 } 5324 /* 5325 * We consumed up to exactly the end of an mblk. Detach the part 5326 * we are returning from the rest of the chain. 5327 */ 5328 mp1->b_cont = NULL; 5329 *mpp = mp2; 5330 return (mp0); 5331 } 5332 5333 /* The ill stream is being unplumbed. Called from ip_close */ 5334 int 5335 ip_modclose(ill_t *ill) 5336 { 5337 boolean_t success; 5338 ipsq_t *ipsq; 5339 ipif_t *ipif; 5340 queue_t *q = ill->ill_rq; 5341 ip_stack_t *ipst = ill->ill_ipst; 5342 clock_t timeout; 5343 5344 /* 5345 * Wait for the ACKs of all deferred control messages to be processed. 5346 * In particular, we wait for a potential capability reset initiated 5347 * in ip_sioctl_plink() to complete before proceeding. 5348 * 5349 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5350 * in case the driver never replies. 5351 */ 5352 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5353 mutex_enter(&ill->ill_lock); 5354 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5355 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5356 /* Timeout */ 5357 break; 5358 } 5359 } 5360 mutex_exit(&ill->ill_lock); 5361 5362 /* 5363 * Forcibly enter the ipsq after some delay. This is to take 5364 * care of the case when some ioctl does not complete because 5365 * we sent a control message to the driver and it did not 5366 * send us a reply. We want to be able to at least unplumb 5367 * and replumb rather than force the user to reboot the system. 5368 */ 5369 success = ipsq_enter(ill, B_FALSE); 5370 5371 /* 5372 * Open/close/push/pop is guaranteed to be single threaded 5373 * per stream by STREAMS. FS guarantees that all references 5374 * from top are gone before close is called. So there can't 5375 * be another close thread that has set CONDEMNED on this ill. 5376 * and cause ipsq_enter to return failure. 5377 */ 5378 ASSERT(success); 5379 ipsq = ill->ill_phyint->phyint_ipsq; 5380 5381 /* 5382 * Mark it condemned. No new reference will be made to this ill. 5383 * Lookup functions will return an error. Threads that try to 5384 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5385 * that the refcnt will drop down to zero. 5386 */ 5387 mutex_enter(&ill->ill_lock); 5388 ill->ill_state_flags |= ILL_CONDEMNED; 5389 for (ipif = ill->ill_ipif; ipif != NULL; 5390 ipif = ipif->ipif_next) { 5391 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5392 } 5393 /* 5394 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5395 * returns error if ILL_CONDEMNED is set 5396 */ 5397 cv_broadcast(&ill->ill_cv); 5398 mutex_exit(&ill->ill_lock); 5399 5400 /* 5401 * Send all the deferred DLPI messages downstream which came in 5402 * during the small window right before ipsq_enter(). We do this 5403 * without waiting for the ACKs because all the ACKs for M_PROTO 5404 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5405 */ 5406 ill_dlpi_send_deferred(ill); 5407 5408 /* 5409 * Shut down fragmentation reassembly. 5410 * ill_frag_timer won't start a timer again. 5411 * Now cancel any existing timer 5412 */ 5413 (void) untimeout(ill->ill_frag_timer_id); 5414 (void) ill_frag_timeout(ill, 0); 5415 5416 /* 5417 * If MOVE was in progress, clear the 5418 * move_in_progress fields also. 5419 */ 5420 if (ill->ill_move_in_progress) { 5421 ILL_CLEAR_MOVE(ill); 5422 } 5423 5424 /* 5425 * Call ill_delete to bring down the ipifs, ilms and ill on 5426 * this ill. Then wait for the refcnts to drop to zero. 5427 * ill_is_freeable checks whether the ill is really quiescent. 5428 * Then make sure that threads that are waiting to enter the 5429 * ipsq have seen the error returned by ipsq_enter and have 5430 * gone away. Then we call ill_delete_tail which does the 5431 * DL_UNBIND_REQ with the driver and then qprocsoff. 5432 */ 5433 ill_delete(ill); 5434 mutex_enter(&ill->ill_lock); 5435 while (!ill_is_freeable(ill)) 5436 cv_wait(&ill->ill_cv, &ill->ill_lock); 5437 while (ill->ill_waiters) 5438 cv_wait(&ill->ill_cv, &ill->ill_lock); 5439 5440 mutex_exit(&ill->ill_lock); 5441 5442 /* 5443 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5444 * it held until the end of the function since the cleanup 5445 * below needs to be able to use the ip_stack_t. 5446 */ 5447 netstack_hold(ipst->ips_netstack); 5448 5449 /* qprocsoff is called in ill_delete_tail */ 5450 ill_delete_tail(ill); 5451 ASSERT(ill->ill_ipst == NULL); 5452 5453 /* 5454 * Walk through all upper (conn) streams and qenable 5455 * those that have queued data. 5456 * close synchronization needs this to 5457 * be done to ensure that all upper layers blocked 5458 * due to flow control to the closing device 5459 * get unblocked. 5460 */ 5461 ip1dbg(("ip_wsrv: walking\n")); 5462 conn_walk_drain(ipst); 5463 5464 mutex_enter(&ipst->ips_ip_mi_lock); 5465 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5466 mutex_exit(&ipst->ips_ip_mi_lock); 5467 5468 /* 5469 * credp could be null if the open didn't succeed and ip_modopen 5470 * itself calls ip_close. 5471 */ 5472 if (ill->ill_credp != NULL) 5473 crfree(ill->ill_credp); 5474 5475 mutex_enter(&ill->ill_lock); 5476 ill_nic_info_dispatch(ill); 5477 mutex_exit(&ill->ill_lock); 5478 5479 /* 5480 * Now we are done with the module close pieces that 5481 * need the netstack_t. 5482 */ 5483 netstack_rele(ipst->ips_netstack); 5484 5485 mi_close_free((IDP)ill); 5486 q->q_ptr = WR(q)->q_ptr = NULL; 5487 5488 ipsq_exit(ipsq); 5489 5490 return (0); 5491 } 5492 5493 /* 5494 * This is called as part of close() for IP, UDP, ICMP, and RTS 5495 * in order to quiesce the conn. 5496 */ 5497 void 5498 ip_quiesce_conn(conn_t *connp) 5499 { 5500 boolean_t drain_cleanup_reqd = B_FALSE; 5501 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5502 boolean_t ilg_cleanup_reqd = B_FALSE; 5503 ip_stack_t *ipst; 5504 5505 ASSERT(!IPCL_IS_TCP(connp)); 5506 ipst = connp->conn_netstack->netstack_ip; 5507 5508 /* 5509 * Mark the conn as closing, and this conn must not be 5510 * inserted in future into any list. Eg. conn_drain_insert(), 5511 * won't insert this conn into the conn_drain_list. 5512 * Similarly ill_pending_mp_add() will not add any mp to 5513 * the pending mp list, after this conn has started closing. 5514 * 5515 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5516 * cannot get set henceforth. 5517 */ 5518 mutex_enter(&connp->conn_lock); 5519 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5520 connp->conn_state_flags |= CONN_CLOSING; 5521 if (connp->conn_idl != NULL) 5522 drain_cleanup_reqd = B_TRUE; 5523 if (connp->conn_oper_pending_ill != NULL) 5524 conn_ioctl_cleanup_reqd = B_TRUE; 5525 if (connp->conn_dhcpinit_ill != NULL) { 5526 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5527 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5528 connp->conn_dhcpinit_ill = NULL; 5529 } 5530 if (connp->conn_ilg_inuse != 0) 5531 ilg_cleanup_reqd = B_TRUE; 5532 mutex_exit(&connp->conn_lock); 5533 5534 if (conn_ioctl_cleanup_reqd) 5535 conn_ioctl_cleanup(connp); 5536 5537 if (is_system_labeled() && connp->conn_anon_port) { 5538 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5539 connp->conn_mlp_type, connp->conn_ulp, 5540 ntohs(connp->conn_lport), B_FALSE); 5541 connp->conn_anon_port = 0; 5542 } 5543 connp->conn_mlp_type = mlptSingle; 5544 5545 /* 5546 * Remove this conn from any fanout list it is on. 5547 * and then wait for any threads currently operating 5548 * on this endpoint to finish 5549 */ 5550 ipcl_hash_remove(connp); 5551 5552 /* 5553 * Remove this conn from the drain list, and do 5554 * any other cleanup that may be required. 5555 * (Only non-tcp streams may have a non-null conn_idl. 5556 * TCP streams are never flow controlled, and 5557 * conn_idl will be null) 5558 */ 5559 if (drain_cleanup_reqd) 5560 conn_drain_tail(connp, B_TRUE); 5561 5562 if (connp == ipst->ips_ip_g_mrouter) 5563 (void) ip_mrouter_done(NULL, ipst); 5564 5565 if (ilg_cleanup_reqd) 5566 ilg_delete_all(connp); 5567 5568 conn_delete_ire(connp, NULL); 5569 5570 /* 5571 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5572 * callers from write side can't be there now because close 5573 * is in progress. The only other caller is ipcl_walk 5574 * which checks for the condemned flag. 5575 */ 5576 mutex_enter(&connp->conn_lock); 5577 connp->conn_state_flags |= CONN_CONDEMNED; 5578 while (connp->conn_ref != 1) 5579 cv_wait(&connp->conn_cv, &connp->conn_lock); 5580 connp->conn_state_flags |= CONN_QUIESCED; 5581 mutex_exit(&connp->conn_lock); 5582 } 5583 5584 /* ARGSUSED */ 5585 int 5586 ip_close(queue_t *q, int flags) 5587 { 5588 conn_t *connp; 5589 5590 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5591 5592 /* 5593 * Call the appropriate delete routine depending on whether this is 5594 * a module or device. 5595 */ 5596 if (WR(q)->q_next != NULL) { 5597 /* This is a module close */ 5598 return (ip_modclose((ill_t *)q->q_ptr)); 5599 } 5600 5601 connp = q->q_ptr; 5602 ip_quiesce_conn(connp); 5603 5604 qprocsoff(q); 5605 5606 /* 5607 * Now we are truly single threaded on this stream, and can 5608 * delete the things hanging off the connp, and finally the connp. 5609 * We removed this connp from the fanout list, it cannot be 5610 * accessed thru the fanouts, and we already waited for the 5611 * conn_ref to drop to 0. We are already in close, so 5612 * there cannot be any other thread from the top. qprocsoff 5613 * has completed, and service has completed or won't run in 5614 * future. 5615 */ 5616 ASSERT(connp->conn_ref == 1); 5617 5618 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5619 5620 connp->conn_ref--; 5621 ipcl_conn_destroy(connp); 5622 5623 q->q_ptr = WR(q)->q_ptr = NULL; 5624 return (0); 5625 } 5626 5627 /* 5628 * Wapper around putnext() so that ip_rts_request can merely use 5629 * conn_recv. 5630 */ 5631 /*ARGSUSED2*/ 5632 static void 5633 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5634 { 5635 conn_t *connp = (conn_t *)arg1; 5636 5637 putnext(connp->conn_rq, mp); 5638 } 5639 5640 /* Return the IP checksum for the IP header at "iph". */ 5641 uint16_t 5642 ip_csum_hdr(ipha_t *ipha) 5643 { 5644 uint16_t *uph; 5645 uint32_t sum; 5646 int opt_len; 5647 5648 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5649 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5650 uph = (uint16_t *)ipha; 5651 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5652 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5653 if (opt_len > 0) { 5654 do { 5655 sum += uph[10]; 5656 sum += uph[11]; 5657 uph += 2; 5658 } while (--opt_len); 5659 } 5660 sum = (sum & 0xFFFF) + (sum >> 16); 5661 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5662 if (sum == 0xffff) 5663 sum = 0; 5664 return ((uint16_t)sum); 5665 } 5666 5667 /* 5668 * Called when the module is about to be unloaded 5669 */ 5670 void 5671 ip_ddi_destroy(void) 5672 { 5673 tnet_fini(); 5674 5675 icmp_ddi_destroy(); 5676 rts_ddi_destroy(); 5677 udp_ddi_destroy(); 5678 sctp_ddi_g_destroy(); 5679 tcp_ddi_g_destroy(); 5680 ipsec_policy_g_destroy(); 5681 ipcl_g_destroy(); 5682 ip_net_g_destroy(); 5683 ip_ire_g_fini(); 5684 inet_minor_destroy(ip_minor_arena_sa); 5685 #if defined(_LP64) 5686 inet_minor_destroy(ip_minor_arena_la); 5687 #endif 5688 5689 #ifdef DEBUG 5690 list_destroy(&ip_thread_list); 5691 rw_destroy(&ip_thread_rwlock); 5692 tsd_destroy(&ip_thread_data); 5693 #endif 5694 5695 netstack_unregister(NS_IP); 5696 } 5697 5698 /* 5699 * First step in cleanup. 5700 */ 5701 /* ARGSUSED */ 5702 static void 5703 ip_stack_shutdown(netstackid_t stackid, void *arg) 5704 { 5705 ip_stack_t *ipst = (ip_stack_t *)arg; 5706 5707 #ifdef NS_DEBUG 5708 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5709 #endif 5710 5711 /* Get rid of loopback interfaces and their IREs */ 5712 ip_loopback_cleanup(ipst); 5713 5714 /* 5715 * The destroy functions here will end up causing notify callbacks 5716 * in the hook framework and these need to be run before the shtudown 5717 * of the hook framework is begun - that happens from netstack after 5718 * IP shutdown has completed. If we leave doing these actions until 5719 * ip_stack_fini then the notify callbacks for the net_*_unregister 5720 * are happening against a backdrop of shattered terain. 5721 */ 5722 ipv4_hook_destroy(ipst); 5723 ipv6_hook_destroy(ipst); 5724 ip_net_destroy(ipst); 5725 } 5726 5727 /* 5728 * Free the IP stack instance. 5729 */ 5730 static void 5731 ip_stack_fini(netstackid_t stackid, void *arg) 5732 { 5733 ip_stack_t *ipst = (ip_stack_t *)arg; 5734 int ret; 5735 5736 #ifdef NS_DEBUG 5737 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5738 #endif 5739 rw_destroy(&ipst->ips_srcid_lock); 5740 5741 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5742 ipst->ips_ip_mibkp = NULL; 5743 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5744 ipst->ips_icmp_mibkp = NULL; 5745 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5746 ipst->ips_ip_kstat = NULL; 5747 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5748 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5749 ipst->ips_ip6_kstat = NULL; 5750 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5751 5752 nd_free(&ipst->ips_ip_g_nd); 5753 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5754 ipst->ips_param_arr = NULL; 5755 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5756 ipst->ips_ndp_arr = NULL; 5757 5758 ip_mrouter_stack_destroy(ipst); 5759 5760 mutex_destroy(&ipst->ips_ip_mi_lock); 5761 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5762 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5763 rw_destroy(&ipst->ips_ip_g_nd_lock); 5764 5765 ret = untimeout(ipst->ips_igmp_timeout_id); 5766 if (ret == -1) { 5767 ASSERT(ipst->ips_igmp_timeout_id == 0); 5768 } else { 5769 ASSERT(ipst->ips_igmp_timeout_id != 0); 5770 ipst->ips_igmp_timeout_id = 0; 5771 } 5772 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5773 if (ret == -1) { 5774 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5775 } else { 5776 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5777 ipst->ips_igmp_slowtimeout_id = 0; 5778 } 5779 ret = untimeout(ipst->ips_mld_timeout_id); 5780 if (ret == -1) { 5781 ASSERT(ipst->ips_mld_timeout_id == 0); 5782 } else { 5783 ASSERT(ipst->ips_mld_timeout_id != 0); 5784 ipst->ips_mld_timeout_id = 0; 5785 } 5786 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5787 if (ret == -1) { 5788 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5789 } else { 5790 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5791 ipst->ips_mld_slowtimeout_id = 0; 5792 } 5793 ret = untimeout(ipst->ips_ip_ire_expire_id); 5794 if (ret == -1) { 5795 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5796 } else { 5797 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5798 ipst->ips_ip_ire_expire_id = 0; 5799 } 5800 5801 mutex_destroy(&ipst->ips_igmp_timer_lock); 5802 mutex_destroy(&ipst->ips_mld_timer_lock); 5803 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5804 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5805 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5806 rw_destroy(&ipst->ips_ill_g_lock); 5807 5808 ip_ire_fini(ipst); 5809 ip6_asp_free(ipst); 5810 conn_drain_fini(ipst); 5811 ipcl_destroy(ipst); 5812 5813 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5814 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5815 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5816 ipst->ips_ndp4 = NULL; 5817 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5818 ipst->ips_ndp6 = NULL; 5819 5820 if (ipst->ips_loopback_ksp != NULL) { 5821 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5822 ipst->ips_loopback_ksp = NULL; 5823 } 5824 5825 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5826 ipst->ips_phyint_g_list = NULL; 5827 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5828 ipst->ips_ill_g_heads = NULL; 5829 5830 kmem_free(ipst, sizeof (*ipst)); 5831 } 5832 5833 /* 5834 * This function is called from the TSD destructor, and is used to debug 5835 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5836 * details. 5837 */ 5838 static void 5839 ip_thread_exit(void *phash) 5840 { 5841 th_hash_t *thh = phash; 5842 5843 rw_enter(&ip_thread_rwlock, RW_WRITER); 5844 list_remove(&ip_thread_list, thh); 5845 rw_exit(&ip_thread_rwlock); 5846 mod_hash_destroy_hash(thh->thh_hash); 5847 kmem_free(thh, sizeof (*thh)); 5848 } 5849 5850 /* 5851 * Called when the IP kernel module is loaded into the kernel 5852 */ 5853 void 5854 ip_ddi_init(void) 5855 { 5856 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5857 5858 /* 5859 * For IP and TCP the minor numbers should start from 2 since we have 4 5860 * initial devices: ip, ip6, tcp, tcp6. 5861 */ 5862 /* 5863 * If this is a 64-bit kernel, then create two separate arenas - 5864 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5865 * other for socket apps in the range 2^^18 through 2^^32-1. 5866 */ 5867 ip_minor_arena_la = NULL; 5868 ip_minor_arena_sa = NULL; 5869 #if defined(_LP64) 5870 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5871 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5872 cmn_err(CE_PANIC, 5873 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5874 } 5875 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5876 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5877 cmn_err(CE_PANIC, 5878 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5879 } 5880 #else 5881 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5882 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5883 cmn_err(CE_PANIC, 5884 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5885 } 5886 #endif 5887 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5888 5889 ipcl_g_init(); 5890 ip_ire_g_init(); 5891 ip_net_g_init(); 5892 5893 #ifdef DEBUG 5894 tsd_create(&ip_thread_data, ip_thread_exit); 5895 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5896 list_create(&ip_thread_list, sizeof (th_hash_t), 5897 offsetof(th_hash_t, thh_link)); 5898 #endif 5899 5900 /* 5901 * We want to be informed each time a stack is created or 5902 * destroyed in the kernel, so we can maintain the 5903 * set of udp_stack_t's. 5904 */ 5905 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5906 ip_stack_fini); 5907 5908 ipsec_policy_g_init(); 5909 tcp_ddi_g_init(); 5910 sctp_ddi_g_init(); 5911 5912 tnet_init(); 5913 5914 udp_ddi_init(); 5915 rts_ddi_init(); 5916 icmp_ddi_init(); 5917 } 5918 5919 /* 5920 * Initialize the IP stack instance. 5921 */ 5922 static void * 5923 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5924 { 5925 ip_stack_t *ipst; 5926 ipparam_t *pa; 5927 ipndp_t *na; 5928 5929 #ifdef NS_DEBUG 5930 printf("ip_stack_init(stack %d)\n", stackid); 5931 #endif 5932 5933 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5934 ipst->ips_netstack = ns; 5935 5936 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5937 KM_SLEEP); 5938 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5939 KM_SLEEP); 5940 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5941 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5942 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5943 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5944 5945 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5946 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5947 ipst->ips_igmp_deferred_next = INFINITY; 5948 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5949 ipst->ips_mld_deferred_next = INFINITY; 5950 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5951 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5952 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5953 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5954 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5955 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5956 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5957 5958 ipcl_init(ipst); 5959 ip_ire_init(ipst); 5960 ip6_asp_init(ipst); 5961 ipif_init(ipst); 5962 conn_drain_init(ipst); 5963 ip_mrouter_stack_init(ipst); 5964 5965 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5966 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5967 5968 ipst->ips_ip_multirt_log_interval = 1000; 5969 5970 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5971 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5972 ipst->ips_ill_index = 1; 5973 5974 ipst->ips_saved_ip_g_forward = -1; 5975 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 5976 5977 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 5978 ipst->ips_param_arr = pa; 5979 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 5980 5981 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 5982 ipst->ips_ndp_arr = na; 5983 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5984 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 5985 (caddr_t)&ipst->ips_ip_g_forward; 5986 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 5987 (caddr_t)&ipst->ips_ipv6_forward; 5988 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 5989 "ip_cgtp_filter") == 0); 5990 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 5991 (caddr_t)&ipst->ips_ip_cgtp_filter; 5992 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 5993 "ipmp_hook_emulation") == 0); 5994 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 5995 (caddr_t)&ipst->ips_ipmp_hook_emulation; 5996 5997 (void) ip_param_register(&ipst->ips_ip_g_nd, 5998 ipst->ips_param_arr, A_CNT(lcl_param_arr), 5999 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6000 6001 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6002 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6003 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6004 ipst->ips_ip6_kstat = 6005 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6006 6007 ipst->ips_ipmp_enable_failback = B_TRUE; 6008 6009 ipst->ips_ip_src_id = 1; 6010 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6011 6012 ip_net_init(ipst, ns); 6013 ipv4_hook_init(ipst); 6014 ipv6_hook_init(ipst); 6015 6016 return (ipst); 6017 } 6018 6019 /* 6020 * Allocate and initialize a DLPI template of the specified length. (May be 6021 * called as writer.) 6022 */ 6023 mblk_t * 6024 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6025 { 6026 mblk_t *mp; 6027 6028 mp = allocb(len, BPRI_MED); 6029 if (!mp) 6030 return (NULL); 6031 6032 /* 6033 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6034 * of which we don't seem to use) are sent with M_PCPROTO, and 6035 * that other DLPI are M_PROTO. 6036 */ 6037 if (prim == DL_INFO_REQ) { 6038 mp->b_datap->db_type = M_PCPROTO; 6039 } else { 6040 mp->b_datap->db_type = M_PROTO; 6041 } 6042 6043 mp->b_wptr = mp->b_rptr + len; 6044 bzero(mp->b_rptr, len); 6045 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6046 return (mp); 6047 } 6048 6049 /* 6050 * Debug formatting routine. Returns a character string representation of the 6051 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6052 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6053 * 6054 * Once the ndd table-printing interfaces are removed, this can be changed to 6055 * standard dotted-decimal form. 6056 */ 6057 char * 6058 ip_dot_addr(ipaddr_t addr, char *buf) 6059 { 6060 uint8_t *ap = (uint8_t *)&addr; 6061 6062 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6063 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6064 return (buf); 6065 } 6066 6067 /* 6068 * Write the given MAC address as a printable string in the usual colon- 6069 * separated format. 6070 */ 6071 const char * 6072 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6073 { 6074 char *bp; 6075 6076 if (alen == 0 || buflen < 4) 6077 return ("?"); 6078 bp = buf; 6079 for (;;) { 6080 /* 6081 * If there are more MAC address bytes available, but we won't 6082 * have any room to print them, then add "..." to the string 6083 * instead. See below for the 'magic number' explanation. 6084 */ 6085 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6086 (void) strcpy(bp, "..."); 6087 break; 6088 } 6089 (void) sprintf(bp, "%02x", *addr++); 6090 bp += 2; 6091 if (--alen == 0) 6092 break; 6093 *bp++ = ':'; 6094 buflen -= 3; 6095 /* 6096 * At this point, based on the first 'if' statement above, 6097 * either alen == 1 and buflen >= 3, or alen > 1 and 6098 * buflen >= 4. The first case leaves room for the final "xx" 6099 * number and trailing NUL byte. The second leaves room for at 6100 * least "...". Thus the apparently 'magic' numbers chosen for 6101 * that statement. 6102 */ 6103 } 6104 return (buf); 6105 } 6106 6107 /* 6108 * Send an ICMP error after patching up the packet appropriately. Returns 6109 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6110 */ 6111 static boolean_t 6112 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6113 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6114 zoneid_t zoneid, ip_stack_t *ipst) 6115 { 6116 ipha_t *ipha; 6117 mblk_t *first_mp; 6118 boolean_t secure; 6119 unsigned char db_type; 6120 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6121 6122 first_mp = mp; 6123 if (mctl_present) { 6124 mp = mp->b_cont; 6125 secure = ipsec_in_is_secure(first_mp); 6126 ASSERT(mp != NULL); 6127 } else { 6128 /* 6129 * If this is an ICMP error being reported - which goes 6130 * up as M_CTLs, we need to convert them to M_DATA till 6131 * we finish checking with global policy because 6132 * ipsec_check_global_policy() assumes M_DATA as clear 6133 * and M_CTL as secure. 6134 */ 6135 db_type = DB_TYPE(mp); 6136 DB_TYPE(mp) = M_DATA; 6137 secure = B_FALSE; 6138 } 6139 /* 6140 * We are generating an icmp error for some inbound packet. 6141 * Called from all ip_fanout_(udp, tcp, proto) functions. 6142 * Before we generate an error, check with global policy 6143 * to see whether this is allowed to enter the system. As 6144 * there is no "conn", we are checking with global policy. 6145 */ 6146 ipha = (ipha_t *)mp->b_rptr; 6147 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6148 first_mp = ipsec_check_global_policy(first_mp, NULL, 6149 ipha, NULL, mctl_present, ipst->ips_netstack); 6150 if (first_mp == NULL) 6151 return (B_FALSE); 6152 } 6153 6154 if (!mctl_present) 6155 DB_TYPE(mp) = db_type; 6156 6157 if (flags & IP_FF_SEND_ICMP) { 6158 if (flags & IP_FF_HDR_COMPLETE) { 6159 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6160 freemsg(first_mp); 6161 return (B_TRUE); 6162 } 6163 } 6164 if (flags & IP_FF_CKSUM) { 6165 /* 6166 * Have to correct checksum since 6167 * the packet might have been 6168 * fragmented and the reassembly code in ip_rput 6169 * does not restore the IP checksum. 6170 */ 6171 ipha->ipha_hdr_checksum = 0; 6172 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6173 } 6174 switch (icmp_type) { 6175 case ICMP_DEST_UNREACHABLE: 6176 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6177 ipst); 6178 break; 6179 default: 6180 freemsg(first_mp); 6181 break; 6182 } 6183 } else { 6184 freemsg(first_mp); 6185 return (B_FALSE); 6186 } 6187 6188 return (B_TRUE); 6189 } 6190 6191 /* 6192 * Used to send an ICMP error message when a packet is received for 6193 * a protocol that is not supported. The mblk passed as argument 6194 * is consumed by this function. 6195 */ 6196 void 6197 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6198 ip_stack_t *ipst) 6199 { 6200 mblk_t *mp; 6201 ipha_t *ipha; 6202 ill_t *ill; 6203 ipsec_in_t *ii; 6204 6205 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6206 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6207 6208 mp = ipsec_mp->b_cont; 6209 ipsec_mp->b_cont = NULL; 6210 ipha = (ipha_t *)mp->b_rptr; 6211 /* Get ill from index in ipsec_in_t. */ 6212 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6213 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6214 ipst); 6215 if (ill != NULL) { 6216 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6217 if (ip_fanout_send_icmp(q, mp, flags, 6218 ICMP_DEST_UNREACHABLE, 6219 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6220 BUMP_MIB(ill->ill_ip_mib, 6221 ipIfStatsInUnknownProtos); 6222 } 6223 } else { 6224 if (ip_fanout_send_icmp_v6(q, mp, flags, 6225 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6226 0, B_FALSE, zoneid, ipst)) { 6227 BUMP_MIB(ill->ill_ip_mib, 6228 ipIfStatsInUnknownProtos); 6229 } 6230 } 6231 ill_refrele(ill); 6232 } else { /* re-link for the freemsg() below. */ 6233 ipsec_mp->b_cont = mp; 6234 } 6235 6236 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6237 freemsg(ipsec_mp); 6238 } 6239 6240 /* 6241 * See if the inbound datagram has had IPsec processing applied to it. 6242 */ 6243 boolean_t 6244 ipsec_in_is_secure(mblk_t *ipsec_mp) 6245 { 6246 ipsec_in_t *ii; 6247 6248 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6249 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6250 6251 if (ii->ipsec_in_loopback) { 6252 return (ii->ipsec_in_secure); 6253 } else { 6254 return (ii->ipsec_in_ah_sa != NULL || 6255 ii->ipsec_in_esp_sa != NULL || 6256 ii->ipsec_in_decaps); 6257 } 6258 } 6259 6260 /* 6261 * Handle protocols with which IP is less intimate. There 6262 * can be more than one stream bound to a particular 6263 * protocol. When this is the case, normally each one gets a copy 6264 * of any incoming packets. 6265 * 6266 * IPsec NOTE : 6267 * 6268 * Don't allow a secure packet going up a non-secure connection. 6269 * We don't allow this because 6270 * 6271 * 1) Reply might go out in clear which will be dropped at 6272 * the sending side. 6273 * 2) If the reply goes out in clear it will give the 6274 * adversary enough information for getting the key in 6275 * most of the cases. 6276 * 6277 * Moreover getting a secure packet when we expect clear 6278 * implies that SA's were added without checking for 6279 * policy on both ends. This should not happen once ISAKMP 6280 * is used to negotiate SAs as SAs will be added only after 6281 * verifying the policy. 6282 * 6283 * NOTE : If the packet was tunneled and not multicast we only send 6284 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6285 * back to delivering packets to AF_INET6 raw sockets. 6286 * 6287 * IPQoS Notes: 6288 * Once we have determined the client, invoke IPPF processing. 6289 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6290 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6291 * ip_policy will be false. 6292 * 6293 * Zones notes: 6294 * Currently only applications in the global zone can create raw sockets for 6295 * protocols other than ICMP. So unlike the broadcast / multicast case of 6296 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6297 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6298 */ 6299 static void 6300 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6301 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6302 zoneid_t zoneid) 6303 { 6304 queue_t *rq; 6305 mblk_t *mp1, *first_mp1; 6306 uint_t protocol = ipha->ipha_protocol; 6307 ipaddr_t dst; 6308 boolean_t one_only; 6309 mblk_t *first_mp = mp; 6310 boolean_t secure; 6311 uint32_t ill_index; 6312 conn_t *connp, *first_connp, *next_connp; 6313 connf_t *connfp; 6314 boolean_t shared_addr; 6315 mib2_ipIfStatsEntry_t *mibptr; 6316 ip_stack_t *ipst = recv_ill->ill_ipst; 6317 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6318 6319 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6320 if (mctl_present) { 6321 mp = first_mp->b_cont; 6322 secure = ipsec_in_is_secure(first_mp); 6323 ASSERT(mp != NULL); 6324 } else { 6325 secure = B_FALSE; 6326 } 6327 dst = ipha->ipha_dst; 6328 /* 6329 * If the packet was tunneled and not multicast we only send to it 6330 * the first match. 6331 */ 6332 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6333 !CLASSD(dst)); 6334 6335 shared_addr = (zoneid == ALL_ZONES); 6336 if (shared_addr) { 6337 /* 6338 * We don't allow multilevel ports for raw IP, so no need to 6339 * check for that here. 6340 */ 6341 zoneid = tsol_packet_to_zoneid(mp); 6342 } 6343 6344 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6345 mutex_enter(&connfp->connf_lock); 6346 connp = connfp->connf_head; 6347 for (connp = connfp->connf_head; connp != NULL; 6348 connp = connp->conn_next) { 6349 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6350 zoneid) && 6351 (!is_system_labeled() || 6352 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6353 connp))) { 6354 break; 6355 } 6356 } 6357 6358 if (connp == NULL || connp->conn_upq == NULL) { 6359 /* 6360 * No one bound to these addresses. Is 6361 * there a client that wants all 6362 * unclaimed datagrams? 6363 */ 6364 mutex_exit(&connfp->connf_lock); 6365 /* 6366 * Check for IPPROTO_ENCAP... 6367 */ 6368 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6369 /* 6370 * If an IPsec mblk is here on a multicast 6371 * tunnel (using ip_mroute stuff), check policy here, 6372 * THEN ship off to ip_mroute_decap(). 6373 * 6374 * BTW, If I match a configured IP-in-IP 6375 * tunnel, this path will not be reached, and 6376 * ip_mroute_decap will never be called. 6377 */ 6378 first_mp = ipsec_check_global_policy(first_mp, connp, 6379 ipha, NULL, mctl_present, ipst->ips_netstack); 6380 if (first_mp != NULL) { 6381 if (mctl_present) 6382 freeb(first_mp); 6383 ip_mroute_decap(q, mp, ill); 6384 } /* Else we already freed everything! */ 6385 } else { 6386 /* 6387 * Otherwise send an ICMP protocol unreachable. 6388 */ 6389 if (ip_fanout_send_icmp(q, first_mp, flags, 6390 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6391 mctl_present, zoneid, ipst)) { 6392 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6393 } 6394 } 6395 return; 6396 } 6397 CONN_INC_REF(connp); 6398 first_connp = connp; 6399 6400 /* 6401 * Only send message to one tunnel driver by immediately 6402 * terminating the loop. 6403 */ 6404 connp = one_only ? NULL : connp->conn_next; 6405 6406 for (;;) { 6407 while (connp != NULL) { 6408 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6409 flags, zoneid) && 6410 (!is_system_labeled() || 6411 tsol_receive_local(mp, &dst, IPV4_VERSION, 6412 shared_addr, connp))) 6413 break; 6414 connp = connp->conn_next; 6415 } 6416 6417 /* 6418 * Copy the packet. 6419 */ 6420 if (connp == NULL || connp->conn_upq == NULL || 6421 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6422 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6423 /* 6424 * No more interested clients or memory 6425 * allocation failed 6426 */ 6427 connp = first_connp; 6428 break; 6429 } 6430 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6431 CONN_INC_REF(connp); 6432 mutex_exit(&connfp->connf_lock); 6433 rq = connp->conn_rq; 6434 if (!canputnext(rq)) { 6435 if (flags & IP_FF_RAWIP) { 6436 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6437 } else { 6438 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6439 } 6440 6441 freemsg(first_mp1); 6442 } else { 6443 /* 6444 * Don't enforce here if we're an actual tunnel - 6445 * let "tun" do it instead. 6446 */ 6447 if (!IPCL_IS_IPTUN(connp) && 6448 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6449 secure)) { 6450 first_mp1 = ipsec_check_inbound_policy 6451 (first_mp1, connp, ipha, NULL, 6452 mctl_present); 6453 } 6454 if (first_mp1 != NULL) { 6455 int in_flags = 0; 6456 /* 6457 * ip_fanout_proto also gets called from 6458 * icmp_inbound_error_fanout, in which case 6459 * the msg type is M_CTL. Don't add info 6460 * in this case for the time being. In future 6461 * when there is a need for knowing the 6462 * inbound iface index for ICMP error msgs, 6463 * then this can be changed. 6464 */ 6465 if (connp->conn_recvif) 6466 in_flags = IPF_RECVIF; 6467 /* 6468 * The ULP may support IP_RECVPKTINFO for both 6469 * IP v4 and v6 so pass the appropriate argument 6470 * based on conn IP version. 6471 */ 6472 if (connp->conn_ip_recvpktinfo) { 6473 if (connp->conn_af_isv6) { 6474 /* 6475 * V6 only needs index 6476 */ 6477 in_flags |= IPF_RECVIF; 6478 } else { 6479 /* 6480 * V4 needs index + 6481 * matching address. 6482 */ 6483 in_flags |= IPF_RECVADDR; 6484 } 6485 } 6486 if ((in_flags != 0) && 6487 (mp->b_datap->db_type != M_CTL)) { 6488 /* 6489 * the actual data will be 6490 * contained in b_cont upon 6491 * successful return of the 6492 * following call else 6493 * original mblk is returned 6494 */ 6495 ASSERT(recv_ill != NULL); 6496 mp1 = ip_add_info(mp1, recv_ill, 6497 in_flags, IPCL_ZONEID(connp), ipst); 6498 } 6499 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6500 if (mctl_present) 6501 freeb(first_mp1); 6502 (connp->conn_recv)(connp, mp1, NULL); 6503 } 6504 } 6505 mutex_enter(&connfp->connf_lock); 6506 /* Follow the next pointer before releasing the conn. */ 6507 next_connp = connp->conn_next; 6508 CONN_DEC_REF(connp); 6509 connp = next_connp; 6510 } 6511 6512 /* Last one. Send it upstream. */ 6513 mutex_exit(&connfp->connf_lock); 6514 6515 /* 6516 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6517 * will be set to false. 6518 */ 6519 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6520 ill_index = ill->ill_phyint->phyint_ifindex; 6521 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6522 if (mp == NULL) { 6523 CONN_DEC_REF(connp); 6524 if (mctl_present) { 6525 freeb(first_mp); 6526 } 6527 return; 6528 } 6529 } 6530 6531 rq = connp->conn_rq; 6532 if (!canputnext(rq)) { 6533 if (flags & IP_FF_RAWIP) { 6534 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6535 } else { 6536 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6537 } 6538 6539 freemsg(first_mp); 6540 } else { 6541 if (IPCL_IS_IPTUN(connp)) { 6542 /* 6543 * Tunneled packet. We enforce policy in the tunnel 6544 * module itself. 6545 * 6546 * Send the WHOLE packet up (incl. IPSEC_IN) without 6547 * a policy check. 6548 * FIXME to use conn_recv for tun later. 6549 */ 6550 putnext(rq, first_mp); 6551 CONN_DEC_REF(connp); 6552 return; 6553 } 6554 6555 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6556 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6557 ipha, NULL, mctl_present); 6558 } 6559 6560 if (first_mp != NULL) { 6561 int in_flags = 0; 6562 6563 /* 6564 * ip_fanout_proto also gets called 6565 * from icmp_inbound_error_fanout, in 6566 * which case the msg type is M_CTL. 6567 * Don't add info in this case for time 6568 * being. In future when there is a 6569 * need for knowing the inbound iface 6570 * index for ICMP error msgs, then this 6571 * can be changed 6572 */ 6573 if (connp->conn_recvif) 6574 in_flags = IPF_RECVIF; 6575 if (connp->conn_ip_recvpktinfo) { 6576 if (connp->conn_af_isv6) { 6577 /* 6578 * V6 only needs index 6579 */ 6580 in_flags |= IPF_RECVIF; 6581 } else { 6582 /* 6583 * V4 needs index + 6584 * matching address. 6585 */ 6586 in_flags |= IPF_RECVADDR; 6587 } 6588 } 6589 if ((in_flags != 0) && 6590 (mp->b_datap->db_type != M_CTL)) { 6591 6592 /* 6593 * the actual data will be contained in 6594 * b_cont upon successful return 6595 * of the following call else original 6596 * mblk is returned 6597 */ 6598 ASSERT(recv_ill != NULL); 6599 mp = ip_add_info(mp, recv_ill, 6600 in_flags, IPCL_ZONEID(connp), ipst); 6601 } 6602 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6603 (connp->conn_recv)(connp, mp, NULL); 6604 if (mctl_present) 6605 freeb(first_mp); 6606 } 6607 } 6608 CONN_DEC_REF(connp); 6609 } 6610 6611 /* 6612 * Fanout for TCP packets 6613 * The caller puts <fport, lport> in the ports parameter. 6614 * 6615 * IPQoS Notes 6616 * Before sending it to the client, invoke IPPF processing. 6617 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6618 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6619 * ip_policy is false. 6620 */ 6621 static void 6622 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6623 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6624 { 6625 mblk_t *first_mp; 6626 boolean_t secure; 6627 uint32_t ill_index; 6628 int ip_hdr_len; 6629 tcph_t *tcph; 6630 boolean_t syn_present = B_FALSE; 6631 conn_t *connp; 6632 ip_stack_t *ipst = recv_ill->ill_ipst; 6633 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6634 6635 ASSERT(recv_ill != NULL); 6636 6637 first_mp = mp; 6638 if (mctl_present) { 6639 ASSERT(first_mp->b_datap->db_type == M_CTL); 6640 mp = first_mp->b_cont; 6641 secure = ipsec_in_is_secure(first_mp); 6642 ASSERT(mp != NULL); 6643 } else { 6644 secure = B_FALSE; 6645 } 6646 6647 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6648 6649 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6650 zoneid, ipst)) == NULL) { 6651 /* 6652 * No connected connection or listener. Send a 6653 * TH_RST via tcp_xmit_listeners_reset. 6654 */ 6655 6656 /* Initiate IPPf processing, if needed. */ 6657 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6658 uint32_t ill_index; 6659 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6660 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6661 if (first_mp == NULL) 6662 return; 6663 } 6664 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6665 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6666 zoneid)); 6667 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6668 ipst->ips_netstack->netstack_tcp, NULL); 6669 return; 6670 } 6671 6672 /* 6673 * Allocate the SYN for the TCP connection here itself 6674 */ 6675 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6676 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6677 if (IPCL_IS_TCP(connp)) { 6678 squeue_t *sqp; 6679 6680 /* 6681 * For fused tcp loopback, assign the eager's 6682 * squeue to be that of the active connect's. 6683 * Note that we don't check for IP_FF_LOOPBACK 6684 * here since this routine gets called only 6685 * for loopback (unlike the IPv6 counterpart). 6686 */ 6687 ASSERT(Q_TO_CONN(q) != NULL); 6688 if (do_tcp_fusion && 6689 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6690 !secure && 6691 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6692 IPCL_IS_TCP(Q_TO_CONN(q))) { 6693 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6694 sqp = Q_TO_CONN(q)->conn_sqp; 6695 } else { 6696 sqp = IP_SQUEUE_GET(lbolt); 6697 } 6698 6699 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6700 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6701 syn_present = B_TRUE; 6702 } 6703 } 6704 6705 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6706 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6707 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6708 if ((flags & TH_RST) || (flags & TH_URG)) { 6709 CONN_DEC_REF(connp); 6710 freemsg(first_mp); 6711 return; 6712 } 6713 if (flags & TH_ACK) { 6714 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6715 ipst->ips_netstack->netstack_tcp, connp); 6716 CONN_DEC_REF(connp); 6717 return; 6718 } 6719 6720 CONN_DEC_REF(connp); 6721 freemsg(first_mp); 6722 return; 6723 } 6724 6725 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6726 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6727 NULL, mctl_present); 6728 if (first_mp == NULL) { 6729 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6730 CONN_DEC_REF(connp); 6731 return; 6732 } 6733 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6734 ASSERT(syn_present); 6735 if (mctl_present) { 6736 ASSERT(first_mp != mp); 6737 first_mp->b_datap->db_struioflag |= 6738 STRUIO_POLICY; 6739 } else { 6740 ASSERT(first_mp == mp); 6741 mp->b_datap->db_struioflag &= 6742 ~STRUIO_EAGER; 6743 mp->b_datap->db_struioflag |= 6744 STRUIO_POLICY; 6745 } 6746 } else { 6747 /* 6748 * Discard first_mp early since we're dealing with a 6749 * fully-connected conn_t and tcp doesn't do policy in 6750 * this case. 6751 */ 6752 if (mctl_present) { 6753 freeb(first_mp); 6754 mctl_present = B_FALSE; 6755 } 6756 first_mp = mp; 6757 } 6758 } 6759 6760 /* 6761 * Initiate policy processing here if needed. If we get here from 6762 * icmp_inbound_error_fanout, ip_policy is false. 6763 */ 6764 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6765 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6766 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6767 if (mp == NULL) { 6768 CONN_DEC_REF(connp); 6769 if (mctl_present) 6770 freeb(first_mp); 6771 return; 6772 } else if (mctl_present) { 6773 ASSERT(first_mp != mp); 6774 first_mp->b_cont = mp; 6775 } else { 6776 first_mp = mp; 6777 } 6778 } 6779 6780 6781 6782 /* Handle socket options. */ 6783 if (!syn_present && 6784 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6785 /* Add header */ 6786 ASSERT(recv_ill != NULL); 6787 /* 6788 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6789 * IPF_RECVIF. 6790 */ 6791 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6792 ipst); 6793 if (mp == NULL) { 6794 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6795 CONN_DEC_REF(connp); 6796 if (mctl_present) 6797 freeb(first_mp); 6798 return; 6799 } else if (mctl_present) { 6800 /* 6801 * ip_add_info might return a new mp. 6802 */ 6803 ASSERT(first_mp != mp); 6804 first_mp->b_cont = mp; 6805 } else { 6806 first_mp = mp; 6807 } 6808 } 6809 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6810 if (IPCL_IS_TCP(connp)) { 6811 /* do not drain, certain use cases can blow the stack */ 6812 squeue_enter_nodrain(connp->conn_sqp, first_mp, 6813 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6814 } else { 6815 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6816 (connp->conn_recv)(connp, first_mp, NULL); 6817 CONN_DEC_REF(connp); 6818 } 6819 } 6820 6821 /* 6822 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6823 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6824 * is not consumed. 6825 * 6826 * One of four things can happen, all of which affect the passed-in mblk: 6827 * 6828 * 1.) ICMP messages that go through here just get returned TRUE. 6829 * 6830 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6831 * 6832 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6833 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6834 * 6835 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6836 */ 6837 static boolean_t 6838 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6839 ipsec_stack_t *ipss) 6840 { 6841 int shift, plen, iph_len; 6842 ipha_t *ipha; 6843 udpha_t *udpha; 6844 uint32_t *spi; 6845 uint32_t esp_ports; 6846 uint8_t *orptr; 6847 boolean_t free_ire; 6848 6849 if (DB_TYPE(mp) == M_CTL) { 6850 /* 6851 * ICMP message with UDP inside. Don't bother stripping, just 6852 * send it up. 6853 * 6854 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6855 * to ignore errors set by ICMP anyway ('cause they might be 6856 * forged), but that's the app's decision, not ours. 6857 */ 6858 6859 /* Bunch of reality checks for DEBUG kernels... */ 6860 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6861 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6862 6863 return (B_TRUE); 6864 } 6865 6866 ipha = (ipha_t *)mp->b_rptr; 6867 iph_len = IPH_HDR_LENGTH(ipha); 6868 plen = ntohs(ipha->ipha_length); 6869 6870 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6871 /* 6872 * Most likely a keepalive for the benefit of an intervening 6873 * NAT. These aren't for us, per se, so drop it. 6874 * 6875 * RFC 3947/8 doesn't say for sure what to do for 2-3 6876 * byte packets (keepalives are 1-byte), but we'll drop them 6877 * also. 6878 */ 6879 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6880 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6881 return (B_FALSE); 6882 } 6883 6884 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6885 /* might as well pull it all up - it might be ESP. */ 6886 if (!pullupmsg(mp, -1)) { 6887 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6888 DROPPER(ipss, ipds_esp_nomem), 6889 &ipss->ipsec_dropper); 6890 return (B_FALSE); 6891 } 6892 6893 ipha = (ipha_t *)mp->b_rptr; 6894 } 6895 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6896 if (*spi == 0) { 6897 /* UDP packet - remove 0-spi. */ 6898 shift = sizeof (uint32_t); 6899 } else { 6900 /* ESP-in-UDP packet - reduce to ESP. */ 6901 ipha->ipha_protocol = IPPROTO_ESP; 6902 shift = sizeof (udpha_t); 6903 } 6904 6905 /* Fix IP header */ 6906 ipha->ipha_length = htons(plen - shift); 6907 ipha->ipha_hdr_checksum = 0; 6908 6909 orptr = mp->b_rptr; 6910 mp->b_rptr += shift; 6911 6912 udpha = (udpha_t *)(orptr + iph_len); 6913 if (*spi == 0) { 6914 ASSERT((uint8_t *)ipha == orptr); 6915 udpha->uha_length = htons(plen - shift - iph_len); 6916 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 6917 esp_ports = 0; 6918 } else { 6919 esp_ports = *((uint32_t *)udpha); 6920 ASSERT(esp_ports != 0); 6921 } 6922 ovbcopy(orptr, orptr + shift, iph_len); 6923 if (esp_ports != 0) /* Punt up for ESP processing. */ { 6924 ipha = (ipha_t *)(orptr + shift); 6925 6926 free_ire = (ire == NULL); 6927 if (free_ire) { 6928 /* Re-acquire ire. */ 6929 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 6930 ipss->ipsec_netstack->netstack_ip); 6931 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 6932 if (ire != NULL) 6933 ire_refrele(ire); 6934 /* 6935 * Do a regular freemsg(), as this is an IP 6936 * error (no local route) not an IPsec one. 6937 */ 6938 freemsg(mp); 6939 } 6940 } 6941 6942 ip_proto_input(q, mp, ipha, ire, recv_ill, esp_ports); 6943 if (free_ire) 6944 ire_refrele(ire); 6945 } 6946 6947 return (esp_ports == 0); 6948 } 6949 6950 /* 6951 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6952 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6953 * Caller is responsible for dropping references to the conn, and freeing 6954 * first_mp. 6955 * 6956 * IPQoS Notes 6957 * Before sending it to the client, invoke IPPF processing. Policy processing 6958 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6959 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6960 * ip_wput_local, ip_policy is false. 6961 */ 6962 static void 6963 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6964 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6965 boolean_t ip_policy) 6966 { 6967 boolean_t mctl_present = (first_mp != NULL); 6968 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6969 uint32_t ill_index; 6970 ip_stack_t *ipst = recv_ill->ill_ipst; 6971 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6972 6973 ASSERT(ill != NULL); 6974 6975 if (mctl_present) 6976 first_mp->b_cont = mp; 6977 else 6978 first_mp = mp; 6979 6980 if (CONN_UDP_FLOWCTLD(connp)) { 6981 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 6982 freemsg(first_mp); 6983 return; 6984 } 6985 6986 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6987 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6988 NULL, mctl_present); 6989 if (first_mp == NULL) { 6990 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 6991 return; /* Freed by ipsec_check_inbound_policy(). */ 6992 } 6993 } 6994 if (mctl_present) 6995 freeb(first_mp); 6996 6997 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 6998 if (connp->conn_udp->udp_nat_t_endpoint) { 6999 if (mctl_present) { 7000 /* mctl_present *shouldn't* happen. */ 7001 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7002 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7003 &ipss->ipsec_dropper); 7004 return; 7005 } 7006 7007 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7008 return; 7009 } 7010 7011 /* Handle options. */ 7012 if (connp->conn_recvif) 7013 in_flags = IPF_RECVIF; 7014 /* 7015 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7016 * passed to ip_add_info is based on IP version of connp. 7017 */ 7018 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7019 if (connp->conn_af_isv6) { 7020 /* 7021 * V6 only needs index 7022 */ 7023 in_flags |= IPF_RECVIF; 7024 } else { 7025 /* 7026 * V4 needs index + matching address. 7027 */ 7028 in_flags |= IPF_RECVADDR; 7029 } 7030 } 7031 7032 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7033 in_flags |= IPF_RECVSLLA; 7034 7035 /* 7036 * Initiate IPPF processing here, if needed. Note first_mp won't be 7037 * freed if the packet is dropped. The caller will do so. 7038 */ 7039 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7040 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7041 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7042 if (mp == NULL) { 7043 return; 7044 } 7045 } 7046 if ((in_flags != 0) && 7047 (mp->b_datap->db_type != M_CTL)) { 7048 /* 7049 * The actual data will be contained in b_cont 7050 * upon successful return of the following call 7051 * else original mblk is returned 7052 */ 7053 ASSERT(recv_ill != NULL); 7054 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7055 ipst); 7056 } 7057 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7058 /* Send it upstream */ 7059 (connp->conn_recv)(connp, mp, NULL); 7060 } 7061 7062 /* 7063 * Fanout for UDP packets. 7064 * The caller puts <fport, lport> in the ports parameter. 7065 * 7066 * If SO_REUSEADDR is set all multicast and broadcast packets 7067 * will be delivered to all streams bound to the same port. 7068 * 7069 * Zones notes: 7070 * Multicast and broadcast packets will be distributed to streams in all zones. 7071 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7072 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7073 * packets. To maintain this behavior with multiple zones, the conns are grouped 7074 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7075 * each zone. If unset, all the following conns in the same zone are skipped. 7076 */ 7077 static void 7078 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7079 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7080 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7081 { 7082 uint32_t dstport, srcport; 7083 ipaddr_t dst; 7084 mblk_t *first_mp; 7085 boolean_t secure; 7086 in6_addr_t v6src; 7087 conn_t *connp; 7088 connf_t *connfp; 7089 conn_t *first_connp; 7090 conn_t *next_connp; 7091 mblk_t *mp1, *first_mp1; 7092 ipaddr_t src; 7093 zoneid_t last_zoneid; 7094 boolean_t reuseaddr; 7095 boolean_t shared_addr; 7096 boolean_t unlabeled; 7097 ip_stack_t *ipst; 7098 7099 ASSERT(recv_ill != NULL); 7100 ipst = recv_ill->ill_ipst; 7101 7102 first_mp = mp; 7103 if (mctl_present) { 7104 mp = first_mp->b_cont; 7105 first_mp->b_cont = NULL; 7106 secure = ipsec_in_is_secure(first_mp); 7107 ASSERT(mp != NULL); 7108 } else { 7109 first_mp = NULL; 7110 secure = B_FALSE; 7111 } 7112 7113 /* Extract ports in net byte order */ 7114 dstport = htons(ntohl(ports) & 0xFFFF); 7115 srcport = htons(ntohl(ports) >> 16); 7116 dst = ipha->ipha_dst; 7117 src = ipha->ipha_src; 7118 7119 unlabeled = B_FALSE; 7120 if (is_system_labeled()) 7121 /* Cred cannot be null on IPv4 */ 7122 unlabeled = (crgetlabel(DB_CRED(mp))->tsl_flags & 7123 TSLF_UNLABELED) != 0; 7124 shared_addr = (zoneid == ALL_ZONES); 7125 if (shared_addr) { 7126 /* 7127 * No need to handle exclusive-stack zones since ALL_ZONES 7128 * only applies to the shared stack. 7129 */ 7130 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7131 /* 7132 * If no shared MLP is found, tsol_mlp_findzone returns 7133 * ALL_ZONES. In that case, we assume it's SLP, and 7134 * search for the zone based on the packet label. 7135 * 7136 * If there is such a zone, we prefer to find a 7137 * connection in it. Otherwise, we look for a 7138 * MAC-exempt connection in any zone whose label 7139 * dominates the default label on the packet. 7140 */ 7141 if (zoneid == ALL_ZONES) 7142 zoneid = tsol_packet_to_zoneid(mp); 7143 else 7144 unlabeled = B_FALSE; 7145 } 7146 7147 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7148 mutex_enter(&connfp->connf_lock); 7149 connp = connfp->connf_head; 7150 if (!broadcast && !CLASSD(dst)) { 7151 /* 7152 * Not broadcast or multicast. Send to the one (first) 7153 * client we find. No need to check conn_wantpacket() 7154 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7155 * IPv4 unicast packets. 7156 */ 7157 while ((connp != NULL) && 7158 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7159 (!IPCL_ZONE_MATCH(connp, zoneid) && 7160 !(unlabeled && connp->conn_mac_exempt)))) { 7161 /* 7162 * We keep searching since the conn did not match, 7163 * or its zone did not match and it is not either 7164 * an allzones conn or a mac exempt conn (if the 7165 * sender is unlabeled.) 7166 */ 7167 connp = connp->conn_next; 7168 } 7169 7170 if (connp == NULL || connp->conn_upq == NULL) 7171 goto notfound; 7172 7173 if (is_system_labeled() && 7174 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7175 connp)) 7176 goto notfound; 7177 7178 CONN_INC_REF(connp); 7179 mutex_exit(&connfp->connf_lock); 7180 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7181 flags, recv_ill, ip_policy); 7182 IP_STAT(ipst, ip_udp_fannorm); 7183 CONN_DEC_REF(connp); 7184 return; 7185 } 7186 7187 /* 7188 * Broadcast and multicast case 7189 * 7190 * Need to check conn_wantpacket(). 7191 * If SO_REUSEADDR has been set on the first we send the 7192 * packet to all clients that have joined the group and 7193 * match the port. 7194 */ 7195 7196 while (connp != NULL) { 7197 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7198 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7199 (!is_system_labeled() || 7200 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7201 connp))) 7202 break; 7203 connp = connp->conn_next; 7204 } 7205 7206 if (connp == NULL || connp->conn_upq == NULL) 7207 goto notfound; 7208 7209 first_connp = connp; 7210 /* 7211 * When SO_REUSEADDR is not set, send the packet only to the first 7212 * matching connection in its zone by keeping track of the zoneid. 7213 */ 7214 reuseaddr = first_connp->conn_reuseaddr; 7215 last_zoneid = first_connp->conn_zoneid; 7216 7217 CONN_INC_REF(connp); 7218 connp = connp->conn_next; 7219 for (;;) { 7220 while (connp != NULL) { 7221 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7222 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7223 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7224 (!is_system_labeled() || 7225 tsol_receive_local(mp, &dst, IPV4_VERSION, 7226 shared_addr, connp))) 7227 break; 7228 connp = connp->conn_next; 7229 } 7230 /* 7231 * Just copy the data part alone. The mctl part is 7232 * needed just for verifying policy and it is never 7233 * sent up. 7234 */ 7235 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7236 ((mp1 = copymsg(mp)) == NULL))) { 7237 /* 7238 * No more interested clients or memory 7239 * allocation failed 7240 */ 7241 connp = first_connp; 7242 break; 7243 } 7244 if (connp->conn_zoneid != last_zoneid) { 7245 /* 7246 * Update the zoneid so that the packet isn't sent to 7247 * any more conns in the same zone unless SO_REUSEADDR 7248 * is set. 7249 */ 7250 reuseaddr = connp->conn_reuseaddr; 7251 last_zoneid = connp->conn_zoneid; 7252 } 7253 if (first_mp != NULL) { 7254 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7255 ipsec_info_type == IPSEC_IN); 7256 first_mp1 = ipsec_in_tag(first_mp, NULL, 7257 ipst->ips_netstack); 7258 if (first_mp1 == NULL) { 7259 freemsg(mp1); 7260 connp = first_connp; 7261 break; 7262 } 7263 } else { 7264 first_mp1 = NULL; 7265 } 7266 CONN_INC_REF(connp); 7267 mutex_exit(&connfp->connf_lock); 7268 /* 7269 * IPQoS notes: We don't send the packet for policy 7270 * processing here, will do it for the last one (below). 7271 * i.e. we do it per-packet now, but if we do policy 7272 * processing per-conn, then we would need to do it 7273 * here too. 7274 */ 7275 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7276 ipha, flags, recv_ill, B_FALSE); 7277 mutex_enter(&connfp->connf_lock); 7278 /* Follow the next pointer before releasing the conn. */ 7279 next_connp = connp->conn_next; 7280 IP_STAT(ipst, ip_udp_fanmb); 7281 CONN_DEC_REF(connp); 7282 connp = next_connp; 7283 } 7284 7285 /* Last one. Send it upstream. */ 7286 mutex_exit(&connfp->connf_lock); 7287 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7288 recv_ill, ip_policy); 7289 IP_STAT(ipst, ip_udp_fanmb); 7290 CONN_DEC_REF(connp); 7291 return; 7292 7293 notfound: 7294 7295 mutex_exit(&connfp->connf_lock); 7296 IP_STAT(ipst, ip_udp_fanothers); 7297 /* 7298 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7299 * have already been matched above, since they live in the IPv4 7300 * fanout tables. This implies we only need to 7301 * check for IPv6 in6addr_any endpoints here. 7302 * Thus we compare using ipv6_all_zeros instead of the destination 7303 * address, except for the multicast group membership lookup which 7304 * uses the IPv4 destination. 7305 */ 7306 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7307 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7308 mutex_enter(&connfp->connf_lock); 7309 connp = connfp->connf_head; 7310 if (!broadcast && !CLASSD(dst)) { 7311 while (connp != NULL) { 7312 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7313 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7314 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7315 !connp->conn_ipv6_v6only) 7316 break; 7317 connp = connp->conn_next; 7318 } 7319 7320 if (connp != NULL && is_system_labeled() && 7321 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7322 connp)) 7323 connp = NULL; 7324 7325 if (connp == NULL || connp->conn_upq == NULL) { 7326 /* 7327 * No one bound to this port. Is 7328 * there a client that wants all 7329 * unclaimed datagrams? 7330 */ 7331 mutex_exit(&connfp->connf_lock); 7332 7333 if (mctl_present) 7334 first_mp->b_cont = mp; 7335 else 7336 first_mp = mp; 7337 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7338 connf_head != NULL) { 7339 ip_fanout_proto(q, first_mp, ill, ipha, 7340 flags | IP_FF_RAWIP, mctl_present, 7341 ip_policy, recv_ill, zoneid); 7342 } else { 7343 if (ip_fanout_send_icmp(q, first_mp, flags, 7344 ICMP_DEST_UNREACHABLE, 7345 ICMP_PORT_UNREACHABLE, 7346 mctl_present, zoneid, ipst)) { 7347 BUMP_MIB(ill->ill_ip_mib, 7348 udpIfStatsNoPorts); 7349 } 7350 } 7351 return; 7352 } 7353 7354 CONN_INC_REF(connp); 7355 mutex_exit(&connfp->connf_lock); 7356 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7357 flags, recv_ill, ip_policy); 7358 CONN_DEC_REF(connp); 7359 return; 7360 } 7361 /* 7362 * IPv4 multicast packet being delivered to an AF_INET6 7363 * in6addr_any endpoint. 7364 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7365 * and not conn_wantpacket_v6() since any multicast membership is 7366 * for an IPv4-mapped multicast address. 7367 * The packet is sent to all clients in all zones that have joined the 7368 * group and match the port. 7369 */ 7370 while (connp != NULL) { 7371 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7372 srcport, v6src) && 7373 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7374 (!is_system_labeled() || 7375 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7376 connp))) 7377 break; 7378 connp = connp->conn_next; 7379 } 7380 7381 if (connp == NULL || connp->conn_upq == NULL) { 7382 /* 7383 * No one bound to this port. Is 7384 * there a client that wants all 7385 * unclaimed datagrams? 7386 */ 7387 mutex_exit(&connfp->connf_lock); 7388 7389 if (mctl_present) 7390 first_mp->b_cont = mp; 7391 else 7392 first_mp = mp; 7393 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7394 NULL) { 7395 ip_fanout_proto(q, first_mp, ill, ipha, 7396 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7397 recv_ill, zoneid); 7398 } else { 7399 /* 7400 * We used to attempt to send an icmp error here, but 7401 * since this is known to be a multicast packet 7402 * and we don't send icmp errors in response to 7403 * multicast, just drop the packet and give up sooner. 7404 */ 7405 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7406 freemsg(first_mp); 7407 } 7408 return; 7409 } 7410 7411 first_connp = connp; 7412 7413 CONN_INC_REF(connp); 7414 connp = connp->conn_next; 7415 for (;;) { 7416 while (connp != NULL) { 7417 if (IPCL_UDP_MATCH_V6(connp, dstport, 7418 ipv6_all_zeros, srcport, v6src) && 7419 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7420 (!is_system_labeled() || 7421 tsol_receive_local(mp, &dst, IPV4_VERSION, 7422 shared_addr, connp))) 7423 break; 7424 connp = connp->conn_next; 7425 } 7426 /* 7427 * Just copy the data part alone. The mctl part is 7428 * needed just for verifying policy and it is never 7429 * sent up. 7430 */ 7431 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7432 ((mp1 = copymsg(mp)) == NULL))) { 7433 /* 7434 * No more intested clients or memory 7435 * allocation failed 7436 */ 7437 connp = first_connp; 7438 break; 7439 } 7440 if (first_mp != NULL) { 7441 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7442 ipsec_info_type == IPSEC_IN); 7443 first_mp1 = ipsec_in_tag(first_mp, NULL, 7444 ipst->ips_netstack); 7445 if (first_mp1 == NULL) { 7446 freemsg(mp1); 7447 connp = first_connp; 7448 break; 7449 } 7450 } else { 7451 first_mp1 = NULL; 7452 } 7453 CONN_INC_REF(connp); 7454 mutex_exit(&connfp->connf_lock); 7455 /* 7456 * IPQoS notes: We don't send the packet for policy 7457 * processing here, will do it for the last one (below). 7458 * i.e. we do it per-packet now, but if we do policy 7459 * processing per-conn, then we would need to do it 7460 * here too. 7461 */ 7462 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7463 ipha, flags, recv_ill, B_FALSE); 7464 mutex_enter(&connfp->connf_lock); 7465 /* Follow the next pointer before releasing the conn. */ 7466 next_connp = connp->conn_next; 7467 CONN_DEC_REF(connp); 7468 connp = next_connp; 7469 } 7470 7471 /* Last one. Send it upstream. */ 7472 mutex_exit(&connfp->connf_lock); 7473 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7474 recv_ill, ip_policy); 7475 CONN_DEC_REF(connp); 7476 } 7477 7478 /* 7479 * Complete the ip_wput header so that it 7480 * is possible to generate ICMP 7481 * errors. 7482 */ 7483 int 7484 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7485 { 7486 ire_t *ire; 7487 7488 if (ipha->ipha_src == INADDR_ANY) { 7489 ire = ire_lookup_local(zoneid, ipst); 7490 if (ire == NULL) { 7491 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7492 return (1); 7493 } 7494 ipha->ipha_src = ire->ire_addr; 7495 ire_refrele(ire); 7496 } 7497 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7498 ipha->ipha_hdr_checksum = 0; 7499 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7500 return (0); 7501 } 7502 7503 /* 7504 * Nobody should be sending 7505 * packets up this stream 7506 */ 7507 static void 7508 ip_lrput(queue_t *q, mblk_t *mp) 7509 { 7510 mblk_t *mp1; 7511 7512 switch (mp->b_datap->db_type) { 7513 case M_FLUSH: 7514 /* Turn around */ 7515 if (*mp->b_rptr & FLUSHW) { 7516 *mp->b_rptr &= ~FLUSHR; 7517 qreply(q, mp); 7518 return; 7519 } 7520 break; 7521 } 7522 /* Could receive messages that passed through ar_rput */ 7523 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7524 mp1->b_prev = mp1->b_next = NULL; 7525 freemsg(mp); 7526 } 7527 7528 /* Nobody should be sending packets down this stream */ 7529 /* ARGSUSED */ 7530 void 7531 ip_lwput(queue_t *q, mblk_t *mp) 7532 { 7533 freemsg(mp); 7534 } 7535 7536 /* 7537 * Move the first hop in any source route to ipha_dst and remove that part of 7538 * the source route. Called by other protocols. Errors in option formatting 7539 * are ignored - will be handled by ip_wput_options Return the final 7540 * destination (either ipha_dst or the last entry in a source route.) 7541 */ 7542 ipaddr_t 7543 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7544 { 7545 ipoptp_t opts; 7546 uchar_t *opt; 7547 uint8_t optval; 7548 uint8_t optlen; 7549 ipaddr_t dst; 7550 int i; 7551 ire_t *ire; 7552 ip_stack_t *ipst = ns->netstack_ip; 7553 7554 ip2dbg(("ip_massage_options\n")); 7555 dst = ipha->ipha_dst; 7556 for (optval = ipoptp_first(&opts, ipha); 7557 optval != IPOPT_EOL; 7558 optval = ipoptp_next(&opts)) { 7559 opt = opts.ipoptp_cur; 7560 switch (optval) { 7561 uint8_t off; 7562 case IPOPT_SSRR: 7563 case IPOPT_LSRR: 7564 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7565 ip1dbg(("ip_massage_options: bad src route\n")); 7566 break; 7567 } 7568 optlen = opts.ipoptp_len; 7569 off = opt[IPOPT_OFFSET]; 7570 off--; 7571 redo_srr: 7572 if (optlen < IP_ADDR_LEN || 7573 off > optlen - IP_ADDR_LEN) { 7574 /* End of source route */ 7575 ip1dbg(("ip_massage_options: end of SR\n")); 7576 break; 7577 } 7578 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7579 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7580 ntohl(dst))); 7581 /* 7582 * Check if our address is present more than 7583 * once as consecutive hops in source route. 7584 * XXX verify per-interface ip_forwarding 7585 * for source route? 7586 */ 7587 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7588 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7589 if (ire != NULL) { 7590 ire_refrele(ire); 7591 off += IP_ADDR_LEN; 7592 goto redo_srr; 7593 } 7594 if (dst == htonl(INADDR_LOOPBACK)) { 7595 ip1dbg(("ip_massage_options: loopback addr in " 7596 "source route!\n")); 7597 break; 7598 } 7599 /* 7600 * Update ipha_dst to be the first hop and remove the 7601 * first hop from the source route (by overwriting 7602 * part of the option with NOP options). 7603 */ 7604 ipha->ipha_dst = dst; 7605 /* Put the last entry in dst */ 7606 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7607 3; 7608 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7609 7610 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7611 ntohl(dst))); 7612 /* Move down and overwrite */ 7613 opt[IP_ADDR_LEN] = opt[0]; 7614 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7615 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7616 for (i = 0; i < IP_ADDR_LEN; i++) 7617 opt[i] = IPOPT_NOP; 7618 break; 7619 } 7620 } 7621 return (dst); 7622 } 7623 7624 /* 7625 * Return the network mask 7626 * associated with the specified address. 7627 */ 7628 ipaddr_t 7629 ip_net_mask(ipaddr_t addr) 7630 { 7631 uchar_t *up = (uchar_t *)&addr; 7632 ipaddr_t mask = 0; 7633 uchar_t *maskp = (uchar_t *)&mask; 7634 7635 #if defined(__i386) || defined(__amd64) 7636 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7637 #endif 7638 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7639 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7640 #endif 7641 if (CLASSD(addr)) { 7642 maskp[0] = 0xF0; 7643 return (mask); 7644 } 7645 7646 /* We assume Class E default netmask to be 32 */ 7647 if (CLASSE(addr)) 7648 return (0xffffffffU); 7649 7650 if (addr == 0) 7651 return (0); 7652 maskp[0] = 0xFF; 7653 if ((up[0] & 0x80) == 0) 7654 return (mask); 7655 7656 maskp[1] = 0xFF; 7657 if ((up[0] & 0xC0) == 0x80) 7658 return (mask); 7659 7660 maskp[2] = 0xFF; 7661 if ((up[0] & 0xE0) == 0xC0) 7662 return (mask); 7663 7664 /* Otherwise return no mask */ 7665 return ((ipaddr_t)0); 7666 } 7667 7668 /* 7669 * Select an ill for the packet by considering load spreading across 7670 * a different ill in the group if dst_ill is part of some group. 7671 */ 7672 ill_t * 7673 ip_newroute_get_dst_ill(ill_t *dst_ill) 7674 { 7675 ill_t *ill; 7676 7677 /* 7678 * We schedule irrespective of whether the source address is 7679 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7680 */ 7681 ill = illgrp_scheduler(dst_ill); 7682 if (ill == NULL) 7683 return (NULL); 7684 7685 /* 7686 * For groups with names ip_sioctl_groupname ensures that all 7687 * ills are of same type. For groups without names, ifgrp_insert 7688 * ensures this. 7689 */ 7690 ASSERT(dst_ill->ill_type == ill->ill_type); 7691 7692 return (ill); 7693 } 7694 7695 /* 7696 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7697 */ 7698 ill_t * 7699 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7700 ip_stack_t *ipst) 7701 { 7702 ill_t *ret_ill; 7703 7704 ASSERT(ifindex != 0); 7705 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7706 ipst); 7707 if (ret_ill == NULL || 7708 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7709 if (isv6) { 7710 if (ill != NULL) { 7711 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7712 } else { 7713 BUMP_MIB(&ipst->ips_ip6_mib, 7714 ipIfStatsOutDiscards); 7715 } 7716 ip1dbg(("ip_grab_attach_ill (IPv6): " 7717 "bad ifindex %d.\n", ifindex)); 7718 } else { 7719 if (ill != NULL) { 7720 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7721 } else { 7722 BUMP_MIB(&ipst->ips_ip_mib, 7723 ipIfStatsOutDiscards); 7724 } 7725 ip1dbg(("ip_grab_attach_ill (IPv4): " 7726 "bad ifindex %d.\n", ifindex)); 7727 } 7728 if (ret_ill != NULL) 7729 ill_refrele(ret_ill); 7730 freemsg(first_mp); 7731 return (NULL); 7732 } 7733 7734 return (ret_ill); 7735 } 7736 7737 /* 7738 * IPv4 - 7739 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7740 * out a packet to a destination address for which we do not have specific 7741 * (or sufficient) routing information. 7742 * 7743 * NOTE : These are the scopes of some of the variables that point at IRE, 7744 * which needs to be followed while making any future modifications 7745 * to avoid memory leaks. 7746 * 7747 * - ire and sire are the entries looked up initially by 7748 * ire_ftable_lookup. 7749 * - ipif_ire is used to hold the interface ire associated with 7750 * the new cache ire. But it's scope is limited, so we always REFRELE 7751 * it before branching out to error paths. 7752 * - save_ire is initialized before ire_create, so that ire returned 7753 * by ire_create will not over-write the ire. We REFRELE save_ire 7754 * before breaking out of the switch. 7755 * 7756 * Thus on failures, we have to REFRELE only ire and sire, if they 7757 * are not NULL. 7758 */ 7759 void 7760 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7761 zoneid_t zoneid, ip_stack_t *ipst) 7762 { 7763 areq_t *areq; 7764 ipaddr_t gw = 0; 7765 ire_t *ire = NULL; 7766 mblk_t *res_mp; 7767 ipaddr_t *addrp; 7768 ipaddr_t nexthop_addr; 7769 ipif_t *src_ipif = NULL; 7770 ill_t *dst_ill = NULL; 7771 ipha_t *ipha; 7772 ire_t *sire = NULL; 7773 mblk_t *first_mp; 7774 ire_t *save_ire; 7775 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7776 ushort_t ire_marks = 0; 7777 boolean_t mctl_present; 7778 ipsec_out_t *io; 7779 mblk_t *saved_mp; 7780 ire_t *first_sire = NULL; 7781 mblk_t *copy_mp = NULL; 7782 mblk_t *xmit_mp = NULL; 7783 ipaddr_t save_dst; 7784 uint32_t multirt_flags = 7785 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7786 boolean_t multirt_is_resolvable; 7787 boolean_t multirt_resolve_next; 7788 boolean_t unspec_src; 7789 boolean_t do_attach_ill = B_FALSE; 7790 boolean_t ip_nexthop = B_FALSE; 7791 tsol_ire_gw_secattr_t *attrp = NULL; 7792 tsol_gcgrp_t *gcgrp = NULL; 7793 tsol_gcgrp_addr_t ga; 7794 7795 if (ip_debug > 2) { 7796 /* ip1dbg */ 7797 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7798 } 7799 7800 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7801 if (mctl_present) { 7802 io = (ipsec_out_t *)first_mp->b_rptr; 7803 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7804 ASSERT(zoneid == io->ipsec_out_zoneid); 7805 ASSERT(zoneid != ALL_ZONES); 7806 } 7807 7808 ipha = (ipha_t *)mp->b_rptr; 7809 7810 /* All multicast lookups come through ip_newroute_ipif() */ 7811 if (CLASSD(dst)) { 7812 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7813 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7814 freemsg(first_mp); 7815 return; 7816 } 7817 7818 if (mctl_present && io->ipsec_out_attach_if) { 7819 /* ip_grab_attach_ill returns a held ill */ 7820 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7821 io->ipsec_out_ill_index, B_FALSE, ipst); 7822 7823 /* Failure case frees things for us. */ 7824 if (attach_ill == NULL) 7825 return; 7826 7827 /* 7828 * Check if we need an ire that will not be 7829 * looked up by anybody else i.e. HIDDEN. 7830 */ 7831 if (ill_is_probeonly(attach_ill)) 7832 ire_marks = IRE_MARK_HIDDEN; 7833 } 7834 if (mctl_present && io->ipsec_out_ip_nexthop) { 7835 ip_nexthop = B_TRUE; 7836 nexthop_addr = io->ipsec_out_nexthop_addr; 7837 } 7838 /* 7839 * If this IRE is created for forwarding or it is not for 7840 * traffic for congestion controlled protocols, mark it as temporary. 7841 */ 7842 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7843 ire_marks |= IRE_MARK_TEMPORARY; 7844 7845 /* 7846 * Get what we can from ire_ftable_lookup which will follow an IRE 7847 * chain until it gets the most specific information available. 7848 * For example, we know that there is no IRE_CACHE for this dest, 7849 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7850 * ire_ftable_lookup will look up the gateway, etc. 7851 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7852 * to the destination, of equal netmask length in the forward table, 7853 * will be recursively explored. If no information is available 7854 * for the final gateway of that route, we force the returned ire 7855 * to be equal to sire using MATCH_IRE_PARENT. 7856 * At least, in this case we have a starting point (in the buckets) 7857 * to look for other routes to the destination in the forward table. 7858 * This is actually used only for multirouting, where a list 7859 * of routes has to be processed in sequence. 7860 * 7861 * In the process of coming up with the most specific information, 7862 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7863 * for the gateway (i.e., one for which the ire_nce->nce_state is 7864 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7865 * Two caveats when handling incomplete ire's in ip_newroute: 7866 * - we should be careful when accessing its ire_nce (specifically 7867 * the nce_res_mp) ast it might change underneath our feet, and, 7868 * - not all legacy code path callers are prepared to handle 7869 * incomplete ire's, so we should not create/add incomplete 7870 * ire_cache entries here. (See discussion about temporary solution 7871 * further below). 7872 * 7873 * In order to minimize packet dropping, and to preserve existing 7874 * behavior, we treat this case as if there were no IRE_CACHE for the 7875 * gateway, and instead use the IF_RESOLVER ire to send out 7876 * another request to ARP (this is achieved by passing the 7877 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7878 * arp response comes back in ip_wput_nondata, we will create 7879 * a per-dst ire_cache that has an ND_COMPLETE ire. 7880 * 7881 * Note that this is a temporary solution; the correct solution is 7882 * to create an incomplete per-dst ire_cache entry, and send the 7883 * packet out when the gw's nce is resolved. In order to achieve this, 7884 * all packet processing must have been completed prior to calling 7885 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7886 * to be modified to accomodate this solution. 7887 */ 7888 if (ip_nexthop) { 7889 /* 7890 * The first time we come here, we look for an IRE_INTERFACE 7891 * entry for the specified nexthop, set the dst to be the 7892 * nexthop address and create an IRE_CACHE entry for the 7893 * nexthop. The next time around, we are able to find an 7894 * IRE_CACHE entry for the nexthop, set the gateway to be the 7895 * nexthop address and create an IRE_CACHE entry for the 7896 * destination address via the specified nexthop. 7897 */ 7898 ire = ire_cache_lookup(nexthop_addr, zoneid, 7899 MBLK_GETLABEL(mp), ipst); 7900 if (ire != NULL) { 7901 gw = nexthop_addr; 7902 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7903 } else { 7904 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7905 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7906 MBLK_GETLABEL(mp), 7907 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7908 ipst); 7909 if (ire != NULL) { 7910 dst = nexthop_addr; 7911 } 7912 } 7913 } else if (attach_ill == NULL) { 7914 ire = ire_ftable_lookup(dst, 0, 0, 0, 7915 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7916 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7917 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7918 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7919 ipst); 7920 } else { 7921 /* 7922 * attach_ill is set only for communicating with 7923 * on-link hosts. So, don't look for DEFAULT. 7924 */ 7925 ipif_t *attach_ipif; 7926 7927 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7928 if (attach_ipif == NULL) { 7929 ill_refrele(attach_ill); 7930 goto icmp_err_ret; 7931 } 7932 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7933 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7934 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7935 MATCH_IRE_SECATTR, ipst); 7936 ipif_refrele(attach_ipif); 7937 } 7938 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7939 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7940 7941 /* 7942 * This loop is run only once in most cases. 7943 * We loop to resolve further routes only when the destination 7944 * can be reached through multiple RTF_MULTIRT-flagged ires. 7945 */ 7946 do { 7947 /* Clear the previous iteration's values */ 7948 if (src_ipif != NULL) { 7949 ipif_refrele(src_ipif); 7950 src_ipif = NULL; 7951 } 7952 if (dst_ill != NULL) { 7953 ill_refrele(dst_ill); 7954 dst_ill = NULL; 7955 } 7956 7957 multirt_resolve_next = B_FALSE; 7958 /* 7959 * We check if packets have to be multirouted. 7960 * In this case, given the current <ire, sire> couple, 7961 * we look for the next suitable <ire, sire>. 7962 * This check is done in ire_multirt_lookup(), 7963 * which applies various criteria to find the next route 7964 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7965 * unchanged if it detects it has not been tried yet. 7966 */ 7967 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7968 ip3dbg(("ip_newroute: starting next_resolution " 7969 "with first_mp %p, tag %d\n", 7970 (void *)first_mp, 7971 MULTIRT_DEBUG_TAGGED(first_mp))); 7972 7973 ASSERT(sire != NULL); 7974 multirt_is_resolvable = 7975 ire_multirt_lookup(&ire, &sire, multirt_flags, 7976 MBLK_GETLABEL(mp), ipst); 7977 7978 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7979 "ire %p, sire %p\n", 7980 multirt_is_resolvable, 7981 (void *)ire, (void *)sire)); 7982 7983 if (!multirt_is_resolvable) { 7984 /* 7985 * No more multirt route to resolve; give up 7986 * (all routes resolved or no more 7987 * resolvable routes). 7988 */ 7989 if (ire != NULL) { 7990 ire_refrele(ire); 7991 ire = NULL; 7992 } 7993 } else { 7994 ASSERT(sire != NULL); 7995 ASSERT(ire != NULL); 7996 /* 7997 * We simply use first_sire as a flag that 7998 * indicates if a resolvable multirt route 7999 * has already been found. 8000 * If it is not the case, we may have to send 8001 * an ICMP error to report that the 8002 * destination is unreachable. 8003 * We do not IRE_REFHOLD first_sire. 8004 */ 8005 if (first_sire == NULL) { 8006 first_sire = sire; 8007 } 8008 } 8009 } 8010 if (ire == NULL) { 8011 if (ip_debug > 3) { 8012 /* ip2dbg */ 8013 pr_addr_dbg("ip_newroute: " 8014 "can't resolve %s\n", AF_INET, &dst); 8015 } 8016 ip3dbg(("ip_newroute: " 8017 "ire %p, sire %p, first_sire %p\n", 8018 (void *)ire, (void *)sire, (void *)first_sire)); 8019 8020 if (sire != NULL) { 8021 ire_refrele(sire); 8022 sire = NULL; 8023 } 8024 8025 if (first_sire != NULL) { 8026 /* 8027 * At least one multirt route has been found 8028 * in the same call to ip_newroute(); 8029 * there is no need to report an ICMP error. 8030 * first_sire was not IRE_REFHOLDed. 8031 */ 8032 MULTIRT_DEBUG_UNTAG(first_mp); 8033 freemsg(first_mp); 8034 return; 8035 } 8036 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8037 RTA_DST, ipst); 8038 if (attach_ill != NULL) 8039 ill_refrele(attach_ill); 8040 goto icmp_err_ret; 8041 } 8042 8043 /* 8044 * Verify that the returned IRE does not have either 8045 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8046 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8047 */ 8048 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8049 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8050 if (attach_ill != NULL) 8051 ill_refrele(attach_ill); 8052 goto icmp_err_ret; 8053 } 8054 /* 8055 * Increment the ire_ob_pkt_count field for ire if it is an 8056 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8057 * increment the same for the parent IRE, sire, if it is some 8058 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8059 */ 8060 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8061 UPDATE_OB_PKT_COUNT(ire); 8062 ire->ire_last_used_time = lbolt; 8063 } 8064 8065 if (sire != NULL) { 8066 gw = sire->ire_gateway_addr; 8067 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8068 IRE_INTERFACE)) == 0); 8069 UPDATE_OB_PKT_COUNT(sire); 8070 sire->ire_last_used_time = lbolt; 8071 } 8072 /* 8073 * We have a route to reach the destination. 8074 * 8075 * 1) If the interface is part of ill group, try to get a new 8076 * ill taking load spreading into account. 8077 * 8078 * 2) After selecting the ill, get a source address that 8079 * might create good inbound load spreading. 8080 * ipif_select_source does this for us. 8081 * 8082 * If the application specified the ill (ifindex), we still 8083 * load spread. Only if the packets needs to go out 8084 * specifically on a given ill e.g. binding to 8085 * IPIF_NOFAILOVER address, then we don't try to use a 8086 * different ill for load spreading. 8087 */ 8088 if (attach_ill == NULL) { 8089 /* 8090 * Don't perform outbound load spreading in the 8091 * case of an RTF_MULTIRT route, as we actually 8092 * typically want to replicate outgoing packets 8093 * through particular interfaces. 8094 */ 8095 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8096 dst_ill = ire->ire_ipif->ipif_ill; 8097 /* for uniformity */ 8098 ill_refhold(dst_ill); 8099 } else { 8100 /* 8101 * If we are here trying to create an IRE_CACHE 8102 * for an offlink destination and have the 8103 * IRE_CACHE for the next hop and the latter is 8104 * using virtual IP source address selection i.e 8105 * it's ire->ire_ipif is pointing to a virtual 8106 * network interface (vni) then 8107 * ip_newroute_get_dst_ll() will return the vni 8108 * interface as the dst_ill. Since the vni is 8109 * virtual i.e not associated with any physical 8110 * interface, it cannot be the dst_ill, hence 8111 * in such a case call ip_newroute_get_dst_ll() 8112 * with the stq_ill instead of the ire_ipif ILL. 8113 * The function returns a refheld ill. 8114 */ 8115 if ((ire->ire_type == IRE_CACHE) && 8116 IS_VNI(ire->ire_ipif->ipif_ill)) 8117 dst_ill = ip_newroute_get_dst_ill( 8118 ire->ire_stq->q_ptr); 8119 else 8120 dst_ill = ip_newroute_get_dst_ill( 8121 ire->ire_ipif->ipif_ill); 8122 } 8123 if (dst_ill == NULL) { 8124 if (ip_debug > 2) { 8125 pr_addr_dbg("ip_newroute: " 8126 "no dst ill for dst" 8127 " %s\n", AF_INET, &dst); 8128 } 8129 goto icmp_err_ret; 8130 } 8131 } else { 8132 dst_ill = ire->ire_ipif->ipif_ill; 8133 /* for uniformity */ 8134 ill_refhold(dst_ill); 8135 /* 8136 * We should have found a route matching ill as we 8137 * called ire_ftable_lookup with MATCH_IRE_ILL. 8138 * Rather than asserting, when there is a mismatch, 8139 * we just drop the packet. 8140 */ 8141 if (dst_ill != attach_ill) { 8142 ip0dbg(("ip_newroute: Packet dropped as " 8143 "IPIF_NOFAILOVER ill is %s, " 8144 "ire->ire_ipif->ipif_ill is %s\n", 8145 attach_ill->ill_name, 8146 dst_ill->ill_name)); 8147 ill_refrele(attach_ill); 8148 goto icmp_err_ret; 8149 } 8150 } 8151 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8152 if (attach_ill != NULL) { 8153 ill_refrele(attach_ill); 8154 attach_ill = NULL; 8155 do_attach_ill = B_TRUE; 8156 } 8157 ASSERT(dst_ill != NULL); 8158 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8159 8160 /* 8161 * Pick the best source address from dst_ill. 8162 * 8163 * 1) If it is part of a multipathing group, we would 8164 * like to spread the inbound packets across different 8165 * interfaces. ipif_select_source picks a random source 8166 * across the different ills in the group. 8167 * 8168 * 2) If it is not part of a multipathing group, we try 8169 * to pick the source address from the destination 8170 * route. Clustering assumes that when we have multiple 8171 * prefixes hosted on an interface, the prefix of the 8172 * source address matches the prefix of the destination 8173 * route. We do this only if the address is not 8174 * DEPRECATED. 8175 * 8176 * 3) If the conn is in a different zone than the ire, we 8177 * need to pick a source address from the right zone. 8178 * 8179 * NOTE : If we hit case (1) above, the prefix of the source 8180 * address picked may not match the prefix of the 8181 * destination routes prefix as ipif_select_source 8182 * does not look at "dst" while picking a source 8183 * address. 8184 * If we want the same behavior as (2), we will need 8185 * to change the behavior of ipif_select_source. 8186 */ 8187 ASSERT(src_ipif == NULL); 8188 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8189 /* 8190 * The RTF_SETSRC flag is set in the parent ire (sire). 8191 * Check that the ipif matching the requested source 8192 * address still exists. 8193 */ 8194 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8195 zoneid, NULL, NULL, NULL, NULL, ipst); 8196 } 8197 8198 unspec_src = (connp != NULL && connp->conn_unspec_src); 8199 8200 if (src_ipif == NULL && 8201 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8202 ire_marks |= IRE_MARK_USESRC_CHECK; 8203 if ((dst_ill->ill_group != NULL) || 8204 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8205 (connp != NULL && ire->ire_zoneid != zoneid && 8206 ire->ire_zoneid != ALL_ZONES) || 8207 (dst_ill->ill_usesrc_ifindex != 0)) { 8208 /* 8209 * If the destination is reachable via a 8210 * given gateway, the selected source address 8211 * should be in the same subnet as the gateway. 8212 * Otherwise, the destination is not reachable. 8213 * 8214 * If there are no interfaces on the same subnet 8215 * as the destination, ipif_select_source gives 8216 * first non-deprecated interface which might be 8217 * on a different subnet than the gateway. 8218 * This is not desirable. Hence pass the dst_ire 8219 * source address to ipif_select_source. 8220 * It is sure that the destination is reachable 8221 * with the dst_ire source address subnet. 8222 * So passing dst_ire source address to 8223 * ipif_select_source will make sure that the 8224 * selected source will be on the same subnet 8225 * as dst_ire source address. 8226 */ 8227 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8228 src_ipif = ipif_select_source(dst_ill, saddr, 8229 zoneid); 8230 if (src_ipif == NULL) { 8231 if (ip_debug > 2) { 8232 pr_addr_dbg("ip_newroute: " 8233 "no src for dst %s ", 8234 AF_INET, &dst); 8235 printf("through interface %s\n", 8236 dst_ill->ill_name); 8237 } 8238 goto icmp_err_ret; 8239 } 8240 } else { 8241 src_ipif = ire->ire_ipif; 8242 ASSERT(src_ipif != NULL); 8243 /* hold src_ipif for uniformity */ 8244 ipif_refhold(src_ipif); 8245 } 8246 } 8247 8248 /* 8249 * Assign a source address while we have the conn. 8250 * We can't have ip_wput_ire pick a source address when the 8251 * packet returns from arp since we need to look at 8252 * conn_unspec_src and conn_zoneid, and we lose the conn when 8253 * going through arp. 8254 * 8255 * NOTE : ip_newroute_v6 does not have this piece of code as 8256 * it uses ip6i to store this information. 8257 */ 8258 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8259 ipha->ipha_src = src_ipif->ipif_src_addr; 8260 8261 if (ip_debug > 3) { 8262 /* ip2dbg */ 8263 pr_addr_dbg("ip_newroute: first hop %s\n", 8264 AF_INET, &gw); 8265 } 8266 ip2dbg(("\tire type %s (%d)\n", 8267 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8268 8269 /* 8270 * The TTL of multirouted packets is bounded by the 8271 * ip_multirt_ttl ndd variable. 8272 */ 8273 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8274 /* Force TTL of multirouted packets */ 8275 if ((ipst->ips_ip_multirt_ttl > 0) && 8276 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8277 ip2dbg(("ip_newroute: forcing multirt TTL " 8278 "to %d (was %d), dst 0x%08x\n", 8279 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8280 ntohl(sire->ire_addr))); 8281 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8282 } 8283 } 8284 /* 8285 * At this point in ip_newroute(), ire is either the 8286 * IRE_CACHE of the next-hop gateway for an off-subnet 8287 * destination or an IRE_INTERFACE type that should be used 8288 * to resolve an on-subnet destination or an on-subnet 8289 * next-hop gateway. 8290 * 8291 * In the IRE_CACHE case, we have the following : 8292 * 8293 * 1) src_ipif - used for getting a source address. 8294 * 8295 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8296 * means packets using this IRE_CACHE will go out on 8297 * dst_ill. 8298 * 8299 * 3) The IRE sire will point to the prefix that is the 8300 * longest matching route for the destination. These 8301 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8302 * 8303 * The newly created IRE_CACHE entry for the off-subnet 8304 * destination is tied to both the prefix route and the 8305 * interface route used to resolve the next-hop gateway 8306 * via the ire_phandle and ire_ihandle fields, 8307 * respectively. 8308 * 8309 * In the IRE_INTERFACE case, we have the following : 8310 * 8311 * 1) src_ipif - used for getting a source address. 8312 * 8313 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8314 * means packets using the IRE_CACHE that we will build 8315 * here will go out on dst_ill. 8316 * 8317 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8318 * to be created will only be tied to the IRE_INTERFACE 8319 * that was derived from the ire_ihandle field. 8320 * 8321 * If sire is non-NULL, it means the destination is 8322 * off-link and we will first create the IRE_CACHE for the 8323 * gateway. Next time through ip_newroute, we will create 8324 * the IRE_CACHE for the final destination as described 8325 * above. 8326 * 8327 * In both cases, after the current resolution has been 8328 * completed (or possibly initialised, in the IRE_INTERFACE 8329 * case), the loop may be re-entered to attempt the resolution 8330 * of another RTF_MULTIRT route. 8331 * 8332 * When an IRE_CACHE entry for the off-subnet destination is 8333 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8334 * for further processing in emission loops. 8335 */ 8336 save_ire = ire; 8337 switch (ire->ire_type) { 8338 case IRE_CACHE: { 8339 ire_t *ipif_ire; 8340 8341 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8342 if (gw == 0) 8343 gw = ire->ire_gateway_addr; 8344 /* 8345 * We need 3 ire's to create a new cache ire for an 8346 * off-link destination from the cache ire of the 8347 * gateway. 8348 * 8349 * 1. The prefix ire 'sire' (Note that this does 8350 * not apply to the conn_nexthop_set case) 8351 * 2. The cache ire of the gateway 'ire' 8352 * 3. The interface ire 'ipif_ire' 8353 * 8354 * We have (1) and (2). We lookup (3) below. 8355 * 8356 * If there is no interface route to the gateway, 8357 * it is a race condition, where we found the cache 8358 * but the interface route has been deleted. 8359 */ 8360 if (ip_nexthop) { 8361 ipif_ire = ire_ihandle_lookup_onlink(ire); 8362 } else { 8363 ipif_ire = 8364 ire_ihandle_lookup_offlink(ire, sire); 8365 } 8366 if (ipif_ire == NULL) { 8367 ip1dbg(("ip_newroute: " 8368 "ire_ihandle_lookup_offlink failed\n")); 8369 goto icmp_err_ret; 8370 } 8371 8372 /* 8373 * Check cached gateway IRE for any security 8374 * attributes; if found, associate the gateway 8375 * credentials group to the destination IRE. 8376 */ 8377 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8378 mutex_enter(&attrp->igsa_lock); 8379 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8380 GCGRP_REFHOLD(gcgrp); 8381 mutex_exit(&attrp->igsa_lock); 8382 } 8383 8384 /* 8385 * XXX For the source of the resolver mp, 8386 * we are using the same DL_UNITDATA_REQ 8387 * (from save_ire->ire_nce->nce_res_mp) 8388 * though the save_ire is not pointing at the same ill. 8389 * This is incorrect. We need to send it up to the 8390 * resolver to get the right res_mp. For ethernets 8391 * this may be okay (ill_type == DL_ETHER). 8392 */ 8393 8394 ire = ire_create( 8395 (uchar_t *)&dst, /* dest address */ 8396 (uchar_t *)&ip_g_all_ones, /* mask */ 8397 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8398 (uchar_t *)&gw, /* gateway address */ 8399 &save_ire->ire_max_frag, 8400 save_ire->ire_nce, /* src nce */ 8401 dst_ill->ill_rq, /* recv-from queue */ 8402 dst_ill->ill_wq, /* send-to queue */ 8403 IRE_CACHE, /* IRE type */ 8404 src_ipif, 8405 (sire != NULL) ? 8406 sire->ire_mask : 0, /* Parent mask */ 8407 (sire != NULL) ? 8408 sire->ire_phandle : 0, /* Parent handle */ 8409 ipif_ire->ire_ihandle, /* Interface handle */ 8410 (sire != NULL) ? (sire->ire_flags & 8411 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8412 (sire != NULL) ? 8413 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8414 NULL, 8415 gcgrp, 8416 ipst); 8417 8418 if (ire == NULL) { 8419 if (gcgrp != NULL) { 8420 GCGRP_REFRELE(gcgrp); 8421 gcgrp = NULL; 8422 } 8423 ire_refrele(ipif_ire); 8424 ire_refrele(save_ire); 8425 break; 8426 } 8427 8428 /* reference now held by IRE */ 8429 gcgrp = NULL; 8430 8431 ire->ire_marks |= ire_marks; 8432 8433 /* 8434 * Prevent sire and ipif_ire from getting deleted. 8435 * The newly created ire is tied to both of them via 8436 * the phandle and ihandle respectively. 8437 */ 8438 if (sire != NULL) { 8439 IRB_REFHOLD(sire->ire_bucket); 8440 /* Has it been removed already ? */ 8441 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8442 IRB_REFRELE(sire->ire_bucket); 8443 ire_refrele(ipif_ire); 8444 ire_refrele(save_ire); 8445 break; 8446 } 8447 } 8448 8449 IRB_REFHOLD(ipif_ire->ire_bucket); 8450 /* Has it been removed already ? */ 8451 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8452 IRB_REFRELE(ipif_ire->ire_bucket); 8453 if (sire != NULL) 8454 IRB_REFRELE(sire->ire_bucket); 8455 ire_refrele(ipif_ire); 8456 ire_refrele(save_ire); 8457 break; 8458 } 8459 8460 xmit_mp = first_mp; 8461 /* 8462 * In the case of multirouting, a copy 8463 * of the packet is done before its sending. 8464 * The copy is used to attempt another 8465 * route resolution, in a next loop. 8466 */ 8467 if (ire->ire_flags & RTF_MULTIRT) { 8468 copy_mp = copymsg(first_mp); 8469 if (copy_mp != NULL) { 8470 xmit_mp = copy_mp; 8471 MULTIRT_DEBUG_TAG(first_mp); 8472 } 8473 } 8474 ire_add_then_send(q, ire, xmit_mp); 8475 ire_refrele(save_ire); 8476 8477 /* Assert that sire is not deleted yet. */ 8478 if (sire != NULL) { 8479 ASSERT(sire->ire_ptpn != NULL); 8480 IRB_REFRELE(sire->ire_bucket); 8481 } 8482 8483 /* Assert that ipif_ire is not deleted yet. */ 8484 ASSERT(ipif_ire->ire_ptpn != NULL); 8485 IRB_REFRELE(ipif_ire->ire_bucket); 8486 ire_refrele(ipif_ire); 8487 8488 /* 8489 * If copy_mp is not NULL, multirouting was 8490 * requested. We loop to initiate a next 8491 * route resolution attempt, starting from sire. 8492 */ 8493 if (copy_mp != NULL) { 8494 /* 8495 * Search for the next unresolved 8496 * multirt route. 8497 */ 8498 copy_mp = NULL; 8499 ipif_ire = NULL; 8500 ire = NULL; 8501 multirt_resolve_next = B_TRUE; 8502 continue; 8503 } 8504 if (sire != NULL) 8505 ire_refrele(sire); 8506 ipif_refrele(src_ipif); 8507 ill_refrele(dst_ill); 8508 return; 8509 } 8510 case IRE_IF_NORESOLVER: { 8511 8512 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8513 dst_ill->ill_resolver_mp == NULL) { 8514 ip1dbg(("ip_newroute: dst_ill %p " 8515 "for IRE_IF_NORESOLVER ire %p has " 8516 "no ill_resolver_mp\n", 8517 (void *)dst_ill, (void *)ire)); 8518 break; 8519 } 8520 8521 /* 8522 * TSol note: We are creating the ire cache for the 8523 * destination 'dst'. If 'dst' is offlink, going 8524 * through the first hop 'gw', the security attributes 8525 * of 'dst' must be set to point to the gateway 8526 * credentials of gateway 'gw'. If 'dst' is onlink, it 8527 * is possible that 'dst' is a potential gateway that is 8528 * referenced by some route that has some security 8529 * attributes. Thus in the former case, we need to do a 8530 * gcgrp_lookup of 'gw' while in the latter case we 8531 * need to do gcgrp_lookup of 'dst' itself. 8532 */ 8533 ga.ga_af = AF_INET; 8534 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8535 &ga.ga_addr); 8536 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8537 8538 ire = ire_create( 8539 (uchar_t *)&dst, /* dest address */ 8540 (uchar_t *)&ip_g_all_ones, /* mask */ 8541 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8542 (uchar_t *)&gw, /* gateway address */ 8543 &save_ire->ire_max_frag, 8544 NULL, /* no src nce */ 8545 dst_ill->ill_rq, /* recv-from queue */ 8546 dst_ill->ill_wq, /* send-to queue */ 8547 IRE_CACHE, 8548 src_ipif, 8549 save_ire->ire_mask, /* Parent mask */ 8550 (sire != NULL) ? /* Parent handle */ 8551 sire->ire_phandle : 0, 8552 save_ire->ire_ihandle, /* Interface handle */ 8553 (sire != NULL) ? sire->ire_flags & 8554 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8555 &(save_ire->ire_uinfo), 8556 NULL, 8557 gcgrp, 8558 ipst); 8559 8560 if (ire == NULL) { 8561 if (gcgrp != NULL) { 8562 GCGRP_REFRELE(gcgrp); 8563 gcgrp = NULL; 8564 } 8565 ire_refrele(save_ire); 8566 break; 8567 } 8568 8569 /* reference now held by IRE */ 8570 gcgrp = NULL; 8571 8572 ire->ire_marks |= ire_marks; 8573 8574 /* Prevent save_ire from getting deleted */ 8575 IRB_REFHOLD(save_ire->ire_bucket); 8576 /* Has it been removed already ? */ 8577 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8578 IRB_REFRELE(save_ire->ire_bucket); 8579 ire_refrele(save_ire); 8580 break; 8581 } 8582 8583 /* 8584 * In the case of multirouting, a copy 8585 * of the packet is made before it is sent. 8586 * The copy is used in the next 8587 * loop to attempt another resolution. 8588 */ 8589 xmit_mp = first_mp; 8590 if ((sire != NULL) && 8591 (sire->ire_flags & RTF_MULTIRT)) { 8592 copy_mp = copymsg(first_mp); 8593 if (copy_mp != NULL) { 8594 xmit_mp = copy_mp; 8595 MULTIRT_DEBUG_TAG(first_mp); 8596 } 8597 } 8598 ire_add_then_send(q, ire, xmit_mp); 8599 8600 /* Assert that it is not deleted yet. */ 8601 ASSERT(save_ire->ire_ptpn != NULL); 8602 IRB_REFRELE(save_ire->ire_bucket); 8603 ire_refrele(save_ire); 8604 8605 if (copy_mp != NULL) { 8606 /* 8607 * If we found a (no)resolver, we ignore any 8608 * trailing top priority IRE_CACHE in further 8609 * loops. This ensures that we do not omit any 8610 * (no)resolver. 8611 * This IRE_CACHE, if any, will be processed 8612 * by another thread entering ip_newroute(). 8613 * IRE_CACHE entries, if any, will be processed 8614 * by another thread entering ip_newroute(), 8615 * (upon resolver response, for instance). 8616 * This aims to force parallel multirt 8617 * resolutions as soon as a packet must be sent. 8618 * In the best case, after the tx of only one 8619 * packet, all reachable routes are resolved. 8620 * Otherwise, the resolution of all RTF_MULTIRT 8621 * routes would require several emissions. 8622 */ 8623 multirt_flags &= ~MULTIRT_CACHEGW; 8624 8625 /* 8626 * Search for the next unresolved multirt 8627 * route. 8628 */ 8629 copy_mp = NULL; 8630 save_ire = NULL; 8631 ire = NULL; 8632 multirt_resolve_next = B_TRUE; 8633 continue; 8634 } 8635 8636 /* 8637 * Don't need sire anymore 8638 */ 8639 if (sire != NULL) 8640 ire_refrele(sire); 8641 8642 ipif_refrele(src_ipif); 8643 ill_refrele(dst_ill); 8644 return; 8645 } 8646 case IRE_IF_RESOLVER: 8647 /* 8648 * We can't build an IRE_CACHE yet, but at least we 8649 * found a resolver that can help. 8650 */ 8651 res_mp = dst_ill->ill_resolver_mp; 8652 if (!OK_RESOLVER_MP(res_mp)) 8653 break; 8654 8655 /* 8656 * To be at this point in the code with a non-zero gw 8657 * means that dst is reachable through a gateway that 8658 * we have never resolved. By changing dst to the gw 8659 * addr we resolve the gateway first. 8660 * When ire_add_then_send() tries to put the IP dg 8661 * to dst, it will reenter ip_newroute() at which 8662 * time we will find the IRE_CACHE for the gw and 8663 * create another IRE_CACHE in case IRE_CACHE above. 8664 */ 8665 if (gw != INADDR_ANY) { 8666 /* 8667 * The source ipif that was determined above was 8668 * relative to the destination address, not the 8669 * gateway's. If src_ipif was not taken out of 8670 * the IRE_IF_RESOLVER entry, we'll need to call 8671 * ipif_select_source() again. 8672 */ 8673 if (src_ipif != ire->ire_ipif) { 8674 ipif_refrele(src_ipif); 8675 src_ipif = ipif_select_source(dst_ill, 8676 gw, zoneid); 8677 if (src_ipif == NULL) { 8678 if (ip_debug > 2) { 8679 pr_addr_dbg( 8680 "ip_newroute: no " 8681 "src for gw %s ", 8682 AF_INET, &gw); 8683 printf("through " 8684 "interface %s\n", 8685 dst_ill->ill_name); 8686 } 8687 goto icmp_err_ret; 8688 } 8689 } 8690 save_dst = dst; 8691 dst = gw; 8692 gw = INADDR_ANY; 8693 } 8694 8695 /* 8696 * We obtain a partial IRE_CACHE which we will pass 8697 * along with the resolver query. When the response 8698 * comes back it will be there ready for us to add. 8699 * The ire_max_frag is atomically set under the 8700 * irebucket lock in ire_add_v[46]. 8701 */ 8702 8703 ire = ire_create_mp( 8704 (uchar_t *)&dst, /* dest address */ 8705 (uchar_t *)&ip_g_all_ones, /* mask */ 8706 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8707 (uchar_t *)&gw, /* gateway address */ 8708 NULL, /* ire_max_frag */ 8709 NULL, /* no src nce */ 8710 dst_ill->ill_rq, /* recv-from queue */ 8711 dst_ill->ill_wq, /* send-to queue */ 8712 IRE_CACHE, 8713 src_ipif, /* Interface ipif */ 8714 save_ire->ire_mask, /* Parent mask */ 8715 0, 8716 save_ire->ire_ihandle, /* Interface handle */ 8717 0, /* flags if any */ 8718 &(save_ire->ire_uinfo), 8719 NULL, 8720 NULL, 8721 ipst); 8722 8723 if (ire == NULL) { 8724 ire_refrele(save_ire); 8725 break; 8726 } 8727 8728 if ((sire != NULL) && 8729 (sire->ire_flags & RTF_MULTIRT)) { 8730 copy_mp = copymsg(first_mp); 8731 if (copy_mp != NULL) 8732 MULTIRT_DEBUG_TAG(copy_mp); 8733 } 8734 8735 ire->ire_marks |= ire_marks; 8736 8737 /* 8738 * Construct message chain for the resolver 8739 * of the form: 8740 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8741 * Packet could contain a IPSEC_OUT mp. 8742 * 8743 * NOTE : ire will be added later when the response 8744 * comes back from ARP. If the response does not 8745 * come back, ARP frees the packet. For this reason, 8746 * we can't REFHOLD the bucket of save_ire to prevent 8747 * deletions. We may not be able to REFRELE the bucket 8748 * if the response never comes back. Thus, before 8749 * adding the ire, ire_add_v4 will make sure that the 8750 * interface route does not get deleted. This is the 8751 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8752 * where we can always prevent deletions because of 8753 * the synchronous nature of adding IRES i.e 8754 * ire_add_then_send is called after creating the IRE. 8755 */ 8756 ASSERT(ire->ire_mp != NULL); 8757 ire->ire_mp->b_cont = first_mp; 8758 /* Have saved_mp handy, for cleanup if canput fails */ 8759 saved_mp = mp; 8760 mp = copyb(res_mp); 8761 if (mp == NULL) { 8762 /* Prepare for cleanup */ 8763 mp = saved_mp; /* pkt */ 8764 ire_delete(ire); /* ire_mp */ 8765 ire = NULL; 8766 ire_refrele(save_ire); 8767 if (copy_mp != NULL) { 8768 MULTIRT_DEBUG_UNTAG(copy_mp); 8769 freemsg(copy_mp); 8770 copy_mp = NULL; 8771 } 8772 break; 8773 } 8774 linkb(mp, ire->ire_mp); 8775 8776 /* 8777 * Fill in the source and dest addrs for the resolver. 8778 * NOTE: this depends on memory layouts imposed by 8779 * ill_init(). 8780 */ 8781 areq = (areq_t *)mp->b_rptr; 8782 addrp = (ipaddr_t *)((char *)areq + 8783 areq->areq_sender_addr_offset); 8784 if (do_attach_ill) { 8785 /* 8786 * This is bind to no failover case. 8787 * arp packet also must go out on attach_ill. 8788 */ 8789 ASSERT(ipha->ipha_src != NULL); 8790 *addrp = ipha->ipha_src; 8791 } else { 8792 *addrp = save_ire->ire_src_addr; 8793 } 8794 8795 ire_refrele(save_ire); 8796 addrp = (ipaddr_t *)((char *)areq + 8797 areq->areq_target_addr_offset); 8798 *addrp = dst; 8799 /* Up to the resolver. */ 8800 if (canputnext(dst_ill->ill_rq) && 8801 !(dst_ill->ill_arp_closing)) { 8802 putnext(dst_ill->ill_rq, mp); 8803 ire = NULL; 8804 if (copy_mp != NULL) { 8805 /* 8806 * If we found a resolver, we ignore 8807 * any trailing top priority IRE_CACHE 8808 * in the further loops. This ensures 8809 * that we do not omit any resolver. 8810 * IRE_CACHE entries, if any, will be 8811 * processed next time we enter 8812 * ip_newroute(). 8813 */ 8814 multirt_flags &= ~MULTIRT_CACHEGW; 8815 /* 8816 * Search for the next unresolved 8817 * multirt route. 8818 */ 8819 first_mp = copy_mp; 8820 copy_mp = NULL; 8821 /* Prepare the next resolution loop. */ 8822 mp = first_mp; 8823 EXTRACT_PKT_MP(mp, first_mp, 8824 mctl_present); 8825 if (mctl_present) 8826 io = (ipsec_out_t *) 8827 first_mp->b_rptr; 8828 ipha = (ipha_t *)mp->b_rptr; 8829 8830 ASSERT(sire != NULL); 8831 8832 dst = save_dst; 8833 multirt_resolve_next = B_TRUE; 8834 continue; 8835 } 8836 8837 if (sire != NULL) 8838 ire_refrele(sire); 8839 8840 /* 8841 * The response will come back in ip_wput 8842 * with db_type IRE_DB_TYPE. 8843 */ 8844 ipif_refrele(src_ipif); 8845 ill_refrele(dst_ill); 8846 return; 8847 } else { 8848 /* Prepare for cleanup */ 8849 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8850 mp); 8851 mp->b_cont = NULL; 8852 freeb(mp); /* areq */ 8853 /* 8854 * this is an ire that is not added to the 8855 * cache. ire_freemblk will handle the release 8856 * of any resources associated with the ire. 8857 */ 8858 ire_delete(ire); /* ire_mp */ 8859 mp = saved_mp; /* pkt */ 8860 ire = NULL; 8861 if (copy_mp != NULL) { 8862 MULTIRT_DEBUG_UNTAG(copy_mp); 8863 freemsg(copy_mp); 8864 copy_mp = NULL; 8865 } 8866 break; 8867 } 8868 default: 8869 break; 8870 } 8871 } while (multirt_resolve_next); 8872 8873 ip1dbg(("ip_newroute: dropped\n")); 8874 /* Did this packet originate externally? */ 8875 if (mp->b_prev) { 8876 mp->b_next = NULL; 8877 mp->b_prev = NULL; 8878 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8879 } else { 8880 if (dst_ill != NULL) { 8881 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8882 } else { 8883 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8884 } 8885 } 8886 ASSERT(copy_mp == NULL); 8887 MULTIRT_DEBUG_UNTAG(first_mp); 8888 freemsg(first_mp); 8889 if (ire != NULL) 8890 ire_refrele(ire); 8891 if (sire != NULL) 8892 ire_refrele(sire); 8893 if (src_ipif != NULL) 8894 ipif_refrele(src_ipif); 8895 if (dst_ill != NULL) 8896 ill_refrele(dst_ill); 8897 return; 8898 8899 icmp_err_ret: 8900 ip1dbg(("ip_newroute: no route\n")); 8901 if (src_ipif != NULL) 8902 ipif_refrele(src_ipif); 8903 if (dst_ill != NULL) 8904 ill_refrele(dst_ill); 8905 if (sire != NULL) 8906 ire_refrele(sire); 8907 /* Did this packet originate externally? */ 8908 if (mp->b_prev) { 8909 mp->b_next = NULL; 8910 mp->b_prev = NULL; 8911 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8912 q = WR(q); 8913 } else { 8914 /* 8915 * There is no outgoing ill, so just increment the 8916 * system MIB. 8917 */ 8918 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8919 /* 8920 * Since ip_wput() isn't close to finished, we fill 8921 * in enough of the header for credible error reporting. 8922 */ 8923 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8924 /* Failed */ 8925 MULTIRT_DEBUG_UNTAG(first_mp); 8926 freemsg(first_mp); 8927 if (ire != NULL) 8928 ire_refrele(ire); 8929 return; 8930 } 8931 } 8932 8933 /* 8934 * At this point we will have ire only if RTF_BLACKHOLE 8935 * or RTF_REJECT flags are set on the IRE. It will not 8936 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8937 */ 8938 if (ire != NULL) { 8939 if (ire->ire_flags & RTF_BLACKHOLE) { 8940 ire_refrele(ire); 8941 MULTIRT_DEBUG_UNTAG(first_mp); 8942 freemsg(first_mp); 8943 return; 8944 } 8945 ire_refrele(ire); 8946 } 8947 if (ip_source_routed(ipha, ipst)) { 8948 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8949 zoneid, ipst); 8950 return; 8951 } 8952 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8953 } 8954 8955 ip_opt_info_t zero_info; 8956 8957 /* 8958 * IPv4 - 8959 * ip_newroute_ipif is called by ip_wput_multicast and 8960 * ip_rput_forward_multicast whenever we need to send 8961 * out a packet to a destination address for which we do not have specific 8962 * routing information. It is used when the packet will be sent out 8963 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8964 * socket option is set or icmp error message wants to go out on a particular 8965 * interface for a unicast packet. 8966 * 8967 * In most cases, the destination address is resolved thanks to the ipif 8968 * intrinsic resolver. However, there are some cases where the call to 8969 * ip_newroute_ipif must take into account the potential presence of 8970 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8971 * that uses the interface. This is specified through flags, 8972 * which can be a combination of: 8973 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8974 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8975 * and flags. Additionally, the packet source address has to be set to 8976 * the specified address. The caller is thus expected to set this flag 8977 * if the packet has no specific source address yet. 8978 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8979 * flag, the resulting ire will inherit the flag. All unresolved routes 8980 * to the destination must be explored in the same call to 8981 * ip_newroute_ipif(). 8982 */ 8983 static void 8984 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8985 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 8986 { 8987 areq_t *areq; 8988 ire_t *ire = NULL; 8989 mblk_t *res_mp; 8990 ipaddr_t *addrp; 8991 mblk_t *first_mp; 8992 ire_t *save_ire = NULL; 8993 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8994 ipif_t *src_ipif = NULL; 8995 ushort_t ire_marks = 0; 8996 ill_t *dst_ill = NULL; 8997 boolean_t mctl_present; 8998 ipsec_out_t *io; 8999 ipha_t *ipha; 9000 int ihandle = 0; 9001 mblk_t *saved_mp; 9002 ire_t *fire = NULL; 9003 mblk_t *copy_mp = NULL; 9004 boolean_t multirt_resolve_next; 9005 boolean_t unspec_src; 9006 ipaddr_t ipha_dst; 9007 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9008 9009 /* 9010 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9011 * here for uniformity 9012 */ 9013 ipif_refhold(ipif); 9014 9015 /* 9016 * This loop is run only once in most cases. 9017 * We loop to resolve further routes only when the destination 9018 * can be reached through multiple RTF_MULTIRT-flagged ires. 9019 */ 9020 do { 9021 if (dst_ill != NULL) { 9022 ill_refrele(dst_ill); 9023 dst_ill = NULL; 9024 } 9025 if (src_ipif != NULL) { 9026 ipif_refrele(src_ipif); 9027 src_ipif = NULL; 9028 } 9029 multirt_resolve_next = B_FALSE; 9030 9031 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9032 ipif->ipif_ill->ill_name)); 9033 9034 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9035 if (mctl_present) 9036 io = (ipsec_out_t *)first_mp->b_rptr; 9037 9038 ipha = (ipha_t *)mp->b_rptr; 9039 9040 /* 9041 * Save the packet destination address, we may need it after 9042 * the packet has been consumed. 9043 */ 9044 ipha_dst = ipha->ipha_dst; 9045 9046 /* 9047 * If the interface is a pt-pt interface we look for an 9048 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9049 * local_address and the pt-pt destination address. Otherwise 9050 * we just match the local address. 9051 * NOTE: dst could be different than ipha->ipha_dst in case 9052 * of sending igmp multicast packets over a point-to-point 9053 * connection. 9054 * Thus we must be careful enough to check ipha_dst to be a 9055 * multicast address, otherwise it will take xmit_if path for 9056 * multicast packets resulting into kernel stack overflow by 9057 * repeated calls to ip_newroute_ipif from ire_send(). 9058 */ 9059 if (CLASSD(ipha_dst) && 9060 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9061 goto err_ret; 9062 } 9063 9064 /* 9065 * We check if an IRE_OFFSUBNET for the addr that goes through 9066 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9067 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9068 * propagate its flags to the new ire. 9069 */ 9070 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9071 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9072 ip2dbg(("ip_newroute_ipif: " 9073 "ipif_lookup_multi_ire(" 9074 "ipif %p, dst %08x) = fire %p\n", 9075 (void *)ipif, ntohl(dst), (void *)fire)); 9076 } 9077 9078 if (mctl_present && io->ipsec_out_attach_if) { 9079 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9080 io->ipsec_out_ill_index, B_FALSE, ipst); 9081 9082 /* Failure case frees things for us. */ 9083 if (attach_ill == NULL) { 9084 ipif_refrele(ipif); 9085 if (fire != NULL) 9086 ire_refrele(fire); 9087 return; 9088 } 9089 9090 /* 9091 * Check if we need an ire that will not be 9092 * looked up by anybody else i.e. HIDDEN. 9093 */ 9094 if (ill_is_probeonly(attach_ill)) { 9095 ire_marks = IRE_MARK_HIDDEN; 9096 } 9097 /* 9098 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9099 * case. 9100 */ 9101 dst_ill = ipif->ipif_ill; 9102 /* attach_ill has been refheld by ip_grab_attach_ill */ 9103 ASSERT(dst_ill == attach_ill); 9104 } else { 9105 /* 9106 * If the interface belongs to an interface group, 9107 * make sure the next possible interface in the group 9108 * is used. This encourages load spreading among 9109 * peers in an interface group. 9110 * Note: load spreading is disabled for RTF_MULTIRT 9111 * routes. 9112 */ 9113 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9114 (fire->ire_flags & RTF_MULTIRT)) { 9115 /* 9116 * Don't perform outbound load spreading 9117 * in the case of an RTF_MULTIRT issued route, 9118 * we actually typically want to replicate 9119 * outgoing packets through particular 9120 * interfaces. 9121 */ 9122 dst_ill = ipif->ipif_ill; 9123 ill_refhold(dst_ill); 9124 } else { 9125 dst_ill = ip_newroute_get_dst_ill( 9126 ipif->ipif_ill); 9127 } 9128 if (dst_ill == NULL) { 9129 if (ip_debug > 2) { 9130 pr_addr_dbg("ip_newroute_ipif: " 9131 "no dst ill for dst %s\n", 9132 AF_INET, &dst); 9133 } 9134 goto err_ret; 9135 } 9136 } 9137 9138 /* 9139 * Pick a source address preferring non-deprecated ones. 9140 * Unlike ip_newroute, we don't do any source address 9141 * selection here since for multicast it really does not help 9142 * in inbound load spreading as in the unicast case. 9143 */ 9144 if ((flags & RTF_SETSRC) && (fire != NULL) && 9145 (fire->ire_flags & RTF_SETSRC)) { 9146 /* 9147 * As requested by flags, an IRE_OFFSUBNET was looked up 9148 * on that interface. This ire has RTF_SETSRC flag, so 9149 * the source address of the packet must be changed. 9150 * Check that the ipif matching the requested source 9151 * address still exists. 9152 */ 9153 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9154 zoneid, NULL, NULL, NULL, NULL, ipst); 9155 } 9156 9157 unspec_src = (connp != NULL && connp->conn_unspec_src); 9158 9159 if (((!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9160 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9161 (connp != NULL && ipif->ipif_zoneid != zoneid && 9162 ipif->ipif_zoneid != ALL_ZONES)) && 9163 (src_ipif == NULL) && 9164 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9165 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9166 if (src_ipif == NULL) { 9167 if (ip_debug > 2) { 9168 /* ip1dbg */ 9169 pr_addr_dbg("ip_newroute_ipif: " 9170 "no src for dst %s", 9171 AF_INET, &dst); 9172 } 9173 ip1dbg((" through interface %s\n", 9174 dst_ill->ill_name)); 9175 goto err_ret; 9176 } 9177 ipif_refrele(ipif); 9178 ipif = src_ipif; 9179 ipif_refhold(ipif); 9180 } 9181 if (src_ipif == NULL) { 9182 src_ipif = ipif; 9183 ipif_refhold(src_ipif); 9184 } 9185 9186 /* 9187 * Assign a source address while we have the conn. 9188 * We can't have ip_wput_ire pick a source address when the 9189 * packet returns from arp since conn_unspec_src might be set 9190 * and we lose the conn when going through arp. 9191 */ 9192 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9193 ipha->ipha_src = src_ipif->ipif_src_addr; 9194 9195 /* 9196 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9197 * that the outgoing interface does not have an interface ire. 9198 */ 9199 if (CLASSD(ipha_dst) && (connp == NULL || 9200 connp->conn_outgoing_ill == NULL) && 9201 infop->ip_opt_ill_index == 0) { 9202 /* ipif_to_ire returns an held ire */ 9203 ire = ipif_to_ire(ipif); 9204 if (ire == NULL) 9205 goto err_ret; 9206 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9207 goto err_ret; 9208 /* 9209 * ihandle is needed when the ire is added to 9210 * cache table. 9211 */ 9212 save_ire = ire; 9213 ihandle = save_ire->ire_ihandle; 9214 9215 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9216 "flags %04x\n", 9217 (void *)ire, (void *)ipif, flags)); 9218 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9219 (fire->ire_flags & RTF_MULTIRT)) { 9220 /* 9221 * As requested by flags, an IRE_OFFSUBNET was 9222 * looked up on that interface. This ire has 9223 * RTF_MULTIRT flag, so the resolution loop will 9224 * be re-entered to resolve additional routes on 9225 * other interfaces. For that purpose, a copy of 9226 * the packet is performed at this point. 9227 */ 9228 fire->ire_last_used_time = lbolt; 9229 copy_mp = copymsg(first_mp); 9230 if (copy_mp) { 9231 MULTIRT_DEBUG_TAG(copy_mp); 9232 } 9233 } 9234 if ((flags & RTF_SETSRC) && (fire != NULL) && 9235 (fire->ire_flags & RTF_SETSRC)) { 9236 /* 9237 * As requested by flags, an IRE_OFFSUBET was 9238 * looked up on that interface. This ire has 9239 * RTF_SETSRC flag, so the source address of the 9240 * packet must be changed. 9241 */ 9242 ipha->ipha_src = fire->ire_src_addr; 9243 } 9244 } else { 9245 ASSERT((connp == NULL) || 9246 (connp->conn_outgoing_ill != NULL) || 9247 (connp->conn_dontroute) || 9248 infop->ip_opt_ill_index != 0); 9249 /* 9250 * The only ways we can come here are: 9251 * 1) IP_BOUND_IF socket option is set 9252 * 2) SO_DONTROUTE socket option is set 9253 * 3) IP_PKTINFO option is passed in as ancillary data. 9254 * In all cases, the new ire will not be added 9255 * into cache table. 9256 */ 9257 ire_marks |= IRE_MARK_NOADD; 9258 } 9259 9260 switch (ipif->ipif_net_type) { 9261 case IRE_IF_NORESOLVER: { 9262 /* We have what we need to build an IRE_CACHE. */ 9263 9264 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9265 (dst_ill->ill_resolver_mp == NULL)) { 9266 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9267 "for IRE_IF_NORESOLVER ire %p has " 9268 "no ill_resolver_mp\n", 9269 (void *)dst_ill, (void *)ire)); 9270 break; 9271 } 9272 9273 /* 9274 * The new ire inherits the IRE_OFFSUBNET flags 9275 * and source address, if this was requested. 9276 */ 9277 ire = ire_create( 9278 (uchar_t *)&dst, /* dest address */ 9279 (uchar_t *)&ip_g_all_ones, /* mask */ 9280 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9281 NULL, /* gateway address */ 9282 &ipif->ipif_mtu, 9283 NULL, /* no src nce */ 9284 dst_ill->ill_rq, /* recv-from queue */ 9285 dst_ill->ill_wq, /* send-to queue */ 9286 IRE_CACHE, 9287 src_ipif, 9288 (save_ire != NULL ? save_ire->ire_mask : 0), 9289 (fire != NULL) ? /* Parent handle */ 9290 fire->ire_phandle : 0, 9291 ihandle, /* Interface handle */ 9292 (fire != NULL) ? 9293 (fire->ire_flags & 9294 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9295 (save_ire == NULL ? &ire_uinfo_null : 9296 &save_ire->ire_uinfo), 9297 NULL, 9298 NULL, 9299 ipst); 9300 9301 if (ire == NULL) { 9302 if (save_ire != NULL) 9303 ire_refrele(save_ire); 9304 break; 9305 } 9306 9307 ire->ire_marks |= ire_marks; 9308 9309 /* 9310 * If IRE_MARK_NOADD is set then we need to convert 9311 * the max_fragp to a useable value now. This is 9312 * normally done in ire_add_v[46]. We also need to 9313 * associate the ire with an nce (normally would be 9314 * done in ip_wput_nondata()). 9315 * 9316 * Note that IRE_MARK_NOADD packets created here 9317 * do not have a non-null ire_mp pointer. The null 9318 * value of ire_bucket indicates that they were 9319 * never added. 9320 */ 9321 if (ire->ire_marks & IRE_MARK_NOADD) { 9322 uint_t max_frag; 9323 9324 max_frag = *ire->ire_max_fragp; 9325 ire->ire_max_fragp = NULL; 9326 ire->ire_max_frag = max_frag; 9327 9328 if ((ire->ire_nce = ndp_lookup_v4( 9329 ire_to_ill(ire), 9330 (ire->ire_gateway_addr != INADDR_ANY ? 9331 &ire->ire_gateway_addr : &ire->ire_addr), 9332 B_FALSE)) == NULL) { 9333 if (save_ire != NULL) 9334 ire_refrele(save_ire); 9335 break; 9336 } 9337 ASSERT(ire->ire_nce->nce_state == 9338 ND_REACHABLE); 9339 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9340 } 9341 9342 /* Prevent save_ire from getting deleted */ 9343 if (save_ire != NULL) { 9344 IRB_REFHOLD(save_ire->ire_bucket); 9345 /* Has it been removed already ? */ 9346 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9347 IRB_REFRELE(save_ire->ire_bucket); 9348 ire_refrele(save_ire); 9349 break; 9350 } 9351 } 9352 9353 ire_add_then_send(q, ire, first_mp); 9354 9355 /* Assert that save_ire is not deleted yet. */ 9356 if (save_ire != NULL) { 9357 ASSERT(save_ire->ire_ptpn != NULL); 9358 IRB_REFRELE(save_ire->ire_bucket); 9359 ire_refrele(save_ire); 9360 save_ire = NULL; 9361 } 9362 if (fire != NULL) { 9363 ire_refrele(fire); 9364 fire = NULL; 9365 } 9366 9367 /* 9368 * the resolution loop is re-entered if this 9369 * was requested through flags and if we 9370 * actually are in a multirouting case. 9371 */ 9372 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9373 boolean_t need_resolve = 9374 ire_multirt_need_resolve(ipha_dst, 9375 MBLK_GETLABEL(copy_mp), ipst); 9376 if (!need_resolve) { 9377 MULTIRT_DEBUG_UNTAG(copy_mp); 9378 freemsg(copy_mp); 9379 copy_mp = NULL; 9380 } else { 9381 /* 9382 * ipif_lookup_group() calls 9383 * ire_lookup_multi() that uses 9384 * ire_ftable_lookup() to find 9385 * an IRE_INTERFACE for the group. 9386 * In the multirt case, 9387 * ire_lookup_multi() then invokes 9388 * ire_multirt_lookup() to find 9389 * the next resolvable ire. 9390 * As a result, we obtain an new 9391 * interface, derived from the 9392 * next ire. 9393 */ 9394 ipif_refrele(ipif); 9395 ipif = ipif_lookup_group(ipha_dst, 9396 zoneid, ipst); 9397 ip2dbg(("ip_newroute_ipif: " 9398 "multirt dst %08x, ipif %p\n", 9399 htonl(dst), (void *)ipif)); 9400 if (ipif != NULL) { 9401 mp = copy_mp; 9402 copy_mp = NULL; 9403 multirt_resolve_next = B_TRUE; 9404 continue; 9405 } else { 9406 freemsg(copy_mp); 9407 } 9408 } 9409 } 9410 if (ipif != NULL) 9411 ipif_refrele(ipif); 9412 ill_refrele(dst_ill); 9413 ipif_refrele(src_ipif); 9414 return; 9415 } 9416 case IRE_IF_RESOLVER: 9417 /* 9418 * We can't build an IRE_CACHE yet, but at least 9419 * we found a resolver that can help. 9420 */ 9421 res_mp = dst_ill->ill_resolver_mp; 9422 if (!OK_RESOLVER_MP(res_mp)) 9423 break; 9424 9425 /* 9426 * We obtain a partial IRE_CACHE which we will pass 9427 * along with the resolver query. When the response 9428 * comes back it will be there ready for us to add. 9429 * The new ire inherits the IRE_OFFSUBNET flags 9430 * and source address, if this was requested. 9431 * The ire_max_frag is atomically set under the 9432 * irebucket lock in ire_add_v[46]. Only in the 9433 * case of IRE_MARK_NOADD, we set it here itself. 9434 */ 9435 ire = ire_create_mp( 9436 (uchar_t *)&dst, /* dest address */ 9437 (uchar_t *)&ip_g_all_ones, /* mask */ 9438 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9439 NULL, /* gateway address */ 9440 (ire_marks & IRE_MARK_NOADD) ? 9441 ipif->ipif_mtu : 0, /* max_frag */ 9442 NULL, /* no src nce */ 9443 dst_ill->ill_rq, /* recv-from queue */ 9444 dst_ill->ill_wq, /* send-to queue */ 9445 IRE_CACHE, 9446 src_ipif, 9447 (save_ire != NULL ? save_ire->ire_mask : 0), 9448 (fire != NULL) ? /* Parent handle */ 9449 fire->ire_phandle : 0, 9450 ihandle, /* Interface handle */ 9451 (fire != NULL) ? /* flags if any */ 9452 (fire->ire_flags & 9453 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9454 (save_ire == NULL ? &ire_uinfo_null : 9455 &save_ire->ire_uinfo), 9456 NULL, 9457 NULL, 9458 ipst); 9459 9460 if (save_ire != NULL) { 9461 ire_refrele(save_ire); 9462 save_ire = NULL; 9463 } 9464 if (ire == NULL) 9465 break; 9466 9467 ire->ire_marks |= ire_marks; 9468 /* 9469 * Construct message chain for the resolver of the 9470 * form: 9471 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9472 * 9473 * NOTE : ire will be added later when the response 9474 * comes back from ARP. If the response does not 9475 * come back, ARP frees the packet. For this reason, 9476 * we can't REFHOLD the bucket of save_ire to prevent 9477 * deletions. We may not be able to REFRELE the 9478 * bucket if the response never comes back. 9479 * Thus, before adding the ire, ire_add_v4 will make 9480 * sure that the interface route does not get deleted. 9481 * This is the only case unlike ip_newroute_v6, 9482 * ip_newroute_ipif_v6 where we can always prevent 9483 * deletions because ire_add_then_send is called after 9484 * creating the IRE. 9485 * If IRE_MARK_NOADD is set, then ire_add_then_send 9486 * does not add this IRE into the IRE CACHE. 9487 */ 9488 ASSERT(ire->ire_mp != NULL); 9489 ire->ire_mp->b_cont = first_mp; 9490 /* Have saved_mp handy, for cleanup if canput fails */ 9491 saved_mp = mp; 9492 mp = copyb(res_mp); 9493 if (mp == NULL) { 9494 /* Prepare for cleanup */ 9495 mp = saved_mp; /* pkt */ 9496 ire_delete(ire); /* ire_mp */ 9497 ire = NULL; 9498 if (copy_mp != NULL) { 9499 MULTIRT_DEBUG_UNTAG(copy_mp); 9500 freemsg(copy_mp); 9501 copy_mp = NULL; 9502 } 9503 break; 9504 } 9505 linkb(mp, ire->ire_mp); 9506 9507 /* 9508 * Fill in the source and dest addrs for the resolver. 9509 * NOTE: this depends on memory layouts imposed by 9510 * ill_init(). 9511 */ 9512 areq = (areq_t *)mp->b_rptr; 9513 addrp = (ipaddr_t *)((char *)areq + 9514 areq->areq_sender_addr_offset); 9515 *addrp = ire->ire_src_addr; 9516 addrp = (ipaddr_t *)((char *)areq + 9517 areq->areq_target_addr_offset); 9518 *addrp = dst; 9519 /* Up to the resolver. */ 9520 if (canputnext(dst_ill->ill_rq) && 9521 !(dst_ill->ill_arp_closing)) { 9522 putnext(dst_ill->ill_rq, mp); 9523 /* 9524 * The response will come back in ip_wput 9525 * with db_type IRE_DB_TYPE. 9526 */ 9527 } else { 9528 mp->b_cont = NULL; 9529 freeb(mp); /* areq */ 9530 ire_delete(ire); /* ire_mp */ 9531 saved_mp->b_next = NULL; 9532 saved_mp->b_prev = NULL; 9533 freemsg(first_mp); /* pkt */ 9534 ip2dbg(("ip_newroute_ipif: dropped\n")); 9535 } 9536 9537 if (fire != NULL) { 9538 ire_refrele(fire); 9539 fire = NULL; 9540 } 9541 9542 9543 /* 9544 * The resolution loop is re-entered if this was 9545 * requested through flags and we actually are 9546 * in a multirouting case. 9547 */ 9548 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9549 boolean_t need_resolve = 9550 ire_multirt_need_resolve(ipha_dst, 9551 MBLK_GETLABEL(copy_mp), ipst); 9552 if (!need_resolve) { 9553 MULTIRT_DEBUG_UNTAG(copy_mp); 9554 freemsg(copy_mp); 9555 copy_mp = NULL; 9556 } else { 9557 /* 9558 * ipif_lookup_group() calls 9559 * ire_lookup_multi() that uses 9560 * ire_ftable_lookup() to find 9561 * an IRE_INTERFACE for the group. 9562 * In the multirt case, 9563 * ire_lookup_multi() then invokes 9564 * ire_multirt_lookup() to find 9565 * the next resolvable ire. 9566 * As a result, we obtain an new 9567 * interface, derived from the 9568 * next ire. 9569 */ 9570 ipif_refrele(ipif); 9571 ipif = ipif_lookup_group(ipha_dst, 9572 zoneid, ipst); 9573 if (ipif != NULL) { 9574 mp = copy_mp; 9575 copy_mp = NULL; 9576 multirt_resolve_next = B_TRUE; 9577 continue; 9578 } else { 9579 freemsg(copy_mp); 9580 } 9581 } 9582 } 9583 if (ipif != NULL) 9584 ipif_refrele(ipif); 9585 ill_refrele(dst_ill); 9586 ipif_refrele(src_ipif); 9587 return; 9588 default: 9589 break; 9590 } 9591 } while (multirt_resolve_next); 9592 9593 err_ret: 9594 ip2dbg(("ip_newroute_ipif: dropped\n")); 9595 if (fire != NULL) 9596 ire_refrele(fire); 9597 ipif_refrele(ipif); 9598 /* Did this packet originate externally? */ 9599 if (dst_ill != NULL) 9600 ill_refrele(dst_ill); 9601 if (src_ipif != NULL) 9602 ipif_refrele(src_ipif); 9603 if (mp->b_prev || mp->b_next) { 9604 mp->b_next = NULL; 9605 mp->b_prev = NULL; 9606 } else { 9607 /* 9608 * Since ip_wput() isn't close to finished, we fill 9609 * in enough of the header for credible error reporting. 9610 */ 9611 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9612 /* Failed */ 9613 freemsg(first_mp); 9614 if (ire != NULL) 9615 ire_refrele(ire); 9616 return; 9617 } 9618 } 9619 /* 9620 * At this point we will have ire only if RTF_BLACKHOLE 9621 * or RTF_REJECT flags are set on the IRE. It will not 9622 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9623 */ 9624 if (ire != NULL) { 9625 if (ire->ire_flags & RTF_BLACKHOLE) { 9626 ire_refrele(ire); 9627 freemsg(first_mp); 9628 return; 9629 } 9630 ire_refrele(ire); 9631 } 9632 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9633 } 9634 9635 /* Name/Value Table Lookup Routine */ 9636 char * 9637 ip_nv_lookup(nv_t *nv, int value) 9638 { 9639 if (!nv) 9640 return (NULL); 9641 for (; nv->nv_name; nv++) { 9642 if (nv->nv_value == value) 9643 return (nv->nv_name); 9644 } 9645 return ("unknown"); 9646 } 9647 9648 /* 9649 * This is a module open, i.e. this is a control stream for access 9650 * to a DLPI device. We allocate an ill_t as the instance data in 9651 * this case. 9652 */ 9653 int 9654 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9655 { 9656 ill_t *ill; 9657 int err; 9658 zoneid_t zoneid; 9659 netstack_t *ns; 9660 ip_stack_t *ipst; 9661 9662 /* 9663 * Prevent unprivileged processes from pushing IP so that 9664 * they can't send raw IP. 9665 */ 9666 if (secpolicy_net_rawaccess(credp) != 0) 9667 return (EPERM); 9668 9669 ns = netstack_find_by_cred(credp); 9670 ASSERT(ns != NULL); 9671 ipst = ns->netstack_ip; 9672 ASSERT(ipst != NULL); 9673 9674 /* 9675 * For exclusive stacks we set the zoneid to zero 9676 * to make IP operate as if in the global zone. 9677 */ 9678 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9679 zoneid = GLOBAL_ZONEID; 9680 else 9681 zoneid = crgetzoneid(credp); 9682 9683 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9684 q->q_ptr = WR(q)->q_ptr = ill; 9685 ill->ill_ipst = ipst; 9686 ill->ill_zoneid = zoneid; 9687 9688 /* 9689 * ill_init initializes the ill fields and then sends down 9690 * down a DL_INFO_REQ after calling qprocson. 9691 */ 9692 err = ill_init(q, ill); 9693 if (err != 0) { 9694 mi_free(ill); 9695 netstack_rele(ipst->ips_netstack); 9696 q->q_ptr = NULL; 9697 WR(q)->q_ptr = NULL; 9698 return (err); 9699 } 9700 9701 /* ill_init initializes the ipsq marking this thread as writer */ 9702 ipsq_exit(ill->ill_phyint->phyint_ipsq); 9703 /* Wait for the DL_INFO_ACK */ 9704 mutex_enter(&ill->ill_lock); 9705 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9706 /* 9707 * Return value of 0 indicates a pending signal. 9708 */ 9709 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9710 if (err == 0) { 9711 mutex_exit(&ill->ill_lock); 9712 (void) ip_close(q, 0); 9713 return (EINTR); 9714 } 9715 } 9716 mutex_exit(&ill->ill_lock); 9717 9718 /* 9719 * ip_rput_other could have set an error in ill_error on 9720 * receipt of M_ERROR. 9721 */ 9722 9723 err = ill->ill_error; 9724 if (err != 0) { 9725 (void) ip_close(q, 0); 9726 return (err); 9727 } 9728 9729 ill->ill_credp = credp; 9730 crhold(credp); 9731 9732 mutex_enter(&ipst->ips_ip_mi_lock); 9733 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9734 credp); 9735 mutex_exit(&ipst->ips_ip_mi_lock); 9736 if (err) { 9737 (void) ip_close(q, 0); 9738 return (err); 9739 } 9740 return (0); 9741 } 9742 9743 /* For /dev/ip aka AF_INET open */ 9744 int 9745 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9746 { 9747 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9748 } 9749 9750 /* For /dev/ip6 aka AF_INET6 open */ 9751 int 9752 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9753 { 9754 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9755 } 9756 9757 /* IP open routine. */ 9758 int 9759 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9760 boolean_t isv6) 9761 { 9762 conn_t *connp; 9763 major_t maj; 9764 zoneid_t zoneid; 9765 netstack_t *ns; 9766 ip_stack_t *ipst; 9767 9768 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9769 9770 /* Allow reopen. */ 9771 if (q->q_ptr != NULL) 9772 return (0); 9773 9774 if (sflag & MODOPEN) { 9775 /* This is a module open */ 9776 return (ip_modopen(q, devp, flag, sflag, credp)); 9777 } 9778 9779 ns = netstack_find_by_cred(credp); 9780 ASSERT(ns != NULL); 9781 ipst = ns->netstack_ip; 9782 ASSERT(ipst != NULL); 9783 9784 /* 9785 * For exclusive stacks we set the zoneid to zero 9786 * to make IP operate as if in the global zone. 9787 */ 9788 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9789 zoneid = GLOBAL_ZONEID; 9790 else 9791 zoneid = crgetzoneid(credp); 9792 9793 /* 9794 * We are opening as a device. This is an IP client stream, and we 9795 * allocate an conn_t as the instance data. 9796 */ 9797 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9798 9799 /* 9800 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9801 * done by netstack_find_by_cred() 9802 */ 9803 netstack_rele(ipst->ips_netstack); 9804 9805 connp->conn_zoneid = zoneid; 9806 9807 connp->conn_upq = q; 9808 q->q_ptr = WR(q)->q_ptr = connp; 9809 9810 if (flag & SO_SOCKSTR) 9811 connp->conn_flags |= IPCL_SOCKET; 9812 9813 /* Minor tells us which /dev entry was opened */ 9814 if (isv6) { 9815 connp->conn_flags |= IPCL_ISV6; 9816 connp->conn_af_isv6 = B_TRUE; 9817 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9818 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9819 } else { 9820 connp->conn_af_isv6 = B_FALSE; 9821 connp->conn_pkt_isv6 = B_FALSE; 9822 } 9823 9824 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9825 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9826 connp->conn_minor_arena = ip_minor_arena_la; 9827 } else { 9828 /* 9829 * Either minor numbers in the large arena were exhausted 9830 * or a non socket application is doing the open. 9831 * Try to allocate from the small arena. 9832 */ 9833 if ((connp->conn_dev = 9834 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9835 /* CONN_DEC_REF takes care of netstack_rele() */ 9836 q->q_ptr = WR(q)->q_ptr = NULL; 9837 CONN_DEC_REF(connp); 9838 return (EBUSY); 9839 } 9840 connp->conn_minor_arena = ip_minor_arena_sa; 9841 } 9842 9843 maj = getemajor(*devp); 9844 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9845 9846 /* 9847 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9848 */ 9849 connp->conn_cred = credp; 9850 9851 /* 9852 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9853 */ 9854 connp->conn_recv = ip_conn_input; 9855 9856 crhold(connp->conn_cred); 9857 9858 /* 9859 * If the caller has the process-wide flag set, then default to MAC 9860 * exempt mode. This allows read-down to unlabeled hosts. 9861 */ 9862 if (getpflags(NET_MAC_AWARE, credp) != 0) 9863 connp->conn_mac_exempt = B_TRUE; 9864 9865 connp->conn_rq = q; 9866 connp->conn_wq = WR(q); 9867 9868 /* Non-zero default values */ 9869 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9870 9871 /* 9872 * Make the conn globally visible to walkers 9873 */ 9874 ASSERT(connp->conn_ref == 1); 9875 mutex_enter(&connp->conn_lock); 9876 connp->conn_state_flags &= ~CONN_INCIPIENT; 9877 mutex_exit(&connp->conn_lock); 9878 9879 qprocson(q); 9880 9881 return (0); 9882 } 9883 9884 /* 9885 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9886 * Note that there is no race since either ip_output function works - it 9887 * is just an optimization to enter the best ip_output routine directly. 9888 */ 9889 void 9890 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9891 ip_stack_t *ipst) 9892 { 9893 if (isv6) { 9894 if (bump_mib) { 9895 BUMP_MIB(&ipst->ips_ip6_mib, 9896 ipIfStatsOutSwitchIPVersion); 9897 } 9898 connp->conn_send = ip_output_v6; 9899 connp->conn_pkt_isv6 = B_TRUE; 9900 } else { 9901 if (bump_mib) { 9902 BUMP_MIB(&ipst->ips_ip_mib, 9903 ipIfStatsOutSwitchIPVersion); 9904 } 9905 connp->conn_send = ip_output; 9906 connp->conn_pkt_isv6 = B_FALSE; 9907 } 9908 9909 } 9910 9911 /* 9912 * See if IPsec needs loading because of the options in mp. 9913 */ 9914 static boolean_t 9915 ipsec_opt_present(mblk_t *mp) 9916 { 9917 uint8_t *optcp, *next_optcp, *opt_endcp; 9918 struct opthdr *opt; 9919 struct T_opthdr *topt; 9920 int opthdr_len; 9921 t_uscalar_t optname, optlevel; 9922 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9923 ipsec_req_t *ipsr; 9924 9925 /* 9926 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9927 * return TRUE. 9928 */ 9929 9930 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9931 opt_endcp = optcp + tor->OPT_length; 9932 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9933 opthdr_len = sizeof (struct T_opthdr); 9934 } else { /* O_OPTMGMT_REQ */ 9935 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9936 opthdr_len = sizeof (struct opthdr); 9937 } 9938 for (; optcp < opt_endcp; optcp = next_optcp) { 9939 if (optcp + opthdr_len > opt_endcp) 9940 return (B_FALSE); /* Not enough option header. */ 9941 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9942 topt = (struct T_opthdr *)optcp; 9943 optlevel = topt->level; 9944 optname = topt->name; 9945 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9946 } else { 9947 opt = (struct opthdr *)optcp; 9948 optlevel = opt->level; 9949 optname = opt->name; 9950 next_optcp = optcp + opthdr_len + 9951 _TPI_ALIGN_OPT(opt->len); 9952 } 9953 if ((next_optcp < optcp) || /* wraparound pointer space */ 9954 ((next_optcp >= opt_endcp) && /* last option bad len */ 9955 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9956 return (B_FALSE); /* bad option buffer */ 9957 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9958 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9959 /* 9960 * Check to see if it's an all-bypass or all-zeroes 9961 * IPsec request. Don't bother loading IPsec if 9962 * the socket doesn't want to use it. (A good example 9963 * is a bypass request.) 9964 * 9965 * Basically, if any of the non-NEVER bits are set, 9966 * load IPsec. 9967 */ 9968 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9969 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9970 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9971 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9972 != 0) 9973 return (B_TRUE); 9974 } 9975 } 9976 return (B_FALSE); 9977 } 9978 9979 /* 9980 * If conn is is waiting for ipsec to finish loading, kick it. 9981 */ 9982 /* ARGSUSED */ 9983 static void 9984 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9985 { 9986 t_scalar_t optreq_prim; 9987 mblk_t *mp; 9988 cred_t *cr; 9989 int err = 0; 9990 9991 /* 9992 * This function is called, after ipsec loading is complete. 9993 * Since IP checks exclusively and atomically (i.e it prevents 9994 * ipsec load from completing until ip_optcom_req completes) 9995 * whether ipsec load is complete, there cannot be a race with IP 9996 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9997 */ 9998 mutex_enter(&connp->conn_lock); 9999 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10000 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10001 mp = connp->conn_ipsec_opt_mp; 10002 connp->conn_ipsec_opt_mp = NULL; 10003 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10004 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10005 mutex_exit(&connp->conn_lock); 10006 10007 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10008 10009 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10010 if (optreq_prim == T_OPTMGMT_REQ) { 10011 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10012 &ip_opt_obj, B_FALSE); 10013 } else { 10014 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10015 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10016 &ip_opt_obj, B_FALSE); 10017 } 10018 if (err != EINPROGRESS) 10019 CONN_OPER_PENDING_DONE(connp); 10020 return; 10021 } 10022 mutex_exit(&connp->conn_lock); 10023 } 10024 10025 /* 10026 * Called from the ipsec_loader thread, outside any perimeter, to tell 10027 * ip qenable any of the queues waiting for the ipsec loader to 10028 * complete. 10029 */ 10030 void 10031 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10032 { 10033 netstack_t *ns = ipss->ipsec_netstack; 10034 10035 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10036 } 10037 10038 /* 10039 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10040 * determines the grp on which it has to become exclusive, queues the mp 10041 * and sq draining restarts the optmgmt 10042 */ 10043 static boolean_t 10044 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10045 { 10046 conn_t *connp = Q_TO_CONN(q); 10047 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10048 10049 /* 10050 * Take IPsec requests and treat them special. 10051 */ 10052 if (ipsec_opt_present(mp)) { 10053 /* First check if IPsec is loaded. */ 10054 mutex_enter(&ipss->ipsec_loader_lock); 10055 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10056 mutex_exit(&ipss->ipsec_loader_lock); 10057 return (B_FALSE); 10058 } 10059 mutex_enter(&connp->conn_lock); 10060 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10061 10062 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10063 connp->conn_ipsec_opt_mp = mp; 10064 mutex_exit(&connp->conn_lock); 10065 mutex_exit(&ipss->ipsec_loader_lock); 10066 10067 ipsec_loader_loadnow(ipss); 10068 return (B_TRUE); 10069 } 10070 return (B_FALSE); 10071 } 10072 10073 /* 10074 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10075 * all of them are copied to the conn_t. If the req is "zero", the policy is 10076 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10077 * fields. 10078 * We keep only the latest setting of the policy and thus policy setting 10079 * is not incremental/cumulative. 10080 * 10081 * Requests to set policies with multiple alternative actions will 10082 * go through a different API. 10083 */ 10084 int 10085 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10086 { 10087 uint_t ah_req = 0; 10088 uint_t esp_req = 0; 10089 uint_t se_req = 0; 10090 ipsec_selkey_t sel; 10091 ipsec_act_t *actp = NULL; 10092 uint_t nact; 10093 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10094 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10095 ipsec_policy_root_t *pr; 10096 ipsec_policy_head_t *ph; 10097 int fam; 10098 boolean_t is_pol_reset; 10099 int error = 0; 10100 netstack_t *ns = connp->conn_netstack; 10101 ip_stack_t *ipst = ns->netstack_ip; 10102 ipsec_stack_t *ipss = ns->netstack_ipsec; 10103 10104 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10105 10106 /* 10107 * The IP_SEC_OPT option does not allow variable length parameters, 10108 * hence a request cannot be NULL. 10109 */ 10110 if (req == NULL) 10111 return (EINVAL); 10112 10113 ah_req = req->ipsr_ah_req; 10114 esp_req = req->ipsr_esp_req; 10115 se_req = req->ipsr_self_encap_req; 10116 10117 /* Don't allow setting self-encap without one or more of AH/ESP. */ 10118 if (se_req != 0 && esp_req == 0 && ah_req == 0) 10119 return (EINVAL); 10120 10121 /* 10122 * Are we dealing with a request to reset the policy (i.e. 10123 * zero requests). 10124 */ 10125 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10126 (esp_req & REQ_MASK) == 0 && 10127 (se_req & REQ_MASK) == 0); 10128 10129 if (!is_pol_reset) { 10130 /* 10131 * If we couldn't load IPsec, fail with "protocol 10132 * not supported". 10133 * IPsec may not have been loaded for a request with zero 10134 * policies, so we don't fail in this case. 10135 */ 10136 mutex_enter(&ipss->ipsec_loader_lock); 10137 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10138 mutex_exit(&ipss->ipsec_loader_lock); 10139 return (EPROTONOSUPPORT); 10140 } 10141 mutex_exit(&ipss->ipsec_loader_lock); 10142 10143 /* 10144 * Test for valid requests. Invalid algorithms 10145 * need to be tested by IPsec code because new 10146 * algorithms can be added dynamically. 10147 */ 10148 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10149 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10150 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10151 return (EINVAL); 10152 } 10153 10154 /* 10155 * Only privileged users can issue these 10156 * requests. 10157 */ 10158 if (((ah_req & IPSEC_PREF_NEVER) || 10159 (esp_req & IPSEC_PREF_NEVER) || 10160 (se_req & IPSEC_PREF_NEVER)) && 10161 secpolicy_ip_config(cr, B_FALSE) != 0) { 10162 return (EPERM); 10163 } 10164 10165 /* 10166 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10167 * are mutually exclusive. 10168 */ 10169 if (((ah_req & REQ_MASK) == REQ_MASK) || 10170 ((esp_req & REQ_MASK) == REQ_MASK) || 10171 ((se_req & REQ_MASK) == REQ_MASK)) { 10172 /* Both of them are set */ 10173 return (EINVAL); 10174 } 10175 } 10176 10177 mutex_enter(&connp->conn_lock); 10178 10179 /* 10180 * If we have already cached policies in ip_bind_connected*(), don't 10181 * let them change now. We cache policies for connections 10182 * whose src,dst [addr, port] is known. 10183 */ 10184 if (connp->conn_policy_cached) { 10185 mutex_exit(&connp->conn_lock); 10186 return (EINVAL); 10187 } 10188 10189 /* 10190 * We have a zero policies, reset the connection policy if already 10191 * set. This will cause the connection to inherit the 10192 * global policy, if any. 10193 */ 10194 if (is_pol_reset) { 10195 if (connp->conn_policy != NULL) { 10196 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10197 connp->conn_policy = NULL; 10198 } 10199 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10200 connp->conn_in_enforce_policy = B_FALSE; 10201 connp->conn_out_enforce_policy = B_FALSE; 10202 mutex_exit(&connp->conn_lock); 10203 return (0); 10204 } 10205 10206 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10207 ipst->ips_netstack); 10208 if (ph == NULL) 10209 goto enomem; 10210 10211 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10212 if (actp == NULL) 10213 goto enomem; 10214 10215 /* 10216 * Always allocate IPv4 policy entries, since they can also 10217 * apply to ipv6 sockets being used in ipv4-compat mode. 10218 */ 10219 bzero(&sel, sizeof (sel)); 10220 sel.ipsl_valid = IPSL_IPV4; 10221 10222 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10223 ipst->ips_netstack); 10224 if (pin4 == NULL) 10225 goto enomem; 10226 10227 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10228 ipst->ips_netstack); 10229 if (pout4 == NULL) 10230 goto enomem; 10231 10232 if (connp->conn_af_isv6) { 10233 /* 10234 * We're looking at a v6 socket, also allocate the 10235 * v6-specific entries... 10236 */ 10237 sel.ipsl_valid = IPSL_IPV6; 10238 pin6 = ipsec_policy_create(&sel, actp, nact, 10239 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10240 if (pin6 == NULL) 10241 goto enomem; 10242 10243 pout6 = ipsec_policy_create(&sel, actp, nact, 10244 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10245 if (pout6 == NULL) 10246 goto enomem; 10247 10248 /* 10249 * .. and file them away in the right place. 10250 */ 10251 fam = IPSEC_AF_V6; 10252 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10253 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10254 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10255 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10256 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10257 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10258 } 10259 10260 ipsec_actvec_free(actp, nact); 10261 10262 /* 10263 * File the v4 policies. 10264 */ 10265 fam = IPSEC_AF_V4; 10266 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10267 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10268 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10269 10270 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10271 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10272 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10273 10274 /* 10275 * If the requests need security, set enforce_policy. 10276 * If the requests are IPSEC_PREF_NEVER, one should 10277 * still set conn_out_enforce_policy so that an ipsec_out 10278 * gets attached in ip_wput. This is needed so that 10279 * for connections that we don't cache policy in ip_bind, 10280 * if global policy matches in ip_wput_attach_policy, we 10281 * don't wrongly inherit global policy. Similarly, we need 10282 * to set conn_in_enforce_policy also so that we don't verify 10283 * policy wrongly. 10284 */ 10285 if ((ah_req & REQ_MASK) != 0 || 10286 (esp_req & REQ_MASK) != 0 || 10287 (se_req & REQ_MASK) != 0) { 10288 connp->conn_in_enforce_policy = B_TRUE; 10289 connp->conn_out_enforce_policy = B_TRUE; 10290 connp->conn_flags |= IPCL_CHECK_POLICY; 10291 } 10292 10293 mutex_exit(&connp->conn_lock); 10294 return (error); 10295 #undef REQ_MASK 10296 10297 /* 10298 * Common memory-allocation-failure exit path. 10299 */ 10300 enomem: 10301 mutex_exit(&connp->conn_lock); 10302 if (actp != NULL) 10303 ipsec_actvec_free(actp, nact); 10304 if (pin4 != NULL) 10305 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10306 if (pout4 != NULL) 10307 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10308 if (pin6 != NULL) 10309 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10310 if (pout6 != NULL) 10311 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10312 return (ENOMEM); 10313 } 10314 10315 /* 10316 * Only for options that pass in an IP addr. Currently only V4 options 10317 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10318 * So this function assumes level is IPPROTO_IP 10319 */ 10320 int 10321 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10322 mblk_t *first_mp) 10323 { 10324 ipif_t *ipif = NULL; 10325 int error; 10326 ill_t *ill; 10327 int zoneid; 10328 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10329 10330 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10331 10332 if (addr != INADDR_ANY || checkonly) { 10333 ASSERT(connp != NULL); 10334 zoneid = IPCL_ZONEID(connp); 10335 if (option == IP_NEXTHOP) { 10336 ipif = ipif_lookup_onlink_addr(addr, 10337 connp->conn_zoneid, ipst); 10338 } else { 10339 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10340 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10341 &error, ipst); 10342 } 10343 if (ipif == NULL) { 10344 if (error == EINPROGRESS) 10345 return (error); 10346 else if ((option == IP_MULTICAST_IF) || 10347 (option == IP_NEXTHOP)) 10348 return (EHOSTUNREACH); 10349 else 10350 return (EINVAL); 10351 } else if (checkonly) { 10352 if (option == IP_MULTICAST_IF) { 10353 ill = ipif->ipif_ill; 10354 /* not supported by the virtual network iface */ 10355 if (IS_VNI(ill)) { 10356 ipif_refrele(ipif); 10357 return (EINVAL); 10358 } 10359 } 10360 ipif_refrele(ipif); 10361 return (0); 10362 } 10363 ill = ipif->ipif_ill; 10364 mutex_enter(&connp->conn_lock); 10365 mutex_enter(&ill->ill_lock); 10366 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10367 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10368 mutex_exit(&ill->ill_lock); 10369 mutex_exit(&connp->conn_lock); 10370 ipif_refrele(ipif); 10371 return (option == IP_MULTICAST_IF ? 10372 EHOSTUNREACH : EINVAL); 10373 } 10374 } else { 10375 mutex_enter(&connp->conn_lock); 10376 } 10377 10378 /* None of the options below are supported on the VNI */ 10379 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10380 mutex_exit(&ill->ill_lock); 10381 mutex_exit(&connp->conn_lock); 10382 ipif_refrele(ipif); 10383 return (EINVAL); 10384 } 10385 10386 switch (option) { 10387 case IP_DONTFAILOVER_IF: 10388 /* 10389 * This option is used by in.mpathd to ensure 10390 * that IPMP probe packets only go out on the 10391 * test interfaces. in.mpathd sets this option 10392 * on the non-failover interfaces. 10393 * For backward compatibility, this option 10394 * implicitly sets IP_MULTICAST_IF, as used 10395 * be done in bind(), so that ip_wput gets 10396 * this ipif to send mcast packets. 10397 */ 10398 if (ipif != NULL) { 10399 ASSERT(addr != INADDR_ANY); 10400 connp->conn_nofailover_ill = ipif->ipif_ill; 10401 connp->conn_multicast_ipif = ipif; 10402 } else { 10403 ASSERT(addr == INADDR_ANY); 10404 connp->conn_nofailover_ill = NULL; 10405 connp->conn_multicast_ipif = NULL; 10406 } 10407 break; 10408 10409 case IP_MULTICAST_IF: 10410 connp->conn_multicast_ipif = ipif; 10411 break; 10412 case IP_NEXTHOP: 10413 connp->conn_nexthop_v4 = addr; 10414 connp->conn_nexthop_set = B_TRUE; 10415 break; 10416 } 10417 10418 if (ipif != NULL) { 10419 mutex_exit(&ill->ill_lock); 10420 mutex_exit(&connp->conn_lock); 10421 ipif_refrele(ipif); 10422 return (0); 10423 } 10424 mutex_exit(&connp->conn_lock); 10425 /* We succeded in cleared the option */ 10426 return (0); 10427 } 10428 10429 /* 10430 * For options that pass in an ifindex specifying the ill. V6 options always 10431 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10432 */ 10433 int 10434 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10435 int level, int option, mblk_t *first_mp) 10436 { 10437 ill_t *ill = NULL; 10438 int error = 0; 10439 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10440 10441 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10442 if (ifindex != 0) { 10443 ASSERT(connp != NULL); 10444 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10445 first_mp, ip_restart_optmgmt, &error, ipst); 10446 if (ill != NULL) { 10447 if (checkonly) { 10448 /* not supported by the virtual network iface */ 10449 if (IS_VNI(ill)) { 10450 ill_refrele(ill); 10451 return (EINVAL); 10452 } 10453 ill_refrele(ill); 10454 return (0); 10455 } 10456 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10457 0, NULL)) { 10458 ill_refrele(ill); 10459 ill = NULL; 10460 mutex_enter(&connp->conn_lock); 10461 goto setit; 10462 } 10463 mutex_enter(&connp->conn_lock); 10464 mutex_enter(&ill->ill_lock); 10465 if (ill->ill_state_flags & ILL_CONDEMNED) { 10466 mutex_exit(&ill->ill_lock); 10467 mutex_exit(&connp->conn_lock); 10468 ill_refrele(ill); 10469 ill = NULL; 10470 mutex_enter(&connp->conn_lock); 10471 } 10472 goto setit; 10473 } else if (error == EINPROGRESS) { 10474 return (error); 10475 } else { 10476 error = 0; 10477 } 10478 } 10479 mutex_enter(&connp->conn_lock); 10480 setit: 10481 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10482 10483 /* 10484 * The options below assume that the ILL (if any) transmits and/or 10485 * receives traffic. Neither of which is true for the virtual network 10486 * interface, so fail setting these on a VNI. 10487 */ 10488 if (IS_VNI(ill)) { 10489 ASSERT(ill != NULL); 10490 mutex_exit(&ill->ill_lock); 10491 mutex_exit(&connp->conn_lock); 10492 ill_refrele(ill); 10493 return (EINVAL); 10494 } 10495 10496 if (level == IPPROTO_IP) { 10497 switch (option) { 10498 case IP_BOUND_IF: 10499 connp->conn_incoming_ill = ill; 10500 connp->conn_outgoing_ill = ill; 10501 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10502 0 : ifindex; 10503 break; 10504 10505 case IP_MULTICAST_IF: 10506 /* 10507 * This option is an internal special. The socket 10508 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10509 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10510 * specifies an ifindex and we try first on V6 ill's. 10511 * If we don't find one, we they try using on v4 ill's 10512 * intenally and we come here. 10513 */ 10514 if (!checkonly && ill != NULL) { 10515 ipif_t *ipif; 10516 ipif = ill->ill_ipif; 10517 10518 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10519 mutex_exit(&ill->ill_lock); 10520 mutex_exit(&connp->conn_lock); 10521 ill_refrele(ill); 10522 ill = NULL; 10523 mutex_enter(&connp->conn_lock); 10524 } else { 10525 connp->conn_multicast_ipif = ipif; 10526 } 10527 } 10528 break; 10529 10530 case IP_DHCPINIT_IF: 10531 if (connp->conn_dhcpinit_ill != NULL) { 10532 /* 10533 * We've locked the conn so conn_cleanup_ill() 10534 * cannot clear conn_dhcpinit_ill -- so it's 10535 * safe to access the ill. 10536 */ 10537 ill_t *oill = connp->conn_dhcpinit_ill; 10538 10539 ASSERT(oill->ill_dhcpinit != 0); 10540 atomic_dec_32(&oill->ill_dhcpinit); 10541 connp->conn_dhcpinit_ill = NULL; 10542 } 10543 10544 if (ill != NULL) { 10545 connp->conn_dhcpinit_ill = ill; 10546 atomic_inc_32(&ill->ill_dhcpinit); 10547 } 10548 break; 10549 } 10550 } else { 10551 switch (option) { 10552 case IPV6_BOUND_IF: 10553 connp->conn_incoming_ill = ill; 10554 connp->conn_outgoing_ill = ill; 10555 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10556 0 : ifindex; 10557 break; 10558 10559 case IPV6_BOUND_PIF: 10560 /* 10561 * Limit all transmit to this ill. 10562 * Unlike IPV6_BOUND_IF, using this option 10563 * prevents load spreading and failover from 10564 * happening when the interface is part of the 10565 * group. That's why we don't need to remember 10566 * the ifindex in orig_bound_ifindex as in 10567 * IPV6_BOUND_IF. 10568 */ 10569 connp->conn_outgoing_pill = ill; 10570 break; 10571 10572 case IPV6_DONTFAILOVER_IF: 10573 /* 10574 * This option is used by in.mpathd to ensure 10575 * that IPMP probe packets only go out on the 10576 * test interfaces. in.mpathd sets this option 10577 * on the non-failover interfaces. 10578 */ 10579 connp->conn_nofailover_ill = ill; 10580 /* 10581 * For backward compatibility, this option 10582 * implicitly sets ip_multicast_ill as used in 10583 * IPV6_MULTICAST_IF so that ip_wput gets 10584 * this ill to send mcast packets. 10585 */ 10586 connp->conn_multicast_ill = ill; 10587 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10588 0 : ifindex; 10589 break; 10590 10591 case IPV6_MULTICAST_IF: 10592 /* 10593 * Set conn_multicast_ill to be the IPv6 ill. 10594 * Set conn_multicast_ipif to be an IPv4 ipif 10595 * for ifindex to make IPv4 mapped addresses 10596 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10597 * Even if no IPv6 ill exists for the ifindex 10598 * we need to check for an IPv4 ifindex in order 10599 * for this to work with mapped addresses. In that 10600 * case only set conn_multicast_ipif. 10601 */ 10602 if (!checkonly) { 10603 if (ifindex == 0) { 10604 connp->conn_multicast_ill = NULL; 10605 connp->conn_orig_multicast_ifindex = 0; 10606 connp->conn_multicast_ipif = NULL; 10607 } else if (ill != NULL) { 10608 connp->conn_multicast_ill = ill; 10609 connp->conn_orig_multicast_ifindex = 10610 ifindex; 10611 } 10612 } 10613 break; 10614 } 10615 } 10616 10617 if (ill != NULL) { 10618 mutex_exit(&ill->ill_lock); 10619 mutex_exit(&connp->conn_lock); 10620 ill_refrele(ill); 10621 return (0); 10622 } 10623 mutex_exit(&connp->conn_lock); 10624 /* 10625 * We succeeded in clearing the option (ifindex == 0) or failed to 10626 * locate the ill and could not set the option (ifindex != 0) 10627 */ 10628 return (ifindex == 0 ? 0 : EINVAL); 10629 } 10630 10631 /* This routine sets socket options. */ 10632 /* ARGSUSED */ 10633 int 10634 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10635 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10636 void *dummy, cred_t *cr, mblk_t *first_mp) 10637 { 10638 int *i1 = (int *)invalp; 10639 conn_t *connp = Q_TO_CONN(q); 10640 int error = 0; 10641 boolean_t checkonly; 10642 ire_t *ire; 10643 boolean_t found; 10644 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10645 10646 switch (optset_context) { 10647 10648 case SETFN_OPTCOM_CHECKONLY: 10649 checkonly = B_TRUE; 10650 /* 10651 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10652 * inlen != 0 implies value supplied and 10653 * we have to "pretend" to set it. 10654 * inlen == 0 implies that there is no 10655 * value part in T_CHECK request and just validation 10656 * done elsewhere should be enough, we just return here. 10657 */ 10658 if (inlen == 0) { 10659 *outlenp = 0; 10660 return (0); 10661 } 10662 break; 10663 case SETFN_OPTCOM_NEGOTIATE: 10664 case SETFN_UD_NEGOTIATE: 10665 case SETFN_CONN_NEGOTIATE: 10666 checkonly = B_FALSE; 10667 break; 10668 default: 10669 /* 10670 * We should never get here 10671 */ 10672 *outlenp = 0; 10673 return (EINVAL); 10674 } 10675 10676 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10677 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10678 10679 /* 10680 * For fixed length options, no sanity check 10681 * of passed in length is done. It is assumed *_optcom_req() 10682 * routines do the right thing. 10683 */ 10684 10685 switch (level) { 10686 case SOL_SOCKET: 10687 /* 10688 * conn_lock protects the bitfields, and is used to 10689 * set the fields atomically. 10690 */ 10691 switch (name) { 10692 case SO_BROADCAST: 10693 if (!checkonly) { 10694 /* TODO: use value someplace? */ 10695 mutex_enter(&connp->conn_lock); 10696 connp->conn_broadcast = *i1 ? 1 : 0; 10697 mutex_exit(&connp->conn_lock); 10698 } 10699 break; /* goto sizeof (int) option return */ 10700 case SO_USELOOPBACK: 10701 if (!checkonly) { 10702 /* TODO: use value someplace? */ 10703 mutex_enter(&connp->conn_lock); 10704 connp->conn_loopback = *i1 ? 1 : 0; 10705 mutex_exit(&connp->conn_lock); 10706 } 10707 break; /* goto sizeof (int) option return */ 10708 case SO_DONTROUTE: 10709 if (!checkonly) { 10710 mutex_enter(&connp->conn_lock); 10711 connp->conn_dontroute = *i1 ? 1 : 0; 10712 mutex_exit(&connp->conn_lock); 10713 } 10714 break; /* goto sizeof (int) option return */ 10715 case SO_REUSEADDR: 10716 if (!checkonly) { 10717 mutex_enter(&connp->conn_lock); 10718 connp->conn_reuseaddr = *i1 ? 1 : 0; 10719 mutex_exit(&connp->conn_lock); 10720 } 10721 break; /* goto sizeof (int) option return */ 10722 case SO_PROTOTYPE: 10723 if (!checkonly) { 10724 mutex_enter(&connp->conn_lock); 10725 connp->conn_proto = *i1; 10726 mutex_exit(&connp->conn_lock); 10727 } 10728 break; /* goto sizeof (int) option return */ 10729 case SO_ALLZONES: 10730 if (!checkonly) { 10731 mutex_enter(&connp->conn_lock); 10732 if (IPCL_IS_BOUND(connp)) { 10733 mutex_exit(&connp->conn_lock); 10734 return (EINVAL); 10735 } 10736 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10737 mutex_exit(&connp->conn_lock); 10738 } 10739 break; /* goto sizeof (int) option return */ 10740 case SO_ANON_MLP: 10741 if (!checkonly) { 10742 mutex_enter(&connp->conn_lock); 10743 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10744 mutex_exit(&connp->conn_lock); 10745 } 10746 break; /* goto sizeof (int) option return */ 10747 case SO_MAC_EXEMPT: 10748 if (secpolicy_net_mac_aware(cr) != 0 || 10749 IPCL_IS_BOUND(connp)) 10750 return (EACCES); 10751 if (!checkonly) { 10752 mutex_enter(&connp->conn_lock); 10753 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10754 mutex_exit(&connp->conn_lock); 10755 } 10756 break; /* goto sizeof (int) option return */ 10757 default: 10758 /* 10759 * "soft" error (negative) 10760 * option not handled at this level 10761 * Note: Do not modify *outlenp 10762 */ 10763 return (-EINVAL); 10764 } 10765 break; 10766 case IPPROTO_IP: 10767 switch (name) { 10768 case IP_NEXTHOP: 10769 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10770 return (EPERM); 10771 /* FALLTHRU */ 10772 case IP_MULTICAST_IF: 10773 case IP_DONTFAILOVER_IF: { 10774 ipaddr_t addr = *i1; 10775 10776 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10777 first_mp); 10778 if (error != 0) 10779 return (error); 10780 break; /* goto sizeof (int) option return */ 10781 } 10782 10783 case IP_MULTICAST_TTL: 10784 /* Recorded in transport above IP */ 10785 *outvalp = *invalp; 10786 *outlenp = sizeof (uchar_t); 10787 return (0); 10788 case IP_MULTICAST_LOOP: 10789 if (!checkonly) { 10790 mutex_enter(&connp->conn_lock); 10791 connp->conn_multicast_loop = *invalp ? 1 : 0; 10792 mutex_exit(&connp->conn_lock); 10793 } 10794 *outvalp = *invalp; 10795 *outlenp = sizeof (uchar_t); 10796 return (0); 10797 case IP_ADD_MEMBERSHIP: 10798 case MCAST_JOIN_GROUP: 10799 case IP_DROP_MEMBERSHIP: 10800 case MCAST_LEAVE_GROUP: { 10801 struct ip_mreq *mreqp; 10802 struct group_req *greqp; 10803 ire_t *ire; 10804 boolean_t done = B_FALSE; 10805 ipaddr_t group, ifaddr; 10806 struct sockaddr_in *sin; 10807 uint32_t *ifindexp; 10808 boolean_t mcast_opt = B_TRUE; 10809 mcast_record_t fmode; 10810 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10811 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10812 10813 switch (name) { 10814 case IP_ADD_MEMBERSHIP: 10815 mcast_opt = B_FALSE; 10816 /* FALLTHRU */ 10817 case MCAST_JOIN_GROUP: 10818 fmode = MODE_IS_EXCLUDE; 10819 optfn = ip_opt_add_group; 10820 break; 10821 10822 case IP_DROP_MEMBERSHIP: 10823 mcast_opt = B_FALSE; 10824 /* FALLTHRU */ 10825 case MCAST_LEAVE_GROUP: 10826 fmode = MODE_IS_INCLUDE; 10827 optfn = ip_opt_delete_group; 10828 break; 10829 } 10830 10831 if (mcast_opt) { 10832 greqp = (struct group_req *)i1; 10833 sin = (struct sockaddr_in *)&greqp->gr_group; 10834 if (sin->sin_family != AF_INET) { 10835 *outlenp = 0; 10836 return (ENOPROTOOPT); 10837 } 10838 group = (ipaddr_t)sin->sin_addr.s_addr; 10839 ifaddr = INADDR_ANY; 10840 ifindexp = &greqp->gr_interface; 10841 } else { 10842 mreqp = (struct ip_mreq *)i1; 10843 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10844 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10845 ifindexp = NULL; 10846 } 10847 10848 /* 10849 * In the multirouting case, we need to replicate 10850 * the request on all interfaces that will take part 10851 * in replication. We do so because multirouting is 10852 * reflective, thus we will probably receive multi- 10853 * casts on those interfaces. 10854 * The ip_multirt_apply_membership() succeeds if the 10855 * operation succeeds on at least one interface. 10856 */ 10857 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10858 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10859 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10860 if (ire != NULL) { 10861 if (ire->ire_flags & RTF_MULTIRT) { 10862 error = ip_multirt_apply_membership( 10863 optfn, ire, connp, checkonly, group, 10864 fmode, INADDR_ANY, first_mp); 10865 done = B_TRUE; 10866 } 10867 ire_refrele(ire); 10868 } 10869 if (!done) { 10870 error = optfn(connp, checkonly, group, ifaddr, 10871 ifindexp, fmode, INADDR_ANY, first_mp); 10872 } 10873 if (error) { 10874 /* 10875 * EINPROGRESS is a soft error, needs retry 10876 * so don't make *outlenp zero. 10877 */ 10878 if (error != EINPROGRESS) 10879 *outlenp = 0; 10880 return (error); 10881 } 10882 /* OK return - copy input buffer into output buffer */ 10883 if (invalp != outvalp) { 10884 /* don't trust bcopy for identical src/dst */ 10885 bcopy(invalp, outvalp, inlen); 10886 } 10887 *outlenp = inlen; 10888 return (0); 10889 } 10890 case IP_BLOCK_SOURCE: 10891 case IP_UNBLOCK_SOURCE: 10892 case IP_ADD_SOURCE_MEMBERSHIP: 10893 case IP_DROP_SOURCE_MEMBERSHIP: 10894 case MCAST_BLOCK_SOURCE: 10895 case MCAST_UNBLOCK_SOURCE: 10896 case MCAST_JOIN_SOURCE_GROUP: 10897 case MCAST_LEAVE_SOURCE_GROUP: { 10898 struct ip_mreq_source *imreqp; 10899 struct group_source_req *gsreqp; 10900 in_addr_t grp, src, ifaddr = INADDR_ANY; 10901 uint32_t ifindex = 0; 10902 mcast_record_t fmode; 10903 struct sockaddr_in *sin; 10904 ire_t *ire; 10905 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10906 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10907 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10908 10909 switch (name) { 10910 case IP_BLOCK_SOURCE: 10911 mcast_opt = B_FALSE; 10912 /* FALLTHRU */ 10913 case MCAST_BLOCK_SOURCE: 10914 fmode = MODE_IS_EXCLUDE; 10915 optfn = ip_opt_add_group; 10916 break; 10917 10918 case IP_UNBLOCK_SOURCE: 10919 mcast_opt = B_FALSE; 10920 /* FALLTHRU */ 10921 case MCAST_UNBLOCK_SOURCE: 10922 fmode = MODE_IS_EXCLUDE; 10923 optfn = ip_opt_delete_group; 10924 break; 10925 10926 case IP_ADD_SOURCE_MEMBERSHIP: 10927 mcast_opt = B_FALSE; 10928 /* FALLTHRU */ 10929 case MCAST_JOIN_SOURCE_GROUP: 10930 fmode = MODE_IS_INCLUDE; 10931 optfn = ip_opt_add_group; 10932 break; 10933 10934 case IP_DROP_SOURCE_MEMBERSHIP: 10935 mcast_opt = B_FALSE; 10936 /* FALLTHRU */ 10937 case MCAST_LEAVE_SOURCE_GROUP: 10938 fmode = MODE_IS_INCLUDE; 10939 optfn = ip_opt_delete_group; 10940 break; 10941 } 10942 10943 if (mcast_opt) { 10944 gsreqp = (struct group_source_req *)i1; 10945 if (gsreqp->gsr_group.ss_family != AF_INET) { 10946 *outlenp = 0; 10947 return (ENOPROTOOPT); 10948 } 10949 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10950 grp = (ipaddr_t)sin->sin_addr.s_addr; 10951 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10952 src = (ipaddr_t)sin->sin_addr.s_addr; 10953 ifindex = gsreqp->gsr_interface; 10954 } else { 10955 imreqp = (struct ip_mreq_source *)i1; 10956 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10957 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10958 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10959 } 10960 10961 /* 10962 * In the multirouting case, we need to replicate 10963 * the request as noted in the mcast cases above. 10964 */ 10965 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10966 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10967 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10968 if (ire != NULL) { 10969 if (ire->ire_flags & RTF_MULTIRT) { 10970 error = ip_multirt_apply_membership( 10971 optfn, ire, connp, checkonly, grp, 10972 fmode, src, first_mp); 10973 done = B_TRUE; 10974 } 10975 ire_refrele(ire); 10976 } 10977 if (!done) { 10978 error = optfn(connp, checkonly, grp, ifaddr, 10979 &ifindex, fmode, src, first_mp); 10980 } 10981 if (error != 0) { 10982 /* 10983 * EINPROGRESS is a soft error, needs retry 10984 * so don't make *outlenp zero. 10985 */ 10986 if (error != EINPROGRESS) 10987 *outlenp = 0; 10988 return (error); 10989 } 10990 /* OK return - copy input buffer into output buffer */ 10991 if (invalp != outvalp) { 10992 bcopy(invalp, outvalp, inlen); 10993 } 10994 *outlenp = inlen; 10995 return (0); 10996 } 10997 case IP_SEC_OPT: 10998 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10999 if (error != 0) { 11000 *outlenp = 0; 11001 return (error); 11002 } 11003 break; 11004 case IP_HDRINCL: 11005 case IP_OPTIONS: 11006 case T_IP_OPTIONS: 11007 case IP_TOS: 11008 case T_IP_TOS: 11009 case IP_TTL: 11010 case IP_RECVDSTADDR: 11011 case IP_RECVOPTS: 11012 /* OK return - copy input buffer into output buffer */ 11013 if (invalp != outvalp) { 11014 /* don't trust bcopy for identical src/dst */ 11015 bcopy(invalp, outvalp, inlen); 11016 } 11017 *outlenp = inlen; 11018 return (0); 11019 case IP_RECVIF: 11020 /* Retrieve the inbound interface index */ 11021 if (!checkonly) { 11022 mutex_enter(&connp->conn_lock); 11023 connp->conn_recvif = *i1 ? 1 : 0; 11024 mutex_exit(&connp->conn_lock); 11025 } 11026 break; /* goto sizeof (int) option return */ 11027 case IP_RECVPKTINFO: 11028 if (!checkonly) { 11029 mutex_enter(&connp->conn_lock); 11030 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11031 mutex_exit(&connp->conn_lock); 11032 } 11033 break; /* goto sizeof (int) option return */ 11034 case IP_RECVSLLA: 11035 /* Retrieve the source link layer address */ 11036 if (!checkonly) { 11037 mutex_enter(&connp->conn_lock); 11038 connp->conn_recvslla = *i1 ? 1 : 0; 11039 mutex_exit(&connp->conn_lock); 11040 } 11041 break; /* goto sizeof (int) option return */ 11042 case MRT_INIT: 11043 case MRT_DONE: 11044 case MRT_ADD_VIF: 11045 case MRT_DEL_VIF: 11046 case MRT_ADD_MFC: 11047 case MRT_DEL_MFC: 11048 case MRT_ASSERT: 11049 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11050 *outlenp = 0; 11051 return (error); 11052 } 11053 error = ip_mrouter_set((int)name, q, checkonly, 11054 (uchar_t *)invalp, inlen, first_mp); 11055 if (error) { 11056 *outlenp = 0; 11057 return (error); 11058 } 11059 /* OK return - copy input buffer into output buffer */ 11060 if (invalp != outvalp) { 11061 /* don't trust bcopy for identical src/dst */ 11062 bcopy(invalp, outvalp, inlen); 11063 } 11064 *outlenp = inlen; 11065 return (0); 11066 case IP_BOUND_IF: 11067 case IP_DHCPINIT_IF: 11068 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11069 level, name, first_mp); 11070 if (error != 0) 11071 return (error); 11072 break; /* goto sizeof (int) option return */ 11073 11074 case IP_UNSPEC_SRC: 11075 /* Allow sending with a zero source address */ 11076 if (!checkonly) { 11077 mutex_enter(&connp->conn_lock); 11078 connp->conn_unspec_src = *i1 ? 1 : 0; 11079 mutex_exit(&connp->conn_lock); 11080 } 11081 break; /* goto sizeof (int) option return */ 11082 default: 11083 /* 11084 * "soft" error (negative) 11085 * option not handled at this level 11086 * Note: Do not modify *outlenp 11087 */ 11088 return (-EINVAL); 11089 } 11090 break; 11091 case IPPROTO_IPV6: 11092 switch (name) { 11093 case IPV6_BOUND_IF: 11094 case IPV6_BOUND_PIF: 11095 case IPV6_DONTFAILOVER_IF: 11096 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11097 level, name, first_mp); 11098 if (error != 0) 11099 return (error); 11100 break; /* goto sizeof (int) option return */ 11101 11102 case IPV6_MULTICAST_IF: 11103 /* 11104 * The only possible errors are EINPROGRESS and 11105 * EINVAL. EINPROGRESS will be restarted and is not 11106 * a hard error. We call this option on both V4 and V6 11107 * If both return EINVAL, then this call returns 11108 * EINVAL. If at least one of them succeeds we 11109 * return success. 11110 */ 11111 found = B_FALSE; 11112 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11113 level, name, first_mp); 11114 if (error == EINPROGRESS) 11115 return (error); 11116 if (error == 0) 11117 found = B_TRUE; 11118 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11119 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11120 if (error == 0) 11121 found = B_TRUE; 11122 if (!found) 11123 return (error); 11124 break; /* goto sizeof (int) option return */ 11125 11126 case IPV6_MULTICAST_HOPS: 11127 /* Recorded in transport above IP */ 11128 break; /* goto sizeof (int) option return */ 11129 case IPV6_MULTICAST_LOOP: 11130 if (!checkonly) { 11131 mutex_enter(&connp->conn_lock); 11132 connp->conn_multicast_loop = *i1; 11133 mutex_exit(&connp->conn_lock); 11134 } 11135 break; /* goto sizeof (int) option return */ 11136 case IPV6_JOIN_GROUP: 11137 case MCAST_JOIN_GROUP: 11138 case IPV6_LEAVE_GROUP: 11139 case MCAST_LEAVE_GROUP: { 11140 struct ipv6_mreq *ip_mreqp; 11141 struct group_req *greqp; 11142 ire_t *ire; 11143 boolean_t done = B_FALSE; 11144 in6_addr_t groupv6; 11145 uint32_t ifindex; 11146 boolean_t mcast_opt = B_TRUE; 11147 mcast_record_t fmode; 11148 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11149 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11150 11151 switch (name) { 11152 case IPV6_JOIN_GROUP: 11153 mcast_opt = B_FALSE; 11154 /* FALLTHRU */ 11155 case MCAST_JOIN_GROUP: 11156 fmode = MODE_IS_EXCLUDE; 11157 optfn = ip_opt_add_group_v6; 11158 break; 11159 11160 case IPV6_LEAVE_GROUP: 11161 mcast_opt = B_FALSE; 11162 /* FALLTHRU */ 11163 case MCAST_LEAVE_GROUP: 11164 fmode = MODE_IS_INCLUDE; 11165 optfn = ip_opt_delete_group_v6; 11166 break; 11167 } 11168 11169 if (mcast_opt) { 11170 struct sockaddr_in *sin; 11171 struct sockaddr_in6 *sin6; 11172 greqp = (struct group_req *)i1; 11173 if (greqp->gr_group.ss_family == AF_INET) { 11174 sin = (struct sockaddr_in *) 11175 &(greqp->gr_group); 11176 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11177 &groupv6); 11178 } else { 11179 sin6 = (struct sockaddr_in6 *) 11180 &(greqp->gr_group); 11181 groupv6 = sin6->sin6_addr; 11182 } 11183 ifindex = greqp->gr_interface; 11184 } else { 11185 ip_mreqp = (struct ipv6_mreq *)i1; 11186 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11187 ifindex = ip_mreqp->ipv6mr_interface; 11188 } 11189 /* 11190 * In the multirouting case, we need to replicate 11191 * the request on all interfaces that will take part 11192 * in replication. We do so because multirouting is 11193 * reflective, thus we will probably receive multi- 11194 * casts on those interfaces. 11195 * The ip_multirt_apply_membership_v6() succeeds if 11196 * the operation succeeds on at least one interface. 11197 */ 11198 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11199 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11200 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11201 if (ire != NULL) { 11202 if (ire->ire_flags & RTF_MULTIRT) { 11203 error = ip_multirt_apply_membership_v6( 11204 optfn, ire, connp, checkonly, 11205 &groupv6, fmode, &ipv6_all_zeros, 11206 first_mp); 11207 done = B_TRUE; 11208 } 11209 ire_refrele(ire); 11210 } 11211 if (!done) { 11212 error = optfn(connp, checkonly, &groupv6, 11213 ifindex, fmode, &ipv6_all_zeros, first_mp); 11214 } 11215 if (error) { 11216 /* 11217 * EINPROGRESS is a soft error, needs retry 11218 * so don't make *outlenp zero. 11219 */ 11220 if (error != EINPROGRESS) 11221 *outlenp = 0; 11222 return (error); 11223 } 11224 /* OK return - copy input buffer into output buffer */ 11225 if (invalp != outvalp) { 11226 /* don't trust bcopy for identical src/dst */ 11227 bcopy(invalp, outvalp, inlen); 11228 } 11229 *outlenp = inlen; 11230 return (0); 11231 } 11232 case MCAST_BLOCK_SOURCE: 11233 case MCAST_UNBLOCK_SOURCE: 11234 case MCAST_JOIN_SOURCE_GROUP: 11235 case MCAST_LEAVE_SOURCE_GROUP: { 11236 struct group_source_req *gsreqp; 11237 in6_addr_t v6grp, v6src; 11238 uint32_t ifindex; 11239 mcast_record_t fmode; 11240 ire_t *ire; 11241 boolean_t done = B_FALSE; 11242 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11243 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11244 11245 switch (name) { 11246 case MCAST_BLOCK_SOURCE: 11247 fmode = MODE_IS_EXCLUDE; 11248 optfn = ip_opt_add_group_v6; 11249 break; 11250 case MCAST_UNBLOCK_SOURCE: 11251 fmode = MODE_IS_EXCLUDE; 11252 optfn = ip_opt_delete_group_v6; 11253 break; 11254 case MCAST_JOIN_SOURCE_GROUP: 11255 fmode = MODE_IS_INCLUDE; 11256 optfn = ip_opt_add_group_v6; 11257 break; 11258 case MCAST_LEAVE_SOURCE_GROUP: 11259 fmode = MODE_IS_INCLUDE; 11260 optfn = ip_opt_delete_group_v6; 11261 break; 11262 } 11263 11264 gsreqp = (struct group_source_req *)i1; 11265 ifindex = gsreqp->gsr_interface; 11266 if (gsreqp->gsr_group.ss_family == AF_INET) { 11267 struct sockaddr_in *s; 11268 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11269 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11270 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11271 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11272 } else { 11273 struct sockaddr_in6 *s6; 11274 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11275 v6grp = s6->sin6_addr; 11276 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11277 v6src = s6->sin6_addr; 11278 } 11279 11280 /* 11281 * In the multirouting case, we need to replicate 11282 * the request as noted in the mcast cases above. 11283 */ 11284 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11285 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11286 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11287 if (ire != NULL) { 11288 if (ire->ire_flags & RTF_MULTIRT) { 11289 error = ip_multirt_apply_membership_v6( 11290 optfn, ire, connp, checkonly, 11291 &v6grp, fmode, &v6src, first_mp); 11292 done = B_TRUE; 11293 } 11294 ire_refrele(ire); 11295 } 11296 if (!done) { 11297 error = optfn(connp, checkonly, &v6grp, 11298 ifindex, fmode, &v6src, first_mp); 11299 } 11300 if (error != 0) { 11301 /* 11302 * EINPROGRESS is a soft error, needs retry 11303 * so don't make *outlenp zero. 11304 */ 11305 if (error != EINPROGRESS) 11306 *outlenp = 0; 11307 return (error); 11308 } 11309 /* OK return - copy input buffer into output buffer */ 11310 if (invalp != outvalp) { 11311 bcopy(invalp, outvalp, inlen); 11312 } 11313 *outlenp = inlen; 11314 return (0); 11315 } 11316 case IPV6_UNICAST_HOPS: 11317 /* Recorded in transport above IP */ 11318 break; /* goto sizeof (int) option return */ 11319 case IPV6_UNSPEC_SRC: 11320 /* Allow sending with a zero source address */ 11321 if (!checkonly) { 11322 mutex_enter(&connp->conn_lock); 11323 connp->conn_unspec_src = *i1 ? 1 : 0; 11324 mutex_exit(&connp->conn_lock); 11325 } 11326 break; /* goto sizeof (int) option return */ 11327 case IPV6_RECVPKTINFO: 11328 if (!checkonly) { 11329 mutex_enter(&connp->conn_lock); 11330 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11331 mutex_exit(&connp->conn_lock); 11332 } 11333 break; /* goto sizeof (int) option return */ 11334 case IPV6_RECVTCLASS: 11335 if (!checkonly) { 11336 if (*i1 < 0 || *i1 > 1) { 11337 return (EINVAL); 11338 } 11339 mutex_enter(&connp->conn_lock); 11340 connp->conn_ipv6_recvtclass = *i1; 11341 mutex_exit(&connp->conn_lock); 11342 } 11343 break; 11344 case IPV6_RECVPATHMTU: 11345 if (!checkonly) { 11346 if (*i1 < 0 || *i1 > 1) { 11347 return (EINVAL); 11348 } 11349 mutex_enter(&connp->conn_lock); 11350 connp->conn_ipv6_recvpathmtu = *i1; 11351 mutex_exit(&connp->conn_lock); 11352 } 11353 break; 11354 case IPV6_RECVHOPLIMIT: 11355 if (!checkonly) { 11356 mutex_enter(&connp->conn_lock); 11357 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11358 mutex_exit(&connp->conn_lock); 11359 } 11360 break; /* goto sizeof (int) option return */ 11361 case IPV6_RECVHOPOPTS: 11362 if (!checkonly) { 11363 mutex_enter(&connp->conn_lock); 11364 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11365 mutex_exit(&connp->conn_lock); 11366 } 11367 break; /* goto sizeof (int) option return */ 11368 case IPV6_RECVDSTOPTS: 11369 if (!checkonly) { 11370 mutex_enter(&connp->conn_lock); 11371 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11372 mutex_exit(&connp->conn_lock); 11373 } 11374 break; /* goto sizeof (int) option return */ 11375 case IPV6_RECVRTHDR: 11376 if (!checkonly) { 11377 mutex_enter(&connp->conn_lock); 11378 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11379 mutex_exit(&connp->conn_lock); 11380 } 11381 break; /* goto sizeof (int) option return */ 11382 case IPV6_RECVRTHDRDSTOPTS: 11383 if (!checkonly) { 11384 mutex_enter(&connp->conn_lock); 11385 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11386 mutex_exit(&connp->conn_lock); 11387 } 11388 break; /* goto sizeof (int) option return */ 11389 case IPV6_PKTINFO: 11390 if (inlen == 0) 11391 return (-EINVAL); /* clearing option */ 11392 error = ip6_set_pktinfo(cr, connp, 11393 (struct in6_pktinfo *)invalp, first_mp); 11394 if (error != 0) 11395 *outlenp = 0; 11396 else 11397 *outlenp = inlen; 11398 return (error); 11399 case IPV6_NEXTHOP: { 11400 struct sockaddr_in6 *sin6; 11401 11402 /* Verify that the nexthop is reachable */ 11403 if (inlen == 0) 11404 return (-EINVAL); /* clearing option */ 11405 11406 sin6 = (struct sockaddr_in6 *)invalp; 11407 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11408 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11409 NULL, MATCH_IRE_DEFAULT, ipst); 11410 11411 if (ire == NULL) { 11412 *outlenp = 0; 11413 return (EHOSTUNREACH); 11414 } 11415 ire_refrele(ire); 11416 return (-EINVAL); 11417 } 11418 case IPV6_SEC_OPT: 11419 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11420 if (error != 0) { 11421 *outlenp = 0; 11422 return (error); 11423 } 11424 break; 11425 case IPV6_SRC_PREFERENCES: { 11426 /* 11427 * This is implemented strictly in the ip module 11428 * (here and in tcp_opt_*() to accomodate tcp 11429 * sockets). Modules above ip pass this option 11430 * down here since ip is the only one that needs to 11431 * be aware of source address preferences. 11432 * 11433 * This socket option only affects connected 11434 * sockets that haven't already bound to a specific 11435 * IPv6 address. In other words, sockets that 11436 * don't call bind() with an address other than the 11437 * unspecified address and that call connect(). 11438 * ip_bind_connected_v6() passes these preferences 11439 * to the ipif_select_source_v6() function. 11440 */ 11441 if (inlen != sizeof (uint32_t)) 11442 return (EINVAL); 11443 error = ip6_set_src_preferences(connp, 11444 *(uint32_t *)invalp); 11445 if (error != 0) { 11446 *outlenp = 0; 11447 return (error); 11448 } else { 11449 *outlenp = sizeof (uint32_t); 11450 } 11451 break; 11452 } 11453 case IPV6_V6ONLY: 11454 if (*i1 < 0 || *i1 > 1) { 11455 return (EINVAL); 11456 } 11457 mutex_enter(&connp->conn_lock); 11458 connp->conn_ipv6_v6only = *i1; 11459 mutex_exit(&connp->conn_lock); 11460 break; 11461 default: 11462 return (-EINVAL); 11463 } 11464 break; 11465 default: 11466 /* 11467 * "soft" error (negative) 11468 * option not handled at this level 11469 * Note: Do not modify *outlenp 11470 */ 11471 return (-EINVAL); 11472 } 11473 /* 11474 * Common case of return from an option that is sizeof (int) 11475 */ 11476 *(int *)outvalp = *i1; 11477 *outlenp = sizeof (int); 11478 return (0); 11479 } 11480 11481 /* 11482 * This routine gets default values of certain options whose default 11483 * values are maintained by protocol specific code 11484 */ 11485 /* ARGSUSED */ 11486 int 11487 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11488 { 11489 int *i1 = (int *)ptr; 11490 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11491 11492 switch (level) { 11493 case IPPROTO_IP: 11494 switch (name) { 11495 case IP_MULTICAST_TTL: 11496 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11497 return (sizeof (uchar_t)); 11498 case IP_MULTICAST_LOOP: 11499 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11500 return (sizeof (uchar_t)); 11501 default: 11502 return (-1); 11503 } 11504 case IPPROTO_IPV6: 11505 switch (name) { 11506 case IPV6_UNICAST_HOPS: 11507 *i1 = ipst->ips_ipv6_def_hops; 11508 return (sizeof (int)); 11509 case IPV6_MULTICAST_HOPS: 11510 *i1 = IP_DEFAULT_MULTICAST_TTL; 11511 return (sizeof (int)); 11512 case IPV6_MULTICAST_LOOP: 11513 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11514 return (sizeof (int)); 11515 case IPV6_V6ONLY: 11516 *i1 = 1; 11517 return (sizeof (int)); 11518 default: 11519 return (-1); 11520 } 11521 default: 11522 return (-1); 11523 } 11524 /* NOTREACHED */ 11525 } 11526 11527 /* 11528 * Given a destination address and a pointer to where to put the information 11529 * this routine fills in the mtuinfo. 11530 */ 11531 int 11532 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11533 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11534 { 11535 ire_t *ire; 11536 ip_stack_t *ipst = ns->netstack_ip; 11537 11538 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11539 return (-1); 11540 11541 bzero(mtuinfo, sizeof (*mtuinfo)); 11542 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11543 mtuinfo->ip6m_addr.sin6_port = port; 11544 mtuinfo->ip6m_addr.sin6_addr = *in6; 11545 11546 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11547 if (ire != NULL) { 11548 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11549 ire_refrele(ire); 11550 } else { 11551 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11552 } 11553 return (sizeof (struct ip6_mtuinfo)); 11554 } 11555 11556 /* 11557 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11558 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11559 * isn't. This doesn't matter as the error checking is done properly for the 11560 * other MRT options coming in through ip_opt_set. 11561 */ 11562 int 11563 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11564 { 11565 conn_t *connp = Q_TO_CONN(q); 11566 ipsec_req_t *req = (ipsec_req_t *)ptr; 11567 11568 switch (level) { 11569 case IPPROTO_IP: 11570 switch (name) { 11571 case MRT_VERSION: 11572 case MRT_ASSERT: 11573 (void) ip_mrouter_get(name, q, ptr); 11574 return (sizeof (int)); 11575 case IP_SEC_OPT: 11576 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11577 case IP_NEXTHOP: 11578 if (connp->conn_nexthop_set) { 11579 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11580 return (sizeof (ipaddr_t)); 11581 } else 11582 return (0); 11583 case IP_RECVPKTINFO: 11584 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11585 return (sizeof (int)); 11586 default: 11587 break; 11588 } 11589 break; 11590 case IPPROTO_IPV6: 11591 switch (name) { 11592 case IPV6_SEC_OPT: 11593 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11594 case IPV6_SRC_PREFERENCES: { 11595 return (ip6_get_src_preferences(connp, 11596 (uint32_t *)ptr)); 11597 } 11598 case IPV6_V6ONLY: 11599 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11600 return (sizeof (int)); 11601 case IPV6_PATHMTU: 11602 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11603 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11604 default: 11605 break; 11606 } 11607 break; 11608 default: 11609 break; 11610 } 11611 return (-1); 11612 } 11613 11614 /* Named Dispatch routine to get a current value out of our parameter table. */ 11615 /* ARGSUSED */ 11616 static int 11617 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11618 { 11619 ipparam_t *ippa = (ipparam_t *)cp; 11620 11621 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11622 return (0); 11623 } 11624 11625 /* ARGSUSED */ 11626 static int 11627 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11628 { 11629 11630 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11631 return (0); 11632 } 11633 11634 /* 11635 * Set ip{,6}_forwarding values. This means walking through all of the 11636 * ill's and toggling their forwarding values. 11637 */ 11638 /* ARGSUSED */ 11639 static int 11640 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11641 { 11642 long new_value; 11643 int *forwarding_value = (int *)cp; 11644 ill_t *ill; 11645 boolean_t isv6; 11646 ill_walk_context_t ctx; 11647 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11648 11649 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11650 11651 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11652 new_value < 0 || new_value > 1) { 11653 return (EINVAL); 11654 } 11655 11656 *forwarding_value = new_value; 11657 11658 /* 11659 * Regardless of the current value of ip_forwarding, set all per-ill 11660 * values of ip_forwarding to the value being set. 11661 * 11662 * Bring all the ill's up to date with the new global value. 11663 */ 11664 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11665 11666 if (isv6) 11667 ill = ILL_START_WALK_V6(&ctx, ipst); 11668 else 11669 ill = ILL_START_WALK_V4(&ctx, ipst); 11670 11671 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11672 (void) ill_forward_set(ill, new_value != 0); 11673 11674 rw_exit(&ipst->ips_ill_g_lock); 11675 return (0); 11676 } 11677 11678 /* 11679 * Walk through the param array specified registering each element with the 11680 * Named Dispatch handler. This is called only during init. So it is ok 11681 * not to acquire any locks 11682 */ 11683 static boolean_t 11684 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11685 ipndp_t *ipnd, size_t ipnd_cnt) 11686 { 11687 for (; ippa_cnt-- > 0; ippa++) { 11688 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11689 if (!nd_load(ndp, ippa->ip_param_name, 11690 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11691 nd_free(ndp); 11692 return (B_FALSE); 11693 } 11694 } 11695 } 11696 11697 for (; ipnd_cnt-- > 0; ipnd++) { 11698 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11699 if (!nd_load(ndp, ipnd->ip_ndp_name, 11700 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11701 ipnd->ip_ndp_data)) { 11702 nd_free(ndp); 11703 return (B_FALSE); 11704 } 11705 } 11706 } 11707 11708 return (B_TRUE); 11709 } 11710 11711 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11712 /* ARGSUSED */ 11713 static int 11714 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11715 { 11716 long new_value; 11717 ipparam_t *ippa = (ipparam_t *)cp; 11718 11719 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11720 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11721 return (EINVAL); 11722 } 11723 ippa->ip_param_value = new_value; 11724 return (0); 11725 } 11726 11727 /* 11728 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11729 * When an ipf is passed here for the first time, if 11730 * we already have in-order fragments on the queue, we convert from the fast- 11731 * path reassembly scheme to the hard-case scheme. From then on, additional 11732 * fragments are reassembled here. We keep track of the start and end offsets 11733 * of each piece, and the number of holes in the chain. When the hole count 11734 * goes to zero, we are done! 11735 * 11736 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11737 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11738 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11739 * after the call to ip_reassemble(). 11740 */ 11741 int 11742 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11743 size_t msg_len) 11744 { 11745 uint_t end; 11746 mblk_t *next_mp; 11747 mblk_t *mp1; 11748 uint_t offset; 11749 boolean_t incr_dups = B_TRUE; 11750 boolean_t offset_zero_seen = B_FALSE; 11751 boolean_t pkt_boundary_checked = B_FALSE; 11752 11753 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11754 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11755 11756 /* Add in byte count */ 11757 ipf->ipf_count += msg_len; 11758 if (ipf->ipf_end) { 11759 /* 11760 * We were part way through in-order reassembly, but now there 11761 * is a hole. We walk through messages already queued, and 11762 * mark them for hard case reassembly. We know that up till 11763 * now they were in order starting from offset zero. 11764 */ 11765 offset = 0; 11766 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11767 IP_REASS_SET_START(mp1, offset); 11768 if (offset == 0) { 11769 ASSERT(ipf->ipf_nf_hdr_len != 0); 11770 offset = -ipf->ipf_nf_hdr_len; 11771 } 11772 offset += mp1->b_wptr - mp1->b_rptr; 11773 IP_REASS_SET_END(mp1, offset); 11774 } 11775 /* One hole at the end. */ 11776 ipf->ipf_hole_cnt = 1; 11777 /* Brand it as a hard case, forever. */ 11778 ipf->ipf_end = 0; 11779 } 11780 /* Walk through all the new pieces. */ 11781 do { 11782 end = start + (mp->b_wptr - mp->b_rptr); 11783 /* 11784 * If start is 0, decrease 'end' only for the first mblk of 11785 * the fragment. Otherwise 'end' can get wrong value in the 11786 * second pass of the loop if first mblk is exactly the 11787 * size of ipf_nf_hdr_len. 11788 */ 11789 if (start == 0 && !offset_zero_seen) { 11790 /* First segment */ 11791 ASSERT(ipf->ipf_nf_hdr_len != 0); 11792 end -= ipf->ipf_nf_hdr_len; 11793 offset_zero_seen = B_TRUE; 11794 } 11795 next_mp = mp->b_cont; 11796 /* 11797 * We are checking to see if there is any interesing data 11798 * to process. If there isn't and the mblk isn't the 11799 * one which carries the unfragmentable header then we 11800 * drop it. It's possible to have just the unfragmentable 11801 * header come through without any data. That needs to be 11802 * saved. 11803 * 11804 * If the assert at the top of this function holds then the 11805 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11806 * is infrequently traveled enough that the test is left in 11807 * to protect against future code changes which break that 11808 * invariant. 11809 */ 11810 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11811 /* Empty. Blast it. */ 11812 IP_REASS_SET_START(mp, 0); 11813 IP_REASS_SET_END(mp, 0); 11814 /* 11815 * If the ipf points to the mblk we are about to free, 11816 * update ipf to point to the next mblk (or NULL 11817 * if none). 11818 */ 11819 if (ipf->ipf_mp->b_cont == mp) 11820 ipf->ipf_mp->b_cont = next_mp; 11821 freeb(mp); 11822 continue; 11823 } 11824 mp->b_cont = NULL; 11825 IP_REASS_SET_START(mp, start); 11826 IP_REASS_SET_END(mp, end); 11827 if (!ipf->ipf_tail_mp) { 11828 ipf->ipf_tail_mp = mp; 11829 ipf->ipf_mp->b_cont = mp; 11830 if (start == 0 || !more) { 11831 ipf->ipf_hole_cnt = 1; 11832 /* 11833 * if the first fragment comes in more than one 11834 * mblk, this loop will be executed for each 11835 * mblk. Need to adjust hole count so exiting 11836 * this routine will leave hole count at 1. 11837 */ 11838 if (next_mp) 11839 ipf->ipf_hole_cnt++; 11840 } else 11841 ipf->ipf_hole_cnt = 2; 11842 continue; 11843 } else if (ipf->ipf_last_frag_seen && !more && 11844 !pkt_boundary_checked) { 11845 /* 11846 * We check datagram boundary only if this fragment 11847 * claims to be the last fragment and we have seen a 11848 * last fragment in the past too. We do this only 11849 * once for a given fragment. 11850 * 11851 * start cannot be 0 here as fragments with start=0 11852 * and MF=0 gets handled as a complete packet. These 11853 * fragments should not reach here. 11854 */ 11855 11856 if (start + msgdsize(mp) != 11857 IP_REASS_END(ipf->ipf_tail_mp)) { 11858 /* 11859 * We have two fragments both of which claim 11860 * to be the last fragment but gives conflicting 11861 * information about the whole datagram size. 11862 * Something fishy is going on. Drop the 11863 * fragment and free up the reassembly list. 11864 */ 11865 return (IP_REASS_FAILED); 11866 } 11867 11868 /* 11869 * We shouldn't come to this code block again for this 11870 * particular fragment. 11871 */ 11872 pkt_boundary_checked = B_TRUE; 11873 } 11874 11875 /* New stuff at or beyond tail? */ 11876 offset = IP_REASS_END(ipf->ipf_tail_mp); 11877 if (start >= offset) { 11878 if (ipf->ipf_last_frag_seen) { 11879 /* current fragment is beyond last fragment */ 11880 return (IP_REASS_FAILED); 11881 } 11882 /* Link it on end. */ 11883 ipf->ipf_tail_mp->b_cont = mp; 11884 ipf->ipf_tail_mp = mp; 11885 if (more) { 11886 if (start != offset) 11887 ipf->ipf_hole_cnt++; 11888 } else if (start == offset && next_mp == NULL) 11889 ipf->ipf_hole_cnt--; 11890 continue; 11891 } 11892 mp1 = ipf->ipf_mp->b_cont; 11893 offset = IP_REASS_START(mp1); 11894 /* New stuff at the front? */ 11895 if (start < offset) { 11896 if (start == 0) { 11897 if (end >= offset) { 11898 /* Nailed the hole at the begining. */ 11899 ipf->ipf_hole_cnt--; 11900 } 11901 } else if (end < offset) { 11902 /* 11903 * A hole, stuff, and a hole where there used 11904 * to be just a hole. 11905 */ 11906 ipf->ipf_hole_cnt++; 11907 } 11908 mp->b_cont = mp1; 11909 /* Check for overlap. */ 11910 while (end > offset) { 11911 if (end < IP_REASS_END(mp1)) { 11912 mp->b_wptr -= end - offset; 11913 IP_REASS_SET_END(mp, offset); 11914 BUMP_MIB(ill->ill_ip_mib, 11915 ipIfStatsReasmPartDups); 11916 break; 11917 } 11918 /* Did we cover another hole? */ 11919 if ((mp1->b_cont && 11920 IP_REASS_END(mp1) != 11921 IP_REASS_START(mp1->b_cont) && 11922 end >= IP_REASS_START(mp1->b_cont)) || 11923 (!ipf->ipf_last_frag_seen && !more)) { 11924 ipf->ipf_hole_cnt--; 11925 } 11926 /* Clip out mp1. */ 11927 if ((mp->b_cont = mp1->b_cont) == NULL) { 11928 /* 11929 * After clipping out mp1, this guy 11930 * is now hanging off the end. 11931 */ 11932 ipf->ipf_tail_mp = mp; 11933 } 11934 IP_REASS_SET_START(mp1, 0); 11935 IP_REASS_SET_END(mp1, 0); 11936 /* Subtract byte count */ 11937 ipf->ipf_count -= mp1->b_datap->db_lim - 11938 mp1->b_datap->db_base; 11939 freeb(mp1); 11940 BUMP_MIB(ill->ill_ip_mib, 11941 ipIfStatsReasmPartDups); 11942 mp1 = mp->b_cont; 11943 if (!mp1) 11944 break; 11945 offset = IP_REASS_START(mp1); 11946 } 11947 ipf->ipf_mp->b_cont = mp; 11948 continue; 11949 } 11950 /* 11951 * The new piece starts somewhere between the start of the head 11952 * and before the end of the tail. 11953 */ 11954 for (; mp1; mp1 = mp1->b_cont) { 11955 offset = IP_REASS_END(mp1); 11956 if (start < offset) { 11957 if (end <= offset) { 11958 /* Nothing new. */ 11959 IP_REASS_SET_START(mp, 0); 11960 IP_REASS_SET_END(mp, 0); 11961 /* Subtract byte count */ 11962 ipf->ipf_count -= mp->b_datap->db_lim - 11963 mp->b_datap->db_base; 11964 if (incr_dups) { 11965 ipf->ipf_num_dups++; 11966 incr_dups = B_FALSE; 11967 } 11968 freeb(mp); 11969 BUMP_MIB(ill->ill_ip_mib, 11970 ipIfStatsReasmDuplicates); 11971 break; 11972 } 11973 /* 11974 * Trim redundant stuff off beginning of new 11975 * piece. 11976 */ 11977 IP_REASS_SET_START(mp, offset); 11978 mp->b_rptr += offset - start; 11979 BUMP_MIB(ill->ill_ip_mib, 11980 ipIfStatsReasmPartDups); 11981 start = offset; 11982 if (!mp1->b_cont) { 11983 /* 11984 * After trimming, this guy is now 11985 * hanging off the end. 11986 */ 11987 mp1->b_cont = mp; 11988 ipf->ipf_tail_mp = mp; 11989 if (!more) { 11990 ipf->ipf_hole_cnt--; 11991 } 11992 break; 11993 } 11994 } 11995 if (start >= IP_REASS_START(mp1->b_cont)) 11996 continue; 11997 /* Fill a hole */ 11998 if (start > offset) 11999 ipf->ipf_hole_cnt++; 12000 mp->b_cont = mp1->b_cont; 12001 mp1->b_cont = mp; 12002 mp1 = mp->b_cont; 12003 offset = IP_REASS_START(mp1); 12004 if (end >= offset) { 12005 ipf->ipf_hole_cnt--; 12006 /* Check for overlap. */ 12007 while (end > offset) { 12008 if (end < IP_REASS_END(mp1)) { 12009 mp->b_wptr -= end - offset; 12010 IP_REASS_SET_END(mp, offset); 12011 /* 12012 * TODO we might bump 12013 * this up twice if there is 12014 * overlap at both ends. 12015 */ 12016 BUMP_MIB(ill->ill_ip_mib, 12017 ipIfStatsReasmPartDups); 12018 break; 12019 } 12020 /* Did we cover another hole? */ 12021 if ((mp1->b_cont && 12022 IP_REASS_END(mp1) 12023 != IP_REASS_START(mp1->b_cont) && 12024 end >= 12025 IP_REASS_START(mp1->b_cont)) || 12026 (!ipf->ipf_last_frag_seen && 12027 !more)) { 12028 ipf->ipf_hole_cnt--; 12029 } 12030 /* Clip out mp1. */ 12031 if ((mp->b_cont = mp1->b_cont) == 12032 NULL) { 12033 /* 12034 * After clipping out mp1, 12035 * this guy is now hanging 12036 * off the end. 12037 */ 12038 ipf->ipf_tail_mp = mp; 12039 } 12040 IP_REASS_SET_START(mp1, 0); 12041 IP_REASS_SET_END(mp1, 0); 12042 /* Subtract byte count */ 12043 ipf->ipf_count -= 12044 mp1->b_datap->db_lim - 12045 mp1->b_datap->db_base; 12046 freeb(mp1); 12047 BUMP_MIB(ill->ill_ip_mib, 12048 ipIfStatsReasmPartDups); 12049 mp1 = mp->b_cont; 12050 if (!mp1) 12051 break; 12052 offset = IP_REASS_START(mp1); 12053 } 12054 } 12055 break; 12056 } 12057 } while (start = end, mp = next_mp); 12058 12059 /* Fragment just processed could be the last one. Remember this fact */ 12060 if (!more) 12061 ipf->ipf_last_frag_seen = B_TRUE; 12062 12063 /* Still got holes? */ 12064 if (ipf->ipf_hole_cnt) 12065 return (IP_REASS_PARTIAL); 12066 /* Clean up overloaded fields to avoid upstream disasters. */ 12067 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12068 IP_REASS_SET_START(mp1, 0); 12069 IP_REASS_SET_END(mp1, 0); 12070 } 12071 return (IP_REASS_COMPLETE); 12072 } 12073 12074 /* 12075 * ipsec processing for the fast path, used for input UDP Packets 12076 * Returns true if ready for passup to UDP. 12077 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12078 * was an ESP-in-UDP packet, etc.). 12079 */ 12080 static boolean_t 12081 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12082 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12083 { 12084 uint32_t ill_index; 12085 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12086 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12087 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12088 udp_t *udp = connp->conn_udp; 12089 12090 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12091 /* The ill_index of the incoming ILL */ 12092 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12093 12094 /* pass packet up to the transport */ 12095 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12096 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12097 NULL, mctl_present); 12098 if (*first_mpp == NULL) { 12099 return (B_FALSE); 12100 } 12101 } 12102 12103 /* Initiate IPPF processing for fastpath UDP */ 12104 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12105 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12106 if (*mpp == NULL) { 12107 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12108 "deferred/dropped during IPPF processing\n")); 12109 return (B_FALSE); 12110 } 12111 } 12112 /* 12113 * Remove 0-spi if it's 0, or move everything behind 12114 * the UDP header over it and forward to ESP via 12115 * ip_proto_input(). 12116 */ 12117 if (udp->udp_nat_t_endpoint) { 12118 if (mctl_present) { 12119 /* mctl_present *shouldn't* happen. */ 12120 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12121 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12122 &ipss->ipsec_dropper); 12123 *first_mpp = NULL; 12124 return (B_FALSE); 12125 } 12126 12127 /* "ill" is "recv_ill" in actuality. */ 12128 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12129 return (B_FALSE); 12130 12131 /* Else continue like a normal UDP packet. */ 12132 } 12133 12134 /* 12135 * We make the checks as below since we are in the fast path 12136 * and want to minimize the number of checks if the IP_RECVIF and/or 12137 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12138 */ 12139 if (connp->conn_recvif || connp->conn_recvslla || 12140 connp->conn_ip_recvpktinfo) { 12141 if (connp->conn_recvif) { 12142 in_flags = IPF_RECVIF; 12143 } 12144 /* 12145 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12146 * so the flag passed to ip_add_info is based on IP version 12147 * of connp. 12148 */ 12149 if (connp->conn_ip_recvpktinfo) { 12150 if (connp->conn_af_isv6) { 12151 /* 12152 * V6 only needs index 12153 */ 12154 in_flags |= IPF_RECVIF; 12155 } else { 12156 /* 12157 * V4 needs index + matching address. 12158 */ 12159 in_flags |= IPF_RECVADDR; 12160 } 12161 } 12162 if (connp->conn_recvslla) { 12163 in_flags |= IPF_RECVSLLA; 12164 } 12165 /* 12166 * since in_flags are being set ill will be 12167 * referenced in ip_add_info, so it better not 12168 * be NULL. 12169 */ 12170 /* 12171 * the actual data will be contained in b_cont 12172 * upon successful return of the following call. 12173 * If the call fails then the original mblk is 12174 * returned. 12175 */ 12176 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12177 ipst); 12178 } 12179 12180 return (B_TRUE); 12181 } 12182 12183 /* 12184 * Fragmentation reassembly. Each ILL has a hash table for 12185 * queuing packets undergoing reassembly for all IPIFs 12186 * associated with the ILL. The hash is based on the packet 12187 * IP ident field. The ILL frag hash table was allocated 12188 * as a timer block at the time the ILL was created. Whenever 12189 * there is anything on the reassembly queue, the timer will 12190 * be running. Returns B_TRUE if successful else B_FALSE; 12191 * frees mp on failure. 12192 */ 12193 static boolean_t 12194 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12195 uint32_t *cksum_val, uint16_t *cksum_flags) 12196 { 12197 uint32_t frag_offset_flags; 12198 ill_t *ill = (ill_t *)q->q_ptr; 12199 mblk_t *mp = *mpp; 12200 mblk_t *t_mp; 12201 ipaddr_t dst; 12202 uint8_t proto = ipha->ipha_protocol; 12203 uint32_t sum_val; 12204 uint16_t sum_flags; 12205 ipf_t *ipf; 12206 ipf_t **ipfp; 12207 ipfb_t *ipfb; 12208 uint16_t ident; 12209 uint32_t offset; 12210 ipaddr_t src; 12211 uint_t hdr_length; 12212 uint32_t end; 12213 mblk_t *mp1; 12214 mblk_t *tail_mp; 12215 size_t count; 12216 size_t msg_len; 12217 uint8_t ecn_info = 0; 12218 uint32_t packet_size; 12219 boolean_t pruned = B_FALSE; 12220 ip_stack_t *ipst = ill->ill_ipst; 12221 12222 if (cksum_val != NULL) 12223 *cksum_val = 0; 12224 if (cksum_flags != NULL) 12225 *cksum_flags = 0; 12226 12227 /* 12228 * Drop the fragmented as early as possible, if 12229 * we don't have resource(s) to re-assemble. 12230 */ 12231 if (ipst->ips_ip_reass_queue_bytes == 0) { 12232 freemsg(mp); 12233 return (B_FALSE); 12234 } 12235 12236 /* Check for fragmentation offset; return if there's none */ 12237 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12238 (IPH_MF | IPH_OFFSET)) == 0) 12239 return (B_TRUE); 12240 12241 /* 12242 * We utilize hardware computed checksum info only for UDP since 12243 * IP fragmentation is a normal occurence for the protocol. In 12244 * addition, checksum offload support for IP fragments carrying 12245 * UDP payload is commonly implemented across network adapters. 12246 */ 12247 ASSERT(ill != NULL); 12248 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12249 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12250 mblk_t *mp1 = mp->b_cont; 12251 int32_t len; 12252 12253 /* Record checksum information from the packet */ 12254 sum_val = (uint32_t)DB_CKSUM16(mp); 12255 sum_flags = DB_CKSUMFLAGS(mp); 12256 12257 /* IP payload offset from beginning of mblk */ 12258 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12259 12260 if ((sum_flags & HCK_PARTIALCKSUM) && 12261 (mp1 == NULL || mp1->b_cont == NULL) && 12262 offset >= DB_CKSUMSTART(mp) && 12263 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12264 uint32_t adj; 12265 /* 12266 * Partial checksum has been calculated by hardware 12267 * and attached to the packet; in addition, any 12268 * prepended extraneous data is even byte aligned. 12269 * If any such data exists, we adjust the checksum; 12270 * this would also handle any postpended data. 12271 */ 12272 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12273 mp, mp1, len, adj); 12274 12275 /* One's complement subtract extraneous checksum */ 12276 if (adj >= sum_val) 12277 sum_val = ~(adj - sum_val) & 0xFFFF; 12278 else 12279 sum_val -= adj; 12280 } 12281 } else { 12282 sum_val = 0; 12283 sum_flags = 0; 12284 } 12285 12286 /* Clear hardware checksumming flag */ 12287 DB_CKSUMFLAGS(mp) = 0; 12288 12289 ident = ipha->ipha_ident; 12290 offset = (frag_offset_flags << 3) & 0xFFFF; 12291 src = ipha->ipha_src; 12292 dst = ipha->ipha_dst; 12293 hdr_length = IPH_HDR_LENGTH(ipha); 12294 end = ntohs(ipha->ipha_length) - hdr_length; 12295 12296 /* If end == 0 then we have a packet with no data, so just free it */ 12297 if (end == 0) { 12298 freemsg(mp); 12299 return (B_FALSE); 12300 } 12301 12302 /* Record the ECN field info. */ 12303 ecn_info = (ipha->ipha_type_of_service & 0x3); 12304 if (offset != 0) { 12305 /* 12306 * If this isn't the first piece, strip the header, and 12307 * add the offset to the end value. 12308 */ 12309 mp->b_rptr += hdr_length; 12310 end += offset; 12311 } 12312 12313 msg_len = MBLKSIZE(mp); 12314 tail_mp = mp; 12315 while (tail_mp->b_cont != NULL) { 12316 tail_mp = tail_mp->b_cont; 12317 msg_len += MBLKSIZE(tail_mp); 12318 } 12319 12320 /* If the reassembly list for this ILL will get too big, prune it */ 12321 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12322 ipst->ips_ip_reass_queue_bytes) { 12323 ill_frag_prune(ill, 12324 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12325 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12326 pruned = B_TRUE; 12327 } 12328 12329 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12330 mutex_enter(&ipfb->ipfb_lock); 12331 12332 ipfp = &ipfb->ipfb_ipf; 12333 /* Try to find an existing fragment queue for this packet. */ 12334 for (;;) { 12335 ipf = ipfp[0]; 12336 if (ipf != NULL) { 12337 /* 12338 * It has to match on ident and src/dst address. 12339 */ 12340 if (ipf->ipf_ident == ident && 12341 ipf->ipf_src == src && 12342 ipf->ipf_dst == dst && 12343 ipf->ipf_protocol == proto) { 12344 /* 12345 * If we have received too many 12346 * duplicate fragments for this packet 12347 * free it. 12348 */ 12349 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12350 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12351 freemsg(mp); 12352 mutex_exit(&ipfb->ipfb_lock); 12353 return (B_FALSE); 12354 } 12355 /* Found it. */ 12356 break; 12357 } 12358 ipfp = &ipf->ipf_hash_next; 12359 continue; 12360 } 12361 12362 /* 12363 * If we pruned the list, do we want to store this new 12364 * fragment?. We apply an optimization here based on the 12365 * fact that most fragments will be received in order. 12366 * So if the offset of this incoming fragment is zero, 12367 * it is the first fragment of a new packet. We will 12368 * keep it. Otherwise drop the fragment, as we have 12369 * probably pruned the packet already (since the 12370 * packet cannot be found). 12371 */ 12372 if (pruned && offset != 0) { 12373 mutex_exit(&ipfb->ipfb_lock); 12374 freemsg(mp); 12375 return (B_FALSE); 12376 } 12377 12378 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12379 /* 12380 * Too many fragmented packets in this hash 12381 * bucket. Free the oldest. 12382 */ 12383 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12384 } 12385 12386 /* New guy. Allocate a frag message. */ 12387 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12388 if (mp1 == NULL) { 12389 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12390 freemsg(mp); 12391 reass_done: 12392 mutex_exit(&ipfb->ipfb_lock); 12393 return (B_FALSE); 12394 } 12395 12396 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12397 mp1->b_cont = mp; 12398 12399 /* Initialize the fragment header. */ 12400 ipf = (ipf_t *)mp1->b_rptr; 12401 ipf->ipf_mp = mp1; 12402 ipf->ipf_ptphn = ipfp; 12403 ipfp[0] = ipf; 12404 ipf->ipf_hash_next = NULL; 12405 ipf->ipf_ident = ident; 12406 ipf->ipf_protocol = proto; 12407 ipf->ipf_src = src; 12408 ipf->ipf_dst = dst; 12409 ipf->ipf_nf_hdr_len = 0; 12410 /* Record reassembly start time. */ 12411 ipf->ipf_timestamp = gethrestime_sec(); 12412 /* Record ipf generation and account for frag header */ 12413 ipf->ipf_gen = ill->ill_ipf_gen++; 12414 ipf->ipf_count = MBLKSIZE(mp1); 12415 ipf->ipf_last_frag_seen = B_FALSE; 12416 ipf->ipf_ecn = ecn_info; 12417 ipf->ipf_num_dups = 0; 12418 ipfb->ipfb_frag_pkts++; 12419 ipf->ipf_checksum = 0; 12420 ipf->ipf_checksum_flags = 0; 12421 12422 /* Store checksum value in fragment header */ 12423 if (sum_flags != 0) { 12424 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12425 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12426 ipf->ipf_checksum = sum_val; 12427 ipf->ipf_checksum_flags = sum_flags; 12428 } 12429 12430 /* 12431 * We handle reassembly two ways. In the easy case, 12432 * where all the fragments show up in order, we do 12433 * minimal bookkeeping, and just clip new pieces on 12434 * the end. If we ever see a hole, then we go off 12435 * to ip_reassemble which has to mark the pieces and 12436 * keep track of the number of holes, etc. Obviously, 12437 * the point of having both mechanisms is so we can 12438 * handle the easy case as efficiently as possible. 12439 */ 12440 if (offset == 0) { 12441 /* Easy case, in-order reassembly so far. */ 12442 ipf->ipf_count += msg_len; 12443 ipf->ipf_tail_mp = tail_mp; 12444 /* 12445 * Keep track of next expected offset in 12446 * ipf_end. 12447 */ 12448 ipf->ipf_end = end; 12449 ipf->ipf_nf_hdr_len = hdr_length; 12450 } else { 12451 /* Hard case, hole at the beginning. */ 12452 ipf->ipf_tail_mp = NULL; 12453 /* 12454 * ipf_end == 0 means that we have given up 12455 * on easy reassembly. 12456 */ 12457 ipf->ipf_end = 0; 12458 12459 /* Forget checksum offload from now on */ 12460 ipf->ipf_checksum_flags = 0; 12461 12462 /* 12463 * ipf_hole_cnt is set by ip_reassemble. 12464 * ipf_count is updated by ip_reassemble. 12465 * No need to check for return value here 12466 * as we don't expect reassembly to complete 12467 * or fail for the first fragment itself. 12468 */ 12469 (void) ip_reassemble(mp, ipf, 12470 (frag_offset_flags & IPH_OFFSET) << 3, 12471 (frag_offset_flags & IPH_MF), ill, msg_len); 12472 } 12473 /* Update per ipfb and ill byte counts */ 12474 ipfb->ipfb_count += ipf->ipf_count; 12475 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12476 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12477 /* If the frag timer wasn't already going, start it. */ 12478 mutex_enter(&ill->ill_lock); 12479 ill_frag_timer_start(ill); 12480 mutex_exit(&ill->ill_lock); 12481 goto reass_done; 12482 } 12483 12484 /* 12485 * If the packet's flag has changed (it could be coming up 12486 * from an interface different than the previous, therefore 12487 * possibly different checksum capability), then forget about 12488 * any stored checksum states. Otherwise add the value to 12489 * the existing one stored in the fragment header. 12490 */ 12491 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12492 sum_val += ipf->ipf_checksum; 12493 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12494 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12495 ipf->ipf_checksum = sum_val; 12496 } else if (ipf->ipf_checksum_flags != 0) { 12497 /* Forget checksum offload from now on */ 12498 ipf->ipf_checksum_flags = 0; 12499 } 12500 12501 /* 12502 * We have a new piece of a datagram which is already being 12503 * reassembled. Update the ECN info if all IP fragments 12504 * are ECN capable. If there is one which is not, clear 12505 * all the info. If there is at least one which has CE 12506 * code point, IP needs to report that up to transport. 12507 */ 12508 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12509 if (ecn_info == IPH_ECN_CE) 12510 ipf->ipf_ecn = IPH_ECN_CE; 12511 } else { 12512 ipf->ipf_ecn = IPH_ECN_NECT; 12513 } 12514 if (offset && ipf->ipf_end == offset) { 12515 /* The new fragment fits at the end */ 12516 ipf->ipf_tail_mp->b_cont = mp; 12517 /* Update the byte count */ 12518 ipf->ipf_count += msg_len; 12519 /* Update per ipfb and ill byte counts */ 12520 ipfb->ipfb_count += msg_len; 12521 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12522 atomic_add_32(&ill->ill_frag_count, msg_len); 12523 if (frag_offset_flags & IPH_MF) { 12524 /* More to come. */ 12525 ipf->ipf_end = end; 12526 ipf->ipf_tail_mp = tail_mp; 12527 goto reass_done; 12528 } 12529 } else { 12530 /* Go do the hard cases. */ 12531 int ret; 12532 12533 if (offset == 0) 12534 ipf->ipf_nf_hdr_len = hdr_length; 12535 12536 /* Save current byte count */ 12537 count = ipf->ipf_count; 12538 ret = ip_reassemble(mp, ipf, 12539 (frag_offset_flags & IPH_OFFSET) << 3, 12540 (frag_offset_flags & IPH_MF), ill, msg_len); 12541 /* Count of bytes added and subtracted (freeb()ed) */ 12542 count = ipf->ipf_count - count; 12543 if (count) { 12544 /* Update per ipfb and ill byte counts */ 12545 ipfb->ipfb_count += count; 12546 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12547 atomic_add_32(&ill->ill_frag_count, count); 12548 } 12549 if (ret == IP_REASS_PARTIAL) { 12550 goto reass_done; 12551 } else if (ret == IP_REASS_FAILED) { 12552 /* Reassembly failed. Free up all resources */ 12553 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12554 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12555 IP_REASS_SET_START(t_mp, 0); 12556 IP_REASS_SET_END(t_mp, 0); 12557 } 12558 freemsg(mp); 12559 goto reass_done; 12560 } 12561 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12562 } 12563 /* 12564 * We have completed reassembly. Unhook the frag header from 12565 * the reassembly list. 12566 * 12567 * Before we free the frag header, record the ECN info 12568 * to report back to the transport. 12569 */ 12570 ecn_info = ipf->ipf_ecn; 12571 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12572 ipfp = ipf->ipf_ptphn; 12573 12574 /* We need to supply these to caller */ 12575 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12576 sum_val = ipf->ipf_checksum; 12577 else 12578 sum_val = 0; 12579 12580 mp1 = ipf->ipf_mp; 12581 count = ipf->ipf_count; 12582 ipf = ipf->ipf_hash_next; 12583 if (ipf != NULL) 12584 ipf->ipf_ptphn = ipfp; 12585 ipfp[0] = ipf; 12586 atomic_add_32(&ill->ill_frag_count, -count); 12587 ASSERT(ipfb->ipfb_count >= count); 12588 ipfb->ipfb_count -= count; 12589 ipfb->ipfb_frag_pkts--; 12590 mutex_exit(&ipfb->ipfb_lock); 12591 /* Ditch the frag header. */ 12592 mp = mp1->b_cont; 12593 12594 freeb(mp1); 12595 12596 /* Restore original IP length in header. */ 12597 packet_size = (uint32_t)msgdsize(mp); 12598 if (packet_size > IP_MAXPACKET) { 12599 freemsg(mp); 12600 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12601 return (B_FALSE); 12602 } 12603 12604 if (DB_REF(mp) > 1) { 12605 mblk_t *mp2 = copymsg(mp); 12606 12607 freemsg(mp); 12608 if (mp2 == NULL) { 12609 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12610 return (B_FALSE); 12611 } 12612 mp = mp2; 12613 } 12614 ipha = (ipha_t *)mp->b_rptr; 12615 12616 ipha->ipha_length = htons((uint16_t)packet_size); 12617 /* We're now complete, zip the frag state */ 12618 ipha->ipha_fragment_offset_and_flags = 0; 12619 /* Record the ECN info. */ 12620 ipha->ipha_type_of_service &= 0xFC; 12621 ipha->ipha_type_of_service |= ecn_info; 12622 *mpp = mp; 12623 12624 /* Reassembly is successful; return checksum information if needed */ 12625 if (cksum_val != NULL) 12626 *cksum_val = sum_val; 12627 if (cksum_flags != NULL) 12628 *cksum_flags = sum_flags; 12629 12630 return (B_TRUE); 12631 } 12632 12633 /* 12634 * Perform ip header check sum update local options. 12635 * return B_TRUE if all is well, else return B_FALSE and release 12636 * the mp. caller is responsible for decrementing ire ref cnt. 12637 */ 12638 static boolean_t 12639 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12640 ip_stack_t *ipst) 12641 { 12642 mblk_t *first_mp; 12643 boolean_t mctl_present; 12644 uint16_t sum; 12645 12646 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12647 /* 12648 * Don't do the checksum if it has gone through AH/ESP 12649 * processing. 12650 */ 12651 if (!mctl_present) { 12652 sum = ip_csum_hdr(ipha); 12653 if (sum != 0) { 12654 if (ill != NULL) { 12655 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12656 } else { 12657 BUMP_MIB(&ipst->ips_ip_mib, 12658 ipIfStatsInCksumErrs); 12659 } 12660 freemsg(first_mp); 12661 return (B_FALSE); 12662 } 12663 } 12664 12665 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12666 if (mctl_present) 12667 freeb(first_mp); 12668 return (B_FALSE); 12669 } 12670 12671 return (B_TRUE); 12672 } 12673 12674 /* 12675 * All udp packet are delivered to the local host via this routine. 12676 */ 12677 void 12678 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12679 ill_t *recv_ill) 12680 { 12681 uint32_t sum; 12682 uint32_t u1; 12683 boolean_t mctl_present; 12684 conn_t *connp; 12685 mblk_t *first_mp; 12686 uint16_t *up; 12687 ill_t *ill = (ill_t *)q->q_ptr; 12688 uint16_t reass_hck_flags = 0; 12689 ip_stack_t *ipst; 12690 12691 ASSERT(recv_ill != NULL); 12692 ipst = recv_ill->ill_ipst; 12693 12694 #define rptr ((uchar_t *)ipha) 12695 12696 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12697 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12698 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12699 ASSERT(ill != NULL); 12700 12701 /* 12702 * FAST PATH for udp packets 12703 */ 12704 12705 /* u1 is # words of IP options */ 12706 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12707 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12708 12709 /* IP options present */ 12710 if (u1 != 0) 12711 goto ipoptions; 12712 12713 /* Check the IP header checksum. */ 12714 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12715 /* Clear the IP header h/w cksum flag */ 12716 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12717 } else if (!mctl_present) { 12718 /* 12719 * Don't verify header checksum if this packet is coming 12720 * back from AH/ESP as we already did it. 12721 */ 12722 #define uph ((uint16_t *)ipha) 12723 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12724 uph[6] + uph[7] + uph[8] + uph[9]; 12725 #undef uph 12726 /* finish doing IP checksum */ 12727 sum = (sum & 0xFFFF) + (sum >> 16); 12728 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12729 if (sum != 0 && sum != 0xFFFF) { 12730 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12731 freemsg(first_mp); 12732 return; 12733 } 12734 } 12735 12736 /* 12737 * Count for SNMP of inbound packets for ire. 12738 * if mctl is present this might be a secure packet and 12739 * has already been counted for in ip_proto_input(). 12740 */ 12741 if (!mctl_present) { 12742 UPDATE_IB_PKT_COUNT(ire); 12743 ire->ire_last_used_time = lbolt; 12744 } 12745 12746 /* packet part of fragmented IP packet? */ 12747 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12748 if (u1 & (IPH_MF | IPH_OFFSET)) { 12749 goto fragmented; 12750 } 12751 12752 /* u1 = IP header length (20 bytes) */ 12753 u1 = IP_SIMPLE_HDR_LENGTH; 12754 12755 /* packet does not contain complete IP & UDP headers */ 12756 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12757 goto udppullup; 12758 12759 /* up points to UDP header */ 12760 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12761 #define iphs ((uint16_t *)ipha) 12762 12763 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12764 if (up[3] != 0) { 12765 mblk_t *mp1 = mp->b_cont; 12766 boolean_t cksum_err; 12767 uint16_t hck_flags = 0; 12768 12769 /* Pseudo-header checksum */ 12770 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12771 iphs[9] + up[2]; 12772 12773 /* 12774 * Revert to software checksum calculation if the interface 12775 * isn't capable of checksum offload or if IPsec is present. 12776 */ 12777 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12778 hck_flags = DB_CKSUMFLAGS(mp); 12779 12780 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12781 IP_STAT(ipst, ip_in_sw_cksum); 12782 12783 IP_CKSUM_RECV(hck_flags, u1, 12784 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12785 (int32_t)((uchar_t *)up - rptr), 12786 mp, mp1, cksum_err); 12787 12788 if (cksum_err) { 12789 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12790 if (hck_flags & HCK_FULLCKSUM) 12791 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12792 else if (hck_flags & HCK_PARTIALCKSUM) 12793 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12794 else 12795 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12796 12797 freemsg(first_mp); 12798 return; 12799 } 12800 } 12801 12802 /* Non-fragmented broadcast or multicast packet? */ 12803 if (ire->ire_type == IRE_BROADCAST) 12804 goto udpslowpath; 12805 12806 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12807 ire->ire_zoneid, ipst)) != NULL) { 12808 ASSERT(connp->conn_upq != NULL); 12809 IP_STAT(ipst, ip_udp_fast_path); 12810 12811 if (CONN_UDP_FLOWCTLD(connp)) { 12812 freemsg(mp); 12813 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12814 } else { 12815 if (!mctl_present) { 12816 BUMP_MIB(ill->ill_ip_mib, 12817 ipIfStatsHCInDelivers); 12818 } 12819 /* 12820 * mp and first_mp can change. 12821 */ 12822 if (ip_udp_check(q, connp, recv_ill, 12823 ipha, &mp, &first_mp, mctl_present, ire)) { 12824 /* Send it upstream */ 12825 (connp->conn_recv)(connp, mp, NULL); 12826 } 12827 } 12828 /* 12829 * freeb() cannot deal with null mblk being passed 12830 * in and first_mp can be set to null in the call 12831 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12832 */ 12833 if (mctl_present && first_mp != NULL) { 12834 freeb(first_mp); 12835 } 12836 CONN_DEC_REF(connp); 12837 return; 12838 } 12839 12840 /* 12841 * if we got here we know the packet is not fragmented and 12842 * has no options. The classifier could not find a conn_t and 12843 * most likely its an icmp packet so send it through slow path. 12844 */ 12845 12846 goto udpslowpath; 12847 12848 ipoptions: 12849 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12850 goto slow_done; 12851 } 12852 12853 UPDATE_IB_PKT_COUNT(ire); 12854 ire->ire_last_used_time = lbolt; 12855 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12856 if (u1 & (IPH_MF | IPH_OFFSET)) { 12857 fragmented: 12858 /* 12859 * "sum" and "reass_hck_flags" are non-zero if the 12860 * reassembled packet has a valid hardware computed 12861 * checksum information associated with it. 12862 */ 12863 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12864 goto slow_done; 12865 /* 12866 * Make sure that first_mp points back to mp as 12867 * the mp we came in with could have changed in 12868 * ip_rput_fragment(). 12869 */ 12870 ASSERT(!mctl_present); 12871 ipha = (ipha_t *)mp->b_rptr; 12872 first_mp = mp; 12873 } 12874 12875 /* Now we have a complete datagram, destined for this machine. */ 12876 u1 = IPH_HDR_LENGTH(ipha); 12877 /* Pull up the UDP header, if necessary. */ 12878 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12879 udppullup: 12880 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12881 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12882 freemsg(first_mp); 12883 goto slow_done; 12884 } 12885 ipha = (ipha_t *)mp->b_rptr; 12886 } 12887 12888 /* 12889 * Validate the checksum for the reassembled packet; for the 12890 * pullup case we calculate the payload checksum in software. 12891 */ 12892 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12893 if (up[3] != 0) { 12894 boolean_t cksum_err; 12895 12896 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12897 IP_STAT(ipst, ip_in_sw_cksum); 12898 12899 IP_CKSUM_RECV_REASS(reass_hck_flags, 12900 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12901 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12902 iphs[9] + up[2], sum, cksum_err); 12903 12904 if (cksum_err) { 12905 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12906 12907 if (reass_hck_flags & HCK_FULLCKSUM) 12908 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12909 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12910 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12911 else 12912 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12913 12914 freemsg(first_mp); 12915 goto slow_done; 12916 } 12917 } 12918 udpslowpath: 12919 12920 /* Clear hardware checksum flag to be safe */ 12921 DB_CKSUMFLAGS(mp) = 0; 12922 12923 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12924 (ire->ire_type == IRE_BROADCAST), 12925 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12926 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12927 12928 slow_done: 12929 IP_STAT(ipst, ip_udp_slow_path); 12930 return; 12931 12932 #undef iphs 12933 #undef rptr 12934 } 12935 12936 /* ARGSUSED */ 12937 static mblk_t * 12938 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12939 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12940 ill_rx_ring_t *ill_ring) 12941 { 12942 conn_t *connp; 12943 uint32_t sum; 12944 uint32_t u1; 12945 uint16_t *up; 12946 int offset; 12947 ssize_t len; 12948 mblk_t *mp1; 12949 boolean_t syn_present = B_FALSE; 12950 tcph_t *tcph; 12951 uint_t ip_hdr_len; 12952 ill_t *ill = (ill_t *)q->q_ptr; 12953 zoneid_t zoneid = ire->ire_zoneid; 12954 boolean_t cksum_err; 12955 uint16_t hck_flags = 0; 12956 ip_stack_t *ipst = recv_ill->ill_ipst; 12957 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12958 12959 #define rptr ((uchar_t *)ipha) 12960 12961 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12962 ASSERT(ill != NULL); 12963 12964 /* 12965 * FAST PATH for tcp packets 12966 */ 12967 12968 /* u1 is # words of IP options */ 12969 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12970 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12971 12972 /* IP options present */ 12973 if (u1) { 12974 goto ipoptions; 12975 } else if (!mctl_present) { 12976 /* Check the IP header checksum. */ 12977 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12978 /* Clear the IP header h/w cksum flag */ 12979 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12980 } else if (!mctl_present) { 12981 /* 12982 * Don't verify header checksum if this packet 12983 * is coming back from AH/ESP as we already did it. 12984 */ 12985 #define uph ((uint16_t *)ipha) 12986 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12987 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12988 #undef uph 12989 /* finish doing IP checksum */ 12990 sum = (sum & 0xFFFF) + (sum >> 16); 12991 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12992 if (sum != 0 && sum != 0xFFFF) { 12993 BUMP_MIB(ill->ill_ip_mib, 12994 ipIfStatsInCksumErrs); 12995 goto error; 12996 } 12997 } 12998 } 12999 13000 if (!mctl_present) { 13001 UPDATE_IB_PKT_COUNT(ire); 13002 ire->ire_last_used_time = lbolt; 13003 } 13004 13005 /* packet part of fragmented IP packet? */ 13006 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13007 if (u1 & (IPH_MF | IPH_OFFSET)) { 13008 goto fragmented; 13009 } 13010 13011 /* u1 = IP header length (20 bytes) */ 13012 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13013 13014 /* does packet contain IP+TCP headers? */ 13015 len = mp->b_wptr - rptr; 13016 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13017 IP_STAT(ipst, ip_tcppullup); 13018 goto tcppullup; 13019 } 13020 13021 /* TCP options present? */ 13022 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13023 13024 /* 13025 * If options need to be pulled up, then goto tcpoptions. 13026 * otherwise we are still in the fast path 13027 */ 13028 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13029 IP_STAT(ipst, ip_tcpoptions); 13030 goto tcpoptions; 13031 } 13032 13033 /* multiple mblks of tcp data? */ 13034 if ((mp1 = mp->b_cont) != NULL) { 13035 /* more then two? */ 13036 if (mp1->b_cont != NULL) { 13037 IP_STAT(ipst, ip_multipkttcp); 13038 goto multipkttcp; 13039 } 13040 len += mp1->b_wptr - mp1->b_rptr; 13041 } 13042 13043 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13044 13045 /* part of pseudo checksum */ 13046 13047 /* TCP datagram length */ 13048 u1 = len - IP_SIMPLE_HDR_LENGTH; 13049 13050 #define iphs ((uint16_t *)ipha) 13051 13052 #ifdef _BIG_ENDIAN 13053 u1 += IPPROTO_TCP; 13054 #else 13055 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13056 #endif 13057 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13058 13059 /* 13060 * Revert to software checksum calculation if the interface 13061 * isn't capable of checksum offload or if IPsec is present. 13062 */ 13063 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13064 hck_flags = DB_CKSUMFLAGS(mp); 13065 13066 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13067 IP_STAT(ipst, ip_in_sw_cksum); 13068 13069 IP_CKSUM_RECV(hck_flags, u1, 13070 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13071 (int32_t)((uchar_t *)up - rptr), 13072 mp, mp1, cksum_err); 13073 13074 if (cksum_err) { 13075 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13076 13077 if (hck_flags & HCK_FULLCKSUM) 13078 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13079 else if (hck_flags & HCK_PARTIALCKSUM) 13080 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13081 else 13082 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13083 13084 goto error; 13085 } 13086 13087 try_again: 13088 13089 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13090 zoneid, ipst)) == NULL) { 13091 /* Send the TH_RST */ 13092 goto no_conn; 13093 } 13094 13095 /* 13096 * TCP FAST PATH for AF_INET socket. 13097 * 13098 * TCP fast path to avoid extra work. An AF_INET socket type 13099 * does not have facility to receive extra information via 13100 * ip_process or ip_add_info. Also, when the connection was 13101 * established, we made a check if this connection is impacted 13102 * by any global IPsec policy or per connection policy (a 13103 * policy that comes in effect later will not apply to this 13104 * connection). Since all this can be determined at the 13105 * connection establishment time, a quick check of flags 13106 * can avoid extra work. 13107 */ 13108 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13109 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13110 ASSERT(first_mp == mp); 13111 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13112 SET_SQUEUE(mp, tcp_rput_data, connp); 13113 return (mp); 13114 } 13115 13116 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13117 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13118 if (IPCL_IS_TCP(connp)) { 13119 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13120 DB_CKSUMSTART(mp) = 13121 (intptr_t)ip_squeue_get(ill_ring); 13122 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13123 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13124 BUMP_MIB(ill->ill_ip_mib, 13125 ipIfStatsHCInDelivers); 13126 SET_SQUEUE(mp, connp->conn_recv, connp); 13127 return (mp); 13128 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13129 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13130 BUMP_MIB(ill->ill_ip_mib, 13131 ipIfStatsHCInDelivers); 13132 ip_squeue_enter_unbound++; 13133 SET_SQUEUE(mp, tcp_conn_request_unbound, 13134 connp); 13135 return (mp); 13136 } 13137 syn_present = B_TRUE; 13138 } 13139 13140 } 13141 13142 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13143 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13144 13145 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13146 /* No need to send this packet to TCP */ 13147 if ((flags & TH_RST) || (flags & TH_URG)) { 13148 CONN_DEC_REF(connp); 13149 freemsg(first_mp); 13150 return (NULL); 13151 } 13152 if (flags & TH_ACK) { 13153 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13154 ipst->ips_netstack->netstack_tcp, connp); 13155 CONN_DEC_REF(connp); 13156 return (NULL); 13157 } 13158 13159 CONN_DEC_REF(connp); 13160 freemsg(first_mp); 13161 return (NULL); 13162 } 13163 13164 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13165 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13166 ipha, NULL, mctl_present); 13167 if (first_mp == NULL) { 13168 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13169 CONN_DEC_REF(connp); 13170 return (NULL); 13171 } 13172 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13173 ASSERT(syn_present); 13174 if (mctl_present) { 13175 ASSERT(first_mp != mp); 13176 first_mp->b_datap->db_struioflag |= 13177 STRUIO_POLICY; 13178 } else { 13179 ASSERT(first_mp == mp); 13180 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13181 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13182 } 13183 } else { 13184 /* 13185 * Discard first_mp early since we're dealing with a 13186 * fully-connected conn_t and tcp doesn't do policy in 13187 * this case. 13188 */ 13189 if (mctl_present) { 13190 freeb(first_mp); 13191 mctl_present = B_FALSE; 13192 } 13193 first_mp = mp; 13194 } 13195 } 13196 13197 /* Initiate IPPF processing for fastpath */ 13198 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13199 uint32_t ill_index; 13200 13201 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13202 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13203 if (mp == NULL) { 13204 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13205 "deferred/dropped during IPPF processing\n")); 13206 CONN_DEC_REF(connp); 13207 if (mctl_present) 13208 freeb(first_mp); 13209 return (NULL); 13210 } else if (mctl_present) { 13211 /* 13212 * ip_process might return a new mp. 13213 */ 13214 ASSERT(first_mp != mp); 13215 first_mp->b_cont = mp; 13216 } else { 13217 first_mp = mp; 13218 } 13219 13220 } 13221 13222 if (!syn_present && connp->conn_ip_recvpktinfo) { 13223 /* 13224 * TCP does not support IP_RECVPKTINFO for v4 so lets 13225 * make sure IPF_RECVIF is passed to ip_add_info. 13226 */ 13227 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13228 IPCL_ZONEID(connp), ipst); 13229 if (mp == NULL) { 13230 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13231 CONN_DEC_REF(connp); 13232 if (mctl_present) 13233 freeb(first_mp); 13234 return (NULL); 13235 } else if (mctl_present) { 13236 /* 13237 * ip_add_info might return a new mp. 13238 */ 13239 ASSERT(first_mp != mp); 13240 first_mp->b_cont = mp; 13241 } else { 13242 first_mp = mp; 13243 } 13244 } 13245 13246 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13247 if (IPCL_IS_TCP(connp)) { 13248 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13249 return (first_mp); 13250 } else { 13251 /* SOCK_RAW, IPPROTO_TCP case */ 13252 (connp->conn_recv)(connp, first_mp, NULL); 13253 CONN_DEC_REF(connp); 13254 return (NULL); 13255 } 13256 13257 no_conn: 13258 /* Initiate IPPf processing, if needed. */ 13259 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13260 uint32_t ill_index; 13261 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13262 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13263 if (first_mp == NULL) { 13264 return (NULL); 13265 } 13266 } 13267 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13268 13269 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13270 ipst->ips_netstack->netstack_tcp, NULL); 13271 return (NULL); 13272 ipoptions: 13273 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13274 goto slow_done; 13275 } 13276 13277 UPDATE_IB_PKT_COUNT(ire); 13278 ire->ire_last_used_time = lbolt; 13279 13280 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13281 if (u1 & (IPH_MF | IPH_OFFSET)) { 13282 fragmented: 13283 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13284 if (mctl_present) 13285 freeb(first_mp); 13286 goto slow_done; 13287 } 13288 /* 13289 * Make sure that first_mp points back to mp as 13290 * the mp we came in with could have changed in 13291 * ip_rput_fragment(). 13292 */ 13293 ASSERT(!mctl_present); 13294 ipha = (ipha_t *)mp->b_rptr; 13295 first_mp = mp; 13296 } 13297 13298 /* Now we have a complete datagram, destined for this machine. */ 13299 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13300 13301 len = mp->b_wptr - mp->b_rptr; 13302 /* Pull up a minimal TCP header, if necessary. */ 13303 if (len < (u1 + 20)) { 13304 tcppullup: 13305 if (!pullupmsg(mp, u1 + 20)) { 13306 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13307 goto error; 13308 } 13309 ipha = (ipha_t *)mp->b_rptr; 13310 len = mp->b_wptr - mp->b_rptr; 13311 } 13312 13313 /* 13314 * Extract the offset field from the TCP header. As usual, we 13315 * try to help the compiler more than the reader. 13316 */ 13317 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13318 if (offset != 5) { 13319 tcpoptions: 13320 if (offset < 5) { 13321 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13322 goto error; 13323 } 13324 /* 13325 * There must be TCP options. 13326 * Make sure we can grab them. 13327 */ 13328 offset <<= 2; 13329 offset += u1; 13330 if (len < offset) { 13331 if (!pullupmsg(mp, offset)) { 13332 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13333 goto error; 13334 } 13335 ipha = (ipha_t *)mp->b_rptr; 13336 len = mp->b_wptr - rptr; 13337 } 13338 } 13339 13340 /* Get the total packet length in len, including headers. */ 13341 if (mp->b_cont) { 13342 multipkttcp: 13343 len = msgdsize(mp); 13344 } 13345 13346 /* 13347 * Check the TCP checksum by pulling together the pseudo- 13348 * header checksum, and passing it to ip_csum to be added in 13349 * with the TCP datagram. 13350 * 13351 * Since we are not using the hwcksum if available we must 13352 * clear the flag. We may come here via tcppullup or tcpoptions. 13353 * If either of these fails along the way the mblk is freed. 13354 * If this logic ever changes and mblk is reused to say send 13355 * ICMP's back, then this flag may need to be cleared in 13356 * other places as well. 13357 */ 13358 DB_CKSUMFLAGS(mp) = 0; 13359 13360 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13361 13362 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13363 #ifdef _BIG_ENDIAN 13364 u1 += IPPROTO_TCP; 13365 #else 13366 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13367 #endif 13368 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13369 /* 13370 * Not M_DATA mblk or its a dup, so do the checksum now. 13371 */ 13372 IP_STAT(ipst, ip_in_sw_cksum); 13373 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13374 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13375 goto error; 13376 } 13377 13378 IP_STAT(ipst, ip_tcp_slow_path); 13379 goto try_again; 13380 #undef iphs 13381 #undef rptr 13382 13383 error: 13384 freemsg(first_mp); 13385 slow_done: 13386 return (NULL); 13387 } 13388 13389 /* ARGSUSED */ 13390 static void 13391 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13392 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13393 { 13394 conn_t *connp; 13395 uint32_t sum; 13396 uint32_t u1; 13397 ssize_t len; 13398 sctp_hdr_t *sctph; 13399 zoneid_t zoneid = ire->ire_zoneid; 13400 uint32_t pktsum; 13401 uint32_t calcsum; 13402 uint32_t ports; 13403 in6_addr_t map_src, map_dst; 13404 ill_t *ill = (ill_t *)q->q_ptr; 13405 ip_stack_t *ipst; 13406 sctp_stack_t *sctps; 13407 boolean_t sctp_csum_err = B_FALSE; 13408 13409 ASSERT(recv_ill != NULL); 13410 ipst = recv_ill->ill_ipst; 13411 sctps = ipst->ips_netstack->netstack_sctp; 13412 13413 #define rptr ((uchar_t *)ipha) 13414 13415 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13416 ASSERT(ill != NULL); 13417 13418 /* u1 is # words of IP options */ 13419 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13420 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13421 13422 /* IP options present */ 13423 if (u1 > 0) { 13424 goto ipoptions; 13425 } else { 13426 /* Check the IP header checksum. */ 13427 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill) && 13428 !mctl_present) { 13429 #define uph ((uint16_t *)ipha) 13430 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13431 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13432 #undef uph 13433 /* finish doing IP checksum */ 13434 sum = (sum & 0xFFFF) + (sum >> 16); 13435 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13436 /* 13437 * Don't verify header checksum if this packet 13438 * is coming back from AH/ESP as we already did it. 13439 */ 13440 if (sum != 0 && sum != 0xFFFF) { 13441 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13442 goto error; 13443 } 13444 } 13445 /* 13446 * Since there is no SCTP h/w cksum support yet, just 13447 * clear the flag. 13448 */ 13449 DB_CKSUMFLAGS(mp) = 0; 13450 } 13451 13452 /* 13453 * Don't verify header checksum if this packet is coming 13454 * back from AH/ESP as we already did it. 13455 */ 13456 if (!mctl_present) { 13457 UPDATE_IB_PKT_COUNT(ire); 13458 ire->ire_last_used_time = lbolt; 13459 } 13460 13461 /* packet part of fragmented IP packet? */ 13462 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13463 if (u1 & (IPH_MF | IPH_OFFSET)) 13464 goto fragmented; 13465 13466 /* u1 = IP header length (20 bytes) */ 13467 u1 = IP_SIMPLE_HDR_LENGTH; 13468 13469 find_sctp_client: 13470 /* Pullup if we don't have the sctp common header. */ 13471 len = MBLKL(mp); 13472 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13473 if (mp->b_cont == NULL || 13474 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13475 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13476 goto error; 13477 } 13478 ipha = (ipha_t *)mp->b_rptr; 13479 len = MBLKL(mp); 13480 } 13481 13482 sctph = (sctp_hdr_t *)(rptr + u1); 13483 #ifdef DEBUG 13484 if (!skip_sctp_cksum) { 13485 #endif 13486 pktsum = sctph->sh_chksum; 13487 sctph->sh_chksum = 0; 13488 calcsum = sctp_cksum(mp, u1); 13489 sctph->sh_chksum = pktsum; 13490 if (calcsum != pktsum) 13491 sctp_csum_err = B_TRUE; 13492 #ifdef DEBUG /* skip_sctp_cksum */ 13493 } 13494 #endif 13495 /* get the ports */ 13496 ports = *(uint32_t *)&sctph->sh_sport; 13497 13498 IRE_REFRELE(ire); 13499 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13500 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13501 if (sctp_csum_err) { 13502 /* 13503 * No potential sctp checksum errors go to the Sun 13504 * sctp stack however they might be Adler-32 summed 13505 * packets a userland stack bound to a raw IP socket 13506 * could reasonably use. Note though that Adler-32 is 13507 * a long deprecated algorithm and customer sctp 13508 * networks should eventually migrate to CRC-32 at 13509 * which time this facility should be removed. 13510 */ 13511 flags |= IP_FF_SCTP_CSUM_ERR; 13512 goto no_conn; 13513 } 13514 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13515 sctps)) == NULL) { 13516 /* Check for raw socket or OOTB handling */ 13517 goto no_conn; 13518 } 13519 13520 /* Found a client; up it goes */ 13521 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13522 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13523 return; 13524 13525 no_conn: 13526 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13527 ports, mctl_present, flags, B_TRUE, zoneid); 13528 return; 13529 13530 ipoptions: 13531 DB_CKSUMFLAGS(mp) = 0; 13532 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13533 goto slow_done; 13534 13535 UPDATE_IB_PKT_COUNT(ire); 13536 ire->ire_last_used_time = lbolt; 13537 13538 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13539 if (u1 & (IPH_MF | IPH_OFFSET)) { 13540 fragmented: 13541 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13542 goto slow_done; 13543 /* 13544 * Make sure that first_mp points back to mp as 13545 * the mp we came in with could have changed in 13546 * ip_rput_fragment(). 13547 */ 13548 ASSERT(!mctl_present); 13549 ipha = (ipha_t *)mp->b_rptr; 13550 first_mp = mp; 13551 } 13552 13553 /* Now we have a complete datagram, destined for this machine. */ 13554 u1 = IPH_HDR_LENGTH(ipha); 13555 goto find_sctp_client; 13556 #undef iphs 13557 #undef rptr 13558 13559 error: 13560 freemsg(first_mp); 13561 slow_done: 13562 IRE_REFRELE(ire); 13563 } 13564 13565 #define VER_BITS 0xF0 13566 #define VERSION_6 0x60 13567 13568 static boolean_t 13569 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13570 ipaddr_t *dstp, ip_stack_t *ipst) 13571 { 13572 uint_t opt_len; 13573 ipha_t *ipha; 13574 ssize_t len; 13575 uint_t pkt_len; 13576 13577 ASSERT(ill != NULL); 13578 IP_STAT(ipst, ip_ipoptions); 13579 ipha = *iphapp; 13580 13581 #define rptr ((uchar_t *)ipha) 13582 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13583 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13584 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13585 freemsg(mp); 13586 return (B_FALSE); 13587 } 13588 13589 /* multiple mblk or too short */ 13590 pkt_len = ntohs(ipha->ipha_length); 13591 13592 /* Get the number of words of IP options in the IP header. */ 13593 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13594 if (opt_len) { 13595 /* IP Options present! Validate and process. */ 13596 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13597 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13598 goto done; 13599 } 13600 /* 13601 * Recompute complete header length and make sure we 13602 * have access to all of it. 13603 */ 13604 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13605 if (len > (mp->b_wptr - rptr)) { 13606 if (len > pkt_len) { 13607 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13608 goto done; 13609 } 13610 if (!pullupmsg(mp, len)) { 13611 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13612 goto done; 13613 } 13614 ipha = (ipha_t *)mp->b_rptr; 13615 } 13616 /* 13617 * Go off to ip_rput_options which returns the next hop 13618 * destination address, which may have been affected 13619 * by source routing. 13620 */ 13621 IP_STAT(ipst, ip_opt); 13622 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13623 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13624 return (B_FALSE); 13625 } 13626 } 13627 *iphapp = ipha; 13628 return (B_TRUE); 13629 done: 13630 /* clear b_prev - used by ip_mroute_decap */ 13631 mp->b_prev = NULL; 13632 freemsg(mp); 13633 return (B_FALSE); 13634 #undef rptr 13635 } 13636 13637 /* 13638 * Deal with the fact that there is no ire for the destination. 13639 */ 13640 static ire_t * 13641 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13642 { 13643 ipha_t *ipha; 13644 ill_t *ill; 13645 ire_t *ire; 13646 ip_stack_t *ipst; 13647 enum ire_forward_action ret_action; 13648 13649 ipha = (ipha_t *)mp->b_rptr; 13650 ill = (ill_t *)q->q_ptr; 13651 13652 ASSERT(ill != NULL); 13653 ipst = ill->ill_ipst; 13654 13655 /* 13656 * No IRE for this destination, so it can't be for us. 13657 * Unless we are forwarding, drop the packet. 13658 * We have to let source routed packets through 13659 * since we don't yet know if they are 'ping -l' 13660 * packets i.e. if they will go out over the 13661 * same interface as they came in on. 13662 */ 13663 if (ll_multicast) { 13664 freemsg(mp); 13665 return (NULL); 13666 } 13667 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13668 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13669 freemsg(mp); 13670 return (NULL); 13671 } 13672 13673 /* 13674 * Mark this packet as having originated externally. 13675 * 13676 * For non-forwarding code path, ire_send later double 13677 * checks this interface to see if it is still exists 13678 * post-ARP resolution. 13679 * 13680 * Also, IPQOS uses this to differentiate between 13681 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13682 * QOS packet processing in ip_wput_attach_llhdr(). 13683 * The QoS module can mark the b_band for a fastpath message 13684 * or the dl_priority field in a unitdata_req header for 13685 * CoS marking. This info can only be found in 13686 * ip_wput_attach_llhdr(). 13687 */ 13688 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13689 /* 13690 * Clear the indication that this may have a hardware checksum 13691 * as we are not using it 13692 */ 13693 DB_CKSUMFLAGS(mp) = 0; 13694 13695 ire = ire_forward(dst, &ret_action, NULL, NULL, 13696 MBLK_GETLABEL(mp), ipst); 13697 13698 if (ire == NULL && ret_action == Forward_check_multirt) { 13699 /* Let ip_newroute handle CGTP */ 13700 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13701 return (NULL); 13702 } 13703 13704 if (ire != NULL) 13705 return (ire); 13706 13707 mp->b_prev = mp->b_next = 0; 13708 13709 if (ret_action == Forward_blackhole) { 13710 freemsg(mp); 13711 return (NULL); 13712 } 13713 /* send icmp unreachable */ 13714 q = WR(q); 13715 /* Sent by forwarding path, and router is global zone */ 13716 if (ip_source_routed(ipha, ipst)) { 13717 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13718 GLOBAL_ZONEID, ipst); 13719 } else { 13720 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13721 ipst); 13722 } 13723 13724 return (NULL); 13725 13726 } 13727 13728 /* 13729 * check ip header length and align it. 13730 */ 13731 static boolean_t 13732 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13733 { 13734 ssize_t len; 13735 ill_t *ill; 13736 ipha_t *ipha; 13737 13738 len = MBLKL(mp); 13739 13740 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13741 ill = (ill_t *)q->q_ptr; 13742 13743 if (!OK_32PTR(mp->b_rptr)) 13744 IP_STAT(ipst, ip_notaligned1); 13745 else 13746 IP_STAT(ipst, ip_notaligned2); 13747 /* Guard against bogus device drivers */ 13748 if (len < 0) { 13749 /* clear b_prev - used by ip_mroute_decap */ 13750 mp->b_prev = NULL; 13751 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13752 freemsg(mp); 13753 return (B_FALSE); 13754 } 13755 13756 if (ip_rput_pullups++ == 0) { 13757 ipha = (ipha_t *)mp->b_rptr; 13758 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13759 "ip_check_and_align_header: %s forced us to " 13760 " pullup pkt, hdr len %ld, hdr addr %p", 13761 ill->ill_name, len, ipha); 13762 } 13763 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13764 /* clear b_prev - used by ip_mroute_decap */ 13765 mp->b_prev = NULL; 13766 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13767 freemsg(mp); 13768 return (B_FALSE); 13769 } 13770 } 13771 return (B_TRUE); 13772 } 13773 13774 ire_t * 13775 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13776 { 13777 ire_t *new_ire; 13778 ill_t *ire_ill; 13779 uint_t ifindex; 13780 ip_stack_t *ipst = ill->ill_ipst; 13781 boolean_t strict_check = B_FALSE; 13782 13783 /* 13784 * This packet came in on an interface other than the one associated 13785 * with the first ire we found for the destination address. We do 13786 * another ire lookup here, using the ingress ill, to see if the 13787 * interface is in an interface group. 13788 * As long as the ills belong to the same group, we don't consider 13789 * them to be arriving on the wrong interface. Thus, if the switch 13790 * is doing inbound load spreading, we won't drop packets when the 13791 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13792 * for 'usesrc groups' where the destination address may belong to 13793 * another interface to allow multipathing to happen. 13794 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13795 * where the local address may not be unique. In this case we were 13796 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13797 * actually returned. The new lookup, which is more specific, should 13798 * only find the IRE_LOCAL associated with the ingress ill if one 13799 * exists. 13800 */ 13801 13802 if (ire->ire_ipversion == IPV4_VERSION) { 13803 if (ipst->ips_ip_strict_dst_multihoming) 13804 strict_check = B_TRUE; 13805 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13806 ill->ill_ipif, ALL_ZONES, NULL, 13807 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13808 } else { 13809 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13810 if (ipst->ips_ipv6_strict_dst_multihoming) 13811 strict_check = B_TRUE; 13812 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13813 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13814 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13815 } 13816 /* 13817 * If the same ire that was returned in ip_input() is found then this 13818 * is an indication that interface groups are in use. The packet 13819 * arrived on a different ill in the group than the one associated with 13820 * the destination address. If a different ire was found then the same 13821 * IP address must be hosted on multiple ills. This is possible with 13822 * unnumbered point2point interfaces. We switch to use this new ire in 13823 * order to have accurate interface statistics. 13824 */ 13825 if (new_ire != NULL) { 13826 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13827 ire_refrele(ire); 13828 ire = new_ire; 13829 } else { 13830 ire_refrele(new_ire); 13831 } 13832 return (ire); 13833 } else if ((ire->ire_rfq == NULL) && 13834 (ire->ire_ipversion == IPV4_VERSION)) { 13835 /* 13836 * The best match could have been the original ire which 13837 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13838 * the strict multihoming checks are irrelevant as we consider 13839 * local addresses hosted on lo0 to be interface agnostic. We 13840 * only expect a null ire_rfq on IREs which are associated with 13841 * lo0 hence we can return now. 13842 */ 13843 return (ire); 13844 } 13845 13846 /* 13847 * Chase pointers once and store locally. 13848 */ 13849 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13850 (ill_t *)(ire->ire_rfq->q_ptr); 13851 ifindex = ill->ill_usesrc_ifindex; 13852 13853 /* 13854 * Check if it's a legal address on the 'usesrc' interface. 13855 */ 13856 if ((ifindex != 0) && (ire_ill != NULL) && 13857 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13858 return (ire); 13859 } 13860 13861 /* 13862 * If the ip*_strict_dst_multihoming switch is on then we can 13863 * only accept this packet if the interface is marked as routing. 13864 */ 13865 if (!(strict_check)) 13866 return (ire); 13867 13868 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13869 ILLF_ROUTER) != 0) { 13870 return (ire); 13871 } 13872 13873 ire_refrele(ire); 13874 return (NULL); 13875 } 13876 13877 ire_t * 13878 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13879 { 13880 ipha_t *ipha; 13881 ire_t *src_ire; 13882 ill_t *stq_ill; 13883 uint_t hlen; 13884 uint_t pkt_len; 13885 uint32_t sum; 13886 queue_t *dev_q; 13887 ip_stack_t *ipst = ill->ill_ipst; 13888 mblk_t *fpmp; 13889 enum ire_forward_action ret_action; 13890 13891 ipha = (ipha_t *)mp->b_rptr; 13892 13893 if (ire != NULL && 13894 ire->ire_zoneid != GLOBAL_ZONEID && 13895 ire->ire_zoneid != ALL_ZONES) { 13896 /* 13897 * Should only use IREs that are visible to the global 13898 * zone for forwarding. 13899 */ 13900 ire_refrele(ire); 13901 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 13902 } 13903 13904 /* 13905 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13906 * The loopback address check for both src and dst has already 13907 * been checked in ip_input 13908 */ 13909 13910 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13911 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13912 goto drop; 13913 } 13914 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13915 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13916 13917 if (src_ire != NULL) { 13918 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13919 ire_refrele(src_ire); 13920 goto drop; 13921 } 13922 13923 /* No ire cache of nexthop. So first create one */ 13924 if (ire == NULL) { 13925 13926 ire = ire_forward(dst, &ret_action, NULL, NULL, 13927 NULL, ipst); 13928 /* 13929 * We only come to ip_fast_forward if ip_cgtp_filter 13930 * is not set. So ire_forward() should not return with 13931 * Forward_check_multirt as the next action. 13932 */ 13933 ASSERT(ret_action != Forward_check_multirt); 13934 if (ire == NULL) { 13935 /* An attempt was made to forward the packet */ 13936 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13937 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13938 mp->b_prev = mp->b_next = 0; 13939 /* send icmp unreachable */ 13940 /* Sent by forwarding path, and router is global zone */ 13941 if (ret_action == Forward_ret_icmp_err) { 13942 if (ip_source_routed(ipha, ipst)) { 13943 icmp_unreachable(ill->ill_wq, mp, 13944 ICMP_SOURCE_ROUTE_FAILED, 13945 GLOBAL_ZONEID, ipst); 13946 } else { 13947 icmp_unreachable(ill->ill_wq, mp, 13948 ICMP_HOST_UNREACHABLE, 13949 GLOBAL_ZONEID, ipst); 13950 } 13951 } else { 13952 freemsg(mp); 13953 } 13954 return (NULL); 13955 } 13956 } 13957 13958 /* 13959 * Forwarding fastpath exception case: 13960 * If either of the follwoing case is true, we take 13961 * the slowpath 13962 * o forwarding is not enabled 13963 * o incoming and outgoing interface are the same, or the same 13964 * IPMP group 13965 * o corresponding ire is in incomplete state 13966 * o packet needs fragmentation 13967 * o ARP cache is not resolved 13968 * 13969 * The codeflow from here on is thus: 13970 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13971 */ 13972 pkt_len = ntohs(ipha->ipha_length); 13973 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13974 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13975 !(ill->ill_flags & ILLF_ROUTER) || 13976 (ill == stq_ill) || 13977 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 13978 (ire->ire_nce == NULL) || 13979 (pkt_len > ire->ire_max_frag) || 13980 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 13981 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 13982 ipha->ipha_ttl <= 1) { 13983 ip_rput_process_forward(ill->ill_rq, mp, ire, 13984 ipha, ill, B_FALSE); 13985 return (ire); 13986 } 13987 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13988 13989 DTRACE_PROBE4(ip4__forwarding__start, 13990 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13991 13992 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13993 ipst->ips_ipv4firewall_forwarding, 13994 ill, stq_ill, ipha, mp, mp, 0, ipst); 13995 13996 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13997 13998 if (mp == NULL) 13999 goto drop; 14000 14001 mp->b_datap->db_struioun.cksum.flags = 0; 14002 /* Adjust the checksum to reflect the ttl decrement. */ 14003 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14004 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14005 ipha->ipha_ttl--; 14006 14007 /* 14008 * Write the link layer header. We can do this safely here, 14009 * because we have already tested to make sure that the IP 14010 * policy is not set, and that we have a fast path destination 14011 * header. 14012 */ 14013 mp->b_rptr -= hlen; 14014 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 14015 14016 UPDATE_IB_PKT_COUNT(ire); 14017 ire->ire_last_used_time = lbolt; 14018 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 14019 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14020 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 14021 14022 dev_q = ire->ire_stq->q_next; 14023 if ((dev_q->q_next != NULL || dev_q->q_first != NULL) && 14024 !canputnext(ire->ire_stq)) { 14025 goto indiscard; 14026 } 14027 if (ILL_DLS_CAPABLE(stq_ill)) { 14028 /* 14029 * Send the packet directly to DLD, where it 14030 * may be queued depending on the availability 14031 * of transmit resources at the media layer. 14032 */ 14033 IP_DLS_ILL_TX(stq_ill, ipha, mp, ipst); 14034 } else { 14035 DTRACE_PROBE4(ip4__physical__out__start, 14036 ill_t *, NULL, ill_t *, stq_ill, 14037 ipha_t *, ipha, mblk_t *, mp); 14038 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14039 ipst->ips_ipv4firewall_physical_out, 14040 NULL, stq_ill, ipha, mp, mp, 0, ipst); 14041 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 14042 if (mp == NULL) 14043 goto drop; 14044 14045 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, 14046 ipha, __dtrace_ipsr_ill_t *, stq_ill, ipha_t *, ipha, 14047 ip6_t *, NULL, int, 0); 14048 14049 putnext(ire->ire_stq, mp); 14050 } 14051 return (ire); 14052 14053 indiscard: 14054 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14055 drop: 14056 if (mp != NULL) 14057 freemsg(mp); 14058 return (ire); 14059 14060 } 14061 14062 /* 14063 * This function is called in the forwarding slowpath, when 14064 * either the ire lacks the link-layer address, or the packet needs 14065 * further processing(eg. fragmentation), before transmission. 14066 */ 14067 14068 static void 14069 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14070 ill_t *ill, boolean_t ll_multicast) 14071 { 14072 ill_group_t *ill_group; 14073 ill_group_t *ire_group; 14074 queue_t *dev_q; 14075 ire_t *src_ire; 14076 ip_stack_t *ipst = ill->ill_ipst; 14077 14078 ASSERT(ire->ire_stq != NULL); 14079 14080 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14081 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14082 14083 if (ll_multicast != 0) { 14084 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14085 goto drop_pkt; 14086 } 14087 14088 /* 14089 * check if ipha_src is a broadcast address. Note that this 14090 * check is redundant when we get here from ip_fast_forward() 14091 * which has already done this check. However, since we can 14092 * also get here from ip_rput_process_broadcast() or, for 14093 * for the slow path through ip_fast_forward(), we perform 14094 * the check again for code-reusability 14095 */ 14096 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14097 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14098 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14099 if (src_ire != NULL) 14100 ire_refrele(src_ire); 14101 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14102 ip2dbg(("ip_rput_process_forward: Received packet with" 14103 " bad src/dst address on %s\n", ill->ill_name)); 14104 goto drop_pkt; 14105 } 14106 14107 ill_group = ill->ill_group; 14108 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14109 /* 14110 * Check if we want to forward this one at this time. 14111 * We allow source routed packets on a host provided that 14112 * they go out the same interface or same interface group 14113 * as they came in on. 14114 * 14115 * XXX To be quicker, we may wish to not chase pointers to 14116 * get the ILLF_ROUTER flag and instead store the 14117 * forwarding policy in the ire. An unfortunate 14118 * side-effect of that would be requiring an ire flush 14119 * whenever the ILLF_ROUTER flag changes. 14120 */ 14121 if (((ill->ill_flags & 14122 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14123 ILLF_ROUTER) == 0) && 14124 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14125 (ill_group != NULL && ill_group == ire_group)))) { 14126 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14127 if (ip_source_routed(ipha, ipst)) { 14128 q = WR(q); 14129 /* 14130 * Clear the indication that this may have 14131 * hardware checksum as we are not using it. 14132 */ 14133 DB_CKSUMFLAGS(mp) = 0; 14134 /* Sent by forwarding path, and router is global zone */ 14135 icmp_unreachable(q, mp, 14136 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14137 return; 14138 } 14139 goto drop_pkt; 14140 } 14141 14142 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14143 14144 /* Packet is being forwarded. Turning off hwcksum flag. */ 14145 DB_CKSUMFLAGS(mp) = 0; 14146 if (ipst->ips_ip_g_send_redirects) { 14147 /* 14148 * Check whether the incoming interface and outgoing 14149 * interface is part of the same group. If so, 14150 * send redirects. 14151 * 14152 * Check the source address to see if it originated 14153 * on the same logical subnet it is going back out on. 14154 * If so, we should be able to send it a redirect. 14155 * Avoid sending a redirect if the destination 14156 * is directly connected (i.e., ipha_dst is the same 14157 * as ire_gateway_addr or the ire_addr of the 14158 * nexthop IRE_CACHE ), or if the packet was source 14159 * routed out this interface. 14160 */ 14161 ipaddr_t src, nhop; 14162 mblk_t *mp1; 14163 ire_t *nhop_ire = NULL; 14164 14165 /* 14166 * Check whether ire_rfq and q are from the same ill 14167 * or if they are not same, they at least belong 14168 * to the same group. If so, send redirects. 14169 */ 14170 if ((ire->ire_rfq == q || 14171 (ill_group != NULL && ill_group == ire_group)) && 14172 !ip_source_routed(ipha, ipst)) { 14173 14174 nhop = (ire->ire_gateway_addr != 0 ? 14175 ire->ire_gateway_addr : ire->ire_addr); 14176 14177 if (ipha->ipha_dst == nhop) { 14178 /* 14179 * We avoid sending a redirect if the 14180 * destination is directly connected 14181 * because it is possible that multiple 14182 * IP subnets may have been configured on 14183 * the link, and the source may not 14184 * be on the same subnet as ip destination, 14185 * even though they are on the same 14186 * physical link. 14187 */ 14188 goto sendit; 14189 } 14190 14191 src = ipha->ipha_src; 14192 14193 /* 14194 * We look up the interface ire for the nexthop, 14195 * to see if ipha_src is in the same subnet 14196 * as the nexthop. 14197 * 14198 * Note that, if, in the future, IRE_CACHE entries 14199 * are obsoleted, this lookup will not be needed, 14200 * as the ire passed to this function will be the 14201 * same as the nhop_ire computed below. 14202 */ 14203 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14204 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14205 0, NULL, MATCH_IRE_TYPE, ipst); 14206 14207 if (nhop_ire != NULL) { 14208 if ((src & nhop_ire->ire_mask) == 14209 (nhop & nhop_ire->ire_mask)) { 14210 /* 14211 * The source is directly connected. 14212 * Just copy the ip header (which is 14213 * in the first mblk) 14214 */ 14215 mp1 = copyb(mp); 14216 if (mp1 != NULL) { 14217 icmp_send_redirect(WR(q), mp1, 14218 nhop, ipst); 14219 } 14220 } 14221 ire_refrele(nhop_ire); 14222 } 14223 } 14224 } 14225 sendit: 14226 dev_q = ire->ire_stq->q_next; 14227 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14228 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14229 freemsg(mp); 14230 return; 14231 } 14232 14233 ip_rput_forward(ire, ipha, mp, ill); 14234 return; 14235 14236 drop_pkt: 14237 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14238 freemsg(mp); 14239 } 14240 14241 ire_t * 14242 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14243 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14244 { 14245 queue_t *q; 14246 uint16_t hcksumflags; 14247 ip_stack_t *ipst = ill->ill_ipst; 14248 14249 q = *qp; 14250 14251 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14252 14253 /* 14254 * Clear the indication that this may have hardware 14255 * checksum as we are not using it for forwarding. 14256 */ 14257 hcksumflags = DB_CKSUMFLAGS(mp); 14258 DB_CKSUMFLAGS(mp) = 0; 14259 14260 /* 14261 * Directed broadcast forwarding: if the packet came in over a 14262 * different interface then it is routed out over we can forward it. 14263 */ 14264 if (ipha->ipha_protocol == IPPROTO_TCP) { 14265 ire_refrele(ire); 14266 freemsg(mp); 14267 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14268 return (NULL); 14269 } 14270 /* 14271 * For multicast we have set dst to be INADDR_BROADCAST 14272 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14273 * only for broadcast packets. 14274 */ 14275 if (!CLASSD(ipha->ipha_dst)) { 14276 ire_t *new_ire; 14277 ipif_t *ipif; 14278 /* 14279 * For ill groups, as the switch duplicates broadcasts 14280 * across all the ports, we need to filter out and 14281 * send up only one copy. There is one copy for every 14282 * broadcast address on each ill. Thus, we look for a 14283 * specific IRE on this ill and look at IRE_MARK_NORECV 14284 * later to see whether this ill is eligible to receive 14285 * them or not. ill_nominate_bcast_rcv() nominates only 14286 * one set of IREs for receiving. 14287 */ 14288 14289 ipif = ipif_get_next_ipif(NULL, ill); 14290 if (ipif == NULL) { 14291 ire_refrele(ire); 14292 freemsg(mp); 14293 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14294 return (NULL); 14295 } 14296 new_ire = ire_ctable_lookup(dst, 0, 0, 14297 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14298 ipif_refrele(ipif); 14299 14300 if (new_ire != NULL) { 14301 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14302 ire_refrele(ire); 14303 ire_refrele(new_ire); 14304 freemsg(mp); 14305 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14306 return (NULL); 14307 } 14308 /* 14309 * In the special case of multirouted broadcast 14310 * packets, we unconditionally need to "gateway" 14311 * them to the appropriate interface here. 14312 * In the normal case, this cannot happen, because 14313 * there is no broadcast IRE tagged with the 14314 * RTF_MULTIRT flag. 14315 */ 14316 if (new_ire->ire_flags & RTF_MULTIRT) { 14317 ire_refrele(new_ire); 14318 if (ire->ire_rfq != NULL) { 14319 q = ire->ire_rfq; 14320 *qp = q; 14321 } 14322 } else { 14323 ire_refrele(ire); 14324 ire = new_ire; 14325 } 14326 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14327 if (!ipst->ips_ip_g_forward_directed_bcast) { 14328 /* 14329 * Free the message if 14330 * ip_g_forward_directed_bcast is turned 14331 * off for non-local broadcast. 14332 */ 14333 ire_refrele(ire); 14334 freemsg(mp); 14335 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14336 return (NULL); 14337 } 14338 } else { 14339 /* 14340 * This CGTP packet successfully passed the 14341 * CGTP filter, but the related CGTP 14342 * broadcast IRE has not been found, 14343 * meaning that the redundant ipif is 14344 * probably down. However, if we discarded 14345 * this packet, its duplicate would be 14346 * filtered out by the CGTP filter so none 14347 * of them would get through. So we keep 14348 * going with this one. 14349 */ 14350 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14351 if (ire->ire_rfq != NULL) { 14352 q = ire->ire_rfq; 14353 *qp = q; 14354 } 14355 } 14356 } 14357 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14358 /* 14359 * Verify that there are not more then one 14360 * IRE_BROADCAST with this broadcast address which 14361 * has ire_stq set. 14362 * TODO: simplify, loop over all IRE's 14363 */ 14364 ire_t *ire1; 14365 int num_stq = 0; 14366 mblk_t *mp1; 14367 14368 /* Find the first one with ire_stq set */ 14369 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14370 for (ire1 = ire; ire1 && 14371 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14372 ire1 = ire1->ire_next) 14373 ; 14374 if (ire1) { 14375 ire_refrele(ire); 14376 ire = ire1; 14377 IRE_REFHOLD(ire); 14378 } 14379 14380 /* Check if there are additional ones with stq set */ 14381 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14382 if (ire->ire_addr != ire1->ire_addr) 14383 break; 14384 if (ire1->ire_stq) { 14385 num_stq++; 14386 break; 14387 } 14388 } 14389 rw_exit(&ire->ire_bucket->irb_lock); 14390 if (num_stq == 1 && ire->ire_stq != NULL) { 14391 ip1dbg(("ip_rput_process_broadcast: directed " 14392 "broadcast to 0x%x\n", 14393 ntohl(ire->ire_addr))); 14394 mp1 = copymsg(mp); 14395 if (mp1) { 14396 switch (ipha->ipha_protocol) { 14397 case IPPROTO_UDP: 14398 ip_udp_input(q, mp1, ipha, ire, ill); 14399 break; 14400 default: 14401 ip_proto_input(q, mp1, ipha, ire, ill, 14402 0); 14403 break; 14404 } 14405 } 14406 /* 14407 * Adjust ttl to 2 (1+1 - the forward engine 14408 * will decrement it by one. 14409 */ 14410 if (ip_csum_hdr(ipha)) { 14411 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14412 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14413 freemsg(mp); 14414 ire_refrele(ire); 14415 return (NULL); 14416 } 14417 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14418 ipha->ipha_hdr_checksum = 0; 14419 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14420 ip_rput_process_forward(q, mp, ire, ipha, 14421 ill, ll_multicast); 14422 ire_refrele(ire); 14423 return (NULL); 14424 } 14425 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14426 ntohl(ire->ire_addr))); 14427 } 14428 14429 14430 /* Restore any hardware checksum flags */ 14431 DB_CKSUMFLAGS(mp) = hcksumflags; 14432 return (ire); 14433 } 14434 14435 /* ARGSUSED */ 14436 static boolean_t 14437 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14438 int *ll_multicast, ipaddr_t *dstp) 14439 { 14440 ip_stack_t *ipst = ill->ill_ipst; 14441 14442 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14443 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14444 ntohs(ipha->ipha_length)); 14445 14446 /* 14447 * Forward packets only if we have joined the allmulti 14448 * group on this interface. 14449 */ 14450 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14451 int retval; 14452 14453 /* 14454 * Clear the indication that this may have hardware 14455 * checksum as we are not using it. 14456 */ 14457 DB_CKSUMFLAGS(mp) = 0; 14458 retval = ip_mforward(ill, ipha, mp); 14459 /* ip_mforward updates mib variables if needed */ 14460 /* clear b_prev - used by ip_mroute_decap */ 14461 mp->b_prev = NULL; 14462 14463 switch (retval) { 14464 case 0: 14465 /* 14466 * pkt is okay and arrived on phyint. 14467 * 14468 * If we are running as a multicast router 14469 * we need to see all IGMP and/or PIM packets. 14470 */ 14471 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14472 (ipha->ipha_protocol == IPPROTO_PIM)) { 14473 goto done; 14474 } 14475 break; 14476 case -1: 14477 /* pkt is mal-formed, toss it */ 14478 goto drop_pkt; 14479 case 1: 14480 /* pkt is okay and arrived on a tunnel */ 14481 /* 14482 * If we are running a multicast router 14483 * we need to see all igmp packets. 14484 */ 14485 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14486 *dstp = INADDR_BROADCAST; 14487 *ll_multicast = 1; 14488 return (B_FALSE); 14489 } 14490 14491 goto drop_pkt; 14492 } 14493 } 14494 14495 ILM_WALKER_HOLD(ill); 14496 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14497 /* 14498 * This might just be caused by the fact that 14499 * multiple IP Multicast addresses map to the same 14500 * link layer multicast - no need to increment counter! 14501 */ 14502 ILM_WALKER_RELE(ill); 14503 freemsg(mp); 14504 return (B_TRUE); 14505 } 14506 ILM_WALKER_RELE(ill); 14507 done: 14508 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14509 /* 14510 * This assumes the we deliver to all streams for multicast 14511 * and broadcast packets. 14512 */ 14513 *dstp = INADDR_BROADCAST; 14514 *ll_multicast = 1; 14515 return (B_FALSE); 14516 drop_pkt: 14517 ip2dbg(("ip_rput: drop pkt\n")); 14518 freemsg(mp); 14519 return (B_TRUE); 14520 } 14521 14522 /* 14523 * This function is used to both return an indication of whether or not 14524 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14525 * and in doing so, determine whether or not it is broadcast vs multicast. 14526 * For it to be a broadcast packet, we must have the appropriate mblk_t 14527 * hanging off the ill_t. If this is either not present or doesn't match 14528 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14529 * to be multicast. Thus NICs that have no broadcast address (or no 14530 * capability for one, such as point to point links) cannot return as 14531 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14532 * the return values simplifies the current use of the return value of this 14533 * function, which is to pass through the multicast/broadcast characteristic 14534 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14535 * changing the return value to some other symbol demands the appropriate 14536 * "translation" when hpe_flags is set prior to calling hook_run() for 14537 * packet events. 14538 */ 14539 int 14540 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14541 { 14542 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14543 mblk_t *bmp; 14544 14545 if (ind->dl_group_address) { 14546 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14547 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14548 MBLKL(mb) && 14549 (bmp = ill->ill_bcast_mp) != NULL) { 14550 dl_unitdata_req_t *dlur; 14551 uint8_t *bphys_addr; 14552 14553 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14554 if (ill->ill_sap_length < 0) 14555 bphys_addr = (uchar_t *)dlur + 14556 dlur->dl_dest_addr_offset; 14557 else 14558 bphys_addr = (uchar_t *)dlur + 14559 dlur->dl_dest_addr_offset + 14560 ill->ill_sap_length; 14561 14562 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14563 bphys_addr, ind->dl_dest_addr_length) == 0) { 14564 return (HPE_BROADCAST); 14565 } 14566 return (HPE_MULTICAST); 14567 } 14568 return (HPE_MULTICAST); 14569 } 14570 return (0); 14571 } 14572 14573 static boolean_t 14574 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14575 int *ll_multicast, mblk_t **mpp) 14576 { 14577 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14578 boolean_t must_copy = B_FALSE; 14579 struct iocblk *iocp; 14580 ipha_t *ipha; 14581 ip_stack_t *ipst = ill->ill_ipst; 14582 14583 #define rptr ((uchar_t *)ipha) 14584 14585 first_mp = *first_mpp; 14586 mp = *mpp; 14587 14588 ASSERT(first_mp == mp); 14589 14590 /* 14591 * if db_ref > 1 then copymsg and free original. Packet may be 14592 * changed and do not want other entity who has a reference to this 14593 * message to trip over the changes. This is a blind change because 14594 * trying to catch all places that might change packet is too 14595 * difficult (since it may be a module above this one) 14596 * 14597 * This corresponds to the non-fast path case. We walk down the full 14598 * chain in this case, and check the db_ref count of all the dblks, 14599 * and do a copymsg if required. It is possible that the db_ref counts 14600 * of the data blocks in the mblk chain can be different. 14601 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14602 * count of 1, followed by a M_DATA block with a ref count of 2, if 14603 * 'snoop' is running. 14604 */ 14605 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14606 if (mp1->b_datap->db_ref > 1) { 14607 must_copy = B_TRUE; 14608 break; 14609 } 14610 } 14611 14612 if (must_copy) { 14613 mp1 = copymsg(mp); 14614 if (mp1 == NULL) { 14615 for (mp1 = mp; mp1 != NULL; 14616 mp1 = mp1->b_cont) { 14617 mp1->b_next = NULL; 14618 mp1->b_prev = NULL; 14619 } 14620 freemsg(mp); 14621 if (ill != NULL) { 14622 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14623 } else { 14624 BUMP_MIB(&ipst->ips_ip_mib, 14625 ipIfStatsInDiscards); 14626 } 14627 return (B_TRUE); 14628 } 14629 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14630 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14631 /* Copy b_prev - used by ip_mroute_decap */ 14632 to_mp->b_prev = from_mp->b_prev; 14633 from_mp->b_prev = NULL; 14634 } 14635 *first_mpp = first_mp = mp1; 14636 freemsg(mp); 14637 mp = mp1; 14638 *mpp = mp1; 14639 } 14640 14641 ipha = (ipha_t *)mp->b_rptr; 14642 14643 /* 14644 * previous code has a case for M_DATA. 14645 * We want to check how that happens. 14646 */ 14647 ASSERT(first_mp->b_datap->db_type != M_DATA); 14648 switch (first_mp->b_datap->db_type) { 14649 case M_PROTO: 14650 case M_PCPROTO: 14651 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14652 DL_UNITDATA_IND) { 14653 /* Go handle anything other than data elsewhere. */ 14654 ip_rput_dlpi(q, mp); 14655 return (B_TRUE); 14656 } 14657 14658 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14659 /* Ditch the DLPI header. */ 14660 mp1 = mp->b_cont; 14661 ASSERT(first_mp == mp); 14662 *first_mpp = mp1; 14663 freeb(mp); 14664 *mpp = mp1; 14665 return (B_FALSE); 14666 case M_IOCACK: 14667 ip1dbg(("got iocack ")); 14668 iocp = (struct iocblk *)mp->b_rptr; 14669 switch (iocp->ioc_cmd) { 14670 case DL_IOC_HDR_INFO: 14671 ill = (ill_t *)q->q_ptr; 14672 ill_fastpath_ack(ill, mp); 14673 return (B_TRUE); 14674 case SIOCSTUNPARAM: 14675 case OSIOCSTUNPARAM: 14676 /* Go through qwriter_ip */ 14677 break; 14678 case SIOCGTUNPARAM: 14679 case OSIOCGTUNPARAM: 14680 ip_rput_other(NULL, q, mp, NULL); 14681 return (B_TRUE); 14682 default: 14683 putnext(q, mp); 14684 return (B_TRUE); 14685 } 14686 /* FALLTHRU */ 14687 case M_ERROR: 14688 case M_HANGUP: 14689 /* 14690 * Since this is on the ill stream we unconditionally 14691 * bump up the refcount 14692 */ 14693 ill_refhold(ill); 14694 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14695 return (B_TRUE); 14696 case M_CTL: 14697 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14698 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14699 IPHADA_M_CTL)) { 14700 /* 14701 * It's an IPsec accelerated packet. 14702 * Make sure that the ill from which we received the 14703 * packet has enabled IPsec hardware acceleration. 14704 */ 14705 if (!(ill->ill_capabilities & 14706 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14707 /* IPsec kstats: bean counter */ 14708 freemsg(mp); 14709 return (B_TRUE); 14710 } 14711 14712 /* 14713 * Make mp point to the mblk following the M_CTL, 14714 * then process according to type of mp. 14715 * After this processing, first_mp will point to 14716 * the data-attributes and mp to the pkt following 14717 * the M_CTL. 14718 */ 14719 mp = first_mp->b_cont; 14720 if (mp == NULL) { 14721 freemsg(first_mp); 14722 return (B_TRUE); 14723 } 14724 /* 14725 * A Hardware Accelerated packet can only be M_DATA 14726 * ESP or AH packet. 14727 */ 14728 if (mp->b_datap->db_type != M_DATA) { 14729 /* non-M_DATA IPsec accelerated packet */ 14730 IPSECHW_DEBUG(IPSECHW_PKT, 14731 ("non-M_DATA IPsec accelerated pkt\n")); 14732 freemsg(first_mp); 14733 return (B_TRUE); 14734 } 14735 ipha = (ipha_t *)mp->b_rptr; 14736 if (ipha->ipha_protocol != IPPROTO_AH && 14737 ipha->ipha_protocol != IPPROTO_ESP) { 14738 IPSECHW_DEBUG(IPSECHW_PKT, 14739 ("non-M_DATA IPsec accelerated pkt\n")); 14740 freemsg(first_mp); 14741 return (B_TRUE); 14742 } 14743 *mpp = mp; 14744 return (B_FALSE); 14745 } 14746 putnext(q, mp); 14747 return (B_TRUE); 14748 case M_IOCNAK: 14749 ip1dbg(("got iocnak ")); 14750 iocp = (struct iocblk *)mp->b_rptr; 14751 switch (iocp->ioc_cmd) { 14752 case SIOCSTUNPARAM: 14753 case OSIOCSTUNPARAM: 14754 /* 14755 * Since this is on the ill stream we unconditionally 14756 * bump up the refcount 14757 */ 14758 ill_refhold(ill); 14759 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14760 return (B_TRUE); 14761 case DL_IOC_HDR_INFO: 14762 case SIOCGTUNPARAM: 14763 case OSIOCGTUNPARAM: 14764 ip_rput_other(NULL, q, mp, NULL); 14765 return (B_TRUE); 14766 default: 14767 break; 14768 } 14769 /* FALLTHRU */ 14770 default: 14771 putnext(q, mp); 14772 return (B_TRUE); 14773 } 14774 } 14775 14776 /* Read side put procedure. Packets coming from the wire arrive here. */ 14777 void 14778 ip_rput(queue_t *q, mblk_t *mp) 14779 { 14780 ill_t *ill; 14781 union DL_primitives *dl; 14782 14783 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14784 14785 ill = (ill_t *)q->q_ptr; 14786 14787 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14788 /* 14789 * If things are opening or closing, only accept high-priority 14790 * DLPI messages. (On open ill->ill_ipif has not yet been 14791 * created; on close, things hanging off the ill may have been 14792 * freed already.) 14793 */ 14794 dl = (union DL_primitives *)mp->b_rptr; 14795 if (DB_TYPE(mp) != M_PCPROTO || 14796 dl->dl_primitive == DL_UNITDATA_IND) { 14797 /* 14798 * SIOC[GS]TUNPARAM ioctls can come here. 14799 */ 14800 inet_freemsg(mp); 14801 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14802 "ip_rput_end: q %p (%S)", q, "uninit"); 14803 return; 14804 } 14805 } 14806 14807 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14808 "ip_rput_end: q %p (%S)", q, "end"); 14809 14810 ip_input(ill, NULL, mp, NULL); 14811 } 14812 14813 static mblk_t * 14814 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14815 { 14816 mblk_t *mp1; 14817 boolean_t adjusted = B_FALSE; 14818 ip_stack_t *ipst = ill->ill_ipst; 14819 14820 IP_STAT(ipst, ip_db_ref); 14821 /* 14822 * The IP_RECVSLLA option depends on having the 14823 * link layer header. First check that: 14824 * a> the underlying device is of type ether, 14825 * since this option is currently supported only 14826 * over ethernet. 14827 * b> there is enough room to copy over the link 14828 * layer header. 14829 * 14830 * Once the checks are done, adjust rptr so that 14831 * the link layer header will be copied via 14832 * copymsg. Note that, IFT_ETHER may be returned 14833 * by some non-ethernet drivers but in this case 14834 * the second check will fail. 14835 */ 14836 if (ill->ill_type == IFT_ETHER && 14837 (mp->b_rptr - mp->b_datap->db_base) >= 14838 sizeof (struct ether_header)) { 14839 mp->b_rptr -= sizeof (struct ether_header); 14840 adjusted = B_TRUE; 14841 } 14842 mp1 = copymsg(mp); 14843 14844 if (mp1 == NULL) { 14845 mp->b_next = NULL; 14846 /* clear b_prev - used by ip_mroute_decap */ 14847 mp->b_prev = NULL; 14848 freemsg(mp); 14849 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14850 return (NULL); 14851 } 14852 14853 if (adjusted) { 14854 /* 14855 * Copy is done. Restore the pointer in 14856 * the _new_ mblk 14857 */ 14858 mp1->b_rptr += sizeof (struct ether_header); 14859 } 14860 14861 /* Copy b_prev - used by ip_mroute_decap */ 14862 mp1->b_prev = mp->b_prev; 14863 mp->b_prev = NULL; 14864 14865 /* preserve the hardware checksum flags and data, if present */ 14866 if (DB_CKSUMFLAGS(mp) != 0) { 14867 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14868 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14869 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14870 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14871 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14872 } 14873 14874 freemsg(mp); 14875 return (mp1); 14876 } 14877 14878 /* 14879 * Direct read side procedure capable of dealing with chains. GLDv3 based 14880 * drivers call this function directly with mblk chains while STREAMS 14881 * read side procedure ip_rput() calls this for single packet with ip_ring 14882 * set to NULL to process one packet at a time. 14883 * 14884 * The ill will always be valid if this function is called directly from 14885 * the driver. 14886 * 14887 * If ip_input() is called from GLDv3: 14888 * 14889 * - This must be a non-VLAN IP stream. 14890 * - 'mp' is either an untagged or a special priority-tagged packet. 14891 * - Any VLAN tag that was in the MAC header has been stripped. 14892 * 14893 * If the IP header in packet is not 32-bit aligned, every message in the 14894 * chain will be aligned before further operations. This is required on SPARC 14895 * platform. 14896 */ 14897 /* ARGSUSED */ 14898 void 14899 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14900 struct mac_header_info_s *mhip) 14901 { 14902 ipaddr_t dst = NULL; 14903 ipaddr_t prev_dst; 14904 ire_t *ire = NULL; 14905 ipha_t *ipha; 14906 uint_t pkt_len; 14907 ssize_t len; 14908 uint_t opt_len; 14909 int ll_multicast; 14910 int cgtp_flt_pkt; 14911 queue_t *q = ill->ill_rq; 14912 squeue_t *curr_sqp = NULL; 14913 mblk_t *head = NULL; 14914 mblk_t *tail = NULL; 14915 mblk_t *first_mp; 14916 mblk_t *mp; 14917 mblk_t *dmp; 14918 int cnt = 0; 14919 ip_stack_t *ipst = ill->ill_ipst; 14920 14921 ASSERT(mp_chain != NULL); 14922 ASSERT(ill != NULL); 14923 14924 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14925 14926 #define rptr ((uchar_t *)ipha) 14927 14928 while (mp_chain != NULL) { 14929 first_mp = mp = mp_chain; 14930 mp_chain = mp_chain->b_next; 14931 mp->b_next = NULL; 14932 ll_multicast = 0; 14933 14934 /* 14935 * We do ire caching from one iteration to 14936 * another. In the event the packet chain contains 14937 * all packets from the same dst, this caching saves 14938 * an ire_cache_lookup for each of the succeeding 14939 * packets in a packet chain. 14940 */ 14941 prev_dst = dst; 14942 14943 /* 14944 * if db_ref > 1 then copymsg and free original. Packet 14945 * may be changed and we do not want the other entity 14946 * who has a reference to this message to trip over the 14947 * changes. This is a blind change because trying to 14948 * catch all places that might change the packet is too 14949 * difficult. 14950 * 14951 * This corresponds to the fast path case, where we have 14952 * a chain of M_DATA mblks. We check the db_ref count 14953 * of only the 1st data block in the mblk chain. There 14954 * doesn't seem to be a reason why a device driver would 14955 * send up data with varying db_ref counts in the mblk 14956 * chain. In any case the Fast path is a private 14957 * interface, and our drivers don't do such a thing. 14958 * Given the above assumption, there is no need to walk 14959 * down the entire mblk chain (which could have a 14960 * potential performance problem) 14961 */ 14962 14963 if (DB_REF(mp) > 1) { 14964 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14965 continue; 14966 } 14967 14968 /* 14969 * Check and align the IP header. 14970 */ 14971 first_mp = mp; 14972 if (DB_TYPE(mp) == M_DATA) { 14973 dmp = mp; 14974 } else if (DB_TYPE(mp) == M_PROTO && 14975 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14976 dmp = mp->b_cont; 14977 } else { 14978 dmp = NULL; 14979 } 14980 if (dmp != NULL) { 14981 /* 14982 * IP header ptr not aligned? 14983 * OR IP header not complete in first mblk 14984 */ 14985 if (!OK_32PTR(dmp->b_rptr) || 14986 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14987 if (!ip_check_and_align_header(q, dmp, ipst)) 14988 continue; 14989 } 14990 } 14991 14992 /* 14993 * ip_input fast path 14994 */ 14995 14996 /* mblk type is not M_DATA */ 14997 if (DB_TYPE(mp) != M_DATA) { 14998 if (ip_rput_process_notdata(q, &first_mp, ill, 14999 &ll_multicast, &mp)) 15000 continue; 15001 15002 /* 15003 * The only way we can get here is if we had a 15004 * packet that was either a DL_UNITDATA_IND or 15005 * an M_CTL for an IPsec accelerated packet. 15006 * 15007 * In either case, the first_mp will point to 15008 * the leading M_PROTO or M_CTL. 15009 */ 15010 ASSERT(first_mp != NULL); 15011 } else if (mhip != NULL) { 15012 /* 15013 * ll_multicast is set here so that it is ready 15014 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 15015 * manipulates ll_multicast in the same fashion when 15016 * called from ip_rput_process_notdata. 15017 */ 15018 switch (mhip->mhi_dsttype) { 15019 case MAC_ADDRTYPE_MULTICAST : 15020 ll_multicast = HPE_MULTICAST; 15021 break; 15022 case MAC_ADDRTYPE_BROADCAST : 15023 ll_multicast = HPE_BROADCAST; 15024 break; 15025 default : 15026 break; 15027 } 15028 } 15029 15030 /* Make sure its an M_DATA and that its aligned */ 15031 ASSERT(DB_TYPE(mp) == M_DATA); 15032 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15033 15034 ipha = (ipha_t *)mp->b_rptr; 15035 len = mp->b_wptr - rptr; 15036 pkt_len = ntohs(ipha->ipha_length); 15037 15038 /* 15039 * We must count all incoming packets, even if they end 15040 * up being dropped later on. 15041 */ 15042 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15043 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15044 15045 /* multiple mblk or too short */ 15046 len -= pkt_len; 15047 if (len != 0) { 15048 /* 15049 * Make sure we have data length consistent 15050 * with the IP header. 15051 */ 15052 if (mp->b_cont == NULL) { 15053 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15054 BUMP_MIB(ill->ill_ip_mib, 15055 ipIfStatsInHdrErrors); 15056 ip2dbg(("ip_input: drop pkt\n")); 15057 freemsg(mp); 15058 continue; 15059 } 15060 mp->b_wptr = rptr + pkt_len; 15061 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15062 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15063 BUMP_MIB(ill->ill_ip_mib, 15064 ipIfStatsInHdrErrors); 15065 ip2dbg(("ip_input: drop pkt\n")); 15066 freemsg(mp); 15067 continue; 15068 } 15069 (void) adjmsg(mp, -len); 15070 IP_STAT(ipst, ip_multimblk3); 15071 } 15072 } 15073 15074 /* Obtain the dst of the current packet */ 15075 dst = ipha->ipha_dst; 15076 15077 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, 15078 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, 15079 ipha, ip6_t *, NULL, int, 0); 15080 15081 /* 15082 * The following test for loopback is faster than 15083 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15084 * operations. 15085 * Note that these addresses are always in network byte order 15086 */ 15087 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15088 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15089 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15090 freemsg(mp); 15091 continue; 15092 } 15093 15094 /* 15095 * The event for packets being received from a 'physical' 15096 * interface is placed after validation of the source and/or 15097 * destination address as being local so that packets can be 15098 * redirected to loopback addresses using ipnat. 15099 */ 15100 DTRACE_PROBE4(ip4__physical__in__start, 15101 ill_t *, ill, ill_t *, NULL, 15102 ipha_t *, ipha, mblk_t *, first_mp); 15103 15104 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15105 ipst->ips_ipv4firewall_physical_in, 15106 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15107 15108 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15109 15110 if (first_mp == NULL) { 15111 continue; 15112 } 15113 dst = ipha->ipha_dst; 15114 15115 /* 15116 * Attach any necessary label information to 15117 * this packet 15118 */ 15119 if (is_system_labeled() && 15120 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15121 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15122 freemsg(mp); 15123 continue; 15124 } 15125 15126 /* 15127 * Reuse the cached ire only if the ipha_dst of the previous 15128 * packet is the same as the current packet AND it is not 15129 * INADDR_ANY. 15130 */ 15131 if (!(dst == prev_dst && dst != INADDR_ANY) && 15132 (ire != NULL)) { 15133 ire_refrele(ire); 15134 ire = NULL; 15135 } 15136 opt_len = ipha->ipha_version_and_hdr_length - 15137 IP_SIMPLE_HDR_VERSION; 15138 15139 /* 15140 * Check to see if we can take the fastpath. 15141 * That is possible if the following conditions are met 15142 * o Tsol disabled 15143 * o CGTP disabled 15144 * o ipp_action_count is 0 15145 * o no options in the packet 15146 * o not a RSVP packet 15147 * o not a multicast packet 15148 * o ill not in IP_DHCPINIT_IF mode 15149 */ 15150 if (!is_system_labeled() && 15151 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15152 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15153 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15154 if (ire == NULL) 15155 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15156 ipst); 15157 15158 /* incoming packet is for forwarding */ 15159 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15160 ire = ip_fast_forward(ire, dst, ill, mp); 15161 continue; 15162 } 15163 /* incoming packet is for local consumption */ 15164 if (ire->ire_type & IRE_LOCAL) 15165 goto local; 15166 } 15167 15168 /* 15169 * Disable ire caching for anything more complex 15170 * than the simple fast path case we checked for above. 15171 */ 15172 if (ire != NULL) { 15173 ire_refrele(ire); 15174 ire = NULL; 15175 } 15176 15177 /* 15178 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15179 * server to unicast DHCP packets to a DHCP client using the 15180 * IP address it is offering to the client. This can be 15181 * disabled through the "broadcast bit", but not all DHCP 15182 * servers honor that bit. Therefore, to interoperate with as 15183 * many DHCP servers as possible, the DHCP client allows the 15184 * server to unicast, but we treat those packets as broadcast 15185 * here. Note that we don't rewrite the packet itself since 15186 * (a) that would mess up the checksums and (b) the DHCP 15187 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15188 * hand it the packet regardless. 15189 */ 15190 if (ill->ill_dhcpinit != 0 && 15191 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15192 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15193 udpha_t *udpha; 15194 15195 /* 15196 * Reload ipha since pullupmsg() can change b_rptr. 15197 */ 15198 ipha = (ipha_t *)mp->b_rptr; 15199 udpha = (udpha_t *)&ipha[1]; 15200 15201 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15202 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15203 mblk_t *, mp); 15204 dst = INADDR_BROADCAST; 15205 } 15206 } 15207 15208 /* Full-blown slow path */ 15209 if (opt_len != 0) { 15210 if (len != 0) 15211 IP_STAT(ipst, ip_multimblk4); 15212 else 15213 IP_STAT(ipst, ip_ipoptions); 15214 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15215 &dst, ipst)) 15216 continue; 15217 } 15218 15219 /* 15220 * Invoke the CGTP (multirouting) filtering module to process 15221 * the incoming packet. Packets identified as duplicates 15222 * must be discarded. Filtering is active only if the 15223 * the ip_cgtp_filter ndd variable is non-zero. 15224 */ 15225 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15226 if (ipst->ips_ip_cgtp_filter && 15227 ipst->ips_ip_cgtp_filter_ops != NULL) { 15228 netstackid_t stackid; 15229 15230 stackid = ipst->ips_netstack->netstack_stackid; 15231 cgtp_flt_pkt = 15232 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15233 ill->ill_phyint->phyint_ifindex, mp); 15234 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15235 freemsg(first_mp); 15236 continue; 15237 } 15238 } 15239 15240 /* 15241 * If rsvpd is running, let RSVP daemon handle its processing 15242 * and forwarding of RSVP multicast/unicast packets. 15243 * If rsvpd is not running but mrouted is running, RSVP 15244 * multicast packets are forwarded as multicast traffic 15245 * and RSVP unicast packets are forwarded by unicast router. 15246 * If neither rsvpd nor mrouted is running, RSVP multicast 15247 * packets are not forwarded, but the unicast packets are 15248 * forwarded like unicast traffic. 15249 */ 15250 if (ipha->ipha_protocol == IPPROTO_RSVP && 15251 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15252 NULL) { 15253 /* RSVP packet and rsvpd running. Treat as ours */ 15254 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15255 /* 15256 * This assumes that we deliver to all streams for 15257 * multicast and broadcast packets. 15258 * We have to force ll_multicast to 1 to handle the 15259 * M_DATA messages passed in from ip_mroute_decap. 15260 */ 15261 dst = INADDR_BROADCAST; 15262 ll_multicast = 1; 15263 } else if (CLASSD(dst)) { 15264 /* packet is multicast */ 15265 mp->b_next = NULL; 15266 if (ip_rput_process_multicast(q, mp, ill, ipha, 15267 &ll_multicast, &dst)) 15268 continue; 15269 } 15270 15271 if (ire == NULL) { 15272 ire = ire_cache_lookup(dst, ALL_ZONES, 15273 MBLK_GETLABEL(mp), ipst); 15274 } 15275 15276 if (ire != NULL && ire->ire_stq != NULL && 15277 ire->ire_zoneid != GLOBAL_ZONEID && 15278 ire->ire_zoneid != ALL_ZONES) { 15279 /* 15280 * Should only use IREs that are visible from the 15281 * global zone for forwarding. 15282 */ 15283 ire_refrele(ire); 15284 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15285 MBLK_GETLABEL(mp), ipst); 15286 } 15287 15288 if (ire == NULL) { 15289 /* 15290 * No IRE for this destination, so it can't be for us. 15291 * Unless we are forwarding, drop the packet. 15292 * We have to let source routed packets through 15293 * since we don't yet know if they are 'ping -l' 15294 * packets i.e. if they will go out over the 15295 * same interface as they came in on. 15296 */ 15297 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15298 if (ire == NULL) 15299 continue; 15300 } 15301 15302 /* 15303 * Broadcast IRE may indicate either broadcast or 15304 * multicast packet 15305 */ 15306 if (ire->ire_type == IRE_BROADCAST) { 15307 /* 15308 * Skip broadcast checks if packet is UDP multicast; 15309 * we'd rather not enter ip_rput_process_broadcast() 15310 * unless the packet is broadcast for real, since 15311 * that routine is a no-op for multicast. 15312 */ 15313 if (ipha->ipha_protocol != IPPROTO_UDP || 15314 !CLASSD(ipha->ipha_dst)) { 15315 ire = ip_rput_process_broadcast(&q, mp, 15316 ire, ipha, ill, dst, cgtp_flt_pkt, 15317 ll_multicast); 15318 if (ire == NULL) 15319 continue; 15320 } 15321 } else if (ire->ire_stq != NULL) { 15322 /* fowarding? */ 15323 ip_rput_process_forward(q, mp, ire, ipha, ill, 15324 ll_multicast); 15325 /* ip_rput_process_forward consumed the packet */ 15326 continue; 15327 } 15328 15329 local: 15330 /* 15331 * If the queue in the ire is different to the ingress queue 15332 * then we need to check to see if we can accept the packet. 15333 * Note that for multicast packets and broadcast packets sent 15334 * to a broadcast address which is shared between multiple 15335 * interfaces we should not do this since we just got a random 15336 * broadcast ire. 15337 */ 15338 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15339 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15340 ill)) == NULL) { 15341 /* Drop packet */ 15342 BUMP_MIB(ill->ill_ip_mib, 15343 ipIfStatsForwProhibits); 15344 freemsg(mp); 15345 continue; 15346 } 15347 if (ire->ire_rfq != NULL) 15348 q = ire->ire_rfq; 15349 } 15350 15351 switch (ipha->ipha_protocol) { 15352 case IPPROTO_TCP: 15353 ASSERT(first_mp == mp); 15354 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15355 mp, 0, q, ip_ring)) != NULL) { 15356 if (curr_sqp == NULL) { 15357 curr_sqp = GET_SQUEUE(mp); 15358 ASSERT(cnt == 0); 15359 cnt++; 15360 head = tail = mp; 15361 } else if (curr_sqp == GET_SQUEUE(mp)) { 15362 ASSERT(tail != NULL); 15363 cnt++; 15364 tail->b_next = mp; 15365 tail = mp; 15366 } else { 15367 /* 15368 * A different squeue. Send the 15369 * chain for the previous squeue on 15370 * its way. This shouldn't happen 15371 * often unless interrupt binding 15372 * changes. 15373 */ 15374 IP_STAT(ipst, ip_input_multi_squeue); 15375 squeue_enter_chain(curr_sqp, head, 15376 tail, cnt, SQTAG_IP_INPUT); 15377 curr_sqp = GET_SQUEUE(mp); 15378 head = mp; 15379 tail = mp; 15380 cnt = 1; 15381 } 15382 } 15383 continue; 15384 case IPPROTO_UDP: 15385 ASSERT(first_mp == mp); 15386 ip_udp_input(q, mp, ipha, ire, ill); 15387 continue; 15388 case IPPROTO_SCTP: 15389 ASSERT(first_mp == mp); 15390 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15391 q, dst); 15392 /* ire has been released by ip_sctp_input */ 15393 ire = NULL; 15394 continue; 15395 default: 15396 ip_proto_input(q, first_mp, ipha, ire, ill, 0); 15397 continue; 15398 } 15399 } 15400 15401 if (ire != NULL) 15402 ire_refrele(ire); 15403 15404 if (head != NULL) 15405 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15406 15407 /* 15408 * This code is there just to make netperf/ttcp look good. 15409 * 15410 * Its possible that after being in polling mode (and having cleared 15411 * the backlog), squeues have turned the interrupt frequency higher 15412 * to improve latency at the expense of more CPU utilization (less 15413 * packets per interrupts or more number of interrupts). Workloads 15414 * like ttcp/netperf do manage to tickle polling once in a while 15415 * but for the remaining time, stay in higher interrupt mode since 15416 * their packet arrival rate is pretty uniform and this shows up 15417 * as higher CPU utilization. Since people care about CPU utilization 15418 * while running netperf/ttcp, turn the interrupt frequency back to 15419 * normal/default if polling has not been used in ip_poll_normal_ticks. 15420 */ 15421 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15422 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15423 ip_ring->rr_poll_state &= ~ILL_POLLING; 15424 ip_ring->rr_blank(ip_ring->rr_handle, 15425 ip_ring->rr_normal_blank_time, 15426 ip_ring->rr_normal_pkt_cnt); 15427 } 15428 } 15429 15430 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15431 "ip_input_end: q %p (%S)", q, "end"); 15432 #undef rptr 15433 } 15434 15435 static void 15436 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15437 t_uscalar_t err) 15438 { 15439 if (dl_err == DL_SYSERR) { 15440 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15441 "%s: %s failed: DL_SYSERR (errno %u)\n", 15442 ill->ill_name, dl_primstr(prim), err); 15443 return; 15444 } 15445 15446 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15447 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15448 dl_errstr(dl_err)); 15449 } 15450 15451 /* 15452 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15453 * than DL_UNITDATA_IND messages. If we need to process this message 15454 * exclusively, we call qwriter_ip, in which case we also need to call 15455 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15456 */ 15457 void 15458 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15459 { 15460 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15461 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15462 ill_t *ill = q->q_ptr; 15463 t_uscalar_t prim = dloa->dl_primitive; 15464 t_uscalar_t reqprim = DL_PRIM_INVAL; 15465 15466 ip1dbg(("ip_rput_dlpi")); 15467 15468 /* 15469 * If we received an ACK but didn't send a request for it, then it 15470 * can't be part of any pending operation; discard up-front. 15471 */ 15472 switch (prim) { 15473 case DL_ERROR_ACK: 15474 reqprim = dlea->dl_error_primitive; 15475 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 15476 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 15477 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 15478 dlea->dl_unix_errno)); 15479 break; 15480 case DL_OK_ACK: 15481 reqprim = dloa->dl_correct_primitive; 15482 break; 15483 case DL_INFO_ACK: 15484 reqprim = DL_INFO_REQ; 15485 break; 15486 case DL_BIND_ACK: 15487 reqprim = DL_BIND_REQ; 15488 break; 15489 case DL_PHYS_ADDR_ACK: 15490 reqprim = DL_PHYS_ADDR_REQ; 15491 break; 15492 case DL_NOTIFY_ACK: 15493 reqprim = DL_NOTIFY_REQ; 15494 break; 15495 case DL_CONTROL_ACK: 15496 reqprim = DL_CONTROL_REQ; 15497 break; 15498 case DL_CAPABILITY_ACK: 15499 reqprim = DL_CAPABILITY_REQ; 15500 break; 15501 } 15502 15503 if (prim != DL_NOTIFY_IND) { 15504 if (reqprim == DL_PRIM_INVAL || 15505 !ill_dlpi_pending(ill, reqprim)) { 15506 /* Not a DLPI message we support or expected */ 15507 freemsg(mp); 15508 return; 15509 } 15510 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 15511 dl_primstr(reqprim))); 15512 } 15513 15514 switch (reqprim) { 15515 case DL_UNBIND_REQ: 15516 /* 15517 * NOTE: we mark the unbind as complete even if we got a 15518 * DL_ERROR_ACK, since there's not much else we can do. 15519 */ 15520 mutex_enter(&ill->ill_lock); 15521 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15522 cv_signal(&ill->ill_cv); 15523 mutex_exit(&ill->ill_lock); 15524 break; 15525 15526 case DL_ENABMULTI_REQ: 15527 if (prim == DL_OK_ACK) { 15528 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15529 ill->ill_dlpi_multicast_state = IDS_OK; 15530 } 15531 break; 15532 } 15533 15534 /* 15535 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15536 * need to become writer to continue to process it. Because an 15537 * exclusive operation doesn't complete until replies to all queued 15538 * DLPI messages have been received, we know we're in the middle of an 15539 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15540 * 15541 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15542 * Since this is on the ill stream we unconditionally bump up the 15543 * refcount without doing ILL_CAN_LOOKUP(). 15544 */ 15545 ill_refhold(ill); 15546 if (prim == DL_NOTIFY_IND) 15547 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15548 else 15549 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15550 } 15551 15552 /* 15553 * Handling of DLPI messages that require exclusive access to the ipsq. 15554 * 15555 * Need to do ill_pending_mp_release on ioctl completion, which could 15556 * happen here. (along with mi_copy_done) 15557 */ 15558 /* ARGSUSED */ 15559 static void 15560 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15561 { 15562 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15563 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15564 int err = 0; 15565 ill_t *ill; 15566 ipif_t *ipif = NULL; 15567 mblk_t *mp1 = NULL; 15568 conn_t *connp = NULL; 15569 t_uscalar_t paddrreq; 15570 mblk_t *mp_hw; 15571 boolean_t success; 15572 boolean_t ioctl_aborted = B_FALSE; 15573 boolean_t log = B_TRUE; 15574 ip_stack_t *ipst; 15575 15576 ip1dbg(("ip_rput_dlpi_writer ..")); 15577 ill = (ill_t *)q->q_ptr; 15578 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15579 15580 ASSERT(IAM_WRITER_ILL(ill)); 15581 15582 ipst = ill->ill_ipst; 15583 15584 /* 15585 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15586 * both are null or non-null. However we can assert that only 15587 * after grabbing the ipsq_lock. So we don't make any assertion 15588 * here and in other places in the code. 15589 */ 15590 ipif = ipsq->ipsq_pending_ipif; 15591 /* 15592 * The current ioctl could have been aborted by the user and a new 15593 * ioctl to bring up another ill could have started. We could still 15594 * get a response from the driver later. 15595 */ 15596 if (ipif != NULL && ipif->ipif_ill != ill) 15597 ioctl_aborted = B_TRUE; 15598 15599 switch (dloa->dl_primitive) { 15600 case DL_ERROR_ACK: 15601 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15602 dl_primstr(dlea->dl_error_primitive))); 15603 15604 switch (dlea->dl_error_primitive) { 15605 case DL_DISABMULTI_REQ: 15606 if (!ill->ill_isv6) 15607 ipsq_current_finish(ipsq); 15608 ill_dlpi_done(ill, dlea->dl_error_primitive); 15609 break; 15610 case DL_PROMISCON_REQ: 15611 case DL_PROMISCOFF_REQ: 15612 case DL_UNBIND_REQ: 15613 case DL_ATTACH_REQ: 15614 case DL_INFO_REQ: 15615 ill_dlpi_done(ill, dlea->dl_error_primitive); 15616 break; 15617 case DL_NOTIFY_REQ: 15618 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15619 log = B_FALSE; 15620 break; 15621 case DL_PHYS_ADDR_REQ: 15622 /* 15623 * For IPv6 only, there are two additional 15624 * phys_addr_req's sent to the driver to get the 15625 * IPv6 token and lla. This allows IP to acquire 15626 * the hardware address format for a given interface 15627 * without having built in knowledge of the hardware 15628 * address. ill_phys_addr_pend keeps track of the last 15629 * DL_PAR sent so we know which response we are 15630 * dealing with. ill_dlpi_done will update 15631 * ill_phys_addr_pend when it sends the next req. 15632 * We don't complete the IOCTL until all three DL_PARs 15633 * have been attempted, so set *_len to 0 and break. 15634 */ 15635 paddrreq = ill->ill_phys_addr_pend; 15636 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15637 if (paddrreq == DL_IPV6_TOKEN) { 15638 ill->ill_token_length = 0; 15639 log = B_FALSE; 15640 break; 15641 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15642 ill->ill_nd_lla_len = 0; 15643 log = B_FALSE; 15644 break; 15645 } 15646 /* 15647 * Something went wrong with the DL_PHYS_ADDR_REQ. 15648 * We presumably have an IOCTL hanging out waiting 15649 * for completion. Find it and complete the IOCTL 15650 * with the error noted. 15651 * However, ill_dl_phys was called on an ill queue 15652 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15653 * set. But the ioctl is known to be pending on ill_wq. 15654 */ 15655 if (!ill->ill_ifname_pending) 15656 break; 15657 ill->ill_ifname_pending = 0; 15658 if (!ioctl_aborted) 15659 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15660 if (mp1 != NULL) { 15661 /* 15662 * This operation (SIOCSLIFNAME) must have 15663 * happened on the ill. Assert there is no conn 15664 */ 15665 ASSERT(connp == NULL); 15666 q = ill->ill_wq; 15667 } 15668 break; 15669 case DL_BIND_REQ: 15670 ill_dlpi_done(ill, DL_BIND_REQ); 15671 if (ill->ill_ifname_pending) 15672 break; 15673 /* 15674 * Something went wrong with the bind. We presumably 15675 * have an IOCTL hanging out waiting for completion. 15676 * Find it, take down the interface that was coming 15677 * up, and complete the IOCTL with the error noted. 15678 */ 15679 if (!ioctl_aborted) 15680 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15681 if (mp1 != NULL) { 15682 /* 15683 * This operation (SIOCSLIFFLAGS) must have 15684 * happened from a conn. 15685 */ 15686 ASSERT(connp != NULL); 15687 q = CONNP_TO_WQ(connp); 15688 if (ill->ill_move_in_progress) { 15689 ILL_CLEAR_MOVE(ill); 15690 } 15691 (void) ipif_down(ipif, NULL, NULL); 15692 /* error is set below the switch */ 15693 } 15694 break; 15695 case DL_ENABMULTI_REQ: 15696 if (!ill->ill_isv6) 15697 ipsq_current_finish(ipsq); 15698 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15699 15700 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15701 ill->ill_dlpi_multicast_state = IDS_FAILED; 15702 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15703 ipif_t *ipif; 15704 15705 printf("ip: joining multicasts failed (%d)" 15706 " on %s - will use link layer " 15707 "broadcasts for multicast\n", 15708 dlea->dl_errno, ill->ill_name); 15709 15710 /* 15711 * Set up the multicast mapping alone. 15712 * writer, so ok to access ill->ill_ipif 15713 * without any lock. 15714 */ 15715 ipif = ill->ill_ipif; 15716 mutex_enter(&ill->ill_phyint->phyint_lock); 15717 ill->ill_phyint->phyint_flags |= 15718 PHYI_MULTI_BCAST; 15719 mutex_exit(&ill->ill_phyint->phyint_lock); 15720 15721 if (!ill->ill_isv6) { 15722 (void) ipif_arp_setup_multicast(ipif, 15723 NULL); 15724 } else { 15725 (void) ipif_ndp_setup_multicast(ipif, 15726 NULL); 15727 } 15728 } 15729 freemsg(mp); /* Don't want to pass this up */ 15730 return; 15731 15732 case DL_CAPABILITY_REQ: 15733 case DL_CONTROL_REQ: 15734 ill_dlpi_done(ill, dlea->dl_error_primitive); 15735 ill->ill_dlpi_capab_state = IDS_FAILED; 15736 freemsg(mp); 15737 return; 15738 } 15739 /* 15740 * Note the error for IOCTL completion (mp1 is set when 15741 * ready to complete ioctl). If ill_ifname_pending_err is 15742 * set, an error occured during plumbing (ill_ifname_pending), 15743 * so we want to report that error. 15744 * 15745 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15746 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15747 * expected to get errack'd if the driver doesn't support 15748 * these flags (e.g. ethernet). log will be set to B_FALSE 15749 * if these error conditions are encountered. 15750 */ 15751 if (mp1 != NULL) { 15752 if (ill->ill_ifname_pending_err != 0) { 15753 err = ill->ill_ifname_pending_err; 15754 ill->ill_ifname_pending_err = 0; 15755 } else { 15756 err = dlea->dl_unix_errno ? 15757 dlea->dl_unix_errno : ENXIO; 15758 } 15759 /* 15760 * If we're plumbing an interface and an error hasn't already 15761 * been saved, set ill_ifname_pending_err to the error passed 15762 * up. Ignore the error if log is B_FALSE (see comment above). 15763 */ 15764 } else if (log && ill->ill_ifname_pending && 15765 ill->ill_ifname_pending_err == 0) { 15766 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15767 dlea->dl_unix_errno : ENXIO; 15768 } 15769 15770 if (log) 15771 ip_dlpi_error(ill, dlea->dl_error_primitive, 15772 dlea->dl_errno, dlea->dl_unix_errno); 15773 break; 15774 case DL_CAPABILITY_ACK: 15775 /* Call a routine to handle this one. */ 15776 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15777 ill_capability_ack(ill, mp); 15778 15779 /* 15780 * If the ack is due to renegotiation, we will need to send 15781 * a new CAPABILITY_REQ to start the renegotiation. 15782 */ 15783 if (ill->ill_capab_reneg) { 15784 ill->ill_capab_reneg = B_FALSE; 15785 ill_capability_probe(ill); 15786 } 15787 break; 15788 case DL_CONTROL_ACK: 15789 /* We treat all of these as "fire and forget" */ 15790 ill_dlpi_done(ill, DL_CONTROL_REQ); 15791 break; 15792 case DL_INFO_ACK: 15793 /* Call a routine to handle this one. */ 15794 ill_dlpi_done(ill, DL_INFO_REQ); 15795 ip_ll_subnet_defaults(ill, mp); 15796 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15797 return; 15798 case DL_BIND_ACK: 15799 /* 15800 * We should have an IOCTL waiting on this unless 15801 * sent by ill_dl_phys, in which case just return 15802 */ 15803 ill_dlpi_done(ill, DL_BIND_REQ); 15804 if (ill->ill_ifname_pending) 15805 break; 15806 15807 if (!ioctl_aborted) 15808 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15809 if (mp1 == NULL) 15810 break; 15811 /* 15812 * Because mp1 was added by ill_dl_up(), and it always 15813 * passes a valid connp, connp must be valid here. 15814 */ 15815 ASSERT(connp != NULL); 15816 q = CONNP_TO_WQ(connp); 15817 15818 /* 15819 * We are exclusive. So nothing can change even after 15820 * we get the pending mp. If need be we can put it back 15821 * and restart, as in calling ipif_arp_up() below. 15822 */ 15823 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15824 15825 mutex_enter(&ill->ill_lock); 15826 ill->ill_dl_up = 1; 15827 (void) ill_hook_event_create(ill, 0, NE_UP, NULL, 0); 15828 mutex_exit(&ill->ill_lock); 15829 15830 /* 15831 * Now bring up the resolver; when that is complete, we'll 15832 * create IREs. Note that we intentionally mirror what 15833 * ipif_up() would have done, because we got here by way of 15834 * ill_dl_up(), which stopped ipif_up()'s processing. 15835 */ 15836 if (ill->ill_isv6) { 15837 /* 15838 * v6 interfaces. 15839 * Unlike ARP which has to do another bind 15840 * and attach, once we get here we are 15841 * done with NDP. Except in the case of 15842 * ILLF_XRESOLV, in which case we send an 15843 * AR_INTERFACE_UP to the external resolver. 15844 * If all goes well, the ioctl will complete 15845 * in ip_rput(). If there's an error, we 15846 * complete it here. 15847 */ 15848 if ((err = ipif_ndp_up(ipif)) == 0) { 15849 if (ill->ill_flags & ILLF_XRESOLV) { 15850 mutex_enter(&connp->conn_lock); 15851 mutex_enter(&ill->ill_lock); 15852 success = ipsq_pending_mp_add( 15853 connp, ipif, q, mp1, 0); 15854 mutex_exit(&ill->ill_lock); 15855 mutex_exit(&connp->conn_lock); 15856 if (success) { 15857 err = ipif_resolver_up(ipif, 15858 Res_act_initial); 15859 if (err == EINPROGRESS) { 15860 freemsg(mp); 15861 return; 15862 } 15863 ASSERT(err != 0); 15864 mp1 = ipsq_pending_mp_get(ipsq, 15865 &connp); 15866 ASSERT(mp1 != NULL); 15867 } else { 15868 /* conn has started closing */ 15869 err = EINTR; 15870 } 15871 } else { /* Non XRESOLV interface */ 15872 (void) ipif_resolver_up(ipif, 15873 Res_act_initial); 15874 err = ipif_up_done_v6(ipif); 15875 } 15876 } 15877 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15878 /* 15879 * ARP and other v4 external resolvers. 15880 * Leave the pending mblk intact so that 15881 * the ioctl completes in ip_rput(). 15882 */ 15883 mutex_enter(&connp->conn_lock); 15884 mutex_enter(&ill->ill_lock); 15885 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15886 mutex_exit(&ill->ill_lock); 15887 mutex_exit(&connp->conn_lock); 15888 if (success) { 15889 err = ipif_resolver_up(ipif, Res_act_initial); 15890 if (err == EINPROGRESS) { 15891 freemsg(mp); 15892 return; 15893 } 15894 ASSERT(err != 0); 15895 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15896 } else { 15897 /* The conn has started closing */ 15898 err = EINTR; 15899 } 15900 } else { 15901 /* 15902 * This one is complete. Reply to pending ioctl. 15903 */ 15904 (void) ipif_resolver_up(ipif, Res_act_initial); 15905 err = ipif_up_done(ipif); 15906 } 15907 15908 if ((err == 0) && (ill->ill_up_ipifs)) { 15909 err = ill_up_ipifs(ill, q, mp1); 15910 if (err == EINPROGRESS) { 15911 freemsg(mp); 15912 return; 15913 } 15914 } 15915 15916 if (ill->ill_up_ipifs) { 15917 ill_group_cleanup(ill); 15918 } 15919 15920 break; 15921 case DL_NOTIFY_IND: { 15922 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15923 ire_t *ire; 15924 boolean_t need_ire_walk_v4 = B_FALSE; 15925 boolean_t need_ire_walk_v6 = B_FALSE; 15926 15927 switch (notify->dl_notification) { 15928 case DL_NOTE_PHYS_ADDR: 15929 err = ill_set_phys_addr(ill, mp); 15930 break; 15931 15932 case DL_NOTE_FASTPATH_FLUSH: 15933 ill_fastpath_flush(ill); 15934 break; 15935 15936 case DL_NOTE_SDU_SIZE: 15937 /* 15938 * Change the MTU size of the interface, of all 15939 * attached ipif's, and of all relevant ire's. The 15940 * new value's a uint32_t at notify->dl_data. 15941 * Mtu change Vs. new ire creation - protocol below. 15942 * 15943 * a Mark the ipif as IPIF_CHANGING. 15944 * b Set the new mtu in the ipif. 15945 * c Change the ire_max_frag on all affected ires 15946 * d Unmark the IPIF_CHANGING 15947 * 15948 * To see how the protocol works, assume an interface 15949 * route is also being added simultaneously by 15950 * ip_rt_add and let 'ipif' be the ipif referenced by 15951 * the ire. If the ire is created before step a, 15952 * it will be cleaned up by step c. If the ire is 15953 * created after step d, it will see the new value of 15954 * ipif_mtu. Any attempt to create the ire between 15955 * steps a to d will fail because of the IPIF_CHANGING 15956 * flag. Note that ire_create() is passed a pointer to 15957 * the ipif_mtu, and not the value. During ire_add 15958 * under the bucket lock, the ire_max_frag of the 15959 * new ire being created is set from the ipif/ire from 15960 * which it is being derived. 15961 */ 15962 mutex_enter(&ill->ill_lock); 15963 ill->ill_max_frag = (uint_t)notify->dl_data; 15964 15965 /* 15966 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15967 * leave it alone 15968 */ 15969 if (ill->ill_mtu_userspecified) { 15970 mutex_exit(&ill->ill_lock); 15971 break; 15972 } 15973 ill->ill_max_mtu = ill->ill_max_frag; 15974 if (ill->ill_isv6) { 15975 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15976 ill->ill_max_mtu = IPV6_MIN_MTU; 15977 } else { 15978 if (ill->ill_max_mtu < IP_MIN_MTU) 15979 ill->ill_max_mtu = IP_MIN_MTU; 15980 } 15981 for (ipif = ill->ill_ipif; ipif != NULL; 15982 ipif = ipif->ipif_next) { 15983 /* 15984 * Don't override the mtu if the user 15985 * has explicitly set it. 15986 */ 15987 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15988 continue; 15989 ipif->ipif_mtu = (uint_t)notify->dl_data; 15990 if (ipif->ipif_isv6) 15991 ire = ipif_to_ire_v6(ipif); 15992 else 15993 ire = ipif_to_ire(ipif); 15994 if (ire != NULL) { 15995 ire->ire_max_frag = ipif->ipif_mtu; 15996 ire_refrele(ire); 15997 } 15998 if (ipif->ipif_flags & IPIF_UP) { 15999 if (ill->ill_isv6) 16000 need_ire_walk_v6 = B_TRUE; 16001 else 16002 need_ire_walk_v4 = B_TRUE; 16003 } 16004 } 16005 mutex_exit(&ill->ill_lock); 16006 if (need_ire_walk_v4) 16007 ire_walk_v4(ill_mtu_change, (char *)ill, 16008 ALL_ZONES, ipst); 16009 if (need_ire_walk_v6) 16010 ire_walk_v6(ill_mtu_change, (char *)ill, 16011 ALL_ZONES, ipst); 16012 break; 16013 case DL_NOTE_LINK_UP: 16014 case DL_NOTE_LINK_DOWN: { 16015 /* 16016 * We are writer. ill / phyint / ipsq assocs stable. 16017 * The RUNNING flag reflects the state of the link. 16018 */ 16019 phyint_t *phyint = ill->ill_phyint; 16020 uint64_t new_phyint_flags; 16021 boolean_t changed = B_FALSE; 16022 boolean_t went_up; 16023 16024 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16025 mutex_enter(&phyint->phyint_lock); 16026 new_phyint_flags = went_up ? 16027 phyint->phyint_flags | PHYI_RUNNING : 16028 phyint->phyint_flags & ~PHYI_RUNNING; 16029 if (new_phyint_flags != phyint->phyint_flags) { 16030 phyint->phyint_flags = new_phyint_flags; 16031 changed = B_TRUE; 16032 } 16033 mutex_exit(&phyint->phyint_lock); 16034 /* 16035 * ill_restart_dad handles the DAD restart and routing 16036 * socket notification logic. 16037 */ 16038 if (changed) { 16039 ill_restart_dad(phyint->phyint_illv4, went_up); 16040 ill_restart_dad(phyint->phyint_illv6, went_up); 16041 } 16042 break; 16043 } 16044 case DL_NOTE_PROMISC_ON_PHYS: 16045 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16046 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16047 mutex_enter(&ill->ill_lock); 16048 ill->ill_promisc_on_phys = B_TRUE; 16049 mutex_exit(&ill->ill_lock); 16050 break; 16051 case DL_NOTE_PROMISC_OFF_PHYS: 16052 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16053 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16054 mutex_enter(&ill->ill_lock); 16055 ill->ill_promisc_on_phys = B_FALSE; 16056 mutex_exit(&ill->ill_lock); 16057 break; 16058 case DL_NOTE_CAPAB_RENEG: 16059 /* 16060 * Something changed on the driver side. 16061 * It wants us to renegotiate the capabilities 16062 * on this ill. One possible cause is the aggregation 16063 * interface under us where a port got added or 16064 * went away. 16065 * 16066 * If the capability negotiation is already done 16067 * or is in progress, reset the capabilities and 16068 * mark the ill's ill_capab_reneg to be B_TRUE, 16069 * so that when the ack comes back, we can start 16070 * the renegotiation process. 16071 * 16072 * Note that if ill_capab_reneg is already B_TRUE 16073 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16074 * the capability resetting request has been sent 16075 * and the renegotiation has not been started yet; 16076 * nothing needs to be done in this case. 16077 */ 16078 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) { 16079 ill_capability_reset(ill); 16080 ill->ill_capab_reneg = B_TRUE; 16081 } 16082 break; 16083 default: 16084 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16085 "type 0x%x for DL_NOTIFY_IND\n", 16086 notify->dl_notification)); 16087 break; 16088 } 16089 16090 /* 16091 * As this is an asynchronous operation, we 16092 * should not call ill_dlpi_done 16093 */ 16094 break; 16095 } 16096 case DL_NOTIFY_ACK: { 16097 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16098 16099 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16100 ill->ill_note_link = 1; 16101 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16102 break; 16103 } 16104 case DL_PHYS_ADDR_ACK: { 16105 /* 16106 * As part of plumbing the interface via SIOCSLIFNAME, 16107 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16108 * whose answers we receive here. As each answer is received, 16109 * we call ill_dlpi_done() to dispatch the next request as 16110 * we're processing the current one. Once all answers have 16111 * been received, we use ipsq_pending_mp_get() to dequeue the 16112 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16113 * is invoked from an ill queue, conn_oper_pending_ill is not 16114 * available, but we know the ioctl is pending on ill_wq.) 16115 */ 16116 uint_t paddrlen, paddroff; 16117 16118 paddrreq = ill->ill_phys_addr_pend; 16119 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16120 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16121 16122 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16123 if (paddrreq == DL_IPV6_TOKEN) { 16124 /* 16125 * bcopy to low-order bits of ill_token 16126 * 16127 * XXX Temporary hack - currently, all known tokens 16128 * are 64 bits, so I'll cheat for the moment. 16129 */ 16130 bcopy(mp->b_rptr + paddroff, 16131 &ill->ill_token.s6_addr32[2], paddrlen); 16132 ill->ill_token_length = paddrlen; 16133 break; 16134 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16135 ASSERT(ill->ill_nd_lla_mp == NULL); 16136 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16137 mp = NULL; 16138 break; 16139 } 16140 16141 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16142 ASSERT(ill->ill_phys_addr_mp == NULL); 16143 if (!ill->ill_ifname_pending) 16144 break; 16145 ill->ill_ifname_pending = 0; 16146 if (!ioctl_aborted) 16147 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16148 if (mp1 != NULL) { 16149 ASSERT(connp == NULL); 16150 q = ill->ill_wq; 16151 } 16152 /* 16153 * If any error acks received during the plumbing sequence, 16154 * ill_ifname_pending_err will be set. Break out and send up 16155 * the error to the pending ioctl. 16156 */ 16157 if (ill->ill_ifname_pending_err != 0) { 16158 err = ill->ill_ifname_pending_err; 16159 ill->ill_ifname_pending_err = 0; 16160 break; 16161 } 16162 16163 ill->ill_phys_addr_mp = mp; 16164 ill->ill_phys_addr = mp->b_rptr + paddroff; 16165 mp = NULL; 16166 16167 /* 16168 * If paddrlen is zero, the DLPI provider doesn't support 16169 * physical addresses. The other two tests were historical 16170 * workarounds for bugs in our former PPP implementation, but 16171 * now other things have grown dependencies on them -- e.g., 16172 * the tun module specifies a dl_addr_length of zero in its 16173 * DL_BIND_ACK, but then specifies an incorrect value in its 16174 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16175 * but only after careful testing ensures that all dependent 16176 * broken DLPI providers have been fixed. 16177 */ 16178 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16179 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16180 ill->ill_phys_addr = NULL; 16181 } else if (paddrlen != ill->ill_phys_addr_length) { 16182 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16183 paddrlen, ill->ill_phys_addr_length)); 16184 err = EINVAL; 16185 break; 16186 } 16187 16188 if (ill->ill_nd_lla_mp == NULL) { 16189 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16190 err = ENOMEM; 16191 break; 16192 } 16193 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16194 } 16195 16196 /* 16197 * Set the interface token. If the zeroth interface address 16198 * is unspecified, then set it to the link local address. 16199 */ 16200 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16201 (void) ill_setdefaulttoken(ill); 16202 16203 ASSERT(ill->ill_ipif->ipif_id == 0); 16204 if (ipif != NULL && 16205 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16206 (void) ipif_setlinklocal(ipif); 16207 } 16208 break; 16209 } 16210 case DL_OK_ACK: 16211 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16212 dl_primstr((int)dloa->dl_correct_primitive), 16213 dloa->dl_correct_primitive)); 16214 switch (dloa->dl_correct_primitive) { 16215 case DL_ENABMULTI_REQ: 16216 case DL_DISABMULTI_REQ: 16217 if (!ill->ill_isv6) 16218 ipsq_current_finish(ipsq); 16219 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16220 break; 16221 case DL_PROMISCON_REQ: 16222 case DL_PROMISCOFF_REQ: 16223 case DL_UNBIND_REQ: 16224 case DL_ATTACH_REQ: 16225 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16226 break; 16227 } 16228 break; 16229 default: 16230 break; 16231 } 16232 16233 freemsg(mp); 16234 if (mp1 != NULL) { 16235 /* 16236 * The operation must complete without EINPROGRESS 16237 * since ipsq_pending_mp_get() has removed the mblk 16238 * from ipsq_pending_mp. Otherwise, the operation 16239 * will be stuck forever in the ipsq. 16240 */ 16241 ASSERT(err != EINPROGRESS); 16242 16243 switch (ipsq->ipsq_current_ioctl) { 16244 case 0: 16245 ipsq_current_finish(ipsq); 16246 break; 16247 16248 case SIOCLIFADDIF: 16249 case SIOCSLIFNAME: 16250 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16251 break; 16252 16253 default: 16254 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16255 break; 16256 } 16257 } 16258 } 16259 16260 /* 16261 * ip_rput_other is called by ip_rput to handle messages modifying the global 16262 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16263 */ 16264 /* ARGSUSED */ 16265 void 16266 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16267 { 16268 ill_t *ill; 16269 struct iocblk *iocp; 16270 mblk_t *mp1; 16271 conn_t *connp = NULL; 16272 16273 ip1dbg(("ip_rput_other ")); 16274 ill = (ill_t *)q->q_ptr; 16275 /* 16276 * This routine is not a writer in the case of SIOCGTUNPARAM 16277 * in which case ipsq is NULL. 16278 */ 16279 if (ipsq != NULL) { 16280 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16281 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16282 } 16283 16284 switch (mp->b_datap->db_type) { 16285 case M_ERROR: 16286 case M_HANGUP: 16287 /* 16288 * The device has a problem. We force the ILL down. It can 16289 * be brought up again manually using SIOCSIFFLAGS (via 16290 * ifconfig or equivalent). 16291 */ 16292 ASSERT(ipsq != NULL); 16293 if (mp->b_rptr < mp->b_wptr) 16294 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16295 if (ill->ill_error == 0) 16296 ill->ill_error = ENXIO; 16297 if (!ill_down_start(q, mp)) 16298 return; 16299 ipif_all_down_tail(ipsq, q, mp, NULL); 16300 break; 16301 case M_IOCACK: 16302 iocp = (struct iocblk *)mp->b_rptr; 16303 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16304 switch (iocp->ioc_cmd) { 16305 case SIOCSTUNPARAM: 16306 case OSIOCSTUNPARAM: 16307 ASSERT(ipsq != NULL); 16308 /* 16309 * Finish socket ioctl passed through to tun. 16310 * We should have an IOCTL waiting on this. 16311 */ 16312 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16313 if (ill->ill_isv6) { 16314 struct iftun_req *ta; 16315 16316 /* 16317 * if a source or destination is 16318 * being set, try and set the link 16319 * local address for the tunnel 16320 */ 16321 ta = (struct iftun_req *)mp->b_cont-> 16322 b_cont->b_rptr; 16323 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16324 ipif_set_tun_llink(ill, ta); 16325 } 16326 16327 } 16328 if (mp1 != NULL) { 16329 /* 16330 * Now copy back the b_next/b_prev used by 16331 * mi code for the mi_copy* functions. 16332 * See ip_sioctl_tunparam() for the reason. 16333 * Also protect against missing b_cont. 16334 */ 16335 if (mp->b_cont != NULL) { 16336 mp->b_cont->b_next = 16337 mp1->b_cont->b_next; 16338 mp->b_cont->b_prev = 16339 mp1->b_cont->b_prev; 16340 } 16341 inet_freemsg(mp1); 16342 ASSERT(connp != NULL); 16343 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16344 iocp->ioc_error, NO_COPYOUT, ipsq); 16345 } else { 16346 ASSERT(connp == NULL); 16347 putnext(q, mp); 16348 } 16349 break; 16350 case SIOCGTUNPARAM: 16351 case OSIOCGTUNPARAM: 16352 /* 16353 * This is really M_IOCDATA from the tunnel driver. 16354 * convert back and complete the ioctl. 16355 * We should have an IOCTL waiting on this. 16356 */ 16357 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16358 if (mp1) { 16359 /* 16360 * Now copy back the b_next/b_prev used by 16361 * mi code for the mi_copy* functions. 16362 * See ip_sioctl_tunparam() for the reason. 16363 * Also protect against missing b_cont. 16364 */ 16365 if (mp->b_cont != NULL) { 16366 mp->b_cont->b_next = 16367 mp1->b_cont->b_next; 16368 mp->b_cont->b_prev = 16369 mp1->b_cont->b_prev; 16370 } 16371 inet_freemsg(mp1); 16372 if (iocp->ioc_error == 0) 16373 mp->b_datap->db_type = M_IOCDATA; 16374 ASSERT(connp != NULL); 16375 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16376 iocp->ioc_error, COPYOUT, NULL); 16377 } else { 16378 ASSERT(connp == NULL); 16379 putnext(q, mp); 16380 } 16381 break; 16382 default: 16383 break; 16384 } 16385 break; 16386 case M_IOCNAK: 16387 iocp = (struct iocblk *)mp->b_rptr; 16388 16389 switch (iocp->ioc_cmd) { 16390 int mode; 16391 16392 case DL_IOC_HDR_INFO: 16393 /* 16394 * If this was the first attempt turn of the 16395 * fastpath probing. 16396 */ 16397 mutex_enter(&ill->ill_lock); 16398 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16399 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16400 mutex_exit(&ill->ill_lock); 16401 ill_fastpath_nack(ill); 16402 ip1dbg(("ip_rput: DLPI fastpath off on " 16403 "interface %s\n", 16404 ill->ill_name)); 16405 } else { 16406 mutex_exit(&ill->ill_lock); 16407 } 16408 freemsg(mp); 16409 break; 16410 case SIOCSTUNPARAM: 16411 case OSIOCSTUNPARAM: 16412 ASSERT(ipsq != NULL); 16413 /* 16414 * Finish socket ioctl passed through to tun 16415 * We should have an IOCTL waiting on this. 16416 */ 16417 /* FALLTHRU */ 16418 case SIOCGTUNPARAM: 16419 case OSIOCGTUNPARAM: 16420 /* 16421 * This is really M_IOCDATA from the tunnel driver. 16422 * convert back and complete the ioctl. 16423 * We should have an IOCTL waiting on this. 16424 */ 16425 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16426 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16427 mp1 = ill_pending_mp_get(ill, &connp, 16428 iocp->ioc_id); 16429 mode = COPYOUT; 16430 ipsq = NULL; 16431 } else { 16432 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16433 mode = NO_COPYOUT; 16434 } 16435 if (mp1 != NULL) { 16436 /* 16437 * Now copy back the b_next/b_prev used by 16438 * mi code for the mi_copy* functions. 16439 * See ip_sioctl_tunparam() for the reason. 16440 * Also protect against missing b_cont. 16441 */ 16442 if (mp->b_cont != NULL) { 16443 mp->b_cont->b_next = 16444 mp1->b_cont->b_next; 16445 mp->b_cont->b_prev = 16446 mp1->b_cont->b_prev; 16447 } 16448 inet_freemsg(mp1); 16449 if (iocp->ioc_error == 0) 16450 iocp->ioc_error = EINVAL; 16451 ASSERT(connp != NULL); 16452 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16453 iocp->ioc_error, mode, ipsq); 16454 } else { 16455 ASSERT(connp == NULL); 16456 putnext(q, mp); 16457 } 16458 break; 16459 default: 16460 break; 16461 } 16462 default: 16463 break; 16464 } 16465 } 16466 16467 /* 16468 * NOTE : This function does not ire_refrele the ire argument passed in. 16469 * 16470 * IPQoS notes 16471 * IP policy is invoked twice for a forwarded packet, once on the read side 16472 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16473 * enabled. An additional parameter, in_ill, has been added for this purpose. 16474 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16475 * because ip_mroute drops this information. 16476 * 16477 */ 16478 void 16479 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16480 { 16481 uint32_t old_pkt_len; 16482 uint32_t pkt_len; 16483 queue_t *q; 16484 uint32_t sum; 16485 #define rptr ((uchar_t *)ipha) 16486 uint32_t max_frag; 16487 uint32_t ill_index; 16488 ill_t *out_ill; 16489 mib2_ipIfStatsEntry_t *mibptr; 16490 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16491 16492 /* Get the ill_index of the incoming ILL */ 16493 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16494 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16495 16496 /* Initiate Read side IPPF processing */ 16497 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16498 ip_process(IPP_FWD_IN, &mp, ill_index); 16499 if (mp == NULL) { 16500 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16501 "during IPPF processing\n")); 16502 return; 16503 } 16504 } 16505 16506 /* Adjust the checksum to reflect the ttl decrement. */ 16507 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16508 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16509 16510 if (ipha->ipha_ttl-- <= 1) { 16511 if (ip_csum_hdr(ipha)) { 16512 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16513 goto drop_pkt; 16514 } 16515 /* 16516 * Note: ire_stq this will be NULL for multicast 16517 * datagrams using the long path through arp (the IRE 16518 * is not an IRE_CACHE). This should not cause 16519 * problems since we don't generate ICMP errors for 16520 * multicast packets. 16521 */ 16522 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16523 q = ire->ire_stq; 16524 if (q != NULL) { 16525 /* Sent by forwarding path, and router is global zone */ 16526 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16527 GLOBAL_ZONEID, ipst); 16528 } else 16529 freemsg(mp); 16530 return; 16531 } 16532 16533 /* 16534 * Don't forward if the interface is down 16535 */ 16536 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16537 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16538 ip2dbg(("ip_rput_forward:interface is down\n")); 16539 goto drop_pkt; 16540 } 16541 16542 /* Get the ill_index of the outgoing ILL */ 16543 out_ill = ire_to_ill(ire); 16544 ill_index = out_ill->ill_phyint->phyint_ifindex; 16545 16546 DTRACE_PROBE4(ip4__forwarding__start, 16547 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16548 16549 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16550 ipst->ips_ipv4firewall_forwarding, 16551 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16552 16553 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16554 16555 if (mp == NULL) 16556 return; 16557 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16558 16559 if (is_system_labeled()) { 16560 mblk_t *mp1; 16561 16562 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16563 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16564 goto drop_pkt; 16565 } 16566 /* Size may have changed */ 16567 mp = mp1; 16568 ipha = (ipha_t *)mp->b_rptr; 16569 pkt_len = ntohs(ipha->ipha_length); 16570 } 16571 16572 /* Check if there are options to update */ 16573 if (!IS_SIMPLE_IPH(ipha)) { 16574 if (ip_csum_hdr(ipha)) { 16575 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16576 goto drop_pkt; 16577 } 16578 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16579 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16580 return; 16581 } 16582 16583 ipha->ipha_hdr_checksum = 0; 16584 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16585 } 16586 max_frag = ire->ire_max_frag; 16587 if (pkt_len > max_frag) { 16588 /* 16589 * It needs fragging on its way out. We haven't 16590 * verified the header checksum yet. Since we 16591 * are going to put a surely good checksum in the 16592 * outgoing header, we have to make sure that it 16593 * was good coming in. 16594 */ 16595 if (ip_csum_hdr(ipha)) { 16596 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16597 goto drop_pkt; 16598 } 16599 /* Initiate Write side IPPF processing */ 16600 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16601 ip_process(IPP_FWD_OUT, &mp, ill_index); 16602 if (mp == NULL) { 16603 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16604 " during IPPF processing\n")); 16605 return; 16606 } 16607 } 16608 /* 16609 * Handle labeled packet resizing. 16610 * 16611 * If we have added a label, inform ip_wput_frag() of its 16612 * effect on the MTU for ICMP messages. 16613 */ 16614 if (pkt_len > old_pkt_len) { 16615 uint32_t secopt_size; 16616 16617 secopt_size = pkt_len - old_pkt_len; 16618 if (secopt_size < max_frag) 16619 max_frag -= secopt_size; 16620 } 16621 16622 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16623 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16624 return; 16625 } 16626 16627 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16628 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16629 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16630 ipst->ips_ipv4firewall_physical_out, 16631 NULL, out_ill, ipha, mp, mp, 0, ipst); 16632 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16633 if (mp == NULL) 16634 return; 16635 16636 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16637 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16638 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16639 /* ip_xmit_v4 always consumes the packet */ 16640 return; 16641 16642 drop_pkt:; 16643 ip1dbg(("ip_rput_forward: drop pkt\n")); 16644 freemsg(mp); 16645 #undef rptr 16646 } 16647 16648 void 16649 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16650 { 16651 ire_t *ire; 16652 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16653 16654 ASSERT(!ipif->ipif_isv6); 16655 /* 16656 * Find an IRE which matches the destination and the outgoing 16657 * queue in the cache table. All we need is an IRE_CACHE which 16658 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16659 * then it is enough to have some IRE_CACHE in the group. 16660 */ 16661 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16662 dst = ipif->ipif_pp_dst_addr; 16663 16664 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16665 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16666 if (ire == NULL) { 16667 /* 16668 * Mark this packet to make it be delivered to 16669 * ip_rput_forward after the new ire has been 16670 * created. 16671 */ 16672 mp->b_prev = NULL; 16673 mp->b_next = mp; 16674 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16675 NULL, 0, GLOBAL_ZONEID, &zero_info); 16676 } else { 16677 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16678 IRE_REFRELE(ire); 16679 } 16680 } 16681 16682 /* Update any source route, record route or timestamp options */ 16683 static int 16684 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16685 { 16686 ipoptp_t opts; 16687 uchar_t *opt; 16688 uint8_t optval; 16689 uint8_t optlen; 16690 ipaddr_t dst; 16691 uint32_t ts; 16692 ire_t *dst_ire = NULL; 16693 ire_t *tmp_ire = NULL; 16694 timestruc_t now; 16695 16696 ip2dbg(("ip_rput_forward_options\n")); 16697 dst = ipha->ipha_dst; 16698 for (optval = ipoptp_first(&opts, ipha); 16699 optval != IPOPT_EOL; 16700 optval = ipoptp_next(&opts)) { 16701 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16702 opt = opts.ipoptp_cur; 16703 optlen = opts.ipoptp_len; 16704 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16705 optval, opts.ipoptp_len)); 16706 switch (optval) { 16707 uint32_t off; 16708 case IPOPT_SSRR: 16709 case IPOPT_LSRR: 16710 /* Check if adminstratively disabled */ 16711 if (!ipst->ips_ip_forward_src_routed) { 16712 if (ire->ire_stq != NULL) { 16713 /* 16714 * Sent by forwarding path, and router 16715 * is global zone 16716 */ 16717 icmp_unreachable(ire->ire_stq, mp, 16718 ICMP_SOURCE_ROUTE_FAILED, 16719 GLOBAL_ZONEID, ipst); 16720 } else { 16721 ip0dbg(("ip_rput_forward_options: " 16722 "unable to send unreach\n")); 16723 freemsg(mp); 16724 } 16725 return (-1); 16726 } 16727 16728 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16729 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16730 if (dst_ire == NULL) { 16731 /* 16732 * Must be partial since ip_rput_options 16733 * checked for strict. 16734 */ 16735 break; 16736 } 16737 off = opt[IPOPT_OFFSET]; 16738 off--; 16739 redo_srr: 16740 if (optlen < IP_ADDR_LEN || 16741 off > optlen - IP_ADDR_LEN) { 16742 /* End of source route */ 16743 ip1dbg(( 16744 "ip_rput_forward_options: end of SR\n")); 16745 ire_refrele(dst_ire); 16746 break; 16747 } 16748 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16749 bcopy(&ire->ire_src_addr, (char *)opt + off, 16750 IP_ADDR_LEN); 16751 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16752 ntohl(dst))); 16753 16754 /* 16755 * Check if our address is present more than 16756 * once as consecutive hops in source route. 16757 */ 16758 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16759 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16760 if (tmp_ire != NULL) { 16761 ire_refrele(tmp_ire); 16762 off += IP_ADDR_LEN; 16763 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16764 goto redo_srr; 16765 } 16766 ipha->ipha_dst = dst; 16767 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16768 ire_refrele(dst_ire); 16769 break; 16770 case IPOPT_RR: 16771 off = opt[IPOPT_OFFSET]; 16772 off--; 16773 if (optlen < IP_ADDR_LEN || 16774 off > optlen - IP_ADDR_LEN) { 16775 /* No more room - ignore */ 16776 ip1dbg(( 16777 "ip_rput_forward_options: end of RR\n")); 16778 break; 16779 } 16780 bcopy(&ire->ire_src_addr, (char *)opt + off, 16781 IP_ADDR_LEN); 16782 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16783 break; 16784 case IPOPT_TS: 16785 /* Insert timestamp if there is room */ 16786 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16787 case IPOPT_TS_TSONLY: 16788 off = IPOPT_TS_TIMELEN; 16789 break; 16790 case IPOPT_TS_PRESPEC: 16791 case IPOPT_TS_PRESPEC_RFC791: 16792 /* Verify that the address matched */ 16793 off = opt[IPOPT_OFFSET] - 1; 16794 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16795 dst_ire = ire_ctable_lookup(dst, 0, 16796 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16797 MATCH_IRE_TYPE, ipst); 16798 if (dst_ire == NULL) { 16799 /* Not for us */ 16800 break; 16801 } 16802 ire_refrele(dst_ire); 16803 /* FALLTHRU */ 16804 case IPOPT_TS_TSANDADDR: 16805 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16806 break; 16807 default: 16808 /* 16809 * ip_*put_options should have already 16810 * dropped this packet. 16811 */ 16812 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16813 "unknown IT - bug in ip_rput_options?\n"); 16814 return (0); /* Keep "lint" happy */ 16815 } 16816 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16817 /* Increase overflow counter */ 16818 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16819 opt[IPOPT_POS_OV_FLG] = 16820 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16821 (off << 4)); 16822 break; 16823 } 16824 off = opt[IPOPT_OFFSET] - 1; 16825 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16826 case IPOPT_TS_PRESPEC: 16827 case IPOPT_TS_PRESPEC_RFC791: 16828 case IPOPT_TS_TSANDADDR: 16829 bcopy(&ire->ire_src_addr, 16830 (char *)opt + off, IP_ADDR_LEN); 16831 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16832 /* FALLTHRU */ 16833 case IPOPT_TS_TSONLY: 16834 off = opt[IPOPT_OFFSET] - 1; 16835 /* Compute # of milliseconds since midnight */ 16836 gethrestime(&now); 16837 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16838 now.tv_nsec / (NANOSEC / MILLISEC); 16839 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16840 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16841 break; 16842 } 16843 break; 16844 } 16845 } 16846 return (0); 16847 } 16848 16849 /* 16850 * This is called after processing at least one of AH/ESP headers. 16851 * 16852 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16853 * the actual, physical interface on which the packet was received, 16854 * but, when ip_strict_dst_multihoming is set to 1, could be the 16855 * interface which had the ipha_dst configured when the packet went 16856 * through ip_rput. The ill_index corresponding to the recv_ill 16857 * is saved in ipsec_in_rill_index 16858 * 16859 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16860 * cannot assume "ire" points to valid data for any IPv6 cases. 16861 */ 16862 void 16863 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16864 { 16865 mblk_t *mp; 16866 ipaddr_t dst; 16867 in6_addr_t *v6dstp; 16868 ipha_t *ipha; 16869 ip6_t *ip6h; 16870 ipsec_in_t *ii; 16871 boolean_t ill_need_rele = B_FALSE; 16872 boolean_t rill_need_rele = B_FALSE; 16873 boolean_t ire_need_rele = B_FALSE; 16874 netstack_t *ns; 16875 ip_stack_t *ipst; 16876 16877 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16878 ASSERT(ii->ipsec_in_ill_index != 0); 16879 ns = ii->ipsec_in_ns; 16880 ASSERT(ii->ipsec_in_ns != NULL); 16881 ipst = ns->netstack_ip; 16882 16883 mp = ipsec_mp->b_cont; 16884 ASSERT(mp != NULL); 16885 16886 16887 if (ill == NULL) { 16888 ASSERT(recv_ill == NULL); 16889 /* 16890 * We need to get the original queue on which ip_rput_local 16891 * or ip_rput_data_v6 was called. 16892 */ 16893 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16894 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16895 ill_need_rele = B_TRUE; 16896 16897 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16898 recv_ill = ill_lookup_on_ifindex( 16899 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16900 NULL, NULL, NULL, NULL, ipst); 16901 rill_need_rele = B_TRUE; 16902 } else { 16903 recv_ill = ill; 16904 } 16905 16906 if ((ill == NULL) || (recv_ill == NULL)) { 16907 ip0dbg(("ip_fanout_proto_again: interface " 16908 "disappeared\n")); 16909 if (ill != NULL) 16910 ill_refrele(ill); 16911 if (recv_ill != NULL) 16912 ill_refrele(recv_ill); 16913 freemsg(ipsec_mp); 16914 return; 16915 } 16916 } 16917 16918 ASSERT(ill != NULL && recv_ill != NULL); 16919 16920 if (mp->b_datap->db_type == M_CTL) { 16921 /* 16922 * AH/ESP is returning the ICMP message after 16923 * removing their headers. Fanout again till 16924 * it gets to the right protocol. 16925 */ 16926 if (ii->ipsec_in_v4) { 16927 icmph_t *icmph; 16928 int iph_hdr_length; 16929 int hdr_length; 16930 16931 ipha = (ipha_t *)mp->b_rptr; 16932 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16933 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16934 ipha = (ipha_t *)&icmph[1]; 16935 hdr_length = IPH_HDR_LENGTH(ipha); 16936 /* 16937 * icmp_inbound_error_fanout may need to do pullupmsg. 16938 * Reset the type to M_DATA. 16939 */ 16940 mp->b_datap->db_type = M_DATA; 16941 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16942 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16943 B_FALSE, ill, ii->ipsec_in_zoneid); 16944 } else { 16945 icmp6_t *icmp6; 16946 int hdr_length; 16947 16948 ip6h = (ip6_t *)mp->b_rptr; 16949 /* Don't call hdr_length_v6() unless you have to. */ 16950 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16951 hdr_length = ip_hdr_length_v6(mp, ip6h); 16952 else 16953 hdr_length = IPV6_HDR_LEN; 16954 16955 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16956 /* 16957 * icmp_inbound_error_fanout_v6 may need to do 16958 * pullupmsg. Reset the type to M_DATA. 16959 */ 16960 mp->b_datap->db_type = M_DATA; 16961 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16962 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16963 } 16964 if (ill_need_rele) 16965 ill_refrele(ill); 16966 if (rill_need_rele) 16967 ill_refrele(recv_ill); 16968 return; 16969 } 16970 16971 if (ii->ipsec_in_v4) { 16972 ipha = (ipha_t *)mp->b_rptr; 16973 dst = ipha->ipha_dst; 16974 if (CLASSD(dst)) { 16975 /* 16976 * Multicast has to be delivered to all streams. 16977 */ 16978 dst = INADDR_BROADCAST; 16979 } 16980 16981 if (ire == NULL) { 16982 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16983 MBLK_GETLABEL(mp), ipst); 16984 if (ire == NULL) { 16985 if (ill_need_rele) 16986 ill_refrele(ill); 16987 if (rill_need_rele) 16988 ill_refrele(recv_ill); 16989 ip1dbg(("ip_fanout_proto_again: " 16990 "IRE not found")); 16991 freemsg(ipsec_mp); 16992 return; 16993 } 16994 ire_need_rele = B_TRUE; 16995 } 16996 16997 switch (ipha->ipha_protocol) { 16998 case IPPROTO_UDP: 16999 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17000 recv_ill); 17001 if (ire_need_rele) 17002 ire_refrele(ire); 17003 break; 17004 case IPPROTO_TCP: 17005 if (!ire_need_rele) 17006 IRE_REFHOLD(ire); 17007 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17008 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17009 IRE_REFRELE(ire); 17010 if (mp != NULL) 17011 squeue_enter_chain(GET_SQUEUE(mp), mp, 17012 mp, 1, SQTAG_IP_PROTO_AGAIN); 17013 break; 17014 case IPPROTO_SCTP: 17015 if (!ire_need_rele) 17016 IRE_REFHOLD(ire); 17017 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17018 ipsec_mp, 0, ill->ill_rq, dst); 17019 break; 17020 default: 17021 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17022 recv_ill, 0); 17023 if (ire_need_rele) 17024 ire_refrele(ire); 17025 break; 17026 } 17027 } else { 17028 uint32_t rput_flags = 0; 17029 17030 ip6h = (ip6_t *)mp->b_rptr; 17031 v6dstp = &ip6h->ip6_dst; 17032 /* 17033 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17034 * address. 17035 * 17036 * Currently, we don't store that state in the IPSEC_IN 17037 * message, and we may need to. 17038 */ 17039 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17040 IP6_IN_LLMCAST : 0); 17041 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17042 NULL, NULL); 17043 } 17044 if (ill_need_rele) 17045 ill_refrele(ill); 17046 if (rill_need_rele) 17047 ill_refrele(recv_ill); 17048 } 17049 17050 /* 17051 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17052 * returns 'true' if there are still fragments left on the queue, in 17053 * which case we restart the timer. 17054 */ 17055 void 17056 ill_frag_timer(void *arg) 17057 { 17058 ill_t *ill = (ill_t *)arg; 17059 boolean_t frag_pending; 17060 ip_stack_t *ipst = ill->ill_ipst; 17061 17062 mutex_enter(&ill->ill_lock); 17063 ASSERT(!ill->ill_fragtimer_executing); 17064 if (ill->ill_state_flags & ILL_CONDEMNED) { 17065 ill->ill_frag_timer_id = 0; 17066 mutex_exit(&ill->ill_lock); 17067 return; 17068 } 17069 ill->ill_fragtimer_executing = 1; 17070 mutex_exit(&ill->ill_lock); 17071 17072 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17073 17074 /* 17075 * Restart the timer, if we have fragments pending or if someone 17076 * wanted us to be scheduled again. 17077 */ 17078 mutex_enter(&ill->ill_lock); 17079 ill->ill_fragtimer_executing = 0; 17080 ill->ill_frag_timer_id = 0; 17081 if (frag_pending || ill->ill_fragtimer_needrestart) 17082 ill_frag_timer_start(ill); 17083 mutex_exit(&ill->ill_lock); 17084 } 17085 17086 void 17087 ill_frag_timer_start(ill_t *ill) 17088 { 17089 ip_stack_t *ipst = ill->ill_ipst; 17090 17091 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17092 17093 /* If the ill is closing or opening don't proceed */ 17094 if (ill->ill_state_flags & ILL_CONDEMNED) 17095 return; 17096 17097 if (ill->ill_fragtimer_executing) { 17098 /* 17099 * ill_frag_timer is currently executing. Just record the 17100 * the fact that we want the timer to be restarted. 17101 * ill_frag_timer will post a timeout before it returns, 17102 * ensuring it will be called again. 17103 */ 17104 ill->ill_fragtimer_needrestart = 1; 17105 return; 17106 } 17107 17108 if (ill->ill_frag_timer_id == 0) { 17109 /* 17110 * The timer is neither running nor is the timeout handler 17111 * executing. Post a timeout so that ill_frag_timer will be 17112 * called 17113 */ 17114 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17115 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17116 ill->ill_fragtimer_needrestart = 0; 17117 } 17118 } 17119 17120 /* 17121 * This routine is needed for loopback when forwarding multicasts. 17122 * 17123 * IPQoS Notes: 17124 * IPPF processing is done in fanout routines. 17125 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17126 * processing for IPsec packets is done when it comes back in clear. 17127 * NOTE : The callers of this function need to do the ire_refrele for the 17128 * ire that is being passed in. 17129 */ 17130 void 17131 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17132 ill_t *recv_ill, uint32_t esp_udp_ports) 17133 { 17134 boolean_t esp_in_udp_packet = (esp_udp_ports != 0); 17135 ill_t *ill = (ill_t *)q->q_ptr; 17136 uint32_t sum; 17137 uint32_t u1; 17138 uint32_t u2; 17139 int hdr_length; 17140 boolean_t mctl_present; 17141 mblk_t *first_mp = mp; 17142 mblk_t *hada_mp = NULL; 17143 ipha_t *inner_ipha; 17144 ip_stack_t *ipst; 17145 17146 ASSERT(recv_ill != NULL); 17147 ipst = recv_ill->ill_ipst; 17148 17149 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17150 "ip_rput_locl_start: q %p", q); 17151 17152 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17153 ASSERT(ill != NULL); 17154 17155 17156 #define rptr ((uchar_t *)ipha) 17157 #define iphs ((uint16_t *)ipha) 17158 17159 /* 17160 * no UDP or TCP packet should come here anymore. 17161 */ 17162 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17163 ipha->ipha_protocol != IPPROTO_UDP); 17164 17165 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17166 if (mctl_present && 17167 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17168 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17169 17170 /* 17171 * It's an IPsec accelerated packet. 17172 * Keep a pointer to the data attributes around until 17173 * we allocate the ipsec_info_t. 17174 */ 17175 IPSECHW_DEBUG(IPSECHW_PKT, 17176 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17177 hada_mp = first_mp; 17178 hada_mp->b_cont = NULL; 17179 /* 17180 * Since it is accelerated, it comes directly from 17181 * the ill and the data attributes is followed by 17182 * the packet data. 17183 */ 17184 ASSERT(mp->b_datap->db_type != M_CTL); 17185 first_mp = mp; 17186 mctl_present = B_FALSE; 17187 } 17188 17189 /* 17190 * IF M_CTL is not present, then ipsec_in_is_secure 17191 * should return B_TRUE. There is a case where loopback 17192 * packets has an M_CTL in the front with all the 17193 * IPsec options set to IPSEC_PREF_NEVER - which means 17194 * ipsec_in_is_secure will return B_FALSE. As loopback 17195 * packets never comes here, it is safe to ASSERT the 17196 * following. 17197 */ 17198 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17199 17200 /* 17201 * Also, we should never have an mctl_present if this is an 17202 * ESP-in-UDP packet. 17203 */ 17204 ASSERT(!mctl_present || !esp_in_udp_packet); 17205 17206 17207 /* u1 is # words of IP options */ 17208 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17209 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17210 17211 /* 17212 * Don't verify header checksum if we just removed UDP header or 17213 * packet is coming back from AH/ESP. 17214 */ 17215 if (!esp_in_udp_packet && !mctl_present) { 17216 if (u1) { 17217 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17218 if (hada_mp != NULL) 17219 freemsg(hada_mp); 17220 return; 17221 } 17222 } else { 17223 /* Check the IP header checksum. */ 17224 #define uph ((uint16_t *)ipha) 17225 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17226 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17227 #undef uph 17228 /* finish doing IP checksum */ 17229 sum = (sum & 0xFFFF) + (sum >> 16); 17230 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17231 if (sum && sum != 0xFFFF) { 17232 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17233 goto drop_pkt; 17234 } 17235 } 17236 } 17237 17238 /* 17239 * Count for SNMP of inbound packets for ire. As ip_proto_input 17240 * might be called more than once for secure packets, count only 17241 * the first time. 17242 */ 17243 if (!mctl_present) { 17244 UPDATE_IB_PKT_COUNT(ire); 17245 ire->ire_last_used_time = lbolt; 17246 } 17247 17248 /* Check for fragmentation offset. */ 17249 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17250 u1 = u2 & (IPH_MF | IPH_OFFSET); 17251 if (u1) { 17252 /* 17253 * We re-assemble fragments before we do the AH/ESP 17254 * processing. Thus, M_CTL should not be present 17255 * while we are re-assembling. 17256 */ 17257 ASSERT(!mctl_present); 17258 ASSERT(first_mp == mp); 17259 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17260 return; 17261 } 17262 /* 17263 * Make sure that first_mp points back to mp as 17264 * the mp we came in with could have changed in 17265 * ip_rput_fragment(). 17266 */ 17267 ipha = (ipha_t *)mp->b_rptr; 17268 first_mp = mp; 17269 } 17270 17271 /* 17272 * Clear hardware checksumming flag as it is currently only 17273 * used by TCP and UDP. 17274 */ 17275 DB_CKSUMFLAGS(mp) = 0; 17276 17277 /* Now we have a complete datagram, destined for this machine. */ 17278 u1 = IPH_HDR_LENGTH(ipha); 17279 switch (ipha->ipha_protocol) { 17280 case IPPROTO_ICMP: { 17281 ire_t *ire_zone; 17282 ilm_t *ilm; 17283 mblk_t *mp1; 17284 zoneid_t last_zoneid; 17285 17286 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17287 ASSERT(ire->ire_type == IRE_BROADCAST); 17288 /* 17289 * In the multicast case, applications may have joined 17290 * the group from different zones, so we need to deliver 17291 * the packet to each of them. Loop through the 17292 * multicast memberships structures (ilm) on the receive 17293 * ill and send a copy of the packet up each matching 17294 * one. However, we don't do this for multicasts sent on 17295 * the loopback interface (PHYI_LOOPBACK flag set) as 17296 * they must stay in the sender's zone. 17297 * 17298 * ilm_add_v6() ensures that ilms in the same zone are 17299 * contiguous in the ill_ilm list. We use this property 17300 * to avoid sending duplicates needed when two 17301 * applications in the same zone join the same group on 17302 * different logical interfaces: we ignore the ilm if 17303 * its zoneid is the same as the last matching one. 17304 * In addition, the sending of the packet for 17305 * ire_zoneid is delayed until all of the other ilms 17306 * have been exhausted. 17307 */ 17308 last_zoneid = -1; 17309 ILM_WALKER_HOLD(recv_ill); 17310 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17311 ilm = ilm->ilm_next) { 17312 if ((ilm->ilm_flags & ILM_DELETED) || 17313 ipha->ipha_dst != ilm->ilm_addr || 17314 ilm->ilm_zoneid == last_zoneid || 17315 ilm->ilm_zoneid == ire->ire_zoneid || 17316 ilm->ilm_zoneid == ALL_ZONES || 17317 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17318 continue; 17319 mp1 = ip_copymsg(first_mp); 17320 if (mp1 == NULL) 17321 continue; 17322 icmp_inbound(q, mp1, B_TRUE, ill, 17323 0, sum, mctl_present, B_TRUE, 17324 recv_ill, ilm->ilm_zoneid); 17325 last_zoneid = ilm->ilm_zoneid; 17326 } 17327 ILM_WALKER_RELE(recv_ill); 17328 } else if (ire->ire_type == IRE_BROADCAST) { 17329 /* 17330 * In the broadcast case, there may be many zones 17331 * which need a copy of the packet delivered to them. 17332 * There is one IRE_BROADCAST per broadcast address 17333 * and per zone; we walk those using a helper function. 17334 * In addition, the sending of the packet for ire is 17335 * delayed until all of the other ires have been 17336 * processed. 17337 */ 17338 IRB_REFHOLD(ire->ire_bucket); 17339 ire_zone = NULL; 17340 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17341 ire)) != NULL) { 17342 mp1 = ip_copymsg(first_mp); 17343 if (mp1 == NULL) 17344 continue; 17345 17346 UPDATE_IB_PKT_COUNT(ire_zone); 17347 ire_zone->ire_last_used_time = lbolt; 17348 icmp_inbound(q, mp1, B_TRUE, ill, 17349 0, sum, mctl_present, B_TRUE, 17350 recv_ill, ire_zone->ire_zoneid); 17351 } 17352 IRB_REFRELE(ire->ire_bucket); 17353 } 17354 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17355 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17356 ire->ire_zoneid); 17357 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17358 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17359 return; 17360 } 17361 case IPPROTO_IGMP: 17362 /* 17363 * If we are not willing to accept IGMP packets in clear, 17364 * then check with global policy. 17365 */ 17366 if (ipst->ips_igmp_accept_clear_messages == 0) { 17367 first_mp = ipsec_check_global_policy(first_mp, NULL, 17368 ipha, NULL, mctl_present, ipst->ips_netstack); 17369 if (first_mp == NULL) 17370 return; 17371 } 17372 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17373 freemsg(first_mp); 17374 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17375 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17376 return; 17377 } 17378 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17379 /* Bad packet - discarded by igmp_input */ 17380 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17381 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17382 if (mctl_present) 17383 freeb(first_mp); 17384 return; 17385 } 17386 /* 17387 * igmp_input() may have returned the pulled up message. 17388 * So first_mp and ipha need to be reinitialized. 17389 */ 17390 ipha = (ipha_t *)mp->b_rptr; 17391 if (mctl_present) 17392 first_mp->b_cont = mp; 17393 else 17394 first_mp = mp; 17395 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17396 connf_head != NULL) { 17397 /* No user-level listener for IGMP packets */ 17398 goto drop_pkt; 17399 } 17400 /* deliver to local raw users */ 17401 break; 17402 case IPPROTO_PIM: 17403 /* 17404 * If we are not willing to accept PIM packets in clear, 17405 * then check with global policy. 17406 */ 17407 if (ipst->ips_pim_accept_clear_messages == 0) { 17408 first_mp = ipsec_check_global_policy(first_mp, NULL, 17409 ipha, NULL, mctl_present, ipst->ips_netstack); 17410 if (first_mp == NULL) 17411 return; 17412 } 17413 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17414 freemsg(first_mp); 17415 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17416 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17417 return; 17418 } 17419 if (pim_input(q, mp, ill) != 0) { 17420 /* Bad packet - discarded by pim_input */ 17421 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17422 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17423 if (mctl_present) 17424 freeb(first_mp); 17425 return; 17426 } 17427 17428 /* 17429 * pim_input() may have pulled up the message so ipha needs to 17430 * be reinitialized. 17431 */ 17432 ipha = (ipha_t *)mp->b_rptr; 17433 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17434 connf_head != NULL) { 17435 /* No user-level listener for PIM packets */ 17436 goto drop_pkt; 17437 } 17438 /* deliver to local raw users */ 17439 break; 17440 case IPPROTO_ENCAP: 17441 /* 17442 * Handle self-encapsulated packets (IP-in-IP where 17443 * the inner addresses == the outer addresses). 17444 */ 17445 hdr_length = IPH_HDR_LENGTH(ipha); 17446 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17447 mp->b_wptr) { 17448 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17449 sizeof (ipha_t) - mp->b_rptr)) { 17450 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17451 freemsg(first_mp); 17452 return; 17453 } 17454 ipha = (ipha_t *)mp->b_rptr; 17455 } 17456 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17457 /* 17458 * Check the sanity of the inner IP header. 17459 */ 17460 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17461 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17462 freemsg(first_mp); 17463 return; 17464 } 17465 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17466 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17467 freemsg(first_mp); 17468 return; 17469 } 17470 if (inner_ipha->ipha_src == ipha->ipha_src && 17471 inner_ipha->ipha_dst == ipha->ipha_dst) { 17472 ipsec_in_t *ii; 17473 17474 /* 17475 * Self-encapsulated tunnel packet. Remove 17476 * the outer IP header and fanout again. 17477 * We also need to make sure that the inner 17478 * header is pulled up until options. 17479 */ 17480 mp->b_rptr = (uchar_t *)inner_ipha; 17481 ipha = inner_ipha; 17482 hdr_length = IPH_HDR_LENGTH(ipha); 17483 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17484 if (!pullupmsg(mp, (uchar_t *)ipha + 17485 + hdr_length - mp->b_rptr)) { 17486 freemsg(first_mp); 17487 return; 17488 } 17489 ipha = (ipha_t *)mp->b_rptr; 17490 } 17491 if (hdr_length > sizeof (ipha_t)) { 17492 /* We got options on the inner packet. */ 17493 ipaddr_t dst = ipha->ipha_dst; 17494 17495 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17496 -1) { 17497 /* Bad options! */ 17498 return; 17499 } 17500 if (dst != ipha->ipha_dst) { 17501 /* 17502 * Someone put a source-route in 17503 * the inside header of a self- 17504 * encapsulated packet. Drop it 17505 * with extreme prejudice and let 17506 * the sender know. 17507 */ 17508 icmp_unreachable(q, first_mp, 17509 ICMP_SOURCE_ROUTE_FAILED, 17510 recv_ill->ill_zoneid, ipst); 17511 return; 17512 } 17513 } 17514 if (!mctl_present) { 17515 ASSERT(first_mp == mp); 17516 /* 17517 * This means that somebody is sending 17518 * Self-encapsualted packets without AH/ESP. 17519 * If AH/ESP was present, we would have already 17520 * allocated the first_mp. 17521 * 17522 * Send this packet to find a tunnel endpoint. 17523 * if I can't find one, an ICMP 17524 * PROTOCOL_UNREACHABLE will get sent. 17525 */ 17526 goto fanout; 17527 } 17528 /* 17529 * We generally store the ill_index if we need to 17530 * do IPsec processing as we lose the ill queue when 17531 * we come back. But in this case, we never should 17532 * have to store the ill_index here as it should have 17533 * been stored previously when we processed the 17534 * AH/ESP header in this routine or for non-ipsec 17535 * cases, we still have the queue. But for some bad 17536 * packets from the wire, we can get to IPsec after 17537 * this and we better store the index for that case. 17538 */ 17539 ill = (ill_t *)q->q_ptr; 17540 ii = (ipsec_in_t *)first_mp->b_rptr; 17541 ii->ipsec_in_ill_index = 17542 ill->ill_phyint->phyint_ifindex; 17543 ii->ipsec_in_rill_index = 17544 recv_ill->ill_phyint->phyint_ifindex; 17545 if (ii->ipsec_in_decaps) { 17546 /* 17547 * This packet is self-encapsulated multiple 17548 * times. We don't want to recurse infinitely. 17549 * To keep it simple, drop the packet. 17550 */ 17551 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17552 freemsg(first_mp); 17553 return; 17554 } 17555 ii->ipsec_in_decaps = B_TRUE; 17556 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17557 ire); 17558 return; 17559 } 17560 break; 17561 case IPPROTO_AH: 17562 case IPPROTO_ESP: { 17563 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17564 17565 /* 17566 * Fast path for AH/ESP. If this is the first time 17567 * we are sending a datagram to AH/ESP, allocate 17568 * a IPSEC_IN message and prepend it. Otherwise, 17569 * just fanout. 17570 */ 17571 17572 int ipsec_rc; 17573 ipsec_in_t *ii; 17574 netstack_t *ns = ipst->ips_netstack; 17575 17576 IP_STAT(ipst, ipsec_proto_ahesp); 17577 if (!mctl_present) { 17578 ASSERT(first_mp == mp); 17579 first_mp = ipsec_in_alloc(B_TRUE, ns); 17580 if (first_mp == NULL) { 17581 ip1dbg(("ip_proto_input: IPSEC_IN " 17582 "allocation failure.\n")); 17583 freemsg(hada_mp); /* okay ifnull */ 17584 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17585 freemsg(mp); 17586 return; 17587 } 17588 /* 17589 * Store the ill_index so that when we come back 17590 * from IPsec we ride on the same queue. 17591 */ 17592 ill = (ill_t *)q->q_ptr; 17593 ii = (ipsec_in_t *)first_mp->b_rptr; 17594 ii->ipsec_in_ill_index = 17595 ill->ill_phyint->phyint_ifindex; 17596 ii->ipsec_in_rill_index = 17597 recv_ill->ill_phyint->phyint_ifindex; 17598 first_mp->b_cont = mp; 17599 /* 17600 * Cache hardware acceleration info. 17601 */ 17602 if (hada_mp != NULL) { 17603 IPSECHW_DEBUG(IPSECHW_PKT, 17604 ("ip_rput_local: caching data attr.\n")); 17605 ii->ipsec_in_accelerated = B_TRUE; 17606 ii->ipsec_in_da = hada_mp; 17607 hada_mp = NULL; 17608 } 17609 } else { 17610 ii = (ipsec_in_t *)first_mp->b_rptr; 17611 } 17612 17613 ii->ipsec_in_esp_udp_ports = esp_udp_ports; 17614 17615 if (!ipsec_loaded(ipss)) { 17616 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17617 ire->ire_zoneid, ipst); 17618 return; 17619 } 17620 17621 ns = ipst->ips_netstack; 17622 /* select inbound SA and have IPsec process the pkt */ 17623 if (ipha->ipha_protocol == IPPROTO_ESP) { 17624 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17625 boolean_t esp_in_udp_sa; 17626 if (esph == NULL) 17627 return; 17628 ASSERT(ii->ipsec_in_esp_sa != NULL); 17629 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17630 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17631 IPSA_F_NATT) != 0); 17632 /* 17633 * The following is a fancy, but quick, way of saying: 17634 * ESP-in-UDP SA and Raw ESP packet --> drop 17635 * OR 17636 * ESP SA and ESP-in-UDP packet --> drop 17637 */ 17638 if (esp_in_udp_sa != esp_in_udp_packet) { 17639 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17640 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17641 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17642 &ns->netstack_ipsec->ipsec_dropper); 17643 return; 17644 } 17645 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17646 first_mp, esph); 17647 } else { 17648 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17649 if (ah == NULL) 17650 return; 17651 ASSERT(ii->ipsec_in_ah_sa != NULL); 17652 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17653 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17654 first_mp, ah); 17655 } 17656 17657 switch (ipsec_rc) { 17658 case IPSEC_STATUS_SUCCESS: 17659 break; 17660 case IPSEC_STATUS_FAILED: 17661 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17662 /* FALLTHRU */ 17663 case IPSEC_STATUS_PENDING: 17664 return; 17665 } 17666 /* we're done with IPsec processing, send it up */ 17667 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17668 return; 17669 } 17670 default: 17671 break; 17672 } 17673 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17674 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17675 ire->ire_zoneid)); 17676 goto drop_pkt; 17677 } 17678 /* 17679 * Handle protocols with which IP is less intimate. There 17680 * can be more than one stream bound to a particular 17681 * protocol. When this is the case, each one gets a copy 17682 * of any incoming packets. 17683 */ 17684 fanout: 17685 ip_fanout_proto(q, first_mp, ill, ipha, 17686 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17687 B_TRUE, recv_ill, ire->ire_zoneid); 17688 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17689 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17690 return; 17691 17692 drop_pkt: 17693 freemsg(first_mp); 17694 if (hada_mp != NULL) 17695 freeb(hada_mp); 17696 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17697 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17698 #undef rptr 17699 #undef iphs 17700 17701 } 17702 17703 /* 17704 * Update any source route, record route or timestamp options. 17705 * Check that we are at end of strict source route. 17706 * The options have already been checked for sanity in ip_rput_options(). 17707 */ 17708 static boolean_t 17709 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17710 ip_stack_t *ipst) 17711 { 17712 ipoptp_t opts; 17713 uchar_t *opt; 17714 uint8_t optval; 17715 uint8_t optlen; 17716 ipaddr_t dst; 17717 uint32_t ts; 17718 ire_t *dst_ire; 17719 timestruc_t now; 17720 zoneid_t zoneid; 17721 ill_t *ill; 17722 17723 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17724 17725 ip2dbg(("ip_rput_local_options\n")); 17726 17727 for (optval = ipoptp_first(&opts, ipha); 17728 optval != IPOPT_EOL; 17729 optval = ipoptp_next(&opts)) { 17730 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17731 opt = opts.ipoptp_cur; 17732 optlen = opts.ipoptp_len; 17733 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17734 optval, optlen)); 17735 switch (optval) { 17736 uint32_t off; 17737 case IPOPT_SSRR: 17738 case IPOPT_LSRR: 17739 off = opt[IPOPT_OFFSET]; 17740 off--; 17741 if (optlen < IP_ADDR_LEN || 17742 off > optlen - IP_ADDR_LEN) { 17743 /* End of source route */ 17744 ip1dbg(("ip_rput_local_options: end of SR\n")); 17745 break; 17746 } 17747 /* 17748 * This will only happen if two consecutive entries 17749 * in the source route contains our address or if 17750 * it is a packet with a loose source route which 17751 * reaches us before consuming the whole source route 17752 */ 17753 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17754 if (optval == IPOPT_SSRR) { 17755 goto bad_src_route; 17756 } 17757 /* 17758 * Hack: instead of dropping the packet truncate the 17759 * source route to what has been used by filling the 17760 * rest with IPOPT_NOP. 17761 */ 17762 opt[IPOPT_OLEN] = (uint8_t)off; 17763 while (off < optlen) { 17764 opt[off++] = IPOPT_NOP; 17765 } 17766 break; 17767 case IPOPT_RR: 17768 off = opt[IPOPT_OFFSET]; 17769 off--; 17770 if (optlen < IP_ADDR_LEN || 17771 off > optlen - IP_ADDR_LEN) { 17772 /* No more room - ignore */ 17773 ip1dbg(( 17774 "ip_rput_local_options: end of RR\n")); 17775 break; 17776 } 17777 bcopy(&ire->ire_src_addr, (char *)opt + off, 17778 IP_ADDR_LEN); 17779 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17780 break; 17781 case IPOPT_TS: 17782 /* Insert timestamp if there is romm */ 17783 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17784 case IPOPT_TS_TSONLY: 17785 off = IPOPT_TS_TIMELEN; 17786 break; 17787 case IPOPT_TS_PRESPEC: 17788 case IPOPT_TS_PRESPEC_RFC791: 17789 /* Verify that the address matched */ 17790 off = opt[IPOPT_OFFSET] - 1; 17791 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17792 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17793 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17794 ipst); 17795 if (dst_ire == NULL) { 17796 /* Not for us */ 17797 break; 17798 } 17799 ire_refrele(dst_ire); 17800 /* FALLTHRU */ 17801 case IPOPT_TS_TSANDADDR: 17802 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17803 break; 17804 default: 17805 /* 17806 * ip_*put_options should have already 17807 * dropped this packet. 17808 */ 17809 cmn_err(CE_PANIC, "ip_rput_local_options: " 17810 "unknown IT - bug in ip_rput_options?\n"); 17811 return (B_TRUE); /* Keep "lint" happy */ 17812 } 17813 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17814 /* Increase overflow counter */ 17815 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17816 opt[IPOPT_POS_OV_FLG] = 17817 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17818 (off << 4)); 17819 break; 17820 } 17821 off = opt[IPOPT_OFFSET] - 1; 17822 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17823 case IPOPT_TS_PRESPEC: 17824 case IPOPT_TS_PRESPEC_RFC791: 17825 case IPOPT_TS_TSANDADDR: 17826 bcopy(&ire->ire_src_addr, (char *)opt + off, 17827 IP_ADDR_LEN); 17828 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17829 /* FALLTHRU */ 17830 case IPOPT_TS_TSONLY: 17831 off = opt[IPOPT_OFFSET] - 1; 17832 /* Compute # of milliseconds since midnight */ 17833 gethrestime(&now); 17834 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17835 now.tv_nsec / (NANOSEC / MILLISEC); 17836 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17837 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17838 break; 17839 } 17840 break; 17841 } 17842 } 17843 return (B_TRUE); 17844 17845 bad_src_route: 17846 q = WR(q); 17847 if (q->q_next != NULL) 17848 ill = q->q_ptr; 17849 else 17850 ill = NULL; 17851 17852 /* make sure we clear any indication of a hardware checksum */ 17853 DB_CKSUMFLAGS(mp) = 0; 17854 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17855 if (zoneid == ALL_ZONES) 17856 freemsg(mp); 17857 else 17858 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17859 return (B_FALSE); 17860 17861 } 17862 17863 /* 17864 * Process IP options in an inbound packet. If an option affects the 17865 * effective destination address, return the next hop address via dstp. 17866 * Returns -1 if something fails in which case an ICMP error has been sent 17867 * and mp freed. 17868 */ 17869 static int 17870 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17871 ip_stack_t *ipst) 17872 { 17873 ipoptp_t opts; 17874 uchar_t *opt; 17875 uint8_t optval; 17876 uint8_t optlen; 17877 ipaddr_t dst; 17878 intptr_t code = 0; 17879 ire_t *ire = NULL; 17880 zoneid_t zoneid; 17881 ill_t *ill; 17882 17883 ip2dbg(("ip_rput_options\n")); 17884 dst = ipha->ipha_dst; 17885 for (optval = ipoptp_first(&opts, ipha); 17886 optval != IPOPT_EOL; 17887 optval = ipoptp_next(&opts)) { 17888 opt = opts.ipoptp_cur; 17889 optlen = opts.ipoptp_len; 17890 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17891 optval, optlen)); 17892 /* 17893 * Note: we need to verify the checksum before we 17894 * modify anything thus this routine only extracts the next 17895 * hop dst from any source route. 17896 */ 17897 switch (optval) { 17898 uint32_t off; 17899 case IPOPT_SSRR: 17900 case IPOPT_LSRR: 17901 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17902 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17903 if (ire == NULL) { 17904 if (optval == IPOPT_SSRR) { 17905 ip1dbg(("ip_rput_options: not next" 17906 " strict source route 0x%x\n", 17907 ntohl(dst))); 17908 code = (char *)&ipha->ipha_dst - 17909 (char *)ipha; 17910 goto param_prob; /* RouterReq's */ 17911 } 17912 ip2dbg(("ip_rput_options: " 17913 "not next source route 0x%x\n", 17914 ntohl(dst))); 17915 break; 17916 } 17917 ire_refrele(ire); 17918 17919 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17920 ip1dbg(( 17921 "ip_rput_options: bad option offset\n")); 17922 code = (char *)&opt[IPOPT_OLEN] - 17923 (char *)ipha; 17924 goto param_prob; 17925 } 17926 off = opt[IPOPT_OFFSET]; 17927 off--; 17928 redo_srr: 17929 if (optlen < IP_ADDR_LEN || 17930 off > optlen - IP_ADDR_LEN) { 17931 /* End of source route */ 17932 ip1dbg(("ip_rput_options: end of SR\n")); 17933 break; 17934 } 17935 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17936 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17937 ntohl(dst))); 17938 17939 /* 17940 * Check if our address is present more than 17941 * once as consecutive hops in source route. 17942 * XXX verify per-interface ip_forwarding 17943 * for source route? 17944 */ 17945 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17946 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17947 17948 if (ire != NULL) { 17949 ire_refrele(ire); 17950 off += IP_ADDR_LEN; 17951 goto redo_srr; 17952 } 17953 17954 if (dst == htonl(INADDR_LOOPBACK)) { 17955 ip1dbg(("ip_rput_options: loopback addr in " 17956 "source route!\n")); 17957 goto bad_src_route; 17958 } 17959 /* 17960 * For strict: verify that dst is directly 17961 * reachable. 17962 */ 17963 if (optval == IPOPT_SSRR) { 17964 ire = ire_ftable_lookup(dst, 0, 0, 17965 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17966 MBLK_GETLABEL(mp), 17967 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 17968 if (ire == NULL) { 17969 ip1dbg(("ip_rput_options: SSRR not " 17970 "directly reachable: 0x%x\n", 17971 ntohl(dst))); 17972 goto bad_src_route; 17973 } 17974 ire_refrele(ire); 17975 } 17976 /* 17977 * Defer update of the offset and the record route 17978 * until the packet is forwarded. 17979 */ 17980 break; 17981 case IPOPT_RR: 17982 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17983 ip1dbg(( 17984 "ip_rput_options: bad option offset\n")); 17985 code = (char *)&opt[IPOPT_OLEN] - 17986 (char *)ipha; 17987 goto param_prob; 17988 } 17989 break; 17990 case IPOPT_TS: 17991 /* 17992 * Verify that length >= 5 and that there is either 17993 * room for another timestamp or that the overflow 17994 * counter is not maxed out. 17995 */ 17996 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17997 if (optlen < IPOPT_MINLEN_IT) { 17998 goto param_prob; 17999 } 18000 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18001 ip1dbg(( 18002 "ip_rput_options: bad option offset\n")); 18003 code = (char *)&opt[IPOPT_OFFSET] - 18004 (char *)ipha; 18005 goto param_prob; 18006 } 18007 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18008 case IPOPT_TS_TSONLY: 18009 off = IPOPT_TS_TIMELEN; 18010 break; 18011 case IPOPT_TS_TSANDADDR: 18012 case IPOPT_TS_PRESPEC: 18013 case IPOPT_TS_PRESPEC_RFC791: 18014 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18015 break; 18016 default: 18017 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18018 (char *)ipha; 18019 goto param_prob; 18020 } 18021 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18022 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18023 /* 18024 * No room and the overflow counter is 15 18025 * already. 18026 */ 18027 goto param_prob; 18028 } 18029 break; 18030 } 18031 } 18032 18033 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18034 *dstp = dst; 18035 return (0); 18036 } 18037 18038 ip1dbg(("ip_rput_options: error processing IP options.")); 18039 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18040 18041 param_prob: 18042 q = WR(q); 18043 if (q->q_next != NULL) 18044 ill = q->q_ptr; 18045 else 18046 ill = NULL; 18047 18048 /* make sure we clear any indication of a hardware checksum */ 18049 DB_CKSUMFLAGS(mp) = 0; 18050 /* Don't know whether this is for non-global or global/forwarding */ 18051 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18052 if (zoneid == ALL_ZONES) 18053 freemsg(mp); 18054 else 18055 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18056 return (-1); 18057 18058 bad_src_route: 18059 q = WR(q); 18060 if (q->q_next != NULL) 18061 ill = q->q_ptr; 18062 else 18063 ill = NULL; 18064 18065 /* make sure we clear any indication of a hardware checksum */ 18066 DB_CKSUMFLAGS(mp) = 0; 18067 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18068 if (zoneid == ALL_ZONES) 18069 freemsg(mp); 18070 else 18071 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18072 return (-1); 18073 } 18074 18075 /* 18076 * IP & ICMP info in >=14 msg's ... 18077 * - ip fixed part (mib2_ip_t) 18078 * - icmp fixed part (mib2_icmp_t) 18079 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18080 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18081 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18082 * - ipRouteAttributeTable (ip 102) labeled routes 18083 * - ip multicast membership (ip_member_t) 18084 * - ip multicast source filtering (ip_grpsrc_t) 18085 * - igmp fixed part (struct igmpstat) 18086 * - multicast routing stats (struct mrtstat) 18087 * - multicast routing vifs (array of struct vifctl) 18088 * - multicast routing routes (array of struct mfcctl) 18089 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18090 * One per ill plus one generic 18091 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18092 * One per ill plus one generic 18093 * - ipv6RouteEntry all IPv6 IREs 18094 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18095 * - ipv6NetToMediaEntry all Neighbor Cache entries 18096 * - ipv6AddrEntry all IPv6 ipifs 18097 * - ipv6 multicast membership (ipv6_member_t) 18098 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18099 * 18100 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18101 * 18102 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18103 * already filled in by the caller. 18104 * Return value of 0 indicates that no messages were sent and caller 18105 * should free mpctl. 18106 */ 18107 int 18108 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18109 { 18110 ip_stack_t *ipst; 18111 sctp_stack_t *sctps; 18112 18113 if (q->q_next != NULL) { 18114 ipst = ILLQ_TO_IPST(q); 18115 } else { 18116 ipst = CONNQ_TO_IPST(q); 18117 } 18118 ASSERT(ipst != NULL); 18119 sctps = ipst->ips_netstack->netstack_sctp; 18120 18121 if (mpctl == NULL || mpctl->b_cont == NULL) { 18122 return (0); 18123 } 18124 18125 /* 18126 * For the purposes of the (broken) packet shell use 18127 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18128 * to make TCP and UDP appear first in the list of mib items. 18129 * TBD: We could expand this and use it in netstat so that 18130 * the kernel doesn't have to produce large tables (connections, 18131 * routes, etc) when netstat only wants the statistics or a particular 18132 * table. 18133 */ 18134 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18135 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18136 return (1); 18137 } 18138 } 18139 18140 if (level != MIB2_TCP) { 18141 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18142 return (1); 18143 } 18144 } 18145 18146 if (level != MIB2_UDP) { 18147 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18148 return (1); 18149 } 18150 } 18151 18152 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18153 ipst)) == NULL) { 18154 return (1); 18155 } 18156 18157 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18158 return (1); 18159 } 18160 18161 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18162 return (1); 18163 } 18164 18165 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18166 return (1); 18167 } 18168 18169 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18170 return (1); 18171 } 18172 18173 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18174 return (1); 18175 } 18176 18177 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18178 return (1); 18179 } 18180 18181 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18182 return (1); 18183 } 18184 18185 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18186 return (1); 18187 } 18188 18189 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18190 return (1); 18191 } 18192 18193 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18194 return (1); 18195 } 18196 18197 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18198 return (1); 18199 } 18200 18201 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18202 return (1); 18203 } 18204 18205 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18206 return (1); 18207 } 18208 18209 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18210 return (1); 18211 } 18212 18213 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18214 if (mpctl == NULL) { 18215 return (1); 18216 } 18217 18218 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18219 return (1); 18220 } 18221 freemsg(mpctl); 18222 return (1); 18223 } 18224 18225 18226 /* Get global (legacy) IPv4 statistics */ 18227 static mblk_t * 18228 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18229 ip_stack_t *ipst) 18230 { 18231 mib2_ip_t old_ip_mib; 18232 struct opthdr *optp; 18233 mblk_t *mp2ctl; 18234 18235 /* 18236 * make a copy of the original message 18237 */ 18238 mp2ctl = copymsg(mpctl); 18239 18240 /* fixed length IP structure... */ 18241 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18242 optp->level = MIB2_IP; 18243 optp->name = 0; 18244 SET_MIB(old_ip_mib.ipForwarding, 18245 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18246 SET_MIB(old_ip_mib.ipDefaultTTL, 18247 (uint32_t)ipst->ips_ip_def_ttl); 18248 SET_MIB(old_ip_mib.ipReasmTimeout, 18249 ipst->ips_ip_g_frag_timeout); 18250 SET_MIB(old_ip_mib.ipAddrEntrySize, 18251 sizeof (mib2_ipAddrEntry_t)); 18252 SET_MIB(old_ip_mib.ipRouteEntrySize, 18253 sizeof (mib2_ipRouteEntry_t)); 18254 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18255 sizeof (mib2_ipNetToMediaEntry_t)); 18256 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18257 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18258 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18259 sizeof (mib2_ipAttributeEntry_t)); 18260 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18261 18262 /* 18263 * Grab the statistics from the new IP MIB 18264 */ 18265 SET_MIB(old_ip_mib.ipInReceives, 18266 (uint32_t)ipmib->ipIfStatsHCInReceives); 18267 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18268 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18269 SET_MIB(old_ip_mib.ipForwDatagrams, 18270 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18271 SET_MIB(old_ip_mib.ipInUnknownProtos, 18272 ipmib->ipIfStatsInUnknownProtos); 18273 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18274 SET_MIB(old_ip_mib.ipInDelivers, 18275 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18276 SET_MIB(old_ip_mib.ipOutRequests, 18277 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18278 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18279 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18280 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18281 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18282 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18283 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18284 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18285 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18286 18287 /* ipRoutingDiscards is not being used */ 18288 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18289 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18290 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18291 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18292 SET_MIB(old_ip_mib.ipReasmDuplicates, 18293 ipmib->ipIfStatsReasmDuplicates); 18294 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18295 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18296 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18297 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18298 SET_MIB(old_ip_mib.rawipInOverflows, 18299 ipmib->rawipIfStatsInOverflows); 18300 18301 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18302 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18303 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18304 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18305 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18306 ipmib->ipIfStatsOutSwitchIPVersion); 18307 18308 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18309 (int)sizeof (old_ip_mib))) { 18310 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18311 (uint_t)sizeof (old_ip_mib))); 18312 } 18313 18314 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18315 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18316 (int)optp->level, (int)optp->name, (int)optp->len)); 18317 qreply(q, mpctl); 18318 return (mp2ctl); 18319 } 18320 18321 /* Per interface IPv4 statistics */ 18322 static mblk_t * 18323 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18324 { 18325 struct opthdr *optp; 18326 mblk_t *mp2ctl; 18327 ill_t *ill; 18328 ill_walk_context_t ctx; 18329 mblk_t *mp_tail = NULL; 18330 mib2_ipIfStatsEntry_t global_ip_mib; 18331 18332 /* 18333 * Make a copy of the original message 18334 */ 18335 mp2ctl = copymsg(mpctl); 18336 18337 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18338 optp->level = MIB2_IP; 18339 optp->name = MIB2_IP_TRAFFIC_STATS; 18340 /* Include "unknown interface" ip_mib */ 18341 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18342 ipst->ips_ip_mib.ipIfStatsIfIndex = 18343 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18344 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18345 (ipst->ips_ip_g_forward ? 1 : 2)); 18346 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18347 (uint32_t)ipst->ips_ip_def_ttl); 18348 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18349 sizeof (mib2_ipIfStatsEntry_t)); 18350 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18351 sizeof (mib2_ipAddrEntry_t)); 18352 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18353 sizeof (mib2_ipRouteEntry_t)); 18354 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18355 sizeof (mib2_ipNetToMediaEntry_t)); 18356 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18357 sizeof (ip_member_t)); 18358 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18359 sizeof (ip_grpsrc_t)); 18360 18361 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18362 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18363 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18364 "failed to allocate %u bytes\n", 18365 (uint_t)sizeof (ipst->ips_ip_mib))); 18366 } 18367 18368 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18369 18370 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18371 ill = ILL_START_WALK_V4(&ctx, ipst); 18372 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18373 ill->ill_ip_mib->ipIfStatsIfIndex = 18374 ill->ill_phyint->phyint_ifindex; 18375 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18376 (ipst->ips_ip_g_forward ? 1 : 2)); 18377 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18378 (uint32_t)ipst->ips_ip_def_ttl); 18379 18380 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18381 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18382 (char *)ill->ill_ip_mib, 18383 (int)sizeof (*ill->ill_ip_mib))) { 18384 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18385 "failed to allocate %u bytes\n", 18386 (uint_t)sizeof (*ill->ill_ip_mib))); 18387 } 18388 } 18389 rw_exit(&ipst->ips_ill_g_lock); 18390 18391 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18392 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18393 "level %d, name %d, len %d\n", 18394 (int)optp->level, (int)optp->name, (int)optp->len)); 18395 qreply(q, mpctl); 18396 18397 if (mp2ctl == NULL) 18398 return (NULL); 18399 18400 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18401 } 18402 18403 /* Global IPv4 ICMP statistics */ 18404 static mblk_t * 18405 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18406 { 18407 struct opthdr *optp; 18408 mblk_t *mp2ctl; 18409 18410 /* 18411 * Make a copy of the original message 18412 */ 18413 mp2ctl = copymsg(mpctl); 18414 18415 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18416 optp->level = MIB2_ICMP; 18417 optp->name = 0; 18418 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18419 (int)sizeof (ipst->ips_icmp_mib))) { 18420 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18421 (uint_t)sizeof (ipst->ips_icmp_mib))); 18422 } 18423 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18424 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18425 (int)optp->level, (int)optp->name, (int)optp->len)); 18426 qreply(q, mpctl); 18427 return (mp2ctl); 18428 } 18429 18430 /* Global IPv4 IGMP statistics */ 18431 static mblk_t * 18432 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18433 { 18434 struct opthdr *optp; 18435 mblk_t *mp2ctl; 18436 18437 /* 18438 * make a copy of the original message 18439 */ 18440 mp2ctl = copymsg(mpctl); 18441 18442 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18443 optp->level = EXPER_IGMP; 18444 optp->name = 0; 18445 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18446 (int)sizeof (ipst->ips_igmpstat))) { 18447 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18448 (uint_t)sizeof (ipst->ips_igmpstat))); 18449 } 18450 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18451 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18452 (int)optp->level, (int)optp->name, (int)optp->len)); 18453 qreply(q, mpctl); 18454 return (mp2ctl); 18455 } 18456 18457 /* Global IPv4 Multicast Routing statistics */ 18458 static mblk_t * 18459 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18460 { 18461 struct opthdr *optp; 18462 mblk_t *mp2ctl; 18463 18464 /* 18465 * make a copy of the original message 18466 */ 18467 mp2ctl = copymsg(mpctl); 18468 18469 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18470 optp->level = EXPER_DVMRP; 18471 optp->name = 0; 18472 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18473 ip0dbg(("ip_mroute_stats: failed\n")); 18474 } 18475 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18476 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18477 (int)optp->level, (int)optp->name, (int)optp->len)); 18478 qreply(q, mpctl); 18479 return (mp2ctl); 18480 } 18481 18482 /* IPv4 address information */ 18483 static mblk_t * 18484 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18485 { 18486 struct opthdr *optp; 18487 mblk_t *mp2ctl; 18488 mblk_t *mp_tail = NULL; 18489 ill_t *ill; 18490 ipif_t *ipif; 18491 uint_t bitval; 18492 mib2_ipAddrEntry_t mae; 18493 zoneid_t zoneid; 18494 ill_walk_context_t ctx; 18495 18496 /* 18497 * make a copy of the original message 18498 */ 18499 mp2ctl = copymsg(mpctl); 18500 18501 /* ipAddrEntryTable */ 18502 18503 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18504 optp->level = MIB2_IP; 18505 optp->name = MIB2_IP_ADDR; 18506 zoneid = Q_TO_CONN(q)->conn_zoneid; 18507 18508 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18509 ill = ILL_START_WALK_V4(&ctx, ipst); 18510 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18511 for (ipif = ill->ill_ipif; ipif != NULL; 18512 ipif = ipif->ipif_next) { 18513 if (ipif->ipif_zoneid != zoneid && 18514 ipif->ipif_zoneid != ALL_ZONES) 18515 continue; 18516 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18517 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18518 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18519 18520 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18521 OCTET_LENGTH); 18522 mae.ipAdEntIfIndex.o_length = 18523 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18524 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18525 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18526 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18527 mae.ipAdEntInfo.ae_subnet_len = 18528 ip_mask_to_plen(ipif->ipif_net_mask); 18529 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18530 for (bitval = 1; 18531 bitval && 18532 !(bitval & ipif->ipif_brd_addr); 18533 bitval <<= 1) 18534 noop; 18535 mae.ipAdEntBcastAddr = bitval; 18536 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18537 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18538 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18539 mae.ipAdEntInfo.ae_broadcast_addr = 18540 ipif->ipif_brd_addr; 18541 mae.ipAdEntInfo.ae_pp_dst_addr = 18542 ipif->ipif_pp_dst_addr; 18543 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18544 ill->ill_flags | ill->ill_phyint->phyint_flags; 18545 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18546 18547 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18548 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18549 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18550 "allocate %u bytes\n", 18551 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18552 } 18553 } 18554 } 18555 rw_exit(&ipst->ips_ill_g_lock); 18556 18557 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18558 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18559 (int)optp->level, (int)optp->name, (int)optp->len)); 18560 qreply(q, mpctl); 18561 return (mp2ctl); 18562 } 18563 18564 /* IPv6 address information */ 18565 static mblk_t * 18566 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18567 { 18568 struct opthdr *optp; 18569 mblk_t *mp2ctl; 18570 mblk_t *mp_tail = NULL; 18571 ill_t *ill; 18572 ipif_t *ipif; 18573 mib2_ipv6AddrEntry_t mae6; 18574 zoneid_t zoneid; 18575 ill_walk_context_t ctx; 18576 18577 /* 18578 * make a copy of the original message 18579 */ 18580 mp2ctl = copymsg(mpctl); 18581 18582 /* ipv6AddrEntryTable */ 18583 18584 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18585 optp->level = MIB2_IP6; 18586 optp->name = MIB2_IP6_ADDR; 18587 zoneid = Q_TO_CONN(q)->conn_zoneid; 18588 18589 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18590 ill = ILL_START_WALK_V6(&ctx, ipst); 18591 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18592 for (ipif = ill->ill_ipif; ipif != NULL; 18593 ipif = ipif->ipif_next) { 18594 if (ipif->ipif_zoneid != zoneid && 18595 ipif->ipif_zoneid != ALL_ZONES) 18596 continue; 18597 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18598 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18599 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18600 18601 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18602 OCTET_LENGTH); 18603 mae6.ipv6AddrIfIndex.o_length = 18604 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18605 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18606 mae6.ipv6AddrPfxLength = 18607 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18608 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18609 mae6.ipv6AddrInfo.ae_subnet_len = 18610 mae6.ipv6AddrPfxLength; 18611 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18612 18613 /* Type: stateless(1), stateful(2), unknown(3) */ 18614 if (ipif->ipif_flags & IPIF_ADDRCONF) 18615 mae6.ipv6AddrType = 1; 18616 else 18617 mae6.ipv6AddrType = 2; 18618 /* Anycast: true(1), false(2) */ 18619 if (ipif->ipif_flags & IPIF_ANYCAST) 18620 mae6.ipv6AddrAnycastFlag = 1; 18621 else 18622 mae6.ipv6AddrAnycastFlag = 2; 18623 18624 /* 18625 * Address status: preferred(1), deprecated(2), 18626 * invalid(3), inaccessible(4), unknown(5) 18627 */ 18628 if (ipif->ipif_flags & IPIF_NOLOCAL) 18629 mae6.ipv6AddrStatus = 3; 18630 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18631 mae6.ipv6AddrStatus = 2; 18632 else 18633 mae6.ipv6AddrStatus = 1; 18634 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18635 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18636 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18637 ipif->ipif_v6pp_dst_addr; 18638 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18639 ill->ill_flags | ill->ill_phyint->phyint_flags; 18640 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18641 mae6.ipv6AddrIdentifier = ill->ill_token; 18642 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18643 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18644 mae6.ipv6AddrRetransmitTime = 18645 ill->ill_reachable_retrans_time; 18646 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18647 (char *)&mae6, 18648 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18649 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18650 "allocate %u bytes\n", 18651 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18652 } 18653 } 18654 } 18655 rw_exit(&ipst->ips_ill_g_lock); 18656 18657 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18658 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18659 (int)optp->level, (int)optp->name, (int)optp->len)); 18660 qreply(q, mpctl); 18661 return (mp2ctl); 18662 } 18663 18664 /* IPv4 multicast group membership. */ 18665 static mblk_t * 18666 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18667 { 18668 struct opthdr *optp; 18669 mblk_t *mp2ctl; 18670 ill_t *ill; 18671 ipif_t *ipif; 18672 ilm_t *ilm; 18673 ip_member_t ipm; 18674 mblk_t *mp_tail = NULL; 18675 ill_walk_context_t ctx; 18676 zoneid_t zoneid; 18677 18678 /* 18679 * make a copy of the original message 18680 */ 18681 mp2ctl = copymsg(mpctl); 18682 zoneid = Q_TO_CONN(q)->conn_zoneid; 18683 18684 /* ipGroupMember table */ 18685 optp = (struct opthdr *)&mpctl->b_rptr[ 18686 sizeof (struct T_optmgmt_ack)]; 18687 optp->level = MIB2_IP; 18688 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18689 18690 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18691 ill = ILL_START_WALK_V4(&ctx, ipst); 18692 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18693 ILM_WALKER_HOLD(ill); 18694 for (ipif = ill->ill_ipif; ipif != NULL; 18695 ipif = ipif->ipif_next) { 18696 if (ipif->ipif_zoneid != zoneid && 18697 ipif->ipif_zoneid != ALL_ZONES) 18698 continue; /* not this zone */ 18699 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18700 OCTET_LENGTH); 18701 ipm.ipGroupMemberIfIndex.o_length = 18702 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18703 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18704 ASSERT(ilm->ilm_ipif != NULL); 18705 ASSERT(ilm->ilm_ill == NULL); 18706 if (ilm->ilm_ipif != ipif) 18707 continue; 18708 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18709 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18710 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18711 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18712 (char *)&ipm, (int)sizeof (ipm))) { 18713 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18714 "failed to allocate %u bytes\n", 18715 (uint_t)sizeof (ipm))); 18716 } 18717 } 18718 } 18719 ILM_WALKER_RELE(ill); 18720 } 18721 rw_exit(&ipst->ips_ill_g_lock); 18722 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18723 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18724 (int)optp->level, (int)optp->name, (int)optp->len)); 18725 qreply(q, mpctl); 18726 return (mp2ctl); 18727 } 18728 18729 /* IPv6 multicast group membership. */ 18730 static mblk_t * 18731 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18732 { 18733 struct opthdr *optp; 18734 mblk_t *mp2ctl; 18735 ill_t *ill; 18736 ilm_t *ilm; 18737 ipv6_member_t ipm6; 18738 mblk_t *mp_tail = NULL; 18739 ill_walk_context_t ctx; 18740 zoneid_t zoneid; 18741 18742 /* 18743 * make a copy of the original message 18744 */ 18745 mp2ctl = copymsg(mpctl); 18746 zoneid = Q_TO_CONN(q)->conn_zoneid; 18747 18748 /* ip6GroupMember table */ 18749 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18750 optp->level = MIB2_IP6; 18751 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18752 18753 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18754 ill = ILL_START_WALK_V6(&ctx, ipst); 18755 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18756 ILM_WALKER_HOLD(ill); 18757 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18758 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18759 ASSERT(ilm->ilm_ipif == NULL); 18760 ASSERT(ilm->ilm_ill != NULL); 18761 if (ilm->ilm_zoneid != zoneid) 18762 continue; /* not this zone */ 18763 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18764 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18765 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18766 if (!snmp_append_data2(mpctl->b_cont, 18767 &mp_tail, 18768 (char *)&ipm6, (int)sizeof (ipm6))) { 18769 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18770 "failed to allocate %u bytes\n", 18771 (uint_t)sizeof (ipm6))); 18772 } 18773 } 18774 ILM_WALKER_RELE(ill); 18775 } 18776 rw_exit(&ipst->ips_ill_g_lock); 18777 18778 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18779 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18780 (int)optp->level, (int)optp->name, (int)optp->len)); 18781 qreply(q, mpctl); 18782 return (mp2ctl); 18783 } 18784 18785 /* IP multicast filtered sources */ 18786 static mblk_t * 18787 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18788 { 18789 struct opthdr *optp; 18790 mblk_t *mp2ctl; 18791 ill_t *ill; 18792 ipif_t *ipif; 18793 ilm_t *ilm; 18794 ip_grpsrc_t ips; 18795 mblk_t *mp_tail = NULL; 18796 ill_walk_context_t ctx; 18797 zoneid_t zoneid; 18798 int i; 18799 slist_t *sl; 18800 18801 /* 18802 * make a copy of the original message 18803 */ 18804 mp2ctl = copymsg(mpctl); 18805 zoneid = Q_TO_CONN(q)->conn_zoneid; 18806 18807 /* ipGroupSource table */ 18808 optp = (struct opthdr *)&mpctl->b_rptr[ 18809 sizeof (struct T_optmgmt_ack)]; 18810 optp->level = MIB2_IP; 18811 optp->name = EXPER_IP_GROUP_SOURCES; 18812 18813 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18814 ill = ILL_START_WALK_V4(&ctx, ipst); 18815 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18816 ILM_WALKER_HOLD(ill); 18817 for (ipif = ill->ill_ipif; ipif != NULL; 18818 ipif = ipif->ipif_next) { 18819 if (ipif->ipif_zoneid != zoneid) 18820 continue; /* not this zone */ 18821 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18822 OCTET_LENGTH); 18823 ips.ipGroupSourceIfIndex.o_length = 18824 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18825 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18826 ASSERT(ilm->ilm_ipif != NULL); 18827 ASSERT(ilm->ilm_ill == NULL); 18828 sl = ilm->ilm_filter; 18829 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18830 continue; 18831 ips.ipGroupSourceGroup = ilm->ilm_addr; 18832 for (i = 0; i < sl->sl_numsrc; i++) { 18833 if (!IN6_IS_ADDR_V4MAPPED( 18834 &sl->sl_addr[i])) 18835 continue; 18836 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18837 ips.ipGroupSourceAddress); 18838 if (snmp_append_data2(mpctl->b_cont, 18839 &mp_tail, (char *)&ips, 18840 (int)sizeof (ips)) == 0) { 18841 ip1dbg(("ip_snmp_get_mib2_" 18842 "ip_group_src: failed to " 18843 "allocate %u bytes\n", 18844 (uint_t)sizeof (ips))); 18845 } 18846 } 18847 } 18848 } 18849 ILM_WALKER_RELE(ill); 18850 } 18851 rw_exit(&ipst->ips_ill_g_lock); 18852 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18853 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18854 (int)optp->level, (int)optp->name, (int)optp->len)); 18855 qreply(q, mpctl); 18856 return (mp2ctl); 18857 } 18858 18859 /* IPv6 multicast filtered sources. */ 18860 static mblk_t * 18861 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18862 { 18863 struct opthdr *optp; 18864 mblk_t *mp2ctl; 18865 ill_t *ill; 18866 ilm_t *ilm; 18867 ipv6_grpsrc_t ips6; 18868 mblk_t *mp_tail = NULL; 18869 ill_walk_context_t ctx; 18870 zoneid_t zoneid; 18871 int i; 18872 slist_t *sl; 18873 18874 /* 18875 * make a copy of the original message 18876 */ 18877 mp2ctl = copymsg(mpctl); 18878 zoneid = Q_TO_CONN(q)->conn_zoneid; 18879 18880 /* ip6GroupMember table */ 18881 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18882 optp->level = MIB2_IP6; 18883 optp->name = EXPER_IP6_GROUP_SOURCES; 18884 18885 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18886 ill = ILL_START_WALK_V6(&ctx, ipst); 18887 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18888 ILM_WALKER_HOLD(ill); 18889 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18890 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18891 ASSERT(ilm->ilm_ipif == NULL); 18892 ASSERT(ilm->ilm_ill != NULL); 18893 sl = ilm->ilm_filter; 18894 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18895 continue; 18896 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18897 for (i = 0; i < sl->sl_numsrc; i++) { 18898 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18899 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18900 (char *)&ips6, (int)sizeof (ips6))) { 18901 ip1dbg(("ip_snmp_get_mib2_ip6_" 18902 "group_src: failed to allocate " 18903 "%u bytes\n", 18904 (uint_t)sizeof (ips6))); 18905 } 18906 } 18907 } 18908 ILM_WALKER_RELE(ill); 18909 } 18910 rw_exit(&ipst->ips_ill_g_lock); 18911 18912 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18913 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18914 (int)optp->level, (int)optp->name, (int)optp->len)); 18915 qreply(q, mpctl); 18916 return (mp2ctl); 18917 } 18918 18919 /* Multicast routing virtual interface table. */ 18920 static mblk_t * 18921 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18922 { 18923 struct opthdr *optp; 18924 mblk_t *mp2ctl; 18925 18926 /* 18927 * make a copy of the original message 18928 */ 18929 mp2ctl = copymsg(mpctl); 18930 18931 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18932 optp->level = EXPER_DVMRP; 18933 optp->name = EXPER_DVMRP_VIF; 18934 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18935 ip0dbg(("ip_mroute_vif: failed\n")); 18936 } 18937 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18938 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18939 (int)optp->level, (int)optp->name, (int)optp->len)); 18940 qreply(q, mpctl); 18941 return (mp2ctl); 18942 } 18943 18944 /* Multicast routing table. */ 18945 static mblk_t * 18946 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18947 { 18948 struct opthdr *optp; 18949 mblk_t *mp2ctl; 18950 18951 /* 18952 * make a copy of the original message 18953 */ 18954 mp2ctl = copymsg(mpctl); 18955 18956 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18957 optp->level = EXPER_DVMRP; 18958 optp->name = EXPER_DVMRP_MRT; 18959 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 18960 ip0dbg(("ip_mroute_mrt: failed\n")); 18961 } 18962 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18963 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18964 (int)optp->level, (int)optp->name, (int)optp->len)); 18965 qreply(q, mpctl); 18966 return (mp2ctl); 18967 } 18968 18969 /* 18970 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18971 * in one IRE walk. 18972 */ 18973 static mblk_t * 18974 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18975 { 18976 struct opthdr *optp; 18977 mblk_t *mp2ctl; /* Returned */ 18978 mblk_t *mp3ctl; /* nettomedia */ 18979 mblk_t *mp4ctl; /* routeattrs */ 18980 iproutedata_t ird; 18981 zoneid_t zoneid; 18982 18983 /* 18984 * make copies of the original message 18985 * - mp2ctl is returned unchanged to the caller for his use 18986 * - mpctl is sent upstream as ipRouteEntryTable 18987 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18988 * - mp4ctl is sent upstream as ipRouteAttributeTable 18989 */ 18990 mp2ctl = copymsg(mpctl); 18991 mp3ctl = copymsg(mpctl); 18992 mp4ctl = copymsg(mpctl); 18993 if (mp3ctl == NULL || mp4ctl == NULL) { 18994 freemsg(mp4ctl); 18995 freemsg(mp3ctl); 18996 freemsg(mp2ctl); 18997 freemsg(mpctl); 18998 return (NULL); 18999 } 19000 19001 bzero(&ird, sizeof (ird)); 19002 19003 ird.ird_route.lp_head = mpctl->b_cont; 19004 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19005 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19006 19007 zoneid = Q_TO_CONN(q)->conn_zoneid; 19008 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19009 19010 /* ipRouteEntryTable in mpctl */ 19011 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19012 optp->level = MIB2_IP; 19013 optp->name = MIB2_IP_ROUTE; 19014 optp->len = msgdsize(ird.ird_route.lp_head); 19015 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19016 (int)optp->level, (int)optp->name, (int)optp->len)); 19017 qreply(q, mpctl); 19018 19019 /* ipNetToMediaEntryTable in mp3ctl */ 19020 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19021 optp->level = MIB2_IP; 19022 optp->name = MIB2_IP_MEDIA; 19023 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19024 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19025 (int)optp->level, (int)optp->name, (int)optp->len)); 19026 qreply(q, mp3ctl); 19027 19028 /* ipRouteAttributeTable in mp4ctl */ 19029 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19030 optp->level = MIB2_IP; 19031 optp->name = EXPER_IP_RTATTR; 19032 optp->len = msgdsize(ird.ird_attrs.lp_head); 19033 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19034 (int)optp->level, (int)optp->name, (int)optp->len)); 19035 if (optp->len == 0) 19036 freemsg(mp4ctl); 19037 else 19038 qreply(q, mp4ctl); 19039 19040 return (mp2ctl); 19041 } 19042 19043 /* 19044 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19045 * ipv6NetToMediaEntryTable in an NDP walk. 19046 */ 19047 static mblk_t * 19048 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19049 { 19050 struct opthdr *optp; 19051 mblk_t *mp2ctl; /* Returned */ 19052 mblk_t *mp3ctl; /* nettomedia */ 19053 mblk_t *mp4ctl; /* routeattrs */ 19054 iproutedata_t ird; 19055 zoneid_t zoneid; 19056 19057 /* 19058 * make copies of the original message 19059 * - mp2ctl is returned unchanged to the caller for his use 19060 * - mpctl is sent upstream as ipv6RouteEntryTable 19061 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19062 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19063 */ 19064 mp2ctl = copymsg(mpctl); 19065 mp3ctl = copymsg(mpctl); 19066 mp4ctl = copymsg(mpctl); 19067 if (mp3ctl == NULL || mp4ctl == NULL) { 19068 freemsg(mp4ctl); 19069 freemsg(mp3ctl); 19070 freemsg(mp2ctl); 19071 freemsg(mpctl); 19072 return (NULL); 19073 } 19074 19075 bzero(&ird, sizeof (ird)); 19076 19077 ird.ird_route.lp_head = mpctl->b_cont; 19078 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19079 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19080 19081 zoneid = Q_TO_CONN(q)->conn_zoneid; 19082 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19083 19084 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19085 optp->level = MIB2_IP6; 19086 optp->name = MIB2_IP6_ROUTE; 19087 optp->len = msgdsize(ird.ird_route.lp_head); 19088 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19089 (int)optp->level, (int)optp->name, (int)optp->len)); 19090 qreply(q, mpctl); 19091 19092 /* ipv6NetToMediaEntryTable in mp3ctl */ 19093 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19094 19095 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19096 optp->level = MIB2_IP6; 19097 optp->name = MIB2_IP6_MEDIA; 19098 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19099 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19100 (int)optp->level, (int)optp->name, (int)optp->len)); 19101 qreply(q, mp3ctl); 19102 19103 /* ipv6RouteAttributeTable in mp4ctl */ 19104 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19105 optp->level = MIB2_IP6; 19106 optp->name = EXPER_IP_RTATTR; 19107 optp->len = msgdsize(ird.ird_attrs.lp_head); 19108 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19109 (int)optp->level, (int)optp->name, (int)optp->len)); 19110 if (optp->len == 0) 19111 freemsg(mp4ctl); 19112 else 19113 qreply(q, mp4ctl); 19114 19115 return (mp2ctl); 19116 } 19117 19118 /* 19119 * IPv6 mib: One per ill 19120 */ 19121 static mblk_t * 19122 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19123 { 19124 struct opthdr *optp; 19125 mblk_t *mp2ctl; 19126 ill_t *ill; 19127 ill_walk_context_t ctx; 19128 mblk_t *mp_tail = NULL; 19129 19130 /* 19131 * Make a copy of the original message 19132 */ 19133 mp2ctl = copymsg(mpctl); 19134 19135 /* fixed length IPv6 structure ... */ 19136 19137 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19138 optp->level = MIB2_IP6; 19139 optp->name = 0; 19140 /* Include "unknown interface" ip6_mib */ 19141 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19142 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19143 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19144 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19145 ipst->ips_ipv6_forward ? 1 : 2); 19146 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19147 ipst->ips_ipv6_def_hops); 19148 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19149 sizeof (mib2_ipIfStatsEntry_t)); 19150 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19151 sizeof (mib2_ipv6AddrEntry_t)); 19152 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19153 sizeof (mib2_ipv6RouteEntry_t)); 19154 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19155 sizeof (mib2_ipv6NetToMediaEntry_t)); 19156 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19157 sizeof (ipv6_member_t)); 19158 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19159 sizeof (ipv6_grpsrc_t)); 19160 19161 /* 19162 * Synchronize 64- and 32-bit counters 19163 */ 19164 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19165 ipIfStatsHCInReceives); 19166 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19167 ipIfStatsHCInDelivers); 19168 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19169 ipIfStatsHCOutRequests); 19170 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19171 ipIfStatsHCOutForwDatagrams); 19172 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19173 ipIfStatsHCOutMcastPkts); 19174 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19175 ipIfStatsHCInMcastPkts); 19176 19177 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19178 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19179 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19180 (uint_t)sizeof (ipst->ips_ip6_mib))); 19181 } 19182 19183 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19184 ill = ILL_START_WALK_V6(&ctx, ipst); 19185 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19186 ill->ill_ip_mib->ipIfStatsIfIndex = 19187 ill->ill_phyint->phyint_ifindex; 19188 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19189 ipst->ips_ipv6_forward ? 1 : 2); 19190 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19191 ill->ill_max_hops); 19192 19193 /* 19194 * Synchronize 64- and 32-bit counters 19195 */ 19196 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19197 ipIfStatsHCInReceives); 19198 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19199 ipIfStatsHCInDelivers); 19200 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19201 ipIfStatsHCOutRequests); 19202 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19203 ipIfStatsHCOutForwDatagrams); 19204 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19205 ipIfStatsHCOutMcastPkts); 19206 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19207 ipIfStatsHCInMcastPkts); 19208 19209 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19210 (char *)ill->ill_ip_mib, 19211 (int)sizeof (*ill->ill_ip_mib))) { 19212 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19213 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19214 } 19215 } 19216 rw_exit(&ipst->ips_ill_g_lock); 19217 19218 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19219 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19220 (int)optp->level, (int)optp->name, (int)optp->len)); 19221 qreply(q, mpctl); 19222 return (mp2ctl); 19223 } 19224 19225 /* 19226 * ICMPv6 mib: One per ill 19227 */ 19228 static mblk_t * 19229 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19230 { 19231 struct opthdr *optp; 19232 mblk_t *mp2ctl; 19233 ill_t *ill; 19234 ill_walk_context_t ctx; 19235 mblk_t *mp_tail = NULL; 19236 /* 19237 * Make a copy of the original message 19238 */ 19239 mp2ctl = copymsg(mpctl); 19240 19241 /* fixed length ICMPv6 structure ... */ 19242 19243 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19244 optp->level = MIB2_ICMP6; 19245 optp->name = 0; 19246 /* Include "unknown interface" icmp6_mib */ 19247 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19248 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19249 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19250 sizeof (mib2_ipv6IfIcmpEntry_t); 19251 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19252 (char *)&ipst->ips_icmp6_mib, 19253 (int)sizeof (ipst->ips_icmp6_mib))) { 19254 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19255 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19256 } 19257 19258 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19259 ill = ILL_START_WALK_V6(&ctx, ipst); 19260 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19261 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19262 ill->ill_phyint->phyint_ifindex; 19263 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19264 (char *)ill->ill_icmp6_mib, 19265 (int)sizeof (*ill->ill_icmp6_mib))) { 19266 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19267 "%u bytes\n", 19268 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19269 } 19270 } 19271 rw_exit(&ipst->ips_ill_g_lock); 19272 19273 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19274 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19275 (int)optp->level, (int)optp->name, (int)optp->len)); 19276 qreply(q, mpctl); 19277 return (mp2ctl); 19278 } 19279 19280 /* 19281 * ire_walk routine to create both ipRouteEntryTable and 19282 * ipRouteAttributeTable in one IRE walk 19283 */ 19284 static void 19285 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19286 { 19287 ill_t *ill; 19288 ipif_t *ipif; 19289 mib2_ipRouteEntry_t *re; 19290 mib2_ipAttributeEntry_t *iae, *iaeptr; 19291 ipaddr_t gw_addr; 19292 tsol_ire_gw_secattr_t *attrp; 19293 tsol_gc_t *gc = NULL; 19294 tsol_gcgrp_t *gcgrp = NULL; 19295 uint_t sacnt = 0; 19296 int i; 19297 19298 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19299 19300 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19301 return; 19302 19303 if ((attrp = ire->ire_gw_secattr) != NULL) { 19304 mutex_enter(&attrp->igsa_lock); 19305 if ((gc = attrp->igsa_gc) != NULL) { 19306 gcgrp = gc->gc_grp; 19307 ASSERT(gcgrp != NULL); 19308 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19309 sacnt = 1; 19310 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19311 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19312 gc = gcgrp->gcgrp_head; 19313 sacnt = gcgrp->gcgrp_count; 19314 } 19315 mutex_exit(&attrp->igsa_lock); 19316 19317 /* do nothing if there's no gc to report */ 19318 if (gc == NULL) { 19319 ASSERT(sacnt == 0); 19320 if (gcgrp != NULL) { 19321 /* we might as well drop the lock now */ 19322 rw_exit(&gcgrp->gcgrp_rwlock); 19323 gcgrp = NULL; 19324 } 19325 attrp = NULL; 19326 } 19327 19328 ASSERT(gc == NULL || (gcgrp != NULL && 19329 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19330 } 19331 ASSERT(sacnt == 0 || gc != NULL); 19332 19333 if (sacnt != 0 && 19334 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19335 kmem_free(re, sizeof (*re)); 19336 rw_exit(&gcgrp->gcgrp_rwlock); 19337 return; 19338 } 19339 19340 /* 19341 * Return all IRE types for route table... let caller pick and choose 19342 */ 19343 re->ipRouteDest = ire->ire_addr; 19344 ipif = ire->ire_ipif; 19345 re->ipRouteIfIndex.o_length = 0; 19346 if (ire->ire_type == IRE_CACHE) { 19347 ill = (ill_t *)ire->ire_stq->q_ptr; 19348 re->ipRouteIfIndex.o_length = 19349 ill->ill_name_length == 0 ? 0 : 19350 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19351 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19352 re->ipRouteIfIndex.o_length); 19353 } else if (ipif != NULL) { 19354 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19355 re->ipRouteIfIndex.o_length = 19356 mi_strlen(re->ipRouteIfIndex.o_bytes); 19357 } 19358 re->ipRouteMetric1 = -1; 19359 re->ipRouteMetric2 = -1; 19360 re->ipRouteMetric3 = -1; 19361 re->ipRouteMetric4 = -1; 19362 19363 gw_addr = ire->ire_gateway_addr; 19364 19365 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19366 re->ipRouteNextHop = ire->ire_src_addr; 19367 else 19368 re->ipRouteNextHop = gw_addr; 19369 /* indirect(4), direct(3), or invalid(2) */ 19370 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19371 re->ipRouteType = 2; 19372 else 19373 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19374 re->ipRouteProto = -1; 19375 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19376 re->ipRouteMask = ire->ire_mask; 19377 re->ipRouteMetric5 = -1; 19378 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19379 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19380 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19381 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19382 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19383 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19384 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19385 re->ipRouteInfo.re_flags = ire->ire_flags; 19386 19387 if (ire->ire_flags & RTF_DYNAMIC) { 19388 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19389 } else { 19390 re->ipRouteInfo.re_ire_type = ire->ire_type; 19391 } 19392 19393 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19394 (char *)re, (int)sizeof (*re))) { 19395 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19396 (uint_t)sizeof (*re))); 19397 } 19398 19399 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19400 iaeptr->iae_routeidx = ird->ird_idx; 19401 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19402 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19403 } 19404 19405 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19406 (char *)iae, sacnt * sizeof (*iae))) { 19407 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19408 (unsigned)(sacnt * sizeof (*iae)))); 19409 } 19410 19411 /* bump route index for next pass */ 19412 ird->ird_idx++; 19413 19414 kmem_free(re, sizeof (*re)); 19415 if (sacnt != 0) 19416 kmem_free(iae, sacnt * sizeof (*iae)); 19417 19418 if (gcgrp != NULL) 19419 rw_exit(&gcgrp->gcgrp_rwlock); 19420 } 19421 19422 /* 19423 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19424 */ 19425 static void 19426 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19427 { 19428 ill_t *ill; 19429 ipif_t *ipif; 19430 mib2_ipv6RouteEntry_t *re; 19431 mib2_ipAttributeEntry_t *iae, *iaeptr; 19432 in6_addr_t gw_addr_v6; 19433 tsol_ire_gw_secattr_t *attrp; 19434 tsol_gc_t *gc = NULL; 19435 tsol_gcgrp_t *gcgrp = NULL; 19436 uint_t sacnt = 0; 19437 int i; 19438 19439 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19440 19441 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19442 return; 19443 19444 if ((attrp = ire->ire_gw_secattr) != NULL) { 19445 mutex_enter(&attrp->igsa_lock); 19446 if ((gc = attrp->igsa_gc) != NULL) { 19447 gcgrp = gc->gc_grp; 19448 ASSERT(gcgrp != NULL); 19449 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19450 sacnt = 1; 19451 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19452 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19453 gc = gcgrp->gcgrp_head; 19454 sacnt = gcgrp->gcgrp_count; 19455 } 19456 mutex_exit(&attrp->igsa_lock); 19457 19458 /* do nothing if there's no gc to report */ 19459 if (gc == NULL) { 19460 ASSERT(sacnt == 0); 19461 if (gcgrp != NULL) { 19462 /* we might as well drop the lock now */ 19463 rw_exit(&gcgrp->gcgrp_rwlock); 19464 gcgrp = NULL; 19465 } 19466 attrp = NULL; 19467 } 19468 19469 ASSERT(gc == NULL || (gcgrp != NULL && 19470 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19471 } 19472 ASSERT(sacnt == 0 || gc != NULL); 19473 19474 if (sacnt != 0 && 19475 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19476 kmem_free(re, sizeof (*re)); 19477 rw_exit(&gcgrp->gcgrp_rwlock); 19478 return; 19479 } 19480 19481 /* 19482 * Return all IRE types for route table... let caller pick and choose 19483 */ 19484 re->ipv6RouteDest = ire->ire_addr_v6; 19485 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19486 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19487 re->ipv6RouteIfIndex.o_length = 0; 19488 ipif = ire->ire_ipif; 19489 if (ire->ire_type == IRE_CACHE) { 19490 ill = (ill_t *)ire->ire_stq->q_ptr; 19491 re->ipv6RouteIfIndex.o_length = 19492 ill->ill_name_length == 0 ? 0 : 19493 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19494 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19495 re->ipv6RouteIfIndex.o_length); 19496 } else if (ipif != NULL) { 19497 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19498 re->ipv6RouteIfIndex.o_length = 19499 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19500 } 19501 19502 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19503 19504 mutex_enter(&ire->ire_lock); 19505 gw_addr_v6 = ire->ire_gateway_addr_v6; 19506 mutex_exit(&ire->ire_lock); 19507 19508 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19509 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19510 else 19511 re->ipv6RouteNextHop = gw_addr_v6; 19512 19513 /* remote(4), local(3), or discard(2) */ 19514 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19515 re->ipv6RouteType = 2; 19516 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19517 re->ipv6RouteType = 3; 19518 else 19519 re->ipv6RouteType = 4; 19520 19521 re->ipv6RouteProtocol = -1; 19522 re->ipv6RoutePolicy = 0; 19523 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19524 re->ipv6RouteNextHopRDI = 0; 19525 re->ipv6RouteWeight = 0; 19526 re->ipv6RouteMetric = 0; 19527 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19528 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19529 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19530 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19531 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19532 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19533 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19534 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19535 19536 if (ire->ire_flags & RTF_DYNAMIC) { 19537 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19538 } else { 19539 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19540 } 19541 19542 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19543 (char *)re, (int)sizeof (*re))) { 19544 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19545 (uint_t)sizeof (*re))); 19546 } 19547 19548 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19549 iaeptr->iae_routeidx = ird->ird_idx; 19550 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19551 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19552 } 19553 19554 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19555 (char *)iae, sacnt * sizeof (*iae))) { 19556 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19557 (unsigned)(sacnt * sizeof (*iae)))); 19558 } 19559 19560 /* bump route index for next pass */ 19561 ird->ird_idx++; 19562 19563 kmem_free(re, sizeof (*re)); 19564 if (sacnt != 0) 19565 kmem_free(iae, sacnt * sizeof (*iae)); 19566 19567 if (gcgrp != NULL) 19568 rw_exit(&gcgrp->gcgrp_rwlock); 19569 } 19570 19571 /* 19572 * ndp_walk routine to create ipv6NetToMediaEntryTable 19573 */ 19574 static int 19575 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19576 { 19577 ill_t *ill; 19578 mib2_ipv6NetToMediaEntry_t ntme; 19579 dl_unitdata_req_t *dl; 19580 19581 ill = nce->nce_ill; 19582 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19583 return (0); 19584 19585 /* 19586 * Neighbor cache entry attached to IRE with on-link 19587 * destination. 19588 */ 19589 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19590 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19591 if ((ill->ill_flags & ILLF_XRESOLV) && 19592 (nce->nce_res_mp != NULL)) { 19593 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19594 ntme.ipv6NetToMediaPhysAddress.o_length = 19595 dl->dl_dest_addr_length; 19596 } else { 19597 ntme.ipv6NetToMediaPhysAddress.o_length = 19598 ill->ill_phys_addr_length; 19599 } 19600 if (nce->nce_res_mp != NULL) { 19601 bcopy((char *)nce->nce_res_mp->b_rptr + 19602 NCE_LL_ADDR_OFFSET(ill), 19603 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19604 ntme.ipv6NetToMediaPhysAddress.o_length); 19605 } else { 19606 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19607 ill->ill_phys_addr_length); 19608 } 19609 /* 19610 * Note: Returns ND_* states. Should be: 19611 * reachable(1), stale(2), delay(3), probe(4), 19612 * invalid(5), unknown(6) 19613 */ 19614 ntme.ipv6NetToMediaState = nce->nce_state; 19615 ntme.ipv6NetToMediaLastUpdated = 0; 19616 19617 /* other(1), dynamic(2), static(3), local(4) */ 19618 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19619 ntme.ipv6NetToMediaType = 4; 19620 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19621 ntme.ipv6NetToMediaType = 1; 19622 } else { 19623 ntme.ipv6NetToMediaType = 2; 19624 } 19625 19626 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19627 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19628 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19629 (uint_t)sizeof (ntme))); 19630 } 19631 return (0); 19632 } 19633 19634 /* 19635 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19636 */ 19637 /* ARGSUSED */ 19638 int 19639 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19640 { 19641 switch (level) { 19642 case MIB2_IP: 19643 case MIB2_ICMP: 19644 switch (name) { 19645 default: 19646 break; 19647 } 19648 return (1); 19649 default: 19650 return (1); 19651 } 19652 } 19653 19654 /* 19655 * When there exists both a 64- and 32-bit counter of a particular type 19656 * (i.e., InReceives), only the 64-bit counters are added. 19657 */ 19658 void 19659 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19660 { 19661 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19662 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19663 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19664 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19665 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19666 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19667 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19668 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19669 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19670 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19671 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19672 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19673 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19674 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19675 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19676 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19677 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19678 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19679 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19680 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19681 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19682 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19683 o2->ipIfStatsInWrongIPVersion); 19684 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19685 o2->ipIfStatsInWrongIPVersion); 19686 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19687 o2->ipIfStatsOutSwitchIPVersion); 19688 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19689 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19690 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19691 o2->ipIfStatsHCInForwDatagrams); 19692 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19693 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19694 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19695 o2->ipIfStatsHCOutForwDatagrams); 19696 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19697 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19698 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19699 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19700 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19701 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19702 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19703 o2->ipIfStatsHCOutMcastOctets); 19704 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19705 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19706 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19707 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19708 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19709 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19710 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19711 } 19712 19713 void 19714 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19715 { 19716 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19717 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19718 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19719 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19720 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19721 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19722 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19723 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19724 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19725 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19726 o2->ipv6IfIcmpInRouterSolicits); 19727 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19728 o2->ipv6IfIcmpInRouterAdvertisements); 19729 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19730 o2->ipv6IfIcmpInNeighborSolicits); 19731 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19732 o2->ipv6IfIcmpInNeighborAdvertisements); 19733 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19734 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19735 o2->ipv6IfIcmpInGroupMembQueries); 19736 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19737 o2->ipv6IfIcmpInGroupMembResponses); 19738 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19739 o2->ipv6IfIcmpInGroupMembReductions); 19740 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19741 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19742 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19743 o2->ipv6IfIcmpOutDestUnreachs); 19744 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19745 o2->ipv6IfIcmpOutAdminProhibs); 19746 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19747 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19748 o2->ipv6IfIcmpOutParmProblems); 19749 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19750 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19751 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19752 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19753 o2->ipv6IfIcmpOutRouterSolicits); 19754 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19755 o2->ipv6IfIcmpOutRouterAdvertisements); 19756 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19757 o2->ipv6IfIcmpOutNeighborSolicits); 19758 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19759 o2->ipv6IfIcmpOutNeighborAdvertisements); 19760 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19761 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19762 o2->ipv6IfIcmpOutGroupMembQueries); 19763 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19764 o2->ipv6IfIcmpOutGroupMembResponses); 19765 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19766 o2->ipv6IfIcmpOutGroupMembReductions); 19767 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19768 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19769 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19770 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19771 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19772 o2->ipv6IfIcmpInBadNeighborSolicitations); 19773 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19774 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19775 o2->ipv6IfIcmpInGroupMembTotal); 19776 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19777 o2->ipv6IfIcmpInGroupMembBadQueries); 19778 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19779 o2->ipv6IfIcmpInGroupMembBadReports); 19780 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19781 o2->ipv6IfIcmpInGroupMembOurReports); 19782 } 19783 19784 /* 19785 * Called before the options are updated to check if this packet will 19786 * be source routed from here. 19787 * This routine assumes that the options are well formed i.e. that they 19788 * have already been checked. 19789 */ 19790 static boolean_t 19791 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19792 { 19793 ipoptp_t opts; 19794 uchar_t *opt; 19795 uint8_t optval; 19796 uint8_t optlen; 19797 ipaddr_t dst; 19798 ire_t *ire; 19799 19800 if (IS_SIMPLE_IPH(ipha)) { 19801 ip2dbg(("not source routed\n")); 19802 return (B_FALSE); 19803 } 19804 dst = ipha->ipha_dst; 19805 for (optval = ipoptp_first(&opts, ipha); 19806 optval != IPOPT_EOL; 19807 optval = ipoptp_next(&opts)) { 19808 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19809 opt = opts.ipoptp_cur; 19810 optlen = opts.ipoptp_len; 19811 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19812 optval, optlen)); 19813 switch (optval) { 19814 uint32_t off; 19815 case IPOPT_SSRR: 19816 case IPOPT_LSRR: 19817 /* 19818 * If dst is one of our addresses and there are some 19819 * entries left in the source route return (true). 19820 */ 19821 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19822 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19823 if (ire == NULL) { 19824 ip2dbg(("ip_source_routed: not next" 19825 " source route 0x%x\n", 19826 ntohl(dst))); 19827 return (B_FALSE); 19828 } 19829 ire_refrele(ire); 19830 off = opt[IPOPT_OFFSET]; 19831 off--; 19832 if (optlen < IP_ADDR_LEN || 19833 off > optlen - IP_ADDR_LEN) { 19834 /* End of source route */ 19835 ip1dbg(("ip_source_routed: end of SR\n")); 19836 return (B_FALSE); 19837 } 19838 return (B_TRUE); 19839 } 19840 } 19841 ip2dbg(("not source routed\n")); 19842 return (B_FALSE); 19843 } 19844 19845 /* 19846 * Check if the packet contains any source route. 19847 */ 19848 static boolean_t 19849 ip_source_route_included(ipha_t *ipha) 19850 { 19851 ipoptp_t opts; 19852 uint8_t optval; 19853 19854 if (IS_SIMPLE_IPH(ipha)) 19855 return (B_FALSE); 19856 for (optval = ipoptp_first(&opts, ipha); 19857 optval != IPOPT_EOL; 19858 optval = ipoptp_next(&opts)) { 19859 switch (optval) { 19860 case IPOPT_SSRR: 19861 case IPOPT_LSRR: 19862 return (B_TRUE); 19863 } 19864 } 19865 return (B_FALSE); 19866 } 19867 19868 /* 19869 * Called when the IRE expiration timer fires. 19870 */ 19871 void 19872 ip_trash_timer_expire(void *args) 19873 { 19874 int flush_flag = 0; 19875 ire_expire_arg_t iea; 19876 ip_stack_t *ipst = (ip_stack_t *)args; 19877 19878 iea.iea_ipst = ipst; /* No netstack_hold */ 19879 19880 /* 19881 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19882 * This lock makes sure that a new invocation of this function 19883 * that occurs due to an almost immediate timer firing will not 19884 * progress beyond this point until the current invocation is done 19885 */ 19886 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19887 ipst->ips_ip_ire_expire_id = 0; 19888 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19889 19890 /* Periodic timer */ 19891 if (ipst->ips_ip_ire_arp_time_elapsed >= 19892 ipst->ips_ip_ire_arp_interval) { 19893 /* 19894 * Remove all IRE_CACHE entries since they might 19895 * contain arp information. 19896 */ 19897 flush_flag |= FLUSH_ARP_TIME; 19898 ipst->ips_ip_ire_arp_time_elapsed = 0; 19899 IP_STAT(ipst, ip_ire_arp_timer_expired); 19900 } 19901 if (ipst->ips_ip_ire_rd_time_elapsed >= 19902 ipst->ips_ip_ire_redir_interval) { 19903 /* Remove all redirects */ 19904 flush_flag |= FLUSH_REDIRECT_TIME; 19905 ipst->ips_ip_ire_rd_time_elapsed = 0; 19906 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19907 } 19908 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19909 ipst->ips_ip_ire_pathmtu_interval) { 19910 /* Increase path mtu */ 19911 flush_flag |= FLUSH_MTU_TIME; 19912 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 19913 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 19914 } 19915 19916 /* 19917 * Optimize for the case when there are no redirects in the 19918 * ftable, that is, no need to walk the ftable in that case. 19919 */ 19920 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19921 iea.iea_flush_flag = flush_flag; 19922 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19923 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 19924 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 19925 NULL, ALL_ZONES, ipst); 19926 } 19927 if ((flush_flag & FLUSH_REDIRECT_TIME) && 19928 ipst->ips_ip_redirect_cnt > 0) { 19929 iea.iea_flush_flag = flush_flag; 19930 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19931 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 19932 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 19933 } 19934 if (flush_flag & FLUSH_MTU_TIME) { 19935 /* 19936 * Walk all IPv6 IRE's and update them 19937 * Note that ARP and redirect timers are not 19938 * needed since NUD handles stale entries. 19939 */ 19940 flush_flag = FLUSH_MTU_TIME; 19941 iea.iea_flush_flag = flush_flag; 19942 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 19943 ALL_ZONES, ipst); 19944 } 19945 19946 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 19947 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 19948 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 19949 19950 /* 19951 * Hold the lock to serialize timeout calls and prevent 19952 * stale values in ip_ire_expire_id. Otherwise it is possible 19953 * for the timer to fire and a new invocation of this function 19954 * to start before the return value of timeout has been stored 19955 * in ip_ire_expire_id by the current invocation. 19956 */ 19957 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19958 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 19959 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 19960 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19961 } 19962 19963 /* 19964 * Called by the memory allocator subsystem directly, when the system 19965 * is running low on memory. 19966 */ 19967 /* ARGSUSED */ 19968 void 19969 ip_trash_ire_reclaim(void *args) 19970 { 19971 netstack_handle_t nh; 19972 netstack_t *ns; 19973 19974 netstack_next_init(&nh); 19975 while ((ns = netstack_next(&nh)) != NULL) { 19976 ip_trash_ire_reclaim_stack(ns->netstack_ip); 19977 netstack_rele(ns); 19978 } 19979 netstack_next_fini(&nh); 19980 } 19981 19982 static void 19983 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 19984 { 19985 ire_cache_count_t icc; 19986 ire_cache_reclaim_t icr; 19987 ncc_cache_count_t ncc; 19988 nce_cache_reclaim_t ncr; 19989 uint_t delete_cnt; 19990 /* 19991 * Memory reclaim call back. 19992 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19993 * Then, with a target of freeing 1/Nth of IRE_CACHE 19994 * entries, determine what fraction to free for 19995 * each category of IRE_CACHE entries giving absolute priority 19996 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19997 * entry will be freed unless all offlink entries are freed). 19998 */ 19999 icc.icc_total = 0; 20000 icc.icc_unused = 0; 20001 icc.icc_offlink = 0; 20002 icc.icc_pmtu = 0; 20003 icc.icc_onlink = 0; 20004 ire_walk(ire_cache_count, (char *)&icc, ipst); 20005 20006 /* 20007 * Free NCEs for IPv6 like the onlink ires. 20008 */ 20009 ncc.ncc_total = 0; 20010 ncc.ncc_host = 0; 20011 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20012 20013 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20014 icc.icc_pmtu + icc.icc_onlink); 20015 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20016 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20017 if (delete_cnt == 0) 20018 return; 20019 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20020 /* Always delete all unused offlink entries */ 20021 icr.icr_ipst = ipst; 20022 icr.icr_unused = 1; 20023 if (delete_cnt <= icc.icc_unused) { 20024 /* 20025 * Only need to free unused entries. In other words, 20026 * there are enough unused entries to free to meet our 20027 * target number of freed ire cache entries. 20028 */ 20029 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20030 ncr.ncr_host = 0; 20031 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20032 /* 20033 * Only need to free unused entries, plus a fraction of offlink 20034 * entries. It follows from the first if statement that 20035 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20036 */ 20037 delete_cnt -= icc.icc_unused; 20038 /* Round up # deleted by truncating fraction */ 20039 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20040 icr.icr_pmtu = icr.icr_onlink = 0; 20041 ncr.ncr_host = 0; 20042 } else if (delete_cnt <= 20043 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20044 /* 20045 * Free all unused and offlink entries, plus a fraction of 20046 * pmtu entries. It follows from the previous if statement 20047 * that icc_pmtu is non-zero, and that 20048 * delete_cnt != icc_unused + icc_offlink. 20049 */ 20050 icr.icr_offlink = 1; 20051 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20052 /* Round up # deleted by truncating fraction */ 20053 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20054 icr.icr_onlink = 0; 20055 ncr.ncr_host = 0; 20056 } else { 20057 /* 20058 * Free all unused, offlink, and pmtu entries, plus a fraction 20059 * of onlink entries. If we're here, then we know that 20060 * icc_onlink is non-zero, and that 20061 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20062 */ 20063 icr.icr_offlink = icr.icr_pmtu = 1; 20064 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20065 icc.icc_pmtu; 20066 /* Round up # deleted by truncating fraction */ 20067 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20068 /* Using the same delete fraction as for onlink IREs */ 20069 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20070 } 20071 #ifdef DEBUG 20072 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20073 "fractions %d/%d/%d/%d\n", 20074 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20075 icc.icc_unused, icc.icc_offlink, 20076 icc.icc_pmtu, icc.icc_onlink, 20077 icr.icr_unused, icr.icr_offlink, 20078 icr.icr_pmtu, icr.icr_onlink)); 20079 #endif 20080 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20081 if (ncr.ncr_host != 0) 20082 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20083 (uchar_t *)&ncr, ipst); 20084 #ifdef DEBUG 20085 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20086 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20087 ire_walk(ire_cache_count, (char *)&icc, ipst); 20088 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20089 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20090 icc.icc_pmtu, icc.icc_onlink)); 20091 #endif 20092 } 20093 20094 /* 20095 * ip_unbind is called when a copy of an unbind request is received from the 20096 * upper level protocol. We remove this conn from any fanout hash list it is 20097 * on, and zero out the bind information. No reply is expected up above. 20098 */ 20099 mblk_t * 20100 ip_unbind(queue_t *q, mblk_t *mp) 20101 { 20102 conn_t *connp = Q_TO_CONN(q); 20103 20104 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20105 20106 if (is_system_labeled() && connp->conn_anon_port) { 20107 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20108 connp->conn_mlp_type, connp->conn_ulp, 20109 ntohs(connp->conn_lport), B_FALSE); 20110 connp->conn_anon_port = 0; 20111 } 20112 connp->conn_mlp_type = mlptSingle; 20113 20114 ipcl_hash_remove(connp); 20115 20116 ASSERT(mp->b_cont == NULL); 20117 /* 20118 * Convert mp into a T_OK_ACK 20119 */ 20120 mp = mi_tpi_ok_ack_alloc(mp); 20121 20122 /* 20123 * should not happen in practice... T_OK_ACK is smaller than the 20124 * original message. 20125 */ 20126 if (mp == NULL) 20127 return (NULL); 20128 20129 return (mp); 20130 } 20131 20132 /* 20133 * Write side put procedure. Outbound data, IOCTLs, responses from 20134 * resolvers, etc, come down through here. 20135 * 20136 * arg2 is always a queue_t *. 20137 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20138 * the zoneid. 20139 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20140 */ 20141 void 20142 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20143 { 20144 ip_output_options(arg, mp, arg2, caller, &zero_info); 20145 } 20146 20147 void 20148 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20149 ip_opt_info_t *infop) 20150 { 20151 conn_t *connp = NULL; 20152 queue_t *q = (queue_t *)arg2; 20153 ipha_t *ipha; 20154 #define rptr ((uchar_t *)ipha) 20155 ire_t *ire = NULL; 20156 ire_t *sctp_ire = NULL; 20157 uint32_t v_hlen_tos_len; 20158 ipaddr_t dst; 20159 mblk_t *first_mp = NULL; 20160 boolean_t mctl_present; 20161 ipsec_out_t *io; 20162 int match_flags; 20163 ill_t *attach_ill = NULL; 20164 /* Bind to IPIF_NOFAILOVER ill etc. */ 20165 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20166 ipif_t *dst_ipif; 20167 boolean_t multirt_need_resolve = B_FALSE; 20168 mblk_t *copy_mp = NULL; 20169 int err; 20170 zoneid_t zoneid; 20171 boolean_t need_decref = B_FALSE; 20172 boolean_t ignore_dontroute = B_FALSE; 20173 boolean_t ignore_nexthop = B_FALSE; 20174 boolean_t ip_nexthop = B_FALSE; 20175 ipaddr_t nexthop_addr; 20176 ip_stack_t *ipst; 20177 20178 #ifdef _BIG_ENDIAN 20179 #define V_HLEN (v_hlen_tos_len >> 24) 20180 #else 20181 #define V_HLEN (v_hlen_tos_len & 0xFF) 20182 #endif 20183 20184 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20185 "ip_wput_start: q %p", q); 20186 20187 /* 20188 * ip_wput fast path 20189 */ 20190 20191 /* is packet from ARP ? */ 20192 if (q->q_next != NULL) { 20193 zoneid = (zoneid_t)(uintptr_t)arg; 20194 goto qnext; 20195 } 20196 20197 connp = (conn_t *)arg; 20198 ASSERT(connp != NULL); 20199 zoneid = connp->conn_zoneid; 20200 ipst = connp->conn_netstack->netstack_ip; 20201 20202 /* is queue flow controlled? */ 20203 if ((q->q_first != NULL || connp->conn_draining) && 20204 (caller == IP_WPUT)) { 20205 ASSERT(!need_decref); 20206 (void) putq(q, mp); 20207 return; 20208 } 20209 20210 /* Multidata transmit? */ 20211 if (DB_TYPE(mp) == M_MULTIDATA) { 20212 /* 20213 * We should never get here, since all Multidata messages 20214 * originating from tcp should have been directed over to 20215 * tcp_multisend() in the first place. 20216 */ 20217 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20218 freemsg(mp); 20219 return; 20220 } else if (DB_TYPE(mp) != M_DATA) 20221 goto notdata; 20222 20223 if (mp->b_flag & MSGHASREF) { 20224 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20225 mp->b_flag &= ~MSGHASREF; 20226 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20227 need_decref = B_TRUE; 20228 } 20229 ipha = (ipha_t *)mp->b_rptr; 20230 20231 /* is IP header non-aligned or mblk smaller than basic IP header */ 20232 #ifndef SAFETY_BEFORE_SPEED 20233 if (!OK_32PTR(rptr) || 20234 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20235 goto hdrtoosmall; 20236 #endif 20237 20238 ASSERT(OK_32PTR(ipha)); 20239 20240 /* 20241 * This function assumes that mp points to an IPv4 packet. If it's the 20242 * wrong version, we'll catch it again in ip_output_v6. 20243 * 20244 * Note that this is *only* locally-generated output here, and never 20245 * forwarded data, and that we need to deal only with transports that 20246 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20247 * label.) 20248 */ 20249 if (is_system_labeled() && 20250 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20251 !connp->conn_ulp_labeled) { 20252 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20253 connp->conn_mac_exempt, ipst); 20254 ipha = (ipha_t *)mp->b_rptr; 20255 if (err != 0) { 20256 first_mp = mp; 20257 if (err == EINVAL) 20258 goto icmp_parameter_problem; 20259 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20260 goto discard_pkt; 20261 } 20262 } 20263 20264 ASSERT(infop != NULL); 20265 20266 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20267 /* 20268 * IP_PKTINFO ancillary option is present. 20269 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20270 * allows using address of any zone as the source address. 20271 */ 20272 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20273 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20274 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20275 if (ire == NULL) 20276 goto drop_pkt; 20277 ire_refrele(ire); 20278 ire = NULL; 20279 } 20280 20281 /* 20282 * IP_DONTFAILOVER_IF and IP_BOUND_IF have precedence over ill index 20283 * passed in IP_PKTINFO. 20284 */ 20285 if (infop->ip_opt_ill_index != 0 && 20286 connp->conn_outgoing_ill == NULL && 20287 connp->conn_nofailover_ill == NULL) { 20288 20289 xmit_ill = ill_lookup_on_ifindex( 20290 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20291 ipst); 20292 20293 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20294 goto drop_pkt; 20295 /* 20296 * check that there is an ipif belonging 20297 * to our zone. IPCL_ZONEID is not used because 20298 * IP_ALLZONES option is valid only when the ill is 20299 * accessible from all zones i.e has a valid ipif in 20300 * all zones. 20301 */ 20302 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20303 goto drop_pkt; 20304 } 20305 } 20306 20307 /* 20308 * If there is a policy, try to attach an ipsec_out in 20309 * the front. At the end, first_mp either points to a 20310 * M_DATA message or IPSEC_OUT message linked to a 20311 * M_DATA message. We have to do it now as we might 20312 * lose the "conn" if we go through ip_newroute. 20313 */ 20314 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20315 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20316 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20317 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20318 if (need_decref) 20319 CONN_DEC_REF(connp); 20320 return; 20321 } else { 20322 ASSERT(mp->b_datap->db_type == M_CTL); 20323 first_mp = mp; 20324 mp = mp->b_cont; 20325 mctl_present = B_TRUE; 20326 } 20327 } else { 20328 first_mp = mp; 20329 mctl_present = B_FALSE; 20330 } 20331 20332 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20333 20334 /* is wrong version or IP options present */ 20335 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20336 goto version_hdrlen_check; 20337 dst = ipha->ipha_dst; 20338 20339 if (connp->conn_nofailover_ill != NULL) { 20340 attach_ill = conn_get_held_ill(connp, 20341 &connp->conn_nofailover_ill, &err); 20342 if (err == ILL_LOOKUP_FAILED) { 20343 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20344 if (need_decref) 20345 CONN_DEC_REF(connp); 20346 freemsg(first_mp); 20347 return; 20348 } 20349 } 20350 20351 /* If IP_BOUND_IF has been set, use that ill. */ 20352 if (connp->conn_outgoing_ill != NULL) { 20353 xmit_ill = conn_get_held_ill(connp, 20354 &connp->conn_outgoing_ill, &err); 20355 if (err == ILL_LOOKUP_FAILED) 20356 goto drop_pkt; 20357 20358 goto send_from_ill; 20359 } 20360 20361 /* is packet multicast? */ 20362 if (CLASSD(dst)) 20363 goto multicast; 20364 20365 /* 20366 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20367 * takes precedence over conn_dontroute and conn_nexthop_set 20368 */ 20369 if (xmit_ill != NULL) 20370 goto send_from_ill; 20371 20372 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20373 /* 20374 * If the destination is a broadcast, local, or loopback 20375 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20376 * standard path. 20377 */ 20378 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20379 if ((ire == NULL) || (ire->ire_type & 20380 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20381 if (ire != NULL) { 20382 ire_refrele(ire); 20383 /* No more access to ire */ 20384 ire = NULL; 20385 } 20386 /* 20387 * bypass routing checks and go directly to interface. 20388 */ 20389 if (connp->conn_dontroute) 20390 goto dontroute; 20391 20392 ASSERT(connp->conn_nexthop_set); 20393 ip_nexthop = B_TRUE; 20394 nexthop_addr = connp->conn_nexthop_v4; 20395 goto send_from_ill; 20396 } 20397 20398 /* Must be a broadcast, a loopback or a local ire */ 20399 ire_refrele(ire); 20400 /* No more access to ire */ 20401 ire = NULL; 20402 } 20403 20404 if (attach_ill != NULL) 20405 goto send_from_ill; 20406 20407 /* 20408 * We cache IRE_CACHEs to avoid lookups. We don't do 20409 * this for the tcp global queue and listen end point 20410 * as it does not really have a real destination to 20411 * talk to. This is also true for SCTP. 20412 */ 20413 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20414 !connp->conn_fully_bound) { 20415 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20416 if (ire == NULL) 20417 goto noirefound; 20418 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20419 "ip_wput_end: q %p (%S)", q, "end"); 20420 20421 /* 20422 * Check if the ire has the RTF_MULTIRT flag, inherited 20423 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20424 */ 20425 if (ire->ire_flags & RTF_MULTIRT) { 20426 20427 /* 20428 * Force the TTL of multirouted packets if required. 20429 * The TTL of such packets is bounded by the 20430 * ip_multirt_ttl ndd variable. 20431 */ 20432 if ((ipst->ips_ip_multirt_ttl > 0) && 20433 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20434 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20435 "(was %d), dst 0x%08x\n", 20436 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20437 ntohl(ire->ire_addr))); 20438 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20439 } 20440 /* 20441 * We look at this point if there are pending 20442 * unresolved routes. ire_multirt_resolvable() 20443 * checks in O(n) that all IRE_OFFSUBNET ire 20444 * entries for the packet's destination and 20445 * flagged RTF_MULTIRT are currently resolved. 20446 * If some remain unresolved, we make a copy 20447 * of the current message. It will be used 20448 * to initiate additional route resolutions. 20449 */ 20450 multirt_need_resolve = 20451 ire_multirt_need_resolve(ire->ire_addr, 20452 MBLK_GETLABEL(first_mp), ipst); 20453 ip2dbg(("ip_wput[TCP]: ire %p, " 20454 "multirt_need_resolve %d, first_mp %p\n", 20455 (void *)ire, multirt_need_resolve, 20456 (void *)first_mp)); 20457 if (multirt_need_resolve) { 20458 copy_mp = copymsg(first_mp); 20459 if (copy_mp != NULL) { 20460 MULTIRT_DEBUG_TAG(copy_mp); 20461 } 20462 } 20463 } 20464 20465 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20466 20467 /* 20468 * Try to resolve another multiroute if 20469 * ire_multirt_need_resolve() deemed it necessary. 20470 */ 20471 if (copy_mp != NULL) 20472 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20473 if (need_decref) 20474 CONN_DEC_REF(connp); 20475 return; 20476 } 20477 20478 /* 20479 * Access to conn_ire_cache. (protected by conn_lock) 20480 * 20481 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20482 * the ire bucket lock here to check for CONDEMNED as it is okay to 20483 * send a packet or two with the IRE_CACHE that is going away. 20484 * Access to the ire requires an ire refhold on the ire prior to 20485 * its use since an interface unplumb thread may delete the cached 20486 * ire and release the refhold at any time. 20487 * 20488 * Caching an ire in the conn_ire_cache 20489 * 20490 * o Caching an ire pointer in the conn requires a strict check for 20491 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20492 * ires before cleaning up the conns. So the caching of an ire pointer 20493 * in the conn is done after making sure under the bucket lock that the 20494 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20495 * caching an ire after the unplumb thread has cleaned up the conn. 20496 * If the conn does not send a packet subsequently the unplumb thread 20497 * will be hanging waiting for the ire count to drop to zero. 20498 * 20499 * o We also need to atomically test for a null conn_ire_cache and 20500 * set the conn_ire_cache under the the protection of the conn_lock 20501 * to avoid races among concurrent threads trying to simultaneously 20502 * cache an ire in the conn_ire_cache. 20503 */ 20504 mutex_enter(&connp->conn_lock); 20505 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20506 20507 if (ire != NULL && ire->ire_addr == dst && 20508 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20509 20510 IRE_REFHOLD(ire); 20511 mutex_exit(&connp->conn_lock); 20512 20513 } else { 20514 boolean_t cached = B_FALSE; 20515 connp->conn_ire_cache = NULL; 20516 mutex_exit(&connp->conn_lock); 20517 /* Release the old ire */ 20518 if (ire != NULL && sctp_ire == NULL) 20519 IRE_REFRELE_NOTR(ire); 20520 20521 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20522 if (ire == NULL) 20523 goto noirefound; 20524 IRE_REFHOLD_NOTR(ire); 20525 20526 mutex_enter(&connp->conn_lock); 20527 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20528 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20529 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20530 if (connp->conn_ulp == IPPROTO_TCP) 20531 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20532 connp->conn_ire_cache = ire; 20533 cached = B_TRUE; 20534 } 20535 rw_exit(&ire->ire_bucket->irb_lock); 20536 } 20537 mutex_exit(&connp->conn_lock); 20538 20539 /* 20540 * We can continue to use the ire but since it was 20541 * not cached, we should drop the extra reference. 20542 */ 20543 if (!cached) 20544 IRE_REFRELE_NOTR(ire); 20545 } 20546 20547 20548 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20549 "ip_wput_end: q %p (%S)", q, "end"); 20550 20551 /* 20552 * Check if the ire has the RTF_MULTIRT flag, inherited 20553 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20554 */ 20555 if (ire->ire_flags & RTF_MULTIRT) { 20556 20557 /* 20558 * Force the TTL of multirouted packets if required. 20559 * The TTL of such packets is bounded by the 20560 * ip_multirt_ttl ndd variable. 20561 */ 20562 if ((ipst->ips_ip_multirt_ttl > 0) && 20563 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20564 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20565 "(was %d), dst 0x%08x\n", 20566 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20567 ntohl(ire->ire_addr))); 20568 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20569 } 20570 20571 /* 20572 * At this point, we check to see if there are any pending 20573 * unresolved routes. ire_multirt_resolvable() 20574 * checks in O(n) that all IRE_OFFSUBNET ire 20575 * entries for the packet's destination and 20576 * flagged RTF_MULTIRT are currently resolved. 20577 * If some remain unresolved, we make a copy 20578 * of the current message. It will be used 20579 * to initiate additional route resolutions. 20580 */ 20581 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20582 MBLK_GETLABEL(first_mp), ipst); 20583 ip2dbg(("ip_wput[not TCP]: ire %p, " 20584 "multirt_need_resolve %d, first_mp %p\n", 20585 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20586 if (multirt_need_resolve) { 20587 copy_mp = copymsg(first_mp); 20588 if (copy_mp != NULL) { 20589 MULTIRT_DEBUG_TAG(copy_mp); 20590 } 20591 } 20592 } 20593 20594 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20595 20596 /* 20597 * Try to resolve another multiroute if 20598 * ire_multirt_resolvable() deemed it necessary 20599 */ 20600 if (copy_mp != NULL) 20601 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20602 if (need_decref) 20603 CONN_DEC_REF(connp); 20604 return; 20605 20606 qnext: 20607 /* 20608 * Upper Level Protocols pass down complete IP datagrams 20609 * as M_DATA messages. Everything else is a sideshow. 20610 * 20611 * 1) We could be re-entering ip_wput because of ip_neworute 20612 * in which case we could have a IPSEC_OUT message. We 20613 * need to pass through ip_wput like other datagrams and 20614 * hence cannot branch to ip_wput_nondata. 20615 * 20616 * 2) ARP, AH, ESP, and other clients who are on the module 20617 * instance of IP stream, give us something to deal with. 20618 * We will handle AH and ESP here and rest in ip_wput_nondata. 20619 * 20620 * 3) ICMP replies also could come here. 20621 */ 20622 ipst = ILLQ_TO_IPST(q); 20623 20624 if (DB_TYPE(mp) != M_DATA) { 20625 notdata: 20626 if (DB_TYPE(mp) == M_CTL) { 20627 /* 20628 * M_CTL messages are used by ARP, AH and ESP to 20629 * communicate with IP. We deal with IPSEC_IN and 20630 * IPSEC_OUT here. ip_wput_nondata handles other 20631 * cases. 20632 */ 20633 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20634 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20635 first_mp = mp->b_cont; 20636 first_mp->b_flag &= ~MSGHASREF; 20637 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20638 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20639 CONN_DEC_REF(connp); 20640 connp = NULL; 20641 } 20642 if (ii->ipsec_info_type == IPSEC_IN) { 20643 /* 20644 * Either this message goes back to 20645 * IPsec for further processing or to 20646 * ULP after policy checks. 20647 */ 20648 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20649 return; 20650 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20651 io = (ipsec_out_t *)ii; 20652 if (io->ipsec_out_proc_begin) { 20653 /* 20654 * IPsec processing has already started. 20655 * Complete it. 20656 * IPQoS notes: We don't care what is 20657 * in ipsec_out_ill_index since this 20658 * won't be processed for IPQoS policies 20659 * in ipsec_out_process. 20660 */ 20661 ipsec_out_process(q, mp, NULL, 20662 io->ipsec_out_ill_index); 20663 return; 20664 } else { 20665 connp = (q->q_next != NULL) ? 20666 NULL : Q_TO_CONN(q); 20667 first_mp = mp; 20668 mp = mp->b_cont; 20669 mctl_present = B_TRUE; 20670 } 20671 zoneid = io->ipsec_out_zoneid; 20672 ASSERT(zoneid != ALL_ZONES); 20673 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20674 /* 20675 * It's an IPsec control message requesting 20676 * an SADB update to be sent to the IPsec 20677 * hardware acceleration capable ills. 20678 */ 20679 ipsec_ctl_t *ipsec_ctl = 20680 (ipsec_ctl_t *)mp->b_rptr; 20681 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20682 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20683 mblk_t *cmp = mp->b_cont; 20684 20685 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20686 ASSERT(cmp != NULL); 20687 20688 freeb(mp); 20689 ill_ipsec_capab_send_all(satype, cmp, sa, 20690 ipst->ips_netstack); 20691 return; 20692 } else { 20693 /* 20694 * This must be ARP or special TSOL signaling. 20695 */ 20696 ip_wput_nondata(NULL, q, mp, NULL); 20697 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20698 "ip_wput_end: q %p (%S)", q, "nondata"); 20699 return; 20700 } 20701 } else { 20702 /* 20703 * This must be non-(ARP/AH/ESP) messages. 20704 */ 20705 ASSERT(!need_decref); 20706 ip_wput_nondata(NULL, q, mp, NULL); 20707 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20708 "ip_wput_end: q %p (%S)", q, "nondata"); 20709 return; 20710 } 20711 } else { 20712 first_mp = mp; 20713 mctl_present = B_FALSE; 20714 } 20715 20716 ASSERT(first_mp != NULL); 20717 /* 20718 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20719 * to make sure that this packet goes out on the same interface it 20720 * came in. We handle that here. 20721 */ 20722 if (mctl_present) { 20723 uint_t ifindex; 20724 20725 io = (ipsec_out_t *)first_mp->b_rptr; 20726 if (io->ipsec_out_attach_if || io->ipsec_out_ip_nexthop) { 20727 /* 20728 * We may have lost the conn context if we are 20729 * coming here from ip_newroute(). Copy the 20730 * nexthop information. 20731 */ 20732 if (io->ipsec_out_ip_nexthop) { 20733 ip_nexthop = B_TRUE; 20734 nexthop_addr = io->ipsec_out_nexthop_addr; 20735 20736 ipha = (ipha_t *)mp->b_rptr; 20737 dst = ipha->ipha_dst; 20738 goto send_from_ill; 20739 } else { 20740 ASSERT(io->ipsec_out_ill_index != 0); 20741 ifindex = io->ipsec_out_ill_index; 20742 attach_ill = ill_lookup_on_ifindex(ifindex, 20743 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20744 if (attach_ill == NULL) { 20745 ASSERT(xmit_ill == NULL); 20746 ip1dbg(("ip_output: bad ifindex for " 20747 "(BIND TO IPIF_NOFAILOVER) %d\n", 20748 ifindex)); 20749 freemsg(first_mp); 20750 BUMP_MIB(&ipst->ips_ip_mib, 20751 ipIfStatsOutDiscards); 20752 ASSERT(!need_decref); 20753 return; 20754 } 20755 } 20756 } 20757 } 20758 20759 ASSERT(xmit_ill == NULL); 20760 20761 /* We have a complete IP datagram heading outbound. */ 20762 ipha = (ipha_t *)mp->b_rptr; 20763 20764 #ifndef SPEED_BEFORE_SAFETY 20765 /* 20766 * Make sure we have a full-word aligned message and that at least 20767 * a simple IP header is accessible in the first message. If not, 20768 * try a pullup. For labeled systems we need to always take this 20769 * path as M_CTLs are "notdata" but have trailing data to process. 20770 */ 20771 if (!OK_32PTR(rptr) || 20772 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 20773 hdrtoosmall: 20774 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20775 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20776 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20777 if (first_mp == NULL) 20778 first_mp = mp; 20779 goto discard_pkt; 20780 } 20781 20782 /* This function assumes that mp points to an IPv4 packet. */ 20783 if (is_system_labeled() && q->q_next == NULL && 20784 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20785 !connp->conn_ulp_labeled) { 20786 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20787 connp->conn_mac_exempt, ipst); 20788 ipha = (ipha_t *)mp->b_rptr; 20789 if (first_mp != NULL) 20790 first_mp->b_cont = mp; 20791 if (err != 0) { 20792 if (first_mp == NULL) 20793 first_mp = mp; 20794 if (err == EINVAL) 20795 goto icmp_parameter_problem; 20796 ip2dbg(("ip_wput: label check failed (%d)\n", 20797 err)); 20798 goto discard_pkt; 20799 } 20800 } 20801 20802 ipha = (ipha_t *)mp->b_rptr; 20803 if (first_mp == NULL) { 20804 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20805 /* 20806 * If we got here because of "goto hdrtoosmall" 20807 * We need to attach a IPSEC_OUT. 20808 */ 20809 if (connp->conn_out_enforce_policy) { 20810 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20811 NULL, ipha->ipha_protocol, 20812 ipst->ips_netstack)) == NULL)) { 20813 BUMP_MIB(&ipst->ips_ip_mib, 20814 ipIfStatsOutDiscards); 20815 if (need_decref) 20816 CONN_DEC_REF(connp); 20817 return; 20818 } else { 20819 ASSERT(mp->b_datap->db_type == M_CTL); 20820 first_mp = mp; 20821 mp = mp->b_cont; 20822 mctl_present = B_TRUE; 20823 } 20824 } else { 20825 first_mp = mp; 20826 mctl_present = B_FALSE; 20827 } 20828 } 20829 } 20830 #endif 20831 20832 /* Most of the code below is written for speed, not readability */ 20833 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20834 20835 /* 20836 * If ip_newroute() fails, we're going to need a full 20837 * header for the icmp wraparound. 20838 */ 20839 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20840 uint_t v_hlen; 20841 version_hdrlen_check: 20842 ASSERT(first_mp != NULL); 20843 v_hlen = V_HLEN; 20844 /* 20845 * siphon off IPv6 packets coming down from transport 20846 * layer modules here. 20847 * Note: high-order bit carries NUD reachability confirmation 20848 */ 20849 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20850 /* 20851 * FIXME: assume that callers of ip_output* call 20852 * the right version? 20853 */ 20854 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20855 ASSERT(xmit_ill == NULL); 20856 if (attach_ill != NULL) 20857 ill_refrele(attach_ill); 20858 if (need_decref) 20859 mp->b_flag |= MSGHASREF; 20860 (void) ip_output_v6(arg, first_mp, arg2, caller); 20861 return; 20862 } 20863 20864 if ((v_hlen >> 4) != IP_VERSION) { 20865 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20866 "ip_wput_end: q %p (%S)", q, "badvers"); 20867 goto discard_pkt; 20868 } 20869 /* 20870 * Is the header length at least 20 bytes? 20871 * 20872 * Are there enough bytes accessible in the header? If 20873 * not, try a pullup. 20874 */ 20875 v_hlen &= 0xF; 20876 v_hlen <<= 2; 20877 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20878 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20879 "ip_wput_end: q %p (%S)", q, "badlen"); 20880 goto discard_pkt; 20881 } 20882 if (v_hlen > (mp->b_wptr - rptr)) { 20883 if (!pullupmsg(mp, v_hlen)) { 20884 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20885 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20886 goto discard_pkt; 20887 } 20888 ipha = (ipha_t *)mp->b_rptr; 20889 } 20890 /* 20891 * Move first entry from any source route into ipha_dst and 20892 * verify the options 20893 */ 20894 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20895 zoneid, ipst)) { 20896 ASSERT(xmit_ill == NULL); 20897 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20898 if (attach_ill != NULL) 20899 ill_refrele(attach_ill); 20900 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20901 "ip_wput_end: q %p (%S)", q, "badopts"); 20902 if (need_decref) 20903 CONN_DEC_REF(connp); 20904 return; 20905 } 20906 } 20907 dst = ipha->ipha_dst; 20908 20909 /* 20910 * Try to get an IRE_CACHE for the destination address. If we can't, 20911 * we have to run the packet through ip_newroute which will take 20912 * the appropriate action to arrange for an IRE_CACHE, such as querying 20913 * a resolver, or assigning a default gateway, etc. 20914 */ 20915 if (CLASSD(dst)) { 20916 ipif_t *ipif; 20917 uint32_t setsrc = 0; 20918 20919 multicast: 20920 ASSERT(first_mp != NULL); 20921 ip2dbg(("ip_wput: CLASSD\n")); 20922 if (connp == NULL) { 20923 /* 20924 * Use the first good ipif on the ill. 20925 * XXX Should this ever happen? (Appears 20926 * to show up with just ppp and no ethernet due 20927 * to in.rdisc.) 20928 * However, ire_send should be able to 20929 * call ip_wput_ire directly. 20930 * 20931 * XXX Also, this can happen for ICMP and other packets 20932 * with multicast source addresses. Perhaps we should 20933 * fix things so that we drop the packet in question, 20934 * but for now, just run with it. 20935 */ 20936 ill_t *ill = (ill_t *)q->q_ptr; 20937 20938 /* 20939 * Don't honor attach_if for this case. If ill 20940 * is part of the group, ipif could belong to 20941 * any ill and we cannot maintain attach_ill 20942 * and ipif_ill same anymore and the assert 20943 * below would fail. 20944 */ 20945 if (mctl_present && io->ipsec_out_attach_if) { 20946 io->ipsec_out_ill_index = 0; 20947 io->ipsec_out_attach_if = B_FALSE; 20948 ASSERT(attach_ill != NULL); 20949 ill_refrele(attach_ill); 20950 attach_ill = NULL; 20951 } 20952 20953 ASSERT(attach_ill == NULL); 20954 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20955 if (ipif == NULL) { 20956 if (need_decref) 20957 CONN_DEC_REF(connp); 20958 freemsg(first_mp); 20959 return; 20960 } 20961 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20962 ntohl(dst), ill->ill_name)); 20963 } else { 20964 /* 20965 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 20966 * and IP_MULTICAST_IF. The block comment above this 20967 * function explains the locking mechanism used here. 20968 */ 20969 if (xmit_ill == NULL) { 20970 xmit_ill = conn_get_held_ill(connp, 20971 &connp->conn_outgoing_ill, &err); 20972 if (err == ILL_LOOKUP_FAILED) { 20973 ip1dbg(("ip_wput: No ill for " 20974 "IP_BOUND_IF\n")); 20975 BUMP_MIB(&ipst->ips_ip_mib, 20976 ipIfStatsOutNoRoutes); 20977 goto drop_pkt; 20978 } 20979 } 20980 20981 if (xmit_ill == NULL) { 20982 ipif = conn_get_held_ipif(connp, 20983 &connp->conn_multicast_ipif, &err); 20984 if (err == IPIF_LOOKUP_FAILED) { 20985 ip1dbg(("ip_wput: No ipif for " 20986 "multicast\n")); 20987 BUMP_MIB(&ipst->ips_ip_mib, 20988 ipIfStatsOutNoRoutes); 20989 goto drop_pkt; 20990 } 20991 } 20992 if (xmit_ill != NULL) { 20993 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20994 if (ipif == NULL) { 20995 ip1dbg(("ip_wput: No ipif for " 20996 "xmit_ill\n")); 20997 BUMP_MIB(&ipst->ips_ip_mib, 20998 ipIfStatsOutNoRoutes); 20999 goto drop_pkt; 21000 } 21001 } else if (ipif == NULL || ipif->ipif_isv6) { 21002 /* 21003 * We must do this ipif determination here 21004 * else we could pass through ip_newroute 21005 * and come back here without the conn context. 21006 * 21007 * Note: we do late binding i.e. we bind to 21008 * the interface when the first packet is sent. 21009 * For performance reasons we do not rebind on 21010 * each packet but keep the binding until the 21011 * next IP_MULTICAST_IF option. 21012 * 21013 * conn_multicast_{ipif,ill} are shared between 21014 * IPv4 and IPv6 and AF_INET6 sockets can 21015 * send both IPv4 and IPv6 packets. Hence 21016 * we have to check that "isv6" matches above. 21017 */ 21018 if (ipif != NULL) 21019 ipif_refrele(ipif); 21020 ipif = ipif_lookup_group(dst, zoneid, ipst); 21021 if (ipif == NULL) { 21022 ip1dbg(("ip_wput: No ipif for " 21023 "multicast\n")); 21024 BUMP_MIB(&ipst->ips_ip_mib, 21025 ipIfStatsOutNoRoutes); 21026 goto drop_pkt; 21027 } 21028 err = conn_set_held_ipif(connp, 21029 &connp->conn_multicast_ipif, ipif); 21030 if (err == IPIF_LOOKUP_FAILED) { 21031 ipif_refrele(ipif); 21032 ip1dbg(("ip_wput: No ipif for " 21033 "multicast\n")); 21034 BUMP_MIB(&ipst->ips_ip_mib, 21035 ipIfStatsOutNoRoutes); 21036 goto drop_pkt; 21037 } 21038 } 21039 } 21040 ASSERT(!ipif->ipif_isv6); 21041 /* 21042 * As we may lose the conn by the time we reach ip_wput_ire, 21043 * we copy conn_multicast_loop and conn_dontroute on to an 21044 * ipsec_out. In case if this datagram goes out secure, 21045 * we need the ill_index also. Copy that also into the 21046 * ipsec_out. 21047 */ 21048 if (mctl_present) { 21049 io = (ipsec_out_t *)first_mp->b_rptr; 21050 ASSERT(first_mp->b_datap->db_type == M_CTL); 21051 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21052 } else { 21053 ASSERT(mp == first_mp); 21054 if ((first_mp = allocb(sizeof (ipsec_info_t), 21055 BPRI_HI)) == NULL) { 21056 ipif_refrele(ipif); 21057 first_mp = mp; 21058 goto discard_pkt; 21059 } 21060 first_mp->b_datap->db_type = M_CTL; 21061 first_mp->b_wptr += sizeof (ipsec_info_t); 21062 /* ipsec_out_secure is B_FALSE now */ 21063 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21064 io = (ipsec_out_t *)first_mp->b_rptr; 21065 io->ipsec_out_type = IPSEC_OUT; 21066 io->ipsec_out_len = sizeof (ipsec_out_t); 21067 io->ipsec_out_use_global_policy = B_TRUE; 21068 io->ipsec_out_ns = ipst->ips_netstack; 21069 first_mp->b_cont = mp; 21070 mctl_present = B_TRUE; 21071 } 21072 if (attach_ill != NULL) { 21073 ASSERT(attach_ill == ipif->ipif_ill); 21074 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21075 21076 /* 21077 * Check if we need an ire that will not be 21078 * looked up by anybody else i.e. HIDDEN. 21079 */ 21080 if (ill_is_probeonly(attach_ill)) { 21081 match_flags |= MATCH_IRE_MARK_HIDDEN; 21082 } 21083 io->ipsec_out_ill_index = 21084 attach_ill->ill_phyint->phyint_ifindex; 21085 io->ipsec_out_attach_if = B_TRUE; 21086 } else { 21087 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21088 io->ipsec_out_ill_index = 21089 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21090 } 21091 if (connp != NULL) { 21092 io->ipsec_out_multicast_loop = 21093 connp->conn_multicast_loop; 21094 io->ipsec_out_dontroute = connp->conn_dontroute; 21095 io->ipsec_out_zoneid = connp->conn_zoneid; 21096 } 21097 /* 21098 * If the application uses IP_MULTICAST_IF with 21099 * different logical addresses of the same ILL, we 21100 * need to make sure that the soruce address of 21101 * the packet matches the logical IP address used 21102 * in the option. We do it by initializing ipha_src 21103 * here. This should keep IPsec also happy as 21104 * when we return from IPsec processing, we don't 21105 * have to worry about getting the right address on 21106 * the packet. Thus it is sufficient to look for 21107 * IRE_CACHE using MATCH_IRE_ILL rathen than 21108 * MATCH_IRE_IPIF. 21109 * 21110 * NOTE : We need to do it for non-secure case also as 21111 * this might go out secure if there is a global policy 21112 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21113 * address, the source should be initialized already and 21114 * hence we won't be initializing here. 21115 * 21116 * As we do not have the ire yet, it is possible that 21117 * we set the source address here and then later discover 21118 * that the ire implies the source address to be assigned 21119 * through the RTF_SETSRC flag. 21120 * In that case, the setsrc variable will remind us 21121 * that overwritting the source address by the one 21122 * of the RTF_SETSRC-flagged ire is allowed. 21123 */ 21124 if (ipha->ipha_src == INADDR_ANY && 21125 (connp == NULL || !connp->conn_unspec_src)) { 21126 ipha->ipha_src = ipif->ipif_src_addr; 21127 setsrc = RTF_SETSRC; 21128 } 21129 /* 21130 * Find an IRE which matches the destination and the outgoing 21131 * queue (i.e. the outgoing interface.) 21132 * For loopback use a unicast IP address for 21133 * the ire lookup. 21134 */ 21135 if (IS_LOOPBACK(ipif->ipif_ill)) 21136 dst = ipif->ipif_lcl_addr; 21137 21138 /* 21139 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21140 * We don't need to lookup ire in ctable as the packet 21141 * needs to be sent to the destination through the specified 21142 * ill irrespective of ires in the cache table. 21143 */ 21144 ire = NULL; 21145 if (xmit_ill == NULL) { 21146 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21147 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21148 } 21149 21150 /* 21151 * refrele attach_ill as its not needed anymore. 21152 */ 21153 if (attach_ill != NULL) { 21154 ill_refrele(attach_ill); 21155 attach_ill = NULL; 21156 } 21157 21158 if (ire == NULL) { 21159 /* 21160 * Multicast loopback and multicast forwarding is 21161 * done in ip_wput_ire. 21162 * 21163 * Mark this packet to make it be delivered to 21164 * ip_wput_ire after the new ire has been 21165 * created. 21166 * 21167 * The call to ip_newroute_ipif takes into account 21168 * the setsrc reminder. In any case, we take care 21169 * of the RTF_MULTIRT flag. 21170 */ 21171 mp->b_prev = mp->b_next = NULL; 21172 if (xmit_ill == NULL || 21173 xmit_ill->ill_ipif_up_count > 0) { 21174 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21175 setsrc | RTF_MULTIRT, zoneid, infop); 21176 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21177 "ip_wput_end: q %p (%S)", q, "noire"); 21178 } else { 21179 freemsg(first_mp); 21180 } 21181 ipif_refrele(ipif); 21182 if (xmit_ill != NULL) 21183 ill_refrele(xmit_ill); 21184 if (need_decref) 21185 CONN_DEC_REF(connp); 21186 return; 21187 } 21188 21189 ipif_refrele(ipif); 21190 ipif = NULL; 21191 ASSERT(xmit_ill == NULL); 21192 21193 /* 21194 * Honor the RTF_SETSRC flag for multicast packets, 21195 * if allowed by the setsrc reminder. 21196 */ 21197 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21198 ipha->ipha_src = ire->ire_src_addr; 21199 } 21200 21201 /* 21202 * Unconditionally force the TTL to 1 for 21203 * multirouted multicast packets: 21204 * multirouted multicast should not cross 21205 * multicast routers. 21206 */ 21207 if (ire->ire_flags & RTF_MULTIRT) { 21208 if (ipha->ipha_ttl > 1) { 21209 ip2dbg(("ip_wput: forcing multicast " 21210 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21211 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21212 ipha->ipha_ttl = 1; 21213 } 21214 } 21215 } else { 21216 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21217 if ((ire != NULL) && (ire->ire_type & 21218 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21219 ignore_dontroute = B_TRUE; 21220 ignore_nexthop = B_TRUE; 21221 } 21222 if (ire != NULL) { 21223 ire_refrele(ire); 21224 ire = NULL; 21225 } 21226 /* 21227 * Guard against coming in from arp in which case conn is NULL. 21228 * Also guard against non M_DATA with dontroute set but 21229 * destined to local, loopback or broadcast addresses. 21230 */ 21231 if (connp != NULL && connp->conn_dontroute && 21232 !ignore_dontroute) { 21233 dontroute: 21234 /* 21235 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21236 * routing protocols from seeing false direct 21237 * connectivity. 21238 */ 21239 ipha->ipha_ttl = 1; 21240 21241 /* If suitable ipif not found, drop packet */ 21242 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21243 if (dst_ipif == NULL) { 21244 noroute: 21245 ip1dbg(("ip_wput: no route for dst using" 21246 " SO_DONTROUTE\n")); 21247 BUMP_MIB(&ipst->ips_ip_mib, 21248 ipIfStatsOutNoRoutes); 21249 mp->b_prev = mp->b_next = NULL; 21250 if (first_mp == NULL) 21251 first_mp = mp; 21252 goto drop_pkt; 21253 } else { 21254 /* 21255 * If suitable ipif has been found, set 21256 * xmit_ill to the corresponding 21257 * ipif_ill because we'll be using the 21258 * send_from_ill logic below. 21259 */ 21260 ASSERT(xmit_ill == NULL); 21261 xmit_ill = dst_ipif->ipif_ill; 21262 mutex_enter(&xmit_ill->ill_lock); 21263 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21264 mutex_exit(&xmit_ill->ill_lock); 21265 xmit_ill = NULL; 21266 ipif_refrele(dst_ipif); 21267 goto noroute; 21268 } 21269 ill_refhold_locked(xmit_ill); 21270 mutex_exit(&xmit_ill->ill_lock); 21271 ipif_refrele(dst_ipif); 21272 } 21273 } 21274 /* 21275 * If we are bound to IPIF_NOFAILOVER address, look for 21276 * an IRE_CACHE matching the ill. 21277 */ 21278 send_from_ill: 21279 if (attach_ill != NULL) { 21280 ipif_t *attach_ipif; 21281 21282 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21283 21284 /* 21285 * Check if we need an ire that will not be 21286 * looked up by anybody else i.e. HIDDEN. 21287 */ 21288 if (ill_is_probeonly(attach_ill)) { 21289 match_flags |= MATCH_IRE_MARK_HIDDEN; 21290 } 21291 21292 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21293 if (attach_ipif == NULL) { 21294 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21295 goto discard_pkt; 21296 } 21297 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21298 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21299 ipif_refrele(attach_ipif); 21300 } else if (xmit_ill != NULL) { 21301 ipif_t *ipif; 21302 21303 /* 21304 * Mark this packet as originated locally 21305 */ 21306 mp->b_prev = mp->b_next = NULL; 21307 21308 /* 21309 * Could be SO_DONTROUTE case also. 21310 * Verify that at least one ipif is up on the ill. 21311 */ 21312 if (xmit_ill->ill_ipif_up_count == 0) { 21313 ip1dbg(("ip_output: xmit_ill %s is down\n", 21314 xmit_ill->ill_name)); 21315 goto drop_pkt; 21316 } 21317 21318 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21319 if (ipif == NULL) { 21320 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21321 xmit_ill->ill_name)); 21322 goto drop_pkt; 21323 } 21324 21325 /* 21326 * Look for a ire that is part of the group, 21327 * if found use it else call ip_newroute_ipif. 21328 * IPCL_ZONEID is not used for matching because 21329 * IP_ALLZONES option is valid only when the 21330 * ill is accessible from all zones i.e has a 21331 * valid ipif in all zones. 21332 */ 21333 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21334 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21335 MBLK_GETLABEL(mp), match_flags, ipst); 21336 /* 21337 * If an ire exists use it or else create 21338 * an ire but don't add it to the cache. 21339 * Adding an ire may cause issues with 21340 * asymmetric routing. 21341 * In case of multiroute always act as if 21342 * ire does not exist. 21343 */ 21344 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21345 if (ire != NULL) 21346 ire_refrele(ire); 21347 ip_newroute_ipif(q, first_mp, ipif, 21348 dst, connp, 0, zoneid, infop); 21349 ipif_refrele(ipif); 21350 ip1dbg(("ip_output: xmit_ill via %s\n", 21351 xmit_ill->ill_name)); 21352 ill_refrele(xmit_ill); 21353 if (need_decref) 21354 CONN_DEC_REF(connp); 21355 return; 21356 } 21357 ipif_refrele(ipif); 21358 } else if (ip_nexthop || (connp != NULL && 21359 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21360 if (!ip_nexthop) { 21361 ip_nexthop = B_TRUE; 21362 nexthop_addr = connp->conn_nexthop_v4; 21363 } 21364 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21365 MATCH_IRE_GW; 21366 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21367 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21368 } else { 21369 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21370 ipst); 21371 } 21372 if (!ire) { 21373 /* 21374 * Make sure we don't load spread if this 21375 * is IPIF_NOFAILOVER case. 21376 */ 21377 if ((attach_ill != NULL) || 21378 (ip_nexthop && !ignore_nexthop)) { 21379 if (mctl_present) { 21380 io = (ipsec_out_t *)first_mp->b_rptr; 21381 ASSERT(first_mp->b_datap->db_type == 21382 M_CTL); 21383 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21384 } else { 21385 ASSERT(mp == first_mp); 21386 first_mp = allocb( 21387 sizeof (ipsec_info_t), BPRI_HI); 21388 if (first_mp == NULL) { 21389 first_mp = mp; 21390 goto discard_pkt; 21391 } 21392 first_mp->b_datap->db_type = M_CTL; 21393 first_mp->b_wptr += 21394 sizeof (ipsec_info_t); 21395 /* ipsec_out_secure is B_FALSE now */ 21396 bzero(first_mp->b_rptr, 21397 sizeof (ipsec_info_t)); 21398 io = (ipsec_out_t *)first_mp->b_rptr; 21399 io->ipsec_out_type = IPSEC_OUT; 21400 io->ipsec_out_len = 21401 sizeof (ipsec_out_t); 21402 io->ipsec_out_use_global_policy = 21403 B_TRUE; 21404 io->ipsec_out_ns = ipst->ips_netstack; 21405 first_mp->b_cont = mp; 21406 mctl_present = B_TRUE; 21407 } 21408 if (attach_ill != NULL) { 21409 io->ipsec_out_ill_index = attach_ill-> 21410 ill_phyint->phyint_ifindex; 21411 io->ipsec_out_attach_if = B_TRUE; 21412 } else { 21413 io->ipsec_out_ip_nexthop = ip_nexthop; 21414 io->ipsec_out_nexthop_addr = 21415 nexthop_addr; 21416 } 21417 } 21418 noirefound: 21419 /* 21420 * Mark this packet as having originated on 21421 * this machine. This will be noted in 21422 * ire_add_then_send, which needs to know 21423 * whether to run it back through ip_wput or 21424 * ip_rput following successful resolution. 21425 */ 21426 mp->b_prev = NULL; 21427 mp->b_next = NULL; 21428 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21429 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21430 "ip_wput_end: q %p (%S)", q, "newroute"); 21431 if (attach_ill != NULL) 21432 ill_refrele(attach_ill); 21433 if (xmit_ill != NULL) 21434 ill_refrele(xmit_ill); 21435 if (need_decref) 21436 CONN_DEC_REF(connp); 21437 return; 21438 } 21439 } 21440 21441 /* We now know where we are going with it. */ 21442 21443 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21444 "ip_wput_end: q %p (%S)", q, "end"); 21445 21446 /* 21447 * Check if the ire has the RTF_MULTIRT flag, inherited 21448 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21449 */ 21450 if (ire->ire_flags & RTF_MULTIRT) { 21451 /* 21452 * Force the TTL of multirouted packets if required. 21453 * The TTL of such packets is bounded by the 21454 * ip_multirt_ttl ndd variable. 21455 */ 21456 if ((ipst->ips_ip_multirt_ttl > 0) && 21457 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21458 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21459 "(was %d), dst 0x%08x\n", 21460 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21461 ntohl(ire->ire_addr))); 21462 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21463 } 21464 /* 21465 * At this point, we check to see if there are any pending 21466 * unresolved routes. ire_multirt_resolvable() 21467 * checks in O(n) that all IRE_OFFSUBNET ire 21468 * entries for the packet's destination and 21469 * flagged RTF_MULTIRT are currently resolved. 21470 * If some remain unresolved, we make a copy 21471 * of the current message. It will be used 21472 * to initiate additional route resolutions. 21473 */ 21474 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21475 MBLK_GETLABEL(first_mp), ipst); 21476 ip2dbg(("ip_wput[noirefound]: ire %p, " 21477 "multirt_need_resolve %d, first_mp %p\n", 21478 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21479 if (multirt_need_resolve) { 21480 copy_mp = copymsg(first_mp); 21481 if (copy_mp != NULL) { 21482 MULTIRT_DEBUG_TAG(copy_mp); 21483 } 21484 } 21485 } 21486 21487 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21488 /* 21489 * Try to resolve another multiroute if 21490 * ire_multirt_resolvable() deemed it necessary. 21491 * At this point, we need to distinguish 21492 * multicasts from other packets. For multicasts, 21493 * we call ip_newroute_ipif() and request that both 21494 * multirouting and setsrc flags are checked. 21495 */ 21496 if (copy_mp != NULL) { 21497 if (CLASSD(dst)) { 21498 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21499 if (ipif) { 21500 ASSERT(infop->ip_opt_ill_index == 0); 21501 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21502 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21503 ipif_refrele(ipif); 21504 } else { 21505 MULTIRT_DEBUG_UNTAG(copy_mp); 21506 freemsg(copy_mp); 21507 copy_mp = NULL; 21508 } 21509 } else { 21510 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21511 } 21512 } 21513 if (attach_ill != NULL) 21514 ill_refrele(attach_ill); 21515 if (xmit_ill != NULL) 21516 ill_refrele(xmit_ill); 21517 if (need_decref) 21518 CONN_DEC_REF(connp); 21519 return; 21520 21521 icmp_parameter_problem: 21522 /* could not have originated externally */ 21523 ASSERT(mp->b_prev == NULL); 21524 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21525 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21526 /* it's the IP header length that's in trouble */ 21527 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21528 first_mp = NULL; 21529 } 21530 21531 discard_pkt: 21532 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21533 drop_pkt: 21534 ip1dbg(("ip_wput: dropped packet\n")); 21535 if (ire != NULL) 21536 ire_refrele(ire); 21537 if (need_decref) 21538 CONN_DEC_REF(connp); 21539 freemsg(first_mp); 21540 if (attach_ill != NULL) 21541 ill_refrele(attach_ill); 21542 if (xmit_ill != NULL) 21543 ill_refrele(xmit_ill); 21544 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21545 "ip_wput_end: q %p (%S)", q, "droppkt"); 21546 } 21547 21548 /* 21549 * If this is a conn_t queue, then we pass in the conn. This includes the 21550 * zoneid. 21551 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21552 * in which case we use the global zoneid since those are all part of 21553 * the global zone. 21554 */ 21555 void 21556 ip_wput(queue_t *q, mblk_t *mp) 21557 { 21558 if (CONN_Q(q)) 21559 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21560 else 21561 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21562 } 21563 21564 /* 21565 * 21566 * The following rules must be observed when accessing any ipif or ill 21567 * that has been cached in the conn. Typically conn_nofailover_ill, 21568 * conn_outgoing_ill, conn_multicast_ipif and conn_multicast_ill. 21569 * 21570 * Access: The ipif or ill pointed to from the conn can be accessed under 21571 * the protection of the conn_lock or after it has been refheld under the 21572 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21573 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21574 * The reason for this is that a concurrent unplumb could actually be 21575 * cleaning up these cached pointers by walking the conns and might have 21576 * finished cleaning up the conn in question. The macros check that an 21577 * unplumb has not yet started on the ipif or ill. 21578 * 21579 * Caching: An ipif or ill pointer may be cached in the conn only after 21580 * making sure that an unplumb has not started. So the caching is done 21581 * while holding both the conn_lock and the ill_lock and after using the 21582 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21583 * flag before starting the cleanup of conns. 21584 * 21585 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21586 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21587 * or a reference to the ipif or a reference to an ire that references the 21588 * ipif. An ipif does not change its ill except for failover/failback. Since 21589 * failover/failback happens only after bringing down the ipif and making sure 21590 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21591 * the above holds. 21592 */ 21593 ipif_t * 21594 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21595 { 21596 ipif_t *ipif; 21597 ill_t *ill; 21598 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21599 21600 *err = 0; 21601 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21602 mutex_enter(&connp->conn_lock); 21603 ipif = *ipifp; 21604 if (ipif != NULL) { 21605 ill = ipif->ipif_ill; 21606 mutex_enter(&ill->ill_lock); 21607 if (IPIF_CAN_LOOKUP(ipif)) { 21608 ipif_refhold_locked(ipif); 21609 mutex_exit(&ill->ill_lock); 21610 mutex_exit(&connp->conn_lock); 21611 rw_exit(&ipst->ips_ill_g_lock); 21612 return (ipif); 21613 } else { 21614 *err = IPIF_LOOKUP_FAILED; 21615 } 21616 mutex_exit(&ill->ill_lock); 21617 } 21618 mutex_exit(&connp->conn_lock); 21619 rw_exit(&ipst->ips_ill_g_lock); 21620 return (NULL); 21621 } 21622 21623 ill_t * 21624 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21625 { 21626 ill_t *ill; 21627 21628 *err = 0; 21629 mutex_enter(&connp->conn_lock); 21630 ill = *illp; 21631 if (ill != NULL) { 21632 mutex_enter(&ill->ill_lock); 21633 if (ILL_CAN_LOOKUP(ill)) { 21634 ill_refhold_locked(ill); 21635 mutex_exit(&ill->ill_lock); 21636 mutex_exit(&connp->conn_lock); 21637 return (ill); 21638 } else { 21639 *err = ILL_LOOKUP_FAILED; 21640 } 21641 mutex_exit(&ill->ill_lock); 21642 } 21643 mutex_exit(&connp->conn_lock); 21644 return (NULL); 21645 } 21646 21647 static int 21648 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21649 { 21650 ill_t *ill; 21651 21652 ill = ipif->ipif_ill; 21653 mutex_enter(&connp->conn_lock); 21654 mutex_enter(&ill->ill_lock); 21655 if (IPIF_CAN_LOOKUP(ipif)) { 21656 *ipifp = ipif; 21657 mutex_exit(&ill->ill_lock); 21658 mutex_exit(&connp->conn_lock); 21659 return (0); 21660 } 21661 mutex_exit(&ill->ill_lock); 21662 mutex_exit(&connp->conn_lock); 21663 return (IPIF_LOOKUP_FAILED); 21664 } 21665 21666 /* 21667 * This is called if the outbound datagram needs fragmentation. 21668 * 21669 * NOTE : This function does not ire_refrele the ire argument passed in. 21670 */ 21671 static void 21672 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21673 ip_stack_t *ipst) 21674 { 21675 ipha_t *ipha; 21676 mblk_t *mp; 21677 uint32_t v_hlen_tos_len; 21678 uint32_t max_frag; 21679 uint32_t frag_flag; 21680 boolean_t dont_use; 21681 21682 if (ipsec_mp->b_datap->db_type == M_CTL) { 21683 mp = ipsec_mp->b_cont; 21684 } else { 21685 mp = ipsec_mp; 21686 } 21687 21688 ipha = (ipha_t *)mp->b_rptr; 21689 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21690 21691 #ifdef _BIG_ENDIAN 21692 #define V_HLEN (v_hlen_tos_len >> 24) 21693 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21694 #else 21695 #define V_HLEN (v_hlen_tos_len & 0xFF) 21696 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21697 #endif 21698 21699 #ifndef SPEED_BEFORE_SAFETY 21700 /* 21701 * Check that ipha_length is consistent with 21702 * the mblk length 21703 */ 21704 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21705 ip0dbg(("Packet length mismatch: %d, %ld\n", 21706 LENGTH, msgdsize(mp))); 21707 freemsg(ipsec_mp); 21708 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21709 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21710 "packet length mismatch"); 21711 return; 21712 } 21713 #endif 21714 /* 21715 * Don't use frag_flag if pre-built packet or source 21716 * routed or if multicast (since multicast packets do not solicit 21717 * ICMP "packet too big" messages). Get the values of 21718 * max_frag and frag_flag atomically by acquiring the 21719 * ire_lock. 21720 */ 21721 mutex_enter(&ire->ire_lock); 21722 max_frag = ire->ire_max_frag; 21723 frag_flag = ire->ire_frag_flag; 21724 mutex_exit(&ire->ire_lock); 21725 21726 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21727 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21728 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21729 21730 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21731 (dont_use ? 0 : frag_flag), zoneid, ipst); 21732 } 21733 21734 /* 21735 * Used for deciding the MSS size for the upper layer. Thus 21736 * we need to check the outbound policy values in the conn. 21737 */ 21738 int 21739 conn_ipsec_length(conn_t *connp) 21740 { 21741 ipsec_latch_t *ipl; 21742 21743 ipl = connp->conn_latch; 21744 if (ipl == NULL) 21745 return (0); 21746 21747 if (ipl->ipl_out_policy == NULL) 21748 return (0); 21749 21750 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21751 } 21752 21753 /* 21754 * Returns an estimate of the IPsec headers size. This is used if 21755 * we don't want to call into IPsec to get the exact size. 21756 */ 21757 int 21758 ipsec_out_extra_length(mblk_t *ipsec_mp) 21759 { 21760 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21761 ipsec_action_t *a; 21762 21763 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21764 if (!io->ipsec_out_secure) 21765 return (0); 21766 21767 a = io->ipsec_out_act; 21768 21769 if (a == NULL) { 21770 ASSERT(io->ipsec_out_policy != NULL); 21771 a = io->ipsec_out_policy->ipsp_act; 21772 } 21773 ASSERT(a != NULL); 21774 21775 return (a->ipa_ovhd); 21776 } 21777 21778 /* 21779 * Returns an estimate of the IPsec headers size. This is used if 21780 * we don't want to call into IPsec to get the exact size. 21781 */ 21782 int 21783 ipsec_in_extra_length(mblk_t *ipsec_mp) 21784 { 21785 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21786 ipsec_action_t *a; 21787 21788 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21789 21790 a = ii->ipsec_in_action; 21791 return (a == NULL ? 0 : a->ipa_ovhd); 21792 } 21793 21794 /* 21795 * If there are any source route options, return the true final 21796 * destination. Otherwise, return the destination. 21797 */ 21798 ipaddr_t 21799 ip_get_dst(ipha_t *ipha) 21800 { 21801 ipoptp_t opts; 21802 uchar_t *opt; 21803 uint8_t optval; 21804 uint8_t optlen; 21805 ipaddr_t dst; 21806 uint32_t off; 21807 21808 dst = ipha->ipha_dst; 21809 21810 if (IS_SIMPLE_IPH(ipha)) 21811 return (dst); 21812 21813 for (optval = ipoptp_first(&opts, ipha); 21814 optval != IPOPT_EOL; 21815 optval = ipoptp_next(&opts)) { 21816 opt = opts.ipoptp_cur; 21817 optlen = opts.ipoptp_len; 21818 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21819 switch (optval) { 21820 case IPOPT_SSRR: 21821 case IPOPT_LSRR: 21822 off = opt[IPOPT_OFFSET]; 21823 /* 21824 * If one of the conditions is true, it means 21825 * end of options and dst already has the right 21826 * value. 21827 */ 21828 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21829 off = optlen - IP_ADDR_LEN; 21830 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21831 } 21832 return (dst); 21833 default: 21834 break; 21835 } 21836 } 21837 21838 return (dst); 21839 } 21840 21841 mblk_t * 21842 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21843 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21844 { 21845 ipsec_out_t *io; 21846 mblk_t *first_mp; 21847 boolean_t policy_present; 21848 ip_stack_t *ipst; 21849 ipsec_stack_t *ipss; 21850 21851 ASSERT(ire != NULL); 21852 ipst = ire->ire_ipst; 21853 ipss = ipst->ips_netstack->netstack_ipsec; 21854 21855 first_mp = mp; 21856 if (mp->b_datap->db_type == M_CTL) { 21857 io = (ipsec_out_t *)first_mp->b_rptr; 21858 /* 21859 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21860 * 21861 * 1) There is per-socket policy (including cached global 21862 * policy) or a policy on the IP-in-IP tunnel. 21863 * 2) There is no per-socket policy, but it is 21864 * a multicast packet that needs to go out 21865 * on a specific interface. This is the case 21866 * where (ip_wput and ip_wput_multicast) attaches 21867 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21868 * 21869 * In case (2) we check with global policy to 21870 * see if there is a match and set the ill_index 21871 * appropriately so that we can lookup the ire 21872 * properly in ip_wput_ipsec_out. 21873 */ 21874 21875 /* 21876 * ipsec_out_use_global_policy is set to B_FALSE 21877 * in ipsec_in_to_out(). Refer to that function for 21878 * details. 21879 */ 21880 if ((io->ipsec_out_latch == NULL) && 21881 (io->ipsec_out_use_global_policy)) { 21882 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21883 ire, connp, unspec_src, zoneid)); 21884 } 21885 if (!io->ipsec_out_secure) { 21886 /* 21887 * If this is not a secure packet, drop 21888 * the IPSEC_OUT mp and treat it as a clear 21889 * packet. This happens when we are sending 21890 * a ICMP reply back to a clear packet. See 21891 * ipsec_in_to_out() for details. 21892 */ 21893 mp = first_mp->b_cont; 21894 freeb(first_mp); 21895 } 21896 return (mp); 21897 } 21898 /* 21899 * See whether we need to attach a global policy here. We 21900 * don't depend on the conn (as it could be null) for deciding 21901 * what policy this datagram should go through because it 21902 * should have happened in ip_wput if there was some 21903 * policy. This normally happens for connections which are not 21904 * fully bound preventing us from caching policies in 21905 * ip_bind. Packets coming from the TCP listener/global queue 21906 * - which are non-hard_bound - could also be affected by 21907 * applying policy here. 21908 * 21909 * If this packet is coming from tcp global queue or listener, 21910 * we will be applying policy here. This may not be *right* 21911 * if these packets are coming from the detached connection as 21912 * it could have gone in clear before. This happens only if a 21913 * TCP connection started when there is no policy and somebody 21914 * added policy before it became detached. Thus packets of the 21915 * detached connection could go out secure and the other end 21916 * would drop it because it will be expecting in clear. The 21917 * converse is not true i.e if somebody starts a TCP 21918 * connection and deletes the policy, all the packets will 21919 * still go out with the policy that existed before deleting 21920 * because ip_unbind sends up policy information which is used 21921 * by TCP on subsequent ip_wputs. The right solution is to fix 21922 * TCP to attach a dummy IPSEC_OUT and set 21923 * ipsec_out_use_global_policy to B_FALSE. As this might 21924 * affect performance for normal cases, we are not doing it. 21925 * Thus, set policy before starting any TCP connections. 21926 * 21927 * NOTE - We might apply policy even for a hard bound connection 21928 * - for which we cached policy in ip_bind - if somebody added 21929 * global policy after we inherited the policy in ip_bind. 21930 * This means that the packets that were going out in clear 21931 * previously would start going secure and hence get dropped 21932 * on the other side. To fix this, TCP attaches a dummy 21933 * ipsec_out and make sure that we don't apply global policy. 21934 */ 21935 if (ipha != NULL) 21936 policy_present = ipss->ipsec_outbound_v4_policy_present; 21937 else 21938 policy_present = ipss->ipsec_outbound_v6_policy_present; 21939 if (!policy_present) 21940 return (mp); 21941 21942 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21943 zoneid)); 21944 } 21945 21946 ire_t * 21947 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21948 { 21949 ipaddr_t addr; 21950 ire_t *save_ire; 21951 irb_t *irb; 21952 ill_group_t *illgrp; 21953 int err; 21954 21955 save_ire = ire; 21956 addr = ire->ire_addr; 21957 21958 ASSERT(ire->ire_type == IRE_BROADCAST); 21959 21960 illgrp = connp->conn_outgoing_ill->ill_group; 21961 if (illgrp == NULL) { 21962 *conn_outgoing_ill = conn_get_held_ill(connp, 21963 &connp->conn_outgoing_ill, &err); 21964 if (err == ILL_LOOKUP_FAILED) { 21965 ire_refrele(save_ire); 21966 return (NULL); 21967 } 21968 return (save_ire); 21969 } 21970 /* 21971 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21972 * If it is part of the group, we need to send on the ire 21973 * that has been cleared of IRE_MARK_NORECV and that belongs 21974 * to this group. This is okay as IP_BOUND_IF really means 21975 * any ill in the group. We depend on the fact that the 21976 * first ire in the group is always cleared of IRE_MARK_NORECV 21977 * if such an ire exists. This is possible only if you have 21978 * at least one ill in the group that has not failed. 21979 * 21980 * First get to the ire that matches the address and group. 21981 * 21982 * We don't look for an ire with a matching zoneid because a given zone 21983 * won't always have broadcast ires on all ills in the group. 21984 */ 21985 irb = ire->ire_bucket; 21986 rw_enter(&irb->irb_lock, RW_READER); 21987 if (ire->ire_marks & IRE_MARK_NORECV) { 21988 /* 21989 * If the current zone only has an ire broadcast for this 21990 * address marked NORECV, the ire we want is ahead in the 21991 * bucket, so we look it up deliberately ignoring the zoneid. 21992 */ 21993 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21994 if (ire->ire_addr != addr) 21995 continue; 21996 /* skip over deleted ires */ 21997 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21998 continue; 21999 } 22000 } 22001 while (ire != NULL) { 22002 /* 22003 * If a new interface is coming up, we could end up 22004 * seeing the loopback ire and the non-loopback ire 22005 * may not have been added yet. So check for ire_stq 22006 */ 22007 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 22008 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 22009 break; 22010 } 22011 ire = ire->ire_next; 22012 } 22013 if (ire != NULL && ire->ire_addr == addr && 22014 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 22015 IRE_REFHOLD(ire); 22016 rw_exit(&irb->irb_lock); 22017 ire_refrele(save_ire); 22018 *conn_outgoing_ill = ire_to_ill(ire); 22019 /* 22020 * Refhold the ill to make the conn_outgoing_ill 22021 * independent of the ire. ip_wput_ire goes in a loop 22022 * and may refrele the ire. Since we have an ire at this 22023 * point we don't need to use ILL_CAN_LOOKUP on the ill. 22024 */ 22025 ill_refhold(*conn_outgoing_ill); 22026 return (ire); 22027 } 22028 rw_exit(&irb->irb_lock); 22029 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 22030 /* 22031 * If we can't find a suitable ire, return the original ire. 22032 */ 22033 return (save_ire); 22034 } 22035 22036 /* 22037 * This function does the ire_refrele of the ire passed in as the 22038 * argument. As this function looks up more ires i.e broadcast ires, 22039 * it needs to REFRELE them. Currently, for simplicity we don't 22040 * differentiate the one passed in and looked up here. We always 22041 * REFRELE. 22042 * IPQoS Notes: 22043 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22044 * IPsec packets are done in ipsec_out_process. 22045 * 22046 */ 22047 void 22048 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22049 zoneid_t zoneid) 22050 { 22051 ipha_t *ipha; 22052 #define rptr ((uchar_t *)ipha) 22053 queue_t *stq; 22054 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22055 uint32_t v_hlen_tos_len; 22056 uint32_t ttl_protocol; 22057 ipaddr_t src; 22058 ipaddr_t dst; 22059 uint32_t cksum; 22060 ipaddr_t orig_src; 22061 ire_t *ire1; 22062 mblk_t *next_mp; 22063 uint_t hlen; 22064 uint16_t *up; 22065 uint32_t max_frag = ire->ire_max_frag; 22066 ill_t *ill = ire_to_ill(ire); 22067 int clusterwide; 22068 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22069 int ipsec_len; 22070 mblk_t *first_mp; 22071 ipsec_out_t *io; 22072 boolean_t conn_dontroute; /* conn value for multicast */ 22073 boolean_t conn_multicast_loop; /* conn value for multicast */ 22074 boolean_t multicast_forward; /* Should we forward ? */ 22075 boolean_t unspec_src; 22076 ill_t *conn_outgoing_ill = NULL; 22077 ill_t *ire_ill; 22078 ill_t *ire1_ill; 22079 ill_t *out_ill; 22080 uint32_t ill_index = 0; 22081 boolean_t multirt_send = B_FALSE; 22082 int err; 22083 ipxmit_state_t pktxmit_state; 22084 ip_stack_t *ipst = ire->ire_ipst; 22085 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22086 22087 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22088 "ip_wput_ire_start: q %p", q); 22089 22090 multicast_forward = B_FALSE; 22091 unspec_src = (connp != NULL && connp->conn_unspec_src); 22092 22093 if (ire->ire_flags & RTF_MULTIRT) { 22094 /* 22095 * Multirouting case. The bucket where ire is stored 22096 * probably holds other RTF_MULTIRT flagged ire 22097 * to the destination. In this call to ip_wput_ire, 22098 * we attempt to send the packet through all 22099 * those ires. Thus, we first ensure that ire is the 22100 * first RTF_MULTIRT ire in the bucket, 22101 * before walking the ire list. 22102 */ 22103 ire_t *first_ire; 22104 irb_t *irb = ire->ire_bucket; 22105 ASSERT(irb != NULL); 22106 22107 /* Make sure we do not omit any multiroute ire. */ 22108 IRB_REFHOLD(irb); 22109 for (first_ire = irb->irb_ire; 22110 first_ire != NULL; 22111 first_ire = first_ire->ire_next) { 22112 if ((first_ire->ire_flags & RTF_MULTIRT) && 22113 (first_ire->ire_addr == ire->ire_addr) && 22114 !(first_ire->ire_marks & 22115 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 22116 break; 22117 } 22118 } 22119 22120 if ((first_ire != NULL) && (first_ire != ire)) { 22121 IRE_REFHOLD(first_ire); 22122 ire_refrele(ire); 22123 ire = first_ire; 22124 ill = ire_to_ill(ire); 22125 } 22126 IRB_REFRELE(irb); 22127 } 22128 22129 /* 22130 * conn_outgoing_ill variable is used only in the broadcast loop. 22131 * for performance we don't grab the mutexs in the fastpath 22132 */ 22133 if ((connp != NULL) && 22134 (ire->ire_type == IRE_BROADCAST) && 22135 ((connp->conn_nofailover_ill != NULL) || 22136 (connp->conn_outgoing_ill != NULL))) { 22137 /* 22138 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22139 * option. So, see if this endpoint is bound to a 22140 * IPIF_NOFAILOVER address. If so, honor it. This implies 22141 * that if the interface is failed, we will still send 22142 * the packet on the same ill which is what we want. 22143 */ 22144 conn_outgoing_ill = conn_get_held_ill(connp, 22145 &connp->conn_nofailover_ill, &err); 22146 if (err == ILL_LOOKUP_FAILED) { 22147 ire_refrele(ire); 22148 freemsg(mp); 22149 return; 22150 } 22151 if (conn_outgoing_ill == NULL) { 22152 /* 22153 * Choose a good ill in the group to send the 22154 * packets on. 22155 */ 22156 ire = conn_set_outgoing_ill(connp, ire, 22157 &conn_outgoing_ill); 22158 if (ire == NULL) { 22159 freemsg(mp); 22160 return; 22161 } 22162 } 22163 } 22164 22165 if (mp->b_datap->db_type != M_CTL) { 22166 ipha = (ipha_t *)mp->b_rptr; 22167 } else { 22168 io = (ipsec_out_t *)mp->b_rptr; 22169 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22170 ASSERT(zoneid == io->ipsec_out_zoneid); 22171 ASSERT(zoneid != ALL_ZONES); 22172 ipha = (ipha_t *)mp->b_cont->b_rptr; 22173 dst = ipha->ipha_dst; 22174 /* 22175 * For the multicast case, ipsec_out carries conn_dontroute and 22176 * conn_multicast_loop as conn may not be available here. We 22177 * need this for multicast loopback and forwarding which is done 22178 * later in the code. 22179 */ 22180 if (CLASSD(dst)) { 22181 conn_dontroute = io->ipsec_out_dontroute; 22182 conn_multicast_loop = io->ipsec_out_multicast_loop; 22183 /* 22184 * If conn_dontroute is not set or conn_multicast_loop 22185 * is set, we need to do forwarding/loopback. For 22186 * datagrams from ip_wput_multicast, conn_dontroute is 22187 * set to B_TRUE and conn_multicast_loop is set to 22188 * B_FALSE so that we neither do forwarding nor 22189 * loopback. 22190 */ 22191 if (!conn_dontroute || conn_multicast_loop) 22192 multicast_forward = B_TRUE; 22193 } 22194 } 22195 22196 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22197 ire->ire_zoneid != ALL_ZONES) { 22198 /* 22199 * When a zone sends a packet to another zone, we try to deliver 22200 * the packet under the same conditions as if the destination 22201 * was a real node on the network. To do so, we look for a 22202 * matching route in the forwarding table. 22203 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22204 * ip_newroute() does. 22205 * Note that IRE_LOCAL are special, since they are used 22206 * when the zoneid doesn't match in some cases. This means that 22207 * we need to handle ipha_src differently since ire_src_addr 22208 * belongs to the receiving zone instead of the sending zone. 22209 * When ip_restrict_interzone_loopback is set, then 22210 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22211 * for loopback between zones when the logical "Ethernet" would 22212 * have looped them back. 22213 */ 22214 ire_t *src_ire; 22215 22216 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22217 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22218 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22219 if (src_ire != NULL && 22220 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22221 (!ipst->ips_ip_restrict_interzone_loopback || 22222 ire_local_same_ill_group(ire, src_ire))) { 22223 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22224 ipha->ipha_src = src_ire->ire_src_addr; 22225 ire_refrele(src_ire); 22226 } else { 22227 ire_refrele(ire); 22228 if (conn_outgoing_ill != NULL) 22229 ill_refrele(conn_outgoing_ill); 22230 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22231 if (src_ire != NULL) { 22232 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22233 ire_refrele(src_ire); 22234 freemsg(mp); 22235 return; 22236 } 22237 ire_refrele(src_ire); 22238 } 22239 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22240 /* Failed */ 22241 freemsg(mp); 22242 return; 22243 } 22244 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22245 ipst); 22246 return; 22247 } 22248 } 22249 22250 if (mp->b_datap->db_type == M_CTL || 22251 ipss->ipsec_outbound_v4_policy_present) { 22252 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22253 unspec_src, zoneid); 22254 if (mp == NULL) { 22255 ire_refrele(ire); 22256 if (conn_outgoing_ill != NULL) 22257 ill_refrele(conn_outgoing_ill); 22258 return; 22259 } 22260 /* 22261 * Trusted Extensions supports all-zones interfaces, so 22262 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22263 * the global zone. 22264 */ 22265 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22266 io = (ipsec_out_t *)mp->b_rptr; 22267 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22268 zoneid = io->ipsec_out_zoneid; 22269 } 22270 } 22271 22272 first_mp = mp; 22273 ipsec_len = 0; 22274 22275 if (first_mp->b_datap->db_type == M_CTL) { 22276 io = (ipsec_out_t *)first_mp->b_rptr; 22277 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22278 mp = first_mp->b_cont; 22279 ipsec_len = ipsec_out_extra_length(first_mp); 22280 ASSERT(ipsec_len >= 0); 22281 /* We already picked up the zoneid from the M_CTL above */ 22282 ASSERT(zoneid == io->ipsec_out_zoneid); 22283 ASSERT(zoneid != ALL_ZONES); 22284 22285 /* 22286 * Drop M_CTL here if IPsec processing is not needed. 22287 * (Non-IPsec use of M_CTL extracted any information it 22288 * needed above). 22289 */ 22290 if (ipsec_len == 0) { 22291 freeb(first_mp); 22292 first_mp = mp; 22293 } 22294 } 22295 22296 /* 22297 * Fast path for ip_wput_ire 22298 */ 22299 22300 ipha = (ipha_t *)mp->b_rptr; 22301 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22302 dst = ipha->ipha_dst; 22303 22304 /* 22305 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22306 * if the socket is a SOCK_RAW type. The transport checksum should 22307 * be provided in the pre-built packet, so we don't need to compute it. 22308 * Also, other application set flags, like DF, should not be altered. 22309 * Other transport MUST pass down zero. 22310 */ 22311 ip_hdr_included = ipha->ipha_ident; 22312 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22313 22314 if (CLASSD(dst)) { 22315 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22316 ntohl(dst), 22317 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22318 ntohl(ire->ire_addr))); 22319 } 22320 22321 /* Macros to extract header fields from data already in registers */ 22322 #ifdef _BIG_ENDIAN 22323 #define V_HLEN (v_hlen_tos_len >> 24) 22324 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22325 #define PROTO (ttl_protocol & 0xFF) 22326 #else 22327 #define V_HLEN (v_hlen_tos_len & 0xFF) 22328 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22329 #define PROTO (ttl_protocol >> 8) 22330 #endif 22331 22332 22333 orig_src = src = ipha->ipha_src; 22334 /* (The loop back to "another" is explained down below.) */ 22335 another:; 22336 /* 22337 * Assign an ident value for this packet. We assign idents on 22338 * a per destination basis out of the IRE. There could be 22339 * other threads targeting the same destination, so we have to 22340 * arrange for a atomic increment. Note that we use a 32-bit 22341 * atomic add because it has better performance than its 22342 * 16-bit sibling. 22343 * 22344 * If running in cluster mode and if the source address 22345 * belongs to a replicated service then vector through 22346 * cl_inet_ipident vector to allocate ip identifier 22347 * NOTE: This is a contract private interface with the 22348 * clustering group. 22349 */ 22350 clusterwide = 0; 22351 if (cl_inet_ipident) { 22352 ASSERT(cl_inet_isclusterwide); 22353 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22354 AF_INET, (uint8_t *)(uintptr_t)src)) { 22355 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22356 AF_INET, (uint8_t *)(uintptr_t)src, 22357 (uint8_t *)(uintptr_t)dst); 22358 clusterwide = 1; 22359 } 22360 } 22361 if (!clusterwide) { 22362 ipha->ipha_ident = 22363 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22364 } 22365 22366 #ifndef _BIG_ENDIAN 22367 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22368 #endif 22369 22370 /* 22371 * Set source address unless sent on an ill or conn_unspec_src is set. 22372 * This is needed to obey conn_unspec_src when packets go through 22373 * ip_newroute + arp. 22374 * Assumes ip_newroute{,_multi} sets the source address as well. 22375 */ 22376 if (src == INADDR_ANY && !unspec_src) { 22377 /* 22378 * Assign the appropriate source address from the IRE if none 22379 * was specified. 22380 */ 22381 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22382 22383 /* 22384 * With IP multipathing, broadcast packets are sent on the ire 22385 * that has been cleared of IRE_MARK_NORECV and that belongs to 22386 * the group. However, this ire might not be in the same zone so 22387 * we can't always use its source address. We look for a 22388 * broadcast ire in the same group and in the right zone. 22389 */ 22390 if (ire->ire_type == IRE_BROADCAST && 22391 ire->ire_zoneid != zoneid) { 22392 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22393 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22394 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22395 if (src_ire != NULL) { 22396 src = src_ire->ire_src_addr; 22397 ire_refrele(src_ire); 22398 } else { 22399 ire_refrele(ire); 22400 if (conn_outgoing_ill != NULL) 22401 ill_refrele(conn_outgoing_ill); 22402 freemsg(first_mp); 22403 if (ill != NULL) { 22404 BUMP_MIB(ill->ill_ip_mib, 22405 ipIfStatsOutDiscards); 22406 } else { 22407 BUMP_MIB(&ipst->ips_ip_mib, 22408 ipIfStatsOutDiscards); 22409 } 22410 return; 22411 } 22412 } else { 22413 src = ire->ire_src_addr; 22414 } 22415 22416 if (connp == NULL) { 22417 ip1dbg(("ip_wput_ire: no connp and no src " 22418 "address for dst 0x%x, using src 0x%x\n", 22419 ntohl(dst), 22420 ntohl(src))); 22421 } 22422 ipha->ipha_src = src; 22423 } 22424 stq = ire->ire_stq; 22425 22426 /* 22427 * We only allow ire chains for broadcasts since there will 22428 * be multiple IRE_CACHE entries for the same multicast 22429 * address (one per ipif). 22430 */ 22431 next_mp = NULL; 22432 22433 /* broadcast packet */ 22434 if (ire->ire_type == IRE_BROADCAST) 22435 goto broadcast; 22436 22437 /* loopback ? */ 22438 if (stq == NULL) 22439 goto nullstq; 22440 22441 /* The ill_index for outbound ILL */ 22442 ill_index = Q_TO_INDEX(stq); 22443 22444 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22445 ttl_protocol = ((uint16_t *)ipha)[4]; 22446 22447 /* pseudo checksum (do it in parts for IP header checksum) */ 22448 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22449 22450 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22451 queue_t *dev_q = stq->q_next; 22452 22453 /* flow controlled */ 22454 if ((dev_q->q_next || dev_q->q_first) && 22455 !canput(dev_q)) 22456 goto blocked; 22457 if ((PROTO == IPPROTO_UDP) && 22458 (ip_hdr_included != IP_HDR_INCLUDED)) { 22459 hlen = (V_HLEN & 0xF) << 2; 22460 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22461 if (*up != 0) { 22462 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22463 hlen, LENGTH, max_frag, ipsec_len, cksum); 22464 /* Software checksum? */ 22465 if (DB_CKSUMFLAGS(mp) == 0) { 22466 IP_STAT(ipst, ip_out_sw_cksum); 22467 IP_STAT_UPDATE(ipst, 22468 ip_udp_out_sw_cksum_bytes, 22469 LENGTH - hlen); 22470 } 22471 } 22472 } 22473 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22474 hlen = (V_HLEN & 0xF) << 2; 22475 if (PROTO == IPPROTO_TCP) { 22476 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22477 /* 22478 * The packet header is processed once and for all, even 22479 * in the multirouting case. We disable hardware 22480 * checksum if the packet is multirouted, as it will be 22481 * replicated via several interfaces, and not all of 22482 * them may have this capability. 22483 */ 22484 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22485 LENGTH, max_frag, ipsec_len, cksum); 22486 /* Software checksum? */ 22487 if (DB_CKSUMFLAGS(mp) == 0) { 22488 IP_STAT(ipst, ip_out_sw_cksum); 22489 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22490 LENGTH - hlen); 22491 } 22492 } else { 22493 sctp_hdr_t *sctph; 22494 22495 ASSERT(PROTO == IPPROTO_SCTP); 22496 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22497 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22498 /* 22499 * Zero out the checksum field to ensure proper 22500 * checksum calculation. 22501 */ 22502 sctph->sh_chksum = 0; 22503 #ifdef DEBUG 22504 if (!skip_sctp_cksum) 22505 #endif 22506 sctph->sh_chksum = sctp_cksum(mp, hlen); 22507 } 22508 } 22509 22510 /* 22511 * If this is a multicast packet and originated from ip_wput 22512 * we need to do loopback and forwarding checks. If it comes 22513 * from ip_wput_multicast, we SHOULD not do this. 22514 */ 22515 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22516 22517 /* checksum */ 22518 cksum += ttl_protocol; 22519 22520 /* fragment the packet */ 22521 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22522 goto fragmentit; 22523 /* 22524 * Don't use frag_flag if packet is pre-built or source 22525 * routed or if multicast (since multicast packets do 22526 * not solicit ICMP "packet too big" messages). 22527 */ 22528 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22529 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22530 !ip_source_route_included(ipha)) && 22531 !CLASSD(ipha->ipha_dst)) 22532 ipha->ipha_fragment_offset_and_flags |= 22533 htons(ire->ire_frag_flag); 22534 22535 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22536 /* calculate IP header checksum */ 22537 cksum += ipha->ipha_ident; 22538 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22539 cksum += ipha->ipha_fragment_offset_and_flags; 22540 22541 /* IP options present */ 22542 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22543 if (hlen) 22544 goto checksumoptions; 22545 22546 /* calculate hdr checksum */ 22547 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22548 cksum = ~(cksum + (cksum >> 16)); 22549 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22550 } 22551 if (ipsec_len != 0) { 22552 /* 22553 * We will do the rest of the processing after 22554 * we come back from IPsec in ip_wput_ipsec_out(). 22555 */ 22556 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22557 22558 io = (ipsec_out_t *)first_mp->b_rptr; 22559 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22560 ill_phyint->phyint_ifindex; 22561 22562 ipsec_out_process(q, first_mp, ire, ill_index); 22563 ire_refrele(ire); 22564 if (conn_outgoing_ill != NULL) 22565 ill_refrele(conn_outgoing_ill); 22566 return; 22567 } 22568 22569 /* 22570 * In most cases, the emission loop below is entered only 22571 * once. Only in the case where the ire holds the 22572 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22573 * flagged ires in the bucket, and send the packet 22574 * through all crossed RTF_MULTIRT routes. 22575 */ 22576 if (ire->ire_flags & RTF_MULTIRT) { 22577 multirt_send = B_TRUE; 22578 } 22579 do { 22580 if (multirt_send) { 22581 irb_t *irb; 22582 /* 22583 * We are in a multiple send case, need to get 22584 * the next ire and make a duplicate of the packet. 22585 * ire1 holds here the next ire to process in the 22586 * bucket. If multirouting is expected, 22587 * any non-RTF_MULTIRT ire that has the 22588 * right destination address is ignored. 22589 */ 22590 irb = ire->ire_bucket; 22591 ASSERT(irb != NULL); 22592 22593 IRB_REFHOLD(irb); 22594 for (ire1 = ire->ire_next; 22595 ire1 != NULL; 22596 ire1 = ire1->ire_next) { 22597 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22598 continue; 22599 if (ire1->ire_addr != ire->ire_addr) 22600 continue; 22601 if (ire1->ire_marks & 22602 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22603 continue; 22604 22605 /* Got one */ 22606 IRE_REFHOLD(ire1); 22607 break; 22608 } 22609 IRB_REFRELE(irb); 22610 22611 if (ire1 != NULL) { 22612 next_mp = copyb(mp); 22613 if ((next_mp == NULL) || 22614 ((mp->b_cont != NULL) && 22615 ((next_mp->b_cont = 22616 dupmsg(mp->b_cont)) == NULL))) { 22617 freemsg(next_mp); 22618 next_mp = NULL; 22619 ire_refrele(ire1); 22620 ire1 = NULL; 22621 } 22622 } 22623 22624 /* Last multiroute ire; don't loop anymore. */ 22625 if (ire1 == NULL) { 22626 multirt_send = B_FALSE; 22627 } 22628 } 22629 22630 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22631 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22632 mblk_t *, mp); 22633 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22634 ipst->ips_ipv4firewall_physical_out, 22635 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22636 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22637 if (mp == NULL) 22638 goto release_ire_and_ill; 22639 22640 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22641 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22642 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22643 if ((pktxmit_state == SEND_FAILED) || 22644 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22645 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22646 "- packet dropped\n")); 22647 release_ire_and_ill: 22648 ire_refrele(ire); 22649 if (next_mp != NULL) { 22650 freemsg(next_mp); 22651 ire_refrele(ire1); 22652 } 22653 if (conn_outgoing_ill != NULL) 22654 ill_refrele(conn_outgoing_ill); 22655 return; 22656 } 22657 22658 if (CLASSD(dst)) { 22659 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22660 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22661 LENGTH); 22662 } 22663 22664 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22665 "ip_wput_ire_end: q %p (%S)", 22666 q, "last copy out"); 22667 IRE_REFRELE(ire); 22668 22669 if (multirt_send) { 22670 ASSERT(ire1); 22671 /* 22672 * Proceed with the next RTF_MULTIRT ire, 22673 * Also set up the send-to queue accordingly. 22674 */ 22675 ire = ire1; 22676 ire1 = NULL; 22677 stq = ire->ire_stq; 22678 mp = next_mp; 22679 next_mp = NULL; 22680 ipha = (ipha_t *)mp->b_rptr; 22681 ill_index = Q_TO_INDEX(stq); 22682 ill = (ill_t *)stq->q_ptr; 22683 } 22684 } while (multirt_send); 22685 if (conn_outgoing_ill != NULL) 22686 ill_refrele(conn_outgoing_ill); 22687 return; 22688 22689 /* 22690 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22691 */ 22692 broadcast: 22693 { 22694 /* 22695 * To avoid broadcast storms, we usually set the TTL to 1 for 22696 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22697 * can be overridden stack-wide through the ip_broadcast_ttl 22698 * ndd tunable, or on a per-connection basis through the 22699 * IP_BROADCAST_TTL socket option. 22700 * 22701 * In the event that we are replying to incoming ICMP packets, 22702 * connp could be NULL. 22703 */ 22704 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22705 if (connp != NULL) { 22706 if (connp->conn_dontroute) 22707 ipha->ipha_ttl = 1; 22708 else if (connp->conn_broadcast_ttl != 0) 22709 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22710 } 22711 22712 /* 22713 * Note that we are not doing a IRB_REFHOLD here. 22714 * Actually we don't care if the list changes i.e 22715 * if somebody deletes an IRE from the list while 22716 * we drop the lock, the next time we come around 22717 * ire_next will be NULL and hence we won't send 22718 * out multiple copies which is fine. 22719 */ 22720 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22721 ire1 = ire->ire_next; 22722 if (conn_outgoing_ill != NULL) { 22723 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22724 ASSERT(ire1 == ire->ire_next); 22725 if (ire1 != NULL && ire1->ire_addr == dst) { 22726 ire_refrele(ire); 22727 ire = ire1; 22728 IRE_REFHOLD(ire); 22729 ire1 = ire->ire_next; 22730 continue; 22731 } 22732 rw_exit(&ire->ire_bucket->irb_lock); 22733 /* Did not find a matching ill */ 22734 ip1dbg(("ip_wput_ire: broadcast with no " 22735 "matching IP_BOUND_IF ill %s dst %x\n", 22736 conn_outgoing_ill->ill_name, dst)); 22737 freemsg(first_mp); 22738 if (ire != NULL) 22739 ire_refrele(ire); 22740 ill_refrele(conn_outgoing_ill); 22741 return; 22742 } 22743 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22744 /* 22745 * If the next IRE has the same address and is not one 22746 * of the two copies that we need to send, try to see 22747 * whether this copy should be sent at all. This 22748 * assumes that we insert loopbacks first and then 22749 * non-loopbacks. This is acheived by inserting the 22750 * loopback always before non-loopback. 22751 * This is used to send a single copy of a broadcast 22752 * packet out all physical interfaces that have an 22753 * matching IRE_BROADCAST while also looping 22754 * back one copy (to ip_wput_local) for each 22755 * matching physical interface. However, we avoid 22756 * sending packets out different logical that match by 22757 * having ipif_up/ipif_down supress duplicate 22758 * IRE_BROADCASTS. 22759 * 22760 * This feature is currently used to get broadcasts 22761 * sent to multiple interfaces, when the broadcast 22762 * address being used applies to multiple interfaces. 22763 * For example, a whole net broadcast will be 22764 * replicated on every connected subnet of 22765 * the target net. 22766 * 22767 * Each zone has its own set of IRE_BROADCASTs, so that 22768 * we're able to distribute inbound packets to multiple 22769 * zones who share a broadcast address. We avoid looping 22770 * back outbound packets in different zones but on the 22771 * same ill, as the application would see duplicates. 22772 * 22773 * If the interfaces are part of the same group, 22774 * we would want to send only one copy out for 22775 * whole group. 22776 * 22777 * This logic assumes that ire_add_v4() groups the 22778 * IRE_BROADCAST entries so that those with the same 22779 * ire_addr and ill_group are kept together. 22780 */ 22781 ire_ill = ire->ire_ipif->ipif_ill; 22782 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22783 if (ire_ill->ill_group != NULL && 22784 (ire->ire_marks & IRE_MARK_NORECV)) { 22785 /* 22786 * If the current zone only has an ire 22787 * broadcast for this address marked 22788 * NORECV, the ire we want is ahead in 22789 * the bucket, so we look it up 22790 * deliberately ignoring the zoneid. 22791 */ 22792 for (ire1 = ire->ire_bucket->irb_ire; 22793 ire1 != NULL; 22794 ire1 = ire1->ire_next) { 22795 ire1_ill = 22796 ire1->ire_ipif->ipif_ill; 22797 if (ire1->ire_addr != dst) 22798 continue; 22799 /* skip over the current ire */ 22800 if (ire1 == ire) 22801 continue; 22802 /* skip over deleted ires */ 22803 if (ire1->ire_marks & 22804 IRE_MARK_CONDEMNED) 22805 continue; 22806 /* 22807 * non-loopback ire in our 22808 * group: use it for the next 22809 * pass in the loop 22810 */ 22811 if (ire1->ire_stq != NULL && 22812 ire1_ill->ill_group == 22813 ire_ill->ill_group) 22814 break; 22815 } 22816 } 22817 } else { 22818 while (ire1 != NULL && ire1->ire_addr == dst) { 22819 ire1_ill = ire1->ire_ipif->ipif_ill; 22820 /* 22821 * We can have two broadcast ires on the 22822 * same ill in different zones; here 22823 * we'll send a copy of the packet on 22824 * each ill and the fanout code will 22825 * call conn_wantpacket() to check that 22826 * the zone has the broadcast address 22827 * configured on the ill. If the two 22828 * ires are in the same group we only 22829 * send one copy up. 22830 */ 22831 if (ire1_ill != ire_ill && 22832 (ire1_ill->ill_group == NULL || 22833 ire_ill->ill_group == NULL || 22834 ire1_ill->ill_group != 22835 ire_ill->ill_group)) { 22836 break; 22837 } 22838 ire1 = ire1->ire_next; 22839 } 22840 } 22841 } 22842 ASSERT(multirt_send == B_FALSE); 22843 if (ire1 != NULL && ire1->ire_addr == dst) { 22844 if ((ire->ire_flags & RTF_MULTIRT) && 22845 (ire1->ire_flags & RTF_MULTIRT)) { 22846 /* 22847 * We are in the multirouting case. 22848 * The message must be sent at least 22849 * on both ires. These ires have been 22850 * inserted AFTER the standard ones 22851 * in ip_rt_add(). There are thus no 22852 * other ire entries for the destination 22853 * address in the rest of the bucket 22854 * that do not have the RTF_MULTIRT 22855 * flag. We don't process a copy 22856 * of the message here. This will be 22857 * done in the final sending loop. 22858 */ 22859 multirt_send = B_TRUE; 22860 } else { 22861 next_mp = ip_copymsg(first_mp); 22862 if (next_mp != NULL) 22863 IRE_REFHOLD(ire1); 22864 } 22865 } 22866 rw_exit(&ire->ire_bucket->irb_lock); 22867 } 22868 22869 if (stq) { 22870 /* 22871 * A non-NULL send-to queue means this packet is going 22872 * out of this machine. 22873 */ 22874 out_ill = (ill_t *)stq->q_ptr; 22875 22876 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22877 ttl_protocol = ((uint16_t *)ipha)[4]; 22878 /* 22879 * We accumulate the pseudo header checksum in cksum. 22880 * This is pretty hairy code, so watch close. One 22881 * thing to keep in mind is that UDP and TCP have 22882 * stored their respective datagram lengths in their 22883 * checksum fields. This lines things up real nice. 22884 */ 22885 cksum = (dst >> 16) + (dst & 0xFFFF) + 22886 (src >> 16) + (src & 0xFFFF); 22887 /* 22888 * We assume the udp checksum field contains the 22889 * length, so to compute the pseudo header checksum, 22890 * all we need is the protocol number and src/dst. 22891 */ 22892 /* Provide the checksums for UDP and TCP. */ 22893 if ((PROTO == IPPROTO_TCP) && 22894 (ip_hdr_included != IP_HDR_INCLUDED)) { 22895 /* hlen gets the number of uchar_ts in the IP header */ 22896 hlen = (V_HLEN & 0xF) << 2; 22897 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22898 IP_STAT(ipst, ip_out_sw_cksum); 22899 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22900 LENGTH - hlen); 22901 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22902 } else if (PROTO == IPPROTO_SCTP && 22903 (ip_hdr_included != IP_HDR_INCLUDED)) { 22904 sctp_hdr_t *sctph; 22905 22906 hlen = (V_HLEN & 0xF) << 2; 22907 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22908 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22909 sctph->sh_chksum = 0; 22910 #ifdef DEBUG 22911 if (!skip_sctp_cksum) 22912 #endif 22913 sctph->sh_chksum = sctp_cksum(mp, hlen); 22914 } else { 22915 queue_t *dev_q = stq->q_next; 22916 22917 if ((dev_q->q_next || dev_q->q_first) && 22918 !canput(dev_q)) { 22919 blocked: 22920 ipha->ipha_ident = ip_hdr_included; 22921 /* 22922 * If we don't have a conn to apply 22923 * backpressure, free the message. 22924 * In the ire_send path, we don't know 22925 * the position to requeue the packet. Rather 22926 * than reorder packets, we just drop this 22927 * packet. 22928 */ 22929 if (ipst->ips_ip_output_queue && 22930 connp != NULL && 22931 caller != IRE_SEND) { 22932 if (caller == IP_WSRV) { 22933 connp->conn_did_putbq = 1; 22934 (void) putbq(connp->conn_wq, 22935 first_mp); 22936 conn_drain_insert(connp); 22937 /* 22938 * This is the service thread, 22939 * and the queue is already 22940 * noenabled. The check for 22941 * canput and the putbq is not 22942 * atomic. So we need to check 22943 * again. 22944 */ 22945 if (canput(stq->q_next)) 22946 connp->conn_did_putbq 22947 = 0; 22948 IP_STAT(ipst, ip_conn_flputbq); 22949 } else { 22950 /* 22951 * We are not the service proc. 22952 * ip_wsrv will be scheduled or 22953 * is already running. 22954 */ 22955 (void) putq(connp->conn_wq, 22956 first_mp); 22957 } 22958 } else { 22959 out_ill = (ill_t *)stq->q_ptr; 22960 BUMP_MIB(out_ill->ill_ip_mib, 22961 ipIfStatsOutDiscards); 22962 freemsg(first_mp); 22963 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22964 "ip_wput_ire_end: q %p (%S)", 22965 q, "discard"); 22966 } 22967 ire_refrele(ire); 22968 if (next_mp) { 22969 ire_refrele(ire1); 22970 freemsg(next_mp); 22971 } 22972 if (conn_outgoing_ill != NULL) 22973 ill_refrele(conn_outgoing_ill); 22974 return; 22975 } 22976 if ((PROTO == IPPROTO_UDP) && 22977 (ip_hdr_included != IP_HDR_INCLUDED)) { 22978 /* 22979 * hlen gets the number of uchar_ts in the 22980 * IP header 22981 */ 22982 hlen = (V_HLEN & 0xF) << 2; 22983 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22984 max_frag = ire->ire_max_frag; 22985 if (*up != 0) { 22986 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22987 up, PROTO, hlen, LENGTH, max_frag, 22988 ipsec_len, cksum); 22989 /* Software checksum? */ 22990 if (DB_CKSUMFLAGS(mp) == 0) { 22991 IP_STAT(ipst, ip_out_sw_cksum); 22992 IP_STAT_UPDATE(ipst, 22993 ip_udp_out_sw_cksum_bytes, 22994 LENGTH - hlen); 22995 } 22996 } 22997 } 22998 } 22999 /* 23000 * Need to do this even when fragmenting. The local 23001 * loopback can be done without computing checksums 23002 * but forwarding out other interface must be done 23003 * after the IP checksum (and ULP checksums) have been 23004 * computed. 23005 * 23006 * NOTE : multicast_forward is set only if this packet 23007 * originated from ip_wput. For packets originating from 23008 * ip_wput_multicast, it is not set. 23009 */ 23010 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23011 multi_loopback: 23012 ip2dbg(("ip_wput: multicast, loop %d\n", 23013 conn_multicast_loop)); 23014 23015 /* Forget header checksum offload */ 23016 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23017 23018 /* 23019 * Local loopback of multicasts? Check the 23020 * ill. 23021 * 23022 * Note that the loopback function will not come 23023 * in through ip_rput - it will only do the 23024 * client fanout thus we need to do an mforward 23025 * as well. The is different from the BSD 23026 * logic. 23027 */ 23028 if (ill != NULL) { 23029 ilm_t *ilm; 23030 23031 ILM_WALKER_HOLD(ill); 23032 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 23033 ALL_ZONES); 23034 ILM_WALKER_RELE(ill); 23035 if (ilm != NULL) { 23036 /* 23037 * Pass along the virtual output q. 23038 * ip_wput_local() will distribute the 23039 * packet to all the matching zones, 23040 * except the sending zone when 23041 * IP_MULTICAST_LOOP is false. 23042 */ 23043 ip_multicast_loopback(q, ill, first_mp, 23044 conn_multicast_loop ? 0 : 23045 IP_FF_NO_MCAST_LOOP, zoneid); 23046 } 23047 } 23048 if (ipha->ipha_ttl == 0) { 23049 /* 23050 * 0 => only to this host i.e. we are 23051 * done. We are also done if this was the 23052 * loopback interface since it is sufficient 23053 * to loopback one copy of a multicast packet. 23054 */ 23055 freemsg(first_mp); 23056 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23057 "ip_wput_ire_end: q %p (%S)", 23058 q, "loopback"); 23059 ire_refrele(ire); 23060 if (conn_outgoing_ill != NULL) 23061 ill_refrele(conn_outgoing_ill); 23062 return; 23063 } 23064 /* 23065 * ILLF_MULTICAST is checked in ip_newroute 23066 * i.e. we don't need to check it here since 23067 * all IRE_CACHEs come from ip_newroute. 23068 * For multicast traffic, SO_DONTROUTE is interpreted 23069 * to mean only send the packet out the interface 23070 * (optionally specified with IP_MULTICAST_IF) 23071 * and do not forward it out additional interfaces. 23072 * RSVP and the rsvp daemon is an example of a 23073 * protocol and user level process that 23074 * handles it's own routing. Hence, it uses the 23075 * SO_DONTROUTE option to accomplish this. 23076 */ 23077 23078 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23079 ill != NULL) { 23080 /* Unconditionally redo the checksum */ 23081 ipha->ipha_hdr_checksum = 0; 23082 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23083 23084 /* 23085 * If this needs to go out secure, we need 23086 * to wait till we finish the IPsec 23087 * processing. 23088 */ 23089 if (ipsec_len == 0 && 23090 ip_mforward(ill, ipha, mp)) { 23091 freemsg(first_mp); 23092 ip1dbg(("ip_wput: mforward failed\n")); 23093 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23094 "ip_wput_ire_end: q %p (%S)", 23095 q, "mforward failed"); 23096 ire_refrele(ire); 23097 if (conn_outgoing_ill != NULL) 23098 ill_refrele(conn_outgoing_ill); 23099 return; 23100 } 23101 } 23102 } 23103 max_frag = ire->ire_max_frag; 23104 cksum += ttl_protocol; 23105 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23106 /* No fragmentation required for this one. */ 23107 /* 23108 * Don't use frag_flag if packet is pre-built or source 23109 * routed or if multicast (since multicast packets do 23110 * not solicit ICMP "packet too big" messages). 23111 */ 23112 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23113 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23114 !ip_source_route_included(ipha)) && 23115 !CLASSD(ipha->ipha_dst)) 23116 ipha->ipha_fragment_offset_and_flags |= 23117 htons(ire->ire_frag_flag); 23118 23119 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23120 /* Complete the IP header checksum. */ 23121 cksum += ipha->ipha_ident; 23122 cksum += (v_hlen_tos_len >> 16)+ 23123 (v_hlen_tos_len & 0xFFFF); 23124 cksum += ipha->ipha_fragment_offset_and_flags; 23125 hlen = (V_HLEN & 0xF) - 23126 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23127 if (hlen) { 23128 checksumoptions: 23129 /* 23130 * Account for the IP Options in the IP 23131 * header checksum. 23132 */ 23133 up = (uint16_t *)(rptr+ 23134 IP_SIMPLE_HDR_LENGTH); 23135 do { 23136 cksum += up[0]; 23137 cksum += up[1]; 23138 up += 2; 23139 } while (--hlen); 23140 } 23141 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23142 cksum = ~(cksum + (cksum >> 16)); 23143 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23144 } 23145 if (ipsec_len != 0) { 23146 ipsec_out_process(q, first_mp, ire, ill_index); 23147 if (!next_mp) { 23148 ire_refrele(ire); 23149 if (conn_outgoing_ill != NULL) 23150 ill_refrele(conn_outgoing_ill); 23151 return; 23152 } 23153 goto next; 23154 } 23155 23156 /* 23157 * multirt_send has already been handled 23158 * for broadcast, but not yet for multicast 23159 * or IP options. 23160 */ 23161 if (next_mp == NULL) { 23162 if (ire->ire_flags & RTF_MULTIRT) { 23163 multirt_send = B_TRUE; 23164 } 23165 } 23166 23167 /* 23168 * In most cases, the emission loop below is 23169 * entered only once. Only in the case where 23170 * the ire holds the RTF_MULTIRT flag, do we loop 23171 * to process all RTF_MULTIRT ires in the bucket, 23172 * and send the packet through all crossed 23173 * RTF_MULTIRT routes. 23174 */ 23175 do { 23176 if (multirt_send) { 23177 irb_t *irb; 23178 23179 irb = ire->ire_bucket; 23180 ASSERT(irb != NULL); 23181 /* 23182 * We are in a multiple send case, 23183 * need to get the next IRE and make 23184 * a duplicate of the packet. 23185 */ 23186 IRB_REFHOLD(irb); 23187 for (ire1 = ire->ire_next; 23188 ire1 != NULL; 23189 ire1 = ire1->ire_next) { 23190 if (!(ire1->ire_flags & 23191 RTF_MULTIRT)) { 23192 continue; 23193 } 23194 if (ire1->ire_addr != 23195 ire->ire_addr) { 23196 continue; 23197 } 23198 if (ire1->ire_marks & 23199 (IRE_MARK_CONDEMNED| 23200 IRE_MARK_HIDDEN)) { 23201 continue; 23202 } 23203 23204 /* Got one */ 23205 IRE_REFHOLD(ire1); 23206 break; 23207 } 23208 IRB_REFRELE(irb); 23209 23210 if (ire1 != NULL) { 23211 next_mp = copyb(mp); 23212 if ((next_mp == NULL) || 23213 ((mp->b_cont != NULL) && 23214 ((next_mp->b_cont = 23215 dupmsg(mp->b_cont)) 23216 == NULL))) { 23217 freemsg(next_mp); 23218 next_mp = NULL; 23219 ire_refrele(ire1); 23220 ire1 = NULL; 23221 } 23222 } 23223 23224 /* 23225 * Last multiroute ire; don't loop 23226 * anymore. The emission is over 23227 * and next_mp is NULL. 23228 */ 23229 if (ire1 == NULL) { 23230 multirt_send = B_FALSE; 23231 } 23232 } 23233 23234 out_ill = ire_to_ill(ire); 23235 DTRACE_PROBE4(ip4__physical__out__start, 23236 ill_t *, NULL, 23237 ill_t *, out_ill, 23238 ipha_t *, ipha, mblk_t *, mp); 23239 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23240 ipst->ips_ipv4firewall_physical_out, 23241 NULL, out_ill, ipha, mp, mp, 0, ipst); 23242 DTRACE_PROBE1(ip4__physical__out__end, 23243 mblk_t *, mp); 23244 if (mp == NULL) 23245 goto release_ire_and_ill_2; 23246 23247 ASSERT(ipsec_len == 0); 23248 mp->b_prev = 23249 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23250 DTRACE_PROBE2(ip__xmit__2, 23251 mblk_t *, mp, ire_t *, ire); 23252 pktxmit_state = ip_xmit_v4(mp, ire, 23253 NULL, B_TRUE); 23254 if ((pktxmit_state == SEND_FAILED) || 23255 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23256 release_ire_and_ill_2: 23257 if (next_mp) { 23258 freemsg(next_mp); 23259 ire_refrele(ire1); 23260 } 23261 ire_refrele(ire); 23262 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23263 "ip_wput_ire_end: q %p (%S)", 23264 q, "discard MDATA"); 23265 if (conn_outgoing_ill != NULL) 23266 ill_refrele(conn_outgoing_ill); 23267 return; 23268 } 23269 23270 if (CLASSD(dst)) { 23271 BUMP_MIB(out_ill->ill_ip_mib, 23272 ipIfStatsHCOutMcastPkts); 23273 UPDATE_MIB(out_ill->ill_ip_mib, 23274 ipIfStatsHCOutMcastOctets, 23275 LENGTH); 23276 } else if (ire->ire_type == IRE_BROADCAST) { 23277 BUMP_MIB(out_ill->ill_ip_mib, 23278 ipIfStatsHCOutBcastPkts); 23279 } 23280 23281 if (multirt_send) { 23282 /* 23283 * We are in a multiple send case, 23284 * need to re-enter the sending loop 23285 * using the next ire. 23286 */ 23287 ire_refrele(ire); 23288 ire = ire1; 23289 stq = ire->ire_stq; 23290 mp = next_mp; 23291 next_mp = NULL; 23292 ipha = (ipha_t *)mp->b_rptr; 23293 ill_index = Q_TO_INDEX(stq); 23294 } 23295 } while (multirt_send); 23296 23297 if (!next_mp) { 23298 /* 23299 * Last copy going out (the ultra-common 23300 * case). Note that we intentionally replicate 23301 * the putnext rather than calling it before 23302 * the next_mp check in hopes of a little 23303 * tail-call action out of the compiler. 23304 */ 23305 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23306 "ip_wput_ire_end: q %p (%S)", 23307 q, "last copy out(1)"); 23308 ire_refrele(ire); 23309 if (conn_outgoing_ill != NULL) 23310 ill_refrele(conn_outgoing_ill); 23311 return; 23312 } 23313 /* More copies going out below. */ 23314 } else { 23315 int offset; 23316 fragmentit: 23317 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23318 /* 23319 * If this would generate a icmp_frag_needed message, 23320 * we need to handle it before we do the IPsec 23321 * processing. Otherwise, we need to strip the IPsec 23322 * headers before we send up the message to the ULPs 23323 * which becomes messy and difficult. 23324 */ 23325 if (ipsec_len != 0) { 23326 if ((max_frag < (unsigned int)(LENGTH + 23327 ipsec_len)) && (offset & IPH_DF)) { 23328 out_ill = (ill_t *)stq->q_ptr; 23329 BUMP_MIB(out_ill->ill_ip_mib, 23330 ipIfStatsOutFragFails); 23331 BUMP_MIB(out_ill->ill_ip_mib, 23332 ipIfStatsOutFragReqds); 23333 ipha->ipha_hdr_checksum = 0; 23334 ipha->ipha_hdr_checksum = 23335 (uint16_t)ip_csum_hdr(ipha); 23336 icmp_frag_needed(ire->ire_stq, first_mp, 23337 max_frag, zoneid, ipst); 23338 if (!next_mp) { 23339 ire_refrele(ire); 23340 if (conn_outgoing_ill != NULL) { 23341 ill_refrele( 23342 conn_outgoing_ill); 23343 } 23344 return; 23345 } 23346 } else { 23347 /* 23348 * This won't cause a icmp_frag_needed 23349 * message. to be generated. Send it on 23350 * the wire. Note that this could still 23351 * cause fragmentation and all we 23352 * do is the generation of the message 23353 * to the ULP if needed before IPsec. 23354 */ 23355 if (!next_mp) { 23356 ipsec_out_process(q, first_mp, 23357 ire, ill_index); 23358 TRACE_2(TR_FAC_IP, 23359 TR_IP_WPUT_IRE_END, 23360 "ip_wput_ire_end: q %p " 23361 "(%S)", q, 23362 "last ipsec_out_process"); 23363 ire_refrele(ire); 23364 if (conn_outgoing_ill != NULL) { 23365 ill_refrele( 23366 conn_outgoing_ill); 23367 } 23368 return; 23369 } 23370 ipsec_out_process(q, first_mp, 23371 ire, ill_index); 23372 } 23373 } else { 23374 /* 23375 * Initiate IPPF processing. For 23376 * fragmentable packets we finish 23377 * all QOS packet processing before 23378 * calling: 23379 * ip_wput_ire_fragmentit->ip_wput_frag 23380 */ 23381 23382 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23383 ip_process(IPP_LOCAL_OUT, &mp, 23384 ill_index); 23385 if (mp == NULL) { 23386 out_ill = (ill_t *)stq->q_ptr; 23387 BUMP_MIB(out_ill->ill_ip_mib, 23388 ipIfStatsOutDiscards); 23389 if (next_mp != NULL) { 23390 freemsg(next_mp); 23391 ire_refrele(ire1); 23392 } 23393 ire_refrele(ire); 23394 TRACE_2(TR_FAC_IP, 23395 TR_IP_WPUT_IRE_END, 23396 "ip_wput_ire: q %p (%S)", 23397 q, "discard MDATA"); 23398 if (conn_outgoing_ill != NULL) { 23399 ill_refrele( 23400 conn_outgoing_ill); 23401 } 23402 return; 23403 } 23404 } 23405 if (!next_mp) { 23406 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23407 "ip_wput_ire_end: q %p (%S)", 23408 q, "last fragmentation"); 23409 ip_wput_ire_fragmentit(mp, ire, 23410 zoneid, ipst); 23411 ire_refrele(ire); 23412 if (conn_outgoing_ill != NULL) 23413 ill_refrele(conn_outgoing_ill); 23414 return; 23415 } 23416 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23417 } 23418 } 23419 } else { 23420 nullstq: 23421 /* A NULL stq means the destination address is local. */ 23422 UPDATE_OB_PKT_COUNT(ire); 23423 ire->ire_last_used_time = lbolt; 23424 ASSERT(ire->ire_ipif != NULL); 23425 if (!next_mp) { 23426 /* 23427 * Is there an "in" and "out" for traffic local 23428 * to a host (loopback)? The code in Solaris doesn't 23429 * explicitly draw a line in its code for in vs out, 23430 * so we've had to draw a line in the sand: ip_wput_ire 23431 * is considered to be the "output" side and 23432 * ip_wput_local to be the "input" side. 23433 */ 23434 out_ill = ire_to_ill(ire); 23435 23436 /* 23437 * DTrace this as ip:::send. A blocked packet will 23438 * fire the send probe, but not the receive probe. 23439 */ 23440 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23441 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23442 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23443 23444 DTRACE_PROBE4(ip4__loopback__out__start, 23445 ill_t *, NULL, ill_t *, out_ill, 23446 ipha_t *, ipha, mblk_t *, first_mp); 23447 23448 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23449 ipst->ips_ipv4firewall_loopback_out, 23450 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23451 23452 DTRACE_PROBE1(ip4__loopback__out_end, 23453 mblk_t *, first_mp); 23454 23455 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23456 "ip_wput_ire_end: q %p (%S)", 23457 q, "local address"); 23458 23459 if (first_mp != NULL) 23460 ip_wput_local(q, out_ill, ipha, 23461 first_mp, ire, 0, ire->ire_zoneid); 23462 ire_refrele(ire); 23463 if (conn_outgoing_ill != NULL) 23464 ill_refrele(conn_outgoing_ill); 23465 return; 23466 } 23467 23468 out_ill = ire_to_ill(ire); 23469 23470 /* 23471 * DTrace this as ip:::send. A blocked packet will fire the 23472 * send probe, but not the receive probe. 23473 */ 23474 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23475 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23476 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23477 23478 DTRACE_PROBE4(ip4__loopback__out__start, 23479 ill_t *, NULL, ill_t *, out_ill, 23480 ipha_t *, ipha, mblk_t *, first_mp); 23481 23482 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23483 ipst->ips_ipv4firewall_loopback_out, 23484 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23485 23486 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23487 23488 if (first_mp != NULL) 23489 ip_wput_local(q, out_ill, ipha, 23490 first_mp, ire, 0, ire->ire_zoneid); 23491 } 23492 next: 23493 /* 23494 * More copies going out to additional interfaces. 23495 * ire1 has already been held. We don't need the 23496 * "ire" anymore. 23497 */ 23498 ire_refrele(ire); 23499 ire = ire1; 23500 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23501 mp = next_mp; 23502 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23503 ill = ire_to_ill(ire); 23504 first_mp = mp; 23505 if (ipsec_len != 0) { 23506 ASSERT(first_mp->b_datap->db_type == M_CTL); 23507 mp = mp->b_cont; 23508 } 23509 dst = ire->ire_addr; 23510 ipha = (ipha_t *)mp->b_rptr; 23511 /* 23512 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23513 * Restore ipha_ident "no checksum" flag. 23514 */ 23515 src = orig_src; 23516 ipha->ipha_ident = ip_hdr_included; 23517 goto another; 23518 23519 #undef rptr 23520 #undef Q_TO_INDEX 23521 } 23522 23523 /* 23524 * Routine to allocate a message that is used to notify the ULP about MDT. 23525 * The caller may provide a pointer to the link-layer MDT capabilities, 23526 * or NULL if MDT is to be disabled on the stream. 23527 */ 23528 mblk_t * 23529 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23530 { 23531 mblk_t *mp; 23532 ip_mdt_info_t *mdti; 23533 ill_mdt_capab_t *idst; 23534 23535 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23536 DB_TYPE(mp) = M_CTL; 23537 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23538 mdti = (ip_mdt_info_t *)mp->b_rptr; 23539 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23540 idst = &(mdti->mdt_capab); 23541 23542 /* 23543 * If the caller provides us with the capability, copy 23544 * it over into our notification message; otherwise 23545 * we zero out the capability portion. 23546 */ 23547 if (isrc != NULL) 23548 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23549 else 23550 bzero((caddr_t)idst, sizeof (*idst)); 23551 } 23552 return (mp); 23553 } 23554 23555 /* 23556 * Routine which determines whether MDT can be enabled on the destination 23557 * IRE and IPC combination, and if so, allocates and returns the MDT 23558 * notification mblk that may be used by ULP. We also check if we need to 23559 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23560 * MDT usage in the past have been lifted. This gets called during IP 23561 * and ULP binding. 23562 */ 23563 mblk_t * 23564 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23565 ill_mdt_capab_t *mdt_cap) 23566 { 23567 mblk_t *mp; 23568 boolean_t rc = B_FALSE; 23569 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23570 23571 ASSERT(dst_ire != NULL); 23572 ASSERT(connp != NULL); 23573 ASSERT(mdt_cap != NULL); 23574 23575 /* 23576 * Currently, we only support simple TCP/{IPv4,IPv6} with 23577 * Multidata, which is handled in tcp_multisend(). This 23578 * is the reason why we do all these checks here, to ensure 23579 * that we don't enable Multidata for the cases which we 23580 * can't handle at the moment. 23581 */ 23582 do { 23583 /* Only do TCP at the moment */ 23584 if (connp->conn_ulp != IPPROTO_TCP) 23585 break; 23586 23587 /* 23588 * IPsec outbound policy present? Note that we get here 23589 * after calling ipsec_conn_cache_policy() where the global 23590 * policy checking is performed. conn_latch will be 23591 * non-NULL as long as there's a policy defined, 23592 * i.e. conn_out_enforce_policy may be NULL in such case 23593 * when the connection is non-secure, and hence we check 23594 * further if the latch refers to an outbound policy. 23595 */ 23596 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23597 break; 23598 23599 /* CGTP (multiroute) is enabled? */ 23600 if (dst_ire->ire_flags & RTF_MULTIRT) 23601 break; 23602 23603 /* Outbound IPQoS enabled? */ 23604 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23605 /* 23606 * In this case, we disable MDT for this and all 23607 * future connections going over the interface. 23608 */ 23609 mdt_cap->ill_mdt_on = 0; 23610 break; 23611 } 23612 23613 /* socket option(s) present? */ 23614 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23615 break; 23616 23617 rc = B_TRUE; 23618 /* CONSTCOND */ 23619 } while (0); 23620 23621 /* Remember the result */ 23622 connp->conn_mdt_ok = rc; 23623 23624 if (!rc) 23625 return (NULL); 23626 else if (!mdt_cap->ill_mdt_on) { 23627 /* 23628 * If MDT has been previously turned off in the past, and we 23629 * currently can do MDT (due to IPQoS policy removal, etc.) 23630 * then enable it for this interface. 23631 */ 23632 mdt_cap->ill_mdt_on = 1; 23633 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23634 "interface %s\n", ill_name)); 23635 } 23636 23637 /* Allocate the MDT info mblk */ 23638 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23639 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23640 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23641 return (NULL); 23642 } 23643 return (mp); 23644 } 23645 23646 /* 23647 * Routine to allocate a message that is used to notify the ULP about LSO. 23648 * The caller may provide a pointer to the link-layer LSO capabilities, 23649 * or NULL if LSO is to be disabled on the stream. 23650 */ 23651 mblk_t * 23652 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23653 { 23654 mblk_t *mp; 23655 ip_lso_info_t *lsoi; 23656 ill_lso_capab_t *idst; 23657 23658 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23659 DB_TYPE(mp) = M_CTL; 23660 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23661 lsoi = (ip_lso_info_t *)mp->b_rptr; 23662 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23663 idst = &(lsoi->lso_capab); 23664 23665 /* 23666 * If the caller provides us with the capability, copy 23667 * it over into our notification message; otherwise 23668 * we zero out the capability portion. 23669 */ 23670 if (isrc != NULL) 23671 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23672 else 23673 bzero((caddr_t)idst, sizeof (*idst)); 23674 } 23675 return (mp); 23676 } 23677 23678 /* 23679 * Routine which determines whether LSO can be enabled on the destination 23680 * IRE and IPC combination, and if so, allocates and returns the LSO 23681 * notification mblk that may be used by ULP. We also check if we need to 23682 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23683 * LSO usage in the past have been lifted. This gets called during IP 23684 * and ULP binding. 23685 */ 23686 mblk_t * 23687 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23688 ill_lso_capab_t *lso_cap) 23689 { 23690 mblk_t *mp; 23691 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23692 23693 ASSERT(dst_ire != NULL); 23694 ASSERT(connp != NULL); 23695 ASSERT(lso_cap != NULL); 23696 23697 connp->conn_lso_ok = B_TRUE; 23698 23699 if ((connp->conn_ulp != IPPROTO_TCP) || 23700 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23701 (dst_ire->ire_flags & RTF_MULTIRT) || 23702 !CONN_IS_LSO_MD_FASTPATH(connp) || 23703 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23704 connp->conn_lso_ok = B_FALSE; 23705 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23706 /* 23707 * Disable LSO for this and all future connections going 23708 * over the interface. 23709 */ 23710 lso_cap->ill_lso_on = 0; 23711 } 23712 } 23713 23714 if (!connp->conn_lso_ok) 23715 return (NULL); 23716 else if (!lso_cap->ill_lso_on) { 23717 /* 23718 * If LSO has been previously turned off in the past, and we 23719 * currently can do LSO (due to IPQoS policy removal, etc.) 23720 * then enable it for this interface. 23721 */ 23722 lso_cap->ill_lso_on = 1; 23723 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23724 ill_name)); 23725 } 23726 23727 /* Allocate the LSO info mblk */ 23728 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23729 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23730 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23731 23732 return (mp); 23733 } 23734 23735 /* 23736 * Create destination address attribute, and fill it with the physical 23737 * destination address and SAP taken from the template DL_UNITDATA_REQ 23738 * message block. 23739 */ 23740 boolean_t 23741 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23742 { 23743 dl_unitdata_req_t *dlurp; 23744 pattr_t *pa; 23745 pattrinfo_t pa_info; 23746 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23747 uint_t das_len, das_off; 23748 23749 ASSERT(dlmp != NULL); 23750 23751 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23752 das_len = dlurp->dl_dest_addr_length; 23753 das_off = dlurp->dl_dest_addr_offset; 23754 23755 pa_info.type = PATTR_DSTADDRSAP; 23756 pa_info.len = sizeof (**das) + das_len - 1; 23757 23758 /* create and associate the attribute */ 23759 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23760 if (pa != NULL) { 23761 ASSERT(*das != NULL); 23762 (*das)->addr_is_group = 0; 23763 (*das)->addr_len = (uint8_t)das_len; 23764 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23765 } 23766 23767 return (pa != NULL); 23768 } 23769 23770 /* 23771 * Create hardware checksum attribute and fill it with the values passed. 23772 */ 23773 boolean_t 23774 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23775 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23776 { 23777 pattr_t *pa; 23778 pattrinfo_t pa_info; 23779 23780 ASSERT(mmd != NULL); 23781 23782 pa_info.type = PATTR_HCKSUM; 23783 pa_info.len = sizeof (pattr_hcksum_t); 23784 23785 /* create and associate the attribute */ 23786 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23787 if (pa != NULL) { 23788 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23789 23790 hck->hcksum_start_offset = start_offset; 23791 hck->hcksum_stuff_offset = stuff_offset; 23792 hck->hcksum_end_offset = end_offset; 23793 hck->hcksum_flags = flags; 23794 } 23795 return (pa != NULL); 23796 } 23797 23798 /* 23799 * Create zerocopy attribute and fill it with the specified flags 23800 */ 23801 boolean_t 23802 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23803 { 23804 pattr_t *pa; 23805 pattrinfo_t pa_info; 23806 23807 ASSERT(mmd != NULL); 23808 pa_info.type = PATTR_ZCOPY; 23809 pa_info.len = sizeof (pattr_zcopy_t); 23810 23811 /* create and associate the attribute */ 23812 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23813 if (pa != NULL) { 23814 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23815 23816 zcopy->zcopy_flags = flags; 23817 } 23818 return (pa != NULL); 23819 } 23820 23821 /* 23822 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23823 * block chain. We could rewrite to handle arbitrary message block chains but 23824 * that would make the code complicated and slow. Right now there three 23825 * restrictions: 23826 * 23827 * 1. The first message block must contain the complete IP header and 23828 * at least 1 byte of payload data. 23829 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23830 * so that we can use a single Multidata message. 23831 * 3. No frag must be distributed over two or more message blocks so 23832 * that we don't need more than two packet descriptors per frag. 23833 * 23834 * The above restrictions allow us to support userland applications (which 23835 * will send down a single message block) and NFS over UDP (which will 23836 * send down a chain of at most three message blocks). 23837 * 23838 * We also don't use MDT for payloads with less than or equal to 23839 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23840 */ 23841 boolean_t 23842 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23843 { 23844 int blocks; 23845 ssize_t total, missing, size; 23846 23847 ASSERT(mp != NULL); 23848 ASSERT(hdr_len > 0); 23849 23850 size = MBLKL(mp) - hdr_len; 23851 if (size <= 0) 23852 return (B_FALSE); 23853 23854 /* The first mblk contains the header and some payload. */ 23855 blocks = 1; 23856 total = size; 23857 size %= len; 23858 missing = (size == 0) ? 0 : (len - size); 23859 mp = mp->b_cont; 23860 23861 while (mp != NULL) { 23862 /* 23863 * Give up if we encounter a zero length message block. 23864 * In practice, this should rarely happen and therefore 23865 * not worth the trouble of freeing and re-linking the 23866 * mblk from the chain to handle such case. 23867 */ 23868 if ((size = MBLKL(mp)) == 0) 23869 return (B_FALSE); 23870 23871 /* Too many payload buffers for a single Multidata message? */ 23872 if (++blocks > MULTIDATA_MAX_PBUFS) 23873 return (B_FALSE); 23874 23875 total += size; 23876 /* Is a frag distributed over two or more message blocks? */ 23877 if (missing > size) 23878 return (B_FALSE); 23879 size -= missing; 23880 23881 size %= len; 23882 missing = (size == 0) ? 0 : (len - size); 23883 23884 mp = mp->b_cont; 23885 } 23886 23887 return (total > ip_wput_frag_mdt_min); 23888 } 23889 23890 /* 23891 * Outbound IPv4 fragmentation routine using MDT. 23892 */ 23893 static void 23894 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23895 uint32_t frag_flag, int offset) 23896 { 23897 ipha_t *ipha_orig; 23898 int i1, ip_data_end; 23899 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23900 mblk_t *hdr_mp, *md_mp = NULL; 23901 unsigned char *hdr_ptr, *pld_ptr; 23902 multidata_t *mmd; 23903 ip_pdescinfo_t pdi; 23904 ill_t *ill; 23905 ip_stack_t *ipst = ire->ire_ipst; 23906 23907 ASSERT(DB_TYPE(mp) == M_DATA); 23908 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23909 23910 ill = ire_to_ill(ire); 23911 ASSERT(ill != NULL); 23912 23913 ipha_orig = (ipha_t *)mp->b_rptr; 23914 mp->b_rptr += sizeof (ipha_t); 23915 23916 /* Calculate how many packets we will send out */ 23917 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23918 pkts = (i1 + len - 1) / len; 23919 ASSERT(pkts > 1); 23920 23921 /* Allocate a message block which will hold all the IP Headers. */ 23922 wroff = ipst->ips_ip_wroff_extra; 23923 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23924 23925 i1 = pkts * hdr_chunk_len; 23926 /* 23927 * Create the header buffer, Multidata and destination address 23928 * and SAP attribute that should be associated with it. 23929 */ 23930 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23931 ((hdr_mp->b_wptr += i1), 23932 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23933 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23934 freemsg(mp); 23935 if (md_mp == NULL) { 23936 freemsg(hdr_mp); 23937 } else { 23938 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23939 freemsg(md_mp); 23940 } 23941 IP_STAT(ipst, ip_frag_mdt_allocfail); 23942 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23943 return; 23944 } 23945 IP_STAT(ipst, ip_frag_mdt_allocd); 23946 23947 /* 23948 * Add a payload buffer to the Multidata; this operation must not 23949 * fail, or otherwise our logic in this routine is broken. There 23950 * is no memory allocation done by the routine, so any returned 23951 * failure simply tells us that we've done something wrong. 23952 * 23953 * A failure tells us that either we're adding the same payload 23954 * buffer more than once, or we're trying to add more buffers than 23955 * allowed. None of the above cases should happen, and we panic 23956 * because either there's horrible heap corruption, and/or 23957 * programming mistake. 23958 */ 23959 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23960 goto pbuf_panic; 23961 23962 hdr_ptr = hdr_mp->b_rptr; 23963 pld_ptr = mp->b_rptr; 23964 23965 /* Establish the ending byte offset, based on the starting offset. */ 23966 offset <<= 3; 23967 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23968 IP_SIMPLE_HDR_LENGTH; 23969 23970 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23971 23972 while (pld_ptr < mp->b_wptr) { 23973 ipha_t *ipha; 23974 uint16_t offset_and_flags; 23975 uint16_t ip_len; 23976 int error; 23977 23978 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23979 ipha = (ipha_t *)(hdr_ptr + wroff); 23980 ASSERT(OK_32PTR(ipha)); 23981 *ipha = *ipha_orig; 23982 23983 if (ip_data_end - offset > len) { 23984 offset_and_flags = IPH_MF; 23985 } else { 23986 /* 23987 * Last frag. Set len to the length of this last piece. 23988 */ 23989 len = ip_data_end - offset; 23990 /* A frag of a frag might have IPH_MF non-zero */ 23991 offset_and_flags = 23992 ntohs(ipha->ipha_fragment_offset_and_flags) & 23993 IPH_MF; 23994 } 23995 offset_and_flags |= (uint16_t)(offset >> 3); 23996 offset_and_flags |= (uint16_t)frag_flag; 23997 /* Store the offset and flags in the IP header. */ 23998 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23999 24000 /* Store the length in the IP header. */ 24001 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 24002 ipha->ipha_length = htons(ip_len); 24003 24004 /* 24005 * Set the IP header checksum. Note that mp is just 24006 * the header, so this is easy to pass to ip_csum. 24007 */ 24008 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24009 24010 DTRACE_IP7(send, mblk_t *, md_mp, conn_t *, NULL, void_ip_t *, 24011 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, 24012 NULL, int, 0); 24013 24014 /* 24015 * Record offset and size of header and data of the next packet 24016 * in the multidata message. 24017 */ 24018 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24019 PDESC_PLD_INIT(&pdi); 24020 i1 = MIN(mp->b_wptr - pld_ptr, len); 24021 ASSERT(i1 > 0); 24022 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24023 if (i1 == len) { 24024 pld_ptr += len; 24025 } else { 24026 i1 = len - i1; 24027 mp = mp->b_cont; 24028 ASSERT(mp != NULL); 24029 ASSERT(MBLKL(mp) >= i1); 24030 /* 24031 * Attach the next payload message block to the 24032 * multidata message. 24033 */ 24034 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24035 goto pbuf_panic; 24036 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24037 pld_ptr = mp->b_rptr + i1; 24038 } 24039 24040 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24041 KM_NOSLEEP)) == NULL) { 24042 /* 24043 * Any failure other than ENOMEM indicates that we 24044 * have passed in invalid pdesc info or parameters 24045 * to mmd_addpdesc, which must not happen. 24046 * 24047 * EINVAL is a result of failure on boundary checks 24048 * against the pdesc info contents. It should not 24049 * happen, and we panic because either there's 24050 * horrible heap corruption, and/or programming 24051 * mistake. 24052 */ 24053 if (error != ENOMEM) { 24054 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24055 "pdesc logic error detected for " 24056 "mmd %p pinfo %p (%d)\n", 24057 (void *)mmd, (void *)&pdi, error); 24058 /* NOTREACHED */ 24059 } 24060 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24061 /* Free unattached payload message blocks as well */ 24062 md_mp->b_cont = mp->b_cont; 24063 goto free_mmd; 24064 } 24065 24066 /* Advance fragment offset. */ 24067 offset += len; 24068 24069 /* Advance to location for next header in the buffer. */ 24070 hdr_ptr += hdr_chunk_len; 24071 24072 /* Did we reach the next payload message block? */ 24073 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24074 mp = mp->b_cont; 24075 /* 24076 * Attach the next message block with payload 24077 * data to the multidata message. 24078 */ 24079 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24080 goto pbuf_panic; 24081 pld_ptr = mp->b_rptr; 24082 } 24083 } 24084 24085 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24086 ASSERT(mp->b_wptr == pld_ptr); 24087 24088 /* Update IP statistics */ 24089 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24090 24091 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24092 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24093 24094 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24095 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24096 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24097 24098 if (pkt_type == OB_PKT) { 24099 ire->ire_ob_pkt_count += pkts; 24100 if (ire->ire_ipif != NULL) 24101 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24102 } else { 24103 /* The type is IB_PKT in the forwarding path. */ 24104 ire->ire_ib_pkt_count += pkts; 24105 ASSERT(!IRE_IS_LOCAL(ire)); 24106 if (ire->ire_type & IRE_BROADCAST) { 24107 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24108 } else { 24109 UPDATE_MIB(ill->ill_ip_mib, 24110 ipIfStatsHCOutForwDatagrams, pkts); 24111 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24112 } 24113 } 24114 ire->ire_last_used_time = lbolt; 24115 /* Send it down */ 24116 putnext(ire->ire_stq, md_mp); 24117 return; 24118 24119 pbuf_panic: 24120 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24121 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24122 pbuf_idx); 24123 /* NOTREACHED */ 24124 } 24125 24126 /* 24127 * Outbound IP fragmentation routine. 24128 * 24129 * NOTE : This routine does not ire_refrele the ire that is passed in 24130 * as the argument. 24131 */ 24132 static void 24133 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24134 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 24135 { 24136 int i1; 24137 mblk_t *ll_hdr_mp; 24138 int ll_hdr_len; 24139 int hdr_len; 24140 mblk_t *hdr_mp; 24141 ipha_t *ipha; 24142 int ip_data_end; 24143 int len; 24144 mblk_t *mp = mp_orig, *mp1; 24145 int offset; 24146 queue_t *q; 24147 uint32_t v_hlen_tos_len; 24148 mblk_t *first_mp; 24149 boolean_t mctl_present; 24150 ill_t *ill; 24151 ill_t *out_ill; 24152 mblk_t *xmit_mp; 24153 mblk_t *carve_mp; 24154 ire_t *ire1 = NULL; 24155 ire_t *save_ire = NULL; 24156 mblk_t *next_mp = NULL; 24157 boolean_t last_frag = B_FALSE; 24158 boolean_t multirt_send = B_FALSE; 24159 ire_t *first_ire = NULL; 24160 irb_t *irb = NULL; 24161 mib2_ipIfStatsEntry_t *mibptr = NULL; 24162 24163 ill = ire_to_ill(ire); 24164 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24165 24166 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24167 24168 if (max_frag == 0) { 24169 ip1dbg(("ip_wput_frag: ire frag size is 0" 24170 " - dropping packet\n")); 24171 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24172 freemsg(mp); 24173 return; 24174 } 24175 24176 /* 24177 * IPsec does not allow hw accelerated packets to be fragmented 24178 * This check is made in ip_wput_ipsec_out prior to coming here 24179 * via ip_wput_ire_fragmentit. 24180 * 24181 * If at this point we have an ire whose ARP request has not 24182 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24183 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24184 * This packet and all fragmentable packets for this ire will 24185 * continue to get dropped while ire_nce->nce_state remains in 24186 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24187 * ND_REACHABLE, all subsquent large packets for this ire will 24188 * get fragemented and sent out by this function. 24189 */ 24190 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24191 /* If nce_state is ND_INITIAL, trigger ARP query */ 24192 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24193 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24194 " - dropping packet\n")); 24195 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24196 freemsg(mp); 24197 return; 24198 } 24199 24200 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24201 "ip_wput_frag_start:"); 24202 24203 if (mp->b_datap->db_type == M_CTL) { 24204 first_mp = mp; 24205 mp_orig = mp = mp->b_cont; 24206 mctl_present = B_TRUE; 24207 } else { 24208 first_mp = mp; 24209 mctl_present = B_FALSE; 24210 } 24211 24212 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24213 ipha = (ipha_t *)mp->b_rptr; 24214 24215 /* 24216 * If the Don't Fragment flag is on, generate an ICMP destination 24217 * unreachable, fragmentation needed. 24218 */ 24219 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24220 if (offset & IPH_DF) { 24221 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24222 if (is_system_labeled()) { 24223 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24224 ire->ire_max_frag - max_frag, AF_INET); 24225 } 24226 /* 24227 * Need to compute hdr checksum if called from ip_wput_ire. 24228 * Note that ip_rput_forward verifies the checksum before 24229 * calling this routine so in that case this is a noop. 24230 */ 24231 ipha->ipha_hdr_checksum = 0; 24232 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24233 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24234 ipst); 24235 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24236 "ip_wput_frag_end:(%S)", 24237 "don't fragment"); 24238 return; 24239 } 24240 /* 24241 * Labeled systems adjust max_frag if they add a label 24242 * to send the correct path mtu. We need the real mtu since we 24243 * are fragmenting the packet after label adjustment. 24244 */ 24245 if (is_system_labeled()) 24246 max_frag = ire->ire_max_frag; 24247 if (mctl_present) 24248 freeb(first_mp); 24249 /* 24250 * Establish the starting offset. May not be zero if we are fragging 24251 * a fragment that is being forwarded. 24252 */ 24253 offset = offset & IPH_OFFSET; 24254 24255 /* TODO why is this test needed? */ 24256 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24257 if (((max_frag - LENGTH) & ~7) < 8) { 24258 /* TODO: notify ulp somehow */ 24259 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24260 freemsg(mp); 24261 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24262 "ip_wput_frag_end:(%S)", 24263 "len < 8"); 24264 return; 24265 } 24266 24267 hdr_len = (V_HLEN & 0xF) << 2; 24268 24269 ipha->ipha_hdr_checksum = 0; 24270 24271 /* 24272 * Establish the number of bytes maximum per frag, after putting 24273 * in the header. 24274 */ 24275 len = (max_frag - hdr_len) & ~7; 24276 24277 /* Check if we can use MDT to send out the frags. */ 24278 ASSERT(!IRE_IS_LOCAL(ire)); 24279 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24280 ipst->ips_ip_multidata_outbound && 24281 !(ire->ire_flags & RTF_MULTIRT) && 24282 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24283 ill != NULL && ILL_MDT_CAPABLE(ill) && 24284 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24285 ASSERT(ill->ill_mdt_capab != NULL); 24286 if (!ill->ill_mdt_capab->ill_mdt_on) { 24287 /* 24288 * If MDT has been previously turned off in the past, 24289 * and we currently can do MDT (due to IPQoS policy 24290 * removal, etc.) then enable it for this interface. 24291 */ 24292 ill->ill_mdt_capab->ill_mdt_on = 1; 24293 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24294 ill->ill_name)); 24295 } 24296 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24297 offset); 24298 return; 24299 } 24300 24301 /* Get a copy of the header for the trailing frags */ 24302 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24303 if (!hdr_mp) { 24304 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24305 freemsg(mp); 24306 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24307 "ip_wput_frag_end:(%S)", 24308 "couldn't copy hdr"); 24309 return; 24310 } 24311 if (DB_CRED(mp) != NULL) 24312 mblk_setcred(hdr_mp, DB_CRED(mp)); 24313 24314 /* Store the starting offset, with the MoreFrags flag. */ 24315 i1 = offset | IPH_MF | frag_flag; 24316 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24317 24318 /* Establish the ending byte offset, based on the starting offset. */ 24319 offset <<= 3; 24320 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24321 24322 /* Store the length of the first fragment in the IP header. */ 24323 i1 = len + hdr_len; 24324 ASSERT(i1 <= IP_MAXPACKET); 24325 ipha->ipha_length = htons((uint16_t)i1); 24326 24327 /* 24328 * Compute the IP header checksum for the first frag. We have to 24329 * watch out that we stop at the end of the header. 24330 */ 24331 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24332 24333 /* 24334 * Now carve off the first frag. Note that this will include the 24335 * original IP header. 24336 */ 24337 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24338 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24339 freeb(hdr_mp); 24340 freemsg(mp_orig); 24341 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24342 "ip_wput_frag_end:(%S)", 24343 "couldn't carve first"); 24344 return; 24345 } 24346 24347 /* 24348 * Multirouting case. Each fragment is replicated 24349 * via all non-condemned RTF_MULTIRT routes 24350 * currently resolved. 24351 * We ensure that first_ire is the first RTF_MULTIRT 24352 * ire in the bucket. 24353 */ 24354 if (ire->ire_flags & RTF_MULTIRT) { 24355 irb = ire->ire_bucket; 24356 ASSERT(irb != NULL); 24357 24358 multirt_send = B_TRUE; 24359 24360 /* Make sure we do not omit any multiroute ire. */ 24361 IRB_REFHOLD(irb); 24362 for (first_ire = irb->irb_ire; 24363 first_ire != NULL; 24364 first_ire = first_ire->ire_next) { 24365 if ((first_ire->ire_flags & RTF_MULTIRT) && 24366 (first_ire->ire_addr == ire->ire_addr) && 24367 !(first_ire->ire_marks & 24368 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24369 break; 24370 } 24371 } 24372 24373 if (first_ire != NULL) { 24374 if (first_ire != ire) { 24375 IRE_REFHOLD(first_ire); 24376 /* 24377 * Do not release the ire passed in 24378 * as the argument. 24379 */ 24380 ire = first_ire; 24381 } else { 24382 first_ire = NULL; 24383 } 24384 } 24385 IRB_REFRELE(irb); 24386 24387 /* 24388 * Save the first ire; we will need to restore it 24389 * for the trailing frags. 24390 * We REFHOLD save_ire, as each iterated ire will be 24391 * REFRELEd. 24392 */ 24393 save_ire = ire; 24394 IRE_REFHOLD(save_ire); 24395 } 24396 24397 /* 24398 * First fragment emission loop. 24399 * In most cases, the emission loop below is entered only 24400 * once. Only in the case where the ire holds the RTF_MULTIRT 24401 * flag, do we loop to process all RTF_MULTIRT ires in the 24402 * bucket, and send the fragment through all crossed 24403 * RTF_MULTIRT routes. 24404 */ 24405 do { 24406 if (ire->ire_flags & RTF_MULTIRT) { 24407 /* 24408 * We are in a multiple send case, need to get 24409 * the next ire and make a copy of the packet. 24410 * ire1 holds here the next ire to process in the 24411 * bucket. If multirouting is expected, 24412 * any non-RTF_MULTIRT ire that has the 24413 * right destination address is ignored. 24414 * 24415 * We have to take into account the MTU of 24416 * each walked ire. max_frag is set by the 24417 * the caller and generally refers to 24418 * the primary ire entry. Here we ensure that 24419 * no route with a lower MTU will be used, as 24420 * fragments are carved once for all ires, 24421 * then replicated. 24422 */ 24423 ASSERT(irb != NULL); 24424 IRB_REFHOLD(irb); 24425 for (ire1 = ire->ire_next; 24426 ire1 != NULL; 24427 ire1 = ire1->ire_next) { 24428 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24429 continue; 24430 if (ire1->ire_addr != ire->ire_addr) 24431 continue; 24432 if (ire1->ire_marks & 24433 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24434 continue; 24435 /* 24436 * Ensure we do not exceed the MTU 24437 * of the next route. 24438 */ 24439 if (ire1->ire_max_frag < max_frag) { 24440 ip_multirt_bad_mtu(ire1, max_frag); 24441 continue; 24442 } 24443 24444 /* Got one. */ 24445 IRE_REFHOLD(ire1); 24446 break; 24447 } 24448 IRB_REFRELE(irb); 24449 24450 if (ire1 != NULL) { 24451 next_mp = copyb(mp); 24452 if ((next_mp == NULL) || 24453 ((mp->b_cont != NULL) && 24454 ((next_mp->b_cont = 24455 dupmsg(mp->b_cont)) == NULL))) { 24456 freemsg(next_mp); 24457 next_mp = NULL; 24458 ire_refrele(ire1); 24459 ire1 = NULL; 24460 } 24461 } 24462 24463 /* Last multiroute ire; don't loop anymore. */ 24464 if (ire1 == NULL) { 24465 multirt_send = B_FALSE; 24466 } 24467 } 24468 24469 ll_hdr_len = 0; 24470 LOCK_IRE_FP_MP(ire); 24471 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24472 if (ll_hdr_mp != NULL) { 24473 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24474 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24475 } else { 24476 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24477 } 24478 24479 /* If there is a transmit header, get a copy for this frag. */ 24480 /* 24481 * TODO: should check db_ref before calling ip_carve_mp since 24482 * it might give us a dup. 24483 */ 24484 if (!ll_hdr_mp) { 24485 /* No xmit header. */ 24486 xmit_mp = mp; 24487 24488 /* We have a link-layer header that can fit in our mblk. */ 24489 } else if (mp->b_datap->db_ref == 1 && 24490 ll_hdr_len != 0 && 24491 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24492 /* M_DATA fastpath */ 24493 mp->b_rptr -= ll_hdr_len; 24494 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24495 xmit_mp = mp; 24496 24497 /* Corner case if copyb has failed */ 24498 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24499 UNLOCK_IRE_FP_MP(ire); 24500 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24501 freeb(hdr_mp); 24502 freemsg(mp); 24503 freemsg(mp_orig); 24504 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24505 "ip_wput_frag_end:(%S)", 24506 "discard"); 24507 24508 if (multirt_send) { 24509 ASSERT(ire1); 24510 ASSERT(next_mp); 24511 24512 freemsg(next_mp); 24513 ire_refrele(ire1); 24514 } 24515 if (save_ire != NULL) 24516 IRE_REFRELE(save_ire); 24517 24518 if (first_ire != NULL) 24519 ire_refrele(first_ire); 24520 return; 24521 24522 /* 24523 * Case of res_mp OR the fastpath mp can't fit 24524 * in the mblk 24525 */ 24526 } else { 24527 xmit_mp->b_cont = mp; 24528 if (DB_CRED(mp) != NULL) 24529 mblk_setcred(xmit_mp, DB_CRED(mp)); 24530 /* 24531 * Get priority marking, if any. 24532 * We propagate the CoS marking from the 24533 * original packet that went to QoS processing 24534 * in ip_wput_ire to the newly carved mp. 24535 */ 24536 if (DB_TYPE(xmit_mp) == M_DATA) 24537 xmit_mp->b_band = mp->b_band; 24538 } 24539 UNLOCK_IRE_FP_MP(ire); 24540 24541 q = ire->ire_stq; 24542 out_ill = (ill_t *)q->q_ptr; 24543 24544 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24545 24546 DTRACE_PROBE4(ip4__physical__out__start, 24547 ill_t *, NULL, ill_t *, out_ill, 24548 ipha_t *, ipha, mblk_t *, xmit_mp); 24549 24550 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24551 ipst->ips_ipv4firewall_physical_out, 24552 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24553 24554 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24555 24556 if (xmit_mp != NULL) { 24557 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, NULL, 24558 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 24559 ipha_t *, ipha, ip6_t *, NULL, int, 0); 24560 24561 putnext(q, xmit_mp); 24562 24563 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24564 UPDATE_MIB(out_ill->ill_ip_mib, 24565 ipIfStatsHCOutOctets, i1); 24566 24567 if (pkt_type != OB_PKT) { 24568 /* 24569 * Update the packet count and MIB stats 24570 * of trailing RTF_MULTIRT ires. 24571 */ 24572 UPDATE_OB_PKT_COUNT(ire); 24573 BUMP_MIB(out_ill->ill_ip_mib, 24574 ipIfStatsOutFragReqds); 24575 } 24576 } 24577 24578 if (multirt_send) { 24579 /* 24580 * We are in a multiple send case; look for 24581 * the next ire and re-enter the loop. 24582 */ 24583 ASSERT(ire1); 24584 ASSERT(next_mp); 24585 /* REFRELE the current ire before looping */ 24586 ire_refrele(ire); 24587 ire = ire1; 24588 ire1 = NULL; 24589 mp = next_mp; 24590 next_mp = NULL; 24591 } 24592 } while (multirt_send); 24593 24594 ASSERT(ire1 == NULL); 24595 24596 /* Restore the original ire; we need it for the trailing frags */ 24597 if (save_ire != NULL) { 24598 /* REFRELE the last iterated ire */ 24599 ire_refrele(ire); 24600 /* save_ire has been REFHOLDed */ 24601 ire = save_ire; 24602 save_ire = NULL; 24603 q = ire->ire_stq; 24604 } 24605 24606 if (pkt_type == OB_PKT) { 24607 UPDATE_OB_PKT_COUNT(ire); 24608 } else { 24609 out_ill = (ill_t *)q->q_ptr; 24610 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24611 UPDATE_IB_PKT_COUNT(ire); 24612 } 24613 24614 /* Advance the offset to the second frag starting point. */ 24615 offset += len; 24616 /* 24617 * Update hdr_len from the copied header - there might be less options 24618 * in the later fragments. 24619 */ 24620 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24621 /* Loop until done. */ 24622 for (;;) { 24623 uint16_t offset_and_flags; 24624 uint16_t ip_len; 24625 24626 if (ip_data_end - offset > len) { 24627 /* 24628 * Carve off the appropriate amount from the original 24629 * datagram. 24630 */ 24631 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24632 mp = NULL; 24633 break; 24634 } 24635 /* 24636 * More frags after this one. Get another copy 24637 * of the header. 24638 */ 24639 if (carve_mp->b_datap->db_ref == 1 && 24640 hdr_mp->b_wptr - hdr_mp->b_rptr < 24641 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24642 /* Inline IP header */ 24643 carve_mp->b_rptr -= hdr_mp->b_wptr - 24644 hdr_mp->b_rptr; 24645 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24646 hdr_mp->b_wptr - hdr_mp->b_rptr); 24647 mp = carve_mp; 24648 } else { 24649 if (!(mp = copyb(hdr_mp))) { 24650 freemsg(carve_mp); 24651 break; 24652 } 24653 /* Get priority marking, if any. */ 24654 mp->b_band = carve_mp->b_band; 24655 mp->b_cont = carve_mp; 24656 } 24657 ipha = (ipha_t *)mp->b_rptr; 24658 offset_and_flags = IPH_MF; 24659 } else { 24660 /* 24661 * Last frag. Consume the header. Set len to 24662 * the length of this last piece. 24663 */ 24664 len = ip_data_end - offset; 24665 24666 /* 24667 * Carve off the appropriate amount from the original 24668 * datagram. 24669 */ 24670 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24671 mp = NULL; 24672 break; 24673 } 24674 if (carve_mp->b_datap->db_ref == 1 && 24675 hdr_mp->b_wptr - hdr_mp->b_rptr < 24676 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24677 /* Inline IP header */ 24678 carve_mp->b_rptr -= hdr_mp->b_wptr - 24679 hdr_mp->b_rptr; 24680 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24681 hdr_mp->b_wptr - hdr_mp->b_rptr); 24682 mp = carve_mp; 24683 freeb(hdr_mp); 24684 hdr_mp = mp; 24685 } else { 24686 mp = hdr_mp; 24687 /* Get priority marking, if any. */ 24688 mp->b_band = carve_mp->b_band; 24689 mp->b_cont = carve_mp; 24690 } 24691 ipha = (ipha_t *)mp->b_rptr; 24692 /* A frag of a frag might have IPH_MF non-zero */ 24693 offset_and_flags = 24694 ntohs(ipha->ipha_fragment_offset_and_flags) & 24695 IPH_MF; 24696 } 24697 offset_and_flags |= (uint16_t)(offset >> 3); 24698 offset_and_flags |= (uint16_t)frag_flag; 24699 /* Store the offset and flags in the IP header. */ 24700 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24701 24702 /* Store the length in the IP header. */ 24703 ip_len = (uint16_t)(len + hdr_len); 24704 ipha->ipha_length = htons(ip_len); 24705 24706 /* 24707 * Set the IP header checksum. Note that mp is just 24708 * the header, so this is easy to pass to ip_csum. 24709 */ 24710 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24711 24712 /* Attach a transmit header, if any, and ship it. */ 24713 if (pkt_type == OB_PKT) { 24714 UPDATE_OB_PKT_COUNT(ire); 24715 } else { 24716 out_ill = (ill_t *)q->q_ptr; 24717 BUMP_MIB(out_ill->ill_ip_mib, 24718 ipIfStatsHCOutForwDatagrams); 24719 UPDATE_IB_PKT_COUNT(ire); 24720 } 24721 24722 if (ire->ire_flags & RTF_MULTIRT) { 24723 irb = ire->ire_bucket; 24724 ASSERT(irb != NULL); 24725 24726 multirt_send = B_TRUE; 24727 24728 /* 24729 * Save the original ire; we will need to restore it 24730 * for the tailing frags. 24731 */ 24732 save_ire = ire; 24733 IRE_REFHOLD(save_ire); 24734 } 24735 /* 24736 * Emission loop for this fragment, similar 24737 * to what is done for the first fragment. 24738 */ 24739 do { 24740 if (multirt_send) { 24741 /* 24742 * We are in a multiple send case, need to get 24743 * the next ire and make a copy of the packet. 24744 */ 24745 ASSERT(irb != NULL); 24746 IRB_REFHOLD(irb); 24747 for (ire1 = ire->ire_next; 24748 ire1 != NULL; 24749 ire1 = ire1->ire_next) { 24750 if (!(ire1->ire_flags & RTF_MULTIRT)) 24751 continue; 24752 if (ire1->ire_addr != ire->ire_addr) 24753 continue; 24754 if (ire1->ire_marks & 24755 (IRE_MARK_CONDEMNED| 24756 IRE_MARK_HIDDEN)) { 24757 continue; 24758 } 24759 /* 24760 * Ensure we do not exceed the MTU 24761 * of the next route. 24762 */ 24763 if (ire1->ire_max_frag < max_frag) { 24764 ip_multirt_bad_mtu(ire1, 24765 max_frag); 24766 continue; 24767 } 24768 24769 /* Got one. */ 24770 IRE_REFHOLD(ire1); 24771 break; 24772 } 24773 IRB_REFRELE(irb); 24774 24775 if (ire1 != NULL) { 24776 next_mp = copyb(mp); 24777 if ((next_mp == NULL) || 24778 ((mp->b_cont != NULL) && 24779 ((next_mp->b_cont = 24780 dupmsg(mp->b_cont)) == NULL))) { 24781 freemsg(next_mp); 24782 next_mp = NULL; 24783 ire_refrele(ire1); 24784 ire1 = NULL; 24785 } 24786 } 24787 24788 /* Last multiroute ire; don't loop anymore. */ 24789 if (ire1 == NULL) { 24790 multirt_send = B_FALSE; 24791 } 24792 } 24793 24794 /* Update transmit header */ 24795 ll_hdr_len = 0; 24796 LOCK_IRE_FP_MP(ire); 24797 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24798 if (ll_hdr_mp != NULL) { 24799 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24800 ll_hdr_len = MBLKL(ll_hdr_mp); 24801 } else { 24802 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24803 } 24804 24805 if (!ll_hdr_mp) { 24806 xmit_mp = mp; 24807 24808 /* 24809 * We have link-layer header that can fit in 24810 * our mblk. 24811 */ 24812 } else if (mp->b_datap->db_ref == 1 && 24813 ll_hdr_len != 0 && 24814 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24815 /* M_DATA fastpath */ 24816 mp->b_rptr -= ll_hdr_len; 24817 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24818 ll_hdr_len); 24819 xmit_mp = mp; 24820 24821 /* 24822 * Case of res_mp OR the fastpath mp can't fit 24823 * in the mblk 24824 */ 24825 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24826 xmit_mp->b_cont = mp; 24827 if (DB_CRED(mp) != NULL) 24828 mblk_setcred(xmit_mp, DB_CRED(mp)); 24829 /* Get priority marking, if any. */ 24830 if (DB_TYPE(xmit_mp) == M_DATA) 24831 xmit_mp->b_band = mp->b_band; 24832 24833 /* Corner case if copyb failed */ 24834 } else { 24835 /* 24836 * Exit both the replication and 24837 * fragmentation loops. 24838 */ 24839 UNLOCK_IRE_FP_MP(ire); 24840 goto drop_pkt; 24841 } 24842 UNLOCK_IRE_FP_MP(ire); 24843 24844 mp1 = mp; 24845 out_ill = (ill_t *)q->q_ptr; 24846 24847 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24848 24849 DTRACE_PROBE4(ip4__physical__out__start, 24850 ill_t *, NULL, ill_t *, out_ill, 24851 ipha_t *, ipha, mblk_t *, xmit_mp); 24852 24853 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24854 ipst->ips_ipv4firewall_physical_out, 24855 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24856 24857 DTRACE_PROBE1(ip4__physical__out__end, 24858 mblk_t *, xmit_mp); 24859 24860 if (mp != mp1 && hdr_mp == mp1) 24861 hdr_mp = mp; 24862 if (mp != mp1 && mp_orig == mp1) 24863 mp_orig = mp; 24864 24865 if (xmit_mp != NULL) { 24866 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, 24867 NULL, void_ip_t *, ipha, 24868 __dtrace_ipsr_ill_t *, out_ill, ipha_t *, 24869 ipha, ip6_t *, NULL, int, 0); 24870 24871 putnext(q, xmit_mp); 24872 24873 BUMP_MIB(out_ill->ill_ip_mib, 24874 ipIfStatsHCOutTransmits); 24875 UPDATE_MIB(out_ill->ill_ip_mib, 24876 ipIfStatsHCOutOctets, ip_len); 24877 24878 if (pkt_type != OB_PKT) { 24879 /* 24880 * Update the packet count of trailing 24881 * RTF_MULTIRT ires. 24882 */ 24883 UPDATE_OB_PKT_COUNT(ire); 24884 } 24885 } 24886 24887 /* All done if we just consumed the hdr_mp. */ 24888 if (mp == hdr_mp) { 24889 last_frag = B_TRUE; 24890 BUMP_MIB(out_ill->ill_ip_mib, 24891 ipIfStatsOutFragOKs); 24892 } 24893 24894 if (multirt_send) { 24895 /* 24896 * We are in a multiple send case; look for 24897 * the next ire and re-enter the loop. 24898 */ 24899 ASSERT(ire1); 24900 ASSERT(next_mp); 24901 /* REFRELE the current ire before looping */ 24902 ire_refrele(ire); 24903 ire = ire1; 24904 ire1 = NULL; 24905 q = ire->ire_stq; 24906 mp = next_mp; 24907 next_mp = NULL; 24908 } 24909 } while (multirt_send); 24910 /* 24911 * Restore the original ire; we need it for the 24912 * trailing frags 24913 */ 24914 if (save_ire != NULL) { 24915 ASSERT(ire1 == NULL); 24916 /* REFRELE the last iterated ire */ 24917 ire_refrele(ire); 24918 /* save_ire has been REFHOLDed */ 24919 ire = save_ire; 24920 q = ire->ire_stq; 24921 save_ire = NULL; 24922 } 24923 24924 if (last_frag) { 24925 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24926 "ip_wput_frag_end:(%S)", 24927 "consumed hdr_mp"); 24928 24929 if (first_ire != NULL) 24930 ire_refrele(first_ire); 24931 return; 24932 } 24933 /* Otherwise, advance and loop. */ 24934 offset += len; 24935 } 24936 24937 drop_pkt: 24938 /* Clean up following allocation failure. */ 24939 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24940 freemsg(mp); 24941 if (mp != hdr_mp) 24942 freeb(hdr_mp); 24943 if (mp != mp_orig) 24944 freemsg(mp_orig); 24945 24946 if (save_ire != NULL) 24947 IRE_REFRELE(save_ire); 24948 if (first_ire != NULL) 24949 ire_refrele(first_ire); 24950 24951 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24952 "ip_wput_frag_end:(%S)", 24953 "end--alloc failure"); 24954 } 24955 24956 /* 24957 * Copy the header plus those options which have the copy bit set 24958 */ 24959 static mblk_t * 24960 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 24961 { 24962 mblk_t *mp; 24963 uchar_t *up; 24964 24965 /* 24966 * Quick check if we need to look for options without the copy bit 24967 * set 24968 */ 24969 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 24970 if (!mp) 24971 return (mp); 24972 mp->b_rptr += ipst->ips_ip_wroff_extra; 24973 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24974 bcopy(rptr, mp->b_rptr, hdr_len); 24975 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24976 return (mp); 24977 } 24978 up = mp->b_rptr; 24979 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24980 up += IP_SIMPLE_HDR_LENGTH; 24981 rptr += IP_SIMPLE_HDR_LENGTH; 24982 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24983 while (hdr_len > 0) { 24984 uint32_t optval; 24985 uint32_t optlen; 24986 24987 optval = *rptr; 24988 if (optval == IPOPT_EOL) 24989 break; 24990 if (optval == IPOPT_NOP) 24991 optlen = 1; 24992 else 24993 optlen = rptr[1]; 24994 if (optval & IPOPT_COPY) { 24995 bcopy(rptr, up, optlen); 24996 up += optlen; 24997 } 24998 rptr += optlen; 24999 hdr_len -= optlen; 25000 } 25001 /* 25002 * Make sure that we drop an even number of words by filling 25003 * with EOL to the next word boundary. 25004 */ 25005 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 25006 hdr_len & 0x3; hdr_len++) 25007 *up++ = IPOPT_EOL; 25008 mp->b_wptr = up; 25009 /* Update header length */ 25010 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 25011 return (mp); 25012 } 25013 25014 /* 25015 * Delivery to local recipients including fanout to multiple recipients. 25016 * Does not do checksumming of UDP/TCP. 25017 * Note: q should be the read side queue for either the ill or conn. 25018 * Note: rq should be the read side q for the lower (ill) stream. 25019 * We don't send packets to IPPF processing, thus the last argument 25020 * to all the fanout calls are B_FALSE. 25021 */ 25022 void 25023 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25024 int fanout_flags, zoneid_t zoneid) 25025 { 25026 uint32_t protocol; 25027 mblk_t *first_mp; 25028 boolean_t mctl_present; 25029 int ire_type; 25030 #define rptr ((uchar_t *)ipha) 25031 ip_stack_t *ipst = ill->ill_ipst; 25032 25033 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25034 "ip_wput_local_start: q %p", q); 25035 25036 if (ire != NULL) { 25037 ire_type = ire->ire_type; 25038 } else { 25039 /* 25040 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25041 * packet is not multicast, we can't tell the ire type. 25042 */ 25043 ASSERT(CLASSD(ipha->ipha_dst)); 25044 ire_type = IRE_BROADCAST; 25045 } 25046 25047 first_mp = mp; 25048 if (first_mp->b_datap->db_type == M_CTL) { 25049 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25050 if (!io->ipsec_out_secure) { 25051 /* 25052 * This ipsec_out_t was allocated in ip_wput 25053 * for multicast packets to store the ill_index. 25054 * As this is being delivered locally, we don't 25055 * need this anymore. 25056 */ 25057 mp = first_mp->b_cont; 25058 freeb(first_mp); 25059 first_mp = mp; 25060 mctl_present = B_FALSE; 25061 } else { 25062 /* 25063 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25064 * security properties for the looped-back packet. 25065 */ 25066 mctl_present = B_TRUE; 25067 mp = first_mp->b_cont; 25068 ASSERT(mp != NULL); 25069 ipsec_out_to_in(first_mp); 25070 } 25071 } else { 25072 mctl_present = B_FALSE; 25073 } 25074 25075 DTRACE_PROBE4(ip4__loopback__in__start, 25076 ill_t *, ill, ill_t *, NULL, 25077 ipha_t *, ipha, mblk_t *, first_mp); 25078 25079 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25080 ipst->ips_ipv4firewall_loopback_in, 25081 ill, NULL, ipha, first_mp, mp, 0, ipst); 25082 25083 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25084 25085 if (first_mp == NULL) 25086 return; 25087 25088 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, void_ip_t *, 25089 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL, 25090 int, 1); 25091 25092 ipst->ips_loopback_packets++; 25093 25094 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25095 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25096 if (!IS_SIMPLE_IPH(ipha)) { 25097 ip_wput_local_options(ipha, ipst); 25098 } 25099 25100 protocol = ipha->ipha_protocol; 25101 switch (protocol) { 25102 case IPPROTO_ICMP: { 25103 ire_t *ire_zone; 25104 ilm_t *ilm; 25105 mblk_t *mp1; 25106 zoneid_t last_zoneid; 25107 25108 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25109 ASSERT(ire_type == IRE_BROADCAST); 25110 /* 25111 * In the multicast case, applications may have joined 25112 * the group from different zones, so we need to deliver 25113 * the packet to each of them. Loop through the 25114 * multicast memberships structures (ilm) on the receive 25115 * ill and send a copy of the packet up each matching 25116 * one. However, we don't do this for multicasts sent on 25117 * the loopback interface (PHYI_LOOPBACK flag set) as 25118 * they must stay in the sender's zone. 25119 * 25120 * ilm_add_v6() ensures that ilms in the same zone are 25121 * contiguous in the ill_ilm list. We use this property 25122 * to avoid sending duplicates needed when two 25123 * applications in the same zone join the same group on 25124 * different logical interfaces: we ignore the ilm if 25125 * it's zoneid is the same as the last matching one. 25126 * In addition, the sending of the packet for 25127 * ire_zoneid is delayed until all of the other ilms 25128 * have been exhausted. 25129 */ 25130 last_zoneid = -1; 25131 ILM_WALKER_HOLD(ill); 25132 for (ilm = ill->ill_ilm; ilm != NULL; 25133 ilm = ilm->ilm_next) { 25134 if ((ilm->ilm_flags & ILM_DELETED) || 25135 ipha->ipha_dst != ilm->ilm_addr || 25136 ilm->ilm_zoneid == last_zoneid || 25137 ilm->ilm_zoneid == zoneid || 25138 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25139 continue; 25140 mp1 = ip_copymsg(first_mp); 25141 if (mp1 == NULL) 25142 continue; 25143 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25144 mctl_present, B_FALSE, ill, 25145 ilm->ilm_zoneid); 25146 last_zoneid = ilm->ilm_zoneid; 25147 } 25148 ILM_WALKER_RELE(ill); 25149 /* 25150 * Loopback case: the sending endpoint has 25151 * IP_MULTICAST_LOOP disabled, therefore we don't 25152 * dispatch the multicast packet to the sending zone. 25153 */ 25154 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25155 freemsg(first_mp); 25156 return; 25157 } 25158 } else if (ire_type == IRE_BROADCAST) { 25159 /* 25160 * In the broadcast case, there may be many zones 25161 * which need a copy of the packet delivered to them. 25162 * There is one IRE_BROADCAST per broadcast address 25163 * and per zone; we walk those using a helper function. 25164 * In addition, the sending of the packet for zoneid is 25165 * delayed until all of the other ires have been 25166 * processed. 25167 */ 25168 IRB_REFHOLD(ire->ire_bucket); 25169 ire_zone = NULL; 25170 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25171 ire)) != NULL) { 25172 mp1 = ip_copymsg(first_mp); 25173 if (mp1 == NULL) 25174 continue; 25175 25176 UPDATE_IB_PKT_COUNT(ire_zone); 25177 ire_zone->ire_last_used_time = lbolt; 25178 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25179 mctl_present, B_FALSE, ill, 25180 ire_zone->ire_zoneid); 25181 } 25182 IRB_REFRELE(ire->ire_bucket); 25183 } 25184 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25185 0, mctl_present, B_FALSE, ill, zoneid); 25186 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25187 "ip_wput_local_end: q %p (%S)", 25188 q, "icmp"); 25189 return; 25190 } 25191 case IPPROTO_IGMP: 25192 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25193 /* Bad packet - discarded by igmp_input */ 25194 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25195 "ip_wput_local_end: q %p (%S)", 25196 q, "igmp_input--bad packet"); 25197 if (mctl_present) 25198 freeb(first_mp); 25199 return; 25200 } 25201 /* 25202 * igmp_input() may have returned the pulled up message. 25203 * So first_mp and ipha need to be reinitialized. 25204 */ 25205 ipha = (ipha_t *)mp->b_rptr; 25206 if (mctl_present) 25207 first_mp->b_cont = mp; 25208 else 25209 first_mp = mp; 25210 /* deliver to local raw users */ 25211 break; 25212 case IPPROTO_ENCAP: 25213 /* 25214 * This case is covered by either ip_fanout_proto, or by 25215 * the above security processing for self-tunneled packets. 25216 */ 25217 break; 25218 case IPPROTO_UDP: { 25219 uint16_t *up; 25220 uint32_t ports; 25221 25222 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25223 UDP_PORTS_OFFSET); 25224 /* Force a 'valid' checksum. */ 25225 up[3] = 0; 25226 25227 ports = *(uint32_t *)up; 25228 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25229 (ire_type == IRE_BROADCAST), 25230 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25231 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25232 ill, zoneid); 25233 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25234 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25235 return; 25236 } 25237 case IPPROTO_TCP: { 25238 25239 /* 25240 * For TCP, discard broadcast packets. 25241 */ 25242 if ((ushort_t)ire_type == IRE_BROADCAST) { 25243 freemsg(first_mp); 25244 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25245 ip2dbg(("ip_wput_local: discard broadcast\n")); 25246 return; 25247 } 25248 25249 if (mp->b_datap->db_type == M_DATA) { 25250 /* 25251 * M_DATA mblk, so init mblk (chain) for no struio(). 25252 */ 25253 mblk_t *mp1 = mp; 25254 25255 do { 25256 mp1->b_datap->db_struioflag = 0; 25257 } while ((mp1 = mp1->b_cont) != NULL); 25258 } 25259 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25260 <= mp->b_wptr); 25261 ip_fanout_tcp(q, first_mp, ill, ipha, 25262 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25263 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25264 mctl_present, B_FALSE, zoneid); 25265 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25266 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25267 return; 25268 } 25269 case IPPROTO_SCTP: 25270 { 25271 uint32_t ports; 25272 25273 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25274 ip_fanout_sctp(first_mp, ill, ipha, ports, 25275 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25276 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25277 return; 25278 } 25279 25280 default: 25281 break; 25282 } 25283 /* 25284 * Find a client for some other protocol. We give 25285 * copies to multiple clients, if more than one is 25286 * bound. 25287 */ 25288 ip_fanout_proto(q, first_mp, ill, ipha, 25289 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25290 mctl_present, B_FALSE, ill, zoneid); 25291 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25292 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25293 #undef rptr 25294 } 25295 25296 /* 25297 * Update any source route, record route, or timestamp options. 25298 * Check that we are at end of strict source route. 25299 * The options have been sanity checked by ip_wput_options(). 25300 */ 25301 static void 25302 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25303 { 25304 ipoptp_t opts; 25305 uchar_t *opt; 25306 uint8_t optval; 25307 uint8_t optlen; 25308 ipaddr_t dst; 25309 uint32_t ts; 25310 ire_t *ire; 25311 timestruc_t now; 25312 25313 ip2dbg(("ip_wput_local_options\n")); 25314 for (optval = ipoptp_first(&opts, ipha); 25315 optval != IPOPT_EOL; 25316 optval = ipoptp_next(&opts)) { 25317 opt = opts.ipoptp_cur; 25318 optlen = opts.ipoptp_len; 25319 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25320 switch (optval) { 25321 uint32_t off; 25322 case IPOPT_SSRR: 25323 case IPOPT_LSRR: 25324 off = opt[IPOPT_OFFSET]; 25325 off--; 25326 if (optlen < IP_ADDR_LEN || 25327 off > optlen - IP_ADDR_LEN) { 25328 /* End of source route */ 25329 break; 25330 } 25331 /* 25332 * This will only happen if two consecutive entries 25333 * in the source route contains our address or if 25334 * it is a packet with a loose source route which 25335 * reaches us before consuming the whole source route 25336 */ 25337 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25338 if (optval == IPOPT_SSRR) { 25339 return; 25340 } 25341 /* 25342 * Hack: instead of dropping the packet truncate the 25343 * source route to what has been used by filling the 25344 * rest with IPOPT_NOP. 25345 */ 25346 opt[IPOPT_OLEN] = (uint8_t)off; 25347 while (off < optlen) { 25348 opt[off++] = IPOPT_NOP; 25349 } 25350 break; 25351 case IPOPT_RR: 25352 off = opt[IPOPT_OFFSET]; 25353 off--; 25354 if (optlen < IP_ADDR_LEN || 25355 off > optlen - IP_ADDR_LEN) { 25356 /* No more room - ignore */ 25357 ip1dbg(( 25358 "ip_wput_forward_options: end of RR\n")); 25359 break; 25360 } 25361 dst = htonl(INADDR_LOOPBACK); 25362 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25363 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25364 break; 25365 case IPOPT_TS: 25366 /* Insert timestamp if there is romm */ 25367 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25368 case IPOPT_TS_TSONLY: 25369 off = IPOPT_TS_TIMELEN; 25370 break; 25371 case IPOPT_TS_PRESPEC: 25372 case IPOPT_TS_PRESPEC_RFC791: 25373 /* Verify that the address matched */ 25374 off = opt[IPOPT_OFFSET] - 1; 25375 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25376 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25377 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25378 ipst); 25379 if (ire == NULL) { 25380 /* Not for us */ 25381 break; 25382 } 25383 ire_refrele(ire); 25384 /* FALLTHRU */ 25385 case IPOPT_TS_TSANDADDR: 25386 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25387 break; 25388 default: 25389 /* 25390 * ip_*put_options should have already 25391 * dropped this packet. 25392 */ 25393 cmn_err(CE_PANIC, "ip_wput_local_options: " 25394 "unknown IT - bug in ip_wput_options?\n"); 25395 return; /* Keep "lint" happy */ 25396 } 25397 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25398 /* Increase overflow counter */ 25399 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25400 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25401 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25402 (off << 4); 25403 break; 25404 } 25405 off = opt[IPOPT_OFFSET] - 1; 25406 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25407 case IPOPT_TS_PRESPEC: 25408 case IPOPT_TS_PRESPEC_RFC791: 25409 case IPOPT_TS_TSANDADDR: 25410 dst = htonl(INADDR_LOOPBACK); 25411 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25412 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25413 /* FALLTHRU */ 25414 case IPOPT_TS_TSONLY: 25415 off = opt[IPOPT_OFFSET] - 1; 25416 /* Compute # of milliseconds since midnight */ 25417 gethrestime(&now); 25418 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25419 now.tv_nsec / (NANOSEC / MILLISEC); 25420 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25421 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25422 break; 25423 } 25424 break; 25425 } 25426 } 25427 } 25428 25429 /* 25430 * Send out a multicast packet on interface ipif. 25431 * The sender does not have an conn. 25432 * Caller verifies that this isn't a PHYI_LOOPBACK. 25433 */ 25434 void 25435 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25436 { 25437 ipha_t *ipha; 25438 ire_t *ire; 25439 ipaddr_t dst; 25440 mblk_t *first_mp; 25441 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25442 25443 /* igmp_sendpkt always allocates a ipsec_out_t */ 25444 ASSERT(mp->b_datap->db_type == M_CTL); 25445 ASSERT(!ipif->ipif_isv6); 25446 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25447 25448 first_mp = mp; 25449 mp = first_mp->b_cont; 25450 ASSERT(mp->b_datap->db_type == M_DATA); 25451 ipha = (ipha_t *)mp->b_rptr; 25452 25453 /* 25454 * Find an IRE which matches the destination and the outgoing 25455 * queue (i.e. the outgoing interface.) 25456 */ 25457 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25458 dst = ipif->ipif_pp_dst_addr; 25459 else 25460 dst = ipha->ipha_dst; 25461 /* 25462 * The source address has already been initialized by the 25463 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25464 * be sufficient rather than MATCH_IRE_IPIF. 25465 * 25466 * This function is used for sending IGMP packets. We need 25467 * to make sure that we send the packet out of the interface 25468 * (ipif->ipif_ill) where we joined the group. This is to 25469 * prevent from switches doing IGMP snooping to send us multicast 25470 * packets for a given group on the interface we have joined. 25471 * If we can't find an ire, igmp_sendpkt has already initialized 25472 * ipsec_out_attach_if so that this will not be load spread in 25473 * ip_newroute_ipif. 25474 */ 25475 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25476 MATCH_IRE_ILL, ipst); 25477 if (!ire) { 25478 /* 25479 * Mark this packet to make it be delivered to 25480 * ip_wput_ire after the new ire has been 25481 * created. 25482 */ 25483 mp->b_prev = NULL; 25484 mp->b_next = NULL; 25485 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25486 zoneid, &zero_info); 25487 return; 25488 } 25489 25490 /* 25491 * Honor the RTF_SETSRC flag; this is the only case 25492 * where we force this addr whatever the current src addr is, 25493 * because this address is set by igmp_sendpkt(), and 25494 * cannot be specified by any user. 25495 */ 25496 if (ire->ire_flags & RTF_SETSRC) { 25497 ipha->ipha_src = ire->ire_src_addr; 25498 } 25499 25500 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25501 } 25502 25503 /* 25504 * NOTE : This function does not ire_refrele the ire argument passed in. 25505 * 25506 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25507 * failure. The nce_fp_mp can vanish any time in the case of 25508 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25509 * the ire_lock to access the nce_fp_mp in this case. 25510 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25511 * prepending a fastpath message IPQoS processing must precede it, we also set 25512 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25513 * (IPQoS might have set the b_band for CoS marking). 25514 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25515 * must follow it so that IPQoS can mark the dl_priority field for CoS 25516 * marking, if needed. 25517 */ 25518 static mblk_t * 25519 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, 25520 uint32_t ill_index, ipha_t **iphap) 25521 { 25522 uint_t hlen; 25523 ipha_t *ipha; 25524 mblk_t *mp1; 25525 boolean_t qos_done = B_FALSE; 25526 uchar_t *ll_hdr; 25527 ip_stack_t *ipst = ire->ire_ipst; 25528 25529 #define rptr ((uchar_t *)ipha) 25530 25531 ipha = (ipha_t *)mp->b_rptr; 25532 hlen = 0; 25533 LOCK_IRE_FP_MP(ire); 25534 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25535 ASSERT(DB_TYPE(mp1) == M_DATA); 25536 /* Initiate IPPF processing */ 25537 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25538 UNLOCK_IRE_FP_MP(ire); 25539 ip_process(proc, &mp, ill_index); 25540 if (mp == NULL) 25541 return (NULL); 25542 25543 ipha = (ipha_t *)mp->b_rptr; 25544 LOCK_IRE_FP_MP(ire); 25545 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25546 qos_done = B_TRUE; 25547 goto no_fp_mp; 25548 } 25549 ASSERT(DB_TYPE(mp1) == M_DATA); 25550 } 25551 hlen = MBLKL(mp1); 25552 /* 25553 * Check if we have enough room to prepend fastpath 25554 * header 25555 */ 25556 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25557 ll_hdr = rptr - hlen; 25558 bcopy(mp1->b_rptr, ll_hdr, hlen); 25559 /* 25560 * Set the b_rptr to the start of the link layer 25561 * header 25562 */ 25563 mp->b_rptr = ll_hdr; 25564 mp1 = mp; 25565 } else { 25566 mp1 = copyb(mp1); 25567 if (mp1 == NULL) 25568 goto unlock_err; 25569 mp1->b_band = mp->b_band; 25570 mp1->b_cont = mp; 25571 /* 25572 * certain system generated traffic may not 25573 * have cred/label in ip header block. This 25574 * is true even for a labeled system. But for 25575 * labeled traffic, inherit the label in the 25576 * new header. 25577 */ 25578 if (DB_CRED(mp) != NULL) 25579 mblk_setcred(mp1, DB_CRED(mp)); 25580 /* 25581 * XXX disable ICK_VALID and compute checksum 25582 * here; can happen if nce_fp_mp changes and 25583 * it can't be copied now due to insufficient 25584 * space. (unlikely, fp mp can change, but it 25585 * does not increase in length) 25586 */ 25587 } 25588 UNLOCK_IRE_FP_MP(ire); 25589 } else { 25590 no_fp_mp: 25591 mp1 = copyb(ire->ire_nce->nce_res_mp); 25592 if (mp1 == NULL) { 25593 unlock_err: 25594 UNLOCK_IRE_FP_MP(ire); 25595 freemsg(mp); 25596 return (NULL); 25597 } 25598 UNLOCK_IRE_FP_MP(ire); 25599 mp1->b_cont = mp; 25600 /* 25601 * certain system generated traffic may not 25602 * have cred/label in ip header block. This 25603 * is true even for a labeled system. But for 25604 * labeled traffic, inherit the label in the 25605 * new header. 25606 */ 25607 if (DB_CRED(mp) != NULL) 25608 mblk_setcred(mp1, DB_CRED(mp)); 25609 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25610 ip_process(proc, &mp1, ill_index); 25611 if (mp1 == NULL) 25612 return (NULL); 25613 25614 if (mp1->b_cont == NULL) 25615 ipha = NULL; 25616 else 25617 ipha = (ipha_t *)mp1->b_cont->b_rptr; 25618 } 25619 } 25620 25621 *iphap = ipha; 25622 return (mp1); 25623 #undef rptr 25624 } 25625 25626 /* 25627 * Finish the outbound IPsec processing for an IPv6 packet. This function 25628 * is called from ipsec_out_process() if the IPsec packet was processed 25629 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25630 * asynchronously. 25631 */ 25632 void 25633 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25634 ire_t *ire_arg) 25635 { 25636 in6_addr_t *v6dstp; 25637 ire_t *ire; 25638 mblk_t *mp; 25639 ip6_t *ip6h1; 25640 uint_t ill_index; 25641 ipsec_out_t *io; 25642 boolean_t attach_if, hwaccel; 25643 uint32_t flags = IP6_NO_IPPOLICY; 25644 int match_flags; 25645 zoneid_t zoneid; 25646 boolean_t ill_need_rele = B_FALSE; 25647 boolean_t ire_need_rele = B_FALSE; 25648 ip_stack_t *ipst; 25649 25650 mp = ipsec_mp->b_cont; 25651 ip6h1 = (ip6_t *)mp->b_rptr; 25652 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25653 ASSERT(io->ipsec_out_ns != NULL); 25654 ipst = io->ipsec_out_ns->netstack_ip; 25655 ill_index = io->ipsec_out_ill_index; 25656 if (io->ipsec_out_reachable) { 25657 flags |= IPV6_REACHABILITY_CONFIRMATION; 25658 } 25659 attach_if = io->ipsec_out_attach_if; 25660 hwaccel = io->ipsec_out_accelerated; 25661 zoneid = io->ipsec_out_zoneid; 25662 ASSERT(zoneid != ALL_ZONES); 25663 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25664 /* Multicast addresses should have non-zero ill_index. */ 25665 v6dstp = &ip6h->ip6_dst; 25666 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25667 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25668 ASSERT(!attach_if || ill_index != 0); 25669 if (ill_index != 0) { 25670 if (ill == NULL) { 25671 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25672 B_TRUE, ipst); 25673 25674 /* Failure case frees things for us. */ 25675 if (ill == NULL) 25676 return; 25677 25678 ill_need_rele = B_TRUE; 25679 } 25680 /* 25681 * If this packet needs to go out on a particular interface 25682 * honor it. 25683 */ 25684 if (attach_if) { 25685 match_flags = MATCH_IRE_ILL; 25686 25687 /* 25688 * Check if we need an ire that will not be 25689 * looked up by anybody else i.e. HIDDEN. 25690 */ 25691 if (ill_is_probeonly(ill)) { 25692 match_flags |= MATCH_IRE_MARK_HIDDEN; 25693 } 25694 } 25695 } 25696 ASSERT(mp != NULL); 25697 25698 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25699 boolean_t unspec_src; 25700 ipif_t *ipif; 25701 25702 /* 25703 * Use the ill_index to get the right ill. 25704 */ 25705 unspec_src = io->ipsec_out_unspec_src; 25706 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25707 if (ipif == NULL) { 25708 if (ill_need_rele) 25709 ill_refrele(ill); 25710 freemsg(ipsec_mp); 25711 return; 25712 } 25713 25714 if (ire_arg != NULL) { 25715 ire = ire_arg; 25716 } else { 25717 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25718 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25719 ire_need_rele = B_TRUE; 25720 } 25721 if (ire != NULL) { 25722 ipif_refrele(ipif); 25723 /* 25724 * XXX Do the multicast forwarding now, as the IPsec 25725 * processing has been done. 25726 */ 25727 goto send; 25728 } 25729 25730 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25731 mp->b_prev = NULL; 25732 mp->b_next = NULL; 25733 25734 /* 25735 * If the IPsec packet was processed asynchronously, 25736 * drop it now. 25737 */ 25738 if (q == NULL) { 25739 if (ill_need_rele) 25740 ill_refrele(ill); 25741 freemsg(ipsec_mp); 25742 return; 25743 } 25744 25745 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25746 unspec_src, zoneid); 25747 ipif_refrele(ipif); 25748 } else { 25749 if (attach_if) { 25750 ipif_t *ipif; 25751 25752 ipif = ipif_get_next_ipif(NULL, ill); 25753 if (ipif == NULL) { 25754 if (ill_need_rele) 25755 ill_refrele(ill); 25756 freemsg(ipsec_mp); 25757 return; 25758 } 25759 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25760 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25761 ire_need_rele = B_TRUE; 25762 ipif_refrele(ipif); 25763 } else { 25764 if (ire_arg != NULL) { 25765 ire = ire_arg; 25766 } else { 25767 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25768 ipst); 25769 ire_need_rele = B_TRUE; 25770 } 25771 } 25772 if (ire != NULL) 25773 goto send; 25774 /* 25775 * ire disappeared underneath. 25776 * 25777 * What we need to do here is the ip_newroute 25778 * logic to get the ire without doing the IPsec 25779 * processing. Follow the same old path. But this 25780 * time, ip_wput or ire_add_then_send will call us 25781 * directly as all the IPsec operations are done. 25782 */ 25783 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25784 mp->b_prev = NULL; 25785 mp->b_next = NULL; 25786 25787 /* 25788 * If the IPsec packet was processed asynchronously, 25789 * drop it now. 25790 */ 25791 if (q == NULL) { 25792 if (ill_need_rele) 25793 ill_refrele(ill); 25794 freemsg(ipsec_mp); 25795 return; 25796 } 25797 25798 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25799 zoneid, ipst); 25800 } 25801 if (ill != NULL && ill_need_rele) 25802 ill_refrele(ill); 25803 return; 25804 send: 25805 if (ill != NULL && ill_need_rele) 25806 ill_refrele(ill); 25807 25808 /* Local delivery */ 25809 if (ire->ire_stq == NULL) { 25810 ill_t *out_ill; 25811 ASSERT(q != NULL); 25812 25813 /* PFHooks: LOOPBACK_OUT */ 25814 out_ill = ire_to_ill(ire); 25815 25816 /* 25817 * DTrace this as ip:::send. A blocked packet will fire the 25818 * send probe, but not the receive probe. 25819 */ 25820 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25821 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, out_ill, 25822 ipha_t *, NULL, ip6_t *, ip6h, int, 1); 25823 25824 DTRACE_PROBE4(ip6__loopback__out__start, 25825 ill_t *, NULL, ill_t *, out_ill, 25826 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25827 25828 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25829 ipst->ips_ipv6firewall_loopback_out, 25830 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25831 25832 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25833 25834 if (ipsec_mp != NULL) 25835 ip_wput_local_v6(RD(q), out_ill, 25836 ip6h, ipsec_mp, ire, 0); 25837 if (ire_need_rele) 25838 ire_refrele(ire); 25839 return; 25840 } 25841 /* 25842 * Everything is done. Send it out on the wire. 25843 * We force the insertion of a fragment header using the 25844 * IPH_FRAG_HDR flag in two cases: 25845 * - after reception of an ICMPv6 "packet too big" message 25846 * with a MTU < 1280 (cf. RFC 2460 section 5) 25847 * - for multirouted IPv6 packets, so that the receiver can 25848 * discard duplicates according to their fragment identifier 25849 */ 25850 /* XXX fix flow control problems. */ 25851 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25852 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25853 if (hwaccel) { 25854 /* 25855 * hardware acceleration does not handle these 25856 * "slow path" cases. 25857 */ 25858 /* IPsec KSTATS: should bump bean counter here. */ 25859 if (ire_need_rele) 25860 ire_refrele(ire); 25861 freemsg(ipsec_mp); 25862 return; 25863 } 25864 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25865 (mp->b_cont ? msgdsize(mp) : 25866 mp->b_wptr - (uchar_t *)ip6h)) { 25867 /* IPsec KSTATS: should bump bean counter here. */ 25868 ip0dbg(("Packet length mismatch: %d, %ld\n", 25869 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25870 msgdsize(mp))); 25871 if (ire_need_rele) 25872 ire_refrele(ire); 25873 freemsg(ipsec_mp); 25874 return; 25875 } 25876 ASSERT(mp->b_prev == NULL); 25877 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25878 ntohs(ip6h->ip6_plen) + 25879 IPV6_HDR_LEN, ire->ire_max_frag)); 25880 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25881 ire->ire_max_frag); 25882 } else { 25883 UPDATE_OB_PKT_COUNT(ire); 25884 ire->ire_last_used_time = lbolt; 25885 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25886 } 25887 if (ire_need_rele) 25888 ire_refrele(ire); 25889 freeb(ipsec_mp); 25890 } 25891 25892 void 25893 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25894 { 25895 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25896 da_ipsec_t *hada; /* data attributes */ 25897 ill_t *ill = (ill_t *)q->q_ptr; 25898 25899 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25900 25901 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25902 /* IPsec KSTATS: Bump lose counter here! */ 25903 freemsg(mp); 25904 return; 25905 } 25906 25907 /* 25908 * It's an IPsec packet that must be 25909 * accelerated by the Provider, and the 25910 * outbound ill is IPsec acceleration capable. 25911 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25912 * to the ill. 25913 * IPsec KSTATS: should bump packet counter here. 25914 */ 25915 25916 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25917 if (hada_mp == NULL) { 25918 /* IPsec KSTATS: should bump packet counter here. */ 25919 freemsg(mp); 25920 return; 25921 } 25922 25923 hada_mp->b_datap->db_type = M_CTL; 25924 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25925 hada_mp->b_cont = mp; 25926 25927 hada = (da_ipsec_t *)hada_mp->b_rptr; 25928 bzero(hada, sizeof (da_ipsec_t)); 25929 hada->da_type = IPHADA_M_CTL; 25930 25931 putnext(q, hada_mp); 25932 } 25933 25934 /* 25935 * Finish the outbound IPsec processing. This function is called from 25936 * ipsec_out_process() if the IPsec packet was processed 25937 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25938 * asynchronously. 25939 */ 25940 void 25941 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25942 ire_t *ire_arg) 25943 { 25944 uint32_t v_hlen_tos_len; 25945 ipaddr_t dst; 25946 ipif_t *ipif = NULL; 25947 ire_t *ire; 25948 ire_t *ire1 = NULL; 25949 mblk_t *next_mp = NULL; 25950 uint32_t max_frag; 25951 boolean_t multirt_send = B_FALSE; 25952 mblk_t *mp; 25953 ipha_t *ipha1; 25954 uint_t ill_index; 25955 ipsec_out_t *io; 25956 boolean_t attach_if; 25957 int match_flags; 25958 irb_t *irb = NULL; 25959 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25960 zoneid_t zoneid; 25961 ipxmit_state_t pktxmit_state; 25962 ip_stack_t *ipst; 25963 25964 #ifdef _BIG_ENDIAN 25965 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25966 #else 25967 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25968 #endif 25969 25970 mp = ipsec_mp->b_cont; 25971 ipha1 = (ipha_t *)mp->b_rptr; 25972 ASSERT(mp != NULL); 25973 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25974 dst = ipha->ipha_dst; 25975 25976 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25977 ill_index = io->ipsec_out_ill_index; 25978 attach_if = io->ipsec_out_attach_if; 25979 zoneid = io->ipsec_out_zoneid; 25980 ASSERT(zoneid != ALL_ZONES); 25981 ipst = io->ipsec_out_ns->netstack_ip; 25982 ASSERT(io->ipsec_out_ns != NULL); 25983 25984 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25985 if (ill_index != 0) { 25986 if (ill == NULL) { 25987 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25988 ill_index, B_FALSE, ipst); 25989 25990 /* Failure case frees things for us. */ 25991 if (ill == NULL) 25992 return; 25993 25994 ill_need_rele = B_TRUE; 25995 } 25996 /* 25997 * If this packet needs to go out on a particular interface 25998 * honor it. 25999 */ 26000 if (attach_if) { 26001 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 26002 26003 /* 26004 * Check if we need an ire that will not be 26005 * looked up by anybody else i.e. HIDDEN. 26006 */ 26007 if (ill_is_probeonly(ill)) { 26008 match_flags |= MATCH_IRE_MARK_HIDDEN; 26009 } 26010 } 26011 } 26012 26013 if (CLASSD(dst)) { 26014 boolean_t conn_dontroute; 26015 /* 26016 * Use the ill_index to get the right ipif. 26017 */ 26018 conn_dontroute = io->ipsec_out_dontroute; 26019 if (ill_index == 0) 26020 ipif = ipif_lookup_group(dst, zoneid, ipst); 26021 else 26022 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 26023 if (ipif == NULL) { 26024 ip1dbg(("ip_wput_ipsec_out: No ipif for" 26025 " multicast\n")); 26026 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 26027 freemsg(ipsec_mp); 26028 goto done; 26029 } 26030 /* 26031 * ipha_src has already been intialized with the 26032 * value of the ipif in ip_wput. All we need now is 26033 * an ire to send this downstream. 26034 */ 26035 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 26036 MBLK_GETLABEL(mp), match_flags, ipst); 26037 if (ire != NULL) { 26038 ill_t *ill1; 26039 /* 26040 * Do the multicast forwarding now, as the IPsec 26041 * processing has been done. 26042 */ 26043 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 26044 (ill1 = ire_to_ill(ire))) { 26045 if (ip_mforward(ill1, ipha, mp)) { 26046 freemsg(ipsec_mp); 26047 ip1dbg(("ip_wput_ipsec_out: mforward " 26048 "failed\n")); 26049 ire_refrele(ire); 26050 goto done; 26051 } 26052 } 26053 goto send; 26054 } 26055 26056 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 26057 mp->b_prev = NULL; 26058 mp->b_next = NULL; 26059 26060 /* 26061 * If the IPsec packet was processed asynchronously, 26062 * drop it now. 26063 */ 26064 if (q == NULL) { 26065 freemsg(ipsec_mp); 26066 goto done; 26067 } 26068 26069 /* 26070 * We may be using a wrong ipif to create the ire. 26071 * But it is okay as the source address is assigned 26072 * for the packet already. Next outbound packet would 26073 * create the IRE with the right IPIF in ip_wput. 26074 * 26075 * Also handle RTF_MULTIRT routes. 26076 */ 26077 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26078 zoneid, &zero_info); 26079 } else { 26080 if (attach_if) { 26081 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 26082 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26083 } else { 26084 if (ire_arg != NULL) { 26085 ire = ire_arg; 26086 ire_need_rele = B_FALSE; 26087 } else { 26088 ire = ire_cache_lookup(dst, zoneid, 26089 MBLK_GETLABEL(mp), ipst); 26090 } 26091 } 26092 if (ire != NULL) { 26093 goto send; 26094 } 26095 26096 /* 26097 * ire disappeared underneath. 26098 * 26099 * What we need to do here is the ip_newroute 26100 * logic to get the ire without doing the IPsec 26101 * processing. Follow the same old path. But this 26102 * time, ip_wput or ire_add_then_put will call us 26103 * directly as all the IPsec operations are done. 26104 */ 26105 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26106 mp->b_prev = NULL; 26107 mp->b_next = NULL; 26108 26109 /* 26110 * If the IPsec packet was processed asynchronously, 26111 * drop it now. 26112 */ 26113 if (q == NULL) { 26114 freemsg(ipsec_mp); 26115 goto done; 26116 } 26117 26118 /* 26119 * Since we're going through ip_newroute() again, we 26120 * need to make sure we don't: 26121 * 26122 * 1.) Trigger the ASSERT() with the ipha_ident 26123 * overloading. 26124 * 2.) Redo transport-layer checksumming, since we've 26125 * already done all that to get this far. 26126 * 26127 * The easiest way not do either of the above is to set 26128 * the ipha_ident field to IP_HDR_INCLUDED. 26129 */ 26130 ipha->ipha_ident = IP_HDR_INCLUDED; 26131 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 26132 zoneid, ipst); 26133 } 26134 goto done; 26135 send: 26136 if (ire->ire_stq == NULL) { 26137 ill_t *out_ill; 26138 /* 26139 * Loopbacks go through ip_wput_local except for one case. 26140 * We come here if we generate a icmp_frag_needed message 26141 * after IPsec processing is over. When this function calls 26142 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26143 * icmp_frag_needed. The message generated comes back here 26144 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26145 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26146 * source address as it is usually set in ip_wput_ire. As 26147 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26148 * and we end up here. We can't enter ip_wput_ire once the 26149 * IPsec processing is over and hence we need to do it here. 26150 */ 26151 ASSERT(q != NULL); 26152 UPDATE_OB_PKT_COUNT(ire); 26153 ire->ire_last_used_time = lbolt; 26154 if (ipha->ipha_src == 0) 26155 ipha->ipha_src = ire->ire_src_addr; 26156 26157 /* PFHooks: LOOPBACK_OUT */ 26158 out_ill = ire_to_ill(ire); 26159 26160 /* 26161 * DTrace this as ip:::send. A blocked packet will fire the 26162 * send probe, but not the receive probe. 26163 */ 26164 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 26165 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 26166 ipha_t *, ipha, ip6_t *, NULL, int, 1); 26167 26168 DTRACE_PROBE4(ip4__loopback__out__start, 26169 ill_t *, NULL, ill_t *, out_ill, 26170 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26171 26172 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26173 ipst->ips_ipv4firewall_loopback_out, 26174 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 26175 26176 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26177 26178 if (ipsec_mp != NULL) 26179 ip_wput_local(RD(q), out_ill, 26180 ipha, ipsec_mp, ire, 0, zoneid); 26181 if (ire_need_rele) 26182 ire_refrele(ire); 26183 goto done; 26184 } 26185 26186 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26187 /* 26188 * We are through with IPsec processing. 26189 * Fragment this and send it on the wire. 26190 */ 26191 if (io->ipsec_out_accelerated) { 26192 /* 26193 * The packet has been accelerated but must 26194 * be fragmented. This should not happen 26195 * since AH and ESP must not accelerate 26196 * packets that need fragmentation, however 26197 * the configuration could have changed 26198 * since the AH or ESP processing. 26199 * Drop packet. 26200 * IPsec KSTATS: bump bean counter here. 26201 */ 26202 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26203 "fragmented accelerated packet!\n")); 26204 freemsg(ipsec_mp); 26205 } else { 26206 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26207 } 26208 if (ire_need_rele) 26209 ire_refrele(ire); 26210 goto done; 26211 } 26212 26213 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26214 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26215 (void *)ire->ire_ipif, (void *)ipif)); 26216 26217 /* 26218 * Multiroute the secured packet, unless IPsec really 26219 * requires the packet to go out only through a particular 26220 * interface. 26221 */ 26222 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26223 ire_t *first_ire; 26224 irb = ire->ire_bucket; 26225 ASSERT(irb != NULL); 26226 /* 26227 * This ire has been looked up as the one that 26228 * goes through the given ipif; 26229 * make sure we do not omit any other multiroute ire 26230 * that may be present in the bucket before this one. 26231 */ 26232 IRB_REFHOLD(irb); 26233 for (first_ire = irb->irb_ire; 26234 first_ire != NULL; 26235 first_ire = first_ire->ire_next) { 26236 if ((first_ire->ire_flags & RTF_MULTIRT) && 26237 (first_ire->ire_addr == ire->ire_addr) && 26238 !(first_ire->ire_marks & 26239 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26240 break; 26241 } 26242 } 26243 26244 if ((first_ire != NULL) && (first_ire != ire)) { 26245 /* 26246 * Don't change the ire if the packet must 26247 * be fragmented if sent via this new one. 26248 */ 26249 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26250 IRE_REFHOLD(first_ire); 26251 if (ire_need_rele) 26252 ire_refrele(ire); 26253 else 26254 ire_need_rele = B_TRUE; 26255 ire = first_ire; 26256 } 26257 } 26258 IRB_REFRELE(irb); 26259 26260 multirt_send = B_TRUE; 26261 max_frag = ire->ire_max_frag; 26262 } else { 26263 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26264 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26265 "flag, attach_if %d\n", attach_if)); 26266 } 26267 } 26268 26269 /* 26270 * In most cases, the emission loop below is entered only once. 26271 * Only in the case where the ire holds the RTF_MULTIRT 26272 * flag, we loop to process all RTF_MULTIRT ires in the 26273 * bucket, and send the packet through all crossed 26274 * RTF_MULTIRT routes. 26275 */ 26276 do { 26277 if (multirt_send) { 26278 /* 26279 * ire1 holds here the next ire to process in the 26280 * bucket. If multirouting is expected, 26281 * any non-RTF_MULTIRT ire that has the 26282 * right destination address is ignored. 26283 */ 26284 ASSERT(irb != NULL); 26285 IRB_REFHOLD(irb); 26286 for (ire1 = ire->ire_next; 26287 ire1 != NULL; 26288 ire1 = ire1->ire_next) { 26289 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26290 continue; 26291 if (ire1->ire_addr != ire->ire_addr) 26292 continue; 26293 if (ire1->ire_marks & 26294 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26295 continue; 26296 /* No loopback here */ 26297 if (ire1->ire_stq == NULL) 26298 continue; 26299 /* 26300 * Ensure we do not exceed the MTU 26301 * of the next route. 26302 */ 26303 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26304 ip_multirt_bad_mtu(ire1, max_frag); 26305 continue; 26306 } 26307 26308 IRE_REFHOLD(ire1); 26309 break; 26310 } 26311 IRB_REFRELE(irb); 26312 if (ire1 != NULL) { 26313 /* 26314 * We are in a multiple send case, need to 26315 * make a copy of the packet. 26316 */ 26317 next_mp = copymsg(ipsec_mp); 26318 if (next_mp == NULL) { 26319 ire_refrele(ire1); 26320 ire1 = NULL; 26321 } 26322 } 26323 } 26324 /* 26325 * Everything is done. Send it out on the wire 26326 * 26327 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26328 * either send it on the wire or, in the case of 26329 * HW acceleration, call ipsec_hw_putnext. 26330 */ 26331 if (ire->ire_nce && 26332 ire->ire_nce->nce_state != ND_REACHABLE) { 26333 DTRACE_PROBE2(ip__wput__ipsec__bail, 26334 (ire_t *), ire, (mblk_t *), ipsec_mp); 26335 /* 26336 * If ire's link-layer is unresolved (this 26337 * would only happen if the incomplete ire 26338 * was added to cachetable via forwarding path) 26339 * don't bother going to ip_xmit_v4. Just drop the 26340 * packet. 26341 * There is a slight risk here, in that, if we 26342 * have the forwarding path create an incomplete 26343 * IRE, then until the IRE is completed, any 26344 * transmitted IPsec packets will be dropped 26345 * instead of being queued waiting for resolution. 26346 * 26347 * But the likelihood of a forwarding packet and a wput 26348 * packet sending to the same dst at the same time 26349 * and there not yet be an ARP entry for it is small. 26350 * Furthermore, if this actually happens, it might 26351 * be likely that wput would generate multiple 26352 * packets (and forwarding would also have a train 26353 * of packets) for that destination. If this is 26354 * the case, some of them would have been dropped 26355 * anyway, since ARP only queues a few packets while 26356 * waiting for resolution 26357 * 26358 * NOTE: We should really call ip_xmit_v4, 26359 * and let it queue the packet and send the 26360 * ARP query and have ARP come back thus: 26361 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26362 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26363 * hw accel work. But it's too complex to get 26364 * the IPsec hw acceleration approach to fit 26365 * well with ip_xmit_v4 doing ARP without 26366 * doing IPsec simplification. For now, we just 26367 * poke ip_xmit_v4 to trigger the arp resolve, so 26368 * that we can continue with the send on the next 26369 * attempt. 26370 * 26371 * XXX THis should be revisited, when 26372 * the IPsec/IP interaction is cleaned up 26373 */ 26374 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26375 " - dropping packet\n")); 26376 freemsg(ipsec_mp); 26377 /* 26378 * Call ip_xmit_v4() to trigger ARP query 26379 * in case the nce_state is ND_INITIAL 26380 */ 26381 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26382 goto drop_pkt; 26383 } 26384 26385 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26386 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26387 mblk_t *, ipsec_mp); 26388 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26389 ipst->ips_ipv4firewall_physical_out, NULL, 26390 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26391 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26392 if (ipsec_mp == NULL) 26393 goto drop_pkt; 26394 26395 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26396 pktxmit_state = ip_xmit_v4(mp, ire, 26397 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26398 26399 if ((pktxmit_state == SEND_FAILED) || 26400 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26401 26402 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26403 drop_pkt: 26404 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26405 ipIfStatsOutDiscards); 26406 if (ire_need_rele) 26407 ire_refrele(ire); 26408 if (ire1 != NULL) { 26409 ire_refrele(ire1); 26410 freemsg(next_mp); 26411 } 26412 goto done; 26413 } 26414 26415 freeb(ipsec_mp); 26416 if (ire_need_rele) 26417 ire_refrele(ire); 26418 26419 if (ire1 != NULL) { 26420 ire = ire1; 26421 ire_need_rele = B_TRUE; 26422 ASSERT(next_mp); 26423 ipsec_mp = next_mp; 26424 mp = ipsec_mp->b_cont; 26425 ire1 = NULL; 26426 next_mp = NULL; 26427 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26428 } else { 26429 multirt_send = B_FALSE; 26430 } 26431 } while (multirt_send); 26432 done: 26433 if (ill != NULL && ill_need_rele) 26434 ill_refrele(ill); 26435 if (ipif != NULL) 26436 ipif_refrele(ipif); 26437 } 26438 26439 /* 26440 * Get the ill corresponding to the specified ire, and compare its 26441 * capabilities with the protocol and algorithms specified by the 26442 * the SA obtained from ipsec_out. If they match, annotate the 26443 * ipsec_out structure to indicate that the packet needs acceleration. 26444 * 26445 * 26446 * A packet is eligible for outbound hardware acceleration if the 26447 * following conditions are satisfied: 26448 * 26449 * 1. the packet will not be fragmented 26450 * 2. the provider supports the algorithm 26451 * 3. there is no pending control message being exchanged 26452 * 4. snoop is not attached 26453 * 5. the destination address is not a broadcast or multicast address. 26454 * 26455 * Rationale: 26456 * - Hardware drivers do not support fragmentation with 26457 * the current interface. 26458 * - snoop, multicast, and broadcast may result in exposure of 26459 * a cleartext datagram. 26460 * We check all five of these conditions here. 26461 * 26462 * XXX would like to nuke "ire_t *" parameter here; problem is that 26463 * IRE is only way to figure out if a v4 address is a broadcast and 26464 * thus ineligible for acceleration... 26465 */ 26466 static void 26467 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26468 { 26469 ipsec_out_t *io; 26470 mblk_t *data_mp; 26471 uint_t plen, overhead; 26472 ip_stack_t *ipst; 26473 26474 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26475 return; 26476 26477 if (ill == NULL) 26478 return; 26479 ipst = ill->ill_ipst; 26480 /* 26481 * Destination address is a broadcast or multicast. Punt. 26482 */ 26483 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26484 IRE_LOCAL))) 26485 return; 26486 26487 data_mp = ipsec_mp->b_cont; 26488 26489 if (ill->ill_isv6) { 26490 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26491 26492 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26493 return; 26494 26495 plen = ip6h->ip6_plen; 26496 } else { 26497 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26498 26499 if (CLASSD(ipha->ipha_dst)) 26500 return; 26501 26502 plen = ipha->ipha_length; 26503 } 26504 /* 26505 * Is there a pending DLPI control message being exchanged 26506 * between IP/IPsec and the DLS Provider? If there is, it 26507 * could be a SADB update, and the state of the DLS Provider 26508 * SADB might not be in sync with the SADB maintained by 26509 * IPsec. To avoid dropping packets or using the wrong keying 26510 * material, we do not accelerate this packet. 26511 */ 26512 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26513 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26514 "ill_dlpi_pending! don't accelerate packet\n")); 26515 return; 26516 } 26517 26518 /* 26519 * Is the Provider in promiscous mode? If it does, we don't 26520 * accelerate the packet since it will bounce back up to the 26521 * listeners in the clear. 26522 */ 26523 if (ill->ill_promisc_on_phys) { 26524 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26525 "ill in promiscous mode, don't accelerate packet\n")); 26526 return; 26527 } 26528 26529 /* 26530 * Will the packet require fragmentation? 26531 */ 26532 26533 /* 26534 * IPsec ESP note: this is a pessimistic estimate, but the same 26535 * as is used elsewhere. 26536 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26537 * + 2-byte trailer 26538 */ 26539 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26540 IPSEC_BASE_ESP_HDR_SIZE(sa); 26541 26542 if ((plen + overhead) > ill->ill_max_mtu) 26543 return; 26544 26545 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26546 26547 /* 26548 * Can the ill accelerate this IPsec protocol and algorithm 26549 * specified by the SA? 26550 */ 26551 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26552 ill->ill_isv6, sa, ipst->ips_netstack)) { 26553 return; 26554 } 26555 26556 /* 26557 * Tell AH or ESP that the outbound ill is capable of 26558 * accelerating this packet. 26559 */ 26560 io->ipsec_out_is_capab_ill = B_TRUE; 26561 } 26562 26563 /* 26564 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26565 * 26566 * If this function returns B_TRUE, the requested SA's have been filled 26567 * into the ipsec_out_*_sa pointers. 26568 * 26569 * If the function returns B_FALSE, the packet has been "consumed", most 26570 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26571 * 26572 * The SA references created by the protocol-specific "select" 26573 * function will be released when the ipsec_mp is freed, thanks to the 26574 * ipsec_out_free destructor -- see spd.c. 26575 */ 26576 static boolean_t 26577 ipsec_out_select_sa(mblk_t *ipsec_mp) 26578 { 26579 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26580 ipsec_out_t *io; 26581 ipsec_policy_t *pp; 26582 ipsec_action_t *ap; 26583 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26584 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26585 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26586 26587 if (!io->ipsec_out_secure) { 26588 /* 26589 * We came here by mistake. 26590 * Don't bother with ipsec processing 26591 * We should "discourage" this path in the future. 26592 */ 26593 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26594 return (B_FALSE); 26595 } 26596 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26597 ASSERT((io->ipsec_out_policy != NULL) || 26598 (io->ipsec_out_act != NULL)); 26599 26600 ASSERT(io->ipsec_out_failed == B_FALSE); 26601 26602 /* 26603 * IPsec processing has started. 26604 */ 26605 io->ipsec_out_proc_begin = B_TRUE; 26606 ap = io->ipsec_out_act; 26607 if (ap == NULL) { 26608 pp = io->ipsec_out_policy; 26609 ASSERT(pp != NULL); 26610 ap = pp->ipsp_act; 26611 ASSERT(ap != NULL); 26612 } 26613 26614 /* 26615 * We have an action. now, let's select SA's. 26616 * (In the future, we can cache this in the conn_t..) 26617 */ 26618 if (ap->ipa_want_esp) { 26619 if (io->ipsec_out_esp_sa == NULL) { 26620 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26621 IPPROTO_ESP); 26622 } 26623 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26624 } 26625 26626 if (ap->ipa_want_ah) { 26627 if (io->ipsec_out_ah_sa == NULL) { 26628 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26629 IPPROTO_AH); 26630 } 26631 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26632 /* 26633 * The ESP and AH processing order needs to be preserved 26634 * when both protocols are required (ESP should be applied 26635 * before AH for an outbound packet). Force an ESP ACQUIRE 26636 * when both ESP and AH are required, and an AH ACQUIRE 26637 * is needed. 26638 */ 26639 if (ap->ipa_want_esp && need_ah_acquire) 26640 need_esp_acquire = B_TRUE; 26641 } 26642 26643 /* 26644 * Send an ACQUIRE (extended, regular, or both) if we need one. 26645 * Release SAs that got referenced, but will not be used until we 26646 * acquire _all_ of the SAs we need. 26647 */ 26648 if (need_ah_acquire || need_esp_acquire) { 26649 if (io->ipsec_out_ah_sa != NULL) { 26650 IPSA_REFRELE(io->ipsec_out_ah_sa); 26651 io->ipsec_out_ah_sa = NULL; 26652 } 26653 if (io->ipsec_out_esp_sa != NULL) { 26654 IPSA_REFRELE(io->ipsec_out_esp_sa); 26655 io->ipsec_out_esp_sa = NULL; 26656 } 26657 26658 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26659 return (B_FALSE); 26660 } 26661 26662 return (B_TRUE); 26663 } 26664 26665 /* 26666 * Process an IPSEC_OUT message and see what you can 26667 * do with it. 26668 * IPQoS Notes: 26669 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26670 * IPsec. 26671 * XXX would like to nuke ire_t. 26672 * XXX ill_index better be "real" 26673 */ 26674 void 26675 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26676 { 26677 ipsec_out_t *io; 26678 ipsec_policy_t *pp; 26679 ipsec_action_t *ap; 26680 ipha_t *ipha; 26681 ip6_t *ip6h; 26682 mblk_t *mp; 26683 ill_t *ill; 26684 zoneid_t zoneid; 26685 ipsec_status_t ipsec_rc; 26686 boolean_t ill_need_rele = B_FALSE; 26687 ip_stack_t *ipst; 26688 ipsec_stack_t *ipss; 26689 26690 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26691 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26692 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26693 ipst = io->ipsec_out_ns->netstack_ip; 26694 mp = ipsec_mp->b_cont; 26695 26696 /* 26697 * Initiate IPPF processing. We do it here to account for packets 26698 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26699 * We can check for ipsec_out_proc_begin even for such packets, as 26700 * they will always be false (asserted below). 26701 */ 26702 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26703 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26704 io->ipsec_out_ill_index : ill_index); 26705 if (mp == NULL) { 26706 ip2dbg(("ipsec_out_process: packet dropped "\ 26707 "during IPPF processing\n")); 26708 freeb(ipsec_mp); 26709 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26710 return; 26711 } 26712 } 26713 26714 if (!io->ipsec_out_secure) { 26715 /* 26716 * We came here by mistake. 26717 * Don't bother with ipsec processing 26718 * Should "discourage" this path in the future. 26719 */ 26720 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26721 goto done; 26722 } 26723 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26724 ASSERT((io->ipsec_out_policy != NULL) || 26725 (io->ipsec_out_act != NULL)); 26726 ASSERT(io->ipsec_out_failed == B_FALSE); 26727 26728 ipss = ipst->ips_netstack->netstack_ipsec; 26729 if (!ipsec_loaded(ipss)) { 26730 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26731 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26732 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26733 } else { 26734 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26735 } 26736 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26737 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26738 &ipss->ipsec_dropper); 26739 return; 26740 } 26741 26742 /* 26743 * IPsec processing has started. 26744 */ 26745 io->ipsec_out_proc_begin = B_TRUE; 26746 ap = io->ipsec_out_act; 26747 if (ap == NULL) { 26748 pp = io->ipsec_out_policy; 26749 ASSERT(pp != NULL); 26750 ap = pp->ipsp_act; 26751 ASSERT(ap != NULL); 26752 } 26753 26754 /* 26755 * Save the outbound ill index. When the packet comes back 26756 * from IPsec, we make sure the ill hasn't changed or disappeared 26757 * before sending it the accelerated packet. 26758 */ 26759 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26760 int ifindex; 26761 ill = ire_to_ill(ire); 26762 ifindex = ill->ill_phyint->phyint_ifindex; 26763 io->ipsec_out_capab_ill_index = ifindex; 26764 } 26765 26766 /* 26767 * The order of processing is first insert a IP header if needed. 26768 * Then insert the ESP header and then the AH header. 26769 */ 26770 if ((io->ipsec_out_se_done == B_FALSE) && 26771 (ap->ipa_want_se)) { 26772 /* 26773 * First get the outer IP header before sending 26774 * it to ESP. 26775 */ 26776 ipha_t *oipha, *iipha; 26777 mblk_t *outer_mp, *inner_mp; 26778 26779 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26780 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26781 "ipsec_out_process: " 26782 "Self-Encapsulation failed: Out of memory\n"); 26783 freemsg(ipsec_mp); 26784 if (ill != NULL) { 26785 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26786 } else { 26787 BUMP_MIB(&ipst->ips_ip_mib, 26788 ipIfStatsOutDiscards); 26789 } 26790 return; 26791 } 26792 inner_mp = ipsec_mp->b_cont; 26793 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26794 oipha = (ipha_t *)outer_mp->b_rptr; 26795 iipha = (ipha_t *)inner_mp->b_rptr; 26796 *oipha = *iipha; 26797 outer_mp->b_wptr += sizeof (ipha_t); 26798 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26799 sizeof (ipha_t)); 26800 oipha->ipha_protocol = IPPROTO_ENCAP; 26801 oipha->ipha_version_and_hdr_length = 26802 IP_SIMPLE_HDR_VERSION; 26803 oipha->ipha_hdr_checksum = 0; 26804 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26805 outer_mp->b_cont = inner_mp; 26806 ipsec_mp->b_cont = outer_mp; 26807 26808 io->ipsec_out_se_done = B_TRUE; 26809 io->ipsec_out_tunnel = B_TRUE; 26810 } 26811 26812 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26813 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26814 !ipsec_out_select_sa(ipsec_mp)) 26815 return; 26816 26817 /* 26818 * By now, we know what SA's to use. Toss over to ESP & AH 26819 * to do the heavy lifting. 26820 */ 26821 zoneid = io->ipsec_out_zoneid; 26822 ASSERT(zoneid != ALL_ZONES); 26823 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26824 ASSERT(io->ipsec_out_esp_sa != NULL); 26825 io->ipsec_out_esp_done = B_TRUE; 26826 /* 26827 * Note that since hw accel can only apply one transform, 26828 * not two, we skip hw accel for ESP if we also have AH 26829 * This is an design limitation of the interface 26830 * which should be revisited. 26831 */ 26832 ASSERT(ire != NULL); 26833 if (io->ipsec_out_ah_sa == NULL) { 26834 ill = (ill_t *)ire->ire_stq->q_ptr; 26835 ipsec_out_is_accelerated(ipsec_mp, 26836 io->ipsec_out_esp_sa, ill, ire); 26837 } 26838 26839 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26840 switch (ipsec_rc) { 26841 case IPSEC_STATUS_SUCCESS: 26842 break; 26843 case IPSEC_STATUS_FAILED: 26844 if (ill != NULL) { 26845 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26846 } else { 26847 BUMP_MIB(&ipst->ips_ip_mib, 26848 ipIfStatsOutDiscards); 26849 } 26850 /* FALLTHRU */ 26851 case IPSEC_STATUS_PENDING: 26852 return; 26853 } 26854 } 26855 26856 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26857 ASSERT(io->ipsec_out_ah_sa != NULL); 26858 io->ipsec_out_ah_done = B_TRUE; 26859 if (ire == NULL) { 26860 int idx = io->ipsec_out_capab_ill_index; 26861 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26862 NULL, NULL, NULL, NULL, ipst); 26863 ill_need_rele = B_TRUE; 26864 } else { 26865 ill = (ill_t *)ire->ire_stq->q_ptr; 26866 } 26867 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26868 ire); 26869 26870 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26871 switch (ipsec_rc) { 26872 case IPSEC_STATUS_SUCCESS: 26873 break; 26874 case IPSEC_STATUS_FAILED: 26875 if (ill != NULL) { 26876 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26877 } else { 26878 BUMP_MIB(&ipst->ips_ip_mib, 26879 ipIfStatsOutDiscards); 26880 } 26881 /* FALLTHRU */ 26882 case IPSEC_STATUS_PENDING: 26883 if (ill != NULL && ill_need_rele) 26884 ill_refrele(ill); 26885 return; 26886 } 26887 } 26888 /* 26889 * We are done with IPsec processing. Send it over 26890 * the wire. 26891 */ 26892 done: 26893 mp = ipsec_mp->b_cont; 26894 ipha = (ipha_t *)mp->b_rptr; 26895 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26896 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26897 } else { 26898 ip6h = (ip6_t *)ipha; 26899 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26900 } 26901 if (ill != NULL && ill_need_rele) 26902 ill_refrele(ill); 26903 } 26904 26905 /* ARGSUSED */ 26906 void 26907 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26908 { 26909 opt_restart_t *or; 26910 int err; 26911 conn_t *connp; 26912 26913 ASSERT(CONN_Q(q)); 26914 connp = Q_TO_CONN(q); 26915 26916 ASSERT(first_mp->b_datap->db_type == M_CTL); 26917 or = (opt_restart_t *)first_mp->b_rptr; 26918 /* 26919 * We don't need to pass any credentials here since this is just 26920 * a restart. The credentials are passed in when svr4_optcom_req 26921 * is called the first time (from ip_wput_nondata). 26922 */ 26923 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26924 err = svr4_optcom_req(q, first_mp, NULL, 26925 &ip_opt_obj, B_FALSE); 26926 } else { 26927 ASSERT(or->or_type == T_OPTMGMT_REQ); 26928 err = tpi_optcom_req(q, first_mp, NULL, 26929 &ip_opt_obj, B_FALSE); 26930 } 26931 if (err != EINPROGRESS) { 26932 /* operation is done */ 26933 CONN_OPER_PENDING_DONE(connp); 26934 } 26935 } 26936 26937 /* 26938 * ioctls that go through a down/up sequence may need to wait for the down 26939 * to complete. This involves waiting for the ire and ipif refcnts to go down 26940 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26941 */ 26942 /* ARGSUSED */ 26943 void 26944 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26945 { 26946 struct iocblk *iocp; 26947 mblk_t *mp1; 26948 ip_ioctl_cmd_t *ipip; 26949 int err; 26950 sin_t *sin; 26951 struct lifreq *lifr; 26952 struct ifreq *ifr; 26953 26954 iocp = (struct iocblk *)mp->b_rptr; 26955 ASSERT(ipsq != NULL); 26956 /* Existence of mp1 verified in ip_wput_nondata */ 26957 mp1 = mp->b_cont->b_cont; 26958 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26959 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26960 /* 26961 * Special case where ipsq_current_ipif is not set: 26962 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26963 * ill could also have become part of a ipmp group in the 26964 * process, we are here as were not able to complete the 26965 * operation in ipif_set_values because we could not become 26966 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26967 * will not be set so we need to set it. 26968 */ 26969 ill_t *ill = q->q_ptr; 26970 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26971 } 26972 ASSERT(ipsq->ipsq_current_ipif != NULL); 26973 26974 if (ipip->ipi_cmd_type == IF_CMD) { 26975 /* This a old style SIOC[GS]IF* command */ 26976 ifr = (struct ifreq *)mp1->b_rptr; 26977 sin = (sin_t *)&ifr->ifr_addr; 26978 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26979 /* This a new style SIOC[GS]LIF* command */ 26980 lifr = (struct lifreq *)mp1->b_rptr; 26981 sin = (sin_t *)&lifr->lifr_addr; 26982 } else { 26983 sin = NULL; 26984 } 26985 26986 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 26987 ipip, mp1->b_rptr); 26988 26989 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26990 } 26991 26992 /* 26993 * ioctl processing 26994 * 26995 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26996 * the ioctl command in the ioctl tables, determines the copyin data size 26997 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26998 * 26999 * ioctl processing then continues when the M_IOCDATA makes its way down to 27000 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 27001 * associated 'conn' is refheld till the end of the ioctl and the general 27002 * ioctl processing function ip_process_ioctl() is called to extract the 27003 * arguments and process the ioctl. To simplify extraction, ioctl commands 27004 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 27005 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 27006 * is used to extract the ioctl's arguments. 27007 * 27008 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 27009 * so goes thru the serialization primitive ipsq_try_enter. Then the 27010 * appropriate function to handle the ioctl is called based on the entry in 27011 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 27012 * which also refreleases the 'conn' that was refheld at the start of the 27013 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 27014 * 27015 * Many exclusive ioctls go thru an internal down up sequence as part of 27016 * the operation. For example an attempt to change the IP address of an 27017 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 27018 * does all the cleanup such as deleting all ires that use this address. 27019 * Then we need to wait till all references to the interface go away. 27020 */ 27021 void 27022 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 27023 { 27024 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 27025 ip_ioctl_cmd_t *ipip = arg; 27026 ip_extract_func_t *extract_funcp; 27027 cmd_info_t ci; 27028 int err; 27029 27030 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 27031 27032 if (ipip == NULL) 27033 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27034 27035 /* 27036 * SIOCLIFADDIF needs to go thru a special path since the 27037 * ill may not exist yet. This happens in the case of lo0 27038 * which is created using this ioctl. 27039 */ 27040 if (ipip->ipi_cmd == SIOCLIFADDIF) { 27041 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 27042 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27043 return; 27044 } 27045 27046 ci.ci_ipif = NULL; 27047 if (ipip->ipi_cmd_type == MISC_CMD) { 27048 /* 27049 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 27050 */ 27051 if (ipip->ipi_cmd == IF_UNITSEL) { 27052 /* ioctl comes down the ill */ 27053 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 27054 ipif_refhold(ci.ci_ipif); 27055 } 27056 err = 0; 27057 ci.ci_sin = NULL; 27058 ci.ci_sin6 = NULL; 27059 ci.ci_lifr = NULL; 27060 } else { 27061 switch (ipip->ipi_cmd_type) { 27062 case IF_CMD: 27063 case LIF_CMD: 27064 extract_funcp = ip_extract_lifreq; 27065 break; 27066 27067 case ARP_CMD: 27068 case XARP_CMD: 27069 extract_funcp = ip_extract_arpreq; 27070 break; 27071 27072 case TUN_CMD: 27073 extract_funcp = ip_extract_tunreq; 27074 break; 27075 27076 case MSFILT_CMD: 27077 extract_funcp = ip_extract_msfilter; 27078 break; 27079 27080 default: 27081 ASSERT(0); 27082 } 27083 27084 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 27085 if (err != 0) { 27086 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27087 return; 27088 } 27089 27090 /* 27091 * All of the extraction functions return a refheld ipif. 27092 */ 27093 ASSERT(ci.ci_ipif != NULL); 27094 } 27095 27096 if (!(ipip->ipi_flags & IPI_WR)) { 27097 /* 27098 * A return value of EINPROGRESS means the ioctl is 27099 * either queued and waiting for some reason or has 27100 * already completed. 27101 */ 27102 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27103 ci.ci_lifr); 27104 if (ci.ci_ipif != NULL) 27105 ipif_refrele(ci.ci_ipif); 27106 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27107 return; 27108 } 27109 27110 /* 27111 * If ipsq is non-null, we are already being called exclusively on an 27112 * ill but in the case of a failover in progress it is the "from" ill, 27113 * rather than the "to" ill (which is the ill ptr passed in). 27114 * In order to ensure we are exclusive on both ILLs we rerun 27115 * ipsq_try_enter() here, ipsq's support recursive entry. 27116 */ 27117 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27118 ASSERT(ci.ci_ipif != NULL); 27119 27120 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 27121 NEW_OP, B_TRUE); 27122 27123 /* 27124 * Release the ipif so that ipif_down and friends that wait for 27125 * references to go away are not misled about the current ipif_refcnt 27126 * values. We are writer so we can access the ipif even after releasing 27127 * the ipif. 27128 */ 27129 ipif_refrele(ci.ci_ipif); 27130 if (ipsq == NULL) 27131 return; 27132 27133 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27134 27135 /* 27136 * For most set ioctls that come here, this serves as a single point 27137 * where we set the IPIF_CHANGING flag. This ensures that there won't 27138 * be any new references to the ipif. This helps functions that go 27139 * through this path and end up trying to wait for the refcnts 27140 * associated with the ipif to go down to zero. Some exceptions are 27141 * Failover, Failback, and Groupname commands that operate on more than 27142 * just the ci.ci_ipif. These commands internally determine the 27143 * set of ipif's they operate on and set and clear the IPIF_CHANGING 27144 * flags on that set. Another exception is the Removeif command that 27145 * sets the IPIF_CONDEMNED flag internally after identifying the right 27146 * ipif to operate on. 27147 */ 27148 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27149 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 27150 ipip->ipi_cmd != SIOCLIFFAILOVER && 27151 ipip->ipi_cmd != SIOCLIFFAILBACK && 27152 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 27153 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27154 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27155 27156 /* 27157 * A return value of EINPROGRESS means the ioctl is 27158 * either queued and waiting for some reason or has 27159 * already completed. 27160 */ 27161 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27162 27163 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27164 27165 ipsq_exit(ipsq); 27166 } 27167 27168 /* 27169 * Complete the ioctl. Typically ioctls use the mi package and need to 27170 * do mi_copyout/mi_copy_done. 27171 */ 27172 void 27173 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27174 { 27175 conn_t *connp = NULL; 27176 27177 if (err == EINPROGRESS) 27178 return; 27179 27180 if (CONN_Q(q)) { 27181 connp = Q_TO_CONN(q); 27182 ASSERT(connp->conn_ref >= 2); 27183 } 27184 27185 switch (mode) { 27186 case COPYOUT: 27187 if (err == 0) 27188 mi_copyout(q, mp); 27189 else 27190 mi_copy_done(q, mp, err); 27191 break; 27192 27193 case NO_COPYOUT: 27194 mi_copy_done(q, mp, err); 27195 break; 27196 27197 default: 27198 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27199 break; 27200 } 27201 27202 /* 27203 * The refhold placed at the start of the ioctl is released here. 27204 */ 27205 if (connp != NULL) 27206 CONN_OPER_PENDING_DONE(connp); 27207 27208 if (ipsq != NULL) 27209 ipsq_current_finish(ipsq); 27210 } 27211 27212 /* 27213 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27214 */ 27215 /* ARGSUSED */ 27216 void 27217 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27218 { 27219 conn_t *connp = arg; 27220 tcp_t *tcp; 27221 27222 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27223 tcp = connp->conn_tcp; 27224 27225 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27226 freemsg(mp); 27227 else 27228 tcp_rput_other(tcp, mp); 27229 CONN_OPER_PENDING_DONE(connp); 27230 } 27231 27232 /* Called from ip_wput for all non data messages */ 27233 /* ARGSUSED */ 27234 void 27235 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27236 { 27237 mblk_t *mp1; 27238 ire_t *ire, *fake_ire; 27239 ill_t *ill; 27240 struct iocblk *iocp; 27241 ip_ioctl_cmd_t *ipip; 27242 cred_t *cr; 27243 conn_t *connp; 27244 int err; 27245 nce_t *nce; 27246 ipif_t *ipif; 27247 ip_stack_t *ipst; 27248 char *proto_str; 27249 27250 if (CONN_Q(q)) { 27251 connp = Q_TO_CONN(q); 27252 ipst = connp->conn_netstack->netstack_ip; 27253 } else { 27254 connp = NULL; 27255 ipst = ILLQ_TO_IPST(q); 27256 } 27257 27258 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27259 27260 switch (DB_TYPE(mp)) { 27261 case M_IOCTL: 27262 /* 27263 * IOCTL processing begins in ip_sioctl_copyin_setup which 27264 * will arrange to copy in associated control structures. 27265 */ 27266 ip_sioctl_copyin_setup(q, mp); 27267 return; 27268 case M_IOCDATA: 27269 /* 27270 * Ensure that this is associated with one of our trans- 27271 * parent ioctls. If it's not ours, discard it if we're 27272 * running as a driver, or pass it on if we're a module. 27273 */ 27274 iocp = (struct iocblk *)mp->b_rptr; 27275 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27276 if (ipip == NULL) { 27277 if (q->q_next == NULL) { 27278 goto nak; 27279 } else { 27280 putnext(q, mp); 27281 } 27282 return; 27283 } 27284 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27285 /* 27286 * the ioctl is one we recognise, but is not 27287 * consumed by IP as a module, pass M_IOCDATA 27288 * for processing downstream, but only for 27289 * common Streams ioctls. 27290 */ 27291 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27292 putnext(q, mp); 27293 return; 27294 } else { 27295 goto nak; 27296 } 27297 } 27298 27299 /* IOCTL continuation following copyin or copyout. */ 27300 if (mi_copy_state(q, mp, NULL) == -1) { 27301 /* 27302 * The copy operation failed. mi_copy_state already 27303 * cleaned up, so we're out of here. 27304 */ 27305 return; 27306 } 27307 /* 27308 * If we just completed a copy in, we become writer and 27309 * continue processing in ip_sioctl_copyin_done. If it 27310 * was a copy out, we call mi_copyout again. If there is 27311 * nothing more to copy out, it will complete the IOCTL. 27312 */ 27313 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27314 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27315 mi_copy_done(q, mp, EPROTO); 27316 return; 27317 } 27318 /* 27319 * Check for cases that need more copying. A return 27320 * value of 0 means a second copyin has been started, 27321 * so we return; a return value of 1 means no more 27322 * copying is needed, so we continue. 27323 */ 27324 if (ipip->ipi_cmd_type == MSFILT_CMD && 27325 MI_COPY_COUNT(mp) == 1) { 27326 if (ip_copyin_msfilter(q, mp) == 0) 27327 return; 27328 } 27329 /* 27330 * Refhold the conn, till the ioctl completes. This is 27331 * needed in case the ioctl ends up in the pending mp 27332 * list. Every mp in the ill_pending_mp list and 27333 * the ipsq_pending_mp must have a refhold on the conn 27334 * to resume processing. The refhold is released when 27335 * the ioctl completes. (normally or abnormally) 27336 * In all cases ip_ioctl_finish is called to finish 27337 * the ioctl. 27338 */ 27339 if (connp != NULL) { 27340 /* This is not a reentry */ 27341 ASSERT(ipsq == NULL); 27342 CONN_INC_REF(connp); 27343 } else { 27344 if (!(ipip->ipi_flags & IPI_MODOK)) { 27345 mi_copy_done(q, mp, EINVAL); 27346 return; 27347 } 27348 } 27349 27350 ip_process_ioctl(ipsq, q, mp, ipip); 27351 27352 } else { 27353 mi_copyout(q, mp); 27354 } 27355 return; 27356 nak: 27357 iocp->ioc_error = EINVAL; 27358 mp->b_datap->db_type = M_IOCNAK; 27359 iocp->ioc_count = 0; 27360 qreply(q, mp); 27361 return; 27362 27363 case M_IOCNAK: 27364 /* 27365 * The only way we could get here is if a resolver didn't like 27366 * an IOCTL we sent it. This shouldn't happen. 27367 */ 27368 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27369 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27370 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27371 freemsg(mp); 27372 return; 27373 case M_IOCACK: 27374 /* /dev/ip shouldn't see this */ 27375 if (CONN_Q(q)) 27376 goto nak; 27377 27378 /* Finish socket ioctls passed through to ARP. */ 27379 ip_sioctl_iocack(q, mp); 27380 return; 27381 case M_FLUSH: 27382 if (*mp->b_rptr & FLUSHW) 27383 flushq(q, FLUSHALL); 27384 if (q->q_next) { 27385 putnext(q, mp); 27386 return; 27387 } 27388 if (*mp->b_rptr & FLUSHR) { 27389 *mp->b_rptr &= ~FLUSHW; 27390 qreply(q, mp); 27391 return; 27392 } 27393 freemsg(mp); 27394 return; 27395 case IRE_DB_REQ_TYPE: 27396 if (connp == NULL) { 27397 proto_str = "IRE_DB_REQ_TYPE"; 27398 goto protonak; 27399 } 27400 /* An Upper Level Protocol wants a copy of an IRE. */ 27401 ip_ire_req(q, mp); 27402 return; 27403 case M_CTL: 27404 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27405 break; 27406 27407 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27408 TUN_HELLO) { 27409 ASSERT(connp != NULL); 27410 connp->conn_flags |= IPCL_IPTUN; 27411 freeb(mp); 27412 return; 27413 } 27414 27415 /* M_CTL messages are used by ARP to tell us things. */ 27416 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27417 break; 27418 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27419 case AR_ENTRY_SQUERY: 27420 ip_wput_ctl(q, mp); 27421 return; 27422 case AR_CLIENT_NOTIFY: 27423 ip_arp_news(q, mp); 27424 return; 27425 case AR_DLPIOP_DONE: 27426 ASSERT(q->q_next != NULL); 27427 ill = (ill_t *)q->q_ptr; 27428 /* qwriter_ip releases the refhold */ 27429 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27430 ill_refhold(ill); 27431 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27432 return; 27433 case AR_ARP_CLOSING: 27434 /* 27435 * ARP (above us) is closing. If no ARP bringup is 27436 * currently pending, ack the message so that ARP 27437 * can complete its close. Also mark ill_arp_closing 27438 * so that new ARP bringups will fail. If any 27439 * ARP bringup is currently in progress, we will 27440 * ack this when the current ARP bringup completes. 27441 */ 27442 ASSERT(q->q_next != NULL); 27443 ill = (ill_t *)q->q_ptr; 27444 mutex_enter(&ill->ill_lock); 27445 ill->ill_arp_closing = 1; 27446 if (!ill->ill_arp_bringup_pending) { 27447 mutex_exit(&ill->ill_lock); 27448 qreply(q, mp); 27449 } else { 27450 mutex_exit(&ill->ill_lock); 27451 freemsg(mp); 27452 } 27453 return; 27454 case AR_ARP_EXTEND: 27455 /* 27456 * The ARP module above us is capable of duplicate 27457 * address detection. Old ATM drivers will not send 27458 * this message. 27459 */ 27460 ASSERT(q->q_next != NULL); 27461 ill = (ill_t *)q->q_ptr; 27462 ill->ill_arp_extend = B_TRUE; 27463 freemsg(mp); 27464 return; 27465 default: 27466 break; 27467 } 27468 break; 27469 case M_PROTO: 27470 case M_PCPROTO: 27471 /* 27472 * The only PROTO messages we expect are ULP binds and 27473 * copies of option negotiation acknowledgements. 27474 */ 27475 switch (((union T_primitives *)mp->b_rptr)->type) { 27476 case O_T_BIND_REQ: 27477 case T_BIND_REQ: { 27478 /* Request can get queued in bind */ 27479 if (connp == NULL) { 27480 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27481 goto protonak; 27482 } 27483 /* 27484 * The transports except SCTP call ip_bind_{v4,v6}() 27485 * directly instead of a a putnext. SCTP doesn't 27486 * generate any T_BIND_REQ since it has its own 27487 * fanout data structures. However, ESP and AH 27488 * come in for regular binds; all other cases are 27489 * bind retries. 27490 */ 27491 ASSERT(!IPCL_IS_SCTP(connp)); 27492 27493 /* Don't increment refcnt if this is a re-entry */ 27494 if (ipsq == NULL) 27495 CONN_INC_REF(connp); 27496 27497 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27498 connp, NULL) : ip_bind_v4(q, mp, connp); 27499 if (mp == NULL) 27500 return; 27501 if (IPCL_IS_TCP(connp)) { 27502 /* 27503 * In the case of TCP endpoint we 27504 * come here only for bind retries 27505 */ 27506 ASSERT(ipsq != NULL); 27507 CONN_INC_REF(connp); 27508 squeue_fill(connp->conn_sqp, mp, 27509 ip_resume_tcp_bind, connp, 27510 SQTAG_BIND_RETRY); 27511 } else if (IPCL_IS_UDP(connp)) { 27512 /* 27513 * In the case of UDP endpoint we 27514 * come here only for bind retries 27515 */ 27516 ASSERT(ipsq != NULL); 27517 udp_resume_bind(connp, mp); 27518 } else if (IPCL_IS_RAWIP(connp)) { 27519 /* 27520 * In the case of RAWIP endpoint we 27521 * come here only for bind retries 27522 */ 27523 ASSERT(ipsq != NULL); 27524 rawip_resume_bind(connp, mp); 27525 } else { 27526 /* The case of AH and ESP */ 27527 qreply(q, mp); 27528 CONN_OPER_PENDING_DONE(connp); 27529 } 27530 return; 27531 } 27532 case T_SVR4_OPTMGMT_REQ: 27533 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27534 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27535 27536 if (connp == NULL) { 27537 proto_str = "T_SVR4_OPTMGMT_REQ"; 27538 goto protonak; 27539 } 27540 27541 if (!snmpcom_req(q, mp, ip_snmp_set, 27542 ip_snmp_get, cr)) { 27543 /* 27544 * Call svr4_optcom_req so that it can 27545 * generate the ack. We don't come here 27546 * if this operation is being restarted. 27547 * ip_restart_optmgmt will drop the conn ref. 27548 * In the case of ipsec option after the ipsec 27549 * load is complete conn_restart_ipsec_waiter 27550 * drops the conn ref. 27551 */ 27552 ASSERT(ipsq == NULL); 27553 CONN_INC_REF(connp); 27554 if (ip_check_for_ipsec_opt(q, mp)) 27555 return; 27556 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27557 B_FALSE); 27558 if (err != EINPROGRESS) { 27559 /* Operation is done */ 27560 CONN_OPER_PENDING_DONE(connp); 27561 } 27562 } 27563 return; 27564 case T_OPTMGMT_REQ: 27565 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27566 /* 27567 * Note: No snmpcom_req support through new 27568 * T_OPTMGMT_REQ. 27569 * Call tpi_optcom_req so that it can 27570 * generate the ack. 27571 */ 27572 if (connp == NULL) { 27573 proto_str = "T_OPTMGMT_REQ"; 27574 goto protonak; 27575 } 27576 27577 ASSERT(ipsq == NULL); 27578 /* 27579 * We don't come here for restart. ip_restart_optmgmt 27580 * will drop the conn ref. In the case of ipsec option 27581 * after the ipsec load is complete 27582 * conn_restart_ipsec_waiter drops the conn ref. 27583 */ 27584 CONN_INC_REF(connp); 27585 if (ip_check_for_ipsec_opt(q, mp)) 27586 return; 27587 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27588 if (err != EINPROGRESS) { 27589 /* Operation is done */ 27590 CONN_OPER_PENDING_DONE(connp); 27591 } 27592 return; 27593 case T_UNBIND_REQ: 27594 if (connp == NULL) { 27595 proto_str = "T_UNBIND_REQ"; 27596 goto protonak; 27597 } 27598 mp = ip_unbind(q, mp); 27599 qreply(q, mp); 27600 return; 27601 default: 27602 /* 27603 * Have to drop any DLPI messages coming down from 27604 * arp (such as an info_req which would cause ip 27605 * to receive an extra info_ack if it was passed 27606 * through. 27607 */ 27608 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27609 (int)*(uint_t *)mp->b_rptr)); 27610 freemsg(mp); 27611 return; 27612 } 27613 /* NOTREACHED */ 27614 case IRE_DB_TYPE: { 27615 nce_t *nce; 27616 ill_t *ill; 27617 in6_addr_t gw_addr_v6; 27618 27619 27620 /* 27621 * This is a response back from a resolver. It 27622 * consists of a message chain containing: 27623 * IRE_MBLK-->LL_HDR_MBLK->pkt 27624 * The IRE_MBLK is the one we allocated in ip_newroute. 27625 * The LL_HDR_MBLK is the DLPI header to use to get 27626 * the attached packet, and subsequent ones for the 27627 * same destination, transmitted. 27628 */ 27629 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27630 break; 27631 /* 27632 * First, check to make sure the resolution succeeded. 27633 * If it failed, the second mblk will be empty. 27634 * If it is, free the chain, dropping the packet. 27635 * (We must ire_delete the ire; that frees the ire mblk) 27636 * We're doing this now to support PVCs for ATM; it's 27637 * a partial xresolv implementation. When we fully implement 27638 * xresolv interfaces, instead of freeing everything here 27639 * we'll initiate neighbor discovery. 27640 * 27641 * For v4 (ARP and other external resolvers) the resolver 27642 * frees the message, so no check is needed. This check 27643 * is required, though, for a full xresolve implementation. 27644 * Including this code here now both shows how external 27645 * resolvers can NACK a resolution request using an 27646 * existing design that has no specific provisions for NACKs, 27647 * and also takes into account that the current non-ARP 27648 * external resolver has been coded to use this method of 27649 * NACKing for all IPv6 (xresolv) cases, 27650 * whether our xresolv implementation is complete or not. 27651 * 27652 */ 27653 ire = (ire_t *)mp->b_rptr; 27654 ill = ire_to_ill(ire); 27655 mp1 = mp->b_cont; /* dl_unitdata_req */ 27656 if (mp1->b_rptr == mp1->b_wptr) { 27657 if (ire->ire_ipversion == IPV6_VERSION) { 27658 /* 27659 * XRESOLV interface. 27660 */ 27661 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27662 mutex_enter(&ire->ire_lock); 27663 gw_addr_v6 = ire->ire_gateway_addr_v6; 27664 mutex_exit(&ire->ire_lock); 27665 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27666 nce = ndp_lookup_v6(ill, 27667 &ire->ire_addr_v6, B_FALSE); 27668 } else { 27669 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27670 B_FALSE); 27671 } 27672 if (nce != NULL) { 27673 nce_resolv_failed(nce); 27674 ndp_delete(nce); 27675 NCE_REFRELE(nce); 27676 } 27677 } 27678 mp->b_cont = NULL; 27679 freemsg(mp1); /* frees the pkt as well */ 27680 ASSERT(ire->ire_nce == NULL); 27681 ire_delete((ire_t *)mp->b_rptr); 27682 return; 27683 } 27684 27685 /* 27686 * Split them into IRE_MBLK and pkt and feed it into 27687 * ire_add_then_send. Then in ire_add_then_send 27688 * the IRE will be added, and then the packet will be 27689 * run back through ip_wput. This time it will make 27690 * it to the wire. 27691 */ 27692 mp->b_cont = NULL; 27693 mp = mp1->b_cont; /* now, mp points to pkt */ 27694 mp1->b_cont = NULL; 27695 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27696 if (ire->ire_ipversion == IPV6_VERSION) { 27697 /* 27698 * XRESOLV interface. Find the nce and put a copy 27699 * of the dl_unitdata_req in nce_res_mp 27700 */ 27701 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27702 mutex_enter(&ire->ire_lock); 27703 gw_addr_v6 = ire->ire_gateway_addr_v6; 27704 mutex_exit(&ire->ire_lock); 27705 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27706 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27707 B_FALSE); 27708 } else { 27709 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27710 } 27711 if (nce != NULL) { 27712 /* 27713 * We have to protect nce_res_mp here 27714 * from being accessed by other threads 27715 * while we change the mblk pointer. 27716 * Other functions will also lock the nce when 27717 * accessing nce_res_mp. 27718 * 27719 * The reason we change the mblk pointer 27720 * here rather than copying the resolved address 27721 * into the template is that, unlike with 27722 * ethernet, we have no guarantee that the 27723 * resolved address length will be 27724 * smaller than or equal to the lla length 27725 * with which the template was allocated, 27726 * (for ethernet, they're equal) 27727 * so we have to use the actual resolved 27728 * address mblk - which holds the real 27729 * dl_unitdata_req with the resolved address. 27730 * 27731 * Doing this is the same behavior as was 27732 * previously used in the v4 ARP case. 27733 */ 27734 mutex_enter(&nce->nce_lock); 27735 if (nce->nce_res_mp != NULL) 27736 freemsg(nce->nce_res_mp); 27737 nce->nce_res_mp = mp1; 27738 mutex_exit(&nce->nce_lock); 27739 /* 27740 * We do a fastpath probe here because 27741 * we have resolved the address without 27742 * using Neighbor Discovery. 27743 * In the non-XRESOLV v6 case, the fastpath 27744 * probe is done right after neighbor 27745 * discovery completes. 27746 */ 27747 if (nce->nce_res_mp != NULL) { 27748 int res; 27749 nce_fastpath_list_add(nce); 27750 res = ill_fastpath_probe(ill, 27751 nce->nce_res_mp); 27752 if (res != 0 && res != EAGAIN) 27753 nce_fastpath_list_delete(nce); 27754 } 27755 27756 ire_add_then_send(q, ire, mp); 27757 /* 27758 * Now we have to clean out any packets 27759 * that may have been queued on the nce 27760 * while it was waiting for address resolution 27761 * to complete. 27762 */ 27763 mutex_enter(&nce->nce_lock); 27764 mp1 = nce->nce_qd_mp; 27765 nce->nce_qd_mp = NULL; 27766 mutex_exit(&nce->nce_lock); 27767 while (mp1 != NULL) { 27768 mblk_t *nxt_mp; 27769 queue_t *fwdq = NULL; 27770 ill_t *inbound_ill; 27771 uint_t ifindex; 27772 27773 nxt_mp = mp1->b_next; 27774 mp1->b_next = NULL; 27775 /* 27776 * Retrieve ifindex stored in 27777 * ip_rput_data_v6() 27778 */ 27779 ifindex = 27780 (uint_t)(uintptr_t)mp1->b_prev; 27781 inbound_ill = 27782 ill_lookup_on_ifindex(ifindex, 27783 B_TRUE, NULL, NULL, NULL, 27784 NULL, ipst); 27785 mp1->b_prev = NULL; 27786 if (inbound_ill != NULL) 27787 fwdq = inbound_ill->ill_rq; 27788 27789 if (fwdq != NULL) { 27790 put(fwdq, mp1); 27791 ill_refrele(inbound_ill); 27792 } else 27793 put(WR(ill->ill_rq), mp1); 27794 mp1 = nxt_mp; 27795 } 27796 NCE_REFRELE(nce); 27797 } else { /* nce is NULL; clean up */ 27798 ire_delete(ire); 27799 freemsg(mp); 27800 freemsg(mp1); 27801 return; 27802 } 27803 } else { 27804 nce_t *arpce; 27805 /* 27806 * Link layer resolution succeeded. Recompute the 27807 * ire_nce. 27808 */ 27809 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27810 if ((arpce = ndp_lookup_v4(ill, 27811 (ire->ire_gateway_addr != INADDR_ANY ? 27812 &ire->ire_gateway_addr : &ire->ire_addr), 27813 B_FALSE)) == NULL) { 27814 freeb(ire->ire_mp); 27815 freeb(mp1); 27816 freemsg(mp); 27817 return; 27818 } 27819 mutex_enter(&arpce->nce_lock); 27820 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27821 if (arpce->nce_state == ND_REACHABLE) { 27822 /* 27823 * Someone resolved this before us; 27824 * cleanup the res_mp. Since ire has 27825 * not been added yet, the call to ire_add_v4 27826 * from ire_add_then_send (when a dup is 27827 * detected) will clean up the ire. 27828 */ 27829 freeb(mp1); 27830 } else { 27831 ASSERT(arpce->nce_res_mp == NULL); 27832 arpce->nce_res_mp = mp1; 27833 arpce->nce_state = ND_REACHABLE; 27834 } 27835 mutex_exit(&arpce->nce_lock); 27836 if (ire->ire_marks & IRE_MARK_NOADD) { 27837 /* 27838 * this ire will not be added to the ire 27839 * cache table, so we can set the ire_nce 27840 * here, as there are no atomicity constraints. 27841 */ 27842 ire->ire_nce = arpce; 27843 /* 27844 * We are associating this nce with the ire 27845 * so change the nce ref taken in 27846 * ndp_lookup_v4() from 27847 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27848 */ 27849 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27850 } else { 27851 NCE_REFRELE(arpce); 27852 } 27853 ire_add_then_send(q, ire, mp); 27854 } 27855 return; /* All is well, the packet has been sent. */ 27856 } 27857 case IRE_ARPRESOLVE_TYPE: { 27858 27859 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27860 break; 27861 mp1 = mp->b_cont; /* dl_unitdata_req */ 27862 mp->b_cont = NULL; 27863 /* 27864 * First, check to make sure the resolution succeeded. 27865 * If it failed, the second mblk will be empty. 27866 */ 27867 if (mp1->b_rptr == mp1->b_wptr) { 27868 /* cleanup the incomplete ire, free queued packets */ 27869 freemsg(mp); /* fake ire */ 27870 freeb(mp1); /* dl_unitdata response */ 27871 return; 27872 } 27873 27874 /* 27875 * update any incomplete nce_t found. we lookup the ctable 27876 * and find the nce from the ire->ire_nce because we need 27877 * to pass the ire to ip_xmit_v4 later, and can find both 27878 * ire and nce in one lookup from the ctable. 27879 */ 27880 fake_ire = (ire_t *)mp->b_rptr; 27881 /* 27882 * By the time we come back here from ARP 27883 * the logical outgoing interface of the incomplete ire 27884 * we added in ire_forward could have disappeared, 27885 * causing the incomplete ire to also have 27886 * dissapeared. So we need to retreive the 27887 * proper ipif for the ire before looking 27888 * in ctable; do the ctablelookup based on ire_ipif_seqid 27889 */ 27890 ill = q->q_ptr; 27891 27892 /* Get the outgoing ipif */ 27893 mutex_enter(&ill->ill_lock); 27894 if (ill->ill_state_flags & ILL_CONDEMNED) { 27895 mutex_exit(&ill->ill_lock); 27896 freemsg(mp); /* fake ire */ 27897 freeb(mp1); /* dl_unitdata response */ 27898 return; 27899 } 27900 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27901 27902 if (ipif == NULL) { 27903 mutex_exit(&ill->ill_lock); 27904 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27905 freemsg(mp); 27906 freeb(mp1); 27907 return; 27908 } 27909 ipif_refhold_locked(ipif); 27910 mutex_exit(&ill->ill_lock); 27911 ire = ire_ctable_lookup(fake_ire->ire_addr, 27912 fake_ire->ire_gateway_addr, IRE_CACHE, 27913 ipif, fake_ire->ire_zoneid, NULL, 27914 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY| 27915 MATCH_IRE_TYPE), ipst); 27916 ipif_refrele(ipif); 27917 if (ire == NULL) { 27918 /* 27919 * no ire was found; check if there is an nce 27920 * for this lookup; if it has no ire's pointing at it 27921 * cleanup. 27922 */ 27923 if ((nce = ndp_lookup_v4(ill, 27924 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27925 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27926 B_FALSE)) != NULL) { 27927 /* 27928 * cleanup: 27929 * We check for refcnt 2 (one for the nce 27930 * hash list + 1 for the ref taken by 27931 * ndp_lookup_v4) to check that there are 27932 * no ire's pointing at the nce. 27933 */ 27934 if (nce->nce_refcnt == 2) 27935 ndp_delete(nce); 27936 NCE_REFRELE(nce); 27937 } 27938 freeb(mp1); /* dl_unitdata response */ 27939 freemsg(mp); /* fake ire */ 27940 return; 27941 } 27942 nce = ire->ire_nce; 27943 DTRACE_PROBE2(ire__arpresolve__type, 27944 ire_t *, ire, nce_t *, nce); 27945 ASSERT(nce->nce_state != ND_INITIAL); 27946 mutex_enter(&nce->nce_lock); 27947 nce->nce_last = TICK_TO_MSEC(lbolt64); 27948 if (nce->nce_state == ND_REACHABLE) { 27949 /* 27950 * Someone resolved this before us; 27951 * our response is not needed any more. 27952 */ 27953 mutex_exit(&nce->nce_lock); 27954 freeb(mp1); /* dl_unitdata response */ 27955 } else { 27956 ASSERT(nce->nce_res_mp == NULL); 27957 nce->nce_res_mp = mp1; 27958 nce->nce_state = ND_REACHABLE; 27959 mutex_exit(&nce->nce_lock); 27960 nce_fastpath(nce); 27961 } 27962 /* 27963 * The cached nce_t has been updated to be reachable; 27964 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27965 */ 27966 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27967 freemsg(mp); 27968 /* 27969 * send out queued packets. 27970 */ 27971 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27972 27973 IRE_REFRELE(ire); 27974 return; 27975 } 27976 default: 27977 break; 27978 } 27979 if (q->q_next) { 27980 putnext(q, mp); 27981 } else 27982 freemsg(mp); 27983 return; 27984 27985 protonak: 27986 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27987 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27988 qreply(q, mp); 27989 } 27990 27991 /* 27992 * Process IP options in an outbound packet. Modify the destination if there 27993 * is a source route option. 27994 * Returns non-zero if something fails in which case an ICMP error has been 27995 * sent and mp freed. 27996 */ 27997 static int 27998 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27999 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 28000 { 28001 ipoptp_t opts; 28002 uchar_t *opt; 28003 uint8_t optval; 28004 uint8_t optlen; 28005 ipaddr_t dst; 28006 intptr_t code = 0; 28007 mblk_t *mp; 28008 ire_t *ire = NULL; 28009 28010 ip2dbg(("ip_wput_options\n")); 28011 mp = ipsec_mp; 28012 if (mctl_present) { 28013 mp = ipsec_mp->b_cont; 28014 } 28015 28016 dst = ipha->ipha_dst; 28017 for (optval = ipoptp_first(&opts, ipha); 28018 optval != IPOPT_EOL; 28019 optval = ipoptp_next(&opts)) { 28020 opt = opts.ipoptp_cur; 28021 optlen = opts.ipoptp_len; 28022 ip2dbg(("ip_wput_options: opt %d, len %d\n", 28023 optval, optlen)); 28024 switch (optval) { 28025 uint32_t off; 28026 case IPOPT_SSRR: 28027 case IPOPT_LSRR: 28028 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28029 ip1dbg(( 28030 "ip_wput_options: bad option offset\n")); 28031 code = (char *)&opt[IPOPT_OLEN] - 28032 (char *)ipha; 28033 goto param_prob; 28034 } 28035 off = opt[IPOPT_OFFSET]; 28036 ip1dbg(("ip_wput_options: next hop 0x%x\n", 28037 ntohl(dst))); 28038 /* 28039 * For strict: verify that dst is directly 28040 * reachable. 28041 */ 28042 if (optval == IPOPT_SSRR) { 28043 ire = ire_ftable_lookup(dst, 0, 0, 28044 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 28045 MBLK_GETLABEL(mp), 28046 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 28047 if (ire == NULL) { 28048 ip1dbg(("ip_wput_options: SSRR not" 28049 " directly reachable: 0x%x\n", 28050 ntohl(dst))); 28051 goto bad_src_route; 28052 } 28053 ire_refrele(ire); 28054 } 28055 break; 28056 case IPOPT_RR: 28057 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28058 ip1dbg(( 28059 "ip_wput_options: bad option offset\n")); 28060 code = (char *)&opt[IPOPT_OLEN] - 28061 (char *)ipha; 28062 goto param_prob; 28063 } 28064 break; 28065 case IPOPT_TS: 28066 /* 28067 * Verify that length >=5 and that there is either 28068 * room for another timestamp or that the overflow 28069 * counter is not maxed out. 28070 */ 28071 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 28072 if (optlen < IPOPT_MINLEN_IT) { 28073 goto param_prob; 28074 } 28075 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28076 ip1dbg(( 28077 "ip_wput_options: bad option offset\n")); 28078 code = (char *)&opt[IPOPT_OFFSET] - 28079 (char *)ipha; 28080 goto param_prob; 28081 } 28082 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 28083 case IPOPT_TS_TSONLY: 28084 off = IPOPT_TS_TIMELEN; 28085 break; 28086 case IPOPT_TS_TSANDADDR: 28087 case IPOPT_TS_PRESPEC: 28088 case IPOPT_TS_PRESPEC_RFC791: 28089 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 28090 break; 28091 default: 28092 code = (char *)&opt[IPOPT_POS_OV_FLG] - 28093 (char *)ipha; 28094 goto param_prob; 28095 } 28096 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28097 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28098 /* 28099 * No room and the overflow counter is 15 28100 * already. 28101 */ 28102 goto param_prob; 28103 } 28104 break; 28105 } 28106 } 28107 28108 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28109 return (0); 28110 28111 ip1dbg(("ip_wput_options: error processing IP options.")); 28112 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28113 28114 param_prob: 28115 /* 28116 * Since ip_wput() isn't close to finished, we fill 28117 * in enough of the header for credible error reporting. 28118 */ 28119 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28120 /* Failed */ 28121 freemsg(ipsec_mp); 28122 return (-1); 28123 } 28124 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28125 return (-1); 28126 28127 bad_src_route: 28128 /* 28129 * Since ip_wput() isn't close to finished, we fill 28130 * in enough of the header for credible error reporting. 28131 */ 28132 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28133 /* Failed */ 28134 freemsg(ipsec_mp); 28135 return (-1); 28136 } 28137 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28138 return (-1); 28139 } 28140 28141 /* 28142 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28143 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28144 * thru /etc/system. 28145 */ 28146 #define CONN_MAXDRAINCNT 64 28147 28148 static void 28149 conn_drain_init(ip_stack_t *ipst) 28150 { 28151 int i; 28152 28153 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28154 28155 if ((ipst->ips_conn_drain_list_cnt == 0) || 28156 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28157 /* 28158 * Default value of the number of drainers is the 28159 * number of cpus, subject to maximum of 8 drainers. 28160 */ 28161 if (boot_max_ncpus != -1) 28162 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28163 else 28164 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28165 } 28166 28167 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28168 sizeof (idl_t), KM_SLEEP); 28169 28170 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28171 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28172 MUTEX_DEFAULT, NULL); 28173 } 28174 } 28175 28176 static void 28177 conn_drain_fini(ip_stack_t *ipst) 28178 { 28179 int i; 28180 28181 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28182 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28183 kmem_free(ipst->ips_conn_drain_list, 28184 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28185 ipst->ips_conn_drain_list = NULL; 28186 } 28187 28188 /* 28189 * Note: For an overview of how flowcontrol is handled in IP please see the 28190 * IP Flowcontrol notes at the top of this file. 28191 * 28192 * Flow control has blocked us from proceeding. Insert the given conn in one 28193 * of the conn drain lists. These conn wq's will be qenabled later on when 28194 * STREAMS flow control does a backenable. conn_walk_drain will enable 28195 * the first conn in each of these drain lists. Each of these qenabled conns 28196 * in turn enables the next in the list, after it runs, or when it closes, 28197 * thus sustaining the drain process. 28198 * 28199 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28200 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28201 * running at any time, on a given conn, since there can be only 1 service proc 28202 * running on a queue at any time. 28203 */ 28204 void 28205 conn_drain_insert(conn_t *connp) 28206 { 28207 idl_t *idl; 28208 uint_t index; 28209 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28210 28211 mutex_enter(&connp->conn_lock); 28212 if (connp->conn_state_flags & CONN_CLOSING) { 28213 /* 28214 * The conn is closing as a result of which CONN_CLOSING 28215 * is set. Return. 28216 */ 28217 mutex_exit(&connp->conn_lock); 28218 return; 28219 } else if (connp->conn_idl == NULL) { 28220 /* 28221 * Assign the next drain list round robin. We dont' use 28222 * a lock, and thus it may not be strictly round robin. 28223 * Atomicity of load/stores is enough to make sure that 28224 * conn_drain_list_index is always within bounds. 28225 */ 28226 index = ipst->ips_conn_drain_list_index; 28227 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28228 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28229 index++; 28230 if (index == ipst->ips_conn_drain_list_cnt) 28231 index = 0; 28232 ipst->ips_conn_drain_list_index = index; 28233 } 28234 mutex_exit(&connp->conn_lock); 28235 28236 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28237 if ((connp->conn_drain_prev != NULL) || 28238 (connp->conn_state_flags & CONN_CLOSING)) { 28239 /* 28240 * The conn is already in the drain list, OR 28241 * the conn is closing. We need to check again for 28242 * the closing case again since close can happen 28243 * after we drop the conn_lock, and before we 28244 * acquire the CONN_DRAIN_LIST_LOCK. 28245 */ 28246 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28247 return; 28248 } else { 28249 idl = connp->conn_idl; 28250 } 28251 28252 /* 28253 * The conn is not in the drain list. Insert it at the 28254 * tail of the drain list. The drain list is circular 28255 * and doubly linked. idl_conn points to the 1st element 28256 * in the list. 28257 */ 28258 if (idl->idl_conn == NULL) { 28259 idl->idl_conn = connp; 28260 connp->conn_drain_next = connp; 28261 connp->conn_drain_prev = connp; 28262 } else { 28263 conn_t *head = idl->idl_conn; 28264 28265 connp->conn_drain_next = head; 28266 connp->conn_drain_prev = head->conn_drain_prev; 28267 head->conn_drain_prev->conn_drain_next = connp; 28268 head->conn_drain_prev = connp; 28269 } 28270 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28271 } 28272 28273 /* 28274 * This conn is closing, and we are called from ip_close. OR 28275 * This conn has been serviced by ip_wsrv, and we need to do the tail 28276 * processing. 28277 * If this conn is part of the drain list, we may need to sustain the drain 28278 * process by qenabling the next conn in the drain list. We may also need to 28279 * remove this conn from the list, if it is done. 28280 */ 28281 static void 28282 conn_drain_tail(conn_t *connp, boolean_t closing) 28283 { 28284 idl_t *idl; 28285 28286 /* 28287 * connp->conn_idl is stable at this point, and no lock is needed 28288 * to check it. If we are called from ip_close, close has already 28289 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28290 * called us only because conn_idl is non-null. If we are called thru 28291 * service, conn_idl could be null, but it cannot change because 28292 * service is single-threaded per queue, and there cannot be another 28293 * instance of service trying to call conn_drain_insert on this conn 28294 * now. 28295 */ 28296 ASSERT(!closing || (connp->conn_idl != NULL)); 28297 28298 /* 28299 * If connp->conn_idl is null, the conn has not been inserted into any 28300 * drain list even once since creation of the conn. Just return. 28301 */ 28302 if (connp->conn_idl == NULL) 28303 return; 28304 28305 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28306 28307 if (connp->conn_drain_prev == NULL) { 28308 /* This conn is currently not in the drain list. */ 28309 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28310 return; 28311 } 28312 idl = connp->conn_idl; 28313 if (idl->idl_conn_draining == connp) { 28314 /* 28315 * This conn is the current drainer. If this is the last conn 28316 * in the drain list, we need to do more checks, in the 'if' 28317 * below. Otherwwise we need to just qenable the next conn, 28318 * to sustain the draining, and is handled in the 'else' 28319 * below. 28320 */ 28321 if (connp->conn_drain_next == idl->idl_conn) { 28322 /* 28323 * This conn is the last in this list. This round 28324 * of draining is complete. If idl_repeat is set, 28325 * it means another flow enabling has happened from 28326 * the driver/streams and we need to another round 28327 * of draining. 28328 * If there are more than 2 conns in the drain list, 28329 * do a left rotate by 1, so that all conns except the 28330 * conn at the head move towards the head by 1, and the 28331 * the conn at the head goes to the tail. This attempts 28332 * a more even share for all queues that are being 28333 * drained. 28334 */ 28335 if ((connp->conn_drain_next != connp) && 28336 (idl->idl_conn->conn_drain_next != connp)) { 28337 idl->idl_conn = idl->idl_conn->conn_drain_next; 28338 } 28339 if (idl->idl_repeat) { 28340 qenable(idl->idl_conn->conn_wq); 28341 idl->idl_conn_draining = idl->idl_conn; 28342 idl->idl_repeat = 0; 28343 } else { 28344 idl->idl_conn_draining = NULL; 28345 } 28346 } else { 28347 /* 28348 * If the next queue that we are now qenable'ing, 28349 * is closing, it will remove itself from this list 28350 * and qenable the subsequent queue in ip_close(). 28351 * Serialization is acheived thru idl_lock. 28352 */ 28353 qenable(connp->conn_drain_next->conn_wq); 28354 idl->idl_conn_draining = connp->conn_drain_next; 28355 } 28356 } 28357 if (!connp->conn_did_putbq || closing) { 28358 /* 28359 * Remove ourself from the drain list, if we did not do 28360 * a putbq, or if the conn is closing. 28361 * Note: It is possible that q->q_first is non-null. It means 28362 * that these messages landed after we did a enableok() in 28363 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28364 * service them. 28365 */ 28366 if (connp->conn_drain_next == connp) { 28367 /* Singleton in the list */ 28368 ASSERT(connp->conn_drain_prev == connp); 28369 idl->idl_conn = NULL; 28370 idl->idl_conn_draining = NULL; 28371 } else { 28372 connp->conn_drain_prev->conn_drain_next = 28373 connp->conn_drain_next; 28374 connp->conn_drain_next->conn_drain_prev = 28375 connp->conn_drain_prev; 28376 if (idl->idl_conn == connp) 28377 idl->idl_conn = connp->conn_drain_next; 28378 ASSERT(idl->idl_conn_draining != connp); 28379 28380 } 28381 connp->conn_drain_next = NULL; 28382 connp->conn_drain_prev = NULL; 28383 } 28384 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28385 } 28386 28387 /* 28388 * Write service routine. Shared perimeter entry point. 28389 * ip_wsrv can be called in any of the following ways. 28390 * 1. The device queue's messages has fallen below the low water mark 28391 * and STREAMS has backenabled the ill_wq. We walk thru all the 28392 * the drain lists and backenable the first conn in each list. 28393 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28394 * qenabled non-tcp upper layers. We start dequeing messages and call 28395 * ip_wput for each message. 28396 */ 28397 28398 void 28399 ip_wsrv(queue_t *q) 28400 { 28401 conn_t *connp; 28402 ill_t *ill; 28403 mblk_t *mp; 28404 28405 if (q->q_next) { 28406 ill = (ill_t *)q->q_ptr; 28407 if (ill->ill_state_flags == 0) { 28408 /* 28409 * The device flow control has opened up. 28410 * Walk through conn drain lists and qenable the 28411 * first conn in each list. This makes sense only 28412 * if the stream is fully plumbed and setup. 28413 * Hence the if check above. 28414 */ 28415 ip1dbg(("ip_wsrv: walking\n")); 28416 conn_walk_drain(ill->ill_ipst); 28417 } 28418 return; 28419 } 28420 28421 connp = Q_TO_CONN(q); 28422 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28423 28424 /* 28425 * 1. Set conn_draining flag to signal that service is active. 28426 * 28427 * 2. ip_output determines whether it has been called from service, 28428 * based on the last parameter. If it is IP_WSRV it concludes it 28429 * has been called from service. 28430 * 28431 * 3. Message ordering is preserved by the following logic. 28432 * i. A directly called ip_output (i.e. not thru service) will queue 28433 * the message at the tail, if conn_draining is set (i.e. service 28434 * is running) or if q->q_first is non-null. 28435 * 28436 * ii. If ip_output is called from service, and if ip_output cannot 28437 * putnext due to flow control, it does a putbq. 28438 * 28439 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28440 * (causing an infinite loop). 28441 */ 28442 ASSERT(!connp->conn_did_putbq); 28443 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28444 connp->conn_draining = 1; 28445 noenable(q); 28446 while ((mp = getq(q)) != NULL) { 28447 ASSERT(CONN_Q(q)); 28448 28449 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28450 if (connp->conn_did_putbq) { 28451 /* ip_wput did a putbq */ 28452 break; 28453 } 28454 } 28455 /* 28456 * At this point, a thread coming down from top, calling 28457 * ip_wput, may end up queueing the message. We have not yet 28458 * enabled the queue, so ip_wsrv won't be called again. 28459 * To avoid this race, check q->q_first again (in the loop) 28460 * If the other thread queued the message before we call 28461 * enableok(), we will catch it in the q->q_first check. 28462 * If the other thread queues the message after we call 28463 * enableok(), ip_wsrv will be called again by STREAMS. 28464 */ 28465 connp->conn_draining = 0; 28466 enableok(q); 28467 } 28468 28469 /* Enable the next conn for draining */ 28470 conn_drain_tail(connp, B_FALSE); 28471 28472 connp->conn_did_putbq = 0; 28473 } 28474 28475 /* 28476 * Walk the list of all conn's calling the function provided with the 28477 * specified argument for each. Note that this only walks conn's that 28478 * have been bound. 28479 * Applies to both IPv4 and IPv6. 28480 */ 28481 static void 28482 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28483 { 28484 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28485 ipst->ips_ipcl_udp_fanout_size, 28486 func, arg, zoneid); 28487 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28488 ipst->ips_ipcl_conn_fanout_size, 28489 func, arg, zoneid); 28490 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28491 ipst->ips_ipcl_bind_fanout_size, 28492 func, arg, zoneid); 28493 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28494 IPPROTO_MAX, func, arg, zoneid); 28495 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28496 IPPROTO_MAX, func, arg, zoneid); 28497 } 28498 28499 /* 28500 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28501 * of conns that need to be drained, check if drain is already in progress. 28502 * If so set the idl_repeat bit, indicating that the last conn in the list 28503 * needs to reinitiate the drain once again, for the list. If drain is not 28504 * in progress for the list, initiate the draining, by qenabling the 1st 28505 * conn in the list. The drain is self-sustaining, each qenabled conn will 28506 * in turn qenable the next conn, when it is done/blocked/closing. 28507 */ 28508 static void 28509 conn_walk_drain(ip_stack_t *ipst) 28510 { 28511 int i; 28512 idl_t *idl; 28513 28514 IP_STAT(ipst, ip_conn_walk_drain); 28515 28516 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28517 idl = &ipst->ips_conn_drain_list[i]; 28518 mutex_enter(&idl->idl_lock); 28519 if (idl->idl_conn == NULL) { 28520 mutex_exit(&idl->idl_lock); 28521 continue; 28522 } 28523 /* 28524 * If this list is not being drained currently by 28525 * an ip_wsrv thread, start the process. 28526 */ 28527 if (idl->idl_conn_draining == NULL) { 28528 ASSERT(idl->idl_repeat == 0); 28529 qenable(idl->idl_conn->conn_wq); 28530 idl->idl_conn_draining = idl->idl_conn; 28531 } else { 28532 idl->idl_repeat = 1; 28533 } 28534 mutex_exit(&idl->idl_lock); 28535 } 28536 } 28537 28538 /* 28539 * Walk an conn hash table of `count' buckets, calling func for each entry. 28540 */ 28541 static void 28542 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28543 zoneid_t zoneid) 28544 { 28545 conn_t *connp; 28546 28547 while (count-- > 0) { 28548 mutex_enter(&connfp->connf_lock); 28549 for (connp = connfp->connf_head; connp != NULL; 28550 connp = connp->conn_next) { 28551 if (zoneid == GLOBAL_ZONEID || 28552 zoneid == connp->conn_zoneid) { 28553 CONN_INC_REF(connp); 28554 mutex_exit(&connfp->connf_lock); 28555 (*func)(connp, arg); 28556 mutex_enter(&connfp->connf_lock); 28557 CONN_DEC_REF(connp); 28558 } 28559 } 28560 mutex_exit(&connfp->connf_lock); 28561 connfp++; 28562 } 28563 } 28564 28565 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */ 28566 static void 28567 conn_report1(conn_t *connp, void *mp) 28568 { 28569 char buf1[INET6_ADDRSTRLEN]; 28570 char buf2[INET6_ADDRSTRLEN]; 28571 uint_t print_len, buf_len; 28572 28573 ASSERT(connp != NULL); 28574 28575 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28576 if (buf_len <= 0) 28577 return; 28578 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28579 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28580 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28581 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28582 "%5d %s/%05d %s/%05d\n", 28583 (void *)connp, (void *)CONNP_TO_RQ(connp), 28584 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28585 buf1, connp->conn_lport, 28586 buf2, connp->conn_fport); 28587 if (print_len < buf_len) { 28588 ((mblk_t *)mp)->b_wptr += print_len; 28589 } else { 28590 ((mblk_t *)mp)->b_wptr += buf_len; 28591 } 28592 } 28593 28594 /* 28595 * Named Dispatch routine to produce a formatted report on all conns 28596 * that are listed in one of the fanout tables. 28597 * This report is accessed by using the ndd utility to "get" ND variable 28598 * "ip_conn_status". 28599 */ 28600 /* ARGSUSED */ 28601 static int 28602 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28603 { 28604 conn_t *connp = Q_TO_CONN(q); 28605 28606 (void) mi_mpprintf(mp, 28607 "CONN " MI_COL_HDRPAD_STR 28608 "rfq " MI_COL_HDRPAD_STR 28609 "stq " MI_COL_HDRPAD_STR 28610 " zone local remote"); 28611 28612 /* 28613 * Because of the ndd constraint, at most we can have 64K buffer 28614 * to put in all conn info. So to be more efficient, just 28615 * allocate a 64K buffer here, assuming we need that large buffer. 28616 * This should be OK as only privileged processes can do ndd /dev/ip. 28617 */ 28618 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28619 /* The following may work even if we cannot get a large buf. */ 28620 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28621 return (0); 28622 } 28623 28624 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28625 connp->conn_netstack->netstack_ip); 28626 return (0); 28627 } 28628 28629 /* 28630 * Determine if the ill and multicast aspects of that packets 28631 * "matches" the conn. 28632 */ 28633 boolean_t 28634 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28635 zoneid_t zoneid) 28636 { 28637 ill_t *in_ill; 28638 boolean_t found; 28639 ipif_t *ipif; 28640 ire_t *ire; 28641 ipaddr_t dst, src; 28642 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28643 28644 dst = ipha->ipha_dst; 28645 src = ipha->ipha_src; 28646 28647 /* 28648 * conn_incoming_ill is set by IP_BOUND_IF which limits 28649 * unicast, broadcast and multicast reception to 28650 * conn_incoming_ill. conn_wantpacket itself is called 28651 * only for BROADCAST and multicast. 28652 * 28653 * 1) ip_rput supresses duplicate broadcasts if the ill 28654 * is part of a group. Hence, we should be receiving 28655 * just one copy of broadcast for the whole group. 28656 * Thus, if it is part of the group the packet could 28657 * come on any ill of the group and hence we need a 28658 * match on the group. Otherwise, match on ill should 28659 * be sufficient. 28660 * 28661 * 2) ip_rput does not suppress duplicate multicast packets. 28662 * If there are two interfaces in a ill group and we have 28663 * 2 applications (conns) joined a multicast group G on 28664 * both the interfaces, ilm_lookup_ill filter in ip_rput 28665 * will give us two packets because we join G on both the 28666 * interfaces rather than nominating just one interface 28667 * for receiving multicast like broadcast above. So, 28668 * we have to call ilg_lookup_ill to filter out duplicate 28669 * copies, if ill is part of a group. 28670 */ 28671 in_ill = connp->conn_incoming_ill; 28672 if (in_ill != NULL) { 28673 if (in_ill->ill_group == NULL) { 28674 if (in_ill != ill) 28675 return (B_FALSE); 28676 } else if (in_ill->ill_group != ill->ill_group) { 28677 return (B_FALSE); 28678 } 28679 } 28680 28681 if (!CLASSD(dst)) { 28682 if (IPCL_ZONE_MATCH(connp, zoneid)) 28683 return (B_TRUE); 28684 /* 28685 * The conn is in a different zone; we need to check that this 28686 * broadcast address is configured in the application's zone and 28687 * on one ill in the group. 28688 */ 28689 ipif = ipif_get_next_ipif(NULL, ill); 28690 if (ipif == NULL) 28691 return (B_FALSE); 28692 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28693 connp->conn_zoneid, NULL, 28694 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28695 ipif_refrele(ipif); 28696 if (ire != NULL) { 28697 ire_refrele(ire); 28698 return (B_TRUE); 28699 } else { 28700 return (B_FALSE); 28701 } 28702 } 28703 28704 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28705 connp->conn_zoneid == zoneid) { 28706 /* 28707 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28708 * disabled, therefore we don't dispatch the multicast packet to 28709 * the sending zone. 28710 */ 28711 return (B_FALSE); 28712 } 28713 28714 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28715 /* 28716 * Multicast packet on the loopback interface: we only match 28717 * conns who joined the group in the specified zone. 28718 */ 28719 return (B_FALSE); 28720 } 28721 28722 if (connp->conn_multi_router) { 28723 /* multicast packet and multicast router socket: send up */ 28724 return (B_TRUE); 28725 } 28726 28727 mutex_enter(&connp->conn_lock); 28728 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28729 mutex_exit(&connp->conn_lock); 28730 return (found); 28731 } 28732 28733 /* 28734 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28735 */ 28736 /* ARGSUSED */ 28737 static void 28738 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28739 { 28740 ill_t *ill = (ill_t *)q->q_ptr; 28741 mblk_t *mp1, *mp2; 28742 ipif_t *ipif; 28743 int err = 0; 28744 conn_t *connp = NULL; 28745 ipsq_t *ipsq; 28746 arc_t *arc; 28747 28748 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28749 28750 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28751 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28752 28753 ASSERT(IAM_WRITER_ILL(ill)); 28754 mp2 = mp->b_cont; 28755 mp->b_cont = NULL; 28756 28757 /* 28758 * We have now received the arp bringup completion message 28759 * from ARP. Mark the arp bringup as done. Also if the arp 28760 * stream has already started closing, send up the AR_ARP_CLOSING 28761 * ack now since ARP is waiting in close for this ack. 28762 */ 28763 mutex_enter(&ill->ill_lock); 28764 ill->ill_arp_bringup_pending = 0; 28765 if (ill->ill_arp_closing) { 28766 mutex_exit(&ill->ill_lock); 28767 /* Let's reuse the mp for sending the ack */ 28768 arc = (arc_t *)mp->b_rptr; 28769 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28770 arc->arc_cmd = AR_ARP_CLOSING; 28771 qreply(q, mp); 28772 } else { 28773 mutex_exit(&ill->ill_lock); 28774 freeb(mp); 28775 } 28776 28777 ipsq = ill->ill_phyint->phyint_ipsq; 28778 ipif = ipsq->ipsq_pending_ipif; 28779 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28780 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28781 if (mp1 == NULL) { 28782 /* bringup was aborted by the user */ 28783 freemsg(mp2); 28784 return; 28785 } 28786 28787 /* 28788 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28789 * must have an associated conn_t. Otherwise, we're bringing this 28790 * interface back up as part of handling an asynchronous event (e.g., 28791 * physical address change). 28792 */ 28793 if (ipsq->ipsq_current_ioctl != 0) { 28794 ASSERT(connp != NULL); 28795 q = CONNP_TO_WQ(connp); 28796 } else { 28797 ASSERT(connp == NULL); 28798 q = ill->ill_rq; 28799 } 28800 28801 /* 28802 * If the DL_BIND_REQ fails, it is noted 28803 * in arc_name_offset. 28804 */ 28805 err = *((int *)mp2->b_rptr); 28806 if (err == 0) { 28807 if (ipif->ipif_isv6) { 28808 if ((err = ipif_up_done_v6(ipif)) != 0) 28809 ip0dbg(("ip_arp_done: init failed\n")); 28810 } else { 28811 if ((err = ipif_up_done(ipif)) != 0) 28812 ip0dbg(("ip_arp_done: init failed\n")); 28813 } 28814 } else { 28815 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28816 } 28817 28818 freemsg(mp2); 28819 28820 if ((err == 0) && (ill->ill_up_ipifs)) { 28821 err = ill_up_ipifs(ill, q, mp1); 28822 if (err == EINPROGRESS) 28823 return; 28824 } 28825 28826 if (ill->ill_up_ipifs) 28827 ill_group_cleanup(ill); 28828 28829 /* 28830 * The operation must complete without EINPROGRESS since 28831 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 28832 * Otherwise, the operation will be stuck forever in the ipsq. 28833 */ 28834 ASSERT(err != EINPROGRESS); 28835 if (ipsq->ipsq_current_ioctl != 0) 28836 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28837 else 28838 ipsq_current_finish(ipsq); 28839 } 28840 28841 /* Allocate the private structure */ 28842 static int 28843 ip_priv_alloc(void **bufp) 28844 { 28845 void *buf; 28846 28847 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28848 return (ENOMEM); 28849 28850 *bufp = buf; 28851 return (0); 28852 } 28853 28854 /* Function to delete the private structure */ 28855 void 28856 ip_priv_free(void *buf) 28857 { 28858 ASSERT(buf != NULL); 28859 kmem_free(buf, sizeof (ip_priv_t)); 28860 } 28861 28862 /* 28863 * The entry point for IPPF processing. 28864 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28865 * routine just returns. 28866 * 28867 * When called, ip_process generates an ipp_packet_t structure 28868 * which holds the state information for this packet and invokes the 28869 * the classifier (via ipp_packet_process). The classification, depending on 28870 * configured filters, results in a list of actions for this packet. Invoking 28871 * an action may cause the packet to be dropped, in which case the resulting 28872 * mblk (*mpp) is NULL. proc indicates the callout position for 28873 * this packet and ill_index is the interface this packet on or will leave 28874 * on (inbound and outbound resp.). 28875 */ 28876 void 28877 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28878 { 28879 mblk_t *mp; 28880 ip_priv_t *priv; 28881 ipp_action_id_t aid; 28882 int rc = 0; 28883 ipp_packet_t *pp; 28884 #define IP_CLASS "ip" 28885 28886 /* If the classifier is not loaded, return */ 28887 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28888 return; 28889 } 28890 28891 mp = *mpp; 28892 ASSERT(mp != NULL); 28893 28894 /* Allocate the packet structure */ 28895 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28896 if (rc != 0) { 28897 *mpp = NULL; 28898 freemsg(mp); 28899 return; 28900 } 28901 28902 /* Allocate the private structure */ 28903 rc = ip_priv_alloc((void **)&priv); 28904 if (rc != 0) { 28905 *mpp = NULL; 28906 freemsg(mp); 28907 ipp_packet_free(pp); 28908 return; 28909 } 28910 priv->proc = proc; 28911 priv->ill_index = ill_index; 28912 ipp_packet_set_private(pp, priv, ip_priv_free); 28913 ipp_packet_set_data(pp, mp); 28914 28915 /* Invoke the classifier */ 28916 rc = ipp_packet_process(&pp); 28917 if (pp != NULL) { 28918 mp = ipp_packet_get_data(pp); 28919 ipp_packet_free(pp); 28920 if (rc != 0) { 28921 freemsg(mp); 28922 *mpp = NULL; 28923 } 28924 } else { 28925 *mpp = NULL; 28926 } 28927 #undef IP_CLASS 28928 } 28929 28930 /* 28931 * Propagate a multicast group membership operation (add/drop) on 28932 * all the interfaces crossed by the related multirt routes. 28933 * The call is considered successful if the operation succeeds 28934 * on at least one interface. 28935 */ 28936 static int 28937 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28938 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28939 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28940 mblk_t *first_mp) 28941 { 28942 ire_t *ire_gw; 28943 irb_t *irb; 28944 int error = 0; 28945 opt_restart_t *or; 28946 ip_stack_t *ipst = ire->ire_ipst; 28947 28948 irb = ire->ire_bucket; 28949 ASSERT(irb != NULL); 28950 28951 ASSERT(DB_TYPE(first_mp) == M_CTL); 28952 28953 or = (opt_restart_t *)first_mp->b_rptr; 28954 IRB_REFHOLD(irb); 28955 for (; ire != NULL; ire = ire->ire_next) { 28956 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28957 continue; 28958 if (ire->ire_addr != group) 28959 continue; 28960 28961 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28962 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28963 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28964 /* No resolver exists for the gateway; skip this ire. */ 28965 if (ire_gw == NULL) 28966 continue; 28967 28968 /* 28969 * This function can return EINPROGRESS. If so the operation 28970 * will be restarted from ip_restart_optmgmt which will 28971 * call ip_opt_set and option processing will restart for 28972 * this option. So we may end up calling 'fn' more than once. 28973 * This requires that 'fn' is idempotent except for the 28974 * return value. The operation is considered a success if 28975 * it succeeds at least once on any one interface. 28976 */ 28977 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28978 NULL, fmode, src, first_mp); 28979 if (error == 0) 28980 or->or_private = CGTP_MCAST_SUCCESS; 28981 28982 if (ip_debug > 0) { 28983 ulong_t off; 28984 char *ksym; 28985 ksym = kobj_getsymname((uintptr_t)fn, &off); 28986 ip2dbg(("ip_multirt_apply_membership: " 28987 "called %s, multirt group 0x%08x via itf 0x%08x, " 28988 "error %d [success %u]\n", 28989 ksym ? ksym : "?", 28990 ntohl(group), ntohl(ire_gw->ire_src_addr), 28991 error, or->or_private)); 28992 } 28993 28994 ire_refrele(ire_gw); 28995 if (error == EINPROGRESS) { 28996 IRB_REFRELE(irb); 28997 return (error); 28998 } 28999 } 29000 IRB_REFRELE(irb); 29001 /* 29002 * Consider the call as successful if we succeeded on at least 29003 * one interface. Otherwise, return the last encountered error. 29004 */ 29005 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 29006 } 29007 29008 29009 /* 29010 * Issue a warning regarding a route crossing an interface with an 29011 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 29012 * amount of time is logged. 29013 */ 29014 static void 29015 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 29016 { 29017 hrtime_t current = gethrtime(); 29018 char buf[INET_ADDRSTRLEN]; 29019 ip_stack_t *ipst = ire->ire_ipst; 29020 29021 /* Convert interval in ms to hrtime in ns */ 29022 if (ipst->ips_multirt_bad_mtu_last_time + 29023 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 29024 current) { 29025 cmn_err(CE_WARN, "ip: ignoring multiroute " 29026 "to %s, incorrect MTU %u (expected %u)\n", 29027 ip_dot_addr(ire->ire_addr, buf), 29028 ire->ire_max_frag, max_frag); 29029 29030 ipst->ips_multirt_bad_mtu_last_time = current; 29031 } 29032 } 29033 29034 29035 /* 29036 * Get the CGTP (multirouting) filtering status. 29037 * If 0, the CGTP hooks are transparent. 29038 */ 29039 /* ARGSUSED */ 29040 static int 29041 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 29042 { 29043 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29044 29045 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 29046 return (0); 29047 } 29048 29049 29050 /* 29051 * Set the CGTP (multirouting) filtering status. 29052 * If the status is changed from active to transparent 29053 * or from transparent to active, forward the new status 29054 * to the filtering module (if loaded). 29055 */ 29056 /* ARGSUSED */ 29057 static int 29058 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 29059 cred_t *ioc_cr) 29060 { 29061 long new_value; 29062 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29063 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29064 29065 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 29066 return (EPERM); 29067 29068 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 29069 new_value < 0 || new_value > 1) { 29070 return (EINVAL); 29071 } 29072 29073 if ((!*ip_cgtp_filter_value) && new_value) { 29074 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 29075 ipst->ips_ip_cgtp_filter_ops == NULL ? 29076 " (module not loaded)" : ""); 29077 } 29078 if (*ip_cgtp_filter_value && (!new_value)) { 29079 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 29080 ipst->ips_ip_cgtp_filter_ops == NULL ? 29081 " (module not loaded)" : ""); 29082 } 29083 29084 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29085 int res; 29086 netstackid_t stackid; 29087 29088 stackid = ipst->ips_netstack->netstack_stackid; 29089 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 29090 new_value); 29091 if (res) 29092 return (res); 29093 } 29094 29095 *ip_cgtp_filter_value = (boolean_t)new_value; 29096 29097 return (0); 29098 } 29099 29100 29101 /* 29102 * Return the expected CGTP hooks version number. 29103 */ 29104 int 29105 ip_cgtp_filter_supported(void) 29106 { 29107 return (ip_cgtp_filter_rev); 29108 } 29109 29110 29111 /* 29112 * CGTP hooks can be registered by invoking this function. 29113 * Checks that the version number matches. 29114 */ 29115 int 29116 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 29117 { 29118 netstack_t *ns; 29119 ip_stack_t *ipst; 29120 29121 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29122 return (ENOTSUP); 29123 29124 ns = netstack_find_by_stackid(stackid); 29125 if (ns == NULL) 29126 return (EINVAL); 29127 ipst = ns->netstack_ip; 29128 ASSERT(ipst != NULL); 29129 29130 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29131 netstack_rele(ns); 29132 return (EALREADY); 29133 } 29134 29135 ipst->ips_ip_cgtp_filter_ops = ops; 29136 netstack_rele(ns); 29137 return (0); 29138 } 29139 29140 /* 29141 * CGTP hooks can be unregistered by invoking this function. 29142 * Returns ENXIO if there was no registration. 29143 * Returns EBUSY if the ndd variable has not been turned off. 29144 */ 29145 int 29146 ip_cgtp_filter_unregister(netstackid_t stackid) 29147 { 29148 netstack_t *ns; 29149 ip_stack_t *ipst; 29150 29151 ns = netstack_find_by_stackid(stackid); 29152 if (ns == NULL) 29153 return (EINVAL); 29154 ipst = ns->netstack_ip; 29155 ASSERT(ipst != NULL); 29156 29157 if (ipst->ips_ip_cgtp_filter) { 29158 netstack_rele(ns); 29159 return (EBUSY); 29160 } 29161 29162 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 29163 netstack_rele(ns); 29164 return (ENXIO); 29165 } 29166 ipst->ips_ip_cgtp_filter_ops = NULL; 29167 netstack_rele(ns); 29168 return (0); 29169 } 29170 29171 /* 29172 * Check whether there is a CGTP filter registration. 29173 * Returns non-zero if there is a registration, otherwise returns zero. 29174 * Note: returns zero if bad stackid. 29175 */ 29176 int 29177 ip_cgtp_filter_is_registered(netstackid_t stackid) 29178 { 29179 netstack_t *ns; 29180 ip_stack_t *ipst; 29181 int ret; 29182 29183 ns = netstack_find_by_stackid(stackid); 29184 if (ns == NULL) 29185 return (0); 29186 ipst = ns->netstack_ip; 29187 ASSERT(ipst != NULL); 29188 29189 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29190 ret = 1; 29191 else 29192 ret = 0; 29193 29194 netstack_rele(ns); 29195 return (ret); 29196 } 29197 29198 static squeue_func_t 29199 ip_squeue_switch(int val) 29200 { 29201 squeue_func_t rval = squeue_fill; 29202 29203 switch (val) { 29204 case IP_SQUEUE_ENTER_NODRAIN: 29205 rval = squeue_enter_nodrain; 29206 break; 29207 case IP_SQUEUE_ENTER: 29208 rval = squeue_enter; 29209 break; 29210 default: 29211 break; 29212 } 29213 return (rval); 29214 } 29215 29216 /* ARGSUSED */ 29217 static int 29218 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29219 caddr_t addr, cred_t *cr) 29220 { 29221 int *v = (int *)addr; 29222 long new_value; 29223 29224 if (secpolicy_net_config(cr, B_FALSE) != 0) 29225 return (EPERM); 29226 29227 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29228 return (EINVAL); 29229 29230 ip_input_proc = ip_squeue_switch(new_value); 29231 *v = new_value; 29232 return (0); 29233 } 29234 29235 /* 29236 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29237 * ip_debug. 29238 */ 29239 /* ARGSUSED */ 29240 static int 29241 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29242 caddr_t addr, cred_t *cr) 29243 { 29244 int *v = (int *)addr; 29245 long new_value; 29246 29247 if (secpolicy_net_config(cr, B_FALSE) != 0) 29248 return (EPERM); 29249 29250 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29251 return (EINVAL); 29252 29253 *v = new_value; 29254 return (0); 29255 } 29256 29257 /* 29258 * Handle changes to ipmp_hook_emulation ndd variable. 29259 * Need to update phyint_hook_ifindex. 29260 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29261 */ 29262 static void 29263 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29264 { 29265 phyint_t *phyi; 29266 phyint_t *phyi_tmp; 29267 char *groupname; 29268 int namelen; 29269 ill_t *ill; 29270 boolean_t new_group; 29271 29272 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29273 /* 29274 * Group indicies are stored in the phyint - a common structure 29275 * to both IPv4 and IPv6. 29276 */ 29277 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29278 for (; phyi != NULL; 29279 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29280 phyi, AVL_AFTER)) { 29281 /* Ignore the ones that do not have a group */ 29282 if (phyi->phyint_groupname_len == 0) 29283 continue; 29284 29285 /* 29286 * Look for other phyint in group. 29287 * Clear name/namelen so the lookup doesn't find ourselves. 29288 */ 29289 namelen = phyi->phyint_groupname_len; 29290 groupname = phyi->phyint_groupname; 29291 phyi->phyint_groupname_len = 0; 29292 phyi->phyint_groupname = NULL; 29293 29294 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29295 /* Restore */ 29296 phyi->phyint_groupname_len = namelen; 29297 phyi->phyint_groupname = groupname; 29298 29299 new_group = B_FALSE; 29300 if (ipst->ips_ipmp_hook_emulation) { 29301 /* 29302 * If the group already exists and has already 29303 * been assigned a group ifindex, we use the existing 29304 * group_ifindex, otherwise we pick a new group_ifindex 29305 * here. 29306 */ 29307 if (phyi_tmp != NULL && 29308 phyi_tmp->phyint_group_ifindex != 0) { 29309 phyi->phyint_group_ifindex = 29310 phyi_tmp->phyint_group_ifindex; 29311 } else { 29312 /* XXX We need a recovery strategy here. */ 29313 if (!ip_assign_ifindex( 29314 &phyi->phyint_group_ifindex, ipst)) 29315 cmn_err(CE_PANIC, 29316 "ip_assign_ifindex() failed"); 29317 new_group = B_TRUE; 29318 } 29319 } else { 29320 phyi->phyint_group_ifindex = 0; 29321 } 29322 if (ipst->ips_ipmp_hook_emulation) 29323 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29324 else 29325 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29326 29327 /* 29328 * For IP Filter to find out the relationship between 29329 * names and interface indicies, we need to generate 29330 * a NE_PLUMB event when a new group can appear. 29331 * We always generate events when a new interface appears 29332 * (even when ipmp_hook_emulation is set) so there 29333 * is no need to generate NE_PLUMB events when 29334 * ipmp_hook_emulation is turned off. 29335 * And since it isn't critical for IP Filter to get 29336 * the NE_UNPLUMB events we skip those here. 29337 */ 29338 if (new_group) { 29339 /* 29340 * First phyint in group - generate group PLUMB event. 29341 * Since we are not running inside the ipsq we do 29342 * the dispatch immediately. 29343 */ 29344 if (phyi->phyint_illv4 != NULL) 29345 ill = phyi->phyint_illv4; 29346 else 29347 ill = phyi->phyint_illv6; 29348 29349 if (ill != NULL) { 29350 mutex_enter(&ill->ill_lock); 29351 ill_nic_info_plumb(ill, B_TRUE); 29352 ill_nic_info_dispatch(ill); 29353 mutex_exit(&ill->ill_lock); 29354 } 29355 } 29356 } 29357 rw_exit(&ipst->ips_ill_g_lock); 29358 } 29359 29360 /* ARGSUSED */ 29361 static int 29362 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29363 caddr_t addr, cred_t *cr) 29364 { 29365 int *v = (int *)addr; 29366 long new_value; 29367 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29368 29369 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29370 return (EINVAL); 29371 29372 if (*v != new_value) { 29373 *v = new_value; 29374 ipmp_hook_emulation_changed(ipst); 29375 } 29376 return (0); 29377 } 29378 29379 static void * 29380 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29381 { 29382 kstat_t *ksp; 29383 29384 ip_stat_t template = { 29385 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29386 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29387 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29388 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29389 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29390 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29391 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29392 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29393 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29394 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29395 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29396 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29397 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29398 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29399 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29400 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29401 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29402 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29403 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29404 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29405 { "ip_opt", KSTAT_DATA_UINT64 }, 29406 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29407 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29408 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29409 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29410 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29411 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29412 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29413 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29414 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29415 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29416 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29417 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29418 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29419 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29420 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29421 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29422 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29423 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29424 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29425 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29426 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29427 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29428 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29429 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29430 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29431 }; 29432 29433 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29434 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29435 KSTAT_FLAG_VIRTUAL, stackid); 29436 29437 if (ksp == NULL) 29438 return (NULL); 29439 29440 bcopy(&template, ip_statisticsp, sizeof (template)); 29441 ksp->ks_data = (void *)ip_statisticsp; 29442 ksp->ks_private = (void *)(uintptr_t)stackid; 29443 29444 kstat_install(ksp); 29445 return (ksp); 29446 } 29447 29448 static void 29449 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29450 { 29451 if (ksp != NULL) { 29452 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29453 kstat_delete_netstack(ksp, stackid); 29454 } 29455 } 29456 29457 static void * 29458 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29459 { 29460 kstat_t *ksp; 29461 29462 ip_named_kstat_t template = { 29463 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29464 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29465 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29466 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29467 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29468 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29469 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29470 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29471 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29472 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29473 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29474 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29475 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29476 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29477 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29478 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29479 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29480 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29481 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29482 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29483 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29484 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29485 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29486 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29487 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29488 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29489 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29490 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29491 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29492 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29493 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29494 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29495 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29496 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29497 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29498 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29499 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29500 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29501 }; 29502 29503 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29504 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29505 if (ksp == NULL || ksp->ks_data == NULL) 29506 return (NULL); 29507 29508 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29509 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29510 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29511 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29512 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29513 29514 template.netToMediaEntrySize.value.i32 = 29515 sizeof (mib2_ipNetToMediaEntry_t); 29516 29517 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29518 29519 bcopy(&template, ksp->ks_data, sizeof (template)); 29520 ksp->ks_update = ip_kstat_update; 29521 ksp->ks_private = (void *)(uintptr_t)stackid; 29522 29523 kstat_install(ksp); 29524 return (ksp); 29525 } 29526 29527 static void 29528 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29529 { 29530 if (ksp != NULL) { 29531 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29532 kstat_delete_netstack(ksp, stackid); 29533 } 29534 } 29535 29536 static int 29537 ip_kstat_update(kstat_t *kp, int rw) 29538 { 29539 ip_named_kstat_t *ipkp; 29540 mib2_ipIfStatsEntry_t ipmib; 29541 ill_walk_context_t ctx; 29542 ill_t *ill; 29543 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29544 netstack_t *ns; 29545 ip_stack_t *ipst; 29546 29547 if (kp == NULL || kp->ks_data == NULL) 29548 return (EIO); 29549 29550 if (rw == KSTAT_WRITE) 29551 return (EACCES); 29552 29553 ns = netstack_find_by_stackid(stackid); 29554 if (ns == NULL) 29555 return (-1); 29556 ipst = ns->netstack_ip; 29557 if (ipst == NULL) { 29558 netstack_rele(ns); 29559 return (-1); 29560 } 29561 ipkp = (ip_named_kstat_t *)kp->ks_data; 29562 29563 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29564 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29565 ill = ILL_START_WALK_V4(&ctx, ipst); 29566 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29567 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29568 rw_exit(&ipst->ips_ill_g_lock); 29569 29570 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29571 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29572 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29573 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29574 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29575 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29576 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29577 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29578 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29579 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29580 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29581 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29582 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29583 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29584 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29585 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29586 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29587 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29588 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29589 29590 ipkp->routingDiscards.value.ui32 = 0; 29591 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29592 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29593 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29594 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29595 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29596 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29597 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29598 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29599 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29600 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29601 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29602 29603 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29604 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29605 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29606 29607 netstack_rele(ns); 29608 29609 return (0); 29610 } 29611 29612 static void * 29613 icmp_kstat_init(netstackid_t stackid) 29614 { 29615 kstat_t *ksp; 29616 29617 icmp_named_kstat_t template = { 29618 { "inMsgs", KSTAT_DATA_UINT32 }, 29619 { "inErrors", KSTAT_DATA_UINT32 }, 29620 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29621 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29622 { "inParmProbs", KSTAT_DATA_UINT32 }, 29623 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29624 { "inRedirects", KSTAT_DATA_UINT32 }, 29625 { "inEchos", KSTAT_DATA_UINT32 }, 29626 { "inEchoReps", KSTAT_DATA_UINT32 }, 29627 { "inTimestamps", KSTAT_DATA_UINT32 }, 29628 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29629 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29630 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29631 { "outMsgs", KSTAT_DATA_UINT32 }, 29632 { "outErrors", KSTAT_DATA_UINT32 }, 29633 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29634 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29635 { "outParmProbs", KSTAT_DATA_UINT32 }, 29636 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29637 { "outRedirects", KSTAT_DATA_UINT32 }, 29638 { "outEchos", KSTAT_DATA_UINT32 }, 29639 { "outEchoReps", KSTAT_DATA_UINT32 }, 29640 { "outTimestamps", KSTAT_DATA_UINT32 }, 29641 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29642 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29643 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29644 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29645 { "inUnknowns", KSTAT_DATA_UINT32 }, 29646 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29647 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29648 { "outDrops", KSTAT_DATA_UINT32 }, 29649 { "inOverFlows", KSTAT_DATA_UINT32 }, 29650 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29651 }; 29652 29653 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29654 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29655 if (ksp == NULL || ksp->ks_data == NULL) 29656 return (NULL); 29657 29658 bcopy(&template, ksp->ks_data, sizeof (template)); 29659 29660 ksp->ks_update = icmp_kstat_update; 29661 ksp->ks_private = (void *)(uintptr_t)stackid; 29662 29663 kstat_install(ksp); 29664 return (ksp); 29665 } 29666 29667 static void 29668 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29669 { 29670 if (ksp != NULL) { 29671 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29672 kstat_delete_netstack(ksp, stackid); 29673 } 29674 } 29675 29676 static int 29677 icmp_kstat_update(kstat_t *kp, int rw) 29678 { 29679 icmp_named_kstat_t *icmpkp; 29680 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29681 netstack_t *ns; 29682 ip_stack_t *ipst; 29683 29684 if ((kp == NULL) || (kp->ks_data == NULL)) 29685 return (EIO); 29686 29687 if (rw == KSTAT_WRITE) 29688 return (EACCES); 29689 29690 ns = netstack_find_by_stackid(stackid); 29691 if (ns == NULL) 29692 return (-1); 29693 ipst = ns->netstack_ip; 29694 if (ipst == NULL) { 29695 netstack_rele(ns); 29696 return (-1); 29697 } 29698 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29699 29700 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29701 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29702 icmpkp->inDestUnreachs.value.ui32 = 29703 ipst->ips_icmp_mib.icmpInDestUnreachs; 29704 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29705 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29706 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29707 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29708 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29709 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29710 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29711 icmpkp->inTimestampReps.value.ui32 = 29712 ipst->ips_icmp_mib.icmpInTimestampReps; 29713 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29714 icmpkp->inAddrMaskReps.value.ui32 = 29715 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29716 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29717 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29718 icmpkp->outDestUnreachs.value.ui32 = 29719 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29720 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29721 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29722 icmpkp->outSrcQuenchs.value.ui32 = 29723 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29724 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29725 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29726 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29727 icmpkp->outTimestamps.value.ui32 = 29728 ipst->ips_icmp_mib.icmpOutTimestamps; 29729 icmpkp->outTimestampReps.value.ui32 = 29730 ipst->ips_icmp_mib.icmpOutTimestampReps; 29731 icmpkp->outAddrMasks.value.ui32 = 29732 ipst->ips_icmp_mib.icmpOutAddrMasks; 29733 icmpkp->outAddrMaskReps.value.ui32 = 29734 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29735 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29736 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29737 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29738 icmpkp->outFragNeeded.value.ui32 = 29739 ipst->ips_icmp_mib.icmpOutFragNeeded; 29740 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29741 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29742 icmpkp->inBadRedirects.value.ui32 = 29743 ipst->ips_icmp_mib.icmpInBadRedirects; 29744 29745 netstack_rele(ns); 29746 return (0); 29747 } 29748 29749 /* 29750 * This is the fanout function for raw socket opened for SCTP. Note 29751 * that it is called after SCTP checks that there is no socket which 29752 * wants a packet. Then before SCTP handles this out of the blue packet, 29753 * this function is called to see if there is any raw socket for SCTP. 29754 * If there is and it is bound to the correct address, the packet will 29755 * be sent to that socket. Note that only one raw socket can be bound to 29756 * a port. This is assured in ipcl_sctp_hash_insert(); 29757 */ 29758 void 29759 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29760 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29761 zoneid_t zoneid) 29762 { 29763 conn_t *connp; 29764 queue_t *rq; 29765 mblk_t *first_mp; 29766 boolean_t secure; 29767 ip6_t *ip6h; 29768 ip_stack_t *ipst = recv_ill->ill_ipst; 29769 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29770 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29771 boolean_t sctp_csum_err = B_FALSE; 29772 29773 if (flags & IP_FF_SCTP_CSUM_ERR) { 29774 sctp_csum_err = B_TRUE; 29775 flags &= ~IP_FF_SCTP_CSUM_ERR; 29776 } 29777 29778 first_mp = mp; 29779 if (mctl_present) { 29780 mp = first_mp->b_cont; 29781 secure = ipsec_in_is_secure(first_mp); 29782 ASSERT(mp != NULL); 29783 } else { 29784 secure = B_FALSE; 29785 } 29786 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29787 29788 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29789 if (connp == NULL) { 29790 /* 29791 * Although raw sctp is not summed, OOB chunks must be. 29792 * Drop the packet here if the sctp checksum failed. 29793 */ 29794 if (sctp_csum_err) { 29795 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29796 freemsg(first_mp); 29797 return; 29798 } 29799 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29800 return; 29801 } 29802 rq = connp->conn_rq; 29803 if (!canputnext(rq)) { 29804 CONN_DEC_REF(connp); 29805 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29806 freemsg(first_mp); 29807 return; 29808 } 29809 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29810 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29811 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29812 (isv4 ? ipha : NULL), ip6h, mctl_present); 29813 if (first_mp == NULL) { 29814 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29815 CONN_DEC_REF(connp); 29816 return; 29817 } 29818 } 29819 /* 29820 * We probably should not send M_CTL message up to 29821 * raw socket. 29822 */ 29823 if (mctl_present) 29824 freeb(first_mp); 29825 29826 /* Initiate IPPF processing here if needed. */ 29827 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29828 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29829 ip_process(IPP_LOCAL_IN, &mp, 29830 recv_ill->ill_phyint->phyint_ifindex); 29831 if (mp == NULL) { 29832 CONN_DEC_REF(connp); 29833 return; 29834 } 29835 } 29836 29837 if (connp->conn_recvif || connp->conn_recvslla || 29838 ((connp->conn_ip_recvpktinfo || 29839 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29840 (flags & IP_FF_IPINFO))) { 29841 int in_flags = 0; 29842 29843 /* 29844 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29845 * IPF_RECVIF. 29846 */ 29847 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29848 in_flags = IPF_RECVIF; 29849 } 29850 if (connp->conn_recvslla) { 29851 in_flags |= IPF_RECVSLLA; 29852 } 29853 if (isv4) { 29854 mp = ip_add_info(mp, recv_ill, in_flags, 29855 IPCL_ZONEID(connp), ipst); 29856 } else { 29857 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29858 if (mp == NULL) { 29859 BUMP_MIB(recv_ill->ill_ip_mib, 29860 ipIfStatsInDiscards); 29861 CONN_DEC_REF(connp); 29862 return; 29863 } 29864 } 29865 } 29866 29867 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29868 /* 29869 * We are sending the IPSEC_IN message also up. Refer 29870 * to comments above this function. 29871 * This is the SOCK_RAW, IPPROTO_SCTP case. 29872 */ 29873 (connp->conn_recv)(connp, mp, NULL); 29874 CONN_DEC_REF(connp); 29875 } 29876 29877 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29878 { \ 29879 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29880 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29881 } 29882 /* 29883 * This function should be called only if all packet processing 29884 * including fragmentation is complete. Callers of this function 29885 * must set mp->b_prev to one of these values: 29886 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29887 * prior to handing over the mp as first argument to this function. 29888 * 29889 * If the ire passed by caller is incomplete, this function 29890 * queues the packet and if necessary, sends ARP request and bails. 29891 * If the ire passed is fully resolved, we simply prepend 29892 * the link-layer header to the packet, do ipsec hw acceleration 29893 * work if necessary, and send the packet out on the wire. 29894 * 29895 * NOTE: IPsec will only call this function with fully resolved 29896 * ires if hw acceleration is involved. 29897 * TODO list : 29898 * a Handle M_MULTIDATA so that 29899 * tcp_multisend->tcp_multisend_data can 29900 * call ip_xmit_v4 directly 29901 * b Handle post-ARP work for fragments so that 29902 * ip_wput_frag can call this function. 29903 */ 29904 ipxmit_state_t 29905 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 29906 { 29907 nce_t *arpce; 29908 ipha_t *ipha; 29909 queue_t *q; 29910 int ill_index; 29911 mblk_t *nxt_mp, *first_mp; 29912 boolean_t xmit_drop = B_FALSE; 29913 ip_proc_t proc; 29914 ill_t *out_ill; 29915 int pkt_len; 29916 29917 arpce = ire->ire_nce; 29918 ASSERT(arpce != NULL); 29919 29920 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29921 29922 mutex_enter(&arpce->nce_lock); 29923 switch (arpce->nce_state) { 29924 case ND_REACHABLE: 29925 /* If there are other queued packets, queue this packet */ 29926 if (arpce->nce_qd_mp != NULL) { 29927 if (mp != NULL) 29928 nce_queue_mp_common(arpce, mp, B_FALSE); 29929 mp = arpce->nce_qd_mp; 29930 } 29931 arpce->nce_qd_mp = NULL; 29932 mutex_exit(&arpce->nce_lock); 29933 29934 /* 29935 * Flush the queue. In the common case, where the 29936 * ARP is already resolved, it will go through the 29937 * while loop only once. 29938 */ 29939 while (mp != NULL) { 29940 29941 nxt_mp = mp->b_next; 29942 mp->b_next = NULL; 29943 ASSERT(mp->b_datap->db_type != M_CTL); 29944 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29945 /* 29946 * This info is needed for IPQOS to do COS marking 29947 * in ip_wput_attach_llhdr->ip_process. 29948 */ 29949 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29950 mp->b_prev = NULL; 29951 29952 /* set up ill index for outbound qos processing */ 29953 out_ill = ire_to_ill(ire); 29954 ill_index = out_ill->ill_phyint->phyint_ifindex; 29955 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29956 ill_index, &ipha); 29957 if (first_mp == NULL) { 29958 xmit_drop = B_TRUE; 29959 BUMP_MIB(out_ill->ill_ip_mib, 29960 ipIfStatsOutDiscards); 29961 goto next_mp; 29962 } 29963 29964 /* non-ipsec hw accel case */ 29965 if (io == NULL || !io->ipsec_out_accelerated) { 29966 /* send it */ 29967 q = ire->ire_stq; 29968 if (proc == IPP_FWD_OUT) { 29969 UPDATE_IB_PKT_COUNT(ire); 29970 } else { 29971 UPDATE_OB_PKT_COUNT(ire); 29972 } 29973 ire->ire_last_used_time = lbolt; 29974 29975 if (flow_ctl_enabled || canputnext(q)) { 29976 if (proc == IPP_FWD_OUT) { 29977 29978 BUMP_MIB(out_ill->ill_ip_mib, 29979 ipIfStatsHCOutForwDatagrams); 29980 29981 } 29982 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29983 pkt_len); 29984 29985 DTRACE_IP7(send, mblk_t *, first_mp, 29986 conn_t *, NULL, void_ip_t *, ipha, 29987 __dtrace_ipsr_ill_t *, out_ill, 29988 ipha_t *, ipha, ip6_t *, NULL, int, 29989 0); 29990 29991 putnext(q, first_mp); 29992 } else { 29993 BUMP_MIB(out_ill->ill_ip_mib, 29994 ipIfStatsOutDiscards); 29995 xmit_drop = B_TRUE; 29996 freemsg(first_mp); 29997 } 29998 } else { 29999 /* 30000 * Safety Pup says: make sure this 30001 * is going to the right interface! 30002 */ 30003 ill_t *ill1 = 30004 (ill_t *)ire->ire_stq->q_ptr; 30005 int ifindex = 30006 ill1->ill_phyint->phyint_ifindex; 30007 if (ifindex != 30008 io->ipsec_out_capab_ill_index) { 30009 xmit_drop = B_TRUE; 30010 freemsg(mp); 30011 } else { 30012 UPDATE_IP_MIB_OB_COUNTERS(ill1, 30013 pkt_len); 30014 30015 DTRACE_IP7(send, mblk_t *, first_mp, 30016 conn_t *, NULL, void_ip_t *, ipha, 30017 __dtrace_ipsr_ill_t *, ill1, 30018 ipha_t *, ipha, ip6_t *, NULL, 30019 int, 0); 30020 30021 ipsec_hw_putnext(ire->ire_stq, mp); 30022 } 30023 } 30024 next_mp: 30025 mp = nxt_mp; 30026 } /* while (mp != NULL) */ 30027 if (xmit_drop) 30028 return (SEND_FAILED); 30029 else 30030 return (SEND_PASSED); 30031 30032 case ND_INITIAL: 30033 case ND_INCOMPLETE: 30034 30035 /* 30036 * While we do send off packets to dests that 30037 * use fully-resolved CGTP routes, we do not 30038 * handle unresolved CGTP routes. 30039 */ 30040 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 30041 ASSERT(io == NULL || !io->ipsec_out_accelerated); 30042 30043 if (mp != NULL) { 30044 /* queue the packet */ 30045 nce_queue_mp_common(arpce, mp, B_FALSE); 30046 } 30047 30048 if (arpce->nce_state == ND_INCOMPLETE) { 30049 mutex_exit(&arpce->nce_lock); 30050 DTRACE_PROBE3(ip__xmit__incomplete, 30051 (ire_t *), ire, (mblk_t *), mp, 30052 (ipsec_out_t *), io); 30053 return (LOOKUP_IN_PROGRESS); 30054 } 30055 30056 arpce->nce_state = ND_INCOMPLETE; 30057 mutex_exit(&arpce->nce_lock); 30058 /* 30059 * Note that ire_add() (called from ire_forward()) 30060 * holds a ref on the ire until ARP is completed. 30061 */ 30062 30063 ire_arpresolve(ire, ire_to_ill(ire)); 30064 return (LOOKUP_IN_PROGRESS); 30065 default: 30066 ASSERT(0); 30067 mutex_exit(&arpce->nce_lock); 30068 return (LLHDR_RESLV_FAILED); 30069 } 30070 } 30071 30072 #undef UPDATE_IP_MIB_OB_COUNTERS 30073 30074 /* 30075 * Return B_TRUE if the buffers differ in length or content. 30076 * This is used for comparing extension header buffers. 30077 * Note that an extension header would be declared different 30078 * even if all that changed was the next header value in that header i.e. 30079 * what really changed is the next extension header. 30080 */ 30081 boolean_t 30082 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 30083 uint_t blen) 30084 { 30085 if (!b_valid) 30086 blen = 0; 30087 30088 if (alen != blen) 30089 return (B_TRUE); 30090 if (alen == 0) 30091 return (B_FALSE); /* Both zero length */ 30092 return (bcmp(abuf, bbuf, alen)); 30093 } 30094 30095 /* 30096 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 30097 * Return B_FALSE if memory allocation fails - don't change any state! 30098 */ 30099 boolean_t 30100 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30101 const void *src, uint_t srclen) 30102 { 30103 void *dst; 30104 30105 if (!src_valid) 30106 srclen = 0; 30107 30108 ASSERT(*dstlenp == 0); 30109 if (src != NULL && srclen != 0) { 30110 dst = mi_alloc(srclen, BPRI_MED); 30111 if (dst == NULL) 30112 return (B_FALSE); 30113 } else { 30114 dst = NULL; 30115 } 30116 if (*dstp != NULL) 30117 mi_free(*dstp); 30118 *dstp = dst; 30119 *dstlenp = dst == NULL ? 0 : srclen; 30120 return (B_TRUE); 30121 } 30122 30123 /* 30124 * Replace what is in *dst, *dstlen with the source. 30125 * Assumes ip_allocbuf has already been called. 30126 */ 30127 void 30128 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30129 const void *src, uint_t srclen) 30130 { 30131 if (!src_valid) 30132 srclen = 0; 30133 30134 ASSERT(*dstlenp == srclen); 30135 if (src != NULL && srclen != 0) 30136 bcopy(src, *dstp, srclen); 30137 } 30138 30139 /* 30140 * Free the storage pointed to by the members of an ip6_pkt_t. 30141 */ 30142 void 30143 ip6_pkt_free(ip6_pkt_t *ipp) 30144 { 30145 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30146 30147 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30148 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30149 ipp->ipp_hopopts = NULL; 30150 ipp->ipp_hopoptslen = 0; 30151 } 30152 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30153 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30154 ipp->ipp_rtdstopts = NULL; 30155 ipp->ipp_rtdstoptslen = 0; 30156 } 30157 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30158 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30159 ipp->ipp_dstopts = NULL; 30160 ipp->ipp_dstoptslen = 0; 30161 } 30162 if (ipp->ipp_fields & IPPF_RTHDR) { 30163 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30164 ipp->ipp_rthdr = NULL; 30165 ipp->ipp_rthdrlen = 0; 30166 } 30167 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30168 IPPF_RTHDR); 30169 } 30170